Construction of energy-stable Galerkin reduced order models.
Energy Technology Data Exchange (ETDEWEB)
Kalashnikova, Irina; Barone, Matthew Franklin; Arunajatesan, Srinivasan; van Bloemen Waanders, Bart Gustaaf
2013-05-01
This report aims to unify several approaches for building stable projection-based reduced order models (ROMs). Attention is focused on linear time-invariant (LTI) systems. The model reduction procedure consists of two steps: the computation of a reduced basis, and the projection of the governing partial differential equations (PDEs) onto this reduced basis. Two kinds of reduced bases are considered: the proper orthogonal decomposition (POD) basis and the balanced truncation basis. The projection step of the model reduction can be done in two ways: via continuous projection or via discrete projection. First, an approach for building energy-stable Galerkin ROMs for linear hyperbolic or incompletely parabolic systems of PDEs using continuous projection is proposed. The idea is to apply to the set of PDEs a transformation induced by the Lyapunov function for the system, and to build the ROM in the transformed variables. The resulting ROM will be energy-stable for any choice of reduced basis. It is shown that, for many PDE systems, the desired transformation is induced by a special weighted L2 inner product, termed the %E2%80%9Csymmetry inner product%E2%80%9D. Attention is then turned to building energy-stable ROMs via discrete projection. A discrete counterpart of the continuous symmetry inner product, a weighted L2 inner product termed the %E2%80%9CLyapunov inner product%E2%80%9D, is derived. The weighting matrix that defines the Lyapunov inner product can be computed in a black-box fashion for a stable LTI system arising from the discretization of a system of PDEs in space. It is shown that a ROM constructed via discrete projection using the Lyapunov inner product will be energy-stable for any choice of reduced basis. Connections between the Lyapunov inner product and the inner product induced by the balanced truncation algorithm are made. Comparisons are also made between the symmetry inner product and the Lyapunov inner product. The performance of ROMs constructed
Energy Technology Data Exchange (ETDEWEB)
Silveira, L.M.; Kamon, M.; Elfadel, I.; White, J. [Massachusetts Inst. of Technology, Cambridge, MA (United States)
1996-12-31
Model order reduction based on Krylov subspace iterative methods has recently emerged as a major tool for compressing the number of states in linear models used for simulating very large physical systems (VLSI circuits, electromagnetic interactions). There are currently two main methods for accomplishing such a compression: one is based on the nonsymmetric look-ahead Lanczos algorithm that gives a numerically stable procedure for finding Pade approximations, while the other is based on a less well characterized Arnoldi algorithm. In this paper, we show that for certain classes of generalized state-space systems, the reduced-order models produced by a coordinate-transformed Arnoldi algorithm inherit the stability of the original system. Complete Proofs of our results will be given in the final paper.
Thibes, Ronaldo
2017-02-01
We perform the canonical and path integral quantizations of a lower-order derivatives model describing Podolsky's generalized electrodynamics. The physical content of the model shows an auxiliary massive vector field coupled to the usual electromagnetic field. The equivalence with Podolsky's original model is studied at classical and quantum levels. Concerning the dynamical time evolution, we obtain a theory with two first-class and two second-class constraints in phase space. We calculate explicitly the corresponding Dirac brackets involving both vector fields. We use the Senjanovic procedure to implement the second-class constraints and the Batalin-Fradkin-Vilkovisky path integral quantization scheme to deal with the symmetries generated by the first-class constraints. The physical interpretation of the results turns out to be simpler due to the reduced derivatives order permeating the equations of motion, Dirac brackets and effective action.
Determining Reduced Order Models for Optimal Stochastic Reduced Order Models
Energy Technology Data Exchange (ETDEWEB)
Bonney, Matthew S. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Brake, Matthew R.W. [Sandia National Lab. (SNL-CA), Livermore, CA (United States)
2015-08-01
The use of parameterized reduced order models(PROMs) within the stochastic reduced order model (SROM) framework is a logical progression for both methods. In this report, five different parameterized reduced order models are selected and critiqued against the other models along with truth model for the example of the Brake-Reuss beam. The models are: a Taylor series using finite difference, a proper orthogonal decomposition of the the output, a Craig-Bampton representation of the model, a method that uses Hyper-Dual numbers to determine the sensitivities, and a Meta-Model method that uses the Hyper-Dual results and constructs a polynomial curve to better represent the output data. The methods are compared against a parameter sweep and a distribution propagation where the first four statistical moments are used as a comparison. Each method produces very accurate results with the Craig-Bampton reduction having the least accurate results. The models are also compared based on time requirements for the evaluation of each model where the Meta- Model requires the least amount of time for computation by a significant amount. Each of the five models provided accurate results in a reasonable time frame. The determination of which model to use is dependent on the availability of the high-fidelity model and how many evaluations can be performed. Analysis of the output distribution is examined by using a large Monte-Carlo simulation along with a reduced simulation using Latin Hypercube and the stochastic reduced order model sampling technique. Both techniques produced accurate results. The stochastic reduced order modeling technique produced less error when compared to an exhaustive sampling for the majority of methods.
Generalized Reduced Order Model Generation Project
National Aeronautics and Space Administration — M4 Engineering proposes to develop a generalized reduced order model generation method. This method will allow for creation of reduced order aeroservoelastic state...
Reduced-order modelling numerical homogenization.
Abdulle, A; Bai, Y
2014-08-06
A general framework to combine numerical homogenization and reduced-order modelling techniques for partial differential equations (PDEs) with multiple scales is described. Numerical homogenization methods are usually efficient to approximate the effective solution of PDEs with multiple scales. However, classical numerical homogenization techniques require the numerical solution of a large number of so-called microproblems to approximate the effective data at selected grid points of the computational domain. Such computations become particularly expensive for high-dimensional, time-dependent or nonlinear problems. In this paper, we explain how numerical homogenization method can benefit from reduced-order modelling techniques that allow one to identify offline and online computational procedures. The effective data are only computed accurately at a carefully selected number of grid points (offline stage) appropriately 'interpolated' in the online stage resulting in an online cost comparable to that of a single-scale solver. The methodology is presented for a class of PDEs with multiple scales, including elliptic, parabolic, wave and nonlinear problems. Numerical examples, including wave propagation in inhomogeneous media and solute transport in unsaturated porous media, illustrate the proposed method. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
Reduced order modeling of fluid/structure interaction.
Energy Technology Data Exchange (ETDEWEB)
Barone, Matthew Franklin; Kalashnikova, Irina; Segalman, Daniel Joseph; Brake, Matthew Robert
2009-11-01
This report describes work performed from October 2007 through September 2009 under the Sandia Laboratory Directed Research and Development project titled 'Reduced Order Modeling of Fluid/Structure Interaction.' This project addresses fundamental aspects of techniques for construction of predictive Reduced Order Models (ROMs). A ROM is defined as a model, derived from a sequence of high-fidelity simulations, that preserves the essential physics and predictive capability of the original simulations but at a much lower computational cost. Techniques are developed for construction of provably stable linear Galerkin projection ROMs for compressible fluid flow, including a method for enforcing boundary conditions that preserves numerical stability. A convergence proof and error estimates are given for this class of ROM, and the method is demonstrated on a series of model problems. A reduced order method, based on the method of quadratic components, for solving the von Karman nonlinear plate equations is developed and tested. This method is applied to the problem of nonlinear limit cycle oscillations encountered when the plate interacts with an adjacent supersonic flow. A stability-preserving method for coupling the linear fluid ROM with the structural dynamics model for the elastic plate is constructed and tested. Methods for constructing efficient ROMs for nonlinear fluid equations are developed and tested on a one-dimensional convection-diffusion-reaction equation. These methods are combined with a symmetrization approach to construct a ROM technique for application to the compressible Navier-Stokes equations.
Reduced-Order Modeling: New Approaches for Computational Physics
Beran, Philip S.; Silva, Walter A.
2001-01-01
In this paper, we review the development of new reduced-order modeling techniques and discuss their applicability to various problems in computational physics. Emphasis is given to methods ba'sed on Volterra series representations and the proper orthogonal decomposition. Results are reported for different nonlinear systems to provide clear examples of the construction and use of reduced-order models, particularly in the multi-disciplinary field of computational aeroelasticity. Unsteady aerodynamic and aeroelastic behaviors of two- dimensional and three-dimensional geometries are described. Large increases in computational efficiency are obtained through the use of reduced-order models, thereby justifying the initial computational expense of constructing these models and inotivatim,- their use for multi-disciplinary design analysis.
Control of fluid flows using multivariate spline reduced order models
Tol, H.J.; de Visser, C.C.; Kotsonis, M.
2016-01-01
This paper presents a study on control of fluid flows using multivariate spline reduced order models. A new approach is presented for model reduction of the incompressible Navier-Stokes equations using multivariate splines defined on triangulations. State space descriptions are derived that can be
A reduced order model for nonlinear vibroacoustic problems
Directory of Open Access Journals (Sweden)
Ouisse Morvan
2012-07-01
Full Text Available This work is related to geometrical nonlinearities applied to thin plates coupled with fluid-filled domain. Model reduction is performed to reduce the computation time. Reduced order model (ROM is issued from the uncoupled linear problem and enriched with residues to describe the nonlinear behavior and coupling effects. To show the efficiency of the proposed method, numerical simulations in the case of an elastic plate closing an acoustic cavity are presented.
AN OVERVIEW OF REDUCED ORDER MODELING TECHNIQUES FOR SAFETY APPLICATIONS
Energy Technology Data Exchange (ETDEWEB)
Mandelli, D.; Alfonsi, A.; Talbot, P.; Wang, C.; Maljovec, D.; Smith, C.; Rabiti, C.; Cogliati, J.
2016-10-01
The RISMC project is developing new advanced simulation-based tools to perform Computational Risk Analysis (CRA) for the existing fleet of U.S. nuclear power plants (NPPs). These tools numerically model not only the thermal-hydraulic behavior of the reactors primary and secondary systems, but also external event temporal evolution and component/system ageing. Thus, this is not only a multi-physics problem being addressed, but also a multi-scale problem (both spatial, µm-mm-m, and temporal, seconds-hours-years). As part of the RISMC CRA approach, a large amount of computationally-expensive simulation runs may be required. An important aspect is that even though computational power is growing, the overall computational cost of a RISMC analysis using brute-force methods may be not viable for certain cases. A solution that is being evaluated to assist the computational issue is the use of reduced order modeling techniques. During the FY2015, we investigated and applied reduced order modeling techniques to decrease the RISMC analysis computational cost by decreasing the number of simulation runs; for this analysis improvement we used surrogate models instead of the actual simulation codes. This article focuses on the use of reduced order modeling techniques that can be applied to RISMC analyses in order to generate, analyze, and visualize data. In particular, we focus on surrogate models that approximate the simulation results but in a much faster time (microseconds instead of hours/days).
Accelerated gravitational-wave parameter estimation with reduced order modeling
Canizares, Priscilla; Gair, Jonathan; Raymond, Vivien; Smith, Rory; Tiglio, Manuel
2014-01-01
Inferring the astrophysical parameters of coalescing compact binaries is a key science goal of the upcoming advanced LIGO-Virgo gravitational-wave detector network and, more generally, gravitational-wave astronomy. However, current parameter estimation approaches for such scenarios can lead to computationally intractable problems in practice. Therefore there is a pressing need for new, fast and accurate Bayesian inference techniques. In this letter we demonstrate that a reduced order modeling approach enables rapid parameter estimation studies. By implementing a reduced order quadrature scheme within the LIGO Algorithm Library, we show that Bayesian inference on the 9-dimensional parameter space of non-spinning binary neutron star inspirals can be sped up by a factor of 30 for the early advanced detectors' configurations. This speed-up will increase to about $150$ as the detectors improve their low-frequency limit to 10Hz, reducing to hours analyses which would otherwise take months to complete. Although thes...
Reduced-order models of the coagulation cascade
Hansen, Kirk B.; Shadden, Shawn C.
2015-11-01
Previous models of flow-mediated thrombogenesis have generally included the transport and reaction of dozens of biochemical species involved in the coagulation cascade. Researchers have shown, however, that thrombin generation curves can be accurately reproduced by a significantly smaller system of reactions. These reduced-order models are based on the system of ordinary differential equations representative of a well-mixed system, however, not the system of advection-diffusion-reaction equations required to model the flow-mediated case. Additionally, they focus solely on reproducing the thrombin generation curve, although accurate representation of certain intermediate species may be required to model additional aspects of clot formation, e.g. interactions with activated and non-activated platelets. In this work, we develop a method to reduce the order of a coagulation model through optimization techniques. The results of this reduced-order model are then compared to those of the full system in several representative cardiovascular flows. This work was supported by NSF grant 1354541, the NSF GRFP, and NIH grant HL108272.
Bilinear reduced order approximate model of parabolic distributed solar collectors
Elmetennani, Shahrazed
2015-07-01
This paper proposes a novel, low dimensional and accurate approximate model for the distributed parabolic solar collector, by means of a modified gaussian interpolation along the spatial domain. The proposed reduced model, taking the form of a low dimensional bilinear state representation, enables the reproduction of the heat transfer dynamics along the collector tube for system analysis. Moreover, presented as a reduced order bilinear state space model, the well established control theory for this class of systems can be applied. The approximation efficiency has been proven by several simulation tests, which have been performed considering parameters of the Acurex field with real external working conditions. Model accuracy has been evaluated by comparison to the analytical solution of the hyperbolic distributed model and its semi discretized approximation highlighting the benefits of using the proposed numerical scheme. Furthermore, model sensitivity to the different parameters of the gaussian interpolation has been studied.
Non-linear reduced order models for steady aerodynamics
DEFF Research Database (Denmark)
Zimmermann, Ralf; Goertz, Stefan
2010-01-01
transformation for obtaining problem-adapted global basis modes is introduced. Model order reduction is achieved by parameter space sampling, reduced solution space representation via global POD and restriction of a CFD flow solver to the reduced POD subspace. Solving the governing equations of fluid dynamics...... is replaced by solving a non-linear least-squares optimization problem. Methods for obtaining feasible starting solutions for the optimization procedure are discussed. The method is demonstrated by computing reduced-order solutions to the compressible Euler equations for the NACA 0012 airfoil based on two...
Reduced-Order Modeling of a Heaving Airfoil
Haj-Hariri, H.; Murphy, P. C.; Lewin, G. C.
2005-01-01
A reduced-order model of a flapping airfoil is developed using Proper Orthogonal Decomposition (POD). The proper basis functions, developed from snapshots of full Navier-Stokes simulations, are used for a Galerkin projection of the governing equations. The resulting coupled, nonlinear ordinary di.erential equations have a low dimension because the first few basis members capture most of the energy of the flow. The reduced-order model is used to simulate heaving motions that are both similar to and different from the motion(s) used to generate the basis functions, and the errors in the model are quantified. Several methods are used to generate mode sets that can be used over a range of heaving parameters, including snapshots from one, two, and multiple Navier-Stokes simulations. As snapshots from additional simulations are added to the decomposition, the mode sets become richer and can simulate a wider range of parameter space, at some computational cost. Whereas the POD method is fully applicable in three dimensions, the simulation technique based on a body-fixed and body-fitted grid suffers large overhead when extended to three dimensions. To reduce the overhead, an embedding technique is discussed which embeds the solid wing into a fixed Cartesian grid. The wing, which can now have multiple pieces and also be flexible, is represented by a distribution of body forces. This distribution is determined to give exactly the flow around a flapping wing.
Towards a Wind Turbine Wake Reduced-Order Model
Hamilton, Nicholas; Viggiano, Bianca; Calaf, Marc; Tutkun, Murat; Cal, Raúl Bayoán
2017-11-01
A reduced-order model for a wind turbine wake is sought for prediction and control. Basis functions from the proper orthogonal decomposition (POD) represent the spatially coherent turbulence structures in the wake; eigenvalues delineate the turbulence kinetic energy associated with each mode. Back-projecting the POD modes onto the velocity snapshots produces coefficients that express the amplitude of each mode in time. A reduced-order model of the wind turbine wake (wakeROM) is defined through a series of polynomial parameters that quantify mode interaction and the evolution of each mode coefficient. Tikhonov regularization is employed to recalibrate the dynamical system, reducing error in the modeled mode coefficients and adding stability to the system. The wakeROM is periodically reinitialized by relating the incoming turbulent velocity to the POD mode coefficients. A high-level view of the wakeROM provides as a platform to discuss promising research direction, alternate processes that will enhance stability, and portability to control methods. NSF- ECCS-1032647, NSF-CBET-1034581, Research Council of Norway Project Number 231491.
Reduced order methods for modeling and computational reduction
Rozza, Gianluigi
2014-01-01
This monograph addresses the state of the art of reduced order methods for modeling and computational reduction of complex parametrized systems, governed by ordinary and/or partial differential equations, with a special emphasis on real time computing techniques and applications in computational mechanics, bioengineering and computer graphics. Several topics are covered, including: design, optimization, and control theory in real-time with applications in engineering; data assimilation, geometry registration, and parameter estimation with special attention to real-time computing in biomedical engineering and computational physics; real-time visualization of physics-based simulations in computer science; the treatment of high-dimensional problems in state space, physical space, or parameter space; the interactions between different model reduction and dimensionality reduction approaches; the development of general error estimation frameworks which take into account both model and discretization effects. This...
Accelerating transient simulation of linear reduced order models.
Energy Technology Data Exchange (ETDEWEB)
Thornquist, Heidi K.; Mei, Ting; Keiter, Eric Richard; Bond, Brad
2011-10-01
Model order reduction (MOR) techniques have been used to facilitate the analysis of dynamical systems for many years. Although existing model reduction techniques are capable of providing huge speedups in the frequency domain analysis (i.e. AC response) of linear systems, such speedups are often not obtained when performing transient analysis on the systems, particularly when coupled with other circuit components. Reduced system size, which is the ostensible goal of MOR methods, is often insufficient to improve transient simulation speed on realistic circuit problems. It can be shown that making the correct reduced order model (ROM) implementation choices is crucial to the practical application of MOR methods. In this report we investigate methods for accelerating the simulation of circuits containing ROM blocks using the circuit simulator Xyce.
Advanced Fluid Reduced Order Models for Compressible Flow.
Energy Technology Data Exchange (ETDEWEB)
Tezaur, Irina Kalashnikova [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Fike, Jeffrey A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Carlberg, Kevin Thomas [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Barone, Matthew F. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Maddix, Danielle [Stanford Univ., CA (United States); Mussoni, Erin E. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Balajewicz, Maciej [Univ. of Illinois, Urbana-Champaign, IL (United States)
2017-09-01
This report summarizes fiscal year (FY) 2017 progress towards developing and implementing within the SPARC in-house finite volume flow solver advanced fluid reduced order models (ROMs) for compressible captive-carriage flow problems of interest to Sandia National Laboratories for the design and qualification of nuclear weapons components. The proposed projection-based model order reduction (MOR) approach, known as the Proper Orthogonal Decomposition (POD)/Least- Squares Petrov-Galerkin (LSPG) method, can substantially reduce the CPU-time requirement for these simulations, thereby enabling advanced analyses such as uncertainty quantification and de- sign optimization. Following a description of the project objectives and FY17 targets, we overview briefly the POD/LSPG approach to model reduction implemented within SPARC . We then study the viability of these ROMs for long-time predictive simulations in the context of a two-dimensional viscous laminar cavity problem, and describe some FY17 enhancements to the proposed model reduction methodology that led to ROMs with improved predictive capabilities. Also described in this report are some FY17 efforts pursued in parallel to the primary objective of determining whether the ROMs in SPARC are viable for the targeted application. These include the implemen- tation and verification of some higher-order finite volume discretization methods within SPARC (towards using the code to study the viability of ROMs on three-dimensional cavity problems) and a novel structure-preserving constrained POD/LSPG formulation that can improve the accuracy of projection-based reduced order models. We conclude the report by summarizing the key takeaways from our FY17 findings, and providing some perspectives for future work.
Morphologically accurate reduced order modeling of spiking neurons.
Kellems, Anthony R; Chaturantabut, Saifon; Sorensen, Danny C; Cox, Steven J
2010-06-01
Accurately simulating neurons with realistic morphological structure and synaptic inputs requires the solution of large systems of nonlinear ordinary differential equations. We apply model reduction techniques to recover the complete nonlinear voltage dynamics of a neuron using a system of much lower dimension. Using a proper orthogonal decomposition, we build a reduced-order system from salient snapshots of the full system output, thus reducing the number of state variables. A discrete empirical interpolation method is then used to reduce the complexity of the nonlinear term to be proportional to the number of reduced variables. Together these two techniques allow for up to two orders of magnitude dimension reduction without sacrificing the spatially-distributed input structure, with an associated order of magnitude speed-up in simulation time. We demonstrate that both nonlinear spiking behavior and subthreshold response of realistic cells are accurately captured by these low-dimensional models.
Vortex network community based reduced-order force model
Gopalakrishnan Meena, Muralikrishnan; Nair, Aditya; Taira, Kunihiko
2017-11-01
We characterize the vortical wake interactions by utilizing network theory and cluster-based approaches, and develop a data-inspired unsteady force model. In the present work, the vortical interaction network is defined by nodes representing vortical elements and the edges quantified by induced velocity measures amongst the vortices. The full vorticity field is reduced to a finite number of vortical clusters based on network community detection algorithm, which serves as a basis for a skeleton network that captures the essence of the wake dynamics. We use this reduced representation of the wake to develop a data-inspired reduced-order force model that can predict unsteady fluid forces on the body. The overall formulation is demonstrated for laminar flows around canonical bluff body wake and stalled flow over an airfoil. We also show the robustness of the present network-based model against noisy data, which motivates applications towards turbulent flows and experimental measurements. Supported by the National Science Foundation (Grant 1632003).
Sparsity enabled cluster reduced-order models for control
Kaiser, Eurika; Morzyński, Marek; Daviller, Guillaume; Kutz, J. Nathan; Brunton, Bingni W.; Brunton, Steven L.
2018-01-01
Characterizing and controlling nonlinear, multi-scale phenomena are central goals in science and engineering. Cluster-based reduced-order modeling (CROM) was introduced to exploit the underlying low-dimensional dynamics of complex systems. CROM builds a data-driven discretization of the Perron-Frobenius operator, resulting in a probabilistic model for ensembles of trajectories. A key advantage of CROM is that it embeds nonlinear dynamics in a linear framework, which enables the application of standard linear techniques to the nonlinear system. CROM is typically computed on high-dimensional data; however, access to and computations on this full-state data limit the online implementation of CROM for prediction and control. Here, we address this key challenge by identifying a small subset of critical measurements to learn an efficient CROM, referred to as sparsity-enabled CROM. In particular, we leverage compressive measurements to faithfully embed the cluster geometry and preserve the probabilistic dynamics. Further, we show how to identify fewer optimized sensor locations tailored to a specific problem that outperform random measurements. Both of these sparsity-enabled sensing strategies significantly reduce the burden of data acquisition and processing for low-latency in-time estimation and control. We illustrate this unsupervised learning approach on three different high-dimensional nonlinear dynamical systems from fluids with increasing complexity, with one application in flow control. Sparsity-enabled CROM is a critical facilitator for real-time implementation on high-dimensional systems where full-state information may be inaccessible.
Reduced Order Aeroservoelastic Models with Rigid Body Modes Project
National Aeronautics and Space Administration — Complex aeroelastic and aeroservoelastic phenomena can be modeled on complete aircraft configurations generating models with millions of degrees of freedom. Starting...
Empirical Reduced-Order Modeling for Boundary Feedback Flow Control
Directory of Open Access Journals (Sweden)
Seddik M. Djouadi
2008-01-01
Full Text Available This paper deals with the practical and theoretical implications of model reduction for aerodynamic flow-based control problems. Various aspects of model reduction are discussed that apply to partial differential equation- (PDE- based models in general. Specifically, the proper orthogonal decomposition (POD of a high dimension system as well as frequency domain identification methods are discussed for initial model construction. Projections on the POD basis give a nonlinear Galerkin model. Then, a model reduction method based on empirical balanced truncation is developed and applied to the Galerkin model. The rationale for doing so is that linear subspace approximations to exact submanifolds associated with nonlinear controllability and observability require only standard matrix manipulations utilizing simulation/experimental data. The proposed method uses a chirp signal as input to produce the output in the eigensystem realization algorithm (ERA. This method estimates the system's Markov parameters that accurately reproduce the output. Balanced truncation is used to show that model reduction is still effective on ERA produced approximated systems. The method is applied to a prototype convective flow on obstacle geometry. An H∞ feedback flow controller is designed based on the reduced model to achieve tracking and then applied to the full-order model with excellent performance.
Using the Neumann series expansion for assembling Reduced Order Models
Directory of Open Access Journals (Sweden)
Nasisi S.
2014-06-01
Full Text Available An efficient method to remove the limitation in selecting the master degrees of freedom in a finite element model by means of a model order reduction is presented. A major difficulty of the Guyan reduction and IRS method (Improved Reduced System is represented by the need of appropriately select the master and slave degrees of freedom for the rate of convergence to be high. This study approaches the above limitation by using a particular arrangement of the rows and columns of the assembled matrices K and M and employing a combination between the IRS method and a variant of the analytical selection of masters presented in (Shah, V. N., Raymund, M., Analytical selection of masters for the reduced eigenvalue problem, International Journal for Numerical Methods in Engineering 18 (1 1982 in case first lowest frequencies had to be sought. One of the most significant characteristics of the approach is the use of the Neumann series expansion that motivates this particular arrangement of the matrices’ entries. The method shows a higher rate of convergence when compared to the standard IRS and very accurate results for the lowest reduced frequencies. To show the effectiveness of the proposed method two testing structures and the human vocal tract model employed in (Vampola, T., Horacek, J., Svec, J. G., FE modeling of human vocal tract acoustics. Part I: Prodution of Czech vowels, Acta Acustica United with Acustica 94 (3 2008 are presented.
Reduced-Order Models for Acoustic Response Prediction
2011-07-01
predicted frequencies from a FEM. The first two axial natural frequencies were measured using a pair of small piezoelectric strain actuators, one...test. Displacement and velocity relative to the shaker head were measured with a Polytec Model OVF-512 Differential Fiber Optic Vibrometer . The...The vibrometer controller processes the object and reference beams to produce differential velocity and displacement. Dynamic strains were
A Reduced Order, One Dimensional Model of Joint Response
Energy Technology Data Exchange (ETDEWEB)
DOHNER,JEFFREY L.
2000-11-06
As a joint is loaded, the tangent stiffness of the joint reduces due to slip at interfaces. This stiffness reduction continues until the direction of the applied load is reversed or the total interface slips. Total interface slippage in joints is called macro-slip. For joints not undergoing macro-slip, when load reversal occurs the tangent stiffness immediately rebounds to its maximum value. This occurs due to stiction effects at the interface. Thus, for periodic loads, a softening and rebound hardening cycle is produced which defines a hysteretic, energy absorbing trajectory. For many jointed sub-structures, this hysteretic trajectory can be approximated using simple polynomial representations. This allows for complex joint substructures to be represented using simple non-linear models. In this paper a simple one dimensional model is discussed.
Reduced order modeling in topology optimization of vibroacoustic problems
DEFF Research Database (Denmark)
Creixell Mediante, Ester; Jensen, Jakob Søndergaard; Brunskog, Jonas
2017-01-01
There is an interest in introducing topology optimization techniques in the design process of structural-acoustic systems. In topology optimization, the design space must be finely meshed in order to obtain an accurate design, which results in large numbers of degrees of freedom when designing...... complex 3D parts. The optimization process can therefore become highly time consuming due to the need to solve a large system of equations at each iteration. Projection-based parametric Model Order Reduction (pMOR) methods have successfully been applied for reducing the computational cost of material...
Model predictive control based on reduced order models applied to belt conveyor system.
Chen, Wei; Li, Xin
2016-11-01
In the paper, a model predictive controller based on reduced order model is proposed to control belt conveyor system, which is an electro-mechanics complex system with long visco-elastic body. Firstly, in order to design low-degree controller, the balanced truncation method is used for belt conveyor model reduction. Secondly, MPC algorithm based on reduced order model for belt conveyor system is presented. Because of the error bound between the full-order model and reduced order model, two Kalman state estimators are applied in the control scheme to achieve better system performance. Finally, the simulation experiments are shown that balanced truncation method can significantly reduce the model order with high-accuracy and model predictive control based on reduced-model performs well in controlling the belt conveyor system. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
Energy Technology Data Exchange (ETDEWEB)
Suarez-Antola, Roberto, E-mail: roberto.suarez@miem.gub.u, E-mail: rsuarez@ucu.edu.u [Universidad Catolica del Uruguay, Montevideo (Uruguay). Fac. de Ingenieria y Tecnologias. Dept. de Matematica; Ministerio de Industria, Energia y Mineria, Montevideo (Uruguay). Direccion General de Secretaria
2011-07-01
One of the goals of nuclear power systems design and operation is to restrict the possible states of certain critical subsystems to remain inside a certain bounded set of admissible states and state variations. In the framework of an analytic or numerical modeling process of a BWR power plant, this could imply first to find a suitable approximation to the solution manifold of the differential equations describing the stability behavior, and then a classification of the different solution types concerning their relation with the operational safety of the power plant. Inertial manifold theory gives a foundation for the construction and use of reduced order models (ROM's) of reactor dynamics to discover and characterize meaningful bifurcations that may pass unnoticed during digital simulations done with full scale computer codes of the nuclear power plant. The March-Leuba's BWR ROM is generalized and used to exemplify the analytical approach developed here. A nonlinear integral-differential equation in the logarithmic power is derived. Introducing a KBM Ansatz, a coupled set of two nonlinear ordinary differential equations is obtained. Analytical formulae are derived for the frequency of oscillation and the parameters that determine the stability of the steady states, including sub- and supercritical PAH bifurcations. A Bautin's bifurcation scenario seems possible on the power-flow plane: near the boundary of stability, a region where stable steady states are surrounded by unstable limit cycles surrounded at their turn by stable limit cycles. The analytical results are compared with recent digital simulations and applications of semi-analytical bifurcation theory done with reduced order models of BWR. (author)
Adaptively trained reduced-order model for acceleration of oscillatory flow simulations
CSIR Research Space (South Africa)
Oxtoby, Oliver F
2012-07-01
Full Text Available We present an adaptively trained Reduced-Order Model (ROM) to dramatically speed up flow simulations of an oscillatory nature. Such repetitive flowfields are frequently encountered in fluid-structure interaction modelling, aeroelastic flutter being...
Novel Reduced Order in Time Models for Problems in Nonlinear Aeroelasticity Project
National Aeronautics and Space Administration — Research is proposed for the development and implementation of state of the art, reduced order models for problems in nonlinear aeroelasticity. Highly efficient and...
Han, Suyue; Chang, Gary Han; Schirmer, Clemens; Modarres-Sadeghi, Yahya
2016-11-01
We construct a reduced-order model (ROM) to study the Wall Shear Stress (WSS) distributions in image-based patient-specific aneurysms models. The magnitude of WSS has been shown to be a critical factor in growth and rupture of human aneurysms. We start the process by running a training case using Computational Fluid Dynamics (CFD) simulation with time-varying flow parameters, such that these parameters cover the range of parameters of interest. The method of snapshot Proper Orthogonal Decomposition (POD) is utilized to construct the reduced-order bases using the training CFD simulation. The resulting ROM enables us to study the flow patterns and the WSS distributions over a range of system parameters computationally very efficiently with a relatively small number of modes. This enables comprehensive analysis of the model system across a range of physiological conditions without the need to re-compute the simulation for small changes in the system parameters.
Reduced-Order Observer Model for Antiaircraft Artillery (AAA) Tracker Response
1979-08-01
basic concept of this research and for many valuable discussions. 2. TABLE OF CONTENTS Section Page I INTRODUCTION 6 II REDUCED-ORDER OBSERVER MODEL...stochastic part of the gunner model. These randomness sources include the modelling error, the observation error, the neuromotor noise, etc. Mathema
Reduced-order LPV model of flexible wind turbines from high fidelity aeroelastic codes
DEFF Research Database (Denmark)
Adegas, Fabiano Daher; Sønderby, Ivan Bergquist; Hansen, Morten Hartvig
2013-01-01
Linear aeroelastic models used for stability analysis of wind turbines are commonly of very high order. These high-order models are generally not suitable for control analysis and synthesis. This paper presents a methodology to obtain a reduced-order linear parameter varying (LPV) model from a se...
Linear and nonlinear stability analysis in BWRs applying a reduced order model
Energy Technology Data Exchange (ETDEWEB)
Olvera G, O. A.; Espinosa P, G.; Prieto G, A., E-mail: omar_olverag@hotmail.com [Universidad Autonoma Metropolitana, Unidad Iztapalapa, San Rafael Atlixco No. 186, Col. Vicentina, 09340 Ciudad de Mexico (Mexico)
2016-09-15
Boiling Water Reactor (BWR) stability studies are generally conducted through nonlinear reduced order models (Rom) employing various techniques such as bifurcation analysis and time domain numerical integration. One of those models used for these studies is the March-Leuba Rom. Such model represents qualitatively the dynamic behavior of a BWR through a one-point reactor kinetics, a one node representation of the heat transfer process in fuel, and a two node representation of the channel Thermal hydraulics to account for the void reactivity feedback. Here, we study the effect of this higher order model on the overall stability of the BWR. The change in the stability boundaries is determined by evaluating the eigenvalues of the Jacobian matrix. The nonlinear model is also integrated numerically to show that in the nonlinear region, the system evolves to stable limit cycles when operating close to the stability boundary. We also applied a new technique based on the Empirical Mode Decomposition (Emd) to estimate a parameter linked with stability in a BWR. This instability parameter is not exactly the classical Decay Ratio (Dr), but it will be linked with it. The proposed method allows decomposing the analyzed signal in different levels or mono-component functions known as intrinsic mode functions (Imf). One or more of these different modes can be associated to the instability problem in BWRs. By tracking the instantaneous frequencies (calculated through Hilbert Huang Transform (HHT) and the autocorrelation function (Acf) of the Imf linked to instability. The estimation of the proposed parameter can be achieved. The current methodology was validated with simulated signals of the studied model. (Author)
Semi-automatic reduced order models from expert-defined transients
Class, Andreas; Prill, Dennis
2013-11-01
Boiling water reactors (BWRs) not only show growing power oscillations at high-power low-flow conditions but also amplitude limited oscillations with temporal flow reversal. Methodologies, applicable in the non-linear regime, allow insight into the physical mechanisms behind BWR dynamics. The proposed methodology exploits relevant simulation data computed by an expert choice of transient. Proper orthogonal modes are extracted and serve as Ansatz functions within a spectral approach, yielding a reduced order model (ROM). Required steps to achieve reliable and numerical stable ROMs are discussed, i.e. mean value handling, inner product choice, variational formulation of derivatives and boundary conditions.Two strongly non-linear systems are analyzed: The tubular reactor, including Arrhenius reaction and heat losses, yields sensitive response on transient boundary conditions. A simple natural convection loop is considered due to its dynamical similarities to BWRs. It exhibits bifurcations resulting in limit cycles. The presented POD-ROM methodology reproduces dynamics with a small number of spectral modes and reaches appreciable accuracy. Funded by AREVA GmbH.
Approaches for Reduced Order Modeling of Electrically Actuated von Karman Microplates
Saghir, Shahid
2016-07-25
This article presents and compares different approaches to develop reduced order models for the nonlinear von Karman rectangular microplates actuated by nonlinear electrostatic forces. The reduced-order models aim to investigate the static and dynamic behavior of the plate under small and large actuation forces. A fully clamped microplate is considered. Different types of basis functions are used in conjunction with the Galerkin method to discretize the governing equations. First we investigate the convergence with the number of modes retained in the model. Then for validation purpose, a comparison of the static results is made with the results calculated by a nonlinear finite element model. The linear eigenvalue problem for the plate under the electrostatic force is solved for a wide range of voltages up to pull-in. Results among the various reduced-order modes are compared and are also validated by comparing to results of the finite-element model. Further, the reduced order models are employed to capture the forced dynamic response of the microplate under small and large vibration amplitudes. Comparison of the different approaches are made for this case. Keywords: electrically actuated microplates, static analysis, dynamics of microplates, diaphragm vibration, large amplitude vibrations, nonlinear dynamics
Reduced Order Modeling for Prediction and Control of Large-Scale Systems.
Energy Technology Data Exchange (ETDEWEB)
Kalashnikova, Irina [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Computational Mathematics; Arunajatesan, Srinivasan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Aerosciences Dept.; Barone, Matthew Franklin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Aerosciences Dept.; van Bloemen Waanders, Bart Gustaaf [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Uncertainty Quantification and Optimization Dept.; Fike, Jeffrey A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Component Science and Mechanics Dept.
2014-05-01
This report describes work performed from June 2012 through May 2014 as a part of a Sandia Early Career Laboratory Directed Research and Development (LDRD) project led by the first author. The objective of the project is to investigate methods for building stable and efficient proper orthogonal decomposition (POD)/Galerkin reduced order models (ROMs): models derived from a sequence of high-fidelity simulations but having a much lower computational cost. Since they are, by construction, small and fast, ROMs can enable real-time simulations of complex systems for onthe- spot analysis, control and decision-making in the presence of uncertainty. Of particular interest to Sandia is the use of ROMs for the quantification of the compressible captive-carry environment, simulated for the design and qualification of nuclear weapons systems. It is an unfortunate reality that many ROM techniques are computationally intractable or lack an a priori stability guarantee for compressible flows. For this reason, this LDRD project focuses on the development of techniques for building provably stable projection-based ROMs. Model reduction approaches based on continuous as well as discrete projection are considered. In the first part of this report, an approach for building energy-stable Galerkin ROMs for linear hyperbolic or incompletely parabolic systems of partial differential equations (PDEs) using continuous projection is developed. The key idea is to apply a transformation induced by the Lyapunov function for the system, and to build the ROM in the transformed variables. It is shown that, for many PDE systems including the linearized compressible Euler and linearized compressible Navier-Stokes equations, the desired transformation is induced by a special inner product, termed the “symmetry inner product”. Attention is then turned to nonlinear conservation laws. A new transformation and corresponding energy-based inner product for the full nonlinear compressible Navier
A Fuel-Sensitive Reduced-Order Model (ROM) for Piston Engine Scaling Analysis
2017-09-29
single-cylinder moving piston case near top dead center at diesel - engine conditions. The ROM provides a real-time engineering analytical tool for liquid...length scaling that may be used toward optimizing engine performance . 15. SUBJECT TERMS reduced-order model, ROM, engine scaling, spray... diesel engine ................................... 20 Approved for public release; distribution is unlimited. 1 1. Introduction A central
CSIR Research Space (South Africa)
Bogaers, Alfred EJ
2010-01-01
Full Text Available In this paper, we implement the method of Proper Orthogonal Decomposition (POD) to generate a reduced order model (ROM) of an optimization based mesh movement technique. In the study it is shown that POD can be used effectively to generate a ROM...
A Reduced-Order Model of Transport Phenomena for Power Plant Simulation
Energy Technology Data Exchange (ETDEWEB)
Paul Cizmas; Brian Richardson; Thomas Brenner; Raymond Fontenot
2009-09-30
A reduced-order model based on proper orthogonal decomposition (POD) has been developed to simulate transient two- and three-dimensional isothermal and non-isothermal flows in a fluidized bed. Reduced-order models of void fraction, gas and solids temperatures, granular energy, and z-direction gas and solids velocity have been added to the previous version of the code. These algorithms are presented and their implementation is discussed. Verification studies are presented for each algorithm. A number of methods to accelerate the computations performed by the reduced-order model are presented. The errors associated with each acceleration method are computed and discussed. Using a combination of acceleration methods, a two-dimensional isothermal simulation using the reduced-order model is shown to be 114 times faster than using the full-order model. In the pursue of achieving the objectives of the project and completing the tasks planned for this program, several unplanned and unforeseen results, methods and studies have been generated. These additional accomplishments are also presented and they include: (1) a study of the effect of snapshot sampling time on the computation of the POD basis functions, (2) an investigation of different strategies for generating the autocorrelation matrix used to find the POD basis functions, (3) the development and implementation of a bubble detection and tracking algorithm based on mathematical morphology, (4) a method for augmenting the proper orthogonal decomposition to better capture flows with discontinuities, such as bubbles, and (5) a mixed reduced-order/full-order model, called point-mode proper orthogonal decomposition, designed to avoid unphysical due to approximation errors. The limitations of the proper orthogonal decomposition method in simulating transient flows with moving discontinuities, such as bubbling flows, are discussed and several methods are proposed to adapt the method for future use.
Reduced Order Model Implementation in the Risk-Informed Safety Margin Characterization Toolkit
Energy Technology Data Exchange (ETDEWEB)
Mandelli, Diego [Idaho National Lab. (INL), Idaho Falls, ID (United States); Smith, Curtis L. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Alfonsi, Andrea [Idaho National Lab. (INL), Idaho Falls, ID (United States); Rabiti, Cristian [Idaho National Lab. (INL), Idaho Falls, ID (United States); Cogliati, Joshua J. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Talbot, Paul W. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Rinaldi, Ivan [Idaho National Lab. (INL), Idaho Falls, ID (United States); Maljovec, Dan [Idaho National Lab. (INL), Idaho Falls, ID (United States); Wang, Bei [Idaho National Lab. (INL), Idaho Falls, ID (United States); Pascucci, Valerio [Idaho National Lab. (INL), Idaho Falls, ID (United States); Zhao, Haihua [Idaho National Lab. (INL), Idaho Falls, ID (United States)
2015-09-01
The RISMC project aims to develop new advanced simulation-based tools to perform Probabilistic Risk Analysis (PRA) for the existing fleet of U.S. nuclear power plants (NPPs). These tools numerically model not only the thermo-hydraulic behavior of the reactor primary and secondary systems but also external events temporal evolution and components/system ageing. Thus, this is not only a multi-physics problem but also a multi-scale problem (both spatial, µm-mm-m, and temporal, ms-s-minutes-years). As part of the RISMC PRA approach, a large amount of computationally expensive simulation runs are required. An important aspect is that even though computational power is regularly growing, the overall computational cost of a RISMC analysis may be not viable for certain cases. A solution that is being evaluated is the use of reduce order modeling techniques. During the FY2015, we investigated and applied reduced order modeling techniques to decrease the RICM analysis computational cost by decreasing the number of simulations runs to perform and employ surrogate models instead of the actual simulation codes. This report focuses on the use of reduced order modeling techniques that can be applied to any RISMC analysis to generate, analyze and visualize data. In particular, we focus on surrogate models that approximate the simulation results but in a much faster time (µs instead of hours/days). We apply reduced order and surrogate modeling techniques to several RISMC types of analyses using RAVEN and RELAP-7 and show the advantages that can be gained.
Energy Technology Data Exchange (ETDEWEB)
Meeks, E.; Chou, C. -P.; Garratt, T.
2013-03-31
Engineering simulations of coal gasifiers are typically performed using computational fluid dynamics (CFD) software, where a 3-D representation of the gasifier equipment is used to model the fluid flow in the gasifier and source terms from the coal gasification process are captured using discrete-phase model source terms. Simulations using this approach can be very time consuming, making it difficult to imbed such models into overall system simulations for plant design and optimization. For such system-level designs, process flowsheet software is typically used, such as Aspen Plus® [1], where each component where each component is modeled using a reduced-order model. For advanced power-generation systems, such as integrated gasifier/gas-turbine combined-cycle systems (IGCC), the critical components determining overall process efficiency and emissions are usually the gasifier and combustor. Providing more accurate and more computationally efficient reduced-order models for these components, then, enables much more effective plant-level design optimization and design for control. Based on the CHEMKIN-PRO and ENERGICO software, we have developed an automated methodology for generating an advanced form of reduced-order model for gasifiers and combustors. The reducedorder model offers representation of key unit operations in flowsheet simulations, while allowing simulation that is fast enough to be used in iterative flowsheet calculations. Using high-fidelity fluiddynamics models as input, Reaction Design’s ENERGICO® [2] software can automatically extract equivalent reactor networks (ERNs) from a CFD solution. For the advanced reduced-order concept, we introduce into the ERN a much more detailed kinetics model than can be included practically in the CFD simulation. The state-of-the-art chemistry solver technology within CHEMKIN-PRO allows that to be accomplished while still maintaining a very fast model turn-around time. In this way, the ERN becomes the basis for
Shah, A A; Xing, W W; Triantafyllidis, V
2017-04-01
In this paper, we develop reduced-order models for dynamic, parameter-dependent, linear and nonlinear partial differential equations using proper orthogonal decomposition (POD). The main challenges are to accurately and efficiently approximate the POD bases for new parameter values and, in the case of nonlinear problems, to efficiently handle the nonlinear terms. We use a Bayesian nonlinear regression approach to learn the snapshots of the solutions and the nonlinearities for new parameter values. Computational efficiency is ensured by using manifold learning to perform the emulation in a low-dimensional space. The accuracy of the method is demonstrated on a linear and a nonlinear example, with comparisons with a global basis approach.
Identification of reduced-order model for an aeroelastic system from flutter test data
Directory of Open Access Journals (Sweden)
Wei Tang
2017-02-01
Full Text Available Recently, flutter active control using linear parameter varying (LPV framework has attracted a lot of attention. LPV control synthesis usually generates controllers that are at least of the same order as the aeroelastic models. Therefore, the reduced-order model is required by synthesis for avoidance of large computation cost and high-order controller. This paper proposes a new procedure for generation of accurate reduced-order linear time-invariant (LTI models by using system identification from flutter testing data. The proposed approach is in two steps. The well-known poly-reference least squares complex frequency (p-LSCF algorithm is firstly employed for modal parameter identification from frequency response measurement. After parameter identification, the dominant physical modes are determined by clear stabilization diagrams and clustering technique. In the second step, with prior knowledge of physical poles, the improved frequency-domain maximum likelihood (ML estimator is presented for building accurate reduced-order model. Before ML estimation, an improved subspace identification considering the poles constraint is also proposed for initializing the iterative procedure. Finally, the performance of the proposed procedure is validated by real flight flutter test data.
Koopman Mode Decomposition Methods in Dynamic Stall: Reduced Order Modeling and Control
2015-11-10
Koopman Mode Decomposition Methods in Dynamic Stall : Reduced Order Modeling and Control During dynamic stall , large peaks in lift, pitching moment and...drag appear, and these cause an undesirable increase in the mean drag. Dynamic stall can also lead to potentially fatal structural loads due to...strong vibrations of flexible aerodynamic surfaces. Despite extensive analytical, numerical, and experimental efforts to study dynamic stall , progress is
Qi, Di
Turbulent dynamical systems are ubiquitous in science and engineering. Uncertainty quantification (UQ) in turbulent dynamical systems is a grand challenge where the goal is to obtain statistical estimates for key physical quantities. In the development of a proper UQ scheme for systems characterized by both a high-dimensional phase space and a large number of instabilities, significant model errors compared with the true natural signal are always unavoidable due to both the imperfect understanding of the underlying physical processes and the limited computational resources available. One central issue in contemporary research is the development of a systematic methodology for reduced order models that can recover the crucial features both with model fidelity in statistical equilibrium and with model sensitivity in response to perturbations. In the first part, we discuss a general mathematical framework to construct statistically accurate reduced-order models that have skill in capturing the statistical variability in the principal directions of a general class of complex systems with quadratic nonlinearity. A systematic hierarchy of simple statistical closure schemes, which are built through new global statistical energy conservation principles combined with statistical equilibrium fidelity, are designed and tested for UQ of these problems. Second, the capacity of imperfect low-order stochastic approximations to model extreme events in a passive scalar field advected by turbulent flows is investigated. The effects in complicated flow systems are considered including strong nonlinear and non-Gaussian interactions, and much simpler and cheaper imperfect models with model error are constructed to capture the crucial statistical features in the stationary tracer field. Several mathematical ideas are introduced to improve the prediction skill of the imperfect reduced-order models. Most importantly, empirical information theory and statistical linear response theory are
An Online Method for Interpolating Linear Parametric Reduced-Order Models
Amsallem, David
2011-01-01
A two-step online method is proposed for interpolating projection-based linear parametric reduced-order models (ROMs) in order to construct a new ROM for a new set of parameter values. The first step of this method transforms each precomputed ROM into a consistent set of generalized coordinates. The second step interpolates the associated linear operators on their appropriate matrix manifold. Real-time performance is achieved by precomputing inner products between the reduced-order bases underlying the precomputed ROMs. The proposed method is illustrated by applications in mechanical and aeronautical engineering. In particular, its robustness is demonstrated by its ability to handle the case where the sampled parameter set values exhibit a mode veering phenomenon. © 2011 Society for Industrial and Applied Mathematics.
Reduced Order Models for Decision Analysis and Upscaling of Aquifer Heterogeneity
Vesselinov, V. V.; O'Malley, D.; Alexandrov, B.; Moore, B.
2016-12-01
Model-based analyses such as uncertainty quantification, sensitivity analysis, and decision support using complex physics models with numerous model parameters and typically require a huge number of model evaluations (on order of 106). Furthermore, model simulations of complex physics may require substantial computational time. For example, accounting for simultaneously occurring physical processes such as fluid flow and biogeochemical reactions in heterogeneous porous medium may require days of wall-clock computational time. To address these issues, we have developed a methodology for reduced order modeling, which couples support vector regression (SVR), genetic algorithms (GA) and artificial and convolutional neural network (ANN/CNN). SVR is applied to predict the model behavior within prior uncertainty ranges associated with the model parameters. ANN and CNN procedures are applied to upscale heterogeneity of the porous medium. In the upscaling process, fine-scale high-resolution models of heterogeneity are applied to inform coarse-resolution models which have improved computational efficiency while capturing the impact of fine-scale effects at the course scale of interest. These techniques are tested independently on a series of synthetic problems. We also present a decision analysis related to contaminant remediation where the developed reduced order models are applied to reproduce groundwater flow and contaminant transport in a synthetic heterogeneous aquifer. The decision analysis is performed using Bayesian-Information-Gap Decision Theory which is implemented as part of the MADS framework (https://github.com/madsjulia/Mads.jl).
Reduced order models for thermal analysis : final report : LDRD Project No. 137807.
Energy Technology Data Exchange (ETDEWEB)
Hogan, Roy E., Jr.; Gartling, David K.
2010-09-01
This LDRD Senior's Council Project is focused on the development, implementation and evaluation of Reduced Order Models (ROM) for application in the thermal analysis of complex engineering problems. Two basic approaches to developing a ROM for combined thermal conduction and enclosure radiation problems are considered. As a prerequisite to a ROM a fully coupled solution method for conduction/radiation models is required; a parallel implementation is explored for this class of problems. High-fidelity models of large, complex systems are now used routinely to verify design and performance. However, there are applications where the high-fidelity model is too large to be used repetitively in a design mode. One such application is the design of a control system that oversees the functioning of the complex, high-fidelity model. Examples include control systems for manufacturing processes such as brazing and annealing furnaces as well as control systems for the thermal management of optical systems. A reduced order model (ROM) seeks to reduce the number of degrees of freedom needed to represent the overall behavior of the large system without a significant loss in accuracy. The reduction in the number of degrees of freedom of the ROM leads to immediate increases in computational efficiency and allows many design parameters and perturbations to be quickly and effectively evaluated. Reduced order models are routinely used in solid mechanics where techniques such as modal analysis have reached a high state of refinement. Similar techniques have recently been applied in standard thermal conduction problems e.g. though the general use of ROM for heat transfer is not yet widespread. One major difficulty with the development of ROM for general thermal analysis is the need to include the very nonlinear effects of enclosure radiation in many applications. Many ROM methods have considered only linear or mildly nonlinear problems. In the present study a reduced order model is
Uncertainty Aware Structural Topology Optimization Via a Stochastic Reduced Order Model Approach
Aguilo, Miguel A.; Warner, James E.
2017-01-01
This work presents a stochastic reduced order modeling strategy for the quantification and propagation of uncertainties in topology optimization. Uncertainty aware optimization problems can be computationally complex due to the substantial number of model evaluations that are necessary to accurately quantify and propagate uncertainties. This computational complexity is greatly magnified if a high-fidelity, physics-based numerical model is used for the topology optimization calculations. Stochastic reduced order model (SROM) methods are applied here to effectively 1) alleviate the prohibitive computational cost associated with an uncertainty aware topology optimization problem; and 2) quantify and propagate the inherent uncertainties due to design imperfections. A generic SROM framework that transforms the uncertainty aware, stochastic topology optimization problem into a deterministic optimization problem that relies only on independent calls to a deterministic numerical model is presented. This approach facilitates the use of existing optimization and modeling tools to accurately solve the uncertainty aware topology optimization problems in a fraction of the computational demand required by Monte Carlo methods. Finally, an example in structural topology optimization is presented to demonstrate the effectiveness of the proposed uncertainty aware structural topology optimization approach.
A Comparison of Reduced Order Modeling Techniques Used in Dynamic Substructuring.
Energy Technology Data Exchange (ETDEWEB)
Roettgen, Dan; Seegar, Ben; Tai, Wei Che; Baek, Seunghun; Dossogne, Tilan; Allen, Matthew; Kuether, Robert J.; Brake, Matthew Robert; Mayes, Randall L.
2015-10-01
Experimental dynamic substructuring is a means whereby a mathematical model for a substructure can be obtained experimentally and then coupled to a model for the rest of the assembly to predict the response. Recently, various methods have been proposed that use a transmission simulator to overcome sensitivity to measurement errors and to exercise the interface between the substructures; including the Craig-Bampton, Dual Craig-Bampton, and Craig-Mayes methods. This work compares the advantages and disadvantages of these reduced order modeling strategies for two dynamic substructuring problems. The methods are first used on an analytical beam model to validate the methodologies. Then they are used to obtain an experimental model for structure consisting of a cylinder with several components inside connected to the outside case by foam with uncertain properties. This represents an exceedingly difficult structure to model and so experimental substructuring could be an attractive way to obtain a model of the system.
A Comparison of Reduced Order Modeling Techniques Used in Dynamic Substructuring [PowerPoint
Energy Technology Data Exchange (ETDEWEB)
Roettgen, Dan [Wisc; Seeger, Benjamin [Stuttgart; Tai, Wei Che [Washington; Baek, Seunghun [Michigan; Dossogne, Tilan [Liege; Allen, Matthew S [Wisc; Kuether, Robert J.; Brake, Matthew Robert; Mayes, Randall L.
2016-01-01
Experimental dynamic substructuring is a means whereby a mathematical model for a substructure can be obtained experimentally and then coupled to a model for the rest of the assembly to predict the response. Recently, various methods have been proposed that use a transmission simulator to overcome sensitivity to measurement errors and to exercise the interface between the substructures; including the Craig-Bampton, Dual Craig-Bampton, and Craig-Mayes methods. This work compares the advantages and disadvantages of these reduced order modeling strategies for two dynamic substructuring problems. The methods are first used on an analytical beam model to validate the methodologies. Then they are used to obtain an experimental model for structure consisting of a cylinder with several components inside connected to the outside case by foam with uncertain properties. This represents an exceedingly difficult structure to model and so experimental substructuring could be an attractive way to obtain a model of the system.
Ruzziconi, Laura
2013-06-10
We present a study of the dynamic behavior of a microelectromechanical systems (MEMS) device consisting of an imperfect clamped-clamped microbeam subjected to electrostatic and electrodynamic actuation. Our objective is to develop a theoretical analysis, which is able to describe and predict all the main relevant aspects of the experimental response. Extensive experimental investigation is conducted, where the main imperfections coming from microfabrication are detected, the first four experimental natural frequencies are identified and the nonlinear dynamics are explored at increasing values of electrodynamic excitation, in a neighborhood of the first symmetric resonance. Several backward and forward frequency sweeps are acquired. The nonlinear behavior is highlighted, which includes ranges of multistability, where the nonresonant and the resonant branch coexist, and intervals where superharmonic resonances are clearly visible. Numerical simulations are performed. Initially, two single mode reduced-order models are considered. One is generated via the Galerkin technique, and the other one via the combined use of the Ritz method and the Padé approximation. Both of them are able to provide a satisfactory agreement with the experimental data. This occurs not only at low values of electrodynamic excitation, but also at higher ones. Their computational efficiency is discussed in detail, since this is an essential aspect for systematic local and global simulations. Finally, the theoretical analysis is further improved and a two-degree-of-freedom reduced-order model is developed, which is also capable of capturing the measured second symmetric superharmonic resonance. Despite the apparent simplicity, it is shown that all the proposed reduced-order models are able to describe the experimental complex nonlinear dynamics of the device accurately and properly, which validates the proposed theoretical approach. © 2013 IOP Publishing Ltd.
Reduced-Order Modeling for Flutter/LCO Using Recurrent Artificial Neural Network
Yao, Weigang; Liou, Meng-Sing
2012-01-01
The present study demonstrates the efficacy of a recurrent artificial neural network to provide a high fidelity time-dependent nonlinear reduced-order model (ROM) for flutter/limit-cycle oscillation (LCO) modeling. An artificial neural network is a relatively straightforward nonlinear method for modeling an input-output relationship from a set of known data, for which we use the radial basis function (RBF) with its parameters determined through a training process. The resulting RBF neural network, however, is only static and is not yet adequate for an application to problems of dynamic nature. The recurrent neural network method [1] is applied to construct a reduced order model resulting from a series of high-fidelity time-dependent data of aero-elastic simulations. Once the RBF neural network ROM is constructed properly, an accurate approximate solution can be obtained at a fraction of the cost of a full-order computation. The method derived during the study has been validated for predicting nonlinear aerodynamic forces in transonic flow and is capable of accurate flutter/LCO simulations. The obtained results indicate that the present recurrent RBF neural network is accurate and efficient for nonlinear aero-elastic system analysis
National Aeronautics and Space Administration — The overall goal of the project is to develop reliable reduced order modeling technologies to automatically generate nonlinear, parameter-varying (PV),...
Reduced-order molecular-dynamics model for polystyrene by equivalent-structure coarse graining.
Srivastava, Anand; Ghosh, Somnath
2012-02-01
This paper develops a reduced-order equivalent-structure based model for polystyrene in a rigid body molecular dynamics framework. In general, a coarse-grained model for polymers is obtained by replacing a group of chemically connected atoms by an effective particle and deriving a coarse-grained interaction potential that reproduces the structure and dynamics at the desired length and time scale. In the current model, a detailed (~16 atoms) polystyrene monomer referred to as basic structural element (BSE) is replaced by an equivalent model with spherical backbone particles and an ellipsoidal particle that represents the styrene sidegroup. The governing principals of this homogenization is based on the mass, centroid, angular momentum, and energy equivalence between the detailed and the proposed reduced-order model. The bonded interactions parameters are readily obtained in the optimization of the equivalent structure from the detailed representation. The nonbonded interactions are treated separately. In order to capture the stereochemistry of the polystyrene molecule, an anisotropic biaxial nonbonded interaction potential function known as RE-squared (RE2) interaction has been used between pairs of ellipsoidal and/or spherical particles in the system. The required calibration of the nonbonded parameters is carried out by matching with the experimental density and the local structure using radial distribution function. This homogenization process scales up the modeling system size significantly as the higher frequency motions like -C-H- vibrations and sidegroup movements are suppressed. The accuracy of the model is established by comparing fine-scale simulation with explicit representations.
Physically-Based Reduced Order Modelling of a Uni-Axial Polysilicon MEMS Accelerometer
Ghisi, Aldo; Mariani, Stefano; Corigliano, Alberto; Zerbini, Sarah
2012-01-01
In this paper, the mechanical response of a commercial off-the-shelf, uni-axial polysilicon MEMS accelerometer subject to drops is numerically investigated. To speed up the calculations, a simplified physically-based (beams and plate), two degrees of freedom model of the movable parts of the sensor is adopted. The capability and the accuracy of the model are assessed against three-dimensional finite element simulations, and against outcomes of experiments on instrumented samples. It is shown that the reduced order model provides accurate outcomes as for the system dynamics. To also get rather accurate results in terms of stress fields within regions that are prone to fail upon high-g shocks, a correction factor is proposed by accounting for the local stress amplification induced by re-entrant corners. PMID:23202031
Physically-Based Reduced Order Modelling of a Uni-Axial Polysilicon MEMS Accelerometer
Directory of Open Access Journals (Sweden)
Sarah Zerbini
2012-10-01
Full Text Available In this paper, the mechanical response of a commercial off-the-shelf, uni-axial polysilicon MEMS accelerometer subject to drops is numerically investigated. To speed up the calculations, a simplified physically-based (beams and plate, two degrees of freedom model of the movable parts of the sensor is adopted. The capability and the accuracy of the model are assessed against three-dimensional finite element simulations, and against outcomes of experiments on instrumented samples. It is shown that the reduced order model provides accurate outcomes as for the system dynamics. To also get rather accurate results in terms of stress fields within regions that are prone to fail upon high-g shocks, a correction factor is proposed by accounting for the local stress amplification induced by re-entrant corners.
Reduced-Order Models for Load Management in the Power Grid
Alizadeh, Mahnoosh
In recent years, considerable research efforts have been directed towards designing control schemes that can leverage the inherent flexibility of electricity demand that is not tapped into in today's electricity markets. It is expected that these control schemes will be carried out by for-profit entities referred to as aggregators that operate at the edge of the power grid network. While the aggregator control problem is receiving much attention, more high-level questions of how these aggregators should plan their market participation, interact with the main grid and with each other, remain rather understudied. Answering these questions requires a large-scale model for the aggregate flexibility that can be harnessed from the a population of customers, particularly for residences and small businesses. The contribution of this thesis towards this goal is divided into three parts: In Chapter 3, a reduced-order model for a large population of heterogeneous appliances is provided by clustering load profiles that share similar degrees of freedom together. The use of such reduced-order model for system planning and optimal market decision making requires a foresighted approximation of the number of appliances that will join each cluster. Thus, Chapter 4 provides a systematic framework to generate such forecasts for the case of Electric Vehicles, based on real-world battery charging data. While these two chapters set aside the economic side that is naturally involved with participation in demand response programs and mainly focus on the control problem, Chapter 5 is dedicated to the study of optimal pricing mechanisms in order to recruit heterogeneous customers in a demand response program in which an aggregator can directly manage their appliances' load under their specified preferences. Prices are proportional to the wholesale market savings that can result from each recruitment event.
A reduced-order, single-bubble cavitation model with applications to therapeutic ultrasound
Kreider, Wayne; Crum, Lawrence A.; Bailey, Michael R.; Sapozhnikov, Oleg A.
2011-01-01
Cavitation often occurs in therapeutic applications of medical ultrasound such as shock-wave lithotripsy (SWL) and high-intensity focused ultrasound (HIFU). Because cavitation bubbles can affect an intended treatment, it is important to understand the dynamics of bubbles in this context. The relevant context includes very high acoustic pressures and frequencies as well as elevated temperatures. Relative to much of the prior research on cavitation and bubble dynamics, such conditions are unique. To address the relevant physics, a reduced-order model of a single, spherical bubble is proposed that incorporates phase change at the liquid-gas interface as well as heat and mass transport in both phases. Based on the energy lost during the inertial collapse and rebound of a millimeter-sized bubble, experimental observations were used to tune and test model predictions. In addition, benchmarks from the published literature were used to assess various aspects of model performance. Benchmark comparisons demonstrate that the model captures the basic physics of phase change and diffusive transport, while it is quantitatively sensitive to specific model assumptions and implementation details. Given its performance and numerical stability, the model can be used to explore bubble behaviors across a broad parameter space relevant to therapeutic ultrasound. PMID:22088026
Marchesseau, S; Delingette, H; Sermesant, M; Cabrera-Lozoya, R; Tobon-Gomez, C; Moireau, P; Figueras i Ventura, R M; Lekadir, K; Hernandez, A; Garreau, M; Donal, E; Leclercq, C; Duckett, S G; Rhode, K; Rinaldi, C A; Frangi, A F; Razavi, R; Chapelle, D; Ayache, N
2013-10-01
Patient-specific cardiac modeling can help in understanding pathophysiology and therapy planning. However it requires to combine functional and anatomical data in order to build accurate models and to personalize the model geometry, kinematics, electrophysiology and mechanics. Personalizing the electromechanical coupling from medical images is a challenging task. We use the Bestel-Clément-Sorine (BCS) electromechanical model of the heart, which provides reasonable accuracy with a reasonable number of parameters (14 for each ventricle) compared to the available clinical data at the organ level. We propose a personalization strategy from cine MRI data in two steps. We first estimate global parameters with an automatic calibration algorithm based on the Unscented Transform which allows to initialize the parameters while matching the volume and pressure curves. In a second step we locally personalize the contractilities of all AHA (American Heart Association) zones of the left ventricle using the reduced order unscented Kalman filtering on Regional Volumes. This personalization strategy was validated synthetically and tested successfully on eight healthy and three pathological cases. Copyright © 2013 Elsevier B.V. All rights reserved.
A Deep Learning based Approach to Reduced Order Modeling of Fluids using LSTM Neural Networks
Mohan, Arvind; Gaitonde, Datta
2017-11-01
Reduced Order Modeling (ROM) can be used as surrogates to prohibitively expensive simulations to model flow behavior for long time periods. ROM is predicated on extracting dominant spatio-temporal features of the flow from CFD or experimental datasets. We explore ROM development with a deep learning approach, which comprises of learning functional relationships between different variables in large datasets for predictive modeling. Although deep learning and related artificial intelligence based predictive modeling techniques have shown varied success in other fields, such approaches are in their initial stages of application to fluid dynamics. Here, we explore the application of the Long Short Term Memory (LSTM) neural network to sequential data, specifically to predict the time coefficients of Proper Orthogonal Decomposition (POD) modes of the flow for future timesteps, by training it on data at previous timesteps. The approach is demonstrated by constructing ROMs of several canonical flows. Additionally, we show that statistical estimates of stationarity in the training data can indicate a priori how amenable a given flow-field is to this approach. Finally, the potential and limitations of deep learning based ROM approaches will be elucidated and further developments discussed.
Static aeroelastic analysis including geometric nonlinearities based on reduced order model
Directory of Open Access Journals (Sweden)
Changchuan Xie
2017-04-01
Full Text Available This paper describes a method proposed for modeling large deflection of aircraft in nonlinear aeroelastic analysis by developing reduced order model (ROM. The method is applied for solving the static aeroelastic and static aeroelastic trim problems of flexible aircraft containing geometric nonlinearities; meanwhile, the non-planar effects of aerodynamics and follower force effect have been considered. ROMs are computational inexpensive mathematical representations compared to traditional nonlinear finite element method (FEM especially in aeroelastic solutions. The approach for structure modeling presented here is on the basis of combined modal/finite element (MFE method that characterizes the stiffness nonlinearities and we apply that structure modeling method as ROM to aeroelastic analysis. Moreover, the non-planar aerodynamic force is computed by the non-planar vortex lattice method (VLM. Structure and aerodynamics can be coupled with the surface spline method. The results show that both of the static aeroelastic analysis and trim analysis of aircraft based on structure ROM can achieve a good agreement compared to analysis based on the FEM and experimental result.
Calibration of aero-structural reduced order models using full-field experimental measurements
Perez, R.; Bartram, G.; Beberniss, T.; Wiebe, R.; Spottswood, S. M.
2017-03-01
The structural response of hypersonic aircraft panels is a multi-disciplinary problem, where the nonlinear structural dynamics, aerodynamics, and heat transfer models are coupled. A clear understanding of the impact of high-speed flow effects on the structural response, and the potential influence of the structure on the local environment, is needed in order to prevent the design of overly-conservative structures, a common problem in past hypersonic programs. The current work investigates these challenges from a structures perspective. To this end, the first part of this investigation looks at the modeling of the response of a rectangular panel to an external heating source (thermo-structural coupling) where the temperature effect on the structure is obtained from forward looking infrared (FLIR) measurements and the displacement via 3D-digital image correlation (DIC). The second part of the study uses data from a previous series of wind-tunnel experiments, performed to investigate the response of a compliant panel to the effects of high-speed flow, to train a pressure surrogate model. In this case, the panel aero-loading is obtained from fast-response pressure sensitive paint (PSP) measurements, both directly and from the pressure surrogate model. The result of this investigation is the use of full-field experimental measurements to update the structural model and train a computational efficient model of the loading environment. The use of reduced order models, informed by these full-field physical measurements, is a significant step toward the development of accurate simulation models of complex structures that are computationally tractable.
Reduced-Order Biogeochemical Flux Model for High-Resolution Multi-Scale Biophysical Simulations
Smith, Katherine; Hamlington, Peter; Pinardi, Nadia; Zavatarelli, Marco
2017-04-01
Biogeochemical tracers and their interactions with upper ocean physical processes such as submesoscale circulations and small-scale turbulence are critical for understanding the role of the ocean in the global carbon cycle. These interactions can cause small-scale spatial and temporal heterogeneity in tracer distributions that can, in turn, greatly affect carbon exchange rates between the atmosphere and interior ocean. For this reason, it is important to take into account small-scale biophysical interactions when modeling the global carbon cycle. However, explicitly resolving these interactions in an earth system model (ESM) is currently infeasible due to the enormous associated computational cost. As a result, understanding and subsequently parameterizing how these small-scale heterogeneous distributions develop and how they relate to larger resolved scales is critical for obtaining improved predictions of carbon exchange rates in ESMs. In order to address this need, we have developed the reduced-order, 17 state variable Biogeochemical Flux Model (BFM-17) that follows the chemical functional group approach, which allows for non-Redfield stoichiometric ratios and the exchange of matter through units of carbon, nitrate, and phosphate. This model captures the behavior of open-ocean biogeochemical systems without substantially increasing computational cost, thus allowing the model to be combined with computationally-intensive, fully three-dimensional, non-hydrostatic large eddy simulations (LES). In this talk, we couple BFM-17 with the Princeton Ocean Model and show good agreement between predicted monthly-averaged results and Bermuda testbed area field data (including the Bermuda-Atlantic Time-series Study and Bermuda Testbed Mooring). Through these tests, we demonstrate the capability of BFM-17 to accurately model open-ocean biochemistry. Additionally, we discuss the use of BFM-17 within a multi-scale LES framework and outline how this will further our understanding
Massa, F.; Turpin, I.; Tison, T.
2017-11-01
The paper focuses on the definition of a reduced order model for linear modal analysis. The aim is to supply a suitable mathematical alternative tool compatible for multiparametric analysis of large finite element model considering numerous variable parameters, numerous mode shapes and significant levels of variation. The initial full eigenvalue problem is so replaced by a reduced one considering an efficient projection basis. To build it, we propose to combine homotopy transformation and perturbation technique for each parameter direction to define a reduced order model compatible with the design space. Finally, a complete finite element application highlights the capabilities of the proposal in terms of precision and computational time.
Debnath, M; Santoni, C; Leonardi, S; Iungo, G V
2017-04-13
The dynamics of the velocity field resulting from the interaction between the atmospheric boundary layer and a wind turbine array can affect significantly the performance of a wind power plant and the durability of wind turbines. In this work, dynamics in wind turbine wakes and instabilities of helicoidal tip vortices are detected and characterized through modal decomposition techniques. The dataset under examination consists of snapshots of the velocity field obtained from large-eddy simulations (LES) of an isolated wind turbine, for which aerodynamic forcing exerted by the turbine blades on the atmospheric boundary layer is mimicked through the actuator line model. Particular attention is paid to the interaction between the downstream evolution of the helicoidal tip vortices and the alternate vortex shedding from the turbine tower. The LES dataset is interrogated through different modal decomposition techniques, such as proper orthogonal decomposition and dynamic mode decomposition. The dominant wake dynamics are selected for the formulation of a reduced order model, which consists in a linear time-marching algorithm where temporal evolution of flow dynamics is obtained from the previous temporal realization multiplied by a time-invariant operator.This article is part of the themed issue 'Wind energy in complex terrains'. © 2017 The Author(s).
Energy balance and mass conservation in reduced order models of fluid flows
Mohebujjaman, Muhammad; Rebholz, Leo G.; Xie, Xuping; Iliescu, Traian
2017-10-01
In this paper, we investigate theoretically and computationally the conservation properties of reduced order models (ROMs) for fluid flows. Specifically, we investigate whether the ROMs satisfy the same (or similar) energy balance and mass conservation as those satisfied by the Navier-Stokes equations. All of our theoretical findings are illustrated and tested in numerical simulations of a 2D flow past a circular cylinder at a Reynolds number Re = 100. First, we investigate the ROM energy balance. We show that using the snapshot average for the centering trajectory (which is a popular treatment of nonhomogeneous boundary conditions in ROMs) yields an incorrect energy balance. Then, we propose a new approach, in which we replace the snapshot average with the Stokes extension. Theoretically, the Stokes extension produces an accurate energy balance. Numerically, the Stokes extension yields more accurate results than the standard snapshot average, especially for longer time intervals. Our second contribution centers around ROM mass conservation. We consider ROMs created using two types of finite elements: the standard Taylor-Hood (TH) element, which satisfies the mass conservation weakly, and the Scott-Vogelius (SV) element, which satisfies the mass conservation pointwise. Theoretically, the error estimates for the SV-ROM are sharper than those for the TH-ROM. Numerically, the SV-ROM yields significantly more accurate results, especially for coarser meshes and longer time intervals.
Directory of Open Access Journals (Sweden)
Chen Xin
2015-10-01
Full Text Available Aerothermoelasticity is one of the key technologies for hypersonic vehicles. Accurate and efficient computation of the aerothermodynamics is one of the primary challenges for hypersonic aerothermoelastic analysis. Aimed at solving the shortcomings of engineering calculation, computation fluid dynamics (CFD and experimental investigation, a reduced order modeling (ROM framework for aerothermodynamics based on CFD predictions using an enhanced algorithm of fast maximin Latin hypercube design is developed. Both proper orthogonal decomposition (POD and surrogate are considered and compared to construct ROMs. Two surrogate approaches named Kriging and optimized radial basis function (ORBF are utilized to construct ROMs. Furthermore, an enhanced algorithm of fast maximin Latin hypercube design is proposed, which proves to be helpful to improve the precisions of ROMs. Test results for the three-dimensional aerothermodynamic over a hypersonic surface indicate that: the ROMs precision based on Kriging is better than that by ORBF, ROMs based on Kriging are marginally more accurate than ROMs based on POD-Kriging. In a word, the ROM framework for hypersonic aerothermodynamics has good precision and efficiency.
An Efficient Reduced-Order Model for the Nonlinear Dynamics of Carbon Nanotubes
Xu, Tiantian
2014-08-17
Because of the inherent nonlinearities involving the behavior of CNTs when excited by electrostatic forces, modeling and simulating their behavior is challenging. The complicated form of the electrostatic force describing the interaction of their cylindrical shape, forming upper electrodes, to lower electrodes poises serious computational challenges. This presents an obstacle against applying and using several nonlinear dynamics tools that typically used to analyze the behavior of complicated nonlinear systems, such as shooting, continuation, and integrity analysis techniques. This works presents an attempt to resolve this issue. We present an investigation of the nonlinear dynamics of carbon nanotubes when actuated by large electrostatic forces. We study expanding the complicated form of the electrostatic force into enough number of terms of the Taylor series. We plot and compare the expanded form of the electrostatic force to the exact form and found that at least twenty terms are needed to capture accurately the strong nonlinear form of the force over the full range of motion. Then, we utilize this form along with an Euler–Bernoulli beam model to study the static and dynamic behavior of CNTs. The geometric nonlinearity and the nonlinear electrostatic force are considered. An efficient reduced-order model (ROM) based on the Galerkin method is developed and utilized to simulate the static and dynamic responses of the CNTs. We found that the use of the new expanded form of the electrostatic force enables avoiding the cumbersome evaluation of the spatial integrals involving the electrostatic force during the modal projection procedure in the Galerkin method, which needs to be done at every time step. Hence, the new method proves to be much more efficient computationally.
Multi-Level Reduced Order Modeling Equipped with Probabilistic Error Bounds
Abdo, Mohammad Gamal Mohammad Mostafa
This thesis develops robust reduced order modeling (ROM) techniques to achieve the needed efficiency to render feasible the use of high fidelity tools for routine engineering analyses. Markedly different from the state-of-the-art ROM techniques, our work focuses only on techniques which can quantify the credibility of the reduction which can be measured with the reduction errors upper-bounded for the envisaged range of ROM model application. Our objective is two-fold. First, further developments of ROM techniques are proposed when conventional ROM techniques are too taxing to be computationally practical. This is achieved via a multi-level ROM methodology designed to take advantage of the multi-scale modeling strategy typically employed for computationally taxing models such as those associated with the modeling of nuclear reactor behavior. Second, the discrepancies between the original model and ROM model predictions over the full range of model application conditions are upper-bounded in a probabilistic sense with high probability. ROM techniques may be classified into two broad categories: surrogate construction techniques and dimensionality reduction techniques, with the latter being the primary focus of this work. We focus on dimensionality reduction, because it offers a rigorous approach by which reduction errors can be quantified via upper-bounds that are met in a probabilistic sense. Surrogate techniques typically rely on fitting a parametric model form to the original model at a number of training points, with the residual of the fit taken as a measure of the prediction accuracy of the surrogate. This approach, however, does not generally guarantee that the surrogate model predictions at points not included in the training process will be bound by the error estimated from the fitting residual. Dimensionality reduction techniques however employ a different philosophy to render the reduction, wherein randomized snapshots of the model variables, such as the
Matney, Andrew
This paper addresses some aspects of the development of fully coupled thermal-structural reduced order modeling of planned hypersonic vehicles. A general framework for the construction of the structural and thermal basis is presented and demonstrated on a representative panel considered in prior investigations. The thermal reduced order model is first developed using basis functions derived from appropriate conduction eigenvalue problems. The modal amplitudes are the solution of the governing equation, which is nonlinear due to the presence of radiation and temperature dependent capacitance and conductance matrices, and the predicted displacement field is validated using published data. A structural reduced order model was developed by first selecting normal modes of the system and then constructing associated dual modes for the capturing of nonlinear inplane displacements. This isothermal model was validated by comparison with full finite element results (Nastran) in static and dynamic loading environments. The coupling of this nonlinear structural reduced order model with the thermal reduced order model is next considered. Displacement-induced thermal modes are constructed in order to account for the effect that structural deflections will have on the thermal problem. This coupling also requires the enrichment of the structural basis to model the elastic deformations that may be produced consistently with the thermal reduced order model. The validation of the combined structural-thermal reduced order model is carried out with pure mechanical loads, pure thermal loads, and combined mechanical-thermal excitations. Such comparisons are performed here on static solutions with temperature increases up to 2200F and pressures up to 3 psi for which the maximum displacements are of the order of 3 thicknesses. The reduced order model predicted results agree well with the full order finite element predictions in all of these various cases. A fully coupled analysis was
Konrad, Wilfried; Katul, Gabriel; Roth-Nebelsick, Anita; Grein, Michaela
2017-06-01
To address questions related to the acceleration or deceleration of the global hydrological cycle or links between the carbon and water cycles over land, reliable data for past climatic conditions based on proxies are required. In particular, the reconstruction of palaeoatmospheric CO2 content (Ca) is needed to assist the separation of natural from anthropogenic Ca variability and to explore phase relations between Ca and air temperature Ta time series. Both Ta and Ca are needed to fingerprint anthropogenic signatures in vapor pressure deficit, a major driver used to explain acceleration or deceleration phases in the global hydrological cycle. Current approaches to Ca reconstruction rely on a robust inverse correlation between measured stomatal density in leaves (ν) of many plant taxa and Ca. There are two methods that exploit this correlation: The first uses calibration curves obtained from extant species assumed to represent the fossil taxa, thereby restricting the suitable taxa to those existing today. The second is a hybrid eco-hydrological/physiological approach that determines Ca with the aid of systems of equations based on quasi-instantaneous leaf-gas exchange theories and fossil stomatal data collected along with other measured leaf anatomical traits and parameters. In this contribution, a reduced order model (ROM) is proposed that derives Ca from a single equation incorporating the aforementioned stomatal data, basic climate (e.g. temperature), estimated biochemical parameters of assimilation and isotope data. The usage of the ROM is then illustrated by applying it to isotopic and anatomical measurements from three extant species. The ROM derivation is based on a balance between the biochemical demand and atmospheric supply of CO2 that leads to an explicit expression linking stomatal conductance to internal CO2 concentration (Ci) and Ca. The resulting expression of stomatal conductance from the carbon economy of the leaf is then equated to another
Li, Rui; Zhou, Li; Yang, Jann N.
2010-04-01
An objective of the structural health monitoring system is to identify the state of the structure and to detect the damage when it occurs. Analysis techniques for the damage identification of structures, based on vibration data measured from sensors, have received considerable attention. Recently, a new damage tracking technique, referred to as the adaptive quadratic sum-square error (AQSSE) technique, has been proposed, and simulation studies demonstrated that the AQSSE technique is quite effective in identifying structural damages. In this paper, the adaptive quadratic sumsquare error (AQSSE) along with the reduced-order finite-element method is proposed to identify the damages of complex structures. Experimental tests were conducted to verify the capability of the proposed damage detection approach. A series of experimental tests were performed using a scaled cantilever beam subject to the white noise and sinusoidal excitations. The capability of the proposed reduced-order finite-element based adaptive quadratic sum-square error (AQSSE) method in detecting the structural damage is demonstrated by the experimental results.
Reduced-Order Structure-Preserving Model for Parallel-Connected Three-Phase Grid-Tied Inverters
Energy Technology Data Exchange (ETDEWEB)
Johnson, Brian B [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Purba, Victor [University of Minnesota; Jafarpour, Saber [University of California Santa-Barbara; Bullo, Francesco [University of California Santa-Barbara; Dhople, Sairaj V. [University of Minnesota
2017-08-21
Next-generation power networks will contain large numbers of grid-connected inverters satisfying a significant fraction of system load. Since each inverter model has a relatively large number of dynamic states, it is impractical to analyze complex system models where the full dynamics of each inverter are retained. To address this challenge, we derive a reduced-order structure-preserving model for parallel-connected grid-tied three-phase inverters. Here, each inverter in the system is assumed to have a full-bridge topology, LCL filter at the point of common coupling, and the control architecture for each inverter includes a current controller, a power controller, and a phase-locked loop for grid synchronization. We outline a structure-preserving reduced-order inverter model with lumped parameters for the setting where the parallel inverters are each designed such that the filter components and controller gains scale linearly with the power rating. By structure preserving, we mean that the reduced-order three-phase inverter model is also composed of an LCL filter, a power controller, current controller, and PLL. We show that the system of parallel inverters can be modeled exactly as one aggregated inverter unit and this equivalent model has the same number of dynamical states as any individual inverter in the system. Numerical simulations validate the reduced-order model.
Energy Technology Data Exchange (ETDEWEB)
Johnson, Brian B [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Purba, Victor [University of Minnesota; Jafarpour, Saber [University of California, Santa Barbara; Bullo, Francesco [University of California, Santa Barbara; Dhople, Sairaj [University of Minnesota
2017-08-31
Given that next-generation infrastructures will contain large numbers of grid-connected inverters and these interfaces will be satisfying a growing fraction of system load, it is imperative to analyze the impacts of power electronics on such systems. However, since each inverter model has a relatively large number of dynamic states, it would be impractical to execute complex system models where the full dynamics of each inverter are retained. To address this challenge, we derive a reduced-order structure-preserving model for parallel-connected grid-tied three-phase inverters. Here, each inverter in the system is assumed to have a full-bridge topology, LCL filter at the point of common coupling, and the control architecture for each inverter includes a current controller, a power controller, and a phase-locked loop for grid synchronization. We outline a structure-preserving reduced-order inverter model for the setting where the parallel inverters are each designed such that the filter components and controller gains scale linearly with the power rating. By structure preserving, we mean that the reduced-order three-phase inverter model is also composed of an LCL filter, a power controller, current controller, and PLL. That is, we show that the system of parallel inverters can be modeled exactly as one aggregated inverter unit and this equivalent model has the same number of dynamical states as an individual inverter in the paralleled system. Numerical simulations validate the reduced-order models.
Qi, Di; Majda, Andrew J.
2017-03-01
A low-dimensional reduced-order statistical closure model is developed for quantifying the uncertainty to changes in forcing in a barotropic turbulent system with topography involving interactions between small-scale motions and a large-scale mean flow. Imperfect model sensitivity is improved through a recent mathematical strategy for calibrating model errors in a training phase, where information theory and linear statistical response theory are combined in a systematic fashion to achieve the optimal model parameters. Statistical theories about a Gaussian invariant measure and the exact statistical energy equations are also developed for the truncated barotropic equations that can be used to improve the imperfect model prediction skill. A stringent paradigm model of 57 degrees of freedom is used to display the feasibility of the reduced-order methods. This simple model creates large-scale zonal mean flow shifting directions from westward to eastward jets with an abrupt change in amplitude when perturbations are applied, and prototype blocked and unblocked patterns can be generated in this simple model similar to the real natural system. Principal statistical responses in mean and variance can be captured by the reduced-order models with desirable accuracy and efficiency with only 3 resolved modes. An even more challenging regime with non-Gaussian equilibrium statistics using the fluctuation equations is also tested in the reduced-order models with accurate prediction using the first 5 resolved modes. These reduced-order models also show potential for uncertainty quantification and prediction in more complex realistic geophysical turbulent dynamical systems.
Energy Technology Data Exchange (ETDEWEB)
Fike, Jeffrey A.
2013-08-01
The construction of stable reduced order models using Galerkin projection for the Euler or Navier-Stokes equations requires a suitable choice for the inner product. The standard L2 inner product is expected to produce unstable ROMs. For the non-linear Navier-Stokes equations this means the use of an energy inner product. In this report, Galerkin projection for the non-linear Navier-Stokes equations using the L2 inner product is implemented as a first step toward constructing stable ROMs for this set of physics.
Directory of Open Access Journals (Sweden)
Heverton A. Pereira
2014-11-01
Full Text Available Wind power has achieved technological evolution, and Grid Code (GC requirements forced wind industry consolidation in the last three decades. However, more studies are necessary to understand how the dynamics inherent in this energy source interact with the power system. Traditional energy production usually contains few high power unit generators; however, Wind Power Plants (WPPs consist of dozens or hundreds of low-power units. Time domain simulations of WPPs may take too much time if detailed models are considered in such studies. This work discusses reduced order models used in interconnection studies of synchronous machines with full converter technology. The performance of all models is evaluated based on time domain simulations in the Simulink/MATLAB environment. A detailed model is described, and four reduced order models are compared using the performance index, Normalized Integral of Absolute Error (NIAE. Models are analyzed during wind speed variations and balanced voltage dip. During faults, WPPs must be able to supply reactive power to the grid, and this characteristic is analyzed. Using the proposed performance index, it is possible to conclude if a reduced order model is suitable to represent the WPPs dynamics on grid studies.
Basava, Ramya Rao
2015-01-01
Modeling of anatomically accurate skeletal muscle models is still a challenging area of research to date. In general, muscles have complex architectures with spatially varying fiber orientations. Using the conventional Finite Element analysis, the generated mesh needs to be conformed to the muscle geometry and material interfaces to obtain accurate simulation models. Poorly built meshes can also lead to significant errors in analysis. To alleviate these issues and to provide effective transfo...
Verification and Calibration of a Reduced Order Wind Farm Model by Wind Tunnel Experiments
Schreiber, J.; Nanos, E. M.; Campagnolo, F.; Bottasso, C. L.
2017-05-01
In this paper an adaptation of the FLORIS approach is considered that models the wind flow and power production within a wind farm. In preparation to the use of this model for wind farm control, this paper considers the problem of its calibration and validation with the use of experimental observations. The model parameters are first identified based on measurements performed on an isolated scaled wind turbine operated in a boundary layer wind tunnel in various wind-misalignment conditions. Next, the wind farm model is verified with results of experimental tests conducted on three interacting scaled wind turbines. Although some differences in the estimated absolute power are observed, the model appears to be capable of identifying with good accuracy the wind turbine misalignment angles that, by deflecting the wake, lead to maximum power for the investigated layouts.
A Reduced Order Model of Force Displacement Curves for the Failure of Mechanical Bolts in Tension.
Energy Technology Data Exchange (ETDEWEB)
Moore, Keegan J. [Univ. of Illinois, Urbana-Champaign, IL (United States); Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Brake, Matthew Robert [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2015-12-01
Assembled mechanical systems often contain a large number of bolted connections. These bolted connections (joints) are integral aspects of the load path for structural dynamics, and, consequently, are paramount for calculating a structure's stiffness and energy dissipation prop- erties. However, analysts have not found the optimal method to model appropriately these bolted joints. The complexity of the screw geometry causes issues when generating a mesh of the model. This report will explore different approaches to model a screw-substrate connec- tion. Model parameters such as mesh continuity, node alignment, wedge angles, and thread to body element size ratios are examined. The results of this study will give analysts a better understanding of the influences of these parameters and will aide in finding the optimal method to model bolted connections.
Energy Technology Data Exchange (ETDEWEB)
Hernandez S, A. [UNAM, Laboratorio de Analisis de Ingenieria de Reactores Nucleares, DEPFI, Campus Morelos, en IMTA Jiutepec, Morelos (Mexico)]. e-mail: augusto@correo.unam.mx
2004-07-01
The present work has as objective to analyze the relative stability of a BWR type reactor. It is analyzed that so adaptive it turns out to identify the parameters of a model of reduced order so that this it reproduces a condition of given uncertainty. This will take of a real fact happened in the La Salle plant under certain operation conditions of power and flow of coolant. The parametric identification is carried out by means of an algorithm of recursive least square and an Output Error model (Output Error), measuring the output power of the reactor when the instability is present, and considering that it is produced by a change in the reactivity of the system in the same way that a sign of type step. Also it is carried out an analytic comparison of the relative stability, analyzing two types of answers: the original answer of the uncertainty of the reactor vs. the obtained response identifying the parameters of the model of reduced order, reaching the conclusion that it is very viable to adapt a model of reduced order to study the stability of a reactor, under the only condition to consider that the dynamics of the reactivity is of step type. (Author)
Directory of Open Access Journals (Sweden)
Gang Chen
2012-01-01
Full Text Available It is not easy for the system identification-based reduced-order model (ROM and even eigenmode based reduced-order model to predict the limit cycle oscillation generated by the nonlinear unsteady aerodynamics. Most of these traditional ROMs are sensitive to the flow parameter variation. In order to deal with this problem, a support vector machine- (SVM- based ROM was investigated and the general construction framework was proposed. The two-DOF aeroelastic system for the NACA 64A010 airfoil in transonic flow was then demonstrated for the new SVM-based ROM. The simulation results show that the new ROM can capture the LCO behavior of the nonlinear aeroelastic system with good accuracy and high efficiency. The robustness and computational efficiency of the SVM-based ROM would provide a promising tool for real-time flight simulation including nonlinear aeroelastic effects.
Energy Technology Data Exchange (ETDEWEB)
Hu, R. [Argonne National Lab. (ANL), Argonne, IL (United States)
2017-09-01
This report documents the initial progress on the reduced-order flow model developments in SAM for thermal stratification and mixing modeling. Two different modeling approaches are pursued. The first one is based on one-dimensional fluid equations with additional terms accounting for the thermal mixing from both flow circulations and turbulent mixing. The second approach is based on three-dimensional coarse-grid CFD approach, in which the full three-dimensional fluid conservation equations are modeled with closure models to account for the effects of turbulence.
An error bound for a discrete reduced order model of a linear multivariable system
Al-Saggaf, Ubaid M.; Franklin, Gene F.
1987-01-01
The design of feasible controllers for high dimension multivariable systems can be greatly aided by a method of model reduction. In order for the design based on the order reduction to include a guarantee of stability, it is sufficient to have a bound on the model error. Previous work has provided such a bound for continuous-time systems for algorithms based on balancing. In this note an L-infinity bound is derived for model error for a method of order reduction of discrete linear multivariable systems based on balancing.
Nonlinear AeroServoElastic Reduced Order Model for Active Structural Control Project
National Aeronautics and Space Administration — The overall goal of the proposed effort is to develop and demonstrate rigorous model order reduction (MOR) technologies to automatically generate fully coupled,...
Liu, Yaning; Pau, George Shu Heng; Finsterle, Stefan
2017-11-01
Bayesian inverse modeling techniques are computationally expensive because many forward simulations are needed when sampling the posterior distribution of the parameters. In this paper, we combine the implicit sampling method and generalized polynomial chaos expansion (gPCE) to significantly reduce the computational cost of performing Bayesian inverse modeling. There are three steps in this approach: (1) find the maximizer of the likelihood function using deterministic approaches; (2) construct a gPCE-based surrogate model using the results from a limited number of forward simulations; and (3) efficiently sample the posterior distribution of the parameters using implicit sampling method. The cost of constructing the gPCE-based surrogate model is further decreased by using sparse Bayesian learning to reduce the number of gPCE coefficients that have to be determined. We demonstrate the approach for a synthetic ponded infiltration experiment simulated with TOUGH2. The surrogate model is highly accurate with mean relative error that is method or a Markov chain Monte Carlo method utilizing the full model.
Nonlinear reduced order models for fluids systems using extended dynamic mode decomposition
Dawson, Scott; Rowley, Clarence
2015-11-01
The development of techniques that can extract simple, accurate, and computationally tractable models from fluids data is of importance for enhanced prediction, control, and fundamental understanding of such systems. Modeling approaches can take the form of identifying modes upon which to project the governing equations (e.g., Galerkin projection onto a set of POD modes), or in determining (or calibrating) the temporal dynamics from data, such as in dynamic mode decomposition (DMD), or various modifications to Galerkin projection. Here, we demonstrate that choosing appropriate observables (such as linear and quadratic monomials of POD coefficients) can allow for nonlinear behavior to be accurately captured using the recently proposed extended DMD algorithm. For cylinder wake data spanning the transient and vortex shedding limit cycle regimes, the identified nonlinear models show significant improvement in accuracy and robustness over standard DMD and Galerkin projection. Compared to traditional DMD, this approach should also allow for a better global approximation of the Koopman operator for the dynamical system. We make connections with other related model identification algorithms, and additionally investigate the performance of the method upon spatially sparse and noisy data. This work was supported by the Air Force Office of Scientific Research, under award No. FA9550-12-1-0075.
A reduced order model based on Kalman filtering for sequential data assimilation of turbulent flows
Meldi, M.; Poux, A.
2017-10-01
A Kalman filter based sequential estimator is presented in this work. The estimator is integrated in the structure of segregated solvers for the analysis of incompressible flows. This technique provides an augmented flow state integrating available observation in the CFD model, naturally preserving a zero-divergence condition for the velocity field. Because of the prohibitive costs associated with a complete Kalman Filter application, two model reduction strategies have been proposed and assessed. These strategies dramatically reduce the increase in computational costs of the model, which can be quantified in an augmentation of 10%- 15% with respect to the classical numerical simulation. In addition, an extended analysis of the behavior of the numerical model covariance Q has been performed. Optimized values are strongly linked to the truncation error of the discretization procedure. The estimator has been applied to the analysis of a number of test cases exhibiting increasing complexity, including turbulent flow configurations. The results show that the augmented flow successfully improves the prediction of the physical quantities investigated, even when the observation is provided in a limited region of the physical domain. In addition, the present work suggests that these Data Assimilation techniques, which are at an embryonic stage of development in CFD, may have the potential to be pushed even further using the augmented prediction as a powerful tool for the optimization of the free parameters in the numerical simulation.
Reduced-Order Monte Carlo Modeling of Radiation Transport in Random Media
Olson, Aaron
The ability to perform radiation transport computations in stochastic media is essential for predictive capabilities in applications such as weather modeling, radiation shielding involving non-homogeneous materials, atmospheric radiation transport computations, and transport in plasma-air structures. Due to the random nature of such media, it is often not clear how to model or otherwise compute on many forms of stochastic media. Several approaches to evaluation of transport quantities for some stochastic media exist, though such approaches often either yield considerable error or are quite computationally expensive. We model stochastic media using the Karhunen-Loeve (KL) expansion, seek to improve efficiency through use of stochastic collocation (SC), and provide higher-order information of output values using the polynomial chaos expansion (PCE). We study and demonstrate method convergence and apply the new methods to both spatially continuous and spatially discontinuous stochastic media. New methods are shown to produce accurate solutions for reasonable computational cost for several problem when compared with existing solution methods. Spatially random media are modeled using transformations of the Gaussian-distributed KL expansion-continuous random media with a lognormal transformation and discontinuous random media with a Nataf transformation. Each transformation preserves second-order statistics for the quantity-atom density or material index, respectively-being modeled. The Nystrom method facilitates numerical solution of the KL eigenvalues and eigenvectors, and a variety of methods are investigated for sampling KL eigenfunctions as a function of solved eigenvectors. The infinite KL expansion is truncated to a finite number of terms each containing a random variable, and material realizations are created by either randomly or deterministically sampling from the random variables. Deterministic sampling is performed with either isotropic or anisotropic
Lattice Boltzmann flow simulations with applications of reduced order modeling techniques
Brown, Donald
2014-01-01
With the recent interest in shale gas, an understanding of the flow mechanisms at the pore scale and beyond is necessary, which has attracted a lot of interest from both industry and academia. One of the suggested algorithms to help understand flow in such reservoirs is the Lattice Boltzmann Method (LBM). The primary advantage of LBM is its ability to approximate complicated geometries with simple algorithmic modificatoins. In this work, we use LBM to simulate the flow in a porous medium. More specifically, we use LBM to simulate a Brinkman type flow. The Brinkman law allows us to integrate fast free-flow and slow-flow porous regions. However, due to the many scales involved and complex heterogeneities of the rock microstructure, the simulation times can be long, even with the speed advantage of using an explicit time stepping method. The problem is two-fold, the computational grid must be able to resolve all scales and the calculation requires a steady state solution implying a large number of timesteps. To help reduce the computational complexity and total simulation times, we use model reduction techniques to reduce the dimension of the system. In this approach, we are able to describe the dynamics of the flow by using a lower dimensional subspace. In this work, we utilize the Proper Orthogonal Decomposition (POD) technique, to compute the dominant modes of the flow and project the solution onto them (a lower dimensional subspace) to arrive at an approximation of the full system at a lowered computational cost. We present a few proof-of-concept examples of the flow field and the corresponding reduced model flow field.
Allan, Brian G.
2000-01-01
A reduced order modeling approach of the Navier-Stokes equations is presented for the design of a distributed optimal feedback kernel. This approach is based oil a Krylov subspace method where significant modes of the flow are captured in the model This model is then used in all optimal feedback control design where sensing and actuation is performed oil tile entire flow field. This control design approach yields all optimal feedback kernel which provides insight into the placement of sensors and actuators in the flow field. As all evaluation of this approach, a two-dimensional shear layer and driven cavity flow are investigated.
No-Impact Threshold Values for NRAP's Reduced Order Models
Energy Technology Data Exchange (ETDEWEB)
Last, George V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Murray, Christopher J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Brown, Christopher F. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Jordan, Preston D. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Sharma, Maneesh [West Virginia Univ., and National Energy Technlogy Lab., Morgantown, WV (United States)
2013-02-01
The purpose of this study was to develop methodologies for establishing baseline datasets and statistical protocols for determining statistically significant changes between background concentrations and predicted concentrations that would be used to represent a contamination plume in the Gen II models being developed by NRAP’s Groundwater Protection team. The initial effort examined selected portions of two aquifer systems; the urban shallow-unconfined aquifer system of the Edwards-Trinity Aquifer System (being used to develop the ROM for carbon-rock aquifers, and the a portion of the High Plains Aquifer (an unconsolidated and semi-consolidated sand and gravel aquifer, being used to development the ROM for sandstone aquifers). Threshold values were determined for Cd, Pb, As, pH, and TDS that could be used to identify contamination due to predicted impacts from carbon sequestration storage reservoirs, based on recommendations found in the EPA’s ''Unified Guidance for Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities'' (US Environmental Protection Agency 2009). Results from this effort can be used to inform a ''no change'' scenario with respect to groundwater impacts, rather than the use of an MCL that could be significantly higher than existing concentrations in the aquifer.
Data mining of Ti-Al semi-empirical parameters for developing reduced order models
Energy Technology Data Exchange (ETDEWEB)
Broderick, Scott R. [Department of Materials Science and Engineering and Institute for Combinatorial Discovery, Iowa State University, Ames, IA 50011 (United States); Aourag, Hafid [Department of Physics, University Abou Bakr Belkaid, Tlemcen 13000 (Algeria); Rajan, Krishna, E-mail: krajan@iastate.ed [Department of Materials Science and Engineering and Institute for Combinatorial Discovery, Iowa State University, Ames, IA 50011 (United States)
2011-05-15
A focus of materials design is determining the minimum amount of information necessary to fully describe a system, thus reducing the number of empirical results required and simplifying the data analysis. Screening descriptors calculated through a semi-empirical model, we demonstrate how an informatics-based analysis can be used to address this issue with no prior assumptions. We have developed a unique approach for identifying the minimum number of descriptors necessary to capture all the information of a system. Using Ti-Al alloys of varying compositions and crystal chemistries as the test bed, 5 of the 21 original descriptors from electronic structure calculations are found to capture all the information from the calculation, thereby reducing the structure-chemistry-property search space. Additionally, by combining electronic structure calculations with data mining, we classify the systems by chemistries and structures, based on the electronic structure inputs, and thereby rank the impact of change in chemistry and crystal structure on the electronic structure. -- Research Highlights: {yields} We developed an informatics-based methodology to minimize the necessary information. {yields} We applied this methodology to descriptors from semi-empirical calculations. {yields} We developed a validation approach for maintaining information from screening. {yields} We classified intermetallics and identified patterns of composition and structure.
Wang, Chengwen; Quan, Long; Zhang, Shijie; Meng, Hongjun; Lan, Yuan
2017-03-01
Hydraulic servomechanism is the typical mechanical/hydraulic double-dynamics coupling system with the high stiffness control and mismatched uncertainties input problems, which hinder direct applications of many advanced control approaches in the hydraulic servo fields. In this paper, by introducing the singular value perturbation theory, the original double-dynamics coupling model of the hydraulic servomechanism was reduced to a integral chain system. So that, the popular ADRC (active disturbance rejection control) technology could be directly applied to the reduced system. In addition, the high stiffness control and mismatched uncertainties input problems are avoided. The validity of the simplified model is analyzed and proven theoretically. The standard linear ADRC algorithm is then developed based on the obtained reduced-order model. Extensive comparative co-simulations and experiments are carried out to illustrate the effectiveness of the proposed method. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Energy Technology Data Exchange (ETDEWEB)
Hu, Rui
2017-09-03
Mixing, thermal-stratification, and mass transport phenomena in large pools or enclosures play major roles for the safety of reactor systems. Depending on the fidelity requirement and computational resources, various modeling methods, from the 0-D perfect mixing model to 3-D Computational Fluid Dynamics (CFD) models, are available. Each is associated with its own advantages and shortcomings. It is very desirable to develop an advanced and efficient thermal mixing and stratification modeling capability embedded in a modern system analysis code to improve the accuracy of reactor safety analyses and to reduce modeling uncertainties. An advanced system analysis tool, SAM, is being developed at Argonne National Laboratory for advanced non-LWR reactor safety analysis. While SAM is being developed as a system-level modeling and simulation tool, a reduced-order three-dimensional module is under development to model the multi-dimensional flow and thermal mixing and stratification in large enclosures of reactor systems. This paper provides an overview of the three-dimensional finite element flow model in SAM, including the governing equations, stabilization scheme, and solution methods. Additionally, several verification and validation tests are presented, including lid-driven cavity flow, natural convection inside a cavity, laminar flow in a channel of parallel plates. Based on the comparisons with the analytical solutions and experimental results, it is demonstrated that the developed 3-D fluid model can perform very well for a wide range of flow problems.
Energy Technology Data Exchange (ETDEWEB)
McDaniel, Dwayne; Dulikravich, George; Cizmas, Paul
2017-11-27
This report summarizes the objectives, tasks and accomplishments made during the three year duration of this research project. The report presents the results obtained by applying advanced computational techniques to develop reduced-order models (ROMs) in the case of reacting multiphase flows based on high fidelity numerical simulation of gas-solids flow structures in risers and vertical columns obtained by the Multiphase Flow with Interphase eXchanges (MFIX) software. The research includes a numerical investigation of reacting and non-reacting gas-solids flow systems and computational analysis that will involve model development to accelerate the scale-up process for the design of fluidization systems by providing accurate solutions that match the full-scale models. The computational work contributes to the development of a methodology for obtaining ROMs that is applicable to the system of gas-solid flows. Finally, the validity of the developed ROMs is evaluated by comparing the results against those obtained using the MFIX code. Additionally, the robustness of existing POD-based ROMs for multiphase flows is improved by avoiding non-physical solutions of the gas void fraction and ensuring that the reduced kinetics models used for reactive flows in fluidized beds are thermodynamically consistent.
Caiazzo, A; Caforio, Federica; Montecinos, Gino; Muller, Lucas O; Blanco, Pablo J; Toro, Eluterio F
2016-10-25
This work presents a detailed investigation of a parameter estimation approach on the basis of the reduced-order unscented Kalman filter (ROUKF) in the context of 1-dimensional blood flow models. In particular, the main aims of this study are (1) to investigate the effects of using real measurements versus synthetic data for the estimation procedure (i.e., numerical results of the same in silico model, perturbed with noise) and (2) to identify potential difficulties and limitations of the approach in clinically realistic applications to assess the applicability of the filter to such setups. For these purposes, the present numerical study is based on a recently published in vitro model of the arterial network, for which experimental flow and pressure measurements are available at few selected locations. To mimic clinically relevant situations, we focus on the estimation of terminal resistances and arterial wall parameters related to vessel mechanics (Young's modulus and wall thickness) using few experimental observations (at most a single pressure or flow measurement per vessel). In all cases, we first perform a theoretical identifiability analysis on the basis of the generalized sensitivity function, comparing then the results owith the ROUKF, using either synthetic or experimental data, to results obtained using reference parameters and to available measurements. Copyright © 2016 John Wiley & Sons, Ltd.
Energy Technology Data Exchange (ETDEWEB)
Kikuchi, Ryota; Misaka, Takashi; Obayashi, Shigeru, E-mail: rkikuchi@edge.ifs.tohoku.ac.jp [Institute of Fluid Science, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577 (Japan)
2015-10-15
An integrated method of a proper orthogonal decomposition based reduced-order model (ROM) and data assimilation is proposed for the real-time prediction of an unsteady flow field. In this paper, a particle filter (PF) and an ensemble Kalman filter (EnKF) are compared for data assimilation and the difference in the predicted flow fields is evaluated focusing on the probability density function (PDF) of the model variables. The proposed method is demonstrated using identical twin experiments of an unsteady flow field around a circular cylinder at the Reynolds number of 1000. The PF and EnKF are employed to estimate temporal coefficients of the ROM based on the observed velocity components in the wake of the circular cylinder. The prediction accuracy of ROM-PF is significantly better than that of ROM-EnKF due to the flexibility of PF for representing a PDF compared to EnKF. Furthermore, the proposed method reproduces the unsteady flow field several orders faster than the reference numerical simulation based on the Navier–Stokes equations. (paper)
Karam, Ayman M.
2016-12-01
Membrane Distillation (MD) is an emerging sustainable desalination technique. While MD has many advantages and can be powered by solar thermal energy, its main drawback is the low water production rate. However, the MD process has not been fully optimized in terms of its manipulated and controlled variables. This is largely due to the lack of adequate dynamic models to study and simulate the process. In addition, MD is prone to membrane fouling, which is a fault that degrades the performance of the MD process. This work has three contributions to address these challenges. First, we derive a mathematical model of Direct Contact Membrane Distillation (DCMD), which is the building block for the next parts. Then, the proposed model is extended to account for membrane fouling and an observer-based fouling detection method is developed. Finally, various control strategies are implemented to optimize the performance of the DCMD solar-powered process. In part one, a reduced-order dynamic model of DCMD is developed based on lumped capacitance method and electrical analogy to thermal systems. The result is an electrical equivalent thermal network to the DCMD process, which is modeled by a system of nonlinear differential algebraic equations (DAEs). This model predicts the water-vapor flux and the temperature distribution along the module length. Experimental data is collected to validate the steady-state and dynamic responses of the proposed model, with great agreement demonstrated in both. The second part proposes an extension of the model to account for membrane fouling. An adaptive observer for DAE systems is developed and convergence proof is presented. A method for membrane fouling detection is then proposed based on adaptive observers. Simulation results demonstrate the performance of the membrane fouling detection method. Finally, an optimization problem is formulated to maximize the process efficiency of a solar-powered DCMD. The adapted method is known as Extremum
Energy Technology Data Exchange (ETDEWEB)
Pan, Lehua [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Oldenburg, Curtis M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
2017-07-26
Potential CO_{2} leakage through existing open wellbores is one of the most significant hazards that need to be addressed in geologic carbon sequestration (GCS) projects. In the framework of the National Risk Assessment Partnership (NRAP) which requires fast computations for uncertainty analysis, rigorous simulation of the coupled wellbore-reservoir system is not practical. We have developed a 7,200-point look-up table reduced-order model (ROM) for estimating the potential leakage rate up open wellbores in response to CO_{2} injection nearby. The ROM is based on coupled simulations using T2Well/ECO2H which was run repeatedly for representative conditions relevant to NRAP to create a look-up table response-surface ROM. The ROM applies to a wellbore that fully penetrates a 20-m thick reservoir that is used for CO_{2} storage. The radially symmetric reservoir is assumed to have initially uniform pressure, temperature, gas saturation, and brine salinity, and it is assumed these conditions are held constant at the far-field boundary (100 m away from the wellbore). In such a system, the leakage can quickly reach quasi-steady state. The ROM table can be used to estimate both the free-phase CO_{2} and brine leakage rates through an open well as a function of wellbore and reservoir conditions. Results show that injection-induced pressure and reservoir gas saturation play important roles in controlling leakage. Caution must be used in the application of this ROM because well leakage is formally transient and the ROM lookup table was populated using quasi-steady simulation output after 1000 time steps which may correspond to different physical times for the various parameter combinations of the coupled wellbore-reservoir system.
Directory of Open Access Journals (Sweden)
Kim Sooyoung
2016-01-01
Full Text Available This paper presents the design of a model-based controller for the diesel engine air-path system. The controller is implemented based on a reduced order model consisting of only pressure and power dynamics with practical concerns. To deal with the model uncertainties effectively, a sliding mode controller, which is robust to model uncertainties, is proposed for the air-path system. The control performance of the proposed control scheme is verified through simulation with the valid plant model of a 6,000cc heavy duty diesel engine.
Energy Technology Data Exchange (ETDEWEB)
Batou, A., E-mail: anas.batou@univ-paris-est.fr [Université Paris-Est, Laboratoire Modélisation et Simulation Multi Echelle, MSME UMR 8208 CNRS, 5 bd Descartes, 77454 Marne-la-Vallee (France); Soize, C., E-mail: christian.soize@univ-paris-est.fr [Université Paris-Est, Laboratoire Modélisation et Simulation Multi Echelle, MSME UMR 8208 CNRS, 5 bd Descartes, 77454 Marne-la-Vallee (France); Brie, N., E-mail: nicolas.brie@edf.fr [EDF R and D, Département AMA, 1 avenue du général De Gaulle, 92140 Clamart (France)
2013-09-15
Highlights: • A ROM of a nonlinear dynamical structure is built with a global displacements basis. • The reduced order model of fuel assemblies is accurate and of very small size. • The shocks between grids of a row of seven fuel assemblies are computed. -- Abstract: We are interested in the construction of a reduced-order computational model for nonlinear complex dynamical structures which are characterized by the presence of numerous local elastic modes in the low-frequency band. This high modal density makes the use of the classical modal analysis method not suitable. Therefore the reduced-order computational model is constructed using a basis of a space of global displacements, which is constructed a priori and which allows the nonlinear dynamical response of the structure observed on the stiff part to be predicted with a good accuracy. The methodology is applied to a complex industrial structure which is made up of a row of seven fuel assemblies with possibility of collisions between grids and which is submitted to a seismic loading.
DEFF Research Database (Denmark)
Zimmermann, R.; Goertz, Sanne
2012-01-01
: POD of the full state vector (global POD) and POD of each of the partial states separately (variable-by-variable POD). The method at hand is demonstrated for a 2D aerofoil (NACA 64A010) as well as for a complete industrial aircraft configuration (NASA Common Research Model) in the transonic flow...
Energy Technology Data Exchange (ETDEWEB)
Cantu, David C.; Malhotra, Deepika; Koech, Phillip K.; Heldebrant, David J.; Zheng, Feng (Richard); Freeman, Charles J.; Rousseau, Roger; Glezakou, Vassiliki-Alexandra
2016-01-01
CO2 capture from power generation with aqueous solvents remains energy intensive due to the high water content of the current technology, or the high viscosity of non-aqueous alternatives. Quantitative reduced models, connecting molecular structure to bulk properties, are key for developing structure-property relationships that enable molecular design. In this work, we describe such a model that quantitatively predicts viscosities of CO2 binding organic liquids (CO2BOLs) based solely on molecular structure and the amount of bound CO2. The functional form of the model correlates the viscosity with the CO2 loading and an electrostatic term describing the charge distribution between the CO2-bearing functional group and the proton-receiving amine. Molecular simulations identify the proton shuttle between these groups within the same molecule to be the critical indicator of low viscosity. The model, developed to allow for quick screening of solvent libraries, paves the way towards the rational design of low viscosity non-aqueous solvent systems for post-combustion CO2 capture. Following these theoretical recommendations, synthetic efforts of promising candidates and viscosity measurement provide experimental validation and verification.
DEFF Research Database (Denmark)
Lee, Kyo-Beum; Blaabjerg, Frede
2004-01-01
This paper presents a new sensorless vector control system for high performance induction motor drives fed by a matrix converter with non-linearity compensation. The nonlinear voltage distortion that is caused by commutation delay and on-state voltage drop in switching device is corrected by a new...... matrix converter model. Regulated Order Extended Luenberger Observer (ROELO) is employed to bring better response in the whole speed operation range and a method to select the observer gain is presented. Experimental results are shown to illustrate the performance of the proposed system...
DEFF Research Database (Denmark)
Andersen, Søren Juhl; Sørensen, Jens Nørkær; Mikkelsen, Robert Flemming
2014-01-01
The turbulence in the interior of an idealised wind farm is simulated using Large Eddy Simulation and the Actuator Line technique implemented in the Navier-Stokes equations. The simulation is carried out for an ’infinitely’ long row of turbines simulated by applying cyclic boundary conditions...... at the inlet and outlet. The simulations investigate the turbulence inherent to the wind turbines as no ambient turbulence or shear is added to this idealised case. AReduced Order Model for the highly turbulent flow deep inside a wind farm is proposed based on a Proper Orthogonal Decomposition...
Energy Technology Data Exchange (ETDEWEB)
Stetzel, KD; Aldrich, LL; Trimboli, MS; Plett, GL
2015-03-15
This paper addresses the problem of estimating the present value of electrochemical internal variables in a lithium-ion cell in real time, using readily available measurements of cell voltage, current, and temperature. The variables that can be estimated include any desired set of reaction flux and solid and electrolyte potentials and concentrations at any set of one-dimensional spatial locations, in addition to more standard quantities such as state of charge. The method uses an extended Kalman filter along with a one-dimensional physics-based reduced-order model of cell dynamics. Simulations show excellent and robust predictions having dependable error bounds for most internal variables. (C) 2014 Elsevier B.V. All rights reserved.
Kikuchi, Ryota; Misaka, Takashi; Obayashi, Shigeru
2016-04-01
An integrated method consisting of a proper orthogonal decomposition (POD)-based reduced-order model (ROM) and a particle filter (PF) is proposed for real-time prediction of an unsteady flow field. The proposed method is validated using identical twin experiments of an unsteady flow field around a circular cylinder for Reynolds numbers of 100 and 1000. In this study, a PF is employed (ROM-PF) to modify the temporal coefficient of the ROM based on observation data because the prediction capability of the ROM alone is limited due to the stability issue. The proposed method reproduces the unsteady flow field several orders faster than a reference numerical simulation based on Navier-Stokes equations. Furthermore, the effects of parameters, related to observation and simulation, on the prediction accuracy are studied. Most of the energy modes of the unsteady flow field are captured, and it is possible to stably predict the long-term evolution with ROM-PF.
Energy Technology Data Exchange (ETDEWEB)
Mishra, Srikanta; Jin, Larry; He, Jincong; Durlofsky, Louis
2015-06-30
Reduced-order models provide a means for greatly accelerating the detailed simulations that will be required to manage CO_{2} storage operations. In this work, we investigate the use of one such method, POD-TPWL, which has previously been shown to be effective in oil reservoir simulation problems. This method combines trajectory piecewise linearization (TPWL), in which the solution to a new (test) problem is represented through a linearization around the solution to a previously-simulated (training) problem, with proper orthogonal decomposition (POD), which enables solution states to be expressed in terms of a relatively small number of parameters. We describe the application of POD-TPWL for CO_{2}-water systems simulated using a compositional procedure. Stanford’s Automatic Differentiation-based General Purpose Research Simulator (AD-GPRS) performs the full-order training simulations and provides the output (derivative matrices and system states) required by the POD-TPWL method. A new POD-TPWL capability introduced in this work is the use of horizontal injection wells that operate under rate (rather than bottom-hole pressure) control. Simulation results are presented for CO_{2} injection into a synthetic aquifer and into a simplified model of the Mount Simon formation. Test cases involve the use of time-varying well controls that differ from those used in training runs. Results of reasonable accuracy are consistently achieved for relevant well quantities. Runtime speedups of around a factor of 370 relative to full- order AD-GPRS simulations are achieved, though the preprocessing needed for POD-TPWL model construction corresponds to the computational requirements for about 2.3 full-order simulation runs. A preliminary treatment for POD-TPWL modeling in which test cases differ from training runs in terms of geological parameters (rather than well controls) is also presented. Results in this case involve only small differences between
Energy Technology Data Exchange (ETDEWEB)
Morales S, J.B.; Lopez R, A.; Sanchez B, A.; Sanchez S, R.; Hernandez S, A. [DEPFI, Campus Morelos, en IMTA Jiutepec, Morelos (Mexico)]. e-mail: jms0620@yahoo.com
2003-07-01
The development of a simulator that allows to represent the dynamics of a nucleo electric central, with nuclear reactor of the BWR type, using reduced order models is presented. These models present the characteristics defined by the dominant poles of the system (1) and most of those premature operation transitories in a power station can be reproduced with considerable fidelity if the models are identified with data of plant or references of a code of better estimate like RAMONA, TRAC (2) or RELAP. The models of the simulator are developments or own simplifications starting from the physical laws and retaining the main terms. This work describes the objective of the project and the general specifications of the University student of Nucleo electric simulator with Boiling Water Reactor type (SUN-RAH) as well as the finished parts that fundamentally are the nuclear reactor, the one of steam supply (NSSS), the plant balance (BOP), the main controllers of the plant and the implemented graphic interfaces. The pendent goals as well as the future developments and applications of SUN-RAH are described. (Author)
Silva, Walter A.; Chwalowski, Pawel; Perry, Boyd, III
2014-03-01
Reduced-order modelling (ROM) methods are applied to the Computational Fluid Dynamics (CFD)-based aeroelastic analysis of the AGARD 445.6 wing in order to gain insight regarding well-known discrepancies between the aeroelastic analyses and the experimental results. The results presented include aeroelastic solutions using the inviscid Computational Aeroelasticity Programme-Transonic Small Disturbance (CAP-TSD) code and the FUN3D code (Euler and Navier-Stokes). Full CFD aeroelastic solutions and ROM aeroelastic solutions, computed at several Mach numbers, are presented in the form of root locus plots in order to better reveal the aeroelastic root migrations with increasing dynamic pressure. Important conclusions are drawn from these results including the ability of the linear CAP-TSD code to accurately predict the entire experimental flutter boundary (repeat of analyses performed in the 1980s), that the Euler solutions at supersonic conditions indicate that the third mode is always unstable, and that the FUN3D Navier-Stokes solutions stabilize the unstable third mode seen in the Euler solutions.
Benedetti, Ivano; Nguyen, Hoang; Soler-Crespo, Rafael A.; Gao, Wei; Mao, Lily; Ghasemi, Arman; Wen, Jianguo; Nguyen, SonBinh; Espinosa, Horacio D.
2018-03-01
Novel 2D materials, e.g., graphene oxide (GO), are attractive building blocks in the design of advanced materials due to their reactive chemistry, which can enhance interfacial interactions while providing good in-plane mechanical properties. Recent studies have hypothesized that the randomly distributed two-phase microstructure of GO, which arises due to its oxidized chemistry, leads to differences in nano- vs meso‑scale mechanical responses. However, this effect has not been carefully studied using molecular dynamics due to computational limitations. Herein, a continuum mechanics model, formulated based on density functional based tight binding (DFTB) constitutive results for GO nano-flakes, is establish for capturing the effect of oxidation patterns on the material mechanical properties. GO is idealized as a continuum heterogeneous two-phase material, where the mechanical response of each phase, graphitic and oxidized, is informed from DFTB simulations. A finite element implementation of the model is validated via MD simulations and then used to investigate the existence of GO representative volume elements (RVE). We find that for the studied GO, an RVE behavior arises for monolayer sizes in excess to 40 nm. Moreover, we reveal that the response of monolayers with two main different functional chemistries, epoxide-rich and hydroxyl‑rich, present distinct differences in mechanical behavior. In addition, we explored the role of defect density in GO, and validate the applicability of the model to larger length scales by predicting membrane deflection behavior, in close agreement with previous experimental and theoretical observations. As such the work presents a reduced order modeling framework applicable in the study of mechanical properties and deformation mechanisms in 2D multiphase materials.
Energy Technology Data Exchange (ETDEWEB)
Bacon, Diana H.
2013-03-31
The National Risk Assessment Partnership (NRAP) consists of 5 U.S DOE national laboratories collaborating to develop a framework for predicting the risks associated with carbon sequestration. The approach taken by NRAP is to divide the system into components, including injection target reservoirs, wellbores, natural pathways including faults and fractures, groundwater and the atmosphere. Next, develop a detailed, physics and chemistry-based model of each component. Using the results of the detailed models, develop efficient, simplified models, termed reduced order models (ROM) for each component. Finally, integrate the component ROMs into a system model that calculates risk profiles for the site. This report details the development of the Groundwater Geochemistry ROM for the Edwards Aquifer at PNNL. The Groundwater Geochemistry ROM for the Edwards Aquifer uses a Wellbore Leakage ROM developed at LANL as input. The detailed model, using the STOMP simulator, covers a 5x8 km area of the Edwards Aquifer near San Antonio, Texas. The model includes heterogeneous hydraulic properties, and equilibrium, kinetic and sorption reactions between groundwater, leaked CO2 gas, brine, and the aquifer carbonate and clay minerals. Latin Hypercube sampling was used to generate 1024 samples of input parameters. For each of these input samples, the STOMP simulator was used to predict the flux of CO2 to the atmosphere, and the volume, length and width of the aquifer where pH was less than the MCL standard, and TDS, arsenic, cadmium and lead exceeded MCL standards. In order to decouple the Wellbore Leakage ROM from the Groundwater Geochemistry ROM, the response surface was transformed to replace Wellbore Leakage ROM input parameters with instantaneous and cumulative CO2 and brine leakage rates. The most sensitive parameters proved to be the CO2 and brine leakage rates from the well, with equilibrium coefficients for calcite and dolomite, as well as the number of illite and kaolinite
Harp, D. R.; Carey, J. W.; Pawar, R.
2013-12-01
Understanding the potential significance and risk of CO2 and brine leakage from wells at proposed geologic storage sites is a key goal of the National Risk Assessment Partnership (NRAP). In this study, we developed reduced order models (ROMs) of cemented-wellbore leakage that are being incorporated into systems models in order to determine CO2 storage risk profiles. ROMs are used to capture general trends in numerically simulated leakage in a computationally efficient manner, allowing for large numbers of evaluations required by stochastic evaluations of risk. In this study, we perform the wellbore leakage numerical simulations using the multi-phase Finite Element Heat and Mass (FEHM) code. The constituents of interest are water, supercritical CO2, dissolved CO2, liquid CO2, and gaseous CO2. The computational domain is a full 3D mesh with a 0.1 m wellbore at the center. A storage reservoir is located below the impermeable rock and the wellbore is connected directly to the atmosphere or to a shallow aquifer above. Injector wells introduce CO2 into the reservoir for 20 years followed by a 30 year relaxation period. Reservoir depth, cement permeability, relative permeability model parameters, and injection rate are sampled by Latin Hypercube sampling. For each sample, simulations are performed with and without a wellbore in the model. Transient pressures and CO2 saturations are collected at the top of the reservoir at the location where the wellbore would be located from the model without a wellbore. CO2 and brine flow rates (leakage) are collected near the top of the wellbore from the models with a wellbore. ROM model inputs are the sampled parameters, transient pressures and CO2 saturations and their first and second derivatives calculated by backward finite differences. Using these inputs, ROMs are generated for CO2 and brine leakage using the Multivariate Adaptive Regression Splines (MARS) regression technique. ROM development, evaluation, and use will be
2015-05-13
consists of three components: (i) a 1D scanning laser vibrometer for structural vibration tests; (ii) a 3D particle image velocimetry (PIV) system for...modeling of multidisciplinary phenomena in structural and fluid dynamics. The system consists of three components: (i) a 1D scanning laser vibrometer for... Vibrometer , LaVision 3D PIV System, and COMET L3D Laser Scanner System, respectively installed in the Aerospace Structural Dynamics Laboratory, the Wind
Reduced Order Modeling Methods for Turbomachinery Design
2009-03-01
fnp (x) ] (3.15...matrix becomes f = F0 · · · 0 ... . . . 0 Fnp (3.24) 102 F0 = 1 x11 · · · ... ... ... 1 x1nt · · · xnk1 ... xnknt...F1 = 0 1 0 ... ... ... 0 1 0 · · · ... · · · 0 ... 0 , Fnp = 0 · · · 0 ... ... ... 0 · · · 0 1 ...
Optimizing Reduced-Order Transfer Functions
Spanos, John T.; Milman, Mark H.; Mingori, D. Lewis
1992-01-01
Transfer-function approximations made optimal in special least-squares sense. Algorithm computes reduced-order rational-fraction approximates to single-input/single-output transfer functions. Reduces amount of computation needed for such purposes as numerical simulation of dynamics and design of control subsystems.
Modelling stable atmospheric boundary layers over snow
Sterk, H.A.M.
2015-01-01
Thesis entitled: Modelling Stable Atmospheric Boundary Layers over Snow H.A.M. Sterk Wageningen, 29th of April, 2015 Summary The emphasis of this thesis is on the understanding and forecasting of the Stable Boundary Layer (SBL) over snow-covered surfaces. SBLs typically form at night and in polar
Modelling stable water isotopes: Status and perspectives
Directory of Open Access Journals (Sweden)
Werner M.
2010-12-01
Full Text Available Modelling of stable water isotopes H2 18O and HDO within various parts of the Earth’s hydrological cycle has clearly improved our understanding of the interplay between climatic variations and related isotope fractionation processes. In this article key principles and major research results of stable water isotope modelling studies are described. Emphasis is put on research work using explicit isotope diagnostics within general circulation models as this highly complex model setup bears many resemblances with studies using simpler isotope modelling approaches.
Energy Technology Data Exchange (ETDEWEB)
Victoria R, M.A.; Morales S, J.B. [UNAM, DEPFI, Campus Morelos, en IMTA Jiutepec, Morelos (Mexico)]. e-mail: angelvr@gmail.com
2005-07-01
Presently work is applied the modified algorithm of the ellipsoid of optimal volume (MOVE) to a reduced order model of 5 differential equations of the core of a boiling water reactor (BWR) with the purpose of estimating the parameters that model the dynamics. The viability is analyzed of carrying out an analysis that calculates the global dynamic parameters that determine the stability of the system and the uncertainty of the estimate. The modified algorithm of the ellipsoid of optimal volume (MOVE), is a method applied to the parametric identification of systems, in particular to the estimate of groups of parameters (PSE for their initials in English). It is looked for to obtain the ellipsoid of smaller volume that guarantees to contain the real value of the parameters of the model. The PSE MOVE is a recursive identification method that can manage the sign of noise and to ponder it, the ellipsoid represents an advantage due to its easy mathematical handling in the computer, the results that surrender are very useful for the design of Robust Control since to smaller volume of the ellipsoid, better is in general the performance of the system to control. The comparison with other methods presented in the literature to estimate the reason of decline (DR) of a BWR is presented. (Author)
Modeling of non-stationary autoregressive alpha-stable processe
National Aeronautics and Space Administration — In the literature, impulsive signals are mostly modeled by symmetric alpha-stable processes. To represent their temporal dependencies, usually autoregressive models...
Stable cycling in discrete-time genetic models.
Hastings, A
1981-11-01
Examples of stable cycling are discussed for two-locus, two-allele, deterministic, discrete-time models with constant fitnesses. The cases that cycle were found by using numerical techniques to search for stable Hopf bifurcations. One consequence of the results is that apparent cases of directional selection may be due to stable cycling.
Energy Technology Data Exchange (ETDEWEB)
Valle H, J.; Morales S, J.B. [UNAM, DEPFI, Campus Morelos, en IMTA Jiutepec, Morelos (Mexico)]. e-mail: jms0620@yahoo.com
2005-07-01
This project has as purpose to know to depth the operation of a PBMR nucleo electric type (Pebble Bed Modular Reactor), which has a reactor of moderate graphite spheres and fuel of uranium dioxide cooled with Helium and Brayton thermodynamic cycle. The simulator seeks to describe the dynamics of the one process of energy generation in the nuclear fuel, the process of transport toward the coolant one and the conversion to mechanical energy in the turbo-generators as well as in the heat exchangers indispensable for the process. The dynamics of reload of the fuel elements it is not modeled in detail but their effects are represented in the parameters of the pattern. They are modeled also the turbo-compressors of the primary circuit of the work fluid. The control of the power of the nuclear reactor is modeled by means of reactivity functions specified in the simulation platform. The proposed mathematical models will be settled in the platform of simulation of Simulink-Mat Lab. The proposed control panels for this simulator can be designed and to implement using the box of tools of Simulink that facilitates this process. The work presents the mathematical models more important used for their future implementation in Simulink. (Author)
Tempered stable distributions stochastic models for multiscale processes
Grabchak, Michael
2015-01-01
This brief is concerned with tempered stable distributions and their associated Levy processes. It is a good text for researchers interested in learning about tempered stable distributions. A tempered stable distribution is one which takes a stable distribution and modifies its tails to make them lighter. The motivation for this class comes from the fact that infinite variance stable distributions appear to provide a good fit to data in a variety of situations, but the extremely heavy tails of these models are not realistic for most real world applications. The idea of using distributions that modify the tails of stable models to make them lighter seems to have originated in the influential paper of Mantegna and Stanley (1994). Since then, these distributions have been extended and generalized in a variety of ways. They have been applied to a wide variety of areas including mathematical finance, biostatistics,computer science, and physics.
Next-Generation Parametric Reduced-Order Models
2011-10-24
collection of information if it does not display a currently valid OMB control number. 1. REPORT DATE 03 NOV 2011 2. REPORT TYPE Journal Article 3...Frequency (Hz) D is p la ce m en t (m m ) Nomina l Case 3 for FEM Case 3 for NX−PROM Case 3 for MC−PROM Figure 12: Forced response predictions of
LQG controller designs from reduced order models for a launch ...
Indian Academy of Sciences (India)
Author Affiliations. Ashwin Dhabale1 R N Banavar1 M V Dhekane2. Systems and Control Engineering, Indian Institute of Technology Bombay, Mumbai 400 076; Control and Guidance Group, Vikram Sarabhai Space Centre, Indian Space Research Organization, Thiruvananthapuram 695 022 ...
LQG controller designs from reduced order models for a launch ...
Indian Academy of Sciences (India)
MyE = (IR + mRlRlc)¨δi + mRlR ˙U0δi. (7). 2.1d Aerodynamic forces: The aerodynamic force acts at the center of pressure of the LV. It acts along the line of the vehicle velocity, that is making an angle equal to the angle of attack with the axis of the launch vehicle as shown in figure 1 and can be described as. FAz = Czsq and.
Use of reduced-order models in well control optimization
Jansen, J.D.; Durlofsky, L.J.
2016-01-01
Many aspects of reservoir management can be expected to benefit from the application of computational optimization procedures. The focus of this review paper is on well control optimization, which entails the determination of well settings, such as flow rates or bottom hole pressures, that maximize
Reduced-Order Kalman Filtering for Processing Relative Measurements
Bayard, David S.
2008-01-01
A study in Kalman-filter theory has led to a method of processing relative measurements to estimate the current state of a physical system, using less computation than has previously been thought necessary. As used here, relative measurements signifies measurements that yield information on the relationship between a later and an earlier state of the system. An important example of relative measurements arises in computer vision: Information on relative motion is extracted by comparing images taken at two different times. Relative measurements do not directly fit into standard Kalman filter theory, in which measurements are restricted to those indicative of only the current state of the system. One approach heretofore followed in utilizing relative measurements in Kalman filtering, denoted state augmentation, involves augmenting the state of the system at the earlier of two time instants and then propagating the state to the later time instant.While state augmentation is conceptually simple, it can also be computationally prohibitive because it doubles the number of states in the Kalman filter. When processing a relative measurement, if one were to follow the state-augmentation approach as practiced heretofore, one would find it necessary to propagate the full augmented state Kalman filter from the earlier time to the later time and then select out the reduced-order components. The main result of the study reported here is proof of a property called reduced-order equivalence (ROE). The main consequence of ROE is that it is not necessary to augment with the full state, but, rather, only the portion of the state that is explicitly used in the partial relative measurement. In other words, it suffices to select the reduced-order components first and then propagate the partial augmented state Kalman filter from the earlier time to the later time; the amount of computation needed to do this can be substantially less than that needed for propagating the full augmented
MixSIAR: advanced stable isotope mixing models in R
Background/Question/Methods The development of stable isotope mixing models has coincided with modeling products (e.g. IsoSource, MixSIR, SIAR), where methodological advances are published in parity with software packages. However, while mixing model theory has recently been ex...
Stable algebraic spin liquid in a Hubbard model.
Hassan, S R; Sriluckshmy, P V; Goyal, Sandeep K; Shankar, R; Sénéchal, David
2013-01-18
We show the existence of a stable algebraic spin liquid (ASL) phase in a Hubbard model defined on a honeycomb lattice with spin-dependent hopping that breaks time-reversal symmetry. The effective spin model is the Kitaev model for large on-site repulsion. The gaplessness of the emergent Majorana fermions is protected by the time-reversal invariance of this model. We prove that the effective spin model is time-reversal invariant in the entire Mott phase, thus ensuring the stability of the ASL. The model can be physically realized in cold atom systems, and we propose experimental signals of the ASL.
A non-linear reduced order methodology applicable to boiling water reactor stability analysis
Energy Technology Data Exchange (ETDEWEB)
Prill, Dennis Paul
2013-12-06
Thermal-hydraulic coupling between power, flow rate and density, intensified by neutronics feedback are the main drivers of boiling water reactor (BWR) stability behavior. High-power low-flow conditions in connection with unfavorable power distributions can lead the BWR system into unstable regions where power oscillations can be triggered. This important threat to operational safety requires careful analysis for proper understanding. Analyzing an exhaustive parameter space of the non-linear BWR system becomes feasible with methodologies based on reduced order models (ROMs), saving computational cost and improving the physical understanding. Presently within reactor dynamics, no general and automatic prediction of high-dimensional ROMs based on detailed BWR models are available. In this thesis a systematic self-contained model order reduction (MOR) technique is derived which is applicable for several classes of dynamical problems, and in particular to BWRs of any degree of details. Expert knowledge can be given by operational, experimental or numerical transient data and is transfered into an optimal basis function representation. The methodology is mostly automated and provides the framework for the reduction of various different systems of any level of complexity. Only little effort is necessary to attain a reduced version within this self-written code which is based on coupling of sophisticated commercial software. The methodology reduces a complex system in a grid-free manner to a small system able to capture even non-linear dynamics. It is based on an optimal choice of basis functions given by the so-called proper orthogonal decomposition (POD). Required steps to achieve reliable and numerical stable ROM are given by a distinct calibration road-map. In validation and verification steps, a wide spectrum of representative test examples is systematically studied regarding a later BWR application. The first example is non-linear and has a dispersive character
Chaotic and stable perturbed maps: 2-cycles and spatial models
Braverman, E.; Haroutunian, J.
2010-06-01
As the growth rate parameter increases in the Ricker, logistic and some other maps, the models exhibit an irreversible period doubling route to chaos. If a constant positive perturbation is introduced, then the Ricker model (but not the classical logistic map) experiences period doubling reversals; the break of chaos finally gives birth to a stable two-cycle. We outline the maps which demonstrate a similar behavior and also study relevant discrete spatial models where the value in each cell at the next step is defined only by the values at the cell and its nearest neighbors. The stable 2-cycle in a scalar map does not necessarily imply 2-cyclic-type behavior in each cell for the spatial generalization of the map.
Modeled and measured stable isotope data in Siberian tree rings
Sidorova, Olga; Siegwolf, Rolf; Kupzova, Anna; Launois, Thomas; Peylin, Philippe; Spahni, Renato; Bryukhanova, Marina; Roden, John; Saurer, Matthias; Shashkin, Aleksander
2013-04-01
Stable isotopes in tree-rings are widely used for the reconstruction of environmental conditions, but more information could be extracted when using mechanistic models for their interpretation. Tree-ring width, cell wall structure and stable carbon as well as oxygen isotope analyses in tree wood and cellulose were carried out for four larch trees (Larix cajanderi Mayr) from northeastern Yakutia (69°N, 148°E) during the period from 1945 to 2004 and these data compared with several models. Based on a biochemical model of photosynthesis and modified model of stomatal conductance our work provides intra-annual dynamics of carbon content in photoassimilates and isotope composition in tree-rings depending on climatic factors. The mechanistic Roden-Lin-Ehleringer model was used to quantify both the physical and biochemical fractionation events associated with hydrogen and oxygen isotope ratios in tree-ring cellulose. Simulation results were compared with measured data. Predictions of carbon isotope ratios from Fritts, ORCHIDEE and LPX models were consistent with measured data. The Roden-Lin-Ehleringer oxygen model allowed the prediction of humidity and source water enrichment as well as oxygen isotope effects associated with leaf water enrichment. This work was supported by Marie Curie Fellowships (EU-ISOTREC 235122; 909122) awarded to Sidorova Olga and a grant of Russian Scientific School 5327.2012.4.
Reduced order ARMA spectral estimation of ocean waves
Digital Repository Service at National Institute of Oceanography (India)
Mandal, S.; Witz, J.A.; Lyons, G.J.
-Heinemann, Oxford, 1991. 2. Spanos, P.-T.D. & Hansen, J.E., Linear prediction theory for digital simulation of sea waves. J. Energy Resources Technology, ASME, 103 (1981) 243-9. 3. Spanos, P.-T.D., ARMA algorithms for ocean wave modeling. J. Energy Resources..., 19(6) (1974) 716- 23. 14. Akaike, H., Time series analysis and control through parametric models. Proc. First Applied Time Series Syrup., Tulsa, Oklahoma, 14-15 May 1976. 15. Lin, N.K., Real time estimation of ship motion using ARMA filtering...
Baroclinic Planetary Boundary Layer Model: Neutral and Stable Stratification Conditions
Yordanov, D.; Djolov, G.; Syrakov, D.
1998-01-01
The temperature and wind profiles in a baroclinic Planetary Boundary Layer (PBL) are investigated. Assuming stationarity, the turbulent state in the PBL at stable and neutral conditions is uniquely determined by the Rossby number, the external stratification parameter and two external baroclinic parameters. A simple two-layer baroclinic model is developed. It consists of a Surface Layer (SL) and overlying Ekman type layer. The system of dynamic and heat transfer equations is close using the K-theory. In SL the turbulent exchange coefficient is consistent with the results of similarity theory while in the Ekman layer it is constant. The universal functions in the resistance, heat and humidity transfer laws can be deduced from the model. The internal PBL characteristics, necessary for the model calculations, are presented in terms of the external parameters. Favourable agreement of model results with experimental data is demonstrated.
Tapered composite likelihood for spatial max-stable models
Sang, Huiyan
2014-05-01
Spatial extreme value analysis is useful to environmental studies, in which extreme value phenomena are of interest and meaningful spatial patterns can be discerned. Max-stable process models are able to describe such phenomena. This class of models is asymptotically justified to characterize the spatial dependence among extremes. However, likelihood inference is challenging for such models because their corresponding joint likelihood is unavailable and only bivariate or trivariate distributions are known. In this paper, we propose a tapered composite likelihood approach by utilizing lower dimensional marginal likelihoods for inference on parameters of various max-stable process models. We consider a weighting strategy based on a "taper range" to exclude distant pairs or triples. The "optimal taper range" is selected to maximize various measures of the Godambe information associated with the tapered composite likelihood function. This method substantially reduces the computational cost and improves the efficiency over equally weighted composite likelihood estimators. We illustrate its utility with simulation experiments and an analysis of rainfall data in Switzerland.
A model to secure a stable iodine concentration in milk
Directory of Open Access Journals (Sweden)
Gisken Trøan
2015-12-01
Full Text Available Background: Dairy products account for approximately 60% of the iodine intake in the Norwegian population. The iodine concentration in cow's milk varies considerably, depending on feeding practices, season, and amount of iodine and rapeseed products in cow fodder. The variation in iodine in milk affects the risk of iodine deficiency or excess in the population. Objective: The first goal of this study was to develop a model to predict the iodine concentration in milk based on the concentration of iodine and rapeseed or glucosinolate in feed, as a tool to securing stable iodine concentration in milk. A second aim was to estimate the impact of different iodine levels in milk on iodine nutrition in the Norwegian population. Design: Two models were developed on the basis of results from eight published and two unpublished studies from the past 20 years. The models were based on different iodine concentrations in the fodder combined with either glucosinolate (Model 1 or rapeseed cake/meal (Model 2. To illustrate the impact of different iodine concentrations in milk on iodine intake, we simulated the iodine contribution from dairy products in different population groups based on food intake data in the most recent dietary surveys in Norway. Results: The models developed could predict iodine concentration in milk. Cross-validation showed good fit and confirmed the explanatory power of the models. Our calculations showed that dairy products with current iodine level in milk (200 µg/kg cover 68, 49, 108 and 56% of the daily iodine requirements for men, women, 2-year-old children, and pregnant women, respectively. Conclusions: Securing a stable level of iodine in milk by adjusting iodine concentration in different cow feeds is thus important for preventing excess intake in small children and iodine deficiency in pregnant and non-pregnant women.
Reduced-order modellin for high-pressure transient flow of hydrogen-natural gas mixture
Agaie, Baba G.; Khan, Ilyas; Alshomrani, Ali Saleh; Alqahtani, Aisha M.
2017-05-01
In this paper the transient flow of hydrogen compressed-natural gas (HCNG) mixture which is also referred to as hydrogen-natural gas mixture in a pipeline is numerically computed using the reduced-order modelling technique. The study on transient conditions is important because the pipeline flows are normally in the unsteady state due to the sudden opening and closure of control valves, but most of the existing studies only analyse the flow in the steady-state conditions. The mathematical model consists in a set of non-linear conservation forms of partial differential equations. The objective of this paper is to improve the accuracy in the prediction of the HCNG transient flow parameters using the Reduced-Order Modelling (ROM). The ROM technique has been successfully used in single-gas and aerodynamic flow problems, the gas mixture has not been done using the ROM. The study is based on the velocity change created by the operation of the valves upstream and downstream the pipeline. Results on the flow characteristics, namely the pressure, density, celerity and mass flux are based on variations of the mixing ratio and valve reaction and actuation time; the ROM computational time cost advantage are also presented.
On stable Pareto laws in a hierarchical model of economy
Chebotarev, A. M.
2007-01-01
This study considers a model of the income distribution of agents whose pairwise interaction is asymmetric and price-invariant. Asymmetric transactions are typical for chain-trading groups who arrange their business such that commodities move from senior to junior partners and money moves in the opposite direction. The price-invariance of transactions means that the probability of a pairwise interaction is a function of the ratio of incomes, which is independent of the price scale or absolute income level. These two features characterize the hierarchical model. The income distribution in this class of models is a well-defined double-Pareto function, which possesses Pareto tails for the upper and lower incomes. For gross and net upper incomes, the model predicts definite values of the Pareto exponents, agross and anet, which are stable with respect to quantitative variation of the pair-interaction. The Pareto exponents are also stable with respect to the choice of a demand function within two classes of status-dependent behavior of agents: linear demand ( agross=1, anet=2) and unlimited slowly varying demand ( agross=anet=1). For the sigmoidal demand that describes limited returns, agross=anet=1+α, with some α>0 satisfying a transcendental equation. The low-income distribution may be singular or vanishing in the neighborhood of the minimal income; in any case, it is L1-integrable and its Pareto exponent is given explicitly. The theory used in the present study is based on a simple balance equation and new results from multiplicative Markov chains and exponential moments of random geometric progressions.
Estimating unmeasured invasive EEG signals using a reduced-order observer.
Gunnarsdottir, Kristin M; Li, Adam; Bulacio, Juan; Gonzalez-Martinez, Jorge; Sarma, Sridevi V
2017-07-01
Epilepsy affects around 50 million people worldwide. Over 30% of patients are drug-resistant where the only treatment may be surgical resection of the epileptogenic zone (EZ), the region of the brain that generates seizures. Identification of the EZ is often based on invasive EEG recordings. As such, surgical outcome relies heavily on precise and dense placement of EEG electrodes into the brain. Despite large brain regions being removed, success rates barely reach 65%. This gives rise to the "missing electrode problem", where clinicians want to know what neural activity looks like between sparsely implanted electrodes. Solving this problem will enable more accurate localization of the EZ. In this paper, we demonstrate the first steps towards developing a computational platform to estimate neural activity at the "missing electrodes" using a reduced-order observer from control theory. Specifically, we constructed a sequence of discrete time Linear Time-Invariant (LTI) models using the available EEG data from two epilepsy patients. Then, we used the models to simulate EEG data and remove selected signals ("missing" states) from the simulated data set. Finally, we used a reduced-order observer to estimate the signals of these "missing" states and evaluated performance by comparing the observer estimates to the simulated EEG time series.
Stable time integration suppresses unphysical oscillations in the bidomain model
Directory of Open Access Journals (Sweden)
Saeed eTorabi Ziaratgahi
2014-07-01
Full Text Available The bidomain model is a popular model for simulating electrical activity in cardiac tissue. It is a continuum-based model consisting of non-linear ordinary differential equations (ODEs describing spatially averaged cellular reactions and a system of partial differential equations (PDEs describing electrodiffusion on tissue level. Because of this multi-scale, ODE/PDE structure of the model, operator-splitting methods that treat the ODEs and PDEs in separate steps are natural candidates as numerical solution methods. Second-order methods can generally be expected to be more effective than first-order methods under normal accuracy requirements. However, the simplest and the most commonly applied second-order method for the PDE step, the Crank--Nicolson (CN method, may generate unphysical oscillations. In this paper, we investigate the performance of a two-stage, L-stable singly diagonally implicit Runge--Kutta method for solving the PDEs of the bidomain model. Numerical experiments show that the enhanced stability property of this method leads to more physically realistic numerical simulations compared to both the CN and backward Euler methods.
Stable lattice Boltzmann model for Maxwell equations in media
Hauser, A.; Verhey, J. L.
2017-12-01
The present work shows a method for stable simulations via the lattice Boltzmann (LB) model for electromagnetic waves (EM) transiting homogeneous media. LB models for such media were already presented in the literature, but they suffer from numerical instability when the media transitions are sharp. We use one of these models in the limit of pure vacuum derived from Liu and Yan [Appl. Math. Model. 38, 1710 (2014), 10.1016/j.apm.2013.09.009] and apply an extension that treats the effects of polarization and magnetization separately. We show simulations of simple examples in which EM waves travel into media to quantify error scaling, stability, accuracy, and time scaling. For conductive media, we use the Strang splitting and check the simulations accuracy at the example of the skin effect. Like pure EM propagation, the error for the static limits, which are constructed with a current density added in a first-order scheme, can be less than 1 % . The presented method is an easily implemented alternative for the stabilization of simulation for EM waves propagating in spatially complex structured media properties and arbitrary transitions.
Further stable neutron star models from f(R) gravity
Energy Technology Data Exchange (ETDEWEB)
Astashenok, Artyom V. [I. Kant Baltic Federal University, Institute of Physics and Technology, Nevskogo st. 14, Kaliningrad, 236041 (Russian Federation); Capozziello, Salvatore [Dipartimento di Fisica, Università di Napoli ' ' Federico II' ' , Via Cinthia, 9, Napoli, I–80126 (Italy); Odintsov, Sergei D., E-mail: artyom.art@gmail.com, E-mail: capozziello@na.infn.it, E-mail: odintsov@ieec.uab.es [Instituciò Catalana de Recerca i Estudis Avançats (ICREA), Barcelona (Spain)
2013-12-01
Neutron star models in perturbative f(R) gravity are considered with realistic equations of state. In particular, we consider the FPS, SLy and other equations of state and a case of piecewise equation of state for stars with quark cores. The mass-radius relations for f(R) = R+R(e{sup −R/R{sub 0}}−1) model and for R{sup 2} models with logarithmic and cubic corrections are obtained. In the case of R{sup 2} gravity with cubic corrections, we obtain that at high central densities (ρ > 10ρ{sub ns}, where ρ{sub ns} = 2.7 × 10{sup 14} g/cm{sup 3} is the nuclear saturation density), stable star configurations exist. The minimal radius of such stars is close to 9 km with maximal mass ∼ 1.9M{sub ⊙} (SLy equation). A similar situation takes place for AP4 and BSK20 EoS. Such an effect can give rise to more compact stars than in General Relativity. If observationally identified, such objects could constitute a formidable signature for modified gravity at astrophysical level. Another interesting result can be achieved in modified gravity with only a cubic correction. For some EoS, the upper limit of neutron star mass increases and therefore these EoS can describe realistic star configurations (although, in General Relativity, these EoS are excluded by observational constraints)
A hybrid simulation model for a stable auroral arc
Directory of Open Access Journals (Sweden)
P. Janhunen
Full Text Available We present a new type of hybrid simulation model, intended to simulate a single stable auroral arc in the latitude/altitude plane. The ionospheric ions are treated as particles, the electrons are assumed to follow a Boltzmann response and the magnetospheric ions are assumed to be so hot that they form a background population unaffected by the electric fields that arise. The system is driven by assumed parallel electron energisation causing a primary negative charge cloud and an associated potential structure to build up. The results show how a closed potential structure and density depletion of an auroral arc build up and how they decay after the driver is turned off. The model also produces upgoing energetic ion beams and predicts strong static perpendicular electric fields to be found in a relatively narrow altitude range (~ 5000–11 000 km.
Key words. Magnetospheric physics (magnetosphere-ionosphere interactions; auroral phenomena – Space plasma physics (numerical simulation studies
Fast and efficient evaluation of gravitational waveforms via reduced-order spline interpolation
Galley, Chad R
2016-01-01
Numerical simulations of merging black hole binaries produce the most accurate gravitational waveforms. The availability of hundreds of these numerical relativity (NR) waveforms, often containing many higher spherical harmonic modes, allows one to study many aspects of gravitational waves. Amongst these are the response of data analysis pipelines, the calibration of semi-analytical models, the building of reduced-order surrogates, the estimation of the parameters of detected gravitational waves, and the composition of public catalogs of NR waveform data. The large number of generated NR waveforms consequently requires efficient data storage and handling, especially since many more waveforms will be generated at an increased rate in the forthcoming years. In addition, gravitational wave data analyses often require the NR waveforms to be interpolated and uniformly resampled at high sampling rates. Previously, this resulted in very large data files (up to $\\sim$ several GB) in memory-intensive operations, which ...
Stable isotope composition of atmospheric carbon monoxide. A modelling study
Energy Technology Data Exchange (ETDEWEB)
Gromov, Sergey S.
2014-11-01
This study aims at an improved understanding of the stable carbon and oxygen isotope composition of the carbon monoxide (CO) in the global atmosphere by means of numerical simulations. At first, a new kinetic chemistry tagging technique for the most complete parameterisation of isotope effects has been introduced into the Modular Earth Submodel System (MESSy) framework. Incorporated into the ECHAM/MESSy Atmospheric Chemistry (EMAC) general circulation model, an explicit treatment of the isotope effects on the global scale is now possible. The expanded model system has been applied to simulate the chemical system containing up to five isotopologues of all carbon- and oxygen-bearing species, which ultimately determine the δ{sup 13}C, δ{sup 18}O and Δ{sup 17}O isotopic signatures of atmospheric CO. As model input, a new stable isotope-inclusive emission inventory for the relevant trace gases has been compiled. The uncertainties of the emission estimates and of the resulting simulated mixing and isotope ratios have been analysed. The simulated CO mixing and stable isotope ratios have been compared to in-situ measurements from ground-based observatories and from the civil-aircraft-mounted CARIBIC-1 measurement platform. The systematically underestimated {sup 13}CO/{sup 12}CO ratios of earlier, simplified modelling studies can now be partly explained. The EMAC simulations do not support the inferences of those studies, which suggest for CO a reduced input of the highly depleted in {sup 13}C methane oxidation source. In particular, a high average yield of 0.94 CO per reacted methane (CH{sub 4}) molecule is simulated in the troposphere, to a large extent due to the competition between the deposition and convective transport processes affecting the CH{sub 4} to CO reaction chain intermediates. None of the other factors, assumed or disregarded in previous studies, however hypothesised to have the potential in enriching tropospheric CO in {sup 13}C, were found significant
A reduced-order representation of the Schrödinger equation
Directory of Open Access Journals (Sweden)
Ming-C. Cheng
2016-09-01
Full Text Available A reduced-order-based representation of the Schrödinger equation is investigated for electron wave functions in semiconductor nanostructures. In this representation, the Schrödinger equation is projected onto an eigenspace described by a small number of basis functions that are generated from the proper orthogonal decomposition (POD. The approach substantially reduces the numerical degrees of freedom (DOF’s needed to numerically solve the Schrödinger equation for the wave functions and eigenstate energies in a quantum structure and offers an accurate solution as detailed as the direct numerical simulation of the Schrödinger equation. To develop such an approach, numerical data accounting for parametric variations of the system are used to perform decomposition in order to generate the POD eigenvalues and eigenvectors for the system. This approach is applied to develop POD models for single and multiple quantum well structure. Errors resulting from the approach are examined in detail associated with the selected numerical DOF’s of the POD model and quality of data used for generation of the POD eigenvalues and basis functions. This study investigates the fundamental concepts of the POD approach to the Schrödinger equation and paves a way toward developing an efficient modeling methodology for large-scale multi-block simulation of quantum nanostructures.
Design of reduced-order state estimators for linear time-varying multivariable systems
Nguyen, Charles C.
1987-01-01
The design of reduced-order state estimators for linear time-varying multivariable systems is considered. Employing the concepts of matrix operators and the method of canonical transformations, this paper shows that there exists a reduced-order state estimator for linear time-varying systems that are 'lexicography-fixedly observable'. In addition, the eigenvalues of the estimator can be arbitrarily assigned. A simple algorithm is proposed for the design of the state estimator.
A new reduced-order observer design for the synchronization of Lorenz systems
Energy Technology Data Exchange (ETDEWEB)
Martinez-Guerra, R. [Departamento de Control Automatico, CINVESTAV-IPN, AP 14-740, CP 07360, Mexico, DF (Mexico)] e-mail: rguerra@ctrl.cinvestav.mx; Cruz-Victoria, J.C. [Departamento de Control Automatico, CINVESTAV-IPN, AP 14-740, CP 07360, Mexico, DF (Mexico); Gonzalez-Galan, R. [Departamento de Control Automatico, CINVESTAV-IPN, AP 14-740, CP 07360, Mexico, DF (Mexico); Aguilar-Lopez, R. [Departamento de Energia, UAM-Azcapotzalco, 02200 (Mexico)
2006-04-01
In this paper we tackle the synchronization of Lorenz system problem using a new proportional reduced-order observer design in the algebraic and differential setting. We prove the asymptotic stability of the resulting error system and by means of algebraic manipulations we obtain the estimates of the current states (master system), the construction of a proportional reduced-order observer is the main ingredient in our approach. Finally, we present a simulation to illustrate the effectiveness of the suggested approach.
Stable cosmological models driven by a free quantum scalar field
Energy Technology Data Exchange (ETDEWEB)
Dappiaggi, C.; Pinamonti, N. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik]|[Citta Univ., Roma (Italy). Istituto Nazionale di Alta Matematica ' ' F. Severi' ' - GNFM; Fredenhagen, K. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik
2008-01-15
In the mathematically rigorous analysis of semiclassical Einstein's equations, the renormalisation of the stress-energy tensor plays a crucial role. We address such a topic in the case of a scalar field with both arbitrary mass and coupling with gravity in the hypothesis that the underlying algebraic quantum state is of Hadamard type. Particularly, if we focus on highly symmetric solutions of the semiclassical Einstein's equations, the envisaged method displays a de Sitter type behaviour even without an a priori introduced cosmological constant. As a further novel result we shall show that these solutions turn out to be stable. (orig.)
Xingling, Shao; Honglun, Wang
2015-07-01
This paper proposes a novel composite integrated guidance and control (IGC) law for missile intercepting against unknown maneuvering target with multiple uncertainties and control constraint. First, by using back-stepping technique, the proposed IGC law design is separated into guidance loop and control loop. The unknown target maneuvers and variations of aerodynamics parameters in guidance and control loop are viewed as uncertainties, which are estimated and compensated by designed model-assisted reduced-order extended state observer (ESO). Second, based on the principle of active disturbance rejection control (ADRC), enhanced feedback linearization (FL) based control law is implemented for the IGC model using the estimates generated by reduced-order ESO. In addition, performance analysis and comparisons between ESO and reduced-order ESO are examined. Nonlinear tracking differentiator is employed to construct the derivative of virtual control command in the control loop. Third, the closed-loop stability for the considered system is established. Finally, the effectiveness of the proposed IGC law in enhanced interception performance such as smooth interception course, improved robustness against multiple uncertainties as well as reduced control consumption during initial phase are demonstrated through simulations. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
Modeling of present and Eemian stable water isotopes in precipitation
DEFF Research Database (Denmark)
Sjolte, Jesper
The subject of this thesis is the modeling of the isotopic temperature proxies d18O, dD and deuterium excess in precipitation. Two modeling studies were carried out, one using the regional climate model, and one using a global climate model. In the regional study the model was run for the period...... the modeled isotopes do not agree with ice core data. The discrepancy between the model output and the ice core data is attributed to the boundary conditions, where changes in ice sheets and vegetation have not been accounted for....
Reliable design of H-2 optimal reduced-order controllers via a homotopy algorithm
Collins, Emmanuel G.; Richter, Stephen; Davis, Larry D.
1992-01-01
Due to control processor limitations, the design of reduced-order controllers is an active area of research. Suboptimal methods based on truncating the order of the corresponding linear-quadratic-Gaussian (LQG) compensator tend to fail if the requested controller dimension is sufficiently small and/or the requested controller authority is sufficiently high. Also, traditional parameter optimization approaches have only local convergence properties. This paper discusses a homotopy algorithm for optimal reduced-order control that has global convergence properties. The exposition is for discrete-time systems. The algorithm has been implemented in MATLAB and is applied to a benchmark problem.
2015-03-16
proteins and inhibitors. To prepare FVIIa-TF, TF (0.5 nmol/L) was relipidated into 400 µmol/L of phospholipid vesicles (PCPS) by incubation in 20 mmol/L...HEPES, 150 mmol/L NaCl, and 2 mmol/L CaCl2 pH 7.4 (HBS/Ca2+) for 30 min at 37 ◦C. The relipidated TF was incubated with 10 pmol/L factor VIIa for 20...D.A. Training signaling pathway maps to biochemical data with constrained fuzzy logic: Quantitative analysis of liver cell responses to inflammatory
Modelling the Arctic Stable boundary layer and its coupling to the surface
Steeneveld, G.J.; Wiel, van de B.J.H.; Holtslag, A.A.M.
2006-01-01
The impact of coupling the atmosphere to the surface energy balance is examined for the stable boundary layer, as an extension of the first GABLS (GEWEX Atmospheric Boundary-Layer Study) one-dimensional model intercomparison. This coupling is of major importance for the stable boundary-layer
Modelling breast cancer tumour growth for a stable disease population.
Isheden, Gabriel; Humphreys, Keith
2017-01-01
Statistical models of breast cancer tumour progression have been used to further our knowledge of the natural history of breast cancer, to evaluate mammography screening in terms of mortality, to estimate overdiagnosis, and to estimate the impact of lead-time bias when comparing survival times between screen detected cancers and cancers found outside of screening programs. Multi-state Markov models have been widely used, but several research groups have proposed other modelling frameworks based on specifying an underlying biological continuous tumour growth process. These continuous models offer some advantages over multi-state models and have been used, for example, to quantify screening sensitivity in terms of mammographic density, and to quantify the effect of body size covariates on tumour growth and time to symptomatic detection. As of yet, however, the continuous tumour growth models are not sufficiently developed and require extensive computing to obtain parameter estimates. In this article, we provide a detailed description of the underlying assumptions of the continuous tumour growth model, derive new theoretical results for the model, and show how these results may help the development of this modelling framework. In illustrating the approach, we develop a model for mammography screening sensitivity, using a sample of 1901 post-menopausal women diagnosed with invasive breast cancer.
Alaska Northern Fur Seal Foraging Habitat Model Stable Isotope Data, 2006-2008
National Oceanic and Atmospheric Administration, Department of Commerce — These data sets were used by Zeppelin et al. (2015) to model northern fur seal foraging habitats based on stable isotope values measured in plasma and red blood...
Stable cycles in a Cournot duopoly model of Kopel
Govaerts, W.; Khoshsiar Ghaziani, R.
2008-09-01
We consider a discrete map proposed by M. Kopel that models a nonlinear Cournot duopoly consisting of a market structure between the two opposite cases of monopoly and competition. The stability of the fixed points of the discrete dynamical system is analyzed. Synchronization of two dynamics parameters of the Cournot duopoly is considered in the computation of stability boundaries formed by parts of codim-1 bifurcation curves. We discover more on the dynamics of the map by computing numerically the critical normal form coefficients of all codim-1 and codim-2 bifurcation points and computing the associated two-parameter codim-1 curves rooted in some codim-2 points. It enables us to compute the stability domains of the low-order iterates of the map. We concentrate in particular on the second, third and fourth iterates and their relation to the period doubling, 1:3 and 1:4 resonant Neimark-Sacker points.
Estimation in the positive stable shared frailty Cox proportional hazards model
DEFF Research Database (Denmark)
Martinussen, Torben; Pipper, Christian Bressen
2005-01-01
Shared frailty models are of interest when one has clustered survival data and when focus is on comparing the lifetimes within clusters and further on estimating the correlation between lifetimes from the same cluster. It is well known that the positive stable model should be preferred to the gamma...... model in situations where the correlated survival data show a decreasing association with time. In this paper, we devise a likelihood based estimation procedure for the positive stable shared frailty Cox model, which is expected to obtain high efficiency. The proposed estimator is provided with large...
Energy Technology Data Exchange (ETDEWEB)
Um, Wooyong [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Jung, Hun Bok [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Kabilan, Senthil [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Suh, Dong-Myung [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Fernandez, Carlos A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
2014-01-01
The primary objective of the National Risk Assessment Partnership (NRAP) program is to develop a defensible, generalized, and science-based methodology and platform for quantifying risk profiles at CO_{2} injection and storage sites. The methodology must incorporate and define the scientific basis for assessing residual risks associated with long-term stewardship and help guide site operational decision-making and risk management. Development of an integrated and risk-based protocol will help minimize uncertainty in the predicted long-term behavior of the CO_{2} storage site and thereby increase confidence in storage integrity. The risk profile concept has proven useful in conveying the qualitative evolution of risks for CO_{2} injection and storage site. However, qualitative risk profiles are not sufficient for specifying long-term liability for CO_{2} storage sites. Because there has been no science-based defensible and robust methodology developed for quantification of risk profiles for CO_{2} injection and storage, NRAP has been focused on developing a science-based methodology for quantifying risk profiles for various risk proxies.
Reduced-Order Modeling of Unsteady Aerodynamics Across Multiple Mach Regimes
2013-01-01
flutter analysis. In order to transform the Volterra equations to discrete time, Clancy and Rugh55 looked at the identifica- tion of Volterra series kernels...for discrete-time polynomial systems. This extension of the Volterra and convolution integrals to discrete time paved the way for its further...The unit impulse is the derivative of the unit step, so integration by parts yields y (t) = f (t)H (0) + ∫ t 0 f (τ)h (t− τ) dτ (2.4) Equations 2.3
Heller, Johann; Van Rienen, Ursula; 10.1016/j.phpro.2015.11.060
2015-01-01
The computation of electromagnetic fields and parameters derived thereof for lossless radio frequency (RF) structures filled with isotropic media is an important task for the design and operation of particle accelerators. Unfortunately, these computations are often highly demanding with regard to computational effort. The entire computational demand of the problem can be reduced using decomposition schemes in order to solve the field problems on standard workstations. This paper presents one of the first detailed comparisons between the recently proposed state-space concatenation approach (SSC) and a direct computation for an accelerator cavity with coupler-elements that break the rotational symmetry.
Reduced-Order Modeling for Optimization and Control of Complex Flows
2010-11-30
Statistics Colloquium, Auburn, AL, (January 2009). 16. University of Pittsburgh, Mathematics Colloquium, Pittsburgh, PA, (February 2009). 17. Goethe ...Center for Scientific Computing, Goethe University Frankfurt am Main, Ger- many, (June 2009). 18. Air Force Institute of Technology, Wright-Patterson
National Aeronautics and Space Administration — During Phase I of this effort, ZONA Technology, Inc. significantly improved the medium fidelity design and analysis capability of NASA's MDAO architecture by...
2014-04-01
Distribution A: Approved for Public Release; Distribution Unlimited 13. SUPPLEMENTARY NOTES Technical paper presented at 44th AIAA Fluid Dynamics...order models”, J. Fluid Mech., Vol. 641, pp. 1-50, 2009. 4. Haaskonk, B., and Ohlberger, M., “Reduced Basis Method for Finite Volume Approximations...Physics, 2009. 6. Bouhoubeiny, E., Druault, P., and Mecanique , C.R., “Note on the POD-based time interpolation from successive PIV images”, Academie des
Innovative Development of Kernel-Based Reduced-Order Models for Predicting LCO Onset Project
National Aeronautics and Space Administration — Reducing uncertainty in the prediction of limit cycle oscillations (LCO) and other nonlinear aeroservoelastic phenomena is critical to flight safety. To do so...
National Aeronautics and Space Administration — In this effort, ZONA Technology, Inc aims at developing an innovative multi-fidelity and multi-disciplinary optimization (MDO) sub-framework that can (i) effectively...
2013-03-01
PhD (Member) Date AFIT-ENY-13-M-28 Abstract System identification has long been used as a tool for flight test engineers to char- acterize systems ...recent effort to incorporate computational fluid dynamics (CFD) into the system identification process. An integral piece of the process is the...13 2.2 Stability and Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.3 System Identification
Investigation of the Stability of POD-Galerkin Techniques for Reduced Order Model Development
2016-01-09
Technical Paper 3. DATES COVERED (From - To) 24 November 2015 – 09 January 2016 4. TITLE AND SUBTITLE Investigation of the Stability of POD -Galerkin...CA (04-09 January 2016) PA Clearance Number 15704; Clearance Date 12/15/2015 14. ABSTRACT Detailed investigations are performed to analyze and...equations. The ROM is obtained by employing Galerkin’s method to reduce the high-order PDEs to a lower-order ODE system by means of POD eigen-bases
Heh, Ding Yu; Tan, Eng Leong
2011-04-12
This paper presents the modeling of hemoglobin at optical frequency (250 nm - 1000 nm) using the unconditionally stable fundamental alternating-direction-implicit finite-difference time-domain (FADI-FDTD) method. An accurate model based on complex conjugate pole-residue pairs is proposed to model the complex permittivity of hemoglobin at optical frequency. Two hemoglobin concentrations at 15 g/dL and 33 g/dL are considered. The model is then incorporated into the FADI-FDTD method for solving electromagnetic problems involving interaction of light with hemoglobin. The computation of transmission and reflection coefficients of a half space hemoglobin medium using the FADI-FDTD validates the accuracy of our model and method. The specific absorption rate (SAR) distribution of human capillary at optical frequency is also shown. While maintaining accuracy, the unconditionally stable FADI-FDTD method exhibits high efficiency in modeling hemoglobin.
Early Warning Signals for Regime Transition in the Stable Boundary Layer: A Model Study
van Hooijdonk, I. G. S.; Moene, A. F.; Scheffer, M.; Clercx, H. J. H.; van de Wiel, B. J. H.
2017-02-01
The evening transition is investigated in an idealized model for the nocturnal boundary layer. From earlier studies it is known that the nocturnal boundary layer may manifest itself in two distinct regimes, depending on the ambient synoptic conditions: strong-wind or overcast conditions typically lead to weakly stable, turbulent nights; clear-sky and weak-wind conditions, on the other hand, lead to very stable, weakly turbulent conditions. Previously, the dynamical behaviour near the transition between these regimes was investigated in an idealized setting, relying on Monin-Obukhov (MO) similarity to describe turbulent transport. Here, we investigate a similar set-up, using direct numerical simulation; in contrast to MO-based models, this type of simulation does not need to rely on turbulence closure assumptions. We show that previous predictions are verified, but now independent of turbulence parametrizations. Also, it appears that a regime shift to the very stable state is signaled in advance by specific changes in the dynamics of the turbulent boundary layer. Here, we show how these changes may be used to infer a quantitative estimate of the transition point from the weakly stable boundary layer to the very stable boundary layer. In addition, it is shown that the idealized, nocturnal boundary-layer system shares important similarities with generic non-linear dynamical systems that exhibit critical transitions. Therefore, the presence of other, generic early warning signals is tested as well. Indeed, indications are found that such signals are present in stably stratified turbulent flows.
Nonlinear Acoustic Response of an Aircraft Fuselage Sidewall Structure by a Reduced-Order Analysis
Przekop, Adam; Rizzi, Stephen A.; Groen, David S.
2006-01-01
A reduced-order nonlinear analysis of a structurally complex aircraft fuselage sidewall panel is undertaken to explore issues associated with application of such analyses to practical structures. Of primary interest is the trade-off between computational efficiency and accuracy. An approach to modal basis selection is offered based upon the modal participation in the linear regime. The nonlinear static response to a uniform pressure loading and nonlinear random response to a uniformly distributed acoustic loading are computed. Comparisons of the static response with a nonlinear static solution in physical degrees-of-freedom demonstrate the efficacy of the approach taken for modal basis selection. Changes in the modal participation as a function of static and random loading levels suggest a means for improvement in the basis selection.
The tempered one-sided stable density: a universal model for hydrological transport?
Cvetkovic, Vladimir
2011-07-01
A generalized distribution for the water residence time in hydrological transport is proposed in the form of the tempered one-sided stable (TOSS) density. It is shown that limiting cases of the TOSS distribution recover virtually all distributions that have been considered in the literature for hydrological transport, from plug flow to flow reactor, the advection-dispersion model, and the gamma and Levy densities. The stable property of TOSS is particularly important, enabling a seamless transition between a time-domain random walk, and the Lagrangian (trajectory) approach along hydrological transport pathways.
Unconditionally energy stable numerical schemes for phase-field vesicle membrane model
Guillén-González, F.; Tierra, G.
2018-02-01
Numerical schemes to simulate the deformation of vesicles membranes via minimizing the bending energy have been widely studied in recent times due to its connection with many biological motivated problems. In this work we propose a new unconditionally energy stable numerical scheme for a vesicle membrane model that satisfies exactly the conservation of volume constraint and penalizes the surface area constraint. Moreover, we extend these ideas to present an unconditionally energy stable splitting scheme decoupling the interaction of the vesicle with a surrounding fluid. Finally, the well behavior of the proposed schemes are illustrated through several computational experiments.
Directory of Open Access Journals (Sweden)
Zuo-Hua Li
2017-01-01
Full Text Available Time-delays of control force calculation, data acquisition, and actuator response will degrade the performance of Active Mass Damper (AMD control systems. To reduce the influence, model reduction method is used to deal with the original controlled structure. However, during the procedure, the related hierarchy information of small eigenvalues will be directly discorded. As a result, the reduced-order model ignores the information of high-order mode, which will reduce the design accuracy of an AMD control system. In this paper, a new reduced-order controller based on the improved Balanced Truncation (BT method is designed to reduce the calculation time and to retain the abandoned high-order modal information. It includes high-order natural frequency, damping ratio, and vibration modal information of the original structure. Then, a control gain design method based on Guaranteed Cost Control (GCC algorithm is presented to eliminate the adverse effects of data acquisition and actuator response time-delays in the design process of the reduced-order controller. To verify its effectiveness, the proposed methodology is applied to a numerical example of a ten-storey frame and an experiment of a single-span four-storey steel frame. Both numerical and experimental results demonstrate that the reduced-order controller with GCC algorithm has an excellent control effect; meanwhile it can compensate time-delays effectively.
Watkins, N W; Credgington, D; Sanchez, R; Rosenberg, S J; Chapman, S C
2009-04-01
Lévy flights and fractional Brownian motion have become exemplars of the heavy-tailed jumps and long-ranged memory widely seen in physics. Natural time series frequently combine both effects, and linear fractional stable motion (lfsm) is a model process of this type, combining alpha-stable jumps with a memory kernel. In contrast complex physical spatiotemporal diffusion processes where both the above effects compete have for many years been modeled using the fully fractional kinetic equation for the continuous-time random walk (CTRW), with power laws in the probability density functions of both jump size and waiting time. We derive the analogous kinetic equation for lfsm and show that it has a diffusion coefficient with a power law in time rather than having a fractional time derivative like the CTRW. We discuss some preliminary results on the scaling of burst "sizes" and "durations" in lfsm time series, with applications to modeling existing observations in space physics and elsewhere.
Bond, Alexander L; Diamond, Antony W
2011-06-01
Stable isotopes are now used widely in ecological studies, including diet reconstruction, where quantitative inferences about diet composition are derived from the use of mixing models. Recent Bayesian models (MixSIR, SIAR) allow users to incorporate variability in discrimination factors (delta13C or delta15N), or the amount of change in either delta13C or delta15N between prey and consumer, but to date there has been no systematic assessment of the effect of variation in delta13C or delta15N on model outputs. We used whole blood from Common Terns (Sterna hirundo) and muscle from their common prey items (fish and euphausiids) to build a series of mixing models in SIAR (stable isotope analysis in R) using various discrimination factors from the published literature for marine birds. The estimated proportion of each diet component was affected significantly by delta13C or delta15N. We also use recently published stable-isotope data on the reliance of critically endangered Balearic Shearwaters (Puffinus mauretanicus) on fisheries discards to show that discrimination factor choice can have profound implications for conservation and management actions. It is therefore crucial for researchers wishing to use mixing models to have an accurate estimate of delta13C and delta15N, because quantitative diet estimates can help to direct future research or prioritize conservation and management actions.
Modified reduced order observer based linear active disturbance rejection control for TITO systems.
Pawar, S N; Chile, R H; Patre, B M
2017-11-01
This paper proposes an observer based control approach for two input and two output (TITO) plant affected by the lumped disturbance which includes the undesirable effect of cross couplings, parametric uncertainties, and external disturbances. A modified reduced order extended state observer (ESO) based active disturbance rejection control (ADRC) is designed to estimate the lumped disturbance actively as an extended state and compensate its effect by adding it to the control. The decoupled mechanism has been used to determine the controller parameters, while the proposed control technique is applied to the TITO coupled plant without using decoupler to show its efficacy. Simulation results show that the proposed design is efficiently able to nullify the interactions within the loops in the multivariable process with better transient performance as compared to the existing proportional-integral-derivative (PID) control methods. An experimental application of two tanks multivariable level control system is investigated to present the validity of proposed scheme. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Reduced order generalized integrators with phase compensation for three-phase active power filter
DEFF Research Database (Denmark)
Xie, Chuan; Li, Kai; Zhao, Xin
2017-01-01
Current regulation is a critical issue for the stable operation of three-phase active power filters (APF). The challenge of the current controller lies in how to track the high slew rate reference with zero steady-state error in a fast and accurate way. Conventionally, multiple paralleled second-...
Self-esteem Is Mostly Stable Across Young Adulthood: Evidence from Latent STARTS Models.
Wagner, Jenny; Lüdtke, Oliver; Trautwein, Ulrich
2016-08-01
How stable is self-esteem? This long-standing debate has led to different conclusions across different areas of psychology. Longitudinal data and up-to-date statistical models have recently indicated that self-esteem has stable and autoregressive trait-like components and state-like components. We applied latent STARTS models with the goal of replicating previous findings in a longitudinal sample of young adults (N = 4,532; Mage = 19.60, SD = 0.85; 55% female). In addition, we applied multigroup models to extend previous findings on different patterns of stability for men versus women and for people with high versus low levels of depressive symptoms. We found evidence for the general pattern of a major proportion of stable and autoregressive trait variance and a smaller yet substantial amount of state variance in self-esteem across 10 years. Furthermore, multigroup models suggested substantial differences in the variance components: Females showed more state variability than males. Individuals with higher levels of depressive symptoms showed more state and less autoregressive trait variance in self-esteem. Results are discussed with respect to the ongoing trait-state debate and possible implications of the group differences that we found in the stability of self-esteem. © 2015 Wiley Periodicals, Inc.
A stable scheme for a nonlinear, multiphase tumor growth model with an elastic membrane.
Chen, Ying; Wise, Steven M; Shenoy, Vivek B; Lowengrub, John S
2014-07-01
In this paper, we extend the 3D multispecies diffuse-interface model of the tumor growth, which was derived in Wise et al. (Three-dimensional multispecies nonlinear tumor growth-I: model and numerical method, J. Theor. Biol. 253 (2008) 524-543), and incorporate the effect of a stiff membrane to model tumor growth in a confined microenvironment. We then develop accurate and efficient numerical methods to solve the model. When the membrane is endowed with a surface energy, the model is variational, and the numerical scheme, which involves adaptive mesh refinement and a nonlinear multigrid finite difference method, is demonstrably shown to be energy stable. Namely, in the absence of cell proliferation and death, the discrete energy is a nonincreasing function of time for any time and space steps. When a simplified model of membrane elastic energy is used, the resulting model is derived analogously to the surface energy case. However, the elastic energy model is actually nonvariational because certain coupling terms are neglected. Nevertheless, a very stable numerical scheme is developed following the strategy used in the surface energy case. 2D and 3D simulations are performed that demonstrate the accuracy of the algorithm and illustrate the shape instabilities and nonlinear effects of membrane elastic forces that may resist or enhance growth of the tumor. Compared with the standard Crank-Nicholson method, the time step can be up to 25 times larger using the new approach. Copyright © 2014 John Wiley & Sons, Ltd.
Use Correlation Coefficients in Gaussian Process to Train Stable ELM Models
2015-05-22
Curves for training and testing accuracies of different ELMs changing with L on Treasury Dataset 4 Experiments In this section, we use 12 UCI and KEEL ...sci2s.ugr.es/ keel /datasets.php Use Correlation Coefficients in Gaussian Process 407 classification than other methods. The StaELM models are stable...marize kernel-based ELMs. Section 3 introduces our proposed StaELM. Exper- imental simulations are presented in Section 4. Finally, we conclude this
Presence of Many Stable Nonhomogeneous States in an Inertial Car-Following Model
Tomer, Elad; Safonov, Leonid; Havlin, Shlomo
2000-01-01
We present a single lane car- following model of traffic flow which is inertial and free of collisions. It demonstrates observed features of traffic flow such as existence of three regimes: free, nonhomogeneous congested (NHC) or synchronized, and homogeneous congested (HC) or jammed flow; bistability of free and NHC flow states in a range of densities, hysteresis in transitions between these states; jumps in the density-flux plane in the NHC regime; gradual spatial transition from synchronized to free flow; long survival time of jams in the HC regime. The model predicts that in the NHC regime there exist many stable states with different wavelengths, and noise can cause transitions between them.
Cauquoin, Alexandre; Werner, Martin; Lohmann, Gerrit
2017-04-01
We present here the first results for present-day conditions of the ongoing implementation of water stables isotopes in the latest version of the ECHAM atmospheric general circulation model, ECHAM6, enhanced by the JSBACH interactive land surface scheme (ECHAM6-wiso). Major changes with respect to its predecessor ECHAM5 have to do with the treatment of shortwave radiative transfer, the development of a new surface albedo representation, a new aerosol climatology, the height of the model top, and a more complex representation of the land surface [1]. Besides, a new five-layer soil hydrology scheme can be used instead of the single soil moisture reservoir in ECHAM5/JSBACH [2]. Our first analyses of the ECHAM6-wiso results concentrate on a detailed comparison to the previous model release, ECHAM5-wiso, and potential improvements in simulating the water stable isotopes signal due to overall model enhancements. This study represents the first step of the incorporation of water stable isotope tracers in all components of the fully coupled Earth system model MPI-ESM. The project is part of the PalMod initiative ("Paleo Modelling: A national paleo climate modelling initiative"), funded by the German Federal Ministry of Education and Science (BMBF). [1] Stevens et al., 2013, JAMES, 5, 146-172. [2] Hagemann and Stacke, 2015, Clim. Dyn., 44, 1731-1750.
Including source uncertainty and prior information in the analysis of stable isotope mixing models.
Ward, Eric J; Semmens, Brice X; Schindler, Daniel E
2010-06-15
Stable isotope mixing models offer a statistical framework for estimating the contribution of multiple sources (such as prey) to a mixture distribution. Recent advances in these models have estimated the source proportions using Bayesian methods, but have not explicitly accounted for uncertainty in the mean and variance of sources. We demonstrate that treating these quantities as unknown parameters can reduce bias in the estimated source contributions, although model complexity is increased (thereby increasing the variance of estimates). The advantages of this fully Bayesian approach are particularly apparent when the source geometry is poor or sample sizes are small. A second benefit to treating source quantities as parameters is that prior source information can be included. We present findings from 9 lake food-webs, where the consumer of interest (fish) has a diet composed of 5 sources: aquatic insects, snails, zooplankton, amphipods, and terrestrial insects. We compared the traditional Bayesian stable isotope mixing model with fixed source parameters to our fully Bayesian model-with and without an informative prior. The informative prior has much less impact than the choice of model-the traditional mixing model with fixed source parameters estimates the diet to be dominated by aquatic insects, while the fully Bayesian model estimates the diet to be more balanced but with greater importance of zooplankton. The findings from this example demonstrate that there can be stark differences in inference between the two model approaches, particularly when the source geometry of the mixing model is poor. These analyses also emphasize the importance of investing substantial effort toward characterizing the variation in the isotopic characteristics of source pools to appropriately quantify uncertainties in their contributions to consumers in food webs.
DEFF Research Database (Denmark)
Hyun, Jaeyub; Kook, Junghwan; Wang, Semyung
2015-01-01
This study proposes an efficient and stable model reduction scheme for the numerical simulation of broadband, inhomogeneous, and anisotropic acoustic systems. Unlike a conventional model reduction scheme, the proposed model reduction scheme uses the adaptive quasi-static Ritz vector (AQSRV...... using the error indicator. "Multiple frequency subintervals" means to divide the frequency band of interest into several frequency bands from the computational time viewpoint. "Adaptive selection of the subinterval information and basis vector" means to select a different number of subintervals...... and basis vectors for use according to the target system. The proposed model reduction scheme is applied to the numerical simulation of the simple mass-damping-spring system and the acoustic metamaterial systems (i.e., acoustic lens and acoustic cloaking device) for the first time. Through these numerical...
Bouchard, D; Höhener, P; Hunkeler, D; 10.1016/j.jconhyd.2010.09.006
2011-01-01
Analytical models were developed that simulate stable isotope ratios of volatile organic compounds (VOCs) near a point source contamination in the unsaturated zone. The models describe diffusive transport of VOCs, biodegradation and source ageing. The mass transport is governed by Fick's law for diffusion, and the equation for reactive transport of VOCs in the soil gas phase was solved for different source geometries and for different boundary conditions. Model results were compared to experimental data from a one-dimensional laboratory column and a radial-symmetric field experiment, and the comparison yielded a satisfying agreement. The model results clearly illustrate the significant isotope fractionation by gas-phase diffusion under transient state conditions. This leads to an initial depletion of heavy isotopes with increasing distance from the source. The isotope evolution of the source is governed by the combined effects of isotope fractionation due to vaporization, diffusion and biodegradation. The net...
Directory of Open Access Journals (Sweden)
André Chiaradia
Full Text Available Reconstructing the diet of top marine predators is of great significance in several key areas of applied ecology, requiring accurate estimation of their true diet. However, from conventional stomach content analysis to recent stable isotope and DNA analyses, no one method is bias or error free. Here, we evaluated the accuracy of recent methods to estimate the actual proportion of a controlled diet fed to a top-predator seabird, the Little penguin (Eudyptula minor. We combined published DNA data of penguins scats with blood plasma δ(15N and δ(13C values to reconstruct the diet of individual penguins fed experimentally. Mismatch between controlled (true ingested diet and dietary estimates obtained through the separately use of stable isotope and DNA data suggested some degree of differences in prey assimilation (stable isotope and digestion rates (DNA analysis. In contrast, combined posterior isotope mixing model with DNA Bayesian priors provided the closest match to the true diet. We provided the first evidence suggesting that the combined use of these complementary techniques may provide better estimates of the actual diet of top marine predators- a powerful tool in applied ecology in the search for the true consumed diet.
Lane, Andrew N; Higashi, Richard M; Fan, Teresa W-M
2016-07-01
In this review we compare the advantages and disadvantages of different model biological systems for determining the metabolic functions of cells in complex environments, how they may change in different disease states, and respond to therapeutic interventions. All preclinical drug-testing models have advantages and drawbacks. We compare and contrast established cell, organoid and animal models with ex vivo organ or tissue culture and in vivo human experiments in the context of metabolic readout of drug efficacy. As metabolism reports directly on the biochemical state of cells and tissues, it can be very sensitive to drugs and/or other environmental changes. This is especially so when metabolic activities are probed by stable isotope tracing methods, which can also provide detailed mechanistic information on drug action. We have developed and been applying Stable Isotope-Resolved Metabolomics (SIRM) to examine metabolic reprogramming of human lung cancer cells in monoculture, in mouse xenograft/explant models, and in lung cancer patients in situ (Lane et al. 2011; T. W. Fan et al. 2011; T. W-M. Fan et al. 2012; T. W. Fan et al. 2012; Xie et al. 2014b; Ren et al. 2014a; Sellers et al. 2015b). We are able to determine the influence of the tumor microenvironment using these models. We have now extended the range of models to fresh human tissue slices, similar to those originally described by O. Warburg (Warburg 1923), which retain the native tissue architecture and heterogeneity with a paired benign versus cancer design under defined cell culture conditions. This platform offers an unprecedented human tissue model for preclinical studies on metabolic reprogramming of human cancer cells in their tissue context, and response to drug treatment (Xie et al. 2014a). As the microenvironment of the target human tissue is retained and individual patient's response to drugs is obtained, this platform promises to transcend current limitations of drug selection for clinical
Lane, Andrew N.; Higashi, Richard M.; Fan, Teresa W-M.
2016-01-01
Aims In this review we compare the advantages and disadvantages of different model biological systems for determining the metabolic functions of cells in complex environments, how they may change in different disease states, and respond to therapeutic interventions. Background All preclinical drug-testing models have advantages and drawbacks. We compare and contrast established cell, organoid and animal models with ex vivo organ or tissue culture and in vivo human experiments in the context of metabolic readout of drug efficacy. As metabolism reports directly on the biochemical state of cells and tissues, it can be very sensitive to drugs and/or other environmental changes. This is especially so when metabolic activities are probed by stable isotope tracing methods, which can also provide detailed mechanistic information on drug action. We have developed and been applying Stable Isotope-Resolved Metabolomics (SIRM) to examine metabolic reprogramming of human lung cancer cells in monoculture, in mouse xenograft/explant models, and in lung cancer patients in situ (Lane et al. 2011; T. W. Fan et al. 2011; T. W-M. Fan et al. 2012; T. W. Fan et al. 2012; Xie et al. 2014b; Ren et al. 2014a; Sellers et al. 2015b). We are able to determine the influence of the tumor microenvironment using these models. We have now extended the range of models to fresh human tissue slices, similar to those originally described by O. Warburg (Warburg 1923), which retain the native tissue architecture and heterogeneity with a paired benign versus cancer design under defined cell culture conditions. This platform offers an unprecedented human tissue model for preclinical studies on metabolic reprogramming of human cancer cells in their tissue context, and response to drug treatment (Xie et al. 2014a). As the microenvironment of the target human tissue is retained and individual patient's response to drugs is obtained, this platform promises to transcend current limitations of drug selection
Directory of Open Access Journals (Sweden)
Chang Xu
2015-11-01
Full Text Available This paper investigates governor design by reduced-order sliding mode for a hydropower plant with an upstream surge tank. The governing system is made up of a tunnel, a surge tank, a penstock, a wicket gate and servomechanism, a governor, a hydro-turbine and a grid. Concerning the components of the governing system, their mathematic models are established. Then, these models are interconnected to simulate the governing system. From the viewpoint of state space in modern control theory, the governing system is partially observed, which challenges the governor design. By introducing an additional state variable, the control method of reduced-order sliding mode is proposed, where the governor design is based on a reduced-order governing system. Since the governor is applied to the original governing system, the system stability is analyzed by means of the small gain theorem. An genetic algorithm is employed to search a group of parameters of the predefined sliding surface, and a fuzzy inference system is utilized to decrease the chattering problem. Some numerical simulations are illustrated to verify the feasibility and robustness of the control method.
Umgiesser, Georg; Razinkovas-Baziukas, Arturas; Zemlys, Petras; Ertürk, Ali; Mėžinė, Jovita
2015-04-01
The spatial pattern of the hydrodynamic circulation of the Curonian lagoon, the largest European coastal lagoon, is still little understood. In absence of automatic current registration data all the existing models relied mostly on such data as water levels leaving high level of uncertainty. Here we present CISOCUR, a new project financed by European Social Fund under the Global Grant measure. The project applies a new methodology that uses the carbon stable isotope (SI) ratio of C12 and C13 that characterize different water sources entering the lagoon and may be altered by internal kinetic processes. Through the tracing of these isotope ratios different water masses can be identified. This gives the possibility to validate several hypotheses of water circulation and validate hydrodynamic models. In particular it will be possible to 1) trace water masses entering the lagoon through the Nemunas and the Klaipeda strait; 2) test the hypothesis of sediment transport mechanisms inside the lagoon; 3) evaluate the importance of physical forcing on the lagoon circulation. The use of a hydrodynamic finite element model, coupled with the SI method, will allow for a realistic description of the transport processes inside the Curonian lagoon. So the main research goal is to apply the stable isotope tracers and a finite element model to determine the circulation patterns in the Curonian lagoon. Here we show how the SI analysis was used to validate the hydrodynamic model on the basis of residence time. The average residence time of the Nemunas waters is estimated through SI data and is then compared with the model data computed through standard algorithms. Seasonal changes of carbon content are taken care of through a preliminary application of a carbon kinetic model. The results are compared to literature data.
Li, Zheng-Wei; Xi, Xiao-Li; Zhang, Jin-Sheng; Liu, Jiang-fan
2015-12-14
The unconditional stable finite-difference time-domain (FDTD) method based on field expansion with weighted Laguerre polynomials (WLPs) is applied to model electromagnetic wave propagation in gyrotropic materials. The conventional Yee cell is modified to have the tightly coupled current density components located at the same spatial position. The perfectly matched layer (PML) is formulated in a stretched-coordinate (SC) system with the complex-frequency-shifted (CFS) factor to achieve good absorption performance. Numerical examples are shown to validate the accuracy and efficiency of the proposed method.
Semmens, Brice X; Ward, Eric J; Moore, Jonathan W; Darimont, Chris T
2009-07-09
Variability in resource use defines the width of a trophic niche occupied by a population. Intra-population variability in resource use may occur across hierarchical levels of population structure from individuals to subpopulations. Understanding how levels of population organization contribute to population niche width is critical to ecology and evolution. Here we describe a hierarchical stable isotope mixing model that can simultaneously estimate both the prey composition of a consumer diet and the diet variability among individuals and across levels of population organization. By explicitly estimating variance components for multiple scales, the model can deconstruct the niche width of a consumer population into relevant levels of population structure. We apply this new approach to stable isotope data from a population of gray wolves from coastal British Columbia, and show support for extensive intra-population niche variability among individuals, social groups, and geographically isolated subpopulations. The analytic method we describe improves mixing models by accounting for diet variability, and improves isotope niche width analysis by quantitatively assessing the contribution of levels of organization to the niche width of a population.
Directory of Open Access Journals (Sweden)
Brice X Semmens
Full Text Available Variability in resource use defines the width of a trophic niche occupied by a population. Intra-population variability in resource use may occur across hierarchical levels of population structure from individuals to subpopulations. Understanding how levels of population organization contribute to population niche width is critical to ecology and evolution. Here we describe a hierarchical stable isotope mixing model that can simultaneously estimate both the prey composition of a consumer diet and the diet variability among individuals and across levels of population organization. By explicitly estimating variance components for multiple scales, the model can deconstruct the niche width of a consumer population into relevant levels of population structure. We apply this new approach to stable isotope data from a population of gray wolves from coastal British Columbia, and show support for extensive intra-population niche variability among individuals, social groups, and geographically isolated subpopulations. The analytic method we describe improves mixing models by accounting for diet variability, and improves isotope niche width analysis by quantitatively assessing the contribution of levels of organization to the niche width of a population.
Sun, Guanghao; Matsui, Takemi
2015-01-01
Noncontact measurement of respiratory rate using Doppler radar will play a vital role in future clinical practice. Doppler radar remotely monitors the tiny chest wall movements induced by respiration activity. The most competitive advantage of this technique is to allow users fully unconstrained with no biological electrode attachments. However, the Doppler radar, unlike other contact-type sensors, is easily affected by the random body movements. In this paper, we proposed a time domain autocorrelation model to process the radar signals for rapid and stable estimation of the respiratory rate. We tested the autocorrelation model on 8 subjects in laboratory, and compared the respiratory rates detected by noncontact radar with reference contact-type respiratory effort belt. Autocorrelation model showed the effects of reducing the random body movement noise added to Doppler radar's respiration signals. Moreover, the respiratory rate can be rapidly calculated from the first main peak in the autocorrelation waveform within 10 s.
Lahoz-Beneytez, Julio; Elemans, Marjet; Zhang, Yan; Ahmed, Raya; Salam, Arafa; Block, Michael; Niederalt, Christoph; Asquith, Becca; Macallan, Derek
2016-06-30
Human neutrophils have traditionally been thought to have a short half-life in blood; estimates vary from 4 to 18 hours. This dogma was recently challenged by stable isotope labeling studies with heavy water, which yielded estimates in excess of 3 days. To investigate this disparity, we generated new stable isotope labeling data in healthy adult subjects using both heavy water (n = 4) and deuterium-labeled glucose (n = 9), a compound with more rapid labeling kinetics. To interpret results, we developed a novel mechanistic model and applied it to previously published (n = 5) and newly generated data. We initially constrained the ratio of the blood neutrophil pool to the marrow precursor pool (ratio = 0.26; from published values). Analysis of heavy water data sets yielded turnover rates consistent with a short blood half-life, but parameters, particularly marrow transit time, were poorly defined. Analysis of glucose-labeling data yielded more precise estimates of half-life (0.79 ± 0.25 days; 19 hours) and marrow transit time (5.80 ± 0.42 days). Substitution of this marrow transit time in the heavy water analysis gave a better-defined blood half-life of 0.77 ± 0.14 days (18.5 hours), close to glucose-derived values. Allowing the ratio of blood neutrophils to mitotic neutrophil precursors (R) to vary yielded a best-fit value of 0.19. Reanalysis of the previously published model and data also revealed the origin of their long estimates for neutrophil half-life: an implicit assumption that R is very large, which is physiologically untenable. We conclude that stable isotope labeling in healthy humans is consistent with a blood neutrophil half-life of less than 1 day. © 2016 by The American Society of Hematology.
Warfarin Dose Model for the Prediction of Stable Maintenance Dose in Indian Patients.
Gaikwad, Tejasvita; Ghosh, Kanjaksha; Avery, Peter; Kamali, Farhad; Shetty, Shrimati
2018-03-01
The main aim of this study was to screen various genetic and nongenetic factors that are known to alter warfarin response and to generate a model to predict stable warfarin maintenance dose for Indian patients. The study comprised of 300 warfarin-treated patients. Followed by extensive literature review, 10 single-nucleotide polymorphisms, that is, VKORC1-1639 G>A (rs9923231), CYP2C9*2 (rs1799853), CYP2C9*3 (rs1057910), FVII R353Q (rs6046), GGCX 12970 C>G (rs11676382), CALU c.*4A>G (rs1043550), EPHX1 c.337T>C (rs1051740), GGCX: c.214+597G>A (rs12714145), GGCX: 8016G>A (rs699664), and CYP4F2 V433M (rs2108622), and 5 nongenetic factors, that is, age, gender, smoking, alcoholism, and diet, were selected to find their association with warfarin response. The univariate analysis was carried out for 15 variables (10 genetic and 5 nongenetic). Five variables, that is, VKORC1-1639 G>A, CYP2C9*2, CYP2C9*3, age, and diet, were found to be significantly associated with warfarin response in univariate analysis. These 5 variables were entered in stepwise and multiple regression analysis to generate a prediction model for stable warfarin maintenance dose. The generated model scored R 2 of .67, which indicates that this model can explain 67% of warfarin dose variability. The generated model will help in prescribing more accurate warfarin maintenance dosing in Indian patients and will also help in minimizing warfarin-induced adverse drug reactions and a better quality of life in these patients.
Fast and Stable Signal Deconvolution via Compressible State-Space Models.
Kazemipour, Abbas; Liu, Ji; Solarana, Krystyna; Nagode, Daniel A; Kanold, Patrick O; Wu, Min; Babadi, Behtash
2018-01-01
Common biological measurements are in the form of noisy convolutions of signals of interest with possibly unknown and transient blurring kernels. Examples include EEG and calcium imaging data. Thus, signal deconvolution of these measurements is crucial in understanding the underlying biological processes. The objective of this paper is to develop fast and stable solutions for signal deconvolution from noisy, blurred, and undersampled data, where the signals are in the form of discrete events distributed in time and space. We introduce compressible state-space models as a framework to model and estimate such discrete events. These state-space models admit abrupt changes in the states and have a convergent transition matrix, and are coupled with compressive linear measurements. We consider a dynamic compressive sensing optimization problem and develop a fast solution, using two nested expectation maximization algorithms, to jointly estimate the states as well as their transition matrices. Under suitable sparsity assumptions on the dynamics, we prove optimal stability guarantees for the recovery of the states and present a method for the identification of the underlying discrete events with precise confidence bounds. We present simulation studies as well as application to calcium deconvolution and sleep spindle detection, which verify our theoretical results and show significant improvement over existing techniques. Our results show that by explicitly modeling the dynamics of the underlying signals, it is possible to construct signal deconvolution solutions that are scalable, statistically robust, and achieve high temporal resolution. Our proposed methodology provides a framework for modeling and deconvolution of noisy, blurred, and undersampled measurements in a fast and stable fashion, with potential application to a wide range of biological data.
González-Gutiérrez, María Victoria; Guerrero Velázquez, José; Morales García, Concepción; Casas Maldonado, Francisco; Gómez Jiménez, Francisco Javier; González Vargas, Francisco
2016-03-01
The association between chronic obstructive pulmonary disease (COPD) and anxiety and depression is not yet completely characterized, and differences between countries may exist. We used a predictive model to assess this association in a Spanish population. Prospective transversal descriptive study of 204 patients with stable COPD. Concomitant anxiety or depression were diagnosed by psychiatric assessment, using the diagnostic criteria of the 10th revision of the International Statistical Classification of Diseases and Related Health Problems (ICD-10). Sociodemographic, clinical and lung function parameters were analyzed. In total, 36% of stable COPD patients had psychiatric comorbidities, but 76% were unaware of their diagnosis. Nineteen percent had a pure anxiety disorder, 9.8% had isolated depression, and 7.3% had a mixed anxiety-depression disorder. Predictive variables in the multivariate analysis were younger age, higher educational level, lack of home support, higher BODE index, and greater number of exacerbations. The ROC curve of the model had an AUC of 0.765 (P<0.001). In COPD, concomitant psychiatric disorders are significantly associated with sociodemographic factors. Anxiety disorders are more common than depression. Patients with more severe COPD, according to BODE, younger patients and those with a higher educational level have a greater risk of being diagnosed with anxiety or depression in a structured psychiatric interview. In our population, most patients with psychiatric comorbidities remain unidentified. Copyright © 2015 SEPAR. Published by Elsevier Espana. All rights reserved.
Modeling Geodetic Processes with Levy α-Stable Distribution and FARIMA
Montillet, Jean-Philippe; Yu, Kegen
2015-04-01
Over the last years the scientific community has been using the auto regressive moving average (ARMA) model in the modeling of the noise in global positioning system (GPS) time series (daily solution). This work starts with the investigation of the limit of the ARMA model which is widely used in signal processing when the measurement noise is white. Since a typical GPS time series consists of geophysical signals (e.g., seasonal signal) and stochastic processes (e.g., coloured and white noise), the ARMA model may be inappropriate. Therefore, the application of the fractional auto-regressive integrated moving average (FARIMA) model is investigated. The simulation results using simulated time series as well as real GPS time series from a few selected stations around Australia show that the FARIMA model fits the time series better than other models when the coloured noise is larger than the white noise. The second fold of this work focuses on fitting the GPS time series with the family of Levy α-stable distributions. Using this distribution, a hypothesis test is developed to eliminate effectively coarse outliers from GPS time series, achieving better performance than using the rule of thumb of n standard deviations (with n chosen empirically).
Umgiesser, Georg; Razinkovas-Baziukas, Arturas; Barisevičiūtė, Ruta; Baziukė, Dalia; Ertürk, Ali; Gasiūnaitė, Jovita; Gulbinskas, Saulius; Lubienė, Irma; Maračkinaite, Jurgita; Petkuvienė, Jolita; Pilkaitytė, Renata; Ruginis, Tomas; Zemlys, Petras; Žilius, Mindaugas
2013-04-01
The spatial pattern of the hydrodynamic circulation of the Curonian lagoon, the largest European coastal lagoon, is still little understood. In absence of automatic current registration data all the existing models relied mostly on such data as water levels leaving high level of uncertainty. Here we present CISOCUR, a new project financed by the European Social Fund under the Global Grant measure. The project applies a new methodology that uses the carbon stable isotope (SI) ratio of C12 and C13 that characterize different water sources entering the lagoon and may be altered by internal kinetic processes. Through the tracing of these isotope ratios different water masses can be identified. This gives the possibility to validate several hypotheses of water circulation and validate hydrodynamic models. In particular it will be possible to 1) trace water masses entering the lagoon through the Nemunas and the Klaipeda strait; 2) test the hypothesis of sediment transport mechanisms inside the lagoon; 3) evaluate the importance of physical forcing on the lagoon circulation. The use of a hydrodynamic finite element model, coupled with the SI method, will allow for a realistic description of the transport processes inside the Curonian lagoon. So the main research goal is to apply the stable isotope tracers and a finite element model to determine the circulation patterns in the Curonian lagoon. Overall, the project will develop according to 4 main phases: 1) A pilot study to measure the isotope composition of different carbon compounds (dissolved and suspended) in different water bodies that feed water into the central lagoon. Through this pilot study the optimal study sites for the seasonal campaign will be identified as well. 2) Seasonal field campaigns in the monitoring stations identified in phase 1 to measure the carbon isotope ratio. 3) Development of a model that describes the kinetics of carbon isotopes and its transformation. 4) Application of a hydrodynamic model
Identification of a stable reference area for superimposing mandibular digital models.
An, Kiyong; Jang, Insan; Choi, Dong-Soon; Jost-Brinkmann, Paul-Georg; Cha, Bong-Kuen
2015-11-01
The purpose of this retrospective study was to assess the stability of buccal and lingual alveolar bone surfaces for superimposing three-dimensional (3D) digital models of dental casts. The pre- and posttreatment dental casts and lateral cephalometric radiographs were obtained from 10 adult patients who had undergone orthodontic treatment entailing the extraction of four premolars. Five of them had bilateral mandibular tori and the other 5 patients had no torus. Dental casts were scanned with a three-dimensional (3D) surface scanning system and 3D digital models were reconstructed using 3D reverse modeling software. The pre- and posttreatment digital models were superimposed on the following reference areas by the best-fit method: Area 1, bilateral lingual surfaces of the alveolar process of the posterior teeth; Area 2, the lingual alveolar surface of the anterior and posterior teeth; Area 3, bilateral surfaces of the posterior teeth's buccal and lingual alveolar surfaces; Area 4, bilateral mandibular tori. The horizontal and vertical movements of the mandibular central incisors and first molars were measured on cephalometric radiographs and on the 3D digital models. In the 5 patients without a mandibular torus, the median differences between cephalograms and 3D digital models ranged from 0.8-1.9 mm and the maximum differences from 1.5-10.0 mm. The median and maximum differences between cephalograms and 3D digital models superimposed on Area 2 were greater than those superimposed on Areas 1 and 3. In the patients with mandibular tori, the median differences between cephalograms and 3D digital models were under 1.0 mm, the maximum difference being 0.7 mm. The buccal and lingual alveolar surface near the dentition seems to be inappropriate as a reference area for superimposing 3D mandibular digital models of patients without a mandibular torus. Mandibular tori in adult patients are stable structures which can be used as reference areas for the superimposition of 3D
Stochastic stable population growth in integral projection models: theory and application.
Ellner, Stephen P; Rees, Mark
2007-02-01
Stochastic matrix projection models are widely used to model age- or stage-structured populations with vital rates that fluctuate randomly over time. Practical applications of these models rest on qualitative properties such as the existence of a long term population growth rate, asymptotic log-normality of total population size, and weak ergodicity of population structure. We show here that these properties are shared by a general stochastic integral projection model, by using results in (Eveson in D. Phil. Thesis, University of Sussex, 1991, Eveson in Proc. Lond. Math. Soc. 70, 411-440, 1993) to extend the approach in (Lange and Holmes in J. Appl. Prob. 18, 325-344, 1981). Integral projection models allow individuals to be cross-classified by multiple attributes, either discrete or continuous, and allow the classification to change during the life cycle. These features are present in plant populations with size and age as important predictors of individual fate, populations with a persistent bank of dormant seeds or eggs, and animal species with complex life cycles. We also present a case-study based on a 6-year field study of the Illyrian thistle, Onopordum illyricum, to demonstrate how easily a stochastic integral model can be parameterized from field data and then applied using familiar matrix software and methods. Thistle demography is affected by multiple traits (size, age and a latent "quality" variable), which would be difficult to accommodate in a classical matrix model. We use the model to explore the evolution of size- and age-dependent flowering using an evolutionarily stable strategy (ESS) approach. We find close agreement between the observed flowering behavior and the predicted ESS from the stochastic model, whereas the ESS predicted from a deterministic version of the model is very different from observed flowering behavior. These results strongly suggest that the flowering strategy in O. illyricum is an adaptation to random between-year variation
Directory of Open Access Journals (Sweden)
Cuong D. Tran
2015-05-01
Full Text Available It is well recognised that zinc deficiency is a major global public health issue, particularly in young children in low-income countries with diarrhoea and environmental enteropathy. Zinc supplementation is regarded as a powerful tool to correct zinc deficiency as well as to treat a variety of physiologic and pathologic conditions. However, the dose and frequency of its use as well as the choice of zinc salt are not clearly defined regardless of whether it is used to treat a disease or correct a nutritional deficiency. We discuss the application of zinc stable isotope tracer techniques to assess zinc physiology, metabolism and homeostasis and how these can address knowledge gaps in zinc supplementation pharmacokinetics. This may help to resolve optimal dose, frequency, length of administration, timing of delivery to food intake and choice of zinc compound. It appears that long-term preventive supplementation can be administered much less frequently than daily but more research needs to be undertaken to better understand how best to intervene with zinc in children at risk of zinc deficiency. Stable isotope techniques, linked with saturation response and compartmental modelling, also have the potential to assist in the continued search for simple markers of zinc status in health, malnutrition and disease.
Directory of Open Access Journals (Sweden)
Alexander Tilley
Full Text Available The trophic ecology of epibenthic mesopredators is not well understood in terms of prey partitioning with sympatric elasmobranchs or their effects on prey communities, yet the importance of omnivores in community trophic dynamics is being increasingly realised. This study used stable isotope analysis of (15N and (13C to model diet composition of wild southern stingrays Dasyatis americana and compare trophic niche space to nurse sharks Ginglymostoma cirratum and Caribbean reef sharks Carcharhinus perezi on Glovers Reef Atoll, Belize. Bayesian stable isotope mixing models were used to investigate prey choice as well as viable Diet-Tissue Discrimination Factors for use with stingrays. Stingray δ(15N values showed the greatest variation and a positive relationship with size, with an isotopic niche width approximately twice that of sympatric species. Shark species exhibited comparatively restricted δ(15N values and greater δ(13C variation, with very little overlap of stingray niche space. Mixing models suggest bivalves and annelids are proportionally more important prey in the stingray diet than crustaceans and teleosts at Glovers Reef, in contrast to all but one published diet study using stomach contents from other locations. Incorporating gut contents information from the literature, we suggest diet-tissue discrimination factors values of Δ(15N ≈ 2.7‰ and Δ(13C ≈ 0.9‰ for stingrays in the absence of validation experiments. The wide trophic niche and lower trophic level exhibited by stingrays compared to sympatric sharks supports their putative role as important base stabilisers in benthic systems, with the potential to absorb trophic perturbations through numerous opportunistic prey interactions.
Tilley, Alexander; López-Angarita, Juliana; Turner, John R
2013-01-01
The trophic ecology of epibenthic mesopredators is not well understood in terms of prey partitioning with sympatric elasmobranchs or their effects on prey communities, yet the importance of omnivores in community trophic dynamics is being increasingly realised. This study used stable isotope analysis of (15)N and (13)C to model diet composition of wild southern stingrays Dasyatis americana and compare trophic niche space to nurse sharks Ginglymostoma cirratum and Caribbean reef sharks Carcharhinus perezi on Glovers Reef Atoll, Belize. Bayesian stable isotope mixing models were used to investigate prey choice as well as viable Diet-Tissue Discrimination Factors for use with stingrays. Stingray δ(15)N values showed the greatest variation and a positive relationship with size, with an isotopic niche width approximately twice that of sympatric species. Shark species exhibited comparatively restricted δ(15)N values and greater δ(13)C variation, with very little overlap of stingray niche space. Mixing models suggest bivalves and annelids are proportionally more important prey in the stingray diet than crustaceans and teleosts at Glovers Reef, in contrast to all but one published diet study using stomach contents from other locations. Incorporating gut contents information from the literature, we suggest diet-tissue discrimination factors values of Δ(15)N ≈ 2.7‰ and Δ(13)C ≈ 0.9‰ for stingrays in the absence of validation experiments. The wide trophic niche and lower trophic level exhibited by stingrays compared to sympatric sharks supports their putative role as important base stabilisers in benthic systems, with the potential to absorb trophic perturbations through numerous opportunistic prey interactions.
DEVELOPMENT OF MODEL FOR QUANTITATIVE EVALUATION OF DYNAMICALLY STABLE FORMS OF RIVER CHANNELS
Directory of Open Access Journals (Sweden)
O. V. Zenkin
2017-01-01
Full Text Available The article highlights the method of calculating the optimum curvature of the river channels using the kinematic model of the flow structure based on the concept of discrete nature of the channel process. It offers the analytic form of the equation of motion of river flow, which can be used simulation modeling for searching dynamically stable form of the river channel, and which can control water level in rivers. The source data for the illustrations of given in the article modeling methods have been served the images received from MODIS on the Terra satellite, for the lower reaches of the river Kur, which merges with the river Urmi, forming the Tunguska river – the left tributary of the Amur.The modified geometric method can be used to calculate obliquity of tangent to the curve and normal in those situations when observed on satellite imagery points are located on the coordinate of the network irregularly and when three points lying on the curve of the riverbed do not form isosceles triangle.The model assembles tangential and radial components of the forces acting on the water flow (centrifugal, friction and gravity. Curvature radius is explicitly expressed in the model through the parameter – gradient angle relative to the axis X. As solution for the value of the angle is searched, when the correlation function reaches its maximum. It is assumed that the riverbed shape “wrong” and could be modified so that the resulting curve better correlated with calculated curve. Morphometric dependences for macroforms allow creating series of morphological methods for the calculation of deformations and displacement of the shore in any section of meander scroll.The proposed technique has been tested also on satellite imagery of high resolution. The presented methods of calculation are used as the basis for hydrological projects of geoinformation systems oriented at prediction of morphodynamic processes and morphological evolution of river
Entrance channel effect with stable and radioactive beams using dynamical cluster decay model
Energy Technology Data Exchange (ETDEWEB)
Kumar, Raj, E-mail: rajkumarfzr@gmail.com [Dipartimento di Fisica “Galileo Galilei” and INFN, University of Padova, Padova-35131 (Italy); Jain, Deepika [School of Physics and Material Science, Thapar University, Patiala-147004 (India)
2014-09-15
The decay of hot and rotating {sup 172}Yb*, formed in two entrance channels {sup 124}Sn + {sup 48}Ca and {sup 132}Sn + {sup 40}Ca, is studied using the dynamical cluster-decay model. The effect of entrance channel, deformations (up to β{sub 2}), barrier modification and fusion enhancement are addressed. The decay pattern of compound system, formed in different channels at comparable energy around the barrier, shows change in magnitude with structure remains almost same. There is an increase in the fusion probability with decrease in barrier modification, which leads to fusion enhancement at low energies. The higher ℓ values are contributing for {sup 132}Sn + {sup 40}Ca channel at lower energies as compare to {sup 124}Sn + {sup 48}Ca. It is inferred that with the use of stable and radioactive beam, forming same compound nucleus, the entrance channel dependence changes with the excitation energy.
Banks, J. W.; Henshaw, W. D.; Schwendeman, D. W.; Tang, Qi
2017-08-01
A stable partitioned algorithm is developed for fluid-structure interaction (FSI) problems involving viscous incompressible flow and rigid bodies. This added-mass partitioned (AMP) algorithm remains stable, without sub-iterations, for light and even zero mass rigid bodies when added-mass and viscous added-damping effects are large. The scheme is based on a generalized Robin interface condition for the fluid pressure that includes terms involving the linear acceleration and angular acceleration of the rigid body. Added-mass effects are handled in the Robin condition by inclusion of a boundary integral term that depends on the pressure. Added-damping effects due to the viscous shear forces on the body are treated by inclusion of added-damping tensors that are derived through a linearization of the integrals defining the force and torque. Added-damping effects may be important at low Reynolds number, or, for example, in the case of a rotating cylinder or rotating sphere when the rotational moments of inertia are small. In this first part of a two-part series, the properties of the AMP scheme are motivated and evaluated through the development and analysis of some model problems. The analysis shows when and why the traditional partitioned scheme becomes unstable due to either added-mass or added-damping effects. The analysis also identifies the proper form of the added-damping which depends on the discrete time-step and the grid-spacing normal to the rigid body. The results of the analysis are confirmed with numerical simulations that also demonstrate a second-order accurate implementation of the AMP scheme.
Process Model for Studying Regional 13C Stable Isotope Exchange between Vegetation and Atmosphere
Chen, J. M.; Chen, B.; Huang, L.; Tans, P.; Worthy, D.; Ishizawa, M.; Chan, D.
2007-12-01
The variation of the stable isotope 13CO2 in the air in exchange with land ecosystems results from fractionation processes in both plants and soil during photosynthesis and respiration. Its diurnal and seasonal variations therefore contain information on the carbon cycle. We developed a model (BEPS-iso) to simulate its exchange between vegetation and the atmosphere. To be useful for regional carbon cycle studies, the model has the following characteristics: (i) it considers the turbulent mixing in the vertical profile from the soil surface to the top of the planetary boundary layer (PBL); (ii) it scales individual leaf photosynthetic discrimination to the whole canopy through the separation of sunlit and shaded leaf groups; (iii) through simulating leaf-level photosynthetic processes, it has the capacity to mechanistically examine isotope discrimination resulting from meteorological forcings, such as radiation, precipitation and humidity; and (iv) through complete modeling of radiation, energy and water fluxes, it also simulates soil moisture and temperature needed for estimating ecosystem respiration and the 13C signal from the soil. After validation using flask data acquired at 20 m level on a tower near Fraserdale, Ontario, Canada, during intensive campaigns (1998-2000), the model has been used for several purposes: (i) to investigate the diurnal and seasonal variations in the disequilibrium in 13C fractionation between ecosystem respiration and photosynthesis, which is an important step in using 13C measurements to separate these carbon cycle components; (ii) to quantify the 13C rectification in the PBL, which differs significantly from CO2 rectification because of the diurnal and seasonal disequilibriums; and (iii) to model the 13C spatial and temporal variations over the global land surface for the purpose of CO2 inversion using 13C as an additional constraint.
Botsyun, Svetlana; Sepulchre, Pierre; Donnadieu, Yannick; Risi, Camille; Caves, Jeremy K.; Licht, Alexis
2017-04-01
The Himalayas and the Tibetan Plateau have become a focus of the Earth sciences because they provide a classical example of tectonics-climate interactions. Present-day high elevations of the Himalayas and the Tibetan Plateau is the ultimate result of the collision between Indian and Asia plates during the Cenozoic, however, the precise uplift history of the Himalayas and the Tibetan Plateau is still uncertain, especially for the early Cenozoic. For the purpose of paleoelevations reconstructions, multiple methods are available, but stable oxygen paleoaltimetry is considered to be one of the most efficient techniques and has been widely applied in Asia. However, paleoelevations studies using stable oxygen presume that climatic processes control δ18O in a uniform way through time. We use climate modeling tools in order to investigate Eocene climate and δ18O over Asia and its controlling factors. The state-of-the-art general circulation model embedded with isotopes LMDz-iso has been applied together with Eocene boundary conditions and varied Eocene topography of the Himalayas and Tibet. The results of our simulations suggest that topography change has a minor direct impact on δ18O over the Himalayas and the Tibetan Plateau. On the contrary, Eocene δ18O in precipitation is primarily controlled by the atmosphere circulation and global temperature changes. Based on our numerical experiments, we show that despite persistence of large-scale atmospheric flows such as the monsoons and westerlies, Eocene δ18O over the region is different from those of the present-day due to global higher temperatures, southward shift to a zone of strong convection and increased role of westerlies moisture source. We show that the Rayleigh distillation is not applicable for the Eocene Himalayas and conclude that the assumption about the stationarity of δ18O-elevation relationship through geological time is inaccurate and misleading for paleoelevation estimates. We also show that Eocene
Saito, L.; Redd, C.; Chandra, S.; Atwell, L.; Fritsen, C.H.; Rosen, Michael R.
2007-01-01
Aquatic foodweb models for 2 seasons (relatively high- [March] and low-flow [August] conditions) were constructed for 4 reaches on the Truckee River using ??13C and ??15N data from periphyton, macroinvertebrate, and fish samples collected in 2003 and 2004. The models were constructed with isotope values that included measured periphyton signatures and calculated mean isotope values for detritus and seston as basal food sources of each food web. The pseudo-optimization function in Excel's Solver module was used to minimize the sum of squared error between predicted and observed stable-isotope values while simultaneously solving for diet proportions for all foodweb consumers and estimating ??13C and ??15N trophic enrichment factors. This approach used an underdetermined set of simultaneous linear equations and was tested by running the pseudo-optimization procedure for 500 randomly selected sets of initial conditions. Estimated diet proportions had average standard deviations (SDs) of 0.03 to 0.04??? and SDs of trophic enrichment factors ranged from dead ends because they generally were not consumed. Predatory macroinvertebrate diets varied along the river and affected estimated trophic positions of fish that consumed them. Differences in complexity and composition of the food webs appeared to be related to season, but could also have been caused by interactions with nonnative species, especially invasive crayfish. ?? 2007 by The North American Benthological Society.
Tang, Jie; Liu, Rong; Zhang, Yue-Li; Liu, Mou-Ze; Hu, Yong-Fang; Shao, Ming-Jie; Zhu, Li-Jun; Xin, Hua-Wen; Feng, Gui-Wen; Shang, Wen-Jun; Meng, Xiang-Guang; Zhang, Li-Rong; Ming, Ying-Zi; Zhang, Wei
2017-02-01
Tacrolimus has a narrow therapeutic window and considerable variability in clinical use. Our goal was to compare the performance of multiple linear regression (MLR) and eight machine learning techniques in pharmacogenetic algorithm-based prediction of tacrolimus stable dose (TSD) in a large Chinese cohort. A total of 1,045 renal transplant patients were recruited, 80% of which were randomly selected as the “derivation cohort” to develop dose-prediction algorithm, while the remaining 20% constituted the “validation cohort” to test the final selected algorithm. MLR, artificial neural network (ANN), regression tree (RT), multivariate adaptive regression splines (MARS), boosted regression tree (BRT), support vector regression (SVR), random forest regression (RFR), lasso regression (LAR) and Bayesian additive regression trees (BART) were applied and their performances were compared in this work. Among all the machine learning models, RT performed best in both derivation [0.71 (0.67-0.76)] and validation cohorts [0.73 (0.63-0.82)]. In addition, the ideal rate of RT was 4% higher than that of MLR. To our knowledge, this is the first study to use machine learning models to predict TSD, which will further facilitate personalized medicine in tacrolimus administration in the future.
An energy-stable time-integrator for phase-field models
Vignal, Philippe
2016-12-27
We introduce a provably energy-stable time-integration method for general classes of phase-field models with polynomial potentials. We demonstrate how Taylor series expansions of the nonlinear terms present in the partial differential equations of these models can lead to expressions that guarantee energy-stability implicitly, which are second-order accurate in time. The spatial discretization relies on a mixed finite element formulation and isogeometric analysis. We also propose an adaptive time-stepping discretization that relies on a first-order backward approximation to give an error-estimator. This error estimator is accurate, robust, and does not require the computation of extra solutions to estimate the error. This methodology can be applied to any second-order accurate time-integration scheme. We present numerical examples in two and three spatial dimensions, which confirm the stability and robustness of the method. The implementation of the numerical schemes is done in PetIGA, a high-performance isogeometric analysis framework.
Steeneveld, G.J.; Mauritsen, T.; Bruijn, de E.I.F.; Svensson, G.; Holtslag, A.A.M.
2006-01-01
The boundary-layer scheme in Numerical Weather Prediction (NWP) models is an essential connection between the atmosphere and the land-surface. Despite its relevance, the representation of the boundary-layer and the diurnal cycle in NWP models is rather poor, especially for stable conditions.
Caley, T.; Roche, D.M.V.A.P.; Waelbroeck, C.; Michel, E.
2014-01-01
We use the fully coupled atmosphere-ocean three-dimensional model of intermediate complexity iLOVECLIM to simulate the climate and oxygen stable isotopic signal during the Last Glacial Maximum (LGM, 21 000 years). By using a model that is able to explicitly simulate the sensor (Î18O), results can be
Stable water isotopes in the coupled atmosphere–land surface model ECHAM5-JSBACH
Directory of Open Access Journals (Sweden)
B. Haese
2013-09-01
Full Text Available In this study we present first results of a new model development, ECHAM5-JSBACH-wiso, where we have incorporated the stable water isotopes H218O and HDO as tracers in the hydrological cycle of the coupled atmosphere–land surface model ECHAM5-JSBACH. The ECHAM5-JSBACH-wiso model was run under present-day climate conditions at two different resolutions (T31L19, T63L31. A comparison between ECHAM5-JSBACH-wiso and ECHAM5-wiso shows that the coupling has a strong impact on the simulated temperature and soil wetness. Caused by these changes of temperature and the hydrological cycle, the δ18O in precipitation also shows variations from −4‰ up to 4‰. One of the strongest anomalies is shown over northeast Asia where, due to an increase of temperature, the δ18O in precipitation increases as well. In order to analyze the sensitivity of the fractionation processes over land, we compare a set of simulations with various implementations of these processes over the land surface. The simulations allow us to distinguish between no fractionation, fractionation included in the evaporation flux (from bare soil and also fractionation included in both evaporation and transpiration (from water transport through plants fluxes. While the isotopic composition of the soil water may change for δ18O by up to +8&permil:, the simulated δ18O in precipitation shows only slight differences on the order of ±1‰. The simulated isotopic composition of precipitation fits well with the available observations from the GNIP (Global Network of Isotopes in Precipitation database.
A gradient stable scheme for a phase field model for the moving contact line problem
Gao, Min
2012-02-01
In this paper, an efficient numerical scheme is designed for a phase field model for the moving contact line problem, which consists of a coupled system of the Cahn-Hilliard and Navier-Stokes equations with the generalized Navier boundary condition [1,2,4]. The nonlinear version of the scheme is semi-implicit in time and is based on a convex splitting of the Cahn-Hilliard free energy (including the boundary energy) together with a projection method for the Navier-Stokes equations. We show, under certain conditions, the scheme has the total energy decaying property and is unconditionally stable. The linearized scheme is easy to implement and introduces only mild CFL time constraint. Numerical tests are carried out to verify the accuracy and stability of the scheme. The behavior of the solution near the contact line is examined. It is verified that, when the interface intersects with the boundary, the consistent splitting scheme [21,22] for the Navier Stokes equations has the better accuracy for pressure. © 2011 Elsevier Inc.
Stable, accurate and efficient computation of normal modes for horizontal stratified models
Wu, Bo; Chen, Xiaofei
2016-08-01
We propose an adaptive root-determining strategy that is very useful when dealing with trapped modes or Stoneley modes whose energies become very insignificant on the free surface in the presence of low-velocity layers or fluid layers in the model. Loss of modes in these cases or inaccuracy in the calculation of these modes may then be easily avoided. Built upon the generalized reflection/transmission coefficients, the concept of `family of secular functions' that we herein call `adaptive mode observers' is thus naturally introduced to implement this strategy, the underlying idea of which has been distinctly noted for the first time and may be generalized to other applications such as free oscillations or applied to other methods in use when these cases are encountered. Additionally, we have made further improvements upon the generalized reflection/transmission coefficient method; mode observers associated with only the free surface and low-velocity layers (and the fluid/solid interface if the model contains fluid layers) are adequate to guarantee no loss and high precision at the same time of any physically existent modes without excessive calculations. Finally, the conventional definition of the fundamental mode is reconsidered, which is entailed in the cases under study. Some computational aspects are remarked on. With the additional help afforded by our superior root-searching scheme and the possibility of speeding calculation using a less number of layers aided by the concept of `turning point', our algorithm is remarkably efficient as well as stable and accurate and can be used as a powerful tool for widely related applications.
Energy Technology Data Exchange (ETDEWEB)
Castro-Ramírez, Joel, E-mail: ingcastro.7@gmail.com [Universidad Politécnica de Tlaxcala Av. Universidad Politecnica de Tlaxcala No.1, San Pedro Xalcaltzinco, Tepeyanco, Tlaxcala, C.P. 90180 (Mexico); Martínez-Guerra, Rafael, E-mail: rguerra@ctrl.cinvestav.mx [Departamento de Control Automático CINVESTAV-IPN, A.P. 14-740, D.F., México C.P. 07360 (Mexico); Cruz-Victoria, Juan Crescenciano, E-mail: juancrescenciano.cruz@uptlax.edu.mx [Universidad Politécnica de Tlaxcala Av. Universidad Politécnica de Tlaxcala No.1, San Pedro Xalcaltzinco, Tepeyanco, Tlaxcala, C.P. 90180 (Mexico)
2015-10-15
This paper deals with the master-slave synchronization scheme for partially known nonlinear chaotic systems, where the unknown dynamics is considered as the master system and we propose the slave system structure which estimates the unknown states. It introduced a new reduced order observer, using the concept of Algebraic Observability; we applied the results to a Sundarapandian chaotic system, and by means of some numerical simulations we show the effectiveness of the suggested approach. Finally, the proposed observer is utilized for encryption, where encryption key is the master system and decryption key is the slave system.
Bönecke, Eric; Franko, Uwe
2015-04-01
Soil organic matter (SOM) and carbon (SOC) might be the most important components to describe soil fertility of agricultural used soils. It is sensitive to temporal and spatial changes due to varying weather conditions, uneven crops and soil management practices and still struggles with providing reliable delineation of spatial variability. Soil organic carbon, furthermore, is an essential initial parameter for dynamic modelling, understanding e.g. carbon and nitrogen processes. Alas it requires cost and time intensive field and laboratory work to attain and using this information. The objective of this study is to assess an approach that reduces efforts of laboratory and field analyses by using method to find stable initial soil organic carbon values for further soil process modelling and regionalization on field scale. The demand of strategies, technics and tools to improve reliable soil organic carbon high resolution maps and additionally reducing cost constraints is hence still facing an increasing attention of scientific research. Although, it is nowadays a widely used practice, combining effective sampling schemes with geophysical sensing techniques, to describe within-field variability of soil organic carbon, it is still challenging large uncertainties, even at field scale in both, science and agriculture. Therefore, an analytical and modelling approach might facilitate and improve this strategy on small and large field scale. This study will show a method, how to find reliable steady state values of soil organic carbon at particular points, using the approved soil process model CANDY (Franko et al. 1995). It is focusing on an iterative algorithm of adjusting the key driving components: soil physical properties, meteorological data and management information, for which we quantified the input and the losses of soil carbon (manure, crop residues, other organic inputs, decomposition, leaching). Furthermore, this approach can be combined with geophysical
Lahoz-Beneytez, J; Elemans, M; Zhang, Y.; R. Ahmed; Salam, A.; Block, M.; Niederalt, C; Asquith, B; Macallan, D
2016-01-01
Human neutrophils have traditionally been thought to have a short half-life in blood; estimates vary from 4-18 hours. This dogma was recently challenged by stable isotope labeling studies with heavy water which yielded estimates in excess of 3 days. To investigate this disparity we generated new stable isotope labeling data in healthy adult subjects using both heavy water (n=4) and deuterium-labeled glucose (n=9), a compound with more rapid labeling kinetics. To interpret results we developed...
Kok-Palma, Y.S.; Leenders, M.; Meulenbelt, J.
2010-01-01
Rapid administration of stable iodine is essential for the saturation and subsequent protection of the thyroid gland against the potential harm caused by radioiodines. This paper proposes the Dutch risk analysis that uses an atmospheric dispersion model to calculate the size of the zones around
Srivastava, Mayank; Agrawal, Saurabh; Das, Subir
2013-10-01
The article aims to study the reduced-order anti-synchronization between projections of fractional order hyperchaotic and chaotic systems using active control method. The technique is successfully applied for the pair of systems viz., fractional order hyperchaotic Lorenz system and fractional order chaotic Genesio-Tesi system. The sufficient conditions for achieving anti-synchronization between these two systems are derived via the Laplace transformation theory. The fractional derivative is described in Caputo sense. Applying the fractional calculus theory and computer simulation technique, it is found that hyperchaos and chaos exists in the fractional order Lorenz system and fractional order Genesio-Tesi system with order less than 4 and 3 respectively. The lowest fractional orders of hyperchaotic Lorenz system and chaotic Genesio-Tesi system are 3.92 and 2.79 respectively. Numerical simulation results which are carried out using Adams-Bashforth-Moulton method, shows that the method is reliable and effective for reduced order anti-synchronization.
Modeling tree growth and stable isotope ratios of white spruce in western Alaska.
Boucher, Etienne; Andreu-Hayles, Laia; Field, Robert; Oelkers, Rose; D'Arrigo, Rosanne
2017-04-01
Summer temperatures are assumed to exert a dominant control on physiological processes driving forest productivity in interior Alaska. However, despite the recent warming of the last few decades, numerous lines of evidence indicate that the enhancing effect of summer temperatures on high latitude forest populations has been weakening. First, satellite-derived indices of photosynthetic activity, such as the Normalized-Difference Vegetation Index (NDVI, 1982-2005), show overall declines in productivity in the interior boreal forests. Second, some white spruce tree ring series strongly diverge from summer temperatures during the second half of the 20th century, indicating a persistent loss of temperature sensitivity of tree ring proxies. Thus, the physiological response of treeline forests to ongoing climate change cannot be accurately predicted, especially from correlation analysis. Here, we make use of a process-based dendroecological model (MAIDENiso) to elucidate the complex linkages between global warming and increases in atmospheric CO2 concentration [CO2] with the response of treeline white spruce stands in interior Alaska (Seward). In order to fully capture the array of processes controlling tree growth in the area, multiple physiological indicators of white spruce productivity are used as target variables: NDVI images, ring widths (RW), maximum density (MXD) and newly measured carbon and oxygen stable isotope ratios from ring cellulose. Based on these data, we highlight the processes and mechanisms responsible for the apparent loss of sensitivity of white spruce trees to recent climate warming and [CO2] increase in order to elucidate the sensitivity and vulnerability of these trees to climate change.
Stable isotope and modelling evidence that CO2 drives vegetation changes in the tropics
Bragg, F. J.; Prentice, I. C.; Harrison, S. P.; Eglinton, G.; Foster, P. N.; Rommerskirchen, F.; Rullkötter, J.
2012-11-01
Atmospheric CO2 concentration is hypothesized to influence vegetation distribution via tree-grass competition, with higher CO2 concentrations favouring trees. The stable carbon isotope (δ13C) signature of vegetation is influenced by the relative importance of C4 plants (including most tropical grasses) and C3 plants (including nearly all trees), and the degree of stomatal closure - a response to aridity - in C3 plants. Compound-specific δ13C analyses of leaf-wax biomarkers in sediment cores of an offshore South Atlantic transect are used here as a record of vegetation changes in subequatorial Africa. These data suggest a large increase in C3 relative to C4 plant dominance after the Last Glacial Maximum. Using a process-based biogeography model that explicitly simulates 13C discrimination, we show that climate change alone cannot explain the observed shift in δ13C values. The physiological effect of increasing CO2 concentration is decisive, altering the C3 / C4 balance and bringing the simulated and observed δ13C values into line. It is concluded that CO2 concentration itself was a key agent of tropical vegetation change during the last glacial-interglacial transition. Two additional inferences follow. First, long-term variations in terrestrial δ13C values are not simply a proxy for regional rainfall as has sometimes been assumed. Such interpretations need to be re-examined. Second, rising CO2 concentration today is likely to be influencing tree-grass competition in a similar way, and thus contributing to the "woody thickening" observed in savannas worldwide. This second inference points to the importance of experiments to determine how vegetation composition in savannas is likely to be influenced by the continuing rise in CO2 concentration.
Modelling of dynamically stable AR-601M robot locomotion in Simulink
Directory of Open Access Journals (Sweden)
Khusainov Ramil
2016-01-01
Full Text Available Humanoid robots will gradually play an important role in our daily lives. Currently, research on anthropomorphic robots and biped locomotion is one of the most important problems in the field of mobile robotics, and the development of reliable control algorithms for them is a challenging task. In this research two algorithms for stable walking of Russian anthropomorphic robot AR-601M with 41 Degrees of Freedom (DoF are investigated. To achieve a human-like dynamically stable locomotion 6 DoF in each robot leg are controlled with Virtual Height Inverted Pendulum and Preview control methods.
Directory of Open Access Journals (Sweden)
John B Hopkins
Full Text Available Past research indicates that whitebark pine seeds are a critical food source for Threatened grizzly bears (Ursus arctos in the Greater Yellowstone Ecosystem (GYE. In recent decades, whitebark pine forests have declined markedly due to pine beetle infestation, invasive blister rust, and landscape-level fires. To date, no study has reliably estimated the contribution of whitebark pine seeds to the diets of grizzlies through time. We used stable isotope ratios (expressed as δ13C, δ15N, and δ34S values measured in grizzly bear hair and their major food sources to estimate the diets of grizzlies sampled in Cooke City Basin, Montana. We found that stable isotope mixing models that included different combinations of stable isotope values for bears and their foods generated similar proportional dietary contributions. Estimates generated by our top model suggest that whitebark pine seeds (35±10% and other plant foods (56±10% were more important than meat (9±8% to grizzly bears sampled in the study area. Stable isotope values measured in bear hair collected elsewhere in the GYE and North America support our conclusions about plant-based foraging. We recommend that researchers consider model selection when estimating the diets of animals using stable isotope mixing models. We also urge researchers to use the new statistical framework described here to estimate the dietary responses of grizzlies to declines in whitebark pine seeds and other important food sources through time in the GYE (e.g., cutthroat trout, as such information could be useful in predicting how the population will adapt to future environmental change.
Hopkins, John B; Ferguson, Jake M; Tyers, Daniel B; Kurle, Carolyn M
2017-01-01
Past research indicates that whitebark pine seeds are a critical food source for Threatened grizzly bears (Ursus arctos) in the Greater Yellowstone Ecosystem (GYE). In recent decades, whitebark pine forests have declined markedly due to pine beetle infestation, invasive blister rust, and landscape-level fires. To date, no study has reliably estimated the contribution of whitebark pine seeds to the diets of grizzlies through time. We used stable isotope ratios (expressed as δ13C, δ15N, and δ34S values) measured in grizzly bear hair and their major food sources to estimate the diets of grizzlies sampled in Cooke City Basin, Montana. We found that stable isotope mixing models that included different combinations of stable isotope values for bears and their foods generated similar proportional dietary contributions. Estimates generated by our top model suggest that whitebark pine seeds (35±10%) and other plant foods (56±10%) were more important than meat (9±8%) to grizzly bears sampled in the study area. Stable isotope values measured in bear hair collected elsewhere in the GYE and North America support our conclusions about plant-based foraging. We recommend that researchers consider model selection when estimating the diets of animals using stable isotope mixing models. We also urge researchers to use the new statistical framework described here to estimate the dietary responses of grizzlies to declines in whitebark pine seeds and other important food sources through time in the GYE (e.g., cutthroat trout), as such information could be useful in predicting how the population will adapt to future environmental change.
2011-12-01
Approved for public release; distribution unlimited 7.4 CEAC Measured Thermal Strains In high temperature testing, piezoelectric -type response...Instrumentation The vibration response will be measured with a combination of accelerometers (AC), strain gauges (SG) and laser doppler vibrometer (LDV), Figure A...method will use scanning laser vibrometer with shaker excitation. Data obtained from the survey shall include resonant frequencies, mode shapes
A REDUCED ORDER MODEL OF TWO-PHASE FLOW, HEAT TRANSFER AND COMBUSTION IN CIRCULATING FLUIDIZED-BEDS
Energy Technology Data Exchange (ETDEWEB)
Paul Cizmas
2003-12-01
The report summarizes the objectives, tasks and accomplishments of this research project. The report presents the following program deliverables: (1) database generation using MFIX code, (2) development and implementation of an algorithm to calculate the proper orthogonal decomposition (POD) basis functions, (3) visualization tools for reconstructing simulated data, (4) algorithms for reducing the partial differential equations to ordinary differential equations, (5) visualization tools for Galerkin ordinary differential equations, (6) verification and validation of the code by comparing POD and conventional solution results, and (7) development of POD strategy for best energy cut-off values.
Brown, Andrew M.; Mulder, Andrew
2017-01-01
NASA is developing a new launch vehicle, called the Space Launch System (SLS), which is intended on taking humans out of low earth orbit to destinations including the moon, asteroids, and Mars. The propulsion system for the core stage of this vehicle includes four RS-25 Liquid Hydrogen/Oxygen rocket engines. These engines are upgraded versions of the Space Shuttle Main Engines (SSME); the upgrades include higher power levels and affordability enhancements. As with any new vehicle, the Main Propulsion System (MPS), which include the feedlines and ancillary hardware connecting the engines to the fuel and oxidizer tanks, had to be redesigned (figure 1 - export clearance in progress), as the previous MPS for the SSME's was inherently part of the Space Shuttle System, which had a completely different overall configuration.
On the parameters identification of the Duffing's system by means of a reduced order observer
Energy Technology Data Exchange (ETDEWEB)
Mendoza-Camargo, Juan [CINVESTAV-IPN, Departamento de Control Automatico, Av. IPN 2508, A.P. 14740, Mexico, D.F. 07360 (Mexico); Aguilar-Iban-tilde ez, Carlos [CIC-IPN, Av. Juan de Dios Batiz s/n Esq. Manuel Othon de M., Unidad Profesional Adolfo Lopez Mateos, Col. San Pedro Zacatenco, A.P. 75476, Mexico, D.F. 07700 (Mexico)]. E-mail: caguilar@cic.ipn.mx; Martinez-Guerra, Rafael [CINVESTAV-IPN, Departamento de Control Automatico, Av. IPN 2508, A.P. 14740, Mexico, D.F. 07360 (Mexico)]. E-mail: rguerra@ctrl.cinvestav.mx; Garrido-Moctezuma, Ruben [CINVESTAV-IPN, Departamento de Control Automatico, Av. IPN 2508, A.P. 14740, Mexico, D.F. 07360 (Mexico)
2004-10-25
An on-line procedure for recovering the unknown parameters set of the Duffing's oscillator by means of a reduced order proportional integral observer is presented in this Letter. First, it is shown that the oscillator has the properties of being algebraically observable and algebraically identifiable with respect to a well-chosen output (which turns out to be the oscillator's position). Therefore, an extended differential parametrization of the output and its time derivatives can be obtained. This extended differential parametrization has the necessary information to estimate the output time derivatives and to recover the unknown parameters. The numerical implementation of this method is easily accomplished in a digital computer.
Ruin probability with claims modeled by a stationary ergodic stable process
Mikosch, T; Samorodnitsky, G
2000-01-01
For a random walk with negative drift we study the exceedance probability (ruin probability) of a high threshold. The steps of this walk (claim sizes) constitute a stationary ergodic stable process. We study how ruin occurs in this situation and evaluate the asymptotic behavior of the ruin
Modelling of the flow of stable air over a complex region
CSIR Research Space (South Africa)
Scholtz, MT
1976-01-01
Full Text Available The flow of stable air over a general region of complex topography and non-uniform surface temperature has been investigated. In order to gain further understanding of the motion of surface air, it was necessary to study the vertical structure...
Marcucci, Lorenzo; Washio, Takumi; Yanagida, Toshio
2016-09-01
Muscle contractions are generated by cyclical interactions of myosin heads with actin filaments to form the actomyosin complex. To simulate actomyosin complex stable states, mathematical models usually define an energy landscape with a corresponding number of wells. The jumps between these wells are defined through rate constants. Almost all previous models assign these wells an infinite sharpness by imposing a relatively simple expression for the detailed balance, i.e., the ratio of the rate constants depends exponentially on the sole myosin elastic energy. Physically, this assumption corresponds to neglecting thermal fluctuations in the actomyosin complex stable states. By comparing three mathematical models, we examine the extent to which this hypothesis affects muscle model predictions at the single cross-bridge, single fiber, and organ levels in a ceteris paribus analysis. We show that including fluctuations in stable states allows the lever arm of the myosin to easily and dynamically explore all possible minima in the energy landscape, generating several backward and forward jumps between states during the lifetime of the actomyosin complex, whereas the infinitely sharp minima case is characterized by fewer jumps between states. Moreover, the analysis predicts that thermal fluctuations enable a more efficient contraction mechanism, in which a higher force is sustained by fewer attached cross-bridges.
Steeneveld, G.J.
2012-01-01
Understanding and prediction of the stable atmospheric boundary layer is a challenging task. Many physical processes are relevant in the stable boundary layer, i.e. turbulence, radiation, land surface coupling, orographic turbulent and gravity wave drag, and land surface heterogeneity. The development of robust stable boundary layer parameterizations for use in NWP and climate models is hampered by the multiplicity of processes and their unknown interactions. As a result, these models suffer ...
Huang, Christene A.; Fuchimoto, Yasushi; Scheier-Dolberg, Rachel; Murphy, Michael C.; Neville, David M.; Sachs, David H.
2000-01-01
Bone marrow transplantation (BMT) has considerable potential for the treatment of malignancies, hemoglobinopathies, and autoimmune diseases, as well as the induction of transplantation allograft tolerance. Toxicities associated with standard preparative regimens for bone marrow transplantation, however, make this approach unacceptable for all but the most severe of these clinical situations. Here, we demonstrate that stable mixed hematopoietic cell chimerism and donor-specific tolerance can b...
Evolutionarily stable learning schedules and cumulative culture in discrete generation models.
Aoki, Kenichi; Wakano, Joe Yuichiro; Lehmann, Laurent
2012-06-01
Individual learning (e.g., trial-and-error) and social learning (e.g., imitation) are alternative ways of acquiring and expressing the appropriate phenotype in an environment. The optimal choice between using individual learning and/or social learning may be dictated by the life-stage or age of an organism. Of special interest is a learning schedule in which social learning precedes individual learning, because such a schedule is apparently a necessary condition for cumulative culture. Assuming two obligatory learning stages per discrete generation, we obtain the evolutionarily stable learning schedules for the three situations where the environment is constant, fluctuates between generations, or fluctuates within generations. During each learning stage, we assume that an organism may target the optimal phenotype in the current environment by individual learning, and/or the mature phenotype of the previous generation by oblique social learning. In the absence of exogenous costs to learning, the evolutionarily stable learning schedules are predicted to be either pure social learning followed by pure individual learning ("bang-bang" control) or pure individual learning at both stages ("flat" control). Moreover, we find for each situation that the evolutionarily stable learning schedule is also the one that optimizes the learned phenotype at equilibrium. Copyright © 2012 Elsevier Inc. All rights reserved.
Li, Xuanying; Li, Xiaotong; Hu, Cheng
2017-12-01
In this paper, without transforming the second order inertial neural networks into the first order differential systems by some variable substitutions, asymptotic stability and synchronization for a class of delayed inertial neural networks are investigated. Firstly, a new Lyapunov functional is constructed to directly propose the asymptotic stability of the inertial neural networks, and some new stability criteria are derived by means of Barbalat Lemma. Additionally, by designing a new feedback control strategy, the asymptotic synchronization of the addressed inertial networks is studied and some effective conditions are obtained. To reduce the control cost, an adaptive control scheme is designed to realize the asymptotic synchronization. It is noted that the dynamical behaviors of inertial neural networks are directly analyzed in this paper by constructing some new Lyapunov functionals, this is totally different from the traditional reduced-order variable substitution method. Finally, some numerical simulations are given to demonstrate the effectiveness of the derived theoretical results. Copyright © 2017 Elsevier Ltd. All rights reserved.
Directory of Open Access Journals (Sweden)
David O Cummings
Full Text Available Distributions of stable isotopes have been used to infer an organism's trophic niche width, the 'isotopic niche', and examine resource partitioning. Spatial variation in the isotopic composition of prey may however confound the interpretation of isotopic signatures especially when foragers exploit resources across numerous locations. In this study the isotopic compositions from marine assemblages are modelled to determine the role of variation in the signature of prey items and the effect of dietary breadth and foraging strategies on predator signatures. Outputs from the models reveal that isotopic niche widths can be greater for populations of dietary specialists rather than for generalists, which contravenes what is generally accepted in the literature. When a range of different mixing models are applied to determine if the conversion from δ to p-space can be used to improve model accuracy, predator signature variation is increased rather than model precision. Furthermore the mixing models applied failed to correctly identify dietary specialists and/or to accurately estimate diet contributions that may identify resource partitioning. The results presented illustrate the need to collect sufficiently large sample sizes, in excess of what is collected under most current studies, across the complete distribution of a species and its prey, before attempts to use stable isotopes to make inferences about niche width can be made.
DEVELOPMENT OF A STREAM FOOD WEB MODEL CONSTRAINED BY STABLE ISOTOPE DATA
Traditional stream food web studies provide static models of trophic structures. These models provide information about interspecific relationships, but not about material flows through food webs. Traditional ecosystem models developed from budgets or tracers provide quantitative...
Fu, Chunjiang; Suzuki, Yasuyuki; Kiyono, Ken; Morasso, Pietro; Nomura, Taishin
2014-01-01
Stability of human gait is the ability to maintain upright posture during walking against external perturbations. It is a complex process determined by a number of cross-related factors, including gait trajectory, joint impedance and neural control strategies. Here, we consider a control strategy that can achieve stable steady-state periodic gait while maintaining joint flexibility with the lowest possible joint impedance. To this end, we carried out a simulation study of a heel-toe footed biped model with hip, knee and ankle joints and a heavy head-arms-trunk element, working in the sagittal plane. For simplicity, the model assumes a periodic desired joint angle trajectory and joint torques generated by a set of feed-forward and proportional-derivative feedback controllers, whereby the joint impedance is parametrized by the feedback gains. We could show that a desired steady-state gait accompanied by the desired joint angle trajectory can be established as a stable limit cycle (LC) for the feedback controller with an appropriate set of large feedback gains. Moreover, as the feedback gains are decreased for lowering the joint stiffness, stability of the LC is lost only in a few dimensions, while leaving the remaining large number of dimensions quite stable: this means that the LC becomes saddle-type, with a low-dimensional unstable manifold and a high-dimensional stable manifold. Remarkably, the unstable manifold remains of low dimensionality even when the feedback gains are decreased far below the instability point. We then developed an intermittent neural feedback controller that is activated only for short periods of time at an optimal phase of each gait stride. We characterized the robustness of this design by showing that it can better stabilize the unstable LC with small feedback gains, leading to a flexible gait, and in particular we demonstrated that such an intermittent controller performs better if it drives the state point to the stable manifold, rather
Fu, Chunjiang; Suzuki, Yasuyuki; Kiyono, Ken; Morasso, Pietro; Nomura, Taishin
2014-12-06
Stability of human gait is the ability to maintain upright posture during walking against external perturbations. It is a complex process determined by a number of cross-related factors, including gait trajectory, joint impedance and neural control strategies. Here, we consider a control strategy that can achieve stable steady-state periodic gait while maintaining joint flexibility with the lowest possible joint impedance. To this end, we carried out a simulation study of a heel-toe footed biped model with hip, knee and ankle joints and a heavy head-arms-trunk element, working in the sagittal plane. For simplicity, the model assumes a periodic desired joint angle trajectory and joint torques generated by a set of feed-forward and proportional-derivative feedback controllers, whereby the joint impedance is parametrized by the feedback gains. We could show that a desired steady-state gait accompanied by the desired joint angle trajectory can be established as a stable limit cycle (LC) for the feedback controller with an appropriate set of large feedback gains. Moreover, as the feedback gains are decreased for lowering the joint stiffness, stability of the LC is lost only in a few dimensions, while leaving the remaining large number of dimensions quite stable: this means that the LC becomes saddle-type, with a low-dimensional unstable manifold and a high-dimensional stable manifold. Remarkably, the unstable manifold remains of low dimensionality even when the feedback gains are decreased far below the instability point. We then developed an intermittent neural feedback controller that is activated only for short periods of time at an optimal phase of each gait stride. We characterized the robustness of this design by showing that it can better stabilize the unstable LC with small feedback gains, leading to a flexible gait, and in particular we demonstrated that such an intermittent controller performs better if it drives the state point to the stable manifold, rather
Kok-Palma, Yvo; Leenders, Marianne; Meulenbelt, Jan
2010-08-01
Rapid administration of stable iodine is essential for the saturation and subsequent protection of the thyroid gland against the potential harm caused by radioiodines. This paper proposes the Dutch risk analysis that uses an atmospheric dispersion model to calculate the size of the zones around nuclear power plants where radiological thyroid doses for children might be sufficiently high to warrant iodine administration. Dose calculations for possible releases from the nuclear power plants of Borssele (The Netherlands), Doel (Belgium) and Emsland (Germany) are based on two scenarios in combination with a 1-y set of authentic, high-resolution meteorological data. The dimensions of the circular zones were defined for each nuclear power plant. In these zones, with a radius up to 50 km, distribution of stable iodine tablets is advised.
Meerschaert, Mark M; Straka, Peter
2013-01-01
The inverse stable subordinator provides a probability model for time-fractional differential equations, and leads to explicit solution formulae. This paper reviews properties of the inverse stable subordinator, and applications to a variety of problems in mathematics and physics. Several different governing equations for the inverse stable subordinator have been proposed in the literature. This paper also shows how these equations can be reconciled.
MEERSCHAERT, MARK M.; STRAKA, PETER
2013-01-01
The inverse stable subordinator provides a probability model for time-fractional differential equations, and leads to explicit solution formulae. This paper reviews properties of the inverse stable subordinator, and applications to a variety of problems in mathematics and physics. Several different governing equations for the inverse stable subordinator have been proposed in the literature. This paper also shows how these equations can be reconciled. PMID:25045216
Stable, Time-Dependent, Exact Solutions for Brane Models with a Bulk Scalar Field
Lee, S; Olive, Keith A; Kanti, Panagiota; Lee, Seokcheon; Olive, Keith A.
2003-01-01
We derive two classes of brane-world solutions arising in the presence of a bulk scalar field. For static field configurations, we adopt a time-dependent, factorizable metric ansatz that allows for radion stabilization. The solutions are characterized by a non-trivial warping along the extra dimension, even in the case of a vanishing bulk cosmological constant, and lead to a variety of inflationary, time-dependent solutions of the 3D scale factor on the brane. We also derive the constraints necessary for the stability of these solutions under time-dependent perturbations of the radion field, and we demonstrate the existence of phenomenologically interesting, stable solutions with a positive cosmological constant on the brane.
A classical lamination model of bi-stable woven composite tape-springs
Prigent, Yoann; Mallol, Pau; Tibert, Gunnar
2011-01-01
This extended abstract presents the work done so far on modeling woven composite materials, specifically two carbon fiber reinforced plastics materials: twill and plain weave. The material model has been initially verified against data available in a database. QC 20120215
The search for stable prognostic models in multiple imputed data sets
Vergouw, D.; Heijmans, M.W.; Peat, G.M.; Kuijpers, T.; Croft, P.R.; de Vet, H.C.W.; van der Horst, H.E.; van der Windt, D.A.W.M.
2010-01-01
Background: In prognostic studies model instability and missing data can be troubling factors. Proposed methods for handling these situations are bootstrapping (B) and Multiple imputation (MI). The authors examined the influence of these methods on model composition. Methods: Models were constructed
Druhan, J. L.; Maher, K.
2014-12-01
From the point of infiltration to the point of discharge, the chemical signature imparted to fluid flowing through catchments represents the weathering flux from the landscape. The magnitude of this flux is linked to both the time water spends in the system and the time required for reactions to influence fluid chemistry. The ratio of these characteristic times is often represented as a Damköhler number (Da), which links the parameters governing reactivity and flow. Stable isotope ratios are now commonly applied to identify and even quantify the processes and rates of primary mineral weathering, secondary mineral formation and biogeochemical cycling within catchments. Here, we derive a series of fractionation-discharge relationships for a variety of governing chemical rate laws utilizing Da coefficients. These equations can be used to isolate and quantify the effects of (1) fluid travel time distributions and (2) chemical weathering efficiency on observed stable isotope ratios. The analytical solutions are verified against multi-component reactive transport simulations of stable isotope fractionation in homogeneous and spatially correlated heterogeneous flow fields using the CrunchTope code and evaluated against field observations. We demonstrate that for an irreversible reaction, the relationship between stable isotope enrichment and reactant concentration obeys a Rayleigh-type model across a wide range of reaction rates. However, this relationship is violated when a heterogeneous travel time distribution is considered. This observation highlights an important discrepancy in the commonly assumed relationship between fractionation and concentration for irreversible reactions. We further extend our derivation to consider isotope fractionation associated with a reversible reaction (i.e. a kinetically controlled approach to equilibrium) in a steady-state flow field. Due to the dependence of the observed isotope ratio on the flow rate, kinetic enrichment and
The search for stable prognostic models in multiple imputed data sets
Directory of Open Access Journals (Sweden)
de Vet Henrica CW
2010-09-01
Full Text Available Abstract Background In prognostic studies model instability and missing data can be troubling factors. Proposed methods for handling these situations are bootstrapping (B and Multiple imputation (MI. The authors examined the influence of these methods on model composition. Methods Models were constructed using a cohort of 587 patients consulting between January 2001 and January 2003 with a shoulder problem in general practice in the Netherlands (the Dutch Shoulder Study. Outcome measures were persistent shoulder disability and persistent shoulder pain. Potential predictors included socio-demographic variables, characteristics of the pain problem, physical activity and psychosocial factors. Model composition and performance (calibration and discrimination were assessed for models using a complete case analysis, MI, bootstrapping or both MI and bootstrapping. Results Results showed that model composition varied between models as a result of how missing data was handled and that bootstrapping provided additional information on the stability of the selected prognostic model. Conclusion In prognostic modeling missing data needs to be handled by MI and bootstrap model selection is advised in order to provide information on model stability.
Kou, Jisheng
2017-09-30
Capillary pressure can significantly affect the phase properties and flow of liquid-gas fluids in porous media, and thus, the phase equilibrium calculation incorporating capillary pressure is crucial to simulate such problems accurately. Recently, the phase equilibrium calculation at specified moles, volume and temperature (NVT-flash) becomes an attractive issue. In this paper, capillarity is incorporated into the phase equilibrium calculation at specified moles, volume and temperature. A dynamical model for such problem is developed for the first time by using the laws of thermodynamics and Onsager\\'s reciprocal principle. This model consists of the evolutionary equations for moles and volume, and it can characterize the evolutionary process from a non-equilibrium state to an equilibrium state in the presence of capillarity effect at specified moles, volume and temperature. The phase equilibrium equations are naturally derived. To simulate the proposed dynamical model efficiently, we adopt the convex-concave splitting of the total Helmholtz energy, and propose a thermodynamically stable numerical algorithm, which is proved to preserve the second law of thermodynamics at the discrete level. Using the thermodynamical relations, we derive a phase stability condition with capillarity effect at specified moles, volume and temperature. Moreover, we propose a stable numerical algorithm for the phase stability testing, which can provide the feasible initial conditions. The performance of the proposed methods in predicting phase properties under capillarity effect is demonstrated on various cases of pure substance and mixture systems.
The PX-EM algorithm for fast stable fitting of Henderson's mixed model
Foulley, Jean-Louis; Van Dyk, David A
2000-01-01
This paper presents procedures for implementing the PX-EM algorithm of Liu, Rubin and Wu to compute REML estimates of variance covariance components in Henderson's linear mixed models. The class of models considered encompasses several correlated random factors having the same vector length e.g., as in random regression models for longitudinal data analysis and in sire-maternal grandsire models for genetic evaluation. Numerical examples are presented to illustrate the procedures. Much better results in terms of convergence characteristics (number of iterations and time required for convergence) are obtained for PX-EM relative to the basic EM algorithm in the random regression. PMID:14736399
The PX-EM algorithm for fast stable fitting of Henderson's mixed model
Directory of Open Access Journals (Sweden)
Van Dyk David A
2000-03-01
Full Text Available Abstract This paper presents procedures for implementing the PX-EM algorithm of Liu, Rubin and Wu to compute REML estimates of variance covariance components in Henderson's linear mixed models. The class of models considered encompasses several correlated random factors having the same vector length e.g., as in random regression models for longitudinal data analysis and in sire-maternal grandsire models for genetic evaluation. Numerical examples are presented to illustrate the procedures. Much better results in terms of convergence characteristics (number of iterations and time required for convergence are obtained for PX-EM relative to the basic EM algorithm in the random regression.
Caulkins, J.P.; Feichtinger, G.; Grass, D.; Hartl, R.F.; Kort, P.M.; Novak, A.J.; Seidl, A.
We present a novel model of corruption dynamics in the form of a nonlinear optimal dynamic control problem. It has a tipping point, but one whose origins and character are distinct from that in the classic Schelling (1978) model. The decision maker choosing a level of corruption is the chief or some
Multi-Zone hybrid model for failure detection of the stable ventilation systems
DEFF Research Database (Denmark)
Gholami, Mehdi; Schiøler, Henrik; Soltani, Mohsen
2010-01-01
In this paper, a conceptual multi-zone model for climate control of a live stock building is elaborated. The main challenge of this research is to estimate the parameters of a nonlinear hybrid model. A recursive estimation algorithm, the Extended Kalman Filter (EKF) is implemented for estimation...
2016-06-01
specific and fixed model domains. Note the models are not cast in stone and can be adjusted by an experienced user for specific needs and model parts...optimization status at the outset of the field sample analysis season (samples collected in 2011) was satisfactory, with effective detection limits for...Sample ID Total iron (mg/L) Ferrous iron (mg/L) Sulfide (mg/L) Sulfate (mg/L) Nitrate (mg/L) Dissolved oxygen (mg/L) U10-011
DEFF Research Database (Denmark)
Gouda, Alaa S.; Amine, Mahasen S.; Pedersen, Erik Bjerregaard
2017-01-01
anthraquinone-modified quadruplexes revealed no change of the antiparallel structure when compared with the wild type under potassium buffer conditions. The significantly increased thermostabilities were interpreted by molecular modeling of anthraquinone-modified G-quadruplexes....
A perturbation analysis of a mechanical model for stable spatial patterning in embryology
Bentil, D. E.; Murray, J. D.
1992-12-01
We investigate a mechanical cell-traction mechanism that generates stationary spatial patterns. A linear analysis highlights the model's potential for these heterogeneous solutions. We use multiple-scale perturbation techniques to study the evolution of these solutions and compare our solutions with numerical simulations of the model system. We discuss some potential biological applications among which are the formation of ridge patterns, dermatoglyphs, and wound healing.
A Minimal Self-affine Stable Model for Space Physics Time Series
Watkins, N. W.; Credgington, D.; Freeman, M. P.; Chapman, S. C.; Hnat, B.
2006-12-01
Direct inspiration for the measurement of scaling in space physics has come from inherently multiscale physics such as self-organised criticality and turbulence. Additionally, the ability to assess the likelihood of a fluctuation of a given size has "space weather" implications. However, we have elsewhere argued that it is also useful to capture the "stylised facts" of the scaling behaviour of auroral indices and solar wind quantities by much simpler, purely phenomenological models. To make this idea more concrete we here illustrate it by studying the use of fractional Lévy motion as a model for solar wind and auroral index time series, although this example could be taken as a prototype for other possible models. In fLm there are only three exponents, the Lévy exponent μ, the persistence exponent β and the selfsimilarity exponent H which depends additively on the other two. By postulating an fLm description we explore how the previously experimentally measured scaling exponents for quantities like superposed epoch averaged activity, or the probability distribution of the differenced time series, would depend on the model's parameters. We can then also derive predictions for the exponents of the more complicated measurements which have also been made, such as size and duration of bursts above a threshold, or the survival probability of a burst. Comparison of these predictions with data is then used to assess the usefulness of fLm as a toy model for space physics time series.
Caulkins, Jonathan P; Feichtinger, Gustav; Grass, Dieter; Hartl, Richard F; Kort, Peter M; Novak, Andreas J; Seidl, Andrea
2013-03-16
We present a novel model of corruption dynamics in the form of a nonlinear optimal dynamic control problem. It has a tipping point, but one whose origins and character are distinct from that in the classic Schelling (1978) model. The decision maker choosing a level of corruption is the chief or some other kind of authority figure who presides over a bureaucracy whose state of corruption is influenced by the authority figure's actions, and whose state in turn influences the pay-off for the authority figure. The policy interpretation is somewhat more optimistic than in other tipping models, and there are some surprising implications, notably that reforming the bureaucracy may be of limited value if the bureaucracy takes its cues from a corrupt leader.
Normal modified stable processes
DEFF Research Database (Denmark)
Barndorff-Nielsen, Ole Eiler; Shephard, N.
2002-01-01
This paper discusses two classes of distributions, and stochastic processes derived from them: modified stable (MS) laws and normal modified stable (NMS) laws. This extends corresponding results for the generalised inverse Gaussian (GIG) and generalised hyperbolic (GH) or normal generalised inverse...... Gaussian (NGIG) laws. The wider framework thus established provides, in particular, for added flexibility in the modelling of the dynamics of financial time series, of importance especially as regards OU based stochastic volatility models for equities. In the special case of the tempered stable OU process...
Deng, Jia; McCalley, Carmody K.; Frolking, Steve; Chanton, Jeff; Crill, Patrick; Varner, Ruth; Tyson, Gene; Rich, Virginia; Hines, Mark; Saleska, Scott R.; Li, Changsheng
2017-06-01
Climate change is expected to have significant and uncertain impacts on methane (CH4) emissions from northern peatlands. Biogeochemical models can extrapolate site-specificCH4 measurements to larger scales and predict responses of CH4 emissions to environmental changes. However, these models include considerable uncertainties and limitations in representing CH4 production, consumption, and transport processes. To improve predictions of CH4 transformations, we incorporated acetate and stable carbon (C) isotopic dynamics associated with CH4 cycling into a biogeochemistry model, DNDC. By including these new features, DNDC explicitly simulates acetate dynamics and the relative contribution of acetotrophic and hydrogenotrophic methanogenesis (AM and HM) to CH4 production, and predicts the C isotopic signature (δ13C) in soil C pools and emitted gases. When tested against biogeochemical and microbial community observations at two sites in a zone of thawing permafrost in a subarctic peatland in Sweden, the new formulation substantially improved agreement with CH4 production pathways and δ13C in emitted CH4 (δ13C-CH4), a measure of the integrated effects of microbial production and consumption, and of physical transport. We also investigated the sensitivity of simulated δ13C-CH4 to C isotopic composition of substrates and, to fractionation factors for CH4 production (αAM and αHM), CH4 oxidation (αMO), and plant-mediated CH4 transport (αTP). The sensitivity analysis indicated that the δ13C-CH4 is highly sensitive to the factors associated with microbial metabolism (αAM, αHM, and αMO). The model framework simulating stable C isotopic dynamics provides a robust basis for better constraining and testing microbial mechanisms in predicting CH4 cycling in peatlands.
CSIR Research Space (South Africa)
Burger, L
2007-01-01
Full Text Available A simple model of a Porro prism laser resonator has been found to correctly predict the formation of the “petal” mode patterns typical of these resonators. A geometrical analysis of the petals suggests that these petals are the lowest−order modes...
Early Warning Signals for Regime Transition in the Stable Boundary Layer : A Model Study
van Hooijdonk, I.G.S.; Moene, A. F.; Scheffer, M.; Clercx, H. J H; van de Wiel, B.J.H.
2017-01-01
The evening transition is investigated in an idealized model for the nocturnal boundary layer. From earlier studies it is known that the nocturnal boundary layer may manifest itself in two distinct regimes, depending on the ambient synoptic conditions: strong-wind or overcast conditions typically
A novel mouse model for stable engraftment of a human immune system and human hepatocytes.
Directory of Open Access Journals (Sweden)
Helene Strick-Marchand
Full Text Available Hepatic infections by hepatitis B virus (HBV, hepatitis C virus (HCV and Plasmodium parasites leading to acute or chronic diseases constitute a global health challenge. The species tropism of these hepatotropic pathogens is restricted to chimpanzees and humans, thus model systems to study their pathological mechanisms are severely limited. Although these pathogens infect hepatocytes, disease pathology is intimately related to the degree and quality of the immune response. As a first step to decipher the immune response to infected hepatocytes, we developed an animal model harboring both a human immune system (HIS and human hepatocytes (HUHEP in BALB/c Rag2-/- IL-2Rγc-/- NOD.sirpa uPAtg/tg mice. The extent and kinetics of human hepatocyte engraftment were similar between HUHEP and HIS-HUHEP mice. Transplanted human hepatocytes were polarized and mature in vivo, resulting in 20-50% liver chimerism in these models. Human myeloid and lymphoid cell lineages developed at similar frequencies in HIS and HIS-HUHEP mice, and splenic and hepatic compartments were humanized with mature B cells, NK cells and naïve T cells, as well as monocytes and dendritic cells. Taken together, these results demonstrate that HIS-HUHEP mice can be stably (> 5 months and robustly engrafted with a humanized immune system and chimeric human liver. This novel HIS-HUHEP model provides a platform to investigate human immune responses against hepatotropic pathogens and to test novel drug strategies or vaccine candidates.
Levy, Sebastien; Duda, Marlena; Haber, Nick; Wall, Dennis P
2017-01-01
Autism spectrum disorder (ASD) diagnosis can be delayed due in part to the time required for administration of standard exams, such as the Autism Diagnostic Observation Schedule (ADOS). Shorter and potentially mobilized approaches would help to alleviate bottlenecks in the healthcare system. Previous work using machine learning suggested that a subset of the behaviors measured by ADOS can achieve clinically acceptable levels of accuracy. Here we expand on this initial work to build sparse models that have higher potential to generalize to the clinical population. We assembled a collection of score sheets for two ADOS modules, one for children with phrased speech (Module 2; 1319 ASD cases, 70 controls) and the other for children with verbal fluency (Module 3; 2870 ASD cases, 273 controls). We used sparsity/parsimony enforcing regularization techniques in a nested cross validation grid search to select features for 17 unique supervised learning models, encoding missing values as additional indicator features. We augmented our feature sets with gender and age to train minimal and interpretable classifiers capable of robust detection of ASD from non-ASD. By applying 17 unique supervised learning methods across 5 classification families tuned for sparse use of features and to be within 1 standard error of the optimal model, we find reduced sets of 10 and 5 features used in a majority of models. We tested the performance of the most interpretable of these sparse models, including Logistic Regression with L2 regularization or Linear SVM with L1 regularization. We obtained an area under the ROC curve of 0.95 for ADOS Module 3 and 0.93 for ADOS Module 2 with less than or equal to 10 features. The resulting models provide improved stability over previous machine learning efforts to minimize the time complexity of autism detection due to regularization and a small parameter space. These robustness techniques yield classifiers that are sparse, interpretable and that have
Baroclinic Planetary Boundary-Layer Model for Neutral and Stable Stratification Conditions
Djolov, G. D.; Yordanov, D. L.; Syrakov, D. E.
The temperature and wind profiles in abaroclinic atmospheric boundary layer (ABL) are investigated.Assuming stationary conditions, the turbulent state in the ABL forstable and neutral conditions is uniquely determined by the Rossbynumber, the external stratification parameter and two externalbaroclinic parameters. A simple two-layer baroclinic model isdeveloped. It consists of a surface layer (SL) and overlyingEkman-type layer. The system of dynamic and heat transfer equations isclosed using K-theory. In the SL the turbulent exchangecoefficient is consistent with the results of similarity theorywhile in the Ekman layer it is assumed constant. The universalfunctions in the resistance, heat and humidity transfer laws arededuced from the analytical solutions for the wind and temperatureprofiles. The solutions of the ABL resistance laws for theinternal ABL parameters, necessary for the calculations of the ABLprofiles, are approximated in terms of the external ABLparameters. Favourable agreement of model results with theavailable experimental data is demonstrated.
A stable and reproducible human blood-brain barrier model derived from hematopoietic stem cells.
Directory of Open Access Journals (Sweden)
Romeo Cecchelli
Full Text Available The human blood brain barrier (BBB is a selective barrier formed by human brain endothelial cells (hBECs, which is important to ensure adequate neuronal function and protect the central nervous system (CNS from disease. The development of human in vitro BBB models is thus of utmost importance for drug discovery programs related to CNS diseases. Here, we describe a method to generate a human BBB model using cord blood-derived hematopoietic stem cells. The cells were initially differentiated into ECs followed by the induction of BBB properties by co-culture with pericytes. The brain-like endothelial cells (BLECs express tight junctions and transporters typically observed in brain endothelium and maintain expression of most in vivo BBB properties for at least 20 days. The model is very reproducible since it can be generated from stem cells isolated from different donors and in different laboratories, and could be used to predict CNS distribution of compounds in human. Finally, we provide evidence that Wnt/β-catenin signaling pathway mediates in part the BBB inductive properties of pericytes.
A stable and robust calibration scheme of the log-periodic power law model
Filimonov, V.; Sornette, D.
2013-09-01
We present a simple transformation of the formulation of the log-periodic power law formula of the Johansen-Ledoit-Sornette (JLS) model of financial bubbles that reduces it to a function of only three nonlinear parameters. The transformation significantly decreases the complexity of the fitting procedure and improves its stability tremendously because the modified cost function is now characterized by good smooth properties with in general a single minimum in the case where the model is appropriate to the empirical data. We complement the approach with an additional subordination procedure that slaves two of the nonlinear parameters to the most crucial nonlinear parameter, the critical time tc, defined in the JLS model as the end of the bubble and the most probable time for a crash to occur. This further decreases the complexity of the search and provides an intuitive representation of the results of the calibration. With our proposed methodology, metaheuristic searches are not longer necessary and one can resort solely to rigorous controlled local search algorithms, leading to a dramatic increase in efficiency. Empirical tests on the Shanghai Composite index (SSE) from January 2007 to March 2008 illustrate our findings.
DEFF Research Database (Denmark)
Failla, Virgilio; Melillo, Francesca; Reichstein, Toke
2014-01-01
Is entrepreneurship a more stable career choice for high employment turnover individuals? We find that a transition to entrepreneurship induces a shift towards stayer behavior and identify job matching, job satisfaction and lock-in effects as main drivers. These findings have major implications...
African Journals Online (AJOL)
Results of the study suggest that there are two main carbon pathways for plankton and nekton in the Kariega estuary, carbon derived from the eelgrass and its associated epiphytes and carbon which has its origins in the salt marsh riparian vegetation and zooplankton. Keywords: stable isotope analysis; temperate estuary; ...
Directory of Open Access Journals (Sweden)
Salces Judit
2011-08-01
Full Text Available Abstract Background Reference genes with stable expression are required to normalize expression differences of target genes in qPCR experiments. Several procedures and companion software have been proposed to find the most stable genes. Model based procedures are attractive because they provide a solid statistical framework. NormFinder, a widely used software, uses a model based method. The pairwise comparison procedure implemented in GeNorm is a simpler procedure but one of the most extensively used. In the present work a statistical approach based in Maximum Likelihood estimation under mixed models was tested and compared with NormFinder and geNorm softwares. Sixteen candidate genes were tested in whole blood samples from control and heat stressed sheep. Results A model including gene and treatment as fixed effects, sample (animal, gene by treatment, gene by sample and treatment by sample interactions as random effects with heteroskedastic residual variance in gene by treatment levels was selected using goodness of fit and predictive ability criteria among a variety of models. Mean Square Error obtained under the selected model was used as indicator of gene expression stability. Genes top and bottom ranked by the three approaches were similar; however, notable differences for the best pair of genes selected for each method and the remaining genes of the rankings were shown. Differences among the expression values of normalized targets for each statistical approach were also found. Conclusions Optimal statistical properties of Maximum Likelihood estimation joined to mixed model flexibility allow for more accurate estimation of expression stability of genes under many different situations. Accurate selection of reference genes has a direct impact over the normalized expression values of a given target gene. This may be critical when the aim of the study is to compare expression rate differences among samples under different environmental
Parry, W. T.; Bowman, J. R.
1990-10-01
Thermal springs of the Boundary Creek hydrothermal system in the southwestern part of Yellowstone Park outside the caldera boundary vary in chemical and isotopic composition, and temperature. The diversity may be accounted for by a combination of processes including boiling of a deep thermal water, mixing of the deep thermal water with cool meteoric water and/or with condensed steam or steam-heated meteoric water, and chemical reactions with surrounding rocks. Dissolved-silica, Na +, K + and Ca 2+ contents of the thermal springs could result from a thermal fluid with a temperature of 200 ± 20°C. Chloride-enthalpy and silica-enthalpy mixing models suggest mixing of 230°C, 220 mg/l Cl - thermal water with cool, low-Cl - components. A 350 to 390°C component with Cl - ≥ 300 mg/l is possibly present in thermal springs inside the caldera but is not required to fit observed spring chemical and isotopic compositions. Irreversible mass transfer models in which a low-temperature water reacts with volcanic glass as it percolates downward and warms, can account for observed pH and dissolved-silica, K +, Na +, Ca 2+ and Mg 2+ concentrations, but produces insufficient Cl - or F - for measured concentrations in the warm springs. The ratio of aNa/ aH, and Cl - are best accounted for in mixing models. The water-rock interaction model fits compositions of acid-sulfate waters observed at Summit Lake and of low-Cl - waters involved in mixing. The cold waters collected from southwestern Yellowstone Park have δD values ranging from -118 to -145 per mil and δ18O values of -15.9 to -19.4 per mil. Two samples from nearby Island Park have δD values of -112 and -114 per mil and δ18O values of -15.1 and -15.3 per mil. All samples of thermal water plot significantly to the right of the meteoric water line. The low Cl - and variable δD values of the thermal waters indicate isotopic compositions are derived by extensive dilution with cold meteoric water and by steam separation on
A stable implementation of the prestack exploding reflector modeling and migration
Alkhalifah, Tariq Ali
2011-01-01
The double square-root DSR equation is known to image data by downward continuation using one-way depth extrapolation methods. A two-way time extrapolation of the DSR-derived phase operator suffers from an essential singularity for horizontally traveling waves. This singularity can be avoided by limiting the range of wavenumbers treated in a spectral-based extrapolation referred to as the low-rank method. However, the region around the singularity will still induce instability. We derive an approximation to the DSR formulation based on a high frequency approximation. The resulting equation is both highly accurate and free of singularities. Applications to synthetic data including imaging of the Marmousi dataset demonstrate the accuracy of the new prestack modeling and migration approach. © 2011 Society of Exploration Geophysicists.
Model-free adaptive fractional order control of stable linear time-varying systems.
Yakoub, Z; Amairi, M; Chetoui, M; Saidi, B; Aoun, M
2017-03-01
This paper presents a new model-free adaptive fractional order control approach for linear time-varying systems. An online algorithm is proposed to determine some frequency characteristics using a selective filtering and to design a fractional PID controller based on the numerical optimization of the frequency-domain criterion. When the system parameters are time-varying, the controller is updated to keep the same desired performances. The main advantage of the proposed approach is that the controller design depends only on the measured input and output signals of the process. The effectiveness of the proposed method is assessed through a numerical example. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Energy Technology Data Exchange (ETDEWEB)
R. L. Street; F. L. Ludwig; Y. Chen
2005-04-11
Our DOE project is one of the efforts comprising the Vertical Transport and Mixing Program of the Environmental Sciences Division of the Office of Biological and Environmental Research in Department of Energy. We used ARPS to simulate flow in the Salt Lake Valley. We simulated the physical processes more accurately so that we can better understand the physics of flow in complex terrain and its effects at larger scales. The simulations provided evidence that atmospheric forcing interacts with the Jordan Narrows, the Traverse Range and other complex mountain terrain at the south end of the Salt Lake Valley to produce lee rotors, hydraulic jumps and other effects. While we have successfully used ARPS to simulate VTMX 2000 flows, we have also used observed data to test the model and identify some of its weaknesses. Those are being addressed in a continuation project supported by DOE.
Cunning, Ross; Muller, Erik B; Gates, Ruth D; Nisbet, Roger M
2017-10-27
Coral reef ecosystems owe their ecological success - and vulnerability to climate change - to the symbiotic metabolism of corals and Symbiodinium spp. The urgency to understand and predict the stability and breakdown of these symbioses (i.e., coral 'bleaching') demands the development and application of theoretical tools. Here, we develop a dynamic bioenergetic model of coral-Symbiodinium symbioses that demonstrates realistic steady-state patterns in coral growth and symbiont abundance across gradients of light, nutrients, and feeding. Furthermore, by including a mechanistic treatment of photo-oxidative stress, the model displays dynamics of bleaching and recovery that can be explained as transitions between alternate stable states. These dynamics reveal that "healthy" and "bleached" states correspond broadly to nitrogen- and carbon-limitation in the system, with transitions between them occurring as integrated responses to multiple environmental factors. Indeed, a suite of complex emergent behaviors reproduced by the model (e.g., bleaching is exacerbated by nutrients and attenuated by feeding) suggests it captures many important attributes of the system; meanwhile, its modular framework and open source R code are designed to facilitate further problem-specific development. We see significant potential for this modeling framework to generate testable hypotheses and predict integrated, mechanistic responses of corals to environmental change, with important implications for understanding the performance and maintenance of symbiotic systems. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Sriskantharajah, S.; Fisher, R.; Lowry, D.; Grassineau, N.; Nisbet, E. G.
2004-12-01
Landfill is a major source of methane emissions into the atmosphere. Aerobic soil is also a good sink of methane, as it is inhabited by methane consuming bacteria, methanotrophs. Methanotrophic bacteria were cultured from landfill soil samples. Three genera of methanotrophs were cultured: Methylocaldum, Methylosinus and Methylomonas. Interestingly, the only established members of the Methylocaldum genus are all thermophilic, whilst those isolated in this study are mesophilic. This suggests that those Methylocaldum methanotrophs found in landfills may have migrated from hot spring natural settings. Representatives of each genera were inoculated into a simple topsoil model and subjected to variations in temperature, methane concentration and incubation periods. As expected, temperature greatly affected methane oxidation, but methane concentration affected the rate of oxidation far more than expected. The model study implies that the complete combustion of methane to carbon dioxide is greatly affected by temperature and methane availability, whilst the effect on the uptake of methane is not as great. Seasonal variations in methane concentrations within the topsoil were monitored over a one year period from November 2002 to October 2003 and show that methane flow through the topsoil, and consequently methanotrophy, is strongly controlled by meteorology, mainly air temperature and pressure. Generally, methanotrophy was low during colder months and higher at during warmer months, but changes in air pressure complicate this by controlling the rate of flow of methane through the topsoil. δ 13C analyses of methane and carbon dioxide emitted from landfill topsoil showed that there was a great deal of methanotrophic activity during the warmer months of 2003, with most fractionation of residual methane occurring during August. During the heat wave experienced in the UK in August 2003, the δ 13C from borehole samples of methane in the anaerobic zone shifted from -57‰ to -16
Energy Technology Data Exchange (ETDEWEB)
Adams, Douglas H., E-mail: Doug.Adams@MyFWC.com; Paperno, Richard
2012-01-01
Stable-isotope ratios ({delta}{sup 13}C and {delta}{sup 15}N) and mercury in a model predator, and associated prey community assessments were used to make inferences regarding food web relationships and how these relationships are influenced by habitat variability and anthropogenic factors. Although interconnected, the three major basins of the Indian River Lagoon system on the Atlantic coast of Florida comprise noticeably different available habitat types with spatially distinct faunal communities and available prey for spotted seatrout, Cynoscion nebulosus, a model predatory fish species. Water quality, degree of urbanization, human population density, and levels of nitrogen enrichment clearly differ between these representative estuarine basins. The differences can influence feeding ecology and therefore result in different mercury concentrations and different stable-isotope signatures of spotted seatrout between basins. Mercury concentrations in spotted seatrout were greatest in Mosquito Lagoon (ML) and least in the Indian River Lagoon proper (IRL), although concentrations were low for all basins. Spotted seatrout from IRL were carbon-depleted and nitrogen-enriched compared with those from the other basins; this suggests either that the fish's primary source of carbon in IRL is an algae- or phytoplankton-based food web or that the pathway through the food web is shorter there. The {delta}{sup 15}N values of IRL spotted seatrout were greater than those in the Banana River Lagoon or ML, suggesting slightly different trophic positioning of fish in these basins. The greater {delta}{sup 15}N values in IRL spotted seatrout may also reflect the greater human population density and resultant anthropogenic inputs (e.g., observed higher total nitrogen levels) in IRL compared with the other more pristine basins examined. Understanding species' responses to broad-scale habitat heterogeneity in estuaries and knowing basin-specific differences in stable isotopes
Pomerantseva, Irina; Bichara, David A.; Tseng, Alan; Cronce, Michael J.; Cervantes, Thomas M.; Kimura, Anya M.; Neville, Craig M.; Roscioli, Nick; Vacanti, Joseph P.; Randolph, Mark A.
2016-01-01
Advancement of engineered ear in clinical practice is limited by several challenges. The complex, largely unsupported, three-dimensional auricular neocartilage structure is difficult to maintain. Neocartilage formation is challenging in an immunocompetent host due to active inflammatory and immunological responses. The large number of autologous chondrogenic cells required for engineering an adult human-sized ear presents an additional challenge because primary chondrocytes rapidly dedifferentiate during in vitro culture. The objective of this study was to engineer a stable, human ear-shaped cartilage in an immunocompetent animal model using expanded chondrocytes. The impact of basic fibroblast growth factor (bFGF) supplementation on achieving clinically relevant expansion of primary sheep chondrocytes by in vitro culture was determined. Chondrocytes expanded in standard medium were either combined with cryopreserved, primary passage 0 chondrocytes at the time of scaffold seeding or used alone as control. Disk and human ear-shaped scaffolds were made from porous collagen; ear scaffolds had an embedded, supporting titanium wire framework. Autologous chondrocyte-seeded scaffolds were implanted subcutaneously in sheep after 2 weeks of in vitro incubation. The quality of the resulting neocartilage and its stability and retention of the original ear size and shape were evaluated at 6, 12, and 20 weeks postimplantation. Neocartilage produced from chondrocytes that were expanded in the presence of bFGF was superior, and its quality improved with increased implantation time. In addition to characteristic morphological cartilage features, its glycosaminoglycan content was high and marked elastin fiber formation was present. The overall shape of engineered ears was preserved at 20 weeks postimplantation, and the dimensional changes did not exceed 10%. The wire frame within the engineered ear was able to withstand mechanical forces during wound healing and neocartilage
Vihma, T.; Kilpeläinen, T.; Rontu, L.; Anderson, P.S.; Orr, A.; Phillips, T.; Finkele, K.; Rodrigo, I.; Holtslag, A.A.M.; Svensson, G.
2012-01-01
Numerical weather prediction and climate models continue to have large errors for stable boundary layers (SBL). To understand and to improve on this, so far three atmospheric boundary layer model inter-comparison studies have been organised within the Global Energy and Water Cycle Experiment (GEWEX)
Fournier, Auriel M. V.; Sullivan, Alexis R.; Bump, Joseph K.; Perkins, Marie; Shieldcastle, Mark C.; King, Sammy L.
2017-01-01
Stable hydrogen isotope (δD) methods for tracking animal movement are widely used yet often produce low resolution assignments. Incorporating prior knowledge of abundance, distribution or movement patterns can ameliorate this limitation, but data are lacking for most species. We demonstrate how observations reported by citizen scientists can be used to develop robust estimates of species distributions and to constrain δD assignments.We developed a Bayesian framework to refine isotopic estimates of migrant animal origins conditional on species distribution models constructed from citizen scientist observations. To illustrate this approach, we analysed the migratory connectivity of the Virginia rail Rallus limicola, a secretive and declining migratory game bird in North America.Citizen science observations enabled both estimation of sampling bias and construction of bias-corrected species distribution models. Conditioning δD assignments on these species distribution models yielded comparably high-resolution assignments.Most Virginia rails wintering across five Gulf Coast sites spent the previous summer near the Great Lakes, although a considerable minority originated from the Chesapeake Bay watershed or Prairie Pothole region of North Dakota. Conversely, the majority of migrating Virginia rails from a site in the Great Lakes most likely spent the previous winter on the Gulf Coast between Texas and Louisiana.Synthesis and applications. In this analysis, Virginia rail migratory connectivity does not fully correspond to the administrative flyways used to manage migratory birds. This example demonstrates that with the increasing availability of citizen science data to create species distribution models, our framework can produce high-resolution estimates of migratory connectivity for many animals, including cryptic species. Empirical evidence of links between seasonal habitats will help enable effective habitat management, hunting quotas and population monitoring and
2015-01-01
Stable beams: two simple words that carry so much meaning at CERN. When LHC page one switched from "squeeze" to "stable beams" at 10.40 a.m. on Wednesday, 3 June, it triggered scenes of jubilation in control rooms around the CERN sites, as the LHC experiments started to record physics data for the first time in 27 months. This is what CERN is here for, and it’s great to be back in business after such a long period of preparation for the next stage in the LHC adventure. I’ve said it before, but I’ll say it again. This was a great achievement, and testimony to the hard and dedicated work of so many people in the global CERN community. I could start to list the teams that have contributed, but that would be a mistake. Instead, I’d simply like to say that an achievement as impressive as running the LHC – a machine of superlatives in every respect – takes the combined effort and enthusiasm of everyone ...
Cabiati, Manuela; Raucci, Serena; Caselli, Chiara; Guzzardi, Maria Angela; D'Amico, Andrea; Prescimone, Tommaso; Giannessi, Daniela; Del Ry, Silvia
2012-06-01
Obesity is a complex pathology with interacting and confounding causes due to the environment, hormonal signaling patterns, and genetic predisposition. At present, the Zucker rat is an eligible genetic model for research on obesity and metabolic syndrome, allowing scrutiny of gene expression profiles. Real-time PCR is the benchmark method for measuring mRNA expressions, but the accuracy and reproducibility of its data greatly depend on appropriate normalization strategies. In the Zucker rat model, no specific reference genes have been identified in myocardium, kidney, and lung, the main organs involved in this syndrome. The aim of this study was to select among ten candidates (Actb, Gapdh, Polr2a, Ywhag, Rpl13a, Sdha, Ppia, Tbp, Hprt1 and Tfrc) a set of reference genes that can be used for the normalization of mRNA expression data obtained by real-time PCR in obese and lean Zucker rats both at fasting and during acute hyperglycemia. The most stable genes in the heart were Sdha, Tbp, and Hprt1; in kidney, Tbp, Actb, and Gapdh were chosen, while Actb, Ywhag, and Sdha were selected as the most stably expressed set for pulmonary tissue. The normalization strategy was used to analyze mRNA expression of tumor necrosis factor α, the main inflammatory mediator in obesity, whose variations were more significant when normalized with the appropriately selected reference genes. The findings obtained in this study underline the importance of having three stably expressed reference gene sets for use in the cardiac, renal, and pulmonary tissues of an experimental model of obese and hyperglycemic Zucker rats.
Sengar, Rahul; Tauris, Thomas M.; Langer, Norbert; Istrate, Alina G.
2017-09-01
Tight binaries of helium white dwarfs (He WDs) orbiting millisecond pulsars (MSPs) will eventually 'merge' due to gravitational damping of the orbit. The outcome has been predicted to be the production of long-lived ultracompact X-ray binaries (UCXBs), in which the WD transfers material to the accreting neutron star (NS). Here we present complete numerical computations, for the first time, of such stable mass transfer from a He WD to a NS. We have calculated a number of complete binary stellar evolution tracks, starting from pre-low-mass X-ray binary systems, and evolved these to detached MSP+WD systems and further on to UCXBs. The minimum orbital period is found to be as short as 5.6 min. We followed the subsequent widening of the systems until the donor stars become planets with a mass of ˜0.005 M⊙ after roughly a Hubble time. Our models are able to explain the properties of observed UCXBs with high helium abundances and we can identify these sources on the ascending or descending branch in a diagram displaying mass-transfer rate versus orbital period.
Weng, E.; Farrior, C.; Dybzinski, R.; Pacala, S. W.
2015-12-01
Leaf mass per area (LMA) and leaf lifespan (LL) are two highly correlated plant traits that are key to plant physiological and ecological properties. Usually, low LMA means short LL, high nitrogen (N) content per unit mass, and fast turnover rates of nutrients; high LMA leads to long LL, low N content, and slow turnover rates. Deciduous trees with low LMA and short lifespan leaves have low carbon cost but high nitrogen demand; and evergreen trees, with high LMA and long lifespan leaves, have high carbon cost but low nitrogen demand. These relationships lead to: 1) evergreen trees have higher leaf area index than deciduous trees; 2) evergreen trees' carbon use efficiency is lower than the deciduous trees' because of their thick leaves and therefore high maintenance respiration; 3) the advantage of evergreens trees brought by their extra leaves over deciduous trees diminishes with increase N in ecosystem. These facts determine who will win when trees compete with each other in a N-limited ecosystem. In this study, we formulate a mathematical model according to the relationships between LMA, LL, leaf nitrogen, and leaf building and maintenance cost, where LMA is the fundamental variable determining the other three. We analyze the evolutionarily stable strategies (ESSs) of LMA with this mathematical model by examining the benefits of carbon and nitrogen investments to leaves in ecosystems with different N. The model shows the ESS converges to low LMA at high N and high LMA at low N. At intermediate N, there are two ESSs at low and high ends of LMA, respectively. The ESS also leads to low forest productivity by outcompeting the possible high productive strategies. We design a simulation scheme in an individual-based competition model (LM3-PPA) to simulate forest dynamics as results of the competition between deciduous and evergreen trees in three different biomes, which are temperate deciduous forest, deciduous-evergreen mixed forest, and boreal evergreen forest. The
Mang, Andreas; Toma, Alina; Schuetz, Tina A; Becker, Stefan; Eckey, Thomas; Mohr, Christian; Petersen, Dirk; Buzug, Thorsten M
2012-07-01
A novel unconditionally stable, explicit numerical method is introduced to the field of modeling brain cancer progression on a tissue level together with an inverse problem (IP) based on optimal control theory that allows for automated model calibration with respect to observations in clinical imaging data. Biophysical models of cancer progression on a tissue level are in general based on the assumption that the spatiotemporal spread of cancerous cells is determined by cell division and net migration. These processes are typically described in terms of a parabolic partial differential equation (PDE). In the present work a parallelized implementation of an unconditionally stable, explicit Euler (EE(⋆) ) time integration method for the solution of this PDE is detailed. The key idea of the discussed EE(⋆) method is to relax the strong stability requirement on the spectral radius of the coefficient matrix by introducing a subdivision regime for a given outer time step. The performance is related to common implicit numerical methods. To quantify the numerical error, a simplified model that has a closed form solution is considered. To allow for a systematic, phenomenological validation a novel approach for automated model calibration on the basis of observations in medical imaging data is developed. The resulting IP is based on optimal control theory and manifests as a large scale, PDE constrained optimization problem. The numerical error of the EE(⋆) method is at the order of standard implicit numerical methods. The computing times are well below those obtained for implicit methods and by that demonstrate efficiency. Qualitative and quantitative analysis in 12 patients demonstrates that the obtained results are in strong agreement with observations in medical imaging data. Rating simulation success in terms of the mean overlap between model predictions and manual expert segmentations yields a success rate of 75% (9 out of 12 patients). The discussed EE(⋆) method
Egert, M.G.G.; Graaf, de A.A.; Maathuis, A.; Waard, de P.; Plugge, C.M.; Smidt, H.; Deutz, N.E.P.; Dijkema, C.; Vos, de W.M.; Venema, K.
2007-01-01
16S rRNA-based stable isotope probing (SIP) and nuclear magnetic resonance (NMR) spectroscopy-based metabolic profiling were used to identify bacteria fermenting glucose under conditions simulating the human intestine. The TIM-2 in vitro model of the human intestine was inoculated with a GI tract
Egert, M.; Graaf, A.A. de; Maathuis, A.; Waard, P. de; Plugge, C.M.; Smidt, H.; Deutz, N.E.P.; Dijkema, C.; Vos, W.M. de; Venema, K.
2007-01-01
16S rRNA-based stable isotope probing (SIP) and nuclear magnetic resonance (NMR) spectroscopy-based metabolic profiling were used to identify bacteria fermenting glucose under conditions simulating the human intestine. The TIM-2 in vitro model of the human intestine was inoculated with a GI tract
Sterk, H.A.M.; Steeneveld, G.J.; Holtslag, A.A.M.
2013-01-01
To enhance the understanding of the impact of small-scale processes in the polar climate, this study focuses on the relative role of snow-surface coupling, radiation and turbulent mixing in an Arctic stable boundary layer. We extend the GABLS1 (GEWEX Atmospheric Boundary-Layer Study 1) model
Directory of Open Access Journals (Sweden)
Cogo Paola E
2007-02-01
Full Text Available Abstract Background In patients with acute respiratory distress syndrome (ARDS, it is well known that only part of the lungs is aerated and surfactant function is impaired, but the extent of lung damage and changes in surfactant turnover remain unclear. The objective of the study was to evaluate surfactant disaturated-phosphatidylcholine turnover in patients with ARDS using stable isotopes. Methods We studied 12 patients with ARDS and 7 subjects with normal lungs. After the tracheal instillation of a trace dose of 13C-dipalmitoyl-phosphatidylcholine, we measured the 13C enrichment over time of palmitate residues of disaturated-phosphatidylcholine isolated from tracheal aspirates. Data were interpreted using a model with two compartments, alveoli and lung tissue, and kinetic parameters were derived assuming that, in controls, alveolar macrophages may degrade between 5 and 50% of disaturated-phosphatidylcholine, the rest being lost from tissue. In ARDS we assumed that 5–100% of disaturated-phosphatidylcholine is degraded in the alveolar space, due to release of hydrolytic enzymes. Some of the kinetic parameters were uniquely determined, while others were identified as lower and upper bounds. Results In ARDS, the alveolar pool of disaturated-phosphatidylcholine was significantly lower than in controls (0.16 ± 0.04 vs. 1.31 ± 0.40 mg/kg, p de novo synthesis of disaturated-phosphatidylcholine were also significantly lower, while mean resident time in lung tissue was significantly higher in ARDS than in controls. Recycling was 16.2 ± 3.5 in ARDS and 31.9 ± 7.3 in controls (p = 0.08. Conclusion In ARDS the alveolar pool of surfactant is reduced and disaturated-phosphatidylcholine turnover is altered.
Rana, Aarti; Akhter, Yusuf
2016-04-01
Immunizations with the conventional vaccines have failed to effectively inhibit the incidences and further dissemination of the infections. To address it, we have implemented protein structure based strategies to design an efficient multi-epitope subunit vaccine against Mycobacterium avium subsp. paratuberculosis (MAP). Previously reported immunodominant peptide epitope sequences from MAP1611 protein were conjugated together with a stretch of conserved amino acid residues of heparin-binding hemagglutinin, reported as a TLR4 agonist and was employed as an adjuvant to polarize the cellular responses toward host protective Th1 responses. These three types of component peptides were combined with the help of relevant linkers for efficient separation to improve and intensify the antigen processing and presentation. The primary structures of these multi peptides were 3-dimensional homology modeled to yield the final chimeric vaccine. Further, its conformational correctness and stability enhancement was assessed using molecular dynamics (MD) simulations. Finally, disulfide engineering in the most flexible regions of the molecule yielded three potential mutants, Y593C-E610C, Q631C-A634C and a double mutant Q631C-A634C/Y593C-E610C. The double mutant represents thermodynamically most stable version among them. It is potentially highly antigenic, soluble and non-allergen molecule interacting with the TLR receptor expressed on the immune cells. This vaccine contains both T-cell and several B-cell epitopes and an adjuvant which potentially possess protective cellular and humoral immune responses triggering properties. The presented vaccine strategy will be proven a promising pathogen specific candidate with wide therapeutic application against MAP which may be extended to other prevalent infections in future. Copyright © 2015 Elsevier GmbH. All rights reserved.
Energy Technology Data Exchange (ETDEWEB)
Kleber, M.; Nico, P.S.; Plante, A.; Filley, T.; Kramer, M.; Swanston, C.; Sollins, P.
2010-03-01
Soil carbon turnover models generally divide soil carbon into pools with varying intrinsic decomposition rates. Although these decomposition rates are modified by factors such as temperature, texture, and moisture, they are rationalized by assuming chemical structure is a primary controller of decomposition. In the current work, we use near edge X-ray absorption fine structure (NEXAFS) spectroscopy in combination with differential scanning calorimetry (DSC) and alkaline cupric oxide (CuO) oxidation to explore this assumption. Specifically, we examined material from the 2.3-2.6 kg L{sup -1} density fraction of three soils of different type (Oxisol, Alfisol, Inceptisol). The density fraction with the youngest {sup 14}C age (Oxisol, 107 years) showed the highest relative abundance of aromatic groups and the lowest O-alkyl C/aromatic C ratio as determined by NEXAFS. Conversely, the fraction with the oldest C (Inceptisol, 680 years) had the lowest relative abundance of aromatic groups and highest O-alkyl C/aromatic C ratio. This sample also had the highest proportion of thermally labile materials as measured by DSC, and the highest ratio of substituted fatty acids to lignin phenols as indicated by CuO oxidation. Therefore, the organic matter of the Inceptisol sample, with a {sup 14}C age associated with 'passive' pools of carbon (680 years), had the largest proportion of easily metabolizable organic molecules with low thermodynamic stability, whereas the organic matter of the much younger Oxisol sample (107 years) had the highest proportion of supposedly stable organic structures considered more difficult to metabolize. Our results demonstrate that C age is not necessarily related to molecular structure or thermodynamic stability, and we suggest that soil carbon models would benefit from viewing turnover rate as codetermined by the interaction between substrates, microbial actors, and abiotic driving variables. Furthermore, assuming that old carbon is composed
Directory of Open Access Journals (Sweden)
Tobias Hacker
2012-04-01
Full Text Available The integral boundary layer system (IBL with spatially periodic coefficients arises as a long wave approximation for the flow of a viscous incompressible fluid down a wavy inclined plane. The Nusselt-like stationary solution of the IBL is linearly at best marginally stable; i.e., it has essential spectrum at least up to the imaginary axis. Nevertheless, in this stable case we show that localized perturbations of the ground state decay in a self-similar way. The proof uses the renormalization group method in Bloch variables and the fact that in the stable case the Burgers equation is the amplitude equation for long waves of small amplitude in the IBL. It is the first time that such a proof is given for a quasilinear PDE with spatially periodic coefficients.
Directory of Open Access Journals (Sweden)
F. J. Bragg
2013-03-01
Full Text Available Atmospheric CO2 concentration is hypothesized to influence vegetation distribution via tree–grass competition, with higher CO2 concentrations favouring trees. The stable carbon isotope (δ13C signature of vegetation is influenced by the relative importance of C4 plants (including most tropical grasses and C3 plants (including nearly all trees, and the degree of stomatal closure – a response to aridity – in C3 plants. Compound-specific δ13C analyses of leaf-wax biomarkers in sediment cores of an offshore South Atlantic transect are used here as a record of vegetation changes in subequatorial Africa. These data suggest a large increase in C3 relative to C4 plant dominance after the Last Glacial Maximum. Using a process-based biogeography model that explicitly simulates 13C discrimination, it is shown that precipitation and temperature changes cannot explain the observed shift in δ13C values. The physiological effect of increasing CO2 concentration is decisive, altering the C3/C4 balance and bringing the simulated and observed δ13C values into line. It is concluded that CO2 concentration itself was a key agent of vegetation change in tropical southern Africa during the last glacial–interglacial transition. Two additional inferences follow. First, long-term variations in terrestrial δ13Cvalues are not simply a proxy for regional rainfall, as has sometimes been assumed. Although precipitation and temperature changes have had major effects on vegetation in many regions of the world during the period between the Last Glacial Maximum and recent times, CO2 effects must also be taken into account, especially when reconstructing changes in climate between glacial and interglacial states. Second, rising CO2 concentration today is likely to be influencing tree–grass competition in a similar way, and thus contributing to the "woody thickening" observed in savannas worldwide. This second inference points to the importance of experiments to
Bragg, F. J.; Prentice, I. C.; Harrison, S. P.; Eglinton, G.; Foster, P. N.; Rommerskirchen, F.; Rullkötter, J.
2013-03-01
Atmospheric CO2 concentration is hypothesized to influence vegetation distribution via tree-grass competition, with higher CO2 concentrations favouring trees. The stable carbon isotope (δ13C) signature of vegetation is influenced by the relative importance of C4 plants (including most tropical grasses) and C3 plants (including nearly all trees), and the degree of stomatal closure - a response to aridity - in C3 plants. Compound-specific δ13C analyses of leaf-wax biomarkers in sediment cores of an offshore South Atlantic transect are used here as a record of vegetation changes in subequatorial Africa. These data suggest a large increase in C3 relative to C4 plant dominance after the Last Glacial Maximum. Using a process-based biogeography model that explicitly simulates 13C discrimination, it is shown that precipitation and temperature changes cannot explain the observed shift in δ13C values. The physiological effect of increasing CO2 concentration is decisive, altering the C3/C4 balance and bringing the simulated and observed δ13C values into line. It is concluded that CO2 concentration itself was a key agent of vegetation change in tropical southern Africa during the last glacial-interglacial transition. Two additional inferences follow. First, long-term variations in terrestrial δ13Cvalues are not simply a proxy for regional rainfall, as has sometimes been assumed. Although precipitation and temperature changes have had major effects on vegetation in many regions of the world during the period between the Last Glacial Maximum and recent times, CO2 effects must also be taken into account, especially when reconstructing changes in climate between glacial and interglacial states. Second, rising CO2 concentration today is likely to be influencing tree-grass competition in a similar way, and thus contributing to the "woody thickening" observed in savannas worldwide. This second inference points to the importance of experiments to determine how vegetation
Rohrmann, Alexander; Strecker, Manfred R.; Bookhagen, Bodo; Mulch, Andreas; Sachse, Dirk; Pingel, Heiko; Alonso, Ricardo N.; Schilgen, Taylor F.; Montero, Carolina
2015-04-01
Globally, changes in stable isotope ratios of oxygen and hydrogen (δ18O and δD) in the meteoric water cycle result from distillation and evaporation processes. Isotope fractionation occurs when air masses rise in elevation, cool, and reduce their water-vapor holding capacity with decreasing temperature. As such, d18O and dD values from a variety of sedimentary archives are often used to reconstruct changes in continental paleohydrology as well as paleoaltimetry of mountain ranges. Based on 234 stream-water samples, we demonstrate that areas experiencing deep convective storms in the eastern south-central Andes (22 - 28° S) do not show the commonly observed relationship between δ18O and δD with elevation. These convective storms arise from intermontane basins, where diurnal heating forces warm air masses upward, resulting in cloudbursts and raindrop evaporation. Especially at the boundary between the tropical and extra-tropical atmospheric circulation regimes where deep-convective storms are very common (~ 26° to 32° N and S), the impact of such storms may yield non-systematic stable isotope-elevation relationships as convection dominates over adiabatic lifting of air masses. Because convective storms can reduce or mask the depletion of heavy isotopes in precipitation as a function of elevation, linking modern or past topography to patterns of stable isotope proxy records can be compromised in mountainous regions, and atmospheric circulation models attempting to predict stable isotope patterns must have sufficiently high spatial resolution to capture the fractionation dynamics of convective cells. Rohrmann, A. et al. Can stable isotopes ride out the storms? The role of convection for water isotopes in models, records, and paleoaltimetry studies in the central Andes. Earth Planet. Sci. Lett. 407, 187-195 (2014).
Stable Hybrid Adaptive Control,
1982-07-01
STABLE HYBRID ADAPTIVE CONTROL(U) YALE UNIV NEW HAVEN i/i CT CENTER FOR SYSTEMS SCIENCE K S NARENDRA ET AL. JUL 82 8286 Ne@04-76-C-8e7 UNCLASSIFIED...teasrallepsaaw1tflbe~ll b ydd Il"t 5 As is the comtanuous Case cistral to the stability analysis of the hybrid ~IVt* COnRol PO* IMare the sur Models
Directory of Open Access Journals (Sweden)
N. Le Duy
2018-02-01
Full Text Available This study analyzes the influence of local and regional climatic factors on the stable isotopic composition of rainfall in the Vietnamese Mekong Delta (VMD as part of the Asian monsoon region. It is based on 1.5 years of weekly rainfall samples. In the first step, the isotopic composition of the samples is analyzed by local meteoric water lines (LMWLs and single-factor linear correlations. Additionally, the contribution of several regional and local factors is quantified by multiple linear regression (MLR of all possible factor combinations and by relative importance analysis. This approach is novel for the interpretation of isotopic records and enables an objective quantification of the explained variance in isotopic records for individual factors. In this study, the local factors are extracted from local climate records, while the regional factors are derived from atmospheric backward trajectories of water particles. The regional factors, i.e., precipitation, temperature, relative humidity and the length of backward trajectories, are combined with equivalent local climatic parameters to explain the response variables δ18O, δ2H, and d-excess of precipitation at the station of measurement. The results indicate that (i MLR can better explain the isotopic variation in precipitation (R2 = 0.8 compared to single-factor linear regression (R2 = 0.3; (ii the isotopic variation in precipitation is controlled dominantly by regional moisture regimes (∼ 70 % compared to local climatic conditions (∼ 30 %; (iii the most important climatic parameter during the rainy season is the precipitation amount along the trajectories of air mass movement; (iv the influence of local precipitation amount and temperature is not significant during the rainy season, unlike the regional precipitation amount effect; (v secondary fractionation processes (e.g., sub-cloud evaporation can be identified through the d-excess and take
Tran, C; Yazdanpanah, M; Kyriakopoulou, L; Levandovskiy, V; Zahid, H; Naufer, A; Isbrandt, D; Schulze, A
2014-09-25
To develop an accurate stable isotope dilution assay for simultaneous quantification of creatine metabolites ornithine, arginine, creatine, creatinine, and guanidinoacetate in very small blood sample volumes to study creatine metabolism in mice. Liquid-chromatography (C18) tandem mass spectrometry with butylation was performed in positive ionization mode. Stable isotope dilution assay with external calibration was applied to three different specimen types, plasma, whole blood and dried blood spot (DBS). Analytical separation, sensitivity, accuracy, and linearity of the assay were adequate. The stable isotope dilution assay in plasma revealed no significant bias to gold standard methods for the respective analytes. Compared to plasma, we observed an overestimate of creatine and creatinine (2- to 5-fold and 1.2- to 2-fold, respectively) in whole-blood and DBS, and an underestimate of arginine (2.5-fold) in DBS. Validation of the assay in mouse models of creatine deficiency revealed plasma creatine metabolite pattern in good accordance with those observed in human GAMT and AGAT deficiency. Single dose intraperitoneal application of ornithine in wild-type mice lead to fast ornithine uptake (Tmax ≤ 10 min) and elimination (T1/2=24 min), and a decline of guanidinoacetate. The assay is fast and reliable to study creatine metabolism and pharmacokinetics in mouse models of creatine deficiency. Copyright © 2014 Elsevier B.V. All rights reserved.
National Oceanic and Atmospheric Administration, Department of Commerce — Tissue samples (skin, bone, blood, muscle) are analyzed for stable carbon, stable nitrogen, and stable sulfur analysis. Many samples are used in their entirety for...
Determination of urine 3-HPMA, a stable acrolein metabolite in a rat model of spinal cord injury.
Zheng, Lingxing; Park, Jonghyuck; Walls, Michael; Tully, Melissa; Jannasch, Amber; Cooper, Bruce; Shi, Riyi
2013-08-01
Acrolein has been suggested to be involved in a variety of pathological conditions. The monitoring of acrolein is of significant importance in delineating the pathogenesis of various diseases. Aimed at overcoming the reactivity and volatility of acrolein, we describe a specific and stable metabolite of acrolein in urine, N-acetyl-S-3-hydroxypropylcysteine (3-HPMA), as a potential surrogate marker for acrolein quantification. Using the LC/MS/MS method, we demonstrated that 3-HPMA was significantly elevated in a dose-dependent manner when acrolein was injected into rats IP or directly into the spinal cord, but not when acrolein scavengers were co-incubated with acrolein solution. A nonlinear mathematic relationship is established between acrolein injected directly into the spinal cord and a correlated dose-dependent increase of 3-HPMA, suggesting the increase of 3-HPMA becomes less apparent as the level of injected acrolein increases. The elevation of 3-HPMA was further detected in the rat spinal cord injury, a pathological condition known to be associated with elevated endogenous acrolein. This finding was further validated by concomitant confirmation of increased acrolein-lysine adducts using established dot immunoblotting techniques. The noninvasive nature of measuring 3-HPMA concentrations in urine allows for long-term monitoring of acrolein in the same animal and ultimately in human clinical studies. Due to wide spread involvement of acrolein in human health, the benefits of this study have the potential to enhance human health significantly.
Oemrawsingh, Rohit M; Akkerhuis, K Martijn; Van Vark, Laura C; Redekop, W Ken; Rudez, Goran; Remme, Willem J; Bertrand, Michel E; Fox, Kim M; Ferrari, Roberto; Danser, A H Jan; de Maat, Moniek; Simoons, Maarten L; Brugts, Jasper J; Boersma, Eric
2016-03-28
Patients with stable coronary artery disease (CAD) constitute a heterogeneous group in which the treatment benefits by angiotensin-converting enzyme (ACE)-inhibitor therapy vary between individuals. Our objective was to integrate clinical and pharmacogenetic determinants in an ultimate combined risk prediction model. Clinical, genetic, and outcomes data were used from 8726 stable CAD patients participating in the EUROPA/PERGENE trial of perindopril versus placebo. Multivariable analysis of phenotype data resulted in a clinical risk score (range, 0-21 points). Three single-nucleotide polymorphisms (rs275651 and rs5182 in the angiotensin-II type I-receptor gene and rs12050217 in the bradykinin type I-receptor gene) were used to construct a pharmacogenetic risk score (PGXscore; range, 0-6 points). Seven hundred eighty-five patients (9.0%) experienced the primary endpoint of cardiovascular mortality, nonfatal myocardial infarction or resuscitated cardiac arrest, during 4.2 years of follow-up. Absolute risk reductions ranged from 1.2% to 7.5% in the 73.5% of patients with PGXscore of 0 to 2. As a consequence, estimated annual numbers needed to treat ranged from as low as 29 (clinical risk score ≥10 and PGXscore of 0) to 521 (clinical risk score ≤6 and PGXscore of 2). Furthermore, our data suggest that long-term perindopril prescription in patients with a PGXscore of 0 to 2 is cost-effective. Both baseline clinical phenotype, as well as genotype determine the efficacy of widely prescribed ACE inhibition in stable CAD. Integration of clinical and pharmacogenetic determinants in a combined risk prediction model demonstrated a very wide range of gradients of absolute treatment benefit. © 2016 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.
Profitt, Maxine F; Deurveilher, Samuel; Robertson, George S; Rusak, Benjamin; Semba, Kazue
2016-09-01
Disruption of sleep/wake cycles is common in patients with schizophrenia and correlates with cognitive and affective abnormalities. Mice deficient in stable tubule only polypeptide (STOP) show cognitive, behavioral, and neurobiological deficits that resemble those seen in patients with schizophrenia, but little is known about their sleep phenotype. We characterized baseline sleep/wake patterns and recovery sleep following sleep deprivation in STOP null mice. Polysomnography was conducted in adult male STOP null and wild-type (WT) mice under a 12:12 hours light:dark cycle before, during, and after 6 hours of sleep deprivation during the light phase. At baseline, STOP null mice spent more time awake and less time in non-rapid eye movement sleep (NREMS) over a 24-hour period, with more frequent transitions between wake and NREMS, compared to WT mice, especially during the dark phase. The distributions of wake, NREMS and REMS across the light and the dark phases differed by genotype, and so did features of the electroencephalogram (EEG). Following sleep deprivation, both genotypes showed homeostatic increases in sleep duration, with no significant genotype differences in the initial compensatory increase in sleep intensity (EEG delta power). These results indicate that STOP null mice sleep less overall, and their sleep and wake periods are more fragmented than those of WT mice. These features in STOP null mice are consistent with the sleep patterns observed in patients with schizophrenia. © The Author 2016. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Wilkinson, Lynne; Harley, Beth; Sharp, Joseph; Solomon, Suhair; Jacobs, Shahieda; Cragg, Carol; Kriel, Ebrahim; Peton, Neshaan; Jennings, Karen; Grimsrud, Anna
2016-06-01
The ambitious '90-90-90' treatment targets require innovative models of care to support quality antiretroviral therapy (ART) delivery. While evidence for differentiated models of ART delivery is growing, there are few data on the feasibility of scale-up. We describe the implementation of the Adherence Club (AC) model across the Cape Metro health district in Cape Town, South Africa, between January 2011 and March 2015. Using data from monthly aggregate AC monitoring reports and electronic monitoring systems for the district cohort, we report on the number of facilities offering ACs and the number of patients receiving ART care in the AC model. Between January 2011 and March 2015, the AC programme expanded to reach 32 425 patients in 1308 ACs at 55 facilities. The proportion of the total ART cohort retained in an AC increased from 7.3% at the end of 2011 to 25.2% by March 2015. The number of facilities offering ACs also increased and by the end of the study period, 92.3% of patients were receiving ART at a facility that offered ACs. During this time, the overall ART cohort doubled from 66 616 to 128 697 patients. The implementation of the AC programme offset this increase by 51%. ACs now provide ART care to more than 30 000 patients. Further expansion of the model will require additional resources and support. More research is necessary to determine the outcomes and quality of care provided in ACs and other differentiated models of ART delivery, especially when implemented at scale. © 2016 John Wiley & Sons Ltd.
Yang, Weiqiang; Pan, Supriya; Mota, David F.
2017-12-01
Stability analysis of interacting dark-energy models generally divides its parameters space into two regions, (i) wx≥-1 and ξ ≥0 and (ii) wx≤-1 and ξ ≤0 , where wx is the dark-energy equation of state and ξ is the coupling strength of the interaction. Because of this separation, crucial information about the cosmology and phenomenology of these models may be lost. In a recent study, it has been shown that one can unify the two regions with a coupling function that depends on the dark-energy equation of state. In this work, we introduce a new coupling function that also unifies the two regions of the parameter space and generalizes the previous proposal. We analyze this scenario considering the equation of state of dark energy to be either constant or dynamical. We study the cosmology of such models and constrain both scenarios with the use of the latest astronomical data from both the background evolution as well as large-scale structures. Our analysis shows that a nonzero value of the coupling parameter ξ as well as the dark-energy equation of state other than -1 are allowed. However, within 1 σ confidence level, ξ =0 and the dark-energy equation of state equal to -1 are compatible with the current data. In other words, the observational data allow a very small but nonzero deviation from the Λ cosmology; however, within the 1 σ confidence region, the interacting models can mimic the Λ cosmology. In fact, we observe that the models both at the background and perturbative levels are very hard to distinguish from each other and from Λ cosmology as well. Finally, we offer a rigorous analysis on the current tension on H0, allowing different regions of the dark-energy equation of state, which shows that interacting dark-energy models reasonably solve the current tension on H0.
Energy Technology Data Exchange (ETDEWEB)
Carmichael, Ruth H.; Annett, Brendan; Valiela, Ivan
2004-01-01
To test and refine methods to detect nutrient enrichment and resulting eutrophication, we applied the Waquoit Bay nitrogen loading model (NLM) and Estuarine loading model (ELM) to estuaries of Pleasant Bay that receive increasing but low N loads (25-199 kg N ha{sup -1} yr{sup -1}) from land. Contributions of wastewater to these estuaries increased from 7% to 63% as N loads increased, and modeled estimates of dissolved inorganic nitrogen in the water were within {approx}27% of measured values. N isotopic signatures in suspended and benthic organic matter and in tissue of quahogs increased as wastewater contributions to N loads increased, with clams {approx}4%o heavier than organic matter, indicating that even at these low N loads, N from land-derived sources moved detectably up the food web. These results extend the application of NLM and ELM to detect incipient levels of N enrichment and demonstrate that these models can be used in conjunction with isotope measurements as the basis for food web analyses in a system exposed to relatively lower N loads than previously studied.
Stable Boundary Layer Education (STABLE) Final Campaign Summary
Energy Technology Data Exchange (ETDEWEB)
Turner, David D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
2016-03-01
The properties of, and the processes that occur in, the nocturnal stable boundary layer are not well understood, making it difficult to represent adequately in numerical models. The nocturnal boundary layer often is characterized by a temperature inversion and, in the Southern Great Plains region, a low-level jet. To advance our understanding of the nocturnal stable boundary layer, high temporal and vertical resolution data on the temperature and wind properties are needed, along with both large-eddy simulation and cloud-resolving modeling.
Teyssières, Emilie; Corre, Jean-Philippe; Antunes, Stephanie; Rougeot, Catherine; Dugave, Christophe; Jouvion, Grégory; Claudon, Paul; Mikaty, Guillain; Douat, Céline; Goossens, Pierre L; Guichard, Gilles
2016-09-22
The synthesis of bioinspired unnatural backbones leading to foldamers can provide effective peptide mimics with improved properties in a physiological environment. This approach has been applied to the design of structural mimics of membrane active antimicrobial peptides (AMPs) for which activities in vitro have been reported. Yet activities and pharmacokinetic properties in vivo in animal models have remained largely unexplored. Here, we report helical oligourea AMP mimics that are active in vitro against bacterial forms of Bacillus anthracis encountered in vivo, as well as in vivo in inhalational and cutaneous mouse models of B. anthracis infection. The pharmacokinetic profile and the tissue distribution were investigated by β-radio imager whole-body mapping in mice. Low excretion and recovery of the native oligourea in the kidney following intravenous injection is consistent with high stability in vivo. Overall these results provide useful information that support future biomedical development of urea-based foldamer peptide mimics.
National Aeronautics and Space Administration — The code in the stableGP package implements Gaussian process calculations using efficient and numerically stable algorithms. Description of the algorithms is in the...
Directory of Open Access Journals (Sweden)
Yongjian Li
2016-01-01
Full Text Available Axle box bearings are the most critical mechanical components of railway vehicles. Condition monitoring is of great benefit to ensure the healthy status of bearings in the railway train. In this paper, a novel fault diagnosis model for axle box bearing based on symmetric alpha-stable distribution feature extraction and least squares support vector machines (LS-SVM using vibration signals is proposed which is conducted in three main steps. Firstly, fast nonlocal means is used for denoising and ensemble empirical mode decomposition is applied to extract fault feature information. Then a new statistical method of feature extraction, symmetric alpha-stable distribution, is employed to obtain representative features from intrinsic mode functions. Additionally, the hybrid fault feature sets are input into LS-SVM to identify the fault type. To enhance the performance of LS-SVM in the case of small-scale samples, Morlet wavelet kernel function is combined with LS-SVM for the classification of fault type and fault severity and the particle swarm optimization is used for the optimization of LS-WSVM parameters. Finally, the experimental results demonstrate that the proposed approach performs more effectively and robustly than the other methods in small-scale samples for fault detection and classification of railway vehicle bearings.
Richards, Laura A.; Magnone, Daniel; Boyce, Adrian J.; Casanueva-Marenco, Maria J.; van Dongen, Bart E.; Ballentine, Christopher J.; Polya, David A.
2018-02-01
Chronic exposure to arsenic (As) through the consumption of contaminated groundwaters is a major threat to public health in South and Southeast Asia. The source of As-affected groundwaters is important to the fundamental understanding of the controls on As mobilization and subsequent transport throughout shallow aquifers. Using the stable isotopes of hydrogen and oxygen, the source of groundwater and the interactions between various water bodies were investigated in Cambodia's Kandal Province, an area which is heavily affected by As and typical of many circum-Himalayan shallow aquifers. Two-point mixing models based on δD and δ18O allowed the relative extent of evaporation of groundwater sources to be estimated and allowed various water bodies to be broadly distinguished within the aquifer system. Model limitations are discussed, including the spatial and temporal variation in end member compositions. The conservative tracer Cl/Br is used to further discriminate between groundwater bodies. The stable isotopic signatures of groundwaters containing high As and/or high dissolved organic carbon plot both near the local meteoric water line and near more evaporative lines. The varying degrees of evaporation of high As groundwater sources are indicative of differing recharge contributions (and thus indirectly inferred associated organic matter contributions). The presence of high As groundwaters with recharge derived from both local precipitation and relatively evaporated surface water sources, such as ponds or flooded wetlands, are consistent with (but do not provide direct evidence for) models of a potential dual role of surface-derived and sedimentary organic matter in As mobilization.
Directory of Open Access Journals (Sweden)
Elisabeth Frank
Full Text Available The identification of differentially regulated proteins in animal models of psychiatric diseases is essential for a comprehensive analysis of associated psychopathological processes. Mass spectrometry is the most relevant method for analyzing differences in protein expression of tissue and body fluid proteomes. However, standardization of sample handling and sample-to-sample variability are problematic. Stable isotope metabolic labeling of a proteome represents the gold standard for quantitative mass spectrometry analysis. The simultaneous processing of a mixture of labeled and unlabeled samples allows a sensitive and accurate comparative analysis between the respective proteomes. Here, we describe a cost-effective feeding protocol based on a newly developed (15N bacteria diet based on Ralstonia eutropha protein, which was applied to a mouse model for trait anxiety. Tissue from (15N-labeled vs. (14N-unlabeled mice was examined by mass spectrometry and differences in the expression of glyoxalase-1 (GLO1 and histidine triad nucleotide binding protein 2 (Hint2 proteins were correlated with the animals' psychopathological behaviors for methodological validation and proof of concept, respectively. Additionally, phenotyping unraveled an antidepressant-like effect of the incorporation of the stable isotope (15N into the proteome of highly anxious mice. This novel phenomenon is of considerable relevance to the metabolic labeling method and could provide an opportunity for the discovery of candidate proteins involved in depression-like behavior. The newly developed (15N bacteria diet provides researchers a novel tool to discover disease-relevant protein expression differences in mouse models using quantitative mass spectrometry.
Millar, D.; Parsekian, A.; Mercer, J.; Speckman, H. N.; Beverly, D.; Ewers, B. E.; Mackay, D. S.
2016-12-01
Recent work using stable water isotopes has revealed that vegetation across a range of different biomes preferentially take up tightly bound soil water over more mobile pools. This so called two water worlds hypothesis (TWWH) has important implications for hydrological modeling efforts in ecosystems where it holds true, since few if any ecohydrological models incorporate this phenomenon. Further, in ecosystems where the TWWH is supported, information regarding the proportion of soil water in the bound and mobile pools is necessary to inform plant-soil water dynamics in models. In this study, we investigate which soil water pools are used by dominant vegetation in an upper montane and subalpine catchment in the Rocky Mountains of southern Wyoming, and use this information to inform the Terrestrial Regional Ecosystem Exchange Simulator (TREES). Within each catchment, we test the TWWH using stable water isotope analyses in an upland coniferous forest and an adjacent, downgradient groundwater-supported wetland. The proportion of soil water in each pool within each ecosystem was inferred from borehole nuclear magnetic resonance (NMR). These field data are being incorporated into TREES, by partitioning plant water uptake between bound and mobile pools. NMR analyses were conducted in all four ecosystems down to a depth of approximately 75 cm and revealed that while mid growing season soil water content was approximately two-fold higher in the subalpine forest versus that of the upper montane forest, the vast majority of soil water, 86% on average, existed in the bound pool in both ecosystems. Alternatively, soils in both wetlands were saturated throughout their profiles, with a majority of the soil water existing in the mobile pool, 63% on average. These initial findings highlight the importance of bound soil water pools in both upland forests, as opposed to the wetlands, which had an abundance of water in both pools.
Druhan, Jennifer L.; Steefel, Carl I.; Conrad, Mark E.; DePaolo, Donald J.
2014-01-01
This study demonstrates a mechanistic incorporation of the stable isotopes of sulfur within the CrunchFlow reactive transport code to model the range of microbially-mediated redox processes affecting kinetic isotope fractionation. Previous numerical models of microbially mediated sulfate reduction using Monod-type rate expressions have lacked rigorous coupling of individual sulfur isotopologue rates, with the result that they cannot accurately simulate sulfur isotope fractionation over a wide range of substrate concentrations using a constant fractionation factor. Here, we derive a modified version of the dual-Monod or Michaelis-Menten formulation (Maggi and Riley, 2009, 2010) that successfully captures the behavior of the 32S and 34S isotopes over a broad range from high sulfate and organic carbon availability to substrate limitation using a constant fractionation factor. The new model developments are used to simulate a large-scale column study designed to replicate field scale conditions of an organic carbon (acetate) amended biostimulation experiment at the Old Rifle site in western Colorado. Results demonstrate an initial period of iron reduction that transitions to sulfate reduction, in agreement with field-scale behavior observed at the Old Rifle site. At the height of sulfate reduction, effluent sulfate concentrations decreased to 0.5 mM from an influent value of 8.8 mM over the 100 cm flow path, and thus were enriched in sulfate δ34S from 6.3‰ to 39.5‰. The reactive transport model accurately reproduced the measured enrichment in δ34S of both the reactant (sulfate) and product (sulfide) species of the reduction reaction using a single fractionation factor of 0.987 obtained independently from field-scale measurements. The model also accurately simulated the accumulation and δ34S signature of solid phase elemental sulfur over the duration of the experiment, providing a new tool to predict the isotopic signatures associated with reduced mineral pools
Iemhoff, R.; Bezhanishvili, N.; Bezhanishvili, Guram
2016-01-01
We introduce stable canonical rules and prove that each normal modal multi-conclusion consequence relation is axiomatizable by stable canonical rules. We apply these results to construct finite refutation patterns for modal formulas, and prove that each normal modal logic is axiomatizable by stable
Bezhanishvili, G.; Bezhanishvili, N.; Iemhoff, R.
We introduce stable canonical rules and prove that each normal modal multi-conclusion consequence relation is axiomatizable by stable canonical rules. We apply these results to construct finite refutation patterns for modal formulas, and prove that each normal modal logic is axiomatizable by stable
Yakirevich, Alexander; Dody, Avraham; Adar, Eilon M.; Borisov, Viacheslav; Geyh, Mebus
A new mathematical method based on a double-component model of kinematic wave flow and approach assesses the dynamic isotopic distribution in arid rain storms and runoff. This model describes the transport and δ18O evolution of rainfall to overland flow and runoff in an arid rocky watershed with uniformly distributed shallow depression storage. The problem was solved numerically. The model was calibrated using a set of temporal discharge and δ18O distribution data for rainfall and runoff collected on a small rocky watershed at the Sede Boker Experimental Site, Israel. Simulation of a reliable result with respect to observation was obtained after parameter adjustment by trial and error. Sensitivity analysis and model application were performed. The model is sensitive to changes in parameters characterizing the depression storage zones. The model reflects the effect of the isotopic memory in the water within the depression storage between sequential rain spells. The use of the double-component model of kinematic wave flow and transport provides an appropriate qualitative and quantitative fitting between computed and observed δ18O distribution in runoff. RésuméUne nouvelle méthode mathématique basée sur un modèle à double composante d'écoulement et de transport par une onde cinématique a été développée pour évaluer la distribution dynamique en isotopes dans les précipitations et dans l'écoulement en région aride. Ce modèle décrit le transport et les variations des δ18O de la pluie vers le ruissellement et l'écoulement de surface dans un bassin aride rocheux où le stockage se fait dans des dépressions peu profondes uniformément réparties. Le problème a été résolu numériquement. Le modèle a été calibré au moyen d'une chronique de débits et d'une distribution des δ18O dans la pluie et dans l'écoulement de surface sur un petit bassin versant rocheux du site expérimental de Sede Boker (Israël). La simulation d'un résultat cr
Zhu, Guangpu
2018-01-26
In this paper, a fully discrete scheme which considers temporal and spatial discretizations is presented for the coupled Cahn-Hilliard equation in conserved form with the dynamic contact line condition and the Navier-Stokes equation with the generalized Navier boundary condition. Variable densities and viscosities are incorporated in this model. A rigorous proof of energy stability is provided for the fully discrete scheme based on a semi-implicit temporal discretization and a finite difference method on the staggered grids for the spatial discretization. A splitting method based on the pressure stabilization is implemented to solve the Navier-Stokes equation, while the stabilization approach is also used for the Cahn-Hilliard equation. Numerical results in both 2-D and 3-D demonstrate the accuracy, efficiency and decaying property of discrete energy of the proposed scheme.
Well, Reinhard; Böttcher, Jürgen; Butterbach-Bahl, Klaus; Dannenmann, Michael; Deppe, Marianna; Dittert, Klaus; Dörsch, Peter; Horn, Marcus; Ippisch, Olaf; Mikutta, Robert; Müller, Carsten; Müller, Christoph; Senbayram, Mehmet; Vogel, Hans-Jörg; Wrage-Mönnig, Nicole
2016-04-01
Robust denitrification data suitable to validate soil N2 fluxes in denitrification models are scarce due to methodical limitations and the extreme spatio-temporal heterogeneity of denitrification in soils. Numerical models have become essential tools to predict denitrification at different scales. Model performance could either be tested for total gaseous flux (NO + N2O + N2), individual denitrification products (e.g. N2O and/or NO) or for the effect of denitrification factors (e.g. C-availability, respiration, diffusivity, anaerobic volume, etc.). While there are numerous examples for validating N2O fluxes, there are neither robust field data of N2 fluxes nor sufficiently resolved measurements of control factors used as state variables in the models. To the best of our knowledge there has been only one published validation of modelled soil N2 flux by now, using a laboratory data set to validate an ecosystem model. Hence there is a need for validation data at both, the mesocosm and the field scale including validation of individual denitrification controls. Here we present the concept for collecting model validation data which is be part of the DFG-research unit "Denitrification in Agricultural Soils: Integrated Control and Modelling at Various Scales (DASIM)" starting this year. We will use novel approaches including analysis of stable isotopes, microbial communities, pores structure and organic matter fractions to provide denitrification data sets comprising as much detail on activity and regulation as possible as a basis to validate existing and calibrate new denitrification models that are applied and/or developed by DASIM subprojects. The basic idea is to simulate "field-like" conditions as far as possible in an automated mesocosm system without plants in order to mimic processes in the soil parts not significantly influenced by the rhizosphere (rhizosphere soils are studied by other DASIM projects). Hence, to allow model testing in a wide range of conditions
Pulliam, G. R.; Ross, W. E.; MacNeal, B.; Bailey, R. F.
1982-03-01
Large, thin-film single domain areas have been observed, in the absence of a bias field, in garnets with magnetization perpendicular to the film plane.1,2 The domain stability in the work by Krumme1 was attributed to a combination of low saturation magnetization and a low Curie temperature. Uchishiba2 relates the stability in his double layer system to appropriate anisotropy fields in one layer compared to the magnetization in the other layer. A more complete model for large domain stability in a bias field free environment is given in this work. Three distinct stability regimes are predicted by the model and all have been observed experimentally. Areas 3.5-cm in diameter have been made into stable single domains. This was achieved in a material showing a zero bias strip width of 4.5 μm. The single domain diameter was, therefore, 7500 times the equilibrium energy domain width. The technique developed and the model have led to a new means for observing magnetic defects. More importantly, it also offers a means for measuring the strength of the defects. Possible applications of the model are also discussed.
Guarido, M.; Assumpcao, M.; van der Lee, S.; Dourado, J. C.
2009-12-01
Upper mantle seismic anisotropy has been extensively used to infer both present and past deformation processes at lithospheric/asthenospheric depths. We present 17 new measurements of the upper mantle fast polarization directions derived from core refracted shear wave splitting (mainly SKS phases) recorded in poorly sampled regions, such as northern and northeastern Brazil. Despite the sparse data coverage of the South American stable platform, consistent orientations are observed over hundreds of kilometers. The fast polarization directions tend to be close to the absolute plate motion given by the hot-spot reference model HS3-NUVEL1A over most of the continent. A previous global comparison of the SKS fast polarization directions with flow models of the upper mantle by Conrad et al.(2007) showed relatively poor correlation in the continents, which was interpreted as evidence for a large contribution of “frozen” anisotropy in the lithosphere. For the South American plate, our data indicates that the poor correlation may have been due to the relatively coarse model of lithospheric thicknesses. We suggest that improved models of upper mantle flow based on more detailed lithospheric thicknesses in South America may help explain most of the observed anisotropy pattern. The new data suggests asthenospheric flow around the keel of the Amazon craton in northern Brazil, similar to the pattern previously observed around the Sao Francisco craton in SE Brazil.
Dincer, Onur; Cinar, Ibrahim; Karakas, Vedat; Aslan, Ozgur Burak; Gokce, Aisha; Stipe, Barry; Katine, Jordan A.; Aktas, Gulen; Ozatay, Ozhan
2014-03-01
Phase change memory (PCM) appears as a potential memory technology with its superior scalability which could be enhanced by a boost in storage density via multiple-bit per cell functionality. Given the large contrast between set and reset states of a PCM cell it is yet unclear whether it is possible to create intermediate logic states reproducibly and controllably in a device with a single active phase change layer. Here we report the results of a 3D finite element model that pinpoints the direct effect of current distribution and the indirect effect of device top contact fabrication induced defects through modification of phase change kinetics (crystallite nucleation and growth rates) on stabilization of intermediate states. A comprehensive picture of the electrical, thermal and phase change dynamics is obtained using a multiphysics approach. Our study shows that homogeneous and heterogeneous phase transition can be induced in the active region such that nonuniform temperature distribution and modification of switching dynamics with various contact shapes and sizes play a major role in the stabilization of a mixed phase state. This work has been supported by the European Commission FP7 Marie Curie IRG grant: PCM-256281 and TUBITAK grant: 113F385.
Ito, Akihiko
2003-04-01
This paper presents the results of a simulation with a mechanistic terrestrial ecosystem model, focusing on the atmosphere-biosphere exchange and stable isotope composition of carbon. The simulation was performed from 1953 to 1999 on the basis of observed climate data and atmospheric carbon dioxide (CO2) concentration and stable carbon isotope ratio (δ13C). The model, termed Sim-CYCLE, captures carbon dynamics from photosynthetic assimilation to microbial decomposition, including seasonal and interannual variability. Photosynthetic discrimination effect on δ13C was considered at three levels: (1) leaf-level fractionation, (2) canopy-level CO2 recycling and (3) continent-level C3/C4 pattern. The 47-yr simulation estimated that the average gross CO2 flux was 121 Pg C yr-1, and that the average photosynthetic δ13C discrimination coefficient (Δ) was 18.2%. A sensitivity analysis indicated that the estimated Δ depends heavily on the parameterization of stomatal conductance and C3/C4 composition. In spite of their small biomass, C4 plants contributed considerably to the biospheric productivity and belowground carbon supply. The estimated net CO2 and isotopic exchange of the terrestrial ecosystems corresponded, at least qualitatively, with observed atmospheric CO2 and its δ13C seasonal patterns in the Northern Hemisphere. The gross CO2 fluxes of photosynthesis and respiration indicated a wide range of interannual variability, which was in a sufficient magnitude to induce anomalies in the atmospheric CO2 growth rate. The estimated Δ showed a wide range of latitudinal and longitudinal variations and seasonal oscillation, but little interannual change. However, during the 47-yr period, the estimated δ13C of carbon pools decreased by 0.3%, while the δ13C of atmospheric CO2 decreased by 0.7%. These results carry implications for the application of a top-down approach, i.e. the double-deconvolution method, to inferring the global terrestrial CO2 budget.
Directory of Open Access Journals (Sweden)
Jesper Sjolte
2014-09-01
Full Text Available The relation between δ 18O of precipitation and temperature has been used in numerous studies to reconstruct past temperatures at ice core sites in Greenland and Antarctica. During the past two decades, it has become clear that the slope between δ 18O and temperature varies in both space and time. Here, we use a general circulation model driven by changes in orbital parameters to investigate the Greenland δ 18O–temperature relation for the previous interglacial, the Eemian. In our analysis, we focus on changes in the moisture source regions, and the results underline the importance of taking the seasonality of climate change into account. The orbitally driven experiments show that continental evaporation over North America increases during summer in the warm parts of the Eemian, while marine evaporation decreases. This likely flattens the Greenland δ 18O response to temperature during summer. Since the main climate change in the experiments occurs during summer this adds to a limited response of δ 18O, which is more strongly tied to temperature during winter than during summer. A south–west to north–east gradient in the δ 18O–temperature slope is also evident for Greenland, with low slopes in the south–west and steeper slopes in the north–east. This probably reflects the proportion of continental moisture and Arctic moisture arriving in Greenland, with more continental moisture in the south–west and less in the north–east, and vice versa for the Arctic moisture.
Vavilin, Vasily A; Rytov, Sergey V; Shim, Natalia; Vogt, Carsten
2016-06-01
The non-linear dynamics of stable carbon and hydrogen isotope signatures during methane oxidation by the methanotrophic bacteria Methylosinus sporium strain 5 (NCIMB 11126) and Methylocaldum gracile strain 14 L (NCIMB 11912) under copper-rich (8.9 µM Cu(2+)), copper-limited (0.3 µM Cu(2+)) or copper-regular (1.1 µM Cu(2+)) conditions has been described mathematically. The model was calibrated by experimental data of methane quantities and carbon and hydrogen isotope signatures of methane measured previously in laboratory microcosms reported by Feisthauer et al. [ 1 ] M. gracile initially oxidizes methane by a particulate methane monooxygenase and assimilates formaldehyde via the ribulose monophosphate pathway, whereas M. sporium expresses a soluble methane monooxygenase under copper-limited conditions and uses the serine pathway for carbon assimilation. The model shows that during methane solubilization dominant carbon and hydrogen isotope fractionation occurs. An increase of biomass due to growth of methanotrophs causes an increase of particulate or soluble monooxygenase that, in turn, decreases soluble methane concentration intensifying methane solubilization. The specific maximum rate of methane oxidation υm was proved to be equal to 4.0 and 1.3 mM mM(-1) h(-1) for M. sporium under copper-rich and copper-limited conditions, respectively, and 0.5 mM mM(-1) h(-1) for M. gracile. The model shows that methane oxidation cannot be described by traditional first-order kinetics. The kinetic isotope fractionation ceases when methane concentrations decrease close to the threshold value. Applicability of the non-linear model was confirmed by dynamics of carbon isotope signature for carbon dioxide that was depleted and later enriched in (13)C. Contrasting to the common Rayleigh linear graph, the dynamic curves allow identifying inappropriate isotope data due to inaccurate substrate concentration analyses. The non-linear model pretty adequately described experimental
Walczak, Karl; Chen, Yikai; Karp, Christoph; Beeman, Jeffrey W; Shaner, Matthew; Spurgeon, Joshua; Sharp, Ian D; Amashukeli, Xenia; West, William; Jin, Jian; Lewis, Nathan S; Xiang, Chengxiang
2015-02-01
A fully integrated solar-driven water-splitting system comprised of WO3 /FTO/p(+) n Si as the photoanode, Pt/TiO2 /Ti/n(+) p Si as the photocathode, and Nafion as the membrane separator, was simulated, assembled, operated in 1.0 M HClO4 , and evaluated for performance and safety characteristics under dual side illumination. A multi-physics model that accounted for the performance of the photoabsorbers and electrocatalysts, ion transport in the solution electrolyte, and gaseous product crossover was first used to define the optimal geometric design space for the system. The photoelectrodes and the membrane separators were then interconnected in a louvered design system configuration, for which the light-absorbing area and the solution-transport pathways were simultaneously optimized. The performance of the photocathode and the photoanode were separately evaluated in a traditional three-electrode photoelectrochemical cell configuration. The photocathode and photoanode were then assembled back-to-back in a tandem configuration to provide sufficient photovoltage to sustain solar-driven unassisted water-splitting. The current-voltage characteristics of the photoelectrodes showed that the low photocurrent density of the photoanode limited the overall solar-to-hydrogen (STH) conversion efficiency due to the large band gap of WO3 . A hydrogen-production rate of 0.17 mL hr(-1) and a STH conversion efficiency of 0.24 % was observed in a full cell configuration for >20 h with minimal product crossover in the fully operational, intrinsically safe, solar-driven water-splitting system. The solar-to-hydrogen conversion efficiency, ηSTH , calculated using the multiphysics numerical simulation was in excellent agreement with the experimental behavior of the system. The value of ηSTH was entirely limited by the performance of the photoelectrochemical assemblies employed in this study. The louvered design provides a robust platform for implementation of various types of
Kou, Jisheng
2015-03-01
In this paper, we consider multi-component dynamic two-phase interface models, which are formulated by the Cahn-Hilliard system with Peng-Robinson equation of state and various boundary conditions. These models can be derived from the minimum problems of Helmholtz free energy or grand potential in the realistic thermodynamic systems. The resulted Cahn-Hilliard systems with various boundary conditions are fully coupled and strongly nonlinear. A linear transformation is introduced to decouple the relations between different components, and as a result, the models are simplified. From this, we further propose a semi-implicit unconditionally stable time discretization scheme, which allows us to solve the Cahn-Hilliard system by a decoupled way, and thus, our method can significantly reduce the computational cost and memory requirements. The mixed finite element methods are employed for the spatial discretization, and the approximate errors are also analyzed for both space and time. Numerical examples are tested to demonstrate the efficiency of our proposed methods. © 2015 Elsevier B.V.
Nash, Sarah H; Kristal, Alan R; Hopkins, Scarlett E; Boyer, Bert B; O'Brien, Diane M
2014-01-01
Objectively measured biomarkers will help to resolve the controversial role of sugar intake in the etiology of obesity and related chronic diseases. We recently validated a dual-isotope model based on RBC carbon (δ(13)C) and nitrogen (δ(15)N) isotope ratios that explained a large percentage of the variation in self-reported sugar intake in a Yup'ik study population. Stable isotope ratios can easily be measured from many tissues, including RBCs, plasma, and hair; however, it is not known how isotopic models of sugar intake compare among these tissues. Here, we compared self-reported sugar intake with models based on RBCs, plasma, and hair δ(13)C and δ(15)N in Yup'ik people. We also evaluated associations of sugar intake with fasting plasma glucose δ(13)C. Finally, we evaluated relations between δ(13)C and δ(15)N values in hair, plasma, RBCs, and fasting plasma glucose to allow comparison of isotope ratios across tissue types. Models using RBCs, plasma, or hair isotope ratios explained similar amounts of variance in total sugar, added sugar, and sugar-sweetened beverage intake (∼53%, 48%, and 34%, respectively); however, the association with δ(13)C was strongest for models based on RBCs and hair. There were no associations with fasting plasma glucose δ(13)C (R(2) = 0.03). The δ(13)C and δ(15)N values of RBCs, plasma, and hair showed strong, positive correlations; the slopes of these relations did not differ from 1. This study demonstrates that RBC, plasma, and hair isotope ratios predict sugar intake and provides data that will allow comparison of studies using different sample types.
Gong, Yuezheng; Zhao, Jia; Wang, Qi
2017-10-01
A quasi-incompressible hydrodynamic phase field model for flows of fluid mixtures of two incompressible viscous fluids of distinct densities and viscosities is derived by using the generalized Onsager principle, which warrants the variational structure, the mass conservation and energy dissipation law. We recast the model in an equivalent form and discretize the equivalent system in space firstly to arrive at a time-dependent ordinary differential and algebraic equation (DAE) system, which preserves the mass conservation and energy dissipation law at the semi-discrete level. Then, we develop a temporal discretization scheme for the DAE system, where the mass conservation and the energy dissipation law are once again preserved at the fully discretized level. We prove that the fully discretized algorithm is unconditionally energy stable. Several numerical examples, including drop dynamics of viscous fluid drops immersed in another viscous fluid matrix and mixing dynamics of binary polymeric solutions, are presented to show the convergence property as well as the accuracy and efficiency of the new scheme.
Directory of Open Access Journals (Sweden)
Nalin eHarischandra
2015-08-01
Full Text Available An essential component of autonomous and flexible behaviour in animals is active exploration of the environment, allowing for perception-guided planning and control of actions. An important sensory system involved is active touch. Here, we introduce a general modelling framework of Central Pattern Generators (CPGs for movement generation in active tactile exploration behaviour. The CPG consists of two network levels: (i phase-coupled Hopf oscillators for rhythm generation, and (ii pattern formation networks for capturing the frequency and phase characteristics of individual joint oscillations. The model captured the natural, quasi-rhythmic joint kinematics as observed in coordinated antennal movements of walking stick insects. Moreover, it successfully produced tactile exploration behaviour on a three-dimensional skeletal model of the insect antennal system with physically realistic parameters. The effect of proprioceptor ablations could be simulated by changing the amplitude and offset parameters of the joint oscillators, only. As in the animal, the movement of both antennal joints was coupled with a stable phase difference, despite the quasi-rhythmicity of the joint angle time courses. We found that the phase-lead of the distal scape-pedicel joint relative to the proximal head-scape joint was essential for producing the natural tactile exploration behaviour and, thus, for tactile efficiency. For realistic movement patterns, the phase-lead could vary within a limited range of 10 to 30 degrees only. Tests with artificial movement patterns strongly suggest that this phase sensitivity is not a matter of the frequency composition of the natural movement pattern. Based on our modelling results, we propose that a constant phase difference is coded into the CPG of the antennal motor system and that proprioceptors are acting locally to regulate the joint movement amplitude.
Aloulou, Ahmed; Schué, Mathieu; Puccinelli, Delphine; Milano, Stéphane; Delchambre, Chantal; Leblond, Yves; Laugier, René; Carrière, Frédéric
2015-12-01
Pancreatic exocrine insufficiency (PEI) reduces pancreatic secretion of digestive enzymes, including lipases. Oral pancreatic enzyme replacement therapy (PERT) with pancreatin produces unsatisfactory results. The lipase 2 produced by the yeast Yarrowia lipolytica (YLLIP2; GenBank: AJ012632) might be used in PERT. We investigated its ability to digest triglycerides in a test meal and its efficacy in reducing fecal fat in an animal model of PEI. YLLIP2 was produced by genetically engineered Y lipolytica and purified from culture media. YLLIP2 or other gastric (LIPF) and pancreatic (PNLIPD) lipases were added to a meal paste containing dietary triglycerides, at a range of pH values (pH 2-7), with and without pepsin or human bile and incubated at 37°C. We collected samples at various time points and measured lipase activities and stabilities. To create an animal model of PEI, steatorrhea was induced by embolization of the exocrine pancreas gland and pancreatic duct ligation in minipigs. The animals were given YLLIP2 (1, 4, 8, 40, or 80 mg/d) or pancreatin (100,000 US Pharmacopeia lipase units/d, controls) for 9 days. We then collected stool samples, measured fat levels, and calculated coefficient of fat absorption (CFA) values. YLLIP2 was highly stable and poorly degraded by pepsin, and had the highest activity of all lipases tested on meal triglyceride at pH 4-7 (pH 6 with bile: 94 ± 34 U/mg; pH 4 without bile: 43 ± 13 U/mg). Only gastric lipase was active and stable at pH 3, whereas YLLIP2 was sensitive to pepsin hydrolysis after pH inactivation. From in vitro test meal experiments, the lipase activity of YLLIP2 (10 mg) was estimated to be equivalent to that of pancreatin (1200 mg; 100,000 US Pharmacopeia units) at pH 6. In PEI minipigs, CFA values increased from 60.1% ± 9.3% before surgery to 90.5% ± 3.2% after administration of 1200 mg pancreatin (P < .05); CFA values increased to a range of 84.6% ± 3.0% to 90.0% ± 3.8% after administration of 4-80 mg YLLIP
Indian Academy of Sciences (India)
IAS Admin
After Maynard-Smith and Price [1] mathematically derived why a given behaviour or strategy was adopted by a certain proportion of the population at a given time, it was shown that a strategy which is currently stable in a population need not be stable in evolutionary time (across generations). Additionally it was sug-.
Steeneveld, G.J.
2012-01-01
Understanding and prediction of the stable atmospheric boundary layer is a challenging task. Many physical processes are relevant in the stable boundary layer, i.e. turbulence, radiation, land surface coupling, orographic turbulent and gravity wave drag, and land surface heterogeneity. The
Pethybridge, Heidi R.; Young, Jock W.; Kuhnert, Petra M.; Farley, Jessica H.
2015-05-01
Broad-scale food web inferences of 534 albacore tuna, Thunnus alalunga, in the south-west Pacific Ocean in 2009 and 2010 were made using bulk nitrogen (δ15N) and carbon (δ13C) stable isotopes. Condition was also examined for the same fish using C:N ratios. A Generalized Additive Modeling (GAM) approach was used to analyze spatio-temporal, biological and environmental drivers that impact the distribution of tuna isotopes and to create oceanographic maps. Based on model formulations, five bioregions with distinct isotopic signatures were identified and were related to known biological, nutrient cycling and oceanographic (temperature, primary productivity and eddy) features associated with the East Australian Current. δ15N values showed a large-scale, uniform latitudinal gradient decreasing from the south to north, in a region encompassing oligotrophic waters in the Coral Sea. In contrast, δ13C values were lower in the nutrient rich Tasman Sea waters and offshore East Australia. C:N ratios suggested that albacore occupying southern and offshore waters were in better condition. Ontogenetic trends in all three biochemical parameters were identified and related to differences in size distribution. Regional-specific temporal variations were detected including similar monthly changes for both isotopes and significantly less enriched δ13C (by 1.9‰) than in previous work undertaken in 2006, potentially signifying a substantial shift in the carbon cycle that supports food webs off central east Australia. Our results showed that isotopic measurements in tuna and the GAM framework provide powerful tools to assess ecosystem functioning and change by linking sources of nutrients and organic matter to local food web assembly. Such knowledge is vital to support an ecosystem based approach to fisheries management including biogeochemical whole-of-ecosystem models and monitoring programs at regional and landscape-scales.
Suarez Mullins, Astrid
Terrain-induced gravity waves and rotor circulations have been hypothesized to enhance the generation of submeso motions (i.e., nonstationary shear events with spatial and temporal scales greater than the turbulence scale and smaller than the meso-gamma scale) and to modulate low-level intermittency in the stable boundary layer (SBL). Intermittent turbulence, generated by submeso motions and/or the waves, can affect the atmospheric transport and dispersion of pollutants and hazardous materials. Thus, the study of these motions and the mechanisms through which they impact the weakly to very stable SBL is crucial for improving air quality modeling and hazard predictions. In this thesis, the effects of waves and rotor circulations on submeso and turbulence variability within the SBL is investigated over the moderate terrain of central Pennsylvania using special observations from a network deployed at Rock Springs, PA and high-resolution Weather Research and Forecasting (WRF) model forecasts. The investigation of waves and rotors over central PA is important because 1) the moderate topography of this region is common to most of the eastern US and thus the knowledge acquired from this study can be of significance to a large population, 2) there have been little evidence of complex wave structures and rotors reported for this region, and 3) little is known about the waves and rotors generated by smaller and more moderate topographies. Six case studies exhibiting an array of wave and rotor structures are analyzed. Observational evidence of the presence of complex wave structures, resembling nonstationary trapped gravity waves and downslope windstorms, and complex rotor circulations, resembling trapped and jump-type rotors, is presented. These motions and the mechanisms through which they modulate the SBL are further investigated using high-resolution WRF forecasts. First, the efficacy of the 0.444-km horizontal grid spacing WRF model to reproduce submeso and meso
Directory of Open Access Journals (Sweden)
Ronit Shaltiel-Karyo
Full Text Available The intracellular oligomerization of α-synuclein is associated with Parkinson's disease and appears to be an important target for disease-modifying treatment. Yet, to date, there is no specific inhibitor for this aggregation process. Using unbiased systematic peptide array analysis, we identified molecular interaction domains within the β-synuclein polypeptide that specifically binds α-synuclein. Adding such peptide fragments to α-synuclein significantly reduced both amyloid fibrils and soluble oligomer formation in vitro. A retro-inverso analogue of the best peptide inhibitor was designed to develop the identified molecular recognition module into a drug candidate. While this peptide shows indistinguishable activity as compared to the native peptide, it is stable in mouse serum and penetrates α-synuclein over-expressing cells. The interaction interface between the D-amino acid peptide and α-synuclein was mapped by Nuclear Magnetic Resonance spectroscopy. Finally, administering the retro-inverso peptide to a Drosophila model expressing mutant A53T α-synuclein in the nervous system, resulted in a significant recovery of the behavioral abnormalities of the treated flies and in a significant reduction in α-synuclein accumulation in the brains of the flies. The engineered retro-inverso peptide can serve as a lead for developing a novel class of therapeutic agents to treat Parkinson's disease.
Jouvin, D; Weiss, D J; Mason, T F M; Bravin, M N; Louvat, P; Zhao, F; Ferec, F; Hinsinger, P; Benedetti, M F
2012-03-06
Recent reports suggest that significant fractionation of stable metal isotopes occurs during biogeochemical cycling and that the uptake into higher plants is an important process. To test isotopic fractionation of copper (Cu) and zinc (Zn) during plant uptake and constrain its controls, we grew lettuce, tomato, rice and durum wheat under controlled conditions in nutrient solutions with variable metal speciation and iron (Fe) supply. The results show that the fractionation patterns of these two micronutrients are decoupled during the transport from nutrient solution to root. In roots, we found an enrichment of the heavier isotopes for Zn, in agreement with previous studies, but an enrichment of isotopically light Cu, suggesting a reduction of Cu(II) possibly at the surfaces of the root cell plasma membranes. This observation holds for both graminaceous and nongraminaceaous species and confirms that reduction is a predominant and ubiquitous mechanism for the acquisition of Cu into plants similar to the mechanism for the acquisition of iron (Fe) by the strategy I plant species. We propose two preliminary models of isotope fractionation processes of Cu and Zn in plants with different uptake strategies.
Frequency Weighted Model Order Reduction Technique and Error Bounds for Discrete Time Systems
Directory of Open Access Journals (Sweden)
Muhammad Imran
2014-01-01
for whole frequency range. However, certain applications (like controller reduction require frequency weighted approximation, which introduce the concept of using frequency weights in model reduction techniques. Limitations of some existing frequency weighted model reduction techniques include lack of stability of reduced order models (for two sided weighting case and frequency response error bounds. A new frequency weighted technique for balanced model reduction for discrete time systems is proposed. The proposed technique guarantees stable reduced order models even for the case when two sided weightings are present. Efficient technique for frequency weighted Gramians is also proposed. Results are compared with other existing frequency weighted model reduction techniques for discrete time systems. Moreover, the proposed technique yields frequency response error bounds.
Sakai, M.; Visaratana, T.; Sukchan, S.; Thaingam, R.; Okada, N.
2015-12-01
Globally, soil is vital to the mitigation of climate change. In tropical forests, the soil contains an estimated 216 Gt of carbon, equivalent to half of the total carbon in the tropical forest ecosystem. Little is known regarding changes in soil carbon following land use changes in tropical regions. We examined the differences in carbon dynamics in a chronosequence of Acacia mangium plantations established on grasslands following the deforestation of natural forest in north-eastern Thailand. The study site was located at the Sakaerat Silvicultural Research Station (14º28'06.1″N, 101º54'15.0″E; altitude 420 m asl), Nakhon Rachasima Province, north-eastern Thailand. Mean annual air temperature was 26ºC, and annual precipitation was 1,100 mm, with a dry (November-April) and wet (May-October) season. Soil carbon and the stable carbon isotope ratio (d13C) in the surface soil (0-5 and 5-10 cm deep) were determined at 12 and 24 years following establishment of A. mangium plantations, as well as for secondary forest and grassland. Using the stable carbon isotope mixing model based on differences in the natural abundance of d13C in plants with C3 (i.e., trees) and C4 (i.e., grasses) pathways for CO2 fixation, the amount of soil carbon derived from the plantations, forest, and grassland was calculated. Soil carbon at a depth of 10 cm was higher in the secondary forest (1,929 gCm-2) and grassland (2,508 gCm-2) than in the plantations (1,703 gCm-2 at 12 years, 1,673gCm-2 at 24 years). Soil carbon derived from A. mangium was 67% (0-5 cm deep) and 62% (5-10 cm deep) of total soil carbon at 12 years, and was 100% (0-5 cm deep) and 90% (5-10 cm deep) at 24 years in the plantations. We found that most of the soil carbon at a depth of 0-5 cm in the young plantation changed from grass-derived to tree-derived carbon within a relatively short period of 24 years. Because of changes in soil carbon, exotic, fast growing plantations like those of A. mangium are needed to quickly
Baïou, Mourad; Balinski, Michel
2002-01-01
The stable allocation problem is the generalization of the well-known and much studied stable (0,1)-matching problems to the allocation of real numbers (hours or quantities). There are two distinct sets of agents, a set I of "employees" or "buyers" and a set J of "employers" or "sellers", each agent with preferences over the opposite set and each with a given available time or quantity. In common with its specializations, and allocation problem may have exponentially many stable solutions (th...
Hobson, Keith A.; Fisk, Aaron; Karnovsky, Nina; Holst, Meike; Gagnon, Jean-Marc; Fortier, Martin
fundamentally in transferring energy and carbon flux to higher trophic-level seabirds and marine mammals. We measured PCB 153 among selected organisms to investigate the behavior of bioaccumulating contaminants within the food web. Our isotopic model confirmed the trophic magnification of PCB 153 in this high-Arctic food web due to a strong correlation between contaminant concentration and organism δ15N values, demonstrating the utility of combining isotopic and contaminant approaches to food-web studies. Stable-carbon isotope analysis confirmed an enrichment in 13C between POM and ice algae (-22.3 vs. -17.7‰). Benthic organisms were generally enriched in 13C compared to pelagic species. We discuss individual species isotopic data and the general utility of our stable isotope model for defining carbon flux and contaminant flow through the North Water food web.
Calcium stable isotope geochemistry
Energy Technology Data Exchange (ETDEWEB)
Gausonne, Nikolaus [Muenster Univ. (Germany). Inst. fuer Mineralogie; Schmitt, Anne-Desiree [Strasbourg Univ. (France). LHyGeS/EOST; Heuser, Alexander [Bonn Univ. (Germany). Steinmann-Inst. fuer Geologie, Mineralogie und Palaeontologie; Wombacher, Frank [Koeln Univ. (Germany). Inst. fuer Geologie und Mineralogie; Dietzel, Martin [Technische Univ. Graz (Austria). Inst. fuer Angewandte Geowissenschaften; Tipper, Edward [Cambridge Univ. (United Kingdom). Dept. of Earth Sciences; Schiller, Martin [Copenhagen Univ. (Denmark). Natural History Museum of Denmark
2016-08-01
This book provides an overview of the fundamentals and reference values for Ca stable isotope research, as well as current analytical methodologies including detailed instructions for sample preparation and isotope analysis. As such, it introduces readers to the different fields of application, including low-temperature mineral precipitation and biomineralisation, Earth surface processes and global cycling, high-temperature processes and cosmochemistry, and lastly human studies and biomedical applications. The current state of the art in these major areas is discussed, and open questions and possible future directions are identified. In terms of its depth and coverage, the current work extends and complements the previous reviews of Ca stable isotope geochemistry, addressing the needs of graduate students and advanced researchers who want to familiarize themselves with Ca stable isotope research.
Stable prenucleation calcium carbonate clusters.
Gebauer, Denis; Völkel, Antje; Cölfen, Helmut
2008-12-19
Calcium carbonate forms scales, geological deposits, biominerals, and ocean sediments. Huge amounts of carbon dioxide are retained as carbonate ions, and calcium ions represent a major contribution to water hardness. Despite its relevance, little is known about the precipitation mechanism of calcium carbonate, and specified complex crystal structures challenge the classical view on nucleation considering the formation of metastable ion clusters. We demonstrate that dissolved calcium carbonate in fact contains stable prenucleation ion clusters forming even in undersaturated solution. The cluster formation can be characterized by means of equilibrium thermodynamics, applying a multiple-binding model, which allows for structural preformation. Stable clusters are the relevant species in calcium carbonate nucleation. Such mechanisms may also be important for the crystallization of other minerals.
Karlova, Olena; Mykhaylyuk, Volodymyr
2015-01-01
We introduce and study adhesive spaces. Using this concept we obtain a characterization of stable Baire maps $f:X\\to Y$ of the class $\\alpha$ for wide classes of topological spaces. In particular, we prove that for a topological space $X$ and a contractible space $Y$ a map $f:X\\to Y$ belongs to the $n$'th stable Baire class if and only if there exist a sequence $(f_k)_{k=1}^\\infty$ of continuous maps $f_k:X\\to Y$ and a sequence $(F_k)_{k=1}^\\infty$ of functionally ambiguous sets of the $n$'th...
Estimation of Time-Varying Autoregressive Symmetric Alpha Stable
National Aeronautics and Space Administration — In the last decade alpha-stable distributions have become a standard model for impulsive data. Especially the linear symmetric alpha-stable processes have found...
Heaton, Tim B.; Albrecht, Stan L.
1991-01-01
Examined prevalence and determinants of stable unhappy marriage using data from national survey. Results indicated age, lack of prior marital experience, commitment to marriage as an institution, low social activity, lack of control over one's life, and belief that divorce would detract from happiness were all predictive of stability in unhappy…
Directory of Open Access Journals (Sweden)
Behnaz Tolue
2018-07-01
Full Text Available In this paper we introduce stable subgroup graph associated to the group $G$. It is a graph with vertex set all subgroups of $G$ and two distinct subgroups $H_1$ and $H_2$ are adjacent if $St_{G}(H_1\\cap H_2\
Bezhanishvili, G.; Bezhanishvili, N.; Ilin, J.
2016-01-01
We generalize the (∧,∨)-canonical formulas to (∧,∨)-canonical rules, and prove that each intuitionistic multi-conclusion consequence relation is axiomatizable by (∧,∨)-canonical rules. This yields a convenient characterization of stable superintuitionistic logics. The (∧,∨)-canonical formulas are
Kovatcheva-Datchary, P.P.; Egert, M.G.G.; Maathuis, A.; Rajilic-Stojanovic, M.; Graaf, de A.A.; Smidt, H.; Vos, de W.M.; Venema, K.
2009-01-01
Summary Carbohydrates, including starches, are an important energy source for humans, and are known for their interactions with the microbiota in the digestive tract. Largely, those interactions are thought to promote human health. Using 16S ribosomal RNA (rRNA)-based stable isotope probing (SIP),
Directory of Open Access Journals (Sweden)
Zengliang Zang
2017-06-01
Full Text Available The aerosol optical depth (AOD from satellites or ground-based sun photometer spectral observations has been widely used to estimate ground-level PM2.5 concentrations by regression methods. The boundary layer height (BLH is a popular factor in the regression model of AOD and PM2.5, but its effect is often uncertain. This may result from the structures between the stable and convective BLHs and from the calculation methods of the BLH. In this study, the boundary layer is divided into two types of stable and convective boundary layer, and the BLH is calculated using different methods from radiosonde data and National Centers for Environmental Prediction (NCEP reanalysis data for the station in Beijing, China during 2014–2015. The BLH values from these methods show significant differences for both the stable and convective boundary layer. Then, these BLHs were introduced into the regression model of AOD-PM2.5 to seek the respective optimal BLH for the two types of boundary layer. It was found that the optimal BLH for the stable boundary layer is determined using the method of surface-based inversion, and the optimal BLH for the convective layer is determined using the method of elevated inversion. Finally, the optimal BLH and other meteorological parameters were combined to predict the PM2.5 concentrations using the stepwise regression method. The results indicate that for the stable boundary layer, the optimal stepwise regression model includes the factors of surface relative humidity, BLH, and surface temperature. These three factors can significantly enhance the prediction accuracy of ground-level PM2.5 concentrations, with an increase of determination coefficient from 0.50 to 0.68. For the convective boundary layer, however, the optimal stepwise regression model includes the factors of BLH and surface wind speed. These two factors improve the determination coefficient, with a relatively low increase from 0.65 to 0.70. It is found that the
Temperature and Humidity Control in Livestock Stables
DEFF Research Database (Denmark)
Hansen, Michael; Andersen, Palle; Nielsen, Kirsten M.
2010-01-01
The paper describes temperature and humidity control of a livestock stable. It is important to have a correct air flow pattern in the livestock stable in order to achieve proper temperature and humidity control as well as to avoid draught. In the investigated livestock stable the air flow...... is controlled using wall mounted ventilation flaps. In the paper an algorithm for air flow control is presented meeting the needs for temperature and humidity while taking the air flow pattern in consideration. To obtain simple and realisable controllers a model based control design method is applied....... In the design dynamic models for temperature and humidity are very important elements and effort is put into deriving and testing the models. It turns out that non-linearities are dominating in both models making feedback linearization the natural design method. The air controller as well as the temperature...
DEFF Research Database (Denmark)
Hallett, Andrew Hughes; Hougaard Jensen, Svend E.
2011-01-01
-term stabilisation. We argue for public sector debt targets as a practical way to achieve such a set up, and an excess debt protocol is constructed to give enforceable form to those targets. The ideas of “fiscal space” and optimal debt levels are used to provide a mechanism for identifying a stable region within...... which the debt targeting regime should operate. Making these factors explicit would both improve the credibility of planned fiscal policies and reduce risk premia on borrowing costs. We finally show how Europe’s competitiveness pact, and debt restructuring operations, can be used to maximise...
Energy Technology Data Exchange (ETDEWEB)
Kim, Mim Chul; Lee, B. S
2009-12-15
In order to increase the strength and the fracture toughness of RPV(reactor pressure vessel) steels, an effective way is the change of material specification from Mn-Mo-Ni low alloy steel(SA508 Gr.3) into Ni-Mo-Cr low alloy steel(SA508 Gr.4N). In this study, we evaluate the effects of alloying elements on microstructural characteristics in Ni-Mo-Cr low alloy steel. The changes in stable phase of SA508 Gr.4N low alloy steel with alloying elements were evaluated using a thermodynamic calculation by ThermoCalc software, and then compared with its microstructural observation results. From the calculation of Ni-Mo-Cr low alloy steels, ferrite formation temperature were decreased with increasing Ni and Mn contents due to austenite stabilization effect. Consequently, in the microscopic observation, the microstructure became finer with increasing Ni and Mn contents. However, they does not affects the carbide phase such as M{sub 23}C{sub 6} and M{sub 7}C{sub 3}. When the content of Cr is decreased, carbide phases became unstable and carbide coarsening is observed. With increase of Mo content, M{sub 2}C phase become stable instead of M{sub 7}C{sub 3} and it also observed in the TEM.
Krumm, Michael; Pawlitzek, Fabian; Weickert, Jonas; Schmidt-Mende, Lukas; Polarz, Sebastian
2012-12-01
Novel, nanostructured electrode materials comprising porous ZnO films with aerogel morphology are presented. Almost any substrate including polymers, metals, or ceramics can be coated using a method that is suitable for mass production. The thin, porous films can be prepared from the wet gels via conventional drying, supercritical drying is not necessary. The filigree ZnO network is thermally very stable and exhibits sufficient electrical conductivity for advanced electronic applications. The latter was tested by realizing a highly desired architecture of organic-inorganic hybrid solar cells. After sensitizing of the ZnO with a purely organic squarine dye (SQ2), a nanostructured, interpenetrating 3D network of the inorganic semiconductor (ZnO) and organic semiconductor (P3HT) was prepared. The solar cell device was tested under illumination with AM 1.5G solar light (100 mW/cm(2)) and exhibited an energy conversion efficiency (η(eff)) of 0.69%.
Domingo, Laura; Rodríguez-Gómez, Guillermo; Libano, Iñaki; Gómez-Olivencia, Asier
2017-08-01
The northern coastal area of the Iberian Peninsula shows an excellent archaeo-paleontological record with a unique representation of Pleistocene mammalian fossils. While the Late Pleistocene is better recorded, the Middle Pleistocene record remains more fragmentary. The Punta Lucero site (Biscay) has yielded the most important fossil assemblage of the middle Middle Pleistocene for the northern Iberian Peninsula in both, number of identified specimens and taxonomic diversity. Punta Lucero constitutes a unique opportunity to evaluate Middle Pleistocene mammalian resource and habitat use, and trophic dynamics employing a combined approach: biogeochemical analysis and mathematical modeling. Stable isotope analysis points to resource partitioning between Punta Lucero cervids and bovids. Stable isotope analysis and trophic modeling evidence resource overlap and interspecific competition among predators, especially between the scimitar-toothed cat Homotherium latidens and the European jaguar Panthera gombaszoegensis. The trophic resource availability modeling assumes that Canis mosbachensis consumed a 20% of preys of more than 10 kg, mainly as carrion. Thus, while there would be a taxonomic overlap with those preys consumed by the large felids, the different strategy would have facilitated the coexistence of these canids with larger carnivores. Trophic modeling indicates a high competition among the predator guild. The potential presence of hominins in the area would have reached to an unsustainable situation. However, the potential presence of other prey species, such as Equus sp., would have made the ecosystem more sustainable. The methodology followed in this study highlights the potential of multidisciplinary approaches in the assessment of Pleistocene faunal dynamics.
Directory of Open Access Journals (Sweden)
Valentina Lauria
Full Text Available Knowledge of the spatial distribution and habitat associations of species in relation to the environment is essential for their management and conservation. Habitat suitability models are useful in quantifying species-environment relationships and predicting species distribution patterns. Little is known, however, about the stability and performance of habitat suitability models when projected into new areas (spatial transferability and how this can inform resource management. The aims of this study were to model habitat suitability of Norway lobster (Nephrops norvegicus in five fished areas of the Northeast Atlantic (Aran ground, Irish Sea, Celtic Sea, Scotland Inshore and Fladen ground, and to test for spatial transferability of habitat models among multiple regions. Nephrops burrow density was modelled using generalised additive models (GAMs with predictors selected from four environmental variables (depth, slope, sediment and rugosity. Models were evaluated and tested for spatial transferability among areas. The optimum models (lowest AICc for different areas always included depth and sediment as predictors. Burrow densities were generally greater at depth and in finer sediments, but relationships for individual areas were sometimes more complex. Aside from an inclusion of depth and sediment, the optimum models differed between fished areas. When it came to tests of spatial transferability, however, most of the models were able to predict Nephrops density in other areas. Furthermore, transferability was not dependent on use of the optimum models since competing models were also able to achieve a similar level of transferability to new areas. A degree of decoupling between model 'fitting' performance and spatial transferability supports the use of simpler models when extrapolating habitat suitability maps to different areas. Differences in the form and performance of models from different areas may supply further information on the processes
Stable massive particles at colliders
Energy Technology Data Exchange (ETDEWEB)
Fairbairn, M.; /Stockholm U.; Kraan, A.C.; /Pennsylvania U.; Milstead, D.A.; /Stockholm U.; Sjostrand, T.; /Lund U.; Skands, P.; /Fermilab; Sloan, T.; /Lancaster U.
2006-11-01
We review the theoretical motivations and experimental status of searches for stable massive particles (SMPs) which could be sufficiently long-lived as to be directly detected at collider experiments. The discovery of such particles would address a number of important questions in modern physics including the origin and composition of dark matter in the universe and the unification of the fundamental forces. This review describes the techniques used in SMP-searches at collider experiments and the limits so far obtained on the production of SMPs which possess various colour, electric and magnetic charge quantum numbers. We also describe theoretical scenarios which predict SMPs, the phenomenology needed to model their production at colliders and interactions with matter. In addition, the interplay between collider searches and open questions in cosmology such as dark matter composition are addressed.
Johnson, Reed F; Kurup, Drishya; Hagen, Katie R; Fisher, Christine; Keshwara, Rohan; Papaneri, Amy; Perry, Donna L; Cooper, Kurt; Jahrling, Peter B; Wang, Jonathan T; Ter Meulen, Jan; Wirblich, Christoph; Schnell, Matthias J
2016-10-15
The 2013-2016 West African Ebola virus (EBOV) disease outbreak was the largest filovirus outbreak to date. Over 28 000 suspected, probable, or confirmed cases have been reported, with a 53% case-fatality rate. The magnitude and international impact of this EBOV outbreak has highlighted the urgent need for a safe and efficient EBOV vaccine. To this end, we demonstrate the immunogenicity and protective efficacy of FILORAB1, a recombinant, bivalent, inactivated rabies virus-based EBOV vaccine, in rhesus and cynomolgus monkeys. Our results demonstrate that the use of the synthetic Toll-like receptor 4 agonist glucopyranosyl lipid A in stable emulsion (GLA-SE) as an adjuvant increased the efficacy of FILORAB1 to 100% protection against lethal EBOV challenge, with no to mild clinical signs of disease. Furthermore, all vaccinated subjects developed protective anti-rabies virus antibody titers. Taken together, these results support further development of FILORAB1/GLA-SE as an effective preexposure EBOV vaccine. Published by Oxford University Press for the Infectious Diseases Society of America 2016. This work is written by (a) US Government employee(s) and is in the public domain in the US.
Sabuquillo, Pilar; Gea, Adela; Matas, Isabel M; Ramos, Cayo; Cubero, Jaime
2017-05-01
Fluorescent proteins have been used to track plant pathogens to understand their host interactions. To be useful, the transgenic pathogens must present similar behaviour than the wild-type isolates. Herein, a GFP marker was used to transform two plant pathogenic bacteria, Agrobacterium and Xanthomonas, to localize and track the bacteria during infection. The transgenic bacteria were evaluated to determine whether they showed the same fitness than the wild-type strains or whether the expression of the GFP protein interfered in the bacterial activity. In Agrobacterium, the plasmid used for transformation was stable in the bacteria and the strain kept the virulence, while Xanthomonas was not able to conserve the plasmid and transformed strains showed virulence variations compared to wild-type strains. Although marking bacteria with GFP to track infection in plants is a common issue, works to validate the transgenic strains and corroborate their fitness are not usual. Results, presented here, confirm the importance of proper fitness tests on the marked strains before performing localization assays, to avoid underestimation of the microbe population or possible artificial effects in its interaction with the plant.
An in vitro model for Pelger-Huët anomaly: stable knockdown of lamin B receptor in HL-60 cells.
Olins, Ada L; Ernst, Aurélie; Zwerger, Monika; Herrmann, Harald; Olins, Donald E
2010-01-01
The principal human blood granulocyte (neutrophil) possesses a lobulated and deformable nucleus, important to facilitate rapid egress from blood vessels as these cells migrate to sites of bacterial or fungal infection. This unusual nuclear shape is a product of elevated levels of an integral membrane protein of the nuclear envelope lamin B receptor (LBR) and of decreased amounts of lamin A/C. In humans, a genetic deficiency of LBR produces Pelger-Huët anomaly, resulting in blood neutrophils that exhibit hypolobulated nuclei with redistributed heterochromatin. Structural changes in nuclear architecture occur during granulopoiesis within bone marrow. The exact mechanisms of this nuclear shape change and of heterochromatin redistribution remain largely unknown. As a tool to facilitate analysis of these mechanisms, a stable LBR knockdown subline of HL-60 cells was established. During in vitro granulopoiesis induced with retinoic acid, the LBR knockdown cells retain an ovoid shaped nucleus with reduced levels of lamin A/C; while, the parent cells develop highly lobulated nuclei. In contrast, macrophage forms induced in LBR knockdown cells by in vitro treatment with phorbol ester were indistinguishable from the parent cells, judged by both nuclear shape and attached cell morphology. The capability of differentiation of LBR knockdown HL-60 cells should facilitate a detailed analysis of the molecular relationship between LBR levels, granulocyte nuclear shape and heterochromatin distribution.
Stable electroosmotically driven actuators
Sritharan, Deepa; Motsebo, Mylene; Tumbic, Julia; Smela, Elisabeth
2013-04-01
We have previously presented "nastic" actuators based on electroosmotic (EO) pumping of fluid in microchannels using high electric fields for potential application in soft robotics. In this work we address two challenges facing this technology: applying EO to meso-scale devices and the stability of the pumping fluid. The hydraulic pressure achieved by EO increases with as 1/d2, where d is the depth of the microchannel, but the flow rate (which determines the stroke and the speed) is proportional to nd, where n is the number of channels. Therefore to get high force and high stroke the device requires a large number of narrow channels, which is not readily achievable using standard microfabrication techniques. Furthermore, for soft robotics the structure must be soft. In this work we present a method of fabricating a three-dimensional porous elastomer to serve as the array of channels based on a sacrificial sugar scaffold. We demonstrate the concept by fabricating small pumps. The flexible devices were made from polydimethylsiloxane (PDMS) and comprise the 3D porous elastomer flanked on either side by reservoirs containing electrodes. The second issue addressed here involves the pumping fluid. Typically, water is used for EO, but water undergoes electrolysis even at low voltages. Since EO takes place at kV, these systems must be open to release the gases. We have recently reported that propylene carbonate (PC) is pumped at a comparable rate as water and is also stable for over 30 min at 8 kV. Here we show that PC is, however, degraded by moisture, so future EO systems must prevent water from reaching the PC.
Directory of Open Access Journals (Sweden)
Renan B Sper
Full Text Available Transgenic pigs have become an attractive research model in the field of translational research, regenerative medicine, and stem cell therapy due to their anatomic, genetic and physiological similarities with humans. The development of fluorescent proteins as molecular tags has allowed investigators to track cell migration and engraftment levels after transplantation. Here we describe the development of two transgenic pig models via SCNT expressing a fusion protein composed of eGFP and porcine Histone 2B (pH2B. This fusion protein is targeted to the nucleosomes resulting a nuclear/chromatin eGFP signal. The first model (I was generated via random insertion of pH2B-eGFP driven by the CAG promoter (chicken beta actin promoter and rabbit Globin poly A; pCAG-pH2B-eGFP and protected by human interferon-β matrix attachment regions (MARs. Despite the consistent, high, and ubiquitous expression of the fusion protein pH2B-eGFP in all tissues analyzed, two independently generated Model I transgenic lines developed neurodegenerative symptoms including Wallerian degeneration between 3-5 months of age, requiring euthanasia. A second transgenic model (II was developed via CRISPR-Cas9 mediated homology-directed repair (HDR of IRES-pH2B-eGFP into the endogenous β-actin (ACTB locus. Model II transgenic animals showed ubiquitous expression of pH2B-eGFP on all tissues analyzed. Unlike the pCAG-pH2B-eGFP/MAR line, all Model II animals were healthy and multiple pregnancies have been established with progeny showing the expected Mendelian ratio for the transmission of the pH2B-eGFP. Expression of pH2B-eGFP was used to examine the timing of the maternal to zygotic transition after IVF, and to examine chromosome segregation of SCNT embryos. To our knowledge this is the first viable transgenic pig model with chromatin-associated eGFP allowing both cell tracking and the study of chromatin dynamics in a large animal model.
Tarasova, O.A.; Houweling, S.; Elansky, N.F.; Brenninkmeijer, C.A.M.
2010-01-01
Presented is a detailed comparison of CH4 and δ13C–CH4 measurements with simulations of the global transport model TM3. Experimental data were obtained during campaigns along the Trans-Siberian railroad in the framework of the TROICA project. Two summer (1999 and 2001) and one spring (2003)
Directory of Open Access Journals (Sweden)
Ichiro Fujihara
2016-08-01
As long as the fidelity difference between the lagging and leading strand was kept high enough, the robustness of the disparity model was very high. The acceleration or slowdown of evolution can be unambiguously introduced only by environmental changes, and the seesawing mutation rate is not the necessary condition for changing the speed of evolution.
Kleczek, M.A.; Steeneveld, G.J.; Holtslag, A.A.M.
2012-01-01
Correct forecasting of the diurnal cycle of the atmospheric boundary layer (ABL) is of key importance for many applications like for wind energy, weather forecasting and climate, agriculture and air quality. Previous research has shown models are very sensitive to the selected boundary-layer
Stable water isotopes in the MITgcm
Völpel, Rike; Paul, André; Krandick, Annegret; Mulitza, Stefan; Schulz, Michael
2017-08-01
We present the first results of the implementation of stable water isotopes in the Massachusetts Institute of Technology general circulation model (MITgcm). The model is forced with the isotopic content of precipitation and water vapor from an atmospheric general circulation model (NCAR IsoCAM), while the fractionation during evaporation is treated explicitly in the MITgcm. Results of the equilibrium simulation under pre-industrial conditions are compared to observational data and measurements of plankton tow records (the oxygen isotopic composition of planktic foraminiferal calcite). The broad patterns and magnitude of the stable water isotopes in annual mean seawater are well captured in the model, both at the sea surface as well as in the deep ocean. However, the surface water in the Arctic Ocean is not depleted enough, due to the absence of highly depleted precipitation and snowfall. A model-data mismatch is also recognizable in the isotopic composition of the seawater-salinity relationship in midlatitudes that is mainly caused by the coarse grid resolution. Deep-ocean characteristics of the vertical water mass distribution in the Atlantic Ocean closely resemble observational data. The reconstructed δ18Oc at the sea surface shows a good agreement with measurements. However, the model-data fit is weaker when individual species are considered and deviations are most likely attributable to the habitat depth of the foraminifera. Overall, the newly developed stable water isotope package opens wide prospects for long-term simulations in a paleoclimatic context.
Essentially asymptotically stable homoclinic networks
Driesse, R.; Homburg, A.J.
2009-01-01
Melbourne [An example of a nonasymptotically stable attractor, Nonlinearity 4(3) (1991), pp. 835-844] discusses an example of a robust heteroclinic network that is not asymptotically stable but which has the strong attracting property called essential asymptotic stability. We establish that this
Morgan, J. L. L.; Skulan, J. L.; Gordon, G. E.; Smith, Scott M.; Romaniello, S. J.; Anbar, A. D.
2012-01-01
Metabolic bone diseases like osteoporosis result from the disruption of normal bone mineral balance (BMB) resulting in bone loss. During spaceflight astronauts lose substantial bone. Bed rest provides an analog to simulate some of the effects of spaceflight; including bone and calcium loss and provides the opportunity to evaluate new methods to monitor BMB in healthy individuals undergoing environmentally induced-bone loss. Previous research showed that natural variations in the Ca isotope ratio occur because bone formation depletes soft tissue of light Ca isotopes while bone resorption releases that isotopically light Ca back into soft tissue (Skulan et al, 2007). Using a bed rest model, we demonstrate that the Ca isotope ratio of urine shifts in a direction consistent with bone loss after just 7 days of bed rest, long before detectable changes in bone mineral density (BMD) occur. The Ca isotope variations tracks changes observed in urinary N-teleopeptide, a bone resorption biomarker. Bone specific alkaline phosphatase, a bone formation biomarker, is unchanged. The established relationship between Ca isotopes and BMB can be used to quantitatively translate the changes in the Ca isotope ratio to changes in BMD using a simple mathematical model. This model predicts that subjects lost 0.25 0.07% ( SD) of their bone mass from day 7 to day 30 of bed rest. Given the rapid signal observed using Ca isotope measurements and the potential to quantitatively assess bone loss; this technique is well suited to study the short-term dynamics of bone metabolism.
Tukey max-stable processes for spatial extremes
Xu, Ganggang
2016-09-21
We propose a new type of max-stable process that we call the Tukey max-stable process for spatial extremes. It brings additional flexibility to modeling dependence structures among spatial extremes. The statistical properties of the Tukey max-stable process are demonstrated theoretically and numerically. Simulation studies and an application to Swiss rainfall data indicate the effectiveness of the proposed process. © 2016 Elsevier B.V.
Directory of Open Access Journals (Sweden)
Rashmi Krishnapuram
Full Text Available Impaired glycemic control and excessive adiposity are major risk factors for Type 2 Diabetes mellitus. In rodent models, Ad36, a human adenovirus, improves glycemic control, independent of dietary fat intake or adiposity. It is impractical to use Ad36 for therapeutic action. Instead, we identified that E4orf1 protein of Ad36, mediates its anti-hyperglycemic action independent of insulin signaling. To further evaluate the therapeutic potential of E4orf1 to improve glycemic control, we established a stable 3T3-L1 cell system in which E4orf1 expression can be regulated. The development and characterization of this cell line is described here. Full-length adenoviral-36 E4orf1 cDNA obtained by PCR was cloned into a tetracycline responsive element containing vector (pTRE-Tight-E4orf1. Upon screening dozens of pTRE-Tight-E4orf1 clones, we identified the one with the highest expression of E4orf1 in response to doxycycline treatment. Furthermore, using this inducible system we characterized the ability of E4orf1 to improve glucose disposal in a time dependent manner. This stable cell line offers a valuable resource to carefully study the novel signaling pathways E4orf1 uses to enhance cellular glucose disposal independent of insulin.
Spectra of stable sonoluminescence
Lewis, Stephen D.
1992-12-01
The continuous emission of picosecond pulses of light has been observed to originate from a bubble trapped at the pressure antinode of a resonant sound field in water and in water/glycerin mixtures. The spectra of this light in several solutions has been measured with a scanning monochrometer/photomultiplier detector system. The spectra are broadband and show strong emission in the UV region. A comparison of this measurement to two other independently produced spectra is made. The spectra are also modeled by a blackbody radiation distribution to determine an effective blackbody temperature and a size is deduced as if Sonoluminescence were characterized by blackbody radiation.
Ibrahim, Fady; Sivak, Olena; Wasan, Ellen K; Bartlett, Karen; Wasan, Kishor M
2013-10-29
An oral lipid based formulation that exhibits tropical stability (iCo-010) was developed to enhance the absorption of orally administered amphotericin B (AmB). iCo-010 has previously shown high efficacy in an acute model of systemic candidiasis in rats, directing the focus of this study to be its efficacy in a chronic model of systemic candidiasis in mice. Mice were infected with 0.6 to 1×108 CFUs of Candida albicans ATCC 18804 strain by tail vein injection and were left for three days to develop the infection after which time treatment was initiated. The infected animals were assigned to the following treatment groups: no treatment (control) or iCo-010 at 5, 10 and 20 mg/kg administered by oral gavage once daily (QD) for 5 consecutive days. The animals were sacrificed 7 days after the last dose and the concentration of AmB and the fungal burden were assessed within the liver, kidneys, heart, lungs, spleen and brain. Although the infection was relatively low (~ 60-100 CFUs/ 1 ml tissue homogenate) in the liver, lungs and heart, the infection level was very high (70 000 CFUs / 1 ml tissue homogenate) in the kidney tissues for the control group. The highest concentrations of AmB were recovered in the kidneys and the spleen. The fungal burden in the tissues was lowered by 69-96% in the treatment groups when compared to the control group. Oral iCo-010 is an effective treatment of systemic candidiasis in the mouse model.
Tindall, Julia C.; Haywood, Alan M.; Thirumalai, Kaustubh
2017-08-01
The El Niño-Southern Oscillation (ENSO) drives interannual climate variability; hence, its behavior over a range of climates needs to be understood. It is therefore important to verify that the paleoarchives, used for preinstrumental ENSO studies, can accurately record ENSO signals. Here we use the isotope enabled Hadley Centre General Circulation Model, HadCM3, to investigate ENSO signals in paleoarchives from a warm paleoclimate, the mid-Pliocene Warm Period (mPWP: 3.3-3.0 Ma). Continuous (e.g., coral) and discrete (e.g., foraminifera) proxy data are simulated throughout the tropical Pacific, and ENSO events suggested by the pseudoproxy data are assessed using modeled ENSO indices. HadCM3 suggests that the ability to reconstruct ENSO from coral data is predominantly dependent on location. However, since modeled ENSO is slightly stronger in the mPWP than the preindustrial, ENSO is slightly easier to detect in mPWP aged coral. HadCM3 also suggests that using statistics from a number of individual foraminifera (individual foraminifera analysis, IFA) generally provides more accurate ENSO information for the mPWP than for the preindustrial, particularly in the western and central Pacific. However, a test case from the eastern Pacific showed that for some locations, the IFA method can work well for the preindustrial but be unreliable for a different climate. The work highlights that sites used for paleo-ENSO analysis should be chosen with extreme care in order to avoid unreliable results. Although a site with good skill for preindustrial ENSO will usually have good skill for assessing mPWP ENSO, this is not always the case.
Energy Technology Data Exchange (ETDEWEB)
Cirillo, M. C. [ENEA, Centro Ricerche Casaccia, Rome (Italy). Dipt. Ambiente; Buratti, D. [Rome Univ. La Sapienza, Rome (Italy). Facolta' di Scienze Statistiche; Metallo, M. C.; Poli, A.A. [ESA s.a.s., Bracciano, RM (Italy)
1999-07-01
In this report a dispersion model is proposed that provides an estimate of concentration of gaseous pollutants emitted by an highway, or in general by a line source, in presence of low wind speed. This aim was pursued because available models have not a satisfactory behaviour in such conditions, which is critical for dispersion of gaseous pollutants. This lack is due to difficulty of simulating dispersion turbulent component which is determined by fluctuation of wind speed and wind direction, and in presence of calm conditions it assumes values comparable with transport component. The proposed model overcomes this difficulty, as it is shown by sensitivity analysis and comparison with experimental data. The capability of simulating dispersion eve in critical conditions, like the presence of low level inversion, and the absence of source geometrical approximations make the model a tool that, properly used, may contribute to the efficient planning and management of environmental resources. [Italian] In questo rapporto viene proposto un modello per la stima delle concentrazioni di inquinanti aeriformi emessi da un'arteria stradale, o in generale da una sorgente lineare, in presenza di vento debole. Questo scopo e' stato perseguito in quanto in questa condizione, nonostante la dispersione degli inquinanti risulti fortemente problematica, i modelli disponibili in letteratura non hanno un comportamento soddisfacente. Questa mancanca e' attribuibile alla difficolta' di simulare la componente turbolenta della dispersione, dovuta alla fluttuazione della direzione e della velocita' del vento che, in presenza di vento debole, assume valori confrontabili alla componente di trasporto. Il modello qui di seguito proposto supera questa difficolta', come dimostrano l'analisi di sensibilita' e il confronto con un caso reale; la capacita' di simulare la dispersione anche in condizioni fisicamente critiche quali la presenza di inversione a
Rode, Christian
2017-01-01
Contractions on the descending limb of the total (active + passive) muscle force—length relationship (i. e. when muscle stiffness is negative) are expected to lead to vast half-sarcomere—length inhomogeneities. This is however not observed in experiments—vast half-sarcomere—length inhomogeneities can be absent in myofibrils contracting in this range, and initial inhomogeneities can even decrease. Here we show that the absence of half-sarcomere—length inhomogeneities can be predicted when considering interactions of the semi-active protein titin with the actin filaments. Including a model of actin—titin interactions within a multi-scale continuum-mechanical model, we demonstrate that stability, accurate forces and nearly homogeneous half-sarcomere lengths can be obtained on the descending limb of the static total force—length relation. This could be a key to durable functioning of the muscle because large local stretches, that might harm, for example, the transverse-tubule system, are avoided. PMID:28968385
Eliseyev, Andrey; Aksenova, Tatiana
2014-12-01
Objective. The key criterion for reliability of brain-computer interface (BCI) devices is their stability and robustness in natural environments in the presence of spurious signals and artifacts. Approach. To improve stability and robustness, a generalized additive model (GAM) is proposed for BCI decoder identification. Together with partial least squares (PLS), GAM can be applied to treat high-dimensional data and it is compatible with real-time applications. For evaluation of prediction quality, along with standard criteria such as Pearson correlation, root mean square error (RMSE), mean absolute error (MAE), additional criteria, mean absolute differential error (MADE) and dynamic time warping (DTW) distance, are chosen. These criteria reflect the smoothness and dissimilarity of the predicted and observed signals in the presence of phase desynchronization. Main results. The efficiency of the GAM-PLS model is tested on the publicly available database of simultaneous recordings of the continuous three-dimensional hand trajectories and epidural electrocorticogram signals of the Japanese macaque. GAM-PLS outperforms the generic PLS and improves the evaluation criteria: 22% (Pearson correlation), 8% (RMSE), 13% (MAE), 31% (MADE), 20% (DTW). Significance. Motor-related BCIs are systems to improve the quality of life of individuals with severe motor disabilities. The improvement of the reliability of the BCI decoder is an important step toward real-life applications of BCI technologies.
Energy Technology Data Exchange (ETDEWEB)
Schell, W.R. (Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA (United States)); Berg, M.T. (Department of Industrial Engineering, West Virginia University, Morgantown, WV (United States)); Myttenaere, C. (Laboratoire de Biologie Vegetale, Universite Catholique de Louvain, Louvain-la-Neuve (Belgium)); Massey, C.D. (Radioactive and Mixed Waste Management Division, Sandia National Laboratories, Albuquerque, NM (United States))
1994-10-14
To understand the behavior of radionuclides in forests, we require information on the processes which govern the interaction of elements in these ecosystems. The basic questions we ask are: (1) What is the residence time of any element in a forest (2) What are the dominant rate determining processes responsible for uptake (3) What are the important radionuclide pathways through the forest to man (4) How long does the contamination remain a risk to man (5) What chemical complexing species are responsible for element uptake by the roots. Such questions must be answered to define better the processes which are responsible for the distribution and fate of trace elements and radionuclides in forest and natural ecosystems, and to develop predictive models for radiological assessment purposes.
Energy Technology Data Exchange (ETDEWEB)
Ernazarov, K.K. [RUDN University, Institute of Gravitation and Cosmology, Moscow (Russian Federation); Ivashchuk, V.D. [RUDN University, Institute of Gravitation and Cosmology, Moscow (Russian Federation); Center for Gravitation and Fundamental Metrology, VNIIMS, Moscow (Russian Federation)
2017-02-15
A D-dimensional gravitational model with a Gauss-Bonnet term and the cosmological term Λ is considered. By assuming diagonal cosmological metrics, we find, for a certain fine-tuned Λ, a class of solutions with exponential time dependence of two scale factors, governed by two Hubble-like parameters H > 0 and h < 0, corresponding to factor spaces of dimensions m > 3 and l > 1, respectively, with (m,l) ≠ (6,6), (7,4), (9,3) and D = 1+m+l. Any of these solutions describes an exponential expansion of three-dimensional subspace with Hubble parameter H and zero variation of the effective gravitational constant G. We prove the stability of these solutions in a class of cosmological solutions with diagonal metrics. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Ernazarov, K.K. [RUDN University, Institute of Gravitation and Cosmology, Moscow (Russian Federation); Ivashchuk, V.D. [RUDN University, Institute of Gravitation and Cosmology, Moscow (Russian Federation); VNIIMS, Center for Gravitation and Fundamental Metrology, Moscow (Russian Federation)
2017-06-15
We consider a D-dimensional gravitational model with a Gauss-Bonnet term and the cosmological term Λ. We restrict the metrics to diagonal cosmological ones and find for certain Λ a class of solutions with exponential time dependence of three scale factors, governed by three non-coinciding Hubble-like parameters H > 0, h{sub 1} and h{sub 2}, corresponding to factor spaces of dimensions m > 2, k{sub 1} > 1 and k{sub 2} > 1, respectively, with k{sub 1} ≠ k{sub 2} and D = 1 + m + k{sub 1} + k{sub 2}. Any of these solutions describes an exponential expansion of 3d subspace with Hubble parameter H and zero variation of the effective gravitational constant G. We prove the stability of these solutions in a class of cosmological solutions with diagonal metrics. (orig.)
Abbaszadeh, Hojjat-Allah; Tiraihi, Taki; Noori-Zadeh, Ali; Delshad, Ali Reza; Sadeghizade, Majid; Taheri, Taher
2015-07-01
Traumatic injury to the central nervous system (CNS) often causes motor dysfunctions. However, because of the CNS complexity and variability in the clinical presentations, efforts to repair damaged CNS tissue and restoring its functions are particularly demanding. On the other hand, recent progress in the regenerative therapy field have led to novel approaches for the treatment of traumatic CNS injury and renewed hopes to overcome the obstacles. It appears that the balance between neurite re-growth-inhibiting and neurite re-growth-inducing molecules determines the axonal re-growth fate. Neurotrophic factors can tilt this balance and indeed promote cell survival and axonal re-growth over neurodegeneration. One of the promising neurotrophic factors in this field is ciliary neurotrophic factor (CNTF). We transfected rat bone marrow stromal cells with a mammalian expression vector-inserted human CNTF gene through the use of a non-viral method to prepare human CNTF-overexpressing stem cells under ex vivo conditions. We transplanted these modified cells to the rat model of spinal cord traumatic injury to explore functional recovery after contusion induction. Our data from immunocytochemistry and behavioral tests showed that such cells can act as a powerful potential approach to treat traumatic CNS injuries because these modified cells improved the behavioral test scores in the rat model of spinal cord injury. CNTF-overexpressing bone marrow stromal cells can ameliorate spinal cord traumatic injury and can be used in the treatment of traumatic CNS injuries in the near future. Copyright © 2015 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.
Stable water isotopes in the MITgcm
Directory of Open Access Journals (Sweden)
R. Völpel
2017-08-01
Full Text Available We present the first results of the implementation of stable water isotopes in the Massachusetts Institute of Technology general circulation model (MITgcm. The model is forced with the isotopic content of precipitation and water vapor from an atmospheric general circulation model (NCAR IsoCAM, while the fractionation during evaporation is treated explicitly in the MITgcm. Results of the equilibrium simulation under pre-industrial conditions are compared to observational data and measurements of plankton tow records (the oxygen isotopic composition of planktic foraminiferal calcite. The broad patterns and magnitude of the stable water isotopes in annual mean seawater are well captured in the model, both at the sea surface as well as in the deep ocean. However, the surface water in the Arctic Ocean is not depleted enough, due to the absence of highly depleted precipitation and snowfall. A model–data mismatch is also recognizable in the isotopic composition of the seawater–salinity relationship in midlatitudes that is mainly caused by the coarse grid resolution. Deep-ocean characteristics of the vertical water mass distribution in the Atlantic Ocean closely resemble observational data. The reconstructed δ18Oc at the sea surface shows a good agreement with measurements. However, the model–data fit is weaker when individual species are considered and deviations are most likely attributable to the habitat depth of the foraminifera. Overall, the newly developed stable water isotope package opens wide prospects for long-term simulations in a paleoclimatic context.
Energy Technology Data Exchange (ETDEWEB)
Szymanski, W.; Truszkowski, S. (Uniwersytet Mikolaja Kopernika, Torun (Poland). Inst. Chemii)
1985-07-01
Polyamide oligomers of epsilon-aminocaproic acid (ACA) were used as model compounds. Six oligomers with the number of mers, 2-7, designated as K/sub 2/-K/sub 7/ were synthesized. The ACA oligomers were irradiated with /sup 60/Co gamma rays in an atmosphere of nitrogen and in air in a dose range from 0 to 1300 kGy. The concentration of the CHO, NH/sub 2/ and COOH groups formed and the yields of gaseous products, hydrogen and carbon monoxide, as well as the absorption of oxygen, were determined. The polycaprolactam PA6 in the form of unstabilized fibres was investigated for comparison. The number of CHO groups increases with the dose for all oligomers; this value is, in air, for K/sub 5/-K/sub 7/ three times, for K/sub 3/-K/sub 4/ six times, and for K/sub 2/ nine times as large as in the atmosphere of nitrogen. The number of NH/sub 2/ groups goes through a maximum with increasing dose; in air the maximum is smaller and occurs at lower doses. The number of COOH groups changes only slightly with the dose; in air the number of COOH groups increases for longer oligomers (K/sub 5/-K/sub 7/). The concentration of hydrogen increases linearly with the dose both in the atmosphere of nitrogen and in air. In the latter case the radiation yields Gsub((H/sub 2/)) are lower.
Bhuvaneswari, T; Thiyagarajan, M; Geetha, N; Venkatachalam, P
2014-07-01
An efficient and eco-friendly protocol for the synthesis of bioactive silver nanoparticles was developed using Naringi crenulata leaf extracts via microwave irradiation method. Silver nanoparticles were synthesized by treating N. crenulata leaf extracts with 1mM of aqueous silver nitrate solution. An effective bioactive compound such as alkaloids, phenols, saponins and quinines present in the N. crenulata reduces the Ag(+) into Ag(0). The synthesized silver nanoparticles were monitored by UV-vis spectrophotometer and further characterized by X-ray diffraction (XRD), Fourier Transform Infra Red (FTIR), Energy-dispersive X-ray spectroscopy (EDX) and field emission scanning electron microscopy (FESEM). UV-vis spectroscopy showed maximum absorbance at 390nm due to surface plasmon resonance of AgNPs. From FESEM results, an average crystal size of the synthesized nanoparticle was 72-98nm. FT-IR results showed sharp absorption peaks and they were assigned to phosphine, alkyl halides and sulfonate groups. Silver nanoparticles synthesized were generally found to be spherical and cubic shape. Topical application of ointment prepared from silver nanoparticles of N. crenulata were formulated and evaluated in vivo using the excision wound healing model on Wistar albino rats. The measurement of the wound areas was performed on 3rd, 6th, 9th, 12th and 15th days and the percentage of wound closures was calculated accordingly. By the 15th day, the ointment base containing 5% (w/w) of silver nanoparticles showed 100% wound healing activity compared with that of the reference as well as control bases. The results strongly suggested that the batch C ointment containing silver nanaoparticles synthesized from the leaf extracts of N. crenulata was found to be very effective in wound repair and encourages harnessing the potentials of the plant biomolecules loaded silver nanoparticle in the treatment of tropical diseases including wound healing. Copyright © 2014 Elsevier B.V. All rights
MacLeod, A Kenneth; Fallon, Padraic G; Sharp, Sheila; Henderson, Colin J; Wolf, C Roland; Huang, Jeffrey T-J
2015-03-01
drug pharmacokinetics, pharmacodynamics, and of chemically treated and genetically modified mouse models. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Directory of Open Access Journals (Sweden)
M.A. Mousavi Shalmani
2014-08-01
Full Text Available In order to assessment of water quality and characterize seasonal variation in 18O and 2H in relation with different chemical and physiographical parameters and modelling of effective parameters, an study was conducted during 2010 to 2011 in 30 different ponds in the north of Iran. Samples were collected at three different seasons and analysed for chemical and isotopic components. Data shows that highest amounts of δ18O and δ2H were recorded in the summer (-1.15‰ and -12.11‰ and the lowest amounts were seen in the winter (-7.50‰ and -47.32‰ respectively. Data also reveals that there is significant increase in d-excess during spring and summer in ponds 20, 21, 22, 24, 25 and 26. We can conclude that residual surface runoff (from upper lands is an important source of water to transfer soluble salts in to these ponds. In this respect, high retention time may be the main reason for movements of light isotopes in to the ponds. This has led d-excess of pond 12 even greater in summer than winter. This could be an acceptable reason for ponds 25 and 26 (Siyahkal county with highest amount of d-excess and lowest amounts of δ18O and δ2H. It seems light water pumped from groundwater wells with minor source of salt (originated from sea deep percolation in to the ponds, could may be another reason for significant decrease in the heavy isotopes of water (18O and 2H for ponds 2, 12, 14 and 25 from spring to summer. Overall conclusion of multiple linear regression test indicate that firstly from 30 variables (under investigation only a few cases can be used for identifying of changes in 18O and 2H by applications. Secondly, among the variables (studied, phytoplankton content was a common factor for interpretation of 18O and 2H during spring and summer, and also total period (during a year. Thirdly, the use of water in the spring was recommended for sampling, for 18O and 2H interpretation compared with other seasons. This is because of function can be
Stable isotope analysis of dynamic lipidomics.
Brandsma, Joost; Bailey, Andrew P; Koster, Grielof; Gould, Alex P; Postle, Anthony D
2017-08-01
Metabolic pathway flux is a fundamental element of biological activity, which can be quantified using a variety of mass spectrometric techniques to monitor incorporation of stable isotope-labelled substrates into metabolic products. This article contrasts developments in electrospray ionisation mass spectrometry (ESI-MS) for the measurement of lipid metabolism with more established gas chromatography mass spectrometry and isotope ratio mass spectrometry methodologies. ESI-MS combined with diagnostic tandem MS/MS scans permits the sensitive and specific analysis of stable isotope-labelled substrates into intact lipid molecular species without the requirement for lipid hydrolysis and derivatisation. Such dynamic lipidomic methodologies using non-toxic stable isotopes can be readily applied to quantify lipid metabolic fluxes in clinical and metabolic studies in vivo. However, a significant current limitation is the absence of appropriate software to generate kinetic models of substrate incorporation into multiple products in the time domain. Finally, we discuss the future potential of stable isotope-mass spectrometry imaging to quantify the location as well as the extent of lipid synthesis. This article is part of a Special Issue entitled: BBALIP_Lipidomics Opinion Articles edited by Sepp Kohlwein. Copyright © 2017 Elsevier B.V. All rights reserved.
Stable Bound States of Asymmetric Dark Matter
Wise, Mark B.; Zhang, Yue
2014-01-01
The simplest renormalizable effective field theories with asymmetric dark matter bound states contain two additional gauge singlet fields one being the dark matter and the other a mediator particle that the dark matter annihilates into. We examine the physics of one such model with a Dirac fermion as the dark matter and a real scalar mediator. For a range of parameters the Yukawa coupling of the dark matter to the mediator gives rise to stable asymmetric dark matter bound states. We derive pr...
Advanced thermally stable jet fuels
Energy Technology Data Exchange (ETDEWEB)
Schobert, H.H.
1999-01-31
The Pennsylvania State University program in advanced thermally stable coal-based jet fuels has five broad objectives: (1) Development of mechanisms of degradation and solids formation; (2) Quantitative measurement of growth of sub-micrometer and micrometer-sized particles suspended in fuels during thermal stressing; (3) Characterization of carbonaceous deposits by various instrumental and microscopic methods; (4) Elucidation of the role of additives in retarding the formation of carbonaceous solids; (5) Assessment of the potential of production of high yields of cycloalkanes by direct liquefaction of coal. Future high-Mach aircraft will place severe thermal demands on jet fuels, requiring the development of novel, hybrid fuel mixtures capable of withstanding temperatures in the range of 400--500 C. In the new aircraft, jet fuel will serve as both an energy source and a heat sink for cooling the airframe, engine, and system components. The ultimate development of such advanced fuels requires a thorough understanding of the thermal decomposition behavior of jet fuels under supercritical conditions. Considering that jet fuels consist of hundreds of compounds, this task must begin with a study of the thermal degradation behavior of select model compounds under supercritical conditions. The research performed by The Pennsylvania State University was focused on five major tasks that reflect the objectives stated above: Task 1: Investigation of the Quantitative Degradation of Fuels; Task 2: Investigation of Incipient Deposition; Task 3: Characterization of Solid Gums, Sediments, and Carbonaceous Deposits; Task 4: Coal-Based Fuel Stabilization Studies; and Task 5: Exploratory Studies on the Direct Conversion of Coal to High Quality Jet Fuels. The major findings of each of these tasks are presented in this executive summary. A description of the sub-tasks performed under each of these tasks and the findings of those studies are provided in the remainder of this volume
Estimation of Time Varying Autoregressive Symmetric Alpha Stable
National Aeronautics and Space Administration — In this work, we present a novel method for modeling time-varying autoregressive impulsive signals driven by symmetric alpha stable distributions. The proposed...
Resistance Laws For Stable Baroclinic Boundary Layers Revisited
Zilitinkevich, S.; Baklanov, A.; Djolov, G.; Esau, I.
An advanced theoretical model is proposed including the effects of the free-flow sta- bility and baroclinicity in the resistance law for stable boundary layers. Theoretical predictions are verified against LES and experimental data. This new development ex- plains low accuracy of all earlier resistance law formulation and opens up fresh oppor- tunities for improved parameterisation of stable boundary layers in general circulation models.
Approximation by Penultimate Stable Laws
L.F.M. de Haan (Laurens); L. Peng (Liang); H. Iglesias Pereira
1997-01-01
textabstractIn certain cases partial sums of i.i.d. random variables with finite variance are better approximated by a sequence of stable distributions with indices \\\\alpha_n \\\\to 2 than by a normal distribution. We discuss when this happens and how much the convergence rate can be improved by using
Multivariate Max-Stable Spatial Processes
Genton, Marc G.
2014-01-06
Analysis of spatial extremes is currently based on univariate processes. Max-stable processes allow the spatial dependence of extremes to be modelled and explicitly quantified, they are therefore widely adopted in applications. For a better understanding of extreme events of real processes, such as environmental phenomena, it may be useful to study several spatial variables simultaneously. To this end, we extend some theoretical results and applications of max-stable processes to the multivariate setting to analyze extreme events of several variables observed across space. In particular, we study the maxima of independent replicates of multivariate processes, both in the Gaussian and Student-t cases. Then, we define a Poisson process construction in the multivariate setting and introduce multivariate versions of the Smith Gaussian extremevalue, the Schlather extremal-Gaussian and extremal-t, and the BrownResnick models. Inferential aspects of those models based on composite likelihoods are developed. We present results of various Monte Carlo simulations and of an application to a dataset of summer daily temperature maxima and minima in Oklahoma, U.S.A., highlighting the utility of working with multivariate models in contrast to the univariate case. Based on joint work with Simone Padoan and Huiyan Sang.
Toward Practical Secure Stable Matching
Directory of Open Access Journals (Sweden)
Riazi M. Sadegh
2017-01-01
Full Text Available The Stable Matching (SM algorithm has been deployed in many real-world scenarios including the National Residency Matching Program (NRMP and financial applications such as matching of suppliers and consumers in capital markets. Since these applications typically involve highly sensitive information such as the underlying preference lists, their current implementations rely on trusted third parties. This paper introduces the first provably secure and scalable implementation of SM based on Yao’s garbled circuit protocol and Oblivious RAM (ORAM. Our scheme can securely compute a stable match for 8k pairs four orders of magnitude faster than the previously best known method. We achieve this by introducing a compact and efficient sub-linear size circuit. We even further decrease the computation cost by three orders of magnitude by proposing a novel technique to avoid unnecessary iterations in the SM algorithm. We evaluate our implementation for several problem sizes and plan to publish it as open-source.
Stable bubble oscillations beyond Blake's critical threshold.
Hegedűs, Ferenc
2014-04-01
The equilibrium radius of a single spherical bubble containing both non-condensable gas and vapor is determined by the mechanical balance at the bubble interface. This expression highlights the fact that decreasing the ambient pressure below the so called Blake's critical threshold, the bubble has no equilibrium state at all. In the last decade many authors have tried to find evidence for the existence of stable bubble oscillation under harmonic forcing in this regime, that is, they have tried to stabilize the bubble motion applying ultrasonic radiation on the bubble. The available numerical results provide only partial proof for the existence as they are usually based on linearized or weakly nonlinear (higher order approximation) bubble models. Here, based on numerical techniques of the modern nonlinear and bifurcation theory, the existence of stable bubble motion has been proven without any restrictions in nonlinearities. Although the model, applied in this paper, is the rather simple Rayleigh-Plesset equation, the presented technique can be extended to more complex bubble models easily. Copyright © 2014 Elsevier B.V. All rights reserved.
Application of enriched stable isotopes as tracers in biological systems
DEFF Research Database (Denmark)
Stürup, Stefan; Hansen, Helle Rüsz; Gammelgaard, Bente
2008-01-01
The application of enriched stable isotopes of minerals and trace elements as tracers in biological systems is a rapidly growing research field that benefits from the many new developments in inorganic mass spectrometric instrumentation, primarily within inductively coupled plasma mass spectrometry......, and the development of new methodologies coupled with more advanced compartmental and mathematical models for the distribution of elements in living organisms has enabled a broader use of enriched stable isotope experiments in the biological sciences. This review discusses the current and future uses of enriched...... stable isotope experiments in biological systems....
Multivariate max-stable spatial processes
Genton, Marc G.
2015-02-11
Max-stable processes allow the spatial dependence of extremes to be modelled and quantified, so they are widely adopted in applications. For a better understanding of extremes, it may be useful to study several variables simultaneously. To this end, we study the maxima of independent replicates of multivariate processes, both in the Gaussian and Student-t cases. We define a Poisson process construction and introduce multivariate versions of the Smith Gaussian extreme-value, the Schlather extremal-Gaussian and extremal-t, and the Brown–Resnick models. We develop inference for the models based on composite likelihoods. We present results of Monte Carlo simulations and an application to daily maximum wind speed and wind gust.
Energy Technology Data Exchange (ETDEWEB)
Carlberg, Kevin Thomas [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Quantitative Modeling and Analysis; Drohmann, Martin [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Quantitative Modeling and Analysis; Tuminaro, Raymond S. [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Computational Mathematics; Boggs, Paul T. [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Quantitative Modeling and Analysis; Ray, Jaideep [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Quantitative Modeling and Analysis; van Bloemen Waanders, Bart Gustaaf [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Optimization and Uncertainty Estimation
2014-10-01
Model reduction for dynamical systems is a promising approach for reducing the computational cost of large-scale physics-based simulations to enable high-fidelity models to be used in many- query (e.g., Bayesian inference) and near-real-time (e.g., fast-turnaround simulation) contexts. While model reduction works well for specialized problems such as linear time-invariant systems, it is much more difficult to obtain accurate, stable, and efficient reduced-order models (ROMs) for systems with general nonlinearities. This report describes several advances that enable nonlinear reduced-order models (ROMs) to be deployed in a variety of time-critical settings. First, we present an error bound for the Gauss-Newton with Approximated Tensors (GNAT) nonlinear model reduction technique. This bound allows the state-space error for the GNAT method to be quantified when applied with the backward Euler time-integration scheme. Second, we present a methodology for preserving classical Lagrangian structure in nonlinear model reduction. This technique guarantees that important properties--such as energy conservation and symplectic time-evolution maps--are preserved when performing model reduction for models described by a Lagrangian formalism (e.g., molecular dynamics, structural dynamics). Third, we present a novel technique for decreasing the temporal complexity --defined as the number of Newton-like iterations performed over the course of the simulation--by exploiting time-domain data. Fourth, we describe a novel method for refining projection-based reduced-order models a posteriori using a goal-oriented framework similar to mesh-adaptive h -refinement in finite elements. The technique allows the ROM to generate arbitrarily accurate solutions, thereby providing the ROM with a 'failsafe' mechanism in the event of insufficient training data. Finally, we present the reduced-order model error surrogate (ROMES) method for statistically quantifying reduced- order-model
Belalcazar, L Maria; Merched, Aksam; Carr, Boyd; Oka, Kazuhiro; Chen, Kuang-Hua; Pastore, Lucio; Beaudet, Arthur; Chan, Lawrence
2003-06-03
Epidemiologic studies and transgenic mouse experiments indicate that high plasma HDL and apolipoprotein (apo) A-I protect against atherosclerosis. We used helper-dependent adenovirus (HD-Ad) gene transfer to examine the effect of long-term hepatic apoA-I expression on atherosclerotic lesion progression and remodeling in a mouse model of familial hypercholesterolemia. We treated LDL receptor-deficient (LDLR-/-) mice maintained on a high-cholesterol diet for 6 weeks with either a HD-Ad containing human apoA-I gene (HD-Ad-AI) or saline (control). HD-Ad-AI treatment did not affect plasma liver enzymes but induced the appearance of plasma human apoA-I at or above human levels for the duration of the study. Substantial amounts of human apoA-I existed in lipid-free plasma. Compared with controls, HDLs from treated mice were larger and had a greater inhibitory effect on tumor necrosis factor-alpha-induced vascular cellular adhesion molecule-1 expression in cultured endothelial cells. Twenty-four weeks after injection, aortic atherosclerotic lesion area in saline-treated mice progressed approximately 700%; the rate of progression was reduced by >50% by HD-Ad-AI treatment. The lesions in HD-Ad-AI-treated mice contained human apoA-I that colocalized mainly with macrophages; they also contained less lipid, fewer macrophages, and less vascular cellular adhesion molecule-1 immunostaining but more smooth muscle cells (alpha-actin staining) and collagen. HD-Ad-AI treatment of LDLR-/- mice leads to long-term overexpression of apoA-I, retards atherosclerosis progression, and remodels the lesions to a more stable-appearing phenotype. HD-Ad-mediated transfer of apoA-I may be a useful clinical approach for protecting against atherosclerosis progression and stabilizing atherosclerotic lesions associated with dyslipidemia in human patients.
Stable Organic Radicals in Lignin: A Review.
Patil, Shradha V; Argyropoulos, Dimitris S
2017-09-11
Lignin and the quest for the origin of stable organic radicals in it have seen numerous developments. Although there have been various speculations over the years on the formation of these stable radicals, researchers have not been able to arrive at a solid, unequivocal hypothesis that applies to all treatments and types of lignin. The extreme complexity of lignin and its highly aromatic, cross-linked, branched, and rigid structure has made such efforts rather cumbersome. Since the early 1950s, researchers in this field have dedicated their efforts to the establishment of methods for the detection and determination of spin content, theoretical simulations, and reactions on model compounds and spin-trapping studies. Although a significant amount of published research is available on lignin or its model compounds and the reactive intermediates involved during various chemical treatments (pulping, bleaching, extractions, chemical modifications, etc.), the literature provides a limited view on the origin, nature, and stability of such radicals. Consequently, this review is focused on examining the origin of such species in lignin, factors affecting their presence, reactions involved in their formation, and methods for their detection. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Thermally stable imaging channeled spectropolarimetry
Craven-Jones, Julia; Way, Brandyn M.; Hunt, Jeff; Kudenov, Michael W.; Mercier, Jeffrey A.
2013-09-01
Channeled spectropolarimetry can measure the complete polarization state of light as a function of wavelength. Typically, a channeled spectropolarimeter uses high order retarders made of uniaxial crystal to amplitude modulate the measured spectrum with the spectrally-dependent Stokes polarization information. A primary limitation of conventional channeled spectropolarimeters is related to the thermal variability of the retarders. Thermal variation often forces frequent system recalibration, particularly for field deployed systems. However, implementing thermally stable retarders results in an athermal channeled spectropolarimeter that relieves the need for frequent recalibration. Past work has addressed this issue by developing athermalized retarders using two or more uniaxial crystals. Recently, a retarder made of biaxial KTP and cut at a thermally insensitive angle was used to produce an athermal channeled spectropolarimeter. This paper presents the results of the biaxial crystal system and compares the two thermal stabilization techniques in the context of producing an imaging thermally stable channeled spectropolarimeter. A preliminary design for a snapshot imaging channeled spectropolarimeter is also presented.
Microbiological characterization of stable resuspended dust
Directory of Open Access Journals (Sweden)
Nora Kováts
2016-06-01
Full Text Available Objectives: Air quality in the stables is characterized by elevated level of dust and aeroallergens which are supposed to directly cause or exacerbate several respiratory disorders. The most often recognized problem is recurrent airway obstruction (RAO, previously known as chronic obstructive pulmonary disease (COPD. There is some indication that aeroallergens (among them endotoxins may also cause inflammation in human airways and may exceed safe levels in stables. Monitoring studies have covered mainly the determination of the concentration of respirable particles and of culturable fungi and their toxins. However, these particles do not only directly affect the respiratory system, but might act as a carrier conveying toxic contaminants and biological agents such as bacteria. In a typical, 20-horse Hungarian stable, microbial community of respirable fraction of resuspended dust has been characterized to reveal if these particles convey hazardous pathogenic bacteria, posing risk to either horses or staff. Material and Methods: Resuspended dust was sampled using a mobile instrument. The instrument contains a PARTISOL-FRM model 2000 sampler that was operated at a flow rate of 16.7 l/min and a cyclone separator which collected the particulate matter with an aerodynamic size between 1 μm and 10 μm (PM1–10 fraction. Microbial taxa were identified by culture-independent next generation sequencing (NGS of variable 16S ribosomal ribonucleic acid (rRNA gene regions. Results: In total, 1491 different taxa were identified, of them 384 were identified to species level, 961 to genus level. The sample was dominated by common ubiquitous soil and organic material-dwelling taxa. Conclusions: Pathogens occurred at low abundance, and were represented by mostly facultative human pathogens, with the prevalence of Staphylococcus species.
Stable isotope views on ecosystem function: challenging or challenged?
Resco, Víctor; Querejeta, José I.; Ogle, Kiona; Voltas, Jordi; Sebastià, Maria-Teresa; Serrano-Ortiz, Penélope; Linares, Juan C.; Moreno-Gutiérrez, Cristina; Herrero, Asier; Carreira, José A.; Torres-Cañabate, Patricia; Valladares, Fernando
2010-01-01
Stable isotopes and their potential for detecting various and complex ecosystem processes are attracting an increasing number of scientists. Progress is challenging, particularly under global change scenarios, but some established views have been challenged. The IX meeting of the Spanish Association of Terrestrial Ecology (AAET, Úbeda, 18–22 October 2009) hosted a symposium on the ecology of stable isotopes where the linear mixing model approach of partitioning sinks and sources of carbon and water fluxes within an ecosystem was challenged, and new applications of stable isotopes for the study of plant interactions were evaluated. Discussion was also centred on the need for networks that monitor ecological processes using stable isotopes and key ideas for fostering future research with isotopes. PMID:20015858
Potential analysis of stable processes and its extensions
Stos, Andrzej
2009-01-01
Stable Lévy processes and related stochastic processes play an important role in stochastic modelling in applied sciences, in particular in financial mathematics. This book is about the potential theory of stable stochastic processes. It also deals with related topics, such as the subordinate Brownian motions (including the relativistic process) and Feynman–Kac semigroups generated by certain Schroedinger operators. The authors focus on classes of stable and related processes that contain the Brownian motion as a special case. This is the first book devoted to the probabilistic potential theory of stable stochastic processes, and, from the analytical point of view, of the fractional Laplacian. The introduction is accessible to non-specialists and provides a general presentation of the fundamental objects of the theory. Besides recent and deep scientific results the book also provides a didactic approach to its topic, as all chapters have been tested on a wide audience, including young mathematicians at a C...
Stable solitons of quadratic ginzburg-landau equations
Crasovan; Malomed; Mihalache; Mazilu; Lederer
2000-07-01
We present a physical model based on coupled Ginzburg-Landau equations that supports stable temporal solitary-wave pulses. The system consists of two parallel-coupled cores, one having a quadratic nonlinearity, the other one being effectively linear. The former core is active, with bandwidth-limited amplification built into it, while the latter core has only losses. Parameters of the model can be easily selected so that the zero background is stable. The model has nongeneric exact analytical solutions in the form of solitary pulses ("dissipative solitons"). Direct numerical simulations, using these exact solutions as initial configurations, show that they are unstable; however, the evolution initiated by the exact unstable solitons ends up with nontrivial stable localized pulses, which are very robust attractors. Direct simulations also demonstrate that the presence of group-velocity mismatch (walkoff) between the two harmonics in the active core makes the pulses move at a constant velocity, but does not destabilize them.
Advanced Spacecraft Thermal Modeling Project
National Aeronautics and Space Administration — For spacecraft developers who spend millions to billions of dollars per unit and require 3 to 7 years to deploy, the LoadPath reduced-order (RO) modeling thermal...
Stable rotating dipole solitons in nonlocal media
DEFF Research Database (Denmark)
Lopez-Aguayo, Servando; Skupin, Stefan; Desyatnikov, Anton S.
2006-01-01
We present the first example of stable rotating two-soliton bound states in nonlinear optical media with nonlocal response. We show that, in contrast to media with local response, nonlocality opens possibilities to generate stable azimuthons.......We present the first example of stable rotating two-soliton bound states in nonlinear optical media with nonlocal response. We show that, in contrast to media with local response, nonlocality opens possibilities to generate stable azimuthons....
QMU in Integrated Spacecraft System Models Project
National Aeronautics and Space Administration — ACTA and Sandia National Laboratories propose to quantify and propagate substructure modeling uncertainty for reduced-order substructure models to higher levels of...
Are Ionic Liquids Chemically Stable?
Wang, Binshen; Qin, Li; Mu, Tiancheng; Xue, Zhimin; Gao, Guohua
2017-05-24
Ionic liquids have attracted a great deal of interest in recent years, illustrated by their applications in a variety of areas involved with chemistry, physics, biology, and engineering. Usually, the stabilities of ionic liquids are highlighted as one of their outstanding advantages. However, are ionic liquids really stable in all cases? This review covers the chemical stabilities of ionic liquids. It focuses on the reactivity of the most popular imidazolium ionic liquids at structural positions, including C2 position, N1 and N3 positions, and C4 and C5 positions, and decomposition on the imidazolium ring. Additionally, we discuss decomposition of quaternary ammonium and phosphonium ionic liquids and hydrolysis and nucleophilic reactions of anions of ionic liquids. The review aims to arouse caution on potential decomposition of ionic liquids and provides a guide for better utilization of ionic liquids.
Fubini theorem for multiparameter stable process
Erraoui, Mohamed; Ouknine, Youssef
2011-01-01
We prove stochastic Fubini theorem for general stable measure which will be used to develop some identities in law for functionals of one and two-parameter stable processes. This result is subsequently used to establish the integration by parts formula for stable sheet.
Fubini theorem for multiparameter stable process
Directory of Open Access Journals (Sweden)
Mohamed Erraoui
2011-04-01
Full Text Available We prove stochastic Fubini theorem for general stable measure which will be used to develop some identities in law for functionals of one and two-parameter stable processes. This result is subsequently used to establish the integration by parts formula for stable sheet.
Wideband quin-stable energy harvesting via combined nonlinearity
Directory of Open Access Journals (Sweden)
Chen Wang
2017-04-01
Full Text Available In this work, we propose a wideband quintuple-well potential piezoelectric-based vibration energy harvester using a combined nonlinearity: the magnetic nonlinearity induced by magnetic force and the piecewise-linearity produced by mechanical impact. With extra stable states compared to other multi-stable harvesters, the quin-stable harvester can distribute its potential energy more uniformly, which provides shallower potential wells and results in lower excitation threshold for interwell motion. The mathematical model of this quin-stable harvester is derived and its equivalent piecewise-nonlinear restoring force is measured in the experiment and identified as piecewise polynomials. Numerical simulations and experimental verifications are performed in different levels of sinusoid excitation ranging from 1 to 25 Hz. The results demonstrate that, with lower potential barriers compared with tri-stable counterpart, the quin-stable arrangement can escape potential wells more easily for doing high-energy interwell motion over a wider band of frequencies. Moreover, by utilizing the mechanical stoppers, this harvester can produce significant output voltage under small tip deflections, which results in a high power density and is especially suitable for a compact MEMS approach.
But some neutrally stable strategies are more neutrally stable than others
van Veelen, M.
2010-01-01
For games in which there is no evolutionarily stable strategy, it can be useful to look for neutrally stable ones. In extensive form games for instance there is typically no evolutionary stable strategy, while there may very well be a neutrally stable one. Such strategies can however still be
Reduced-Order Aerothermoelastic Analysis of Hypersonic Vehicle Structures
2012-01-01
server issues, I would like to thank Dave McLean for always being more than generous with his time in helping resolve whatever problems I have...rigid r = incident radiant heat flow, restrained degrees of freedom Suth = Sutherland reference quantity sky = atmospheric condition solar = solar... Sutherland reference temperature, µSuth is the known viscosity at TSuth, and S is Sutherland’s constant for the species of interest. With the reference
Hidden attractors without equilibrium and adaptive reduced-order ...
Indian Academy of Sciences (India)
2017-03-10
Mar 10, 2017 ... 1Guangxi Colleges and Universities Key Laboratory of Complex System Optimization and Big Data Processing,. Yulin Normal University, Yulin 537000, People's Republic of China .... As an important analysis technique, the Poincaré map can reflect bifurcation and folding properties of chaos. When c = 4, m ...
Ocean wave spectral estimation by reduced order arma algorithms
Digital Repository Service at National Institute of Oceanography (India)
Witz, J.A.; Mandal, S.; Lyons, G.J.
stream_size 9 stream_content_type text/plain stream_name 11_Int_Conf_Offshore_Mech_Arctic_Eng_Proc_1992_1_17.pdf.txt stream_source_info 11_Int_Conf_Offshore_Mech_Arctic_Eng_Proc_1992_1_17.pdf.txt Content-Encoding ISO-8859...
Hidden attractors without equilibrium and adaptive reduced-order ...
Indian Academy of Sciences (India)
Guangxi Colleges and Universities Key Laboratory of Complex System Optimization and Big Data Processing, Yulin Normal University, Yulin 537000, People's Republic of China; School of Statistics and Management, Shanghai University of Finance and Economics, Shanghai 200433, People's Republic of China ...
Stable piecewise polynomial vector fields
Directory of Open Access Journals (Sweden)
Claudio Pessoa
2012-09-01
Full Text Available Let $N={y>0}$ and $S={y<0}$ be the semi-planes of $mathbb{R}^2$ having as common boundary the line $D={y=0}$. Let $X$ and $Y$ be polynomial vector fields defined in $N$ and $S$, respectively, leading to a discontinuous piecewise polynomial vector field $Z=(X,Y$. This work pursues the stability and the transition analysis of solutions of $Z$ between $N$ and $S$, started by Filippov (1988 and Kozlova (1984 and reformulated by Sotomayor-Teixeira (1995 in terms of the regularization method. This method consists in analyzing a one parameter family of continuous vector fields $Z_{epsilon}$, defined by averaging $X$ and $Y$. This family approaches $Z$ when the parameter goes to zero. The results of Sotomayor-Teixeira and Sotomayor-Machado (2002 providing conditions on $(X,Y$ for the regularized vector fields to be structurally stable on planar compact connected regions are extended to discontinuous piecewise polynomial vector fields on $mathbb{R}^2$. Pertinent genericity results for vector fields satisfying the above stability conditions are also extended to the present case. A procedure for the study of discontinuous piecewise vector fields at infinity through a compactification is proposed here.
Stable Structures for Distributed Applications
Directory of Open Access Journals (Sweden)
Eugen DUMITRASCU
2008-01-01
Full Text Available For distributed applications, we define the linear, tree and graph structure types with different variants and modalities to aggregate them. The distributed applications have assigned structures that through their characteristics influence the costs of stages for developing cycle and the costs for exploitation, transferred to each user. We also present the quality characteristics of a structure for a stable application, which is focused on stability characteristic. For that characteristic we define the estimated measure indicators for a level. The influence of the factors of stability and the ways for increasing it are thus identified, and at the same time the costs of development stages, the costs of usage and the costs of maintenance to be keep on between limits that assure the global efficiency of application. It is presented the base aspects for distributed applications: definition, peculiarities and importance. The aspects for the development cycle of distributed application are detailed. In this article, we alongside give the mechanisms for building the defined structures and analyze the complexity of the defined structures for a distributed application of a virtual store.
Stable Isotope Database: present and past archives
Bolliet, Timothé
2014-05-01
Paleoclimate data provide benchmarks against which the realism of the processes simulated by climate models can be assessed. Within this framework, it is essential to avoid introducing uncertainties associated with transfer functions and therefore to operate with robust proxies. The implementation of stable isotopes of water or carbon inside climate models motivates a synthesis of available data. Supported by the LABEX L-IPSL and involving a team of climate modelers and paleoclimatologists, this project aims to establish a worldwide database of δ18O, δD δ17O and δ13C from oceanic microfossils, corals, ice cores, cave speleothems, lakes, tree rings, and vegetation leaves wax. The aim is to provide a global vision of the hydrological cycle during the LGM and other selected key periods (last 2000 years, Mid-Holocene, Dansgaard-Oeschger events, and the Eemian). It requires screening through hundreds of published oceanic and continental records, validating the selection of the data based on resolution and chronological information. We extracted ~900 dated δ18O records from 650 marine sediment cores, 65 δ18O records from 50 ice cores, ~200 δ18O speleothems records from 60 caves, and 540 δ13C records from 290 marine sediment cores. An additional aspect of this project consists in the construction of an online portal providing an intuitive and interactive platform allowing selecting, visualizing, and downloading of the records included in this database, thus improving the distribution and comparison of paleoclimatic records from various sites.
Understanding and prediction of stable atmospheric boundary layers over land
Steeneveld, G.J.
2007-01-01
The main objective of this thesis is to contribute to further understanding of the stable boundary layer (SBL) over land, and its representation in atmospheric models. A SBL develops during night due to radiative surface cooling. Observations in the SBL are difficult since many different physical
Exact solutions, energy, and charge of stable Q-balls
Energy Technology Data Exchange (ETDEWEB)
Bazeia, D.; Marques, M.A. [Universidade Federal da Paraiba, Departamento de Fisica, Joao Pessoa, PB (Brazil); Menezes, R. [Universidade Federal da Paraiba, Departamento de Ciencias Exatas, Rio Tinto, PB (Brazil); Universidade Federal de Campina Grande, Departamento de Fisica, Campina Grande, PB (Brazil)
2016-05-15
In this work we deal with nontopological solutions of the Q-ball type in two spacetime dimensions. We study models of current interest, described by a Higgs-like and other, similar potentials which unveil the presence of exact solutions. We use the analytic results to investigate how to control the energy and charge to make the Q-balls stable. (orig.)
A comparison of stable platform and strapdown airborne gravity
DEFF Research Database (Denmark)
Glennie, C.L.; Schwarz, K.P.; Bruton, A.M.
2000-01-01
To date, operational airborne gravity results have been obtained using either a damped two-axis stable platform gravimeter system such as the LaCoste and Romberg (LCR) S-model marine gravimeter or a strapdown inertial navigation system (INS), showing comparable accuracies. In June 1998 three flig...
ORIGINAL ARTICLE Sixth Order Stable Central Difference Method ...
African Journals Online (AJOL)
quantum mechanics, plasticity, chemical- reaction theory, aerodynamics, plasma ... Department of Mathematics, Jimma University, Jimma ...... sixth-order stable central difference method, has been presented for solving self-adjoint singularly perturbed two point boundary value problems. Three model examples are given to ...
Stable laws and cosmic ray physics
Genolini, Y.; Salati, P.; Serpico, P. D.; Taillet, R.
2017-04-01
sources plays an important role. A few proposals have been recently discussed in the literature to account for spectral breaks reported in cosmic ray data in terms of local contributions. We apply our newly developed theory to assess their probabilities, finding that they are relatively small, typically at the 0.1% level or smaller, never exceeding 1%. Conclusions: The use of heavy tail distributions is relevant in assessing how likely a measured cosmic ray flux is to depart from the average expectation in a given model. The existing mathematical theory leading to stable laws can be adapted to the case of interest via some recipes that closely reproduce numerical simulations and are relatively easy to implement.
Population Games, Stable Games, and Passivity
Directory of Open Access Journals (Sweden)
Michael J. Fox
2013-10-01
Full Text Available The class of “stable games”, introduced by Hofbauer and Sandholm in 2009, has the attractive property of admitting global convergence to equilibria under many evolutionary dynamics. We show that stable games can be identified as a special case of the feedback-system-theoretic notion of a “passive” dynamical system. Motivated by this observation, we develop a notion of passivity for evolutionary dynamics that complements the definition of the class of stable games. Since interconnections of passive dynamical systems exhibit stable behavior, we can make conclusions about passive evolutionary dynamics coupled with stable games. We show how established evolutionary dynamics qualify as passive dynamical systems. Moreover, we exploit the flexibility of the definition of passive dynamical systems to analyze generalizations of stable games and evolutionary dynamics that include forecasting heuristics as well as certain games with memory.
Persistent model order reduction for complex dynamical systems using smooth orthogonal decomposition
Ilbeigi, Shahab; Chelidze, David
2017-11-01
Full-scale complex dynamic models are not effective for parametric studies due to the inherent constraints on available computational power and storage resources. A persistent reduced order model (ROM) that is robust, stable, and provides high-fidelity simulations for a relatively wide range of parameters and operating conditions can provide a solution to this problem. The fidelity of a new framework for persistent model order reduction of large and complex dynamical systems is investigated. The framework is validated using several numerical examples including a large linear system and two complex nonlinear systems with material and geometrical nonlinearities. While the framework is used for identifying the robust subspaces obtained from both proper and smooth orthogonal decompositions (POD and SOD, respectively), the results show that SOD outperforms POD in terms of stability, accuracy, and robustness.
Uniform control of local times of spectrally positive stable processes
Forman, Noah; Pal, Soumik; Rizzolo, Douglas; Winkel, Matthias
2016-01-01
We establish two results about local times of spectrally positive stable processes. The first is a general approximation result, uniform in space and on compact time intervals, in a model where each jump of the stable process may be marked by a random path. The second gives moment control on the H\\"older constant of the local times, uniformly across a compact spatial interval and in certain random time intervals. For the latter, we introduce the notion of a L\\'evy process restricted to a comp...
Stable isotope compounds - production, detection, and application.
Zachleder, Vilém; Vítová, Milada; Hlavová, Monika; Moudříková, Šárka; Mojzeš, Peter; Heumann, Hermann; Becher, Johannes R; Bišová, Kateřina
2018-01-19
Stable isotopes are used in wide fields of application from natural tracers in biology, geology and archeology through studies of metabolic fluxes to their application as tracers in quantitative proteomics and structural biology. We review the use of stable isotopes of biogenic elements (H, C, N, O, S, Mg, Se) with the emphasis on hydrogen and its heavy isotope deuterium. We will discuss the limitations of enriching various compounds in stable isotopes when produced in living organisms. Finally, we overview methods for measuring stable isotopes, focusing on methods for detection in single cells in situ and their exploitation in modern biotechnologies. Copyright © 2018. Published by Elsevier Inc.
Stable Isotope Ratios as Biomarkers of Diet for Health Research.
O'Brien, Diane M
2015-01-01
Diet is a leading modifiable risk factor for chronic disease, but it remains difficult to measure accurately due to the error and bias inherent in self-reported methods of diet assessment. Consequently, there is a pressing need for more objective biomarkers of diet for use in health research. The stable isotope ratios of light elements are a promising set of candidate biomarkers because they vary naturally and reproducibly among foods, and those variations are captured in molecules and tissues with high fidelity. Recent studies have identified valid isotopic measures of short- and long-term sugar intake, meat intake, and fish intake in specific populations. These studies provide a strong foundation for validating stable isotopic biomarkers in the general US population. Approaches to improve specificity for specific foods are needed; for example, by modeling intake using multiple stable isotope ratios or by isolating and measuring specific molecules linked to foods of interest.
Computing properties of stable configurations of thermodynamic binding networks
Breik, Keenan; Prakash, Lakshmi; Thachuk, Chris; Heule, Marijn; Soloveichik, David
2017-01-01
Models of molecular computing generally embed computation in kinetics--the specific time evolution of a chemical system. However, if the desired output is not thermodynamically stable, basic physical chemistry dictates that thermodynamic forces will drive the system toward error throughout the computation. The Thermodynamic Binding Network (TBN) model was introduced to formally study how the thermodynamic equilibrium can be made consistent with the desired computation, and it idealizes bindin...
physico-chemical and stable isotopes
African Journals Online (AJOL)
This paper details the mineralogical, chemical and stable isotope abundances of calcrete in the Letlhakeng fossil valley. The stable isotope abundances (O and C) of calcretes yielded some values which were tested against the nature of the calcretes – pedogenic or groundwater type. The Kgalagadi (Kalahari) is a vast ...
Stable isotopes and biomarkers in microbial ecology
Boschker, H.T.S.; Middelburg, J.J.
2002-01-01
The use of biomarkers in combination with stable isotope analysis is a new approach in microbial ecology and a number of papers on a variety of subjects have appeared. We will first discuss the techniques for analysing stable isotopes in biomarkers, primarily gas chromatography-combustion-isotope
The integrated periodogram for stable processes
Kluppelberg, C; Mikosch, T
1996-01-01
We study the asymptotic behavior of the integrated periodogram for alpha-stable linear processes. For alpha is an element of (1, 2) we prove a functional limit theorem for the integrated periodogram. The limit is an alpha-stable analogue to the Brownian bridge. We apply our results to investigate
High order stiffly stable linear multistep methods
Energy Technology Data Exchange (ETDEWEB)
Cooper, C.N.
1979-01-01
Stiffly stable linear k-step methods of order k for the initial-value problem are studied. Examples for k = 1, 2, and 3 were discovered by use of Adams-type methods. A large family of stiffly stable linear 7-step methods of order 7 was also found.
Power system coherency and model reduction
Chow, Joe H
2014-01-01
This book provides a comprehensive treatment for understanding interarea modes in large power systems and obtaining reduced-order models using the coherency concept and selective modal analysis method.
Mamoru Kaneko
1982-01-01
This paper applies the theory of the conventionally stable set to monopolistic and oligopolistic markets. A market model with a finite number of producers and a continuum of buyers is presented and then is formulated as a strategic game in which the producers' strategies are prices and the buyers' strategies are demands for commodities. It is shown that a conventionally stable set in this game corresponds to a conventionally stable one in a game where the producers are only players but the bu...
Passarge, J.; Hol, S.; Escher, M.; Huisman, J.
2006-01-01
Competition theory has put forward three contrasting hypotheses: Competition for nutrients and light may lead to (i) stable coexistence of species, (ii) alternative stable states, or (iii) competitive exclusion. This paper presents a detailed investigation of competition among phytoplankton species
Passarge, J.; Hol, S.; Escher, M.; Huisman, J.
2006-01-01
Abstract. Competition theory has put forward three contrasting hypotheses: Competition for nutrients and light may lead to (i) stable coexistence of species, (ii) alternative stable states, or (iii) competitive exclusion. This paper presents a detailed investigation of competition among
Exploring Isothermal Layers in the Stable Atmospheric Boundary Layer
Wilkins, Joseph
2011-03-01
Simulating the stable atmospheric boundary-layer presents a significant challenge to numerical models due to the interactions of several processes with widely varying scales. The goal of this project is to more clearly define the cause of isothermal layers observed during the Meteorological Experiment in Arizona's Meteor Crater and to test the National Taiwan University/Purdue University (NTU/P) model in stable environments with complex terrain. The NTU/P model is able to utilize the actual terrain data with minimal smoothing for stability. We have found that isothermal profiles can be generated by the standing wave that develops due to weak wind flowing over the crater. However, the horizontal heterogeneity is greater than observed. Continued effort will explore enhancing horizontal mixing due to turbulence and radiative transfer. Louis Stokes Alliances for Minority Participation Program, Summer Research Opportunities Program.
Stochastic Climate Theory and Modelling
Franzke, Christian L E; Berner, Judith; Williams, Paul D; Lucarini, Valerio
2014-01-01
Stochastic methods are a crucial area in contemporary climate research and are increasingly being used in comprehensive weather and climate prediction models as well as reduced order climate models. Stochastic methods are used as subgrid-scale parameterizations as well as for model error representation, uncertainty quantification, data assimilation and ensemble prediction. The need to use stochastic approaches in weather and climate models arises because we still cannot resolve all necessary processes and scales in comprehensive numerical weather and climate prediction models. In many practical applications one is mainly interested in the largest and potentially predictable scales and not necessarily in the small and fast scales. For instance, reduced order models can simulate and predict large scale modes. Statistical mechanics and dynamical systems theory suggest that in reduced order models the impact of unresolved degrees of freedom can be represented by suitable combinations of deterministic and stochast...
Visible spectrum of stable sonoluminescence
Carlson, Joseph T.
1992-12-01
Synchronous emissions of picosecond pulses of light are observed to originate from a bubble trapped at the pressure antinode of a resonant sound field. The spectrum has been measured using a single slit spectrometer equipped with a linear array CCD detector. Spectra from differing solutions of water and glycerin are compared to the visible blackbody spectrum distribution. Assuming a blackbody model, apparent temperatures of 18,900 Kelvins are observed in pure water. Increasing glycerin concentration appears to correlate with cooler blackbody temperatures. The spectrum is also found to continually change with time, independent of input parameters.
Stable colloids in molten inorganic salts
Zhang, Hao; Dasbiswas, Kinjal; Ludwig, Nicholas B.; Han, Gang; Lee, Byeongdu; Vaikuntanathan, Suri; Talapin, Dmitri V.
2017-02-01
A colloidal solution is a homogeneous dispersion of particles or droplets of one phase (solute) in a second, typically liquid, phase (solvent). Colloids are ubiquitous in biological, chemical and technological processes, homogenizing highly dissimilar constituents. To stabilize a colloidal system against coalescence and aggregation, the surface of each solute particle is engineered to impose repulsive forces strong enough to overpower van der Waals attraction and keep the particles separated from each other. Electrostatic stabilization of charged solutes works well in solvents with high dielectric constants, such as water (dielectric constant of 80). In contrast, colloidal stabilization in solvents with low polarity, such as hexane (dielectric constant of about 2), can be achieved by decorating the surface of each particle of the solute with molecules (surfactants) containing flexible, brush-like chains. Here we report a class of colloidal systems in which solute particles (including metals, semiconductors and magnetic materials) form stable colloids in various molten inorganic salts. The stability of such colloids cannot be explained by traditional electrostatic and steric mechanisms. Screening of many solute-solvent combinations shows that colloidal stability can be traced to the strength of chemical bonding at the solute-solvent interface. Theoretical analysis and molecular dynamics modelling suggest that a layer of surface-bound solvent ions produces long-ranged charge-density oscillations in the molten salt around solute particles, preventing their aggregation. Colloids composed of inorganic particles in inorganic melts offer opportunities for introducing colloidal techniques to solid-state science and engineering applications.
Displacement Processes in Stable Drainage Fronts
Breen, S. J.; Pride, S. R.; Manga, M.
2016-12-01
Drainage fronts are stabilized at large bond number, when a low density nonwetting fluid displaces a high density wetting fluid from above. This is an ideal flow scenario for studying the correspondence between pore scale processes and continuum models because the front is a persistent macroscale feature that is propagated by discrete, multiplepore scale displacements. We present new observations of stable air/water drainage in thin, threedimensional, poured bead packs at varying capillary number. With backlighting and a high speed camera, we observe short range front velocities that are an order of magnitude larger than bulk pore velocity, consistent with previous studies in ordered 2D structures. We also quantify displacement lengths and front width. For comparison to continuum simulations, we measure saturation by light transmission continuously over a series of 1 cm length voxels. We focus on the critical nonwetting saturation (CNS, or "emergence point") at which voxels are percolated by air and continuum air permeability becomes nonzero. We find that mean CNS is capillary number dependent even at large bond number, with larger CNS at lower capillary number. Continuum simulations with an equivalent discretization demonstrate that CNS is a significant source of uncertainty for predictions of the time and saturation profile at chamber-length air breakthrough.
Stable colloids in molten inorganic salts.
Zhang, Hao; Dasbiswas, Kinjal; Ludwig, Nicholas B; Han, Gang; Lee, Byeongdu; Vaikuntanathan, Suri; Talapin, Dmitri V
2017-02-15
A colloidal solution is a homogeneous dispersion of particles or droplets of one phase (solute) in a second, typically liquid, phase (solvent). Colloids are ubiquitous in biological, chemical and technological processes, homogenizing highly dissimilar constituents. To stabilize a colloidal system against coalescence and aggregation, the surface of each solute particle is engineered to impose repulsive forces strong enough to overpower van der Waals attraction and keep the particles separated from each other. Electrostatic stabilization of charged solutes works well in solvents with high dielectric constants, such as water (dielectric constant of 80). In contrast, colloidal stabilization in solvents with low polarity, such as hexane (dielectric constant of about 2), can be achieved by decorating the surface of each particle of the solute with molecules (surfactants) containing flexible, brush-like chains. Here we report a class of colloidal systems in which solute particles (including metals, semiconductors and magnetic materials) form stable colloids in various molten inorganic salts. The stability of such colloids cannot be explained by traditional electrostatic and steric mechanisms. Screening of many solute-solvent combinations shows that colloidal stability can be traced to the strength of chemical bonding at the solute-solvent interface. Theoretical analysis and molecular dynamics modelling suggest that a layer of surface-bound solvent ions produces long-ranged charge-density oscillations in the molten salt around solute particles, preventing their aggregation. Colloids composed of inorganic particles in inorganic melts offer opportunities for introducing colloidal techniques to solid-state science and engineering applications.
Geochemistry of the stable isotopes of silicon
Energy Technology Data Exchange (ETDEWEB)
Douthitt, C.B. (California Inst. of Tech., Pasadena (USA). Div. of Geological and Planetary Sciences)
1982-08-01
One hundred thirty two new measurements of the relative abundances of the stable isotopes of silicon in terrestrial materials are presented. The total variation of delta/sup 30/Si found is 6.2 parts per thousand, centered on the mean of terrestrial mafic and ultramafic igneous rocks, delta/sup 30/Si = -0.4 parts per thousand. Igneous rocks show limited variation; coexisting minerals exhibit small, systematic silicon isotopic fractionations that are roughly 1/3 the magnitude of concomitant oxygen isotopic fractionations at 1150/sup 0/C. In both igneous minerals and rocks, delta/sup 30/Si shows a positive correlation with silicon content, as does delta/sup 18/O. Opal from both sponge spicules and sinters is light, with delta/sup 30/Si = -2.3 and -1.4 parts per thousand respectively. Large delta/sup 30/Si values of both positive and negative sign are reported for the first time from clay minerals, opaline phytoliths, and authigenic quartz. All highly fractionated samples were precipitated from solution at low temperatures; however, aqueous silicon is not measurably fractionated relative to quartz at equilibrium. A kinetic isotope fractionation of approximately 3.5 parts per thousand is postulated to occur during the low temperature precipitation of opal and, possibly, poorly ordered phyllosilicates, with the silicate phase being enriched in /sup 28/Si. This fractionation, coupled with a Rayleigh precipitation model, is capable of explaining most non-magmatic delta/sup 30/Si variations.
Stability Analysis and H∞ Model Reduction for Switched Discrete-Time Time-Delay Systems
Directory of Open Access Journals (Sweden)
Zheng-Fan Liu
2014-01-01
Full Text Available This paper is concerned with the problem of exponential stability and H∞ model reduction of a class of switched discrete-time systems with state time-varying delay. Some subsystems can be unstable. Based on the average dwell time technique and Lyapunov-Krasovskii functional (LKF approach, sufficient conditions for exponential stability with H∞ performance of such systems are derived in terms of linear matrix inequalities (LMIs. For the high-order systems, sufficient conditions for the existence of reduced-order model are derived in terms of LMIs. Moreover, the error system is guaranteed to be exponentially stable and an H∞ error performance is guaranteed. Numerical examples are also given to demonstrate the effectiveness and reduced conservatism of the obtained results.
Stable nuclear transformation of Eudorina elegans
Directory of Open Access Journals (Sweden)
Lerche Kai
2013-02-01
Full Text Available Abstract Background A fundamental step in evolution was the transition from unicellular to differentiated, multicellular organisms. Volvocine algae have been used for several decades as a model lineage to investigate the evolutionary aspects of multicellularity and cellular differentiation. There are two well-studied volvocine species, a unicellular alga (Chlamydomonas reinhardtii and a multicellular alga with differentiated cell types (Volvox carteri. Species with intermediate characteristics also exist, which blur the boundaries between unicellularity and differentiated multicellularity. These species include the globular alga Eudorina elegans, which is composed of 16–32 cells. However, detailed molecular analyses of E. elegans require genetic manipulation. Unfortunately, genetic engineering has not yet been established for Eudorina, and only limited DNA and/or protein sequence information is available. Results Here, we describe the stable nuclear transformation of E. elegans by particle bombardment using both a chimeric selectable marker and reporter genes from different heterologous sources. Transgenic algae resistant to paromomycin were achieved using the aminoglycoside 3′-phosphotransferase VIII (aphVIII gene of Streptomyces rimosus, an actinobacterium, under the control of an artificial promoter consisting of two V. carteri promoters in tandem. Transformants exhibited an increase in resistance to paromomycin by up to 333-fold. Co-transformation with non-selectable plasmids was achieved with a rate of 50 - 100%. The luciferase (gluc gene from the marine copepod Gaussia princeps, which previously was engineered to match the codon usage of C. reinhardtii, was used as a reporter gene. The expression of gluc was mediated by promoters from C. reinhardtii and V. carteri. Heterologous heat shock promoters induced an increase in luciferase activity (up to 600-fold at elevated temperatures. Long-term stability and both constitutive and
Stable isotope characterization of the Vermigliana catchment
Chiogna, Gabriele; Santoni, Emilio; Camin, Federica; Tonon, Agostino; Majone, Bruno; Trenti, Alberto; Bellin, Alberto
2014-02-01
Characterizing the hydrological behavior of streams in small Alpine catchments spanning a wide range of elevations is a difficult task, often hampered by the intrinsic variability of streamwater sources. Stable isotope ratios of oxygen and hydrogen have been sampled monthly in order to determine the spatial and temporal hydrological behavior and the mean residence time of water in the Vermigliana catchment, North-Eastern Italy. This study aims at separating contributions to streamflow originating from Presena and Presanella glaciers, both exerting a strong control on the hydrologic budget of the study site. The isotopic signature of precipitation has been collected at two locations at different altitudes (1176 m a.s.l. and 2731 m a.s.l.), while stream water was sampled at 11 locations, 8 along the main course of the Vermigliana creek and 3 along the two tributaries of the Vermigliana creek: the Presanella and Presena creeks. Groundwater was sampled monthly in a single location, whilst the waters of two small lakes, Capanna Presena and Cantiere, both located in the proximity of the Presena glacier, were sampled during summer, when the sites were accessible. Isotope analysis evidenced that Presena and Presanella creeks are the main contributors to the Vermigliana creek. The contribution of the Presanella creek is 44% of the total flow at the confluence with the Vermigliana, while the contribution of the Presena creek rises to 75% of the total flow immediately after the confluence. The mean residence times computed for the Vermigliana and the tributaries vary between 7 and 5 months, respectively. This work allows us to investigate the main components in the hydrological cycle of the Vermigliana catchment and constitutes the basis for future modeling and climate change impact studies on this important Alpine catchment. The methodology can be exported to other sites with the aim to provide additional data, with respect to streamflow at the catchment outlet, to reduce
Precipitation and temperature effects on stable fly (diptera: muscidae) population dynamics
The dynamics of stable fly, Stomoxys calcitrans (L.), populations relative to temperature and precipitation were evaluated in a 13 y study in eastern Nebraska. During the course of the study, over 1.7 million stable flies were collected on an array of 25 sticky traps. A log-normal model using degree...
Embedded Controller Design for Pig Stable Ventilation Systems
DEFF Research Database (Denmark)
Jessen, Jan Jacob
This thesis focuses on zone based climate control in pig stables and how to implement climate controllers in a new range of products. The presented controllers are based on simple models of climate dynamics and simple models of actuators. The implementation uses graphical point and click features...... source code for the actual target platform, on which the climate controller is expected to execute. The third paper also deals with the development cycle of controllers, showing how to build a graphical user interface for point and click modelling of zone based climate dynamics. The next two papers...
Stable Economic Cooperation : A Relational Approach
Gilles, R.P.; Lazarova, E.A.; Ruys, P.H.M.
2008-01-01
We consider a relational economy in which economic agents participate in three types of relational economic activities: autarkic activities; binary matching activities; and plural cooperative activities. We introduce a stability notion and characterize stable interaction structures, both in the
On Stable Marriages and Greedy Matchings
Energy Technology Data Exchange (ETDEWEB)
Manne, Fredrik; Naim, Md; Lerring, Hakon; Halappanavar, Mahantesh
2016-12-11
Research on stable marriage problems has a long and mathematically rigorous history, while that of exploiting greedy matchings in combinatorial scientific computing is a younger and less developed research field. In this paper we consider the relationships between these two areas. In particular we show that several problems related to computing greedy matchings can be formulated as stable marriage problems and as a consequence several recently proposed algorithms for computing greedy matchings are in fact special cases of well known algorithms for the stable marriage problem. However, in terms of implementations and practical scalable solutions on modern hardware, the greedy matching community has made considerable progress. We show that due to the strong relationship between these two fields many of these results are also applicable for solving stable marriage problems.
Bartolome Island, Galapagos Stable Oxygen Calibration Data
National Oceanic and Atmospheric Administration, Department of Commerce — Galapagos Coral Stable Oxygen Calibration Data. Sites: Bartolome Island: 0 deg, 17'S, 90 deg 33' W. Champion Island: 1 deg, 15'S, 90 deg, 05' W. Urvina Bay (Isabela...
Allan Hills Stable Water Isotopes, Version 1
National Aeronautics and Space Administration — This data set includes stable water isotope values at 10 m resolution along an approximately 5 km transect through the main icefield of the Allan Hills Blue Ice...
Regularity of Tor for weakly stable ideals
Directory of Open Access Journals (Sweden)
Katie Ansaldi
2015-05-01
Full Text Available It is proved that if I and J are weakly stable ideals in a polynomial ring R = k[x_1, . . ., x_n], with k a field, then the regularity of Tor^R_i (R/I, R/J has the expected upper bound. We also give a bound for the regularity of Ext^i_R (R/I, R for I a weakly stable ideal.
Energy Technology Data Exchange (ETDEWEB)
Souza, E.J.S. Pires de [Pontificia Universidade Catolica do Rio de Janeiro (PUC-Rio), Rio de Janeiro, RJ (Brazil). Dept. de Engenharia Eletrica], E-mail: pires@ele.puc-rio.br
2009-07-01
The dynamic aggregation of coherent generating unit models has been solved as an unconstrained optimization problem. In this process, negative time constants may be obtained, which characterize unstable or non-minimal phase models. The comparison of the solutions of the dynamic aggregation problem of voltage regulator models obtained with both the original formulation and the squared-variable transformation is the objective of this paper. Initial values are within the range from +100% to -90% in relation to the estimated parameters. The New England system including models of the Brazilian system is considered in the studies. (author)
Local Search Approaches in Stable Matching Problems
Directory of Open Access Journals (Sweden)
Toby Walsh
2013-10-01
Full Text Available The stable marriage (SM problem has a wide variety of practical applications, ranging from matching resident doctors to hospitals, to matching students to schools or, more generally, to any two-sided market. In the classical formulation, n men and n women express their preferences (via a strict total order over the members of the other sex. Solving an SM problem means finding a stable marriage where stability is an envy-free notion: no man and woman who are not married to each other would both prefer each other to their partners or to being single. We consider both the classical stable marriage problem and one of its useful variations (denoted SMTI (Stable Marriage with Ties and Incomplete lists where the men and women express their preferences in the form of an incomplete preference list with ties over a subset of the members of the other sex. Matchings are permitted only with people who appear in these preference lists, and we try to find a stable matching that marries as many people as possible. Whilst the SM problem is polynomial to solve, the SMTI problem is NP-hard. We propose to tackle both problems via a local search approach, which exploits properties of the problems to reduce the size of the neighborhood and to make local moves efficiently. We empirically evaluate our algorithm for SM problems by measuring its runtime behavior and its ability to sample the lattice of all possible stable marriages. We evaluate our algorithm for SMTI problems in terms of both its runtime behavior and its ability to find a maximum cardinality stable marriage. Experimental results suggest that for SM problems, the number of steps of our algorithm grows only as O(n log(n, and that it samples very well the set of all stable marriages. It is thus a fair and efficient approach to generate stable marriages. Furthermore, our approach for SMTI problems is able to solve large problems, quickly returning stable matchings of large and often optimal size, despite the
Biological conservation through marine protected areas in the presence of alternative stable states.
Ghosh, Bapan; Pal, Debprasad; Kar, T K; Valverde, Jose C
2017-04-01
This article addresses how depleted stock can be restored by creation of marine reserve and species mobility when alternative stable states persist in a marine ecosystem. To understand the role of a marine protected area, we develop a two-patch version of an originally single-patch model. In the two-patch model, we prove that some of the locally stable equilibria are not stable equilibria from an ecological viewpoint. Similarly, some unstable equilibria determined classically from the mathematical model are no longer equilibria. It is shown that increasing reserve size may produce three alternative stable states in the presence of harvesting. Dynamic solutions have a tendency to reach an upper stable state from a lower stable state when reserve size is increased, but the opposite phenomenon (i.e., shifting to a lower stable state from an upper one) never occurs. This suggests that MPAs always have a positive effect in stock conservation even when alternative stable states inherently persist in marine ecosystems. Copyright © 2017 Elsevier Inc. All rights reserved.
Skorjanec, Sandra; Dolovski, Zdravko; Kocman, Ivan; Brcic, Luka; Blagaic Boban, Alenka; Batelja, Lovorka; Coric, Marjana; Sever, Marko; Klicek, Robert; Berkopic, Lidija; Radic, Bozo; Drmic, Domagoj; Kolenc, Danijela; Ilic, Spomenko; Cesarec, Vedran; Tonkic, Ante; Zoricic, Ivan; Mise, Stjepan; Staresinic, Mario; Ivica, Mihovil; Lovric Bencic, Martina; Anic, Tomislav; Seiwerth, Sven; Sikiric, Predrag
2009-01-01
This study focused on unhealed gastrocutaneous fistulas to resolve whether standard drugs that promote healing of gastric ulcers may simultaneously have the same effect on cutaneous wounds, and corticosteroid aggravation, and to demonstrate why peptides such as BPC 157 exhibit a greater healing effect. Therefore, with the fistulas therapy, we challenge the wound/growth factors theory of the analogous nonhealing of wounds and persistent gastric ulcers. The healing rate of gastrocutaneous fistula in rat (2-mm-diameter stomach defect, 3-mm-diameter skin defect) validates macro/microscopically and biomechanically a direct skin wound/stomach ulcer relation, and identifies a potential therapy consisting of: (i) stable gastric pentadecapeptide BPC 157 [in drinking water (10 microg/kg) (12 ml/rat/day) or intraperitoneally (10 microg/kg, 10 ng/kg, 10 pg/kg)], (ii) atropine (10 mg/kg), ranitidine (50 mg/kg), and omeprazole (50 mg/kg), (iii) 6-alpha-methylprednisolone (1 mg/kg) [intraperitoneally, once daily, first application at 30 min following surgery; last 24 h before sacrifice (at postoperative days 1, 2, 3, 7, 14, and 21)]. Greater anti-ulcer potential and efficiency in wound healing compared with standard agents favor BPC 157, efficient in inflammatory bowel disease (PL-14736, Pliva), given in drinking water or intraperitoneally. Even after 6-alpha-methylprednisolone aggravation, BPC 157 promptly improves both skin and stomach mucosa healing, and closure of fistulas, with no leakage after up to 20 ml water intragastrically. Standard anti-ulcer agents, after a delay, improve firstly skin healing and then stomach mucosal healing, but not fistula leaking and bursting strength (except for atropine). We conclude that BPC 157 may resolve analogous nonhealing of wounds and persistent gastric ulcers better than standard agents.
Stable colloids in molten inorganic salts
Energy Technology Data Exchange (ETDEWEB)
Zhang, Hao; Dasbiswas, Kinjal; Ludwig, Nicholas B.; Han, Gang; Lee, Byeongdu; Vaikuntanathan, Suri; Talapin, Dmitri V.
2017-02-15
A colloidal solution is a homogeneous dispersion of particles or droplets of one phase (solute) in a second, typically liquid, phase (solvent). Colloids are ubiquitous in biological, chemical and technological processes1, 2, homogenizing highly dissimilar constituents. To stabilize a colloidal system against coalescence and aggregation, the surface of each solute particle is engineered to impose repulsive forces strong enough to overpower van der Waals attraction and keep the particles separated from each other2. Electrostatic stabilization3, 4 of charged solutes works well in solvents with high dielectric constants, such as water (dielectric constant of 80). In contrast, colloidal stabilization in solvents with low polarity, such as hexane (dielectric constant of about 2), can be achieved by decorating the surface of each particle of the solute with molecules (surfactants) containing flexible, brush-like chains2, 5. Here we report a class of colloidal systems in which solute particles (including metals, semiconductors and magnetic materials) form stable colloids in various molten inorganic salts. The stability of such colloids cannot be explained by traditional electrostatic and steric mechanisms. Screening of many solute–solvent combinations shows that colloidal stability can be traced to the strength of chemical bonding at the solute–solvent interface. Theoretical analysis and molecular dynamics modelling suggest that a layer of surface-bound solvent ions produces long-ranged charge-density oscillations in the molten salt around solute particles, preventing their aggregation. Colloids composed of inorganic particles in inorganic melts offer opportunities for introducing colloidal techniques to solid-state science and engineering applications.
Validation of insulin resistance indexes in a stable renal transplant population
Oterdoom, Leendert H.; de Vries, Aiko P. J.; van Son, Willem J.; Homan van der Heide, Jaap J.; Ploeg, Rutger J.; Gansevoort, Ron T.; de Jong, Paul E.; Gans, Rijk O. B.; Bakker, Stephan J. L.
2005-01-01
The purpose of this study was to investigate the validity of established insulin resistance indexes, based on fasting blood parameters, in a stable renal transplant population. Fasting insulin, homeostasis model assessment (HOMA), the quantitative insulin sensitivity check index (QUICKI), and
Validation of insulin resistance indexes in a stable renal transplant population
Oterdoom, LH; De Vries, APJ; Van Son, WJ; Van Der Heide, JJH; Ploeg, RJ; Gansevoort, RT; De Jong, PE; Gans, ROB; Bakker, SJL
2005-01-01
OBJECTIVE - The purpose of this study was to investigate the validity of established insulin resistance indexes, based on fasting blood parameters, in a stable renal transplant population. RESEARCH DESIGN AND METHODS - Fasting insulin, homeostasis model assessment (HOMA), the quantitative insulin
Stable emergent Universe - a creation without Big-Bang
Guendelman, E.; Herrera, R.; Labrana, P.; Nissimov, E.; Pacheva, S.
2015-11-01
Based on an earlier introduced new class of generalized gravity-matter models defined in terms of two independent non-Riemannian volume forms (alternative generally covariant integration measure densities) on the space-time manifold, we derive an effective ``Einstein-frame'' theory featuring the following remarkable properties: (i) We obtain effective potential for the cosmological scalar field possessing two infinitely large flat regions which allows for a unified description of both early Universe inflation as well as of present dark energy epoch; (ii) for a specific parameter range the model possesses a non-singular stable ``emergent Universe'' solution which describes an initial phase of evolution that precedes the inflationary phase.
Stable isotope labeling for proteomic analysis of tissues in mouse.
Hölper, Soraya; Ruhs, Aaron; Krüger, Marcus
2014-01-01
Since the first metabolic labeling experiments with stable isotopes beginning of the last century, several approaches were pursued to monitor protein dynamics in living animals. Today, almost all model organisms from bacteria to rodents can be fully labeled with SILAC (stable isotope labeling of amino acids in cell culture) amino acids. The development of special media and diets containing the labeled amino acids provides an efficient way to metabolically label prokaryotic and eukaryotic organisms. Preferentially, the essential amino acid lysine ((13)C6-lysine) is used to label mice (Mus musculus) and after one generation the natural isotope is fully replaced by the stable (13)C6-lysine isotope. So far, the SILAC mouse approach has been used to analyze several transgenic and knockout mouse models. Spike-in of labeled proteins into non-labeled samples provides an accurate relative protein quantification method without any chemical modification. Here we describe how to establish a SILAC mouse colony and describe the analysis of skeletal muscle tissue with different metabolic and contractile profiles.
On some topological properties of stable measures
DEFF Research Database (Denmark)
Nielsen, Carsten Krabbe
1996-01-01
Summary The paper shows that the set of stable probability measures and the set of Rational Beliefs relative to a given stationary measure are closed in the strong topology, but not closed in the topology of weak convergence. However, subsets of the set of stable probability measures which...... are characterized by uniformity of convergence of the empirical distribution are closed in the topology of weak convergence. It is demonstrated that such subsets exist. In particular, there is an increasing sequence of sets of SIDS measures who's union is the set of all SIDS measures generated by a particular...... system and such that each subset consists of stable measures. The uniformity requirement has a natural interpretation in terms of plausibility of Rational Beliefs...
Stable isotope dilution assays in mycotoxin analysis.
Rychlik, Michael; Asam, Stefan
2008-01-01
The principle and applications of stable isotope dilution assays (SIDAs) in mycotoxin analysis are critically reviewed. The general section includes historical aspects of SIDAs, the prerequisites and limitations of the use of stable isotopically labelled internal standards, and possible calibration procedures. In the application section actual SIDAs for the analysis of trichothecenes, zearalenone, fumonisins, patulin, and ochratoxin A are presented. The syntheses and availability of labelled mycotoxins for use as internal standards is reviewed and specific advances in food analysis and toxicology are demonstrated. The review indicates that LC-MS applications, in particular, require the use of stable isotopically labelled standards to compensate for losses during clean-up and for discrimination due to ion suppression. As the commercial availability of these compounds continues to increase, SIDAs can be expected to find expanding use in mycotoxin analysis.
Stable isotope dilution assays in mycotoxin analysis
Energy Technology Data Exchange (ETDEWEB)
Rychlik, Michael; Asam, Stefan [Universitaet Muenchen, Lehrstuhl fuer Lebensmittelchemie der Technischen, Garching (Germany)
2008-01-15
The principle and applications of stable isotope dilution assays (SIDAs) in mycotoxin analysis are critically reviewed. The general section includes historical aspects of SIDAs, the prerequisites and limitations of the use of stable isotopically labelled internal standards, and possible calibration procedures. In the application section actual SIDAs for the analysis of trichothecenes, zearalenone, fumonisins, patulin, and ochratoxin A are presented. The syntheses and availability of labelled mycotoxins for use as internal standards is reviewed and specific advances in food analysis and toxicology are demonstrated. The review indicates that LC-MS applications, in particular, require the use of stable isotopically labelled standards to compensate for losses during clean-up and for discrimination due to ion suppression. As the commercial availability of these compounds continues to increase, SIDAs can be expected to find expanding use in mycotoxin analysis. (orig.)
Hirl, Regina; Schnyder, Hans; Auerswald, Karl; Vetter, Sylvia; Ostler, Ulrike; Schleip, Inga; Wingate, Lisa; Ogée, Jérôme
2015-04-01
The oxygen isotope composition (δ18O) of water in terrestrial ecosystems usually shows strong and dynamic variations within and between the various compartments. These variations originate from changes in the δ18O of water inputs (e.g. rain or water vapour) and from 18O fractionation phenomena in the soil-plant-atmosphere continuum. Investigations of δ18O in ecosystem water pools and of their main drivers can help us understand water relations at plant, canopy or ecosystem scale and interpret δ18O signals in plant and animal tissues as paleo-climate proxies. During the vegetation periods of 2006 to 2012, soil, leaf and stem water as well as atmospheric humidity, rain water and groundwater were sampled at bi-weekly intervals in a temperate humid pasture of the Grünschwaige Grassland Research Station near Munich (Germany). The sampling was performed following standardised MIBA (Moisture Isotopes in the Biosphere and Atmosphere) protocols. Leaf water samples were prepared from a mixture of co-dominant species in the plant community in order to obtain a canopy-scale leaf water δ18O signal. All samples were then analysed for their δ18O compositions. The measured δ18O of leaf, stem and soil water were then compared with the δ18O signatures simulated by the process-based isotope-enabled ecosystem model MuSICA (Multi-layer Simulator of the Interactions between a vegetation Canopy and the Atmosphere). MuSICA integrates current mechanistic understanding of processes in the soil-plant-atmosphere continuum. Hence, the comparison of modelled and measured data allows the identification of gaps in current knowledge and of questions to be tackled in the future. Soil and plant characteristics for model parameterisation were derived from investigations at the experimental site and supplemented by values from the literature. Eddy-covariance measurements of ecosystem CO2 (GPP, NEE) and energy (H, LE) fluxes and soil temperature data were used for model evaluation. The
Stable isotopes in Lithuanian bioarcheological material
Skipityte, Raminta; Jankauskas, Rimantas; Remeikis, Vidmantas
2015-04-01
Investigation of bioarcheological material of ancient human populations allows us to understand the subsistence behavior associated with various adaptations to the environment. Feeding habits are essential to the survival and growth of ancient populations. Stable isotope analysis is accepted tool in paleodiet (Schutkowski et al, 1999) and paleoenvironmental (Zernitskaya et al, 2014) studies. However, stable isotopes can be useful not only in investigating human feeding habits but also in describing social and cultural structure of the past populations (Le Huray and Schutkowski, 2005). Only few stable isotope investigations have been performed before in Lithuanian region suggesting a quite uniform diet between males and females and protein intake from freshwater fish and animal protein. Previously, stable isotope analysis has only been used to study a Stone Age population however, more recently studies have been conducted on Iron Age and Late medieval samples (Jacobs et al, 2009). Anyway, there was a need for more precise examination. Stable isotope analysis were performed on human bone collagen and apatite samples in this study. Data represented various ages (from 5-7th cent. to 18th cent.). Stable carbon and nitrogen isotope analysis on medieval populations indicated that individuals in studied sites in Lithuania were almost exclusively consuming C3 plants, C3 fed terrestrial animals, and some freshwater resources. Current investigation demonstrated social differences between elites and country people and is promising in paleodietary and daily life reconstruction. Acknowledgement I thank prof. dr. G. Grupe, Director of the Anthropological and Palaeoanatomical State Collection in Munich for providing the opportunity to work in her laboratory. The part of this work was funded by DAAD. Antanaitis-Jacobs, Indre, et al. "Diet in early Lithuanian prehistory and the new stable isotope evidence." Archaeologia Baltica 12 (2009): 12-30. Le Huray, Jonathan D., and Holger
Stable isotope labeling methods for DNA.
Nelissen, Frank H T; Tessari, Marco; Wijmenga, Sybren S; Heus, Hans A
2016-08-01
NMR is a powerful method for studying proteins and nucleic acids in solution. The study of nucleic acids by NMR is far more challenging than for proteins, which is mainly due to the limited number of building blocks and unfavorable spectral properties. For NMR studies of DNA molecules, (site specific) isotope enrichment is required to facilitate specific NMR experiments and applications. Here, we provide a comprehensive review of isotope-labeling strategies for obtaining stable isotope labeled DNA as well as specifically stable isotope labeled building blocks required for enzymatic DNA synthesis. Copyright © 2016 Elsevier B.V. All rights reserved.
Bordism, stable homotopy and adams spectral sequences
Kochman, Stanley O
1996-01-01
This book is a compilation of lecture notes that were prepared for the graduate course "Adams Spectral Sequences and Stable Homotopy Theory" given at The Fields Institute during the fall of 1995. The aim of this volume is to prepare students with a knowledge of elementary algebraic topology to study recent developments in stable homotopy theory, such as the nilpotence and periodicity theorems. Suitable as a text for an intermediate course in algebraic topology, this book provides a direct exposition of the basic concepts of bordism, characteristic classes, Adams spectral sequences, Brown-Peter
Moving stable solitons in Galileon theory
Energy Technology Data Exchange (ETDEWEB)
Masoumi, Ali, E-mail: ali@phys.columbia.edu [Physics Department and ISCAP, Columbia University, New York, NY 10027 (United States); Xiao Xiao, E-mail: xx2146@columbia.edu [Physics Department and ISCAP, Columbia University, New York, NY 10027 (United States)
2012-08-29
Despite the no-go theorem Endlich et al. (2011) which rules out static stable solitons in Galileon theory, we propose a family of solitons that evade the theorem by traveling at the speed of light. These domain-wall-like solitons are stable under small fluctuations-analysis of perturbation shows neither ghost-like nor tachyon-like instabilities, and perturbative collision of these solitons suggests that they pass through each other asymptotically, which maybe an indication of the integrability of the theory itself.
DEFF Research Database (Denmark)
Guo, Xiaoqiang; Lu, Zhigang; Wang, Baocheng
2014-01-01
accurate and could be found in literature. However, the modeling procedure will become very complex when the number of inverters in microgrid is large. One possible solution is to use the reduced-order small signal models for the inverter-dominated microgrids. Unfortunately, the reduced-order small signal...... of the system, while the conventional reduced-order small signal model fails. In addition, the virtual ω-E frame power control method, which deals with the power coupling caused by the line impedance X/R characteristic, has also been chosen as an application example of the proposed modeling technique....
Stable helical solitons in optical media
Indian Academy of Sciences (India)
Abstract. We present a review of new results which suggest the existence of fully stable spin- ning solitons (self-supporting localised objects with an internal vorticity) in optical fibres with self- focusing Kerr (cubic) nonlinearity, and in bulk media featuring a combination of the cubic self- defocusing and quadratic nonlinearities ...
Connected domination stable graphs upon edge addition ...
African Journals Online (AJOL)
A set S of vertices in a graph G is a connected dominating set of G if S dominates G and the subgraph induced by S is connected. We study the graphs for which adding any edge does not change the connected domination number. Keywords: Connected domination, connected domination stable, edge addition ...
Stable Agrobacterium -mediated transformation of the halophytic ...
African Journals Online (AJOL)
In this study, an efficient procedure for stable Agrobacterium-mediated transformation of Leymus chinensis (Trin.) was established. Agrobacterium tumefaciens strain EHA105, harboring a binary vector pCAMBIA2300, was used for transformation, along with a sweet potato 2-cysteine peroxiredoxin (2-Cys Prx) gene under ...
Galectin-1 in stable liver transplant recipients.
García, M J; Jurado, F; San Segundo, D; López-Hoyos, M; Iruzubieta, P; Llerena, S; Casafont, F; Arias, M; Puente, Á; Crespo, J; Fábrega, E
2015-01-01
The achievement of a state of tolerance and minimization of the immunosuppressive load form part of the "Holy Grail" in solid organ transplantation. Galectin-1 recently has been described to be involved in the maintenance of a tolerant environment, but there is no evidence of its role in human liver transplantation. The aim of our study was to measure the serum levels of galectin-1 in stable liver transplant recipients. Serum levels of galectin-1 were determined in 30 stable liver transplant recipients who had been free of rejection episodes for at least 8 years. Fifteen patients with an acute rejection episode and 34 healthy subjects were used as the control group. The concentrations of galectin-1 were significantly higher in stable liver transplant recipients compared with healthy subjects and with the acute rejection group. These preliminary results indicate that galectin-1 is upregulated in stable liver transplant recipients. Thus, our results extend the recent findings that galectin-1 may play an immune-suppressive role in liver transplantation. It remains to be established whether it might help to induce tolerance in liver transplantation. Copyright © 2015 Elsevier Inc. All rights reserved.
Champion Island, Galapagos Stable Oxygen Calibration Data
National Oceanic and Atmospheric Administration, Department of Commerce — Galapagos Coral Stable Oxygen Calibration Data. Sites: Bartolome Island: 0 deg, 17 min S, 90 deg 33 min W. Champion Island: 1 deg, 15 min S, 90 deg, 05 min W. Urvina...
Rethinking revascularization in patients with stable angina
Harskamp, Ralf E.; Park, Duk-Woo
2018-01-01
Traditional and current perception for benefit of percutaneous coronary intervention (PCI) is that patients with stable angina will obtain symptom relief as well as improved exercise capacity after percutaneous revascularization. This common clinical perception is put to test in the ORBITA trial,
Wang, Meng; Lu, Baohong
2017-04-01
Nitrate is essential for the growth and survival of plants, animals and humans. However, excess nitrate in drinking water is regarded as a health hazard as it is linked to infant methemoglobinemia and esophageal cancer. Revealing nitrate characteristics and identifying its sources are fundamental for making effective water management strategies, but nitrate sources in multi-tributaries and mixed land covered watersheds remain unclear. It is difficult to determine the predominant NO3- sources using conventional water quality monitoring techniques. In our study, based on 20 surface water sampling sites for more than two years' monitoring from April 2012 to December 2014, water chemical and dual isotopic approaches (δ15N-NO3- and δ18O-NO3-) were integrated for the first time to evaluate nitrate characteristics and sources in the Huashan watershed, Jianghuai hilly region, East China. The results demonstrated that nitrate content in surface water was relatively low in the downstream (aquatic plants, and high forest cover. Although dramatically decline of nitrate occurred along the stream, denitrification was not found in surface water by analyzing δ15N-NO3- and δ18O-NO3- relationship. Proportional contributions of five potential nitrate sources (i.e., precipitation; manure and sewage; soil nitrogen; nitrate fertilizer; nitrate derived from ammonia fertilizer and rainfall) were estimated using a Bayesian isotope mixing model. Model results indicated nitrate sources varied significantly among different rainfall conditions, land use types, as well as anthropologic activities. In summary, coupling dual isotopes of nitrate (δ15N-NO3- and δ18O-NO3-, simultaneously) with a Bayesian isotope mixing model offers a useful and practical way to qualitatively analyze nitrate sources and transformations as well as quantitatively estimate the contributions of potential nitrate sources in surface water. With the assessment of nitrate sources and characteristics, effective
Gauging the likelihood of stable cavitation from ultrasound contrast agents
Bader, Kenneth B; Holland, Christy K
2015-01-01
The mechanical index (MI) was formulated to gauge the likelihood of adverse bioeffects from inertial cavitation. However, the MI formulation did not consider bubble activity from stable cavitation. This type of bubble activity can be readily nucleated from ultrasound contrast agents (UCAs) and has the potential to promote beneficial bioeffects. Here, the presence of stable cavitation is determined numerically by tracking the onset of subharmonic oscillations within a population of bubbles for frequencies up to 7 MHz and peak rarefactional pressures up to 3 MPa. In addition, the acoustic pressure rupture threshold of an UCA population was determined using the Marmottant model. The threshold for subharmonic emissions of optimally sized bubbles was found to be lower than the inertial cavitation threshold for all frequencies studied. The rupture thresholds of optimally sized UCAs were found to be lower than the threshold for subharmonic emissions for either single cycle or steady state acoustic excitations. Because the thresholds of both subharmonic emissions and UCA rupture are linearly dependent on frequency, an index of the form ICAV = Pr/f (where Pr is the peak rarefactional pressure in MPa and f is the frequency in MHz) was derived to gauge the likelihood of subharmonic emissions due to stable cavitation activity nucleated from UCAs. PMID:23221109
Stable isotope tracers: natural and anthropogenic recharge, Orange County, California
Williams, Alan E.
1997-12-01
Stable isotopic techniques have been utilized to locate occurrences and trace movements of a variety of naturally and anthropogenically recharged waters in aquifers of Orange County, California. This basin is of particular interest not only because it provides the dominant water supply for the two million residents of this well-populated county, but also because it is representative of a common arid environment where natural recharge is dominated by distant, high-elevation precipitation transported by a major river. Such arid basins are particularly sensitive to climatic and anthropogenic disturbance of their recharge and their subsurface hydrology. In order to identify distinctive waters, oxygen and hydrogen stable isotope ratios from Orange County wells have been compared with a regional database including an array of surface water samples representative of watershed runoff. Four distinctive subsurface water types can be resolved. Waters of "local" rainfall and imported, "Colorado" River aqueduct origins are easily distinguished from dominant, "native" Santa Ana river compositions by use of hydrogen and oxygen stable isotope analysis. Recent human interference with Santa Ana river flow and recharge is also marginally resolvable by isotopic techniques. Distinguishable isotopic signatures of "recent" Santa Ana recharge appear to be due to evaporative loss, perhaps during storage in the Prado Reservoir or in percolation ponds, prior to recharge into Orange County aquifers. Characterization of traceable isotopic signatures of distinct natural and anthropogenic recharge components provides a major advance towards use of such techniques for developing a well constrained, three-dimensional hydrologic model for this complex basin.
Stable isotope measurements of evapotranspiration partitioning in a maize field
Hogan, Patrick; Parajka, Juraj; Oismüller, Markus; Strauss, Peter; Heng, Lee; Blöschl, Günter
2017-04-01
Evapotranspiration (ET) is one of the most important processes in describing land surface - atmosphere interactions as it connects the energy and water balances. Furthermore knowledge of the individual components of evapotranspiration is important for ecohydrological modelling and agriculture, particularly for irrigation efficiency and crop productivity. In this study, we tested the application of the stable isotope method for evapotranspiration partitioning to a maize crop during the vegetative stage, using sap flow sensors as a comparison technique. Field scale ET was measured using an eddy covariance device and then partitioned using high frequency in-situ measurements of the isotopic signal of the canopy water vapor. The fraction of transpiration (Ft) calculated with the stable isotope method showed good agreement with the sap flow method. High correlation coefficient values were found between the two techniques, indicating the stable isotope method can successfully be applied in maize. The results show the changes in transpiration as a fraction of evapotranspiration after rain events and during the subsequent drying conditions as well as the relationship between transpiration and solar radiation and vapor pressure deficit.
Bannach, Andreas; Hauer, Rene; Martin, Streibel; Stienstra, Gerard; Kühn, Michael
2015-04-01
The IPCC Report 2014 strengthens the need for CO2 storage as part of CCS or BECCS to reach ambitious climate goals despite growing energy demand in the future. The further expansion of renewable energy sources is a second major pillar. As it is today in Germany the weather becomes the controlling factor for electricity production by fossil fuelled power plants which lead to significant fluctuations of CO2-emissions which can be traced in injection rates if the CO2 were captured and stored. To analyse the impact of such changing injection rates on a CO2 storage reservoir. two reservoir simulation models are applied: a. An (smaller) reservoir model approved by gas storage activities for decades, to investigate the dynamic effects in the early stage of storage filling (initial aquifer displacement). b. An anticline structure big enough to accommodate a total amount of ≥ 100 Mega tons CO2 to investigate the dynamic effects for the entire operational life time of the storage under particular consideration of very high filling levels (highest aquifer compression). Therefore a reservoir model was generated. The defined yearly injection rate schedule is based on a study performed on behalf of IZ Klima (DNV GL, 2014). According to this study the exclusive consideration of a pool of coal-fired power plants causes the most intensive dynamically changing CO2 emissions and hence accounts for variations of a system which includes industry driven CO2 production. Besides short-term changes (daily & weekly cycles) seasonal influences are also taken into account. Simulation runs cover a variation of injection points (well locations at the top vs. locations at the flank of the structure) and some other largely unknown reservoir parameters as aquifer size and aquifer mobility. Simulation of a 20 year storage operation is followed by a post-operational shut-in phase which covers approximately 500 years to assess possible effects of changing injection rates on the long-term reservoir
Stable isotope deltas: Tiny, yet robust signatures in nature
Brand, Willi A.; Coplen, Tyler B.
2012-01-01
Although most of them are relatively small, stable isotope deltas of naturally occurring substances are robust and enable workers in anthropology, atmospheric sciences, biology, chemistry, environmental sciences, food and drug authentication, forensic science, geochemistry, geology, oceanography, and paleoclimatology to study a variety of topics. Two fundamental processes explain the stable isotope deltas measured in most terrestrial systems: isotopic fractionation and isotope mixing. Isotopic fractionation is the result of equilibrium or kinetic physicochemical processes that fractionate isotopes because of small differences in physical or chemical properties of molecular species having different isotopes. It is shown that the mixing of radioactive and stable isotope end members can be modelled to provide information on many natural processes, including 14C abundances in the modern atmosphere and the stable hydrogen and oxygen isotopic compositions of the oceans during glacial and interglacial times. The calculation of mixing fractions using isotope balance equations with isotope deltas can be substantially in error when substances with high concentrations of heavy isotopes (e.g. 13C, 2H, and 18O ) are mixed. In such cases, calculations using mole fractions are preferred as they produce accurate mixing fractions. Isotope deltas are dimensionless quantities. In the International System of Units (SI), these quantities have the unit 1 and the usual list of prefixes is not applicable. To overcome traditional limitations with expressing orders of magnitude differences in isotope deltas, we propose the term urey (symbol Ur), after Harold C. Urey, for the unit 1. In such a manner, an isotope delta value expressed traditionally as−25 per mil can be written as−25 mUr (or−2.5 cUr or−0.25 dUr; the use of any SI prefix is possible). Likewise, very small isotopic differences often expressed in per meg ‘units’ are easily included (e.g. either+0.015 ‰ or+15 per meg
Stable isotope deltas: tiny, yet robust signatures in nature.
Brand, Willi A; Coplen, Tyler B
2012-09-01
Although most of them are relatively small, stable isotope deltas of naturally occurring substances are robust and enable workers in anthropology, atmospheric sciences, biology, chemistry, environmental sciences, food and drug authentication, forensic science, geochemistry, geology, oceanography, and paleoclimatology to study a variety of topics. Two fundamental processes explain the stable isotope deltas measured in most terrestrial systems: isotopic fractionation and isotope mixing. Isotopic fractionation is the result of equilibrium or kinetic physicochemical processes that fractionate isotopes because of small differences in physical or chemical properties of molecular species having different isotopes. It is shown that the mixing of radioactive and stable isotope end members can be modelled to provide information on many natural processes, including (14)C abundances in the modern atmosphere and the stable hydrogen and oxygen isotopic compositions of the oceans during glacial and interglacial times. The calculation of mixing fractions using isotope balance equations with isotope deltas can be substantially in error when substances with high concentrations of heavy isotopes (e.g. (13)C, (2)H, and (18)O ) are mixed. In such cases, calculations using mole fractions are preferred as they produce accurate mixing fractions. Isotope deltas are dimensionless quantities. In the International System of Units (SI), these quantities have the unit 1 and the usual list of prefixes is not applicable. To overcome traditional limitations with expressing orders of magnitude differences in isotope deltas, we propose the term urey (symbol Ur), after Harold C. Urey, for the unit 1. In such a manner, an isotope delta value expressed traditionally as-25 per mil can be written as-25 mUr (or-2.5 cUr or-0.25 dUr; the use of any SI prefix is possible). Likewise, very small isotopic differences often expressed in per meg 'units' are easily included (e.g. either+0.015 ‰ or+15 per meg
Influences on the Height of the Stable Boundary Layer as seen in LES
Energy Technology Data Exchange (ETDEWEB)
Kosovic, B; Lundquist, J
2004-06-15
Climate models, numerical weather prediction (NWP) models, and atmospheric dispersion models often rely on parameterizations of planetary boundary layer height. In the case of a stable boundary layer, errors in boundary layer height estimation can result in gross errors in boundary-layer evolution and in prediction of turbulent mixing within the boundary layer.
From Reference Model to Component Model
Albani, Antonia; Zaha, Johannes Maria
2005-01-01
Stable component models are an essential prerequisite for developingcustomer-individual business applications. Thereby the information for theidentification and specification of their components is gained from domainmodels. Reference models constitute a potential source for building enterprisespecificdomain models. Based on the analysis of existing reference models,this article shows how information available through reference models can beused for the development of stable component models. ...
Microwave generation of stable atmospheric-pressure fireballs in air
Stephan, Karl D.
2006-11-01
The generation of stable buoyant fireballs in a microwave cavity in air at atmospheric pressure without the use of vaporized solids is described. These fireballs have some of the characteristics of ball lightning and resemble those reported by Dikhtyar and Jerby [Phys. Rev. Lett. 96, 045002 (2006)], although of a different color, and do not require the presence of molten or vaporized material. Mechanisms of microwave plasma formation and fluid dynamics can account for the observed behavior of the fireballs, which do not appear to meet the accepted definition of dusty plasmas in this case. Relevance to models of ball lightning and industrial applications are discussed.
Stable locality sensitive discriminant analysis for image recognition.
Gao, Quanxue; Liu, Jingjing; Cui, Kai; Zhang, Hailin; Wang, Xiaogang
2014-06-01
Locality Sensitive Discriminant Analysis (LSDA) is one of the prevalent discriminant approaches based on manifold learning for dimensionality reduction. However, LSDA ignores the intra-class variation that characterizes the diversity of data, resulting in unstableness of the intra-class geometrical structure representation and not good enough performance of the algorithm. In this paper, a novel approach is proposed, namely stable locality sensitive discriminant analysis (SLSDA), for dimensionality reduction. SLSDA constructs an adjacency graph to model the diversity of data and then integrates it in the objective function of LSDA. Experimental results in five databases show the effectiveness of the proposed approach. Copyright © 2014 Elsevier Ltd. All rights reserved.