WorldWideScience

Sample records for stable passive film

  1. Surface Passivation for 3-5 Semiconductor Processing: Stable Gallium Sulphide Films by MOCVD

    Science.gov (United States)

    Macinnes, Andrew N.; Jenkins, Phillip P.; Power, Michael B.; Kang, Soon; Barron, Andrew R.; Hepp, Aloysius F.; Tabib-Azar, Massood

    1994-01-01

    Gallium sulphide (GaS) has been deposited on GaAs to form stable, insulating, passivating layers. Spectrally resolved photoluminescence and surface recombination velocity measurements indicate that the GaS itself can contribute a significant fraction of the photoluminescence in GaS/GaAs structures. Determination of surface recombination velocity by photoluminescence is therefore difficult. By using C-V analysis of metal-insulator-semiconductor structures, passivation of the GaAs with GaS films is quantified.

  2. Effect of Cr on the passive film formation mechanism of steel rebar in saturated calcium hydroxide solution

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Ming; Cheng, Xuequn [Corrosion and Protection Center, University of Science and Technology Beijing, Beijing, 100083 (China); Li, Xiaogang, E-mail: lixiaogang@ustb.edu.cn [Corrosion and Protection Center, University of Science and Technology Beijing, Beijing, 100083 (China); Ningbo Institute of Material Technology & Engineering, Chinese Academy of Sciences, Ningbo, 315201, Zhejiang (China); Pan, Yue; Li, Jun [Corrosion and Protection Center, University of Science and Technology Beijing, Beijing, 100083 (China)

    2016-12-15

    Highlights: • Cr inhibits the formation of passive film at the beginning of its formation. • Cr promotes the formation of a denser and more compact passive film. • The passive film thickness presents a slight increase as the content of Cr goes up. - Abstract: Passive films grow on the surface of Cr-modified steels subjected to saturated Ca(OH){sub 2} solution. Electrochemical techniques, such as measurement of open circuit potentials, polarization curves, and electrochemical impedance spectroscopy combined with X-ray photoelectron spectrometer and auger electron spectroscopy, were applied to study the influence of low Cr content on the passive film formation mechanism of steel rebar in saturated Ca(OH){sub 2} solution. Results show that Cr inhibits the formation of passive film at the beginning of its formation. Corrosion current density decreases and polarization resistance increases with the extension of the immersion time. A stable passive film takes at least three days to form. The passive film resistance of HRB400 carbon steel is higher than that of Cr-modified steels in the early stage of immersion (<72 h). The polarization resistance of Cr-modified steel is larger after a stable passive film is formed (>72 h), and Cr promotes the formation of a denser and more compact passive film. The stable passive film is primarily made up of iron oxides with a thickness of 5–6 nm. Cr are involved in the formation of passive films, thereby resulting in a film that consists of an inner layer that contains Cr–Fe oxides and an outer layer that contains Fe oxides, whose thickness presents a slight increase as the content of Cr increases.

  3. Stable High-Performance Perovskite Solar Cells via Grain Boundary Passivation

    KAUST Repository

    Niu, Tianqi

    2018-03-12

    The trap states at grain boundaries (GBs) within polycrystalline perovskite films deteriorate their optoelectronic properties, making GB engineering particularly important for stable high-performance optoelectronic devices. It is demonstrated that trap states within bulk films can be effectively passivated by semiconducting molecules with Lewis acid or base functional groups. The perovskite crystallization kinetics are studied using in situ synchrotron-based grazing-incidence X-ray scattering to explore the film formation mechanism. A model of the passivation mechanism is proposed to understand how the molecules simultaneously passivate the Pb-I antisite defects and vacancies created by under-coordinated Pb atoms. In addition, it also explains how the energy offset between the semiconducting molecules and the perovskite influences trap states and intergrain carrier transport. The superior optoelectronic properties are attained by optimizing the molecular passivation treatments. These benefits are translated into significant enhancements of the power conversion efficiencies to 19.3%, as well as improved environmental and thermal stability of solar cells. The passivated devices without encapsulation degrade only by ≈13% after 40 d of exposure in 50% relative humidity at room temperature, and only ≈10% after 24 h at 80 °C in controlled environment.

  4. Stable High-Performance Perovskite Solar Cells via Grain Boundary Passivation.

    Science.gov (United States)

    Niu, Tianqi; Lu, Jing; Munir, Rahim; Li, Jianbo; Barrit, Dounya; Zhang, Xu; Hu, Hanlin; Yang, Zhou; Amassian, Aram; Zhao, Kui; Liu, Shengzhong Frank

    2018-04-01

    The trap states at grain boundaries (GBs) within polycrystalline perovskite films deteriorate their optoelectronic properties, making GB engineering particularly important for stable high-performance optoelectronic devices. It is demonstrated that trap states within bulk films can be effectively passivated by semiconducting molecules with Lewis acid or base functional groups. The perovskite crystallization kinetics are studied using in situ synchrotron-based grazing-incidence X-ray scattering to explore the film formation mechanism. A model of the passivation mechanism is proposed to understand how the molecules simultaneously passivate the Pb-I antisite defects and vacancies created by under-coordinated Pb atoms. In addition, it also explains how the energy offset between the semiconducting molecules and the perovskite influences trap states and intergrain carrier transport. The superior optoelectronic properties are attained by optimizing the molecular passivation treatments. These benefits are translated into significant enhancements of the power conversion efficiencies to 19.3%, as well as improved environmental and thermal stability of solar cells. The passivated devices without encapsulation degrade only by ≈13% after 40 d of exposure in 50% relative humidity at room temperature, and only ≈10% after 24 h at 80 °C in controlled environment. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Population Games, Stable Games, and Passivity

    Directory of Open Access Journals (Sweden)

    Michael J. Fox

    2013-10-01

    Full Text Available The class of “stable games”, introduced by Hofbauer and Sandholm in 2009, has the attractive property of admitting global convergence to equilibria under many evolutionary dynamics. We show that stable games can be identified as a special case of the feedback-system-theoretic notion of a “passive” dynamical system. Motivated by this observation, we develop a notion of passivity for evolutionary dynamics that complements the definition of the class of stable games. Since interconnections of passive dynamical systems exhibit stable behavior, we can make conclusions about passive evolutionary dynamics coupled with stable games. We show how established evolutionary dynamics qualify as passive dynamical systems. Moreover, we exploit the flexibility of the definition of passive dynamical systems to analyze generalizations of stable games and evolutionary dynamics that include forecasting heuristics as well as certain games with memory.

  6. Passive films at the nanoscale

    International Nuclear Information System (INIS)

    Maurice, Vincent; Marcus, Philippe

    2012-01-01

    Highlights: ► Nanoscale data on growth, structure and local properties of passive films reviewed. ► Preferential role of defects of passive films on the corrosion resistance emphasized. ► Effect of grain boundaries on local electronic properties shown by new data. ► Use of atomistic modeling to test mechanistic hypotheses illustrated. - Abstract: The nanometer scale chemical and structural aspects of ultrathin oxide passive films providing self-protection against corrosion to metals and alloys in aqueous environments are reviewed. Data on the nucleation and growth of 2D anodic oxide films, details on the atomic structure and nanostructure of 3D passive films, the preferential role of surface step edges in dissolution in the passive state and the preferential role of grain boundaries of the passive films in passivity breakdown are presented. Future perspectives are discussed, and exemplified by new data obtained on the relationship between the nanostructure of oxide passive films and their local electronic properties. Atomistic corrosion modeling by ab initio density functional theory (DFT) is illustrated by the example of interactions of chloride ions with hydroxylated oxide surfaces, including the role of surface step edges. Data obtained on well-defined substrate surfaces with surface analytical techniques are emphasized.

  7. Passive film growth on carbon steel and its nanoscale features at various passivating potentials

    International Nuclear Information System (INIS)

    Li, Yuan; Cheng, Y. Frank

    2017-01-01

    Highlights: • Imaged the topography of passivated steel at various film-forming potentials. • Characterized the nanoscale features of passive films. • Determined the composition of passive films formed at various potentials. - Abstract: In this work, the passivation and topographic sub-structure of passive films on a carbon steel in a carbonate/bicarbonate solution was characterized by electrochemical measurements, atomic force microscopy and X-ray photoelectron spectroscopy. When passivating at a potential near the active-passive transition, the film contains the mixture of Fe_3O_4, Fe_2O_3 and FeOOH, with numerous nanoscale features. As the film-forming potential shifts positively, the passive film becomes more compact and the nanoscale features disappear. When the film is formed at a passive potential where the oxygen evolution is enabled, the content of FeOOH in the film increases, resulting in an amorphous topography and reduced corrosion resistance.

  8. The behavior of dissolution/passivation and the transformation of passive films during electrocoagulation: Influences of initial pH, Cr(VI) concentration, and alternating pulsed current

    International Nuclear Information System (INIS)

    Yang, Zhao-hui; Xu, Hai-yin; Zeng, Guang-ming; Luo, Yuan-ling; Yang, Xia; Huang, Jing; Wang, Li-ke; Song, Pei-pei

    2015-01-01

    Highlights: • Initial pH, Cr(VI) and APC could affect the behavior of dissolution/passivation in Fe-EC. • A dissolution/passivation region was constructed with different initial pH-Cr(VI). • The film was rich in Fe and Cr at high Cr(VI), whereas with lots of Fe but negligible of Cr at low Cr(VI). • The film was non-protective at long T APC , but became more stable and protective at short T APC . • Behavior of dissolution/passivation and passive film transformation in Fe-EC was elucidated. - Abstract: The passivation behavior of an iron anode for electrocoagulation (EC) was first investigated using response surface methodology (RSM). Tested initial pH range, Cr(VI) concentration and alternating pulsed current (APC) were 4.0 to 8.0, 52 to 520 mg L −1 and 10 to 590 s, respectively. The distance between electrodes was 25 mm, and K 2 SO 4 (1 g L −1 ) was used as the supporting electrolyte in a 2.5 L EC reactor. Results confirmed that initial pH, Cr(VI) concentration, and APC significantly influence the extent of passivation. Then, based on the interaction effect on passivation behavior between initial pH and Cr(VI) in RSM, a pH-Cr(VI)-dissolution/passivation diagram was constructed with galvanostatic measurements. The diagram showed an optimal dissolution region for EC operation. This optimum was characterized by a reasonable final pH for extended precipitation and little passivation. Results of the cyclic voltammetry and X-ray photoelectron spectroscopy revealed a significant difference in the composition and stability of oxide films in the region with more pronounced passivation. Interestingly, the APC had both positive and negative effect on the passivation behavior. Long period of APC (T APC = 590 s) produced a non-protective film, which favored the Fe 0 dissolution. However, a more stable and protective passive film with a uniform structure of Fe and Cr oxides was formed by short T APC (10 s). Based on the above results, this study elucidated the

  9. Passive film growth on carbon steel and its nanoscale features at various passivating potentials

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yuan; Cheng, Y. Frank, E-mail: fcheng@ucalgary.ca

    2017-02-28

    Highlights: • Imaged the topography of passivated steel at various film-forming potentials. • Characterized the nanoscale features of passive films. • Determined the composition of passive films formed at various potentials. - Abstract: In this work, the passivation and topographic sub-structure of passive films on a carbon steel in a carbonate/bicarbonate solution was characterized by electrochemical measurements, atomic force microscopy and X-ray photoelectron spectroscopy. When passivating at a potential near the active-passive transition, the film contains the mixture of Fe{sub 3}O{sub 4}, Fe{sub 2}O{sub 3} and FeOOH, with numerous nanoscale features. As the film-forming potential shifts positively, the passive film becomes more compact and the nanoscale features disappear. When the film is formed at a passive potential where the oxygen evolution is enabled, the content of FeOOH in the film increases, resulting in an amorphous topography and reduced corrosion resistance.

  10. Passivation Effects in Copper Thin Films

    International Nuclear Information System (INIS)

    Wiederhirn, G.; Nucci, J.; Richter, G.; Arzt, E.; Balk, T. J.; Dehm, G.

    2006-01-01

    We studied the influence of a 10 nm AlxOy passivation on the stress-temperature behavior of 100 nm and 1 μm thick Cu films. At low temperatures, the passivation induces a large tensile stress increase in the 100 nm film; however, its effect on the 1 μm film is negligible. At high temperatures, the opposite behavior is observed; while the passivation does not change the 100 nm film behavior, it strengthens the 1 μm film by driving it deeper into compression. These observations are explained in light of a combination of constrained diffusional creep and dislocation dynamics unique to ultra-thin films

  11. Stability and modification of passive films of new PUREX-materials

    International Nuclear Information System (INIS)

    Schultze, J.W.; Siemensmeyer, B.; Patzelt, T.

    1991-10-01

    The valve metals Ti, Zr and others and their alloys can be used in nitric acid solutions of the Purex process. They are protected by passive films which are stable at least at low temperatures and concentrations. Electrochemical investigations and corrosion tests are applied to check improvements of the materials. Niobium can be used to substitute the very expensive tantalum. Electrochemical and analytical investigations show the formation of the corrosion stable oxide film. Special problems are treated, such as the stability of welded joints or the influence of radioactive irradiation. α-radiation and hot atoms are simulated by ion implantation, β- and γ-radiation are simulated by laser light. In both types of experiments no decrease of stability is indicated. The alloy Ti5Ta is more stable than Ti, but it is not as good as Ta. Other alloys of Ti were investigated, but they are not suitable for the Purex process. New protection layers are tested. With respect to their preparation as well as their corrosion stability, ANOF-films are promising, but TiN-films are not stable enough. (orig.) With 71 refs., 7 tabs., 71 figs [de

  12. The Stability of Magnetite and its Significance as a Passivating Film in the Repository Environment

    International Nuclear Information System (INIS)

    Hermansson, Hans-Peter

    2004-01-01

    A literature review was made in order to highlight if magnetite could be formed as a passivating film on iron in the expected repository environment. The possibility to form other types of passivating films has also been regarded, e.g. other iron oxides or mixed oxides of iron and copper and also sulfides. The conditions for the formation of different types of films have been discussed as well as their compositions and properties. It is concluded that magnetite could certainly be formed on iron at repository combinations of Eh and pH in the absence of sulphide and chloride. However, magnetite could easily be outnumbered by other solid phases that could be formed at the simultaneous presence of copper. CuFeO 2 is such a phase that could appear in a simple Fe-Cu-O-H system. As soon as sulphide and chloride are present other phases like CuFeS 2 could also be responsible for the passivation of iron. The probability that magnetite is the passivating film on cast iron at the actual conditions is therefore not very large. It is more likely that the passivating film instead consists of CuFeO 2 and/or CuFeS 2 , the latter depending on the concentration of sulphur in the system. The protective ability of the alternate compounds as passivating films could be discussed. A suggested ranking order of the protective ability is given in the discussion part. If magnetite is not stable, the integrity of the cast iron insert could therefore in such cases be dependent on the protection by less effective passivating substances. The hypothesis of the formation and nature of alternative passivating films should be tested at relevant conditions in laboratory experiments

  13. Effects of anodic passivation on the constitution, stability and resistance to corrosion of passive film formed on an Fe-24Mn-4Al-5Cr alloy

    International Nuclear Information System (INIS)

    Zhang, Y.S.; Zhu, X.M.; Liu, M.; Che, R.X.

    2004-01-01

    The effects of anodic aging time and potential on the corrosion resistance, stability and constitution of the passive film formed on an Fe-24Mn-4Al-5Cr alloy in 50% HNO 3 solution were studied by using combined electrochemical measurements and Auger electron spectroscopic (AES)/X-ray photoelectron spectroscopic (XPS) analysis. In the anodic passive region, prolonged anodic aging time or increased passivating potential can induce better protective and stable properties of the passive film and better resistance to corrosion. With increasing aging time from 15 min to 5 h, the time required for the potential decay from the passive to active state increases from about 300 up to above 12,000 s, and the corrosion resistance in 1 mol l -1 Na 2 SO 4 solution of Fe-24Mn-4Al-5Cr alloy, characterized by polarization curves, is superior to that of Fe-13% Cr-0.1% C stainless steel. AES and XPS analyses of the aging passive film show that these improvements of properties are related to modifications of the passive layer with time. The increase of resistance to corrosion is attributed to Al 2 O 3 and Cr 2 O 3 enrichment and oxides of Fe and Mn depletion in the passive film and a thickening of the effective barrier layer of oxides

  14. Optical and impedance characteristics of passive films on pure aluminium

    International Nuclear Information System (INIS)

    Krishnakumar, R.; Szklarska-Smialowska, Z.

    1992-01-01

    Optical and Impedance behavior of pure bulk aluminum and pure sputtered aluminum film were studied in order to gain a better understanding of their fundamental passivation and pitting characteristics. Constant potential experiments at the passivation and pitting potentials, and potentiostatic anodic polarization were conducted while simultaneously monitoring the current, impedance and optical behavior, in-situ. Noise characteristics in the current data during the pit incubation period indicate that Cl - ions migrate with little impediment to the metal surface through defects in the passive film. Impedance experiments indicate that the polarization resistance fluctuates continuously with time during the pit incubation period, suggesting that impedance spectroscopy is sensitive to localized processes. The interfacial capacitance increases continuously during this time. The smallest pits observed on the sample surface (less than 10μ) are clearly crystallographic, indicating activation controlled dissolution at pits. The film capacitance increases with exposure time at the passivation potential, while the polarization resistance decreases continuously. The decrease in the film resistance is thought to be due to chloride incorporation at defects in the passive film. The increase in film capacitance at the passivation and pitting potential is due to an increase in the film dielectric constant caused by either a compositional change or anion incorporation. Ellipsometry results indicate growth of a dual layered film on the pure aluminum surface, with the outer layer probably containing varying amounts of incorporated chloride depending on the applied potential. Preliminary experiments indicate that in the case of sputtered aluminum film, the passive film resistance is at least an order of magnitude higher than that of bulk aluminum. This is due to the fine grain structure of sputtered Al and hence a more defect free passive film than that formed on bulk aluminum. There is

  15. [Spectroscopic study on film formation mechanism and structure of composite silanes-V-Zr passive film].

    Science.gov (United States)

    Wang, Lei; Liu, Chang-sheng; Shi, Lei; An, Cheng-qiang

    2015-02-01

    A composite silanes-V-Zr passive film was overlayed on hot-dip galvanized steel. Attenuated total reflection Fourier transformed infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectrometer (XPS) and radio frequency glow discharge optical emission spectrometry (rf-GD-OES) were used to characterize the molecular structure of the silanes-V-Zr passive film. The mechanism of film formation was discussed: The results show that the silane molecules are crosslinked as the main film former and inorganic inhibitor is even distributed in the film. The fitting peak of 100.7 eV in XPS single Si2p energy range spectra of the composite silanes-V-Zr passive film and the widening and strengthening of the Si--O infrared absorption peak at 1100 cm(-1) indicate that the silanes were adsorbed on the surface of zinc with chemical bond of Si--O--Zn, and the silane molecules were connected with each other by bond of Si--O--Si. Two characteristic absorption peaks of amide at 1650 and 1560 cm(-1) appear in the infrared spectroscopy of the composite silanes-V-Zr passive film, and a characteristic absorption peak of epoxy groups at 910 cm(-1) disappears in the infrared spectroscopy of the passive film. The results indicate that gamma-APT can be prepared through nucleophilic ring-opening of ethylene oxide in gamma-GPT molecule to form C--N covalent bonds. The rf-GD-OES results indicate that there is a oxygen enriched layer in 0.3 microm depth of the composite silanes-V-Zr passive film. Moreover, ZrF4, ZrO2 and some inorganic matter obtained by the reaction during the forming processof the composite silanes-V-Zr passive film are distributed evenly throughout the film. According to the film composition, the physical processes and chemical reactions during the film forming process were studied by using ATR-FTIR. Based on this, the film forming mechanism was proposed.

  16. Stable solar-driven oxidation of water by semiconducting photoanodes protected by transparent catalytic nickel oxide films.

    Science.gov (United States)

    Sun, Ke; Saadi, Fadl H; Lichterman, Michael F; Hale, William G; Wang, Hsin-Ping; Zhou, Xinghao; Plymale, Noah T; Omelchenko, Stefan T; He, Jr-Hau; Papadantonakis, Kimberly M; Brunschwig, Bruce S; Lewis, Nathan S

    2015-03-24

    Reactively sputtered nickel oxide (NiOx) films provide transparent, antireflective, electrically conductive, chemically stable coatings that also are highly active electrocatalysts for the oxidation of water to O2(g). These NiOx coatings provide protective layers on a variety of technologically important semiconducting photoanodes, including textured crystalline Si passivated by amorphous silicon, crystalline n-type cadmium telluride, and hydrogenated amorphous silicon. Under anodic operation in 1.0 M aqueous potassium hydroxide (pH 14) in the presence of simulated sunlight, the NiOx films stabilized all of these self-passivating, high-efficiency semiconducting photoelectrodes for >100 h of sustained, quantitative solar-driven oxidation of water to O2(g).

  17. Passivation of cobalt nanocluster assembled thin films with hydrogen

    DEFF Research Database (Denmark)

    Romero, C.P.; Volodin, A.; Di Vece, M.

    2012-01-01

    The effect of hydrogen passivation on bare and Pd capped cobalt nanocluster assembled thin films was studied with Rutherford backscattering spectrometry (RBS) and magnetic force microscopy (MFM) after exposure to ambient conditions. The nanoclusters are produced in a laser vaporization cluster...... source in which the helium carrier gas was mixed with hydrogen. RBS revealed that oxidation of the Co nanoclusters is considerably reduced by the presence of hydrogen during cluster formation. The capping did not modify the influence of the passivation. The hydrogen passivation method is especially...... effective in cases when capping of the films is not desirable, for example for magnetic studies. Clear differences in the magnetic domain structures between hydrogen passivated and non-passivated Co nanocluster films were demonstrated by MFM and are attributed to a difference in inter-cluster magnetic...

  18. Electrochemical and optical characterisation of passive films on stainless steels

    International Nuclear Information System (INIS)

    Wijesighe, T L Sudesh L; Blackwood, D J

    2006-01-01

    The formation and breakdown of the passive film are mainly controlled by ionic and electronic transport processes; processes that are in turn controlled by the electronic properties of the film. Consequently a comprehensive understanding of mechanisms behind passivity and localised corrosion require a detailed perception of the electronic properties of the passive films together with compositional and structural information. As a step towards this goal the passive film on austenitic stainless steel, AISI 316L, formed in borate solution was characterised by in situ Raman spectroscopy and photocurrent spectroscopy coupled with electrochemical measurements. The composition, structure and semiconductivity of the passive films depended on the potential; Fe rich n-type oxide and a Cr rich p-type oxide dominated at more positive potentials and more negative potentials respectively whilst n-type dual layered film formed at intermediate potentials. Analyses of the bandgap determined for these oxides suggested their structures to be Fe 2 O 3 and a Fe-Cr spinel. This hypothesis was supported by the results of in situ Raman spectroscopy

  19. A study of semiconducting properties of hydrogen containing passive films

    International Nuclear Information System (INIS)

    Zeng, Y.M.; Luo, J.L.; Norton, P.R.

    2004-01-01

    Mott-Schottky and photoelectrochemical measurements were used to explore the effects of hydrogen and chloride ions on the electronic properties of the passive film on X70 micro-alloyed steel in a solution of 0.5 M NaHCO 3 . Mott-Schottky analyses have shown that hydrogen increases the capacitance and donor density, and decreases the flat band potential and the space charge layer thickness of the passive film. The photocurrent of the film is remarkably increased by hydrogen. The effects of hydrogen become more pronounced with an increase in the hydrogen charging current densities. Hydrogen has no noticeable effect on the band gap energy E g and the process by which hole-electron pairs are photo-generated in the film. The presence of chloride ions in the solution produces some similar effects on the electronic properties of the passive film to those observed with hydrogen, but reduces the photocurrent and increases the band gap energy of the film. No significant synergistic effects on the electronic properties of the passive film were observed in the presence of hydrogen and Cl - . These results provide very useful information for elucidating the mechanism by which hydrogen changes the properties of passive film and then promotes localized corrosion

  20. Correlation between passive film-induced stress and stress corrosion cracking of α-Ti in a methanol solution at various potentials

    International Nuclear Information System (INIS)

    Guo, X.Z.; Gao, K.W.; Chu, W.Y.; Qiao, L.J.

    2003-01-01

    The flow stress of a specimen of α-Ti before unloading is different with the yield stress of the same specimen after unloading and forming a passive film through immersing in a methanol solution at various constant potentials. The difference is the passive film-induced stress. The film-induced stress and susceptibility to stress corrosion cracking (SCC) in the methanol solution at various potentials were measured. At the stable open-circuit potential and under anodic polarization, both film-induced tensile stress σ p and susceptibility to SCC had a maximum value. The film-induced stress and SCC susceptibility, however, decreased steeply with a decrease in potential under cathodic polarization. When the potential V≤-280 mV SCE , the film-induced stress became compressive; correspondingly, susceptibility to SCC was zero. Therefore, the variation of film-induced stress with potential was consistent with that of susceptibility to SCC. A large film-induced tensile stress is the necessary condition for SCC of α-Ti in the methanol solution. The symbol and amount of the film-induced stress were related to the compositions of the passive film, which have been analyzed using the X-ray photoelectron spectrum (XPS)

  1. 1-Dodecanethiol based highly stable self-assembled monolayers for germanium passivation

    International Nuclear Information System (INIS)

    Cai, Qi; Xu, Baojian; Ye, Lin; Di, Zengfeng; Huang, Shanluo; Du, Xiaowei; Zhang, Jishen; Jin, Qinghui; Zhao, Jianlong

    2015-01-01

    Highlights: • A simple and effective approach for higly stable germanium passivation. • 1-Dodecanethiol self-assembled monolayers for germanium oxidation resistance. • The influence factors of germanium passivation were systematically studied. • The stability of the passivated Ge was more than 10 days even in water conditions. - Abstract: As a typical semiconductor material, germanium has the potential to replace silicon for future-generation microelectronics, due to its better electrical properties. However, the lack of stable surface state has limited its extensive use for several decades. In this work, we demonstrated highly stable self-assembled monolayers (SAMs) on Ge surface to prevent oxidization for further applications. After the pretreatment in hydrochloric acid, the oxide-free and Cl-terminated Ge could be further coated with 1-dodecanethiol (NDM) SAMs. The influence factors including reaction time, solvent component and reaction temperature were optimized to obtain stable passivated monolayer for oxidation resistance. Contact angle analysis, atomic force microscopy, ellipsometer and X-ray photoelectron spectroscopy were performed to characterize the functionalized Ge surface respectively. Meanwhile, the reaction mechanism and stability of thiols SAMs on Ge (1 1 1) surface were investigated. Finally, highly stable passivated NDM SAMs on Ge surface could be formed through immersing oxide-free Ge in mixture solvent (water/ethanol, v/v = 1:1) at appropriately elevated temperature (∼80 °C) for 24 h. And the corresponding optimized passivated Ge surface was stable for more than 10 days even in water condition, which was much longer than the data reported and paved the way for the future practical applications of Ge.

  2. 1-Dodecanethiol based highly stable self-assembled monolayers for germanium passivation

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Qi [State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, No. 865, Changning Road, Shanghai 200050 (China); University of Chinese Academy of Sciences, No. 19A, Yuquan Road, Beijing 100049 (China); Xu, Baojian, E-mail: xbj@mail.sim.ac.cn [State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, No. 865, Changning Road, Shanghai 200050 (China); Shanghai Internet of Things Co., LTD, No. 1455, Pingcheng Road, Shanghai 201899 (China); Ye, Lin [State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, No. 865, Changning Road, Shanghai 200050 (China); University of Chinese Academy of Sciences, No. 19A, Yuquan Road, Beijing 100049 (China); Di, Zengfeng [State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, No. 865, Changning Road, Shanghai 200050 (China); Huang, Shanluo; Du, Xiaowei [State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, No. 865, Changning Road, Shanghai 200050 (China); University of Chinese Academy of Sciences, No. 19A, Yuquan Road, Beijing 100049 (China); Zhang, Jishen; Jin, Qinghui [State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, No. 865, Changning Road, Shanghai 200050 (China); Zhao, Jianlong, E-mail: jlzhao@mail.sim.ac.cn [State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, No. 865, Changning Road, Shanghai 200050 (China)

    2015-10-30

    Highlights: • A simple and effective approach for higly stable germanium passivation. • 1-Dodecanethiol self-assembled monolayers for germanium oxidation resistance. • The influence factors of germanium passivation were systematically studied. • The stability of the passivated Ge was more than 10 days even in water conditions. - Abstract: As a typical semiconductor material, germanium has the potential to replace silicon for future-generation microelectronics, due to its better electrical properties. However, the lack of stable surface state has limited its extensive use for several decades. In this work, we demonstrated highly stable self-assembled monolayers (SAMs) on Ge surface to prevent oxidization for further applications. After the pretreatment in hydrochloric acid, the oxide-free and Cl-terminated Ge could be further coated with 1-dodecanethiol (NDM) SAMs. The influence factors including reaction time, solvent component and reaction temperature were optimized to obtain stable passivated monolayer for oxidation resistance. Contact angle analysis, atomic force microscopy, ellipsometer and X-ray photoelectron spectroscopy were performed to characterize the functionalized Ge surface respectively. Meanwhile, the reaction mechanism and stability of thiols SAMs on Ge (1 1 1) surface were investigated. Finally, highly stable passivated NDM SAMs on Ge surface could be formed through immersing oxide-free Ge in mixture solvent (water/ethanol, v/v = 1:1) at appropriately elevated temperature (∼80 °C) for 24 h. And the corresponding optimized passivated Ge surface was stable for more than 10 days even in water condition, which was much longer than the data reported and paved the way for the future practical applications of Ge.

  3. Stable solar-driven oxidation of water by semiconducting photoanodes protected by transparent catalytic nickel oxide films

    KAUST Repository

    Sun, Ke

    2015-03-11

    Reactively sputtered nickel oxide (NiOx) films provide transparent, antireflective, electrically conductive, chemically stable coatings that also are highly active electrocatalysts for the oxidation of water to O2(g). These NiOx coatings provide protective layers on a variety of technologically important semiconducting photoanodes, including textured crystalline Si passivated by amorphous silicon, crystalline n-type cadmium telluride, and hydrogenated amorphous silicon. Under anodic operation in 1.0 M aqueous potassium hydroxide (pH 14) in the presence of simulated sunlight, the NiOx films stabilized all of these self-passivating, high-efficiency semiconducting photoelectrodes for >100 h of sustained, quantitative solar-driven oxidation of water to O2(g). © 2015, National Academy of Sciences. All rights reserved.

  4. Semiconductor properties and protective role of passive films of iron base alloys

    International Nuclear Information System (INIS)

    Fujimoto, Shinji; Tsuchiya, Hiroaki

    2007-01-01

    Semiconductor properties of passive films formed on the Fe-18Cr alloy in a borate buffer solution (pH = 8.4) and 0.1 M H 2 SO 4 solution were examined using a photoelectrochemical spectroscopy and an electrochemical impedance spectroscopy. Photo current reveals two photo action spectra that derived from outer hydroxide and inner oxide layers. A typical n-type semiconductor behaviour is observed by both photo current and impedance for the passive films formed in the borate buffer solution. On the other hand, a negative photo current generated, the absolute value of which decreased as applied potential increased in the sulfuric acid solution. This indicates that the passive film behaves as a p-type semiconductor. However, Mott-Schottky plot revealed the typical n-type semiconductor property. It is concluded that the passive film on the Fe-18Cr alloy formed in the borate buffer solution is composed of both n-type outer hydroxide and inner oxide layers. On the other hand, the passive film of the Fe-18Cr alloy in the sulphuric acid consists of p-type oxide and n-type hydroxide layers. The behaviour of passive film growth and corrosion was discussed in terms of the electronic structure in the passive film

  5. Photoelectrochemical studies on passive films of stainless steels

    International Nuclear Information System (INIS)

    Schmuki, P.; Boehni, H.

    1992-01-01

    Passive films on stainless steels, which are known to exhibit a significantly different susceptibility to pitting corrosion (DIN 1.4301, 1.4439, 1.4529), were in-situ examined by photoelectrochemistry. The results show that the photoresponse is determined by the defects in the electronic structure of the films leading to localized states in the band-gap region. It was found that the three different steels exhibit a different tailing of the density of states function into the band-gap region. The less deep localized states are present, the higher is the resistance of the material against pitting corrosion. It is therefore concluded that a correlation between the distribution of localized states in the passive film - i.e. its defect structure - and the stability of the film exists

  6. Silicon surface passivation using thin HfO2 films by atomic layer deposition

    International Nuclear Information System (INIS)

    Gope, Jhuma; Vandana; Batra, Neha; Panigrahi, Jagannath; Singh, Rajbir; Maurya, K.K.; Srivastava, Ritu; Singh, P.K.

    2015-01-01

    Graphical abstract: - Highlights: • HfO 2 films using thermal ALD are studied for silicon surface passivation. • As-deposited thin film (∼8 nm) shows better passivation with surface recombination velocity (SRV) <100 cm/s. • Annealing improves passivation quality with SRV ∼20 cm/s for ∼8 nm film. - Abstract: Hafnium oxide (HfO 2 ) is a potential material for equivalent oxide thickness (EOT) scaling in microelectronics; however, its surface passivation properties particularly on silicon are not well explored. This paper reports investigation on passivation properties of thermally deposited thin HfO 2 films by atomic layer deposition system (ALD) on silicon surface. As-deposited pristine film (∼8 nm) shows better passivation with <100 cm/s surface recombination velocity (SRV) vis-à-vis thicker films. Further improvement in passivation quality is achieved with annealing at 400 °C for 10 min where the SRV reduces to ∼20 cm/s. Conductance measurements show that the interface defect density (D it ) increases with film thickness whereas its value decreases after annealing. XRR data corroborate with the observations made by FTIR and SRV data.

  7. Semiconducting behavior of the anodically passive films formed on AZ31B alloy

    Directory of Open Access Journals (Sweden)

    A. Fattah-alhosseini

    2014-12-01

    Full Text Available This work includes determination of the semiconductor character and estimation of the dopant levels in the passive film formed on AZ31B alloy in 0.01 M NaOH, as well as the estimation of the passive film thickness as a function of the film formation potential. Mott–Schottky analysis revealed that the passive films displayed n-type semiconductive characteristics, where the oxygen vacancies and interstitials preponderated. Based on the Mott–Schottky analysis, it was shown that the calculated donor density increases linearly with increasing the formation potential. Also, the electrochemical impedance spectroscopy (EIS results indicated that the thickness of the passive film was decreased linearly with increasing the formation potential. The results showed that decreasing the formation potential offer better conditions for forming the passive films with higher protection behavior, due to the growth of a much thicker and less defective films.

  8. Water-Mediated Photochemical Treatments for Low-Temperature Passivation of Metal-Oxide Thin-Film Transistors.

    Science.gov (United States)

    Heo, Jae Sang; Jo, Jeong-Wan; Kang, Jingu; Jeong, Chan-Yong; Jeong, Hu Young; Kim, Sung Kyu; Kim, Kwanpyo; Kwon, Hyuck-In; Kim, Jaekyun; Kim, Yong-Hoon; Kim, Myung-Gil; Park, Sung Kyu

    2016-04-27

    The low-temperature electrical passivation of an amorphous oxide semiconductor (AOS) thin-film transistor (TFT) is achieved by a deep ultraviolet (DUV) light irradiation-water treatment-DUV irradiation (DWD) method. The water treatment of the first DUV-annealed amorphous indium-gallium-zinc-oxide (a-IGZO) thin film is likely to induce the preferred adsorption of water molecules at the oxygen vacancies and leads to subsequent hydroxide formation in the bulk a-IGZO films. Although the water treatment initially degraded the electrical performance of the a-IGZO TFTs, the second DUV irradiation on the water-treated devices may enable a more complete metal-oxygen-metal lattice formation while maintaining low oxygen vacancies in the oxide films. Overall, the stable and dense metal-oxygen-metal (M-O-M) network formation could be easily achieved at low temperatures (below 150 °C). The successful passivation of structural imperfections in the a-IGZO TFTs, such as hydroxyl group (OH-) and oxygen vacancies, mainly results in the enhanced electrical performances of the DWD-processed a-IGZO TFTs (on/off current ratio of 8.65 × 10(9), subthreshold slope of 0.16 V/decade, an average mobility of >6.94 cm(2) V(-1) s(-1), and a bias stability of ΔVTH IGZO TFTs.

  9. Use of color-change indicators to quantify passive films on the stainless steel valves of nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Cong Qian [School of Materials Science, Engineering, Dalian University of Technology, Dalian 116085 (China); Yang, Shu Kai [School of Materials Science, Engineering, Dalian University of Technology, Dalian 116085 (China); Suzhou Nuclear Power Research Institute, Suzhou 215004 (China); Zhao, Jie, E-mail: jiezhao@dlut.edu.cn [School of Materials Science, Engineering, Dalian University of Technology, Dalian 116085 (China)

    2016-02-15

    Highlights: • A facile method to evaluate passivation quality by color change indicator. • Two indicators were compared in lab and applied on vales in nuclear power plants. • It shows that the higher value of color change the worse quality of passivation. • Traditional ferroxyl solution is unstable and might impair the vale surface. • The new indicator is more practicable than the ferroxyl test for on-site inspection. - Abstract: The passive film on nuclear-grade stainless steels was evaluated by quantifying its color changes. Coloration reactions were compared by using ferroin and blue dot solutions as indicators on the basis of the measured results in a laboratory. The reactions were then applied on stainless steel valves in a nuclear power plant. The degree of color change indicates the degree of growth of a passive film. The ferroin solution exhibits higher accuracy and more stable than blue dot solution in determining passive film quality. The potentiodynamic polarization curves show that blue dot solution might cause surface damage compared with ferroin solution. The inspection result on stainless steel valves supports our laboratory result. However, stainless steel exhibited a dramatic decrease in sensitivity to blue dot because of the intrinsic instability and high acidity of this solution. Ferroin solution is superior to blue dot solution for stainless steel facilities in a nuclear power plant.

  10. Stability of passive films on amorphous Fe-Cr alloys with boron and phosphorus with impedance spectroscopy

    International Nuclear Information System (INIS)

    Virtanen, S.; Elsener, B.; Boehni, H.

    1989-01-01

    The mechanism of the passivation and the effect of metalloids on the stability of the passive films of amorphous Fe-Cr-(B,P,C) alloys has been investigated by polarization measurements, impedance spectroscopy and potential decay measurements. The results show that phosphorus facilitates the active/passive-transition by forming a porous iron-phosphate pre-passive layer on the alloy surface in the active range of the dissolution. This layer blocks the active sites of the surface and accelerates the cathodic H 2 -evolution reaction. The formation of the passivating chromium oxide layer takes place in the pores of this layer. In the passive range of the alloys oxidized phosphorus gets incorporated in the outer layer of the passive film. The presence of oxidized phosphorus as PO 4 3- anions in the passive film increases the localized corrosion resistance in Cl-containing solutions. The effect of the incorporated phosphates in the passive film is discussed with respect to the bipolar fixed-charge induced passivity model. The phosphates make the outer layer of the passive film cation-selective and thus hinder the penetration of the chlorides into the film. The oxidized boron species cannot change the ion-selectivity of the film; instead of this they negatively affect the stability of the passive film. (author) 18 refs., 9 figs., 3 tabs

  11. Highly reliable photosensitive organic-inorganic hybrid passivation layers for a-InGaZnO thin-film transistors

    Science.gov (United States)

    Bermundo, Juan Paolo; Ishikawa, Yasuaki; Yamazaki, Haruka; Nonaka, Toshiaki; Fujii, Mami N.; Uraoka, Yukiharu

    2015-07-01

    We report the fabrication of a photosensitive hybrid passivation material on amorphous InGaZnO (a-IGZO) thin-film transistors (TFTs) that greatly enhance its stability and improve its electrical characteristics. The hybrid passivation based on polysilsesquioxane is transparent and fabricated using a simple solution process. Because the passivation is photosensitive, dry etching was never performed during TFT fabrication. TFTs passivated with this material had a small threshold voltage shift of 0.5 V during positive bias stress, 0.5 V during negative bias stress, and -2.5 V during negative bias illumination stress. Furthermore, TFTs passivated by this layer were stable after being subjected to high relative humidity stress — confirming the superb barrier ability of the passivation. Analysis of secondary ion mass spectrometry showed that a large amount of hydrogen, carbon, and fluorine can be found in the channel region. We show that both hydrogen and fluorine reduced oxygen vacancies and that fluorine stabilized weak oxygen and hydroxide bonds. These results demonstrate the large potential of photosensitive hybrid passivation layers as effective passivation materials.

  12. Optimized thin film coatings for passive radiative cooling applications

    Science.gov (United States)

    Naghshine, Babak B.; Saboonchi, Ahmad

    2018-03-01

    Passive radiative cooling is a very interesting method, which lays on low atmospheric downward radiation within 8-13 μm waveband at dry climates. Various thin film multilayer structures have been investigated in numerous experimental studies, in order to find better coatings to exploit the full potential of this method. However, theoretical works are handful and limited. In this paper, the Simulated Annealing and Genetic Algorithm are used to optimize a thin film multilayer structure for passive radiative cooling applications. Spectral radiative properties are calculated through the matrix formulation. Considering a wide range of materials, 30 high-potential convective shields are suggested. According to the calculations, cooling can be possible even under direct sunlight, using the introduced shields. Moreover, a few water-soluble materials are studied for the first time and the results show that, a KBr substrate coated by a thin CaF2 or polyethylene film can is very close to an ideal coating for passive radiative cooling at night.

  13. The non-linear fitting method to analyze the measured M-S plots of bipolar passive films

    International Nuclear Information System (INIS)

    Jiang Ruijing; Chen Changfeng; Zheng Shuqi

    2010-01-01

    Mott-Schottky (M-S) analysis is an effective approach to investigate the electronic property of passive films of metals, and it is well suitable for the passive film with single space charge capacitance. But there is no proper method to analyze the C sc -2 vs. V m plots of passive films with several space charge capacitances in series connection, such as bipolar passive films. In this paper, the relationship between the space charge capacitance of the bipolar passive film and the applied potential was deduced and the features of corresponding plots were given out simultaneously. Accordingly, a non-linear fitting method was presented to analyze the C sc -2 vs. V m plots of bipolar passive films. Then the method was used to study the semiconductor characteristics of bipolar passive films formed on the surface of Nickel base alloy after being corroded in the environments with high temperatures and high partial pressures of H 2 S/CO 2 . The fitting results indicate that the non-linear fitting of M-S plots can well help to understand the anti-corrosion mechanism of bipolar passive films.

  14. Effect of passive film on electrochemical surface treatment for indium tin oxide

    International Nuclear Information System (INIS)

    Wu, Yung-Fu; Chen, Chi-Hao

    2013-01-01

    Highlights: ► Oxalic, tartaric, and citric acid baths accompanying with applied voltages were used to treat the ITO surface. ► We investigated the changes in ITO surfaces by examining the potentiodynamic behavior of ITO films. ► AFM analysis showed the formation of a passive layer could assist to planarize surface. ► XPS analysis indicated this passive layer was mainly composed of SnO 2. ► A better planarization was obtained by treating in 3.0 wt.% tartaric acid at 0.5 V due to weak complexation strength. - Abstract: Changes in indium tin oxide (ITO) film surface during electrochemical treatment in oxalic acid, tartaric acid, and citric acid were investigated. Controlling the voltage applied on ITO film allows the formation of a passive layer, effectively protecting the film surface. X-ray photoelectron spectrometry showed that the passive layer composition was predominantly SnO 2 in tartaric acid, while a composite of tin oxide and tin carboxylate in citric or oxalic acid. Even though the passive films on ITO surface generated in these organic acids, the indium or tin could complex with the organic acid anions, enhancing the dissolution of ITO films. The experimental results show that the interaction between the dissolution and passivation could assist to planarize the ITO surface. We found that the optimal treatment at 0.5 V in 3 wt.% tartaric acid could provide the ITO surface with root-mean-squared roughness less than 1.0 nm, due to the weak complexing characteristics of tartaric acid.

  15. Highly stable thin film transistors using multilayer channel structure

    KAUST Repository

    Nayak, Pradipta K.

    2015-03-09

    We report highly stable gate-bias stress performance of thin film transistors (TFTs) using zinc oxide (ZnO)/hafnium oxide (HfO2) multilayer structure as the channel layer. Positive and negative gate-bias stress stability of the TFTs was measured at room temperature and at 60°C. A tremendous improvement in gate-bias stress stability was obtained in case of the TFT with multiple layers of ZnO embedded between HfO2 layers compared to the TFT with a single layer of ZnO as the semiconductor. The ultra-thin HfO2 layers act as passivation layers, which prevent the adsorption of oxygen and water molecules in the ZnO layer and hence significantly improve the gate-bias stress stability of ZnO TFTs.

  16. Growth Process of Passive Films Formed on Austenitic Stainless Steels under Atmospheric Environments

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Rock-Hoon [Samsung Heavy Industries Co.,Ltd, Seoul (Korea, Republic of); Fujimoto, Shinji [Osaka University, Osaka (Japan)

    2014-06-15

    The excellent protection ability of stainless steel derives from the highly Cr enriched passive film which is formed as a result of selective dissolution of Fe into the bulk solution. On the other hand, the passive films formed under atmospheric conditions do not necessarily exhibit Cr enrichment, because the amount of the solution on a stainless steel as an adsorbed thin water layer is not sufficient for selective dissolution of Fe. Therefore, the modification of passive films may occur as tiny mass transfer between hydroxide layer and oxide layer of the passive films, and/or occasional replace of the adsorbed thin water layer. In the present work, in order to discuss atmospheric corrosion, passive films on stainless steels formed under humid atmospheric environments were characterized using X-ray photoelectron spectroscopy. Optimal conditions for the pulse anodizing were a duty ratio of 91%, a frequency of 0.09 Hz, and an anodizing time of 600 s. Pulse anodizing caused a remarkable decrease in the surface porosity (11-fold) and an increase in the film thickness (1.6-fold) from those obtained under a constant potential of 10 V{sub Ag/AgCl}. Furthermore, an Al-enriched oxide layer was formed on the outer surface of MgO.

  17. Highly air stable passivation of graphene based field effect devices.

    Science.gov (United States)

    Sagade, Abhay A; Neumaier, Daniel; Schall, Daniel; Otto, Martin; Pesquera, Amaia; Centeno, Alba; Elorza, Amaia Zurutuza; Kurz, Heinrich

    2015-02-28

    The sensitivity of graphene based devices to surface adsorbates and charge traps at the graphene/dielectric interface requires proper device passivation in order to operate them reproducibly under ambient conditions. Here we report on the use of atomic layer deposited aluminum oxide as passivation layer on graphene field effect devices (GFETs). We show that successful passivation produce hysteresis free DC characteristics, low doping level GFETs stable over weeks though operated and stored in ambient atmosphere. This is achieved by selecting proper seed layer prior to deposition of encapsulation layer. The passivated devices are also demonstrated to be robust towards the exposure to chemicals and heat treatments, typically used during device fabrication. Additionally, the passivation of high stability and reproducible characteristics is also shown for functional devices like integrated graphene based inverters.

  18. Germanium nitride and oxynitride films for surface passivation of Ge radiation detectors

    Energy Technology Data Exchange (ETDEWEB)

    Maggioni, G., E-mail: maggioni@lnl.infn.it [Dipartimento di Fisica e Astronomia G. Galilei, Università di Padova, Via Marzolo 8, I-35131 Padova (Italy); Laboratori Nazionali di Legnaro, Istituto Nazionale di Fisica Nucleare, Viale dell’Universita’2, I-35020 Legnaro, Padova (Italy); Carturan, S. [Dipartimento di Fisica e Astronomia G. Galilei, Università di Padova, Via Marzolo 8, I-35131 Padova (Italy); Laboratori Nazionali di Legnaro, Istituto Nazionale di Fisica Nucleare, Viale dell’Universita’2, I-35020 Legnaro, Padova (Italy); Fiorese, L. [Laboratori Nazionali di Legnaro, Istituto Nazionale di Fisica Nucleare, Viale dell’Universita’2, I-35020 Legnaro, Padova (Italy); Dipartimento di Ingegneria dei Materiali e delle Tecnologie Industriali, Università di Trento, Via Mesiano 77, I-38050 Povo, Trento (Italy); Pinto, N.; Caproli, F. [Scuola di Scienze e Tecnologie, Sezione di Fisica, Università di Camerino, Via Madonna delle Carceri 9, Camerino (Italy); INFN, Sezione di Perugia, Perugia (Italy); Napoli, D.R. [Laboratori Nazionali di Legnaro, Istituto Nazionale di Fisica Nucleare, Viale dell’Universita’2, I-35020 Legnaro, Padova (Italy); Giarola, M.; Mariotto, G. [Dipartimento di Informatica—Università di Verona, Strada le Grazie 15, I-37134 Verona (Italy)

    2017-01-30

    Highlights: • A surface passivation method for HPGe radiation detectors is proposed. • Highly insulating GeNx- and GeOxNy-based layers are deposited at room temperature. • Deposition parameters affect composition and electrical properties of the layers. • The improved performance of a GeNx-coated HPGe diode is assessed. - Abstract: This work reports a detailed investigation of the properties of germanium nitride and oxynitride films to be applied as passivation layers to Ge radiation detectors. All the samples were deposited at room temperature by reactive RF magnetron sputtering. A strong correlation was found between the deposition parameters, such as deposition rate, substrate bias and atmosphere composition, and the oxygen and nitrogen content in the film matrix. We found that all the films were very poorly crystallized, consisting of very small Ge nitride and oxynitride nanocrystallites, and electrically insulating, with the resistivity changing from three to six orders of magnitude as a function of temperature. A preliminary test of these films as passivation layers was successfully performed by depositing a germanium nitride film on the intrinsic surface of a high-purity germanium (HPGe) diode and measuring the improved performance, in terms of leakage current, with respect to a reference passivated diode. All these interesting results allow us to envisage the application of this coating technology to the surface passivation of germanium-based radiation detectors.

  19. Thick-Film and LTCC Passive Components for High-Temperature Electronics

    Directory of Open Access Journals (Sweden)

    A. Dziedzic

    2013-04-01

    Full Text Available At this very moment an increasing interest in the field of high-temperature electronics is observed. This is a result of development in the area of wide-band semiconductors’ engineering but this also generates needs for passives with appropriate characteristics. This paper presents fabrication as well as electrical and stability properties of passive components (resistors, capacitors, inductors made in thick-film or Low-Temperature Co-fired Ceramics (LTCC technologies fulfilling demands of high-temperature electronics. Passives with standard dimensions usually are prepared by screen-printing whereas combination of standard screen-printing with photolithography or laser shaping are recommenced for fabrication of micropassives. Attainment of proper characteristics versus temperature as well as satisfactory long-term high-temperature stability of micropassives is more difficult than for structures with typical dimensions for thick-film and LTCC technologies because of increase of interfacial processes’ importance. However it is shown that proper selection of thick-film inks together with proper deposition method permit to prepare thick-film micropassives (microresistors, air-cored microinductors and interdigital microcapacitors suitable for the temperature range between 150°C and 400°C.

  20. Morphology, chemical composition , and electrochemical characteristics of colored titanium passive layers

    International Nuclear Information System (INIS)

    Jerkiewicz, G.; Hrapovic, S.; Vatankhah, G.; Luan, B.L.

    1999-01-01

    Brightly and uniformly colored passive layers on Ti are formed by application of AC polarization in aqueous NH 4 BF 4 . A wide spectrum of well-defined colors is accomplished by varying the AC voltage. The passive films are stable in the ambient and in aqueous chloride, perchlorate, sulfate solutions. Optical microscopy and SEM analyses indicate that the passive layers are compact and do not reveal fractures or cracks. XPS characterization of the colored passive layers reveals that their surface-chemical composition depends on the AC polarization voltage. The main constituents of the passive layers are Ti z+ , O 2- , and F - (z varies from 4 to 2 depending on the depth). Fluoride in the film originates form decomposition of NH 4 BF 4 and it accumulates at the inner metal/passive-film interface. XPS depth profiling shows that the higher the AC voltage applied, the thicker the passive film formed. Electrochemical properties of the colored Ti passive layers are determined by recording polarization curves in the -0.8 - 3.2 V, RHE, range and Tafel plots in the hydrogen evolution reaction (HER) region in 1.0 M aqueous H 2 SO 4 solution. The polarization curves show that the corrosion potential of the colored passive layers shifts towards less-negative potential indicating that they are more stable than Ti under the same conditions. The Tafel plots for the HER demonstrate that the passive layers have much higher activity than Ti towards the HER. The Tafel relations reveal new features that can be associated with the partial breakdown/decomposition of the passive layers and with H absorption. (author)

  1. Ellipsometric study of salt film formation during passivation

    Energy Technology Data Exchange (ETDEWEB)

    Wiechmann, Lee Warren [Univ. of Illinois, Urbana-Champaign, IL (United States)

    1979-01-01

    An experimental program was carried out to gain further understanding into the kinetics of salt film formation during repassivation of a corroding metal. Experiments were conducted using an ellipsometer to examine an electrode surface undergoing anodic dissolution and passivation. Because of the constraints of the ellipsometer, the sample had to be mounted vertically. As a consequence natural convection currents had to be taken into account. Calculation showed that the mass transfer limiting current was exceeded by transient currents, indicating that natural convection was present to an extent that could drastically change the system from the diffusion model that was proposed. It was determined that recessing the electrode led to minimized natural convective effects, and to uniform current distribution. The ellipsometer output provided times which were associated with precipitation and dissolution of the salt film. The experimental data was in good agreement with the mathematical model, further strengthening the precipitation-dissolution mechanism of passivation. Furthermore, a dimensionless model was shown capable of a first approximation of the passivation behavior of any metal. Investigations reported here were carried out on iron, nickel, and cobalt.

  2. Passivation Effect of Atomic Layer Deposition of Al2O3 Film on HgCdTe Infrared Detectors

    Science.gov (United States)

    Zhang, Peng; Ye, Zhen-Hua; Sun, Chang-Hong; Chen, Yi-Yu; Zhang, Tian-Ning; Chen, Xin; Lin, Chun; Ding, Ring-Jun; He, Li

    2016-09-01

    The passivation effect of atomic layer deposition of (ALD) Al2O3 film on a HgCdTe infrared detector was investigated in this work. The passivation effect of Al2O3 film was evaluated by measuring the minority carrier lifetime, capacitance versus voltage ( C- V) characteristics of metal-insulator-semiconductor devices, and resistance versus voltage ( R- V) characteristics of variable-area photodiodes. The minority carrier lifetime, C- V characteristics, and R- V characteristics of HgCdTe devices passivated by ALD Al2O3 film was comparable to those of HgCdTe devices passivated by e-beam evaporation of ZnS/CdTe film. However, the baking stability of devices passivated by Al2O3 film is inferior to that of devices passivated by ZnS/CdTe film. In future work, by optimizing the ALD Al2O3 film growing process and annealing conditions, it may be feasible to achieve both excellent electrical properties and good baking stability.

  3. Effect of the reinforced boron carbide particulate content of AA6061 alloy on formation of the passive film in seawater

    International Nuclear Information System (INIS)

    Katkar, V.A.; Gunasekaran, G.; Rao, A.G.; Koli, P.M.

    2011-01-01

    Highlights: → Presence of boron carbide increases the corrosion rate of A6061 alloy in seawater. → Increasing the B 4 C content decreases passive layer thickness. → Passive films formed on A6061 and its B 4 C composites are n-type semiconductors. - Abstract: The effect of boron carbide (B 4 C) reinforcement on the corrosion of AA6061 alloy was studied by investigating passive films formed in seawater. The higher passive current and its potential-dependence for these composites indicated formation of porous passive film. Electrochemical impedance spectroscopy (EIS) graph suggests that the alloy surface is partly or totally active. The formed passive film is n-type semiconductor junction in nature. The difference between corrosion potential (E corr ) and potential at zero charge (PZC) suggests that the chloride ions responsible for film breakdown exist within the passive film. A suitable mechanism is proposed for the passive film breakdown.

  4. Passivation and electrochemical behavior of 316L stainless steel in chlorinated simulated concrete pore solution

    Science.gov (United States)

    Luo, Hong; Su, Huaizhi; Dong, Chaofang; Li, Xiaogang

    2017-04-01

    In this paper, the passivation and electrochemical behavior of 316L stainless steel in chlorinated simulated concrete pore solutions at different pH was evaluated by potentiodynamic measurements, electrochemical impedance spectroscopy. The composition of the passive film and surface morphology were investigated by X-ray photoelectron spectroscopy (XPS), secondary ion mass spectrometry (SIMS), and scanning electron microscopy, respectively. The results reveal that metastable pitting susceptibility, stable pitting corrosion, and composition of the passive film are influenced by pH value. After long time immersion, a bilayer structure passive film can be formed in this environment. The appearance of molybdates on the outermost surface layer, further enhancing the stability of the passive film. Moreover, the good pitting corrosion resistance of 316L stainless steel in simulated concrete pore solution without carbonated is mainly due to the presence of high Cr/Fe ratio and molybdates ions within the passive film.

  5. Effect of SiO2 passivation overlayers on hillock formation in Al thin films

    International Nuclear Information System (INIS)

    Kim, Deok-kee

    2012-01-01

    Hillock formation in Al thin films with varying thicknesses of SiO 2 as a passivation layer was investigated during thermal cycling. Based on the stress measurements and the number of hillocks, 250 nm thick SiO 2 was thick enough to suppress the hillock formation and the suppression of hillock at 250 nm passivation and the lack of suppression at thinner passivation is related to the presence/absence of protection against the diffusive flow of atoms from the surrounding area to the surface due to the biaxial compressive stresses present in the film through the weak spots in the passivation layer. The stress state of Al films measured during annealing (the driving force for hillock formation) did not vary much with SiO 2 thickness. A small number of hillocks formed during the plasma enhanced chemical vapor deposition of SiO 2 overlayers at 300 °C. - Highlights: ► We examined the effect of SiO 2 overlayers on hillock formation in Al thin films. ► Thin overlayers were not effective in suppressing diffusive flow to the surface. ► A thick overlayer suppressed the diffusive flow from the interior to the surface. ► The stress state of Al films did not vary much with SiO 2 passivation thickness. ► High mechanical strength provided a large driving force for the large grain growth.

  6. The passive oxide films growth on 316L stainless steel in borate buffer solution measured by real-time spectroscopic ellipsometry

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Haisong; Wang, Lu; Sun, Dongbai [National Center for Materials Service Safety (NCMS), University of Science and Technology Beijing, Beijing 100083 (China); Yu, Hongying, E-mail: hyyu@ustb.edu.cn [Institute of Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083 (China)

    2015-10-01

    Highlights: • The optical properties of passive oxide films on 316L stainless steel were studied. • The thickness of the oxide films (1.5–2.6 nm) increased linearly with the potentials. • The growth of passive film followed high electric field ion conduction model. • Selective solubility of oxide induced compositional change of passive film. - Abstract: Passive film growth on 316L stainless steel was investigated in borate buffer electrolyte (pH = 9.1) by real-time spectroscopic ellipsometry (SE) and the composition was estimated by X-ray photoelectron spectroscopy (XPS). Anodic passivation of 316L SS was carried out in the potential range from 0 V{sub SCE} to 0.9 V{sub SCE}, after potentiostatic polarization for 1800s, the current density decayed from 10{sup −2} A cm{sup −2} to 10{sup −6} A cm{sup −2}. The passive film thickness was simulated from Frenel and Drude reflection equations, the average complex refractive index was assumed to be N = 2.3 − j0.445. The estimated thickness increased linearly with potential from 1.5 nm at 0 V to 2.6 nm at 0.8 V. The growth of passive film followed high electric field ion conduction model. The passive film mainly contained the oxide/hydroxide of iron and chromium. The selective solubility of oxide in passive film explained the change of iron and chromium content at different potentials. Few nickel and molybdenum also contributed to the passive film with a constant content.

  7. Electrochemical dissolution of fresh and passivated chalcopyrite electrodes. Effect of pyrite on the reduction of Fe3+ ions and transport processes within the passive film

    International Nuclear Information System (INIS)

    Olvera, O.G.; Quiroz, L.; Dixon, D.G.; Asselin, E.

    2014-01-01

    Graphical abstract: - Highlights: • FeS 2 increased the dissolution rate of fresh and passivated CuFeS 2 electrodes. • Fe 3+ reduction was the rate controlling step in the dissolution of fresh CuFeS 2 . • Diffusion within the passive film controlled the dissolution rate of passivated CuFeS 2 . - Abstract: The effect of pyrite (FeS 2 ) on the electrochemical dissolution of fresh and passivated chalcopyrite (CuFeS 2 ) electrodes has been studied. Current density values for the dissolution of CuFeS 2 were calculated from EIS measurements. FeS 2 increased the dissolution rate of fresh and passivated CuFeS 2 electrodes indicating that the galvanic effect continued even after the electrode was chemically passivated. The dissolution rate of CuFeS 2 decreased by a factor of 3 after the passivation treatment. Due to the low diffusion rates of ions within the CuFeS 2 passive film and due to an increase in the resistance to the transfer of electrons at the electrode/film interface, the activity of FeS 2 for the reduction of Fe 3+ ions was also reduced by a factor of 2.3 even though FeS 2 was not exposed to any chemical treatment. The results in this work indicate that the dissolution rate of the fresh CuFeS 2 electrode was controlled by the reduction of Fe 3+ ions whereas for the passivated CuFeS 2 electrode the dissolution rate was controlled by diffusion within the passive film

  8. Crystalline Silicon Solar Cells with Thin Silicon Passivation Film Deposited prior to Phosphorous Diffusion

    Directory of Open Access Journals (Sweden)

    Ching-Tao Li

    2014-01-01

    Full Text Available We demonstrate the performance improvement of p-type single-crystalline silicon (sc-Si solar cells resulting from front surface passivation by a thin amorphous silicon (a-Si film deposited prior to phosphorus diffusion. The conversion efficiency was improved for the sample with an a-Si film of ~5 nm thickness deposited on the front surface prior to high-temperature phosphorus diffusion, with respect to the samples with an a-Si film deposited on the front surface after phosphorus diffusion. The improvement in conversion efficiency is 0.4% absolute with respect to a-Si film passivated cells, that is, the cells with an a-Si film deposited on the front surface after phosphorus diffusion. The new technique provided a 0.5% improvement in conversion efficiency compared to the cells without a-Si passivation. Such performance improvements result from reduced surface recombination as well as lowered contact resistance, the latter of which induces a high fill factor of the solar cell.

  9. Passivation and electrochemical behavior of 316L stainless steel in chlorinated simulated concrete pore solution

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Hong, E-mail: luohong@hhu.edu.cn [College of Mechanics and Materials, Hohai University, Nanjing 210098 (China); Su, Huaizhi [State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098,China (China); Dong, Chaofang; Li, Xiaogang [Institute of Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083,China (China)

    2017-04-01

    Highlights: • The pH value play an important role on passive mechanism of stainless steel. • The relationship between Cr/Fe ratio within the passive film and pH is non-linear. • Better corrosion resistance due to high Cr/Fe ratio and molybdates ions. - Abstract: In this paper, the passivation and electrochemical behavior of 316L stainless steel in chlorinated simulated concrete pore solutions at different pH was evaluated by potentiodynamic measurements, electrochemical impedance spectroscopy. The composition of the passive film and surface morphology were investigated by X-ray photoelectron spectroscopy (XPS), secondary ion mass spectrometry (SIMS), and scanning electron microscopy, respectively. The results reveal that metastable pitting susceptibility, stable pitting corrosion, and composition of the passive film are influenced by pH value. After long time immersion, a bilayer structure passive film can be formed in this environment. The appearance of molybdates on the outermost surface layer, further enhancing the stability of the passive film. Moreover, the good pitting corrosion resistance of 316L stainless steel in simulated concrete pore solution without carbonated is mainly due to the presence of high Cr/Fe ratio and molybdates ions within the passive film.

  10. Passivation and electrochemical behavior of 316L stainless steel in chlorinated simulated concrete pore solution

    International Nuclear Information System (INIS)

    Luo, Hong; Su, Huaizhi; Dong, Chaofang; Li, Xiaogang

    2017-01-01

    Highlights: • The pH value play an important role on passive mechanism of stainless steel. • The relationship between Cr/Fe ratio within the passive film and pH is non-linear. • Better corrosion resistance due to high Cr/Fe ratio and molybdates ions. - Abstract: In this paper, the passivation and electrochemical behavior of 316L stainless steel in chlorinated simulated concrete pore solutions at different pH was evaluated by potentiodynamic measurements, electrochemical impedance spectroscopy. The composition of the passive film and surface morphology were investigated by X-ray photoelectron spectroscopy (XPS), secondary ion mass spectrometry (SIMS), and scanning electron microscopy, respectively. The results reveal that metastable pitting susceptibility, stable pitting corrosion, and composition of the passive film are influenced by pH value. After long time immersion, a bilayer structure passive film can be formed in this environment. The appearance of molybdates on the outermost surface layer, further enhancing the stability of the passive film. Moreover, the good pitting corrosion resistance of 316L stainless steel in simulated concrete pore solution without carbonated is mainly due to the presence of high Cr/Fe ratio and molybdates ions within the passive film.

  11. Electronic structure and pitting behavior of 3003 aluminum alloy passivated under various conditions

    International Nuclear Information System (INIS)

    Liu, Y.; Meng, G.Z.; Cheng, Y.F.

    2009-01-01

    Passivity of aluminum (Al) alloy 3003 in air and in aqueous solutions without and with chloride ions was characterized by electrochemical measurements, including cyclic polarization, electrochemical impedance spectroscopy (EIS), localized EIS and potential of zero charge, Mott-Schottky analysis and secondary ion mass spectroscopy (SIMS) technique. Stability, pitting susceptibility and repassivation ability of Al alloy 3003 under various film-forming conditions were determined. Results demonstrated that passive films formed on 3003 Al alloy in air and in Na 2 SO 4 solution without and with NaCl addition show an n-type semiconductor in nature. The passive film formed in chloride-free solution is most stable, and that formed in chloride-containing solution is most unstable, with the film formed in air in between. Pitting of Al alloy 3003 passivated both in air and in aqueous solutions is inevitable in the presence of chloride ions. There is the strongest capability for the air-passivated Al alloy 3003 to repassivate, and the weakest repassivating capability for Al alloy 3003 passivated in chloride-containing solution. The resistance of the passivated Al alloy 3003 to pitting corrosion is dependent on the competitive effects of pitting (breakdown of passive film) and repassivation (repair of passive film). According to the differences between corrosion potential and potential of zero charge, passive film formed in air has the strongest capability to adsorb chloride ions, while the film formed in chloride-containing solution the least. Chloride ions causing pitting of passivated Al alloy 3003 in air and in chloride-free solution come from the test solution, while those resulting in pitting of passivated Al alloy 3003 in chloride-containing solution mainly exist in the film during film-forming stage.

  12. Structure and photoluminescence of Mn-passivated nanocrystalline ZnO:S thin films

    International Nuclear Information System (INIS)

    Tong, Y.H.; Tang, Q.X.; Liu, Y.C.; Shao, C.L.; Xu, C.S.; Liu, Y.X.

    2005-01-01

    Mn-passivated nanocrystalline ZnO:S thin films were fabricated by thermally oxidizing Mn-doped ZnS (ZnS:Mn) films prepared by electron beam evaporation. Mn was introduced to passivate the surface defects of ZnO and to improve the optical properties. X-ray diffraction (XRD) and photoluminescence (PL) spectra at 81.9 K indicated the S content in ZnO thin film gradually decreased with increasing annealing temperature. The fitted result of the temperature-dependent PL spectra in the range from 81.9 to 302.2 K showed that S dopant could broaden the optical band gap energy of ZnO. Room temperature PL spectra confirmed that the ultraviolet peak shifted to lower energy with the decrease of S content in the thin film because of the Burstein-Moss effect

  13. Effect of Molecular Structure on Modulation of Passivation Films on Copper Chemical Mechanical Planarization

    Science.gov (United States)

    Mlynarski, Amy

    In order to optimize the chemical mechanical planarization (CMP) process, there is a need to further understand the synergistic relationship between chemical and mechanical parameters to enhance the polishing process. CMP chemistry is very complex, as it contains complexing agents, oxidizing agents, passivating agents, and abrasive particles. This variety of components ensues chaos within the system, which complicates the understanding of the direct impact each component has on the CMP process. In order for there to be efficiency in the polishing process, specifically for copper (Cu) polishing, the chemistry must create a softened passivation layer on the Cu surface that is able to be readily removed by applied mechanical abrasion. Focusing on Cu CMP, the oxidation of Cu to Cu2+ needs to be thoroughly understood in order to probe the formation of creating this ideal passivated layer, which protects recessed Cu regions. The type of film that is formed, the strength of the film, and even the efficiency of film removal will be altered depending on the chemistry of interaction at the Cu surface. This thesis focuses on understanding the working mechanism of the film formation on Cu, depending on the passivating agent added to the system. The different passivating agents used, more specifically benzotriazole (BTA), triazole (TAZ), salicylhydroxamic acid (SHA), and benzimidazole (BIA), have all been known to create a light coat of protection on the recessed metal, providing corrosion resistance. In order to study the differences in these films, many different techniques can be utilized to characterize the films, such as electrochemical scans, referred to as Tafel plots, which will be performed to compare the differences of the films. By altering the temperature within the system, the activation energy for each system can also be determined as another way to characterize the density of the passive film formed. Furthermore, the generation of *OH will be monitored since the

  14. Hydrogen passivation of polycrystalline Si thin film solar cells

    International Nuclear Information System (INIS)

    Gorka, Benjamin

    2010-01-01

    Hydrogen passivation is a key process step in the fabrication of polycrystalline Si (poly-Si) thin film solar cells. In this work a parallel plate rf plasma setup was used for the hydrogen passivation treatment. The main topics that have been investigated are (i) the role of plasma parameters (like hydrogen pressure, electrode gap and plasma power), (ii) the dynamics of the hydrogen treatment and (iii) passivation of poly-Si with different material properties. Passivation was characterized by measuring the open-circuit voltage V OC of poly-Si reference samples. Optimum passivation conditions were found by measurements of the breakdown voltage V brk of the plasma for different pressures p and electrode gaps d. For each pressure, the best passivation was achieved at a gap d that corresponded to the minimum in V brk . Plasma simulations were carried out, which indicate that best V OC corresponds to a minimum in ion energy. V OC was not improved by a larger H flux. Investigations of the passivation dynamic showed that a plasma treatment in the lower temperature range (≤400 C) is slow and takes several hours for the V OC to saturate. Fast passivation can be successfully achieved at elevated temperatures around 500 C to 600 C with a plateau time of 10 min. It was found that prolonged hydrogenation leads to a loss in V OC , which is less pronounced within the observed optimum temperature range (500 C-600 C). Electron beam evaporation has been investigated as an alternative method to fabricate poly-Si absorbers. The material properties have been tuned by alteration of substrate temperature T dep =200-700 C and were characterized by Raman, ESR and V OC measurements. Largest grains were obtained after solid phase crystallization (SPC) of a-Si, deposited in the temperature range of 300 C. The defect concentration of Si dangling bonds was lowered by passivation by about one order of magnitude. The lowest dangling bond concentration of 2.5.10 16 cm -3 after passivation was

  15. Investigation of passivating films on Li-electrode by the method of photoelectronic emission

    International Nuclear Information System (INIS)

    Nimon, E.S.; Churikov, A.V.; Gamayunova, I.M.; L'vov, A.L.

    1995-01-01

    Spectral dependences of photoeffect under conditions of pulsed illumination by visible and near IR radiation of Li-electrode surface in propylene carbonate and thionyl chloride base solutions have been studied. Photoemission of electrons from lithium to passivating films on its surface is the primary stage of the cathode photoeffect detected. The method of electron photoemission is used to obtain information on the composition and characteristics of the passivating films. 21 refs., 7 figs., 1 tab

  16. Ultrathin protective films of two-dimensional polymers on passivated iron against corrosion in 0.1M NaCl

    International Nuclear Information System (INIS)

    Aramaki, Kunitsugu; Shimura, Tadashi

    2005-01-01

    Prevention of iron corrosion in an aerated 0.1M NaCl solution was investigated by polarization and mass-loss measurements of a passivated iron electrode covered with ultrathin and ordered films of two-dimensional polymers. The films were prepared on the passivated electrode by modification of a 16-hydroxyhexadecanoate ion HO(CH 2 ) 15 CO 2 - self-assembled monolayer with 1,2-bis(triethoxysilyl)ethane (C 2 H 5 O) 3 Si(CH 2 ) 2 Si(OC 2 H 5 ) 3 and alkyltriethoxysilane C n H 2n+1 Si(OC 2 H 5 ) 3 (n=8 or 18). Because crevice corrosion occurred at the initial stage of immersion in the solution preferentially, the edge of electrode covered with the polymer film was coated with epoxy resin. The open-circuit potentials of the covered electrodes in the solution were maintained high, more than -0.2V/SCE for several hours, indicating that no breakdown of the passive film occurred on the surface. The protective efficiencies of the films were extremely high, more than 99.9% unless the passive film was broken down. The efficiencies after immersion for 24h almost agreed with those obtained by mass-loss measurements. X-ray photoelectron spectroscopy and electron-probe microanalysis of the passivated surface covered with the polymer film after immersion in the solution for 4h revealed that pit initiation on the passive film was suppressed by coverage with the polymer film completely

  17. Excellent Passivation of p-Type Si Surface by Sol-Gel Al2O3 Films

    International Nuclear Information System (INIS)

    Hai-Qing, Xiao; Chun-Lan, Zhou; Xiao-Ning, Cao; Wen-Jing, Wang; Lei, Zhao; Hai-Ling, Li; Hong-Wei, Diao

    2009-01-01

    Al 2 O 3 films with a thickness of about 100 nm synthesized by spin coating and thermally treated are applied for field-induced surface passivation of p-type crystalline silicon. The level of surface passivation is determined by techniques based on photoconductance. An effective surface recombination velocity below 100 cm/s is obtained on 10Ω ·cm p-type c-Si wafers (Cz Si). A high density of negative fixed charges in the order of 10 12 cm −2 is detected in the Al 2 O 3 films and its impact on the level of surface passivation is demonstrated experimentally. Furthermore, a comparison between the surface passivation achieved for thermal SiO 2 and plasma enhanced chemical vapor deposition SiN x :H films on the same c-Si is presented. The high negative fixed charge density explains the excellent passivation of p-type c-Si by Al 2 O 3 . (cross-disciplinary physics and related areas of science and technology)

  18. Influence of annealing temperature on passivation performance of thermal atomic layer deposition Al2O3 films

    International Nuclear Information System (INIS)

    Zhang Xiang; Liu Bang-Wu; Li Chao-Bo; Xia Yang; Zhao Yan

    2013-01-01

    Chemical and field-effect passivation of atomic layer deposition (ALD) Al 2 O 3 films are investigated, mainly by corona charging measurement. The interface structure and material properties are characterized by transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS), respectively. Passivation performance is improved remarkably by annealing at temperatures of 450 °C and 500 °C, while the improvement is quite weak at 600 °C, which can be attributed to the poor quality of chemical passivation. An increase of fixed negative charge density in the films during annealing can be explained by the Al 2 O 3 /Si interface structural change. The Al—OH groups play an important role in chemical passivation, and the Al—OH concentration in an as-deposited film subsequently determines the passivation quality of that film when it is annealed, to a certain degree. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  19. Advanced Passivation Technology and Loss Factor Minimization for High Efficiency Solar Cells.

    Science.gov (United States)

    Park, Cheolmin; Balaji, Nagarajan; Jung, Sungwook; Choi, Jaewoo; Ju, Minkyu; Lee, Seunghwan; Kim, Jungmo; Bong, Sungjae; Chung, Sungyoun; Lee, Youn-Jung; Yi, Junsin

    2015-10-01

    High-efficiency Si solar cells have attracted great attention from researchers, scientists, photovoltaic (PV) industry engineers for the past few decades. With thin wafers, surface passivation becomes necessary to increase the solar cells efficiency by overcoming several induced effects due to associated crystal defects and impurities of c-Si. This paper discusses suitable passivation schemes and optimization techniques to achieve high efficiency at low cost. SiNx film was optimized with higher transmittance and reduced recombination for using as an effective antireflection and passivation layer to attain higher solar cell efficiencies. The higher band gap increased the transmittance with reduced defect states that persisted at 1.68 and 1.80 eV in SiNx films. The thermal stability of SiN (Si-rich)/SiN (N-rich) stacks was also studied. Si-rich SiN with a refractive index of 2.7 was used as a passivation layer and N-rich SiN with a refractive index of 2.1 was used for thermal stability. An implied Voc of 720 mV with a stable lifetime of 1.5 ms was obtained for the stack layer after firing. Si-N and Si-H bonding concentration was analyzed by FTIR for the correlation of thermally stable passivation mechanism. The passivation property of spin coated Al2O3 films was also investigated. An effective surface recombination velocity of 55 cm/s with a high density of negative fixed charges (Qf) on the order of 9 x 10(11) cm(-2) was detected in Al2O3 films.

  20. Hydrogen passivation of polycrystalline Si thin film solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Gorka, Benjamin

    2010-12-15

    Hydrogen passivation is a key process step in the fabrication of polycrystalline Si (poly-Si) thin film solar cells. In this work a parallel plate rf plasma setup was used for the hydrogen passivation treatment. The main topics that have been investigated are (i) the role of plasma parameters (like hydrogen pressure, electrode gap and plasma power), (ii) the dynamics of the hydrogen treatment and (iii) passivation of poly-Si with different material properties. Passivation was characterized by measuring the open-circuit voltage V{sub OC} of poly-Si reference samples. Optimum passivation conditions were found by measurements of the breakdown voltage V{sub brk} of the plasma for different pressures p and electrode gaps d. For each pressure, the best passivation was achieved at a gap d that corresponded to the minimum in V{sub brk}. Plasma simulations were carried out, which indicate that best V{sub OC} corresponds to a minimum in ion energy. V{sub OC} was not improved by a larger H flux. Investigations of the passivation dynamic showed that a plasma treatment in the lower temperature range ({<=}400 C) is slow and takes several hours for the V{sub OC} to saturate. Fast passivation can be successfully achieved at elevated temperatures around 500 C to 600 C with a plateau time of 10 min. It was found that prolonged hydrogenation leads to a loss in V{sub OC}, which is less pronounced within the observed optimum temperature range (500 C-600 C). Electron beam evaporation has been investigated as an alternative method to fabricate poly-Si absorbers. The material properties have been tuned by alteration of substrate temperature T{sub dep}=200-700 C and were characterized by Raman, ESR and V{sub OC} measurements. Largest grains were obtained after solid phase crystallization (SPC) of a-Si, deposited in the temperature range of 300 C. The defect concentration of Si dangling bonds was lowered by passivation by about one order of magnitude. The lowest dangling bond concentration

  1. The Passive Film Growth Mechanism of New Corrosion-Resistant Steel Rebar in Simulated Concrete Pore Solution: Nanometer Structure and Electrochemical Study.

    Science.gov (United States)

    Jiang, Jin-Yang; Wang, Danqian; Chu, Hong-Yan; Ma, Han; Liu, Yao; Gao, Yun; Shi, Jinjie; Sun, Wei

    2017-04-14

    An elaborative study was carried out on the growth mechanism and properties of the passive film for a new kind of alloyed corrosion-resistant steel (CR steel). The passive film naturally formed in simulated concrete pore solutions (pH = 13.3). The corrosion resistance was evaluated by various methods including open circuit potential (OCP), linear polarization resistance (LPR) measurements, and electrochemical impedance spectroscopy (EIS). Meanwhile, the 2205 duplex stainless steel (SS steel) was evaluated for comparison. Moreover, the passive film with CR steel was studied by means of X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), Atomic Force Microscope (AFM), and the Mott‑Schottky approach. The results showed that the excellent passivity of CR steel could be detected in a high alkaline environment. The grain boundaries between the fine passive film particles lead to increasing Cr oxide content in the later passivation stage. The filling of cation vacancies in the later passivation stage as well as the orderly crystalized inner layer contributed to the excellent corrosion resistance of CR steel. A passive film growth model for CR steel was proposed.

  2. Potential dependence of surface crystal structure of iron passive films in borate buffer solution

    International Nuclear Information System (INIS)

    Deng, Huihua; Nanjo, Hiroshi; Qian, Pu; Santosa, Arifin; Ishikawa, Ikuo; Kurata, Yoshiaki

    2007-01-01

    The effect of passivation potential on surface crystal structure, apparent thickness and passivity of oxide films formed on pure iron prepared by plasma sputter deposition was investigated. The crystallinity was improved with passivation potential and the width of atomically flat terraces was expanded to 6 nm when passivating at 750 mV for 15 min, as observed by ex situ scanning tunneling microscopy (STM) after aging in air (<30% RH). Apparent thickness and passivity are linearly dependent on passivation potential. The former weakly depends on passivation duration, the latter strongly depends on passivation duration. This is well explained by the correlation between crystal structure and passivity

  3. Interfacial passivation of CdS layer to CdSe quantum dots-sensitized electrodeposited ZnO nanowire thin films

    International Nuclear Information System (INIS)

    Zhang, Jingbo; Sun, Chuanzhen; Bai, Shouli; Luo, Ruixian; Chen, Aifan; Sun, Lina; Lin, Yuan

    2013-01-01

    ZnO porous thin films with nanowire structure were deposited by the one-step electrochemical deposition method. And a CdS layer was coated on the as-deposited ZnO nanowire thin films by successive ionic layer adsorption and reaction (SILAR) method to passivate surface states. Then the films were further sensitized by CdSe quantum dots (QDs) to serve as a photoanode for fabricating quantum dots-sensitized solar cells (QDSSCs). The effect of the CdS interfacial passivation layer on the performance of the QDSSCs was systematically investigated by varying the SILAR cycle number and heating the passivation layer. The amorphous CdS layer with an optimized thickness can effectively suppress the recombination of the injected electrons with holes on QDs and the redox electrolyte. The newly formed CdS layer on the surface of the ZnO nanowire thin film obviously prolongs the electron lifetime in the passivated ZnO nanoporous thin film because of the lower surface trap density in the ZnO nanowires after CdS deposition, which is favorable to the higher short-circuit photocurrent density (J sc ). For the CdSe QDs-sensitized ZnO nanoporous thin film with the interfacial passivation layer, the J sc and conversion efficiency can reach a maximum of 8.36 mA cm −2 and 2.36%, respectively. The conversion efficiency was improved by 83.47% compared with that of the cell based on the CdSe QDs-sensitized ZnO nanoporous thin film without CdS interfacial passivation (0.39%)

  4. Effects of EDTA on the electronic properties of passive film formed on Fe-20Cr in pH 8.5 buffer solution

    International Nuclear Information System (INIS)

    Cho, Eun Ae; Kwon, Hyuk Sang; Beranrd, Frederic

    2003-01-01

    The electronic properties of the passive film formed on Fe-20Cr ferritic stainless steel in pH 8.5 buffer solution containing 0.05 M EDTA (ethylene diammine tetraacetic acid) were examined by the photocurrent measurements and Mott-Schottky analysis for the film. XPS depth profile for the film demonstrated that Cr content in the outermost layer of the passive film was higher in the solution with EDTA than that in the solution without EDTA, due to selective dissolution of Fe by EDTA. In the solution with EDTA, the passive film showed characteristics of an amorphous or highly disordered n-type semiconductor. The band gap energies of the passive film are estimated to be ∼ 3.0 eV, irrespective of film formation potential from 0 to 700 mV SCE and of presence of EDTA. However, the donor density of the passive film formed in the solution with EDTA is much higher than that formed in the solution without EDTA, due to an increase in oxygen vacancy resulted from the dissolution of Fe-oxide in the outermost layer of the passive film. These results support the proposed model that the passive film formed on Fe-20Cr in pH 8.5 buffer solution mainly consists of Cr-substituted γ-Fe 2 O 3

  5. Complete protection of a passive film on iron from breakdown in a borate buffer containing 0.1M of Cl- by coverage with an ultrathin film of two-dimensional polymer

    International Nuclear Information System (INIS)

    Aramaki, Kunitsugu; Shimura, Tadashi

    2006-01-01

    An ultrathin film of two-dimensional polymer was prepared on a passivated iron electrode by modification of a 16-hydroxyhexadecanoate ion HO(CH 2 ) 15 CO 2 - self-assembled monolayer with 1,2-bis(triethoxysilyl)ethane (C 2 H 5 O) 3 Si(CH 2 ) 2 Si(OC 2 H 5 ) 3 and octadecyltriethoxysilane C 18 H 37 Si(OC 2 H 5 ) 3 . This film prevented passive film breakdown examined by potentiodynamic anodic polarization of the coated electrode in the borate buffer solution containing 0.1M of Cl - . Neither current spikes nor the pitting potential was observed in the passive and transpassive regions of polarization curve. The anodic current density was decreased in these regions markedly, implying hindrance to permeation of Cl - and water through the film. Structure of the film was clarified by X-ray photoelectron and FTIR reflection spectroscopies and contact angle measurement with a drop of water. Electron-probe microanalysis of the passivated surface coated with the film after anodic polarization scanning up to the transpassive region revealed that the polymer film prevents pit initiation by an attack on the passive film with Cl -

  6. Incorporation mechanism for doping of metal ions into a passivating film at the lithium/thionyl chloride interface

    Science.gov (United States)

    Danilov, V. G.; Shikin, V. I.

    1993-05-01

    Effects of iron and titanium ions on corrosion processes of lithium in thionyl chloride electrolytes have been studied. Laws for the growth of the passivating film on the type and concentration of doped ions have been established, and equations for these are suggested. A stepwise mechanism of dopant incorporation into passivating film structure is presented.

  7. Sorbent Film-Coated Passive Samplers for Explosives Vapour Detection Part A: Materials Optimisation and Integration with Analytical Technologies.

    Science.gov (United States)

    McEneff, Gillian L; Murphy, Bronagh; Webb, Tony; Wood, Dan; Irlam, Rachel; Mills, Jim; Green, David; Barron, Leon P

    2018-04-11

    A new thin-film passive sampler is presented as a low resource dependent and discrete continuous monitoring solution for explosives-related vapours. Using 15 mid-high vapour pressure explosives-related compounds as probes, combinations of four thermally stable substrates and six film-based sorbents were evaluated. Meta-aramid and phenylene oxide-based materials showed the best recoveries from small voids (~70%). Analysis was performed using liquid chromatography-high resolution accurate mass spectrometry which also enabled tentative identification of new targets from the acquired data. Preliminary uptake kinetics experiments revealed plateau concentrations on the device were reached between 3-5 days. Compounds used in improvised explosive devices, such as triacetone triperoxide, were detected within 1 hour and were stably retained by the sampler for up to 7 days. Sampler performance was consistent for 22 months after manufacture. Lastly, its direct integration with currently in-service explosives screening equipment including ion mobility spectrometry and thermal desorption mass spectrometry is presented. Following exposure to several open environments and targeted interferences, sampler performance was subsequently assessed and potential interferences identified. High-security building and area monitoring for concealed explosives using such cost-effective and discrete passive samplers can add extra assurance to search routines while minimising any additional burden on personnel or everyday site operation.

  8. Incorporation mechanism for doping of metal ions into a passive film at the lithium/thionyl chloride interface

    Energy Technology Data Exchange (ETDEWEB)

    Danilov, V.G. (Siberian Inst. of Tech., Krasnoyarsk (Russian Federation). Lab. of Electrochemistry); Shilkin, V.I. (Siberian Inst. of Tech., Krasnoyarsk (Russian Federation). Lab. of Electrochemistry)

    1993-05-01

    Effects of iron and titanium ions on corrosion processes of lithium in thionyl chloride electrolytes have been studied. Laws for the growth of the passivating film on the type and concentration of doped ions have been established, and equations for these are suggested. A stepwise mechanism of dopant incorporation into passivating film structure is presented. (orig.)

  9. Fundamental studies of passivity and passivity breakdown

    International Nuclear Information System (INIS)

    Macdonald, D.D.; Urquidi-Macdonald, M.; Song, H.; Biaggio-Rocha, S.; Searson, P.

    1991-11-01

    This report summarizes the findings of our fundamental research program on passivity and passivity breakdown. During the past three and one half years in this program (including the three year incrementally-funded grant prior to the present grant), we developed and experimentally tested various physical models for the growth and breakdown of passive films on metal surfaces. These models belong to a general class termed ''point defects models'' (PDMs), in which the growth and breakdown of passive films are described in terms of the movement of anion and cation vacancies

  10. XPS study of the passive films formed on nitrogen-implanted austenitic stainless steels

    International Nuclear Information System (INIS)

    Marcus, P.; Bussell, M.E.

    1992-01-01

    Austenitic stainless steels (304-type) have been implanted with nitrogen ions in order to investigate the effects of implanted nitrogen on their electrochemical behaviour and on the nature of the passive film formed on the steels in acid (0.5M H 2 SO 4 ). Alloys with two nitrogen doses have been prepared (2.5x10 16 and 2x10 17 N atoms/cm 2 ). The implanted alloys have been characterized by 15 N-NRA (nuclear reaction analysis) and XPS (X-ray photoelectron spectroscopy). Alloy surfaces with well-defined N concentrations were prepared, prior to the electrochemical measurements, by argon-ion sputtering of the implanted material for a fixed time in order to reach a well-defined point on the nitrogen depth profile. The samples were then transferred without exposure to air to an electrochemical cell mounted in an inert gas glove box. The implanted nitrogen modifies the electrochemical behaviour of the alloy. The anodic dissolution in the active state is enhanced, and the current density in the passive state is increased. Surface analysis of the alloys by XPS after passivation shows that implanted nitrogen is enriched on the surface during dissolution and passivation of the alloys. The process by which N is enriched on the surface is anodic segregation, which was first observed and characterized for S on Ni and Ni-Fe alloys. The passive films formed on both the unimplanted and implanted alloys have a bilayer structure with an inner oxide layer and an outer hydroxide layer, but on the nitrogen-implanted alloy, a chromium nitride phase is formed at the expense of the chromium oxide. After passivation of the implanted alloys, three chemical states of nitrogen are detected in the N 1s spectrum. The high binding energy (399.4 eV) peak corresponds to a nitrogen species located on the surface of the passive film, which is produced by reaction of the implanted nitrogen with the solution. (orig./WL)

  11. Ultras-stable Physical Vapor Deposited Amorphous Teflon Films with Extreme Fictive Temperature Reduction

    Science.gov (United States)

    McKenna, Gregory; Yoon, Heedong; Koh, Yung; Simon, Sindee

    In the present work, we have produced highly stable amorphous fluoropolymer (Teflon AF® 1600) films to study the calorimetric and relaxation behavior in the deep in the glassy regime. Physical vapor deposition (PVD) was used to produce 110 to 700 nm PVD films with substrate temperature ranging from 0.70 Tg to 0.90 Tg. Fictive temperature (Tf) was measured using Flash DSC with 600 K/s heating and cooling rates. Consistent with prior observations for small molecular weight glasses, large enthalpy overshoots were observed in the stable amorphous Teflon films. The Tf reduction for the stable Teflon films deposited in the vicinity of 0.85 Tg was approximately 70 K compared to the Tgof the rejuvenated system. The relaxation behavior of stable Teflon films was measured using the TTU bubble inflation technique and following Struik's protocol in the temperature range from Tf to Tg. The results show that the relaxation time decreases with increasing aging time implying that devitrification is occurring in this regime.

  12. A rapidly equilibrating, thin film, passive water sampler for organic contaminants; characterization and field testing

    Energy Technology Data Exchange (ETDEWEB)

    St George, Tiffany [Department of Marine Science, University of Connecticut, 1080 Shennecossett Road, Groton, CT 06340 (United States); Department of Science, United States Coast Guard Academy, 27 Mohegan Ave., New London, CT 06320 (United States); Vlahos, Penny, E-mail: penny.vlahos@uconn.ed [Department of Chemistry, University of Connecticut, 55 Eagleville Road, Storrs, CT 06269 (United States); Department of Marine Science, University of Connecticut, 1080 Shennecossett Road, Groton, CT 06340 (United States); Harner, Tom [Science and Technology Branch, Environment Canada, 4905 Dufferin Street, Toronto, Ontario M3H 5T4 (Canada); Helm, Paul [Environmental Monitoring and Reporting Branch, Ontario Ministry of the Environment, 125 Resources Rd, Toronto, Ontario M9P 3V6 (Canada); Wilford, Bryony [Science and Technology Branch, Environment Canada, 4905 Dufferin Street, Toronto, Ontario M3H 5T4 (Canada)

    2011-02-15

    Improving methods for assessing the spatial and temporal resolution of organic compound concentrations in marine environments is important to the sustainable management of our coastal systems. Here we evaluate the use of ethylene vinyl acetate (EVA) as a candidate polymer for thin-film passive sampling in waters of marine environments. Log K{sub EVA-W} partition coefficients correlate well (r{sup 2} = 0.87) with Log K{sub OW} values for selected pesticides and polychlorinated biphenyls (PCBs) where Log K{sub EVA-W} = 1.04 Log K{sub OW} + 0.22. EVA is a suitable polymer for passive sampling due to both its high affinity for organic compounds and its ease of coating at sub-micron film thicknesses on various substrates. Twelve-day field deployments were effective in detecting target compounds with good precision making EVA a potential multi-media fugacity meter. - Research highlights: Calibration and field testing of a thin-film passive sampler in marine systems. Ethylene vinyl acetate (EVA) is effective for a wide spectrum of organic compounds. EVA performs with high precision and reproducibility. EVA is effective in marine systems at environmentally relevant concentrations. EVA is recommended as a multi-media fugacity meter for environmental applications. - An ethylene vinyl acetate (EVA), thin-film passive sampler for the detection of organic compounds in marine environments is calibrated and field tested.

  13. Induced conductivity in sol-gel ZnO films by passivation or elimination of Zn vacancies

    Directory of Open Access Journals (Sweden)

    D. J. Winarski

    2016-09-01

    Full Text Available Undoped and Ga- and Al- doped ZnO films were synthesized using sol-gel and spin coating methods and characterized by X-ray diffraction, high-resolution scanning electron microscopy (SEM, optical spectroscopy and Hall-effect measurements. SEM measurements reveal an average grain size of 20 nm and distinct individual layer structure. Measurable conductivity was not detected in the unprocessed films; however, annealing in hydrogen or zinc environment induced significant conductivity (∼10−2 Ω.cm in most films. Positron annihilation spectroscopy measurements provided strong evidence that the significant enhancement in conductivity was due to hydrogen passivation of Zn vacancy related defects or elimination of Zn vacancies by Zn interstitials which suppress their role as deep acceptors. Hydrogen passivation of cation vacancies is shown to play an important role in tuning the electrical conductivity of ZnO, similar to its role in passivation of defects at the Si/SiO2 interface that has been essential for the successful development of complementary metal–oxide–semiconductor (CMOS devices. By comparison with hydrogen effect on other oxides, we suggest that hydrogen may play a universal role in oxides passivating cation vacancies and modifying their electronic properties.

  14. Induced conductivity in sol-gel ZnO films by passivation or elimination of Zn vacancies

    Science.gov (United States)

    Winarski, D. J.; Anwand, W.; Wagner, A.; Saadatkia, P.; Selim, F. A.; Allen, M.; Wenner, B.; Leedy, K.; Allen, J.; Tetlak, S.; Look, D. C.

    2016-09-01

    Undoped and Ga- and Al- doped ZnO films were synthesized using sol-gel and spin coating methods and characterized by X-ray diffraction, high-resolution scanning electron microscopy (SEM), optical spectroscopy and Hall-effect measurements. SEM measurements reveal an average grain size of 20 nm and distinct individual layer structure. Measurable conductivity was not detected in the unprocessed films; however, annealing in hydrogen or zinc environment induced significant conductivity (˜10-2 Ω .cm) in most films. Positron annihilation spectroscopy measurements provided strong evidence that the significant enhancement in conductivity was due to hydrogen passivation of Zn vacancy related defects or elimination of Zn vacancies by Zn interstitials which suppress their role as deep acceptors. Hydrogen passivation of cation vacancies is shown to play an important role in tuning the electrical conductivity of ZnO, similar to its role in passivation of defects at the Si/SiO2 interface that has been essential for the successful development of complementary metal-oxide-semiconductor (CMOS) devices. By comparison with hydrogen effect on other oxides, we suggest that hydrogen may play a universal role in oxides passivating cation vacancies and modifying their electronic properties.

  15. Passivation of defects in polycrystalline Cu2O thin films by hydrogen or cyanide treatment

    International Nuclear Information System (INIS)

    Ishizuka, S.; Kato, S.; Okamoto, Y.; Sakurai, T.; Akimoto, K.; Fujiwara, N.; Kobayashi, H.

    2003-01-01

    The effects of the passivation of defects in polycrystalline nitrogen-doped cuprous oxide (Cu 2 O) thin films with hydrogen or cyanide treatment were studied. In the photoluminescence (PL) measurements, although the emission was not observed before treatment, luminescence of Cu 2 O at around 680 nm was observed after each treatment. This improvement in the luminescence property may be due to the passivation of non-radiative recombination centers by H or CN. The hole carrier concentration increased from the order of 10 16 to 10 17 cm -3 with hydrogen or cyanide treatment. From these results, both the hydrogen and cyanide treatments were found to be very effective to passivate defects and improve the optical and electrical properties of polycrystalline Cu 2 O thin films. The thermal stability of the passivation effects by the cyanide treatment is, however, superior to that by the hydrogen treatment

  16. Highly stable carbon-doped Cu films on barrierless Si

    International Nuclear Information System (INIS)

    Zhang, X.Y.; Li, X.N.; Nie, L.F.; Chu, J.P.; Wang, Q.; Lin, C.H.; Dong, C.

    2011-01-01

    Electrical resistivities and thermal stabilities of carbon-doped Cu films on silicon have been investigated. The films were prepared by magnetron sputtering using a Cu-C alloy target. After annealing at 400 deg. C for 1 h, the resistivity maintains a low level at 2.7 μΩ-cm and no Cu-Si reaction is detected in the film by X-ray diffraction (XRD) and transmission electron microscopy (TEM) observations. According to the secondary ion mass spectroscopy (SIMS) results, carbon is enriched near the interfacial region of Cu(C)/Si, and is considered responsible for the growth of an amorphous Cu(C)/Si interlayer that inhibits the Cu-Si inter-diffusion. Fine Cu grains, less than 100 nm, were present in the Cu(C) films after long-term and high-temperature annealings. The effect of C shows a combination of forming a self-passivated interface barrier layer and maintaining a fine-grained structure of Cu. A low current leakage measured on this Cu(C) film also provides further evidence for the carbon-induced diffusion barrier interlayer performance.

  17. Photo-electrochemical analysis of passive film formed on X80 pipeline steel in bicarbonate/carbonate buffer solution

    Energy Technology Data Exchange (ETDEWEB)

    Li, D.G. [School of Materials Science and Engineering, Xi' an Jiaotong University, Xi' an 710049 (China); Tubular Goods Research Center of CNPC, Xi' an 710065 (China)], E-mail: dangguoli78@yahoo.com.cn; Feng, Y.R.; Bai, Z.Q. [Tubular Goods Research Center of CNPC, Xi' an 710065 (China); Zhu, J.W.; Zheng, M.S. [School of Materials Science and Engineering, Xi' an Jiaotong University, Xi' an 710049 (China)

    2008-02-28

    Photo-electrochemical measurement was used to explore the formation potential, formation time, chloride ions concentration, applied potential and pH value of the solution on the electronic property of passive film formed on X80 pipeline steel in 1 M NaHCO{sub 3}/0.5 M Na{sub 2}CO{sub 3} buffer solution. The results showed that the photocurrent is positive, indicating an n-type semiconductor character of the passive film, the photocurrent increased with increasing the formation potential, prolonging the formation time, decreasing chloride ions concentration, rising applied potential and decreasing the pH value of the solution. Capacitance measurement exhibited a positive slope of Mott-Schottky plot, and the slopes of Mott-Schottky plots increased with the increasing formation potential, showing a decrement of the donor density of the passive film.

  18. Novel Metal-Sulfur-Based Air-Stable Passivation of GaAs with Very Low Surface State Densities

    Energy Technology Data Exchange (ETDEWEB)

    Ashby, Carol I.H.; Baca, Albert G.; Chang, P.-C; Hafich, M.J.; Hammons, B.E.; Zavadil, Kevin R.

    1999-08-09

    A new air-stable electronic surface passivation for GaAs and other III-V compound semiconductors that employs sulfur and a suitable metal ion, e.g., Zn, and that is robust towards plasma dielectric deposition has been developed. Initial improvements in photoluminescence are twice that of S-only treatments and have been preserved for >11 months with SiO{sub x}N{sub y} dielectric encapsulation. Photoluminescence and X-ray photoelectron spectroscopies indicate that the passivation consists of two major components with one being stable for >2 years in air. This process improves heterojunction bipolar transistor current gain for both large and small area devices.

  19. Photoluminescence enhancement in porous SiC passivated by atomic layer deposited Al2O3 films

    DEFF Research Database (Denmark)

    Lu, Weifang; Iwasa, Yoshimi; Ou, Yiyu

    2016-01-01

    Porous SiC co-doped with B and N was passivated by atomic layer deposited (ALD) Al2O3 films to enhance the photoluminescence. After optimizing the deposition conditions, as high as 14.9 times photoluminescence enhancement has been achieved.......Porous SiC co-doped with B and N was passivated by atomic layer deposited (ALD) Al2O3 films to enhance the photoluminescence. After optimizing the deposition conditions, as high as 14.9 times photoluminescence enhancement has been achieved....

  20. Ultrathin and stable Nickel films as transparent conductive electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Grilli, M.L., E-mail: marialuisa.grilli@enea.it [ENEA, Materials Technology Unit, Via Anguillarese 301, 00123 Rome (Italy); Di Sarcina, I. [ENEA, Materials Technology Unit, Via Anguillarese 301, 00123 Rome (Italy); Bossi, S. [ENEA, Robotics Laboratory, Via Anguillarese 301, 00123 Rome (Italy); The Biorobotics Institute, Scuola Superiore Sant' Anna, Viale Rinaldo Piaggio 34, 56025 Pontedera, Pisa (Italy); Rinaldi, A.; Pilloni, L.; Piegari, A. [ENEA, Materials Technology Unit, Via Anguillarese 301, 00123 Rome (Italy)

    2015-11-02

    Ultrathin stable transparent conductive nickel films were deposited on quartz substrates by radio frequency sputtering at room temperature. Such films showed visible transmittance up to 80% and conductivity up to 1.8 × 10{sup 4} S/cm, further increased to 2,3 × 10{sup 5} S/cm by incorporation of a micrometric silver grid. Atomic force microscopy and scanning electron microscopy revealed quite compact, smooth and low surface roughness films. Excellent film stability, ease, fast and low cost process fabrication make these films highly competitive compared to indium tin oxide alternative transparent conductors. Films were characterized regarding their morphological, optical and electrical properties. - Highlights: • Indium-free transparent conductors are proposed. • Ultrathin Ni films are fabricated with a very fast process at room temperature. • Films have conductivity values up to 1.8 × 10{sup 4} S/cm. • Ni ultrathin films are good candidates for UV and NIR optoelectronic applications.

  1. Ion backscattering, channeling and nuclear reaction analysis study of passive films formed on FeCrNi and FeCrNiMo (100) single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, C; Schmaus, D [Paris-7 Univ., 75 (France). Groupe de Physique des Solides de l' ENS; Elbiache, A; Marcus, P [Ecole Nationale Superieure de Chimie, 75 - Paris (France)

    1990-01-01

    The compositions of passive films formed on Fe-17Fr-13Ni (at. %) and Fe-18.5Cr-14Ni-1.5Mo (100) single crystals have been determined and the structure of the alloy under the film has been investigated. The alloys were passivated in 0.05M H{sub 2}SO{sub 4} at 250 mV/SHE for 30 min. The oxygen content was measured by nuclear microanalysis using the {sup 16}O(d,p) {sup 17}O* reaction. The oxygen content in the passive film is similar for the two alloys and equal to (12{plus minus}2) 10{sup 15} O/cm{sup 2}. The cationic compositions of the passive films have been determined by {sup 4}He channeling at two incident beam energies: 0.8 and 2.0 MeV. For the two alloys studied, a total cation content of (5{plus minus}2)10{sup 15} at/cm{sup 2} is found in the passive films. The corresponding thickness is about 12 A. There is an excess of oxygen, which can be attributed to the presence of hydroxyls and sulfate. A strong chromium enrichment is found in the passive film formed on both alloys: chromium represents about 50% of the cations. There is no evidence of molybdenum enrichment in the passive film formed on the Mo-alloyed stainless steel. The comparison of the results obtained at the two different incident beam energies (0.8MeV and 2MeV) reveals the existence of defects at the alloy/passive film interface. (author).

  2. Effect of low thermal budget annealing on surface passivation of silicon by ALD based aluminum oxide films.

    Science.gov (United States)

    Vandana; Batra, Neha; Gope, Jhuma; Singh, Rajbir; Panigrahi, Jagannath; Tyagi, Sanjay; Pathi, P; Srivastava, S K; Rauthan, C M S; Singh, P K

    2014-10-21

    Thermal ALD deposited Al2O3 films on silicon show a marked difference in surface passivation quality as a function of annealing time (using a rapid thermal process). An effective and quality passivation is realized in short anneal duration (∼100 s) in nitrogen ambient which is reflected in the low surface recombination velocity (SRV passivation. Both as-deposited and low thermal budget annealed films show the presence of positive fixed charges and this is never been reported in the literature before. The role of field and chemical passivation is investigated in terms of fixed charge and interface defect densities. Further, the importance of the annealing step sequence in the MIS structure fabrication protocol is also investigated from the view point of its effect on the nature of fixed charges.

  3. High-Pressure Water-Vapor Annealing for Enhancement of a-Si:H Film Passivation of Silicon Surface

    International Nuclear Information System (INIS)

    Guo Chun-Lin; Wang Lei; Zhang Yan-Rong; Zhou Hai-Feng; Liang Feng; Yang Zhen-Hui; Yang De-Ren

    2014-01-01

    We investigate the effect of amorphous hydrogenated silicon (a-Si:H) films passivated on silicon surfaces based on high-pressure water-vapor annealing (HWA). The effective carrier lifetime of samples reaches the maximum value after 210°C, 90min HWA. Capacitance-voltage measurement reveals that the HWA not only greatly reduces the density of interface states (D it ), but also decreases the fixed charges (Q fixed ) mainly caused by bulk defects. The change of hydrogen and oxygen in the film is measured by a spectroscopic ellipsometer and a Fourier-transform infrared (FTIR) spectrometer. All these results show that HWA is a useful method to improve the passivation effect of a-Si:H films deposited on silicon surfaces

  4. Prevention of passive film breakdown on iron in a borate buffer solution containing chloride ion by coverage with a self-assembled monolayer of hexadecanoate ion

    International Nuclear Information System (INIS)

    Aramaki, Kunitsugu; Shimura, Tadashi

    2003-01-01

    Breakdown of a passive film on iron in a borate buffer solution (pH 8.49) containing 0.1 M of Cl - was suppressed by coverage of the passive film surface with a self-assembled monolayer (SAM) of hexadecanoate ion C 15 H 31 CO 2 - (C 16 A - ). The pitting potential of an iron electrode previously passivated in the borate buffer at 0.50 V/SCE increased by treatment in an aqueous solution of sodium hexadecanoate for many hours, indicating protection of the passive film from breakdown caused by an attack on defects of the film with Cl - . No breakdown occurred over the potential range of the passive region by coverage with the SAM of C 16 A - in some cases. Structures of the passive film and the monolayer were characterized by X-ray photoelectron and Fourier transform infrared reflection spectroscopies and contact angle measurement with a drop of water

  5. Atomic Layer Deposited Thin Films for Dielectrics, Semiconductor Passivation, and Solid Oxide Fuel Cells

    Science.gov (United States)

    Xu, Runshen

    Atomic layer deposition (ALD) utilizes sequential precursor gas pulses to deposit one monolayer or sub-monolayer of material per cycle based on its self-limiting surface reaction, which offers advantages, such as precise thickness control, thickness uniformity, and conformality. ALD is a powerful means of fabricating nanoscale features in future nanoelectronics, such as contemporary sub-45 nm metal-oxide-semiconductor field effect transistors, photovoltaic cells, near- and far-infrared detectors, and intermediate temperature solid oxide fuel cells. High dielectric constant, kappa, materials have been recognized to be promising candidates to replace traditional SiO2 and SiON, because they enable good scalability of sub-45 nm MOSFET (metal-oxide-semiconductor field-effect transistor) without inducing additional power consumption and heat dissipation. In addition to high dielectric constant, high-kappa materials must meet a number of other requirements, such as low leakage current, high mobility, good thermal and structure stability with Si to withstand high-temperature source-drain activation annealing. In this thesis, atomic layer deposited Er2O3 doped TiO2 is studied and proposed as a thermally stable amorphous high-kappa dielectric on Si substrate. The stabilization of TiO2 in its amorphous state is found to achieve a high permittivity of 36, a hysteresis voltage of less than 10 mV, and a low leakage current density of 10-8 A/cm-2 at -1 MV/cm. In III-V semiconductors, issues including unsatisfied dangling bonds and native oxides often result in inferior surface quality that yields non-negligible leakage currents and degrades the long-term performance of devices. The traditional means for passivating the surface of III-V semiconductors are based on the use of sulfide solutions; however, that only offers good protection against oxidation for a short-term (i.e., one day). In this work, in order to improve the chemical passivation efficacy of III-V semiconductors

  6. Si surface passivation by SiOx:H films deposited by a low-frequency ICP for solar cell applications

    International Nuclear Information System (INIS)

    Zhou, H P; Wei, D Y; Xu, S; Xiao, S Q; Xu, L X; Huang, S Y; Guo, Y N; Khan, S; Xu, M

    2012-01-01

    Hydrogenated silicon suboxide (SiO x :H) thin films are fabricated by a low-frequency inductively coupled plasma of hydrogen-diluted SiH 4 + CO 2 at a low temperature (100 °C). Introduction of a small amount of oxygen into the film results in a predominantly amorphous structure, wider optical bandgap, increased H content, lower conductivity and higher activation energy. The minority carrier lifetime in the SiO x :H-passivated p-type Si substrate is up to 428 µs with a reduced incubation layer at the interface. The associated surface recombination velocity is as low as 70 cm s -1 . The passivation behaviour dominantly originates from the H-related chemical passivation. The passivation effect is also demonstrated by the excellent photovoltaic performance of the heterojunction solar cell with the SiO x :H-based passivation and emitter layers.

  7. Electrochemical study of the AISI 409 ferritic stainless steel: passive film stability and pitting nucleation and growth

    International Nuclear Information System (INIS)

    Souza, Juliana Sarango de; Oliveira, Leandro Antônio de; Antunes, Renato Altobelli; Sayeg, Isaac Jamil

    2017-01-01

    The aim of the present work was to study the passive film stability and pitting corrosion behavior of the AISI 409 stainless steel. The electrochemical tests were carried out in 0.1 M NaCl solution at room temperature. The general electrochemical behavior was assessed using electrochemical impedance spectroscopy (EIS) measurements whereas the semiconducting properties of the passive film were evaluated by the Mott-Schottky approach. Pitting corrosion was investigated using potentiodynamic and potentiostatic polarization tests. Surface morphology was examined using confocal laser scanning microscopy and scanning electron microscopy (SEM). Energy dispersive X-ray spectroscopy (EDS) analyses were carried out to identify the composition of precipitates that could act as preferential sites for the onset of pitting corrosion. The results showed that the passive film presents n-type semiconductive behavior. Grain boundaries played an important role as pitting initiation sites for the AISI 409 stainless steel. (author)

  8. Electrochemical study of the AISI 409 ferritic stainless steel: passive film stability and pitting nucleation and growth

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Juliana Sarango de [Universidade Federal de São Paulo (UNIFESP), Diadema, SP (Brazil). Departamento de Ciências Exatas e da Terra; Oliveira, Leandro Antônio de; Antunes, Renato Altobelli, E-mail: renato.antunes@ufabc.edu.br [Universidade Federal do ABC (CECS/UFABC), Santo André, SP (Brazil). Centro de Engenharia, Modelagem e Ciências Sociais Aplicadas; Sayeg, Isaac Jamil [Universidade de São Paulo (USP), SP (Brazil). Instituto de Geociências

    2017-11-15

    The aim of the present work was to study the passive film stability and pitting corrosion behavior of the AISI 409 stainless steel. The electrochemical tests were carried out in 0.1 M NaCl solution at room temperature. The general electrochemical behavior was assessed using electrochemical impedance spectroscopy (EIS) measurements whereas the semiconducting properties of the passive film were evaluated by the Mott-Schottky approach. Pitting corrosion was investigated using potentiodynamic and potentiostatic polarization tests. Surface morphology was examined using confocal laser scanning microscopy and scanning electron microscopy (SEM). Energy dispersive X-ray spectroscopy (EDS) analyses were carried out to identify the composition of precipitates that could act as preferential sites for the onset of pitting corrosion. The results showed that the passive film presents n-type semiconductive behavior. Grain boundaries played an important role as pitting initiation sites for the AISI 409 stainless steel. (author)

  9. Evolution of Calcareous Deposits and Passive Film on 304 Stainless Steel with Cathodic Polarization in Sea Water

    Directory of Open Access Journals (Sweden)

    Tianxiang Sun

    2018-05-01

    Full Text Available The change of protective current density, the formation and growth of calcareous deposits, and the evolution of passive film on 304 stainless steel (SS were investigated at different potentials of cathodic polarization in sea water. Potentiostatic polarization, electrochemical impedance spectroscopy (EIS, and surface analysis techniques of scanning electron microscopy (SEM, energy dispersive X-ray (EDX microanalysis and X-ray diffraction (XRD were used to characterize the surface conditions. It was found that the protective current density was smaller for keeping polarization at −0.80 V (vs. saturated calomel electrode (SCE, same as below than that at −0.65 V. The calcareous deposits could not be formed on 304 SS with polarization at −0.50 V while it was well protected. The formation rate, the morphology, and the constituent of the calcareous deposits depended on the applied potential. The resistance of passive film on 304 SS decreased at the first stage and then increased when polarized at −0.80 V and −0.65 V, which was related to the reduction and the repair of passive film. For the stainless steel polarized at −0.50 V, the film resistance increased with polarization time, indicating that the growth of oxide film was promoted.

  10. Air-Stable Surface-Passivated Perovskite Quantum Dots for Ultra-Robust, Single- and Two-Photon-Induced Amplified Spontaneous Emission

    KAUST Repository

    Pan, Jun

    2015-12-01

    We demonstrate ultra-air- and photostable CsPbBr3 quantum dots (QDs) by using an inorganic–organic hybrid ion pair as the capping ligand. This passivation approach to perovskite QDs yields high photoluminescence quantum yield with unprecedented operational stability in ambient conditions (60 ± 5% lab humidity) and high pump fluences, thus overcoming one of the greatest challenges impeding the development of perovskite-based applications. Due to the robustness of passivated perovskite QDs, we were able to induce ultrastable amplified spontaneous emission (ASE) in solution processed QD films not only through one photon but also through two-photon absorption processes. The latter has not been observed before in the family of perovskite materials. More importantly, passivated perovskite QD films showed remarkable photostability under continuous pulsed laser excitation in ambient conditions for at least 34 h (corresponds to 1.2 × 108 laser shots), substantially exceeding the stability of other colloidal QD systems in which ASE has been observed.

  11. High-Performance Quantum Dot Thin-Film Transistors with Environmentally Benign Surface Functionalization and Robust Defect Passivation.

    Science.gov (United States)

    Jung, Su Min; Kang, Han Lim; Won, Jong Kook; Kim, JaeHyun; Hwang, ChaHwan; Ahn, KyungHan; Chung, In; Ju, Byeong-Kwon; Kim, Myung-Gil; Park, Sung Kyu

    2018-01-31

    The recent development of high-performance colloidal quantum dot (QD) thin-film transistors (TFTs) has been achieved with removal of surface ligand, defect passivation, and facile electronic doping. Here, we report on high-performance solution-processed CdSe QD-TFTs with an optimized surface functionalization and robust defect passivation via hydrazine-free metal chalcogenide (MCC) ligands. The underlying mechanism of the ligand effects on CdSe QDs has been studied with hydrazine-free ex situ reaction derived MCC ligands, such as Sn 2 S 6 4- , Sn 2 Se 6 4- , and In 2 Se 4 2- , to allow benign solution-process available. Furthermore, the defect passivation and remote n-type doping effects have been investigated by incorporating indium nanoparticles over the QD layer. Strong electronic coupling and solid defect passivation of QDs could be achieved by introducing electronically active MCC capping and thermal diffusion of the indium nanoparticles, respectively. It is also noteworthy that the diffused indium nanoparticles facilitate charge injection not only inter-QDs but also between source/drain electrodes and the QD semiconductors, significantly reducing contact resistance. With benign organic solvents, the Sn 2 S 6 4- , Sn 2 Se 6 4- , and In 2 Se 4 2- ligand based QD-TFTs exhibited field-effect mobilities exceeding 4.8, 12.0, and 44.2 cm 2 /(V s), respectively. The results reported here imply that the incorporation of MCC ligands and appropriate dopants provide a general route to high-performance, extremely stable solution-processed QD-based electronic devices with marginal toxicity, offering compatibility with standard complementary metal oxide semiconductor processing and large-scale on-chip device applications.

  12. Electrical passivation of the silicon surface by organic monolayers of 1-octadecene

    International Nuclear Information System (INIS)

    Antonova, I. V.; Soots, R. A.; Seleznev, V. A.; Prints, V. Ya.

    2007-01-01

    The electrical properties of structures consisting of a monolayer of 1-octadecene deposited on the Si surface are investigated depending on the method of passivation of the surface prior to the deposition of the film (hydrogen and ion passivation) and the intensity of illumination which activates the addition reaction of molecules of 1-octadecene to the Si atoms. The monolayer of 1-octadecene on the Si surface is stable and provides the chemical passivation of the surface. Two types of traps are found, namely, traps for holes and electrons, whose density can be varied during deposition of the monolayer by the choice of intensity of illumination and by the method of passivation of the surface. In the case of a low level of illumination and/or the use of the iodine passivation of the surface, the electron traps prevail, and, in the case of high intensity of illumination and/or hydrogen passivation of the surface, the hole traps prevail. It is shown that the use of these films provides conductivity in thin near-surface layers of Si due to providing the mode of flat bands or accumulation of carriers near the surface

  13. HTS thin films: Passive microwave components and systems integration issues

    International Nuclear Information System (INIS)

    Miranda, F.A.; Chorey, C.M.; Bhasin, K.B.

    1994-01-01

    The excellent microwave properties of the High-Temperature-Superconductors (HTS) have been amply demonstrated in the laboratory by techniques such as resonant cavity, power transmission and microstrip resonator measurements. The low loss and high Q passive structures made possible with HTS, present attractive options for applications in commercial, military and space-based systems. However, to readily insert HTS into these systems improvement is needed in such areas as repeatability in the deposition and processing of the HTS films, metal-contact formation, wire bonding, and overall film endurance to fabrication and assembly procedures. In this paper we present data compiled in our lab which illustrate many of the problems associated with these issues. Much of this data were obtained in the production of a space qualified hybrid receiver-downconverter module for the Naval Research Laboratory's High Temperature Superconductivity Space Experiment II (HTSSE-II). Examples of variations observed in starting films and finished circuits will be presented. It is shown that under identical processing the properties of the HTS films can degrade to varying extents. Finally, we present data on ohmic contacts and factors affecting their adhesion to HTS films, strength of wire bonds made to such contacts, and aging effects

  14. Passivation mechanism of thermal atomic layer-deposited Al2O3 films on silicon at different annealing temperatures.

    Science.gov (United States)

    Zhao, Yan; Zhou, Chunlan; Zhang, Xiang; Zhang, Peng; Dou, Yanan; Wang, Wenjing; Cao, Xingzhong; Wang, Baoyi; Tang, Yehua; Zhou, Su

    2013-03-02

    Thermal atomic layer-deposited (ALD) aluminum oxide (Al2O3) acquires high negative fixed charge density (Qf) and sufficiently low interface trap density after annealing, which enables excellent surface passivation for crystalline silicon. Qf can be controlled by varying the annealing temperatures. In this study, the effect of the annealing temperature of thermal ALD Al2O3 films on p-type Czochralski silicon wafers was investigated. Corona charging measurements revealed that the Qf obtained at 300°C did not significantly affect passivation. The interface-trapping density markedly increased at high annealing temperature (>600°C) and degraded the surface passivation even at a high Qf. Negatively charged or neutral vacancies were found in the samples annealed at 300°C, 500°C, and 750°C using positron annihilation techniques. The Al defect density in the bulk film and the vacancy density near the SiOx/Si interface region decreased with increased temperature. Measurement results of Qf proved that the Al vacancy of the bulk film may not be related to Qf. The defect density in the SiOx region affected the chemical passivation, but other factors may dominantly influence chemical passivation at 750°C.

  15. Uniformity and passivation research of Al2O3 film on silicon substrate prepared by plasma-enhanced atom layer deposition.

    Science.gov (United States)

    Jia, Endong; Zhou, Chunlan; Wang, Wenjing

    2015-01-01

    Plasma-enhanced atom layer deposition (PEALD) can deposit denser films than those prepared by thermal ALD. But the improvement on thickness uniformity and the decrease of defect density of the films deposited by PEALD need further research. A PEALD process from trimethyl-aluminum (TMA) and oxygen plasma was investigated to study the influence of the conditions with different plasma powers and deposition temperatures on uniformity and growth rate. The thickness and refractive index of films were measured by ellipsometry, and the passivation effect of alumina on n-type silicon before and after annealing was measured by microwave photoconductivity decay method. Also, the effects of deposition temperature and annealing temperature on effective minority carrier lifetime were investigated. Capacitance-voltage and conductance-voltage measurements were used to investigate the interface defect density of state (D it) of Al2O3/Si. Finally, Al diffusion P(+) emitter on n-type silicon was passivated by PEALD Al2O3 films. The conclusion is that the condition of lower substrate temperature accelerates the growth of films and that the condition of lower plasma power controls the films' uniformity. The annealing temperature is higher for samples prepared at lower substrate temperature in order to get the better surface passivation effects. Heavier doping concentration of Al increased passivation quality after annealing by the effective minority carrier lifetime up to 100 μs.

  16. Stable Nafion-functionalized graphene dispersions for transparent conducting films

    International Nuclear Information System (INIS)

    Liu Yangqiao; Gao Lian; Sun Jing; Wang Yan; Zhang Jing

    2009-01-01

    Nafion was used for the first time to aid in preparing stable graphene dispersions in mixed water/ethanol (1:1) solvents via the reduction of graphite oxide using hydrazine. The dispersion was characterized by ultraviolet-visible (UV-vis) spectra, transmission electron microscopy, zeta potential analysis, etc. It was found that for Nafion-to-graphene ratios higher than 5:1, graphene solutions with concentrations up to 1 mg ml -1 and stabilities of over three months were obtained. It was proposed that the Nafion adsorbed onto the graphene by the hydrophobic interaction of its fluoro-backbones with the graphene layer and imparted stability by an electrosteric mechanism. Furthermore, transparent and conductive films were prepared using these highly stable Nafion-stabilized graphene dispersions. The prepared Nafion-graphene films possess smooth and homogeneous surfaces and the sheet resistance was as low as 30 kΩ/sq for a transmittance of 80% at 550 nm, which was much lower than for other graphene films obtained by chemical reduction. X-ray photoelectron spectroscopy and Raman spectroscopy confirmed the p-doping of the graphene by Nafion. It was expected that this p-doping effect, as well as the high dispersing ability of Nafion for graphene and the connection of the sp 2 domains by residual Nafion combined to produce good properties of the Nafion-graphene films.

  17. Modification and application of water film model in COCOSYS for PWR's passive containment cooling

    International Nuclear Information System (INIS)

    Huang, Xi; Cheng, Xu

    2014-01-01

    Highlights: • Water film model in COCOSYS has been modified by considering film breakup. • Shear stress on film surface created by countercurrent flow has been considered. • Formation and development of rivulets have been taken into account. • Modified model has been applied for passive containment cooling system. • The modified water film model has optimized the simulation results. - Abstract: In this paper the physical model describing water film behaviors in German containment code system COCOSYS has been modified by taking into consideration the film breakup and subsequent phenomena as well as the effect of film interfacial shear stress created by countercurrent air flow. The modified model has extended its capability to predict particular water film behaviors including breakup at a critical film thickness based on minimum total energy criterion, the formation of rivulets according to total energy equilibrium as well as subsequent performance of rivulets according to several assumptions and observations from experiments. Furthermore, the modification considers also the change of velocity distribution on the cross section of film/rivulets due to shear stress. Based on the geometry of AP1000 and Generic Containment, simulations predicting containment pressure variation during accidents with operation of passive containment cooling system have been carried out. With the new model, considerably larger peak pressures are observed by comparing with those predicted with original water film model within a certain range of water film flow rate. Sensitivity analyses also point out that contact angle between water rivulets and steel substrate plays a significant role in the film cooling

  18. Passive film formation on metals in thionyl-chloride electrolytes for lithium batteries

    Science.gov (United States)

    Cieslak, W. R.; Delnick, F. M.; Peebles, D. E.; Rogers, J. W., Jr.

    We have studied the anodic behavior of Pt, Mo, Ni, and stainless steel (SS) electrodes in 1.5M LiAlCl/SOCl solution in order to determine the mechanisms by which these metals resist corrosion. Polarization and complex impedance indicate that Pt and Mo behave as inert electrodes, while Ni and SS form passive films in this electrolyte. X-ray Photoelectron Spectroscopy (XPS) confirms the lack of oxidized metal species on the Pt and Mo surfaces following anodic polarization. XPS results also show that the Ni and SS do form passive layers, and identifies these layers as predominantly metal chlorides.

  19. Highly stable thin film transistors using multilayer channel structure

    KAUST Repository

    Nayak, Pradipta K.; Wang, Zhenwei; Anjum, Dalaver H.; Hedhili, Mohamed N.; Alshareef, Husam N.

    2015-01-01

    We report highly stable gate-bias stress performance of thin film transistors (TFTs) using zinc oxide (ZnO)/hafnium oxide (HfO2) multilayer structure as the channel layer. Positive and negative gate-bias stress stability of the TFTs was measured

  20. Potassium ions in SiO2: electrets for silicon surface passivation

    Science.gov (United States)

    Bonilla, Ruy S.; Wilshaw, Peter R.

    2018-01-01

    This manuscript reports an experimental and theoretical study of the transport of potassium ions in thin silicon dioxide films. While alkali contamination was largely researched in the context of MOSFET instability, recent reports indicate that potassium ions can be embedded into oxide films to produce dielectric materials with permanent electric charge, also known as electrets. These electrets are integral to a number of applications, including the passivation of silicon surfaces for optoelectronic devices. In this work, electric field assisted migration of ions is used to rapidly drive K+ into SiO2 and produce effective passivation of silicon surfaces. Charge concentrations of up to ~5  ×  1012 e cm-2 have been achieved. This charge was seen to be stable for over 1500 d, with decay time constants as high as 17 000 d, producing an effectively passivated oxide-silicon interface with SRV  industrial manufacture of silicon optoelectronic devices.

  1. Effect of the niobium additions in the passive films potentiostatically grown in a sulphate medium

    International Nuclear Information System (INIS)

    Kuri, S.E.; Martins, M.; D'Alkaine, C.V.

    1984-01-01

    The stability of passive films potentiostatically grown on stainless steel electrodes was studied in a 2 N sulfuric acid. The effect of Niobium contents in the base metal was considered. The reactivation time was measured using the method of Potential Decay Measurements under Open-Circuit Conditions after electrochemical aging in the passivity region, and its influence on the surface oxidation states, was discussed. (Author) [pt

  2. Static and Dynamic Water Motion-Induced Instability in Oxide Thin-Film Transistors and Its Suppression by Using Low-k Fluoropolymer Passivation.

    Science.gov (United States)

    Choi, Seungbeom; Jo, Jeong-Wan; Kim, Jaeyoung; Song, Seungho; Kim, Jaekyun; Park, Sung Kyu; Kim, Yong-Hoon

    2017-08-09

    Here, we report static and dynamic water motion-induced instability in indium-gallium-zinc-oxide (IGZO) thin-film transistors (TFTs) and its effective suppression with the use of a simple, solution-processed low-k (ε ∼ 1.9) fluoroplastic resin (FPR) passivation layer. The liquid-contact electrification effect, in which an undesirable drain current modulation is induced by a dynamic motion of a charged liquid such as water, can cause a significant instability in IGZO TFTs. It was found that by adopting a thin (∼44 nm) FPR passivation layer for IGZO TFTs, the current modulation induced by the water-contact electrification was greatly reduced in both off- and on-states of the device. In addition, the FPR-passivated IGZO TFTs exhibited an excellent stability to static water exposure (a threshold voltage shift of +0.8 V upon 3600 s of water soaking), which is attributed to the hydrophobicity of the FPR passivation layer. Here, we discuss the origin of the current instability caused by the liquid-contact electrification as well as various static and dynamic stability tests for IGZO TFTs. On the basis of our findings, we believe that the use of a thin, solution-processed FPR passivation layer is effective in suppressing the static and dynamic water motion-induced instabilities, which may enable the realization of high-performance and environment-stable oxide TFTs for emerging wearable and skin-like electronics.

  3. Metastability of a-SiO{sub x}:H thin films for c-Si surface passivation

    Energy Technology Data Exchange (ETDEWEB)

    Serenelli, L., E-mail: luca.serenelli@enea.it [ENEA Research centre “Casaccia”, via Anguillarese 301, 00123 Rome (Italy); DIET University of Rome “Sapienza”, via Eudossiana 18, 00184 Rome (Italy); Martini, L. [DIET University of Rome “Sapienza”, via Eudossiana 18, 00184 Rome (Italy); Imbimbo, L. [ENEA Research centre “Casaccia”, via Anguillarese 301, 00123 Rome (Italy); DIET University of Rome “Sapienza”, via Eudossiana 18, 00184 Rome (Italy); Asquini, R. [DIET University of Rome “Sapienza”, via Eudossiana 18, 00184 Rome (Italy); Menchini, F.; Izzi, M.; Tucci, M. [ENEA Research centre “Casaccia”, via Anguillarese 301, 00123 Rome (Italy)

    2017-01-15

    Highlights: • a-SiO{sub x}:H film deposition by RF-PECVD is optimized from SiH{sub 4}, CO{sub 2} and H{sub 2} gas mixture. • Metastability of a-SiO{sub x}:H/c-Si passivation is investigated under thermal annealing and UV exposure. • A correlation between passivation metastability and Si−H bonds is found by FTIR spectra. • A metastability model is proposed. - Abstract: The adoption of a-SiO{sub x}:H films obtained by PECVD in heterojunction solar cells is a key to further increase their efficiency, because of its transparency in the UV with respect to the commonly used a-Si:H. At the same time this layer must guarantee high surface passivation of the c-Si to be suitable in high efficiency solar cell manufacturing. On the other hand the application of amorphous materials like a-Si:H and SiN{sub x} on the cell frontside expose them to the mostly energetic part of the sun spectrum, leading to a metastability of their passivation properties. Moreover as for amorphous silicon, thermal annealing procedures are considered as valuable steps to enhance and stabilize thin film properties, when performed at opportune temperature. In this work we explored the reliability of a-SiO{sub x}:H thin film layers surface passivation on c-Si substrates under UV exposition, in combination with thermal annealing steps. Both p- and n-type doped c-Si substrates were considered. To understand the effect of UV light soaking we monitored the minority carriers lifetime and Si−H and Si−O bonding, by FTIR spectra, after different exposure times to light coming from a deuterium lamp, filtered to UV-A region, and focused on the sample to obtain a power density of 50 μW/cm{sup 2}. We found a certain lifetime decrease after UV light soaking in both p- and n-type c-Si passivated wafers according to a a-SiO{sub x}:H/c-Si/a-SiO{sub x}:H structure. The role of a thermal annealing, which usually enhances the as-deposited SiO{sub x} passivation properties, was furthermore considered. In

  4. Surface correlation behaviors of metal-organic Langmuir-Blodgett films on differently passivated Si(001) surfaces

    Science.gov (United States)

    Bal, J. K.; Kundu, Sarathi

    2013-03-01

    Langmuir-Blodgett films of standard amphiphilic molecules like nickel arachidate and cadmium arachidate are grown on wet chemically passivated hydrophilic (OH-Si), hydrophobic (H-Si), and hydrophilic plus hydrophobic (Br-Si) Si(001) surfaces. Top surface morphologies and height-difference correlation functions g(r) with in-plane separation (r) are obtained from the atomic force microscopy studies. Our studies show that deposited bilayer and trilayer films have self-affine correlation behavior irrespective of different passivations and different types of amphiphilic molecules, however, liquid like correlation coexists only for a small part of r, which is located near the cutoff length (1/κ) or little below the correlation length ξ obtained from the liquid like and self-affine fitting, respectively. Thus, length scale dependent surface correlation behavior is observed for both types of Langmuir-Blodgett films. Metal ion specific interactions (ionic, covalent, etc.,) in the headgroup and the nature of the terminated bond (polar, nonpolar, etc.,) of Si surface are mainly responsible for having different correlation parameters.

  5. HTS thin films: Passive microwave components and systems integration issues

    Energy Technology Data Exchange (ETDEWEB)

    Miranda, F.A.; Chorey, C.M.; Bhasin, K.B. [National Aeronautics and Space Administration, Cleveland, OH (United States)

    1994-12-31

    The excellent microwave properties of the High-Temperature-Superconductors (HTS) have been amply demonstrated in the laboratory by techniques such as resonant cavity, power transmission and microstrip resonator measurements. The low loss and high Q passive structures made possible with HTS, present attractive options for applications in commercial, military and space-based systems. However, to readily insert HTS into these systems improvement is needed in such areas as repeatability in the deposition and processing of the HTS films, metal-contact formation, wire bonding, and overall film endurance to fabrication and assembly procedures. In this paper we present data compiled in our lab which illustrate many of the problems associated with these issues. Much of this data were obtained in the production of a space qualified hybrid receiver-downconverter module for the Naval Research Laboratory`s High Temperature Superconductivity Space Experiment II (HTSSE-II). Examples of variations observed in starting films and finished circuits will be presented. It is shown that under identical processing the properties of the HTS films can degrade to varying extents. Finally, we present data on ohmic contacts and factors affecting their adhesion to HTS films, strength of wire bonds made to such contacts, and aging effects.

  6. Investigation of corrosion and analysis of passive films concerning some nickel alloys and stainless steels in reconstructed geological environments

    International Nuclear Information System (INIS)

    Jallerat, Nelly

    1984-01-01

    This research thesis addresses the corrosion behaviour of materials which might be used for the fabrication of radioactive waste containers. After a bibliographical study on films formed on Fe-Cr-Ni alloys, this research concentrates on passivation and de-passivation phenomena of three nickel-base alloys among the most resistant to corrosion and which also meet processing and economic criteria: Hastelloy C4, Inconel 625 and ZICNDU 25-20. Titanium and Ti-Pd alloy are also studied. Parameters governing pitting corrosion are notably studied. After a recall of knowledge on passive films formed on Fe-Cr-Ni alloys, and a presentation of experimental and technical conditions, the author reports and discussed the results obtained by electrochemical studies, reports the determination of factors governing alloy passivation in geological waters. The influence of some soluble impurities is notably studied. The author reports the analysis by glow discharge optical emission spectrometry to determine the composition of passive films with respect to geological water nature, the immersion duration and the electrode potential. Additional surface analyses are performed by X-ray photoelectron spectrometry (XPS or ESCA) and secondary ion mass spectrometry (SIMS). Finally, the author uses a dosing method by neutron radio-activation of alloy elements to determine dissolution mechanisms [fr

  7. Passive film formation on metals in thionyl-chloride electrolytes for lithium batteries

    Energy Technology Data Exchange (ETDEWEB)

    Cieslak, W.R.; Delnick, F.M.; Peebles, D.E.; Rogers, J.W. Jr.

    1986-01-01

    We have studied the anodic behavior of Pt, Mo, Ni, and stainless steel (SS) electodes in 1.5M LiAlCl/sub 4//SOCl/sub 2/ solution in order to determine the mechanisms by which these metals resist corrosion. Polarization and complex impedance indicate that Pt and Mo behave as inert electrodes, while Ni and SS form passive films in this electrolyte. X-ray Photoelectron Spectroscopy (XPS) confirms the lack of oxidized metal species on the Pt and Mo surfaces following anodic polarization. XPS results also show that the Ni and SS do form passive layers, and identifies these layers as predominantly metal chlorides.

  8. Passive film formation on metals in thionyl-chloride electrolytes for lithium batteries

    International Nuclear Information System (INIS)

    Cieslak, W.R.; Delnick, F.M.; Peebles, D.E.; Rogers, J.W. Jr.

    1986-01-01

    The authors have studied the anodic behavior of Pt, Mo, Ni, and stainless steel (SS) electrodes in 1.5M LiAlCl/sub 4//SOCl/sub 2/ solution in order to determine the mechanisms by which these metals resist corrosion. Polarization and complex impedance indicate that Pt and Mo behave as inert electrodes, while Ni and SS form passive films in this electrolyte. X-ray Photoelectron Spectroscopy (XPS) confirms the lack of oxidized metal species on the Pt and Mo surfaces following anodic polarization. XPS results also show that the Ni and SS do form passive layers, and identifies these layers as predominantly metal chlorides

  9. Gold nanorod saturable absorber for passive mode-locking at 1 μm wavelength

    International Nuclear Information System (INIS)

    Kang, Z; Li, Q; Gao, X J; Jia, Z X; Qin, G S; Qin, W P; Zhang, L; Feng, Y

    2014-01-01

    Gold nanorods (GNRs) were used as a saturable absorber (SA) for passive mode-locking at 1 μm wavelength. The GNR-SA film was fabricated by mixing GNRs with sodium carboxymethylcellulose. The longitudinal surface plasmon resonance absorption of GNRs was used to induce mode-locking. By using the GNR-SA film, stable passive mode-locking at 1039 nm was experimentally demonstrated in an ytterbium-doped fiber laser cavity pumped by a 980 nm laser diode. The laser produced ∼440 ps pulses with a repetition rate of 36.6 MHz and an average output power of ∼1.25 mW for a pump power of ∼82 mW. (letter)

  10. The protective nature of passivation films on zinc: surface charge

    International Nuclear Information System (INIS)

    Muster, Tim H.; Cole, Ivan S.

    2004-01-01

    The influence of oxide surface charge on the corrosion performance of zinc metals was investigated. Oxidised zinc species (zinc oxide, zinc hydroxychloride, zinc hydroxysulfate and zinc hydroxycarbonate) with chemical compositions similar to those produced on zinc during atmospheric corrosion were formed as particles from aqueous solution, and as passive films deposited onto zinc powder, and rolled zinc, surfaces. Synthesized oxides were characterised by X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy and electron probe X-ray microanalysis. The zeta potentials of various oxide particles, as determined by microelectrophoresis, are reported as a function of pH. Particulates containing a majority of zinc hydroxycarbonate and zinc hydroxysulfate crystallites were found to possess a negative surface charge below pH 6, whilst zinc oxide-hydroxide and zinc hydroxychloride crystallites possessed isoelectric points (IEP's) higher than pH 8. The ability of chloride species to pass through a bed of 3 μm diameter zinc powder was found to increase for surfaces possessing carboxy and sulfate surface species, suggesting that negatively charged surfaces can aid in the repulsion of chloride ions. Electrochemical analysis of the open-circuit potential as a function of time at a fixed pH of 6.5 showed that the chemical composition of passive films on zinc plates influenced the ability of chloride ions to access anodic sites for periods of approximately 1 h

  11. Photoluminescence, structural and electrical properties of passivated a-Si:H based thin films and corresponding solar cells

    International Nuclear Information System (INIS)

    Pincik, E.; Kobayashi, H.; Takahashi, M.; Fujiwara, N.; Brunner, R.; Gleskova, H.; Jergel, M.; Muellerova, J.; Kucera, M.; Falcony, C.; Ortega, L.; Rusnak, J.; Mikula, M.; Zahoran, M.; Jurani, R.; Kral, M.

    2004-01-01

    This paper deals with the photoluminescence, structural and electrical properties of chemically passivated a-Si:H based thin films and corresponding thin film solar cells. The structures were chemically passivated in three types of KCN and HCN solutions containing MeOH and/or with water. The photoluminescence measurements were performed at 6 K using Ar laser and lock-in signal recording device containing Ge and Si photodetectors. Optically determined band gap related photoluminescence signals were observed between 1.1 and 1.7 eV. The electrical properties were measured by a high-sensitive charge version of deep level transient spectroscopy (Q-DLTS). The evolution of three basic groups of defects was observed. The structural studies were realized by the standard X-ray diffraction analysis. The cyanide treatment improved significantly the electrical characteristics of both corresponding MOS structures and solar cells due to the passivation of some parts of the dangling bonds by CN group. Particularly, the passivation of the defects at interfaces in MOS or solar cell multilayer structures was achieved which is of primary practical importance

  12. Chemical synthesis of highly stable PVA/PANI films for supercapacitor application

    Energy Technology Data Exchange (ETDEWEB)

    Patil, D.S.; Shaikh, J.S.; Dalavi, D.S.; Kalagi, S.S. [Thin Films Materials laboratory, Department of Physics, Shivaji University, Kolhapur 416004, M.S. (India); Patil, P.S., E-mail: psp_phy@unishivaji.ac.in [Thin Films Materials laboratory, Department of Physics, Shivaji University, Kolhapur 416004, M.S. (India)

    2011-08-15

    Highlights: {yields} Chemical synthesis of PVA/PANI films by spin and dip coating at room temperature. {yields} Thickness dependent supercapacitor behavior of PVA/PANI film. {yields} The synthesized film are highly stable up to 20,000 cycles. - Abstract: Polyvinyl alcohol (PVA)/polyaniline (PANI) thin films were chemically synthesized by adopting two step process: initially a thin layer (200 nm) of PVA was spin coated by using an aqueous PVA solution onto fluorine doped tin oxide (FTO) coated glass substrate, afterwards PANI was chemically polymerized from aniline monomer and dip coated onto the precoated substrate. The thickness of PANI layer was varied from 293 nm to 2367 nm by varying deposition cycles onto the precoated PVA thin film. The resultant PVA/PANI films were characterized for their optical, morphological and electrochemical properties. The FT-IR and Raman spectra revealed characteristic features of the PANI phase. The SEM study showed porous spongy structure. Electrochemical properties were studied by electrochemical impedance measurement and cyclic voltammetry. The electrochemical performance of PVA/PANI thin films was investigated in 1 M H{sub 2}SO{sub 4} aqueous electrolyte. The highest specific capacitance of 571 Fg{sup -1} was observed for the optimized thickness of 880 nm. The film was found to be stable for more than 20,000 cycles. The samples degraded slightly (25% decrement in specific capacitance) for the first 10,000 cycles. The degradation becomes much slower (10.8% decrement in specific capacitance) beyond 10,000 cycles. This dramatic improvement in the electrochemical stability of the PANI samples, without sacrificing specific capacitance was attributed to the optimized PVA layer.

  13. Effect of an electrolyte salt dissolving in polysiloxane-based electrolyte on passive film formation on a graphite electrode

    Science.gov (United States)

    Nakahara, Hiroshi; Nutt, Steven

    Electrochemical impedance spectroscopy (EIS) was performed during the first charge of a graphite/lithium metal test cell to determine the effect of an electrolyte salt on passive film formation in a polysiloxane-based electrolyte. The graphite electrode was separated from the lithium metal electrode by a porous polyethylene membrane immersed in a polysiloxane-based electrolyte with the dissolved lithium bis(oxalato) borate (LiBOB) or lithium bis(trifluoromethanesulfonyl) imide (LiTFSI). In case of LiTFSI, the conductivity of system decreased at 1.2 V. In contrast, for the case of LiBOB, the conductivity decreased at 1.7 V. The magnitudes of charge transfer resistance and film resistance for LiTFSI were smaller than that for LiBOB. Passive films on highly oriented pyrolytic graphite (HOPG) after charging (lithiating) in polysiloxane-based electrolyte were inspected microscopically. Gel-like film and island-like films were observed for LiBOB [H. Nakahara, A. Masias, S.Y. Yoon, T. Koike, K. Takeya, Proceedings of the 41st Power Sources Conference, vol. 165, Philadelphia, June 14-17, 2004; H. Nakahara, S.Y. Yoon, T. Piao, S. Nutt, F. Mansfeld, J. Power Sources, in press; H. Nakahara, S.Y. Yoon, S. Nutt, J. Power Sources, in press]. However, for LiTFSI, there was sludge accumulation on the HOPG surface. Compositional analysis revealed the presence of silicon on both HOPG specimens with LiBOB and with LiTFSI. The electrolyte salt dissolved in the polysiloxane-based electrolyte changed the electrochemical and morphological nature of passive films on graphite electrode.

  14. Electrochemical characterization of anode passivation mechanisms in copper electrorefining

    Science.gov (United States)

    Moats, Michael Scott

    the bulk electrolyte. The effect of anode impurities or electrolyte concentrations can be related to the formation of one of these films. Reactions occurring after passivation have also been examined. Post-passivation reactions are believed to include silver dissolution, transformation of lead sulfate to lead oxide, and oxygen evolution. Following the sharp potential increase caused by the passivation, silver that has accumulated on the anode surface will dissolve into the electrolyte at a potential between 1.0 and 1.3 V. After the silver has dissolved, the potential increases again at which point the oxidation of lead sulfate to lead oxide occurs. The formation of lead oxide provides a surface with a lower oxygen evolution overpotential. The presence of kupferglimmer also results in a stable lower oxygen evolution potential occurring at approximately 2.0 V.

  15. Influence of temperature, chloride ions and chromium element on the electronic property of passive film formed on carbon steel in bicarbonate/carbonate buffer solution

    Energy Technology Data Exchange (ETDEWEB)

    Li, D.G. [School of Materials Science and Engineering, Xi' an Jiaotong University, Xi' an 710049 (China); Tubular Goods Research Center of CNPC, Xi' an 710065 (China)], E-mail: dangguoli78@yahoo.com.cn; Feng, Y.R.; Bai, Z.Q. [Tubular Goods Research Center of CNPC, Xi' an 710065 (China); Zhu, J.W.; Zheng, M.S. [School of Materials Science and Engineering, Xi' an Jiaotong University, Xi' an 710049 (China)

    2007-11-01

    The influences of temperature, chloride ions and chromium element on the electronic property of passive film formed on carbon steel in NaHCO{sub 3}/Na{sub 2}CO{sub 3} buffer solution are investigated by capacitance measurement and electrochemical impedance spectroscopy (EIS). The results show that the passive film appears n-type semiconductive character; with increasing the solution temperature, the addition of chromium into carbon steel and increasing the concentration of chloride ions, the slopes of Mott-Schottky plots decrease, which indicates the increment of the defect density in the passive film. EIS results show that the transfer impedance R{sub 1} and the diffusion impedance W decrease with increasing the solution temperature, with the addition of chromium into carbon steel and with increasing the chloride ions concentration. It can be concluded that the corrosion protection effect of passive film on the substrate decreases with increasing the solution temperature, adding chromium into carbon steel and increasing chloride ions concentration.

  16. Sodium hydroxide injection passivation work for the reactor water clean-up system in a new ABWR plant

    International Nuclear Information System (INIS)

    Wen, Tung-Jen; Lu, Ju-Huang

    2012-09-01

    Several studies have identified that Co-58 and Co-60 as the primary source of radiation build up on out-of-core components in new BWR plants. The deposition rate of Co on stainless steel and carbon steel is shown to be controlled mainly by the thickness of oxide films and its morphology formed through pretreatment. The passivation treatment was implemented accordingly at Lungmen unit 1 in an ABWR plant in September 2010. It is determined that the passivation conditions should be maintained at the temperature of 180∼230 deg. C, pH of 8.0∼8.5 and dissolved oxygen content over 400 ppb. The films would provide effective protection against radioactive deposition. The application of the pre-filming process on piping before the pre-operation is done during the flow induced vibration test (FIV) period. The protectiveness of stable magnetite can be increased by the pH control under the specific condition. The pre-filming control process and evaluation of passivation effectiveness is discussed in detail based on the surface analysis of the passivated specimens. Many efforts have been devoted to sodium hydroxide injection method for pH control of the system through the filter demineralizer under smooth operation. A comparison of test specimens on the properties of oxide film formed between laboratory and in-plant tests through alkaline treatment are also shown in this report. (authors)

  17. Deposition temperature dependence of material and Si surface passivation properties of O3-based atomic layer deposited Al2O3-based films and stacks

    International Nuclear Information System (INIS)

    Bordihn, Stefan; Mertens, Verena; Müller, Jörg W.; Kessels, W. M. M.

    2014-01-01

    The material composition and the Si surface passivation of aluminum oxide (Al 2 O 3 ) films prepared by atomic layer deposition using Al(CH 3 ) 3 and O 3 as precursors were investigated for deposition temperatures (T Dep ) between 200 °C and 500 °C. The growth per cycle decreased with increasing deposition temperature due to a lower Al deposition rate. In contrast the material composition was hardly affected except for the hydrogen concentration, which decreased from [H] = 3 at. % at 200 °C to [H]  2 O 3 /SiN x stacks complemented the work and revealed similar levels of surface passivation as single-layer Al 2 O 3 films, both for the chemical and field-effect passivation. The fixed charge density in the Al 2 O 3 /SiN x stacks, reflecting the field-effect passivation, was reduced by one order of magnitude from 3·10 12  cm −2 to 3·10 11  cm −2 when T Dep was increased from 300 °C to 500 °C. The level of the chemical passivation changed as well, but the total level of the surface passivation was hardly affected by the value of T Dep . When firing films prepared at of low T Dep , blistering of the films occurred and this strongly reduced the surface passivation. These results presented in this work demonstrate that a high level of surface passivation can be achieved for Al 2 O 3 -based films and stacks over a wide range of conditions when the combination of deposition temperature and annealing or firing temperature is carefully chosen

  18. Surface Passivation and Antireflection Behavior of ALD on n-Type Silicon for Solar Cells

    Directory of Open Access Journals (Sweden)

    Ing-Song Yu

    2013-01-01

    Full Text Available Atomic layer deposition, a method of excellent step coverage and conformal deposition, was used to deposit TiO2 thin films for the surface passivation and antireflection coating of silicon solar cells. TiO2 thin films deposited at different temperatures (200°C, 300°C, 400°C, and 500°C on FZ n-type silicon wafers are in the thickness of 66.4 nm ± 1.1 nm and in the form of self-limiting growth. For the properties of surface passivation, Si surface is effectively passivated by the 200°C deposition TiO2 thin film. Its effective minority carrier lifetime, measured by the photoconductance decay method, is improved 133% at the injection level of  cm−3. Depending on different deposition parameters and annealing processes, we can control the crystallinity of TiO2 and find low-temperature TiO2 phase (anatase better passivation performance than the high-temperature one (rutile, which is consistent with the results of work function measured by Kelvin probe. In addition, TiO2 thin films on polished Si wafer serve as good ARC layers with refractive index between 2.13 and 2.44 at 632.8 nm. Weighted average reflectance at AM1.5G reduces more than half after the deposition of TiO2. Finally, surface passivation and antireflection properties of TiO2 are stable after the cofire process of conventional crystalline Si solar cells.

  19. Analysis of the formation of Ta2O5 passive films in acid media through mechanistic modeling

    International Nuclear Information System (INIS)

    Cabrera-Sierra, R.; Vazquez-Arenas, J.; Cardoso, S.; Luna-Sanchez, R.M.; Trejo, M.A.; Marin-Cruz, J.; Hallen, J.M.

    2011-01-01

    Electrochemical impedance spectroscopy (EIS) analyses are carried out to evaluate the passive features of tantalum oxide films (Ta 2 O 5 ) formed at different potentiostatic conditions (0.5, 1.0, 1.5 and 2.0 V vs SSE). A supporting electrolyte of 0.1 M H 2 SO 4 (pH 1) has been used to emulate acidic corrosive conditions for the growth of films with an n-type electronic character. A modification of the point defect model (PDM) accounting for the formation of molecular hydrogen (blistering damage) is used to fit the experimental EIS diagrams, and obtain the kinetic parameters that best describe the semiconductive behavior of the passive films. After this analysis, diffusivities in the order of 5.37 ± 1.6 x 10 -17 and 1.98 ± 1.4 x 10 -20 cm 2 s -1 were obtained for the oxygen (D VO·· ) and hydroxyl vacancies (D VOH· ), respectively. These findings show the capabilities of the EIS and the physicochemical modeling to account for the formation of valve-metal oxide films on a different range of conditions.

  20. A rapidly equilibrating, thin film, passive water sampler for organic contaminants; characterization and field testing.

    Science.gov (United States)

    St George, Tiffany; Vlahos, Penny; Harner, Tom; Helm, Paul; Wilford, Bryony

    2011-02-01

    Improving methods for assessing the spatial and temporal resolution of organic compound concentrations in marine environments is important to the sustainable management of our coastal systems. Here we evaluate the use of ethylene vinyl acetate (EVA) as a candidate polymer for thin-film passive sampling in waters of marine environments. Log K(EVA-W) partition coefficients correlate well (r(2) = 0.87) with Log K(OW) values for selected pesticides and polychlorinated biphenyls (PCBs) where Log K(EVA-W) = 1.04 Log K(OW) + 0.22. EVA is a suitable polymer for passive sampling due to both its high affinity for organic compounds and its ease of coating at sub-micron film thicknesses on various substrates. Twelve-day field deployments were effective in detecting target compounds with good precision making EVA a potential multi-media fugacity meter. Published by Elsevier Ltd.

  1. A feasibility study using radiochromic films for fast neutron 2D passive dosimetry

    International Nuclear Information System (INIS)

    Brady, Samuel L; Fallin, Brent; Gunasingha, Rathnayaka; Yoshizumi, Terry T; Howell, Calvin R; Crowell, Alexander S; Tonchev, Anton P; Dewhirst, Mark W

    2010-01-01

    The objective of this paper is threefold: (1) to establish sensitivity of XRQA and EBT radiochromic films to fast neutron exposure; (2) to develop a film response to radiation dose calibration curve and (3) to investigate a two-dimensional (2D) film dosimetry technique for use in establishing an experimental setup for a radiobiological irradiation of mice and to assess the dose to the mice in this setup. The films were exposed to a 10 MeV neutron beam via the 2 H(d,n) 3 He reaction. The XRQA film response was a factor of 1.39 greater than EBT film response to the 10 MeV neutron beam when exposed to a neutron dose of 165 cGy. A film response-to-soft tissue dose calibration function was established over a range of 0-10 Gy and had a goodness of fit of 0.9926 with the calibration data. The 2D film dosimetry technique estimated the neutron dose to the mice by measuring the dose using a mouse phantom and by placing a piece of film on the exterior of the experimental mouse setup. The film results were benchmarked using Monte Carlo and aluminum (Al) foil activation measurements. The radiochromic film, Monte Carlo and Al foil dose measurements were strongly correlated, and the film within the mouse phantom agreed to better than 7% of the externally mounted films. These results demonstrated the potential application of radiochromic films for passive 2D neutron dosimetry.

  2. Semiconducting properties of oxide and passive films formed on AISI 304 stainless steel and Alloy 600

    Directory of Open Access Journals (Sweden)

    Ferreira M. G. S.

    2002-01-01

    Full Text Available The semiconducting properties of passive films formed on AISI 304 stainless steel and Alloy 600 in borate buffer solution were studied by capacitance (Mott-Schottky approach and photocurrent measurements. Oxide films formed on 304 stainless steel in air at 350 ºC have also been studied. The results obtained show that, in all cases the electronic structure of the films is comparable to that of a p-n heterojunction in which the space charges developed at the metal-film and film-electrolyte interfaces have also to be considered. This is in accordance with analytical results showing that the oxide films are in all cases composed of an inner region rich in chromium oxide and an outer region rich in iron oxide.

  3. WASA-BOSS. Development and application of Severe Accident Codes. Evaluation and optimization of accident management measures. Subproject D. Study on water film cooling for PWR's passive containment cooling system. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Xi

    2016-07-15

    In the present study, a new phenomenological model was developed, to describe the water film flow under conditions of a passive containment cooling system (PCCS). The new model takes two different flow regimes into consideration, i.e. continuous water film and rivulets. For water film flow, the traditional Nusselt's was modified, to consider orientation angle and surface sheer stress. The transition from water film to rivulet as well as the structure of the stable rivulet at its onset point was modeled by using the minimum energy principle (MEP) combined with conservation equations. In addition, two different contact angles, i.e. advancing angle and retreating angle, were applied to take the hysteresis effect into consideration. The models of individual processes were validated as far as possible based on experimental data selected from open literature and from collaboration partner as well. With the models a new program module was developed and implemented into the COCOSYS program. The extended COCOSYS program was applied to analyze the containment behavior of the European generic containment and the performance of the passive containment cooling system ofthe AP1000. The results indicate clearly the importance of the new model and provide information for the optimization of the PCCS of AP1000.

  4. WASA-BOSS. Development and application of Severe Accident Codes. Evaluation and optimization of accident management measures. Subproject D. Study on water film cooling for PWR's passive containment cooling system. Final report

    International Nuclear Information System (INIS)

    Huang, Xi

    2016-07-01

    In the present study, a new phenomenological model was developed, to describe the water film flow under conditions of a passive containment cooling system (PCCS). The new model takes two different flow regimes into consideration, i.e. continuous water film and rivulets. For water film flow, the traditional Nusselt's was modified, to consider orientation angle and surface sheer stress. The transition from water film to rivulet as well as the structure of the stable rivulet at its onset point was modeled by using the minimum energy principle (MEP) combined with conservation equations. In addition, two different contact angles, i.e. advancing angle and retreating angle, were applied to take the hysteresis effect into consideration. The models of individual processes were validated as far as possible based on experimental data selected from open literature and from collaboration partner as well. With the models a new program module was developed and implemented into the COCOSYS program. The extended COCOSYS program was applied to analyze the containment behavior of the European generic containment and the performance of the passive containment cooling system ofthe AP1000. The results indicate clearly the importance of the new model and provide information for the optimization of the PCCS of AP1000.

  5. Passive behaviour of alloy corrosion-resistant steel Cr10Mo1 in simulating concrete pore solutions with different pH

    International Nuclear Information System (INIS)

    Ai, Zhiyong; Jiang, Jinyang; Sun, Wei; Song, Dan; Ma, Han; Zhang, Jianchun; Wang, Danqian

    2016-01-01

    Highlights: • A new alloy corrosion-resistant steel Cr10Mo1 is developed for reinforcing rebar of concrete in severe environments. • The effects of pH on the passive behaviour of Cr10Mo1 steel compared with plain carbon steel were studied systematically by electrochemical techniques and surface analysis. • The mechanism for self-reinforcing passivity against carbonation of the corrosion-resistant steel is revealed. - Abstract: The passive behaviour of new alloy corrosion-resistant steel Cr10Mo1 and plain carbon steel (as a comparison) in simulating concrete pore solutions of different pH (ranging from 13.5 to 9.0) under open circuit potential conditions, was evaluated by various electrochemical techniques: potentiodynamic polarization, capacitance measurements and electrochemical impedance spectroscopy. The chemical composition and structure of passive films were investigated by X-ray photoelectron spectroscopy (XPS) and secondary ion mass spectroscopy (SIMS). The electrochemical responses of passive films show that Cr10Mo1 steel has an increasing passivity with pH decreasing while carbon steel dose conversely, revealing carbonation does no negative effect on passivation of the corrosion-resistant steel. SIMS reveals that the passive film on the corrosion-resistant steel presents a bilayer structure: an outer layer mainly consisting of Fe oxides and hydroxides, and an inner layer enriched in Cr species, while only a Fe-concentrated layer for carbon steel. According to the XPS analysis results, as the pH decreases, more stable and protective Cr oxides are enriched in the film on Cr10Mo1 steel while Fe oxides gradually decompose. Higher content of Cr oxides in the film layer provides Cr10Mo1 corrosion-resistant steel more excellent passivity at lower pH.

  6. Passive behaviour of alloy corrosion-resistant steel Cr10Mo1 in simulating concrete pore solutions with different pH

    Energy Technology Data Exchange (ETDEWEB)

    Ai, Zhiyong, E-mail: 230139452@seu.edu.cn [School of Materials Science and Engineering, Southeast University, Nanjing 211189, Jiangsu (China); Jiangsu Key Laboratory of Construction Materials, Nanjing 211189, Jiangsu (China); Jiang, Jinyang, E-mail: jiangjinyang16@163.com [School of Materials Science and Engineering, Southeast University, Nanjing 211189, Jiangsu (China); Jiangsu Key Laboratory of Construction Materials, Nanjing 211189, Jiangsu (China); Sun, Wei, E-mail: sunwei@seu.edu.cn [School of Materials Science and Engineering, Southeast University, Nanjing 211189, Jiangsu (China); Jiangsu Key Laboratory of Construction Materials, Nanjing 211189, Jiangsu (China); Song, Dan, E-mail: songdancharls@hhu.edu.cn [School of Materials Science and Engineering, Southeast University, Nanjing 211189, Jiangsu (China); Jiangsu Key Laboratory of Construction Materials, Nanjing 211189, Jiangsu (China); College of Mechanics and Materials, Hohai University, Nanjing 210098, Jiangsu (China); Ma, Han, E-mail: mahan-iris@shasteel.cn [Research Institute of Jiangsu Shasteel Iron and Steel, Zhangjiagang 215625, Jiangsu (China); Zhang, Jianchun, E-mail: Zhangjc-iris@shasteel.cn [Research Institute of Jiangsu Shasteel Iron and Steel, Zhangjiagang 215625, Jiangsu (China); Wang, Danqian, E-mail: wonderbaba@126.com [School of Materials Science and Engineering, Southeast University, Nanjing 211189, Jiangsu (China); Jiangsu Key Laboratory of Construction Materials, Nanjing 211189, Jiangsu (China)

    2016-12-15

    Highlights: • A new alloy corrosion-resistant steel Cr10Mo1 is developed for reinforcing rebar of concrete in severe environments. • The effects of pH on the passive behaviour of Cr10Mo1 steel compared with plain carbon steel were studied systematically by electrochemical techniques and surface analysis. • The mechanism for self-reinforcing passivity against carbonation of the corrosion-resistant steel is revealed. - Abstract: The passive behaviour of new alloy corrosion-resistant steel Cr10Mo1 and plain carbon steel (as a comparison) in simulating concrete pore solutions of different pH (ranging from 13.5 to 9.0) under open circuit potential conditions, was evaluated by various electrochemical techniques: potentiodynamic polarization, capacitance measurements and electrochemical impedance spectroscopy. The chemical composition and structure of passive films were investigated by X-ray photoelectron spectroscopy (XPS) and secondary ion mass spectroscopy (SIMS). The electrochemical responses of passive films show that Cr10Mo1 steel has an increasing passivity with pH decreasing while carbon steel dose conversely, revealing carbonation does no negative effect on passivation of the corrosion-resistant steel. SIMS reveals that the passive film on the corrosion-resistant steel presents a bilayer structure: an outer layer mainly consisting of Fe oxides and hydroxides, and an inner layer enriched in Cr species, while only a Fe-concentrated layer for carbon steel. According to the XPS analysis results, as the pH decreases, more stable and protective Cr oxides are enriched in the film on Cr10Mo1 steel while Fe oxides gradually decompose. Higher content of Cr oxides in the film layer provides Cr10Mo1 corrosion-resistant steel more excellent passivity at lower pH.

  7. Surface Passivation of Silicon Using HfO2 Thin Films Deposited by Remote Plasma Atomic Layer Deposition System.

    Science.gov (United States)

    Zhang, Xiao-Ying; Hsu, Chia-Hsun; Lien, Shui-Yang; Chen, Song-Yan; Huang, Wei; Yang, Chih-Hsiang; Kung, Chung-Yuan; Zhu, Wen-Zhang; Xiong, Fei-Bing; Meng, Xian-Guo

    2017-12-01

    Hafnium oxide (HfO 2 ) thin films have attracted much attention owing to their usefulness in equivalent oxide thickness scaling in microelectronics, which arises from their high dielectric constant and thermodynamic stability with silicon. However, the surface passivation properties of such films, particularly on crystalline silicon (c-Si), have rarely been reported upon. In this study, the HfO 2 thin films were deposited on c-Si substrates with and without oxygen plasma pretreatments, using a remote plasma atomic layer deposition system. Post-annealing was performed using a rapid thermal processing system at different temperatures in N 2 ambient for 10 min. The effects of oxygen plasma pretreatment and post-annealing on the properties of the HfO 2 thin films were investigated. They indicate that the in situ remote plasma pretreatment of Si substrate can result in the formation of better SiO 2 , resulting in a better chemical passivation. The deposited HfO 2 thin films with oxygen plasma pretreatment and post-annealing at 500 °C for 10 min were effective in improving the lifetime of c-Si (original lifetime of 1 μs) to up to 67 μs.

  8. Remote PECVD silicon nitride films with improved electrical properties for GaAs P-HEMT passivation

    CERN Document Server

    Sohn, M K; Kim, K H; Yang, S G; Seo, K S

    1998-01-01

    In order to obtain thin silicon nitride films with excellent electrical and mechanical properties, we employed RPECVD (Remote Plasma Enhanced Chemical Vapor Deposition) process which produces less plasma-induced damage than the conventional PECVD. Through the optical and electrical measurements of the deposited films, we optimized the various RPECVD process parameters. The optimized silicon nitride films showed excellent characteristics such as small etch rate (approx 33 A/min by 7:1 BHF), high breakdown field (>9 MV/cm), and low compressive stress (approx 3.3x10 sup 9 dyne/cm sup 2). We successfully applied thin RPECVD silicon nitride films to the surface passivation of GaAs pseudomorphic high electron mobility transistors (P-HEMTs) with negligible degradations in DC and RF characteristics.

  9. Modelling of passive films: complementarity and applicability to the electrochemical impedance spectroscopy analysis

    International Nuclear Information System (INIS)

    Boissy, Clement; Normand, Bernard

    2013-01-01

    A review of the published models to describe the passivation of metallic materials is proposed. The objective is to illustrate the importance of the selection of a model considering their complementarity. The discussion is based on an analysis to assess whether the mass transport in the film must be taken into account or not in the modelling of the electrochemical impedance. (authors)

  10. Li4SiO4-Based Artificial Passivation Thin Film for Improving Interfacial Stability of Li Metal Anodes.

    Science.gov (United States)

    Kim, Ji Young; Kim, A-Young; Liu, Guicheng; Woo, Jae-Young; Kim, Hansung; Lee, Joong Kee

    2018-03-14

    An amorphous SiO 2 (a-SiO 2 ) thin film was developed as an artificial passivation layer to stabilize Li metal anodes during electrochemical reactions. The thin film was prepared using an electron cyclotron resonance-chemical vapor deposition apparatus. The obtained passivation layer has a hierarchical structure, which is composed of lithium silicide, lithiated silicon oxide, and a-SiO 2 . The thickness of the a-SiO 2 passivation layer could be varied by changing the processing time, whereas that of the lithium silicide and lithiated silicon oxide layers was almost constant. During cycling, the surface of the a-SiO 2 passivation layer is converted into lithium silicate (Li 4 SiO 4 ), and the portion of Li 4 SiO 4 depends on the thickness of a-SiO 2 . A minimum overpotential of 21.7 mV was observed at the Li metal electrode at a current density of 3 mA cm -2 with flat voltage profiles, when an a-SiO 2 passivation layer of 92.5 nm was used. The Li metal with this optimized thin passivation layer also showed the lowest charge-transfer resistance (3.948 Ω cm) and the highest Li ion diffusivity (7.06 × 10 -14 cm 2 s -1 ) after cycling in a Li-S battery. The existence of the Li 4 SiO 4 artificial passivation layer prevents the corrosion of Li metal by suppressing Li dendritic growth and improving the ionic conductivity, which contribute to the low charge-transfer resistance and high Li ion diffusivity of the electrode.

  11. Passivation of pigment-grade TiO2 particles by nanothick atomic layer deposited SiO2 films

    International Nuclear Information System (INIS)

    King, David M; Liang Xinhua; Weimer, Alan W; Burton, Beau B; Akhtar, M Kamal

    2008-01-01

    Pigment-grade TiO 2 particles were passivated using nanothick insulating films fabricated by atomic layer deposition (ALD). Conformal SiO 2 and Al 2 O 3 layers were coated onto anatase and rutile powders in a fluidized bed reactor. SiO 2 films were deposited using tris-dimethylaminosilane (TDMAS) and H 2 O 2 at 500 deg. C. Trimethylaluminum and water were used as precursors for Al 2 O 3 ALD at 177 deg. C. The photocatalytic activity of anatase pigment-grade TiO 2 was decreased by 98% after the deposition of 2 nm SiO 2 films. H 2 SO 4 digest tests were performed to exhibit the pinhole-free nature of the coatings and the TiO 2 digest rate was 40 times faster for uncoated TiO 2 than SiO 2 coated over a 24 h period. Mass spectrometry was used to monitor reaction progress and allowed for dosing time optimization. These results demonstrate that the TDMAS-H 2 O 2 chemistry can deposit high quality, fully dense SiO 2 films on high radius of curvature substrates. Particle ALD is a viable passivation method for pigment-grade TiO 2 particles

  12. Passivation effect of water vapour on thin film polycrystalline Si solar cells

    Czech Academy of Sciences Publication Activity Database

    Pikna, Peter; Müller, Martin; Becker, C.; Fejfar, Antonín

    2016-01-01

    Roč. 213, č. 7 (2016), s. 1969-1975 ISSN 1862-6300 R&D Projects: GA MŠk LM2015087; GA ČR GA13-12386S Grant - others:AV ČR(CZ) DAAD-16-27 Program:Bilaterální spolupráce Institutional support: RVO:68378271 Keywords : passivation, * plasma hydrogenation * silicon * solar cells * thin films * water vapour Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.775, year: 2016

  13. Influence of cerium on passivity behavior of wrought AZ91 alloy

    International Nuclear Information System (INIS)

    Wang Henan; Li Ying; Wang Fuhui

    2008-01-01

    In this paper, more focus had been put on the passivity behavior of wrought AZ91 alloy with 1.5 mass% Ce. The passive current density of wrought AZ91 alloy increased with addition of Ce and the passive film became unstable. Structures and compositions of the passive films formed on wrought AZ91 alloy without and with Ce in 0.01 M NaOH aqueous solution were analyzed by potentiostatic polarization, potentiostatic-galvanostatic (P-G) transient technique and X-ray photoelectron spectroscopy (XPS). The results showed that Ce only accumulated in the inner layer of passive film in the form of CeO 2 . Further analysis revealed that there were two main effects of Ce on the passive process of wrought AZ91 alloy: first, the existence of CeO 2 in inner layer of passive film made mass transport through the passive film follow tangent hyperbolic (T) impedance instead of Warburg impedance (W); second, donor concentration (N d ) of the passive film increased by a factor 10 when 1.5 mass% Ce existed in wrought AZ91 alloy, which led to the higher passivity current density

  14. Passivation of Si(111) surfaces with electrochemically grafted thin organic films

    Science.gov (United States)

    Roodenko, K.; Yang, F.; Hunger, R.; Esser, N.; Hinrichs, K.; Rappich, J.

    2010-09-01

    Ultra thin organic films (about 5 nm thick) of nitrobenzene and 4-methoxydiphenylamine were deposited electrochemically on p-Si(111) surfaces from benzene diazonium compounds. Studies based on atomic force microscopy, infrared spectroscopic ellipsometry and x-ray photoelectron spectroscopy showed that upon exposure to atmospheric conditions the oxidation of the silicon interface proceed slower on organically modified surfaces than on unmodified hydrogen passivated p-Si(111) surfaces. Effects of HF treatment on the oxidized organic/Si interface and on the organic layer itself are discussed.

  15. Passivity and corrosion of special metals

    International Nuclear Information System (INIS)

    Schultze, J.W.; Elfenthal, L.; Meyer, A.; Hochfeld, A.

    1988-04-01

    The corrosion stability of the metals Zr and Ta and some Ti-alloys was investigated under the conditions of the Purex-process. In addition to classical methods new corrosion-tests and simulations of technical conditions were developed. Further a laser-microprobe analysis is described. While Ta is stable at all conditions Zr shows decreasing corrosion stability with increasing nitric acid-concentration and temperature during potentiodynamic tests. Electrode modifications which are important for the Purex-process were checked. It is the first time that the stability of passive films against radiation is treated fundamentally. α-radiation and hot atoms can be simulated by ion-implantation. In general an amorphisation takes place which makes the layer more flexible and therefore more stable against mechanical stresses. Further the enhancement of electronic conductivity stabilises the favourable potential region between 0-1 V. Electronic processes can be simulated by focussed laser-radiation which induces the growth of additional oxide. The dissolution of oxide films of Ta and Ti is investigated by analysis and electrochemical measurements and is discussed with reference to decontamination processes. (orig.) With 61 refs., 15 tabs., 87 figs., and abstracts of 17 publications in annex [de

  16. Dynamic Characteristics of Rotors on Passive and Active Thrust Fluid-film Bearings with Fixed Pads

    Directory of Open Access Journals (Sweden)

    Babin Alexander

    2018-01-01

    Full Text Available Application of fluid-film bearings in rotor machines in many cases could have no alternative due to obvious advantages when compared to roller element bearings. Integration of information technology in mechanical engineering resulting in emergence of a new field of research – mechatronic bearings which allowed tracking condition of the most important parts of a machine and adjusting operational parameters of the system. Application of servo valves to control the flow rate through a fluid-film bearing is the most universal and simple way of rotor’s position control due to relative simplicity of modelling and absence of need to radically change the design of conventional hydrodynamic bearings. In the present paper numerical simulations of passive (conventional as opposed to mechatronic and active hybrid thrust fluid-film bearings with a central feeding chamber are presented, that are parts of a mechatronic rotor-bearing node. Numerical model of an active thrust bearing is based on solution of equations of hydrodynamics, rotor dynamics and an additional model of a servo valve. Various types of control have been investigated: P, PI and PID control, and the dynamic behaviour of a system has been estimated under various loads, namely static, periodic and impulse. A design of a test rig has been proposed to study passive and active thrust fluid-film bearings aimed at, among other, validation of numerical results of active bearings simulation.

  17. Paraffin wax passivation layer improvements in electrical characteristics of bottom gate amorphous indium–gallium–zinc oxide thin-film transistors

    International Nuclear Information System (INIS)

    Chang, Geng-Wei; Chang, Ting-Chang; Syu, Yong-En; Tsai, Tsung-Ming; Chang, Kuan-Chang; Tu, Chun-Hao; Jian, Fu-Yen; Hung, Ya-Chi; Tai, Ya-Hsiang

    2011-01-01

    In this research, paraffin wax is employed as the passivation layer of the bottom gate amorphous indium–gallium–zinc oxide thin-film transistors (a-IGZO TFTs), and it is formed by sol–gel process in the atmosphere. The high yield and low cost passivation layer of sol–gel process technology has attracted much attention for current flat-panel-display manufacturing. Comparing with passivation-free a-IGZO TFTs, passivated devices exhibit a superior stability against positive gate bias stress in different ambient gas, demonstrating that paraffin wax shows gas-resisting characteristics for a-IGZO TFTs application. Furthermore, light-induced stretch-out phenomenon for paraffin wax passivated device is suppressed. This superior stability of the passivated device was attributed to the reduced total density of states (DOS) including the interfacial and semiconductor bulk trap densities.

  18. Passivation behavior of Type 304 stainless steel in a non-aqueous alkyl carbonate solution containing LiPF6 salt

    International Nuclear Information System (INIS)

    Myung, Seung-Taek; Sasaki, Yusuke; Saito, Takamitsu; Sun, Yang-Kook; Yashiro, Hitoshi

    2009-01-01

    Passivation behavior of type 304 stainless steel in a non-aqueous alkyl carbonate solution containing LiPF 6 salt was studied using electrochemical polarization, X-ray photoelectron spectroscopy (XPS) and time of flight-secondary ion mass spectroscopy (ToF-SIMS). Cathodic polarization to 0 V vs. Li/Li + resulted in most but not complete reduction of the air-formed film from oxides to metal on the stainless steel, as confirmed by XPS. For complete elimination of the air-formed film, the surface of the stainless steel was scratched under anodic polarization conditions. At 3 V vs. Li/Li + where an anodic current peak appeared, only an indistinct layer was recognized on the newly scratched surface, according to ToF-SIMS analysis. Above 4 V vs. Li/Li + , substantial passive films were formed, which were composed of oxides and fluorides of iron and chromium. The origin of oxide was due to water contained in the non-aqueous alkyl carbonate solution, and that of fluorides were the result of the decomposition of electrolytic salt, LiPF 6 , especially at higher potential. The resultant passive films were stable in the non-aqueous alkyl carbonate solution containing LiPF 6 salt.

  19. X-ray photoelectron spectroscopy study of the passive films formed on thermally sprayed and wrought Inconel 625

    Energy Technology Data Exchange (ETDEWEB)

    Bakare, M.S. [Materials, Mechanics and Structures Research Division, Faculty of Engineering, University of Nottingham, University Park, Nottingham, NG7 2RD (United Kingdom); Voisey, K.T., E-mail: Katy.voisey@nottingham.ac.uk [Materials, Mechanics and Structures Research Division, Faculty of Engineering, University of Nottingham, University Park, Nottingham, NG7 2RD (United Kingdom); Roe, M.J.; McCartney, D.G. [Materials, Mechanics and Structures Research Division, Faculty of Engineering, University of Nottingham, University Park, Nottingham, NG7 2RD (United Kingdom)

    2010-11-15

    There is a well known performance gap in corrosion resistance between thermally sprayed corrosion resistant coatings and the equivalent bulk materials. Interconnected porosity has an important and well known effect, however there are additional relevant microstructural effects. Previous work has shown that a compositional difference exists between the regions of resolidified and non-melted material that exist in the as-sprayed coatings. The resolidified regions are depleted in oxide forming elements due to formation of oxides during coating deposition. Formation of galvanic cells between these different regions is believed to decrease the corrosion resistance of the coating. In order to increase understanding of the details of this effect, this work uses X-ray photoelectron spectroscopy (XPS) to study the passive films formed on thermally sprayed coatings (HVOF) and bulk Inconel 625, a commercially available corrosion resistant Ni-Cr-Mo-Nb alloy. Passive films produced by potentiodynamic scanning to 400 mV in 0.5 M sulphuric acid were compared with air-formed films. The poorer corrosion performance of the thermally sprayed coatings was attributed to Ni(OH){sub 2}, which forms a loose, non-adherent and therefore non-protective film. The good corrosion resistance of wrought Inconel 625 is due to formation of Cr, Mo and Nb oxides.

  20. Hydrogen passivation of electron trap in amorphous In-Ga-Zn-O thin-film transistors

    International Nuclear Information System (INIS)

    Hanyu, Yuichiro; Domen, Kay; Nomura, Kenji; Hiramatsu, Hidenori; Kamiya, Toshio; Kumomi, Hideya; Hosono, Hideo

    2013-01-01

    We report an experimental evidence that some hydrogens passivate electron traps in an amorphous oxide semiconductor, a-In-Ga-Zn-O (a-IGZO). The a-IGZO thin-film transistors (TFTs) annealed at 300 °C exhibit good operation characteristics; while those annealed at ≥400 °C show deteriorated ones. Thermal desorption spectra (TDS) of H 2 O indicate that this threshold annealing temperature corresponds to depletion of H 2 O desorption from the a-IGZO layer. Hydrogen re-doping by wet oxygen annealing recovers the good TFT characteristic. The hydrogens responsible for this passivation have specific binding energies corresponding to the desorption temperatures of 300–430 °C. A plausible structural model is suggested

  1. Highly transparent, flexible, and thermally stable superhydrophobic ORMOSIL aerogel thin films.

    Science.gov (United States)

    Budunoglu, Hulya; Yildirim, Adem; Guler, Mustafa O; Bayindir, Mehmet

    2011-02-01

    We report preparation of highly transparent, flexible, and thermally stable superhydrophobic organically modified silica (ORMOSIL) aerogel thin films from colloidal dispersions at ambient conditions. The prepared dispersions are suitable for large area processing with ease of coating and being directly applicable without requiring any pre- or post-treatment on a variety of surfaces including glass, wood, and plastics. ORMOSIL films exhibit and retain superhydrophobic behavior up to 500 °C and even on bent flexible substrates. The surface of the films can be converted from superhydrophobic (contact angle of 179.9°) to superhydrophilic (contact angle of <5°) by calcination at high temperatures. The wettability of the coatings can be changed by tuning the calcination temperature and duration. The prepared films also exhibit low refractive index and high porosity making them suitable as multifunctional coatings for many application fields including solar cells, flexible electronics, and lab on papers.

  2. Graphene Films Show Stable Cell Attachment and Biocompatibility with Electrogenic Primary Cardiac Cells

    OpenAIRE

    Kim, Taeyong; Kahng, Yung Ho; Lee, Takhee; Lee, Kwanghee; Kim, Do Han

    2013-01-01

    Graphene has attracted substantial attention due to its advantageous materialistic applicability. In the present study, we tested the biocompatibility of graphene films synthesized by chemical vapor deposition with electrogenic primary adult cardiac cells (cardiomyocytes) by measuring the cell properties such as cell attachment, survival, contractility and calcium transients. The results show that the graphene films showed stable cell attachment and excellent biocompatibility with the electro...

  3. Use of the piezoelectric film for the determination of cracks and defects - the passive and active electric potential CT method

    International Nuclear Information System (INIS)

    Kubo, S; Sakagami, T; Suzuki, T; Maeda, T; Nakatani, K

    2008-01-01

    The passive and active electric potential CT method was proposed by using piezoelectric film for identification of cracks and defects. This method is based on the principle of mutual conversion between mechanical strains and electric potential of piezoelectric material. A smart-layer was constructed using the piezoelectric film, and attached on a structure with a defect. When the structure was subjected to a mechanical load, the electric potential distribution appeared passively on the piezoelectric film due to the direct piezoelectric effect. The defect can be identified from the distribution with the help of inverse analysis. It was found that the crack could be identified reasonably, although the defect depth was not well estimated for the defects located far from the layer. When the electric signal was input to the smart-layer, acoustic wave was actively emitted from the layer due to the inverse piezoelectric effect, and a reflected wave was received on the layer. It was found that the depth of the defect could be estimated well. The simultaneous use of the passive method and the active method is promising for the identification of the defect.

  4. Alkali passivation mechanism of sol-gel derived TiO2-SiO2 films coated on soda-lime-silica glass substrates

    Energy Technology Data Exchange (ETDEWEB)

    Matsuda, A; Matsuno, Y; Katayama, S; Tsuno, T [Nippon Steel Glass Co. Ltd., Tokyo (Japan); Toge, N; Minami, T [University of Osaka Prefecture, Osaka (Japan). College of Engineering

    1992-09-01

    TiO2-SiO2 films prepared by the sol-gel method serves as an effective alkali passivation layer on a soda-lime-silica glass substrate and the film is superior to a sol-gel derived pure SiO2 film from the view point of weathering resistance improvement. To clarify the reason, alkali passivation mechanism of sol-gel derived TiO2-SiO2 glass films with different TiO2 contents coated on a soda-lime-silica glass substrate was studied by SIMS (secondary ion mass spectroscopy) and XPS (X-ray photoelectron spectroscopy) analyses, and compared with the results of a sol-gel derived pure SiO2 film. As a result, the following conclusions were obtained: An increase in TiO2 content in the TiO2 SiO2 film increases the sodium concentration in the film, which was induced by sodium migration from the glass substrate during the heat-treatment. Because of the presence of sodium the TiO2 -SiO2 films serve not as a barrier but as an effective getter of alkali ions and thereby effectively improve the weathering resistance Of the glass substrate. 10 refs., 6 figs.

  5. Characterization of electrochemical and passive behaviour of Alloy 59 in acid solution

    International Nuclear Information System (INIS)

    Luo, Hong; Gao, Shujun; Dong, Chaofang; Li, Xiaogang

    2014-01-01

    Highlights: • A considerably thinner n-type passive film is observed on the Alloy-59. • The passive film formed in air was thicker than that formed in acid solution. • Primary constituents of passive film in air and acid solution are (Cr, Ni)-oxides and (Cr, Ni) hydroxides, respectively. - Abstract: The electrochemical behaviour and passive film properties of the Alloy 59 in sulfuric acid solution was evaluated by the potentiodynamic electrochemical measurements, electrochemical impedance spectroscopy, Mott-Schottky approach, and ex situ surface analytical technique as X-ray photoelectron spectroscopy (XPS) and Auger Electronic Spectrometer (AES). The results confirmed that the Alloy 59 exhibits well passive behaviour. A considerably thinner n-type passive film is observed on this type alloy. Based on the evaluations of surface composition analysis, the primary constituents of passive film formed in the air and acid solution are different, with the (Cr, Ni)-oxides and (Cr, Ni) hydroxides, respectively

  6. The hydroxylation of passive oxide films on X-70 steel by dissolved hydrogen studied by nuclear reaction analysis, Auger electron spectroscopy, X-ray photoelectron spectroscopy and secondary ion mass spectroscopy

    International Nuclear Information System (INIS)

    Zhang Chunsi; Luo Jingli; Munoz-Paniagua, David; Norton, Peter R.

    2006-01-01

    Dissolved hydrogen is known to reduce the corrosion resistance of a passive oxide film on iron and its alloys, especially towards pitting corrosion. Electrochemical techniques have been used to show that the passive films are changed by dissolved hydrogen in an alloy substrate, but direct confirmation of the chemical and compositional profiles and changes has been missing. In this paper we report the direct profiling and compositional analysis of the 4 nm passive film on X-70 steel by Auger electron spectroscopy (AES), secondary ion mass spectrometry (SIMS), X-ray photoelectron spectroscopy (XPS) and nuclear reaction analysis (NRA) while hydrogen (deuterium) is charged into the alloy samples from the reverse, unpassivated side. The only route for D to the passive film is therefore by dissolution and diffusion. We show that the original duplex structure of the passive film is converted to a more continuous film containing hydroxyl groups, by reaction with the dissolved hydrogen. This conversion of the oxide ions to hydroxyl groups can lead to more rapid reaction and replacement with (e.g.) Cl - , which is known to enhance pitting. These results are entirely consistent with previous electrochemical studies and provide the first direct confirmation of models on the formation and role of hydroxyl groups derived from these earlier studies

  7. Influence of deposition temperature of thermal ALD deposited Al2O3 films on silicon surface passivation

    Directory of Open Access Journals (Sweden)

    Neha Batra

    2015-06-01

    Full Text Available The effect of deposition temperature (Tdep and subsequent annealing time (tanl of atomic layer deposited aluminum oxide (Al2O3 films on silicon surface passivation (in terms of surface recombination velocity, SRV is investigated. The pristine samples (as-deposited show presence of positive fixed charges, QF. The interface defect density (Dit decreases with increase in Tdep which further decreases with tanl up to 100s. An effective surface passivation (SRV<8 cm/s is realized for Tdep ≥ 200 °C. The present investigation suggests that low thermal budget processing provides the same quality of passivation as realized by high thermal budget process (tanl between 10 to 30 min.

  8. Electrochemical and in-situ Surface-Enhanced Raman Spectroscopic (SERS) study of passive films formed on low-carbon steel in highly alkaline environments

    Science.gov (United States)

    Mancio, Mauricio

    In reinforced concrete, a passive layer forms because of the alkaline conditions in the pores of the cement paste, where large concentrations of hydroxides create a solution with pH typically between 12 and 14. The corrosion resistance of the material depends on the characteristics and integrity of the passive film; however, currently very limited information is available about the passive films formed on carbon steel under such conditions. This work presents an electrochemical and in-situ Surface-Enhanced Raman Spectroscopic (SERS) study of passive films formed on low-carbon steel in highly alkaline environments. More specifically, the study focuses on the characterization of the films formed on ASTM A36 steel reinforcing bar exposed to aqueous solutions that aim to reproduce the chemistry of the environment typically found within the cement paste. Electrochemical techniques such as cyclic potentiodynamic polarization curves, galvanostatic cathodic polarization and linear polarization resistance were employed, in addition to in-situ Surface Enhanced Raman Spectroscopy (SERS). The experimental setup was built in a way that SERS experiments could be performed simultaneously with potentiodynamic polarization curves, enabling a detailed analysis of the formation and reduction of the surface films as a function of applied potential. Three solutions with different pH levels were used for the polarization and SERS experiments, namely 0.55M KOH + 0.16M NaOH ([OH-]=0.71), 0.08M KOH + 0.02M NaOH ([OH-]=0.10) and 0.008M KOH + 0.002M NaOH ([OH-]=0.01). Additional NaOH solutions in which the pH was varied from 13 to 9 and the ionic strength from 10 -5 to 10-1 were prepared for a pilot study using linear polarization resistance. Results show that the features observed in the cyclic potentiodynamic polarization curves correlated well with the potential arrests observed in the GCP plots as well as with the changes observed in the SERS spectra, providing valuable information about

  9. Surface passivation by Al2O3 and a-SiNx: H films deposited on wet-chemically conditioned Si surfaces

    NARCIS (Netherlands)

    Bordihn, S.; Mertens, V.; Engelhart, P.; Kersten, K.; Mandoc, M.M.; Müller, J.W.; Kessels, W.M.M.

    2012-01-01

    The surface passivation of p- and n-type silicon by different chemically grown SiO2 films (prepared by HNO3, H2SO4/H2O2 and HCl/H2O2 treatments) was investigated after PECVD of a-SiNx:H and ALD of Al2O3 capping films. The wet chemically grown SiO2 films were compared to thermally grown SiO2 and the

  10. Effect of excimer laser annealing on a-InGaZnO thin-film transistors passivated by solution-processed hybrid passivation layers

    Science.gov (United States)

    Bermundo, Juan Paolo; Ishikawa, Yasuaki; Fujii, Mami N.; Nonaka, Toshiaki; Ishihara, Ryoichi; Ikenoue, Hiroshi; Uraoka, Yukiharu

    2016-01-01

    We demonstrate the use of excimer laser annealing (ELA) as a low temperature annealing alternative to anneal amorphous InGaZnO (a-IGZO) thin-film transistors (TFTs) passivated by a solution-processed hybrid passivation layer. Usually, a-IGZO is annealed using thermal annealing at high temperatures of up to 400 °C. As an alternative to high temperature thermal annealing, two types of ELA, XeCl (308 nm) and KrF (248 nm) ELA, are introduced. Both ELA types enhanced the electrical characteristics of a-IGZO TFTs leading to a mobility improvement of ~13 cm2 V-1 s-1 and small threshold voltage which varied from ~0-3 V. Furthermore, two-dimensional heat simulation using COMSOL Multiphysics was used to identify possible degradation sites, analyse laser heat localization, and confirm that the substrate temperature is below 50 °C. The two-dimensional heat simulation showed that the substrate temperature remained at very low temperatures, less than 30 °C, during ELA. This implies that any flexible material can be used as the substrate. These results demonstrate the large potential of ELA as a low temperature annealing alternative for already-passivated a-IGZO TFTs.

  11. Hydrogen passivation of electron trap in amorphous In-Ga-Zn-O thin-film transistors

    Energy Technology Data Exchange (ETDEWEB)

    Hanyu, Yuichiro, E-mail: y-hanyu@lucid.msl.titech.ac.jp; Domen, Kay [Materials and Structures Laboratory, Tokyo Institute of Technology, Yokohama (Japan); Nomura, Kenji [Frontier Research Center, Tokyo Institute of Technology, Yokohama (Japan); Hiramatsu, Hidenori; Kamiya, Toshio [Materials and Structures Laboratory, Tokyo Institute of Technology, Yokohama (Japan); Materials Research Center for Element Strategy, Tokyo Institute of Technology, Yokohama (Japan); Kumomi, Hideya [Materials Research Center for Element Strategy, Tokyo Institute of Technology, Yokohama (Japan); Hosono, Hideo [Materials and Structures Laboratory, Tokyo Institute of Technology, Yokohama (Japan); Frontier Research Center, Tokyo Institute of Technology, Yokohama (Japan); Materials Research Center for Element Strategy, Tokyo Institute of Technology, Yokohama (Japan)

    2013-11-11

    We report an experimental evidence that some hydrogens passivate electron traps in an amorphous oxide semiconductor, a-In-Ga-Zn-O (a-IGZO). The a-IGZO thin-film transistors (TFTs) annealed at 300 °C exhibit good operation characteristics; while those annealed at ≥400 °C show deteriorated ones. Thermal desorption spectra (TDS) of H{sub 2}O indicate that this threshold annealing temperature corresponds to depletion of H{sub 2}O desorption from the a-IGZO layer. Hydrogen re-doping by wet oxygen annealing recovers the good TFT characteristic. The hydrogens responsible for this passivation have specific binding energies corresponding to the desorption temperatures of 300–430 °C. A plausible structural model is suggested.

  12. Electrochemical properties of the passive film on bulk Zr–Fe–Cr intermetallic fabricated by spark plasma sintering

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Yakui [School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Ling, Yunhan, E-mail: yhling@mail.tsinghua.edu.cn [School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Lai, Wensheng [School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Xing, Shupei; Ma, Wen [School of Materials Science and Engineering, Inner Mongolia University of Technology, Huhhot 010051 (China)

    2016-12-01

    Highlights: • SPS was employed to prepare Zr-based intermetallics which were commonly existed in zircaloy. • Zr-based intermetallics act as cathode when they embedded in zirconium matrix. • The passive films on surface of intermetallics behaved as n-type semiconductors. • Carrier concentration of Zr(Fe{sub 3}Cr){sub 2} was much lower than that of other intermetallics. - Abstract: Although Zr-based second phase particles (SPPs) are important factors influencing corrosion resistance of zircaloy cladding materials, the corrosion behavior of SPPs has not been investigated by means of electrochemical method so far. In order to clarify the role of SPPs commonly existed in zircaloy, bulk Zr-based intermetallics were firstly fabricated by spark plasma sintering (SPS) at temperatures 1373 K and an applied pressure of 60 MPa in this work. Both the natural passive film on surface and oxidation behavior of intermetallic has been investigated in this work. X-ray diffraction (XRD) pattern showed that as-prepared intermetallic of crystal structure belongs to Laves phase with AB{sub 2} type. Electrochemical measurement of passive film on surface of bulk Zr-based intermetallic exhibited significant difference with that of zirconium. Potentiodynamic measurements results revealed that intermetallic exhibited higher corrosion potential and lower corrosion current density than that of pure zirconium, implying that Zr-based second phase will act as cathode when they are included in zirconium matrix. Meanwhile, significant improvement of Zr–Fe–Cr intermetallic on the water chemistry corrosion resistance was demonstrated comparing with Zr–Fe and Zr–Cr binary intermetallics.

  13. Analysis of the formation of Ta{sub 2}O{sub 5} passive films in acid media through mechanistic modeling

    Energy Technology Data Exchange (ETDEWEB)

    Cabrera-Sierra, R., E-mail: roma_ipn@yahoo.com [Instituto Politecnico Nacional, Escuela Superior de Ingenieria Quimica e Industrias Extractivas, Departamento de Ingenieria Quimica Industrial, UPALM Ed. 7, 1er. Piso CP 07738, D.F. (Mexico); Vazquez-Arenas, J. [Chemical Engineering Department, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G (Canada); Cardoso, S. [Instituto Politecnico Nacional, Escuela Superior de Ingenieria Quimica e Industrias Extractivas, Departamento de Ingenieria Quimica Industrial, UPALM Ed. 7, 1er. Piso CP 07738, D.F. (Mexico); Luna-Sanchez, R.M. [Universidad Autonoma Metropolitana-Azcapotzalco, Departamento de Energia, Av. San Pablo No. 180, Col. Reynosa Tamaulipas, CP 02200, D.F. (Mexico); Trejo, M.A. [Instituto Politecnico Nacional, Escuela Superior de Ingenieria Quimica e Industrias Extractivas, Departamento de Ingenieria Quimica Industrial, UPALM Ed. 7, 1er. Piso CP 07738, D.F. (Mexico); Marin-Cruz, J. [Instituto Mexicano del Petroleo, Coordinacion de Ingenieria Molecular, Competencia de Quimica Aplicada. Eje Central Lazaro Cardenas Norte 152, CP 07730, D.F. (Mexico); Hallen, J.M. [Instituto Politecnico Nacional, Escuela Superior de Ingenieria Quimica e Industrias Extractivas, Departamento de Ingenieria Quimica Industrial, UPALM Ed. 7, 1er. Piso CP 07738, D.F. (Mexico)

    2011-09-30

    Electrochemical impedance spectroscopy (EIS) analyses are carried out to evaluate the passive features of tantalum oxide films (Ta{sub 2}O{sub 5}) formed at different potentiostatic conditions (0.5, 1.0, 1.5 and 2.0 V vs SSE). A supporting electrolyte of 0.1 M H{sub 2}SO{sub 4} (pH 1) has been used to emulate acidic corrosive conditions for the growth of films with an n-type electronic character. A modification of the point defect model (PDM) accounting for the formation of molecular hydrogen (blistering damage) is used to fit the experimental EIS diagrams, and obtain the kinetic parameters that best describe the semiconductive behavior of the passive films. After this analysis, diffusivities in the order of 5.37 {+-} 1.6 x 10{sup -17} and 1.98 {+-} 1.4 x 10{sup -20} cm{sup 2} s{sup -1} were obtained for the oxygen (D{sub VO}{center_dot}{center_dot}) and hydroxyl vacancies (D{sub VOH}{center_dot}), respectively. These findings show the capabilities of the EIS and the physicochemical modeling to account for the formation of valve-metal oxide films on a different range of conditions.

  14. Air-stable n-type doping of graphene from overlying Si3N4 film

    International Nuclear Information System (INIS)

    Wang, Zegao; Li, Pingjian; Chen, Yuanfu; Liu, Jingbo; Qi, Fei; Tian, Hongjun; Zheng, Binjie; Zhou, Jinhao

    2014-01-01

    In this study, we report a facile method to obtain air-stable n-type graphene by plasma-enhanced chemical vapor depositing Si 3 N 4 film on the surface of graphene. We have demonstrated that the overlying Si 3 N 4 film can not only act as the penetration-barrier against H 2 O and O 2 adsorbed on the graphene surface, but also cause an effective n-type doping due to the amine groups at the interface of graphene/Si 3 N 4 . Furthermore, the studies reveal that the Dirac point of graphene can be modulated by the thickness of Si 3 N 4 film, which is due to competing effects of Si 3 N 4 -induced doping (n-type) and penetrating H 2 O (O 2 )-induced doping (p-type). We expect this method to be used for obtaining stable n-type graphene field-effect transistors in air, which will be widely used in graphene electronic devices.

  15. Investigations on the passivity of iron in borate and phosphate buffers, pH 8.4

    International Nuclear Information System (INIS)

    Sieber, I.V.; Hildebrand, H.; Virtanen, S.; Schmuki, P.

    2006-01-01

    In the present work surface analytical experiments (XPS and AES) on the passive film on iron formed in borate and phosphate buffers (pH 8.4) have been carried out. In the passive film formed in phosphate buffer a significant amount of phosphates is found in the outer part of the film. Boron species are not significantly incorporated in the passive film formed in borate buffer. The mechanism of the reduction of the passive film depends strongly on the electrolyte composition. In borate buffer, cathodic polarization leads to reductive dissolution of the passive film whereas in phosphate buffer the passive film is converted into metallic iron without dissolution but via laterally inhomogeneously formation of an intermediate Fe(II) phosphate layer

  16. Revealing Nanoscale Passivation and Corrosion Mechanisms of Reactive Battery Materials in Gas Environments.

    Science.gov (United States)

    Li, Yuzhang; Li, Yanbin; Sun, Yongming; Butz, Benjamin; Yan, Kai; Koh, Ai Leen; Zhao, Jie; Pei, Allen; Cui, Yi

    2017-08-09

    Lithium (Li) metal is a high-capacity anode material (3860 mAh g -1 ) that can enable high-energy batteries for electric vehicles and grid-storage applications. However, Li metal is highly reactive and repeatedly consumed when exposed to liquid electrolyte (during battery operation) or the ambient environment (throughout battery manufacturing). Studying these corrosion reactions on the nanoscale is especially difficult due to the high chemical reactivity of both Li metal and its surface corrosion films. Here, we directly generate pure Li metal inside an environmental transmission electron microscope (TEM), revealing the nanoscale passivation and corrosion process of Li metal in oxygen (O 2 ), nitrogen (N 2 ), and water vapor (H 2 O). We find that while dry O 2 and N 2 (99.9999 vol %) form uniform passivation layers on Li, trace water vapor (∼1 mol %) disrupts this passivation and forms a porous film on Li metal that allows gas to penetrate and continuously react with Li. To exploit the self-passivating behavior of Li in dry conditions, we introduce a simple dry-N 2 pretreatment of Li metal to form a protective layer of Li nitride prior to battery assembly. The fast ionic conductivity and stable interface of Li nitride results in improved battery performance with dendrite-free cycling and low voltage hysteresis. Our work reveals the detailed process of Li metal passivation/corrosion and demonstrates how this mechanistic insight can guide engineering solutions for Li metal batteries.

  17. Low temperature cured poly-siloxane passivation for highly reliable a-InGaZnO thin-film transistors

    Science.gov (United States)

    Yoshida, Naofumi; Bermundo, Juan Paolo; Ishikawa, Yasuaki; Nonaka, Toshiaki; Taniguchi, Katsuto; Uraoka, Yukiharu

    2018-05-01

    Low temperature processable passivation materials are necessary to fabricate highly reliable amorphous InGaZnO (a-IGZO) thin-film transistors (TFT) on organic substrates for flexible device applications. We investigated 3 types of poly-siloxane (Poly-SX) passivation layers fabricated by a solution process and cured at low temperatures (180 °C) for a-IGZO TFTs. This passivation layer greatly improves the stability of the a-IGZO device even after being subjected to positive (PBS) and negative bias stress (NBS). The field effect mobility (μ) of MePhQ504010 passivated on the TFT reached 8.34 cm2/Vs and had a small threshold voltage shift of 0.9 V after PBS, -0.8 V after NBS without the hump phenomenon. Furthermore, we analyzed the hydrogen and hydroxide states in the a-IGZO layer by secondary ion mass spectrometry and X-ray photoelectron spectroscopy to determine the cause of excellent electrical properties despite the curing performed at a low temperature. These results show the potential of the solution processed Poly-SX passivation layer for flexible devices.

  18. Fabrication of highly ordered nanoporous alumina films by stable high-field anodization

    International Nuclear Information System (INIS)

    Li Yanbo; Zheng Maojun; Ma Li; Shen Wenzhong

    2006-01-01

    Stable high-field anodization (1500-4000 A m -2 ) for the fabrication of highly ordered porous anodic alumina films has been realized in a H 3 PO 4 -H 2 O-C 2 H 5 OH system. By maintaining the self-ordering voltage and adjusting the anodizing current density, high-quality self-ordered alumina films with a controllable inter-pore distance over a large range are achieved. The high anodizing current densities lead to high-speed film growth (4-10 μm min -1 ). The inter-pore distance is not solely dependent on the anodizing voltage, but is also influenced by the anodizing current density. This approach is simple and cost-effective, and is of great value for applications in diverse areas of nanotechnology

  19. Production and study of mixed Al-Al2O3 thin films for passive electronic circuits

    International Nuclear Information System (INIS)

    Pruniaux, B.

    1966-09-01

    A new vacuum deposition process, named reactive evaporation, is used to realize passive thin film circuits. Using aluminium, oxidized at various steps in its vapor phase, we obtain: - Al-Al 2 O 3 cermet resistors (R □ = 10000 Ω □ , CTR 2 O 3 capacitors (C □ = 60000 pf/cm 2 , tg δ [fr

  20. Passive cooling in modern nuclear reactors

    International Nuclear Information System (INIS)

    Rouai, N. M.

    1998-01-01

    This paper presents some recent experimental results performed with the aim of understanding the mechanism of passive cooling. The AP 600 passive containment cooling system is simulated by an electrically heated vertical pipe, which is cooled by a naturally induced air flow and by a water film descending under gravity. The results demonstrate that although the presence of the water film improved the heat transfer significantly, the mode of heat transfer was very dependent on the experimental parameters. Preheating the water improved both film stability and overall cooling performance

  1. Experimental method and preliminary studies of the passive containment water film evaporation mass transfer

    Energy Technology Data Exchange (ETDEWEB)

    Li, Cheng [State Nuclear Power Technology Research, Beijing (China). Development Center; State Nuclear Power Research Institute, Beijing (China); Yang, Lin; Zhao, Wei; Zhou, Shan; Du, Wangfang; Gao, Zhan; Li, Honegsen [State Nuclear Power Technology Research, Beijing (China). Development Center

    2017-05-15

    For larger containments and higher operation parameters, characteristics of the outside cooling of the PCCS are very important for the analysis on the containment integrity. A preliminary analysis was made and a four-step experimental method was used to numerically analyze the falling water film evaporation for the advanced passive containment. Then, the water flow stability along the outside wall of the containment was studied. The results fit well with those correlations without airflow when the air velocity is less than 5.0 m/s. However, when the air velocity is larger than 5.0 m/s, the influence of the air velocity on the water film will appear and the mean water film thickness will be thicker. Based on the prototype operation parameters, experimental studies were carried and the results were compared with the Dittus-Boelter correlation within the operation ranges. A modification factor was proposed for the conservative application of this correlation for nuclear safety analysis.

  2. Effect of excimer laser annealing on a-InGaZnO thin-film transistors passivated by solution-processed hybrid passivation layers

    International Nuclear Information System (INIS)

    Bermundo, Juan Paolo; Ishikawa, Yasuaki; Fujii, Mami N; Uraoka, Yukiharu; Nonaka, Toshiaki; Ishihara, Ryoichi; Ikenoue, Hiroshi

    2016-01-01

    We demonstrate the use of excimer laser annealing (ELA) as a low temperature annealing alternative to anneal amorphous InGaZnO (a-IGZO) thin-film transistors (TFTs) passivated by a solution-processed hybrid passivation layer. Usually, a-IGZO is annealed using thermal annealing at high temperatures of up to 400 °C. As an alternative to high temperature thermal annealing, two types of ELA, XeCl (308 nm) and KrF (248 nm) ELA, are introduced. Both ELA types enhanced the electrical characteristics of a-IGZO TFTs leading to a mobility improvement of ∼13 cm 2 V −1 s −1 and small threshold voltage which varied from ∼0–3 V. Furthermore, two-dimensional heat simulation using COMSOL Multiphysics was used to identify possible degradation sites, analyse laser heat localization, and confirm that the substrate temperature is below 50 °C. The two-dimensional heat simulation showed that the substrate temperature remained at very low temperatures, less than 30 °C, during ELA. This implies that any flexible material can be used as the substrate. These results demonstrate the large potential of ELA as a low temperature annealing alternative for already-passivated a-IGZO TFTs. (paper)

  3. Passivation Of High-Temperature Superconductors

    Science.gov (United States)

    Vasquez, Richard P.

    1991-01-01

    Surfaces of high-temperature superconductors passivated with native iodides, sulfides, or sulfates formed by chemical treatments after superconductors grown. Passivating compounds nearly insoluble in and unreactive with water and protect underlying superconductors from effects of moisture. Layers of cuprous iodide and of barium sulfate grown. Other candidate passivating surface films: iodides and sulfides of bismuth, strontium, and thallium. Other proposed techniques for formation of passivating layers include deposition and gas-phase reaction.

  4. Study by X-ray photoelectron spectroscopy (XPS) and radiochemistry (Cl36) of the interaction of chloride ions with a passive film formed on nickel

    International Nuclear Information System (INIS)

    Herbelin, Jean-Marc

    1990-01-01

    This research thesis reports the study of the influence of chlorides on nickel passivation by using a radiochemical method based on the use of the Cl 36 isotope and the X-ray photoelectron spectroscopy (XPS). The first one allows the in-situ determination of the adsorption of chlorides on the surface, or their inclusion in surface films during the electrochemical treatment. The XPS analysis allows the characterization of modifications induced by chlorides in passive films. The obtained results allow a better understanding in the interpretation of the mechanisms of corrosion induced by chloride ions [fr

  5. The Effects of Applied Stress and Sensitization on the Passive Film Stability of Al-Mg Alloys

    Science.gov (United States)

    2013-06-01

    evaluates effects of stress on the corrosion behavior for the aluminum magnesium alloy AA5083 in a comprehensive and systematic manner. This study used... comprehensive and systematic manner. This study used cyclic polarization and electrochemical impedance spectroscopy to study passive film stability...cyclic polarization DoD Department of Defense DON Department of the Navy EBD breakdown potential ECORR corrosion potential ECRIT critical potential

  6. Characteristics of thin-film transistors based on silicon nitride passivation by excimer laser direct patterning

    International Nuclear Information System (INIS)

    Chen, Chao-Nan; Huang, Jung-Jie

    2013-01-01

    This study explored the removal of silicon nitride using KrF laser ablation technology with a high threshold fluence of 990 mJ/cm 2 . This technology was used for contact hole patterning to fabricate SiN x -passivation-based amorphous-silicon thin films in a transistor device. Compared to the photolithography process, laser direct patterning using KrF laser ablation technology can reduce the number of process steps by at least three. Experimental results showed that the mobility and threshold voltages of thin film transistors patterned using the laser process were 0.16 cm 2 /V-sec and 0.2 V, respectively. The device performance and the test results of gate voltage stress reliability demonstrated that laser direct patterning is a promising alternative to photolithography in the panel manufacturing of thin-film transistors for liquid crystal displays. - Highlights: ► KrF laser ablation technology is used to remove silicon nitride. ► A simple method for direct patterning contact-hole in thin-film-transistor device. ► Laser technology reduced processing by at least three steps

  7. Drastic reduction in the surface recombination velocity of crystalline silicon passivated with catalytic chemical vapor deposited SiNx films by introducing phosphorous catalytic-doped layer

    International Nuclear Information System (INIS)

    Thi, Trinh Cham; Koyama, Koichi; Ohdaira, Keisuke; Matsumura, Hideki

    2014-01-01

    We improve the passivation property of n-type crystalline silicon (c-Si) surface passivated with a catalytic chemical vapor deposited (Cat-CVD) Si nitride (SiN x ) film by inserting a phosphorous (P)-doped layer formed by exposing c-Si surface to P radicals generated by the catalytic cracking of PH 3 molecules (Cat-doping). An extremely low surface recombination velocity (SRV) of 2 cm/s can be achieved for 2.5 Ω cm n-type (100) floating-zone Si wafers passivated with SiN x /P Cat-doped layers, both prepared in Cat-CVD systems. Compared with the case of only SiN x passivated layers, SRV decreases from 5 cm/s to 2 cm/s. The decrease in SRV is the result of field effect created by activated P atoms (donors) in a shallow P Cat-doped layer. Annealing process plays an important role in improving the passivation quality of SiN x films. The outstanding results obtained imply that SiN x /P Cat-doped layers can be used as promising passivation layers in high-efficiency n-type c-Si solar cells.

  8. Oxidation precursor dependence of atomic layer deposited Al2O3 films in a-Si:H(i)/Al2O3 surface passivation stacks.

    Science.gov (United States)

    Xiang, Yuren; Zhou, Chunlan; Jia, Endong; Wang, Wenjing

    2015-01-01

    In order to obtain a good passivation of a silicon surface, more and more stack passivation schemes have been used in high-efficiency silicon solar cell fabrication. In this work, we prepared a-Si:H(i)/Al2O3 stacks on KOH solution-polished n-type solar grade mono-silicon(100) wafers. For the Al2O3 film deposition, both thermal atomic layer deposition (T-ALD) and plasma enhanced atomic layer deposition (PE-ALD) were used. Interface trap density spectra were obtained for Si passivation with a-Si films and a-Si:H(i)/Al2O3 stacks by a non-contact corona C-V technique. After the fabrication of a-Si:H(i)/Al2O3 stacks, the minimum interface trap density was reduced from original 3 × 10(12) to 1 × 10(12) cm(-2) eV(-1), the surface total charge density increased by nearly one order of magnitude for PE-ALD samples and about 0.4 × 10(12) cm(-2) for a T-ALD sample, and the carrier lifetimes increased by a factor of three (from about 10 μs to about 30 μs). Combining these results with an X-ray photoelectron spectroscopy analysis, we discussed the influence of an oxidation precursor for ALD Al2O3 deposition on Al2O3 single layers and a-Si:H(i)/Al2O3 stack surface passivation from field-effect passivation and chemical passivation perspectives. In addition, the influence of the stack fabrication process on the a-Si film structure was also discussed in this study.

  9. Development of polyurethane-based passive samplers for ambient monitoring of urban-use insecticides in water.

    Science.gov (United States)

    Liao, Chunyang; Richards, Jaben; Taylor, Allison R; Gan, Jay

    2017-12-01

    Widespread use of insecticides for the control of urban pests such as ants, termites, and spiders has resulted in contamination and toxicity in urban aquatic ecosystems in different regions of the world. Passive samplers are a convenient and integrative tool for in situ monitoring of trace contaminants in surface water. However, the performance of a passive sampler depends closely on its affinity for the target analytes, making passive samplers highly specific to the types of contaminants being monitored. The goal of this study was to develop a passive sampler compatible with a wide range of insecticides, including the strongly hydrophobic pyrethroids and the weakly hydrophobic fipronil and organophosphates. Of six candidate polymeric thin films, polyurethane film (PU) was identified to be the best at enriching the test compounds. The inclusion of stable isotope labeled analogs as performance reference compounds (PRCs) further allowed the use of PU film for pyrethroids under non-equilibrium conditions. The PU sampler was tested in a large aquarium with circulatory water flow, and also deployed at multiple sites in surface streams in southern California. The concentrations of pesticides derived from the PU sampler ranged from 0.5 to 18.5 ng/L, which were generally lower than the total chemical concentration measured by grab samples, suggesting that suspended particles and dissolved organic matter in water rendered them less available. The influence of suspended particles and dissolved organic matter on bioavailability was more pronounced for pyrethroids than for fipronils. The results show that the developed PU film sampler, when coupled with PRCs, may be used for rapid and sensitive in-situ monitoring of a wide range of insecticides in surface water. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Credible evidence for the passivation effect of remnant PbI₂ in CH₃NHCH₃PbICH₃ films in improving the performance of perovskite solar cells.

    Science.gov (United States)

    Wang, Shimao; Dong, Weiwei; Fang, Xiaodong; Zhang, Qingli; Zhou, Shu; Deng, Zanhong; Tao, Ruhua; Shao, Jingzhen; Xia, Rui; Song, Chao; Hu, Linhua; Zhu, Jun

    2016-03-28

    The role of remnant PbI2 in CH3NH3PbI3 films is still controversial, some investigations have revealed that the remnant PbI2 plays a passivation role, reduces the charge recombination in perovskite solar cells (PSCs), and improves the performance of PSCs, but the opposing views state that remnant PbI2 has no passivation effect and it would deteriorate the stability of the devices. In our investigation, the CH3NH3PbI3 films have been prepared by a two-step spin-coating method and the content of the remnant PbI2 in CH3NH3PbI3 films has been tuned by varying the preparation temperature. It has been found that increasing the heating temperature could increase the coverage of spin-coated PbI2 films, which has led to high coverage CH3NH3PbI3 films and more remnant PbI2 in CH3NH3PbI3 films, and as a result, the performance of PSCs was enhanced obviously and the maximum power conversion efficiency of 14.32 ± 0.28% was achieved by the PSCs prepared at 130/120 °C (PbI2 films were heated at 130 °C and CH3NH3PbI3 films were heated at 120 °C). Furthermore, the dark current, electrochemical impedance spectroscopy and time-resolved fluorescence emission decay measurements revealed that the charge recombination in PSCs has been gradually suppressed and the fluorescence emission lifetime has gradually increased with the content of remnant PbI2 increasing. Thus, the passivation effects of the unreacted and decomposed PbI2 in improving the performance of PSCs have been confirmed unquestionably.

  11. Environmental effects on electrical properties of Cr-Si-Ni resistive films deposited by magnetron sputtering

    International Nuclear Information System (INIS)

    Zhang Yuqin; Dong Xianping; Wu Jiansheng

    2005-01-01

    The present paper investigated the environmental effects on electrical properties stability and long-term reliability of magnetron sputtered Cr-Si-Ni resistive films in 3.5% NaCl, 0.5 M Na 2 SO 4 and 0.5 M HCl solutions at 25 deg. C, which simulated marine, industrial and acidic environments. The relative resistance change (ΔR/R) for the annealed films revealed that the films had the best electrical properties stability and long-term reliability in industrial environments at 25 deg. C. After immersion in corrosion solutions for 480 h, the value of ΔR/R for the films was only 0.41% in industrial environments, and the values were 0.56 and 1.96% in marine and acidic environments, respectively. The polarization measurements and AES results indicated that the films presented a spontaneous trend to passivation, and could form a dense and stable protective oxide layer (Si oxide) on its surface rapidly that protected the films from further corrosion in three different environments. Furthermore, the formed passive film in industrial environments exhibited much more protective effects on the films than in marine and acidic environments

  12. Pb(Zr,TiO3 (PZT Thin Film Sensors for Fully-Integrated, Passive Telemetric Transponders

    Directory of Open Access Journals (Sweden)

    Richard X. FU

    2011-04-01

    Full Text Available The great potential of taking advantages of PZT in a single chip to achieve inexpensive, fully-integrated, passive telemetric transponders has been shown in this paper. The processes for the sputter deposition of Pb(Zr,TiO3 (PZT thin films from two different composite targets on both Si and c-plane sapphire substrates have been demonstrated. PZT thin films have been deposited by sputter technique. PZT films were deposited onto substrates (Si [(100 Cz wafer] and c-plane sapphire (0001//Ti//Pt followed by sputter-deposited Pt top electrodes. X-ray diffraction results showed that both sputtered PZT films were textured along the [110] direction. The degree of preference for the [110] direction was greater on sapphire substrate where the intensity of that peak is seen to be larger compared to the intensity one Si substrate. TEM data revealed that both sputtered PZT films were polycrystalline in nature. Selected area diffraction (SAD pattern showed that the degree of disorientation between the crystallites was smaller on sapphire substrate compared to on Si substrate, which confirmed the results from the XRD. The remnant polarization Pr on sapphire substrate was larger than on Si’s. The leakage current for the 11 % Pb target sputtered film was much less than 22 % Pb target sputtered film. The breakdown voltage on sapphire substrate was the best. However, for the 11 % Pb target sputtered film’s breakdown voltage was much higher than 22 % Pb target sputtered film.

  13. Fluorine incorporation in solution-processed poly-siloxane passivation for highly reliable a-InGaZnO thin-film transistors

    Science.gov (United States)

    Yoshida, Naofumi; Bermundo, Juan Paolo; Ishikawa, Yasuaki; Nonaka, Toshiaki; Taniguchi, Katsuto; Uraoka, Yukiharu

    2018-03-01

    We investigated a fluorine-containing polysiloxane (Poly-SX) passivation layer fabricated by solution process for amorphous InGaZnO (a-IGZO) thin-film transistors (TFT). This passivation layer greatly improved the stability of the a-IGZO device even after being subjected to positive bias stress (PBS) and negative bias stress (NBS). The mobility (µ) of TFTs passivated by fluorine-containing Poly-SX increased by 31%-56% (10.50-12.54 cm2 V-1 s-1) compared with TFTs passivated by non-fluorinated Poly-SX (8.04 cm2 V-1 s-1). Increasing the amount of fluorine additives led to a higher µ in passivated TFTs. Aside from enhancing the performance, these passivation layers could increase the reliability of a-IGZO TFTs under PBS and NBS with a minimal threshold voltage shift (ΔV th) of up to  +0.2 V and  -0.1 V, respectively. Additionally, all TFTs passivated by the fluorinated passivation materials did not exhibit a hump effect after NBS. We also showed that fluorinated photosensitive Poly-SX, which can be fabricated without any dry etching process, had an effective passivation property. In this report, we demonstrated the photolithography of Poly-SX, and electrical properties of Poly-SX passivated TFTs, and analyzed the state of the a-IGZO layer to show the large potential of Poly-SX as an effective solution-processed passivation material.

  14. Isotope analysis of diamond-surface passivation effect of high-temperature H2O-grown atomic layer deposition-Al2O3 films

    International Nuclear Information System (INIS)

    Hiraiwa, Atsushi; Saito, Tatsuya; Matsumura, Daisuke; Kawarada, Hiroshi

    2015-01-01

    The Al 2 O 3 film formed using an atomic layer deposition (ALD) method with trimethylaluminum as Al precursor and H 2 O as oxidant at a high temperature (450 °C) effectively passivates the p-type surface conduction (SC) layer specific to a hydrogen-terminated diamond surface, leading to a successful operation of diamond SC field-effect transistors at 400 °C. In order to investigate this excellent passivation effect, we carried out an isotope analysis using D 2 O instead of H 2 O in the ALD and found that the Al 2 O 3 film formed at a conventional temperature (100 °C) incorporates 50 times more CH 3 groups than the high-temperature film. This CH 3 is supposed to dissociate from the film when heated afterwards at a higher temperature (550 °C) and causes peeling patterns on the H-terminated surface. The high-temperature film is free from this problem and has the largest mass density and dielectric constant among those investigated in this study. The isotope analysis also unveiled a relatively active H-exchange reaction between the diamond H-termination and H 2 O oxidant during the high-temperature ALD, the SC still being kept intact. This dynamic and yet steady H termination is realized by the suppressed oxidation due to the endothermic reaction with H 2 O. Additionally, we not only observed the kinetic isotope effect in the form of reduced growth rate of D 2 O-oxidant ALD but found that the mass density and dielectric constant of D 2 O-grown Al 2 O 3 films are smaller than those of H 2 O-grown films. This is a new type of isotope effect, which is not caused by the presence of isotopes in the films unlike the traditional isotope effects that originate from the presence of isotopes itself. Hence, the high-temperature ALD is very effective in forming Al 2 O 3 films as a passivation and/or gate-insulation layer of high-temperature-operation diamond SC devices, and the knowledge of the aforementioned new isotope effect will be a basis for further enhancing ALD

  15. Study of passive films formed on mild steel in alkaline media by the application of anodic potentials

    Energy Technology Data Exchange (ETDEWEB)

    Freire, L. [Universidade de Vigo, E.T.S.E.I., Campus Universitario, 36310 Vigo (Spain)], E-mail: lorenafp@uvigo.es; Novoa, X.R. [Universidade de Vigo, E.T.S.E.I., Campus Universitario, 36310 Vigo (Spain); Montemor, M.F. [ICEMS - Instituto Superior Tecnico, Universidade Tecnica de Lisboa, Av. Rovisco Pais, 1049 - 001 Lisboa (Portugal); Carmezim, M.J. [ICEMS - Instituto Superior Tecnico, Universidade Tecnica de Lisboa, Av. Rovisco Pais, 1049 - 001 Lisboa (Portugal); EST Setubal, DEM, Instituto Politecnico de Setubal, Campus IPS, 2910 Setubal (Portugal)

    2009-04-15

    In this paper, iron oxide thin layers formed on mild steel substrates in alkaline media by the application of different anodic potentials were studied in order to characterize their morphology, composition and electrochemical behaviour, in particular under conditions of cathodic protection. The surface composition was evaluated by X-Ray Photoelectron Spectroscopy (XPS) and Auger Electron Spectroscopy (AES). The morphology of the surface oxides was studied via Atomic Force Microscopy (AFM). The electrochemical behaviour of the surface oxides was studied using Electrochemical Impedance Spectroscopy (EIS). The results showed that the surface film is composed by Fe{sup 2+}oxides and Fe{sup 3+} oxides and/or hydroxides. The contribution of Fe{sup 2+} species vanishes when the potential of film formation increases in the passive domain. Two distinct phases were differentiated in the outer layers of the surface film, which proves that film growing is topotactic in nature.

  16. Study of passive films formed on mild steel in alkaline media by the application of anodic potentials

    International Nuclear Information System (INIS)

    Freire, L.; Novoa, X.R.; Montemor, M.F.; Carmezim, M.J.

    2009-01-01

    In this paper, iron oxide thin layers formed on mild steel substrates in alkaline media by the application of different anodic potentials were studied in order to characterize their morphology, composition and electrochemical behaviour, in particular under conditions of cathodic protection. The surface composition was evaluated by X-Ray Photoelectron Spectroscopy (XPS) and Auger Electron Spectroscopy (AES). The morphology of the surface oxides was studied via Atomic Force Microscopy (AFM). The electrochemical behaviour of the surface oxides was studied using Electrochemical Impedance Spectroscopy (EIS). The results showed that the surface film is composed by Fe 2+ oxides and Fe 3+ oxides and/or hydroxides. The contribution of Fe 2+ species vanishes when the potential of film formation increases in the passive domain. Two distinct phases were differentiated in the outer layers of the surface film, which proves that film growing is topotactic in nature

  17. Low-temperature fabrication of an HfO2 passivation layer for amorphous indium-gallium-zinc oxide thin film transistors using a solution process.

    Science.gov (United States)

    Hong, Seonghwan; Park, Sung Pyo; Kim, Yeong-Gyu; Kang, Byung Ha; Na, Jae Won; Kim, Hyun Jae

    2017-11-24

    We report low-temperature solution processing of hafnium oxide (HfO 2 ) passivation layers for amorphous indium-gallium-zinc oxide (a-IGZO) thin-film transistors (TFTs). At 150 °C, the hafnium chloride (HfCl 4 ) precursor readily hydrolyzed in deionized (DI) water and transformed into an HfO 2 film. The fabricated HfO 2 passivation layer prevented any interaction between the back surface of an a-IGZO TFT and ambient gas. Moreover, diffused Hf 4+ in the back-channel layer of the a-IGZO TFT reduced the oxygen vacancy, which is the origin of the electrical instability in a-IGZO TFTs. Consequently, the a-IGZO TFT with the HfO 2 passivation layer exhibited improved stability, showing a decrease in the threshold voltage shift from 4.83 to 1.68 V under a positive bias stress test conducted over 10,000 s.

  18. Efficient and stable solution-processed planar perovskite solar cells via contact passivation

    KAUST Repository

    Tan, Hairen; Jain, Ankit; Voznyy, Oleksandr; Lan, Xinzheng; Garcí a de Arquer, F. Pelayo; Fan, James Z.; Quintero-Bermudez, Rafael; Yuan, Mingjian; Zhang, Bo; Zhao, Yicheng; Fan, Fengjia; Li, Peicheng; Quan, Li Na; Zhao, Yongbiao; Lu, Zheng-Hong; Yang, Zhenyu; Hoogland, Sjoerd; Sargent, Edward H.

    2017-01-01

    Planar perovskite solar cells (PSCs) made entirely via solution processing at low temperatures (<150°C) offer promise for simple manufacturing, compatibility with flexible substrates, and perovskite-based tandem devices. However, these PSCs require an electron-selective layer that performs well with similar processing. We report a contact-passivation strategy using chlorine-capped TiO2 colloidal nanocrystal film that mitigates interfacial recombination and improves interface binding in low-temperature planar solar cells. We fabricated solar cells with certified efficiencies of 20.1 and 19.5% for active areas of 0.049 and 1.1 square centimeters, respectively, achieved via low-temperature solution processing. Solar cells with efficiency greater than 20% retained 90% (97% after dark recovery) of their initial performance after 500 hours of continuous room-temperature operation at their maximum power point under 1-sun illumination (where 1 sun is defined as the standard illumination at AM1.5, or 1 kilowatt/square meter).

  19. Efficient and stable solution-processed planar perovskite solar cells via contact passivation

    KAUST Repository

    Tan, Hairen

    2017-02-03

    Planar perovskite solar cells (PSCs) made entirely via solution processing at low temperatures (<150°C) offer promise for simple manufacturing, compatibility with flexible substrates, and perovskite-based tandem devices. However, these PSCs require an electron-selective layer that performs well with similar processing. We report a contact-passivation strategy using chlorine-capped TiO2 colloidal nanocrystal film that mitigates interfacial recombination and improves interface binding in low-temperature planar solar cells. We fabricated solar cells with certified efficiencies of 20.1 and 19.5% for active areas of 0.049 and 1.1 square centimeters, respectively, achieved via low-temperature solution processing. Solar cells with efficiency greater than 20% retained 90% (97% after dark recovery) of their initial performance after 500 hours of continuous room-temperature operation at their maximum power point under 1-sun illumination (where 1 sun is defined as the standard illumination at AM1.5, or 1 kilowatt/square meter).

  20. Passivity analysis of higher order evolutionary dynamics and population games

    KAUST Repository

    Mabrok, Mohamed

    2017-01-05

    Evolutionary dynamics describe how the population composition changes in response to the fitness levels, resulting in a closed-loop feedback system. Recent work established a connection between passivity theory and certain classes of population games, namely so-called “stable games”. In particular, it was shown that a combination of stable games and (an analogue of) passive evolutionary dynamics results in stable convergence to Nash equilibrium. This paper considers the converse question of necessary conditions for evolutionary dynamics to exhibit stable behaviors for all generalized stable games. Using methods from robust control analysis, we show that if an evolutionary dynamic does not satisfy a passivity property, then it is possible to construct a generalized stable game that results in instability. The results are illustrated on selected evolutionary dynamics with particular attention to replicator dynamics, which are also shown to be lossless, a special class of passive systems.

  1. Stable iodide doping induced by photonic curing for carbon nanotube transparent conductive films

    Science.gov (United States)

    Wachi, Atsushi; Nishikawa, Hiroyuki; Zhou, Ying; Azumi, Reiko

    2018-06-01

    Doping has become crucial for achieving stable and high-performance conductive transparent carbon nanotube (CNT) films. In this study, we systematically investigate the doping effects of a few materials including alkali metal iodides, nonmetal iodide, and metals. We demonstrate that photonic curing can enhance the doping effects, and correspondingly improve the conductivity of CNT films, and that such iodides have better doping effects than metals. In particular, doping with a nonmetal compound (NH4I) shows the largest potential to improve the conductivity of CNT films. Typically, doping with metal iodides reduces the sheet resistance (R S) of CNT films with 70–80% optical transmittances at λ = 550 nm from 600–2400 to 250–440 Ω/square, whereas doping with NH4I reduces R S to 57 and 84 Ω/square at 74 and 84% optical transmittances, respectively. Interestingly, such a doped CNT film exhibits only a slight increase in sheet resistance under an extreme environment of high temperature (85 °C) and high relative humidity (85%) for 350 h. The results suggest that photonic-curing-induced iodide doping is a promising approach to producing high-performance conductive transparent CNT films.

  2. Electrochemical and passive behaviour of tin alloyed ferritic stainless steel in concrete environment

    Science.gov (United States)

    Luo, Hong; Su, Huaizhi; Li, Baosong; Ying, Guobing

    2018-05-01

    In the present work, the electrochemical behavior and semiconducting properties of a tin alloyed ferritic stainless steel in simulated concrete solution in presence of NaCl were estimated by conventional electrochemical methods such as potentiodynamic polarization, electrochemical impedance spectroscopy, and capacitance measurement (Mott-Schottky approach). The surface passive film was analyzed by X-ray photoelectron spectroscopy. The results revealed a good agreement between pitting corrosion, electrochemical behaviour, and electronic properties. The p and n-type bilayer structure passive film were observed. The increase of Sn4+ oxide species in the passive film shows no beneficial effects on the pitting corrosion. In addition, the dehydration of the passive film was further discussed.

  3. Influence of stress on passive behaviour of steel bars in concrete pore solution

    International Nuclear Information System (INIS)

    Feng Xingguo; Tang Yuming; Zuo Yu

    2011-01-01

    Research highlights: → The influence of load on passivity of steel in concrete pore solution is studied. → The passivity of steel in pore solution decreased as the load amplitude increased. → A micro-crack model is presented to explain passive behaviour of steel under loads. - Abstract: The influence of stress on passive behaviour of steel bars in concrete pore solution was studied with electrochemical impedance spectroscopy and X-ray photoelectron spectroscopy. The passive ability of steel decreased as the applied load increased and higher load had much greater influence on passivation than repeated loading of small magnitude. A micro-crack model was presented to explain the damage of passive layer by loads. Lower load caused micro-cracks in the passive film which might be completely recovered after unloading. Under higher load more micro-cracks were produced in the passive film and some may penetrate the film, leading to irreversible damages.

  4. Passivation behavior of a ferritic stainless steel in concentrated alkaline solutions

    Directory of Open Access Journals (Sweden)

    Arash Fattah-alhosseini

    2015-10-01

    Full Text Available The passivation behavior of AISI 430 ferritic stainless steel was investigated in concentrated alkaline solutions in relation to several test parameters, using electrochemical techniques. Increasing solution pH (varying from 11.5 to 14.0 leads to an increase in the corrosion rate of the alloy. Mott–Schottky analysis revealed that passive films formed on AISI 430 ferritic stainless steel behave as n-type semiconductor and the donor densities increased with pH. Electrochemical impedance spectroscopy (EIS results showed that the reciprocal capacitance of the passive film is directly proportional to its thickness, which decreases with pH increase. The results revealed that for this ferritic stainless steel in concentrated alkaline solutions, decreasing the solution pH offers better conditions for forming passive films with higher protection behavior, due to the growth of a much thicker and less defective film.

  5. The corrosion and passivity of sputtered Mg–Ti alloys

    International Nuclear Information System (INIS)

    Song, Guang-Ling; Unocic, Kinga A.; Meyer, Harry; Cakmak, Ercan; Brady, Michael P.; Gannon, Paul E.; Himmer, Phil; Andrews, Quinn

    2016-01-01

    Highlights: • A supersaturated single phase Mg–Ti alloy can be obtained by magnetron sputtering. • The anodic dissolution of Mg–Ti alloy is inhibited by Ti addition. • The alloy becomes passive when Ti content is high and the alloy has become Ti based. • The formation of a continuous thin passive film is responsible for the passivation of the alloy. - Abstract: This study explored the possibility of forming a “stainless” Mg–Ti alloy. The electrochemical behavior of magnetron-sputtered Mg–Ti alloys was measured in a NaCl solution, and the surface films on the alloys were examined by XPS, SEM and TEM. Increased corrosion resistance was observed with increased Ti content in the sputtered Mg–Ti alloys, but passive-like behavior was not reached until the Ti level (atomic %) was higher than the Mg level. The surface film that formed on sputtered Mg–Ti based alloys in NaCl solution was thick, discontinuous and non-protective, whereas a thin, continuous and protective Mg and Ti oxide film was formed on a sputtered Ti–Mg based alloy.

  6. Effects of Nitrogen on the DOS and the Passive Film Breakdown Potential of AISI 304 Stainless Steel

    International Nuclear Information System (INIS)

    Choe, Han Cheol; Kim, Kwan Hyu; Kim, Myung Soo; Lee, Ho Jong

    1992-01-01

    Effects of nitrogen on the degree of sensitization (DOS) and the passive film breakdown potential (Eb) of AISI 304 stainless steel were studied by potentiostat. AISI 304 stainless steel samples containing 0.02 ∼ 0.10wt% nitrogen were sensitized by heat treatment at 650 .deg. C. The DOS was measured using the double-loop reactivation method of the electrochemical potentiodynamic reactivation (EPR) test with the potential scan rate of 150 mV/min in the electrolyte of 0.5 M H 2 SO 4 + 0.01 M KSCN solution at 25 .deg. C. The passive film breakdown potential (Eb) and repassivation potential (Er) were detected by using the cyclic potentiodynamic polarization test (CPPT) in 0.5M HCI solution at 25 .deg. C. In addition, corrosion morphologies were observed by SEM and optical microscope. It was found that nitrogen additions up to 0.1wt% decreased DOS and increased Eb and Er of AISI 304 stainless steel, whereas the increasing sensitization time increased the DOS and decreased Eb and Er. The corrosion morphologies showed severe pits and intergranular attacks in the samples of low nitrogen content and high DOS

  7. Computer-aided construction and investigation of a thermodynamically stable mouth-dissolving film containing isoniazid

    CSIR Research Space (South Africa)

    Adeleke, Oluwatoyin A

    2015-10-01

    Full Text Available The purpose of this abstract is to design and characterize a thermodynamically stable mouth-dissolving film containing isoniazid employing in silico and in vitro techniques. Isoniazid (solubility = 140 mg/mL and log P = -0.64 at 25°C) is a first...

  8. Intense and stable surface-enhanced Raman scattering from Ag@mesoporous SiO{sub 2} film

    Energy Technology Data Exchange (ETDEWEB)

    Long, Yongjin; Wang, Xiaolong; Chen, Dong; Jiang, Tao, E-mail: jiangtao@nbu.edu.cn; Zhao, Ziqi; Zhou, Jun, E-mail: zhoujun@nbu.edu.cn

    2016-09-15

    A surface-enhanced Raman scattering (SERS) film consisting of mesoporous silica (MSiO{sub 2}) coated Ag nanoparticles (NPs) was achieved. The as-prepared hybrid NPs were uniform in size and formed large amount of aggregates in the film. “Hot spots” were supposed to appear in the MSiO{sub 2} shells with an average size as small as 15 nm. Such a novel core–shell structure therefore induced the enhancement of SERS intensity compared to the film of bare Ag NPs and polymer film of Ag-CMC. The homogeneity and stability of SERS signals from the Ag@MSiO{sub 2} film were also tested. A relative standard deviation of SERS intensity lower than 20% from Raman mapping and a stable SERS signal with excitation power of 100 mW were observed, which were both better than the other two films. Moreover, the obtained Ag@MSiO{sub 2} film was applied to detect thiram pesticides and a detection limit as low as 1×10{sup −8} M was reached, which indicates the advantages of the Ag@MSiO{sub 2} film in biosensor.

  9. Passivation of metals in thionyl-chloride electrolytes for lithium batteries: Summary abstract

    Science.gov (United States)

    Peebles, D. E.; Rogers, J. W., Jr.; Cieslak, W. R.; Delnick, F. M.

    1986-10-01

    Electrochemical methods have indicated that Ni and SS form passive films in SOCl2 electrolytes. The presence of a passive film has been verified by XPS, while the content of the films confirms that they were formed in situ, not prior to immersion in the electrolyte. In contrast, the electrochemical experiments have shown that both Pt and Mo behave kinetically as film-free inert electrodes, a result which has been confirmed by XPS.

  10. Passivation of metals in thionyl-chloride electrolytes for lithium batteries. Summary abstract

    Energy Technology Data Exchange (ETDEWEB)

    Peebles, D.E.; Rogers, J.W. Jr.; Cieslak, W.R.; Delnick, F.M.

    1986-01-01

    Electrochemical methods have indicated that Ni and SS form passive films in SOCl/sub 2/ electrolytes. The presence of a passive film has been verified by XPS, while the content of the films confirms that they were formed in situ, not prior to immersion in the electrolyte. In contrast, the electrochemical experiments have shown that both Pt and Mo behave kinetically as film-free inert electrodes, a result which has been confirmed by XPS.

  11. Stable solar-driven oxidation of water by semiconducting photoanodes protected by transparent catalytic nickel oxide films

    KAUST Repository

    Sun, Ke; Saadi, Fadl H.; Lichterman, Michael F.; Hale, William G.; Wang, Hsinping; Zhou, Xinghao; Plymale, Noah T.; Omelchenko, Stefan T.; He, Jr-Hau; Papadantonakis, Kimberly M.; Brunschwig, Bruce S.; Lewis, Nathan S.

    2015-01-01

    Reactively sputtered nickel oxide (NiOx) films provide transparent, antireflective, electrically conductive, chemically stable coatings that also are highly active electrocatalysts for the oxidation of water to O2(g). These NiOx coatings provide

  12. Efficient Inorganic Perovskite Light-Emitting Diodes with Polyethylene Glycol Passivated Ultrathin CsPbBr3 Films.

    Science.gov (United States)

    Song, Li; Guo, Xiaoyang; Hu, Yongsheng; Lv, Ying; Lin, Jie; Liu, Zheqin; Fan, Yi; Liu, Xingyuan

    2017-09-07

    Efficient inorganic perovskite light-emitting diodes (PeLEDs) with an ultrathin perovskite emission layer (∼30 nm) were realized by doping Lewis base polyethylene glycol (PEG) into CsPbBr 3 films. PEG in the perovskite films not only physically fills the crystal boundaries but also interacts with the perovskite crystals to passivate the crystal grains, reduce nonradiative recombination, and ensure efficient luminance and high efficiency. As a result, promoted brightness, current efficiency (CE), and external quantum efficiency (EQE) were achieved. The nonradiative decay rate of the PEG:CsPbBr 3 composite film is 1 order of magnitude less than that of the neat CsPbBr 3 film. After further optimization of the molar ratio between CsBr and PbBr 2 , a peak CE of 19 cd/A, a maximum EQE of 5.34%, and a maximum brightness of 36600 cd/m 2 were achieved, demonstrating the interaction between PEG and the precursors. The results are expected to offer some helpful implications in optimizing the polymer-assisted PeLEDs with ultrathin emission layers, which might have potential application in see-through displays.

  13. Ultrathin ZnS and ZnO Interfacial Passivation Layers for Atomic-Layer-Deposited HfO2 Films on InP Substrates.

    Science.gov (United States)

    Kim, Seung Hyun; Joo, So Yeong; Jin, Hyun Soo; Kim, Woo-Byoung; Park, Tae Joo

    2016-08-17

    Ultrathin ZnS and ZnO films grown by atomic layer deposition (ALD) were employed as interfacial passivation layers (IPLs) for HfO2 films on InP substrates. The interfacial layer growth during the ALD of the HfO2 film was effectively suppressed by the IPLs, resulting in the decrease of electrical thickness, hysteresis, and interface state density. Compared with the ZnO IPL, the ZnS IPL was more effective in reducing the interface state density near the valence band edge. The leakage current density through the film was considerably lowered by the IPLs because the film crystallization was suppressed. Especially for the film with the ZnS IPL, the leakage current density in the low-voltage region was significantly lower than that observed for the film with the ZnO IPL, because the direct tunneling current was suppressed by the higher conduction band offset of ZnS with the InP substrate.

  14. Passivation of aluminum with alkyl phosphonic acids for biochip applications

    Science.gov (United States)

    Attavar, Sachin; Diwekar, Mohit; Linford, Matthew R.; Davis, Mark A.; Blair, Steve

    2010-09-01

    Self-assembly of decylphosphonic acid (DPA) and octadecylphosphonic acid (ODPA) was studied on aluminum films using XPS, ToF-SIMS and surface wettability. Modified aluminum films were tested for passivation against silanization and subsequent oligonucleotide attachment. Passivation ratios of at least 450:1 compared to unprotected aluminum were obtained, as quantified by attachment of radio-labeled oligos.

  15. Epoxy-Based Organogels for Thermally Reversible Light Scattering Films and Form-Stable Phase Change Materials.

    Science.gov (United States)

    Puig, Julieta; Dell' Erba, Ignacio E; Schroeder, Walter F; Hoppe, Cristina E; Williams, Roberto J J

    2017-03-29

    Alkyl chains of β-hydroxyesters synthesized by the capping of terminal epoxy groups of diglycidylether of bisphenol A (DGEBA) with palmitic (C16), stearic (C18), or behenic (C22) fatty acids self-assemble forming a crystalline phase. Above a particular concentration solutions of these esters in a variety of solvents led to supramolecular (physical) gels below the crystallization temperature of alkyl chains. A form-stable phase change material (FS-PCM) was obtained by blending the ester derived from behenic acid with eicosane. A blend containing 20 wt % ester was stable as a gel up to 53 °C and exhibited a heat storage capacity of 161 J/g, absorbed during the melting of eicosane at 37 °C. Thermally reversible light scattering (TRLS) films were obtained by visible-light photopolymerization of poly(ethylene glycol) dimethacrylate-ester blends (50 wt %) in the gel state at room temperature. The reaction was very fast and not inhibited by oxygen. TRLS films consisted of a cross-linked methacrylic network interpenetrated by the supramolecular network formed by the esters. Above the melting temperature of crystallites formed by alkyl chains, the film was transparent due to the matching between refractive indices of the methacrylic network and the amorphous ester. Below the crystallization temperature, the film was opaque because of light dispersion produced by the organic crystallites uniformly dispersed in the material. Of high significance for application was the fact that the contrast ratio did not depend on heating and cooling rates.

  16. Thermal Stress Behavior of Micro- and Nano-Size Aluminum Films

    International Nuclear Information System (INIS)

    Hanabusa, T.; Kusaka, K.; Nishida, M.

    2008-01-01

    In-situ observation of thermal stresses in thin films deposited on silicon substrate was made by X-ray and synchrotron radiation. Specimens prepared in this experiment were micro- and nano-size thin aluminum films with and without passivation film. The thickness of the film was 1 micrometer for micro-size films and 10, 20 and 50 nanometer for nano-size films. The stress measurement in micro-size films was made by X-ray radiation whereas the measurement of nano-size films was made by synchrotron radiation. Residual stress measurement revealed tensile stresses in all as-deposited films. Thermal stresses were measured in a series of heating- and cooling-stage. Thermal stress behavior of micro-size films revealed hysteresis loop during a heating and cooling process. The width of a hysteresis loop was larger in passivated film that unpassivated film. No hysteresis loops were observed in nano-size films with SiO 2 passivation. Strengthning mechanism in thin films was discussed on a passivation film and a film thickness

  17. Passive behavior of a bulk nanostructured 316L austenitic stainless steel consisting of nanometer-sized grains with embedded nano-twin bundles

    International Nuclear Information System (INIS)

    Li, Tianshu; Liu, Li; Zhang, Bin; Li, Ying; Yan, Fengkai; Tao, Nairong; Wang, Fuhui

    2014-01-01

    Highlights: • Nanometer-grains (NG) and bundles of nano-twins (NT) is synthesized in 316L. • (NG + NT) and NT enhance the concentration of active Fe Fe in the passive film. • (NG + NT) and NT enhance the passive ability. • A Cr 0 -enriched layer forms at the passive film/metal interface. - Abstract: The passive behavior of a bulk nanostructured 316L austenitic stainless steel consisting of nanometer-sized grains (NG) and nano-twin bundles (NT) are investigated. The electrochemical results indicate that the spontaneous passivation ability and growth rate of passive film are improved. The X-ray photoelectron spectroscopy (XPS) shows that a Cr 0 -enriched layer forms at the passive film/metal interface. More nucleation sites afforded by the nanostructures and the enhanced diffusion rate of charged species across the passive film are believed to be responsible for the improved passive ability. The PDM model is introduced to elaborate the microscopic process of passivation

  18. Passive magnetic bearing configurations

    Science.gov (United States)

    Post, Richard F [Walnut Creek, CA

    2011-01-25

    A journal bearing provides vertical and radial stability to a rotor of a passive magnetic bearing system when the rotor is not rotating and when it is rotating. In the passive magnetic bearing system, the rotor has a vertical axis of rotation. Without the journal bearing, the rotor is vertically and radially unstable when stationary, and is vertically stable and radially unstable when rotating.

  19. CdTe as a passivating layer in CdTe/HgCdTe heterostructures

    International Nuclear Information System (INIS)

    Virt, I. S.; Kurilo, I. V.; Rudyi, I. A.; Sizov, F. F.; Mikhailov, N. N.; Smirnov, R. N.

    2008-01-01

    CdTe/Hg 1-x Cd x Te heterostructures are studied. In the structures, CdTe is used as a passivating layer deposited as a polycrystal or single crystal on a single-crystal Hg 1-x Cd x Te film. The film and a passivating layer were obtained in a single technological process of molecular beam epitaxy. The structure of passivating layers was studied by reflection high-energy electron diffraction, and the effect of the structure of the passivating layer on the properties of the active layer was studied by X-ray diffractometry. Mechanical properties of heterostructures were studied by the microhardness method. Electrical and photoelectrical parameters of the Hg 1-x Cd x Te films are reported.

  20. Effect of aluminium on the passivation of zinc–aluminium alloys in artificial seawater at 80 °C

    International Nuclear Information System (INIS)

    Kaewmaneekul, Tanapat; Lothongkum, Gobboon

    2013-01-01

    Highlights: ► Pure Zn and Zn–Al alloys passivate and depassivate in artificial seawater. ► Al retards passivation of Zn–Al alloys. ► Passive film composes of the inner film and the outer charge transfer layers. ► Al increases current density but decreases corrosion resistance of passive films. ► Al increases the electrical conductivity and the capacitance of the films. - Abstract: The effect of Al (0.15, 0.3 and 1.0 wt.%) on the passivation of Zn–Al alloys in artificial seawater at 80 °C is investigated by electrochemical measurements, scanning electron microscopy (SEM) and X-ray diffraction (XRD). It is found that the presence of Al in Zn–Al alloys can retard passivation. Potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) measurements show that Al increases the current density but decreases the corrosion resistance of passive films, respectively. Mott-Schottky analysis reveals that Al increases the electrical conductivity and the capacitance of the films. Passivation of Zn–Al alloys occurs in artificial seawater when the immersion time is between 120 and 288 h, due to the presence of various Zn and Al protective compounds at the surfaces. Depassivation occurs when the immersion time is between 288 and 720 h, probably due to the decrease of solution pH and the Cl − penetration mechanism.

  1. Passivation of interstitial and vacancy mediated trap-states for efficient and stable triple-cation perovskite solar cells

    Science.gov (United States)

    Mahmud, Md Arafat; Elumalai, Naveen Kumar; Upama, Mushfika Baishakhi; Wang, Dian; Gonçales, Vinicius R.; Wright, Matthew; Xu, Cheng; Haque, Faiazul; Uddin, Ashraf

    2018-04-01

    The current work reports the concurrent passivation of interstitial and oxygen vacancy mediated defect states in low temperature processed ZnO electron transport layer (ETL) via Ultraviolet-Ozone (UVO) treatment for fabricating highly efficient (maximum efficiency: 16.70%), triple cation based MA0.57FA0.38Rb0.05PbI3 (MA: methyl ammonium, FA: formamidinium, Rb: rubidium) perovskite solar cell (PSC). Under UV exposure, ozone decomposes to free atomic oxygen and intercalates into the interstitial and oxygen vacancy induced defect sites in the ZnO lattice matrix, which contributes to suppressed trap-assisted recombination phenomena in perovskite device. UVO treatment also reduces the content of functional hydroxyl group on ZnO surface, that increases the inter-particle connectivity and grain size of perovskite film on UVO treated ZnO ETL. Owing to this, the perovskite film atop UVO treated ZnO film exhibits reduced micro-strain and dislocation density values, which contribute to the enhanced photovoltaic performance of PSC with modified ZnO ETL. The modified PSCs exhibit higher recombination resistance (RRec) ∼40% compared to pristine ZnO ETL based control devices. Adding to the merit, the UVO treated ZnO PSC also demonstrates superior device stability, retaining about 88% of its initial PCE in the course of a month-long, systematic degradation study.

  2. Atomic-Layer-Deposition of Indium Oxide Nano-films for Thin-Film Transistors.

    Science.gov (United States)

    Ma, Qian; Zheng, He-Mei; Shao, Yan; Zhu, Bao; Liu, Wen-Jun; Ding, Shi-Jin; Zhang, David Wei

    2018-01-09

    Atomic-layer-deposition (ALD) of In 2 O 3 nano-films has been investigated using cyclopentadienyl indium (InCp) and hydrogen peroxide (H 2 O 2 ) as precursors. The In 2 O 3 films can be deposited preferentially at relatively low temperatures of 160-200 °C, exhibiting a stable growth rate of 1.4-1.5 Å/cycle. The surface roughness of the deposited film increases gradually with deposition temperature, which is attributed to the enhanced crystallization of the film at a higher deposition temperature. As the deposition temperature increases from 150 to 200 °C, the optical band gap (E g ) of the deposited film rises from 3.42 to 3.75 eV. In addition, with the increase of deposition temperature, the atomic ratio of In to O in the as-deposited film gradually shifts towards that in the stoichiometric In 2 O 3 , and the carbon content also reduces by degrees. For 200 °C deposition temperature, the deposited film exhibits an In:O ratio of 1:1.36 and no carbon incorporation. Further, high-performance In 2 O 3 thin-film transistors with an Al 2 O 3 gate dielectric were achieved by post-annealing in air at 300 °C for appropriate time, demonstrating a field-effect mobility of 7.8 cm 2 /V⋅s, a subthreshold swing of 0.32 V/dec, and an on/off current ratio of 10 7 . This was ascribed to passivation of oxygen vacancies in the device channel.

  3. Mesoscale Elucidation of Surface Passivation in the Li-Sulfur Battery Cathode.

    Science.gov (United States)

    Liu, Zhixiao; Mukherjee, Partha P

    2017-02-15

    The cathode surface passivation caused by Li 2 S precipitation adversely affects the performance of lithium-sulfur (Li-S) batteries. Li 2 S precipitation is a complicated mesoscale process involving adsorption, desorption and diffusion kinetics, which are affected profoundly by the reactant concentration and operating temperature. In this work, a mesoscale interfacial model is presented to study the growth of Li 2 S film on carbon cathode surface. Li 2 S film growth experiences nucleation, isolated Li 2 S island growth and island coalescence. The slow adsorption rate at small S 2- concentration inhibits the formation of nucleation seeds and the lateral growth of Li 2 S islands, which deters surface passivation. An appropriate operating temperature, especially in the medium-to-high temperature range, can also defer surface passivation. Fewer Li 2 S nucleation seeds form in such an operating temperature range, thereby facilitating heterogeneous growth and potentially inhibiting the lateral growth of the Li 2 S film, which may ultimately result in reduced surface passivation. The high specific surface area of the cathode microstructure is expected to mitigate the surface passivation.

  4. The strength limits of ultra-thin copper films

    Energy Technology Data Exchange (ETDEWEB)

    Wiederhirn, Guillaume

    2007-07-02

    Elucidating size effects in ultra-thin films is essential to ensure the performance and reliability of MEMS and electronic devices. In this dissertation, the influence of a capping layer on the mechanical behavior of copper (Cu) films was analyzed. Passivation is expected to shut down surface diffusion and thus to alter the contributions of dislocation- and diffusion-based plasticity in thin films. Experiments were carried out on 25 nm to 2 {mu}m thick Cu films magnetron-sputtered onto amorphous-silicon nitride coated silicon (111) substrates. These films were capped with 10 nm of aluminum oxide or silicon nitride passivation without breaking vacuum either directly after Cu deposition or after a 500 C anneal. The evolution of thermal stresses in these films was investigated mainly by the substrate curvature method between -160 C and 500 C. Negligible differences were detected for the silicon nitride vs. the aluminum oxide passivated Cu films. The processing parameters associated with the passivation deposition also had no noticeable effect on the stress-temperature behavior of the Cu. However, the thermomechanical behavior of passivated Cu films strongly depended on the Cu film thickness. For films in the micrometer range, the influence of the passivation layer was not significant, which suggests that the Cu deformed mainly by dislocation plasticity. However, diffusional creep plays an increasing role with decreasing film thickness since it becomes increasingly difficult to nucleate dislocations in smaller grains. Size effects were investigated by plotting the stress at room temperature after thermal cycling as a function of the inverse film thickness. Between 2 {mu}m and 200 nm, the room temperature stress was inversely proportional to the film thickness. The passivation exerted a strong effect on Cu films thinner than 100 nm by effectively shutting down surface diffusion mechanisms. Since dislocation processes were also shut off in these ultra-thin films, they

  5. Advanced passivation techniques for Si solar cells with high-κ dielectric materials

    International Nuclear Information System (INIS)

    Geng, Huijuan; Lin, Tingjui; Letha, Ayra Jagadhamma; Hwang, Huey-Liang; Kyznetsov, Fedor A.; Smirnova, Tamara P.; Saraev, Andrey A.; Kaichev, Vasily V.

    2014-01-01

    Electronic recombination losses at the wafer surface significantly reduce the efficiency of Si solar cells. Surface passivation using a suitable thin dielectric layer can minimize the recombination losses. Herein, advanced passivation using simple materials (Al 2 O 3 , HfO 2 ) and their compounds H (Hf) A (Al) O deposited by atomic layer deposition (ALD) was investigated. The chemical composition of Hf and Al oxide films were determined by X-ray photoelectron spectroscopy (XPS). The XPS depth profiles exhibit continuous uniform dense layers. The ALD-Al 2 O 3 film has been found to provide negative fixed charge (−6.4 × 10 11  cm −2 ), whereas HfO 2 film provides positive fixed charge (3.2 × 10 12  cm −2 ). The effective lifetimes can be improved after oxygen gas annealing for 1 min. I-V characteristics of Si solar cells with high-κ dielectric materials as passivation layers indicate that the performance is significantly improved, and ALD-HfO 2 film would provide better passivation properties than that of the ALD-Al 2 O 3 film in this research work.

  6. Investigation of the passive behaviour of AZ31B alloy in alkaline solutions

    Directory of Open Access Journals (Sweden)

    A. Fattah-alhosseini

    2014-06-01

    Full Text Available In this work, the passivity of AZ31B alloy in NaOH solutions was studied by potentiodynamic polarization, electrochemical impedance spectroscopy (EIS and Mott–Schottky analysis. Potentiodynamic polarization results indicated that decreasing NaOH concentration leads to decrease the corrosion rate of this alloy. EIS results showed that the reciprocal capacitance (1/C of the passive film is directly proportional to its thickness which increases with decreasing NaOH concentration. Therefore, it is clear that dilute NaOH solutions offer better conditions for forming the passive films with higher protection behaviour, due to the growth of a much thicker and less defective films. The Mott–Schottky analysis revealed that the passive films displayed n-type semiconductive characteristics, where the oxygen vacancies and interstitials (over the cation vacancies preponderated. Also, Mott–Schottky results showed that the donor densities evaluated from Mott–Schottky plots are in the range of 1020 cm−3 and decreased with decreasing NaOH concentration.

  7. Reduction of the interfacial trap density of indium-oxide thin film transistors by incorporation of hafnium and annealing process

    Directory of Open Access Journals (Sweden)

    Meng-Fang Lin

    2015-01-01

    Full Text Available The stable operation of transistors under a positive bias stress (PBS is achieved using Hf incorporated into InOx-based thin films processed at relatively low temperatures (150 to 250 °C. The mobilities of the Hf-InOx thin-film transistors (TFTs are higher than 8 cm2/Vs. The TFTs not only have negligible degradation in the mobility and a small shift in the threshold voltage under PBS for 60 h, but they are also thermally stable at 85 °C in air, without the need for a passivation layer. The Hf-InOx TFT can be stable even annealed at 150 °C for positive bias temperature stability (PBTS. A higher stability is achieved by annealing the TFTs at 250 °C, originating from a reduction in the trap density at the Hf-InOx/gate insulator interface. The knowledge obtained here will aid in the realization of stable TFTs processed at low temperatures.

  8. Hexamethylenetetramine-mediated growth of grain-boundary-passivation CH3NH3PbI3 for highly reproducible and stable perovskite solar cells

    Science.gov (United States)

    Zheng, Yan-Zhen; Li, Xi-Tao; Zhao, Er-Fei; Lv, Xin-Ding; Meng, Fan-Li; Peng, Chao; Lai, Xue-Sen; Huang, Meilan; Cao, Guozhong; Tao, Xia; Chen, Jian-Feng

    2018-02-01

    Simultaneously achieving the long-term device stability and reproducibility has proven challenging in perovskite solar cells because solution-processing produced perovskite film with grain boundary is sensitive to moisture. Herein, we develop a hexamethylenetetramine (HMTA)-mediated one-step solution-processing deposition strategy that leads to the formation of high-purity and grain-boundary-passivation CH3NH3PbI3 film and thereby advances cell optoelectronic performance. Through morphological and structural characterizations and theoretical calculations, we demonstrate that HMTA fully occupies the moisture-exposed surface to build a bridge across grain boundary and coordinates with Pb ions to inhibit the formation of detrimental PbI2. Such HMTA-mediated grown CH3NH3PbI3 films achieves a decent augmentation of power conversion efficiency (PCE) from 12.70% to 17.87%. A full coverage of PbI2-free CH3NH3PbI3 surface on ZnO also boosts the device's stability and reproducibility.

  9. Isotope analysis of diamond-surface passivation effect of high-temperature H{sub 2}O-grown atomic layer deposition-Al{sub 2}O{sub 3} films

    Energy Technology Data Exchange (ETDEWEB)

    Hiraiwa, Atsushi, E-mail: hiraiwa@aoni.waseda.jp, E-mail: qs4a-hriw@asahi-net.or.jp [Institute for Nanoscience and Nanotechnology, Waseda University, 513 Waseda-tsurumaki, Shinjuku, Tokyo 162-0041 (Japan); Saito, Tatsuya; Matsumura, Daisuke; Kawarada, Hiroshi, E-mail: kawarada@waseda.jp [Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555 (Japan)

    2015-06-07

    The Al{sub 2}O{sub 3} film formed using an atomic layer deposition (ALD) method with trimethylaluminum as Al precursor and H{sub 2}O as oxidant at a high temperature (450 °C) effectively passivates the p-type surface conduction (SC) layer specific to a hydrogen-terminated diamond surface, leading to a successful operation of diamond SC field-effect transistors at 400 °C. In order to investigate this excellent passivation effect, we carried out an isotope analysis using D{sub 2}O instead of H{sub 2}O in the ALD and found that the Al{sub 2}O{sub 3} film formed at a conventional temperature (100 °C) incorporates 50 times more CH{sub 3} groups than the high-temperature film. This CH{sub 3} is supposed to dissociate from the film when heated afterwards at a higher temperature (550 °C) and causes peeling patterns on the H-terminated surface. The high-temperature film is free from this problem and has the largest mass density and dielectric constant among those investigated in this study. The isotope analysis also unveiled a relatively active H-exchange reaction between the diamond H-termination and H{sub 2}O oxidant during the high-temperature ALD, the SC still being kept intact. This dynamic and yet steady H termination is realized by the suppressed oxidation due to the endothermic reaction with H{sub 2}O. Additionally, we not only observed the kinetic isotope effect in the form of reduced growth rate of D{sub 2}O-oxidant ALD but found that the mass density and dielectric constant of D{sub 2}O-grown Al{sub 2}O{sub 3} films are smaller than those of H{sub 2}O-grown films. This is a new type of isotope effect, which is not caused by the presence of isotopes in the films unlike the traditional isotope effects that originate from the presence of isotopes itself. Hence, the high-temperature ALD is very effective in forming Al{sub 2}O{sub 3} films as a passivation and/or gate-insulation layer of high-temperature-operation diamond SC devices, and the knowledge of

  10. Wireless passive radiation sensor

    Science.gov (United States)

    Pfeifer, Kent B; Rumpf, Arthur N; Yelton, William G; Limmer, Steven J

    2013-12-03

    A novel measurement technique is employed using surface acoustic wave (SAW) devices, passive RF, and radiation-sensitive films to provide a wireless passive radiation sensor that requires no batteries, outside wiring, or regular maintenance. The sensor is small (<1 cm.sup.2), physically robust, and will operate unattended for decades. In addition, the sensor can be insensitive to measurement position and read distance due to a novel self-referencing technique eliminating the need to measure absolute responses that are dependent on RF transmitter location and power.

  11. Instability of flow of liquid film over a heated surface

    International Nuclear Information System (INIS)

    Sha, W.T.

    1994-01-01

    Fundamental concepts and basic equations of a flowing thin liquid film cooling a heated surfaced by its vaporization and the effect of dry patches were treated. Stable film flow prior to the appearance of dry patches on the heated surface is maintained by a balance of various forces due to surface tension, shear stress, heat and mass transfer, and gravity. Film splitting at a critical film thickness produces dry patches due to perturbation by waves on a perfect surface, and often by surface imperfection and uneven heating. This work is primarily motivated by the design of next-generation nuclear reactors, which employ many novel passive heat-removal systems via natural circulation. These systems are design to prevent damage to the reactor core and containment without action by the reactor operators during or after a design basis accident such as a loss of coolant accident (LOCA) or a main steam-line break (MSLB) accident

  12. Enhanced Visible Transmittance of Thermochromic VO2 Thin Films by SiO2 Passivation Layer and Their Optical Characterization

    Directory of Open Access Journals (Sweden)

    Jung-Hoon Yu

    2016-07-01

    Full Text Available This paper presents the preparation of high-quality vanadium dioxide (VO2 thermochromic thin films with enhanced visible transmittance (Tvis via radio frequency (RF sputtering and plasma enhanced chemical vapor deposition (PECVD. VO2 thin films with high Tvis and excellent optical switching efficiency (Eos were successfully prepared by employing SiO2 as a passivation layer. After SiO2 deposition, the roughness of the films was decreased 2-fold and a denser structure was formed. These morphological changes corresponded to the results of optical characterization including the haze, reflectance and absorption spectra. In spite of SiO2 coating, the phase transition temperature (Tc of the prepared films was not affected. Compared with pristine VO2, the total layer thickness after SiO2 coating was 160 nm, which is an increase of 80 nm. Despite the thickness change, the VO2 thin films showed a higher Tvis value (λ 650 nm, 58% compared with the pristine samples (λ 650 nm, 43%. This enhancement of Tvis while maintaining high Eos is meaningful for VO2-based smart window applications.

  13. Most energetic passive states.

    Science.gov (United States)

    Perarnau-Llobet, Martí; Hovhannisyan, Karen V; Huber, Marcus; Skrzypczyk, Paul; Tura, Jordi; Acín, Antonio

    2015-10-01

    Passive states are defined as those states that do not allow for work extraction in a cyclic (unitary) process. Within the set of passive states, thermal states are the most stable ones: they maximize the entropy for a given energy, and similarly they minimize the energy for a given entropy. Here we find the passive states lying in the other extreme, i.e., those that maximize the energy for a given entropy, which we show also minimize the entropy when the energy is fixed. These extremal properties make these states useful to obtain fundamental bounds for the thermodynamics of finite-dimensional quantum systems, which we show in several scenarios.

  14. Hybrid passivated colloidal quantum dot solids

    KAUST Repository

    Ip, Alex

    2012-07-29

    Colloidal quantum dot (CQD) films allow large-area solution processing and bandgap tuning through the quantum size effect. However, the high ratio of surface area to volume makes CQD films prone to high trap state densities if surfaces are imperfectly passivated, promoting recombination of charge carriers that is detrimental to device performance. Recent advances have replaced the long insulating ligands that enable colloidal stability following synthesis with shorter organic linkers or halide anions, leading to improved passivation and higher packing densities. Although this substitution has been performed using solid-state ligand exchange, a solution-based approach is preferable because it enables increased control over the balance of charges on the surface of the quantum dot, which is essential for eliminating midgap trap states. Furthermore, the solution-based approach leverages recent progress in metal:chalcogen chemistry in the liquid phase. Here, we quantify the density of midgap trap states in CQD solids and show that the performance of CQD-based photovoltaics is now limited by electrong-"hole recombination due to these states. Next, using density functional theory and optoelectronic device modelling, we show that to improve this performance it is essential to bind a suitable ligand to each potential trap site on the surface of the quantum dot. We then develop a robust hybrid passivation scheme that involves introducing halide anions during the end stages of the synthesis process, which can passivate trap sites that are inaccessible to much larger organic ligands. An organic crosslinking strategy is then used to form the film. Finally, we use our hybrid passivated CQD solid to fabricate a solar cell with a certified efficiency of 7.0%, which is a record for a CQD photovoltaic device. © 2012 Macmillan Publishers Limited. All rights reserved.

  15. Hybrid passivated colloidal quantum dot solids

    KAUST Repository

    Ip, Alex; Thon, Susanna; Hoogland, Sjoerd H.; Voznyy, Oleksandr; Zhitomirsky, David; Debnath, Ratan K.; Levina, Larissa; Rollny, Lisa R.; Carey, Graham H.; Fischer, Armin H.; Kemp, Kyle W.; Kramer, Illan J.; Ning, Zhijun; Labelle, André J.; Chou, Kang Wei; Amassian, Aram; Sargent, E. H.

    2012-01-01

    Colloidal quantum dot (CQD) films allow large-area solution processing and bandgap tuning through the quantum size effect. However, the high ratio of surface area to volume makes CQD films prone to high trap state densities if surfaces are imperfectly passivated, promoting recombination of charge carriers that is detrimental to device performance. Recent advances have replaced the long insulating ligands that enable colloidal stability following synthesis with shorter organic linkers or halide anions, leading to improved passivation and higher packing densities. Although this substitution has been performed using solid-state ligand exchange, a solution-based approach is preferable because it enables increased control over the balance of charges on the surface of the quantum dot, which is essential for eliminating midgap trap states. Furthermore, the solution-based approach leverages recent progress in metal:chalcogen chemistry in the liquid phase. Here, we quantify the density of midgap trap states in CQD solids and show that the performance of CQD-based photovoltaics is now limited by electrong-"hole recombination due to these states. Next, using density functional theory and optoelectronic device modelling, we show that to improve this performance it is essential to bind a suitable ligand to each potential trap site on the surface of the quantum dot. We then develop a robust hybrid passivation scheme that involves introducing halide anions during the end stages of the synthesis process, which can passivate trap sites that are inaccessible to much larger organic ligands. An organic crosslinking strategy is then used to form the film. Finally, we use our hybrid passivated CQD solid to fabricate a solar cell with a certified efficiency of 7.0%, which is a record for a CQD photovoltaic device. © 2012 Macmillan Publishers Limited. All rights reserved.

  16. Passive and transpassive behaviour of CoCrMo in simulated biological solutions

    International Nuclear Information System (INIS)

    Hodgson, A.W.E.; Kurz, S.; Virtanen, S.; Fervel, V.; Olsson, C.-O.A.; Mischler, S.

    2004-01-01

    In this work, the behaviour of a CoCrMo alloy under simulated body conditions was investigated. More specifically, the electrochemical properties of the alloy and the relevant mechanisms in the passive and transpassive states were studied in detail. Electrochemical techniques such as potentiodynamic and potentiostatic polarisation, cyclic voltammetry, rotating disc electrode and electrochemical impedance spectroscopy were employed. Further, ex situ X-ray photoelectron spectroscopy analysis of the passive films was carried out. A good correlation between the results obtained from all the experimental techniques was achieved. Overall, it was found that the passive film on CoCrMo changed in composition and thickness with both potential and time. The passive behaviour of the CrCrMo alloy is due to a formation an oxide film highly enriched with Cr (∼90% Cr oxides) on the alloy surface. The passive and transpassive behaviour of the alloy is hence dominated by the alloying element Cr. In the transpassive region, strong thickening of the oxide film takes place, combined with a change in the composition of the film, and strongly increased dissolution rate. In the transpassive region, all alloying elements dissolve according to the composition of the alloy. The metal ion release is also very strongly enhanced by cyclic variation of the potential between reducing and oxidizing conditions. In this case, during activation/repassivation cycles, cobalt dissolution is greater than expected from the composition of the alloy. Therefore, active dissolution behaviour is mainly dominated by the alloying element Co

  17. Specific characteristics of radon passive/open model detectors compared to passive/close and charcoal devices

    International Nuclear Information System (INIS)

    Andru, J.

    1990-01-01

    All passive/open detectors, also called Unfiltered alpha Track Detectors (UTDs), are built around KODAK LR115 film, only material sensitive to all ambient alpha particles and capable to work in open mode. The principle of open detectors is not new. They are largely used worldwide, often by scientists (in France, Italy, Japan, Norway, Sweden etc.). However, their particular functioning needs some explanation and some reminders. This paper is more aimed to discuss generalities than details of calculation. The estimation of the Potential Alpha Energy (PAE) concentration is about 4 times better than that from other passive detectors and it includes thoron progeny. The film is more sensitive to ambient decay products than it is to Radon as track count is higher for alpha's of greater initial energy

  18. Surface Passivation Mechanism of Atomic Layer Deposited Al2O3 Films on c-Si Studied by Optical Second-Harmonic Generation

    NARCIS (Netherlands)

    Gielis, J.J.H.; Verlaan, V.; Dingemans, G.; Sanden, van de M.C.M.; Kessels, W.M.M.; Terlinden, N.M.

    2009-01-01

    Recently, it was shown that Al2O3 thin films synthesized by (plasmaassisted) atomic layer deposition (ALD) provide excellent surface passivation of n, p and p+ type c-Si as highly relevant for c-Si photovoltaics. It was found that a large negative fixed charge density (up to 1013 cm-2) in the Al2O3

  19. Reversible p-type conductivity in H passivated nitrogen and phosphorous codoped ZnO thin films using rapid thermal annealing

    Energy Technology Data Exchange (ETDEWEB)

    Mannam, Ramanjaneyulu, E-mail: ramu.nov9@gmail.com [Department of Physics, Nano Functional Materials Technology Centre and Materials Science Research Centre, Indian Institute of Technology Madras, Chennai 600036 (India); Kumar, E. Senthil [SRM Research Institute, Department of Physics and Nanotechnology, SRM University, Kattankulathur 603203, Tamil Nadu (India); DasGupta, Nandita [Microelectronics and MEMS Laboratory, Electrical Engineering Department, Indian Institute of Technology Madras, Chennai 600036 (India); Ramachandra Rao, M.S., E-mail: msrrao@iitm.ac.in [Department of Physics, Nano Functional Materials Technology Centre and Materials Science Research Centre, Indian Institute of Technology Madras, Chennai 600036 (India)

    2017-04-01

    Highlights: • Electrical transport measurements revel that the (P, N) codoped ZnO thin films exhibited change in conductivity from p-type to n-type over a span of 120 days. • Hydrogen and carbon are found to be the main unintentional impurities in n-type (P, N) codoped ZnO thin films. • Rapid thermal annealing has been used to remove both H and C from the films. • Carbon can be removed at an annealing temperature of 600 °C, whereas, the dissociation of N−H complex takes place only at 800 °C. • The n-type (P, N) codoped ZnO thin film exhibited change in conductivity to p-type at an annealing temperature of 800 °C. - Abstract: We demonstrate reversible p-type nature of pulsed laser deposited (P, N) codoped ZnO thin films using rapid thermal annealing process. As grown thin films exhibited change in conductivity from p to n-type over a span of 120 days. Non-annealed n-type thin films contain unintentional donor impurities such as hydrogen and carbon. X-ray photoelectron spectroscopy and Raman measurements conclusively show that hydrogen passivates nitrogen acceptors by forming N−H complex. Carbon can be annealed out at 600 °C, whereas, the dissociation of N−H complex takes place at 800 °C. The films revert its p-type nature at an annealing temperature of 800 °C.

  20. Effect of applied potential on passivation and erosion–corrosion of a Fe-based amorphous metallic coating under slurry impingement

    International Nuclear Information System (INIS)

    Zheng, Z.B.; Zheng, Y.G.; Sun, W.H.; Wang, J.Q.

    2014-01-01

    Highlights: • The passive current density of coating increases with the increasing potential. • Preferential dissolution of high-valence oxides happens at high applied potential. • More chlorides exist in the passive film at high film formation potential. • Critical flow velocity under impingement is related to resistance of passive film. - Abstract: The passive behaviour and erosion–corrosion behaviour of a HVOF sprayed Fe-based amorphous metallic coating have been investigated in 3.5 wt.% NaCl solution by using potentiostatic polarisation, X-ray photoelectron spectroscopy and Mott–Schottky analysis. The fact that passive current density increased with rising potential might result from the preferential dissolution of high-valence oxides and the existence of more chlorides at a higher potential. The critical flow velocity decreased with rising potential because of the lower resistance of passive film at a higher potential. The reason why passive current density changed under jet impingement was discussed by a simple formula

  1. Understanding the Formation of Kinetically Stable Compounds and the Development of Thin Film Pair Distribution Function Analysis

    Science.gov (United States)

    Wood, Suzannah Rebecca

    Navigating the synthesis landscape poses many challenges when developing novel solid state materials. Advancements in both synthesis and characterization are necessary to facilitate the targeting of specific materials. This dissertation discusses the formation of chalcogenide heterostructures and their properties in the first part and the development of thin film pair distribution function analysis (tfPDF) in the second part. The heterostructures were formed by the self-assembly of designed precursors deposited by physical vapor deposition in a modulated elemental reactants approach, which provides the control and predictability to synthesis. Specifically, a series of (BiSe)1+delta(TiSe2) n, where n = 2,3,&4, were synthesized to explore the extent of charge transfer from the BiSe to TiSe2 layers. To further explore the role Bi plays in charge donation, a family of structurally similar compounds, (Bix Sn1-xSe)1+deltaTiSe2, where 0≥x≥1, were synthesized and characterized. Electrical measurements show doping efficiency decreases as x increases, correlated with the structural distortion and the formation of periodic antiphase boundaries containing Bi-Bi pairs. The first heterostructures composed of three unique structural types were synthesized and Bi2Se3 layer thickness was used to tune electrical properties and further explore charge transfer. To better understand the potential energy landscape on which these kinetically stable compounds exist, two investigations were undertaken. The first was a study of the formation and subsequent decomposition of [(BiSe)1+delta]n(TiSe2)n compounds, where n= 2&3, the second an investigation of precursor structure for thermodynamically stable FeSb2 and kinetically stable FeSb3. The second section describes the development of thin film pair distribution function analysis, a technique in which total scattering data for pair distribution function (PDF) analysis is obtained from thin films, suitable for local structure analysis

  2. Temperature-Dependent Electrical Properties of Al2O3-Passivated Multilayer MoS2 Thin-Film Transistors

    Directory of Open Access Journals (Sweden)

    Seok Hwan Jeong

    2018-03-01

    Full Text Available It is becoming more important for electronic devices to operate stably and reproducibly under harsh environments, such as extremely low and/or high temperatures, for robust and practical applications. Here, we report on the effects of atomic-layer-deposited (ALD aluminum oxide (Al2O3 passivation on multilayer molybdenum disulfide (MoS2 thin-film transistors (TFTs and their temperature-dependent electrical properties, especially at a high temperature range from 293 K to 380 K. With the aid of ultraviolet-ozone treatment, an Al2O3 layer was uniformly applied to cover the entire surface of MoS2 TFTs. Our Al2O3-passivated MoS2 TFTs exhibited not only a dramatic reduction of hysteresis but also enhancement of current in output characteristics. In addition, we investigated the temperature-dependent behaviors of the TFT performance, including intrinsic carrier mobility based on the Y-function method.

  3. Passivity of 316L stainless steel in borate buffer solution studied by Mott-Schottky analysis, atomic absorption spectrometry and X-ray photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Feng Zhicao; Cheng Xuequn; Dong Chaofang; Xu Lin; Li Xiaogang

    2010-01-01

    Research highlights: → The polarization curve of 316L SS possesses five turning potentials in passive region. → Films formed at turning potentials perform different electrochemical and semiconductor properties. → Dissolutions and regenerations of passive film at turning potentials are obtained by AAS and XPS. → Turning potentials appearing in passive region are ascribed to the changes of the compositions of the passive films. - Abstract: The passivity of 316L stainless steel in borate buffer solution has been investigated by Mott-Schottky, atomic absorption spectrometry (AAS) and X-ray photoelectron spectroscopy (XPS). The results indicate that the polarization curve in the passive region possesses several turning potentials (0 V SCE , 0.2 V SCE , 0.4 V SCE , 0.6 V SCE and 0.85 V SCE ). The passive films formed at turning potentials perform different electrochemical and semiconductor properties. Further, the compositions of the passive films formed at turning potentials are investigated. The results reasonably explain why these potentials appear in the passive region and why specimens perform different properties at turning potentials.

  4. Graph theory and binary alloys passivated by nickel

    International Nuclear Information System (INIS)

    McCafferty, E.

    2005-01-01

    The passivity of a nickel binary alloy is considered in terms of a network of -Ni-O-Ni- bridges in the oxide film, where Ni is the component of the binary alloy which produces passivity. The structure of the oxide is represented by a mathematical graph, and graph theory is used to calculate the connectivity of the oxide, given by the product of the number of edges in the graph and the Randic index. A stochastic calculation is employed to insert ions of the second metal into the oxide film so as to disrupt the connectivity of the -Ni-O-Ni- network. This disruption occurs at a critical ionic concentration of the oxide film. Mathematical relationships are developed for the introduction of a general ion B +n into the oxide film, and critical ionic compositions are calculated for oxide films on the nickel binary alloys. The notation B refers to any metal B which produces B +n ions in the oxide film, where +n is the oxidation number of the ion. The results of this analysis for Fe-Ni and Cu-Ni binary alloys are in good agreement with experimental results

  5. Investigation of passivity and its breakdown on Fe3Al–Si and Fe3Al–Ge intermetallics in chloride-containing solution

    International Nuclear Information System (INIS)

    Rosalbino, F.; Carlini, R.; Parodi, R.; Zanicchi, G.; Scavino, G.

    2014-01-01

    Highlights: • Passivity and its breakdown on Fe 3 Al–Si and Fe 3 Al–Ge iron aluminides was investigated. • Investigation was performed in borate buffer solution with and without 100 mM KCl. • Polarization, potentiostatic transients and impedance measurements have been employed. • Results have been compared with those obtained on Fe 3 Al intermetallic. • Si and Ge improve the resistance to localized corrosion of Fe 3 Al. - Abstract: The passivity and passivity breakdown of Fe 3 Al–Si and Fe 3 Al–Ge iron aluminides were studied in borate buffer solution (pH 8.4) in the absence and presence of 100 mM KCl, performing potentiodynamic polarization, potentiostatic transients and electrochemical impedance spectroscopy (EIS) measurements complemented with scanning electron microscopy (SEM). In the absence of chloride ions Si and Ge exercise a beneficial role in the passivating characteristics of Fe 3 Al intermetallic. Addition of Si or Ge significantly modifies the electrochemical response of iron aluminide Fe 3 Al resulting in a more stable passive film. In the presence of chloride ions all the intermetallic compounds experience localized corrosion (pitting). However, Si and Ge alloying additions increase the breakdown potential and the extent of passivation domain, indicating improved resistance to initiation of pitting corrosion. Furthermore, EIS measurements performed at the breakdown state evidenced higher R ct and lower depression angle values for Fe 3 Al–Si and Fe 3 Al–Ge iron aluminides compared to Fe 3 Al intermetallic, confirming their better localized corrosion behavior. The improved resistance to pitting corrosion results from the enhanced protective function of passive film due to the presence of Si or Ge that inhibit pit initiation by hindering the adsorption of Cl − ions at the metal surface

  6. Characterization of Al2O3 surface passivation of silicon solar cells

    International Nuclear Information System (INIS)

    Albadri, Abdulrahman M.

    2014-01-01

    A study of the passivation of silicon surface by aluminum oxide (Al 2 O 3 ) is reported. A correlation of fixed oxide charge density (Q f ) and interface trap density (D it ) on passivation efficiency is presented. Low surface recombination velocity (SRV) was obtained even by as-deposited Al 2 O 3 films and this was found to be associated to the passivation of interface states. Fourier transfer infrared spectroscopy spectra show the existence of an interfacial silicon oxide thin layer in both as-deposited and annealed Al 2 O 3 films. Q f is found positive in as-deposited films and changing to negative upon subsequent annealing, providing thus an enhancement of the passivation in p-type silicon wafers, associated to field effects. Secondary ion mass spectrometry analysis confirms the correlation between D it and hydrogen concentration at the Al 2 O 3 /Si interface. A lowest SRV of 15 cm/s was obtained after an anneal at 400 °C in nitrogen atmosphere. - Highlights: • Al 2 O 3 provides superior passivation for silicon surfaces. • Atomic layer deposition-Al 2 O 3 was deposited at a low temperature of 200 °C. • A lowest surface passivation velocity of 15 cm/s was obtained after an anneal at 400 °C in nitrogen. • As-deposited Al 2 O 3 films form very thin SiO 2 layer responsible of low interface trap densities. • High negative fixed charge density of (− 2 × 10 12 cm −2 ) was achieved upon annealing at 400 °C

  7. Main principles of passive devices based on graphene and carbon films in microwave-THz frequency range

    Science.gov (United States)

    Kuzhir, Polina P.; Paddubskaya, Alesia G.; Volynets, Nadezhda I.; Batrakov, Konstantin G.; Kaplas, Tommi; Lamberti, Patrizia; Kotsilkova, Rumiana; Lambin, Philippe

    2017-07-01

    The ability of thin conductive films, including graphene, pyrolytic carbon (PyC), graphitic PyC (GrPyC), graphene with graphitic islands (GrI), glassy carbon (GC), and sandwich structures made of all these materials separated by polymer slabs to absorb electromagnetic radiation in microwave-THz frequency range, is discussed. The main physical principles making a basis for high absorption ability of these heterostructures are explained both in the language of electromagnetic theory and using representation of equivalent electrical circuits. The idea of using carbonaceous thin films as the main working elements of passive radiofrequency (RF) devices, such as shields, filters, polarizers, collimators, is proposed theoretically and proved experimentally. The important advantage of PyC, GrI, GrPyC, and GC is that, in contrast to graphene, they either can be easily deposited onto a dielectric substrate or are strong enough to allow their transfer from the catalytic substrate without a shuttle polymer layer. This opens a new avenue toward the development of a scalable protocol for cost-efficient production of ultralight electromagnetic shields that can be transferred to commercial applications. A robust design via finite-element method and design of experiment for RF devices based on carbon/graphene films and sandwiches is also discussed in the context of virtual prototyping.

  8. Effect of small addition of Mn on the passivation of Zn in 0.1 M NaOH solution

    International Nuclear Information System (INIS)

    Shang Xiuling; Zhang Bo; Han Enhou; Ke Wei

    2011-01-01

    The passivation of pure Zn (99.995 wt%) and Zn-0.4Mn (0.4 wt% Mn) alloy in a deaerated 0.1 M NaOH solution (pH 12.9) was investigated by electrochemical measurements, X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). The potentiodynamic polarization and electrochemical impedance measurements show that addition of 0.4 wt% Mn can decrease the passive current density of Zn in the passive region. XPS surface analysis indicates that there is approximately 1.0-2.0 at% Mn 2+ being incorporated into the passive film on Zn-0.4Mn alloy with Mn content being higher in the outer layers. Mott-Schottky analysis shows that the incorporated Mn can decrease concentration of defects in the film. AFM observations disclose that Mn can decrease the grain size of the film. The mechanism by which Mn additions improve the passivity of Zn is that the incorporated Mn can inhibit ions transportation in the film and inhibit its growth. Meanwhile, Mn can also promote the nucleation of Zn oxides and decrease film porosity.

  9. Development of a passive and remote magnetic microsensor with thin-film giant magnetoimpedance element and surface acoustic wave transponder

    KAUST Repository

    Al Rowais, Hommood; Li, Bodong; Liang, Cai; Green, Scott Ryan; Gianchandani, Yogesh B.; Kosel, Jü rgen

    2011-01-01

    This paper presents the development of a wireless magnetic field sensor consisting of a three-layer thin-film giant magnetoimpedance sensor and a surface acoustic wave device on one substrate. The goal of this integration is a passive and remotely interrogated sensor that can be easily mass fabricated using standard microfabrication tools. The design parameters, fabrication process, and a model of the integrated sensor are presented together with experimental results of the sensor. © 2011 American Institute of Physics.

  10. Passive dosing of triclosan in multi-generation tests with copepods - Stable exposure concentrations and effects at the low µg l-1 range

    DEFF Research Database (Denmark)

    Ribbenstedt, Anton; Mustajärvi, Lukas; Breitholtz, Magnus

    2017-01-01

    to test the applicability of passive dosing to maintain stable concentrations of the organochlorine bacteriocide triclosan in the water phase during a 6-week multi-generation population development test with the harpacticoid copepod Nitocra spinipes. Triclosan was loaded into silicone (1000 mg), which...... was used as passive dosing phase in the exposure vials. The distribution ratio for triclosan between silicone and water (Dsilicone-water ) was 10466 ± 1927. A population development test was conducted at three concentration levels of triclosan that were measured to be 3-5 µg L(-1) , 7-11 µg L(-1) and 16...... exerted on juvenile development. Progressively lower development index values in the populations exposed to increasing triclosan concentrations suggest developmental retardation. Our results further stress the need for chronic exposure during ecotoxicity testing in chemical risk assessment as even...

  11. A XPS study of the Mo effect on passivation behaviors for highly controlled stainless steels in neutral and alkaline conditions

    International Nuclear Information System (INIS)

    Mesquita, Thiago J.; Chauveau, Eric; Mantel, Marc; Nogueira, Ricardo P.

    2013-01-01

    The objective of this work is to study the effect of Mo additions on film passive properties of three different stainless steels (SS) types (austenitic, ferritic and duplex alloys). A comparison between Mo containing (3 wt% Mo) and free Mo (0 wt% Mo) grades of highly controlled laboratory heats was done considering their passive film formed in different aggressive conditions, from neutral to alkaline pH. The presence of oxidized Mo on the passive layer was confirmed by X-ray photoelectron Spectroscopy (XPS). The presence of Mo within the passive film improved the passivity breakdown potential for the duplex and ferritic SS, but seemed to have no effect for austenitic SS.

  12. A XPS study of the Mo effect on passivation behaviors for highly controlled stainless steels in neutral and alkaline conditions

    Energy Technology Data Exchange (ETDEWEB)

    Mesquita, Thiago J., E-mail: thiago.mesquita@ugitech.com [Ugitech Research Center, Avenue Paul Girod, 73403 Ugine Cedex (France); Chauveau, Eric; Mantel, Marc [Ugitech Research Center, Avenue Paul Girod, 73403 Ugine Cedex (France); Nogueira, Ricardo P. [LEPMI UMR 5279 CNRS – Grenoble INP–Université de Savoie–Université Joseph Fourier BP 75, 38402 St Martin d’Hères (France)

    2013-04-01

    The objective of this work is to study the effect of Mo additions on film passive properties of three different stainless steels (SS) types (austenitic, ferritic and duplex alloys). A comparison between Mo containing (3 wt% Mo) and free Mo (0 wt% Mo) grades of highly controlled laboratory heats was done considering their passive film formed in different aggressive conditions, from neutral to alkaline pH. The presence of oxidized Mo on the passive layer was confirmed by X-ray photoelectron Spectroscopy (XPS). The presence of Mo within the passive film improved the passivity breakdown potential for the duplex and ferritic SS, but seemed to have no effect for austenitic SS.

  13. Stable High-Performance Perovskite Solar Cells via Grain Boundary Passivation

    KAUST Repository

    Niu, Tianqi; Lu, Jing; Munir, Rahim; Li, Jianbo; Barrit, Dounya; Zhang, Xu; Hu, Hanlin; Yang, Zhou; Amassian, Aram; Zhao, Kui; Liu, Shengzhong Frank

    2018-01-01

    the energy offset between the semiconducting molecules and the perovskite influences trap states and intergrain carrier transport. The superior optoelectronic properties are attained by optimizing the molecular passivation treatments. These benefits

  14. Surface protection during plasma hydrogenation for acceptor passivation in InP

    International Nuclear Information System (INIS)

    Lopata, J.; Dautremont-Smith, W.C.; Pearton, S.J.; Lee, J.W.; Ha, N.T.; Luftman, H.S.

    1990-01-01

    Various dielectric and metallic films were examined as H-permeable surface protection layers on InP during H 2 or D 2 plasma exposure for passivation of acceptors in the InP. Plasma deposited SiN x , SiO 2 , and a-Si(H) films ranging in thickness from 85 to 225 angstrom were used to protect p-InP during d 2 plasma exposure at 250 degrees C. Optimum protective layer thicknesses were determined by a trade-off between the effectiveness of the layer to prevent P loss from the wafer surface and the ability to diffuse atomic H or D at a rate greater than or equal to that in the underlying InP. SIMS and capacitance-voltage depth profiling were used to determine the extent of D in-diffusion and acceptor passivation respectively. Sputter deposited W and e-beam evaporated Ti films ∼100 Angstrom thick were also evaluated. The W coated sample yielded similar results to those with dielectric films in that acceptors in p-InP were passivated to a similar depth for the same plasma exposure. The 100 Angstrom Ti film, however, did not allow the D to diffuse into the InP substrate. It is surmised that the Ti film trapped the D, thus preventing diffusion into the substrate

  15. Passivation of high temperature superconductors

    Science.gov (United States)

    Vasquez, Richard P. (Inventor)

    1991-01-01

    The surface of high temperature superconductors such as YBa2Cu3O(7-x) are passivated by reacting the native Y, Ba and Cu metal ions with an anion such as sulfate or oxalate to form a surface film that is impervious to water and has a solubility in water of no more than 10(exp -3) M. The passivating treatment is preferably conducted by immersing the surface in dilute aqueous acid solution since more soluble species dissolve into the solution. The treatment does not degrade the superconducting properties of the bulk material.

  16. Transition behavior of asymmetric polystyrene-b-poly(2-vinylpyridine) films: A stable hexagonally modulated layer structure

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sungmin; Koo, Kyosung; Kim, Kyunginn; Ahn, Hyungju; Lee, Byeongdu; Park, Cheolmin; Ryu, Du Yeol

    2015-03-09

    The phase transitions in the films of an asymmetric polystyrene-b-poly(2-vinylpyridine) (PS-b-P2VP) were investigated by grazing incidence small-angle X-ray scattering (GISAXS) and transmission electron microscopy (TEM). Compared with the sequential transitions in the bulk, hexagonally perforated layer (HPL) – gyroid (GYR) – disorder (DIS) upon heating, the transitions in film geometry were dramatically changed with decreasing thickness due to the growing preferential interactions from substrate, resulting in a thickness-dependent transition diagram including four different morphologies of hexagonally modulated layer (HML), coexisting (HML and GYR), GYR, and DIS. Particularly in the films ≤10Lo, where Lo is d-spacing at 150 °C, a stable HML structure was identified even above the order-to-disorder transition (ODT) temperature of the bulk, which was attributed to the suppressed compositional fluctuations by the enhanced substrate interactions.

  17. An ultrathin polymer coating of carboxylate self-assembled monolayer adsorbed on passivated iron to prevent iron corrosion in 0.1 M Na2SO4

    International Nuclear Information System (INIS)

    Aramaki, Kunitsugu; Shimura, Tadashi

    2010-01-01

    For preparing an ultrathin two-dimensional polymer coating adsorbed on passivated iron, a 16-hydroxyhexadecanoate ion HO(CH 2 ) 15 CO 2 - self-assembled monolayer (SAM) was modified with 1,2-bis(triethoxysilyl)ethane (C 2 H 5 O) 3 Si(CH 2 ) 2 Si(OC 2 H 5 ) 3 and octadecyltriethoxysilane C 18 H 37 Si(OC 2 H 5 ) 3 . Protection of passivated iron against passive film breakdown and corrosion of iron was investigated by monitoring of the open-circuit potential and repeated polarization measurements in an aerated 0.1 M Na 2 SO 4 solution during immersion for many hours. The time required for passive film breakdown of the polymer-coated electrode was markedly higher in this solution than that of the passivated one, indicating protection of the passive film from breakdown by coverage with the polymer coating. The protective efficiencies of the passive film covered with the coating were extremely high, more than 99.9% in 0.1 M Na 2 SO 4 before the passive film was broken down, showing prominent cooperative suppression of iron corrosion in the solution by coverage with the passive film and polymer coating. The polymer-coated surface was characterized by contact angle measurement and electron-probe microanalysis (EPMA). Prevention of passive film breakdown and iron corrosion for the polymer-coated electrode healed in 0.1 M NaNO 3 was also examined in 0.1 M Na 2 SO 4 .

  18. Passivation behaviour of stainless steel (UNS N-08028) in industrial or simplified phosphoric acid solutions at different temperatures

    International Nuclear Information System (INIS)

    Ben Salah, M.; Sabot, R.; Refait, Ph.; Liascukiene, I.; Méthivier, C.; Landoulsi, J.; Dhouibi, L.

    2015-01-01

    Highlights: • Industrial phosphoric acid is less aggressive than simulated industrial acid. • Polyphosphate film in Industrial acid is reinforced by calcium and sulfate. • Passive film thickness is obtained by the power law model from EIS measurements. • Passive film of Sanicro28 becomes more resistive towards corrosion with exposure time in industrial acid. • XPS measurements coupled to Raman spectroscopy reveal the corrosion products formed in simulated acid. - Abstract: The corrosion behaviour of Sanicro28, in industrial phosphoric acid and simplified solution of pure H_3PO_4 containing sulphates and chlorides, is investigated during 48 h between 20 and 80 °C. Results show higher corrosion resistance in the industrial medium. Film thickness evaluated by EIS remains constant in industrial acid due to polyphosphate that promotes crystallisation of the Cr_2O_3 inner layer. Conversely, the passive film is partially destroyed at 80 °C in simplified acid. XPS and Raman analysis show that phosphate and molybdenum are both present in the passive film and in corrosion products. The role of Ca present in the industrial acid is discussed.

  19. Structural characterization and properties of lanthanum film as chromate replacement for tinplate

    International Nuclear Information System (INIS)

    Huang Xingqiao; Li Ning

    2007-01-01

    Sulfide-stain resistance of La-passivated, unpassivated and Cr-passivated tinplate was measured using a cysteine tarnish test. Corrosion behavior of these tinplates was investigated using electrochemical impedance spectroscopy (EIS) measurement. The morphology, composition and thickness of lanthanum film were studied by atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and X-ray fluorescence spectrometry (XRF), respectively. La-passivation treatment remarkably enhances sulfide-stain resistance of tinplate, and sulfide-stain resistance of La-passivated tinplate is slightly higher than that of Cr-passivated tinplate. La-passivation treatment also significantly improves corrosion protection property of tinplate. In contact with 3.5% NaCl solution, corrosion resistance of La-passivated tinplate is close to that of Cr-passivated tinplate, and in contact with 0.1 M citric-citrate buffer solution, corrosion resistance of La-passivated tinplate is higher than that of Cr-passivated tinplate. Lanthanum film is composed of spherical particles about 50-1000 nm in diameter, while most part of tinplate's surface is covered with the small particles about 50-200 nm. The film mainly consists of lanthanum and oxygen, which mainly exist as La 2 O 3 and its hydrates such as La(OH) 3 and LaOOH. The amount of lanthanum in the film is about 0.0409 g/m 2

  20. Thin film-based optically variable security devices: From passive to active

    Science.gov (United States)

    Baloukas, Bill

    Counterfeiting costs the world economy billions of dollars every year. Aside from financial losses, counterfeiting also poses a great threat to the public's safety, for example through the existence of counterfeit passports (terrorism), pharmaceutical products (health hazards) and even airplane parts (safety issues). Optical security devices (OSDs) have therefore played a critical role in the fight against counterfeiting. It is the aim of the present thesis to show that through the use of metamerism and electrochromic materials, new types of active security devices with interesting features can be created; indeed, most present-day devices are passive in nature. I first demonstrate that the addition of metamerism in the design of interference filters can result in innovative features. Different structures which can be used in transmission and/or in reflection are designed, fabricated, and evaluated. The first structures which are presented here are based on a combination of two different metameric interference filters. Possessing widely different transmission spectra, these filters also offer different angular color shifts and, as a result, offer an opportunity of creating hidden image effects. Despite their interesting properties, such metameric devices are shown to be highly illuminant and observer sensitive; that is the color match is lost under most observation conditions. These issues are solved by a simpler structure based on the juxtaposition of an interference filter and a non-iridescent colored material. Throughout this study, I present the design approach, analyze the filters' sensitivity to deposition errors, and evaluate the performance of prototype devices prepared by dual ion beam sputtering. Following my work on passive metameric systems, I then propose to go one step further by implementing an active component using an electrochromic material. This novel concept, which is based on the joint use of a metameric filter and electrochromic device, offers

  1. Large scale solvothermal synthesis and a strategy to obtain stable Langmuir–Blodgett film of CoFe2O4 nanoparticles

    International Nuclear Information System (INIS)

    Thampi, Arya; Babu, Keerthi; Verma, Seema

    2013-01-01

    Highlights: • Large scale, monodisperse CoFe 2 O 4 nanoparticles by solvothermal route. • LB technique to obtain stable film of CoFe 2 O 4 nanoparticles over a large area. • Hydrophobicity of substrate was enhanced utilizing LB films of cadmium arachidate. • P–A isotherm and AFM cross sectional height profile analysis confirms stability. • Large scale organization of nanoparticles for surface pressure higher than 15 mN/m. -- Abstract: Nearly monodisperse oleic acid coated cobalt ferrite nanoparticles were synthesized in large scale by a simple solvothermal method utilizing N-methyl 2-Pyrrolidone (NMP) as a high boiling solvent. The magnetic oxide was further investigated by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM) and vibrating sample magnetometer (VSM). Langmuir–Blodgett (LB) technique is discussed to obtain a 2D assembly of oleic acid coated CoFe 2 O 4 nanoparticles over a large area. We describe a method to obtain stable, condensed three layers of cadmium arachidate on a piranha treated glass substrate. The hydrophobic surface thus obtained was subsequently used for forming a stable monolayer of oleic acid stabilized cobalt ferrite nanoparticles at the air–water interface. The stability of the LB films at the air–water interface was studied by pressure–area isotherm curves and atomic force microscopy (AFM) cross sectional height profile analysis. 2D organization of the magnetic nanoparticles at different surface pressures was studied by TEM. Preparation of large area LB films of CoFe 2 O 4 nanoparticles is reported for a surface pressure more than 15 mN/m

  2. Passive cavitation imaging with ultrasound arrays.

    Science.gov (United States)

    Salgaonkar, Vasant A; Datta, Saurabh; Holland, Christy K; Mast, T Douglas

    2009-12-01

    A method is presented for passive imaging of cavitational acoustic emissions using an ultrasound array, with potential application in real-time monitoring of ultrasound ablation. To create such images, microbubble emissions were passively sensed by an imaging array and dynamically focused at multiple depths. In this paper, an analytic expression for a passive image is obtained by solving the Rayleigh-Sommerfield integral, under the Fresnel approximation, and passive images were simulated. A 192-element array was used to create passive images, in real time, from 520-kHz ultrasound scattered by a 1-mm steel wire. Azimuthal positions of this target were accurately estimated from the passive images. Next, stable and inertial cavitation was passively imaged in saline solution sonicated at 520 kHz. Bubble clusters formed in the saline samples were consistently located on both passive images and B-scans. Passive images were also created using broadband emissions from bovine liver sonicated at 2.2 MHz. Agreement was found between the images and source beam shape, indicating an ability to map therapeutic ultrasound beams in situ. The relation between these broadband emissions, sonication amplitude, and exposure conditions are discussed.

  3. Passivity analysis and synthesis for uncertain time-delay systems

    Directory of Open Access Journals (Sweden)

    Magdi S. Mahmoud

    2001-01-01

    Full Text Available In this paper, we investigate the robust passivity analysis and synthesis problems for a class of uncertain time-delay systems. This class of systems arises in the modelling effort of studying water quality constituents in fresh stream. For the analysis problem, we derive a sufficient condition for which the uncertain time-delay system is robustly stable and strictly passive for all admissible uncertainties. The condition is given in terms of a linear matrix inequality. Both the delay-independent and delay-dependent cases are considered. For the synthesis problem, we propose an observer-based design method which guarantees that the closed-loop uncertain time-delay system is stable and strictly passive for all admissible uncertainties. Several examples are worked out to illustrate the developed theory.

  4. Self-aligned indium–gallium–zinc oxide thin-film transistors with SiNx/SiO2/SiNx/SiO2 passivation layers

    International Nuclear Information System (INIS)

    Chen, Rongsheng; Zhou, Wei; Zhang, Meng; Kwok, Hoi-Sing

    2014-01-01

    Self-aligned top-gate amorphous indium–gallium–zinc oxide (a-IGZO) thin-film transistors (TFTs) with SiN x /SiO 2 /SiN x /SiO 2 passivation layers are developed in this paper. The resulting a-IGZO TFT exhibits high reliability against bias stress and good electrical performance including field-effect mobility of 5 cm 2 /Vs, threshold voltage of 2.5 V, subthreshold swing of 0.63 V/decade, and on/off current ratio of 5 × 10 6 . With scaling down of the channel length, good characteristics are also obtained with a small shift of the threshold voltage and no degradation of subthreshold swing. The proposed a-IGZO TFTs in this paper can act as driving devices in the next generation flat panel displays. - Highlights: • Self-aligned top-gate indium–gallium–zinc oxide thin-film transistor is proposed. • SiN x /SiO 2 /SiN x /SiO 2 passivation layers are developed. • The source/drain areas are hydrogen-doped by CHF3 plasma. • The devices show good electrical performance and high reliability against bias stress

  5. Origin of thermally stable ferroelectricity in a porous barium titanate thin film synthesized through block copolymer templating

    Directory of Open Access Journals (Sweden)

    Norihiro Suzuki

    2017-07-01

    Full Text Available A porous barium titanate (BaTiO3 thin film was chemically synthesized using a surfactant-assisted sol-gel method in which micelles of amphipathic diblock copolymers served as structure-directing agents. In the Raman spectrum of the porous BaTiO3 thin film, a peak corresponding to the ferroelectric tetragonal phase was observed at around 710 cm−1, and it remained stable at much higher temperature than the Curie temperature of bulk single-crystal BaTiO3 (∼130 °C. Measurements revealed that the ferroelectricity of the BaTiO3 thin film has high thermal stability. By analyzing high-resolution transmission electron microscope images of the BaTiO3 thin film by the fast Fourier transform mapping method, the spatial distribution of stress in the BaTiO3 framework was clearly visualized. Careful analysis also indicated that the porosity in the BaTiO3 thin film introduced anisotropic compressive stress, which deformed the crystals. The resulting elongated unit cell caused further displacement of the Ti4+ cation from the center of the lattice. This displacement increased the electric dipole moment of the BaTiO3 thin film, effectively enhancing its ferro(piezoelectricity.

  6. Stable and Efficient Organo-Metal Halide Hybrid Perovskite Solar Cells via π-Conjugated Lewis Base Polymer Induced Trap Passivation and Charge Extraction.

    Science.gov (United States)

    Qin, Ping-Li; Yang, Guang; Ren, Zhi-Wei; Cheung, Sin Hang; So, Shu Kong; Chen, Li; Hao, Jianhua; Hou, Jianhui; Li, Gang

    2018-03-01

    High-quality pinhole-free perovskite film with optimal crystalline morphology is critical for achieving high-efficiency and high-stability perovskite solar cells (PSCs). In this study, a p-type π-conjugated polymer poly[(2,6-(4,8-bis(5-(2-ethylhexyl) thiophen-2-yl)-benzo[1,2-b:4,5-b'] dithiophene))-alt-(5,5-(1',3'-di-2-thienyl-5',7'-bis(2-ethylhexyl) benzo[1',2'-c:4',5'-c'] dithiophene-4,8-dione))] (PBDB-T) is introduced into chlorobenzene to form a facile and effective template-agent during the anti-solvent process of perovskite film formation. The π-conjugated polymer PBDB-T is found to trigger a heterogeneous nucleation over the perovskite precursor film and passivate the trap states of the mixed perovskite film through the formation of Lewis adducts between lead and oxygen atom in PBDB-T. The p-type semiconducting and hydrophobic PBDB-T polymer fills in the perovskite grain boundaries to improve charge transfer for better conductivity and prevent moisture invasion into the perovskite active layers. Consequently, the PSCs with PBDB-T modified anti-solvent processing leads to a high-efficiency close to 20%, and the devices show excellent stability, retaining about 90% of the initial power conversion efficiency after 150 d storage in dry air. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. In situ EC-AFM study of the effect of nanocrystals on the passivation and pit initiation in an Al-based metallic glass

    International Nuclear Information System (INIS)

    Zhang, S.D.; Liu, Z.W.; Wang, Z.M.; Wang, J.Q.

    2014-01-01

    Highlights: • The nanoscale corrosion on Al-rich glass was characterised by in situ EC-AFM. • The nanocrystals were identified from amorphous matrix by tapping mode AFM. • The formation of corrosion products is associated with the galvanic coupling. • The nanocrystals changed the local structure and component of the passive film. - Abstract: The effect of nanocrystals on pit initiation in metallic glasses is an unresolved issue. The passive film formation and pit initiation in the Al–Ni–Ce metallic glass were investigated using in situ electrochemical atomic force microscope (EC-AFM). The α-Al nanophases were identified from the amorphous matrix based upon the phase imaging in the tapping mode AFM. In the early stage of the passive film formation, the corrosion products Al(OH) 3 formed on the α-Al nanoparticles due to the galvanic coupling. The corrosion products incorporated into the passive film changed the local structure and component of the passive film, lowering its stability

  8. Controllable self-induced passivation of hybrid lead iodide perovskites toward high performance solar cells.

    Science.gov (United States)

    Chen, Qi; Zhou, Huanping; Song, Tze-Bin; Luo, Song; Hong, Ziruo; Duan, Hsin-Sheng; Dou, Letian; Liu, Yongsheng; Yang, Yang

    2014-07-09

    To improve the performance of the polycrystalline thin film devices, it requires a delicate control of its grain structures. As one of the most promising candidates among current thin film photovoltaic techniques, the organic/inorganic hybrid perovskites generally inherit polycrystalline nature and exhibit compositional/structural dependence in regard to their optoelectronic properties. Here, we demonstrate a controllable passivation technique for perovskite films, which enables their compositional change, and allows substantial enhancement in corresponding device performance. By releasing the organic species during annealing, PbI2 phase is presented in perovskite grain boundaries and at the relevant interfaces. The consequent passivation effects and underlying mechanisms are investigated with complementary characterizations, including scanning electron microscopy (SEM), X-ray diffraction (XRD), time-resolved photoluminescence decay (TRPL), scanning Kelvin probe microscopy (SKPM), and ultraviolet photoemission spectroscopy (UPS). This controllable self-induced passivation technique represents an important step to understand the polycrystalline nature of hybrid perovskite thin films and contributes to the development of perovskite solar cells judiciously.

  9. Electrochemical characterization of oxide film formed at high temperature on Alloy 690

    Energy Technology Data Exchange (ETDEWEB)

    Abraham, Geogy J., E-mail: gja@barc.gov.in [Materials Science Division, BARC, Mumbai 400 085 (India); Bhambroo, Rajan [Deptt. of Metallurgical Engg. and Mat. Sci., IIT Bombay, Mumbai 400 076 (India); Kain, V. [Materials Science Division, BARC, Mumbai 400 085 (India); Shekhar, R. [CCCM, BARC, Hyderabad 500 062 (India); Dey, G.K. [Materials Science Division, BARC, Mumbai 400 085 (India); Raja, V.S. [Deptt. of Metallurgical Engg. and Mat. Sci., IIT Bombay, Mumbai 400 076 (India)

    2012-02-15

    Highlights: Black-Right-Pointing-Pointer GD-QMS studies of high temperature oxide film formed on Alloy 690. Black-Right-Pointing-Pointer Defect density reduced with increase in temperature. Black-Right-Pointing-Pointer Electrochemical behaviour of oxide film correlated to the Cr-content in oxide. - Abstract: High temperature passivation studies on Alloy 690 were carried out in lithiated water at 250 Degree-Sign C, 275 Degree-Sign C and 300 Degree-Sign C for 72 h. The passive films were characterized by glow discharge-quadrupole mass spectroscopy (GD-QMS) for compositional variation across the depth and micro laser Raman spectroscopy for oxide composition on the surface. The defect density in the oxide films was established from the Mott-Schottky analysis using electrochemical impedance spectroscopy. Electrochemical experiments at room temperature in chloride medium revealed best passivity behaviour by the oxide film formed at 300 Degree-Sign C for 72 h. The electrochemical studies were correlated to the chromium (and oxygen) content of the oxide films. Autoclaving at 300 Degree-Sign C resulted in the best passive film formation on Alloy 690 in lithiated water.

  10. Electropotential measurements of passivation and corrosion of steel coupons

    International Nuclear Information System (INIS)

    Petit, G.S.; Wright, R.R.

    1977-02-01

    There is considerable interest at the Oak Ridge Gaseous Diffusion Plant (ORGDP) in the preparation of mild steel to resist corrosion (passivation) both in moist air and uranium hexafluoride (UF 6 ) environments. Steel prepared by the usual procedures to prevent rusting, such as oiling, plastic coating, painting, or phosphating, cannot be used in the presence of UF 6 . Tests have shown that a chromate treatment or an ammoniacal citrate treatment for passivation are effective. The electropotential behavior of these two passivation treatments is described. The initial electropotential measurement, when compared to that of an unpassivated coupon, gives the electropotential degree in volts of passivation. Continual exposure in the test, when compared to the unpassivated coupon, gives a profile of the durability of the passivation film. The chromate passivation treatment was slightly superior to the citrate passivation

  11. Role of bond adaptability in the passivation of colloidal quantum dot solids

    KAUST Repository

    Thon, Susanna; Ip, Alex; Voznyy, Oleksandr; Levina, Larissa; Kemp, Kyle W.; Carey, Graham H.; Masala, Silvia; Sargent, E. H.

    2013-01-01

    . Here we deploy a generalized solution-phase passivation strategy as a means to improving CQD surface management. We connect the effects of the choice of metal cation on solution-phase surface passivation, film-phase trap density of states, minority

  12. Colloidal-quantum-dot photovoltaics using atomic-ligand passivation

    KAUST Repository

    Tang, Jiang

    2011-09-18

    Colloidal-quantum-dot (CQD) optoelectronics offer a compelling combination of solution processing and spectral tunability through quantum size effects. So far, CQD solar cells have relied on the use of organic ligands to passivate the surface of the semiconductor nanoparticles. Although inorganic metal chalcogenide ligands have led to record electronic transport parameters in CQD films, no photovoltaic device has been reported based on such compounds. Here we establish an atomic ligand strategy that makes use of monovalent halide anions to enhance electronic transport and successfully passivate surface defects in PbS CQD films. Both time-resolved infrared spectroscopy and transient device characterization indicate that the scheme leads to a shallower trap state distribution than the best organic ligands. Solar cells fabricated following this strategy show up to 6% solar AM1.5G power-conversion efficiency. The CQD films are deposited at room temperature and under ambient atmosphere, rendering the process amenable to low-cost, roll-by-roll fabrication. © 2011 Macmillan Publishers Limited. All rights reserved.

  13. Passivated graphene transistors fabricated on a millimeter-sized single-crystal graphene film prepared with chemical vapor deposition

    International Nuclear Information System (INIS)

    Lin, Meng-Yu; Lee, Si-Chen; Lin, Shih-Yen; Wang, Cheng-Hung; Chang, Shu-Wei

    2015-01-01

    In this work, we first investigate the effects of partial pressures and flow rates of precursors on the single-crystal graphene growth using chemical vapor depositions on copper foils. These factors are shown to be critical to the growth rate, seeding density and size of graphene single crystals. The prepared graphene films in millimeter sizes are then bubbling transferred to silicon-dioxide/silicon substrates for high-mobility graphene transistor fabrications. After high-temperature annealing and hexamethyldisilazane passivation, the water attachment is removed from the graphene channel. The elimination of uncontrolled doping and enhancement of carrier mobility accompanied by these procedures indicate that they are promising for fabrications of graphene transistors. (paper)

  14. Passivation Behavior of Type-316L Stainless Steel in the Presence of Hydrogen Sulfide Ions Generated from a Local Anion Generating System

    International Nuclear Information System (INIS)

    Lee, Jun-Seob; Kitagawa, Yuichi; Nakanishi, Takayuki; Hasegawa, Yasuchika; Fushimi, Koji

    2016-01-01

    The passivity of type 316L stainless steel was studied in a pH 8.4 boric acid-borate buffer solution containing hydrogen sulfide ions (HS − ) by using a local anion-generating system. During potentiostatic polarization of the stainless steel at a primary passive potential of 0.4 V SSE and at a secondary passive potential of 0.9 V SSE in solutions with and without HS − , the current density flowing for passive film formation was increased by the presence of HS − at both potentials, while 15 Hz impedance at 0.9 V SSE in the solution with HS − was larger than that in the solution without HS − . It was thought that the presence of HS − in the solution during film formation made the film less resistive and affected the film capacitance depending on the polarization potential. X-ray photoelectron spectroscopy (XPS) showed an increase in metal cation and oxygen anion vacancies in the passive film formed at the primary passive state in the solution containing HS − . Auger electron spectroscopy (AES) and Raman spectroscopy revealed that a sulfide layer was deposited on the stainless steel surface that was oxidized at the secondary passive state in the solution containing HS − . It is thought that application of a high potential changes the passivity of the stainless steel surface in the solution containing HS − .

  15. Improved interface properties of atomic-layer-deposited HfO{sub 2} film on InP using interface sulfur passivation with H{sub 2}S pre-deposition annealing

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Hyun Soo [Department of Materials Science & Engineering, Hanyang University, Ansan 426-791 (Korea, Republic of); Cho, Young Jin [Inorganic Material Lab., Samsung Advanced Institute of Technology, Suwon 443-803 (Korea, Republic of); Department of Materials Science & Engineering and Inter-university Semiconductor Research Center, Seoul National University, Seoul 151-742 (Korea, Republic of); Seok, Tae Jun; Kim, Dae Hyun; Kim, Dae Woong [Department of Materials Science & Engineering, Hanyang University, Ansan 426-791 (Korea, Republic of); Lee, Sang-Moon [Process Development Team, Semiconductor R& D Center, Samsung Electronics Co. Ltd, Hwasung 445-701 (Korea, Republic of); Park, Jong-Bong; Yun, Dong-Jin [Analytical Engineering Group, Platform Technology Lab., Samsung Advanced Institute of Technology, Suwon 443-803 (Korea, Republic of); Kim, Seong Keun [Center for Electronic Materials, Korea Institute of Science and Technology, Seoul 136-791 (Korea, Republic of); Hwang, Cheol Seong, E-mail: cheolsh@snu.ac.kr [Department of Materials Science & Engineering and Inter-university Semiconductor Research Center, Seoul National University, Seoul 151-742 (Korea, Republic of); Park, Tae Joo, E-mail: tjp@hanyang.ac.kr [Department of Materials Science & Engineering, Hanyang University, Ansan 426-791 (Korea, Republic of)

    2015-12-01

    Highlights: • ALD HfO{sub 2} films were grown on InP for III–V compound-semiconductor-based devices. • S passivation was performed with (NH{sub 4}){sub 2}S solution and annealing under a H{sub 2}S atmosphere. • The H{sub 2}S annealing provided similar S profiles at the interface without surface damage. • The H{sub 2}S annealing was more effective to suppress interface state density due to thermal energy. - Abstract: Surface sulfur (S) passivation on InP substrate was performed using a dry process – rapid thermal annealing under H{sub 2}S atmosphere for III–V compound-semiconductor-based devices. The electrical properties of metal-oxide-semiconductor capacitor fabricated with atomic-layer-deposited HfO{sub 2} film as a gate insulator were examined, and were compared with the similar devices with S passivation using a wet process – (NH{sub 4}){sub 2}S solution treatment. The H{sub 2}S annealing provided solid S passivation with the strong resistance against oxidation compared with the (NH{sub 4}){sub 2}S solution treatment, although S profiles at the interface of HfO{sub 2}/InP were similar. The decrease in electrical thickness of the gate insulator by S passivation was similar for both methods. However, the H{sub 2}S annealing was more effective to suppress interface state density near the valence band edge, because thermal energy during the annealing resulted in stronger S bonding and InP surface reconstruction. Moreover, the flatband voltage shift by constant voltage stress was lower for the device with H{sub 2}S annealing.

  16. Self-cleaning poly(dimethylsiloxane) film with functional micro/nano hierarchical structures.

    Science.gov (United States)

    Zhang, Xiao-Sheng; Zhu, Fu-Yun; Han, Meng-Di; Sun, Xu-Ming; Peng, Xu-Hua; Zhang, Hai-Xia

    2013-08-27

    This paper reports a novel single-step wafer-level fabrication of superhydrophobic micro/nano dual-scale (MNDS) poly(dimethylsiloxane) (PDMS) films. The MNDS PDMS films were replicated directly from an ultralow-surface-energy silicon substrate at high temperature without any surfactant coating, achieving high precision. An improved deep reactive ion etching (DRIE) process with enhanced passivation steps was proposed to easily realize the ultralow-surface-energy MNDS silicon substrate and also utilized as a post-treatment process to strengthen the hydrophobicity of the MNDS PDMS film. The chemical modification of this enhanced passivation step to the surface energy has been studied by density functional theory, which is also the first investigation of C4F8 plasma treatment at molecular level by using first-principle calculations. From the results of a systematic study on the effect of key process parameters (i.e., baking temperature and time) on PDMS replication, insight into the interaction of hierarchical multiscale structures of polymeric materials during the micro/nano integrated fabrication process is experimentally obtained for the first time. Finite element simulation has been employed to illustrate this new phenomenon. Additionally, hierarchical PDMS pyramid arrays and V-shaped grooves have been developed and are intended for applications as functional structures for a light-absorption coating layer and directional transport of liquid droplets, respectively. This stable, self-cleaning PDMS film with functional micro/nano hierarchical structures, which is fabricated through a wafer-level single-step fabrication process using a reusable silicon mold, shows attractive potential for future applications in micro/nanodevices, especially in micro/nanofluidics.

  17. Thin film device applications

    CERN Document Server

    Kaur, Inderjeet

    1983-01-01

    Two-dimensional materials created ab initio by the process of condensation of atoms, molecules, or ions, called thin films, have unique properties significantly different from the corresponding bulk materials as a result of their physical dimensions, geometry, nonequilibrium microstructure, and metallurgy. Further, these characteristic features of thin films can be drasti­ cally modified and tailored to obtain the desired and required physical characteristics. These features form the basis of development of a host of extraordinary active and passive thin film device applications in the last two decades. On the one extreme, these applications are in the submicron dimensions in such areas as very large scale integration (VLSI), Josephson junction quantum interference devices, magnetic bubbles, and integrated optics. On the other extreme, large-area thin films are being used as selective coatings for solar thermal conversion, solar cells for photovoltaic conver­ sion, and protection and passivating layers. Ind...

  18. XPS and electrochemical studies of the dissolution and passivation of molybdenum-implanted austenitic stainless steels

    International Nuclear Information System (INIS)

    De Vito, E.; Marcus, P.

    1993-01-01

    X-ray Photoelectron Spectroscopy (XPS) was used to investigate the chemical composition and the chemical states of the passive film formed on austenitic stainless steels (Fe-19Cr-10Ni (at.%)) which have been implanted with molybdenum (Mo + , 100 keV, 2.5 x 10 16 at./cm 2 ). Prior to passivation the implanted alloy was characterized by RBS (Rutherford Backscattering Spectroscopy) and XPS. Alloys with well-defined surface concentrations of molybdenum were prepared by ion sputtering the implanted alloy in the preparation chamber of the spectrometer, to a fixed point in the implantation profile. The samples were then transferred without air exposure to a glove box with inert gas in which the electrochemical measurements were performed. After passivation, return transfer of the passivated samples was done with the same transfer device to avoid exposure to air. In 0.5 M H 2 SO 4 , the anodic dissolution current density decreases with increasing Mo content on the alloy surface. Surface analysis by XPS showed that the surface is enriched with molybdenum in the Mo 4+ chemical state. The current density in the passive state is similar for both the non-implanted and the implanted alloys. Surface analysis by XPS showed that the passive film has a bilayer structure (inner oxide and outer hydroxide) and that the hydroxide layer present on the surface of the passive film is markedly enriched with molybdenum in the Mo 6+ chemical state. The XPS measurements indicate that the presence of molybdenum favors the formation of chromium hydroxide at the expense of chromium oxide. A significant enrichment of the alloyed (Cr, Ni) and implanted (Mo) elements was also observed in the metallic phase under the passive film. The possible mechanisms of the effect of molybdenum on the corrosion resistance of stainless steels are discussed in light of the obtained surface analytical results

  19. Interface magnetism of iron grown on sulfur and hydrogen passivated GaAs(001)

    International Nuclear Information System (INIS)

    Kardasz, B.; Watkins, S. P.; Montoya, E. A.; Burrowes, C.; Girt, E.; Heinrich, B.

    2012-01-01

    Sulfur (S) and hydrogen (H) atom passivated GaAs(001) templates were used for deposition of ultrathin crystalline Fe films using molecular beam epitaxy, where the Fe thickness ranged from 10 to 45 atomic layers. Reflection high-energy electron diffraction patterns showed that the S- and H-passivated surfaces had no and very weak (1 x 2) superlattice reconstructions, respectively. This indicates that these GaAs(001) templates have a square-like symmetry. Magnetic anisotropies were investigated using the in-plane angular dependence of ferromagnetic resonance at 36 GHz. The in-plane cubic and uniaxial anisotropies and perpendicular uniaxial field were described by bulk and interface contributions, indicating that the Fe films have a high lattice coherence. The magnetic properties of the Fe films were compared to those grown on more commonly used GaAs(001) templates having a (4 x 6) reconstruction with an As-rich in-plane uniaxial symmetry. The Fe films grown on S-passivated templates exhibited unique magnetic properties caused by a decreased lattice spacing compared to the bulk Fe.

  20. Interface magnetism of iron grown on sulfur and hydrogen passivated GaAs(001)

    Energy Technology Data Exchange (ETDEWEB)

    Kardasz, B.; Watkins, S. P.; Montoya, E. A.; Burrowes, C.; Girt, E.; Heinrich, B.

    2012-04-01

    Sulfur (S) and hydrogen (H) atom passivated GaAs(001) templates were used for deposition of ultrathin crystalline Fe films using molecular beam epitaxy, where the Fe thickness ranged from 10 to 45 atomic layers. Reflection high-energy electron diffraction patterns showed that the S- and H-passivated surfaces had no and very weak (1 x 2) superlattice reconstructions, respectively. This indicates that these GaAs(001) templates have a square-like symmetry. Magnetic anisotropies were investigated using the in-plane angular dependence of ferromagnetic resonance at 36 GHz. The in-plane cubic and uniaxial anisotropies and perpendicular uniaxial field were described by bulk and interface contributions, indicating that the Fe films have a high lattice coherence. The magnetic properties of the Fe films were compared to those grown on more commonly used GaAs(001) templates having a (4 x 6) reconstruction with an As-rich in-plane uniaxial symmetry. The Fe films grown on S-passivated templates exhibited unique magnetic properties caused by a decreased lattice spacing compared to the bulk Fe.

  1. Influence of the oxyanion nature of the electrolyte on the corrosion/passivation behaviour of nickel

    International Nuclear Information System (INIS)

    Trompette, J.L.; Massot, L.; Vergnes, H.

    2013-01-01

    Highlights: •Influence of oxyanion nature on the passivation of nickel. •Constitutive atoms of oxyanion incorporated into the passive film. •Evidence of direct bonding between N and Ni surface. -- Abstract: The electrochemical behaviour of nickel in the presence of various electrolyte solutions at 0.1 mol/L concentration exhibits a distinction according to the oxyanion nature of the investigated anions. Passivity is achieved with oxyanions whereas it fails with anions not containing oxygen. SIMS and XPS measurements performed from isotopic and non isotopic KNO 3 electrolytes indicate that the oxygen and nitrogen atoms from nitrate oxyanions are incorporated into the passive film during anodic polarization and with evidence of a direct bonding between nitrogen and nickel surface

  2. Passivation properties of alumina for multicrystalline silicon nanostructure prepared by spin-coating method

    Science.gov (United States)

    Jiang, Ye; Shen, Honglie; Yang, Wangyang; Zheng, Chaofan; Tang, Quntao; Yao, Hanyu; Raza, Adil; Li, Yufang; Huang, Chunlai

    2018-02-01

    In this paper, we report passivation properties of inverted pyramidal nanostructure based multi-crystalline silicon (mc-Si) by Al2O3 films with spin-coating method. Precursors AlCl3 and Al(acac)3 for Al2O3 films were chosen for comparison. Al2O3/SiO x stacks were found to be able to passivate the nanostructured surface well. With the number of spin-coating up to five, the Al2O3 films could conformally attach the nanostructure. The weighted average reflectance values (ranging from 400-900 nm) of the passivated silicon surface could be reduced to 10.74% (AlCl3) and 11.12% (Al(acac)3), and the effective carrier lifetime could reach 7.84 and 16.98 μs, respectively. This work presented a potential process to fabricate low cost high efficiency mc-Si solar cells.

  3. Control of Ambipolar Transport in SnO Thin-Film Transistors by Back-Channel Surface Passivation for High Performance Complementary-like Inverters.

    Science.gov (United States)

    Luo, Hao; Liang, Lingyan; Cao, Hongtao; Dai, Mingzhi; Lu, Yicheng; Wang, Mei

    2015-08-12

    For ultrathin semiconductor channels, the surface and interface nature are vital and often dominate the bulk properties to govern the field-effect behaviors. High-performance thin-film transistors (TFTs) rely on the well-defined interface between the channel and gate dielectric, featuring negligible charge trap states and high-speed carrier transport with minimum carrier scattering characters. The passivation process on the back-channel surface of the bottom-gate TFTs is indispensable for suppressing the surface states and blocking the interactions between the semiconductor channel and the surrounding atmosphere. We report a dielectric layer for passivation of the back-channel surface of 20 nm thick tin monoxide (SnO) TFTs to achieve ambipolar operation and complementary metal oxide semiconductor (CMOS) like logic devices. This chemical passivation reduces the subgap states of the ultrathin channel, which offers an opportunity to facilitate the Fermi level shifting upward upon changing the polarity of the gate voltage. With the advent of n-type inversion along with the pristine p-type conduction, it is now possible to realize ambipolar operation using only one channel layer. The CMOS-like logic inverters based on ambipolar SnO TFTs were also demonstrated. Large inverter voltage gains (>100) in combination with wide noise margins are achieved due to high and balanced electron and hole mobilities. The passivation also improves the long-term stability of the devices. The ability to simultaneously achieve field-effect inversion, electrical stability, and logic function in those devices can open up possibilities for the conventional back-channel surface passivation in the CMOS-like electronics.

  4. Effect of passivation on the sensitivity and stability of pentacene transistor sensors in aqueous media

    KAUST Repository

    Khan, Hadayat Ullah

    2011-06-01

    Charge-detecting biosensors have recently become the focal point of biosensor research, especially research onto organic thin-film transistors (OTFTs), which combine compactness, a low cost, and fast and label-free detection to realize simple and stable in vivo diagnostic systems. We fabricated organic pentacene-based bottom-contact thin-film transistors with an ultra-thin insulating layer of a cyclized perfluoro polymer called CYTOP (Asahi Glass Co., Tokyo, Japan) on SiO2 for operation in aqueous media. The stability and sensitivity of these transistor sensors were examined in aqueous buffer media with solutions of variable pH levels after the passivation of perfluoro polymers with thicknesses ranging from 50 to 300nm. These transistor sensors were further modified with an ultra-thin film (5nm) functional layer for selective BSA/antiBSA detection in aqueous buffer media, demonstrating a detection capability as low as 500nM of concentrated antiBSA. The dissociation constant from the antiBSA detection results was 2.1×10-6M. Thus, this study represents a significant step forward in the development of organic electronics for a disposable and versatile chemical and bio-sensing platform. © 2011 Elsevier B.V.

  5. Spontaneous passivation observations during scale formation on mild steel in CO{sub 2} brines

    Energy Technology Data Exchange (ETDEWEB)

    Han Jiabin, E-mail: jhan@lanl.gov [Institute for Corrosion and Multiphase Technology, Department of Chemical and Biomolecular Engineering, Ohio University, 342 West State Street, Athens, OH 45701 (United States); Nesic, Srdjan, E-mail: nesic@ohio.edu [Institute for Corrosion and Multiphase Technology, Department of Chemical and Biomolecular Engineering, Ohio University, 342 West State Street, Athens, OH 45701 (United States); Yang Yang; Brown, Bruce N. [Institute for Corrosion and Multiphase Technology, Department of Chemical and Biomolecular Engineering, Ohio University, 342 West State Street, Athens, OH 45701 (United States)

    2011-06-01

    Highlights: > We observed spontaneous passivation was at pH > 7. A higher open circuit potential was achieved comparing to bare surface or FeCO{sub 3} scaled surface. > Effects of pH, temperature, CO{sub 2}/FeCO{sub 3} on spontaneous passivation were systematically investigated. > TEM analysis determined the structure and chemistry of the passive film is Fe{sub 3}O{sub 4} instead of FeCO{sub 3}. > Root cause of the galvanic mechanism of localized CO{sub 2} corrosion is clarified. - Abstract: Previous study revealed localized corrosion in CO{sub 2} environments was driven by a galvanic cell established between pit surfaces and scaled surrounding area. In order to underpin the understanding of the galvanic mechanism of localized corrosion, the root cause of potential differences between these two surfaces, passivation of mild steel, in CO{sub 2} environments was investigated using transmission electron microscopy technique and electrochemical techniques including potentiodynamic polarization, cyclic polarization and open circuit potential techniques. Potentiodynamic polarization experiments showed that the passivation of the carbon steel surface favorably occurred at pH > 7 and facilitated with the presence of FeCO{sub 3} scale. Cyclic polarization tests showed that polarization rate had an important influence on passivation behavior. At a slower polarization rate, lower passivation potential and current density were observed. Spontaneous passivation was evidenced by a significant increase of corrosion resistance and an open circuit potential without any externally applied current or potential during electrode immersion. This process is affected by pH, temperature, presence of CO{sub 2} and iron carbonate. Nevertheless, iron carbonate film is not the only one responsible for passivation, as demonstrated from depassivation tests where passivity was lost without losing the existing iron carbonate film. Transmission electron microscopy technique was used to determine

  6. Investigation of hexagonal boron nitride as an atomically thin corrosion passivation coating in aqueous solution.

    Science.gov (United States)

    Zhang, Jing; Yang, Yingchao; Lou, Jun

    2016-09-09

    Hexagonal boron nitride (h-BN) atomic layers were utilized as a passivation coating in this study. A large-area continuous h-BN thin film was grown on nickel foil using a chemical vapor deposition method and then transferred onto sputtered copper as a corrosion passivation coating. The corrosion passivation performance in a Na2SO4 solution of bare and coated copper was investigated by electrochemical methods including cyclic voltammetry (CV), Tafel polarization and electrochemical impedance spectroscopy (EIS). CV and Tafel analysis indicate that the h-BN coating could effectively suppress the anodic dissolution of copper. The EIS fitting result suggests that defects are the dominant leakage source on h-BN films, and improved anti-corrosion performances could be achieved by further passivating these defects.

  7. Passivation behavior of SUS 304 stainless steel in neutral solutions at elevated temperature

    International Nuclear Information System (INIS)

    Tanno, Kazuo; Kato, Koji; Ohnaka, Noriyuki; Okajima, Yoshiaki; Minato, Akira.

    1981-01-01

    Cyclic voltammograms of SUS 304 stainless steel in various neutral solutions such as Na 2 SO 4 at high temperature were measured, as a successive study to previous report in which effects of temperature and pH on polarization behavior of stainless steel were studied. In this measurement Ag/AgCl reference electrode and platinum counter electrode were used in a static autoclave lined with inconel. Passive films formed in various conditions were analysed by electron diffraction and Auger spectroscopy. Results obtained were compared with anodic behavior of iron, chromium and nickel and with thermodynamical stabilities of their compounds. The main results are summarized as follows. (1) Stainless steel shows such electrochemical behavior as active dissolution, passivation and transpassivation in a deaerated neutral solution at 250 0 C after fully reductive treatment of the specimen. In air-saturated solution, the peak of active dissolution is not observed. In the passive range there are intermediate oxidation and reduction peaks, and it is assumed that dissolved ionic species are oxidized to form oxide of spinel type and higher oxidized state successively at these peaks. (2) Electrochemical behavior of specimens in 0.1 M sulfate, -phosphate and -carbonate solutions are almost the same and rather thick films form in these solutions. On the other hand, specimens are easy to passivate in borate and -nitrate solution, and their passive films are thin. (author)

  8. The Effects of Acid Passivation, Tricresyl Phosphate Pre-Soak, and UV/Ozone Treatment on the Tribology of Perfluoropolyether-Lubricated 440C Stainless Steel Couples

    Science.gov (United States)

    Shogrin, Bradley A.; Jones, William R., Jr.; Herrera-Fierro, Pilar

    1997-01-01

    The boundary-lubrication performance of perfluoropolyether (PFPE) thin films in the presence of passivated 440 C stainless steel is presented. The study utilized a standard ball-on-disc tribometer. Stainless steel surfaces were passivated with one of four techniques: 1) submersion in a chromic acid bath for 30 minutes at 46 C, 2) submersion in a chromic acid bath for 60 minutes at 56 C, 3) submersion in a tricresyl phosphate (TCP) bath for 2 days at 107 C, or 4) UV/Ozone treated for 15 minutes. After passivation, each disc had a 400 A film of PFPE (hexafluoropropene oxide) applied to it reproducibly (+/- 20%) and uniformly (+/- 15%) using a film deposition device. The lifetimes of these films were quantified by measuring the number of sliding wear cycles required to induce an increase in the friction coefficient from an initial value characteristic of the lubricated wear couple to a final, or failure value, characteristic of an unlubricated, unpassivated wear couple. The lubricated lifetime of the 440 C couple was not altered as a result of the various passivation techniques. The resulting surface chemistry of each passivation technique was examined using X-ray Photoelectron Spectroscopy (XPS). It was found that chromic acid passivation altered the Cr to Fe ratio of the surface. TCP passivation resulted in a FePO4 layer on the surface, while UV/Ozone passivation only removed the carbonaceous contamination layer. None of the passivation techniques were found to dramatically increase the oxide film thickness.

  9. Fabrication of PDMS/SWCNT thin films as saturable absorbers

    International Nuclear Information System (INIS)

    Hernandez-Romano, I; Sanchez-Mondragon, J J; Davila-Rodriguez, J; Delfyett, P J; May-Arrioja, D A

    2011-01-01

    We present a novel technique to fabricate a saturable absorber thin film based on Polydimethylsiloxane doped with Single Wall Carbon Nanotubes. Using this film a passive mode-locked fiber laser in a standard ring cavity configuration was built by inserting the film between two angled connectors. Self-starting passively mode-locked laser operation was easily observed. The generated pulses have a width of 1.26 ps at a repetition rate of 22.7 MHz with an average power of 4.89 mW.

  10. Surface passivation of high-purity germanium gamma-ray detector

    International Nuclear Information System (INIS)

    Alexiev, D.; Butcher, K.S.A.; Edmondson, M.; Lawson, E.M.

    1993-01-01

    The experimental work consists of two parts. The first involves fabrication of hyper-pure germanium gamma ray detectors using standard surface treatment, chemical etchings and containment in a suitable cryostat. Then, after cooling the detectors to 77 K, γ-ray emissions from radioisotopes are resolved, resolution, depletion depth, V R versus I R characteristics and /N A -N D / of the germanium are measured. The second part of the work involves investigation of surface states in an effort to achieve long-term stability of operating characteristics. Several methods are used: plasma hydrogenation, a-Si and a-Ge pinch-off effect and simple oxidation. A-Ge and a-Si thicknesses were measured using Rutherford backscattering techniques; surface states were measured with deep level transient spectroscopy and diode reverse current versus reverse voltage plots. Some scanning electron microscope measurements were used in determining major film contaminants during backscattering of a-Si and a-Ge films. Surface passivation studies revealed unexpected hole trapping defects generated when a-Ge:H film is applied. The a-Si:H films were found to be mechanically strong, no defect traps were found and preliminary results suggest that such films will be good passivants. 14 refs., 2 tabs., 7 figs., 13 ills

  11. Nitridation of SiO2 for surface passivation

    Science.gov (United States)

    Lai, S. K. C.

    1985-01-01

    An attempt is made to relate the electrical properties of silicon dioxide film to the process history. A model is proposed to explain some of the observed results. It is shown that with our present knowledge of the dielectric, silicon dioxide film shows a lot of promise for its use in surface passivation, both for its resistance to impurity diffusion and for its resistance to radiation damage effects.

  12. Large scale solvothermal synthesis and a strategy to obtain stable Langmuir–Blodgett film of CoFe{sub 2}O{sub 4} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Thampi, Arya; Babu, Keerthi; Verma, Seema, E-mail: sa.verma@iiserpune.ac.in

    2013-07-05

    Highlights: • Large scale, monodisperse CoFe{sub 2}O{sub 4} nanoparticles by solvothermal route. • LB technique to obtain stable film of CoFe{sub 2}O{sub 4} nanoparticles over a large area. • Hydrophobicity of substrate was enhanced utilizing LB films of cadmium arachidate. • P–A isotherm and AFM cross sectional height profile analysis confirms stability. • Large scale organization of nanoparticles for surface pressure higher than 15 mN/m. -- Abstract: Nearly monodisperse oleic acid coated cobalt ferrite nanoparticles were synthesized in large scale by a simple solvothermal method utilizing N-methyl 2-Pyrrolidone (NMP) as a high boiling solvent. The magnetic oxide was further investigated by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM) and vibrating sample magnetometer (VSM). Langmuir–Blodgett (LB) technique is discussed to obtain a 2D assembly of oleic acid coated CoFe{sub 2}O{sub 4} nanoparticles over a large area. We describe a method to obtain stable, condensed three layers of cadmium arachidate on a piranha treated glass substrate. The hydrophobic surface thus obtained was subsequently used for forming a stable monolayer of oleic acid stabilized cobalt ferrite nanoparticles at the air–water interface. The stability of the LB films at the air–water interface was studied by pressure–area isotherm curves and atomic force microscopy (AFM) cross sectional height profile analysis. 2D organization of the magnetic nanoparticles at different surface pressures was studied by TEM. Preparation of large area LB films of CoFe{sub 2}O{sub 4} nanoparticles is reported for a surface pressure more than 15 mN/m.

  13. Chemical properties of various organic electrolytes for lithium rechargeable batteries. Pt. 1.. Characterization of passivating layer formed on graphite in alkyl carbonate solutions

    Energy Technology Data Exchange (ETDEWEB)

    Mori, Shoichiro; Asahina, Hitoshi; Suzuki, Hitoshi; Yonei, Ayako; Yokoto, Kiyomi [Tsukuba Research Center, Mitsubishi Chemical Corporation, Ibaraki (Japan)

    1997-09-01

    The characteristics and reaction mechanisms of the passivating film formed on the surface of graphite were investigated in ethylene carbonate-diethyl carbonate solutions containing LiClO{sub 4}, LiPF{sub 6} and LiN(SO{sub 2}CF{sub 3}){sub 2}. The electron consumption resulting on the irreversible capacity of graphite was almost equivalent to that used in the one-electron reduction of Li{sup +} found in the film. The electrochemical reactions in the first discharge process may be divided into the following steps: (i) `initial film formation step` from 1.4 to 0.55 V; (ii) `main film formation step` from 0.55 to 0.2 V, and (iii) `lithium intercalation step from 0.2 to 0.0 V. Most of the passivating film is formed together with the lithium intercalation reaction at step (ii). The passivating film formed at this step contained a significant amount of organic film such as EtOCO{sub 2}Li, (CH{sub 2}OCO{sub 2}Li){sub 2}, etc. Through the consecutive formation of passivating film at steps (i) and (ii), lithium intercalation into graphite proceeds smoothly without further decomposition of organic electrolyte. (orig.)

  14. Effect of passivation with CO on the electrochemical corrosion behavior of uranium-niobium alloy

    International Nuclear Information System (INIS)

    Fu Xiaoguo; Dai Lianxin; Zou Juesheng; Bai Chaomao; Wang Xiaolin

    2000-01-01

    Electrochemical studies are performed to investigate the corrosion resistance of uranium-niobium alloy before and after passivated with carbon monoxide. Using X-ray photoelectron spectroscopy (XPS), the surface composition of specimen passivated with carbon monoxide is determined. The corrosion resistance of uranium-niobium alloy is well improved because the passive layer (UC/UC x O y + Nb 2 O 5 + UO 2 ) on surface serves as passive film and increases the anodic impedance after the specimen is passivated with carbon monoxide

  15. Integrated Passive And Wireless Sensor

    KAUST Repository

    Li, Bodong; Kosel, Jü rgen

    2015-01-01

    A passive and wireless sensor is provided for sensing at least one of magnetic field, temperature or humidity. The sensor can provide only one of the sensing functions, individually or any combination of them simultaneously. It can be used for various applications where magnetic field changes, temperature and/or humidity need to be measured. In one or more embodiments, a surface acoustic wave (SAW) sensor is provided that can measure one or more of a magnetic field (or current that generates the magnetic field), temperature and humidity. In one or more embodiments, a magnetoimpedence (MI) sensor (for example a thin film giant magnetoimpedance (GMI) sensor), a thermally sensitive (for example a Lithium Niobite (LiNbO.sub.3)) substrate, and a humidity sensitive film (for example a hydrogel film) can be used as sensing elements.

  16. Integrated Passive And Wireless Sensor

    KAUST Repository

    Li, Bodong

    2015-04-30

    A passive and wireless sensor is provided for sensing at least one of magnetic field, temperature or humidity. The sensor can provide only one of the sensing functions, individually or any combination of them simultaneously. It can be used for various applications where magnetic field changes, temperature and/or humidity need to be measured. In one or more embodiments, a surface acoustic wave (SAW) sensor is provided that can measure one or more of a magnetic field (or current that generates the magnetic field), temperature and humidity. In one or more embodiments, a magnetoimpedence (MI) sensor (for example a thin film giant magnetoimpedance (GMI) sensor), a thermally sensitive (for example a Lithium Niobite (LiNbO.sub.3)) substrate, and a humidity sensitive film (for example a hydrogel film) can be used as sensing elements.

  17. Offset-gated poly-Si TFTs using in-situ fluorine passivation and excimer laser doping

    International Nuclear Information System (INIS)

    Jung, Sang Hoon; Kim, Cheon Hong; Yoo, Juhn Suk; Han, Min Koo

    2000-01-01

    A new low-temperature poly-Si thin film transistor (TFT) fabrication method employing in-situ fluorine passivation and excimer-laser doping is proposed to fabricate offset-gated poly-Si TFTs. In the new process, the crystallization, the in-situ fluorine passivation of the active layer, and the doping of the source/drain region are performed simultaneously with only one step of excimer laser annealing while the conventional fabrication method requires two laser annealing steps. Employing phosphosilicate glass (PSG) films as a diffusion source, we successfully accomplished excimer laser doping. The subthreshold and the on-state characteristics of the device with in-situ fluorine passivation were considerably improved. This improvement was due to the fluorine passivation effects, which cured dangling bonds and strained bonds in the poly-Si channel, the offset region, and the SiO 2 /poly-Si interface

  18. Offset-gated poly-Si TFTs using in-situ fluorine passivation and excimer laser doping

    CERN Document Server

    Jung, S H; Yoo, J S; Han, M K

    2000-01-01

    A new low-temperature poly-Si thin film transistor (TFT) fabrication method employing in-situ fluorine passivation and excimer-laser doping is proposed to fabricate offset-gated poly-Si TFTs. In the new process, the crystallization, the in-situ fluorine passivation of the active layer, and the doping of the source/drain region are performed simultaneously with only one step of excimer laser annealing while the conventional fabrication method requires two laser annealing steps. Employing phosphosilicate glass (PSG) films as a diffusion source, we successfully accomplished excimer laser doping. The subthreshold and the on-state characteristics of the device with in-situ fluorine passivation were considerably improved. This improvement was due to the fluorine passivation effects, which cured dangling bonds and strained bonds in the poly-Si channel, the offset region, and the SiO sub 2 /poly-Si interface.

  19. Passivation of laser-treated nickel aluminum bronze as measured by electrochemical impedance spectroscopy

    International Nuclear Information System (INIS)

    Klassen, R.D.; Hyatt, C.V.; Roberge, P.R.

    2000-01-01

    Electrochemical impedance spectroscopy was used to assess the corrosion behavior of the weld zones and surface conditions of a laser-clad nickel aluminum bronze immersed in a 3.5% neutral saline solution. The zones and conditions examined included: (i) as-cast base material; (ii) laser-clad material with the high temperature oxide from welding intact; (iii) polished laser-clad material and (iv) specimens representative of just the as-deposited and reheated zones of the laser-clad surface. A pseudo steady-state level of passivation was reached in all the samples within 40 hours. The reheated zone passivated more slowly than the as-deposited region and both weld zones passivated more quickly than the base material. Electrochemical impedance data illustrated a transition during the passivation process of the polished specimens that is consistent with the development of a film layer that restricted mass transfer. The welding oxide from the laser treatment immediately behaved as a passivation film that was indistinguishable from that which eventually develops on polished specimens. (author)

  20. Synergy between molybdenum and nitrogen on the pitting corrosion and passive film resistance of austenitic stainless steels as a pH-dependent effect

    Energy Technology Data Exchange (ETDEWEB)

    Loable, Carole, E-mail: carole.loable@lepmi.grenoble-inp.fr [Univ. Grenoble Alpes, LEPMI, F-38000 Grenoble (France); CNRS, LEPMI, F-38000 Grenoble (France); Dep. Eng. Quimica, Instituto Superior Técnico-Universidade de Lisboa, Av. Rovisco Pais, 1049 001 Lisbon (Portugal); Viçosa, Isadora N., E-mail: inogueira@poli.ufrj.br [Univ. Grenoble Alpes, LEPMI, F-38000 Grenoble (France); CNRS, LEPMI, F-38000 Grenoble (France); Mesquita, Thiago J., E-mail: Thiago.mesquita@total.com [CRU Ugitech, Avenue Paul Girod, 73403 Ugine Cedex (France); Mantel, Marc, E-mail: Marc.Mantel@ugitech.com [CRU Ugitech, Avenue Paul Girod, 73403 Ugine Cedex (France); Université Grenoble Alpes, SIMAP, F-38000 Grenoble (France); CNRS, SIMAP, F-38000 Grenoble (France); Nogueira, Ricardo P., E-mail: rnogueira@pi.ac.ae [Univ. Grenoble Alpes, LEPMI, F-38000 Grenoble (France); CNRS, LEPMI, F-38000 Grenoble (France); Department of Chemical Engineering, The Petroleum Institute, P.O. Box 2533, Abu Dhabi (United Arab Emirates); Berthomé, Gregory, E-mail: gregory.berthome@simap.grenoble-inp.fr [Université Grenoble Alpes, SIMAP, F-38000 Grenoble (France); CNRS, SIMAP, F-38000 Grenoble (France); Chauveau, Eric, E-mail: eric.chauveau@ugitech.fr [Department of Chemical Engineering, The Petroleum Institute, P.O. Box 2533, Abu Dhabi (United Arab Emirates); Roche, Virginie, E-mail: virginie.roche@lepmi.grenoble-inp.fr [Univ. Grenoble Alpes, LEPMI, F-38000 Grenoble (France); CNRS, LEPMI, F-38000 Grenoble (France)

    2017-01-15

    This paper brings up some insights upon the pH dependence of the synergistic effect of Mo and N on the localized corrosion resistance of austenitic stainless steels. The objective of this work is to study the synergetic effect of Mo and N additions on corrosion and passive film properties of austenitic grades. A comparison between Mo containing (3 wt% Mo); Mo and N containing (3 wt% Mo and 0.1% N) and free Mo or free Mo and N grades of highly controlled laboratory heats was done considering their localized corrosion resistance and oxide film formation in different aggressive conditions, from neutral to alkaline pH. The passive layer was characterized by EIS and XPS analyses. The combined effect of Mo and N on the pitting potential was confirmed to be synergistic, and not just the addition of their individual effects. Moreover, this effect was found to be pH-dependent, being very positive in acid to neutral conditions whereas it was almost inexistent in high pH. - Highlights: • Laboratory austenitic stainless steels with Mo and/or N were tested. • Mo and N acted synergistically to improve pitting resistance. • Synergistic effect is pH-dependent. • N clearly enhanced the repassivation of austenitic SS in presence of Mo.

  1. Synergy between molybdenum and nitrogen on the pitting corrosion and passive film resistance of austenitic stainless steels as a pH-dependent effect

    International Nuclear Information System (INIS)

    Loable, Carole; Viçosa, Isadora N.; Mesquita, Thiago J.; Mantel, Marc; Nogueira, Ricardo P.; Berthomé, Gregory; Chauveau, Eric; Roche, Virginie

    2017-01-01

    This paper brings up some insights upon the pH dependence of the synergistic effect of Mo and N on the localized corrosion resistance of austenitic stainless steels. The objective of this work is to study the synergetic effect of Mo and N additions on corrosion and passive film properties of austenitic grades. A comparison between Mo containing (3 wt% Mo); Mo and N containing (3 wt% Mo and 0.1% N) and free Mo or free Mo and N grades of highly controlled laboratory heats was done considering their localized corrosion resistance and oxide film formation in different aggressive conditions, from neutral to alkaline pH. The passive layer was characterized by EIS and XPS analyses. The combined effect of Mo and N on the pitting potential was confirmed to be synergistic, and not just the addition of their individual effects. Moreover, this effect was found to be pH-dependent, being very positive in acid to neutral conditions whereas it was almost inexistent in high pH. - Highlights: • Laboratory austenitic stainless steels with Mo and/or N were tested. • Mo and N acted synergistically to improve pitting resistance. • Synergistic effect is pH-dependent. • N clearly enhanced the repassivation of austenitic SS in presence of Mo.

  2. Passivation of bimetallic catalysts used in water treatment: prevention and reactivation.

    Science.gov (United States)

    Chen, Jianming; Gillham, Robert W; Gui, Lai

    2013-01-01

    With respect to degradation rates and the range in contaminants treated, bimetals such as Ni-Fe or Pd-Fe generally outperform unamended granular iron. However, the catalytic enhancement is generally short-lived, lasting from a few days to months. To take advantage of the significant benefits of bimetals, this study aims at developing an effective method for the rejuvenation of passivated bimetals and alternatively, the prevention of rapid reactivity loss of bimetals. Because the most likely cause of Ni-Fe and Pd-Fe passivation is the deposition of iron oxide films over the catalyst sites, it is hypothesized that removal of the iron oxide films will restore the lost reactivity or avoiding the deposition of iron oxide films will prevent passivation. Two organic ligands (ethylenediaminetetraacetic acid (EDTA), and [s,s]-ethylenediaminedisuccinate acid ([s,s]-EDDS)) and two acids (citric acid and sulphuric acid) were tested as possible chemical reagents for both passivation rejuvenation and prevention. Trichloroethene (TCE) and Ni-Fe were chosen as probes for chlorinated solvents and bimetals respectively. The test was carried out using small glass columns packed with Ni-Fe. TCE solution containing a single reagent at various concentrations was pumped through the Ni-Fe columns with a residence time in the Ni-Fe of about 6.6 min. TCE concentrations in the influent and effluent were measured to evaluate the performance of each chemical reagent. The results show that (i) for passivated Ni-Fe, flushing with a low concentration of acid or ligand solution without mechanical mixing can fully restore the lost reactivity; and (ii) for passivation prevention, adding a small amount of a ligand or an acid to the feed solution can successfully prevent or at least substantially reduce Ni-Fe passivation. All four chemicals tested are effective in both rejuvenation and prevention, but sulphuric acid and citric acid are considered to be the most practical reagents due to their

  3. Air stable n-doping of WSe2 by silicon nitride thin films with tunable fixed charge density

    International Nuclear Information System (INIS)

    Chen, Kevin; Kiriya, Daisuke; Hettick, Mark; Tosun, Mahmut; Ha, Tae-Jun; Madhvapathy, Surabhi Rao; Desai, Sujay; Sachid, Angada; Javey, Ali

    2014-01-01

    Stable n-doping of WSe 2 using thin films of SiN x deposited on the surface via plasma-enhanced chemical vapor deposition is presented. Positive fixed charge centers inside SiN x act to dope WSe 2 thin flakes n-type via field-induced effect. The electron concentration in WSe 2 can be well controlled up to the degenerate limit by simply adjusting the stoichiometry of the SiN x through deposition process parameters. For the high doping limit, the Schottky barrier width at the metal/WSe 2 junction is significantly thinned, allowing for efficient electron injection via tunneling. Using this doping scheme, we demonstrate air-stable WSe 2 n-MOSFETs with a mobility of ∼70 cm 2 /V s

  4. Use of gamma-irradiation technology in the manufacture of biopolymer-based packaging films for shelf-stable foods

    International Nuclear Information System (INIS)

    Parra, Duclerc F.; Rodrigues, Juliana A.F.R.; Lugao, Ademar B.

    2005-01-01

    Gamma irradiation is an alternative method for the manufacture of sterilized packaging with increased storage stability and microbiological safety. Biopolymer-based packaging films are a potential solution to many environmental problems that have emerged from the production and accumulation of significant amounts of synthetic polymeric waste. This work was undertaken to verify the effectiveness of low-dose gamma-irradiation in obtaining biopolymer-based packaging films for shelf-stable foods. PHB polyester poly(3-hydroxybutyrate) is an interesting biodegradable polymer that has been intensely investigated as cast and sheet films, with applications in the food industry and medicine. The films obtained are, however, typically brittle, and many scientists have attempted to reduce this brittleness by blending PHB with other polymers. In the present work, PHB was blended with PEG (polyethyleneglycol) to obtain films by the casting method that were then irradiated at a dose rate of 5.72 kGy/h with a 60 Co source. Samples were melted at 200 deg. C and quenched to 0 deg. C in order to evaluate film crystallinity levels by differential scanning calorimetry (DSC). DSC analyses were performed with the samples (10 mg) under N 2 atmosphere, heating from -50 to 200 deg. C (10 deg. C min -1 ), cooling from 200 to -50 deg. C (10 deg. C min -1 ); and heating from -50 to 200 deg. C (10 deg. C min -1 ). The thermal and mechanical resistances of the films after irradiation at low doses (5, 10, 20 kGy) are discussed. Water vapour transmission decreased with increasing irradiation dose, indicating that the films' performance as water vapour barrier had improved. Critical loss of the mechanical properties was observed at 40 kGy

  5. Use of gamma-irradiation technology in the manufacture of biopolymer-based packaging films for shelf-stable foods

    Science.gov (United States)

    Parra, Duclerc F.; Rodrigues, Juliana A. F. R.; Lugão, Ademar B.

    2005-07-01

    Gamma irradiation is an alternative method for the manufacture of sterilized packaging with increased storage stability and microbiological safety. Biopolymer-based packaging films are a potential solution to many environmental problems that have emerged from the production and accumulation of significant amounts of synthetic polymeric waste. This work was undertaken to verify the effectiveness of low-dose gamma-irradiation in obtaining biopolymer-based packaging films for shelf-stable foods. PHB polyester poly(3-hydroxybutyrate) is an interesting biodegradable polymer that has been intensely investigated as cast and sheet films, with applications in the food industry and medicine. The films obtained are, however, typically brittle, and many scientists have attempted to reduce this brittleness by blending PHB with other polymers. In the present work, PHB was blended with PEG (polyethyleneglycol) to obtain films by the casting method that were then irradiated at a dose rate of 5.72 kGy/h with a 60Co source. Samples were melted at 200 °C and quenched to 0 °C in order to evaluate film crystallinity levels by differential scanning calorimetry (DSC). DSC analyses were performed with the samples (10 mg) under N2 atmosphere, heating from -50 to 200 °C (10 °C min-1), cooling from 200 to -50 °C (10 °C min-1); and heating from -50 to 200 °C (10 °C min-1). The thermal and mechanical resistances of the films after irradiation at low doses (5, 10, 20 kGy) are discussed. Water vapour transmission decreased with increasing irradiation dose, indicating that the films' performance as water vapour barrier had improved. Critical loss of the mechanical properties was observed at 40 kGy.

  6. Influence of Temperature and Chloride Concentration on Passivation Mechanism and Corrosion of a DSS2209 Welded Joint

    Science.gov (United States)

    Hachemi, Hania; Azzaz, Mohamed; Djeghlal, Mohamed Elamine

    2016-10-01

    The passivity behavior of a 2209 duplex stainless steel welded joint was investigated using potentiodynamic polarization, Mott-Schottky analysis and EIS measurements. In order to evaluate the contribution of temperature, chloride concentration and microstructure, a sequence of polarization tests were carried out in aerated NaCl solutions selected according to robust design of a three level-three factors Taguchi L9 orthogonal array. Analysis of signal-to-noise ratio and ANOVA were achieved on all measured data, and the contribution of every control factor was estimated. The results showed that the corrosion resistance of 2209 duplex stainless steel welded joint is related to the evolution of the passive film formed on the surface. It was found that the passive film on the welded zone possessed n- and p-type semiconductor characteristics. With the increase of solution temperature and chlorides concentration, the corrosion resistance of the passive film is more affected in the weldment than in the base metal.

  7. Stable, highly-responsive and broadband photodetection based on large-area multilayered WS2 films grown by pulsed-laser deposition

    Science.gov (United States)

    Yao, J. D.; Zheng, Z. Q.; Shao, J. M.; Yang, G. W.

    2015-09-01

    The progress in the field of graphene has aroused a renaissance of keen research interest in layered transition metal dichalcogenides (TMDs). Tungsten disulfide (WS2), a typical TMD with favorable semiconducting band gap and strong light-matter interaction, exhibits great potential for highly-responsive photodetection. However, WS2-based photodetection is currently unsatisfactory due to the low optical absorption (2%-10%) and poor carrier mobility (0.01-0.91 cm2 V-1 s-1) of the thin WS2 layers grown by chemical vapor deposition (CVD). Here, we introduce pulsed-laser deposition (PLD) to prepare multilayered WS2 films. Large-area WS2 films of the magnitude of cm2 are achieved. Comparative measurements of a WS2-based photoresistor demonstrate its stable broadband photoresponse from 370 to 1064 nm, the broadest range demonstrated in WS2 photodetectors. Benefiting from the large optical absorbance (40%-85%) and high carrier mobility (31 cm2 V-1 s-1), the responsivity of the device approaches a high value of 0.51 A W-1 in an ambient environment. Such a performance far surpasses the CVD-grown WS2-based photodetectors (μA W-1). In a vacuum environment, the responsivity is further enhanced to 0.70 A W-1 along with an external quantum efficiency of 137% and a photodetectivity of 2.7 × 109 cm Hz1/2 W-1. These findings stress that the PLD-grown WS2 film may constitute a new paradigm for the next-generation stable, broadband and highly-responsive photodetectors.The progress in the field of graphene has aroused a renaissance of keen research interest in layered transition metal dichalcogenides (TMDs). Tungsten disulfide (WS2), a typical TMD with favorable semiconducting band gap and strong light-matter interaction, exhibits great potential for highly-responsive photodetection. However, WS2-based photodetection is currently unsatisfactory due to the low optical absorption (2%-10%) and poor carrier mobility (0.01-0.91 cm2 V-1 s-1) of the thin WS2 layers grown by chemical vapor

  8. Enhanced photoelectrocatalytic performance of α-Fe2O3 thin films by surface plasmon resonance of Au nanoparticles coupled with surface passivation by atom layer deposition of Al2O3.

    Science.gov (United States)

    Liu, Yuting; Xu, Zhen; Yin, Min; Fan, Haowen; Cheng, Weijie; Lu, Linfeng; Song, Ye; Ma, Jing; Zhu, Xufei

    2015-12-01

    The short lifetime of photogenerated charge carriers of hematite (α-Fe2O3) thin films strongly hindered the PEC performances. Herein, α-Fe2O3 thin films with surface nanowire were synthesized by electrodeposition and post annealing method for photoelectrocatalytic (PEC) water splitting. The thickness of the α-Fe2O3 films can be precisely controlled by adjusting the duration of the electrodeposition. The Au nanoparticles (NPs) and Al2O3 shell by atom layer deposition were further introduced to modify the photoelectrodes. Different constructions were made with different deposition orders of Au and Al2O3 on Fe2O3 films. The Fe2O3-Au-Al2O3 construction shows the best PEC performance with 1.78 times enhancement by localized surface plasmon resonance (LSPR) of NPs in conjunction with surface passivation of Al2O3 shells. Numerical simulation was carried out to investigate the promotion mechanisms. The high PEC performance for Fe2O3-Au-Al2O3 construction electrode could be attributed to the Al2O3 intensified LSPR, effective surface passivation by Al2O3 coating, and the efficient charge transfer due to the Fe2O3-Au Schottky junctions.

  9. Using equilibrium passive dosing to maintain stable exposure concentrations of triclosan in a 6-week toxicity test

    DEFF Research Database (Denmark)

    Sobek, A.; Ribbenstedt, A.; Mustajärvi, L.

    2015-01-01

    toxicity tests. Yet, the European Commission’s criteria for chemicals’ risk assessments aim at protecting higher levels in the environment. To achieve protection of populations and ecosystems, reliable long-term ecotoxicologial tests are needed. In this study, we used equilibrium passive dosing to maintain...... stable exposure concentrations of triclosan (log Kow 4.8) in a 6-week multigeneration test with the benthic copepod Nitocra spinipes. The tests were performed in 10 mL vials casted with 1000 mg of silicone (DC 1-2577). Based on a previous pilot study, three triclosan concentrations were selected...... and tested (15 μg L-1; 30 μg L-1; 60 μg L-1) as well as a control (no triclosan). At test beginning, each vial contained 12 individuals consisting of 3 individuals from four different life stages. The test includes feeding with phytoplankton three times a week, which can lead to declining freely dissolved...

  10. Surface Defect Passivation and Reaction of c-Si in H2S.

    Science.gov (United States)

    Liu, Hsiang-Yu; Das, Ujjwal K; Birkmire, Robert W

    2017-12-26

    A unique passivation process of Si surface dangling bonds through reaction with hydrogen sulfide (H 2 S) is demonstrated in this paper. A high-level passivation quality with an effective minority carrier lifetime (τ eff ) of >2000 μs corresponding to a surface recombination velocity of passivation by monolayer coverage of S on the Si surface. However, S passivation of the Si surface is highly unstable because of thermodynamically favorable reaction with atmospheric H 2 O and O 2 . This instability can be eliminated by capping the S-passivated Si surface with a protective thin film such as low-temperature-deposited amorphous silicon nitride.

  11. Superacid Passivation of Crystalline Silicon Surfaces.

    Science.gov (United States)

    Bullock, James; Kiriya, Daisuke; Grant, Nicholas; Azcatl, Angelica; Hettick, Mark; Kho, Teng; Phang, Pheng; Sio, Hang C; Yan, Di; Macdonald, Daniel; Quevedo-Lopez, Manuel A; Wallace, Robert M; Cuevas, Andres; Javey, Ali

    2016-09-14

    The reduction of parasitic recombination processes commonly occurring within the silicon crystal and at its surfaces is of primary importance in crystalline silicon devices, particularly in photovoltaics. Here we explore a simple, room temperature treatment, involving a nonaqueous solution of the superacid bis(trifluoromethane)sulfonimide, to temporarily deactivate recombination centers at the surface. We show that this treatment leads to a significant enhancement in optoelectronic properties of the silicon wafer, attaining a level of surface passivation in line with state-of-the-art dielectric passivation films. Finally, we demonstrate its advantage as a bulk lifetime and process cleanliness monitor, establishing its compatibility with large area photoluminescence imaging in the process.

  12. Thick film hydrogen sensor

    Science.gov (United States)

    Hoffheins, Barbara S.; Lauf, Robert J.

    1995-01-01

    A thick film hydrogen sensor element includes an essentially inert, electrically-insulating substrate having deposited thereon a thick film metallization forming at least two resistors. The metallization is a sintered composition of Pd and a sinterable binder such as glass frit. An essentially inert, electrically insulating, hydrogen impermeable passivation layer covers at least one of the resistors.

  13. Atomic emission spectroelectrochemistry applied to dealloying phenomena II. Selective dissolution of iron and chromium during active-passive cycles of an austenitic stainless steel

    International Nuclear Information System (INIS)

    Ogle, K.; Mokaddem, M.; Volovitch, P.

    2010-01-01

    Atomic emission spectroelectrochemistry was used to investigate selective dissolution of a 304 austenitic stainless steel sample in 2 M H 2 SO 4 . The partial dissolution rates of Fe, Cr, Ni, Mn, Mo, and Cu were measured as function of time during a series of potentiostatic triggered activation/passivation cycles. When first exposed to sulfuric acid solution, the steel sample was in a passive state with a total steady state ionic dissolution rate expressed as an equivalent current density of 10 μA cm -2 . A transition into the active and passive state could be triggered by cathodic (-700 mV vs. Ag/AgCl) and anodic (+400 to +700 mV vs. Ag/AgCl) potentiostatic pulses respectively of variable time. Excess Cr dissolution was observed during the activation cycle as compared to Fe and a depletion of Cr dissolution was observed during the passivation cycle. These results are interpreted in terms of the dissolution of a Cr rich passive layer during activation and selective dissolution of Fe, Mn, Ni and other elements to form a Cr rich passive layer during passivation. Quantitative analysis of the excess Cr showed that the residual film contained approximately 0.38 μg Cr/cm 2 . Fe does not appear to be incorporated into the film at this early stage of passive film growth. Residual films of metallic nickel and copper were formed on the surface during the active period that subsequently dissolved during passivation.

  14. The Effects of Acid Passivation, Tricresyl Phosphate Presoak, and UV/Ozone Treatment on the Tribology of Perfluoropolyether-Lubricated 440C Stainless Steel Couples

    Science.gov (United States)

    Shogrin, Bradley A.; Jones, William R., Jr.; Herrera-Fierro, Pilar; Jansen, Mark J.

    2001-01-01

    The boundary-lubrication performance of two perfluoropolyether (PFPE) thin films in the presence of passivated 440C stainless steel is presented. The study used a standard ball on disk (BoD) tribometer in dry nitrogen and a vacuum spiral orbit tribometer (SOT). Stainless steel surfaces were passivated with one of four techniques: high and low temperature chromic acid bath, a tricresyl phosphate (TCP) soak, or UV/Ozone treated for 15 min. After passivation, each BoD disk had a 400A film of Krytox 16256 (PFPE) applied to it. The lifetimes of these films were quantified by measuring the number of sliding cycles before an increase in friction occurred. The lubricated lifetime of the 440C couple was not altered as a result of the various passivation techniques. The resulting surface chemistry of each passivation technique was examined using X-ray photoelectron spectroscopy (XPS). The SOT was used to examine the effects of the TCP treatment on the lubricated lifetime of another PFPE, Brayco 815Z, under rolling conditions. None of the passivation techniques were found to dramatically increase the oxide film thickness or lubricated lifetimes.

  15. Improvement of bias-stability in amorphous-indium-gallium-zinc-oxide thin-film transistors by using solution-processed Y{sub 2}O{sub 3} passivation

    Energy Technology Data Exchange (ETDEWEB)

    An, Sungjin; Mativenga, Mallory; Kim, Youngoo; Jang, Jin, E-mail: jjang@khu.ac.kr [Advanced Display Research Center, Department of Information Display, Kyung Hee University, Dongdaemun-gu, Seoul 130-701 (Korea, Republic of)

    2014-08-04

    We demonstrate back channel improvement of back-channel-etch amorphous-indium-gallium-zinc-oxide (a-IGZO) thin-film transistors by using solution-processed yttrium oxide (Y{sub 2}O{sub 3}) passivation. Two different solvents, which are acetonitrile (35%) + ethylene glycol (65%), solvent A and deionized water, solvent B are investigated for the spin-on process of the Y{sub 2}O{sub 3} passivation—performed after patterning source/drain (S/D) Mo electrodes by a conventional HNO{sub 3}-based wet-etch process. Both solvents yield devices with good performance but those passivated by using solvent B exhibit better light and bias stability. Presence of yttrium at the a-IGZO back interface, where it occupies metal vacancy sites, is confirmed by X-ray photoelectron spectroscopy. The passivation effect of yttrium is more significant when solvent A is used because of the existence of more metal vacancies, given that the alcohol (65% ethylene glycol) in solvent A may dissolve the metal oxide (a-IGZO) through the formation of alkoxides and water.

  16. Passivated emitters in silicon solar cells

    International Nuclear Information System (INIS)

    King, R.R.; Gruenbaum, P.E.; Sinton, R.A.; Swanson, R.M.

    1990-01-01

    In high-efficiency silicon solar cells with low metal contact coverage fractions and high bulk lifetimes, cell performance is often dominated by recombination in the oxide-passivated diffusions on the cell surface. Measurements of the emitter saturation current density, J o , of oxide-passivated, boron and phosphorus diffusions are presented, and from these measurements, the dependence of surface recombination velocity on dopant concentration was extracted. The lowest observed values of J o which are stable under UV light are given for both boron- and phosphorus-doped, oxide-passivated diffusions, for both textured and untextured surfaces. Contour plots which incorporate the above data have been applied to two types of backside-contact solar cells with large area (37.5 cm 2 ) and one-sun efficiencies up to 22.7%

  17. Excellent Silicon Surface Passivation Achieved by Industrial Inductively Coupled Plasma Deposited Hydrogenated Intrinsic Amorphous Silicon Suboxide

    Directory of Open Access Journals (Sweden)

    Jia Ge

    2014-01-01

    Full Text Available We present an alternative method of depositing a high-quality passivation film for heterojunction silicon wafer solar cells, in this paper. The deposition of hydrogenated intrinsic amorphous silicon suboxide is accomplished by decomposing hydrogen, silane, and carbon dioxide in an industrial remote inductively coupled plasma platform. Through the investigation on CO2 partial pressure and process temperature, excellent surface passivation quality and optical properties are achieved. It is found that the hydrogen content in the film is much higher than what is commonly reported in intrinsic amorphous silicon due to oxygen incorporation. The observed slow depletion of hydrogen with increasing temperature greatly enhances its process window as well. The effective lifetime of symmetrically passivated samples under the optimal condition exceeds 4.7 ms on planar n-type Czochralski silicon wafers with a resistivity of 1 Ωcm, which is equivalent to an effective surface recombination velocity of less than 1.7 cms−1 and an implied open-circuit voltage (Voc of 741 mV. A comparison with several high quality passivation schemes for solar cells reveals that the developed inductively coupled plasma deposited films show excellent passivation quality. The excellent optical property and resistance to degradation make it an excellent substitute for industrial heterojunction silicon solar cell production.

  18. Fabrication of air-stable n-type carbon nanotube thin-film transistors on flexible substrates using bilayer dielectrics.

    Science.gov (United States)

    Li, Guanhong; Li, Qunqing; Jin, Yuanhao; Zhao, Yudan; Xiao, Xiaoyang; Jiang, Kaili; Wang, Jiaping; Fan, Shoushan

    2015-11-14

    Single-walled carbon nanotube (SWNT) thin-film transistors hold great potential for flexible electronics. However, fabrication of air-stable n-type devices by methods compatible with standard photolithography on flexible substrates is challenging. Here, we demonstrated that by using a bilayer dielectric structure of MgO and atomic layer deposited (ALD) Al2O3 or HfO2, air-stable n-type devices can be obtained. The mechanism for conduction type conversion was elucidated and attributed to the hole depletion in SWNT, the decrease of the trap state density by MgO assimilating adsorbed water molecules in the vicinity of SWNT, and the energy band bending because of the positive fixed charges in the ALD layer. The key advantage of the method is the relatively low temperature (120 or 90 °C) required here for the ALD process because we need not employ this step to totally remove the absorbates on the SWNTs. This advantage facilitates the integration of both p-type and n-type transistors through a simple lift off process and compact CMOS inverters were demonstrated. We also demonstrated that the doping of SWNTs in the channel plays a more important role than the Schottky barriers at the metal contacts in carbon nanotube thin-film transistors, unlike the situation in individual SWNT-based transistors.

  19. Optical and electrical characterizations of a single step ion beam milling mesa devices of chloride passivated PbS colloidal quantum dots based film

    International Nuclear Information System (INIS)

    Hechster, Elad; Sarusi, Gabby; Shapiro, Arthur; Lifshitz, Efrat

    2016-01-01

    Colloidal Quantum Dots (CQDs) are of increasing interest, thanks to their quantum size effect that gives rise to their usage in various applications, such as biological tagging, solar cells and as the sensitizing layer of night vision devices. Here, we analyze the optical absorbance of chloride passivated PbS CQDs as well as revealing a correlation between their photoluminescence and sizes distribution, using theoretical models and experimental results from the literature. Next, we calculate the CQDs resistivity as a film. Although resistivity can be calculated from sheet resistance measurement using four point probes, such measurement is usually carried-out on the layer’s surface that in most cases has dangling bonds and surface states, which might affect the charges flow and modify the resistivity. Therefore; our approach, which was applied in this work, is to extract the actual resistivity from measurements that are performed along the film’s thickness (z-direction). For this intent, we fabricated gold capped PbS mesas devices using a single step Ion Beam Milling (IBM) process where we milled the gold and the PbS film continually, and then measured the vertical resistance. Knowing the mesas’ dimensions, we calculate the resistivity. To the best of our knowledge, no previous work has extracted, vertically, the resistivity of chloride passivated PbS CQDs using the above method.

  20. Optical and electrical characterizations of a single step ion beam milling mesa devices of chloride passivated PbS colloidal quantum dots based film

    Energy Technology Data Exchange (ETDEWEB)

    Hechster, Elad, E-mail: elad.hechster@gmail.com; Sarusi, Gabby [Electro-Optics Engineering Unit and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva, 84100 Israel (Israel); Shapiro, Arthur; Lifshitz, Efrat [Schulich Faculty of Chemistry, Solid State Institute, Russel Berrie Nanotechnology Institute, Technion – Israel Institute of technology, 32000 Haifa (Israel)

    2016-07-15

    Colloidal Quantum Dots (CQDs) are of increasing interest, thanks to their quantum size effect that gives rise to their usage in various applications, such as biological tagging, solar cells and as the sensitizing layer of night vision devices. Here, we analyze the optical absorbance of chloride passivated PbS CQDs as well as revealing a correlation between their photoluminescence and sizes distribution, using theoretical models and experimental results from the literature. Next, we calculate the CQDs resistivity as a film. Although resistivity can be calculated from sheet resistance measurement using four point probes, such measurement is usually carried-out on the layer’s surface that in most cases has dangling bonds and surface states, which might affect the charges flow and modify the resistivity. Therefore; our approach, which was applied in this work, is to extract the actual resistivity from measurements that are performed along the film’s thickness (z-direction). For this intent, we fabricated gold capped PbS mesas devices using a single step Ion Beam Milling (IBM) process where we milled the gold and the PbS film continually, and then measured the vertical resistance. Knowing the mesas’ dimensions, we calculate the resistivity. To the best of our knowledge, no previous work has extracted, vertically, the resistivity of chloride passivated PbS CQDs using the above method.

  1. Electrochemical passivation behaviour of nanocrystalline Fe80Si20 ...

    Indian Academy of Sciences (India)

    Abstract. Passivation behaviour of nanocrystalline coating (Fe80Si20) obtained by in situ mechanical alloying route .... is controlled by the iron oxide film in case of alloys with ..... the surface is covered, thus, producing effective protection of.

  2. Amorphous silicon oxide layers for surface passivation and contacting of heterostructure solar cells of amorphous and crystalline silicon; Amorphe Siliziumoxidschichten zur Oberflaechenpassivierung und Kontaktierung von Heterostruktur-Solarzellen aus amorphen und kristallinem Silizium

    Energy Technology Data Exchange (ETDEWEB)

    Einsele, Florian

    2010-02-05

    induced n-type conduction of a-SiO{sub x}:H. Therefore, full area contacts require local through-connections of the a-SiO{sub x}:H layers. However, these films offer themselves as passivating interlayers at the solar cell front side between p-type base and n-type emitter. Symmetrical test structures on p-type c-Si allow for studying two-stage emitter structures consisting of undoped and phosphorous doped a-SiO{sub x}:H layers. Low and thermally stable emitter saturation current densities result, allowing for high open circuit voltages of above 700 mV in solar cells. However, the efficiency of solar cells with these emitter structures is limited by a high contact resistance between n-type a-SiO{sub x}:H and ZnO:Al at the front side as well as a non-optimized back contact.

  3. Triethyl orthoformate as a new film-forming electrolytes solvent for lithium-ion batteries with graphite anodes

    International Nuclear Information System (INIS)

    Wang Lishi; Huang Yudai; Jia Dianzeng

    2006-01-01

    Triethyl orthoformate (TEOF) as a new solvent used in propylene carbonate (PC)-based electrolytes together with graphitic anodes in lithium-ion batteries has been investigated. It can be observed that TEOF was capable of suppressing the co-intercalation of PC solvated lithium-ions into the graphite layer during the first lithiation process and the irreversible discharge capacity of the first cycle is the smallest when using 1.0 M LiPF 6 in PC and TEOF at solvent ratio of 1:1 as the electrolytes. The CV, FTIR, EIS, SEM results show that the PC-based electrolytes containing the solvent TEOF can generate an effective solid electrolytes interphase (SEI) film during the first cycling process, and the film is probably mainly composed of ROCO 2 Li, ROLi, Li 2 CO 3 , etc. The formation of a stable passivating film on the graphite surface is believed to be the reason for the improved cell performance. All these results show that TEOF possesses a promising performance for use as an effective film-forming electrolytes solvent in lithium-ion batteries with graphitic anodes

  4. Stable organic thin-film transistors

    Science.gov (United States)

    Jia, Xiaojia; Fuentes-Hernandez, Canek; Wang, Cheng-Yin; Park, Youngrak; Kippelen, Bernard

    2018-01-01

    Organic thin-film transistors (OTFTs) can be fabricated at moderate temperatures and through cost-effective solution-based processes on a wide range of low-cost flexible and deformable substrates. Although the charge mobility of state-of-the-art OTFTs is superior to that of amorphous silicon and approaches that of amorphous oxide thin-film transistors (TFTs), their operational stability generally remains inferior and a point of concern for their commercial deployment. We report on an exhaustive characterization of OTFTs with an ultrathin bilayer gate dielectric comprising the amorphous fluoropolymer CYTOP and an Al2O3:HfO2 nanolaminate. Threshold voltage shifts measured at room temperature over time periods up to 5.9 × 105 s do not vary monotonically and remain below 0.2 V in microcrystalline OTFTs (μc-OTFTs) with field-effect carrier mobility values up to 1.6 cm2 V−1 s−1. Modeling of these shifts as a function of time with a double stretched-exponential (DSE) function suggests that two compensating aging mechanisms are at play and responsible for this high stability. The measured threshold voltage shifts at temperatures up to 75°C represent at least a one-order-of-magnitude improvement in the operational stability over previous reports, bringing OTFT technologies to a performance level comparable to that reported in the scientific literature for other commercial TFTs technologies. PMID:29340301

  5. Post-exercise cortical depression following repetitive passive finger movement.

    Science.gov (United States)

    Otsuka, Ryohei; Sasaki, Ryoki; Tsuiki, Shota; Kojima, Sho; Onishi, Hideaki

    2017-08-24

    This study aimed to clarify the influence of range of repetitive passive finger movement on corticospinal excitability. Thirteen healthy subjects participated in this study. Passive index finger adduction-abduction movements were performed from 15° abduction to 15° adduction, 15° abduction to 0°, 0° to 15° adduction, and 15° adduction to 30° adduction, each at 15°/s for 10min on separate days. Motor evoked potentials (MEPs) elicited by transcranial magnetic stimulation and M- and F-waves were measured before and after each repetitive passive index finger movement protocol to evaluate changes in corticospinal excitability. MEP amplitude significantly decreased after all passive movements, while F-wave amplitude, F-wave persistence, and M-wave amplitude remained stable. These results suggest that cortical excitability decreases after repetitive passive movement. However, the range of repetitive passive movement does not markedly influence the magnitude of cortical depression. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Enhanced linear and nonlinear optical properties of thermally stable ZnO/poly(styrene)–poly(methyl methacrylate) nanocomposite films

    International Nuclear Information System (INIS)

    Jeeju, P.P.; Jayalekshmi, S.; Chandrasekharan, K.; Sudheesh, P.

    2013-01-01

    Highly transparent and thermally stable zinc oxide (ZnO)/poly(styrene)–poly(methyl methacrylate) (PS–PMMA) nanocomposite films have been deposited on glass substrates, from the ZnO incorporated (PS–PMMA) solutions in toluene, using spin coating technique. A chemical route at room temperature is used to synthesize the ZnO nanoparticles. Transmission electron microscope and high-resolution transmission electron microscope images show that the ZnO nanoparticles are of size around 10 nm. The composite films have been characterized by X-ray diffraction, Fourier transform infrared spectroscopy, atomic force microscopy, Ultraviolet–visible–Near Infrared (UV–vis–NIR) spectroscopy, Thermo-gravimetric analysis, photoluminescence (PL) spectroscopy and Z-scan technique. From the UV–vis–NIR spectra it is observed that the ZnO/PS–PMMA nanocomposite films with 10 wt.% ZnO content exhibit excellent shielding property in the UV region and, high transparency in the visible region. The PL spectrum of the composite films is different from that of ZnO and PS–PMMA blend and exhibits an excitonic emission peak at ∼ 375 nm. The optical absorptive nonlinearity in the nanocomposite films is investigated using open aperture Z-scan technique. The results indicate optical limiting type nonlinearity in the films due to two photon absorption. A transmittance minimum of around 0.25 has been observed in the ZnO/PS–PMMA nanocomposite films which is much lower compared to that in ZnO/PMMA and ZnO/PS nanocomposite films. The ZnO/PS–PMMA nanocomposite films also show a self-defocusing type negative nonlinear refraction in closed aperture Z-scan experiment. These nanocomposite films extend ample scope of applications as excellent optical limiters and efficient UV protectors. - Highlights: ► Transparent, ZnO/poly(styrene)–poly(methyl methacrylate) composite films are prepared. ► The nanocomposite films with 10 wt.% ZnO content exhibit good UV-shielding property.

  7. Enhanced linear and nonlinear optical properties of thermally stable ZnO/poly(styrene)–poly(methyl methacrylate) nanocomposite films

    Energy Technology Data Exchange (ETDEWEB)

    Jeeju, P.P., E-mail: jeejupp@gmail.com [Division for Research in Advanced Materials, Department of Physics, Cochin University of Science and Technology, Kochi 682 022, Kerala (India); Jayalekshmi, S., E-mail: jayalekshmi@cusat.ac.in [Division for Research in Advanced Materials, Department of Physics, Cochin University of Science and Technology, Kochi 682 022, Kerala (India); Chandrasekharan, K.; Sudheesh, P. [Department of Physics, National Institute of Technology, Calicut, Kerala (India)

    2013-03-01

    Highly transparent and thermally stable zinc oxide (ZnO)/poly(styrene)–poly(methyl methacrylate) (PS–PMMA) nanocomposite films have been deposited on glass substrates, from the ZnO incorporated (PS–PMMA) solutions in toluene, using spin coating technique. A chemical route at room temperature is used to synthesize the ZnO nanoparticles. Transmission electron microscope and high-resolution transmission electron microscope images show that the ZnO nanoparticles are of size around 10 nm. The composite films have been characterized by X-ray diffraction, Fourier transform infrared spectroscopy, atomic force microscopy, Ultraviolet–visible–Near Infrared (UV–vis–NIR) spectroscopy, Thermo-gravimetric analysis, photoluminescence (PL) spectroscopy and Z-scan technique. From the UV–vis–NIR spectra it is observed that the ZnO/PS–PMMA nanocomposite films with 10 wt.% ZnO content exhibit excellent shielding property in the UV region and, high transparency in the visible region. The PL spectrum of the composite films is different from that of ZnO and PS–PMMA blend and exhibits an excitonic emission peak at ∼ 375 nm. The optical absorptive nonlinearity in the nanocomposite films is investigated using open aperture Z-scan technique. The results indicate optical limiting type nonlinearity in the films due to two photon absorption. A transmittance minimum of around 0.25 has been observed in the ZnO/PS–PMMA nanocomposite films which is much lower compared to that in ZnO/PMMA and ZnO/PS nanocomposite films. The ZnO/PS–PMMA nanocomposite films also show a self-defocusing type negative nonlinear refraction in closed aperture Z-scan experiment. These nanocomposite films extend ample scope of applications as excellent optical limiters and efficient UV protectors. - Highlights: ► Transparent, ZnO/poly(styrene)–poly(methyl methacrylate) composite films are prepared. ► The nanocomposite films with 10 wt.% ZnO content exhibit good UV-shielding property.

  8. Broad bandwidth vibration energy harvester based on thermally stable wavy fluorinated ethylene propylene electret films with negative charges

    Science.gov (United States)

    Zhang, Xiaoqing; Sessler, Gerhard M.; Ma, Xingchen; Xue, Yuan; Wu, Liming

    2018-06-01

    Wavy fluorinated ethylene propylene (FEP) electret films with negative charges were prepared by a patterning method followed by a corona charging process. The thermal stability of these films was characterized by the surface potential decay with annealing time at elevated temperatures. The results show that thermally stable electret films can be made by corona charging followed by pre-aging treatment. Vibration energy harvesters having a very simple sandwich structure, consisting of a central wavy FEP electret film and two outside metal plates, were designed and their performance, including the resonance frequency, output power, half power bandwidth, and device stability, was investigated. These harvesters show a broad bandwidth as well as high output power. Their performance can be further improved by using a wavy-shaped counter electrode. For an energy harvester with an area of 4 cm2 and a seismic mass of 80 g, the output power referred to 1 g (g is the gravity of the earth), the resonance frequency, and the 3 dB bandwidth are 1.85 mW, 90 Hz, and 24 Hz, respectively. The output power is sufficient to power some electronic devices. Such devices may be embedded in shoe soles, carpets or seat cushions where the flexibility is required and large force is available.

  9. Protective capping and surface passivation of III-V nanowires by atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Dhaka, Veer, E-mail: veer.dhaka@aalto.fi; Perros, Alexander; Kakko, Joona-Pekko; Haggren, Tuomas; Lipsanen, Harri [Department of Micro- and Nanosciences, Micronova, Aalto University, P.O. Box 13500, FI-00076 (Finland); Naureen, Shagufta; Shahid, Naeem [Research School of Physics & Engineering, Department of Electronic Materials Engineering, Australian National University, Canberra ACT 2601 (Australia); Jiang, Hua; Kauppinen, Esko [Department of Applied Physics and Nanomicroscopy Center, Aalto University, P.O. Box 15100, FI-00076 (Finland); Srinivasan, Anand [School of Information and Communication Technology, KTH Royal Institute of Technology, Electrum 229, S-164 40 Kista (Sweden)

    2016-01-15

    Low temperature (∼200 °C) grown atomic layer deposition (ALD) films of AlN, TiN, Al{sub 2}O{sub 3}, GaN, and TiO{sub 2} were tested for protective capping and surface passivation of bottom-up grown III-V (GaAs and InP) nanowires (NWs), and top-down fabricated InP nanopillars. For as-grown GaAs NWs, only the AlN material passivated the GaAs surface as measured by photoluminescence (PL) at low temperatures (15K), and the best passivation was achieved with a few monolayer thick (2Å) film. For InP NWs, the best passivation (∼2x enhancement in room-temperature PL) was achieved with a capping of 2nm thick Al{sub 2}O{sub 3}. All other ALD capping layers resulted in a de-passivation effect and possible damage to the InP surface. Top-down fabricated InP nanopillars show similar passivation effects as InP NWs. In particular, capping with a 2 nm thick Al{sub 2}O{sub 3} layer increased the carrier decay time from 251 ps (as-etched nanopillars) to about 525 ps. Tests after six months ageing reveal that the capped nanostructures retain their optical properties. Overall, capping of GaAs and InP NWs with high-k dielectrics AlN and Al{sub 2}O{sub 3} provides moderate surface passivation as well as long term protection from oxidation and environmental attack.

  10. Protective capping and surface passivation of III-V nanowires by atomic layer deposition

    Directory of Open Access Journals (Sweden)

    Veer Dhaka

    2016-01-01

    Full Text Available Low temperature (∼200 °C grown atomic layer deposition (ALD films of AlN, TiN, Al2O3, GaN, and TiO2 were tested for protective capping and surface passivation of bottom-up grown III-V (GaAs and InP nanowires (NWs, and top-down fabricated InP nanopillars. For as-grown GaAs NWs, only the AlN material passivated the GaAs surface as measured by photoluminescence (PL at low temperatures (15K, and the best passivation was achieved with a few monolayer thick (2Å film. For InP NWs, the best passivation (∼2x enhancement in room-temperature PL was achieved with a capping of 2nm thick Al2O3. All other ALD capping layers resulted in a de-passivation effect and possible damage to the InP surface. Top-down fabricated InP nanopillars show similar passivation effects as InP NWs. In particular, capping with a 2 nm thick Al2O3 layer increased the carrier decay time from 251 ps (as-etched nanopillars to about 525 ps. Tests after six months ageing reveal that the capped nanostructures retain their optical properties. Overall, capping of GaAs and InP NWs with high-k dielectrics AlN and Al2O3 provides moderate surface passivation as well as long term protection from oxidation and environmental attack.

  11. Deterministic chaos in the pitting phenomena of passivable alloys

    International Nuclear Information System (INIS)

    Hoerle, Stephane

    1998-01-01

    It was shown that electrochemical noise recorded in stable pitting conditions exhibits deterministic (even chaotic) features. The occurrence of deterministic behaviors depend on the material/solution severity. Thus, electrolyte composition ([Cl - ]/[NO 3 - ] ratio, pH), passive film thickness or alloy composition can change the deterministic features. Only one pit is sufficient to observe deterministic behaviors. The electrochemical noise signals are non-stationary, which is a hint of a change with time in the pit behavior (propagation speed or mean). Modifications of electrolyte composition reveals transitions between random and deterministic behaviors. Spontaneous transitions between deterministic behaviors of different features (bifurcation) are also evidenced. Such bifurcations enlighten various routes to chaos. The routes to chaos and the features of chaotic signals allow to suggest the modeling (continuous and discontinuous models are proposed) of the electrochemical mechanisms inside a pit, that describe quite well the experimental behaviors and the effect of the various parameters. The analysis of the chaotic behaviors of a pit leads to a better understanding of propagation mechanisms and give tools for pit monitoring. (author) [fr

  12. SiC formation for a solar cell passivation layer using an RF magnetron co-sputtering system

    Science.gov (United States)

    2012-01-01

    In this paper, we describe a method of amorphous silicon carbide film formation for a solar cell passivation layer. The film was deposited on p-type silicon (100) and glass substrates by an RF magnetron co-sputtering system using a Si target and a C target at a room-temperature condition. Several different SiC [Si1-xCx] film compositions were achieved by controlling the Si target power with a fixed C target power at 150 W. Then, structural, optical, and electrical properties of the Si1-xCx films were studied. The structural properties were investigated by transmission electron microscopy and secondary ion mass spectrometry. The optical properties were achieved by UV-visible spectroscopy and ellipsometry. The performance of Si1-xCx passivation was explored by carrier lifetime measurement. PMID:22221730

  13. N-MOSFETs Formed on Solid Phase Epitaxially Grown GeSn Film with Passivation by Oxygen Plasma Featuring High Mobility.

    Science.gov (United States)

    Fang, Yung-Chin; Chen, Kuen-Yi; Hsieh, Ching-Heng; Su, Chang-Chia; Wu, Yung-Hsien

    2015-12-09

    Solid phase epitaxially grown GeSn was employed as the platform to assess the eligibility of direct O2 plasma treatment on GeSn surface for passivation of GeSn N-MOSFETs. It has been confirmed that O2 plasma treatment forms a GeSnO(x) film on the surface and the GeSnO(x) topped by in situ Al2O3 constitutes the gate stack of GeSn MOS devices. The capability of the surface passivation was evidenced by the low interface trap density (D(it)) of 1.62 × 10(11) cm(-2) eV(-1), which is primarily due to the formation of Ge-O and Sn-O bonds at the surface by high density/reactivity oxygen radicals that effectively suppress dangling bonds and decrease gap states. The good D(it) not only makes tiny frequency dispersion in the characterization of GeSn MOS capacitors, but results in GeSn N-MOSFETs with outstanding peak electron mobility as high as 518 cm(2)/(V s) which outperforms other devices reported in the literature due to reduced undesirable carrier scattering. In addition, the GeSn N-MOSFETs also exhibit promising characteristics in terms of acceptable subthreshold swing of 156 mV/dec and relatively large I(ON)/I(OFF) ratio more than 4 orders. Moreover, the robust reliability in terms small V(t) variation against high field stress attests the feasibility of using the O2 plasma-treated passivation to advanced GeSn technology.

  14. Improvement of Electrical Characteristics and Stability of Amorphous Indium Gallium Zinc Oxide Thin Film Transistors Using Nitrocellulose Passivation Layer.

    Science.gov (United States)

    Shin, Kwan Yup; Tak, Young Jun; Kim, Won-Gi; Hong, Seonghwan; Kim, Hyun Jae

    2017-04-19

    In this research, nitrocellulose is proposed as a new material for the passivation layers of amorphous indium gallium zinc oxide thin film transistors (a-IGZO TFTs). The a-IGZO TFTs with nitrocellulose passivation layers (NC-PVLs) demonstrate improved electrical characteristics and stability. The a-IGZO TFTs with NC-PVLs exhibit improvements in field-effect mobility (μ FE ) from 11.72 ± 1.14 to 20.68 ± 1.94 cm 2 /(V s), threshold voltage (V th ) from 1.85 ± 1.19 to 0.56 ± 0.35 V, and on/off current ratio (I on/off ) from (5.31 ± 2.19) × 10 7 to (4.79 ± 1.54) × 10 8 compared to a-IGZO TFTs without PVLs, respectively. The V th shifts of a-IGZO TFTs without PVLs, with poly(methyl methacrylate) (PMMA) PVLs, and with NC-PVLs under positive bias stress (PBS) test for 10,000 s represented 5.08, 3.94, and 2.35 V, respectively. These improvements were induced by nitrogen diffusion from NC-PVLs to a-IGZO TFTs. The lone-pair electrons of diffused nitrogen attract weakly bonded oxygen serving as defect sites in a-IGZO TFTs. Consequently, the electrical characteristics are improved by an increase of carrier concentration in a-IGZO TFTs, and a decrease of defects in the back channel layer. Also, NC-PVLs have an excellent property as a barrier against ambient gases. Therefore, the NC-PVL is a promising passivation layer for next-generation display devices that simultaneously can improve electrical characteristics and stability against ambient gases.

  15. Passivation Using Molecular Halides Increases Quantum Dot Solar Cell Performance.

    Science.gov (United States)

    Lan, Xinzheng; Voznyy, Oleksandr; Kiani, Amirreza; García de Arquer, F Pelayo; Abbas, Abdullah Saud; Kim, Gi-Hwan; Liu, Mengxia; Yang, Zhenyu; Walters, Grant; Xu, Jixian; Yuan, Mingjian; Ning, Zhijun; Fan, Fengjia; Kanjanaboos, Pongsakorn; Kramer, Illan; Zhitomirsky, David; Lee, Philip; Perelgut, Alexander; Hoogland, Sjoerd; Sargent, Edward H

    2016-01-13

    A solution-based passivation scheme is developed featuring the use of molecular iodine and PbS colloidal quantum dots (CQDs). The improved passivation translates into a longer carrier diffusion length in the solid film. This allows thicker solar-cell devices to be built while preserving efficient charge collection, leading to a certified power conversion efficiency of 9.9%, which is a new record in CQD solar cells. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Low-Temperature Process for Atomic Layer Chemical Vapor Deposition of an Al2O3 Passivation Layer for Organic Photovoltaic Cells.

    Science.gov (United States)

    Kim, Hoonbae; Lee, Jihye; Sohn, Sunyoung; Jung, Donggeun

    2016-05-01

    Flexible organic photovoltaic (OPV) cells have drawn extensive attention due to their light weight, cost efficiency, portability, and so on. However, OPV cells degrade quickly due to organic damage by water vapor or oxygen penetration when the devices are driven in the atmosphere without a passivation layer. In order to prevent damage due to water vapor or oxygen permeation into the devices, passivation layers have been introduced through methods such as sputtering, plasma enhanced chemical vapor deposition, and atomic layer chemical vapor deposition (ALCVD). In this work, the structural and chemical properties of Al2O3 films, deposited via ALCVD at relatively low temperatures of 109 degrees C, 200 degrees C, and 300 degrees C, are analyzed. In our experiment, trimethylaluminum (TMA) and H2O were used as precursors for Al2O3 film deposition via ALCVD. All of the Al2O3 films showed very smooth, featureless surfaces without notable defects. However, we found that the plastic flexible substrate of an OPV device passivated with 300 degrees C deposition temperature was partially bended and melted, indicating that passivation layers for OPV cells on plastic flexible substrates need to be formed at temperatures lower than 300 degrees C. The OPV cells on plastic flexible substrates were passivated by the Al2O3 film deposited at the temperature of 109 degrees C. Thereafter, the photovoltaic properties of passivated OPV cells were investigated as a function of exposure time under the atmosphere.

  17. Passivity of AISI 321 stainless steel in 0.5 M H2SO4 solution studied by Mott–Schottky analysis in conjunction with the point defect model

    Directory of Open Access Journals (Sweden)

    A. Fattah-alhosseini

    2016-11-01

    Full Text Available The passivity of AISI 321 stainless steel in 0.5 M H2SO4 solution, in the steady-state condition, has been explored using electrochemical impedance spectroscopy (EIS and Mott–Schottky analysis. Based on the Mott–Schottky analysis in conjunction with the point defect model (PDM, it was shown that the calculated donor density decreases exponentially with increasing passive film formation potential. The thickness of the passive film was increased linearly with the formation potential. These observations were consistent with the predictions of the PDM, noting that the point defects within the passive film are metal interstitials, oxygen vacancies, or both.

  18. Effect of hydrogen on passivation quality of SiNx/Si-rich SiNx stacked layers deposited by catalytic chemical vapor deposition on c-Si wafers

    International Nuclear Information System (INIS)

    Thi, Trinh Cham; Koyama, Koichi; Ohdaira, Keisuke; Matsumura, Hideki

    2015-01-01

    We investigate the role of hydrogen content and fixed charges of catalytic chemical vapor deposited (Cat-CVD) SiN x /Si-rich SiN x stacked layers on the quality of crystalline silicon (c-Si) surface passivation. Calculated density of fixed charges is on the order of 10 12 cm −2 , which is high enough for effective field effect passivation. Hydrogen content in the films is also found to contribute significantly to improvement in passivation quality of the stacked layers. Furthermore, Si-rich SiN x films deposited with H 2 dilution show better passivation quality of SiN x /Si-rich SiN x stacked layers than those prepared without H 2 dilution. Effective minority carrier lifetime (τ eff ) in c-Si passivated by SiN x /Si-rich SiN x stacked layers is as high as 5.1 ms when H 2 is added during Si-rich SiN x deposition, which is much higher than the case of using Si-rich SiN x films prepared without H 2 dilution showing τ eff of 3.3 ms. - Highlights: • Passivation mechanism of Si-rich SiN x /SiN x stacked layers is investigated. • H atoms play important role in passivation quality of the stacked layer. • Addition of H 2 gas during Si-rich SiN x film deposition greatly enhances effective minority carrier lifetime (τ eff ). • For a Si-rich SiN x film with refractive index of 2.92, τ eff improves from 3.3 to 5.1 ms by H 2 addition

  19. Corrosion study of the passive film of amorphous Fe-Cr-Ni-(Si, P, B alloys

    Directory of Open Access Journals (Sweden)

    López, M. F.

    1996-12-01

    Full Text Available Amorphous Fe62Cr10Ni8X20 (X = P, B, Si alloys in 0.01M HCl solution have been investigated by means of standard electrochemical measurements in order to evaluate their corrosion resistance. The study reveals that the best corrosion behaviour is given by the Si containing amorphous alloy. X-ray photoelectron spectroscopy (XPS and Auger electron spectroscopy (AJES have been employed to study the composition of the passive layers, formed on the surface of the different amorphous alloys. The results on Fe62Cr10Ni8X20 show that a protective passive film, mainly consisting of oxidized chromium, greatly enhances its corrosion resistance.

    La resistencia a la corrosión de las aleaciones amorfas Fe62Cr10Ni8X20 (X = P, B, Si inmersas en HCl 0,01M se evaluó usando técnicas electroquímicas. Las técnicas de espectroscopia de fotoemisión de rayos X y espectroscopia Auger se emplearon para estudiar la composición de las capas pasivas, formadas en aire sobre la superficie de las aleaciones amorfas. Del estudio realizado se concluye que el mejor comportamiento frente a la corrosión viene dado por la aleación amorfa que contiene como metaloide Si. Esto es debido a que la capa pasiva de dicha aleación está formada principalmente de óxido de cromo, lo cual confiere una alta resistencia a la corrosión.

  20. Local Fine Structural Insight into Mechanism of Electrochemical Passivation of Titanium.

    Science.gov (United States)

    Wang, Lu; Yu, Hongying; Wang, Ke; Xu, Haisong; Wang, Shaoyang; Sun, Dongbai

    2016-07-20

    Electrochemically formed passive film on titanium in 1.0 M H2SO4 solution and its thickness, composition, chemical state, and local fine structure are examined by Auger electron spectroscopy (AES), X-ray photoelectron spectroscopy (XPS), and X-ray absorption fine structure. AES analysis reveals that the thickness and composition of oxide film are proportional to the reciprocal of current density in potentiodynamic polarization. XPS depth profiles of the chemical states of titanium exhibit the coexistence of various valences cations in the surface. Quantitative X-ray absorption near edge structure analysis of the local electronic structure of the topmost surface (∼5.0 nm) shows that the ratio of [TiO2]/[Ti2O3] is consistent with that of passivation/dissolution of electrochemical activity. Theoretical calculation and analysis of extended X-ray absorption fine structure spectra at Ti K-edge indicate that both the structures of passivation and dissolution are distorted caused by the appearance of two different sites of Ti-O and Ti-Ti. And the bound water in the topmost surface plays a vital role in structural disorder confirmed by XPS. Overall, the increase of average Ti-O coordination causes the electrochemical passivation, and the dissolution is due to the decrease of average Ti-Ti coordination. The structural variations of passivation in coordination number and interatomic distance are in good agreement with the prediction of point defect model.

  1. Passivation Using Molecular Halides Increases Quantum Dot Solar Cell Performance

    KAUST Repository

    Lan, Xinzheng; Voznyy, Oleksandr; Kiani, Amirreza; Garcí a de Arquer, F. Pelayo; Abbas, Abdullah Saud; Kim, Gi-Hwan; Liu, Mengxia; Yang, Zhenyu; Walters, Grant; Xu, Jixian; Yuan, Mingjian; Ning, Zhijun; Fan, Fengjia; Kanjanaboos, Pongsakorn; Kramer, Illan; Zhitomirsky, David; Lee, Philip; Perelgut, Alexander; Hoogland, Sjoerd; Sargent, Edward H.

    2015-01-01

    © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. Here we report a solution-based passivation scheme is developed featuring the use of molecular iodine and PbS colloidal quantum dots (CQDs). The improved passivation translates into a longer carrier diffusion length in the solid film. This allows thicker solar-cell devices to be built while preserving efficient charge collection, leading to a certified power conversion efficiency of 9.9%, which is a new record in CQD solar cells.

  2. Passivation Using Molecular Halides Increases Quantum Dot Solar Cell Performance

    KAUST Repository

    Lan, Xinzheng

    2015-11-18

    © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. Here we report a solution-based passivation scheme is developed featuring the use of molecular iodine and PbS colloidal quantum dots (CQDs). The improved passivation translates into a longer carrier diffusion length in the solid film. This allows thicker solar-cell devices to be built while preserving efficient charge collection, leading to a certified power conversion efficiency of 9.9%, which is a new record in CQD solar cells.

  3. The cognitive-behavioral system of leadership: cognitive antecedents of active and passive leadership behaviors

    Science.gov (United States)

    Dóci, Edina; Stouten, Jeroen; Hofmans, Joeri

    2015-01-01

    In the present paper, we propose a cognitive-behavioral understanding of active and passive leadership. Building on core evaluations theory, we offer a model that explains the emergence of leaders’ active and passive behaviors, thereby predicting stable, inter-individual, as well as variable, intra-individual differences in both types of leadership behavior. We explain leaders’ stable behavioral tendencies by their fundamental beliefs about themselves, others, and the world (core evaluations), while their variable, momentary behaviors are explained by the leaders’ momentary appraisals of themselves, others, and the world (specific evaluations). By introducing interactions between the situation the leader enters, the leader’s beliefs, appraisals, and behavior, we propose a comprehensive system of cognitive mechanisms that underlie active and passive leadership behavior. PMID:26441721

  4. Method of preparing high-temperature-stable thin-film resistors

    Science.gov (United States)

    Raymond, L.S.

    1980-11-12

    A chemical vapor deposition method for manufacturing tungsten-silicide thin-film resistors of predetermined bulk resistivity and temperature coefficient of resistance (TCR) is disclosed. Gaseous compounds of tungsten and silicon are decomposed on a hot substrate to deposit a thin-film of tungsten-silicide. The TCR of the film is determined by the crystallinity of the grain structure, which is controlled by the temperature of deposition and the tungsten to silicon ratio. The bulk resistivity is determined by the tungsten to silicon ratio. Manipulation of the fabrication parameters allows for sensitive control of the properties of the resistor.

  5. Method of preparing high-temperature-stable thin-film resistors

    International Nuclear Information System (INIS)

    Raymond, L.S.

    1983-01-01

    A chemical vapor deposition method is disclosed for manufacturing tungsten-silicide thin-film resistors of predetermined bulk resistivity and temperature coefficient of resistance (TCR). Gaseous compounds of tungsten and silicon are decomposed on a hot substrate to deposit a thin-film of tungsten-silicide. The TCR of the film is determined by the crystallinity of the grain structure, which is controlled by the temperature of deposition and the tungsten to silicon ratio. The bulk resistivity is determined by the tungsten to silicon ratio. Manipulation of the fabrication parameters allows for sensitive control of the properties of the resistor

  6. Passivity-Based Control for Two-Wheeled Robot Stabilization

    Science.gov (United States)

    Uddin, Nur; Aryo Nugroho, Teguh; Agung Pramudito, Wahyu

    2018-04-01

    A passivity-based control system design for two-wheeled robot (TWR) stabilization is presented. A TWR is a statically-unstable non-linear system. A control system is applied to actively stabilize the TWR. Passivity-based control method is applied to design the control system. The design results in a state feedback control law that makes the TWR closed loop system globally asymptotically stable (GAS). The GAS is proven mathematically. The TWR stabilization is demonstrated through computer simulation. The simulation results show that the designed control system is able to stabilize the TWR.

  7. Electrodeposited Structurally Stable V2O5 Inverse Opal Networks as High Performance Thin Film Lithium Batteries.

    Science.gov (United States)

    Armstrong, Eileen; McNulty, David; Geaney, Hugh; O'Dwyer, Colm

    2015-12-09

    High performance thin film lithium batteries using structurally stable electrodeposited V2O5 inverse opal (IO) networks as cathodes provide high capacity and outstanding cycling capability and also were demonstrated on transparent conducting oxide current collectors. The superior electrochemical performance of the inverse opal structures was evaluated through galvanostatic and potentiodynamic cycling, and the IO thin film battery offers increased capacity retention compared to micron-scale bulk particles from improved mechanical stability and electrical contact to stainless steel or transparent conducting current collectors from bottom-up electrodeposition growth. Li(+) is inserted into planar and IO structures at different potentials, and correlated to a preferential exposure of insertion sites of the IO network to the electrolyte. Additionally, potentiodynamic testing quantified the portion of the capacity stored as surface bound capacitive charge. Raman scattering and XRD characterization showed how the IO allows swelling into the pore volume rather than away from the current collector. V2O5 IO coin cells offer high initial capacities, but capacity fading can occur with limited electrolyte. Finally, we demonstrate that a V2O5 IO thin film battery prepared on a transparent conducting current collector with excess electrolyte exhibits high capacities (∼200 mAh g(-1)) and outstanding capacity retention and rate capability.

  8. Self-aligned indium–gallium–zinc oxide thin-film transistors with SiN{sub x}/SiO{sub 2}/SiN{sub x}/SiO{sub 2} passivation layers

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Rongsheng, E-mail: rschen@ust.hk; Zhou, Wei; Zhang, Meng; Kwok, Hoi-Sing

    2014-08-01

    Self-aligned top-gate amorphous indium–gallium–zinc oxide (a-IGZO) thin-film transistors (TFTs) with SiN{sub x}/SiO{sub 2}/SiN{sub x}/SiO{sub 2} passivation layers are developed in this paper. The resulting a-IGZO TFT exhibits high reliability against bias stress and good electrical performance including field-effect mobility of 5 cm{sup 2}/Vs, threshold voltage of 2.5 V, subthreshold swing of 0.63 V/decade, and on/off current ratio of 5 × 10{sup 6}. With scaling down of the channel length, good characteristics are also obtained with a small shift of the threshold voltage and no degradation of subthreshold swing. The proposed a-IGZO TFTs in this paper can act as driving devices in the next generation flat panel displays. - Highlights: • Self-aligned top-gate indium–gallium–zinc oxide thin-film transistor is proposed. • SiN{sub x}/SiO{sub 2}/SiN{sub x}/SiO{sub 2} passivation layers are developed. • The source/drain areas are hydrogen-doped by CHF3 plasma. • The devices show good electrical performance and high reliability against bias stress.

  9. Pulsed Laser Deposition: passive and active waveguides

    Czech Academy of Sciences Publication Activity Database

    Jelínek, Miroslav; Flory, F.; Escoubas, L.

    2009-01-01

    Roč. 34, č. 4 (2009), s. 438-449 ISSN 0268-1900 R&D Projects: GA ČR GA202/06/0216 Institutional research plan: CEZ:AV0Z10100522 Keywords : PLD * pulsed laser deposition * laser ablation * passive waveguides * active waveguides * waveguide laser * sensors * thin films * butane detection Subject RIV: BH - Optics, Masers, Lasers Impact factor: 0.384, year: 2009

  10. Passivation and corrosion behaviours of cobalt and cobalt-chromium-molybdenum alloy

    International Nuclear Information System (INIS)

    Metikos-Hukovic, M.; Babic, R.

    2007-01-01

    Passivation and corrosion behaviour of the cobalt and cobalt-base alloy Co30Cr6Mo was studied in a simulated physiological solution containing chloride and bicarbonate ions and with pH of 6.8. The oxido-reduction processes included solid state transformations occurring at the cobalt/electrolyte interface are interpreted using theories of surface electrochemistry. The dissolution of cobalt is significantly suppressed by alloying it with chromium and molybdenum, since the alloy exhibited 'chromium like' passivity. The structural and protective properties of passive oxide films formed spontaneously at the open circuit potential or during the anodic polarization were studied using electrochemical impedance spectroscopy in the wide frequency range

  11. Periodic nanostructures imprinted on high-temperature stable sol–gel films by ultraviolet-based nanoimprint lithography for photovoltaic and photonic applications

    Energy Technology Data Exchange (ETDEWEB)

    Back, Franziska [Schott AG, Research and Technology Development, Hattenbergstraße 10, 55122 Mainz (Germany); Fraunhofer-Institut für Silicatforschung ISC, Neunerplatz 2, 97082 Würzburg (Germany); Bockmeyer, Matthias; Rudigier-Voigt, Eveline [Schott AG, Research and Technology Development, Hattenbergstraße 10, 55122 Mainz (Germany); Löbmann, Peer [Fraunhofer-Institut für Silicatforschung ISC, Neunerplatz 2, 97082 Würzburg (Germany)

    2014-07-01

    Nanostructured sol–gel films with high-temperature stability are used in the area of electronics, photonics or biomimetic materials as light-trapping architectures in solar cells, displays, waveguides or as superhydrophobic surfaces with a lotus effect. In this work, high-temperature stable 2-μm nanostructured surfaces were prepared by ultraviolet-based nanoimprint lithography using an alkoxysilane binder incorporating modified silica nanoparticles. Material densification during thermal curing and microstructural evolution which are destined for a high structural fidelity of nanostructured films were investigated in relation to precursor chemistry, particle morphology and particle content of the imprint resist. The mechanism for densification and shrinkage of the films was clarified and correlated with the structural fidelity to explain the influence of the geometrical design on the optical properties. A high internal coherence of the microstructure of the nanostructured films results in a critical film thickness of > 5 μm. The structured glassy layers with high inorganic content show thermal stability up to 800 °C and have a high structural fidelity > 90% with an axial shrinkage of 16% and a horizontal shrinkage of 1%. This material allows the realization of highly effective light-trapping architectures for polycrystalline silicon thin-film solar cells on glass but also for the preparation of 2D photonic crystals for telecommunication wavelengths. - Highlights: • Fundamental research • Hybrid sol–gel material with high-temperature stability and contour accuracy • Ensuring of cost-efficient and industrially feasible processing • Application in photonic and photovoltaic.

  12. Passivation and alloying element retention in gas atomized powders

    Science.gov (United States)

    Heidloff, Andrew J.; Rieken, Joel R.; Anderson, Iver E.

    2017-12-05

    A method for gas atomization of a titanium alloy, nickel alloy, or other alumina (Al.sub.2O.sub.3)-forming alloy wherein the atomized particles are exposed as they solidify and cool in a very short time to multiple gaseous reactive agents for the in-situ formation of a passivation reaction film on the atomized particles wherein the reaction film retains a precursor halogen alloying element that is subsequently introduced into a microstructure formed by subsequent thermally processing of the atomized particles to improve oxidation resistance.

  13. A Feedback Passivation Design for DC Microgrid and Its DC/DC Converters

    Directory of Open Access Journals (Sweden)

    Feifan Ji

    2016-12-01

    Full Text Available There are difficulties in analyzing the stability of microgrids since they are located on various network structures. However, considering that the network often consists of passive elements, the passivity theory is applied in this paper to solve the above-mentioned problem. It has been formerly shown that when the network is weakly strictly positive real (WSPR, the DC microgrid is stable if all interfaces between the microgrid and converters are made to be passive, which is called interface passivity. Then, the feedback passivation method is proposed for the controller design of various DC–DC converters to achieve the interface passivity. The interface passivity is different from the passivity of closed-loop systems on which the passivity based control (PBC concentrates. The feedback passivation design is detailed for typical buck converters and boost converters in terms of conditions that the controller parameters should satisfy. The theoretical results are verified by a hardware-in-loop real-time labotray (RTLab simulation of a DC microgrid with four generators.

  14. Effect of alloying elements on characteristics of iron passive state in sulfuric acid

    International Nuclear Information System (INIS)

    Rejes Jola, O.; Mustafa-Zade, F.M.; Sukhotin, A.M.; Tchannikova, O.A.

    1981-01-01

    The curves of anodic polarization of iron binary alloys with Cr, Mo, W, Ni, Si, Co, Mn, Re, Ti, Al, Cu, Bi, Zn, In, V, Sb, Ta, Hf, Pb, Sn, Zr, Nb, Ce, B, P, S in 0.5 MH 2 SO 4 are studied. Passivation potentials, potentials of total passivation, transpassivity and current density are determined in the passivity region. All alloys had alpha-structure, the content of alloying elements was close to solubility in solid solution. Elements are classified according to the type of their effect on passive state of iron. Character of this effect does not have a direct connection with passivation ability the elements themselves, it is determined, probably, by a possibility to form stable passivating ruixed oxides of the ferrospinel type [ru

  15. Performance enhancement of a heterojunction bipolar transistor (HBT) by two-step passivation

    International Nuclear Information System (INIS)

    Fu, S.-I.; Lai, P.-H.; Tsai, Y.-Y.; Hung, C.-W.; Yen, C.-H.; Cheng, S.-Y.; Liu, W.-C.

    2006-01-01

    An interesting two-step passivation (with ledge structure and sulphide based chemical treatment) on base surface, for the first time, is demonstrated to study the temperature-dependent DC characteristics and noise performance of an InGaP/GaAs heterojunction bipolar transistor (HBT). Improved transistor behaviors on maximum current gain β max , offset voltage ΔV CE , and emitter size effect are obtained by using the two-step passivation. Moreover, the device with the two-step passivation exhibits relatively temperature-independent and improved thermal stable performances as the temperature is increased. Therefore, the two-step passivationed device can be used for high-temperature and low-power electronics applications

  16. Passive behaviour of zirconium, hafnium and niobium

    International Nuclear Information System (INIS)

    Hornkjoel, S.

    1990-01-01

    The paper deals mainly with the results of stationary and transient polarization measurements together with capacitance measurements on passive electrodes of Zr, Hf and Nb over the entire pH-scale. The passive current densities are exstremely low, and essentially both pH and potential independent, exept for Nb at high pH. The extrapolated potential of zero inverse capacitance seems to be different from the extrapolated potential of zero film thickness for Zr and Hf, but not for Nb. The potential versus time curves at constant current show a downwards bending for Zr and Hf. It is shown that the pitting potentials of Zr and Hf are dependent of the concentration of halide ions and the type of halide ion, but not on pH. It is also shown that the pitting induction is second-order stimulated by chloride ions and first-order hindered by sulphate ions. Results from electron transfer reactions on passive niobium are reported. 9 refs

  17. Sodium induced grain growth, defect passivation and enhancement in the photovoltaic properties of Cu{sub 2}ZnSnS{sub 4} thin film solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Om Pal; Gour, Kuldeep Singh [Physics of Energy Harvesting Division, CSIR-National Physical Laboratory, Dr. K.S. Krishnan Marg, New Delhi 110012 (India); Academy of Scientific and Innovative Research, CSIR-National Physical Laboratory, Dr. K.S. Krishnan Marg, New Delhi 110012 (India); Parmar, Rahul [Physics of Energy Harvesting Division, CSIR-National Physical Laboratory, Dr. K.S. Krishnan Marg, New Delhi 110012 (India); Singh, Vidya Nand, E-mail: singhvn@nplindia.org [Physics of Energy Harvesting Division, CSIR-National Physical Laboratory, Dr. K.S. Krishnan Marg, New Delhi 110012 (India); Academy of Scientific and Innovative Research, CSIR-National Physical Laboratory, Dr. K.S. Krishnan Marg, New Delhi 110012 (India)

    2016-07-01

    Sodium diffusion from soda lime glass (SLG) during high temperature annealing is known to play a crucial role in affecting the grain growth and defect passivation in chalocogenide/kesterite solar cells. Additional sodium is required when low temperature or short term annealing is used. Although this fact is known, a systematic comparative study for kesterite films is seldom reported. In the present study, Cu{sub 2}ZnSnS{sub 4} thin films were deposited on SLG and Mo coated SLG using stacked layer reactive sputtering. Na was deposited over the CZTS thin film and the film was annealed in N{sub 2} atmosphere in order to enhance the grain growth. This resulted in the shift in the XRD peak towards lower diffraction angle. The optical bandgap shifted from 1.45 eV to 1.38 eV with Na addition. Significant grain growth from hundreds of nanometer to micrometer was observed in samples with Na. Device fabricated in SLG/Mo/CZTS/CdS/ZnO/ITO configuration with Al front contact shows increase in efficiencies values from 1.50% to 2.84%. - Highlights: • Reactive sputtering with reduced annealing time have been used for the growth of CZTS thin film. • NaF has been deposited over precursor film before annealing. • Na addition resulted in grain growth, improved compactness and reduction in band gap. • An enhancement in the photovoltaic characteristics have been observed with addition of Na.

  18. Prévision de l'épaisseur du film passif d'un acier inoxydable 316L soumis au fretting corrosion grâce au Point Defect Model, PDM Predicting the steady state thickness of passive films with the Point Defect Model in fretting corrosion experiments

    Directory of Open Access Journals (Sweden)

    Geringer Jean

    2013-11-01

    Full Text Available Les implants orthopédiques de hanche ont une durée de vie d'environ 15 ans. Par exemple, la tige fémorale d'un tel implant peut être réalisée en acier inoxydable 316L ou 316LN. Le fretting corrosion, frottement sous petits déplacements, peut se produire pendant la marche humaine en raison des chargements répétés entre le métal de la prothèse et l'os. Plusieurs investigations expérimentales du fretting corrosion ont été entreprises. Cette couche passive de quelques nanomètres, à température ambiante, est le point clef sur lequel repose le développement de notre civilisation, selon certains auteurs. Ce travail vise à prédire les épaisseurs de cette couche passive de l'acier inoxydable soumis au fretting corrosion, avec une attention spécifique sur le rôle des protéines. Le modèle utilisé est basé sur le Point Defect Model, PDM (à une échelle microscopique et une amélioration de ce modèle en prenant en compte le processus de frottement sous petits débattements. L'algorithme génétique a été utilisé pour optimiser la convergence du problème. Les résultats les plus importants sont, comme démontré avec les essais expérimentaux, que l'albumine, la protéine étudiée, empêche les dégradations de l'acier inoxydable aux plus faibles concentrations d'ions chlorure ; ensuite, aux plus fortes concentrations de chlorures, un temps d'incubation est nécessaire pour détruire le film passif. Some implants have approximately a lifetime of 15 years. The femoral stem, for example, should be made of 316L/316LN stainless steel. Fretting corrosion, friction under small displacements, should occur during human gait, due to repeated loadings and un-loadings, between stainless steel and bone for instance. Some experimental investigations of fretting corrosion have been practiced. As well known, metallic alloys and especially stainless steels are covered with a passive film that prevents from the corrosion and degradation

  19. Towards stable acceleration in LINACS

    CERN Document Server

    Dubrovskiy, A D

    2014-01-01

    Ultra-stable and -reproducible high-energy particle beams with short bunches are needed in novel linear accelerators and, in particular, in the Compact Linear Collider CLIC. A passive beam phase stabilization system based on a bunch compression with a negative transfer matrix element R56 and acceleration at a positive off-crest phase is proposed. The motivation and expected advantages of the proposed scheme are outlined.

  20. Effect of Ultrasonic Nano-Crystal Surface Modification (UNSM) on the Passivation Behavior of Aged 316L Stainless Steel.

    Science.gov (United States)

    Kim, Ki-Tae; Lee, Jung-Hee; Kim, Young-Sik

    2017-06-27

    Stainless steels have good corrosion resistance in many environments but welding or aging can decrease their resistance. This work focused on the effect of aging time and ultrasonic nano-crystal surface modification on the passivation behavior of 316L stainless steel. In the case of slightly sensitized 316L stainless steel, increasing the aging time drastically decreased the pitting potential, increased the passive current density, and decreased the resistance of the passive film, even though aging did not form chromium carbide and a chromium depletion zone. This behavior is due to the micro-galvanic corrosion between the matrix and carbon segregated area, and this shows the importance of carbon segregation in grain boundaries to the pitting corrosion resistance of stainless steel, in addition to the formation of the chromium depletion zone. UNSM (Ultrasonic Nano Crystal Surface Modification)-treatment to the slightly sensitized 316L stainless steel increased the pitting potential, decreased the passive current density, and increased the resistance of the passive film. However, in the case of heavily sensitized 316L stainless steel, UNSM-treatment decreased the pitting potential, increased the passive current density, and decreased the resistance of the passive film. This behavior is due to the dual effects of the UNSM-treatment. That is, the UNSM-treatment reduced the carbon segregation, regardless of whether the stainless steel 316L was slightly or heavily sensitized. However, since this treatment made mechanical flaws in the outer surface in the case of the heavily sensitized stainless steel, UNSM-treatment may eliminate chromium carbide, and this flaw can be a pitting initiation site, and therefore decrease the pitting corrosion resistance.

  1. Formation of resonant bonding during growth of ultrathin GeTe films

    NARCIS (Netherlands)

    Wang, Ruining; Zhang, Wei; Momand, Jamo; Ronneberger, Ider; Boschker, Jos E.; Mazzarello, Riccardo; Kooi, Bart J.; Riechert, Henning; Wuttig, Matthias; Calarco, Raffaella

    2017-01-01

    A highly unconventional growth scenario is reported upon deposition of GeTe films on the hydrogen passivated Si(111) surface. Initially, an amorphous film forms for growth parameters that should yield a crystalline material. The entire amorphous film then crystallizes once a critical thickness of

  2. Photo-stability and time-resolved photoluminescence study of colloidal CdSe/ZnS quantum dots passivated in Al{sub 2}O{sub 3} using atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Chih-Yi [Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei 10617, Taiwan (China); Mao, Ming-Hua, E-mail: mhmao@ntu.edu.tw [Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei 10617, Taiwan (China); Graduate Institute of Electronics Engineering, National Taiwan University, Taipei 10617, Taiwan (China); Department of Electrical Engineering, National Taiwan University, Taipei 10617, Taiwan (China)

    2016-08-28

    We report photo-stability enhancement of colloidal CdSe/ZnS quantum dots (QDs) passivated in Al{sub 2}O{sub 3} thin film using the atomic layer deposition (ALD) technique. 62% of the original peak photoluminescence (PL) intensity remained after ALD. The photo-oxidation and photo-induced fluorescence enhancement effects of both the unpassivated and passivated QDs were studied under various conditions, including different excitation sources, power densities, and environment. The unpassivated QDs showed rapid PL degradation under high excitation due to strong photo-oxidation in air while the PL intensity of Al{sub 2}O{sub 3} passivated QDs was found to remain stable. Furthermore, recombination dynamics of the unpassivated and passivated QDs were investigated by time-resolved measurements. The average lifetime of the unpassivated QDs decreases with laser irradiation time due to photo-oxidation. Photo-oxidation creates surface defects which reduces the QD emission intensity and enhances the non-radiative recombination rate. From the comparison of PL decay profiles of the unpassivated and passivated QDs, photo-oxidation-induced surface defects unexpectedly also reduce the radiative recombination rate. The ALD passivation of Al{sub 2}O{sub 3} protects QDs from photo-oxidation and therefore avoids the reduction of radiative recombination rate. Our experimental results demonstrated that passivation of colloidal QDs by ALD is a promising method to well encapsulate QDs to prevent gas permeation and to enhance photo-stability, including the PL intensity and carrier lifetime in air. This is essential for the applications of colloidal QDs in light-emitting devices.

  3. Effect of annealing ambient on anisotropic retraction of film edges during solid-state dewetting of thin single crystal films

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Gye Hyun; Thompson, Carl V., E-mail: cthomp@mit.edu [Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 01239 (United States); Ma, Wen [Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 01239 (United States); Yildiz, Bilge [Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 01239 (United States); Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 01239 (United States)

    2016-08-21

    During solid-state dewetting of thin single crystal films, film edges retract at a rate that is strongly dependent on their crystallographic orientations. Edges with kinetically stable in-plane orientations remain straight as they retract, while those with other in-plane orientations develop in-plane facets as they retract. Kinetically stable edges have retraction rates that are lower than edges with other orientations and thus determine the shape of the natural holes that form during solid-state dewetting. In this paper, measurements of the retraction rates of kinetically stable edges for single crystal (110) and (100) Ni films on MgO are presented. Relative retraction rates of kinetically stable edges with different crystallographic orientations are observed to change under different annealing conditions, and this accordingly changes the initial shapes of growing holes. The surfaces of (110) and (100) films were also characterized using low energy electron diffraction, and different surface reconstructions were observed under different ambient conditions. The observed surface structures were found to correlate with the observed changes in the relative retraction rates of the kinetically stable edges.

  4. Investigation of positive roles of hydrogen plasma treatment for interface passivation based on silicon heterojunction solar cells

    International Nuclear Information System (INIS)

    Zhang, Liping; Liu, Wenzhu; Liu, Jinning; Shi, Jianhua; Meng, Fanying; Liu, Zhengxin; Guo, Wanwu; Bao, Jian

    2016-01-01

    The positive roles of H 2 -plasma treatment (HPT) have been investigated by using different treatment procedures in view of the distinctly improved passivation performance of amorphous-crystalline silicon heterojunctions (SHJs). It has been found that a hydrogenated amorphous silicon thin film and crystalline silicon (a-Si:H/c-Si) interface with a high stretching mode (HSM) is detrimental to passivation. A moderate pre-HPT introduces atomic H, which plays an effective tuning role in decreasing the interfacial HSM; unfortunately, an epitaxial layer is formed. Further improvement in passivation can be achieved in terms of increasing the HSM of a-Si:H film treated by appropriate post-HPT based on the a-Si:H thickness. The minority carrier lifetime of crystalline wafers can be improved by treated films containing a certain quantity of crystallites. The microstructure factor R and the maximum intensity of the dielectric function ε 2max have been found to be critical microstructure parameters that describe high-quality a-Si:H passivation layers, which are associated with the amorphous-to-microcrystalline transition phase induced by multi-step HPT. Finally, the open circuit voltage and conversion efficiency of the SHJ solar cell can be improved by implementing an effective HPT process. (paper)

  5. Comparison of different methods for measuring the passive film thickness on metals

    International Nuclear Information System (INIS)

    Benoit, Marie; Bataillon, Christian; Gwinner, Benoit; Miserque, Frédéric; Orazem, Mark E.; Sánchez-Sánchez, Carlos M.; Tribollet, Bernard; Vivier, Vincent

    2016-01-01

    Highlights: • In situ EIS and ex situ XPS were used for the characterization of zirconium oxide films. • The film thicknesses can be obtained from the analysis of a single EIS diagram. • A convenient graphical method to extract film properties is proposed. - Abstract: In situ electrochemical impedance spectroscopy (EIS) and ex situ X-ray photoelectron spectroscopy (XPS) measurements on electrogenerated zirconium oxide films on zirconium (Zr/ZrO_2) were used to quantify the oxide film thickness and resistivity profiles through the oxide. The EIS analysis presented here takes advantage of the high-frequency domain at which the constant-phase element (CPE) behavior of the oxide film reverts to a capacitive response and the Cole-Cole representations of the complex capacitance to extract the high-frequency capacitance of the oxide film without reference to the nature of the time-constant distribution within the oxide film. The film thickness of the ZrO_2 samples measured from the high-frequency capacitance of EIS were in good agreement with the thickness obtained from XPS. Moreover, the EIS analysis presented is based on the use of the integral solution of the power law model, which allows to obtain in one single EIS experiment, both the film thickness and the resistivity profile in the ZrO_2 film. This work suggests a convenient graphical method to extract film properties and serves to validate a key assumption of the power-law model for interpretation of CPE parameters in terms of physical properties.

  6. Influence of hydrogen impurities on p-type resistivity in Mg-doped GaN films

    International Nuclear Information System (INIS)

    Yang, Jing; Zhao, Degang; Jiang, Desheng; Chen, Ping; Zhu, Jianjun; Liu, Zongshun; Le, Lingcong; He, Xiaoguang; Li, Xiaojing; Zhang, Y. T.; Du, G. T.

    2015-01-01

    The effects of hydrogen impurities on p-type resistivity in Mg-doped GaN films were investigated. It was found that hydrogen impurities may have the dual role of passivating Mg Ga acceptors and passivating donor defects. A decrease in p-type resistivity when O 2 is introduced during the postannealing process is attributed to the fact that annealing in an O 2 -containing environment can enhance the dissociation of Mg Ga -H complexes as well as the outdiffusion of H atoms from p-GaN films. However, low H concentrations are not necessarily beneficial in Mg-doped GaN films, as H atoms may also be bound at donor species and passivate them, leading to the positive effect of reduced compensation

  7. Effects of plasma-deposited silicon nitride passivation on the radiation hardness of CMOS integrated circuits

    International Nuclear Information System (INIS)

    Clement, J.J.

    1980-01-01

    The use of plasma-deposited silicon nitride as a final passivation over metal-gate CMOS integrated circuits degrades the radiation hardness of these devices. The hardness degradation is manifested by increased radiation-induced threshold voltage shifts caused principally by the charging of new interface states and, to a lesser extent, by the trapping of holes created upon exposure to ionizing radiation. The threshold voltage shifts are a strong function of the deposition temperature, and show very little dependence on thickness for films deposited at 300 0 C. There is some correlation between the threshold voltage shifts and the hydrogen content of the PECVD silicon nitride films used as the final passivation layer as a function of deposition temperature. The mechanism by which the hydrogen contained in these films may react with the Si/SiO 2 interface is not clear at this point

  8. Stable electroluminescence from passivated nano-crystalline porous silicon using undecylenic acid

    Science.gov (United States)

    Gelloz, B.; Sano, H.; Boukherroub, R.; Wayner, D. D. M.; Lockwood, D. J.; Koshida, N.

    2005-06-01

    Stabilization of electroluminescence from nanocrystalline porous silicon diodes has been achieved by replacing silicon-hydrogen bonds terminating the surface of nanocrystalline silicon with more stable silicon-carbon (Si-C) bonds. Hydrosilylation of the surface of partially and anodically oxidized porous silicon samples was thermally induced at about 90 °C using various different organic molecules. Devices whose surface have been modified with stable covalent bonds shows no degradation in the EL efficiency and EL output intensity under DC operation for several hours. The enhanced stability can be attributed to the high chemical resistance of Si-C bonds against current-induced surface oxidation associated with the generation of nonradiative defects. Although devices treated with 1-decene exhibit reduced EL efficiency and brightness compared to untreatred devices, other molecules, such as ethyl-undecylenate and particularly undecylenic acid provide stable and more efficient visible electroluminescence at room temperature. Undecylenic acid provides EL brightness as high as that of an untreated device.

  9. Influence of enzymatic reactions on the electrochemical behavior of EN X2CrNiMo17-11-2 (AISI 316L) stainless steel in bio-corrosion: role of interfacial processes on the modification of the passive layer; Influence des reactions enzymatiques sur le comportement electrochimique de l'acier inoxydable ENX2CrNiMo17-11-2 (AISI 316L) en biocorrosion: role des processus interfaciaux sur la modification du film passif

    Energy Technology Data Exchange (ETDEWEB)

    Landoulsi, J

    2008-01-15

    The outstanding corrosion behavior of stainless steels (SS) results from the presence of thin oxide layer (some nanometers). In non sterile aqueous media, stainless steels may exhibit a non stable behavior resulting from interactions between microbial species and passive film. In fact, microorganisms can be deeply involved in the corrosion processes usually reported as Microbial Influenced Corrosion (MIC). They can induce the initiation or the acceleration of this phenomenon and they do so when organized in bio-films. From the electrochemical point of view, stainless steels showed an increase of the free corrosion potential (Ecorr) attributed to the bio-film settlement. The Eco' ennoblement was broadly reported in seawater and seems to be confirmed in fresh water according to recent findings. A considerable progress in the comprehension of MIC processes was related to the role of extracellular species, essentially enzymes. Many enzymatic reactions occurring in bio-films consist on using oxygen as electron acceptor to generate hydrogen peroxide and related species. The aim of this work is to understand the mechanisms involved in the electrochemical behavior of stainless steel according to an enzymatic approach in medium simulating fresh water. To this end, glucose oxidase was chosen to globalize aerobic activities of bio-films. Electrochemical measurements in situ and surface analysis allow the comprehension of the role and the nature of interfacial processes. Surface characterization was performed with the help of a new quantitative utilization of XPS analysis and AFM. Results show a significant evolution in term of morphology (surface organization), (ii) chemical composition (passive layer, adsorbed organic species) and (iii) chemical reaction (oxidation, dissolution, effect of enzyme). Finally, a new enzymatic system is proposed to mimic specific physicochemical conditions at the SS / bio-film interface, in particular enzymatic generation of oxidant species

  10. Enhanced Light Stability of InGaZnO Thin-Film Transistors by Atomic-Layer-Deposited Y2O3 with Ozone.

    Science.gov (United States)

    Jung, Hanearl; Kim, Woo-Hee; Park, Bo-Eun; Woo, Whang Je; Oh, Il-Kwon; Lee, Su Jeong; Kim, Yun Cheol; Myoung, Jae-Min; Gatineau, Satoko; Dussarrat, Christian; Kim, Hyungjun

    2018-01-17

    We report the effect of Y 2 O 3 passivation by atomic layer deposition (ALD) using various oxidants, such as H 2 O, O 2 plasma, and O 3 , on In-Ga-Zn-O thin-film transistors (IGZO TFTs). A large negative shift in the threshold voltage (V th ) was observed in the case of the TFT subjected to the H 2 O-ALD Y 2 O 3 process; this shift was caused by a donor effect of negatively charged chemisorbed H 2 O molecules. In addition, degradation of the IGZO TFT device performance after the O 2 plasma-ALD Y 2 O 3 process (field-effect mobility (μ) = 8.7 cm 2 /(V·s), subthreshold swing (SS) = 0.77 V/dec, and V th = 3.7 V) was observed, which was attributed to plasma damage on the IGZO surface adversely affecting the stability of the TFT under light illumination. In contrast, the O 3 -ALD Y 2 O 3 process led to enhanced device stability under light illumination (ΔV th = -1 V after 3 h of illumination) by passivating the subgap defect states in the IGZO surface region. In addition, TFTs with a thicker IGZO film (55 nm, which was the optimum thickness under the current investigation) showed more stable device performance than TFTs with a thinner IGZO film (30 nm) (ΔV th = -0.4 V after 3 h of light illumination) by triggering the recombination of holes diffusing from the IGZO surface to the insulator-channel interface. Therefore, we envisioned that the O 3 -ALD Y 2 O 3 passivation layer suggested in this paper can improve the photostability of TFTs under light illumination.

  11. Passivation process of X80 pipeline steel in bicarbonate solutions

    Science.gov (United States)

    Zhou, Jian-Long; Li, Xiao-Gang; Du, Cui-Wei; Pan, Ying; Li, Tao; Liu, Qian

    2011-04-01

    The passivation process of X80 pipeline steel in bicarbonate solutions was investigated using potentiodynamic, dynamic electrochemical impedance spectroscopy (DEIS), and Mott-Schottky measurements. The results show that the shape of polarization curves changes with HCO{3/-} concentration. The critical `passive' concentration is 0.009 mol/L HCO{3/-} for X80 pipeline steel in bicarbonate solutions. No anodic current peak exists in HCO3/- solutions when the concentration is lower than 0.009 mol/L, whereas there are one and two anodic current peaks when the HCO3/- concentration ranges from 0.009 to 0.05 mol/L and is higher than 0.1 mol/L, respectively. DEIS measurements show that there exist active dissolution range, transition range, pre-passive range, passive layer formation range, passive range, and trans-passive range for X80 pipeline steel in the 0.1 mol/L HCO{3/-} solutions. The results of DEIS measurements are in complete agreement with the potentiodynamic diagram. An equivalent circuit containing three sub-layers is used to explain the Nyquist plots in the passive range. Analyses are well made for explaining the corresponding fitted capacitance and impedance. The Mott-Schottky plots show that the passive film of X80 pipeline steel is an n-type semiconductor, and capacitance measurements are in good accordance with the results of DEIS experiment.

  12. Photo-electrochemical and impedance investigation of passive layers grown anodically on titanium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, N.T.C. [Departamento de Quimica, Universidade Federal de Sao Carlos, CP 676, 13560-970 Sao Carlos, SP (Brazil); Biaggio, S.R. [Departamento de Quimica, Universidade Federal de Sao Carlos, CP 676, 13560-970 Sao Carlos, SP (Brazil); Piazza, S. [Dipartimento di Ingegneria Chimica dei Processi e dei Materiali, Universita di Palermo, Viale delle Scienze, 90128 Palermo (Italy)]. E-mail: piazza@dicpm.unipa.it; Sunseri, C. [Dipartimento di Ingegneria Chimica dei Processi e dei Materiali, Universita di Palermo, Viale delle Scienze, 90128 Palermo (Italy); Di Quarto, F. [Dipartimento di Ingegneria Chimica dei Processi e dei Materiali, Universita di Palermo, Viale delle Scienze, 90128 Palermo (Italy)

    2004-10-15

    The anodic behaviour of two titanium cast alloys, obtained by fusion in a voltaic arc under argon atmosphere, was analyzed in aerated aqueous solutions having different pH values. In all solutions the alloys, having nominal compositions Ti-50Zr at.% and Ti-13Zr-13Nb wt.%, displayed a valve-metal behaviour, owing to the formation of barrier-type oxide films. Passive films, grown potentiodynamically up to about 9 V, were investigated by photocurrent spectroscopy (PCS) and electrochemical impedance spectroscopy (EIS). These passive layers show photoactivity under anodic polarizations, with optical gaps close to 3.55 and 3.25 eV for the binary and the ternary alloy, respectively, independent of the anodizing electrolyte. Films grown on the binary alloy present insulating behaviour and anodic impedance spectra with one time constant; this was interpreted in terms of a single-layer mixed Ti-Zr oxide enriched in Ti with respect to the alloy composition. Also for the ternary alloy the results are consistent with the formation, upon anodization, of Ti-Nb-Zr mixed oxide films, but they display n-type semiconducting behaviour, owing to their poor content of ZrO{sub 2} groups.

  13. Dimethylaluminum hydride for atomic layer deposition of Al2O3 passivation for amorphous InGaZnO thin-film transistors

    Science.gov (United States)

    Corsino, Dianne C.; Bermundo, Juan Paolo S.; Fujii, Mami N.; Takahashi, Kiyoshi; Ishikawa, Yasuaki; Uraoka, Yukiharu

    2018-06-01

    Atomic layer deposition (ALD) of Al2O3 using dimethylaluminum hydride (DMAH) was demonstrated as an effective passivation for amorphous InGaZnO thin-film transistors (TFTs). Compared with the most commonly used precursor, trimethylaluminum, TFTs fabricated with DMAH showed improved stability, resulting from the lower amount of oxygen vacancies, and hence fewer trap sites, as shown by X-ray photoelectron spectroscopy (XPS) depth profiling analysis. We found that prolonged plasma exposure during ALD can eliminate the hump phenomenon, which is only present for DMAH. The higher Al2O3 deposition rate when using DMAH is in line with the requirements of emerging techniques, such as spatial ALD, for improving fabrication throughput.

  14. Oxide ultrathin films science and technology

    CERN Document Server

    Pacchioni, Gianfranco

    2012-01-01

    A wealth of information in one accessible book. Written by international experts from multidisciplinary fields, this in-depth exploration of oxide ultrathin films covers all aspects of these systems, starting with preparation and characterization, and going on to geometrical and electronic structure, as well as applications in current and future systems and devices. From the Contents: Synthesis and Preparation of Oxide Ultrathin Films Characterization Tools of Oxide Ultrathin Films Ordered Oxide Nanostructures on Metal Surfaces Unusual Properties of Oxides and Other Insulators in the Ultrathin Limit Silica and High-K Dielectrics Thin Films in Microelectronics Oxide Passive Films and Corrosion Protection Oxide Films as Catalytic Materials and as Models of Real Catalysts Oxide Films in Spintronics Oxide Ultrathin Films in Solid Oxide Fuel Cells Transparent Conducting and Chromogenic Oxide Films as Solar Energy Materials Oxide Ultrathin Films in Sensor Applications Ferroelectricity in Ultrathin Film Capacitors T...

  15. Stable dielectric response of low-loss aromatic polythiourea thin films on Pt/SiO2 substrate

    Directory of Open Access Journals (Sweden)

    A. Eršte

    2016-03-01

    Full Text Available We have investigated dielectric properties of aromatic polythiourea (ArPTU, a polar polymer containing high dipolar moments with very low defect levels thin films that were developed on Pt/SiO2 substrate. The detected response is compared to the response of commercially available polymers, such as high density polyethylene (HDPE and polypropylene (PP, which are at present used in foil capacitors. Stable values of the dielectric constant ε′≈5 (being twice higher than in HDPE and PP over broad temperature and frequency ranges and dielectric losses as low as in commercial systems suggest ArPTU as a promising candidate for future use in a variety of applications.

  16. Properties of the passive films on Ni-Cr-Mo alloys

    International Nuclear Information System (INIS)

    Lloyd, A.C.; Noel, J.J.; McIntyre, N.S.; Shoesmith, D.W.

    2003-01-01

    Ni-Cr-Mo alloys are among the most corrosion resistant materials known, showing exceptional localized corrosion resistance under extreme industrial conditions. Accordingly, one such alloy, Alloy-22. is a candidate material for the outer sheathing of nuclear waste packages for the Yucca Mountain repository. Nevada, USA. We briefly report our results on the passive behaviour for a series of Ni-Cr-Mo alloys, with the emphasis on determining if there is a temperature dependence associated with it. The change of passive corrosion rate with temperature is a critical parameter required for long-term performance assessment calculations. The results show that alloy C22 performed better than the other members of the C-series of alloys under acidic conditions. This indicates that its selection as a waste package material is appropriate, and that it possess the potential for long-term containment of radio-nuclides. (author)

  17. Passivation Characteristics of Alloy Corrosion-Resistant Steel Cr10Mo1 in Simulating Concrete Pore Solutions: Combination Effects of pH and Chloride.

    Science.gov (United States)

    Ai, Zhiyong; Sun, Wei; Jiang, Jinyang; Song, Dan; Ma, Han; Zhang, Jianchun; Wang, Danqian

    2016-09-01

    The electrochemical behaviour for passivation of new alloy corrosion-resistant steel Cr10Mo1 immersed in alkaline solutions with different pH values (13.3, 12.0, 10.5, and 9.0) and chloride contents (0.2 M and 1.0 M), was investigated by various electrochemical techniques: linear polarization resistance, electrochemical impedance spectroscopy and capacitance measurements. The chemical composition and structure of passive films were determined by XPS. The morphological features and surface composition of the immersed steel were evaluated by SEM together with EDS chemical analysis. The results evidence that pH plays an important role in the passivation of the corrosion-resistant steel and the effect is highly dependent upon the chloride contents. In solutions with low chloride (0.2 M), the corrosion-resistant steel has notably enhanced passivity with pH falling from 13.3 to 9.0, but does conversely when in presence of high chloride (1.0 M). The passive film on the corrosion-resistant steel presents a bilayer structure: an outer layer enriched in Fe oxides and hydroxides, and an inner layer, rich in Cr species. The film composition varies with pH values and chloride contents. As the pH drops, more Cr oxides are enriched in the film while Fe oxides gradually decompose. Increasing chloride promotes Cr oxides and Fe oxides to transform into their hydroxides with little protection, and this is more significant at lower pH (10.5 and 9.0). These changes annotate passivation characteristics of the corrosion-resistant steel in the solutions of different electrolyte.

  18. Stable electroluminescence from passivated nano-crystalline porous silicon using undecylenic acid

    Energy Technology Data Exchange (ETDEWEB)

    Gelloz, B.; Sano, H.; Koshida, N. [Dept. Elec. and Elec. Eng., Tokyo Univ. of A and T, Koganei, Tokyo 184-8588 (Japan); Boukherroub, R. [Laboratoire de Physique de la Matiere Condensee, Ecole Polytechnique, Route de Saclay, 91128 Palaiseau (France); Wayner, D.D.M.; Lockwood, D.J. [National Research Council, Ottawa (Canada)

    2005-06-01

    Stabilization of electroluminescence from nanocrystalline porous silicon diodes has been achieved by replacing silicon-hydrogen bonds terminating the surface of nanocrystalline silicon with more stable silicon-carbon (Si-C) bonds. Hydrosilylation of the surface of partially and anodically oxidized porous silicon samples was thermally induced at about 90 C using various different organic molecules. Devices whose surface have been modified with stable covalent bonds shows no degradation in the EL efficiency and EL output intensity under DC operation for several hours. The enhanced stability can be attributed to the high chemical resistance of Si-C bonds against current-induced surface oxidation associated with the generation of nonradiative defects. Although devices treated with 1-decene exhibit reduced EL efficiency and brightness compared to untreated devices, other molecules, such as ethyl-undecylenate and particularly undecylenic acid provide stable and more efficient visible electroluminescence at room temperature. Undecylenic acid provides EL brightness as high as that of an untreated device. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  19. Fabrication of single-phase ε-GaSe films on Si(100) substrate by metal organic chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Chia-Chen; Zeng, Jia-Xian; Lan, Shan-Ming [Department of Electronic Engineering, College of Electrical Engineering and Computer Science, Chung Yuan Christian University, Chung-Li 32023, Taiwan (China); Uen, Wu-Yih, E-mail: uenwuyih@ms37.hinet.net [Department of Electronic Engineering, College of Electrical Engineering and Computer Science, Chung Yuan Christian University, Chung-Li 32023, Taiwan (China); Liao, Sen-Mao [Department of Electronic Engineering, College of Electrical Engineering and Computer Science, Chung Yuan Christian University, Chung-Li 32023, Taiwan (China); Yang, Tsun-Neng; Ma, Wei-Yang [Institute of Nuclear Energy Research, P.O. Box 3-11, Lungtan 32500, Taiwan (China); Chang, Kuo-Jen [Chung-Shan Institute of Science and Technology, No.15, Shi Qi Zi, Gaoping Village, Longtan Township, Taoyuan County, Taiwan (China)

    2013-09-02

    Single-phase ε-gallium selenide (GaSe) films were fabricated on Si(100) substrate by metal organic chemical vapor deposition using dual-source precursors: triethylgallium (TEG) and hydrogen selenide (H{sub 2}Se) with the flow ratio of [H{sub 2}Se]/[TEG] being maintained at 1.2. In particular, an arsine (AsH{sub 3}) flow was introduced to the Si substrate before the film deposition to induce an arsenic (As)-passivation effect on the substrate. The crystalline structure of GaSe films prepared was analyzed using X-ray diffraction and the surface morphology of them was characterized by scanning electron microscopy. It was found that the film quality could be improved by the As-passivation effect. The optical properties of the films were studied by temperature dependent photoluminescence (PL) measurements. PL spectra obtained with different distributions and intensities favored for resolving the superior material quality of the films produced on the substrate with As-passivation compared to those produced on the substrate without As-passivation. The former was dominated by the excitonic emissions for the whole temperature range of 20–300 K examined, while the latter was initially dominated by the defect-related emission at 1.907 eV for a low-temperature range ≦ 80 K and then became dominated by the weak excitonic emission band instead. The ε modification of GaSe films prepared was further recognized by the Raman scattering measurements conducted at room temperature. - Highlights: • Gallium selenide (GaSe) layered structures are fabricated on Si(100) substrate. • Metal–organic chemical vapor deposition is used for film fabrication. • Arsenic-passivation effects of Si substrate on the GaSe film quality are analyzed. • Photoluminescence measurements of GaSe polycrystals are reported.

  20. Enhancing Stability of Perovskite Solar Cells to Moisture by the Facile Hydrophobic Passivation.

    Science.gov (United States)

    Hwang, Insung; Jeong, Inyoung; Lee, Jinwoo; Ko, Min Jae; Yong, Kijung

    2015-08-12

    In this study, a novel and facile passivation process for a perovskite solar cell is reported. Poor stability in ambient atmosphere, which is the most critical demerit of a perovskite solar cell, is overcome by a simple passivation process using a hydrophobic polymer layer. Teflon, the hydrophobic polymer, is deposited on the top of a perovskite solar cell by a spin-coating method. With the hydrophobic passivation, the perovskite solar cell shows negligible degradation after a 30 day storage in ambient atmosphere. Suppressed degradation of the perovskite film is proved in various ways: X-ray diffraction, light absorption spectrum, and quartz crystal microbalance. This simple but effective passivation process suggests new kind of approach to enhance stability of perovskite solar cells to moisture.

  1. Westinghouse-GOTHIC comparisons to AP600 passive containment cooling tests

    International Nuclear Information System (INIS)

    Kennedy, M.D.; Woodcock, J.; Gresham, J.A.

    1994-01-01

    Westinghouse-GOTHIC is a thermal-hydraulics code well suited to analyzing passively cooled containments which depend on heat removal primarily through the containment shell. The code includes boundary layer heat and mass transfer correlations. A liquid film convective energy transport model has been added to the Westinghouse-GOTHIC code to account for the sensible heat change of the applied exterior water. The objective of this paper is to compare the code's predictions of the AP600 large scale test facility with and without the liquid film convective energy transport model. The predicted vessel pressure and integrated heat rate with and without the film convective energy transport model will be compared to the measured data. (author)

  2. COMMIX analysis of AP-600 Passive Containment Cooling System

    International Nuclear Information System (INIS)

    Chang, J.F.C.; Chien, T.H.; Ding, J.; Sun, J.G.; Sha, W.T.

    1992-01-01

    COMMIX modeling and basic concepts that relate components, i.e., containment, water film cooling, and natural draft air flow systems. of the AP-600 Passive Containment Cooling System are discussed. The critical safety issues during a postulated accident have been identified as (1) maintaining the liquid film outside the steel containment vessel, (2) ensuring the natural convection in the air annulus. and (3) quantifying both heat and mass transfer accurately for the system. The lack of appropriate heat and mass transfer models in the present analysis is addressed. and additional assessment and validation of the proposed models is proposed

  3. Sulfur passivation and contact methods for GaAs nanowire solar cells

    International Nuclear Information System (INIS)

    Tajik, N; Peng, Z; Kuyanov, P; LaPierre, R R

    2011-01-01

    The effect of sulfur passivation on core-shell p-n junction GaAs nanowire (NW) solar cells has been investigated. Devices of two types were investigated, consisting of indium tin oxide contact dots or opaque Au finger electrodes. Lateral carrier transport from the NWs to the contact fingers was achieved via a p-doped GaAs surface conduction layer. NWs between the opaque contact fingers had sidewall surfaces exposed for passivation by sulfur. The relative cell efficiency increased by 19% upon passivation. The contribution of the thin film grown between the NWs to the total cell efficiency was estimated by removing the NWs using a sonication procedure. Mechanisms of carrier transport and photovoltaic effects are discussed on the basis of spatially resolved laser scanning measurements.

  4. Nitride surface passivation of GaAs nanowires: impact on surface state density.

    Science.gov (United States)

    Alekseev, Prokhor A; Dunaevskiy, Mikhail S; Ulin, Vladimir P; Lvova, Tatiana V; Filatov, Dmitriy O; Nezhdanov, Alexey V; Mashin, Aleksander I; Berkovits, Vladimir L

    2015-01-14

    Surface nitridation by hydrazine-sulfide solution, which is known to produce surface passivation of GaAs crystals, was applied to GaAs nanowires (NWs). We studied the effect of nitridation on conductivity and microphotoluminescence (μ-PL) of individual GaAs NWs using conductive atomic force microscopy (CAFM) and confocal luminescent microscopy (CLM), respectively. Nitridation is found to produce an essential increase in the NW conductivity and the μ-PL intensity as well evidence of surface passivation. Estimations show that the nitride passivation reduces the surface state density by a factor of 6, which is of the same order as that found for GaAs/AlGaAs nanowires. The effects of the nitride passivation are also stable under atmospheric ambient conditions for six months.

  5. Effect of hydrogen passivation on polycrystalline silicon thin films

    Czech Academy of Sciences Publication Activity Database

    Honda, Shinya; Mates, Tomáš; Ledinský, Martin; Oswald, Jiří; Fejfar, Antonín; Kočka, Jan; Yamazaki, T.; Uraoka, Y.; Fuyuki, T.

    2005-01-01

    Roč. 487, - (2005), s. 152-156 ISSN 0040-6090 R&D Projects: GA AV ČR(CZ) IAA1010316; GA AV ČR(CZ) IAA1010413; GA ČR(CZ) GD202/05/H003 Institutional research plan: CEZ:AV0Z10100521 Keywords : hydrogen passivation * polycrystalline silicon * photoluminescence * Raman spectroscopy * Si-H 2 * hydrogen molecules Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.569, year: 2005

  6. Construction of a simple optical sensor based on air stable lipid film with incorporated urease for the rapid detection of urea in milk.

    Science.gov (United States)

    Nikoleli, Georgia-Paraskevi; Nikolelis, Dimitrios P; Methenitis, Constantinos

    2010-08-18

    This work describes the construction of a simple optical sensor for the rapid, selective and sensitive detection of urea in milk using air stable lipid films with incorporated urease. The lipid film is stabilized on a glass filter by polymerization using UV (ultra-violet) radiation prior its use. Methacrylic acid was the functional monomer, ethylene glycol dimethacrylate was the crosslinker and 2,2'-azobis-(2-methylpropionitrile) was the initiator. Urease is incorporated within this mixture prior to the polymerization. The presence of the enzyme in these films quenched this fluorescence and the colour became similar to that of the filters without the lipid films. A drop of aqueous solution of urea provided a "switching on" of the fluorescence which allows the rapid detection of this compound at the levels of 10(-8) M concentrations. The investigation of the effect of potent interferences included a wide range of compounds usually found in foods and also of proteins and lipids. These lipid membranes were used for the rapid detection of urea in milk. Copyright 2010 Elsevier B.V. All rights reserved.

  7. Radon-film-badges by solid radiators to complement track detector-based radon monitors

    International Nuclear Information System (INIS)

    Tommasino, L.; Tommasino, M.C.; Viola, P.

    2009-01-01

    Existing passive radon monitors, based on track detectors, present many shortcomings, such as a limited response sensitivity for one-week-indoor measurements and a limited response linearity for the assessment of large radon exposures indoors, in thermal spa, in caves, and in soil. Moreover, for in-soil measurements these monitors are too bulky and are often conducive to wrong results. For what concerns the radon-in-water measurements, they are just not suitable. A new generation of passive radon monitors is introduced in this paper, which are very similar to the compact badges used in neutron- and gamma-dosimetry and will be referred to as radon-film-badges. These film-badges are formed by thin-film radiators with suitable radon-sorption characteristics, facing track detectors. The key strategy adopted for these radiators is to exploit an equilibrium type of radon sorption in solids. Even though this new generation of passive monitors is at its infancy, it appears already clear that said monitors make it finally possible to overcome most of the shortcomings of existing passive radon monitors. These devices are uniquely simple and can be easily acquired by any existing radon service to complement their presently used passive radon monitors with little or no effort.

  8. Active Fault Tolerant Control of Livestock Stable Ventilation System

    DEFF Research Database (Denmark)

    Gholami, Mehdi

    2011-01-01

    Modern stables and greenhouses are equipped with different components for providing a comfortable climate for animals and plant. A component malfunction may result in loss of production. Therefore, it is desirable to design a control system, which is stable, and is able to provide an acceptable d...... are not included, while due to the physical limitation, the input signal can not have any value. In continuing, a passive fault tolerant controller (PFTC) based on state feedback is proposed to track a reference signal while the control inputs are bounded....... of fault. Designing a fault tolerant control scheme for the climate control system. In the first step, a conceptual multi-zone model for climate control of a live-stock building is derived. The model is a nonlinear hybrid model. Hybrid systems contain both discrete and continuous components. The parameters...... affine (PWA) components such as dead-zones, saturation, etc or contain piecewise nonlinear models which is the case for the climate control systems of the stables. Fault tolerant controller (FTC) is based on a switching scheme between a set of predefined passive fault tolerant controller (PFTC...

  9. Passivation of gas microstrip detectors and stability of long-term operation

    International Nuclear Information System (INIS)

    Salomon, M.; Armitage, J.; Chapman, G.; Dixit, M.; Dubeau, J.; Faszer, W.; Hamel, L.A.; Oakham, G.

    1994-01-01

    We have studied the long-term operation of gas microstrip detectors which have been passivated with a layer of nickel oxide. We have used as the active gas CF 4 /isobutane (80 : 20) and three different types of substrates: Tedlar, glass and Upilex. In all three cases we found that the detectors are stable after passivation and can operate for a month without changes in gain at rates of MHz. The total accumulated charge was approximately 100 mC. ((orig.))

  10. Evaluation of passive sampling of gaseous mercury using different sorbing materials.

    Science.gov (United States)

    Lin, Huiming; Zhang, Wei; Deng, Chunyan; Tong, Yingdong; Zhang, Qianggong; Wang, Xuejun

    2017-06-01

    Atmospheric mercury monitoring is essential because of its potential human health and ecological impacts. Current automated monitoring systems include limitations such as high cost, complicated configuration, and electricity requirements. Passive samplers require no electric power and are more appropriate for screening applications and long-term monitoring. Sampling rate is a major factor to evaluate the performance of a passive sampler. In this study, laboratory experiments were carried out using an exposure chamber to search for high efficiency sorbents for gaseous mercury. Four types of sorbents, including sulfur-impregnated carbon (SIC), chlorine-impregnated carbon (CIC), bromine-impregnated carbon (BIC), and gold-coated sand (GCS) were evaluated under a wide range of meteorological parameters, including temperature, relative humidity, and wind speed. The results showed that the four sorbents all have a high sampling rate above 0.01 m 3 g -1  day -1 , and wind speed has a positive correlation with the sampling rate. Under different temperature and relative humidity, the sampling rate of SIC keeps stable. The sampling rate of CIC and BIC shows a negative correlation with temperature, and GCS is influenced by all the three meteorological factors. Furthermore, long-term experiments were carried out to investigate the uptake capacity of GCS and SIC. Uptake curves show that the mass amount of sorbent in a passive sampler can influence uptake capacity. In the passive sampler, 0.9 g SIC or 0.9 g GCS can achieve stable uptake efficiency for at least 110 days with gaseous mercury concentration at or below 2 ng/m 3 . For mercury concentration at or below 21 ng/m 3 , 0.9 g SIC can maintain stable uptake efficiency for 70 days, and 0.9 g GCS can maintain stability for 45 days.

  11. One-step preparation of long-term stable and flexible CsPbBr3 perovskite quantum dots/ethylene vinyl acetate copolymer composite films for white LEDs.

    Science.gov (United States)

    Li, Yang; Lv, Ying; Guo, Ziquan; Dong, Liubing; Zheng, Jianghui; Chai, Chufen; Chen, Nan; Lu, Yijun; Chen, Chao

    2018-04-19

    CsPbBr3 perovskite quantum dots (PQDs)/ethylene vinyl acetate (EVA) composite films were prepared via a one-step method, based on that both supersaturated recrystallization of CsPbBr3 PQDs and dissolution of EVA were realized in toluene. The prepared films display outstanding green emitting performance with high color purity of 92% and photoluminescence quantum yield of 40.5% at appropriate CsPbBr3 PQD loading. They possess long-term stable luminescent properties in the air and in water, benefiting from the effective protection of CsPbBr3 PQDs by EVA matrix. Besides, the prepared CsPbBr3 PQDs/EVA films are flexible enough to be repeatedly bent for 1000 cycles while keeping unchanged photoluminescence intensity. Optical properties of the CsPbBr3 PQDs/EVA films in white LEDs were also studied by experiments and theoretical simulation. Overall, facile preparation process, good long-term stability and high flexibility allow our green-emitting CsPbBr3 PQDs/EVA films to be applied in lighting applications and flexible displays.

  12. Efficiency improvement of multicrystalline silicon solar cells after surface and grain boundaries passivation using vanadium oxide

    Energy Technology Data Exchange (ETDEWEB)

    Derbali, L., E-mail: rayan.slat@yahoo.fr [Photovoltaiec Laboratory, Research and Technology Center of Energy, Technopole de Borj-Cedria, BP 95, Hammam-Lif 2050 (Tunisia); Ezzaouia, H. [Photovoltaiec Laboratory, Research and Technology Center of Energy, Technopole de Borj-Cedria, BP 95, Hammam-Lif 2050 (Tunisia)

    2012-08-01

    Highlights: Black-Right-Pointing-Pointer Evaporation of vanadium pentoxide onto the front surface leads to reduce the surface reflectivity considerably. Black-Right-Pointing-Pointer An efficient surface passivation can be obtained after thermal treatment of obtained films. Black-Right-Pointing-Pointer Efficiency of the obtained solar cells has been improved noticeably after thermal treatment of deposited thin films. - Abstract: The aim of this work is to investigate the effect of vanadium oxide deposition onto the front surface of multicrystalline silicon (mc-Si) substrat, without any additional cost in the fabrication process and leading to an efficient surface and grain boundaries (GBs) passivation that have not been reported before. The lowest reflectance of mc-Si coated with vanadium oxide film of 9% was achieved by annealing the deposited film at 600 Degree-Sign C. Vanadium pentoxide (V{sub 2}O{sub 5}) were thermally evaporated onto the surface of mc-Si substrates, followed by a short annealing duration at a temperature ranging between 600 Degree-Sign C and 800 Degree-Sign C, under O{sub 2} atmosphere. The chemical composition of the films was analyzed by means of Fourier transform infrared spectroscopy (FTIR). Surface and cross-section morphology were determined by atomic force microscope (AFM) and a scanning electron microscope (SEM), respectively. The deposited vanadium oxide thin films make the possibility of combining in one processing step an antireflection coating deposition along with efficient surface state passivation, as compared to a reference wafer. Silicon solar cells based on untreated and treated mc-Si wafers were achieved. We showed that mc-silicon solar cells, subjected to the above treatment, have better short circuit currents and open-circuit voltages than those made from untreated wafers. Thus, the efficiency of obtained solar cells has been improved.

  13. Efficiency improvement of multicrystalline silicon solar cells after surface and grain boundaries passivation using vanadium oxide

    International Nuclear Information System (INIS)

    Derbali, L.; Ezzaouia, H.

    2012-01-01

    Highlights: ► Evaporation of vanadium pentoxide onto the front surface leads to reduce the surface reflectivity considerably. ► An efficient surface passivation can be obtained after thermal treatment of obtained films. ► Efficiency of the obtained solar cells has been improved noticeably after thermal treatment of deposited thin films. - Abstract: The aim of this work is to investigate the effect of vanadium oxide deposition onto the front surface of multicrystalline silicon (mc-Si) substrat, without any additional cost in the fabrication process and leading to an efficient surface and grain boundaries (GBs) passivation that have not been reported before. The lowest reflectance of mc-Si coated with vanadium oxide film of 9% was achieved by annealing the deposited film at 600 °C. Vanadium pentoxide (V 2 O 5 ) were thermally evaporated onto the surface of mc-Si substrates, followed by a short annealing duration at a temperature ranging between 600 °C and 800 °C, under O 2 atmosphere. The chemical composition of the films was analyzed by means of Fourier transform infrared spectroscopy (FTIR). Surface and cross-section morphology were determined by atomic force microscope (AFM) and a scanning electron microscope (SEM), respectively. The deposited vanadium oxide thin films make the possibility of combining in one processing step an antireflection coating deposition along with efficient surface state passivation, as compared to a reference wafer. Silicon solar cells based on untreated and treated mc-Si wafers were achieved. We showed that mc-silicon solar cells, subjected to the above treatment, have better short circuit currents and open-circuit voltages than those made from untreated wafers. Thus, the efficiency of obtained solar cells has been improved.

  14. Behind the Nature of Titanium Oxide Excellent Surface Passivation and Carrier Selectivity of c-Si

    DEFF Research Database (Denmark)

    Plakhotnyuk, Maksym; Crovetto, Andrea; Hansen, Ole

    We present an expanded study of the passivation properties of titanium dioxide (TiO2) on p-type crystalline silicon (c-Si). We report a low surface recombination velocity (16 cm/s) for TiO2 passivation layers with a thin tunnelling oxide interlayer (SiO2 or Al2O3) on p-type crystalline silicon (c-Si......), and post-deposition annealing temperature were investigated. We have observed that that SiO2 and Al2O3 interlayers enhance the TiO2 passivation of c-Si. TiO2 thin film passivation layers alone result in lower effective carrier lifetime. Further annealing at 200  ̊C in N2 gas enhances the surface...

  15. Sidewall passivation for InGaN/GaN nanopillar light emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Won Hyuck; Abraham, Michael; Yu, Shih-Ying [Department of Materials Science and Engineering, Pennsylvania State University, University Park, Pennsylvania 16802 (United States); You, Guanjun; Liu, Jie; Wang, Li; Xu, Jian, E-mail: jianxu@engr.psu.edu [Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, Pennsylvania 16802 (United States); Mohney, Suzanne E., E-mail: mohney@ems.psu.edu [Department of Materials Science and Engineering, Pennsylvania State University, University Park, Pennsylvania 16802 (United States); Materials Research Institute, Pennsylvania State University, University Park, Pennsylvania 16802 (United States)

    2014-07-07

    We studied the effect of sidewall passivation on InGaN/GaN multiquantum well-based nanopillar light emitting diode (LED) performance. In this research, the effects of varying etch rate, KOH treatment, and sulfur passivation were studied for reducing nanopillar sidewall damage and improving device efficiency. Nanopillars prepared under optimal etching conditions showed higher photoluminescence intensity compared with starting planar epilayers. Furthermore, nanopillar LEDs with and without sulfur passivation were compared through electrical and optical characterization. Suppressed leakage current under reverse bias and four times higher electroluminescence (EL) intensity were observed for passivated nanopillar LEDs compared with unpassivated nanopillar LEDs. The suppressed leakage current and EL intensity enhancement reflect the reduction of non-radiative recombination at the nanopillar sidewalls. In addition, the effect of sulfur passivation was found to be very stable, and further insight into its mechanism was gained through transmission electron microscopy.

  16. Passive films and corrosion protection due to phosphonic acid inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Fang, J.L.; Liu, Q. (Nanjing Univ. (China)); Li, Y.; Wang, Z.W. (Nanjing Inst. of Chemical Tech. (China))

    1993-04-01

    For protecting mild steel from corrosion, aminotrimethylidenephosphonic acid (ATMP) was more effective than 1-hydroxyethylidene diphosphonic acid (HEDP), N.N-dimethylidenediphosphonic acid (EEDP), and ethylenediaminetetramethylidenephosphonic acid (EDTMP). A 20-min treatment in 1.0 mol/l of ATMP with a pH 0.23 at 45 C formed an anti-corrosive complex film that was composed of 48.4% O, 28.6% P, 7.0% Fe, 4.3% N, and 11.7% C, based on x-ray photoelectron spectroscopy and Auger electron spectroscopy. From differences in binding energies of Fe, N, and O, in the shift of C-N and P-O vibration, in the reflection FTIR spectra, and in the change of P-OH and Fe-N vibration before and after film formation, it was deduced that N and O in ATMP were coordinated with Fe[sub 2+] in the film.

  17. The wet corrosion of molybdenum thin film. Part I: Behavior at 25 C

    International Nuclear Information System (INIS)

    De Rosa, L.; Tomachuk, C.R.; Mitton, D.B.; Saiello, S.; Bellucci, F.; Springer, J.

    2004-01-01

    The corrosion and passivation behaviour of molybdenum thin films obtained by Physical Vapor Deposition (PVD) was investigated in aerated chloride and sulfate solutions at different pH values. Open circuit potential (ocp) measurements, polarisation experiments and electrochemical impedance spectroscopy (EIS) were employed. The experimental results suggest that the metal surface is covered by a passive film; however, corrosion still occurs. For the samples assessed during the current research, the acidic electrolytes tended to be less corrosive; however, a limited passive region was associated with the most basic sulfate or chloride solution. The effect of the pH was found to be more pronounced than the effect of the ion (chloride or sulfate). (Abstract Copyright [2004], Wiley Periodicals, Inc.)

  18. Parylene-C passivation and effects on rectennas' wireless power transfer performance

    Science.gov (United States)

    Cooper, Camille; Eldridge, Keisharra; Kim, Min H.; Yoon, Hargsoon; Choi, Sang H.; Song, Kyo D.

    2014-04-01

    In this study, the effect of Parylene-C coated as a passivation layer on various rectennas is investigated in terms of their wireless power transfer performance. A passivation has been used for protection of rectenna circuits and their packaging in order for protection of the circuit elements and electrical insulation. Especially, wireless power receiving rectennas attached on sensors or on moving vehicles such as airship needs proper protection while they are exposed to harsh environment. In this research, a layer of Parylene-C thin film is used for passivation on rectennas and electromagnetic coupling by the coating is assessed by the measurement of receiving power levels. In this research, an electrochemical analysis method will also be introduced to measure the degree of water protection by a Parylene-C layer.

  19. Thiol passivation of MWIR type II superlattice photodetectors

    Science.gov (United States)

    Salihoglu, O.; Muti, A.; Aydinli, A.

    2013-06-01

    Poor passivation on photodetectors can result in catastrophic failure of the device. Abrupt termination of mesa side walls during pixel definition generates dangling bonds that lead to inversion layers and surface traps leading to surface leakage currents that short circuit diode action. Good passivation, therefore, is critical in the fabrication of high performance devices. Silicondioxide has been the main stay of passivation for commercial photodetectors, deposited at high temperatures and high RF powers using plasma deposition techniques. In photodetectors based on III-V compounds, sulphur passivation has been shown to replace oxygen and saturate the dangling bonds. Despite its effectiveness, it degrades over time. More effort is required to create passivation layers which eliminate surface leakage current. In this work, we propose the use of sulphur based octadecanethiol (ODT), CH3(CH2)17SH, as a passivation layer for the InAs/GaSb superlattice photodetectors that acts as a self assembled monolayer (SAM). ODT SAMs consist of a chain of 18 carbon atoms with a sulphur atom at its head. ODT Thiol coating is a simple process that consist of dipping the sample into the solution for a prescribed time. Excellent electrical performance of diodes tested confirm the effectiveness of the sulphur head stabilized by the intermolecular interaction due to van der Walls forces between the long chains of ODT SAM which results in highly stable ultrathin hydrocarbon layers without long term degradation.

  20. Improvement of crystalline silicon surface passivation by hydrogen plasma treatment

    International Nuclear Information System (INIS)

    Martin, I.; Vetter, M.; Orpella, A.; Voz, C.; Puigdollers, J.; Alcubilla, R.; Kharchenko, A.V.; Roca i Cabarrocas, P.

    2004-01-01

    A completely dry low-temperature process has been developed to passivate 3.3 Ω cm p-type crystalline silicon surface with excellent results. Particularly, we have investigated the use of a hydrogen plasma treatment, just before hydrogenated amorphous silicon carbide (a-SiC x :H) deposition, without breaking the vacuum. We measured effective lifetime, τ eff , through a quasi-steady-state photoconductance technique. Experimental results show that hydrogen plasma treatment improves surface passivation compared to classical HF dip. S eff values lower than 19 cm s -1 were achieved using a hydrogen plasma treatment and an a-SiC x :H film deposited at 300 deg. C

  1. Study of SiNx:Hy passivant layers for AlGaN/GaN high electron mobility transistors

    International Nuclear Information System (INIS)

    Redondo-Cubero, A.; Gago, R.; Romero, M.F.; Gonzalez-Posada, F.; Brana, A.F.; Munoz, E.; Jimenez, A.

    2008-01-01

    In this work, hydrogenated silicon nitride (SiN x :H y ) grown by chemical vapour deposition as passivant layers for high electron mobility transistors (HEMT) have been studied. The film composition and bonding structure were determined by ion beam analysis and X-ray absorption spectroscopy techniques, respectively. The effects of gas precursors (SiH 4 /N 2 and SiH 4 /NH 3 ) and film/substrate interface on the film growth have been addressed. The growth on different substrates (Si, GaN, AlGaN), and the effects of plasma pre-treatments have been studied before the growth and the film growth evolution. Results yield no significant differences in all the analysed samples. This points out the relevant role of SiHn radicals as growth precursor species and that intrinsic characteristics of the SiNx:Hy layers are not affected by the film/substrate interface. Hence, improved performance of HEMT with surface plasma pre-treatments before passivation should be related to extrinsic mechanisms (such as creation of defects in AlGaN surface, removal of the surface contamination or ion-induced roughness). (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  2. Corrosion and Passivation of Nickel Rotating Disk Electrode in Borate Buffer Solution

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Younkyoo [Hankuk Univ. of Foreign Studies, Yongin (Korea, Republic of)

    2013-10-15

    The electrochemical corrosion and passivation of Ni rotating disk electrod in borate buffer solution was studied with potentiodynamic and electrochemical impedance spectroscopy. The mechanisms of both the active dissolution and passivation of nickel and the hydrogen evolution in reduction reaction were hypothetically established while utilizing the Tafel slope, impedance data, the rotation speed of Ni-RDE and the pH dependence of corrosion potential and current. Based on the EIS data, an equivalent circuit was suggested. In addition, carefully measured were the electrochemical parameters for specific anodic dissolution regions. It can be concluded from the data collected that the Ni(OH){sub 2} oxide film, which is primarily formed by passivation, is converted to NiO by dehydration under the influence of an electrical field.

  3. Silicon nanocrystals as light sources: stable, efficient and fast photoluminescence with suitable passivation

    Czech Academy of Sciences Publication Activity Database

    Kůsová, Kateřina

    2012-01-01

    Roč. 9, 8/9 (2012), s. 717-731 ISSN 1475-7435 R&D Projects: GA AV ČR(CZ) IAA101120804; GA MŠk LC510; GA AV ČR KJB100100903 Institutional research plan: CEZ:AV0Z10100521 Keywords : silicon nanocrystals * surface passivation * photoluminescence * lasing Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.087, year: 2012

  4. Role of field-effect on c-Si surface passivation by ultrathin (2-20 nm) atomic layer deposited Al2O3

    NARCIS (Netherlands)

    Terlinden, N.M.; Dingemans, G.; Sanden, van de M.C.M.; Kessels, W.M.M.

    2010-01-01

    Al2O3 synthesized by plasma-assisted atomic layer deposition yields excellent surface passivation of crystalline silicon (c-Si) for films down to ~ 5 nm in thickness. Optical second-harmonic generation was employed to distinguish between the influence of field-effect passivation and chemical

  5. Influence of enzymatic reactions on the electrochemical behavior of EN X2CrNiMo17-11-2 (AISI 316L) stainless steel in bio-corrosion: role of interfacial processes on the modification of the passive layer

    International Nuclear Information System (INIS)

    Landoulsi, J.

    2008-01-01

    The outstanding corrosion behavior of stainless steels (SS) results from the presence of thin oxide layer (some nanometers). In non sterile aqueous media, stainless steels may exhibit a non stable behavior resulting from interactions between microbial species and passive film. In fact, microorganisms can be deeply involved in the corrosion processes usually reported as Microbial Influenced Corrosion (MIC). They can induce the initiation or the acceleration of this phenomenon and they do so when organized in bio-films. From the electrochemical point of view, stainless steels showed an increase of the free corrosion potential (Ecorr) attributed to the bio-film settlement. The Eco' ennoblement was broadly reported in seawater and seems to be confirmed in fresh water according to recent findings. A considerable progress in the comprehension of MIC processes was related to the role of extracellular species, essentially enzymes. Many enzymatic reactions occurring in bio-films consist on using oxygen as electron acceptor to generate hydrogen peroxide and related species. The aim of this work is to understand the mechanisms involved in the electrochemical behavior of stainless steel according to an enzymatic approach in medium simulating fresh water. To this end, glucose oxidase was chosen to globalize aerobic activities of bio-films. Electrochemical measurements in situ and surface analysis allow the comprehension of the role and the nature of interfacial processes. Surface characterization was performed with the help of a new quantitative utilization of XPS analysis and AFM. Results show a significant evolution in term of morphology (surface organization), (ii) chemical composition (passive layer, adsorbed organic species) and (iii) chemical reaction (oxidation, dissolution, effect of enzyme). Finally, a new enzymatic system is proposed to mimic specific physicochemical conditions at the SS / bio-film interface, in particular enzymatic generation of oxidant species in

  6. Enzymatic effect of a bio-film on corrosion of stainless steels immersed in natural seawater

    International Nuclear Information System (INIS)

    L'Hostis, V.

    2002-09-01

    Immersion of stainless steels in natural seawater leads to an ennoblement of their free corrosion potential (Ecor) with time. This evolution is linked to colonization of surface by bacteria, forming a bio-film. Literature synthesis has showed common points between proposed mechanisms, like a modification of cathodic reactions, and importance of hydrogen peroxide, but also differences, as acidity inside bio-films, or chemical composition of the passive layer, or enzymes present inside bio-films. The aim of the study was to precise these hypothesis, and finally mechanisms which leads to increase of Ecor. Experiments with addition of enzymes (glucose oxidase) have been performed and have lead to reproduce the electrochemical behaviour of stainless steels in natural seawater, including the cathodic behaviour. Study of composition of passive film and its semi-conducting properties, analysed respectively by XPS and Mott-Schottky plots, has lead to precise roles of hydrogen peroxide and oxidases. Moreover, study of donor densities of passive film has pointed out the effect of gluconic acid for evolution of cathodic reaction. This enzymatic mechanism has been applied and verified on crevice corrosion, and has been extended to other metallic materials, and other enzymes. (author)

  7. A study of the condition for the passivation of carbon steel in bentonite

    International Nuclear Information System (INIS)

    Taniguchi, Naoki; Morimoto, Masataka; Honda, Akira

    1999-01-01

    It is important to study the corrosion behavior of materials to be used for overpack for high-level radioactive waste disposal. Carbon steel is one of the candidate materials. The type of corrosion on carbon steel depends on whether the carbon steel is passivated or not. In this study, the condition for the passivation of carbon steel was studied using bentonite as the buffer material. Anodic polarization in bentonite and the measurements of pH of porewater in bentonite was measured. The results of these experiments showed that the possibility of passivation is small in highly compacted bentonite in groundwater in Japan. Therefore, localized corrosion on carbon steel due to the breakdown of passive film is unlikely in bentonite. In other words, general corrosion seems to be the most probable type of corrosion under repository condition in Japan. (author)

  8. A high mobility C60 field-effect transistor with an ultrathin pentacene passivation layer and bathophenanthroline/metal bilayer electrodes

    International Nuclear Information System (INIS)

    Zhou Jian-Lin; Yu Jun-Sheng; Yu Xin-Ge; Cai Xin-Yang

    2012-01-01

    C 60 field-effect transistor (OFET) with a mobility as high as 5.17 cm 2 /V·s is fabricated. In our experiment, an ultrathin pentacene passivation layer on poly-(methyl methacrylate) (PMMA) insulator and a bathophenanthroline (Bphen)/Ag bilayer electrode are prepared. The OFET shows a significant enhancement of electron mobility compared with the corresponding device with a single PMMA insultor and an Ag electrode. By analysing the C 60 film with atomic force microscopy and X-ray diffraction techniques, it is shown that the pentacene passivation layer can contribute to C 60 film growth with the large grain size and significantly improve crystallinity. Moreover, the Bphen buffer layer can reduce the electron contact barrier from Ag electrodes to C 60 film efficiently. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  9. Film Formation of Ag Nanoparticles at the Organic-Aqueous Liquid Interface

    Science.gov (United States)

    Vigorita, John

    2005-03-01

    A wet-chemical method to make films by spontaneous assembly of passivated Ag nanoparticles at the organic-aqueous liquid interface is presented. The interfacial films exhibit a blue opalescence, or in other cases a silvery color, and are characterized with transmission electron microscopy and UV-visible spectrophotometry. Measurements indicate that nanoparticles in the interfacial film can form superlattices and in some cases nanostructures.

  10. Electronic properties of intrinsic and doped amorphous silicon carbide films

    International Nuclear Information System (INIS)

    Vetter, M.; Voz, C.; Ferre, R.; Martin, I.; Orpella, A.; Puigdollers, J.; Andreu, J.; Alcubilla, R.

    2006-01-01

    Hydrogenated amorphous silicon carbide (a-SiC x : H) films have shown excellent surface passivation of crystalline silicon. With the aim of large area deposition of these films the influence of the rf plasma power was investigated. It is found that homogenous deposition with effective surface recombination velocity lower than 100 cms -1 is possible up to 6'' diameter in a simple parallel plate reactor by optimizing deposition parameters. For application in solar cell processes the conductivity of these a-SiC x : H films might become of importance since good surface passivation results from field-effect passivation which needs an insulating dielectric layer. Therefore, the temperature dependence of the dark dc conductivity of these films was investigated in the temperature range from - 20 to 260 deg. C. Two transition temperatures, T s ∼80 deg. C and T s ∼170 deg. C, were found where conductivity increases, resp. decreases over-exponential. From Arrhenius plots activation energy (E a ) and conductivity pre-factor (σ 0 ) were calculated for a large number of samples with different composition. A correlation between E a and σ 0 was found giving a Meyer-Neldel relation with a slope of 59 mV, corresponding to a material characteristic temperature T m = 400 deg. C, and an intercept at σ 00 = 0.1 Ω -1 cm -1

  11. Passive band-gap reconfiguration born from bifurcation asymmetry.

    Science.gov (United States)

    Bernard, Brian P; Mann, Brian P

    2013-11-01

    Current periodic structures are constrained to have fixed energy transmission behavior unless active control or component replacement is used to alter their wave propagation characteristics. The introduction of nonlinearity to generate multiple stable equilibria is an alternative strategy for realizing distinct energy propagation behaviors. We investigate the creation of a reconfigurable band-gap system by implementing passive switching between multiple stable states of equilibrium, to alter the level of energy attenuation in response to environmental stimuli. The ability to avoid potentially catastrophic loads is demonstrated by tailoring the bandpass and band-gap regions to coalesce for two stable equilibria and varying an external load parameter to trigger a bifurcation. The proposed phenomenon could be utilized in remote or autonomous applications where component modifications and active control are impractical.

  12. A passive radon dosemeter suitable for workplaces

    International Nuclear Information System (INIS)

    Orlando, C.; Orlando, P.; Patrizii, L.; Tommasino, L.; Tonnarini, S.; Trevisi, R.; Viola, P.

    2002-01-01

    The results obtained in different international intercomparisons on passive radon monitors have been analysed with the aim of identifying a suitable radon monitoring device for workplaces. From this analysis, the passive radon device, first developed for personal dosimetry in mines by the National Radiation Protection Board, UK (NRPB), has shown the most suitable set of characteristics. This radon monitor consists of a diffusion chamber, made of conductive plastic with less than 2 cm height, containing a CR-39 film (Columbia Resin 1939), as track detector. Radon detectors in workplaces may be exposed only during the working hours, thus requiring the storage of the detectors in low-radon zones when not exposed. This paper describes how this problem can be solved. Since track detectors are also efficient neutron dosemeters, care should be taken when radon monitors are used in workplaces, where they may be exposed to neutrons, such as on high altitude mountains, in the surroundings of high energy X ray facilities (where neutrons are produced by (gamma, n) reactions) or around high energy particle accelerators. To this end, the response of these passive radon monitors to high energy neutron fields has been investigated. (author)

  13. Grain engineering by ultrasonic substrate vibration post-treatment of wet perovskite films for annealing-free, high performance, and stable perovskite solar cells.

    Science.gov (United States)

    Xiong, Hao; Zabihi, Fatemeh; Wang, Hongzhi; Zhang, Qinghong; Eslamian, Morteza

    2018-05-10

    Perovskite solar cells (PSCs) have gained great interest, owing to a fast increase in their power conversion efficiency (PCE), within a few years. However, their wide application and scale-up are hampered due to multiple obstacles, such as chemical instability, which leads to a short lifetime, and their complicated reaction and crystallization, which requires thermal annealing. Here, we address these issues using the ultrasonic substrate vibration post treatment (SVPT) applied on the as-spun perovskite wet films, so as to achieve a uniform, microscale and stable mixed-halide and mixed-cation perovskite layer, (FAPbI3)0.85(MAPbBr3)0.15, without the need for a conventional thermal annealing step. This is achieved by the creation of fluid micromixing and in situ annealing within the solution, caused by the ultrasonic excitation of the wet film. The optoelectronic properties of the perovskite films subjected to the SVPT, including photoemission, carrier lifetime and band gap, are remarkably improved compared to the conventionally annealed films. When incorporated into a planar PSC, a maximum PCE of 18.55% was achieved, compared to 15.17% for the control device, with high reproducibility and no hysteresis, and the device retained 80% of its initial PCE, over a period of 20 days of storage under ambient conditions.

  14. Carbon steel protection in G.S. (Girlder sulfide) plants. Iron sulfide scales formation on surfaces covered by fabrication produced films. Pt. 4

    International Nuclear Information System (INIS)

    Burkart, A.L.

    1986-04-01

    This work describes the assays aimed to passivate the steel carbon of the process pipings. This steel is marked by the ASTM A 333 G6 and is chemically similar to those of isotopic exchange towers which corrode in contact with in-water hydrogen sulfide solutions forming iron sulfide protective layers. The differences between both materials lie in the surface characteristics to be passivated. The steel of towers has an internal side covered by paint which shall be removed prior to passivation. The steel's internal side shall be covered by a film formed during the fabrication process and constituted by calcinated wastes and iron oxides (magnetite, hematite and wustite). This film interferes in the formation process of passivating layers of pyrrhotite and pyrite. The possibility to passivate the pipes in their actual state was evaluated since it would result highly laborious and expensive to eliminate the film. (Author) [es

  15. Non-linear dynamics of the passivity breakdown of iron in acidic solutions

    CERN Document Server

    Sazou, D

    2003-01-01

    Breakdown of the iron passivity in acid solutions accompanied by current oscillations was investigated by using electrochemical techniques, which reveal the non-linear dynamical response of the system in the current-potential (I-E) and current-time (I-t) planes. Current oscillations of the Fe-electrolyte electrochemical system were studied in the (a) absence and (b) presence of chlorides. In case (a) two oscillatory regions were distinguished; one at low potentials associated with the formation-dissolution of a ferrous salt and another at higher potentials associated with the formation-breakdown of the oxide film. Chaotic oscillations appear in the former region whereas periodic oscillations of a relaxation type appear in the latter region. In case (b), complex periodic and aperiodic oscillations are induced by small amounts of chlorides due to pitting corrosion. Pitting corrosion is a multistage localized process of a great technological importance. It consists of a local breakdown of the passive oxide film ...

  16. Uniaxially oriented polycrystalline thin films and air-stable n-type transistors based on donor-acceptor semiconductor (diC8BTBT)(FnTCNQ) [n = 0, 2, 4

    Science.gov (United States)

    Shibata, Yosei; Tsutsumi, Jun'ya; Matsuoka, Satoshi; Matsubara, Koji; Yoshida, Yuji; Chikamatsu, Masayuki; Hasegawa, Tatsuo

    2015-04-01

    We report the fabrication of high quality thin films for semiconducting organic donor-acceptor charge-transfer (CT) compounds, (diC8BTBT)(FnTCNQ) (diC8BTBT = 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene and FnTCNQ [n = 0,2,4] = fluorinated derivatives of 7,7,8,8,-tetracyanoquinodimethane), which have a high degree of layered crystallinity. Single-phase and uniaxially oriented polycrystalline thin films of the compounds were obtained by co-evaporation of the component donor and acceptor molecules. Organic thin-film transistors (OTFTs) fabricated with the compound films exhibited n-type field-effect characteristics, showing a mobility of 6.9 × 10-2 cm2/V s, an on/off ratio of 106, a sub-threshold swing of 0.8 V/dec, and an excellent stability in air. We discuss the suitability of strong intermolecular donor-acceptor interaction and the narrow CT gap nature in compounds for stable n-type OTFT operation.

  17. Surface analysis and electrochemical behavior of Ti–20Zr alloy in simulated physiological fluids

    Energy Technology Data Exchange (ETDEWEB)

    Calderon Moreno, Jose Maria; Vasilescu, Ecaterina; Drob, Paula; Osiceanu, Petre; Vasilescu, Cora; Drob, Silviu Iulian, E-mail: sidrob@chimfiz.icf.ro; Popa, Monica

    2013-11-01

    Highlights: • The advanced Ti–20Zr alloy shows fully lamellar α + β microstructure. • The alloy passive film improves its properties by deposition of HA (XPS, SEM, EDX, Raman, FT-IR). • Alloy revealed lower corrosion rates and higher polarization resistances than Ti. • EIS spectra depicted a more protective passive film on the alloy surface than on Ti. • The passive film is formed by two layers: an inner barrier and an outer porous layer. -- Abstract: An advanced Ti–20Zr alloy was obtained by double vacuum melting in a semi-levitation furnace with cold crucible. The alloy shows fully lamellar α + β microstructure. Cyclic potentiodynamic polarization curves revealed that the alloy passivated easier, more rapid than Ti, having a more stable passive film in Ringer solutions of different pH values, simulating severe functional conditions of an implant. In neutral and alkaline Ringer solutions, the alloy passive film improved its properties in time (1500 h) by the deposition of protective hydroxyapatite, as was demonstrated by XPS, SEM, EDX, Raman and FT-IR measurements. Alloy presented lower corrosion rates and higher polarization resistances (from linear polarization measurements) than those of Ti (tens of times) proving a more resistant passive film. Alloy open circuit potentials had more electropositive values in comparison with Ti and tended to nobler values in time, which denote better passive state and its enhancement in time, due to the new depositions from the physiological solutions. Nyquist and Bode spectra depicted a more protective passive film on the alloy surface than on Ti surface. The passive film is formed by two layers: an inner barrier layer and an outer porous layer. An electric equivalent circuit with two time constants was modeled.

  18. Surface analysis and electrochemical behavior of Ti–20Zr alloy in simulated physiological fluids

    International Nuclear Information System (INIS)

    Calderon Moreno, Jose Maria; Vasilescu, Ecaterina; Drob, Paula; Osiceanu, Petre; Vasilescu, Cora; Drob, Silviu Iulian; Popa, Monica

    2013-01-01

    Highlights: • The advanced Ti–20Zr alloy shows fully lamellar α + β microstructure. • The alloy passive film improves its properties by deposition of HA (XPS, SEM, EDX, Raman, FT-IR). • Alloy revealed lower corrosion rates and higher polarization resistances than Ti. • EIS spectra depicted a more protective passive film on the alloy surface than on Ti. • The passive film is formed by two layers: an inner barrier and an outer porous layer. -- Abstract: An advanced Ti–20Zr alloy was obtained by double vacuum melting in a semi-levitation furnace with cold crucible. The alloy shows fully lamellar α + β microstructure. Cyclic potentiodynamic polarization curves revealed that the alloy passivated easier, more rapid than Ti, having a more stable passive film in Ringer solutions of different pH values, simulating severe functional conditions of an implant. In neutral and alkaline Ringer solutions, the alloy passive film improved its properties in time (1500 h) by the deposition of protective hydroxyapatite, as was demonstrated by XPS, SEM, EDX, Raman and FT-IR measurements. Alloy presented lower corrosion rates and higher polarization resistances (from linear polarization measurements) than those of Ti (tens of times) proving a more resistant passive film. Alloy open circuit potentials had more electropositive values in comparison with Ti and tended to nobler values in time, which denote better passive state and its enhancement in time, due to the new depositions from the physiological solutions. Nyquist and Bode spectra depicted a more protective passive film on the alloy surface than on Ti surface. The passive film is formed by two layers: an inner barrier layer and an outer porous layer. An electric equivalent circuit with two time constants was modeled

  19. ALD TiO x as a top-gate dielectric and passivation layer for InGaZnO115 ISFETs

    Science.gov (United States)

    Pavlidis, S.; Bayraktaroglu, B.; Leedy, K.; Henderson, W.; Vogel, E.; Brand, O.

    2017-11-01

    The suitability of atomic layer deposited (ALD) titanium oxide (TiO x ) as a top gate dielectric and passivation layer for indium gallium zinc oxide (InGaZnO115) ion sensitive field effect transistors (ISFETs) is investigated. TiO x is an attractive barrier material, but reports of its use for InGaZnO thin film transistor (TFT) passivation have been conflicting thus far. In this work, it is found that the passivated TFT’s behavior depends on the TiO x deposition temperature, affecting critical device characteristics such as threshold voltage, field-effect mobility and sub-threshold swing. An O2 annealing step is required to recover TFT performance post passivation. It is also observed that the positive bias stress response of the passivated TFTs improves compared the original bare device. Secondary ion mass spectroscopy excludes the effects of hydrogen doping and inter-diffusion as sources of the temperature-dependent performance change, therefore indicating that oxygen gettering induced by TiO x passivation is the likely source of oxygen vacancies and, consequently, carriers in the InGaZnO film. It is also shown that potentiometric sensing using ALD TiO x exhibits a near Nernstian response to pH change, as well as minimizes V TH drift in TiO x passivated InGaZnO TFTs immersed in an acidic liquid. These results add to the understanding of InGaZnO passivation effects and underscore the potential for low-temperature fabricated InGaZnO ISFETs to be used as high-performance mobile chemical sensors.

  20. Designing new biocompatible glass-forming Ti75-x Zr10 Nbx Si15 (x = 0, 15) alloys: corrosion, passivity, and apatite formation.

    Science.gov (United States)

    Abdi, Somayeh; Oswald, Steffen; Gostin, Petre Flaviu; Helth, Arne; Sort, Jordi; Baró, Maria Dolors; Calin, Mariana; Schultz, Ludwig; Eckert, Jürgen; Gebert, Annett

    2016-01-01

    Glass-forming Ti-based alloys are considered as potential new materials for implant applications. Ti75 Zr10 Si15 and Ti60 Zr10 Nb15 Si15 alloys (free of cytotoxic elements) can be produced as melt-spun ribbons with glassy matrix and embedded single β-type nanocrystals. The corrosion and passivation behavior of these alloys in their homogenized melt-spun states have been investigated in Ringer solution at 37°C in comparison to their cast multiphase crystalline counterparts and to cp-Ti and β-type Ti-40Nb. All tested materials showed very low corrosion rates as expressed in corrosion current densities icorr  alloys passive states in a wide potential range. This corresponds to low passive current densities ipass  = 2 ± 1 µA/cm(2) based on the growth of oxide films with thickness d alloys is beneficial for stable surface passivity. The addition of Nb does not only improve the glass-forming ability and the mechanical properties but also supports a high pitting resistance even at extreme anodic polarization up to 4V versus SCE were oxide thickness values of d ∼35 nm are reached. With regard to the corrosion properties, the Nb-containing nearly single-phase glassy alloy can compete with the β-type Ti-40Nb alloy. SBF tests confirmed the ability for formation of hydroxyapatite on the melt-spun alloy surfaces. All these properties recommend the new glass-forming alloys for application as wear- and corrosion-resistant coating materials for implants. © 2015 Wiley Periodicals, Inc.

  1. Enhanced PEC performance of nanoporous Si photoelectrodes by covering HfO2 and TiO2 passivation layers

    Science.gov (United States)

    Xing, Zhuo; Ren, Feng; Wu, Hengyi; Wu, Liang; Wang, Xuening; Wang, Jingli; Wan, Da; Zhang, Guozhen; Jiang, Changzhong

    2017-03-01

    Nanostructured Si as the high efficiency photoelectrode material is hard to keep stable in aqueous for water splitting. Capping a passivation layer on the surface of Si is an effective way of protecting from oxidation. However, it is still not clear in the different mechanisms and effects between insulating oxide materials and oxide semiconductor materials as passivation layers. Here, we compare the passivation effects, the photoelectrochemical (PEC) properties, and the corresponding mechanisms between the HfO2/nanoporous-Si and the TiO2/nanoporous-Si by I-V curves, Motte-schottky (MS) curves, and electrochemical impedance spectroscopy (EIS). Although the saturated photocurrent densities of the TiO2/nanoporous Si are lower than that of the HfO2/nanoporous Si, the former is more stable than the later.

  2. Enhanced PEC performance of nanoporous Si photoelectrodes by covering HfO2 and TiO2 passivation layers.

    Science.gov (United States)

    Xing, Zhuo; Ren, Feng; Wu, Hengyi; Wu, Liang; Wang, Xuening; Wang, Jingli; Wan, Da; Zhang, Guozhen; Jiang, Changzhong

    2017-03-02

    Nanostructured Si as the high efficiency photoelectrode material is hard to keep stable in aqueous for water splitting. Capping a passivation layer on the surface of Si is an effective way of protecting from oxidation. However, it is still not clear in the different mechanisms and effects between insulating oxide materials and oxide semiconductor materials as passivation layers. Here, we compare the passivation effects, the photoelectrochemical (PEC) properties, and the corresponding mechanisms between the HfO 2 /nanoporous-Si and the TiO 2 /nanoporous-Si by I-V curves, Motte-schottky (MS) curves, and electrochemical impedance spectroscopy (EIS). Although the saturated photocurrent densities of the TiO 2 /nanoporous Si are lower than that of the HfO 2 /nanoporous Si, the former is more stable than the later.

  3. High performance passive matrix electrochromic display

    International Nuclear Information System (INIS)

    Aliev, A.E.

    2003-01-01

    A matrix addressable electrochromic display (ECD) based on solid polymer electrolyte screen-printed on the surface of nano structured WO 3 +0.1TiO 2 electrodes, in which all pixels were insulted by negative photoresist material has been developed. Five types of nano structured films produced by a sol-gel method were investigated to enhance the electrochemical, optical, and mechanical properties of electrochromic tungsten oxide films. The film based on WO 3-x +0.1TiO 2-y sol-gel solution mixed with 32 mol.% oxalic acid was found to be stable and has excellent characteristics in coloring/bleaching kinetics. The ECD used nano structured electrochromic tungsten trioxide layer protected by SiO 2 -CeO 2 -Li 2 O thin film solid electrolyte, screen-printed solid polymer electrolyte mixed with white TiO 2 pigment (P25), and metallic counter electrode covered with carbon layer, has exhibited fast switching, excellent memory effect and substantially free from image diffusion and cross talk effects. (author)

  4. Electrochemical and surface characterisation of oxide films on nano-grain nickel films electrodeposited on INCOLOY-800

    International Nuclear Information System (INIS)

    Navin Vinayak, S.; Sunitha, Y.; Rangarajan, S.; Narasimhan, S.V.

    2008-01-01

    Nano materials have different properties from the corresponding bulk materials because of fine grain size, large fraction of surface atoms, high surface energy and high grain boundary volume fraction. For similar reasons, the nano-alloy coatings show superior high-temperature corrosion resistance and are generally more resistant to stress corrosion cracking. Hence, it is of interest to know the materials performance, if the structural materials used in nuclear reactors are made of nano-grains. In Indian PHWRs, Incoloy-800 is being used as the steam generator tubing material. It's corrosion resistance property is very important as it forms not only the pressure boundary between the radioactive primary water and non-active secondary water but also from the view point of loss of heavy water, in case of any corrosion damage. In this paper, the corrosion resistance of the oxide films formed on nano-grain nickel film electrodeposited on Incoloy-800 (a) in the presence of saccharine (WS) and (b) in the absence of saccharine (WOS) were compared with that formed on Commercial Ni foil, using electrochemical dc polarization and ac impedance techniques. The surface morphology, elemental analysis and grain size were studied with SEM, EDX and XRD techniques respectively. The nano-grain nickel films were prepared on Incoloy-800 by electrodeposition using Watt's Bath with saccharine sodium as a surfactant. The oxide films were developed by exposing them to LiOH solution (pH-10.0) at 245 deg C for 3 days (A-group) and 7 days (B-group). XRD results showed that the grain size of Ni formed in the absence of saccharine (WOS) was ∼ 60 nm and did not change after being autoclaved. But, for Ni formed in the presence of saccharine (WS), the grain size was ∼ 16 nm which increased to 40-50 nm after being autoclaved. With both A and B-group specimens, the PDAP curves showed an active-passive transition, a passive region and a transpassive region in 2N H 2 SO 4 . However, the critical

  5. Passivation of black phosphorus saturable absorbers for reliable pulse formation of fiber lasers.

    Science.gov (United States)

    Na, Dongsoo; Park, Kichul; Park, Ki-Hwan; Song, Yong-Won

    2017-11-24

    Black phosphorus (BP) has attracted increasing attention due to its unique electrical properties. In addition, the outstanding optical nonlinearity of BP has been demonstrated in various ways. Its functionality as a saturable absorber, in particular, has been validated in demonstrations of passive mode-locked lasers. However, normally, the performance of BP is degraded eventually by both thermal and chemical damage in ambient conditions. The passivation of BP is the critical issue to guarantee a stable performance of the optical devices. We quantitatively characterized the mode-locked lasers operated by BP saturable absorbers with diversified passivation materials such as polydimethylsiloxane (PDMS) or Al 2 O 3 , considering the atomic structure of the materials, and therefore the hydro-permeability of the passivation layers. Unlike the BP layers without passivation, we demonstrated that the Al 2 O 3 -passivated BP layer was protected from the surface oxidation reaction in the long-term, and the PDMS-passivated one had a short-term blocking effect. The quantitative analysis showed that the time-dependent characteristics of the pulsed laser without passivation were changed with respect to the pulse duration, spectral width, and time-bandwidth product displaying 550 fs, 2.8 nm, and 0.406, respectively. With passivation, the changes were limited to <43 fs, <0.3 nm, and <0.012, respectively.

  6. Passivation of black phosphorus saturable absorbers for reliable pulse formation of fiber lasers

    Science.gov (United States)

    Na, Dongsoo; Park, Kichul; Park, Ki-Hwan; Song, Yong-Won

    2017-11-01

    Black phosphorus (BP) has attracted increasing attention due to its unique electrical properties. In addition, the outstanding optical nonlinearity of BP has been demonstrated in various ways. Its functionality as a saturable absorber, in particular, has been validated in demonstrations of passive mode-locked lasers. However, normally, the performance of BP is degraded eventually by both thermal and chemical damage in ambient conditions. The passivation of BP is the critical issue to guarantee a stable performance of the optical devices. We quantitatively characterized the mode-locked lasers operated by BP saturable absorbers with diversified passivation materials such as polydimethylsiloxane (PDMS) or Al2O3, considering the atomic structure of the materials, and therefore the hydro-permeability of the passivation layers. Unlike the BP layers without passivation, we demonstrated that the Al2O3-passivated BP layer was protected from the surface oxidation reaction in the long-term, and the PDMS-passivated one had a short-term blocking effect. The quantitative analysis showed that the time-dependent characteristics of the pulsed laser without passivation were changed with respect to the pulse duration, spectral width, and time-bandwidth product displaying 550 fs, 2.8 nm, and 0.406, respectively. With passivation, the changes were limited to <43 fs, <0.3 nm, and <0.012, respectively.

  7. Investigation of electrochemical behaviour and structure of oxide films on Ni60Nb40 alloy in amorphous and crystalline states

    International Nuclear Information System (INIS)

    Tomashov, N.D.; Skvortsova, I.B.; Gorodetskij, A.E.; Bogomolov, D.B.

    1987-01-01

    Electrochemical properties of Ni 60 Nb 40 alloy in amorphous and crystalline states as well as structure of oxide films forming during anode polarization in electrolytes on the surface of this alloy in both its states are investigated. It is stated that increased passive ability of Ni 60 Nb 40 alloys in amorphous state and high efficiency of chlorine evolution (2 n NaCl+HCl up to pH=0) anode process in comparison with crystalline state are defined by increased homogeneity and uniformity of passive films forming on amorphous alloy and their increased electron conductivity, that is in direct dependence on different structure of passive films forming on alloys in amorphous and crystalline states

  8. Properties of Nitrogen-Doped Zinc Telluride Films for Back Contact to Cadmium Telluride Photovoltaics

    Science.gov (United States)

    Shimpi, Tushar M.; Drayton, Jennifer; Swanson, Drew E.; Sampath, Walajabad S.

    2017-08-01

    Zinc telluride (ZnTe) films have been deposited onto uncoated glass superstrates by reactive radiofrequency (RF) sputtering with different amounts of nitrogen introduced into the process gas, and the structural and electronic transport properties of the resulting nitrogen-doped ZnTe (ZnTe:N) films characterized. Based on transmission and x-ray diffraction measurements, it was observed that the crystalline quality of the ZnTe:N films decreased with increasing nitrogen in the deposition process. The bulk carrier concentration of the ZnTe:N films determined from Hall-effect measurements showed a slight decrease at 4% nitrogen flow rate. The effect of ZnTe:N films as back contact to cadmium telluride (CdTe) solar cells was also investigated. ZnTe:N films were deposited before or after CdCl2 passivation on CdTe/CdS samples. Small-area devices were characterized for their electronic properties. Glancing-angle x-ray diffraction measurements and energy-dispersive spectroscopy analysis confirmed substantial loss of zinc from the samples where CdCl2 passivation was carried out after ZnTe:N film deposition.

  9. Mechanism of the transpassive dissolution and secondary passivation of chromium in sulphuric acid solutions

    International Nuclear Information System (INIS)

    Bojinov, M.; Betova, I.; Raicheff, R.; Fabricius, G.; Laitinen, T.; Saario, T.

    1998-01-01

    The transpassive dissolution and secondary passivation of Cr in 1..10 M H 2 SO 4 solutions were studied by a combination of different electrochemical methods. The steady-state polarization curves for transpassive dissolution exhibited a Tafel behaviour with a slope being independent on the acid concentration. Lower dissolution rates were measured for higher acid concentrations. Ring-disk measurements showed a release of both soluble Cr(VI) and Cr(III) during transpassivity. Impedance spectra were qualititatively similar in all acid concentrations, comprising one capacitive and two inductive semicircles. A kinetic model comprising two parallel transpassive dissolution paths was consistent with the experimental results. Typical passivation diagrams were observed for Cr in 10 M H 2 SO 4 , and a secondary passive state was established at higher potentials. The formation of the secondary passive film was confirmed by contact electric resistance (CER) measurements. A renewed version of the surface charge approach was consistent with the experimental results in the region of the secondary passivation. (orig.)

  10. Corrosion behaviors of Zn/Al-Mn alloy composite coatings deposited on magnesium alloy AZ31B (Mg-Al-Zn)

    International Nuclear Information System (INIS)

    Zhang Jifu; Zhang Wei; Yan Chuanwei; Du Keqin; Wang Fuhui

    2009-01-01

    After being pre-plated a zinc layer, an amorphous Al-Mn alloy coating was applied onto the surface of AZ31B magnesium alloy with a bath of molten salts. Then the corrosion performance of the coated magnesium alloy was examined in 3.5% NaCl solution by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). The results showed that the single Zn layer was active in the test solution with a high corrosion rate while the Al-Mn alloy coating could effectively protect AZ31B magnesium alloy from corrosion in the solution. The high corrosion resistance of Al-Mn alloy coating was ascribed to an intact and stable passive film formed on the coating. The performances of the passive film on Al-Mn alloy were further investigated by Mott-Schottky curve and X-ray photoelectron spectroscopy (XPS) analysis. It was confirmed that the passive film exhibited n-type semiconducting behavior in 3.5% NaCl solution with a carrier density two orders of magnitude less than that formed on pure aluminum electrode. The XPS analysis indicated that the passive film was mainly composed of AlO(OH) after immersion for long time and the content of Mn was negligible in the outer part of the passive film. Based on the EIS measurement, electronic structure and composition analysis of the passive film, a double-layer structure, with a compact inner oxide and a porous outer layer, of the film was proposed for understanding the corrosion process of passive film, with which the experimental observations might be satisfactorily interpreted.

  11. Outstanding resistance and passivation behaviour of new Fe-Co metal-metal glassy alloys in alkaline media.

    Directory of Open Access Journals (Sweden)

    Khadijah M Emran

    Full Text Available The electrochemical behavior of the oxide layers on two metal-metal glassy alloys, Fe78Co9Cr10Mo2Al1 (VX9and Fe49Co49V2 (VX50 (at.%, were studied using electrochemical techniques including electrochemical frequency modulation (EFM, electrochemical impedance spectroscopy (EIS and cyclic polarization (CP measurements. The morphology and composition of the alloy surfaces were investigated using X-ray photoelectron spectroscopy (XPS, scanning electron microscopy (SEM and atomic force microscopy (AFM. The corrosion rate and surface roughness of both alloys increased as the concentration of NaOH in aqueous solution was raised. The presence of some protective elements in the composition of the alloys led to the formation of a spontaneous passive layer on the alloy surface. The higher resistance values of both alloys were associated with the magnitude of the dielectric properties of the passive films formed on their surfaces. Both alloys are classified as having outstanding resistance to corrosion, which results from the formation of a passive film that acts as an efficient barrier to corrosion in alkaline solution.

  12. Removal of FePO4 and Fe3(PO4)2 crystals on the surface of passive fillers in Fe0/GAC reactor using the acclimated bacteria

    International Nuclear Information System (INIS)

    Lai, Bo; Zhou, Yuexi; Yang, Ping; Wang, Juling; Yang, Jinghui; Li, Huiqiang

    2012-01-01

    Highlights: ► Fe 3 (PO 4 ) 2 and FePO 4 crystals would weaken treatment efficiency of Fe 0 /GAC reactor. ► Fe 3 (PO 4 ) 2 and FePO 4 crystals could be removed by the acclimated bacteria. ► FeS and sulfur in the passive film would be removed by the sulfur-oxidizing bacteria. ► Develop a cost-effective bio-regeneration technology for the passive fillers. - Abstract: As past studies presented, there is obvious defect that the fillers in the Fe 0 /GAC reactor begin to be passive after about 60 d continuous running, although the complicated, toxic and refractory ABS resin wastewater can be pretreated efficiently by the Fe 0 /GAC reactor. During the process, the Fe 3 (PO 4 ) 2 and FePO 4 crystals with high density in the passive film are formed by the reaction between PO 4 3− and Fe 2+ /Fe 3+ . Meanwhile, they obstruct the formation of macroscopic galvanic cells between Fe 0 and GAC, which will lower the wastewater treatment efficiency of Fe 0 /GAC reactor. In this study, in order to remove the Fe 3 (PO 4 ) 2 and FePO 4 crystals on the surface of the passive fillers, the bacteria were acclimated in the passive Fe 0 /GAC reactor. According to the results, it can be concluded that the Fe 3 (PO 4 ) 2 and FePO 4 crystals with high density in the passive film could be decomposed or removed by the joint action between the typical propionic acid type fermentation bacteria and sulfate reducing bacteria (SRB), whereas the PO 4 3− ions from the decomposition of the Fe 3 (PO 4 ) 2 and FePO 4 crystals were released into aqueous solution which would be discharged from the passive Fe 0 /GAC reactor. Furthermore, the remained FeS and sulfur (S) in the passive film also can be decomposed or removed easily by the oxidation of the sulfur-oxidizing bacteria. This study provides some theoretical references for the further study of a cost-effective bio-regeneration technology to solve the passive problems of the fillers in the zero-valent iron (ZVI) or Fe 0 /GAC reactor.

  13. Quantized Passive Dynamic Output Feedback Control with Actuator Failure

    Directory of Open Access Journals (Sweden)

    Zu-Xin Li

    2016-01-01

    Full Text Available This paper investigates the problem of passive dynamic output feedback control for fuzzy discrete nonlinear systems with quantization and actuator failures, where the measurement output of the system is quantized by a logarithmic quantizer before being transferred to the fuzzy controller. By employing the fuzzy-basis-dependent Lyapunov function, sufficient condition is established to guarantee the closed-loop system to be mean-square stable and the prescribed passive performance. Based on the sufficient condition, the fuzzy dynamic output feedback controller is proposed for maintaining acceptable performance levels in the case of actuator failures and quantization effects. Finally, a numerical example is given to show the usefulness of the proposed method.

  14. Low temperature surface passivation of crystalline silicon and its application to interdigitated back contact silicon heterojunction (ibc-shj) solar cell

    Science.gov (United States)

    Shu, Zhan

    With the absence of shading loss together with improved quality of surface passivation introduced by low temperature processed amorphous silicon crystalline silicon (a-Si:H/c-Si) heterojunction, the interdigitated back contact silicon heterojunction (IBC-SHJ) solar cell exhibits a potential for higher conversion efficiency and lower cost than a traditional front contact diffused junction solar cell. In such solar cells, the front surface passivation is of great importance to achieve both high open-circuit voltage (Voc) and short-circuit current (Jsc). Therefore, the motivation of this work is to develop a low temperature processed structure for the front surface passivation of IBC-SHJ solar cells, which must have an excellent and stable passivation quality as well as a good anti-reflection property. Four different thin film materials/structures were studied and evaluated for this purpose, namely: amorphous silicon nitride (a-SiNx:H), thick amorphous silicon film (a-Si:H), amorphous silicon/silicon nitride/silicon carbide (a-Si:H/a-SiN x:H/a-SiC:H) stack structure with an ultra-thin a-Si:H layer, and zinc sulfide (ZnS). It was demonstrated that the a-Si:H/a-SiNx:H/a-SiC:H stack surpasses other candidates due to both of its excellent surface passivation quality (SRVSi surface is found to be resulted from (i) field effect passivation due to the positive fixed charge (Q fix~1x1011 cm-2 with 5 nm a-Si:H layer) in a-SiNx:H as measured from capacitance-voltage technique, and (ii) reduced defect state density (mid-gap Dit~4x1010 cm-2eV-1) at a-Si:H/c-Si interface provided by a 5 nm thick a-Si:H layer, as characterized by conductance-frequency measurements. Paralleled with the experimental studies, a computer program was developed in this work based on the extended Shockley-Read-Hall (SRH) model of surface recombination. With the help of this program, the experimental injection level dependent SRV curves of the stack passivated c-Si samples were successfully reproduced and

  15. Role of bond adaptability in the passivation of colloidal quantum dot solids.

    Science.gov (United States)

    Thon, Susanna M; Ip, Alexander H; Voznyy, Oleksandr; Levina, Larissa; Kemp, Kyle W; Carey, Graham H; Masala, Silvia; Sargent, Edward H

    2013-09-24

    Colloidal quantum dot (CQD) solids are attractive materials for photovoltaic devices due to their low-cost solution-phase processing, high absorption cross sections, and their band gap tunability via the quantum size effect. Recent advances in CQD solar cell performance have relied on new surface passivation strategies. Specifically, cadmium cation passivation of surface chalcogen sites in PbS CQDs has been shown to contribute to lowered trap state densities and improved photovoltaic performance. Here we deploy a generalized solution-phase passivation strategy as a means to improving CQD surface management. We connect the effects of the choice of metal cation on solution-phase surface passivation, film-phase trap density of states, minority carrier mobility, and photovoltaic power conversion efficiency. We show that trap passivation and midgap density of states determine photovoltaic device performance and are strongly influenced by the choice of metal cation. Supported by density functional theory simulations, we propose a model for the role of cations, a picture wherein metals offering the shallowest electron affinities and the greatest adaptability in surface bonding configurations eliminate both deep and shallow traps effectively even in submonolayer amounts. This work illustrates the importance of materials choice in designing a flexible passivation strategy for optimum CQD device performance.

  16. Role of bond adaptability in the passivation of colloidal quantum dot solids

    KAUST Repository

    Thon, Susanna

    2013-09-24

    Colloidal quantum dot (CQD) solids are attractive materials for photovoltaic devices due to their low-cost solution-phase processing, high absorption cross sections, and their band gap tunability via the quantum size effect. Recent advances in CQD solar cell performance have relied on new surface passivation strategies. Specifically, cadmium cation passivation of surface chalcogen sites in PbS CQDs has been shown to contribute to lowered trap state densities and improved photovoltaic performance. Here we deploy a generalized solution-phase passivation strategy as a means to improving CQD surface management. We connect the effects of the choice of metal cation on solution-phase surface passivation, film-phase trap density of states, minority carrier mobility, and photovoltaic power conversion efficiency. We show that trap passivation and midgap density of states determine photovoltaic device performance and are strongly influenced by the choice of metal cation. Supported by density functional theory simulations, we propose a model for the role of cations, a picture wherein metals offering the shallowest electron affinities and the greatest adaptability in surface bonding configurations eliminate both deep and shallow traps effectively even in submonolayer amounts. This work illustrates the importance of materials choice in designing a flexible passivation strategy for optimum CQD device performance. © 2013 American Chemical Society.

  17. Three-dimensional graphene based passively mode-locked fiber laser.

    Science.gov (United States)

    Yang, Y; Loeblein, M; Tsang, S H; Chow, K K; Teo, E H T

    2014-12-15

    We present an all-fiber passively mode-locked fiber laser incorporating three-dimensional (3D) graphene as a saturable absorber (SA) for the first time to the best of our knowledge. The 3D graphene is synthesized by template-directed chemical vapor deposition (CVD). The SA is then simply formed by sandwiching the freestanding 3D graphene between two conventional fiber connectors without any deposition process. It is demonstrated that such 3D graphene based SA is capable to produce high quality mode-locked pulses. A passively mode-locked fiber laser is constructed and stable output pulses with a fundamental repetition rate of ~9.9 MHz and a pulse width of ~1 ps are generated from the fiber laser. The average output power of the laser is ~10.5 mW while the output pulse is operating at single pulse region. The results imply that the freestanding 3D graphene can be applied as an effective saturable absorption material for passively mode-locked lasers.

  18. Advanced engineering materials and thick film hybrid circuit technology

    International Nuclear Information System (INIS)

    Faisal, S.; Aslam, M.; Mehmood, K.

    2006-01-01

    The use of Thick Film hybrid Technology to manufacture electronic circuits and passive components continues to grow at rapid rate. Thick Film Technology can be viewed as a means of packaging active devices, spanning the gap between monolithic integrated circuit chips and printed circuit boards with attached active and passive components. An advancement in engineering materials has moved from a formulating art to a base of greater understanding of relationship of material chemistry to the details of electrical and mechanical performance. This amazing advancement in the field of engineering materials has brought us up to a magnificent standard that we are able to manufacture small size, low cost and sophisticated electronic circuits of Military, Satellite systems, Robotics, Medical and Telecommunications. (author)

  19. Molecular dynamics study of solid-liquid heat transfer and passive liquid flow

    Science.gov (United States)

    Yesudasan Daisy, Sumith

    High heat flux removal is a challenging problem in boilers, electronics cooling, concentrated photovoltaic and other power conversion devices. Heat transfer by phase change is one of the most efficient mechanisms for removing heat from a solid surface. Futuristic electronic devices are expected to generate more than 1000 W/cm2 of heat. Despite the advancements in microscale and nanoscale manufacturing, the maximum passive heat flux removal has been 300 W/cm2 in pool boiling. Such limitations can be overcome by developing nanoscale thin-film evaporation based devices, which however require a better understanding of surface interactions and liquid vapor phase change process. Evaporation based passive flow is an inspiration from the transpiration process that happens in trees. If we can mimic this process and develop heat removal devices, then we can develop efficient cooling devices. The existing passive flow based cooling devices still needs improvement to meet the future demands. To improve the efficiency and capacity of these devices, we need to explore and quantify the passive flow happening at nanoscales. Experimental techniques have not advanced enough to study these fundamental phenomena at the nanoscale, an alternative method is to perform theoretical study at nanoscales. Molecular dynamics (MD) simulation is a widely accepted powerful tool for studying a range of fundamental and engineering problems. MD simulations can be utilized to study the passive flow mechanism and heat transfer due to it. To study passive flow using MD, apart from the conventional methods available in MD, we need to have methods to simulate the heat transfer between solid and liquid, local pressure, surface tension, density, temperature calculation methods, realistic boundary conditions, etc. Heat transfer between solid and fluids has been a challenging area in MD simulations, and has only been minimally explored (especially for a practical fluid like water). Conventionally, an

  20. Passivity of alloy C-22 in NaCl solutions

    International Nuclear Information System (INIS)

    Rodriguez, Martin A.; Carranza, Ricardo M.

    2004-01-01

    Alloy C-22 has been proposed as the corrosion resistant barrier of high-level waste nuclear containers. This alloy must be resistant to corrosion in multi-ionic solutions for a period of time as long as 10,000 years. The aim of the present work was to study the corrosion behavior of alloy C-22 in NaCl solutions. General and crevice corrosion were studied by means of electrochemical techniques. Open circuit potential was measured over the time, electrochemical impedance spectroscopy (EIS) measurements were carried out at open circuit and passivity potentials, as well as cyclic potentiodynamic polarization curves. Corrosion rates obtained by EIS measurements were acceptable for a waste nuclear container ( P ) values increased with open circuit potential and polarization time at constant potential. This was attributed to an increase in oxide film thickness and its aging respectively. The passive oxide form on alloy C-22 at the studied conditions presented a n-type semiconductor behavior in the passive potential range. Repassivation potential values (E R1 ) were determined for alloy C-22 at the studied conditions using PCA probes. (author) [es

  1. Passive mode-locking dynamics in a 3.1GHz quantum dot laser diode operating around 1.5μm

    NARCIS (Netherlands)

    Tahvili, M.S.; Heck, M.J.R.; Nötzel, R.; Smit, M.K.; Bente, E.A.J.M.

    2010-01-01

    We report on passive mode-locking in a 3.1GHz InAs/InP(100) quantum dot laser diode operating around 1.5µm. The range of stable passive mode-locking, detailed measurements of the linewidth of the optical modes and the phase modulation in output pulses are presented.

  2. Synergistic Effect of Nitrogen and Molybdenum on Localized Corrosion of Stainless Steels

    International Nuclear Information System (INIS)

    Kim, Y. S.

    2010-01-01

    According to the bipolar model, ion selectivity of some species in the passive film is important factor to control the passivation. An increase of cation selectivity of outer layer of the passive film can stabilize the film and improves the corrosion resistance. Therefore, the formation and roles of ionic species in the passive film should be elucidated. In this work, two types of solution (hydrochloric or sulfuric acid) were used to test high N and Mo-bearing stainless steels. The objective of this work was to investigate the formation of oxyanions in the passive film and the roles of oxyanions in passivation of stainless steel. Nitrogen exists as atomic nitrogen, nitric oxide, nitro-oxyanions (NO x - ), and N-H species, not nitride in the passive film. Because of its high mobility, the enriched atomic nitrogen can act as a reservoir. The formation of N-H species buffers the film pH and facilitates the formation of oxyanions in the film. NO x - species improve the cation selectivity of the film, increasing the oxide content and film density. NO x - acts similar to a strong inhibitor both in the passive film and at active sites. This facilitates the formation of chromium oxide. Also, NO x - can make more molybdate and nitric oxide by reacting with Mo. The role of Mo addition on the passivation characteristics of stainless steel may differ with the test environment. Mo exists as metallic molybdenum, Molybdenum oxide, and molybdate and the latter facilitates the oxide formation. When nitrogen and molybdenum coexist in stainless steel, corrosion resistance in chloride solutions is drastically increased. This synergistic effect of N and Mo in a chloride solution is mainly due to the formation of nitro-oxyanions and molybdate ion. Oxyanions can be formed by a 'solid state reaction' in the passive film, resulting in the formation of more molybdate and nitric oxide. These oxyanions improve the cation selectivity of the outer layer and from more oxide and increase the

  3. Investigation of moisture stability and PL characteristics of terpineol-passivated organic–inorganic hybrid perovskite

    Directory of Open Access Journals (Sweden)

    Xin Guo

    2016-09-01

    Full Text Available Abstract This work presents a novel method for preparing perovskite films using a simple processing technique. Perovskite paste was prepared by dispersing an equimolar mix of PbI2 and methyl ammonium iodide powders into terpineol with stirring. From these precursors, perovskite films were fabricated using doctor blading and drying for 24 h at room temperature. The prepared films were then placed into relative humidity (RH levels of 30, 50, and 70 % to test the moisture stability. The crystal structure, phases, and morphology were investigated with XRD and SEM/EDX. These samples exhibited good stability against long time exposure to moisture for 70 days. The XRD results showed that samples stored at RH 70 % contained only a small amount of hydrate compound after 70 days storage, while in the sample stored at RH 50 %, the formation of PbI2 was observed. The sample at RH 30 % manifested almost no change when stored for the same storage period. We attribute the enhanced moisture stability, compared with the spin-coated samples, to a passivated surface of the perovskite film by terpineol which exhibits a hydrophobic moiety. Time-resolved photoluminescence measurements show that the passivation of surface defect states by the formation of either PbI2 or hydrated compound leads to prolonged charge carrier recombination times. Graphical Abstract

  4. Microstructures using RF sputtered PSG film as a sacrificial layer in ...

    Indian Academy of Sciences (India)

    These films are also used for surface passivation and improving the metal layer step coverage in device fabrication (Sze 1988; Takamatsu et al. 1984). In MEMS, PSG films have been reported to be one of the most suitable materials for sacrificial layer because of its high etch rate. Atmospheric Pressure Chemical Vapor ...

  5. Graphene-PVA saturable absorber for generation of a wavelength-tunable passively Q-switched thulium-doped fiber laser in 2.0 µm

    Science.gov (United States)

    Ahmad, H.; Samion, M. Z.; Sharbirin, A. S.; Norizan, S. F.; Aidit, S. N.; Ismail, M. F.

    2018-05-01

    Graphene, a 2D material, has been used for generation of pulse lasers due to the presence of its various fascinating optical properties compared to other materials. Hence in this paper, we report the first demonstration of a thulium doped fiber laser with a wavelength-tunable, passive Q-switched output using a graphene-polyvinyl-alcohol composite film for operation in the 2.0 µm region. The proposed laser has a wavelength-tunable output spanning from 1932.0 nm to 1946.0 nm, giving a total tuning range of 14.0 nm. The generated pulse has a maximum repetition rate and average output power of 36.29 kHz and 0.394 mW at the maximum pump power of 130.87 mW, as well as a pulse width of 6.8 µs at this pump power. The generated pulses have a stable output, having a signal-to-noise ratio of 31.75 dB, and the laser output is stable when tested over a period of 60 min. The proposed laser would have multiple applications for operation near the 2.0 micron region, especially for bio-medical applications and range-finding.

  6. Effects of Various Passivation Layers on Electrical Properties of Multilayer MoS₂ Transistors.

    Science.gov (United States)

    Ma, Jiyeon; Yoo, Geonwook

    2018-09-01

    So far many of research on transition metal dichalcogenides (TMDCs) are based on a bottomgate device structure due to difficulty with depositing a dielectric film on top of TMDs channel layer. In this work, we study different effects of various passivation layers on electrical properties of multilayer MoS2 transistors: spin-coated CYTOP, SU-8, and thermal evaporated MoOX. The SU-8 passivation layer alters device performance least significantly, and MoOX induces positive threshold voltage shift of ~8.0 V due to charge depletion at the interface, and the device with CYTOP layer exhibits decreased field-effect mobility by ~50% due to electric dipole field effect of C-F bonds in the end groups. Our results imply that electrical properties of the multilayer MoS2 transistors can be modulated using a passivation layer, and therefore a proper passivation layer should be considered for MoS2 device structures.

  7. Happily Socialist Ever After? East German Children's Films and the Education of a Fairy Tale Land

    Science.gov (United States)

    Blessing, Benita

    2010-01-01

    Cinemas are an important site of learning for young people. Far from being a passive means of instruction, films aimed at children and young people provide an opportunity for a nation's youth to interact with films' messages both in and outside the cinema. From deciding which films to attend, to discussing the film's ideas with their peers,…

  8. A deep-level transient spectroscopy study of gamma-ray irradiation on the passivation properties of silicon nitride layer on silicon

    Science.gov (United States)

    Dong, Peng; Yu, Xuegong; Ma, Yao; Xie, Meng; Li, Yun; Huang, Chunlai; Li, Mo; Dai, Gang; Zhang, Jian

    2017-08-01

    Plasma-enhanced chemical vapor deposited silicon nitride (SiNx) films are extensively used as passivation material in the solar cell industry. Such SiNx passivation layers are the most sensitive part to gamma-ray irradiation in solar cells. In this work, deep-level transient spectroscopy has been applied to analyse the influence of gamma-ray irradiation on the passivation properties of SiNx layer on silicon. It is shown that the effective carrier lifetime decreases with the irradiation dose. At the same time, the interface state density is significantly increased after irradiation, and its energy distribution is broadened and shifts deeper with respect to the conduction band edge, which makes the interface states becoming more efficient recombination centers for carriers. Besides, C-V characteristics show a progressive negative shift with increasing dose, indicating the generation of effective positive charges in SiNx films. Such positive charges are beneficial for shielding holes from the n-type silicon substrates, i. e. the field-effect passivation. However, based on the reduced carrier lifetime after irradiation, it can be inferred that the irradiation induced interface defects play a dominant role over the trapped positive charges, and therefore lead to the degradation of passivation properties of SiNx on silicon.

  9. Dielectric passivation schemes for high efficiency n-type c-si solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Saynova, D.S.; Romijn, I.G.; Cesar, I.; Lamers, M.W.P.E.; Gutjahr, A. [ECN Solar Energy, P.O. Box 1, NL-1755 ZG Petten (Netherlands); Dingemans, G. [ASM, Kapeldreef 75, B-3001 Leuven (Belgium); Knoops, H.C.M.; Van de Loo, B.W.H.; Kessels, W.M.M. [Eindhoven University of Technology, Department of Appl. Physics, P.O. Box 513, 5600 MB Eindhoven (Netherlands); Siarheyeva, O.; Granneman, E. [Levitech BV, Versterkerstraat 10, 1322AP Almere (Netherlands); Venema, P.R.; Vlooswijk, A.H.G. [Tempress Systems BV, Radeweg 31, 8171 Vaassen (Netherlands); Gautero, L.; Borsa, D.M.

    2013-10-15

    We investigate the impact of different dielectric layers and stacks on the passivation properties of boron doped p{sup ++}-emitters and phosphorous doped n{sup +}-BSFs which are relevant for competitive n-type cell conversion efficiencies. The applied passivation schemes are associated with specific properties at c-Si/dielectric interface and functional mechanisms. In this way we aim to gain a deeper understanding of the passivation mechanism of the differently doped fields within the n-type cells and identify options to further improve the efficiency. The deposition technologies in our study comprise industrial PECVD systems and/or ALD both in industrial and lab scale configurations. In case of p{sup ++}-emitters the best results were achieved by combining field effect and chemical passivation using stacks of low temperature wet chemical oxide and thin ALD-AlOx capped with PECVD-SiNx. The corresponding Implied Voc values were of about (673{+-}2) mV and J{sub 0} of (68{+-}2) fA/cm{sup 2}. For the n{sup +}-BSF passivation the passivation scheme based on SiOx with or without additional AlOx film deposited by a lab scale temporal ALD processes and capped with PECVD-SiNx layer yielded a comparable Implied Voc of (673{+-}2) mV, but then corresponding to J{sub 0} value of (80{+-}15) fA/cm{sup 2}. This passivation scheme is mainly based on the chemical passivation and was also suitable for p{sup ++} surface. This means that we have demonstrated that for n-Pasha cells both the emitter and BSF can be passivated with the same type of passivation that should lead to > 20% cell efficiency. This offers the possibility for transfer this passivation scheme to advanced cell architectures, such as IBC.

  10. Bi-layer SixNy passivation on AlGaN/GaN HEMTs to suppress current collapse and improve breakdown

    International Nuclear Information System (INIS)

    Lee, K B; Green, R T; Houston, P A; Tan, W S; Uren, M J; Wallis, D J; Martin, T

    2010-01-01

    Si x N y deposited at low temperature was found to improve the breakdown voltage of AlGaN/GaN HEMTs at the expense of current collapse due to the presence of a high density of charge trapping states. On the other hand, stoichiometric Si 3 N 4 film deposited at high temperature was effective in mitigating current slump but no improvement in the breakdown voltage was observed. Combining the benefit of both films, a bi-layer stacked passivation has been employed on the HEMTs. Gate lag measurements revealed that the current collapse was mitigated and the breakdown voltage of the devices was found to increase from 120 V to 238 V upon passivation

  11. Unusual Passivation Ability of Superconcentrated Electrolytes toward Hard Carbon Negative Electrodes in Sodium-Ion Batteries.

    Science.gov (United States)

    Takada, Koji; Yamada, Yuki; Watanabe, Eriko; Wang, Jianhui; Sodeyama, Keitaro; Tateyama, Yoshitaka; Hirata, Kazuhisa; Kawase, Takeo; Yamada, Atsuo

    2017-10-04

    The passivation of negative electrodes is key to achieving prolonged charge-discharge cycling with Na-ion batteries. Here, we report the unusual passivation ability of superconcentrated Na-salt electrolytes. For example, a 50 mol % sodium bis(fluorosulfonyl)amide (NaFSA)/succinonitrile (SN) electrolyte enables highly reversible Na + insertion into a hard carbon negative electrode without any electrolyte additive, functional binder, or electrode pretreatment. Importantly, an anion-derived passivation film is formed via preferential reduction of the anion upon charging, which can effectively suppress further electrolyte reduction. As a structural characteristic of the electrolyte, most anions are coordinated to multiple Na + cations at high concentration, which shifts the lowest unoccupied molecular orbitals of the anions downward, resulting in preferential anion reduction. The present work provides a new understanding of the passivation mechanism with respect to the coordination state of the anion.

  12. Field-induced surface passivation of p-type silicon by using AlON films

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, S.N.; Parm, I.O.; Dhungel, S.K.; Jang, K.S.; Jeong, S.W.; Yoo, J.; Hwang, S.H.; Yi, J. [School of Information and Communication Engineering, Sungkyunkwan University, 300 Chunchun dong, Jangan-gu, Suwon-440746 (Korea)

    2008-02-15

    In the present work, we report on the evidence for a high negative charge density in aluminum oxynitride (AlON) coating on silicon. A comparative study was carried out on the composition and electrical properties of AlON and aluminum nitride (AlN). AlON films were deposited on p-type Si (1 0 0) substrate by RF magnetron sputtering using a mixture of argon and oxygen gases at substrate temperature of 300 C. The electrical properties of the AlON, AlN films were studied through capacitance-voltage (C-V) characteristics of metal-insulator-semiconductor (MIS) using the films as insulating layers. The flatband voltage shift V{sub FB} observed for AlON is around 4.5 V, which is high as compared to the AlN thin film. Heat treatment caused the V{sub FB} reduction to 3 V, but still the negative charge density was observed to be very high. In the AlN film, no fixed negative charge was observed at all. The XRD spectrum of AlON shows the major peaks of AlON (2 2 0) and AlN (0 0 2), located at 2{theta} value of 32.96 and 37.8 , respectively. The atomic percentage of Al, N in AlN film was found to be 42.5% and 57.5%, respectively. Atomic percentages of Al, N and O in EDS of AlON film are 20.21%, 27.31% and 52.48%, respectively. (author)

  13. Electrochemical behavior of thin anodic oxide films on Zircaloy-4: Role of the mobile defects

    International Nuclear Information System (INIS)

    Salot, R.; Lefebvre-Joud, F.; Baroux, B.

    1996-01-01

    The first stages of the electrochemical oxidation of Zircaloy-4 are investigated using simple electrochemical tests and modeling the passive film modifications occurring as a result of contact with the electrolyte. Variations in electrode potential (open-circuit conditions) or current density (potentiodynamic scans) can be simply explained by a high field (F ∼ 10 6 V/cm) assisted passive film growth. Under open-circuit conditions, this field does not vary with exposure time (in the 2 h to 48 h range). The minimum electric field for the onset of high-field behavior is also evaluated and found smaller than the theoretical value which can be explained by a variation in the concentration of mobile defects throughout the film. Measurements of the electrode potential decay after a potentiodynamic scan confirm this model, allowing interpretation of the film modification as a combination of two separate phenomena: film growth under a high electric field and point defect annihilation

  14. Surface passivation for tight-binding calculations of covalent solids

    International Nuclear Information System (INIS)

    Bernstein, N

    2007-01-01

    Simulation of a cluster representing a finite portion of a larger covalently bonded system requires the passivation of the cluster surface. We compute the effects of an explicit hybrid orbital passivation (EHOP) on the atomic structure in a model bulk, three-dimensional, narrow gap semiconductor, which is very different from the wide gap, quasi-one-dimensional organic molecules where most passivation schemes have been studied in detail. The EHOP approach is directly applicable to minimal atomic orbital basis methods such as tight-binding. Each broken bond is passivated by a hybrid created from an explicitly expressed linear combination of basis orbitals, chosen to represent the contribution of the missing neighbour, e.g. a sp 3 hybrid for a single bond. The method is tested by computing the forces on atoms near a point defect as a function of cluster geometry. We show that, compared to alternatives such as pseudo-hydrogen passivation, the force on an atom converges to the correct bulk limit more quickly as a function of cluster radius, and that the force is more stable with respect to perturbations in the position of the cluster centre. The EHOP method also obviates the need for parameterizing the interactions between the system atoms and the passivating atoms. The method is useful for cluster calculations of non-periodic defects in large systems and for hybrid schemes that simulate large systems by treating finite regions with a quantum-mechanical model, coupled to an interatomic potential description of the rest of the system

  15. A novel permanent maglev rotary LVAD with passive magnetic bearings.

    Science.gov (United States)

    Qian, K X; Yuan, H Y; Zeng, P; Ru, W M

    2005-01-01

    It has been widely acknowledged that permanent maglev cannot achieve stability; however, the authors have discovered that stable permanent maglev is possible under the effect of a combination of passive magnetic and nonmagnetic forces. In addition, a rotary left ventricular assist device (LVAD) with passive magnetic bearings has been developed. It is a radially driven impeller pump, having a rotor and a stator. The rotor consists of driven magnets and impeller; the motor coil and pump housing form the stator. Two passive magnetic bearings counteract the attractive force between motor coil iron core and rotor magnets; the rotor thereafter can be disaffiliated from the stator and become levitated under the action of passive magnetic and haemodynamic forces. Because of the pressure difference between the outlet and the inlet of the pump, there is a small flow passing through the gap of rotor and stator, and then entering the lower pressure area along the central hole of the rotor. This small flow comes to a full washout of all blood contacting surfaces in the motor. Moreover, a decreased Bernoulli force in the larger gap with faster flow produces a centring force that leads to stable levitation of the rotor. Resultantly, neither mechanical wear nor thrombosis will occur in the pump. The rotor position detection reveals that the precondition of levitation is a high rotating speed (over 3250 rpm) and a high flow rate (over 1 l min(-1)). Haemodynamic tests with porcine blood indicate that the device as a LVAD requires a rotating speed between 3500 and 4000 rpm for producing a blood flow of 4 - 6 l min(-1) against 100 mmHg mean pressure head. The egg-sized device has a weight of 200 g and an O.D. of 40 mm at its largest point.

  16. Thermal-hydraulic modeling needs for passive reactors

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, J.M. [Nuclear Regulatory Commission, Washington, DC (United States)

    1997-07-01

    The U.S. Nuclear Regulatory Commission has received an application for design certification from the Westinghouse Electric Corporation for an Advanced Light Water Reactor design known as the AP600. As part of the design certification process, the USNRC uses its thermal-hydraulic system analysis codes to independently audit the vendor calculations. The focus of this effort has been the small break LOCA transients that rely upon the passive safety features of the design to depressurize the primary system sufficiently so that gravity driven injection can provide a stable source for long term cooling. Of course, large break LOCAs have also been considered, but as the involved phenomena do not appear to be appreciably different from those of current plants, they were not discussed in this paper. Although the SBLOCA scenario does not appear to threaten core coolability - indeed, heatup is not even expected to occur - there have been concerns as to the performance of the passive safety systems. For example, the passive systems drive flows with small heads, consequently requiring more precision in the analysis compared to active systems methods for passive plants as compared to current plants with active systems. For the analysis of SBLOCAs and operating transients, the USNRC uses the RELAP5 thermal-hydraulic system analysis code. To assure the applicability of RELAP5 to the analysis of these transients for the AP600 design, a four year long program of code development and assessment has been undertaken.

  17. Thermal-hydraulic modeling needs for passive reactors

    International Nuclear Information System (INIS)

    Kelly, J.M.

    1997-01-01

    The U.S. Nuclear Regulatory Commission has received an application for design certification from the Westinghouse Electric Corporation for an Advanced Light Water Reactor design known as the AP600. As part of the design certification process, the USNRC uses its thermal-hydraulic system analysis codes to independently audit the vendor calculations. The focus of this effort has been the small break LOCA transients that rely upon the passive safety features of the design to depressurize the primary system sufficiently so that gravity driven injection can provide a stable source for long term cooling. Of course, large break LOCAs have also been considered, but as the involved phenomena do not appear to be appreciably different from those of current plants, they were not discussed in this paper. Although the SBLOCA scenario does not appear to threaten core coolability - indeed, heatup is not even expected to occur - there have been concerns as to the performance of the passive safety systems. For example, the passive systems drive flows with small heads, consequently requiring more precision in the analysis compared to active systems methods for passive plants as compared to current plants with active systems. For the analysis of SBLOCAs and operating transients, the USNRC uses the RELAP5 thermal-hydraulic system analysis code. To assure the applicability of RELAP5 to the analysis of these transients for the AP600 design, a four year long program of code development and assessment has been undertaken

  18. PECVD-ONO: A New Deposited Firing Stable Rear Surface Passivation Layer System for Crystalline Silicon Solar Cells

    Directory of Open Access Journals (Sweden)

    M. Hofmann

    2008-01-01

    Full Text Available A novel plasma-enhanced chemical vapour deposited (PECVD stack layer system consisting of a-SiOx:H, a-SiNx:H, and a-SiOx:H is presented for silicon solar cell rear side passivation. Surface recombination velocities below 60 cm/s (after firing and below 30 cm/s (after forming gas anneal were achieved. Solar cell precursors without front and rear metallisation showed implied open-circuit voltages Voc values extracted from quasi-steady-state photoconductance (QSSPC measurements above 680 mV. Fully finished solar cells with up to 20.0% energy conversion efficiency are presented. A fit of the cell's internal quantum efficiency using software tool PC1D and a comparison to a full-area aluminium-back surface field (Al-BSF and thermal SiO2 is shown. PECVD-ONO was found to be clearly superior to Al-BSF. A separation of recombination at the metallised and the passivated area at the solar cell's rear is presented using the equations of Fischer and Kray. Nuclear reaction analysis (NRA has been used to evaluate the hydrogen depth profile of the passivation layer system at different stages.

  19. Self Passivating W-based Alloys as Plasma Facing Material

    International Nuclear Information System (INIS)

    Koch, F.; Koeppl, S.; Bolt, H.

    2007-01-01

    Full text of publication follows: Tungsten (W) is presently the main candidate material for the plasma-facing protection of future fusion power reactors due to the low sputter erosion under bombardment by energetic D, T and He ions. Thus a W-based protection material may provide a wall erosion lifetime of the order of five years which is a pre-requisite for economic fusion reactor operation. A potential problem with the use of pure W in a fusion reactor is the formation of radioactive and highly volatile WO 3 compounds and their potential release under accidental conditions. A loss-of-coolant event in a He-cooled reactor would lead to a temperature rise to 1100 deg. C after approx. 10 to 30 days due to the nuclear decay heat of the in-vessel components. In such a situation additional accidental intense air ingress into the reactor vessel would lead to the formation of WO 3 and subsequent evaporation of radioactive (WO 3 ) x -clusters. The use of self passivating W alloys either as bulk material or as thick coating on the steel wall may be a passively safe alternative for the plasma-facing protection. The use of this material would eliminate the above mentioned concern related to pure W. To enable the formation of a protective film in oxidizing atmosphere which seals the tungsten surface from further oxidation, different elements have been investigated as corrosion protection additives. Therefore binary and ternary tungsten alloys were synthesised using magnetron sputtering. The oxidation behaviour of films deposited on inert substrates was measured with a thermo-balance set up under synthetic air at temperatures up to 1000 deg. C. Binary alloys of W-Si showed good self passivation properties by forming a SiO 2 film at the surface. The oxidation rate of a compound containing 11 wt.% Si was reduced by a factor of 10 2 compared to pure tungsten between 800 deg. C and 1000 deg. C. Using ternary alloys the oxidation behaviour could be further improved. A compound of W

  20. Inducing half-metallicity with enhanced stability in zigzag graphene nanoribbons via fluorine passivation

    Energy Technology Data Exchange (ETDEWEB)

    Jaiswal, Neeraj K., E-mail: neerajkjaiswal@gmail.com [Discipline of Physics, Indian Institute of Information Technology Design & Manufacturing, Jabalpur 482005 (India); Tyagi, Neha [Department of Applied Physics, Delhi Technological University, Delhi 110042 (India); Kumar, Amit [Discipline of Physics, Indian Institute of Information Technology Design & Manufacturing, Jabalpur 482005 (India); Srivastava, Pankaj [Nanomaterials Research Group, ABV-Indian Institute of Information Technology & Management, Gwalior 474015 (India)

    2017-02-28

    Highlights: • F passivated zigzag graphene nanoribbon (F-ZGNR) are more favorable than pristine ones. • External electric field induces half metallicity in F-ZGNR. • The observed half metallicity is independent of ribbon widths. • Enhanced stability makes F-ZGNR preferable over pristine ribbon. - Abstract: Half metals are the primary ingredients for the realization of novel spintronic devices. In the present work, by employing density functional theory based first-principles calculation, we predict half metallic behavior in fluorine passivated zigzag graphene nanoribbons (F-ZGNR). Four different structures have been investigated viz. one edge F passivated ZGNR (F-ZGNR-1), both edges F passivated ZGNR (F-ZGNR-2), F passivation on alternate sites in first configuration (alt-1) and F passivation on alternate sites in second configuration (alt-2). Interestingly, it is noticed that F passivation is analogous to H passivation (pristine), however, F-ZGNR are reckoned energetically more stable than pristine ones. An spin induced band gap is noticed for all F-ZGNR irrespective of their widths although its magnitude is slightly less than the pristine counterparts. With an external transverse electric field, ribbons undergo semiconducting to half metallic transformation. The observed half metallic character with enhanced stability present F-ZGNR as a better candidate than pristine ZGNR towards the realization of upcoming spintronic devices.

  1. A new structure for comparing surface passivation materials of GaAs solar cells

    Science.gov (United States)

    Desalvo, Gregory C.; Barnett, Allen M.

    1989-01-01

    The surface recombination velocity (S sub rec) for bare GaAs is typically as high as 10 to the 6th power to 10 to the 7th power cm/sec, which dramatically lowers the efficiency of GaAs solar cells. Early attempts to circumvent this problem by making an ultra thin junction (xj less than .1 micron) proved unsuccessful when compared to lowering S sub rec by surface passivation. Present day GaAs solar cells use an GaAlAs window layer to passivate the top surface. The advantages of GaAlAs in surface passivation are its high bandgap energy and lattice matching to GaAs. Although GaAlAs is successful in reducing the surface recombination velocity, it has other inherent problems of chemical instability (Al readily oxidizes) and ohmic contact formation. The search for new, more stable window layer materials requires a means to compare their surface passivation ability. Therefore, a device structure is needed to easily test the performance of different passivating candidates. Such a test device is described.

  2. Improvement in the degradation resistance of silicon nanostructures by the deposition of diamond-like carbon films

    Energy Technology Data Exchange (ETDEWEB)

    Klyui, N. I., E-mail: klyui@isp.kiev.ua; Semenenko, M. A.; Khatsevich, I. M.; Makarov, A. V.; Kabaldin, A. N. [National Academy of Sciences of Ukraine, Lashkarev Institute of Semiconductor Physics (Ukraine); Fomovskii, F. V. [Kremenchug National University (Ukraine); Han, Wei [Jilin University, College of Physics (China)

    2015-08-15

    It is established that the deposition of a diamond-like film onto a structure with silicon nanoclusters in a silicon dioxide matrix yields an increase in the long-wavelength photoluminescence intensity of silicon nanoclusters due to the passivation of active-recombination centers with hydrogen and a shift of the photoluminescence peak to the region of higher photosensitivity of silicon-based solar cells. It is also shown that, due to the deposited diamond-like film, the resistance of such a structure to degradation upon exposure to γ radiation is improved, which is also defined by the effect of the passivation of radiation-induced activerecombination centers by hydrogen that is released from the films during treatment.

  3. Pilot-scale comparison of two hybrid-passive landfill leachate treatment systems operated in a cold climate.

    Science.gov (United States)

    Speer, Sean; Champagne, Pascale; Anderson, Bruce

    2012-01-01

    Hybrid-passive landfill leachate treatment systems employ active pretreatment to remove dissolved inorganic constituents and decrease the oxygen demand of the leachate prior to treatment in a passive system. In a 1-year pilot-scale study, two passive treatment systems - a peat and wood shaving biological trickle filter and a sand and gravel constructed wetland - were installed to treat leachate from the Merrick Landfill in North Bay, Ontario, Canada. Leachate was pretreated in a fixed-film aerobic reactor, which provided reductions in COD (26%), and masses of ammonia (21%), Al (69%), Ca (57%), Fe (73%) and Sr (37%). A comparison of the performance of the hybrid-passive treatment systems indicated different extents of heterotrophic nitrification; the peat and wood shaving filter removed 49% of the ammonia and nitrified 29%, while the constructed wetland removed 99% of the ammonia and nitrified 90%. Hybrid-passive landfill leachate treatment was determined to be feasible in cold climates. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Fabrication of transparent conductive tri-composite film for electrochromic application

    Science.gov (United States)

    Choi, Dahyun; Lee, Minji; Kim, Hyungsub; Chu, Won-shik; Chun, Doo-man; Ahn, Sung-Hoon; Lee, Caroline Sunyong

    2017-12-01

    A transparent conductive electrode (TCE) based on poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) was developed using a dry deposition method for application as an electrochromic (EC) device. To improve its electrical conductivity and stable EC performance, AgNW and TiO2 nanoparticles were included in the TCE film. The resulting TiO2/AgNW/PEDOT:PSS hybrid film showed electrical sheet resistivity of 23 Ω/sq., similar to that of a commercial TCE film. When +2.0 V was applied to the hybrid film, the response current was stable, maintaining a value of 2.0 mA. We found that the hybrid film could be used as an EC device, without using commercial TCE film. Antimony-doped tin oxide on indium-doped tin oxide-glass as an ion-storage layer was combined with the hybrid film, with 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (EMIM-TFSI) injected into the EC device as an ionic liquid electrolyte. The optical transmittance difference between the colored and bleached states was 23% at 630 nm; under applied voltages of -2.0 V and +2.0 V, the coloration efficiency was 127.83 cm2/C. Moreover, cyclic transmittance with switching voltage for 3 h showed stable optical transmittance of 31% at 630 nm. Cyclic voltammetry measurements indicated stable behavior over 50 cycles. Thus, the proposed TCE configuration (TiO2/AgNW/PEDOT:PSS) shows great potential as a substitute for commercial TCEs, the cost of which depends on the availability of rare-earth materials.

  5. Radicals and ions controlling by adjusting the antenna-substrate distance in a-Si:H deposition using a planar ICP for c-Si surface passivation

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, H.P., E-mail: haipzhou@uestc.edu.cn [School of Energy Science and Engineering, University of Electronic Science and Technology of China, 2006 Xiyuan Ave., West High-Tech Zone, Chengdu, Sichuan, 611731 (China); Plasma Sources and Application Center, NIE, and Institute of Advanced Studies, Nanyang Technological University, 637616 (Singapore); Xu, S., E-mail: shuyan.xu@nie.edu.sg [Plasma Sources and Application Center, NIE, and Institute of Advanced Studies, Nanyang Technological University, 637616 (Singapore); Xu, M. [Key Laboratory of Information Materials of Sichuan Province & School of Electrical and Information Engineering, Southwest University for Nationalities, Chengdu, 610041 (China); Xu, L.X.; Wei, D.Y. [Plasma Sources and Application Center, NIE, and Institute of Advanced Studies, Nanyang Technological University, 637616 (Singapore); Xiang, Y. [School of Energy Science and Engineering, University of Electronic Science and Technology of China, 2006 Xiyuan Ave., West High-Tech Zone, Chengdu, Sichuan, 611731 (China); Xiao, S.Q. [Key Laboratory of Advanced Process Control for Light Industry (Ministry of Education), Department of Electronic Engineering, Jiangnan University, Wuxi, 214122 (China)

    2017-02-28

    Highlights: • A planar ICP was used to grow a-Si:H films for c-Si surface passivation. • The direct- and remote-plasma was compared for high-quality c-Si surface passivation. • The remote ICP with controlled plasma species and ion bombardments is preferable for the surface passivation of c-Si. - Abstract: Being a key issue in the research and fabrication of silicon heterojunction (SHJ) solar cells, crystalline silicon (c-Si) surface passivation is theoretically and technologically intricate due to its complicate dependence on plasma characteristics, material properties, and plasma-material interactions. Here amorphous silicon (a-Si:H) grown by a planar inductively coupled plasma (ICP) reactor working under different antenna-substrate distances of d was used for the surface passivation of low-resistivity p-type c-Si. It is found that the microstructures (i.e., the crystallinity, Si-H bonding configuration etc.) and passivation function on c-Si of the deposited a-Si:H were profoundly influenced by the parameter of d, which primarily determines the types of growing precursors of SiH{sub n}/H contributing to the film growth and the interaction between the plasma and growing surface. c-Si surface passivation is analyzed in terms of the d-dependent a-Si:H properties and plasma characteristics. The controlling of radical types and ion bombardment on the growing surface through adjusting parameter d is emphasized.

  6. Dual Electrolytic Plasma Processing for Steel Surface Cleaning and Passivation

    Science.gov (United States)

    Yang, L.; Zhang, P.; Shi, J.; Liang, J.; Tian, W. B.; Zhang, Y. M.; Sun, Z. M.

    2017-10-01

    To remove the rust on rebars and passivate the fresh surfaces, electrodes reversing electrolytic plasma processing (EPP) was proposed and conducted in a 10 wt.% Na2CO3 aqueous solution. The morphology and the composition of the surface were investigated by SEM and XPS. Experimental results show that the rust on the surface was removed effectively by cathode EPP, and a passive film containing Cr2O3 was achieved by the succeeding anode EPP treatment, by a simple operation of reversing the bias. The corrosion resistance was evaluated in a 3.5 wt.% NaCl aqueous solution using an electrochemical workstation. In comparison, the corrosion resistance was improved by the succeeding anode EPP treatment, which is evidenced by a positive shift of the open-circuit potential, an increase in the electrochemical impedance representing the inner layer by 76.8% and the decrease in the corrosion current density by 49.6%. This is an effective and environment-friendly technique to clean and passivate rebars and similar steel materials.

  7. Surface passivation of high purity granular metals: zinc, cadmium, lead

    Directory of Open Access Journals (Sweden)

    Pirozhenko L. A.

    2017-10-01

    Full Text Available For the high purity metals (99.9999%, such as zinc, cadmium, and lead, which are widely used as initial components in growing semiconductor and scintillation crystals (CdTe, CdZnTe, ZnSe, (Cd, Zn, Pb WO4, (Cd, Zn, Pb MoO4 et al., it is very important to ensure reliable protection of the surface from oxidation and adsorption of impurities from the atmosphere. The specific features of surface passivation of high purity cadmium, lead and zinc are not sufficiently studied and require specific methodologies for further studies. The use of organic solutions in the schemes of chemical passivation of the investigated metals avoids hydrolysis of the obtained protective films. The use of organic solvents with pure cation and anion composition as the washing liquid prevents chemisorption of ions present in the conventionally used distilled water. This keeps the original purity of the granular metals. Novel compositions of etchants and etching scheme providing simultaneous polishing and passivation of high purity granular Zn, Cd and Pb are developed. Chemical passivation allows storing metals in the normal atmospheric conditions for more than half a year for Zn and Cd and up to 30 days for Pb without changing the state of the surface. The use of the glycerol-DMF solution in the processes for obtaining Pb granules provides self-passivation of metal surfaces and eliminates the additional chemical processing while maintaining the quality of corrosion protection.

  8. Kinetic enhancement via passive deposition of carbon-based nanomaterials in vanadium redox flow batteries

    Science.gov (United States)

    Aaron, Doug; Yeom, Sinchul; Kihm, Kenneth D.; Ashraf Gandomi, Yasser; Ertugrul, Tugrul; Mench, Matthew M.

    2017-10-01

    Addition of carbon-based nanomaterials to operating flow batteries accomplishes vanadium redox flow battery performance improvement. Initial efforts focus on addition of both pristine graphene and vacuum-filtered reduced graphene oxide (rGO) film on carbon paper supporting electrodes. While the former is unable to withstand convective flow through the porous electrode, the latter shows measurable kinetic improvement, particularly when laid on the polymer electrolyte membrane (PEM) side of the electrode; in contrast to the kinetic performance gain, a deleterious impact on mass transport is observed. Based on this tradeoff, further improvement is realized using perforated rGO films placed on the PEM side of the electrodes. Poor mass transport in the dense rGO film prompts identification of a more uniform, passive deposition method. A suspension of rGO flakes or Vulcan carbon black (XC-72R), both boasting two orders-of-magnitude greater specific surface area than that of common carbon electrodes, is added to the electrolyte reservoirs and allowed to passively deposit on the carbon paper or carbon felt supporting electrodes. For common carbon felt electrodes, addition of rGO flakes or XC-72R enables a tripling of current density at the same 80% voltage efficiency.

  9. Role of LiNO3 in rechargeable lithium/sulfur battery

    International Nuclear Information System (INIS)

    Zhang, Sheng S.

    2012-01-01

    Highlights: ► Effect of LiNO 3 on the Li anode and cathode of Li/S battery is studied, respectively. ► LiNO 3 participates in the formation of a stable passivation film on the Li anode surface. ► LiNO 3 may be reduced irreversibly on the cathode, affecting Li/S battery performance. ► Discharge mechanism of Li/S battery is explained from the viewpoint of phase transition. - Abstract: In this work we study the effect of LiNO 3 on the Li anode and sulfur cathode, respectively, of Li/S battery by using a Li/Li symmetric cell and a liquid Li/Li 2 S 9 cell. On the Li anode, LiNO 3 participates in the formation of a stable passivation film, and the resulting passivation film grows infinitely with the consumption of LiNO 3 . The passivation film formed with LiNO 3 is known to effectively suppress the redox shuttle of the dissolved lithium polysulfides on Li anode. On the cathode, LiNO 3 undergoes a large and irreversible reduction starting at 1.6 V in the first discharge, and the irreversible reduction disappears in the subsequent cycles. Moreover, the insoluble reduction products of LiNO 3 on the cathode adversely affect the redox reversibility of sulfur cathode. These results indicate that both the Li anode and sulfur cathode consume LiNO 3 , and that the best benefit of LiNO 3 to Li/S battery occurs at the potentials higher than 1.6 V. By limiting the irreversible reduction of LiNO 3 on the cathode, we have shown that the Li/S cell with a 0.2 m LiNO 3 as the co-salt can provide a stable capacity of ∼500 mAh g −1 .

  10. Electrical characterization of MIS devices using PECVD SiN{sub x}:H films for application of silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Jin-Su; Cho, Jun-Sik; Park, Joo-Hyung; Ahn, Seung-Kyu; Shin, Kee-Shik; Yoon, Kyung-Hoon [Korea Institute of Energy Research, Daejeon (Korea, Republic of); Yi, Jun-Sin [Sungkyunkwan University, Suwon (Korea, Republic of)

    2012-07-15

    The surface passivation of crystalline silicon solar cells using plasma enhanced chemical vapor deposition (PECVD), hydrogenated, silicon-nitride (SiN{sub x}:H) thin films has become significant due to a low-temperature, low-cost and very effective defect passivation process. Also, a good quality antireflection coating can be formed. In this work, SiN{sub x}:H thin films were deposited by varying the gas ratio R (=NH{sub 3}/SiH{sub 4}+NH{sub 3}) and were annealed by rapid thermal processing (RTP). Metal-insulator- semiconductor (MIS) devices were fabricated using SiN{sub x}:H thin films as insulator layers and they were analyzed in the temperature range of 100 - 400 K by using capacitance-voltage (C-V) and current-voltage (I-V) measurements. The annealed SiN{sub x}:H thin films were evaluated by using the electrical properties at different temperature to determine the effect of surface passivation. We achieved an energy conversion efficiency of 18.1% under one-sun standard testing conditions for large-area (156 mm x 156 mm) crystalline-silicon solar cells.

  11. Defects generation by hydrogen passivation of polycrystalline silicon thin films

    Czech Academy of Sciences Publication Activity Database

    Honda, Shinya; Mates, Tomáš; Ledinský, Martin; Fejfar, Antonín; Kočka, Jan; Yamazaki, T.; Uraoka, Y.; Fuyuki, T.; Boldyryeva, Hanna; Macková, Anna; Peřina, Vratislav

    2006-01-01

    Roč. 80, - (2006), s. 653-657 ISSN 0038-092X R&D Projects: GA MŽP(CZ) SM/300/1/03; GA MŽP(CZ) SN/3/172/05; GA AV ČR IAA1010413; GA ČR(CZ) GD202/05/H003; GA AV ČR IAA1010316 Institutional research plan: CEZ:AV0Z10100521; CEZ:AV0Z10480505 Keywords : hydrogen passivation * ERDA * photoluminescence * Raman spectroscopy * Si-H 2 bonding * H 2 molecules * grain size. Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.431, year: 2006

  12. Ab-initio modeling of oxygen on the surface passivation of 3C-SiC nanostructures

    International Nuclear Information System (INIS)

    Cuevas, J.L.; Trejo, A.; Calvino, M.; Carvajal, E.; Cruz-Irisson, M.

    2012-01-01

    In this work the effect of OH on the electronic states of H-passivated 3C-SiC nanostructures, was studied by means of Density Functional Theory. We compare the electronic band structure for a [1 1 1]-oriented nanowire with total H, OH passivation and a combination of both. Also the electronic states of a porous silicon carbide case (PSiC) a C-rich pore surface in which the dangling bonds on the surface are saturated with H and OH was studied. The calculations show that the surface replacement of H with OH radicals is always energetically favorable and more stable. In all cases the OH passivation produced a similar effect than the H passivation, with electronic band gap of lower energy value than the H-terminated phase. When the OH groups are attached to C atoms, the band gap feature is changed from direct to indirect. The results indicate the possibility of band gap engineering on SiC nanostructures through the surface passivation species.

  13. Improving the electrical properties of lanthanum silicate films on ge metal oxide semiconductor capacitors by adopting interfacial barrier and capping layers.

    Science.gov (United States)

    Choi, Yu Jin; Lim, Hajin; Lee, Suhyeong; Suh, Sungin; Kim, Joon Rae; Jung, Hyung-Suk; Park, Sanghyun; Lee, Jong Ho; Kim, Seong Gyeong; Hwang, Cheol Seong; Kim, HyeongJoon

    2014-05-28

    The electrical properties of La-silicate films grown by atomic layer deposition (ALD) on Ge substrates with different film configurations, such as various Si concentrations, Al2O3 interfacial passivation layers, and SiO2 capping layers, were examined. La-silicate thin films were deposited using alternating injections of the La[N{Si(CH3)3}2]3 precursor with O3 as the La and O precursors, respectively, at a substrate temperature of 310 °C. The Si concentration in the La-silicate films was further controlled by adding ALD cycles of SiO2. For comparison, La2O3 films were also grown using [La((i)PrCp)3] and O3 as the La precursor and oxygen source, respectively, at the identical substrate temperature. The capacitance-voltage (C-V) hysteresis decreased with an increasing Si concentration in the La-silicate films, although the films showed a slight increase in the capacitance equivalent oxide thickness. The adoption of Al2O3 at the interface as a passivation layer resulted in lower C-V hysteresis and a low leakage current density. The C-V hysteresis voltages of the La-silicate films with Al2O3 passivation and SiO2 capping layers was significantly decreased to ∼0.1 V, whereas the single layer La-silicate film showed a hysteresis voltage as large as ∼1.0 V.

  14. Teaching Geography Using Films: A Proposal

    Science.gov (United States)

    di Palma, Maria Teresa

    2009-01-01

    Films are often used in schools to illustrate geography, but doing so may favor mainly passive learning. An experiment with twenty-eight pupils aged thirteen years (a whole class) had the aim of using cinema to promote active geographical learning. First, it was ascertained what the dominant geographical stereotypes were among the pupils and the…

  15. Rapid Thermal Annealing and Hydrogen Passivation of Polycrystalline Silicon Thin-Film Solar Cells on Low-Temperature Glass

    Directory of Open Access Journals (Sweden)

    Mason L. Terry

    2007-01-01

    Full Text Available The changes in open-circuit voltage (Voc, short-circuit current density (Jsc, and internal quantum efficiency (IQE of aLuminum induced crystallization, ion-assisted deposition (ALICIA polycrystalline silicon thin-film solar cells on low-temperature glass substrates due to rapid thermal anneal (RTA treatment and subsequent remote microwave hydrogen plasma passivation (hydrogenation are examined. Voc improvements from 130 mV to 430 mV, Jsc improvements from 1.2 mA/cm2 to 11.3 mA/cm2, and peak IQE improvements from 16% to > 70% are achieved. A 1-second RTA plateau at 1000°C followed by hydrogenation increases the Jsc by a factor of 5.5. Secondary ion mass spectroscopy measurements are used to determine the concentration profiles of dopants, impurities, and hydrogen. Computer modeling based on simulations of the measured IQE data reveals that the minority carrier lifetime in the absorber region increases by 3 orders of magnitude to about 1 nanosecond (corresponding to a diffusion length of at least 1 μm due to RTA and subsequent hydrogenation. The evaluation of the changes in the quantum efficiency and Voc due to RTA and hydrogenation with computer modeling significantly improves the understanding of the limiting factors to cell performance.

  16. Nitrogen grain-boundary passivation of In-doped ZnO transparent conducting oxide

    Science.gov (United States)

    Ali, D.; Butt, M. Z.; Coughlan, C.; Caffrey, D.; Shvets, I. V.; Fleischer, K.

    2018-04-01

    We have investigated the properties and conduction limitations of spray pyrolysis grown, low-cost transparent conducting oxide ZnO thin films doped with indium. We analyze the optical, electrical, and crystallographic properties as functions of In content with a specific focus on postgrowth heat treatment of these thin films at 320 ∘C in an inert, nitrogen atmosphere, which improves the films electrical properties considerably. The effect was found to be dominated by nitrogen-induced grain-boundary passivation, identified by a combined study using i n situ resistance measurement upon annealing, x-ray photoelectron spectroscopy, photoluminescence, and x-ray diffraction studies. We also highlight the chemical mechanism of morphologic and crystallographic changes found in films with high indium content. By optimizing growth conditions according to these findings, ZnO:In with a resistivity as low as 2 ×10 -3Ω cm , high optical quality (T ≈90 % ), and sheet resistance of 32 Ω /□ has been obtained without any need for postgrowth treatments.

  17. Overcoming the Instability of Nanoparticle-Based Catalyst Films in Alkaline Electrolyzers by using Self-Assembling and Self-Healing Films

    NARCIS (Netherlands)

    Barwe, Stefan; Masa, Justus; Andronescu, Corina; Mei, Bastian; Schuhmann, Wolfgang; Ventosa, Edgar

    2017-01-01

    Engineering stable electrodes using highly active catalyst nanopowders for electrochemical water splitting remains a challenge. We report an innovative and general approach for attaining highly stable catalyst films with self-healing capability based on the in situ self-assembly of catalyst

  18. A review of ionic liquid surface film formation on Mg and its alloys for improved corrosion performance

    International Nuclear Information System (INIS)

    Huang, Peipei; Latham, Julie-Anne; MacFarlane, Douglas R.; Howlett, Patrick C.; Forsyth, Maria

    2013-01-01

    Magnesium and its alloys are prone to corrosion upon exposure to atmosphere thus are usually protected by using a pretreatment before being employed. The use of ionic liquids (ILs) has emerged as a novel chemical in corrosion protection of reactive metals such as lithium and magnesium. This paper reviews the use of ILs in the corrosion protection of magnesium and aluminium with respect to a range of IL chemistries. Emphasis has also been placed on characterisation of the passivating films using various techniques, as well as proposed mechanisms for film formation. This review highlights that there is still much research needed to understand how to generate robust passivating films on reactive metal surfaces in the presence of ILs

  19. High-Tc film development for electronic applications

    International Nuclear Information System (INIS)

    Talvacchio, J.; Wagner, G.R.

    1990-01-01

    In this paper, the authors describe the requirements and status of high-T c superconductor (HTS) films for the development of electronic applications with an emphasis on passive microwave devices. One of the most general requirements, a low rf Surface resistance relative to Cu, has been achieved in films of several different HTS compounds. However the best films, made of YBa 2 Cu 3 O 7 (YBCO) by any one of several techniques, have in common a residual surface resistance that is much greater than predicted by conventional superconductivity theory. Improvement in films is also limited by the current size and selection of single-crystal substrate materials. Other issues that must be resolved to develop a full integrated circuit technology for HTS are substrate heating during film deposition, deposited epitaxial insulators, and determination of which interfaces in a multilevel circuit must be formed in situ

  20. A Brillouin scattering study of the effect of chemical passivation on the elastic properties of porous silicon

    Science.gov (United States)

    Fan, H. J.; Kuok, M. H.; Ng, S. C.; Boukherroub, R.; Lockwood, D. J.

    2002-07-01

    Brillouin scattering has been performed to probe acoustic waves in porous silicon films that have been chemically modified with either 1-decene, decyl aldehyde, undecylenic acid, or ethyl undecylenate. The shift in the frequencies of acoustic modes in the passivated porous silicon samples, relative to those in freshly prepared porous silicon, is different for different chemical modifiers. The magnitude of the frequency shift is qualitatively correlated with the change, caused by the passivation, in the average densities and elastic constants of the samples.

  1. Passivation behavior of AB{sub 5}-type hydrogen storage alloys for battery electrode application

    Energy Technology Data Exchange (ETDEWEB)

    Meli, F. [Fribourg Univ. (Switzerland). Inst. de Physique; Sakai, T. [Fribourg Univ. (Switzerland). Inst. de Physique; Zuettel, A. [Fribourg Univ. (Switzerland). Inst. de Physique; Schlapbach, L. [Fribourg Univ. (Switzerland). Inst. de Physique

    1995-04-15

    In many applications, AB{sub 5} type hydrogen storage alloys show passivation behavior, i.e. when fully discharged, metal hydride electrodes show (especially at higher temperatures) a decrease in activity and therefore a decrease in capacity at normal discharge currents for ensuing cycles. Passivation may continue to the point where activity becomes so low that the capacity is no longer accessible. Electrochemical measurements were taken of two different AB{sub 5}-type alloys, one with manganese and one without manganese (LaNi{sub 3.4}Co{sub 1.2}Al{sub 0.4} and LaNi{sub 3.4}Co{sub 1.2}Al{sub 0.3}Mn{sub 0.1}). Both alloys showed passivation behavior after remaining in the discharged state. The alloy with manganese showed a stronger tendency to passivation which is in contradiction with earlier observations. Photoelectron spectroscopic analysis together with sputter depth profiling was used to investigate the surface composition of samples which had undergone different surface pretreatments. Surface analysis of electrodes in the passivated state shows a lower content of metallic nickel and a thicker nickel surface oxide film. We attribute the low electrochemical kinetics of the alloys after passivation to the loss of metallic nickel and/or cobalt at the electrode-electrolyte interface. ((orig.))

  2. Passive solar technology

    Energy Technology Data Exchange (ETDEWEB)

    Watson, D

    1981-04-01

    The present status of passive solar technology is summarized, including passive solar heating, cooling and daylighting. The key roles of the passive solar system designer and of innovation in the building industry are described. After definitions of passive design and a summary of passive design principles are given, performance and costs of passive solar technology are discussed. Passive energy design concepts or methods are then considered in the context of the overall process by which building decisions are made to achieve the integration of new techniques into conventional design. (LEW).

  3. Hybrid Active-Passive Microwave Photonic Filter with High Quality Factor

    International Nuclear Information System (INIS)

    En-Ming, Xu; Xin-Liang, Zhang; Li-Na, Zhou; Yu, Zhang; De-Xiu, Huang

    2009-01-01

    A hybrid high quality factor (Q-factor) microwave photonic filter with a cascaded active filter and a passive filter is presented and experimentally demonstrated. The active infinite impulse response filter is realized by a recirculating delay line loop with a semiconductor optical amplifier, and a much narrower 3 dB bandwidth of response peaks can be achieved. A passive finite impulse response filter is realized by an unbalance Mach–Zehnder interferometer, and it is cascaded to select the desired filter frequencies and to suppress the intermediate peaks. Compared with the purely active filter scheme, the free spectrum range and the Q-factor of the hybrid structure can be doubled. Stable operation and a high Q-factor of 362 are experimentally demonstrated

  4. Enhanced active aluminum content and thermal behaviour of nano-aluminum particles passivated during synthesis using thermal plasma route

    International Nuclear Information System (INIS)

    Mathe, Vikas L.; Varma, Vijay; Raut, Suyog; Nandi, Amiya Kumar; Pant, Arti; Prasanth, Hima; Pandey, R.K.; Bhoraskar, Sudha V.; Das, Asoka K.

    2016-01-01

    Graphical abstract: - Highlights: • Synthesis of nano crystalline Al (nAl) using DC thermal plasma reactor. • In situ passivation of nAl by palmitic acid and air. • Enhanced active aluminum content obtained for palmitic acid passivated nAl. • Palmitic acid passivated nAl are quite stable in humid atmospheres. - Abstract: Here, we report synthesis and in situ passivation of aluminum nanoparticles using thermal plasma reactor. Both air and palmitc acid passivation was carried out during the synthesis in the thermal plasma reactor. The passivated nanoparticles have been characterized for their structural and morphological properties using X-ray diffraction (XRD) and transmission electron microscopy (TEM) techniques. In order to understand nature of passivation vibrational spectroscopic analysis have been carried out. The enhancement in active aluminum content and shelf life for a palmitic acid passivated nano-aluminum particles in comparison to the air passivated samples and commercially available nano Al powder (ALEX) has been observed. Thermo-gravimetric analysis was used to estimate active aluminum content of all the samples under investigation. In addition cerimetric back titration method was also used to estimate AAC and the shelf life of passivated aluminum particles. Structural, microstructural and thermogravomateric analysis of four year aged passivated sample also depicts effectiveness of palmitic acid passivation.

  5. Enhanced active aluminum content and thermal behaviour of nano-aluminum particles passivated during synthesis using thermal plasma route

    Energy Technology Data Exchange (ETDEWEB)

    Mathe, Vikas L., E-mail: vlmathe@physics.unipune.ac.in [Department of Physics, Savitribai Phule Pune University, Pune 411007, Maharashtra (India); Varma, Vijay; Raut, Suyog [Department of Physics, Savitribai Phule Pune University, Pune 411007, Maharashtra (India); Nandi, Amiya Kumar; Pant, Arti; Prasanth, Hima; Pandey, R.K. [High Energy Materials Research Lab, Sutarwadi, Pune 411021, Maharashtra (India); Bhoraskar, Sudha V. [Department of Physics, Savitribai Phule Pune University, Pune 411007, Maharashtra (India); Das, Asoka K. [Utkal University, VaniVihar, Bhubaneswar, Odisha 751004 (India)

    2016-04-15

    Graphical abstract: - Highlights: • Synthesis of nano crystalline Al (nAl) using DC thermal plasma reactor. • In situ passivation of nAl by palmitic acid and air. • Enhanced active aluminum content obtained for palmitic acid passivated nAl. • Palmitic acid passivated nAl are quite stable in humid atmospheres. - Abstract: Here, we report synthesis and in situ passivation of aluminum nanoparticles using thermal plasma reactor. Both air and palmitc acid passivation was carried out during the synthesis in the thermal plasma reactor. The passivated nanoparticles have been characterized for their structural and morphological properties using X-ray diffraction (XRD) and transmission electron microscopy (TEM) techniques. In order to understand nature of passivation vibrational spectroscopic analysis have been carried out. The enhancement in active aluminum content and shelf life for a palmitic acid passivated nano-aluminum particles in comparison to the air passivated samples and commercially available nano Al powder (ALEX) has been observed. Thermo-gravimetric analysis was used to estimate active aluminum content of all the samples under investigation. In addition cerimetric back titration method was also used to estimate AAC and the shelf life of passivated aluminum particles. Structural, microstructural and thermogravomateric analysis of four year aged passivated sample also depicts effectiveness of palmitic acid passivation.

  6. Tungsten trioxide as high-{kappa} gate dielectric for highly transparent and temperature-stable zinc-oxide-based thin-film transistors

    Energy Technology Data Exchange (ETDEWEB)

    Lorenz, Michael; Wenckstern, Holger von; Grundmann, Marius [Universitaet Leipzig, Fakultaet fuer Physik und Geowissenschaften, Institut fuer Experimentelle Physik II, Linnestr. 5, 04103 Leipzig (Germany)

    2012-07-01

    We demonstrate metal-insulator-semiconductor field-effect transistors with high-{kappa}, room-temperature deposited, highly transparent tungsten trioxide (WO{sub 3}) as gate dielectric. The channel material consists of a zinc oxide (ZnO) thin-film. The transmittance and resistivity of WO{sub 3} films was tuned in order to obtain a highly transparent and insulating WO{sub 3} dielectric. The devices were processed by standard photolithography using lift-off technique. On top of the WO{sub 3} dielectric a highly transparent and conductive oxide consisting of ZnO: Al 3% wt. was deposited. The gate structure of the devices exhibits an average transmittance in the visible spectral range of 86%. The on/off-current ratio is larger than 10{sup 8} with off- and gate leakage-currents below 3 x 10{sup -8} A/cm{sup 2}. Due to the high relative permittivity of {epsilon}{sub r} {approx} 70, a gate voltage sweep of only 2 V is necessary to turn the transistor on and off with a minimum subthreshold swing of 80 mV/decade. The channel mobility of the transistors equals the Hall-effect mobility with a value of 5 cm{sup 2}/Vs. It is furthermore shown, that the devices are stable up to operating temperatures of at least 150 C.

  7. Passive BWR integral LOCA testing at the Karlstein test facility INKA

    Energy Technology Data Exchange (ETDEWEB)

    Drescher, Robert [AREVA GmbH, Erlangen (Germany); Wagner, Thomas [AREVA GmbH, Karlstein am Main (Germany); Leyer, Stephan [TH University of Applied Sciences, Deggendorf (Germany)

    2014-05-15

    KERENA is an innovative AREVA GmbH boiling water reactor (BWR) with passive safety systems (Generation III+). In order to verify the functionality of the reactor design an experimental validation program was executed. Therefore the INKA (Integral Teststand Karlstein) test facility was designed and erected. It is a mockup of the BWR containment, with integrated pressure suppression system. While the scaling of the passive components and the levels match the original values, the volume scaling of the containment compartments is approximately 1:24. The storage capacity of the test facility pressure vessel corresponds to approximately 1/6 of the KERENA RPV and is supplied by a benson boiler with a thermal power of 22 MW. In March 2013 the first integral test - Main Steam Line Break (MSLB) - was executed. The test measured the combined response of the passive safety systems to the postulated initiating event. The main goal was to demonstrate the ability of the passive systems to ensure core coverage, decay heat removal and to maintain the containment within defined limits. The results of the test showed that the passive safety systems are capable to bring the plant to stable conditions meeting all required safety targets with sufficient margins. Therefore the test verified the function of those components and the interplay between them. The test proved that INKA is an unique test facility, capable to perform integral tests of passive safety concepts under plant-like conditions. (orig.)

  8. New technological development of passive and active vibration control: analysis and test

    Science.gov (United States)

    Matsuzaki, Yuji; Ikeda, Tadashige; Boller, Christian

    2005-04-01

    We present a brief summary of new technical developments of passive and active vibration controls which we have performed for the last several years partly as an international collaborative R&D project on Smart Materials and Structural Systems sponsored by the Japanese Ministry of Economy, Trade and Industry. In connection with the passive damping control, shape memory alloys (SMAs) were used as damping elements. To examine the effect of damping enhancement, beams with SMA films bonded onto them or SMA wires embedded into them were made, and free damped oscillations were measured. The damping coefficient increased by more than 100% compared with the beams without SMAs. Thermodynamic behaviors of an SMA wire and film were also investigated experimentally and numerically. In active vibration control, a new concept of smart material systems was proposed. That is a partially magnetized alloy, which is stiff and strong enough as a structural element and responds sufficiently quickly as an actuator due to an electromagnetic force. A simplified experiment and numerical simulation were performed and the results showed the feasibility of the proposed smart material system using the electromagnetic force.

  9. Microstructure evolution in pulsed laser deposited epitaxial Ge-Sb-Te chalcogenide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Ross, Ulrich; Lotnyk, Andriy, E-mail: andriy.lotnyk@iom-leipzig.de; Thelander, Erik; Rauschenbach, Bernd

    2016-08-15

    The thin film deposition and structure of highly oriented telluride compounds is of particular interest for phase-change applications in next-generation non-volatile memory such as heterostructure designs, as well as for the investigation of novel optical, thermoelectric and ferroelectric properties in layered telluride compounds. In this work, epitaxial Ge-Sb-Te thin films were successfully produced by pulsed laser deposition on silicon with and without amorphous SiO{sub x} interlayer at elevated process temperatures from a Ge{sub 2}Sb{sub 2}Te{sub 5} target. Aberration-corrected high-resolution scanning transmission electron microscopy (STEM) imaging reveals a distinct interface configuration of the trigonal phase connected by a quasi van der Waals gap (vacancy) to the Sb/Te-passivated single crystalline Si substrate, yet also an intermediate textured growth regime in which the substrate symmetry is only weakly coupled to the thin film orientation, as well as strong deviation of composition at high deposition temperatures. Textured growth of Ge-Sb-Te thin film was also observed on SiO{sub x}/Si substrate with no evidence of an intermediate Sb/Te surface layer on top of an SiO{sub x} layer. In addition, particular defect structures formed by local reorganization of the stacking sequence across the vacancy gap are observed and appear to be intrinsic to these van der Waals-layered compounds. Theoretical image simulations of preferred stacking sequences can be matched to individual building blocks in the Ge-Sb-Te grain. - Highlights: • Atomic-resolution Cs-corrected STEM imaging of PLD deposited Ge-Sb-Te thin films. • Changing of overall composition with increasing deposition temperature. • Direct imaging of surface passivation Sb/Te layer at the Ge-Sb-Te/Si(111) interface. • The Sb/Te passivation layer is not a prerequisite for highly oriented growth of Ge-Sb-Te thin films.

  10. Bidentate Ligand-passivated CsPbI3 Perovskite Nanocrystals for Stable Near-unity Photoluminescence Quantum Yield and Efficient Red Light-emitting Diodes

    KAUST Repository

    Pan, Jun

    2017-12-17

    Although halide perovskite nanocrystals (NCs) are promising materials for optoelectronic devices, they suffer severely from chemical and phase instabilities. Moreover, the common capping ligands like oleic acid and oleylamine that encapsulate the NCs will form an insulating layer, precluding their utility in optoelectronic devices. To overcome these limitations, we develop a post-synthesis passivation process for CsPbI3 NCs by using a bidentate ligand, namely 2,2’-Iminodibenzoic acid. Our passivated NCs exhibit narrow red photoluminescence with exceptional quantum yield (close to unity) and substantially improved stability. The passivated NCs enabled us to realize red light-emitting diodes (LEDs) with 5.02% external quantum efficiency and 748 cd/m2 luminance, surpassing by far LEDs made from the non-passivated NCs.

  11. Bidentate Ligand-passivated CsPbI3 Perovskite Nanocrystals for Stable Near-unity Photoluminescence Quantum Yield and Efficient Red Light-emitting Diodes

    KAUST Repository

    Pan, Jun; Shang, Yuequn; Yin, Jun; de Bastiani, Michele; Peng, Wei; Dursun, Ibrahim; Sinatra, Lutfan; El-Zohry, Ahmed M.; Hedhili, Mohamed N.; Emwas, Abdul-Hamid M.; Mohammed, Omar F.; Ning, Zhijun; Bakr, Osman

    2017-01-01

    Although halide perovskite nanocrystals (NCs) are promising materials for optoelectronic devices, they suffer severely from chemical and phase instabilities. Moreover, the common capping ligands like oleic acid and oleylamine that encapsulate the NCs will form an insulating layer, precluding their utility in optoelectronic devices. To overcome these limitations, we develop a post-synthesis passivation process for CsPbI3 NCs by using a bidentate ligand, namely 2,2’-Iminodibenzoic acid. Our passivated NCs exhibit narrow red photoluminescence with exceptional quantum yield (close to unity) and substantially improved stability. The passivated NCs enabled us to realize red light-emitting diodes (LEDs) with 5.02% external quantum efficiency and 748 cd/m2 luminance, surpassing by far LEDs made from the non-passivated NCs.

  12. Lifetime Improvement of Organic Light Emitting Diodes using LiF Thin Film and UV Glue Encapsulation

    Science.gov (United States)

    Huang, Jian-Ji; Su, Yan-Kuin; Chang, Ming-Hua; Hsieh, Tsung-Eong; Huang, Bohr-Ran; Wang, Shun-Hsi; Chen, Wen-Ray; Tsai, Yu-Sheng; Hsieh, Huai-En; Liu, Mark O.; Juang, Fuh-Shyang

    2008-07-01

    This work demonstrates the use of lithium fluoride (LiF) as a passivation layer and a newly developed UV glue for encapsulation on the LiF passivation layer to enhance the stability of organic light-emitting devices (OLEDs). Devices with double protective layers showed a 25-fold increase in operational lifetime compared to those without any packaging layers. LiF has a low melting point and insulating characteristics and it can be adapted as both a protective layer and pre-encapsulation film. The newly developed UV glue has a fast curing time of only 6 s and can be directly spin-coated onto the surface of the LiF passivation layer. The LiF thin film plus spin-coated UV glue is a simple packaging method that reduces the fabrication costs of OLEDs.

  13. Experiments on the Performance of Small Horizontal Axis Wind Turbine with Passive Pitch Control by Disk Pulley

    Directory of Open Access Journals (Sweden)

    Yu-Jen Chen

    2016-05-01

    Full Text Available The present work is to design a passive pitch-control mechanism for small horizontal axis wind turbine (HAWT to generate stable power at high wind speeds. The mechanism uses a disk pulley as an actuator to passively adjust the pitch angle of blades by centrifugal force. For this design, aerodynamic braking is caused by the adjustment of pitch angles at high wind speeds. As a marked advantage, this does not require mechanical brakes that would incur electrical burn-out and structural failure under high speed rotation. This can ensure the survival of blades and generator in sever operation environments. In this paper, the analysis uses blade element momentum theory (BEMT to develop graphical user interface software to facilitate the performance assessment of the small-scale HAWT using passive pitch control (PPC. For verification, the HAWT system was tested in a full-scale wind tunnel for its aerodynamic performance. At low wind speeds, this system performed the same as usual, yet at high wind speeds, the equipped PPC system can effectively reduce the rotational speed to generate stable power.

  14. Air-stable, solution-processed oxide p-n heterojunction ultraviolet photodetector.

    Science.gov (United States)

    Kim, Do Young; Ryu, Jiho; Manders, Jesse; Lee, Jaewoong; So, Franky

    2014-02-12

    Air-stable solution processed all-inorganic p-n heterojunction ultraviolet photodetector is fabricated with a high gain (EQE, 25 300%). Solution-processed NiO and ZnO films are used as p-type and n-type ultraviolet sensitizing materials, respectively. The high gain in the detector is due to the interfacial trap-induced charge injection that occurs at the ITO/NiO interface by photogenerated holes trapped in the NiO film. The gain of the detector is controlled by the post-annealing temperature of the solution-processed NiO films, which are studied by X-ray photoelectron spectroscopy (XPS).

  15. Quantum dot-polymer conjugates for stable luminescent displays.

    Science.gov (United States)

    Ghimire, Sushant; Sivadas, Anjaly; Yuyama, Ken-Ichi; Takano, Yuta; Francis, Raju; Biju, Vasudevanpillai

    2018-05-23

    The broad absorption of light in the UV-Vis-NIR region and the size-based tunable photoluminescence color of semiconductor quantum dots make these tiny crystals one of the most attractive antennae in solar cells and phosphors in electrooptical devices. One of the primary requirements for such real-world applications of quantum dots is their stable and uniform distribution in optically transparent matrices. In this work, we prepare transparent thin films of polymer-quantum dot conjugates, where CdSe/ZnS quantum dots are uniformly distributed at high densities in a chitosan-polystyrene copolymer (CS-g-PS) matrix. Here, quantum dots in an aqueous solution are conjugated to the copolymer by a phase transfer reaction. With the stable conjugation of quantum dots to the copolymer, we prevent undesired phase separation between the two and aggregation of quantum dots. Furthermore, the conjugate allows us to prepare transparent thin films in which quantum dots are uniformly distributed at high densities. The CS-g-PS copolymer helps us in not only preserving the photoluminescence properties of quantum dots in the film but also rendering excellent photostability to quantum dots at the ensemble and single particle levels, making the conjugate a promising material for photoluminescence-based devices.

  16. Chemically abrupt interface between Ce oxide and Fe films

    International Nuclear Information System (INIS)

    Lee, H.G.; Lee, D.; Kim, S.; Kim, S.G.; Hwang, Chanyong

    2005-01-01

    A chemically abrupt Fe/Ce oxide interface can be formed by initial oxidation of an Fe film followed by deposition of Ce metal. Once a Ce oxide layer is formed on top of Fe, it acts a passivation barrier for oxygen diffusion. Further deposition of Ce metal followed by its oxidation preserve the abrupt interface between Ce oxide and Fe films. The Fe and Ce oxidation states have been monitored at each stage using X-ray photoelectron spectroscopy

  17. Evaluation of stress stabilities in amorphous In-Ga-Zn-O thin-film transistors: Effect of passivation with Si-based resin

    Science.gov (United States)

    Ochi, Mototaka; Hino, Aya; Goto, Hiroshi; Hayashi, Kazushi; Fujii, Mami N.; Uraoka, Yukiharu; Kugimiya, Toshihiro

    2018-02-01

    Fabrication process conditions of a passivation (PV) layer correlated with stress stabilities of amorphous In-Ga-Zn-O (a-IGZO) thin-film transistors (TFTs). In etch-stop layer (ESL)-TFTs, by inserting a Si-based resin between SiN x and SiO x PV layers, the peak intensity in the photoinduced transient spectroscopy (PITS) spectrum was notably reduced. This suggested the suppression of hydrogen incorporation into a-IGZO, which led to the improvement of stability under negative bias thermal illumination stress (NBTIS). In contrast, the hydrogen-related defects in the a-IGZO were easily formed by the back-channel etch (BCE) process. Furthermore, it was found that, under NBTIS, the transfer curves of the BCE-TFTs shifted in parallel owing to the positive fixed charge located in the back channel of the a-IGZO TFTs. The hump-shaped shift increased with stress time. This is because hydrogen atoms located at the back-channel surfaces of the a-IGZO and/or PV layers were incorporated into the channel region of the BCE-TFTs and induced the hydrogen-related defects.

  18. Robustness up to 400°C of the passivation of c-Si by p-type a-Si:H thanks to ion implantation

    Science.gov (United States)

    Defresne, A.; Plantevin, O.; Roca i Cabarrocas, Pere

    2016-12-01

    Heterojunction solar cells based on crystalline silicon (c-Si) passivated by hydrogenated amorphous silicon (a-Si:H) thin films are one of the most promising architectures for high energy conversion efficiency. Indeed, a-Si:H thin films can passivate both p-type and n-type wafers and can be deposited at low temperature (layers, in particular p-type a-Si:H, show a dramatic degradation in passivation quality above 200°C. Yet, annealing at 300 - 400°C the TCO layer and metallic contacts is highly desirable to reduce the contact resistance as well as the TCO optical absorption. In this work, we show that as expected, ion implantation (5 - 30 keV) introduces defects at the c-Si/a-Si:H interface which strongly degrade the effective lifetime, down to a few micro-seconds. However, the passivation quality can be restored and lifetime values can be improved up to 2 ms over the initial value with annealing. We show here that effective lifetimes above 1 ms can be maintained up to 380°C, opening up the possibility for higher process temperatures in silicon heterojunction device fabrication.

  19. Protection of MoO3 high work function by organic thin film

    International Nuclear Information System (INIS)

    Wang, Chenggong; Irfan, Irfan; Gao, Yongli

    2014-01-01

    The effects of air exposure are investigated for molybdenum trioxide (MoO 3 ) covered with organic thin films using ultraviolet photoemission spectroscopy. It is found that the severe drop of the work function of MoO 3 by air exposure is substantially reduced by the organic thin films. Both CuPc and C 60 are used for the investigations. The results indicate that the MoO 3 surface can be passivated by approximately two monolayers of organic thin films against exposure to air

  20. Study of SiN{sub x}:H{sub y} passivant layers for AlGaN/GaN high electron mobility transistors

    Energy Technology Data Exchange (ETDEWEB)

    Redondo-Cubero, A. [Instituto de Sistemas Optoelectronicos y Microtecnologia and Dpto. Ingenieria Electronica, ETSI Telecomunicacion, Universidad Politecnica de Madrid, 28040 Madrid (Spain); Centro de Micro-Analisis de Materiales, Universidad Autonoma de Madrid, 28049 Madrid (Spain); Gago, R. [Centro de Micro-Analisis de Materiales, Universidad Autonoma de Madrid, 28049 Madrid (Spain); Romero, M.F.; Gonzalez-Posada, F.; Brana, A.F.; Munoz, E. [Instituto de Sistemas Optoelectronicos y Microtecnologia and Dpto. Ingenieria Electronica, ETSI Telecomunicacion, Universidad Politecnica de Madrid, 28040 Madrid (Spain); Jimenez, A. [Instituto de Sistemas Optoelectronicos y Microtecnologia and Dpto. Ingenieria Electronica, ETSI Telecomunicacion, Universidad Politecnica de Madrid, 28040 Madrid (Spain); Dpto. Electronica, Escuela Politecnica, Universidad de Alcala, 28805 Alcala de Henares (Spain)

    2008-07-01

    In this work, hydrogenated silicon nitride (SiN{sub x}:H{sub y}) grown by chemical vapour deposition as passivant layers for high electron mobility transistors (HEMT) have been studied. The film composition and bonding structure were determined by ion beam analysis and X-ray absorption spectroscopy techniques, respectively. The effects of gas precursors (SiH{sub 4}/N{sub 2} and SiH{sub 4}/NH{sub 3}) and film/substrate interface on the film growth have been addressed. The growth on different substrates (Si, GaN, AlGaN), and the effects of plasma pre-treatments have been studied before the growth and the film growth evolution. Results yield no significant differences in all the analysed samples. This points out the relevant role of SiHn radicals as growth precursor species and that intrinsic characteristics of the SiNx:Hy layers are not affected by the film/substrate interface. Hence, improved performance of HEMT with surface plasma pre-treatments before passivation should be related to extrinsic mechanisms (such as creation of defects in AlGaN surface, removal of the surface contamination or ion-induced roughness). (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  1. Analysis of passive moderator cooling system of Candu-6A reactor at emergency condition

    International Nuclear Information System (INIS)

    Umar, Efrizon; Subki, M. Hadid; Vecchiarelli, Jack

    2001-01-01

    Analysis of passive moderator cooling system subject to in-core LOCA with no emergency core cooling injection has been done. In this study, the new model of passive moderator system has been tested for emergency conditions and CATHENA code Mod-3.5b/Rev1 is used to calculate some parameters of this passive moderator cooling system. This result of simulation show that the proposed moderator cooling system have given satisfactory result, especially for the case with 0.7 m riser diameter and the number of heat exchanger tubes 8100. For PEWS tank containing 3000 m3 of light water initially at 30 0C and a 3641 m2 moderator heat exchanger, the average long-term heat removed rate balances the moderator heat load and the flow through the passive moderator loop remains stable for over 72 hours with no saturated boiling in the calandria and flow instabilities do not develop during long-term period

  2. Mechanical properties of ultra thin metallic films revealed by synchrotron techniques

    Energy Technology Data Exchange (ETDEWEB)

    Gruber, Patric Alfons

    2007-07-20

    A prerequisite for the study of the scaling behavior of mechanical properties of ultra thin films is a suitable testing technique. Therefore synchrotron-based in situ testing techniques were developed and optimized in order to characterize the stress evolution in ultra thin metallic films on compliant polymer substrates during isothermal tensile tests. Experimental procedures for polycrystalline as well as single crystalline films were established. These techniques were used to systematically investigate the influence of microstructure, film thickness (20 to 1000 nm) and temperature (-150 to 200 C) on the mechanical properties. Passivated and unpassivated Au and Cu films as well as single crystalline Au films on polyimide substrates were tested. Special care was also dedicated to the microstructural characterization of the samples which was very important for the correct interpretation of the results of the mechanical tests. Down to a film thickness of about 100 to 200 nm the yield strength increased for all film systems (passivated and unpassivated) and microstructures (polycrystalline and singlecrystalline). The influence of different interfaces was smaller than expected. This could be explained by a dislocation source model based on the nucleation of perfect dislocations. For polycrystalline films the film thickness as well as the grain size distribution had to be considered. For smaller film thicknesses the increase in flow stress was weaker and the deformation behavior changed because the nucleation of perfect dislocations became unfavorable. Instead, the film materials used alternative mechanisms to relieve the high stresses. For regular and homogeneous deformation the total strain was accommodated by the nucleation and motion of partial dislocations. If the deformation was localized due to initial cracks in a brittle interlayer or local delamination, dislocation plasticity was not effective enough to relieve the stress concentration and the films showed

  3. Josephson tunnel junctions in niobium films

    International Nuclear Information System (INIS)

    Wiik, Tapio.

    1976-12-01

    A method of fabricating stable Josephson tunnel junctions with reproducible characteristics is described. The junctions have a sandwich structure consisting of a vacuum evaporated niobium film, a niobium oxide layer produced by the glow discharge method and a lead film deposited by vacuum evaporation. Difficulties in producing thin-film Josephson junctions are discussed. Experimental results suggest that the lower critical field of the niobium film is the most essential parameter when evaluating the quality of these junctions. The dependence of the lower critical field on the film thickness and on the Ginzburg-Landau parameter of the film is studied analytically. Comparison with the properties of the evaporated films and with the previous calculations for bulk specimens shows that the presented model is applicable for most of the prepared samples. (author)

  4. Electrostatic stabilizer for a passive magnetic bearing system

    Science.gov (United States)

    Post, Richard F.

    2015-11-24

    Electrostatic stabilizers are provided for passive bearing systems composed of annular magnets having a net positive stiffness against radial displacements and that have a negative stiffness for vertical displacements, resulting in a vertical instability. Further embodiments are shown of a radial electrostatic stabilizer geometry (using circuitry similar to that employed in the vertical stabilizer). This version is suitable for stabilizing radial (lateral) displacements of a rotor that is levitated by annular permanent magnets that are stable against vertical displacements but are unstable against radial displacements.

  5. Stability of Tl-Ba-Ca-Cu-O Superconducting Thin Films

    Energy Technology Data Exchange (ETDEWEB)

    Siegal, M.P.; Overmyer, D.L.; Venturini, E.L.; Padilla, R.R.; Provencio, P.N.

    1999-08-23

    We report the stability of TlBa{sub 2}CaCu{sub 2}O{sub 7} (Tl-1212) and Tl{sub 2}Ba{sub 2}CaCu{sub 2}O{sub 8} (T1-2212) thin films and by inference, the stability of TlBa{sub 2}Ca{sub 2}Cu{sub 3}O{sub 9} (Tl-1223) and Tl{sub 2}Ba{sub 2}Ca{sub 2}Cu{sub 3}O{sub 10} (Tl-2223) thin films, under a variety of conditions. In general, we observe that the stability behavior of the single Tl-O layer materials (Tl-1212 and Tl-1223)are similar and the double Tl-O layer materials (Tl-2212 and Tl-2223) are similar. All films are stable with repeated thermal cycling to cryogenic temperatures. Films are also stable in acetone and methanol. Moisture degrades film quality rapidly, especially in the form of vapor. Tl-1212 is more sensitive to vapor than Tl-2212. These materials are stable to high temperatures in either N{sub 2}, similar to vacuum for the cuprates, and O{sub 2} ambients. While total degradation of properties (superconducting and structural) occur at the same temperatures for all phases, 600 C in N{sub 2} and 700 C in O{sub 2}, the onset of degradation occurs at somewhat lower temperatures for Tl-1212 than for Tl-2212 films. In all cases, sample degradation is associated with Tl depletion from the films.

  6. Glow discharge-deposited amorphous silicon films for low-cost solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Grabmaier, J G; Plaettner, R D; Stetter, W [Siemens A.G., Muenchen (Germany, F.R.). Forschungslaboratorien

    1980-01-01

    Due to their high absorption constant, glow discharge-deposited amorphous silicon (a-Si) films are of great interest for low-cost solar cells. Using SiH/sub 4/ and SiX/sub 4//H/sub 2/ (X = Cl or F) gas mixtures in an inductively or capacitively excited reactor, a-Si films with thicknesses up to several micrometers were deposited on substrates of glass, silica and silicon. The optical and electrical properties of the films were determined by measuring the IR absorption spectra, dark conductivity, photoconductivity, and photoluminescence. Hydrogen, chlorine, or fluorine were incorporated in the films in order to passivate dangling bonds in the amorphous network.

  7. Trans-Stent B-Mode Ultrasound and Passive Cavitation Imaging.

    Science.gov (United States)

    Haworth, Kevin J; Raymond, Jason L; Radhakrishnan, Kirthi; Moody, Melanie R; Huang, Shao-Ling; Peng, Tao; Shekhar, Himanshu; Klegerman, Melvin E; Kim, Hyunggun; McPherson, David D; Holland, Christy K

    2016-02-01

    Angioplasty and stenting of a stenosed artery enable acute restoration of blood flow. However, restenosis or a lack of re-endothelization can subsequently occur depending on the stent type. Cavitation-mediated drug delivery is a potential therapy for these conditions, but requires that particular types of cavitation be induced by ultrasound insonation. Because of the heterogeneity of tissue and stochastic nature of cavitation, feedback mechanisms are needed to determine whether the sustained bubble activity is induced. The objective of this study was to determine the feasibility of passive cavitation imaging through a metal stent in a flow phantom and an animal model. In this study, an endovascular stent was deployed in a flow phantom and in porcine femoral arteries. Fluorophore-labeled echogenic liposomes, a theragnostic ultrasound contrast agent, were injected proximal to the stent. Cavitation images were obtained by passively recording and beamforming the acoustic emissions from echogenic liposomes insonified with a low-frequency (500 kHz) transducer. In vitro experiments revealed that the signal-to-noise ratio for detecting stable cavitation activity through the stent was greater than 8 dB. The stent did not significantly reduce the signal-to-noise ratio. Trans-stent cavitation activity was also detected in vivo via passive cavitation imaging when echogenic liposomes were insonified by the 500-kHz transducer. When stable cavitation was detected, delivery of the fluorophore into the arterial wall was observed. Increased echogenicity within the stent was also observed when echogenic liposomes were administered. Thus, both B-mode ultrasound imaging and cavitation imaging are feasible in the presence of an endovascular stent in vivo. Demonstration of this capability supports future studies to monitor restenosis with contrast-enhanced ultrasound and pursue image-guided ultrasound-mediated drug delivery to inhibit restenosis. Copyright © 2016 World Federation for

  8. Organization of copper nanoclusters in Langmuir–Blodgett films

    Indian Academy of Sciences (India)

    Stable nanoclusters of Cu were synthesized using Langmuir–Blodgett films of octadecylsuccinic acid (ODSA) as template. The Langmuir–Blodgett films of ODSA formed from subphase containing copper ions were first subjected to sulphidation (S) using sodium sulphide and then hydrogenated (H) using hydrogen gas.

  9. All-back-Schottky-contact thin-film photovoltaics

    Science.gov (United States)

    Nardone, Marco

    2016-02-01

    The concept of All-Back-Schottky-Contact (ABSC) thin-film photovoltaic (TFPV) devices is introduced and evaluated using 2D numerical simulation. Reach-through Schottky junctions due to two metals of different work functions in an alternating, side-by-side pattern along the non-illuminated side generate the requisite built-in field. It is shown that our simulation method quantitatively describes existing data for a recently demonstrated heterojunction thin-film cell with interdigitated back contacts (IBCs) of one metal type. That model is extended to investigate the performance of ABSC devices with bimetallic IBCs within a pertinent parameter space. Our calculations indicate that 20% efficiency is achievable with micron-scale features and sufficient surface passivation. Bimetallic, micron-scale IBCs are readily fabricated using photo-lithographic techniques and the ABSC design allows for optically transparent surface passivation layers that need not be electrically conductive. The key advantages of the ABSC-TFPV architecture are that window layers, buffer layers, heterojunctions, and module scribing are not required because both contacts are located on the back of the device.

  10. 2D layered insulator hexagonal boron nitride enabled surface passivation in dye sensitized solar cells.

    Science.gov (United States)

    Shanmugam, Mariyappan; Jacobs-Gedrim, Robin; Durcan, Chris; Yu, Bin

    2013-11-21

    A two-dimensional layered insulator, hexagonal boron nitride (h-BN), is demonstrated as a new class of surface passivation materials in dye-sensitized solar cells (DSSCs) to reduce interfacial carrier recombination. We observe ~57% enhancement in the photo-conversion efficiency of the DSSC utilizing h-BN coated semiconductor TiO2 as compared with the device without surface passivation. The h-BN coated TiO2 is characterized by Raman spectroscopy to confirm the presence of highly crystalline, mixed monolayer/few-layer h-BN nanoflakes on the surface of TiO2. The passivation helps to minimize electron-hole recombination at the TiO2/dye/electrolyte interfaces. The DSSC with h-BN passivation exhibits significantly lower dark saturation current in the low forward bias region and higher saturation in the high forward bias region, respectively, suggesting that the interface quality is largely improved without impeding carrier transport at the material interface. The experimental results reveal that the emerging 2D layered insulator could be used for effective surface passivation in solar cell applications attributed to desirable material features such as high crystallinity and self-terminated/dangling-bond-free atomic planes as compared with high-k thin-film dielectrics.

  11. Effect of beam expansion loss in a carbon nanotube-doped PVA film on passively mode-locked erbium-doped fiber lasers with different feedback ratios

    International Nuclear Information System (INIS)

    Cheng, Kuang-Nan; Chi, Yu-Chieh; Cheng, Chih-Hsien; Lin, Yung-Hsiang; Lo, Jui-Yung; Lin, Gong-Ru

    2014-01-01

    The effect of beam expansion induced divergent loss in a single-wall carbon nanotube (SWCNT) doped polyvinyl alcohol (PVA) based ultrafast saturable absorber (SA) film thickness on the passive mode-locking (PML) performances of erbium-doped fiber lasers are demonstrated. The variation on the PML pulsewidth of the EDFL is discussed by changing the SWCNT-PVA SA film thicknesses, together with adjusting the pumping power and the intra-cavity feedback ratio. An almost 6 dB increment of divergent loss when enlarging the SWCNT-PVA based SA film thickness from 30–130 µm is observed. When shrinking the SA thickness to 30 µm at the largest pumping power of 52.5 mW, the optical spectrum red-shifts to 1558.8 nm with its 3 dB spectral linewidth broadening up to 2.7 nm, while the pulse has already entered the soliton regime with multi-order Kelly sidebands aside the spectral shoulder. The soliton pulsewidth is as short as 790 fs, which is much shorter than those obtained with other thicker SWCNT doped PVA polymer film based SAs; therefore, the peak power from the output of the PML-EDFL is significantly enlarged accompanied by a completely suppressed residual continuous-wave level to achieve the largest on/off extinction ratio. The main mechanism of pulse shortening with reducing thickness of SWCNT doped PVA polymer film based SA is attributed to the limited beam expansion as well as the enlarged modulation depth, which results in shortened soliton pulsewidth with a clean dc background, and broadened spectrum with enriched Kelly sidebands. The increase of total SWCNT amount in the thicker SA inevitably causes a higher linear absorption; hence, the mode-locking threshold also rises accordingly. By enlarging pumping power from 38.5–52.5 mW, the highest ascent on pulse extinction of up to 32 dB is observed among all kinds of feedback conditions. Nevertheless, the enlargement on the extinction slightly decays with increasing the feedback ratio from 30–90

  12. Un-laminated Gafchromic EBT3 film for ultraviolet radiation monitoring

    International Nuclear Information System (INIS)

    Welch, David; Randers-Pehrson, Gerhard; Brenner, David J.; Spotnitz, Henry M.

    2017-01-01

    Measurement of ultraviolet (UV) radiation is important for human health, especially with the expanded usage of short wavelength UV for sterilization purposes. This work examines un-laminated Gafchromic EBT3 film for UV radiation monitoring. The authors exposed the film to select wavelengths in the UV spectrum, ranging from 207 to 328 nm, and measured the change in optical density. The response of the film is wavelength dependent, and of the wavelengths tested, the film was most sensitive to 254 nm light, with measurable values as low as 10 μJ/cm 2 . The film shows a dose-dependent response that extends over more than four orders of magnitude. The response of the film to short wavelength UV is comparable to the daily safe exposure limits for humans, thus making it valuable as a tool for passive UV radiation monitoring. (authors)

  13. Investigation of steel passivation in inhibited cooling waters by electrochemical impedance spectroscopy

    International Nuclear Information System (INIS)

    Gusmano, G.; Montesperelli, G.; Traversa, E.

    1992-01-01

    The corrosion of mild steel, which is one of the main problems in industrial cooling equipments, is greatly influenced by total alkalinity, pH and oxygen concentration. The low concentration of oxygen present in natural waters and the low solubility of CaCO 3 greatly affect the passivation mechanism, hindering the growth of a compact and protective film. The all-organic inhibitors, which have the property of supersaturating waters with CaCO 3 , overcome this problem. In this paper the electrical characteristics of the protective film formed by this kind of inhibitors in the presence of different levels of carbonatic alkalinity and at different pH values is studied by Electrochemical Impedance Spectroscopy

  14. Stable and Controllable Synthesis of Silver Nanowires for Transparent Conducting Film

    Science.gov (United States)

    Liu, Bitao; Yan, Hengqing; Chen, Shanyong; Guan, Youwei; Wu, Guoguo; Jin, Rong; Li, Lu

    2017-03-01

    Silver nanowires without particles are synthesized by a solvothermal method at temperature 150 °C. Silver nanowires are prepared via a reducing agent of glycerol and a capping agent of polyvinylpyrrolidone ( M w ≈ 1,300,000). Both of them can improve the purity of the as-prepared silver nanowires. With controllable shapes and sizes, silver nanowires are grown continuously up to 10-20 μm in length with 40-50 nm in diameter. To improve the yield of silver nanowires, the different concentrations of AgNO3 synthesis silver nanowires are discussed. The characterizations of the synthesized silver nanowires are analyzed by UV-visible absorption spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), and atomic force microscope (AFM), and silver nanowires are pumped on the cellulose membrane and heated stress on the PET. Then, the cellulose membrane is dissolved by the steam of acetone to prepare flexible transparent conducting thin film, which is detected 89.9 of transmittance and 58 Ω/□. Additionally, there is a close loop connected by the thin film, a blue LED, a pair of batteries, and a number of wires, to determinate directly the film if conductive or not.

  15. Use of a ring-shaped, passively stable, superconducting magnetic bearing in the ring spinning process; Einsatz eines ringfoermigen, passiv stabilen, supraleitenden Magnetlagers im Ringspinnprozess

    Energy Technology Data Exchange (ETDEWEB)

    Berger, Anne; Sparing, Maria; Berger, Dietmar; Fuchs, Guenter; Schultz, Ludwig [IFW Dresden (Germany). Inst. fuer Metallische Werkstoffe; Hossain, Mahmud; Abdkader, Anwar; Cherif, Chokri [TU Dresden (Germany). ITM

    2015-07-01

    For the integration of a superconducting magnetic bearing in a ring spinning machine a LN{sub 2} continuous flow cryostat was developed, which is needed to cool the superconductor below its transition temperature of ∝91 K and simultaneously ensures that the spinning process takes place at room temperature. The ring spinning process is the most widely used process for spinning yarn. In this case, a loose fiber connection is first stretched in a roller system, then twisted by the so-called spinning ring-ring traveler system, and finally wound on a spindle. The spinning ring is a circular guide, which is mounted around the spindle. On this the ring traveler rotates as yarn guide. The yarn is driven by the rotation of the spindle and there is a balloon-shaped movement of the yarn which results the twist. The productivity of the process is limited by the systematic frictional heat between the yarn, spinning ring and ring travelers. This leads at high speeds to yarn breakage and limits the maximum spindle speed depending on the type of fiber to a maximum of 25,000 U/min. To increase the speed and thus the productivity of the process, the conventional spinning ring-ring rotor system is replaced by a superconducting magnetic bearing. Here floats a NdFeB permanent magnet passively stable over the LN{sub 2} cooled ceramic high-temperature superconductor YBa{sub 2}Cu{sub 3}O{sub 7-x}. Driven by the yarn the permanent magnet rotates, thus ensuring the necessary balloon-shaped yarn movement to twist. Such a bearing has been successfully tested in a ring spinning machine. Preliminary results show a similar yarn quality. [German] Fuer die Integration eines supraleitenden Magnetlagers in eine Ringspinnmaschine wurde ein LN{sub 2}-Durchflusskryostat entwickelt, der noetig ist, um den Supraleiter unter seine Sprungtemperatur von ∝91 K zu kuehlen und gleichzeitig dafuer sorgt, dass der Spinnprozess bei Raumtemperatur ablaeuft. Der Ringspinnprozess ist der am weitesten verbreitete

  16. Thermal characterization of polycrystalline diamond thin film heat spreaders grown on GaN HEMTs

    Science.gov (United States)

    Zhou, Yan; Ramaneti, Rajesh; Anaya, Julian; Korneychuk, Svetlana; Derluyn, Joff; Sun, Huarui; Pomeroy, James; Verbeeck, Johan; Haenen, Ken; Kuball, Martin

    2017-07-01

    Polycrystalline diamond (PCD) was grown onto high-k dielectric passivated AlGaN/GaN-on-Si high electron mobility transistor (HEMT) structures, with film thicknesses ranging from 155 to 1000 nm. Transient thermoreflectance results were combined with device thermal simulations to investigate the heat spreading benefit of the diamond layer. The observed thermal conductivity (κDia) of PCD films is one-to-two orders of magnitude lower than that of bulk PCD and exhibits a strong layer thickness dependence, which is attributed to the grain size evolution. The films exhibit a weak temperature dependence of κDia in the measured 25-225 °C range. Device simulation using the experimental κDia and thermal boundary resistance values predicts at best a 15% reduction in peak temperature when the source-drain opening of a passivated AlGaN/GaN-on-Si HEMT is overgrown with PCD.

  17. Study of thin insulating films using secondary ion emission

    International Nuclear Information System (INIS)

    Hilleret, Noel

    1973-01-01

    Secondary ion emission from insulating films was investigated using a CASTAING-SLODZIAN ion analyzer. Various different aspects of the problem were studied: charge flow across a silica film; the mobilization of sodium during ion bombardment; consequences of the introduction of oxygen on the emission of secondary ions from some solids; determination of the various characteristics of secondary ion emission from silica, silicon nitride and silicon. An example of measurements made using this type of operation is presented: profiles (concentration as a function of depth) of boron introduced by diffusion or implantation in thin films of silica on silicon or silicon nitride. Such measurements have applications in microelectronics. The same method of operation was extended to other types of insulating film, and in particular, to the metallurgical study of passivation films formed on the surface of stainless steels. (author) [fr

  18. Amorphous Ultrathin SnO2 Films by Atomic Layer Deposition on Graphene Network as Highly Stable Anodes for Lithium-Ion Batteries.

    Science.gov (United States)

    Xie, Ming; Sun, Xiang; George, Steven M; Zhou, Changgong; Lian, Jie; Zhou, Yun

    2015-12-23

    Amorphous SnO2 (a-SnO2) thin films were conformally coated onto the surface of reduced graphene oxide (G) using atomic layer deposition (ALD). The electrochemical characteristics of the a-SnO2/G nanocomposites were then determined using cyclic voltammetry and galvanostatic charge/discharge curves. Because the SnO2 ALD films were ultrathin and amorphous, the impact of the large volume expansion of SnO2 upon cycling was greatly reduced. With as few as five formation cycles best reported in the literature, a-SnO2/G nanocomposites reached stable capacities of 800 mAh g(-1) at 100 mA g(-1) and 450 mAh g(-1) at 1000 mA g(-1). The capacity from a-SnO2 is higher than the bulk theoretical values. The extra capacity is attributed to additional interfacial charge storage resulting from the high surface area of the a-SnO2/G nanocomposites. These results demonstrate that metal oxide ALD on high surface area conducting carbon substrates can be used to fabricate high power and high capacity electrode materials for lithium-ion batteries.

  19. Effect of oxide film formation on the fatigue behavior of aluminum alloy

    International Nuclear Information System (INIS)

    Kim, Jong Cheon; Cheong, Seong Kyun

    2012-01-01

    In this study, the effects of surface oxide film formation on the fatigue behavior of 7075-T6 aluminum alloy were analyzed in terms of the corrosion time of the alloy. The aluminum material used is known to have high corrosion resistance due to the passivation phenomenon that prevents corrosion. Aluminum alloys have been widely used in various industrial applications such as aircraft component manufacturing because of their lighter weight and higher strength than other materials. Therefore, studies on the fatigue behavior of materials and passivation properties that prevent corrosion are required. The fatigue behavior in terms of the corrosion time was analyzed by using a four pointing bending machine, and the surface corrosion level of the aluminum material in terms of the corrosion time was estimated by measuring the surface were studied by scanning electron microscopy (SEM). The results indicated that corrosion actively progressed for four weeks during the initial corrosion phase, the fatigue life significantly decreased, and the surface roughness increased. However, after four weeks, the corrosion reaction tended to slow down due to the passivation phenomenon of the material. Therefore, on the basis of SEM analysis results, it was concluded that the growth of the surface oxide film was reduced after four weeks and then the oxide film on the material surface served as a protection layer and prevented further corrosion

  20. Controllable film densification and interface flatness for high-performance amorphous indium oxide based thin film transistors

    Energy Technology Data Exchange (ETDEWEB)

    Ou-Yang, Wei, E-mail: OUYANG.Wei@nims.go.jp, E-mail: TSUKAGOSHI.Kazuhito@nims.go.jp; Mitoma, Nobuhiko; Kizu, Takio; Gao, Xu; Lin, Meng-Fang; Tsukagoshi, Kazuhito, E-mail: OUYANG.Wei@nims.go.jp, E-mail: TSUKAGOSHI.Kazuhito@nims.go.jp [International Center for Materials Nanoarchitectronics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan); Nabatame, Toshihide [MANA Foundry and MANA Advanced Device Materials Group, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan)

    2014-10-20

    To avoid the problem of air sensitive and wet-etched Zn and/or Ga contained amorphous oxide transistors, we propose an alternative amorphous semiconductor of indium silicon tungsten oxide as the channel material for thin film transistors. In this study, we employ the material to reveal the relation between the active thin film and the transistor performance with aid of x-ray reflectivity study. By adjusting the pre-annealing temperature, we find that the film densification and interface flatness between the film and gate insulator are crucial for achieving controllable high-performance transistors. The material and findings in the study are believed helpful for realizing controllable high-performance stable transistors.