WORKSHOP: Stable particle motion
International Nuclear Information System (INIS)
Ruggiero, Alessandro G.
1993-01-01
Full text: Particle beam stability is crucial to any accelerator or collider, particularly big ones, such as Brookhaven's RHIC heavy ion collider and the larger SSC and LHC proton collider schemes. A workshop on the Stability of Particle Motion in Storage Rings held at Brookhaven in October dealt with the important issue of determining the short- and long-term stability of single particle motion in hadron storage rings and colliders, and explored new methods for ensuring it. In the quest for realistic environments, the imperfections of superconducting magnets and the effects of field modulation and noise were taken into account. The workshop was divided into three study groups: Short-Term Stability in storage rings, including chromatic and geometric effects and correction strategies; Long-Term Stability, including modulation and random noise effects and slow varying effects; and Methods for determining the stability of particle motion. The first two were run in parallel, but the third was attended by everyone. Each group considered analytical, computational and experimental methods, reviewing work done so far, comparing results and approaches and underlining outstanding issues. By resolving conflicts, it was possible to identify problems of common interest. The workshop reaffirmed the validity of methods proposed several years ago. Major breakthroughs have been in the rapid improvement of computer capacity and speed, in the development of more sophisticated mathematical packages, and in the introduction of more powerful analytic approaches. In a typical storage ring, a particle may be required to circulate for about a billion revolutions. While ten years ago it was only possible to predict accurately stability over about a thousand revolutions, it is now possible to predict over as many as one million turns. If this trend continues, in ten years it could become feasible to predict particle stability over the entire storage period. About ninety participants
Complex motions and chaos in nonlinear systems
Machado, José; Zhang, Jiazhong
2016-01-01
This book brings together 10 chapters on a new stream of research examining complex phenomena in nonlinear systems—including engineering, physics, and social science. Complex Motions and Chaos in Nonlinear Systems provides readers a particular vantage of the nature and nonlinear phenomena in nonlinear dynamics that can develop the corresponding mathematical theory and apply nonlinear design to practical engineering as well as the study of other complex phenomena including those investigated within social science.
Wideband quin-stable energy harvesting via combined nonlinearity
Directory of Open Access Journals (Sweden)
Chen Wang
2017-04-01
Full Text Available In this work, we propose a wideband quintuple-well potential piezoelectric-based vibration energy harvester using a combined nonlinearity: the magnetic nonlinearity induced by magnetic force and the piecewise-linearity produced by mechanical impact. With extra stable states compared to other multi-stable harvesters, the quin-stable harvester can distribute its potential energy more uniformly, which provides shallower potential wells and results in lower excitation threshold for interwell motion. The mathematical model of this quin-stable harvester is derived and its equivalent piecewise-nonlinear restoring force is measured in the experiment and identified as piecewise polynomials. Numerical simulations and experimental verifications are performed in different levels of sinusoid excitation ranging from 1 to 25 Hz. The results demonstrate that, with lower potential barriers compared with tri-stable counterpart, the quin-stable arrangement can escape potential wells more easily for doing high-energy interwell motion over a wider band of frequencies. Moreover, by utilizing the mechanical stoppers, this harvester can produce significant output voltage under small tip deflections, which results in a high power density and is especially suitable for a compact MEMS approach.
Nonlinear Motion Tracking by Deep Learning Architecture
Verma, Arnav; Samaiya, Devesh; Gupta, Karunesh K.
2018-03-01
In the world of Artificial Intelligence, object motion tracking is one of the major problems. The extensive research is being carried out to track people in crowd. This paper presents a unique technique for nonlinear motion tracking in the absence of prior knowledge of nature of nonlinear path that the object being tracked may follow. We achieve this by first obtaining the centroid of the object and then using the centroid as the current example for a recurrent neural network trained using real-time recurrent learning. We have tweaked the standard algorithm slightly and have accumulated the gradient for few previous iterations instead of using just the current iteration as is the norm. We show that for a single object, such a recurrent neural network is highly capable of approximating the nonlinearity of its path.
Nonlinear optomechanical measurement of mechanical motion
DEFF Research Database (Denmark)
Brawley, G.A.; Vanner, M R; Larsen, Peter Emil
2016-01-01
Precision measurement of nonlinear observables is an important goal in all facets of quantum optics. This allows measurement-based non-classical state preparation, which has been applied to great success in various physical systems, and provides a route for quantum information processing with oth......Precision measurement of nonlinear observables is an important goal in all facets of quantum optics. This allows measurement-based non-classical state preparation, which has been applied to great success in various physical systems, and provides a route for quantum information processing...... with otherwise linear interactions. In cavity optomechanics much progress has been made using linear interactions and measurement, but observation of nonlinear mechanical degrees-of-freedom remains outstanding. Here we report the observation of displacement-squared thermal motion of a micro-mechanical resonator...... by exploiting the intrinsic nonlinearity of the radiation-pressure interaction. Using this measurement we generate bimodal mechanical states of motion with separations and feature sizes well below 100 pm. Future improvements to this approach will allow the preparation of quantum superposition states, which can...
Stability properties of nonlinear dynamical systems and evolutionary stable states
Energy Technology Data Exchange (ETDEWEB)
Gleria, Iram, E-mail: iram@fis.ufal.br [Instituto de Física, Universidade Federal de Alagoas, 57072-970 Maceió-AL (Brazil); Brenig, Leon [Faculté des Sciences, Université Libre de Bruxelles, 1050 Brussels (Belgium); Rocha Filho, Tarcísio M.; Figueiredo, Annibal [Instituto de Física and International Center for Condensed Matter Physics, Universidade de Brasília, 70919-970 Brasília-DF (Brazil)
2017-03-18
Highlights: • We address the problem of equilibrium stability in a general class of non-linear systems. • We link Evolutionary Stable States (ESS) to stable fixed points of square quasi-polynomial (QP) systems. • We show that an interior ES point may be related to stable interior fixed points of QP systems. - Abstract: In this paper we address the problem of stability in a general class of non-linear systems. We establish a link between the concepts of asymptotic stable interior fixed points of square Quasi-Polynomial systems and evolutionary stable states, a property of some payoff matrices arising from evolutionary games.
Naturally stable Sagnac-Michelson nonlinear interferometer.
Lukens, Joseph M; Peters, Nicholas A; Pooser, Raphael C
2016-12-01
Interferometers measure a wide variety of dynamic processes by converting a phase change into an intensity change. Nonlinear interferometers, making use of nonlinear media in lieu of beamsplitters, promise substantial improvement in the quest to reach the ultimate sensitivity limits. Here we demonstrate a new nonlinear interferometer utilizing a single parametric amplifier for mode mixing-conceptually, a nonlinear version of the conventional Michelson interferometer with its arms collapsed together. We observe up to 99.9% interference visibility and find evidence for noise reduction based on phase-sensitive gain. Our configuration utilizes fewer components than previous demonstrations and requires no active stabilization, offering new capabilities for practical nonlinear interferometric-based sensors.
Nonlinear density waves in a marginally stable gravitating disk
International Nuclear Information System (INIS)
Korchagin, V.I.
1986-01-01
The evolution of short nonlinear density waves in a disk at the stability limit is studied for arbitrary values of the radial wave number k/sub r/. For waves with wave numbers that do not lie at the minimum of the dispersion curve, the behavior of the amplitude is described by a nonlinear parabolic equation; however, stationary soliton solutions cannot exist in such a system since there is no dispersion spreading of a packet. For wave numbers lying at the minimum of the dispersion curve, soliton structures with determined amplitude are possible. In stable gravitating disks and in a disk at the stability limit, two physically different types of soliton can exist
Characterization of Non-Linearized Spacecraft Relative Motion using Nonlinear Normal Modes
2016-04-20
of the LVLH frame with respect to an inertial frame, expressed in LVLH coordinates, is given by ω = [0, 0, n]T ∈ R3, where n = √ µ/r3c is the mean ...AFRL-RV-PS- AFRL-RV-PS- TR-2015-0182 TR-2015-0182 CHARACTERIZATION OF NON-LINEARIZED SPACECRAFT RELATIVE MOTION USING NONLINEAR NORMAL MODES Eric...Non-Linearized Spacecraft Relative Motion using Nonlinear Normal Modes 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 62601F
Effects on non-linearities on aircraft poststall motion
International Nuclear Information System (INIS)
Rohacs, J.; Thomasson, P.; Mosehilde, E.
1994-01-01
The poststall maneuverability controlled by thrust vectoring has become one of the important aspects of new fighter development projects. In simplified case, the motion of aircraft can be described by 6DOF nonlinear system. The lecture deals with the longitudinal motion of poststall maneuverable aircraft. The investigation made about the effects of non-linearities in aerodynamic coefficients having considerable non-linearities and hysteresisis an the poststall motions. There were used some different models of aerodynamic coefficients. The results of investigation have shown that the poststall domain of vectored aircraft can be divided into five different pHs in field of thrust - pitch vector angle, and the chaotic motions of aircraft can be found at the different frequencies of thrust deflection. There were defined an unstable right domain with an unstable oscillation and a field of overpulling at poststall motion. The certain frequency chaotic attractors were got at frequencies of Oxitation between the 0.15 and 0.65 rad/sec. The pitching moment derivatives had the big influence on the chaotic motions, while the lift coefficient derivatives bad the reasonable effects, only
Stable Lévy motion with inverse Gaussian subordinator
Kumar, A.; Wyłomańska, A.; Gajda, J.
2017-09-01
In this paper we study the stable Lévy motion subordinated by the so-called inverse Gaussian process. This process extends the well known normal inverse Gaussian (NIG) process introduced by Barndorff-Nielsen, which arises by subordinating ordinary Brownian motion (with drift) with inverse Gaussian process. The NIG process found many interesting applications, especially in financial data description. We discuss here the main features of the introduced subordinated process, such as distributional properties, existence of fractional order moments and asymptotic tail behavior. We show the connection of the process with continuous time random walk. Further, the governing fractional partial differential equations for the probability density function is also obtained. Moreover, we discuss the asymptotic distribution of sample mean square displacement, the main tool in detection of anomalous diffusion phenomena (Metzler et al., 2014). In order to apply the stable Lévy motion time-changed by inverse Gaussian subordinator we propose a step-by-step procedure of parameters estimation. At the end, we show how the examined process can be useful to model financial time series.
Study of nonlinear system stability using eigenvalue analysis: Gyroscopic motion
Shabana, Ahmed A.; Zaher, Mohamed H.; Recuero, Antonio M.; Rathod, Cheta
2011-11-01
General computational multibody system (MBS) algorithms allow for the linearization of the highly nonlinear equations of motion at different points in time in order to obtain the eigenvalue solution. This eigenvalue solution of the linearized equations is often used to shed light on the system stability at different configurations that correspond to different time points. Different MBS algorithms, however, employ different sets of orientation coordinates, such as Euler angles and Euler parameters, which lead to different forms of the dynamic equations of motion. As a consequence, the forms of the linearized equations and the eigenvalue solution obtained strongly depend on the set of orientation coordinates used. This paper addresses this fundamental issue by examining the effect of the use of different orientation parameters on the linearized equations of a gyroscope. The nonlinear equations of motion of the gyroscope are formulated using two different sets of orientation parameters: Euler angles and Euler parameters. In order to obtain a set of linearized equations that can be used to define the eigenvalue solution, the algebraic equations that describe the MBS constraints are systematically eliminated leading to a nonlinear form of the equations of motion expressed in terms of the system degrees of freedom. Because in MBS applications the generalized forces can be highly nonlinear and can depend on the velocities, a state space formulation is used to solve the eigenvalue problem. It is shown in this paper that the independent state equations formulated using Euler angles and Euler parameters lead to different eigenvalue solutions. This solution is also different from the solution obtained using a form of the Newton-Euler matrix equation expressed in terms of the angular accelerations and angular velocities. A time-domain solution of the linearized equations is also presented in order to compare between the solutions obtained using two different sets of
Stable phantom-energy wormholes admitting conformal motions
Kuhfittig, Peter K. F.
It has been argued that wormholes are as good a prediction of Einstein’s theory as black holes but the theoretical construction requires a reverse strategy, specifying the desired geometric properties of the wormhole and leaving open the determination of the stress-energy tensor. We begin by confirming an earlier result by the author showing that a complete wormhole solution can be obtained by adopting the equation of state p = ωρ and assuming that the wormhole admits a one-parameter group of conformal motions. The main purpose of this paper is to use the assumption of conformal symmetry to show that the wormhole is stable to linearized radial perturbations whenever - 1.5 < ω < -1.
Stable particle motion in a linear accelerator with solenoid focusing
International Nuclear Information System (INIS)
Wadlinger, E.A.
1979-01-01
The equation governing stable particle motion in a linear ion accelerator containing discrete rf and either discrete or continuous solenoid focusing was derived. It was found for discrete solenoid focusing that: cos μ = (1 + dΔ) cos theta/2 + (lΔ/theta - dtheta/2l - thetaΔd 2 /4l) sin theta/2, Δ = 1/f and l + 2d = βlambda, where μ, theta, f, l, and d are the phase advance per cell, precession angle in the solenoid, focal length of the rf lens, length of the solenoid in one cell, and the drift distance between the center of the rf gap and the effective edge of the solenoid. The relation for a continuous solenoid is found by setting d equal to zero. The boundaries of the stability region for theta vs Δ with fixed l and d are obtained when cos μ =+-1
Simplified Methods Applied to Nonlinear Motion of Spar Platforms
Energy Technology Data Exchange (ETDEWEB)
Haslum, Herbjoern Alf
2000-07-01
Simplified methods for prediction of motion response of spar platforms are presented. The methods are based on first and second order potential theory. Nonlinear drag loads and the effect of the pumping motion in a moon-pool are also considered. Large amplitude pitch motions coupled to extreme amplitude heave motions may arise when spar platforms are exposed to long period swell. The phenomenon is investigated theoretically and explained as a Mathieu instability. It is caused by nonlinear coupling effects between heave, surge, and pitch. It is shown that for a critical wave period, the envelope of the heave motion makes the pitch motion unstable. For the same wave period, a higher order pitch/heave coupling excites resonant heave response. This mutual interaction largely amplifies both the pitch and the heave response. As a result, the pitch/heave instability revealed in this work is more critical than the previously well known Mathieu's instability in pitch which occurs if the wave period (or the natural heave period) is half the natural pitch period. The Mathieu instability is demonstrated both by numerical simulations with a newly developed calculation tool and in model experiments. In order to learn more about the conditions for this instability to occur and also how it may be controlled, different damping configurations (heave damping disks and pitch/surge damping fins) are evaluated both in model experiments and by numerical simulations. With increased drag damping, larger wave amplitudes and more time are needed to trigger the instability. The pitch/heave instability is a low probability of occurrence phenomenon. Extreme wave periods are needed for the instability to be triggered, about 20 seconds for a typical 200m draft spar. However, it may be important to consider the phenomenon in design since the pitch/heave instability is very critical. It is also seen that when classical spar platforms (constant cylindrical cross section and about 200m draft
Sadri, Sobhan; Wu, Christine
2013-06-01
For the first time, this paper investigates the application of the concept of Lyapunov exponents to the stability analysis of the nonlinear vehicle model in plane motion with two degrees of freedom. The nonlinearity of the model comes from the third-order polynomial expression between the lateral forces on the tyres and the tyre slip angles. Comprehensive studies on both system and structural stability analyses of the vehicle model are presented. The system stability analysis includes the stability, lateral stability region, and effects of driving conditions on the lateral stability region of the vehicle model in the state space. In the structural stability analysis, the ranges of driving conditions in which the stability of the vehicle model is guaranteed are given. Moreover, through examples, the largest Lyapunov exponent is suggested as an indicator of the convergence rate in which the disturbed vehicle model returns to its stable fixed point.
Dynamic recurrent neural networks for stable adaptive control of wing rock motion
Kooi, Steven Boon-Lam
Wing rock is a self-sustaining limit cycle oscillation (LCO) which occurs as the result of nonlinear coupling between the dynamic response of the aircraft and the unsteady aerodynamic forces. In this thesis, dynamic recurrent RBF (Radial Basis Function) network control methodology is proposed to control the wing rock motion. The concept based on the properties of the Presiach hysteresis model is used in the design of dynamic neural networks. The structure and memory mechanism in the Preisach model is analogous to the parallel connectivity and memory formation in the RBF neural networks. The proposed dynamic recurrent neural network has a feature for adding or pruning the neurons in the hidden layer according to the growth criteria based on the properties of ensemble average memory formation of the Preisach model. The recurrent feature of the RBF network deals with the dynamic nonlinearities and endowed temporal memories of the hysteresis model. The control of wing rock is a tracking problem, the trajectory starts from non-zero initial conditions and it tends to zero as time goes to infinity. In the proposed neural control structure, the recurrent dynamic RBF network performs identification process in order to approximate the unknown non-linearities of the physical system based on the input-output data obtained from the wing rock phenomenon. The design of the RBF networks together with the network controllers are carried out in discrete time domain. The recurrent RBF networks employ two separate adaptation schemes where the RBF's centre and width are adjusted by the Extended Kalman Filter in order to give a minimum networks size, while the outer networks layer weights are updated using the algorithm derived from Lyapunov stability analysis for the stable closed loop control. The issue of the robustness of the recurrent RBF networks is also addressed. The effectiveness of the proposed dynamic recurrent neural control methodology is demonstrated through simulations to
Energy Technology Data Exchange (ETDEWEB)
Lebedev, M. E., E-mail: gloriouslair@gmail.com, E-mail: galfimov@yahoo.com; Alfimov, G. L., E-mail: gloriouslair@gmail.com, E-mail: galfimov@yahoo.com [National Research University of Electronic Technology MIET, Zelenograd, Moscow 124498 (Russian Federation); Malomed, Boris A., E-mail: malomed@post.tau.ac.il [Department of Physical Electronics, School of Electrical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 69978 (Israel); Laboratory of Nonlinear-Optical Informatics, ITMO University, St. Petersburg 197101 (Russian Federation)
2016-07-15
We develop a general classification of the infinite number of families of solitons and soliton complexes in the one-dimensional Gross-Pitaevskii/nonlinear Schrödinger equation with a nonlinear lattice pseudopotential, i.e., periodically modulated coefficient in front of the cubic term, which takes both positive and negative local values. This model finds direct implementations in atomic Bose-Einstein condensates and nonlinear optics. The most essential finding is the existence of two branches of dipole solitons (DSs), which feature an antisymmetric shape, being essentially squeezed into a single cell of the nonlinear lattice. This soliton species was not previously considered in nonlinear lattices. We demonstrate that one branch of the DS family (namely, which obeys the Vakhitov-Kolokolov criterion) is stable, while unstable DSs spontaneously transform into stable fundamental solitons (FSs). The results are obtained in numerical and approximate analytical forms, the latter based on the variational approximation. Some stable bound states of FSs are found too.
Chen, Yong; Yan, Zhenya
2017-01-01
The effect of derivative nonlinearity and parity-time-symmetric (PT-symmetric) potentials on the wave propagation dynamics is explored in the derivative nonlinear Schrödinger equation, where the physically interesting Scarf-II and harmonic-Hermite-Gaussian potentials are chosen. We study numerically the regions of unbroken and broken linear PT-symmetric phases and find some stable bright solitons of this model in a wide range of potential parameters even though the corresponding linear PT-symmetric phases are broken. The semielastic interactions between particular bright solitons and exotic incident waves are illustrated such that we find that particular nonlinear modes almost keep their shapes after interactions even if the exotic incident waves have evidently been changed. Moreover, we exert the adiabatic switching on PT-symmetric potential parameters such that a stable nonlinear mode with the unbroken linear PT-symmetric phase can be excited to another stable nonlinear mode belonging to the broken linear PT-symmetric phase.
Robust Control and Motion Planning for Nonlinear Underactuated Systems Using H infinity Techniques
National Research Council Canada - National Science Library
Toussaint, Gregory
2000-01-01
This thesis presents new techniques for planning and robustly controlling the motion of nonlinear underactuated vehicles when disturbances are present and only imperfect state measurements are available for feedback...
Feedback between motion and sensation provides nonlinear boost in run-and-tumble navigation.
Directory of Open Access Journals (Sweden)
Junjiajia Long
2017-03-01
Full Text Available Many organisms navigate gradients by alternating straight motions (runs with random reorientations (tumbles, transiently suppressing tumbles whenever attractant signal increases. This induces a functional coupling between movement and sensation, since tumbling probability is controlled by the internal state of the organism which, in turn, depends on previous signal levels. Although a negative feedback tends to maintain this internal state close to adapted levels, positive feedback can arise when motion up the gradient reduces tumbling probability, further boosting drift up the gradient. Importantly, such positive feedback can drive large fluctuations in the internal state, complicating analytical approaches. Previous studies focused on what happens when the negative feedback dominates the dynamics. By contrast, we show here that there is a large portion of physiologically-relevant parameter space where the positive feedback can dominate, even when gradients are relatively shallow. We demonstrate how large transients emerge because of non-normal dynamics (non-orthogonal eigenvectors near a stable fixed point inherent in the positive feedback, and further identify a fundamental nonlinearity that strongly amplifies their effect. Most importantly, this amplification is asymmetric, elongating runs in favorable directions and abbreviating others. The result is a "ratchet-like" gradient climbing behavior with drift speeds that can approach half the maximum run speed of the organism. Our results thus show that the classical drawback of run-and-tumble navigation-wasteful runs in the wrong direction-can be mitigated by exploiting the non-normal dynamics implicit in the run-and-tumble strategy.
Comparison of Nonlinear Model Results Using Modified Recorded and Synthetic Ground Motions
International Nuclear Information System (INIS)
Spears, Robert E.; Wilkins, J. Kevin
2011-01-01
A study has been performed that compares results of nonlinear model runs using two sets of earthquake ground motion time histories that have been modified to fit the same design response spectra. The time histories include applicable modified recorded earthquake ground motion time histories and synthetic ground motion time histories. The modified recorded earthquake ground motion time histories are modified from time history records that are selected based on consistent magnitude and distance. The synthetic ground motion time histories are generated using appropriate Fourier amplitude spectrums, Arias intensity, and drift correction. All of the time history modification is performed using the same algorithm to fit the design response spectra. The study provides data to demonstrate that properly managed synthetic ground motion time histories are reasonable for use in nonlinear seismic analysis.
High-Order Entropy Stable Finite Difference Schemes for Nonlinear Conservation Laws: Finite Domains
Fisher, Travis C.; Carpenter, Mark H.
2013-01-01
Developing stable and robust high-order finite difference schemes requires mathematical formalism and appropriate methods of analysis. In this work, nonlinear entropy stability is used to derive provably stable high-order finite difference methods with formal boundary closures for conservation laws. Particular emphasis is placed on the entropy stability of the compressible Navier-Stokes equations. A newly derived entropy stable weighted essentially non-oscillatory finite difference method is used to simulate problems with shocks and a conservative, entropy stable, narrow-stencil finite difference approach is used to approximate viscous terms.
Linear instability and nonlinear motion of rotating plasma
International Nuclear Information System (INIS)
Liu, J.
1985-01-01
Two coupled nonlinear equations describing the flute dynamics of the magnetically confined low-β collisionless rotating plasma are derived. The linear instability and nonlinear dynamics of the rotating column are analyzed theoretically. In the linear stability analysis, a new sufficient condition of stability is obtained. From the exact solution of eigenvalue equation for Gaussian density profile and uniform rotation of the plasma, the stability of the system strongly depends on the direction of plasma rotation, FLR effect and the location of the conducting wall. An analytic expression showing the finite wall effect on different normal modes is obtained and it explains the different behavior of (1,0) normal mode from other modes. The sheared rotation driven instability is investigated by using three model equilibrium profiles, and the analytic expressions of eigenvalues which includes the wall effect are obtained. The analogy between shear rotation driven instability and the instability driven by sheared plane parallel flow in the inviscid fluid is analyzed. Applying the linear analysis to the central cell of tandem mirror system, the trapped particle instability with only passing electronics is analyzed. For uniform rotation and Gaussian density profile, an analytic expression that determines the stability boundary is found. The nonlinear analysis shows that the nonlinear equations have a solitary vortex solution which is very similar to the vortex solution of nonlinear Rossby wave equation
Motion Cueing Algorithm Development: Human-Centered Linear and Nonlinear Approaches
Houck, Jacob A. (Technical Monitor); Telban, Robert J.; Cardullo, Frank M.
2005-01-01
While the performance of flight simulator motion system hardware has advanced substantially, the development of the motion cueing algorithm, the software that transforms simulated aircraft dynamics into realizable motion commands, has not kept pace. Prior research identified viable features from two algorithms: the nonlinear "adaptive algorithm", and the "optimal algorithm" that incorporates human vestibular models. A novel approach to motion cueing, the "nonlinear algorithm" is introduced that combines features from both approaches. This algorithm is formulated by optimal control, and incorporates a new integrated perception model that includes both visual and vestibular sensation and the interaction between the stimuli. Using a time-varying control law, the matrix Riccati equation is updated in real time by a neurocomputing approach. Preliminary pilot testing resulted in the optimal algorithm incorporating a new otolith model, producing improved motion cues. The nonlinear algorithm vertical mode produced a motion cue with a time-varying washout, sustaining small cues for longer durations and washing out large cues more quickly compared to the optimal algorithm. The inclusion of the integrated perception model improved the responses to longitudinal and lateral cues. False cues observed with the NASA adaptive algorithm were absent. The neurocomputing approach was crucial in that the number of presentations of an input vector could be reduced to meet the real time requirement without degrading the quality of the motion cues.
Nonlinear model of a rotating hub-beams structure: Equations of motion
Warminski, Jerzy
2018-01-01
Dynamics of a rotating structure composed of a rigid hub and flexible beams is presented in the paper. A nonlinear model of a beam takes into account bending, extension and nonlinear curvature. The influence of geometric nonlinearity and nonconstant angular velocity on dynamics of the rotating structure is presented. The exact equations of motion and associated boundary conditions are derived on the basis of the Hamilton's principle. The simplification of the exact nonlinear mathematical model is proposed taking into account the second order approximation. The reduced partial differential equations of motion together with associated boundary conditions can be used to study natural or forced vibrations of a rotating structure considering constant or nonconstant angular speed of a rigid hub and an arbitrary number of flexible blades.
Intermittent Motion, Nonlinear Diffusion Equation and Tsallis Formalism
Directory of Open Access Journals (Sweden)
Ervin K. Lenzi
2017-01-01
Full Text Available We investigate an intermittent process obtained from the combination of a nonlinear diffusion equation and pauses. We consider the porous media equation with reaction terms related to the rate of switching the particles from the diffusive mode to the resting mode or switching them from the resting to the movement. The results show that in the asymptotic limit of small and long times, the spreading of the system is essentially governed by the diffusive term. The behavior exhibited for intermediate times depends on the rates present in the reaction terms. In this scenario, we show that, in the asymptotic limits, the distributions for this process are given by in terms of power laws which may be related to the q-exponential present in the Tsallis statistics. Furthermore, we also analyze a situation characterized by different diffusive regimes, which emerges when the diffusive term is a mixing of linear and nonlinear terms.
Nonlinear analysis of concrete gravity dams under normal fault motion
Directory of Open Access Journals (Sweden)
Mehdi Alijani Ardeshir
2016-09-01
Full Text Available The importance of the seismic behavior of concrete gravity dams in their safety evaluation and stability is inevitable. Many factors affect the prediction of the behavior of concrete dams such as dam-foundation-reservoir interaction, dam and foundation cracking and also displacement due to fault movement that could causes nonlinear behavior. The aim of this study is nonlinear analysis of concrete gravity dams, including displacement caused by normal fault movement in the dam foundation. For this purpose, dam-foundation-reservoir system is modeled using Lagrangian method and analysis of system is done by finite element method. The coordinate smeared crack model based on the nonlinear fracture mechanics is used for crack modeling in the dam body and foundation. Using two separate method including split node technique and contact element, the fault movement are modeled and the position and angle of fault has been studied. To verify the results, dam crest displacement and crack profile in the body of a concrete gravity dam is presented as an example. The results show that low fault movement causes the cracks in the dam body and could be jeopardizes the stability and safety of concrete dam.
Approximate solutions of non-linear circular orbit relative motion in curvilinear coordinates
Bombardelli, Claudio; Gonzalo, Juan Luis; Roa, Javier
2017-01-01
A compact, time-explicit, approximate solution of the highly non-linear relative motion in curvilinear coordinates is provided under the assumption of circular orbit for the chief spacecraft. The rather compact, three-dimensional solution is obtained by algebraic manipulation of the individual Keplerian motions in curvilinear, rather than Cartesian coordinates, and provides analytical expressions for the secular, constant and periodic terms of each coordinate as a function of the initial relative motion conditions or relative orbital elements. Numerical test cases are conducted to show that the approximate solution can be effectively employed to extend the classical linear Clohessy-Wiltshire solution to include non-linear relative motion without significant loss of accuracy up to a limit of 0.4-0.45 in eccentricity and 40-45° in relative inclination for the follower. A very simple, quadratic extension of the classical Clohessy-Wiltshire solution in curvilinear coordinates is also presented.
Nonlinear effects on motions and loads using an iterative time-frequency solver
Directory of Open Access Journals (Sweden)
D. Bruzzone
2011-03-01
Full Text Available A weakly nonlinear seakeeping methodology for predicting motions and loads is presented in this paper. This methodology assumes linear radiation and diffraction forces, calculated in the frequency domain, and fully nonlinear Froude-Krylov and hydrostatic forces, evaluated in the time domain. The particular approach employed here allows to overcome numerical problems connected to the determination of the impulse response functions. The procedure is divided into three consecutive steps: evaluation of dynamic sinkage and trim in calm water that can significantly influence the final results, a linear seakeeping analysis in the frequency domain and a weakly nonlinear simulation. The first two steps are performed employing a three-dimensional Rankine panel method. Nonlinear Froude-Krylov and hydrostatic forces are computed in the time domain by pressure integration on the actual wetted surface at each time step. Although nonlinear forces are evaluated into the time domain, the equations of motion are solved in the frequency domain iteratively passing from the frequency to the time domain until convergence. The containership S175 is employed as a test case for evaluating the capability of this methodology to correctly predict the nonlinear behavior related to wave induced motions and loads in head seas; numerical results are compared with experimental data provided in literature.
Non-linear Yang-Mills instantons from strings are π-stable D-branes
International Nuclear Information System (INIS)
Enger, H.; Luetken, C.A.
2004-01-01
We show that B-type Π-stable D-branes do not in general reduce to the (Gieseker-) stable holomorphic vector bundles used in mathematics to construct moduli spaces. We show that solutions of the almost Hermitian Yang-Mills equations for the non-linear deformations of Yang-Mills instantons that appear in the low-energy geometric limit of strings exist iff they are π-stable, a geometric large volume version of Π-stability. This shows that π-stability is the correct physical stability concept. We speculate that this string-canonical choice of stable objects, which is encoded in and derived from the central charge of the string-algebra, should find applications to algebraic geometry where there is no canonical choice of stable geometrical objects
The motion control of a statically stable biped robot on an uneven floor.
Shih, C L; Chiou, C J
1998-01-01
This work studies the motion control of a statically stable biped robot having seven degrees of freedom. Statically stable walking of the biped robot is realized by maintaining the center-of-gravity inside the convex region of the supporting foot and/or feet during both single-support and double-support phases. The main points of this work are framing the stability in an easy and correct way, the design of a bipedal statically stable walker, and walking on sloping surfaces and stairs.
A perturbative formulation of nonlinear dispersion for particle motion in storage rings
Tanaka, H; Soutome, K; Hama, H; Hosaka, M
1999-01-01
We provide a perturbative formulation of nonlinear dispersion for particle motion in storage rings without linearizing the kinematic term and give recursion expressions for higher-order terms up to the fourth order. As an example, the nonlinear dispersion function of the SPring-8 storage ring is numerically calculated. The numerical calculation shows that the higher-order terms up to third order are not significantly modulated by magnetic error if the dispersion of the linear optics is sufficiently small. An experimental study of the nonlinear dispersion was also carried out and it was found that the agreement between the theory and the measurement was fairly good up to second order. (author)
Identification Techniques for Nonlinear Differential Equations of Motion
1990-03-01
using k/(27f n) . The value of the viscous damping is estimated on the basis of the magnitude of A1 at f=fn where JA1 j = 2nf c. 5.2.2 Puffing SDOF...Vibration, vol 81, 1982. 9. H.J. Rice , and J.A. Fitzpatrick. "A generalized technique for spectral analysis of nonlinear systems," Mechanical Systems...and Signal Processing, vol 2, 1988, pp 243-249. 40 10. H.J. Rice , H. Esmonde, and J.A. Fitzpatrick. "A spectral method for identifying quadratic
A nonlinear fractional derivative model of impulse motion for viscoelastic materials
International Nuclear Information System (INIS)
Fukunaga, Masataka; Shimizu, Nobuyuki; Nasuno, Hiroshi
2009-01-01
Generally, force can be described as a function of displacement in the mechanical model. A nonlinear fractional derivative model with respect to displacement is proposed to describe force for a viscoelastic material based on the measured data of impulsive motion. In the model, the nonlinearity is assumed to appear in the term of the fractional derivative. Three types of nonlinearity in the fractional derivative term are considered as candidates for a suitable model for reproducing the impulsive responses of the measured data. The first one is the case where the nonlinearity appears in the coefficient of the fractional derivative and the second in the fractionally differentiated term. The third one is the case where the nonlinearity appears as the combination of the above two types. The equation of motion and the initial conditions are derived by employing the above nonlinear models for head-on collisions of a rigid body onto the viscoelastic material. The property of the impulsive responses for the system that is derived above is characterized by the time when the acceleration shows its maximum. The symmetry property of increasing and decreasing acceleration response about the time of maximum acceleration is also considered. The second-type nonlinearity in the model seems to be adequate for reproducing the measured response.
Prediction of Ship Unsteady Maneuvering in Calm Water by a Fully Nonlinear Ship Motion Model
Directory of Open Access Journals (Sweden)
Ray-Qing Lin
2012-01-01
Full Text Available This is the continuation of our research on development of a fully nonlinear, dynamically consistent, numerical ship motion model (DiSSEL. In this study we will report our results in predicting ship motions in unsteady maneuvering in calm water. During the unsteady maneuvering, both the rudder angle, and ship forward speed vary with time. Therefore, not only surge, sway, and yaw motions occur, but roll, pitch and heave motions will also occur even in calm water as heel, trim, and sinkage, respectively. When the rudder angles and ship forward speed vary rapidly with time, the six degrees-of-freedom ship motions and their interactions become strong. To accurately predict the six degrees-of-freedom ship motions in unsteady maneuvering, a universal method for arbitrary ship hull requires physics-based fully-nonlinear models for ship motion and for rudder forces and moments. The numerical simulations will be benchmarked by experimental data of the Pre-Contract DDG51 design and an Experimental Hull Form. The benchmarking shows a good agreement between numerical simulations by the enhancement DiSSEL and experimental data. No empirical parameterization is used, except for the influence of the propeller slipstream on the rudder, which is included using a flow acceleration factor.
Equations of motion for anisotropic nonlinear elastic continuum in gravitational field
International Nuclear Information System (INIS)
Sokolov, S.N.
1994-01-01
Equations of motion for anisotropic nonlinear elastic continuum in the gravitational field are written in the form convenient for numerical calculations. The energy-stress tensor is expressed through scalar and tensor products of three vectors frozen in the continuum. Examples of expansion of the energy-stress tensor into scalar and tensor invariants corresponding to some crystal classes are given. 47 refs
Stable one-dimensional periodic waves in Kerr-type saturable and quadratic nonlinear media
Energy Technology Data Exchange (ETDEWEB)
Kartashov, Yaroslav V [ICFO-Institut de Ciencies Fotoniques, and Department of Signal Theory and Communications, Universitat Politecnica de Catalunya, E-08034 Barcelona (Spain); Egorov, Alexey A [Physics Department, M V Lomonosov Moscow State University, 119899, Moscow (Russian Federation); Vysloukh, Victor A [Departamento de Fisica y Matematicas, Universidad de las Americas-Puebla, Santa Catarina Martir, 72820, Puebla, Cholula (Mexico); Torner, Lluis [ICFO-Institut de Ciencies Fotoniques, and Department of Signal Theory and Communications, Universitat Politecnica de Catalunya, E-08034 Barcelona (Spain)
2004-05-01
We review the latest progress and properties of the families of bright and dark one-dimensional periodic waves propagating in saturable Kerr-type and quadratic nonlinear media. We show how saturation of the nonlinear response results in the appearance of stability (instability) bands in a focusing (defocusing) medium, which is in sharp contrast with the properties of periodic waves in Kerr media. One of the key results discovered is the stabilization of multicolour periodic waves in quadratic media. In particular, dark-type waves are shown to be metastable, while bright-type waves are completely stable in a broad range of energy flows and material parameters. This yields the first known example of completely stable periodic wave patterns propagating in conservative uniform media supporting bright solitons. Such results open the way to the experimental observation of the corresponding self-sustained periodic wave patterns.
Predicting non-linear dynamics by stable local learning in a recurrent spiking neural network.
Gilra, Aditya; Gerstner, Wulfram
2017-11-27
The brain needs to predict how the body reacts to motor commands, but how a network of spiking neurons can learn non-linear body dynamics using local, online and stable learning rules is unclear. Here, we present a supervised learning scheme for the feedforward and recurrent connections in a network of heterogeneous spiking neurons. The error in the output is fed back through fixed random connections with a negative gain, causing the network to follow the desired dynamics. The rule for Feedback-based Online Local Learning Of Weights (FOLLOW) is local in the sense that weight changes depend on the presynaptic activity and the error signal projected onto the postsynaptic neuron. We provide examples of learning linear, non-linear and chaotic dynamics, as well as the dynamics of a two-link arm. Under reasonable approximations, we show, using the Lyapunov method, that FOLLOW learning is uniformly stable, with the error going to zero asymptotically.
Wang, Dong; Zhao, Yang; Yang, Fangfang; Tsui, Kwok-Leung
2017-09-01
Brownian motion with adaptive drift has attracted much attention in prognostics because its first hitting time is highly relevant to remaining useful life prediction and it follows the inverse Gaussian distribution. Besides linear degradation modeling, nonlinear-drifted Brownian motion has been developed to model nonlinear degradation. Moreover, the first hitting time distribution of the nonlinear-drifted Brownian motion has been approximated by time-space transformation. In the previous studies, the drift coefficient is the only hidden state used in state space modeling of the nonlinear-drifted Brownian motion. Besides the drift coefficient, parameters of a nonlinear function used in the nonlinear-drifted Brownian motion should be treated as additional hidden states of state space modeling to make the nonlinear-drifted Brownian motion more flexible. In this paper, a prognostic method based on nonlinear-drifted Brownian motion with multiple hidden states is proposed and then it is applied to predict remaining useful life of rechargeable batteries. 26 sets of rechargeable battery degradation samples are analyzed to validate the effectiveness of the proposed prognostic method. Moreover, some comparisons with a standard particle filter based prognostic method, a spherical cubature particle filter based prognostic method and two classic Bayesian prognostic methods are conducted to highlight the superiority of the proposed prognostic method. Results show that the proposed prognostic method has lower average prediction errors than the particle filter based prognostic methods and the classic Bayesian prognostic methods for battery remaining useful life prediction.
Watkins, N W; Credgington, D; Sanchez, R; Rosenberg, S J; Chapman, S C
2009-04-01
Lévy flights and fractional Brownian motion have become exemplars of the heavy-tailed jumps and long-ranged memory widely seen in physics. Natural time series frequently combine both effects, and linear fractional stable motion (lfsm) is a model process of this type, combining alpha-stable jumps with a memory kernel. In contrast complex physical spatiotemporal diffusion processes where both the above effects compete have for many years been modeled using the fully fractional kinetic equation for the continuous-time random walk (CTRW), with power laws in the probability density functions of both jump size and waiting time. We derive the analogous kinetic equation for lfsm and show that it has a diffusion coefficient with a power law in time rather than having a fractional time derivative like the CTRW. We discuss some preliminary results on the scaling of burst "sizes" and "durations" in lfsm time series, with applications to modeling existing observations in space physics and elsewhere.
Nonlinear seismic behavior of a CANDU containment building subjected to near-field ground motions
International Nuclear Information System (INIS)
Choi, In Kil; Ahn, Seong Moon; Choun, Young Sun; Seo, Jeong Moon
2004-01-01
The standard response spectrum proposed by US NRC has been used as a design earthquake for the design of Korean nuclear power plant structures. A survey on some of the Quaternary fault segments near Korean nuclear power plants is ongoing. It is likely that these faults will be identified as active ones. If the faults are confirmed as active ones, it will be necessary to reevaluate the seismic safety of the nuclear power plants located near the fault. Near-fault ground motions are the ground motions that occur near an earthquake fault. In general, the near-fault ground motion records exhibit a distinctive long period pulse like time history with very high peak velocities. These features are induced by the slip of the earthquake fault. Near-fault ground motions, which have caused much of the damage in recent major earthquakes, can be characterized by a pulse-like motion that exposes the structure to a high input energy at the beginning of the motion. In this study, nonlinear dynamic time-history analyses were performed to investigate the seismic behavior of a CANDU containment structure subjected to various earthquake ground motions including the near-field ground motions
Nonlinear surge motions of a ship in bi-chromatic following waves
Spyrou, Kostas J.; Themelis, Nikos; Kontolefas, Ioannis
2018-03-01
Unintended motions of a ship operating in steep and long following waves are investigated. A well-known such case is ;surf-riding; where a ship is carried forward by a single wave, an event invoking sometimes lateral instability and even capsize. The dynamics underlying this behavior has been clarified earlier for monochromatic waves. However, the unsteadiness of the phase space associated with ship behavior in a multichromatic sea, combined with the intrinsically strong system nonlinearity, pose new challenges. Here, current theory is extended to cover surging and surf-riding behavior in unidirectional bi-chromatic waves encountering a ship from the stern. Excitation is provided by two unidirectional harmonic wave components having their lengths comparable to the ship length and their frequencies in rational ratio. The techniques applied include (a) continuation analysis; (b) tracking of Lagrangian coherent structures in phase space, approximated through a finite-time Lyapunov exponents' calculation; and (c) large scale simulation. A profound feature of surf-riding in bi-chromatic waves is that it is turned oscillatory. Initially it appears as a frequency-locked motion, ruled by the harmonic wave component dominating the excitation. Transformations of oscillatory surf-riding are realized as the waves become steeper. In particular, heteroclinic tanglings are identified, governing abrupt transitions between qualitatively different motions. Chaotic transients, as well as long-term chaotic motions, exist near to these events. Some extraordinary patterns of ship motion are discovered. These include a counterintuitive low speed motion at very high wave excitation level; and a hybrid motion characterized by a wildly fluctuating velocity. Due to the quite generic nature of the core mathematical model of our investigation, the current results are believed to offer clues about the behavior of a class of nonlinear dynamical systems having in their modeling some analogy with
Non-Linear Fuzzy Logic Control for Forced Large Motions of Spinning Shafts
LEI, SHULIANG; PALAZZOLO, ALAN; NA, UHNJOO; KASCAK, ALBERT
2000-08-01
A unique control approach is developed for prescribed large motion control using magnetic bearings in a proposed active stall control test rig. A finite element based, flexible shaft is modeled in a closed loop system with PD controllers that generate the control signals to support and to shake the rotor shaft. A linearized force model of the stall rig with 16 magnetic poles (4 opposing C-cores) yields stability and frequency responses. The non-linear model retains the non-linearities in Ampere's law, Faraday's law and the Maxwell stress tensor. A fuzzy logic control system is then designed to show the advantages over the conventional controllers with the fully non-linear model.
Gramoll, K. C.; Dillard, D. A.; Brinson, H. F.
1989-01-01
In response to the tremendous growth in the development of advanced materials, such as fiber-reinforced plastic (FRP) composite materials, a new numerical method is developed to analyze and predict the time-dependent properties of these materials. Basic concepts in viscoelasticity, laminated composites, and previous viscoelastic numerical methods are presented. A stable numerical method, called the nonlinear differential equation method (NDEM), is developed to calculate the in-plane stresses and strains over any time period for a general laminate constructed from nonlinear viscoelastic orthotropic plies. The method is implemented in an in-plane stress analysis computer program, called VCAP, to demonstrate its usefulness and to verify its accuracy. A number of actual experimental test results performed on Kevlar/epoxy composite laminates are compared to predictions calculated from the numerical method.
Barth, Timothy; Charrier, Pierre; Mansour, Nagi N. (Technical Monitor)
2001-01-01
We consider the discontinuous Galerkin (DG) finite element discretization of first order systems of conservation laws derivable as moments of the kinetic Boltzmann equation. This includes well known conservation law systems such as the Euler For the class of first order nonlinear conservation laws equipped with an entropy extension, an energy analysis of the DG method for the Cauchy initial value problem is developed. Using this DG energy analysis, several new variants of existing numerical flux functions are derived and shown to be energy stable.
Nonlinear theory of stable, efficient operation of a gyrotron at cyclotron harmonics
International Nuclear Information System (INIS)
Saraph, G.P.; Antonsen, T.M. Jr.; Nusinovich, G.S.; Levush, B.
1993-01-01
One of the main obstacles in achieving stable, efficient operation at the cyclotron harmonics in a gyrotron is mode competition with parasitic modes at the fundamental frequency. In this article, the nonlinear dynamics of mode interactions in such a system are studied using a multifrequency, time-dependent model. The results of numerical simulations for a second harmonic gyrotron are presented by considering two starting scenarios: (a) fast voltage rise or an instant turn-on case, and (b) slow voltage rise case. For the first case, it is demonstrated that for a certain range of operating parameters, the presence of a parasitic mode at the fundamental can be helpful in the excitation of the second harmonic operating mode. In the second case, it is found that the unstable operating region increases with the value of the rise time constant of the electrode voltages. Stable, efficient gyrotron operation at the second harmonic is demonstrated using the numerical study
Generation of stable subfemtosecond hard x-ray pulses with optimized nonlinear bunch compression
Directory of Open Access Journals (Sweden)
Senlin Huang
2014-12-01
Full Text Available In this paper, we propose a simple scheme that leverages existing x-ray free-electron laser hardware to produce stable single-spike, subfemtosecond x-ray pulses. By optimizing a high-harmonic radio-frequency linearizer to achieve nonlinear compression of a low-charge (20 pC electron beam, we obtain a sharp current profile possessing a few-femtosecond full width at half maximum temporal duration. A reverse undulator taper is applied to enable lasing only within the current spike, where longitudinal space charge forces induce an electron beam time-energy chirp. Simulations based on the Linac Coherent Light Source parameters show that stable single-spike x-ray pulses with a duration less than 200 attoseconds can be obtained.
Fuzzy robust nonlinear control approach for electro-hydraulic flight motion simulator
Directory of Open Access Journals (Sweden)
Han Songshan
2015-02-01
Full Text Available A fuzzy robust nonlinear controller for hydraulic rotary actuators in flight motion simulators is proposed. Compared with other three-order models of hydraulic rotary actuators, the proposed controller based on first-order nonlinear model is more easily applied in practice, whose control law is relatively simple. It not only does not need high-order derivative of desired command, but also does not require the feedback signals of velocity, acceleration and jerk of hydraulic rotary actuators. Another advantage is that it does not rely on any information of friction, inertia force and external disturbing force/torque, which are always difficult to resolve in flight motion simulators. Due to the special composite vane seals of rectangular cross-section and goalpost shape used in hydraulic rotary actuators, the leakage model is more complicated than that of traditional linear hydraulic cylinders. Adaptive multi-input single-output (MISO fuzzy compensators are introduced to estimate nonlinear uncertain functions about leakage and bulk modulus. Meanwhile, the decomposition of the uncertainties is used to reduce the total number of fuzzy rules. Different from other adaptive fuzzy compensators, a discontinuous projection mapping is employed to guarantee the estimation process to be bounded. Furthermore, with a sufficient number of fuzzy rules, the controller theoretically can guarantee asymptotic tracking performance in the presence of the above uncertainties, which is very important for high-accuracy tracking control of flight motion simulators. Comparative experimental results demonstrate the effectiveness of the proposed algorithm, which can guarantee transient performance and better final accurate tracking in the presence of uncertain nonlinearities and parametric uncertainties.
A preliminary investigation of silt motion with activable stable isotope tracers
International Nuclear Information System (INIS)
Ma Jianguo; Chai Zhifang; Mao Xueying; Ma Shulan
1990-01-01
A preliminary investigation of silt motion in Shantou Harbor region has been made by using neutron activation analysis of natural activable stable isotopes in silt. More than 20 elements in suspending and bed silt at different sites were determined. Data analysis and computer-based fitting calculation indicated that all of the suspending silt samples analyzed were of the same origin, i.e. Xinjinxi River outlet and about 37% of the bed silt at the Wailanjiangsha channel is composed of the deposit of suspending silt
Stable neural-network-based adaptive control for sampled-data nonlinear systems.
Sun, F; Sun, Z; Woo, P Y
1998-01-01
For a class of multiinput-multioutput (MIMO) sampled-data nonlinear systems with unknown dynamic nonlinearities, a stable neural-network (NN)-based adaptive control approach which is an integration of an NN approach and the adaptive implementation of the variable structure control with a sector, is developed. The sampled-data nonlinear system is assumed to be controllable and its state vector is available for measurement. The variable structure control with a sector serves two purposes. One is to force the system state to be within the state region in which the NN's are used when the system goes out of neural control; and the other is to provide an additional control until the system tracking error metric is controlled inside the sector within the network approximation region. The proof of a complete stability and a tracking error convergence is given and the setting of the sector and the NN parameters is discussed. It is demonstrated that the asymptotic error of the system can be made dependent only on inherent network approximation errors and the frequency range of unmodeled dynamics. Simulation studies of a two-link manipulator show the effectiveness of the proposed control approach.
Nonlinear dynamic response of cable-suspended systems under swinging and heaving motion
International Nuclear Information System (INIS)
Cao, Guohua; Wang, Naige; Wang, Lei; Zhu, Zhencai
2017-01-01
In order to enhance the fidelity, convenient and flexibility of swinging motion, the structure of incompletely restrained cablesuspended system controlled by two drums was proposed, and the dynamic response of the system under swinging and heaving motion were investigated in this paper. The cables are spatially discretized using the assumed modes method and the system equations of motion are derived by Lagrange equations of the first kind. Based on geometric boundary conditions and linear complementary theory, the differential algebraic equations are transformed to a set of classical difference equations. Nonlinear dynamic behavior occurs under certain range of rotational velocity and frequency. The results show that asynchronous motion of suspension platform is easily caused imbalance for cable tension. Dynamic response of different swing frequencies were obtained via power frequency analysis, which could be used in the selection of the working frequency of the swing motion. The work will contribute to a better understanding of the swing frequency, cable tension and posture with dynamic characteristics of unilateral geometric and kinematic constraints in this system, and it is also useful to investigate the accuracy and reliability of instruments in future.
Nonlinear dynamic response of cable-suspended systems under swinging and heaving motion
Energy Technology Data Exchange (ETDEWEB)
Cao, Guohua; Wang, Naige; Wang, Lei; Zhu, Zhencai [China University of Mining and Technology, Xuzhou (China)
2017-07-15
In order to enhance the fidelity, convenient and flexibility of swinging motion, the structure of incompletely restrained cablesuspended system controlled by two drums was proposed, and the dynamic response of the system under swinging and heaving motion were investigated in this paper. The cables are spatially discretized using the assumed modes method and the system equations of motion are derived by Lagrange equations of the first kind. Based on geometric boundary conditions and linear complementary theory, the differential algebraic equations are transformed to a set of classical difference equations. Nonlinear dynamic behavior occurs under certain range of rotational velocity and frequency. The results show that asynchronous motion of suspension platform is easily caused imbalance for cable tension. Dynamic response of different swing frequencies were obtained via power frequency analysis, which could be used in the selection of the working frequency of the swing motion. The work will contribute to a better understanding of the swing frequency, cable tension and posture with dynamic characteristics of unilateral geometric and kinematic constraints in this system, and it is also useful to investigate the accuracy and reliability of instruments in future.
Ganji, S. S.; Domairry, G.; Davodi, A. G.; Babazadeh, H.; Seyedalizadeh Ganji, S. H.
The main objective of this paper is to apply the parameter expansion technique (a modified Lindstedt-Poincaré method) to calculate the first, second, and third-order approximations of motion of a nonlinear oscillator arising in rigid rod rocking back. The dynamics and frequency of motion of this nonlinear mechanical system are analyzed. A meticulous attention is carried out to the study of the introduced nonlinearity effects on the amplitudes of the oscillatory states and on the bifurcation structures. We examine the synchronization and the frequency of systems using both the strong and special method. Numerical simulations and computer's answers confirm and complement the results obtained by the analytical approach. The approach proposes a choice to overcome the difficulty of computing the periodic behavior of the oscillation problems in engineering. The solutions of this method are compared with the exact ones in order to validate the approach, and assess the accuracy of the solutions. In particular, APL-PM works well for the whole range of oscillation amplitudes and excellent agreement of the approximate frequency with the exact one has been demonstrated. The approximate period derived here is accurate and close to the exact solution. This method has a distinguished feature which makes it simple to use, and also it agrees with the exact solutions for various parameters.
A kinetic equation for linear stable fractional motion with applications to space plasma physics
Energy Technology Data Exchange (ETDEWEB)
Watkins, Nicholas W [British Antarctic Survey, Cambridge, UK; Credgington, Daniel [British Antarctic Survey, Cambridge, UK; Sanchez, Raul [ORNL; Rosenberg, SJ [British Antarctic Survey, Cambridge, UK; Chapman, Sandra C [University of Warwick, UK
2009-01-01
Levy flights and fractional Brownian motion have become exemplars of the heavy-tailed jumps and long-ranged memory widely seen in physics. Natural time series frequently combine both effects, and linear fractional stable motion (lfsm) is a model process of this type, combining {alpha}-stable jumps with a memory kernel. In contrast complex physical spatiotemporal diffusion processes where both the above effects compete have for many years been modeled using the fully fractional kinetic equation for the continuous-time random walk (CTRW), with power laws in the probability density functions of both jump size and waiting time. We derive the analogous kinetic equation for lfsm and show that it has a diffusion coefficient with a power law in time rather than having a fractional time derivative like the CTRW. We discuss some preliminary results on the scaling of burst 'sizes' and 'durations' in lfsm time series, with applications to modeling existing observations in space physics and elsewhere.
International Nuclear Information System (INIS)
Muto, K.; Kobayashi, T.; Motohashi, S.; Mizuno, N.; Moribe, I.; Sugiyama, N.; Suzuki, T.
1983-01-01
In the dynamic analysis of a reactor building, the response acceleration of the building is largely amplified during an earthquake and it's base mat may be lifted by a response overturning moment caused by a strong earthquake. And it makes geometrical nonlinear interaction between the base mat and rock foundation beneath it, which produces very complex phenomena by horizontal and vertical earthquake motions. In this paper, the dynamic behavior of a BWR type reactor building is studied considering the uplift of the base mat subjected to simultaneous horizontal and vertical earthquake motions. Results: (1) The horizontal maximum response values of the building (acceleration, shear force and bending moment) have little effect by the existence of the vertical input. (2) The vertical acceleration of the building is generated by the uplift of the base mat caused by horizontal input. (3) The horizontal acceleration response spectrum of the building takes some effect by the uplift within it's high frequency range. (orig./HP)
Directory of Open Access Journals (Sweden)
S. Malvar
Full Text Available Abstract The main goal of this article is to study the oscillatory motion of a spherical gas bubble immersed in a Newtonian liquid subjected to a harmonic pressure excitation. We use the classical Rayleigh-Plesset equation to study the radial motion of the bubble undergoing a forcing acoustic pressure field. The second order nonlinear ordinary differential equation that governs the bubble motion is solved through a robust fifth order Runge-Kutta scheme with adaptive time-step. Several interesting patterns are identified. First we develop an asymptotic solution for low amplitudes of excitation pressure to validate our numerical code. Then we develop a bifurcation diagram in order to show how the parameters of the flow modify the vibrational patterns of the bubble. We also train a neural network to identify the vibrational pattern through its FFT data. The combination of neural networks with a bifurcation diagram could be useful for the identification of the flow physical parameters in practical applications. For each pattern we also provide an analysis of the motion of the bubble on the phase-space and interpret physically the system behavior with its FFT. In addition, we analyze nonlinear patterns using standard tools of dynamical systems such as Poincaré sections and calculate the Lyapunov exponents of the system. Based on that, we have identified topological transitions in phase plane using for instance the analysis of Poincaré sections and the solution in the frequency spectrum. We have seen that the mechanisms that dominate the dynamics of the oscillating bubble is the competition of the acoustic field excitation with surface tension forces and momentum diffusion by the action of the surrounding fluid viscosity.
Unusual motions due to nonlinear effects in a driven vibrating string
Hanson, Roger J.
2005-09-01
Usual nonlinear effects observed in a sinusoidally driven vibrating string include generation of motion perpendicular to the driving plane, sudden jumps of amplitude and associated hysteresis, and generation of higher harmonics. In addition, under some conditions, there can be a rich variety of unusual, very complex motions of a point on the string, the pattern of which, together with associated harmonic (and sometimes subharmonic) content, can change dramatically with a slight change in driving frequency or sometimes with constant driving frequency and force. Intrinsic string asymmetries can also have a profound effect on the behavior. In a brass harpsichord string (wire) such asymmetries can cause a small splitting of each natural frequency of free vibration into two closely spaced frequencies (relative separation ~0.2% to 2%, strongly dependent on tension.) The two frequency components are associated, respectively, with the transverse motion along two orthogonal characteristic wire axes. Emphasis will be on display of optically detected unusual motion patterns of a point on the string, including an example of a pattern period of 10 s when driving at 50 Hz. See R. J. Hanson et al., J. Acoust. Soc. Am. 117, 400-412 (2005) for a more complete treatment.
Stable estimation of two coefficients in a nonlinear Fisher–KPP equation
International Nuclear Information System (INIS)
Cristofol, Michel; Roques, Lionel
2013-01-01
We consider the inverse problem of determining two non-constant coefficients in a nonlinear parabolic equation of the Fisher–Kolmogorov–Petrovsky–Piskunov type. For the equation u t = DΔu + μ(x) u − γ(x)u 2 in (0, T) × Ω, which corresponds to a classical model of population dynamics in a bounded heterogeneous environment, our results give a stability inequality between the couple of coefficients (μ, γ) and some observations of the solution u. These observations consist in measurements of u: in the whole domain Ω at two fixed times, in a subset ω⊂⊂Ω during a finite time interval and on the boundary of Ω at all times t ∈ (0, T). The proof relies on parabolic estimates together with the parabolic maximum principle and Hopf’s lemma which enable us to use a Carleman inequality. This work extends previous studies on the stable determination of non-constant coefficients in parabolic equations, as it deals with two coefficients and with a nonlinear term. A consequence of our results is the uniqueness of the couple of coefficients (μ, γ), given the observation of u. This uniqueness result was obtained in a previous paper but in the one-dimensional case only. (paper)
Stable Myoelectric Control of a Hand Prosthesis using Non-Linear Incremental Learning
Directory of Open Access Journals (Sweden)
Arjan eGijsberts
2014-02-01
Full Text Available Stable myoelectric control of hand prostheses remains an open problem. The only successful human-machine interface is surface electromyography, typically allowing control of a few degrees of freedom. Machine learning techniques may have the potential to remove these limitations, but their performance is thus far inadequate: myoelectric signals change over time under the influence of various factors, deteriorating control performance. It is therefore necessary, in the standard approach, to regularly retrain a new model from scratch.We hereby propose a non-linear incremental learning method in which occasional updates with a modest amount of novel training data allow continual adaptation to the changes in the signals. In particular, Incremental Ridge Regression and an approximation of the Gaussian Kernel known as Random Fourier Features are combined to predict finger forces from myoelectric signals, both finger-by-finger and grouped in grasping patterns.We show that the approach is effective and practically applicable to this problem by first analyzing its performance while predicting single-finger forces. Surface electromyography and finger forces were collected from 10 intact subjects during four sessions spread over two different days; the results of the analysis show that small incremental updates are indeed effective to maintain a stable level of performance.Subsequently, we employed the same method on-line to teleoperate a humanoid robotic arm equipped with a state-of-the-art commercial prosthetic hand. The subject could reliably grasp, carry and release everyday-life objects, enforcing stable grasping irrespective of the signal changes, hand/arm movements and wrist pronation and supination.
Shalbaf, Ahmad; Behnam, Hamid; Alizade-Sani, Zahra; Shojaifard, Maryam
2013-05-01
Identification and assessment of left ventricular (LV) global and regional wall motion (RWM) abnormalities are essential for clinical evaluation of various cardiovascular diseases. Currently, this evaluation is performed visually which is highly dependent on the training and experience of echocardiographers and thus is prone to considerable interobserver and intraobserver variability. This paper presents a new automatic method, based on nonlinear dimensionality reduction (NLDR) for global wall motion evaluation and also detection and classification of RWM abnormalities of LV wall in a three-point scale as follows: (1) normokinesia, (2) hypokinesia, and (3) akinesia. Isometric feature mapping (Isomap) is one of the most popular NLDR algorithms. In this paper, a modified version of Isomap algorithm, where image to image distance metric is computed using nonrigid registration, is applied on two-dimensional (2D) echocardiography images of one cycle of heart. By this approach, nonlinear information in these images is embedded in a 2D manifold and each image is characterized by a point on the constructed manifold. This new representation visualizes the relationship between these images based on LV volume changes. Then, a new global and regional quantitative index from the resultant manifold is proposed for global wall motion estimation and also classification of RWM of LV wall in a three-point scale. Obtained results by our method are quantitatively evaluated to those obtained visually by two experienced echocardiographers as the reference (gold standard) on 10 healthy volunteers and 14 patients. Linear regression analysis between the proposed global quantitative index and the global wall motion score index and also with LV ejection fraction obtained by reference experienced echocardiographers resulted in the correlation coefficients of 0.85 and 0.90, respectively. Comparison between the proposed automatic RWM scoring and the reference visual scoring resulted in an
Xia, Minglu; Sun, Qingping
2017-05-01
The dynamic response of nonlinear torsional vibration system with phase transformable NiTi Shape Memory Alloy (SMA) wire is investigated by experiment in this paper. The thermomechanical responses of the NiTi wire as a softening nonlinear damping spring in the torsional vibration system are measured by synchronized acquisition of rotational angle and temperature under external excitation. Frequency Response Curves (FRCs) at fixed excitation amplitude and Amplitude Response Curves (ARCs) at fixed frequency are obtained in the frequency and amplitude domains respectively. It is found that, as the deformation of NiTi wire goes into the softening nonlinear phase transition region, the smooth and stable dynamic responses along one branch of FRC or ARC will gradually enter into metastable region and eventually become unstable and drastically switch to a new contrasting alternative stable state along the other branch. The jump phenomenon between the alternative stable states on the lower and upper branches of the FRC or ARC and the hysteresis between the jump-up and jump-down are identified by experiments. In addition, the effects of external disturbance (both magnitude and direction) on triggering the jumps between the alternative stable states along the two metastable branches are examined in the time domain. The stability of the nonlinear dynamic response is analyzed by the Duffing oscillator model and interpreted via the stability landscape. For the first time, we directly reveal the alternative stable states and jump phenomena of thermomechanical responses by experiments in the frequency, amplitude and time domains. The results not only show the important roles of phase transition nonlinearity in bringing multiple equilibrium states and their fast switches, but also provide a solid experimental base for the identification of metastable regions as well as further management of the undesired dynamic responses of vibration system where NiTi is used as a nonlinear
A normal form approach to the theory of nonlinear betatronic motion
International Nuclear Information System (INIS)
Bazzani, A.; Todesco, E.; Turchetti, G.; Servizi, G.
1994-01-01
The betatronic motion of a particle in a circular accelerator is analysed using the transfer map description of the magnetic lattice. In the linear case the transfer matrix approach is shown to be equivalent to the Courant-Snyder theory: In the normal coordinates' representation the transfer matrix is a pure rotation. When the nonlinear effects due to the multipolar components of the magnetic field are taken into account, a similar procedure is used: a nonlinear change of coordinates provides a normal form representation of the map, which exhibits explicit symmetry properties depending on the absence or presence of resonance relations among the linear tunes. The use of normal forms is illustrated in the simplest but significant model of a cell with a sextupolar nonlinearity which is described by the quadratic Henon map. After recalling the basic theoretical results in Hamiltonian dynamics, we show how the normal forms describe the different topological structures of phase space such as KAM tori, chains of islands and chaotic regions; a critical comparison with the usual perturbation theory for Hamilton equations is given. The normal form theory is applied to compute the tune shift and deformation of the orbits for the lattices of the SPS and LHC accelerators, and scaling laws are obtained. Finally, the correction procedure of the multipolar errors of the LHC, based on the analytic minimization of the tune shift computed via the normal forms, is described and the results for a model of the LHC are presented. This application, relevant for the lattice design, focuses on the advantages of normal forms with respect to tracking when parametric dependences have to be explored. (orig.)
International Nuclear Information System (INIS)
Kennedy, R.P.; Kincaid, R.H.; Short, S.A.
1985-03-01
This report presents the results of part of a two-task study on the engineering characterization of earthquake ground motion for nuclear power plant design. Task I of the study, which is presented in NUREG/CR-3805, Vol. 1, developed a basis for selecting design response spectra taking into account the characteristics of free-field ground motion found to be significant in causing structural damage. Task II incorporates additional considerations of effects of spatial variations of ground motions and soil-structure interaction on foundation motions and structural response. The results of Task II are presented in four parts: (1) effects of ground motion characteristics on structural response of a typical PWR reactor building with localized nonlinearities and soil-structure interaction effects; (2) empirical data on spatial variations of earthquake ground motion; (3) soil-structure interaction effects on structural response; and (4) summary of conclusions and recommendations based on Tasks I and II studies. This report presents the results of the first part of Task II. The results of the other parts will be presented in NUREG/CR-3805, Vols. 3 to 5
Directory of Open Access Journals (Sweden)
Yong Zhao
1997-01-01
Full Text Available A nonlinear three dimensional (3D single rack model and a nonlinear 3D whole pool multi-rack model are developed for the spent fuel storage racks of a nuclear power plant (NPP to determine impacts and frictional motion responses when subjected to 3D excitations from the supporting building floor. The submerged free standing rack system and surrounding water are coupled due to hydrodynamic fluid-structure interaction (FSI using potential theory. The models developed have features that allow consideration of geometric and material nonlinearities including (1 the impacts of fuel assemblies to rack cells, a rack to adjacent racks or pool walls, and rack support legs to the pool floor; (2 the hydrodynamic coupling of fuel assemblies with their storing racks, and of a rack with adjacent racks, pool walls, and the pool floor; and (3 the dynamic motion behavior of rocking, twisting, and frictional sliding of rack modules. Using these models 3D nonlinear time history dynamic analyses are performed per the U.S. Nuclear Regulatory Commission (USNRC criteria. Since few such modeling, analyses, and results using both the 3D single and whole pool multiple rack models are available in the literature, this paper emphasizes description of modeling and analysis techniques using the SOLVIA general purpose nonlinear finite element code. Typical response results with different Coulomb friction coefficients are presented and discussed.
Non-linear Response to a Type of Seismic Input Motion. Additional Information
International Nuclear Information System (INIS)
2011-06-01
This publication reports the results and findings of a coordinated research project on the safety significance of near-field earthquakes in the design of nuclear power plants. It describes the outcome of a benchmark exercise conducted by a number of institutions on the effects of low to moderate magnitude near-field earthquakes, comparing model analytical simulations with the results of a shaking test performed in France on a physical model of a conventional shear-wall structure. The results build the basis for proposals for possible evolution of engineering practices in order to realistically take into account the effects of near-field earthquakes. A CD is attached that contains the List of participants; Summary of the Research Coordination Meetings; Description of the Camus data; Description of the Japanese input motions: near-field earthquakes observed recently in Japan; Description of the output requested of the IAEA CRP participants; Summary of the participants' modelling; Results of Benchmark Step 1, 2 and 3; Scientific background on classification of seismic loads as primary or secondary; and Japanese practice on nonlinear seismic response analysis of safety related important structures.
Non-linear Response to a Type of Seismic Input Motion
International Nuclear Information System (INIS)
2011-06-01
This publication reports the results and findings of a coordinated research project on the safety significance of near-field earthquakes in the design of nuclear power plants. It describes the outcome of a benchmark exercise conducted by a number of institutions on the effects of low to moderate magnitude near-field earthquakes, comparing model analytical simulations with the results of a shaking test performed in France on a physical model of a conventional shear-wall structure. The results build the basis for proposals for possible evolution of engineering practices in order to realistically take into account the effects of near-field earthquakes. A CD is attached that contains the List of participants; Summary of the Research Coordination Meetings; Description of the CAMUS data; Description of the Japanese input motions: near-field earthquakes observed recently in Japan; Description of the output requested of the IAEA CRP participants; Summary of the participants' modelling; Results of Benchmark Step 1, 2 and 3; Scientific background on classification of seismic loads as primary or secondary; and Japanese practice on nonlinear seismic response analysis of safety related important structures.
DEFF Research Database (Denmark)
Jensen, Jørgen Juncher
2007-01-01
frequency domain methods can be applied. To non-linear responses like the roll motion, standard methods like direct time domain simulations are not feasible due to the required computational time. However, the statistical distribution of non-linear ship responses can be estimated very accurately using......-specified specific maximum roll angles. The procedure is computationally very effective and can thus be applied to real-time determination of ship specific combinations of heading and speed to be avoided in the actual sea state....
A search for integrable four-dimensional nonlinear accelerator lattices
Energy Technology Data Exchange (ETDEWEB)
Nagaitsev, S.; /Fermilab; Danilov, V.; /SNS Project, Oak Ridge
2010-05-01
Integrable nonlinear motion in accelerators has the potential to introduce a large betatron tune spread to suppress instabilities and to mitigate the effects of space charge and magnetic field errors. To create such an accelerator lattice one has to find magnetic and/or electric field combinations leading to a stable integrable motion. This paper presents families of lattices with one invariant where bounded motion can be easily created in large volumes of the phase space. In addition, it presents two examples of integrable nonlinear accelerator lattices, realizable with longitudinal-coordinate-dependent magnetic or electric fields with the stable nonlinear motion, which can be solved in terms of separable variables.
International Nuclear Information System (INIS)
Jung, Do Han; Chung, Jin Tai
2004-01-01
The vibration of a semi-circular pipe conveying fluid is studied when the pipe is clamed at both ends. To consider the geometric nonlinearity, this study adopts the Lagrange strain theory for large deformation and the extensible dynamics based on the Euler-Bernoulli beam theory for slenderness assumption. By using the Hamilton principle, the non-linear partial differential equations are derived for the in-plane motions of the pipe, considering the fluid inertia forces as a kind of non-conservative forces. The linear and non-linear terms in the governing equations are compared with those in the previous study, and some significant differences are discussed. To investigated the dynamic characteristics of the system, the discretized equations of motion are derived from the Galerkin method. The natural frequencies varying with the flow velocity are computed from the two cases, which one is the linear problem and the other is the linearized problem in the neighborhood of the equilibrium position. Finally, the time responses at various flow velocities are directly computed by using the generalized-α method. From these results, we should consider the geometric nonlinearity to analyze dynamics of a semi-circular pipe conveying fluid more precisely
Baskaran, Arvind; Hu, Zhengzheng; Lowengrub, John S.; Wang, Cheng; Wise, Steven M.; Zhou, Peng
2013-10-01
In this paper we present two unconditionally energy stable finite difference schemes for the modified phase field crystal (MPFC) equation, a sixth-order nonlinear damped wave equation, of which the purely parabolic phase field crystal (PFC) model can be viewed as a special case. The first is a convex splitting scheme based on an appropriate decomposition of the discrete energy and is first order accurate in time and second order accurate in space. The second is a new, fully second-order scheme that also respects the convex splitting of the energy. Both schemes are nonlinear but may be formulated from the gradients of strictly convex, coercive functionals. Thus, both are uniquely solvable regardless of the time and space step sizes. The schemes are solved by efficient nonlinear multigrid methods. Numerical results are presented demonstrating the accuracy, energy stability, efficiency, and practical utility of the schemes. In particular, we show that our multigrid solvers enjoy optimal, or nearly optimal complexity in the solution of the nonlinear schemes.
Bhatti, M. M.; Zeeshan, A.; Ellahi, R.
2016-09-01
In this article, heat transfer with nonlinear thermal radiation on sinusoidal motion of magnetic solid particles in a dust Jeffrey fluid has been studied. The effects of Magnetohydrodynamic (MHD) and hall current are also taken under consideration. The governing equation of motion and energy equation are modelled with help of Ohms law for fluid and dust phases. The solutions of the resulting ordinary coupled partial differential equations are solved analytically. The impact of all the physical parameters of interest such as Hartmann number, slip parameter, Hall parameter, radiation parameter, Prandtl number, Eckert number and particle volume fraction are demonstrated mathematically and graphically. Trapping mechanism is also discussed in detail by drawing contour lines. The present analysis affirms many interesting behaviours, which permit further study on solid particles motion with heat and mass transfer.
DEFF Research Database (Denmark)
Belleter, Dennis J.W.; Galeazzi, Roberto; Fossen, Thor Inge
2015-01-01
This paper presents a global exponential stability (GES) proof for a signalbased nonlinear wave encounter frequency estimator. The estimator under consideration is a second-order nonlinear observer designed to estimate the frequency of a sinusoid with unknown frequency, amplitude and phase. The GES...... proof extends previous results that only guarantee global K-exponential stability. Typical applications are control and decision-support systems for marine craft, where it is important to know the sea state and wave frequency. The theoretical results are verified experimentally by analyzing data from...
Structurally stable design of output regulation for a class of nonlinear systems
Czech Academy of Sciences Publication Activity Database
Villanueva-Novelo, C.; Čelikovský, Sergej; Castillo-Toledo, B.
2001-01-01
Roč. 37, č. 5 (2001), s. 517-561 ISSN 0023-5954 R&D Projects: GA ČR GA102/99/1368 Institutional research plan: AV0Z1075907 Keywords : nonlinear systems * structural stability * output regulation Subject RIV: BC - Control Systems Theory Impact factor: 0.316, year: 2001
Graybill, George
2007-01-01
Take the mystery out of motion. Our resource gives you everything you need to teach young scientists about motion. Students will learn about linear, accelerating, rotating and oscillating motion, and how these relate to everyday life - and even the solar system. Measuring and graphing motion is easy, and the concepts of speed, velocity and acceleration are clearly explained. Reading passages, comprehension questions, color mini posters and lots of hands-on activities all help teach and reinforce key concepts. Vocabulary and language are simplified in our resource to make them accessible to str
Czech Academy of Sciences Publication Activity Database
Sorokin, D.V.; Suchánková, Jana; Bártová, Eva; Matula, P.
2014-01-01
Roč. 60, č. 1 (2014), s. 45-49 ISSN 0015-5500 R&D Projects: GA ČR GBP302/12/G157; GA MŠk(CZ) EE2.3.30.0030 Institutional support: RVO:68081707 Keywords : cell global motion compensation * UV laser bleaching * image registration Subject RIV: BO - Biophysics Impact factor: 1.000, year: 2014
Tavakoli, Vahid; Amini, Amir A.
2011-03-01
Two-dimensional echocardiography continues to be the most widely used modality for the assessment of cardiac function due to its effectiveness, ease of use, and low costs. Echocardiographic images are derived from the mechanical interaction between the ultrasound field and the contractile heart tissue. Previously, in [6], based on B-mode echocardiographic simulations, we showed that motion estimation errors are significantly higher in shift-varying simulations when compared to shift-invariant simulations. In order to ascertain the effect of the spatial variance of the Ultrasonic field point spread function (PSF) and the transducer geometry on motion estimation, in the current paper, several simple canonical cardiac motions such as translation in axial and horizontal direction, and out-of-plane motion were simulated and the motion estimation errors were calculated. For axial motions, the greatest angular errors occurred within the lateral regions of the image, irrespective of the motion estimation technique that was adopted. We hypothesize that the transducer geometry and the PSF spatial-variance were the underlying sources of error for the motion estimation methods. No similar conclusions could be made regarding motion estimation errors for azimuthal and out-of-plane ultrasound simulations.
Nonlinear Synchronization for Automatic Learning of 3D Pose Variability in Human Motion Sequences
Directory of Open Access Journals (Sweden)
Mozerov M
2010-01-01
Full Text Available A dense matching algorithm that solves the problem of synchronizing prerecorded human motion sequences, which show different speeds and accelerations, is proposed. The approach is based on minimization of MRF energy and solves the problem by using Dynamic Programming. Additionally, an optimal sequence is automatically selected from the input dataset to be a time-scale pattern for all other sequences. The paper utilizes an action specific model which automatically learns the variability of 3D human postures observed in a set of training sequences. The model is trained using the public CMU motion capture dataset for the walking action, and a mean walking performance is automatically learnt. Additionally, statistics about the observed variability of the postures and motion direction are also computed at each time step. The synchronized motion sequences are used to learn a model of human motion for action recognition and full-body tracking purposes.
Rivera, Andrea
2017-01-01
Motion is all around us. Learn how it is used in art, technology, and engineering. Five easy-to-read chapters explain the science behind motion, as well as its real-world applications. Vibrant, full-color photos, bolded glossary words, and a key stats section let readers zoom in even deeper. Aligned to Common Core Standards and correlated to state standards. Abdo Zoom is a division of ABDO.
International Nuclear Information System (INIS)
Jeeju, P.P.; Jayalekshmi, S.; Chandrasekharan, K.; Sudheesh, P.
2013-01-01
Highly transparent and thermally stable zinc oxide (ZnO)/poly(styrene)–poly(methyl methacrylate) (PS–PMMA) nanocomposite films have been deposited on glass substrates, from the ZnO incorporated (PS–PMMA) solutions in toluene, using spin coating technique. A chemical route at room temperature is used to synthesize the ZnO nanoparticles. Transmission electron microscope and high-resolution transmission electron microscope images show that the ZnO nanoparticles are of size around 10 nm. The composite films have been characterized by X-ray diffraction, Fourier transform infrared spectroscopy, atomic force microscopy, Ultraviolet–visible–Near Infrared (UV–vis–NIR) spectroscopy, Thermo-gravimetric analysis, photoluminescence (PL) spectroscopy and Z-scan technique. From the UV–vis–NIR spectra it is observed that the ZnO/PS–PMMA nanocomposite films with 10 wt.% ZnO content exhibit excellent shielding property in the UV region and, high transparency in the visible region. The PL spectrum of the composite films is different from that of ZnO and PS–PMMA blend and exhibits an excitonic emission peak at ∼ 375 nm. The optical absorptive nonlinearity in the nanocomposite films is investigated using open aperture Z-scan technique. The results indicate optical limiting type nonlinearity in the films due to two photon absorption. A transmittance minimum of around 0.25 has been observed in the ZnO/PS–PMMA nanocomposite films which is much lower compared to that in ZnO/PMMA and ZnO/PS nanocomposite films. The ZnO/PS–PMMA nanocomposite films also show a self-defocusing type negative nonlinear refraction in closed aperture Z-scan experiment. These nanocomposite films extend ample scope of applications as excellent optical limiters and efficient UV protectors. - Highlights: ► Transparent, ZnO/poly(styrene)–poly(methyl methacrylate) composite films are prepared. ► The nanocomposite films with 10 wt.% ZnO content exhibit good UV-shielding property.
Energy Technology Data Exchange (ETDEWEB)
Jeeju, P.P., E-mail: jeejupp@gmail.com [Division for Research in Advanced Materials, Department of Physics, Cochin University of Science and Technology, Kochi 682 022, Kerala (India); Jayalekshmi, S., E-mail: jayalekshmi@cusat.ac.in [Division for Research in Advanced Materials, Department of Physics, Cochin University of Science and Technology, Kochi 682 022, Kerala (India); Chandrasekharan, K.; Sudheesh, P. [Department of Physics, National Institute of Technology, Calicut, Kerala (India)
2013-03-01
Highly transparent and thermally stable zinc oxide (ZnO)/poly(styrene)–poly(methyl methacrylate) (PS–PMMA) nanocomposite films have been deposited on glass substrates, from the ZnO incorporated (PS–PMMA) solutions in toluene, using spin coating technique. A chemical route at room temperature is used to synthesize the ZnO nanoparticles. Transmission electron microscope and high-resolution transmission electron microscope images show that the ZnO nanoparticles are of size around 10 nm. The composite films have been characterized by X-ray diffraction, Fourier transform infrared spectroscopy, atomic force microscopy, Ultraviolet–visible–Near Infrared (UV–vis–NIR) spectroscopy, Thermo-gravimetric analysis, photoluminescence (PL) spectroscopy and Z-scan technique. From the UV–vis–NIR spectra it is observed that the ZnO/PS–PMMA nanocomposite films with 10 wt.% ZnO content exhibit excellent shielding property in the UV region and, high transparency in the visible region. The PL spectrum of the composite films is different from that of ZnO and PS–PMMA blend and exhibits an excitonic emission peak at ∼ 375 nm. The optical absorptive nonlinearity in the nanocomposite films is investigated using open aperture Z-scan technique. The results indicate optical limiting type nonlinearity in the films due to two photon absorption. A transmittance minimum of around 0.25 has been observed in the ZnO/PS–PMMA nanocomposite films which is much lower compared to that in ZnO/PMMA and ZnO/PS nanocomposite films. The ZnO/PS–PMMA nanocomposite films also show a self-defocusing type negative nonlinear refraction in closed aperture Z-scan experiment. These nanocomposite films extend ample scope of applications as excellent optical limiters and efficient UV protectors. - Highlights: ► Transparent, ZnO/poly(styrene)–poly(methyl methacrylate) composite films are prepared. ► The nanocomposite films with 10 wt.% ZnO content exhibit good UV-shielding property.
Nonlinear mathematical modeling of vibrating motion of nanomechanical cantilever active probe
Directory of Open Access Journals (Sweden)
Reza Ghaderi
Full Text Available Nonlinear vibration response of nanomechanical cantilever (NMC active probes in atomic force microscope (AFM application has been studied in the amplitude mode. Piezoelectric layer is placed piecewise and as an actuator on NMC. Continuous beam model has been chosen for analysis with regard to the geometric discontinuities of piezoelectric layer attachment and NMC's cross section. The force between the tip and the sample surface is modeled using Leonard-Jones potential. Assuming that cantilever is inclined to the sample surface, the effect of nonlinear force on NMC is considered as a shearing force and the concentrated bending moment is regarded at the end. Nonlinear frequency response of NMC is obtained close to the sample surface using the dynamic modeling. It is then become clear that the distance and angle of NMC, the probe length, and the geometric dimensions of piezoelectric layer can affect frequency response bending of the curve.
An analytical solution to the equation of motion for the damped nonlinear pendulum
DEFF Research Database (Denmark)
Johannessen, Kim
2014-01-01
An analytical approximation of the solution to the differential equation describing the oscillations of the damped nonlinear pendulum at large angles is presented. The solution is expressed in terms of the Jacobi elliptic functions by including a parameter-dependent elliptic modulus. The analytical...... of the damped nonlinear pendulum is presented, and it is shown that the period of oscillation is dependent on time. It is established that, in general, the period is longer than that of a linearized model, asymptotically approaching the period of oscillation of a damped linear pendulum....
Directory of Open Access Journals (Sweden)
Pivatelli Flávio
2012-10-01
Full Text Available Abstract Background Decreased heart rate variability (HRV is related to higher morbidity and mortality. In this study we evaluated the linear and nonlinear indices of the HRV in stable angina patients submitted to coronary angiography. Methods We studied 77 unselected patients for elective coronary angiography, which were divided into two groups: coronary artery disease (CAD and non-CAD groups. For analysis of HRV indices, HRV was recorded beat by beat with the volunteers in the supine position for 40 minutes. We analyzed the linear indices in the time (SDNN [standard deviation of normal to normal], NN50 [total number of adjacent RR intervals with a difference of duration greater than 50ms] and RMSSD [root-mean square of differences] and frequency domains ultra-low frequency (ULF ≤ 0,003 Hz, very low frequency (VLF 0,003 – 0,04 Hz, low frequency (LF (0.04–0.15 Hz, and high frequency (HF (0.15–0.40 Hz as well as the ratio between LF and HF components (LF/HF. In relation to the nonlinear indices we evaluated SD1, SD2, SD1/SD2, approximate entropy (−ApEn, α1, α2, Lyapunov Exponent, Hurst Exponent, autocorrelation and dimension correlation. The definition of the cutoff point of the variables for predictive tests was obtained by the Receiver Operating Characteristic curve (ROC. The area under the ROC curve was calculated by the extended trapezoidal rule, assuming as relevant areas under the curve ≥ 0.650. Results Coronary arterial disease patients presented reduced values of SDNN, RMSSD, NN50, HF, SD1, SD2 and -ApEn. HF ≤ 66 ms2, RMSSD ≤ 23.9 ms, ApEn ≤−0.296 and NN50 ≤ 16 presented the best discriminatory power for the presence of significant coronary obstruction. Conclusion We suggest the use of Heart Rate Variability Analysis in linear and nonlinear domains, for prognostic purposes in patients with stable angina pectoris, in view of their overall impairment.
Passivity Analysis for Non-Linear, Non-Stationary Entry Capsules : Rotational Motion
Mooij, E.
2011-01-01
To analyze the passivity of non-linear, time-varying systems we study an entry capsule that enters the atmosphere in a lift-down configuration (i.e., a bank angle larger than 90º) to avoid skipping flight, and which is controlled by a Reaction Control System only. Deriving the passivity conditions
Nonlinear Response Of MSSS Bridges Under Earthquake Ground Motions: Case Studies
1999-10-01
This report presents the results of the second phase of a comprehensive analytical study on the seismic response of highway bridges in New Jersey. The overall objective of this phase of the study was to evaluate the nonlinear seismic response of actu...
Takehiro, Shin-ichi; Sasaki, Youhei
2018-03-01
Penetration of steady magneto-hydrodynamic (MHD) disturbances into an upper strongly stratified stable layer excited by MHD thermal convection in rotating spherical shells is investigated. The theoretical model proposed by Takehiro (2015) is reexamined in the case of steady fluid motion below the bottom boundary. Steady disturbances penetrate into a density stratified MHD fluid existing in the semi-infinite region in the vertical direction. The axis of rotation of the system is tilted with respect to the vertical. The basic magnetic field is uniform and may be tilted with respect to the vertical and the rotation axis. Linear dispersion relation shows that the penetration distance with zero frequency depends on the amplitude of Alfvén wave speed. When Alfvén wave speed is small, viscous diffusion becomes dominant and penetration distance is similar to the horizontal scale of the disturbance at the lower boundary. In contrast, when Alfvén wave speed becomes larger, disturbance can penetrate deeper, and penetration distance becomes proportional to the Alfvén wave speed and inversely proportional to the geometric average of viscous and magnetic diffusion coefficients and to the total horizontal wavenumber. The analytic expression of penetration distance is in good agreement with the extent of penetration of mean zonal flow induced by finite amplitude convection in a rotating spherical shell with an upper stably stratified layer embedded in an axially uniform basic magnetic field. The theory expects that the stable layer suggested in the upper part of the outer core of the earth could be penetrated completely by mean zonal flows excited by thermal/compositional convection developing below the stable layer.
Imitation learning of Non-Linear Point-to-Point Robot Motions using Dirichlet Processes
DEFF Research Database (Denmark)
Krüger, Volker; Tikhanoff, Vadim; Natale, Lorenzo
2012-01-01
In this paper we discuss the use of the infinite Gaussian mixture model and Dirichlet processes for learning robot movements from demonstrations. Starting point of this work is an earlier paper where the authors learn a non-linear dynamic robot movement model from a small number of observations...... to use an infinite Gaussian mixture model (IGMM) which does not have this limitation. Instead, the IGMM automatically finds the number of mixtures that are necessary to reflect the data complexity. For use in the context of a non-linear dynamic model, we develop a Constrained IGMM (CIGMM). We validate....... The model in that work is learned using a classical finite Gaussian mixture model (FGMM) where the Gaussian mixtures are appropriately constrained. The problem with this approach is that one needs to make a good guess for how many mixtures the FGMM should use. In this work, we generalize this approach...
Stability of nonlinear Hamiltonian motion for a finite but very long time
International Nuclear Information System (INIS)
Warnock, R.L.; Ruth, R.D.
1991-01-01
By constructing action variables that are very nearly invariant in a region Ω of phase space, and by examining their residual variation, we set long-term bounds on any orbit starting in an open subregion of Ω. A new and generally applicable method for constructing the required high-precision invariants is applied. The technique is illustrated for transverse oscillations in a circular accelerator, a case with 21/2 degrees of freedom and strong nonlinearity
Nonlinear Model Predictive Control of a Cable-Robot-Based Motion Simulator
DEFF Research Database (Denmark)
Katliar, Mikhail; Fischer, Joerg; Frison, Gianluca
2017-01-01
In this paper we present the implementation of a model-predictive controller (MPC) for real-time control of a cable-robot-based motion simulator. The controller computes control inputs such that a desired acceleration and angular velocity at a defined point in simulator's cabin are tracked while ....... (C) 2017, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved....
Directory of Open Access Journals (Sweden)
Ali Akbar Akbari
2014-08-01
Full Text Available Introduction In order to improve the quality of life of amputees, biomechatronic researchers and biomedical engineers have been trying to use a combination of various techniques to provide suitable rehabilitation systems. Diverse biomedical signals, acquired from a specialized organ or cell system, e.g., the nervous system, are the driving force for the whole system. Electromyography(EMG, as an experimental technique,is concerned with the development, recording, and analysis of myoelectric signals. EMG-based research is making progress in the development of simple, robust, user-friendly, and efficient interface devices for the amputees. Materials and Methods Prediction of muscular activity and motion patterns is a common, practical problem in prosthetic organs. Recurrent neural network (RNN models are not only applicable for the prediction of time series, but are also commonly used for the control of dynamical systems. The prediction can be assimilated to identification of a dynamic process. An architectural approach of RNN with embedded memory is Nonlinear Autoregressive Exogenous (NARX model, which seems to be suitable for dynamic system applications. Results Performance of NARX model is verified for several chaotic time series, which are applied as input for the neural network. The results showed that NARX has the potential to capture the model of nonlinear dynamic systems. The R-value and MSE are and , respectively. Conclusion EMG signals of deltoid and pectoralis major muscles are the inputs of the NARX network. It is possible to obtain EMG signals of muscles in other arm motions to predict the lost functions of the absent arm in above-elbow amputees, using NARX model.
Young, Eliot
THAI-SPICE is the Testbed for High-Acuity Imaging - Stable Photometry and ImageMotion Compensation Experiment - It is a lead proposal, accompanied by a coInstitutional proposal from MIT LL. The overarching goal of THAI-SPICE is to advance balloonborne telescopes to the point where they can surpass HST in terms of spatial resolution in visible wavelengths and surpass the Kepler mission in terms of observing exoplanet transits. Balloon-borne telescopes are becoming an important part of NASA's observing programs - each 100-day super-pressure balloon flight will provide 1000 hours of dark time observing, equivalent to about 1/3 of the total on-target time allocated in an HST cycle across its entire portfolio of science programs. However, balloon-borne telescopes face unique challenges from the stratospheric thermal environment and the pointing stability of a suspended platform. This proposal will study and test three areas of development that will enable high-acuity image quality and stable photometry from balloon-borne telescopes. - Passive thermal control and stabilization of balloon-borne OTAs (Optical Tube Assemblies). Recent modeling suggests that an appropriate arrangement of sunshields, earth-shields and telescope insulation can reduce diurnal temperature excursions from more than 40°C to less than 2°C. Furthermore, modeling also suggests that the steadystate temperature of an OTA can be reduced to temperatures near 180 K, an advantage for infrared observing programs. However, most modeling packages (e.g., Thermal Desktop) do not accurately account for convection in the 3 torr or 8 torr environment of zeropressure or super-pressure balloons. In fact, it is hard to tell whether radiation or convection is a more significant cooling mechanism at super-pressure balloon altitudes. We propose to verify or update Thermal Desktop results with a series of experiments using an instrumented OTA and sun- and earth-shields. The payoff from this experiment will be balloon
Non-linearity of geocenter motion and its impact on the origin of the terrestrial reference frame
Dong, D.; Weijing, Q.; Fang, P.; Peng, D.
2013-12-01
Terrestrial reference frame is a cornerstone for modern geodesy and its applications for a wide range of Earth sciences. The underlying assumption is that the motion of the solid Earth's figure center (CF) relative to the mass center (CM) of the Earth system on a multi-decadal time scale is linear. However, past international terrestrial reference frames (ITRFs) showed unexpected trend change in their translation parameters. We investigate the surface mass loading impact on the geocenter variations from atmosphere, ocean, snow, soil moisture, glacier and sea level from 1983 to 2008. The resultant geocenter time series reveal noticeable trend acceleration from 1998 onward, in particular in the z-component. Such a non-linear trend change is statistically significant at the 99% confidence level by the Mann-Kendall (MK) test, and is highly correlated with the Satellite Laser Ranging (SLR) determined translation series. Our study, based on independent geophysical and hydrological models, demonstrates that the observed non-linearity of the Earth-system behavior in the inter-annual time scale has a physical cause, in addition to systematic error from network distribution and analysis procedures, and is able to explain 40% of the disparity between the origins of ITRF2000 and ITRF2005 as well as the good consistency between the origins of ITRF2005 and ITRF2008.
Non-linearity of geocentre motion and its impact on the origin of the terrestrial reference frame
Dong, Danan; Qu, Weijing; Fang, Peng; Peng, Dongju
2014-08-01
The terrestrial reference frame is a cornerstone for modern geodesy and its applications for a wide range of Earth sciences. The underlying assumption for establishing a terrestrial reference frame is that the motion of the solid Earth's figure centre relative to the mass centre of the Earth system on a multidecadal timescale is linear. However, past international terrestrial reference frames (ITRFs) showed unexpected accelerated motion in their translation parameters. Based on this underlying assumption, the inconsistency of relative origin motions of the ITRFs has been attributed to data reduction imperfection. We investigated the impact of surface mass loading from atmosphere, ocean, snow, soil moisture, ice sheet, glacier and sea level from 1983 to 2008 on the geocentre variations. The resultant geocentre time-series display notable trend acceleration from 1998 onward, in particular in the z-component. This effect is primarily driven by the hydrological mass redistribution in the continents (soil moisture, snow, ice sheet and glacier). The acceleration is statistically significant at the 99 per cent confidence level as determined using the Mann-Kendall test, and it is highly correlated with the satellite laser ranging determined translation series. Our study, based on independent geophysical and hydrological models, demonstrates that, in addition to systematic errors from analysis procedures, the observed non-linearity of the Earth-system behaviour at interannual timescales is physically driven and is able to explain 42 per cent of the disparity between the origins of ITRF2000 and ITRF2005, as well as the high level of consistency between the ITRF2005 and ITRF2008 origins.
Hartzell, S.; Leeds, A.; Frankel, A.; Williams, R.A.; Odum, J.; Stephenson, W.; Silva, W.
2002-01-01
The Seattle fault poses a significant seismic hazard to the city of Seattle, Washington. A hybrid, low-frequency, high-frequency method is used to calculate broadband (0-20 Hz) ground-motion time histories for a M 6.5 earthquake on the Seattle fault. Low frequencies (1 Hz) are calculated by a stochastic method that uses a fractal subevent size distribution to give an ω-2 displacement spectrum. Time histories are calculated for a grid of stations and then corrected for the local site response using a classification scheme based on the surficial geology. Average shear-wave velocity profiles are developed for six surficial geologic units: artificial fill, modified land, Esperance sand, Lawton clay, till, and Tertiary sandstone. These profiles together with other soil parameters are used to compare linear, equivalent-linear, and nonlinear predictions of ground motion in the frequency band 0-15 Hz. Linear site-response corrections are found to yield unreasonably large ground motions. Equivalent-linear and nonlinear calculations give peak values similar to the 1994 Northridge, California, earthquake and those predicted by regression relationships. Ground-motion variance is estimated for (1) randomization of the velocity profiles, (2) variation in source parameters, and (3) choice of nonlinear model. Within the limits of the models tested, the results are found to be most sensitive to the nonlinear model and soil parameters, notably the over consolidation ratio.
A nonlinear analysis of the EHF booster
International Nuclear Information System (INIS)
Colton, E.P.; Shi, D.
1987-01-01
We have analyzed particle motion at 1.2 GeV with assumption of nonlinearities arising from non-linear space charge forces and from the lattice sextupoles which are tuned to cancel the machine chromaticity. In the first case the motion is as expected and there are no problems as long as the x and y betatron tunes are separated by an integer or more. In the second case the motion is stable so long as the betatron amplitudes do not exceed values corresponding to beam normalized emittance of 100 mm-mr; when this occurs the effects of fifth-order betatron resonances are observed. 3 refs
Kumar, Santosh; Raychowdhury, Prishati; Gundlapalli, Prabhakar
2015-06-01
Design of critical facilities such as nuclear power plant requires an accurate and precise evaluation of seismic demands, as any failure of these facilities poses immense threat to the community. Design complexity of these structures reinforces the necessity of a robust 3D modeling and analysis of the structure and the soil-foundation interface. Moreover, it is important to consider the multiple components of ground motion during time history analysis for a realistic simulation. Present study is focused on investigating the seismic response of a nuclear containment structure considering nonlinear Winkler-based approach to model the soil-foundation interface using a distributed array of inelastic springs, dashpots and gap elements. It is observed from this study that the natural period of the structure increases about 10 %, whereas the force demands decreases up to 24 % by considering the soil-structure interaction. Further, it is observed that foundation deformations, such as rotation and sliding are affected by the embedment ratio, indicating an increase of up to 56 % in these responses for a reduction of embedment from 0.5 to 0.05× the width of the footing.
Directory of Open Access Journals (Sweden)
Francisco L. Silva-González
2014-01-01
Full Text Available A non-Gaussian stochastic equivalent linearization (NSEL method for estimating the non-Gaussian response of inelastic non-linear structural systems subjected to seismic ground motions represented as nonstationary random processes is presented. Based on a model that represents the time evolution of the joint probability density function (PDF of the structural response, mathematical expressions of equivalent linearization coefficients are derived. The displacement and velocity are assumed jointly Gaussian and the marginal PDF of the hysteretic component of the displacement is modeled by a mixed PDF which is Gaussian when the structural behavior is linear and turns into a bimodal PDF when the structural behavior is hysteretic. The proposed NSEL method is applied to calculate the response of hysteretic single-degree-of-freedom systems with different vibration periods and different design displacement ductility values. The results corresponding to the proposed method are compared with those calculated by means of Monte Carlo simulation, as well as by a Gaussian equivalent linearization method. It is verified that the NSEL approach proposed herein leads to maximum structural response standard deviations similar to those obtained with Monte Carlo technique. In addition, a brief discussion about the extension of the method to muti-degree-of-freedom systems is presented.
Ananthakrishnan, Palaniswamy
2012-11-01
The problem is of practical relevance in determining the motion response of multi-hull and air-cushion vehicles in high seas and in littoral waters. The linear inviscid problem without surface pressure has been well studied in the past. In the present work, the nonlinear wave-body interaction problem is solved using finite-difference methods based on boundary-fitted coordinates. The inviscid nonlinear problem is tackled using the mixed Eulerian-Lagrangian formulation and the solution of the incompressible Navier-Stokes equations governing the viscous problem using a fractional-step method. The pressure variation in the air cushion is modeled using the isentropic gas equation pVγ = Constant. Results show that viscosity and free-surface nonlinearity significantly affect the hydrodynamic force and the wave motion at the resonant Helmholtz frequency (at which the primary wave motion is the vertical oscillation of the mean surface in between the bodies). Air compressibility suppresses the Helmholtz oscillation and enhances the wave radiation. Work supported by the ONR under the grant N00014-98-1-0151.
Energy Technology Data Exchange (ETDEWEB)
Stancari, G. [Fermilab; Carlson, K. [Fermilab; McGee, M. W. [Fermilab; Nobrega, L. E. [Fermilab; Romanov, A. L. [Fermilab; Ruan, J. [Fermilab; Valishev, A. [Fermilab; Noll, D. [Frankfurt U.
2015-06-01
Recent developments in the study of integrable Hamiltonian systems have led to nonlinear accelerator lattice designs with two transverse invariants. These lattices may drastically improve the performance of high-power machines, providing wide tune spreads and Landau damping to protect the beam from instabilities, while preserving dynamic aperture. To test the feasibility of these concepts, the Integrable Optics Test Accelerator (IOTA) is being designed and built at Fermilab. One way to obtain a nonlinear integrable lattice is by using the fields generated by a magnetically confined electron beam (electron lens) overlapping with the circulating beam. The parameters of the required device are similar to the ones of existing electron lenses. We present theory, numerical simulations, and first design studies of electron lenses for nonlinear integrable optics.
Nonlinear accelerator lattices with one and two analytic invariants
Energy Technology Data Exchange (ETDEWEB)
Danilov, V.; /SNS Project, Oak Ridge; Nagaitsev, S.; /Fermilab
2010-02-01
Integrable systems appeared in physics long ago at the onset of classical dynamics with examples being Kepler's and other famous problems. Unfortunately, the majority of nonlinear problems turned out to be nonintegrable. In accelerator terms, any 2D nonlinear nonintegrable mapping produces chaotic motion and a complex network of stable and unstable resonances. Nevertheless, in the proximity of an integrable system the full volume of such a chaotic network is small. Thus, the integrable nonlinear motion in accelerators has the potential to introduce a large betatron tune spread to suppress instabilities and to mitigate the effects of space charge and magnetic field errors. To create such an accelerator lattice one has to find magnetic and electric field combinations leading to a stable integrable motion. This paper presents families of lattices with one invariant where bounded motion can be easily created in large volumes of the phase space. In addition, it presents 3 families of integrable nonlinear accelerator lattices, realizable with longitudinal-coordinate-dependent magnetic or electric fields with the stable nonlinear motion, which can be solved in terms of separable variables.
NONLINEAR ACCELERATOR LATTICES WITH ONE AND TWO ANALYTIC INVARIANTS
International Nuclear Information System (INIS)
Danilov, Viatcheslav V.
2010-01-01
Integrable systems appeared in physics long ago at the onset of classical dynamics with examples being Kepler s and other famous problems. Unfortunately, the majority of nonlinear problems turned out to be nonintegrable. In accelerator terms, any 2D nonlinear map produces a chaotic motion and a complex network of stable and unstable resonances with the unit probability. Nevertheless, in the proximity of an integrable system the full volume of such a chaotic network is small. Thus, the integrable nonlinear motion in accelerators has the potential to introduce a large betatron tune spread to suppress instabilities and to mitigate space charge effects with relatively small resonances and particle loss. To create such an accelerator lattice one has to find magnetic and electrtic field combinations leading to a stable integrable motion. This paper presents families of lattices with one invariant where bounded motion can be easily created in large volumes of the phase space. In addition, it presents 3 families of integrable nonlinear accelerator lattices, relizable with longitudinal-coordinate-dependent magnetic or electric fields with the stable nonlinear motion, which can be solved in terms of separable variables.
Schmitt, Daniel T; Ivanov, Plamen Ch
2007-11-01
organization of these fluctuations remains stable. This indicates that the coupled cascade of nonlinear feedback loops, which are believed to underlie cardiac neuroautonomic regulation, remains intact with advanced age.
Powell, Douglas W; Williams, D S Blaise
2015-12-01
Athletes are assumed to exhibit better balance than non-athletes; however, few studies have examined the role of different types of sports on balance measures. Two athlete groups that experience divergent sport-specific balance training are stable- (i.e. basketball) and unstable-surface athletes (i.e. surfers). The purpose of this study was to quantify the effect of stable- compared to unstable-surface sports on postural stability. Eight non-athletes (NON), eight stable-surface athletes (SSA) and eight unstable-surface athletes (USA) performed five 20-s quiet standing trials while ground reaction forces were recorded. Approximate entropy (ApEn), total excursion and root mean square distances (RMS) of the center of pressure position were calculated. Univariate ANOVAs with post hoc tests were conducted for each variable. ApEn values were lower in SSA compared to NON in the ML direction (p=0.012) and USA had lower ApEn values compared to SSA in the AP direction (p=0.036). The USA had smaller AP RMS compared to SSA (p=0.002) while the USA had greater ML RMS (p=0.008) and resultant RMS values compared to SSA (p=0.025). These data suggest that USA and SSA may exhibit direction-specific differences in balance strategy due to feedback paradigm. Copyright © 2015 Elsevier B.V. All rights reserved.
International Nuclear Information System (INIS)
Barber, D.P.; Ripken, G.; Schmidt, F.
1987-05-01
We investigate the motion of protons of arbitrary energy (below and above transition energy) in a storage ring. The motion is described both in terms of the fully six-dimensional formalism with the canonical variables x, p x , z, p z , σ = s - v 0 . t, η = ΔE/E 0 = p σ and in terms of a dispersion formalism with new variables x, p x , z, p z , σ, p σ . Since the dispersion function is introduced into the equations of motion via a canonical transformation the symplectic structure of these equations is completely preserved. In this formulation it is then possible to define three uncoupled linear (unperturbed) oscillation modes which are described by phase ellipses. Perturbations manifest themselves as deviations from these ellipses. The equations of motion are solved within the framework of the fully six-dimensional formalism. (orig.)
Vibrational mechanics nonlinear dynamic effects, general approach, applications
Blekhman, Iliya I
2000-01-01
This important book deals with vibrational mechanics - the new, intensively developing section of nonlinear dynamics and the theory of nonlinear oscillations. It offers a general approach to the study of the effect of vibration on nonlinear mechanical systems.The book presents the mathematical apparatus of vibrational mechanics which is used to describe such nonlinear effects as the disappearance and appearance under vibration of stable positions of equilibrium and motions (i.e. attractors), the change of the rheological properties of the media, self-synchronization, self-balancing, the vibrat
Stable chaos in fluctuation driven neural circuits
International Nuclear Information System (INIS)
Angulo-Garcia, David; Torcini, Alessandro
2014-01-01
Highlights: • Nonlinear instabilities in fluctuation driven (balanced) neural circuits are studied. • Balanced networks display chaos and stable phases at different post-synaptic widths. • Linear instabilities coexists with nonlinear ones in the chaotic regime. • Erratic motion appears also in linearly stable phase due to stable chaos. - Abstract: We study the dynamical stability of pulse coupled networks of leaky integrate-and-fire neurons against infinitesimal and finite perturbations. In particular, we compare mean versus fluctuations driven networks, the former (latter) is realized by considering purely excitatory (inhibitory) sparse neural circuits. In the excitatory case the instabilities of the system can be completely captured by an usual linear stability (Lyapunov) analysis, whereas the inhibitory networks can display the coexistence of linear and nonlinear instabilities. The nonlinear effects are associated to finite amplitude instabilities, which have been characterized in terms of suitable indicators. For inhibitory coupling one observes a transition from chaotic to non chaotic dynamics by decreasing the pulse-width. For sufficiently fast synapses the system, despite showing an erratic evolution, is linearly stable, thus representing a prototypical example of stable chaos
Nonlinear Modeling by Assembling Piecewise Linear Models
Yao, Weigang; Liou, Meng-Sing
2013-01-01
To preserve nonlinearity of a full order system over a parameters range of interest, we propose a simple modeling approach by assembling a set of piecewise local solutions, including the first-order Taylor series terms expanded about some sampling states. The work by Rewienski and White inspired our use of piecewise linear local solutions. The assembly of these local approximations is accomplished by assigning nonlinear weights, through radial basis functions in this study. The efficacy of the proposed procedure is validated for a two-dimensional airfoil moving at different Mach numbers and pitching motions, under which the flow exhibits prominent nonlinear behaviors. All results confirm that our nonlinear model is accurate and stable for predicting not only aerodynamic forces but also detailed flowfields. Moreover, the model is robustness-accurate for inputs considerably different from the base trajectory in form and magnitude. This modeling preserves nonlinearity of the problems considered in a rather simple and accurate manner.
Carasso, Alfred S; Vladár, András E
2012-01-01
Helium ion microscopes (HIM) are capable of acquiring images with better than 1 nm resolution, and HIM images are particularly rich in morphological surface details. However, such images are generally quite noisy. A major challenge is to denoise these images while preserving delicate surface information. This paper presents a powerful slow motion denoising technique, based on solving linear fractional diffusion equations forward in time. The method is easily implemented computationally, using fast Fourier transform (FFT) algorithms. When applied to actual HIM images, the method is found to reproduce the essential surface morphology of the sample with high fidelity. In contrast, such highly sophisticated methodologies as Curvelet Transform denoising, and Total Variation denoising using split Bregman iterations, are found to eliminate vital fine scale information, along with the noise. Image Lipschitz exponents are a useful image metrology tool for quantifying the fine structure content in an image. In this paper, this tool is applied to rank order the above three distinct denoising approaches, in terms of their texture preserving properties. In several denoising experiments on actual HIM images, it was found that fractional diffusion smoothing performed noticeably better than split Bregman TV, which in turn, performed slightly better than Curvelet denoising.
Malyarenko, Dariya I; Pang, Yuxi; Senegas, Julien; Ivancevic, Marko K; Ross, Brian D; Chenevert, Thomas L
2015-12-01
Spatially non-uniform diffusion weighting bias due to gradient nonlinearity (GNL) causes substantial errors in apparent diffusion coefficient (ADC) maps for anatomical regions imaged distant from magnet isocenter. Our previously-described approach allowed effective removal of spatial ADC bias from three orthogonal DWI measurements for mono-exponential media of arbitrary anisotropy. The present work evaluates correction feasibility and performance for quantitative diffusion parameters of the two-component IVIM model for well-perfused and nearly isotropic renal tissue. Sagittal kidney DWI scans of a volunteer were performed on a clinical 3T MRI scanner near isocenter and offset superiorly. Spatially non-uniform diffusion weighting due to GNL resulted both in shift and broadening of perfusion-suppressed ADC histograms for off-center DWI relative to unbiased measurements close to isocenter. Direction-average DW-bias correctors were computed based on the known gradient design provided by vendor. The computed bias maps were empirically confirmed by coronal DWI measurements for an isotropic gel-flood phantom. Both phantom and renal tissue ADC bias for off-center measurements was effectively removed by applying pre-computed 3D correction maps. Comparable ADC accuracy was achieved for corrections of both b -maps and DWI intensities in presence of IVIM perfusion. No significant bias impact was observed for IVIM perfusion fraction.
International Nuclear Information System (INIS)
Antzutkin, O.
1992-01-01
This thesis is divided into two sections. The first part covers an introduction to the Optically Detected Electron Spin Resonance (OD ESR) spectroscopy and a short description of the OD ESR spectrometer built in Linkoeping University in 1991. In the second section the following topics are discussed: Non-linear effects in OD ESR spectroscopy and Reactions and motion of organic radicals trapped in freon matrices. (19 refs.)
National Aeronautics and Space Administration — Computationally-efficient, fast and real-time, and provably-optimal motion planner for systems with highly nonlinear dynamics that can be extended for cooperative...
Spatial solitons in nonlinear photonic crystals
DEFF Research Database (Denmark)
Corney, Joel Frederick; Bang, Ole
2000-01-01
We study solitons in one-dimensional quadratic nonlinear photonic crystals with periodic linear and nonlinear susceptibilities. We show that such crystals support stable bright and dark solitons, even when the effective quadratic nonlinearity is zero.......We study solitons in one-dimensional quadratic nonlinear photonic crystals with periodic linear and nonlinear susceptibilities. We show that such crystals support stable bright and dark solitons, even when the effective quadratic nonlinearity is zero....
Travelling Solitons in the Damped Driven Nonlinear Schroedinger Equation
Barashenkov, I V
2003-01-01
The well-known effect of the linear damping on the moving nonlinear Schrodinger soliton (even when there is energy supply via the spatially homogeneous driving) is to quench its momentum to zero. Surprisingly, the zero momentum does not necessarily mean zero velocity. We show that two or more parametrically driven damped solitons can form a complex travelling with zero momentum at a nonzero constant speed. All travelling complexes we have found so far, turned out to be unstable. Thus, the parametric driving is capable of sustaining the uniform motion of damped solitons, but some additional agent is required to make this motion stable.
Stutzki, Fabian; Gaida, Christian; Gebhardt, Martin; Jauregui, Cesar; Limpert, Jens; Tünnermann, Andreas; Pupeza, Ioachim
2017-02-01
Ultrashort-pulse laser systems are an enabling technology for numerous applications. The stability of such systems is especially crucial for frequency metrology and high precision spectroscopy. Thulium-based fiber lasers are an ideal starting point as a reliable and yet powerful source for the nonlinear conversion towards the mid-IR region. Recently, we have demonstrated that nonlinear self-compression in a fused silica solid-core fiber allows for few-cycle pulse duration with up to 24 MW peak power using a high-repetition rate thulium-based fiber laser system operating at around 2 μm wavelength [1]. This experiment operates near the self-focusing limit of about 24 MW for circular polarization, which increases the requirements for the system stability due to the risk of a fiber damage. Here, we present a self-protecting nonlinear compression regime allowing for long-term operation and high output-pulse stability with very similar output performance.
Nonlinear Resonance Analysis of Slender Portal Frames under Base Excitation
Directory of Open Access Journals (Sweden)
Luis Fernando Paullo Muñoz
2017-01-01
Full Text Available The dynamic nonlinear response and stability of slender structures in the main resonance regions are a topic of importance in structural analysis. In complex problems, the determination of the response in the frequency domain indirectly obtained through analyses in time domain can lead to huge computational effort in large systems. In nonlinear cases, the response in the frequency domain becomes even more cumbersome because of the possibility of multiple solutions for certain forcing frequencies. Those solutions can be stable and unstable, in particular saddle-node bifurcation at the turning points along the resonance curves. In this work, an incremental technique for direct calculation of the nonlinear response in frequency domain of plane frames subjected to base excitation is proposed. The transformation of equations of motion to the frequency domain is made through the harmonic balance method in conjunction with the Galerkin method. The resulting system of nonlinear equations in terms of the modal amplitudes and forcing frequency is solved by the Newton-Raphson method together with an arc-length procedure to obtain the nonlinear resonance curves. Suitable examples are presented, and the influence of the frame geometric parameters and base motion on the nonlinear resonance curves is investigated.
Connor, Jerome
2014-01-01
This innovative volume provides a systematic treatment of the basic concepts and computational procedures for structural motion design and engineering for civil installations. The authors illustrate the application of motion control to a wide spectrum of buildings through many examples. Topics covered include optimal stiffness distributions for building-type structures, the role of damping in controlling motion, tuned mass dampers, base isolation systems, linear control, and nonlinear control. The book's primary objective is the satisfaction of motion-related design requirements, such as restrictions on displacement and acceleration. The book is ideal for practicing engineers and graduate students. This book also: · Broadens practitioners' understanding of structural motion control, the enabling technology for motion-based design · Provides readers the tools to satisfy requirements of modern, ultra-high strength materials that lack corresponding stiffness, where the motion re...
International Nuclear Information System (INIS)
Zelenyj, L.M.; Kuznetsova, M.M.
1989-01-01
Nonlinear study of magnetic perturbation development under single-mode conditions in collision-free plasma in configurations with the magnetic field shear is investigated. Results are obtained with regard of transverse component of electrical field and its effect on ion dynamics within wide range of ion Larmor radius value and values of magnetic field shear. Increments of nonlinear drift tearing mode are obtained and it is shown that excitation drastic conditions of even linearly stable modes are possible. Mechanism of instability nonlinear stabilization is considered and the value of magnetic island at the saturation threshold is estimeted. Energy of nonlinear drift tearing mode is discussed
Stable rotating dipole solitons in nonlocal media
DEFF Research Database (Denmark)
Lopez-Aguayo, Servando; Skupin, Stefan; Desyatnikov, Anton S.
2006-01-01
We present the first example of stable rotating two-soliton bound states in nonlinear optical media with nonlocal response. We show that, in contrast to media with local response, nonlocality opens possibilities to generate stable azimuthons.......We present the first example of stable rotating two-soliton bound states in nonlinear optical media with nonlocal response. We show that, in contrast to media with local response, nonlocality opens possibilities to generate stable azimuthons....
Control Design of a Nonlinear Controller to Stabilize the Nonlinear ...
African Journals Online (AJOL)
inyangs
AQM) scheme employing .... A nonlinear control design is considered for application in this case, so that when there is any change in network .... shows that the system is asymptotically stable with a negative definite solution in equation (14).
Nonlinear parametric instability of wind turbine wings
DEFF Research Database (Denmark)
Larsen, Jesper Winther; Nielsen, Søren R.K.
2006-01-01
Nonlinear rotor dynamic is characterized by parametric excitation of both linear and nonlinear terms caused by centrifugal and Coriolis forces when formulated in a moving frame of reference. Assuming harmonically varying support point motions from the tower, the nonlinear parametric instability...
Strongly nonlinear oscillators analytical solutions
Cveticanin, Livija
2014-01-01
This book provides the presentation of the motion of pure nonlinear oscillatory systems and various solution procedures which give the approximate solutions of the strong nonlinear oscillator equations. The book presents the original author’s method for the analytical solution procedure of the pure nonlinear oscillator system. After an introduction, the physical explanation of the pure nonlinearity and of the pure nonlinear oscillator is given. The analytical solution for free and forced vibrations of the one-degree-of-freedom strong nonlinear system with constant and time variable parameter is considered. Special attention is given to the one and two mass oscillatory systems with two-degrees-of-freedom. The criteria for the deterministic chaos in ideal and non-ideal pure nonlinear oscillators are derived analytically. The method for suppressing chaos is developed. Important problems are discussed in didactic exercises. The book is self-consistent and suitable as a textbook for students and also for profess...
International Nuclear Information System (INIS)
Evans, D.K.
1986-01-01
Seventy-five percent of the world's stable isotope supply comes from one producer, Oak Ridge Nuclear Laboratory (ORNL) in the US. Canadian concern is that foreign needs will be met only after domestic needs, thus creating a shortage of stable isotopes in Canada. This article describes the present situation in Canada (availability and cost) of stable isotopes, the isotope enrichment techniques, and related research programs at Chalk River Nuclear Laboratories (CRNL)
Oscillators from nonlinear realizations
Kozyrev, N.; Krivonos, S.
2018-02-01
We construct the systems of the harmonic and Pais-Uhlenbeck oscillators, which are invariant with respect to arbitrary noncompact Lie algebras. The equations of motion of these systems can be obtained with the help of the formalism of nonlinear realizations. We prove that it is always possible to choose time and the fields within this formalism in such a way that the equations of motion become linear and, therefore, reduce to ones of ordinary harmonic and Pais-Uhlenbeck oscillators. The first-order actions, that produce these equations, can also be provided. As particular examples of this construction, we discuss the so(2, 3) and G 2(2) algebras.
Stabilities of regular motion in the relativistic standard map
International Nuclear Information System (INIS)
Nomura, Y.; Ichikawa, Y.H.; Horton, W.
1991-02-01
Analysis of the relativistic standard map is one of the important problems to understand nonlinear interaction between waves and charged particles in the relativistic dynamics. In the relativistic standard map, in general, chaotic motion is strongly suppressed and regular motion such as periodic orbit plays dominant roles in the phase space. Location of periodic points is predicted by use of symmetry lines of the map. Local stability of periodic points is investigated by introducing the residue of the orbit which characterizes the eigenvalue of the area-preserving map. It is found that the exchange of stable and unstable points takes place at some value of the relativistic parameter. Special behavior of the residue of the Poincare-Birkhoff period-4 points are also examined and related bifurcations are clarified. (author)
Relative motion characteristics of 2 near-Earth Satellites
Schutz, B. E.
1984-01-01
The stability of the nonlinear dynamical system of two GRAVSAT - type satellites was investigated by performing several numerical experiments which provide the simulations of the relative motion characteristics between the two satellites for various specified time intervals. The simulations included the relative range, range-rate, and relative acceleration magnitude. These simulations were generated with respect to appropriate initial orbital elements which were obtained such that the instantaneous separation distance between the two satellites has small fluctuations from a specified constant separation distance. The simulation results indicate that the behavior of the relative motions is very sensitive to the initial orbital elements of the satellites and that for a specified time interval of interest. A stable behavior is possible only with the use of an appropriate set of initial orbital elements compatible with the gravity field used to derive them.
International Nuclear Information System (INIS)
Han, Jeong Sam
2010-01-01
In this paper, the design and nonlinear simulation of a multistable electromagnetic microactuator, which provides four stable equilibrium positions within its operating range, have been discussed. Quadstable actuator motion has been made possible by using both X- and Y-directional bistable structures with snapping curved beams. Two pairs of the curved beams are attached to an inner frame in both X- and Y-directions to realize independent bistable behavior in each direction. For the actuation of the actuator at the micrometer scale, an electromagnetic actuation method in which Lorentz force is taken into consideration was used. By using this method, micrometer-stroke quadstability in a plane parallel to a substrate was possible. The feasibility of designing an actuator that can realize quadstable motion by using the electromagnetic actuation method has been thoroughly clarified by performing nonlinear static and dynamic analyses and electrothermal coupled-field analysis of the multistable microactuator
Single-ion nonlinear mechanical oscillator
International Nuclear Information System (INIS)
Akerman, N.; Kotler, S.; Glickman, Y.; Dallal, Y.; Keselman, A.; Ozeri, R.
2010-01-01
We study the steady-state motion of a single trapped ion oscillator driven to the nonlinear regime. Damping is achieved via Doppler laser cooling. The ion motion is found to be well described by the Duffing oscillator model with an additional nonlinear damping term. We demonstrate here the unique ability of tuning both the linear as well as the nonlinear damping coefficients by controlling the laser-cooling parameters. Our observations pave the way for the investigation of nonlinear dynamics on the quantum-to-classical interface as well as mechanical noise squeezing in laser-cooling dynamics.
Forced phase-locked response of a nonlinear system with time delay after Hopf bifurcation
International Nuclear Information System (INIS)
Ji, J.C.; Hansen, Colin H.
2005-01-01
The trivial equilibrium of a nonlinear autonomous system with time delay may become unstable via a Hopf bifurcation of multiplicity two, as the time delay reaches a critical value. This loss of stability of the equilibrium is associated with two coincident pairs of complex conjugate eigenvalues crossing the imaginary axis. The resultant dynamic behaviour of the corresponding nonlinear non-autonomous system in the neighbourhood of the Hopf bifurcation is investigated based on the reduction of the infinite-dimensional problem to a four-dimensional centre manifold. As a result of the interaction between the Hopf bifurcating periodic solutions and the external periodic excitation, a primary resonance can occur in the forced response of the system when the forcing frequency is close to the Hopf bifurcating periodic frequency. The method of multiple scales is used to obtain four first-order ordinary differential equations that determine the amplitudes and phases of the phase-locked periodic solutions. The first-order approximations of the periodic solutions are found to be in excellent agreement with those obtained by direct numerical integration of the delay-differential equation. It is also found that the steady state solutions of the nonlinear non-autonomous system may lose their stability via either a pitchfork or Hopf bifurcation. It is shown that the primary resonance response may exhibit symmetric and asymmetric phase-locked periodic motions, quasi-periodic motions, chaotic motions, and coexistence of two stable motions
Perturbation methods and closure approximations in nonlinear systems
International Nuclear Information System (INIS)
Dubin, D.H.E.
1984-01-01
In the first section of this thesis, Hamiltonian theories of guiding center and gyro-center motion are developed using modern symplectic methods and Lie transformations. Littlejohn's techniques, combined with the theory of resonant interaction and island overlap, are used to explore the problem of adiabatic invariance and onset of stochasticity. As an example, the breakdown of invariance due to resonance between drift motion and gyromotion in a tokamak is considered. A Hamiltonian is developed for motion in a straight magnetic field with electrostatic perturbations in the gyrokinetic ordering, from which nonlinear gyrokinetic equations are constructed which have the property of phase-space preservation, useful for computer simulation. Energy invariants are found and various limits of the equations are considered. In the second section, statistical closure theories are applied to simple dynamical systems. The logistic map is used as an example because of its universal properties and simple quadratic nonlinearity. The first closure considered is the direct interaction approximation of Kraichnan, which is found to fail when applied to the logistic map because it cannot approximate the bounded support of the map's equilibrium distribution. By imposing a periodically constraint on a Langevin form of the DIA a new stable closure is developed
Bloembergen, Nicolaas
1996-01-01
Nicolaas Bloembergen, recipient of the Nobel Prize for Physics (1981), wrote Nonlinear Optics in 1964, when the field of nonlinear optics was only three years old. The available literature has since grown by at least three orders of magnitude.The vitality of Nonlinear Optics is evident from the still-growing number of scientists and engineers engaged in the study of new nonlinear phenomena and in the development of new nonlinear devices in the field of opto-electronics. This monograph should be helpful in providing a historical introduction and a general background of basic ideas both for expe
Bles, Willem; Bos, Jelte E.; Kruit, Hans
2000-01-01
The number of recently published papers on motion sickness may convey the impression that motion sickness is far from being understood. The current review focusses on a concept which tends to unify the different manifestations and theories of motion sickness. The paper highlights the relations
Yoshida, Zensho
2010-01-01
This book gives a general, basic understanding of the mathematical structure "nonlinearity" that lies in the depths of complex systems. Analyzing the heterogeneity that the prefix "non" represents with respect to notions such as the linear space, integrability and scale hierarchy, "nonlinear science" is explained as a challenge of deconstruction of the modern sciences. This book is not a technical guide to teach mathematical tools of nonlinear analysis, nor a zoology of so-called nonlinear phenomena. By critically analyzing the structure of linear theories, and cl
Nayfeh, Ali Hasan
1995-01-01
Nonlinear Oscillations is a self-contained and thorough treatment of the vigorous research that has occurred in nonlinear mechanics since 1970. The book begins with fundamental concepts and techniques of analysis and progresses through recent developments and provides an overview that abstracts and introduces main nonlinear phenomena. It treats systems having a single degree of freedom, introducing basic concepts and analytical methods, and extends concepts and methods to systems having degrees of freedom. Most of this material cannot be found in any other text. Nonlinear Oscillations uses sim
International Nuclear Information System (INIS)
Samios, N.P.
1994-01-01
I have been asked to review the subject of stable particles, essentially the particles that eventually comprised the meson and baryon octets, with a few more additions - with an emphasis on the contributions made by experiments utilizing the bubble chamber technique. In this activity, much work had been done by the photographic emulsion technique and cloud chambers - exposed to cosmic rays as well as accelerator based beams. In fact, many if not most of the stable particles were found by these latter two techniques, however, the foree of the bubble chamber (coupled with the newer and more powerful accelerators) was to verify, and reinforce with large statistics, the existence of these states, to find some of the more difficult ones, mainly neutrals and further to elucidate their properties, i.e., spin, parity, lifetimes, decay parameters, etc. (orig.)
International Nuclear Information System (INIS)
Samios, N.P.
1993-01-01
I have been asked to review the subject of stable particles, essentially the particles that eventually comprised the meson and baryon octets. with a few more additions -- with an emphasis on the contributions made by experiments utilizing the bubble chamber technique. In this activity, much work had been done by the photographic emulsion technique and cloud chambers-exposed to cosmic rays as well as accelerator based beams. In fact, many if not most of the stable particles were found by these latter two techniques, however, the forte of the bubble chamber (coupled with the newer and more powerful accelerators) was to verify, and reinforce with large statistics, the existence of these states, to find some of the more difficult ones, mainly neutrals and further to elucidate their properties, i.e., spin, parity, lifetimes, decay parameters, etc
National Research Council Canada - National Science Library
Rassias, Themistocles M
1987-01-01
... known that nonlinear partial differential equations can not be treated in the same systematic way as linear ones and this volume provides, among other things, proofs of existence and uniqueness theorems for nonlinear differential equations of a global nature. However, the basic techniques which have proven to be efficient in dealing with li...
Palmero, Faustino; Lemos, M; Sánchez-Rey, Bernardo; Casado-Pascual, Jesús
2018-01-01
This book presents an overview of the most recent advances in nonlinear science. It provides a unified view of nonlinear properties in many different systems and highlights many new developments. While volume 1 concentrates on mathematical theory and computational techniques and challenges, which are essential for the study of nonlinear science, this second volume deals with nonlinear excitations in several fields. These excitations can be localized and transport energy and matter in the form of breathers, solitons, kinks or quodons with very different characteristics, which are discussed in the book. They can also transport electric charge, in which case they are known as polarobreathers or solectrons. Nonlinear excitations can influence function and structure in biology, as for example, protein folding. In crystals and other condensed matter, they can modify transport properties, reaction kinetics and interact with defects. There are also engineering applications in electric lattices, Josephson junction a...
From fractional Brownian motion to multifractional and multistable motion
Falconer, Kenneth
2015-03-01
Fractional Brownian motion, introduced by Benoit Mandelbrot and John Van Ness in 1968, has had a major impact on stochastic processes and their applications. We survey a few of the many developments that have stemmed from their ideas. In particular we discuss the local structure of fractional and multifractional Brownian, stable and multistable processes, emphasising the `diagonal' construction of such processes. In all this, the ubiquity and centrality of fractional Brownian motion is striking.
Nonlinear (Anharmonic Casimir Oscillator
Directory of Open Access Journals (Sweden)
Habibollah Razmi
2011-01-01
Full Text Available We want to study the dynamics of a simple linear harmonic micro spring which is under the influence of the quantum Casimir force/pressure and thus behaves as a (an nonlinear (anharmonic Casimir oscillator. Generally, the equation of motion of this nonlinear micromechanical Casimir oscillator has no exact solvable (analytical solution and the turning point(s of the system has (have no fixed position(s; however, for particular values of the stiffness of the micro spring and at appropriately well-chosen distance scales and conditions, there is (are approximately sinusoidal solution(s for the problem (the variable turning points are collected in a very small interval of positions. This, as a simple and elementary plan, may be useful in controlling the Casimir stiction problem in micromechanical devices.
Boyd, Robert W
2013-01-01
Nonlinear Optics is an advanced textbook for courses dealing with nonlinear optics, quantum electronics, laser physics, contemporary and quantum optics, and electrooptics. Its pedagogical emphasis is on fundamentals rather than particular, transitory applications. As a result, this textbook will have lasting appeal to a wide audience of electrical engineering, physics, and optics students, as well as those in related fields such as materials science and chemistry.Key Features* The origin of optical nonlinearities, including dependence on the polarization of light* A detailed treatment of the q
Tsunamis - harbor oscillations induced by nonlinear transient long waves
Lepelletier, Thierry G. (Thierry Georges)
1980-01-01
The process of excitation of harbors and bays by transient nonlinear long waves is investigated theoretically and experimentally. In addition, nonlinear shallow water waves generated in a closed rectangular basin by the motion of the basin are also examined. Two numerical methods based on finite element techniques are used to solve the weakly nonlinear-dispersive-dissipative equations of motion and are applied to the basin excitation problem and the transient harbor oscillation problem, ...
A procedure to construct exact solutions of nonlinear evolution ...
Indian Academy of Sciences (India)
Exact solutions; the functional variable method; nonlinear wave equations. PACS Nos 02.30.Jr; 02.70.Wz; 05.45.Yv; 94.05.Fg. 1. Introduction. The theory of nonlinear dispersive and dissipative wave motion has recently undergone much research. Phenomena in physics and other fields are often described by nonlinear.
Xiong, Caiqiao; Zhou, Xiaoyu; Zhang, Ning; Zhan, Lingpeng; Chen, Yongtai; Nie, Zongxiu
2016-02-01
The nonlinear harmonics within the ion motion are the fingerprint of the nonlinear fields. They are exclusively introduced by these nonlinear fields and are responsible to some specific nonlinear effects such as nonlinear resonance effect. In this article, the ion motion in the quadrupole field with a weak superimposed octopole component, described by the nonlinear Mathieu equation (NME), was studied by using the analytical harmonic balance (HB) method. Good accuracy of the HB method, which was comparable with that of the numerical fourth-order Runge-Kutta (4th RK), was achieved in the entire first stability region, except for the points at the stability boundary (i.e., β = 1) and at the nonlinear resonance condition (i.e., β = 0.5). Using the HB method, the nonlinear 3β harmonic series introduced by the octopole component and the resultant nonlinear resonance effect were characterized. At nonlinear resonance, obvious resonant peaks were observed in the nonlinear 3β series of ion motion, but were not found in the natural harmonics. In addition, both resonant excitation and absorption peaks could be observed, simultaneously. These are two unique features of the nonlinear resonance, distinguishing it from the normal resonance. Finally, an approximation equation was given to describe the corresponding working parameter, q nr , at nonlinear resonance. This equation can help avoid the sensitivity degradation due to the operation of ion traps at the nonlinear resonance condition.
Xiong, Caiqiao; Zhou, Xiaoyu; Zhang, Ning; Zhan, Lingpeng; Chen, Yongtai; Nie, Zongxiu
2016-02-01
The nonlinear harmonics within the ion motion are the fingerprint of the nonlinear fields. They are exclusively introduced by these nonlinear fields and are responsible to some specific nonlinear effects such as nonlinear resonance effect. In this article, the ion motion in the quadrupole field with a weak superimposed octopole component, described by the nonlinear Mathieu equation (NME), was studied by using the analytical harmonic balance (HB) method. Good accuracy of the HB method, which was comparable with that of the numerical fourth-order Runge-Kutta (4th RK), was achieved in the entire first stability region, except for the points at the stability boundary (i.e., β = 1) and at the nonlinear resonance condition (i.e., β = 0.5). Using the HB method, the nonlinear 3β harmonic series introduced by the octopole component and the resultant nonlinear resonance effect were characterized. At nonlinear resonance, obvious resonant peaks were observed in the nonlinear 3β series of ion motion, but were not found in the natural harmonics. In addition, both resonant excitation and absorption peaks could be observed, simultaneously. These are two unique features of the nonlinear resonance, distinguishing it from the normal resonance. Finally, an approximation equation was given to describe the corresponding working parameter, q nr , at nonlinear resonance. This equation can help avoid the sensitivity degradation due to the operation of ion traps at the nonlinear resonance condition.
2015-01-01
Stable beams: two simple words that carry so much meaning at CERN. When LHC page one switched from "squeeze" to "stable beams" at 10.40 a.m. on Wednesday, 3 June, it triggered scenes of jubilation in control rooms around the CERN sites, as the LHC experiments started to record physics data for the first time in 27 months. This is what CERN is here for, and it’s great to be back in business after such a long period of preparation for the next stage in the LHC adventure. I’ve said it before, but I’ll say it again. This was a great achievement, and testimony to the hard and dedicated work of so many people in the global CERN community. I could start to list the teams that have contributed, but that would be a mistake. Instead, I’d simply like to say that an achievement as impressive as running the LHC – a machine of superlatives in every respect – takes the combined effort and enthusiasm of everyone ...
Robust feedback linearization for nonlinear processes control.
Rubio, José de Jesús
2018-03-01
In this research, a robust feedback linearization technique is studied for nonlinear processes control. The main contributions are described as follows: 1) Theory says that if a linearized controlled process is stable, then nonlinear process states are asymptotically stable, it is not satisfied in applications because some states converge to small values; therefore, a theorem based on Lyapunov theory is proposed to prove that if a linearized controlled process is stable, then nonlinear process states are uniformly stable. 2) Theory says that all the main and crossed states feedbacks should be considered for the nonlinear processes regulation, it makes more difficult to find the controller gains; consequently, only the main states feedbacks are utilized to obtain a satisfactory result in applications. This introduced strategy is applied in a fuel cell and a manipulator. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.
Zhu, Hong-Ming; Yu, Yu; Pen, Ue-Li; Chen, Xuelei; Yu, Hao-Ran
2017-12-01
We present a direct approach to nonparametrically reconstruct the linear density field from an observed nonlinear map. We solve for the unique displacement potential consistent with the nonlinear density and positive definite coordinate transformation using a multigrid algorithm. We show that we recover the linear initial conditions up to the nonlinear scale (rδrδL>0.5 for k ≲1 h /Mpc ) with minimal computational cost. This reconstruction approach generalizes the linear displacement theory to fully nonlinear fields, potentially substantially expanding the baryon acoustic oscillations and redshift space distortions information content of dense large scale structure surveys, including for example SDSS main sample and 21 cm intensity mapping initiatives.
Gasinski, Leszek
2005-01-01
Hausdorff Measures and Capacity. Lebesgue-Bochner and Sobolev Spaces. Nonlinear Operators and Young Measures. Smooth and Nonsmooth Analysis and Variational Principles. Critical Point Theory. Eigenvalue Problems and Maximum Principles. Fixed Point Theory.
Motion parallax in immersive cylindrical display systems
Filliard, N.; Reymond, G.; Kemeny, A.; Berthoz, A.
2012-03-01
Motion parallax is a crucial visual cue produced by translations of the observer for the perception of depth and selfmotion. Therefore, tracking the observer viewpoint has become inevitable in immersive virtual (VR) reality systems (cylindrical screens, CAVE, head mounted displays) used e.g. in automotive industry (style reviews, architecture design, ergonomics studies) or in scientific studies of visual perception. The perception of a stable and rigid world requires that this visual cue be coherent with other extra-retinal (e.g. vestibular, kinesthetic) cues signaling ego-motion. Although world stability is never questioned in real world, rendering head coupled viewpoint in VR can lead to the perception of an illusory perception of unstable environments, unless a non-unity scale factor is applied on recorded head movements. Besides, cylindrical screens are usually used with static observers due to image distortions when rendering image for viewpoints different from a sweet spot. We developed a technique to compensate in real-time these non-linear visual distortions, in an industrial VR setup, based on a cylindrical screen projection system. Additionally, to evaluate the amount of discrepancies tolerated without perceptual distortions between visual and extraretinal cues, a "motion parallax gain" between the velocity of the observer's head and that of the virtual camera was introduced in this system. The influence of this artificial gain was measured on the gait stability of free-standing participants. Results indicate that, below unity, gains significantly alter postural control. Conversely, the influence of higher gains remains limited, suggesting a certain tolerance of observers to these conditions. Parallax gain amplification is therefore proposed as a possible solution to provide a wider exploration of space to users of immersive virtual reality systems.
Keeping speed and distance for aligned motion.
Farkas, Illés J; Kun, Jeromos; Jin, Yi; He, Gaoqi; Xu, Mingliang
2015-01-01
The cohesive collective motion (flocking, swarming) of autonomous agents is ubiquitously observed and exploited in both natural and man-made settings, thus, minimal models for its description are essential. In a model with continuous space and time we find that if two particles arrive symmetrically in a plane at a large angle, then (i) radial repulsion and (ii) linear self-propelling toward a fixed preferred speed are sufficient for them to depart at a smaller angle. For this local gain of momentum explicit velocity alignment is not necessary, nor are adhesion or attraction, inelasticity or anisotropy of the particles, or nonlinear drag. With many particles obeying these microscopic rules of motion we find that their spatial confinement to a square with periodic boundaries (which is an indirect form of attraction) leads to stable macroscopic ordering. As a function of the strength of added noise we see--at finite system sizes--a critical slowing down close to the order-disorder boundary and a discontinuous transition. After varying the density of particles at constant system size and varying the size of the system with constant particle density we predict that in the infinite system size (or density) limit the hysteresis loop disappears and the transition becomes continuous. We note that animals, humans, drones, etc., tend to move asynchronously and are often more responsive to motion than positions. Thus, for them velocity-based continuous models can provide higher precision than coordinate-based models. An additional characteristic and realistic feature of the model is that convergence to the ordered state is fastest at a finite density, which is in contrast to models applying (discontinuous) explicit velocity alignments and discretized time. To summarize, we find that the investigated model can provide a minimal description of flocking.
Energy Technology Data Exchange (ETDEWEB)
Pousse, G
2005-10-15
This thesis intends to characterize ground motion during earthquake. This work is based on two Japanese networks. It deals with databases of shallow events, depth less than 25 km, with magnitude between 4.0 and 7.3. The analysis of K-net allows to compute a spectral ground motion prediction equation and to review the shape of the Eurocode 8 design spectra. We show the larger amplification at short period for Japanese data and bring in light the soil amplification that takes place at large period. In addition, we develop a new empirical model for simulating synthetic stochastic nonstationary acceleration time histories. By specifying magnitude, distance and site effect, this model allows to produce many time histories, that a seismic event is liable to produce at the place of interest. Furthermore, the study of near-field borehole records of the Kik-net allows to explore the validity domain of predictive equations and to explain what occurs by extrapolating ground motion predictions. Finally, we show that nonlinearity reduces the dispersion of ground motion at the surface. (author)
2016-07-01
architectures , practical nonlinearities, nonlinear dynamics 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT: SAR 8. NUMBER OF PAGES...performers from Mesodynamic Architectures (MESO) and uPNT all to include devices in these runs. This cost-sharing was planned, and is necessary for...contributions to the performance of MEMS gyroscopes. In particular, we have demonstrated for the first time that Parametric Amplification can improve the
Impurity solitons with quadratic nonlinearities
DEFF Research Database (Denmark)
Clausen, Carl A. Balslev; Torres, Juan P-; Torner, Lluis
1998-01-01
We fmd families of solitary waves mediated by parametric mixing in quadratic nonlinear media that are localized at point-defect impurities. Solitons localized at attractive impurities are found to be dynamically stable. It is shown that localization at the impurity modifies strongly the soliton...
Weakly nonlinear sloshing in a truncated circular conical tank
International Nuclear Information System (INIS)
Gavrilyuk, I P; Hermann, M; Lukovsky, I A; Solodun, O V; Timokha, A N
2013-01-01
Sloshing of an ideal incompressible liquid in a rigid truncated (tapered) conical tank is considered when the tank performs small-magnitude oscillatory motions with the forcing frequency close to the lowest natural sloshing frequency. The multimodal method, the non-conformal mapping technique and the Moiseev type asymptotics are employed to derive a finite-dimensional system of weakly nonlinear ordinary differential (modal) equations. This modal system is a generalization of that by Gavrilyuk et al 2005 Fluid Dyn. Res. 37 399–429. Using the derived modal equations, we classify the resonant steady-state wave regimes occurring due to horizontal harmonic tank excitations. The frequency ranges are detected where the ‘planar’ and/or ‘swirling’ steady-state sloshing are stable as well as a range in which all steady-state wave regimes are not stable and irregular (chaotic) liquid motions occur is established. The results on the frequency ranges are qualitatively supported by experiments by Matta E 2002 PhD Thesis Politecnico di Torino, Torino. (paper)
Qian, Hong
2011-06-01
The nonlinear dynamics of biochemical reactions in a small-sized system on the order of a cell are stochastic. Assuming spatial homogeneity, the populations of n molecular species follow a multi-dimensional birth-and-death process on {Z}^n . We introduce the Delbrück-Gillespie process, a continuous-time Markov jump process, whose Kolmogorov forward equation has been known as the chemical master equation, and whose stochastic trajectories can be computed via the Gillespie algorithm. Using simple models, we illustrate that a system of nonlinear ordinary differential equations on {R}^n emerges in the infinite system size limit. For finite system size, transitions among multiple attractors of the nonlinear dynamical system are rare events with exponentially long transit times. There is a separation of time scales between the deterministic ODEs and the stochastic Markov jumps between attractors. No diffusion process can provide a global representation that is accurate on both short and long time scales for the nonlinear, stochastic population dynamics. On the short time scale and near deterministic stable fixed points, Ornstein-Uhlenbeck Gaussian processes give linear stochastic dynamics that exhibit time-irreversible circular motion for open, driven chemical systems. Extending this individual stochastic behaviour-based nonlinear population theory of molecular species to other biological systems is discussed.
Ruszczynski, Andrzej
2011-01-01
Optimization is one of the most important areas of modern applied mathematics, with applications in fields from engineering and economics to finance, statistics, management science, and medicine. While many books have addressed its various aspects, Nonlinear Optimization is the first comprehensive treatment that will allow graduate students and researchers to understand its modern ideas, principles, and methods within a reasonable time, but without sacrificing mathematical precision. Andrzej Ruszczynski, a leading expert in the optimization of nonlinear stochastic systems, integrates the theory and the methods of nonlinear optimization in a unified, clear, and mathematically rigorous fashion, with detailed and easy-to-follow proofs illustrated by numerous examples and figures. The book covers convex analysis, the theory of optimality conditions, duality theory, and numerical methods for solving unconstrained and constrained optimization problems. It addresses not only classical material but also modern top...
Farokhi, Hamed; Païdoussis, Michael P.; Misra, Arun K.
2018-04-01
The present study examines the nonlinear behaviour of a cantilevered carbon nanotube (CNT) resonator and its mass detection sensitivity, employing a new nonlinear electrostatic load model. More specifically, a 3D finite element model is developed in order to obtain the electrostatic load distribution on cantilevered CNT resonators. A new nonlinear electrostatic load model is then proposed accounting for the end effects due to finite length. Additionally, a new nonlinear size-dependent continuum model is developed for the cantilevered CNT resonator, employing the modified couple stress theory (to account for size-effects) together with the Kelvin-Voigt model (to account for nonlinear damping); the size-dependent model takes into account all sources of nonlinearity, i.e. geometrical and inertial nonlinearities as well as nonlinearities associated with damping, small-scale, and electrostatic load. The nonlinear equation of motion of the cantilevered CNT resonator is obtained based on the new models developed for the CNT resonator and the electrostatic load. The Galerkin method is then applied to the nonlinear equation of motion, resulting in a set of nonlinear ordinary differential equations, consisting of geometrical, inertial, electrical, damping, and size-dependent nonlinear terms. This high-dimensional nonlinear discretized model is solved numerically utilizing the pseudo-arclength continuation technique. The nonlinear static and dynamic responses of the system are examined for various cases, investigating the effect of DC and AC voltages, length-scale parameter, nonlinear damping, and electrostatic load. Moreover, the mass detection sensitivity of the system is examined for possible application of the CNT resonator as a nanosensor.
Spinning solitons in cubic-quintic nonlinear media
Indian Academy of Sciences (India)
A model which has a chance to feature (quasi) stable spinning LBs is that with the CQ nonlinearity, which postulates a nonlinear correction to the medium's refractive index in the form δn =n2I n4I2, I being the light intensity. Obviously, this correction can be formally obtained from the expansion of the saturable nonlinearity, ...
Mathematical modeling and applications in nonlinear dynamics
Merdan, Hüseyin
2016-01-01
The book covers nonlinear physical problems and mathematical modeling, including molecular biology, genetics, neurosciences, artificial intelligence with classical problems in mechanics and astronomy and physics. The chapters present nonlinear mathematical modeling in life science and physics through nonlinear differential equations, nonlinear discrete equations and hybrid equations. Such modeling can be effectively applied to the wide spectrum of nonlinear physical problems, including the KAM (Kolmogorov-Arnold-Moser (KAM)) theory, singular differential equations, impulsive dichotomous linear systems, analytical bifurcation trees of periodic motions, and almost or pseudo- almost periodic solutions in nonlinear dynamical systems. Provides methods for mathematical models with switching, thresholds, and impulses, each of particular importance for discontinuous processes Includes qualitative analysis of behaviors on Tumor-Immune Systems and methods of analysis for DNA, neural networks and epidemiology Introduces...
Modeling nonlinearities in MEMS oscillators.
Agrawal, Deepak K; Woodhouse, Jim; Seshia, Ashwin A
2013-08-01
We present a mathematical model of a microelectromechanical system (MEMS) oscillator that integrates the nonlinearities of the MEMS resonator and the oscillator circuitry in a single numerical modeling environment. This is achieved by transforming the conventional nonlinear mechanical model into the electrical domain while simultaneously considering the prominent nonlinearities of the resonator. The proposed nonlinear electrical model is validated by comparing the simulated amplitude-frequency response with measurements on an open-loop electrically addressed flexural silicon MEMS resonator driven to large motional amplitudes. Next, the essential nonlinearities in the oscillator circuit are investigated and a mathematical model of a MEMS oscillator is proposed that integrates the nonlinearities of the resonator. The concept is illustrated for MEMS transimpedance-amplifier- based square-wave and sine-wave oscillators. Closed-form expressions of steady-state output power and output frequency are derived for both oscillator models and compared with experimental and simulation results, with a good match in the predicted trends in all three cases.
Energy Technology Data Exchange (ETDEWEB)
1993-03-18
This report develops and applies a methodology for estimating strong earthquake ground motion. The motivation was to develop a much needed tool for use in developing the seismic requirements for structural designs. An earthquake`s ground motion is a function of the earthquake`s magnitude, and the physical properties of the earth through which the seismic waves travel from the earthquake fault to the site of interest. The emphasis of this study is on ground motion estimation in Eastern North America (east of the Rocky Mountains), with particular emphasis on the Eastern United States and southeastern Canada. Eastern North America is a stable continental region, having sparse earthquake activity with rare occurrences of large earthquakes. While large earthquakes are of interest for assessing seismic hazard, little data exists from the region to empirically quantify their effects. The focus of the report is on the attributes of ground motion in Eastern North America that are of interest for the design of facilities such as nuclear power plants. This document, Volume II, contains Appendices 2, 3, 5, 6, and 7 covering the following topics: Eastern North American Empirical Ground Motion Data; Examination of Variance of Seismographic Network Data; Soil Amplification and Vertical-to-Horizontal Ratios from Analysis of Strong Motion Data From Active Tectonic Regions; Revision and Calibration of Ou and Herrmann Method; Generalized Ray Procedure for Modeling Ground Motion Attenuation; Crustal Models for Velocity Regionalization; Depth Distribution Models; Development of Generic Site Effects Model; Validation and Comparison of One-Dimensional Site Response Methodologies; Plots of Amplification Factors; Assessment of Coupling Between Vertical & Horizontal Motions in Nonlinear Site Response Analysis; and Modeling of Dynamic Soil Properties.
Early Site Permit Demonstration Program: Guidelines for determining design basis ground motions
International Nuclear Information System (INIS)
1993-01-01
This report develops and applies a methodology for estimating strong earthquake ground motion. The motivation was to develop a much needed tool for use in developing the seismic requirements for structural designs. An earthquake's ground motion is a function of the earthquake's magnitude, and the physical properties of the earth through which the seismic waves travel from the earthquake fault to the site of interest. The emphasis of this study is on ground motion estimation in Eastern North America (east of the Rocky Mountains), with particular emphasis on the Eastern United States and southeastern Canada. Eastern North America is a stable continental region, having sparse earthquake activity with rare occurrences of large earthquakes. While large earthquakes are of interest for assessing seismic hazard, little data exists from the region to empirically quantify their effects. The focus of the report is on the attributes of ground motion in Eastern North America that are of interest for the design of facilities such as nuclear power plants. This document, Volume II, contains Appendices 2, 3, 5, 6, and 7 covering the following topics: Eastern North American Empirical Ground Motion Data; Examination of Variance of Seismographic Network Data; Soil Amplification and Vertical-to-Horizontal Ratios from Analysis of Strong Motion Data From Active Tectonic Regions; Revision and Calibration of Ou and Herrmann Method; Generalized Ray Procedure for Modeling Ground Motion Attenuation; Crustal Models for Velocity Regionalization; Depth Distribution Models; Development of Generic Site Effects Model; Validation and Comparison of One-Dimensional Site Response Methodologies; Plots of Amplification Factors; Assessment of Coupling Between Vertical ampersand Horizontal Motions in Nonlinear Site Response Analysis; and Modeling of Dynamic Soil Properties
Nonlinear gyrokinetic tokamak physics
International Nuclear Information System (INIS)
Brizard, A.J.
1990-01-01
The gyrokinetic reduced description of low-frequency and small-perpendicular-wavelength nonlinear tokamak dynamics is presented in three different versions: the reduced dynamical description of test particles moving in electromagnetic fields; the reduced gyrokinetic description of the self-consistent interaction of particles and fields through the Maxwell-Vlasov equations; and the reduced description of nonlinear fluid motion. The unperturbed tokamak plasma is described in terms of a noncanonical Hamiltonian guiding-center theory. The unperturbed guiding-center tokamak plasma is then perturbed by gyrokinetic electromagnetic fields and consequently the perturbed guiding-center dynamical system acquires new gyrophase dependence. The perturbation analysis that follows makes extensive use of Lie-transform perturbation techniques. Because the electromagnetic perturbations affect both the Hamiltonian and the Poisson-bracket structure, the Phase-space Lagrangian Lie perturbation method is used. The description of the reduced test-particle dynamics is given in terms of a non-canonical Hamiltonian gyrocenter theory. The description of the reduced kinetic dynamics is concerned with the self consistent response of the guiding-center plasma and is described in terms of the nonlinear gyrokinetic Maxwell-Vlasov equations. It is also shown that the gyrokinetic Maxwell-Vlasov system possesses a gyrokinetic energy adiabatic invariant and that, in both the linear and nonlinear (quadratic) approximations, the corresponding energy invariants are exact. The description of the reduced fluid dynamics is concerned with the derivation of a closed set of reduced fluid equations. Three generations of reduced fluid models are presented: the reduced MHD equations; the reduced FLR-MHD equations; and the gyrofluid equations
Study of nonlinear resonance effect in Paul trap.
Zhou, Xiaoyu; Xiong, Caiqiao; Zhang, Shuo; Zhang, Ning; Nie, Zongxiu
2013-05-01
In this article, we investigated the nonlinear resonance effect in the Paul trap with a superimposed hexapole field, which was assumed as a perturbation to the quadrupole field. On the basis of the Poincare-Lighthill-Kuo (PLK) perturbation method, ion motional equation, known as nonlinear Mathieu equation (NME) was expressed as the addition of approximation equations in terms of perturbation order. We discussed the frequency characteristics of ion axial-radial (z-r) coupled motion in the nonlinear field, derived the expressions of ion trajectories and nonlinear resonance conditions, and found that the mechanism of nonlinear resonance is similar to the normal resonance. The frequency spectrum of ion motion in nonlinear field includes not only the natural frequency series but also nonlinear introduced frequency series, which provide the driving force for the nonlinear resonance. The nonlinear field and the nonlinear effects are inevitable in practical ion trap experiments. Our method provides better understanding of these nonlinear effects and would be helpful for the instrumentation for ion trap mass spectrometers.
Hopping system control with an approximated dynamics model and upper-body motion
Energy Technology Data Exchange (ETDEWEB)
Lee, Hyang Jun; Oh, Jun Ho [KAIST, Daejeon (Korea, Republic of)
2015-11-15
A hopping system is highly non-linear due to the nature of its dynamics, which has alternating phases in a cycle, flight and stance phases and related transitions. Every control method that stabilizes the hopping system satisfies the Poincaré stability condition. At the Poincaré section, a hopping system cycle is considered as discrete sectional data set. By controlling the sectional data in a discrete control form, we can generate a stable hopping cycle. We utilize phase-mapping matrices to build a Poincaré return map by approximating the dynamics of the hopping system with SLIP model. We can generate various Poincaré stable gait patterns with the approximated discrete control form which uses upper-body motions as inputs.
Nonlinear Dynamics of Nanomechanical Resonators
Ramakrishnan, Subramanian; Gulak, Yuiry; Sundaram, Bala; Benaroya, Haym
2007-03-01
Nanoelectromechanical systems (NEMS) offer great promise for many applications including motion and mass sensing. Recent experimental results suggest the importance of nonlinear effects in NEMS, an issue which has not been addressed fully in theory. We report on a nonlinear extension of a recent analytical model by Armour et al [1] for the dynamics of a single-electron transistor (SET) coupled to a nanomechanical resonator. We consider the nonlinear resonator motion in both (a) the Duffing and (b) nonlinear pendulum regimes. The corresponding master equations are derived and solved numerically and we consider moment approximations as well. In the Duffing case with hardening stiffness, we observe that the resonator is damped by the SET at a significantly higher rate. In the cases of softening stiffness and the pendulum, there exist regimes where the SET adds energy to the resonator. To our knowledge, this is the first instance of a single model displaying both negative and positive resonator damping in different dynamical regimes. The implications of the results for SET sensitivity as well as for, as yet unexplained, experimental results will be discussed. 1. Armour et al. Phys.Rev.B (69) 125313 (2004).
Mahdi, Abtahi Seyed; Hossein, Sadati Seyed
2013-09-01
The different methodologies for the study of nonlinear asymmetric Kelvin-type gyrostat satellite consisting of the heteroclinic bifurcation and chaos are investigated in this work. The dynamical model of the gyrostat satellite involves the attitude orientation along with the translational motion in the circular orbit. The mathematical model of the Kelvin-type gyrostat satellite is first derived using the Hamiltonian approach in the Roto-Translatory motion under the gravity gradient perturbations. Since the model of the system is too complex, the coupled equations of motion are reduced using the modified Deprit canonical transformation by the Serret-Andoyer variables in the spin-orbit dynamics. The simulation results demonstrate the heteroclinic bifurcation route to chaos in the Roto-Translatory motion of the gyrostat satellite due to the effects of the orbital motion and the gravity gradient perturbation on the attitude dynamics. According to the numerical solutions, the intersection of the stable and unstable manifolds in the heteroclinic orbits around the saddle point lead to the occurrence of the heteroclinic bifurcation and chaotic responses in the perturbed system. Chaos behaviour in the system is also analyzed using the phase portrait trajectories, Poincare' section, and the time history responses. Moreover, the Lyapunov exponent criterion verifies numerically the existence of chaos in the Roto-Translatory motion of the system.
Diabaticity of nuclear motion: problems and perspectives
International Nuclear Information System (INIS)
Nazarewicz, W.
1993-01-01
The assumption of adiabatic motion lies in foundations of many models of nuclear collective motion. To what extend can nuclear modes be treated adiabatically? Due to the richness and complexity of the nuclear many-body problem there is no unique answer to this question. The challenges of nuclear collective dynamics invite exciting interactions between several areas of physics such as nuclear structure, field theory, non-linear dynamics, transport theory, and quantum chaos. (orig.)
Kinesthetic information disambiguates visual motion signals.
Hu, Bo; Knill, David C
2010-05-25
Numerous studies have shown that extra-retinal signals can disambiguate motion information created by movements of the eye or head. We report a new form of cross-modal sensory integration in which the kinesthetic information generated by active hand movements essentially captures ambiguous visual motion information. Several previous studies have shown that active movement can bias observers' percepts of bi-stable stimuli; however, these effects seem to be best explained by attentional mechanisms. We show that kinesthetic information can change an otherwise stable perception of motion, providing evidence of genuine fusion between visual and kinesthetic information. The experiments take advantage of the aperture problem, in which the motion of a one-dimensional grating pattern behind an aperture, while geometrically ambiguous, appears to move stably in the grating normal direction. When actively moving the pattern, however, the observer sees the motion to be in the hand movement direction. Copyright 2010 Elsevier Ltd. All rights reserved.
Directory of Open Access Journals (Sweden)
Yan-Lei Zhang
2016-01-01
Full Text Available Nonlinear vibration of a fluid-conveying pipe subjected to a transverse external harmonic excitation is investigated in the case with two-to-one internal resonance. The excitation amplitude is in the same magnitude of the transverse displacement. The fluid in the pipes flows in the speed larger than the critical speed so that the straight configuration becomes an unstable equilibrium and two curved configurations bifurcate as stable equilibriums. The motion measured from each of curved equilibrium configurations is governed by a nonlinear integro-partial-differential equation with variable coefficients. The Galerkin method is employed to discretize the governing equation into a gyroscopic system consisting of a set of coupled nonlinear ordinary differential equations. The method of multiple scales is applied to analyze approximately the gyroscopic system. A set of first-order ordinary differential equations governing the modulations of the amplitude and the phase are derived via the method. In the supercritical regime, the subharmonic, superharmonic, and combination resonances are examined in the presence of the 2 : 1 internal resonance. The steady-state responses and their stabilities are determined. The various jump phenomena in the amplitude-frequency response curves are demonstrated. The effects of the viscosity, the excitation amplitude, the nonlinearity, and the flow speed are observed. The analytical results are supported by the numerical integration.
Motion of rectangular prismatic bodies
International Nuclear Information System (INIS)
Poreh, M.; Wray, R.N.
1979-01-01
Rectangular prismatic bodies can assume either a translatory or an auto-rotating mode of motion during free motion in the atmosphere. The translatory mode is stable only when the dimensionless moment of inertia of the bodies is large, however, large perturbations will always start auto-rotation. The characteristics of the auto-rotational mode are shown to depend primarily on the aspect ratio of the bodies which determines the dimensionless rotational speed and the lift coefficient. Both the average drag and lift-coefficients of auto-rotating bodies are estimated, but it is shown that secondary effects make it impossible to determine their exact trajectories in atmospheric flows
Discontinuity and complexity in nonlinear physical systems
Baleanu, Dumitru; Luo, Albert
2014-01-01
This unique book explores recent developments in experimental research in this broad field, organized in four distinct sections. Part I introduces the reader to the fractional dynamics and Lie group analysis for nonlinear partial differential equations. Part II covers chaos and complexity in nonlinear Hamiltonian systems, important to understand the resonance interactions in nonlinear dynamical systems, such as Tsunami waves and wildfire propagations; as well as Lev flights in chaotic trajectories, dynamical system synchronization and DNA information complexity analysis. Part III examines chaos and periodic motions in discontinuous dynamical systems, extensively present in a range of systems, including piecewise linear systems, vibro-impact systems and drilling systems in engineering. And in Part IV, engineering and financial nonlinearity are discussed. The mechanism of shock wave with saddle-node bifurcation and rotating disk stability will be presented, and the financial nonlinear models will be discussed....
Some Thoughts on Stability in Nonlinear Periodic Focusing Systems [Addendum
McMillan, Edwin M.
1968-03-29
Addendum to September 5, 1967 report with the same title and with the abstract: A brief discussion is given of the long-term stability of particle motions through periodic focusing structures containing lumped nonlinear elements. A method is presented whereby one can specify the nonlinear elements in such a way as to generate a variety of structures in which the motion has long-term stability.
National Oceanic and Atmospheric Administration, Department of Commerce — Tissue samples (skin, bone, blood, muscle) are analyzed for stable carbon, stable nitrogen, and stable sulfur analysis. Many samples are used in their entirety for...
Numerical simulation of nonlinear dynamics of 1D pulsating detonations
Borisov, S. P.; Kudryavtsev, A. N.
2017-10-01
The development of 1D instability of a detonation wave is numerically simulated for a two-stage chemical model. The shock-fitting approach is employed to track the leading detonation front. In order to determine its motion, the equation for the acceleration of the shock wave derived from the Rankine-Hugoniot conditions and the characteristic relations is integrated along with the reactive Euler equations. The fifth-order WENO scheme is used, time stepping is performed with the four-stage Runge-Kutta-Gill method. It is shown that in a certain range of parameters of the problem (the degree of overdrive f, the dissociation energy Ed and the activation energy Ea ), the Zeldovich-Neumann-Döring stationary solution is unstable with respect to 1D disturbances. The evolution of disturbances at later nonlinear stages is studied. Nonlinear saturation of the growth of disturbances leads to the formation of a stable limit cycle. When changing the parameters of the problem, the period doubling bifurcation can occur leading to the appearance of pulsations with two different maxima of the amplitude.
Dissipative double-well potential: Nonlinear stationary and pulsating modes
International Nuclear Information System (INIS)
Zezyulin, Dmitry A.; Konotop, Vladimir V.; Alfimov, Georgy L.
2010-01-01
The analysis of nonlinear modes in a complex absorbing double-well potential supported by linear gain is presented. Families of the nonlinear modes and their bifurcations are found numerically by means of the properly modified 'shooting' method. Linear stability and dynamics of the modes are studied. It is shown that no stable modes exist in the case of attractive nonlinearity, while stable modes, including nonsymmetric ones, are found when the nonlinearity is repulsive. Varying a control parameter (e.g., the height of barrier between the wells) results in switching from one mode to another. Apart from stationary modes we have found pulsating solutions emergent from unstable modes.
Non-linear Flight Dynamics at High Angles of Attack
DEFF Research Database (Denmark)
Granasy, P.; Sørensen, C.B.; Mosekilde, Erik
1998-01-01
The methods of nonlinear dynamics are applied to the longitudinal motion of a vectored thrust aircraft, in particular the behavior at high angles of attack. Our model contains analytic nonlinear aerodynamical coefficients based on NASA windtunnel experiments on the F-18 high-alpha research vehicl...
Nonlinear instability and convection in a vertically vibrated granular bed
Shukla, P.; Ansari, I.H.; van der Meer, Roger M.; Lohse, Detlef; Alam, M.
2014-01-01
The nonlinear instability of the density-inverted granular Leidenfrost state and the resulting convective motion in strongly shaken granular matter are analysed via a weakly nonlinear analysis of the hydrodynamic equations. The base state is assumed to be quasi-steady and the effect of harmonic
Discrete second order trajectory generator with nonlinear constraints
Morselli, R.; Zanasi, R.; Stramigioli, Stefano
2005-01-01
A discrete second order trajectory generator for motion control systems is presented. The considered generator is a nonlinear system which receives as input a raw reference signal and provides as output a smooth reference signal satisfying nonlinear constraints on the output derivatives as UM-(x) ≤
A modal method for finite amplitude, nonlinear sloshing
Indian Academy of Sciences (India)
A modal method is used to calculate the two-dimensional sloshing motion of an inviscid liquid in a rectangular container. The full nonlinear problem is reduced to the solution of a system of nonlinear ordinary differential equations for the time varying coefﬁcients in the expansions of the interface and the potential. The effects ...
A modal method for finite amplitude, nonlinear sloshing
Indian Academy of Sciences (India)
Abstract. A modal method is used to calculate the two-dimensional sloshing motion of an inviscid liquid in a rectangular container. The full nonlinear problem is reduced to the solution of a system of nonlinear ordinary differential equations for the time varying coefficients in the expansions of the interface and the potential.
Chaotic Dynamics and Application of LCR Oscillators Sharing Common Nonlinearity
Jeevarekha, A.; Paul Asir, M.; Philominathan, P.
2016-06-01
This paper addresses the problem of sharing common nonlinearity among nonautonomous and autonomous oscillators. By choosing a suitable common nonlinear element with the driving point characteristics capable of bringing out chaotic motion in a combined system, we obtain identical chaotic states. The dynamics of the coupled system is explored through numerical and experimental studies. Employing the concept of common nonlinearity, a simple chaotic communication system is modeled and its performance is verified through Multisim simulation.
Solitary waves on nonlinear elastic rods. I
DEFF Research Database (Denmark)
Sørensen, Mads Peter; Christiansen, Peter Leth; Lomdahl, P. S.
1984-01-01
Acoustic waves on elastic rods with circular cross section are governed by improved Boussinesq equations when transverse motion and nonlinearity in the elastic medium are taken into account. Solitary wave solutions to these equations have been found. The present paper treats the interaction between...
Rajasekar, Shanmuganathan
2016-01-01
This introductory text presents the basic aspects and most important features of various types of resonances and anti-resonances in dynamical systems. In particular, for each resonance, it covers the theoretical concepts, illustrates them with case studies, and reviews the available information on mechanisms, characterization, numerical simulations, experimental realizations, possible quantum analogues, applications and significant advances made over the years. Resonances are one of the most fundamental phenomena exhibited by nonlinear systems and refer to specific realizations of maximum response of a system due to the ability of that system to store and transfer energy received from an external forcing source. Resonances are of particular importance in physical, engineering and biological systems - they can prove to be advantageous in many applications, while leading to instability and even disasters in others. The book is self-contained, providing the details of mathematical derivations and techniques invo...
Stochastic motion of particles in tandem mirror devices
International Nuclear Information System (INIS)
Ichikawa, Y.H.; Kamimura, T.
1982-01-01
Stochastic motion of particles in tandem mirror devices is examined on basis of a nonlinear mapping of particle positions on the equatorial plane. Local stability analysis provides detailed informations on particle trajectories. The rate of stochastic plasma diffusion is estimated from numerical observations of motions of particles over a large number of time steps. (author)
A note on stability of motion of a projectile
Indian Academy of Sciences (India)
Springer Verlag Heidelberg #4 2048 1996 Dec 15 10:16:45
Nielsen. & Synge1946). The motion of a nonlinear Lock–Fowler missile under the same conditon using the Routh–Hurwitz criterion has been discussed by Rath & Namboodiri (1980). The dynamical motion of an axi-symmetric projectile in the ...
Theoretical motions of hydrofoil systems
Imlay, Frederick H
1948-01-01
Results are presented of an investigation that has been undertaken to develop theoretical methods of treating the motions of hydrofoil systems and to determine some of the important parameters. Variations of parameters include three distributions of area between the hydrofoils, two rates of change of downwash angle with angle of attack, three depths of immersion, two dihedral angles, two rates of change of lift with immersion, three longitudinal hydrofoil spacings, two radii of gyration in pitching, and various horizontal and vertical locations of the center of gravity. Graphs are presented to show locations of the center of gravity for stable motion, values of the stability roots, and motions following the sudden application of a vertical force or a pitching moment to the hydrofoil system for numerous sets of values of the parameters.
Control methods for localization of nonlinear waves.
Porubov, Alexey; Andrievsky, Boris
2017-03-06
A general form of a distributed feedback control algorithm based on the speed-gradient method is developed. The goal of the control is to achieve nonlinear wave localization. It is shown by example of the sine-Gordon equation that the generation and further stable propagation of a localized wave solution of a single nonlinear partial differential equation may be obtained independently of the initial conditions. The developed algorithm is extended to coupled nonlinear partial differential equations to obtain consistent localized wave solutions at rather arbitrary initial conditions.This article is part of the themed issue 'Horizons of cybernetical physics'. © 2017 The Author(s).
On Stabilization of Nonautonomous Nonlinear Systems
International Nuclear Information System (INIS)
Bogdanov, A. Yu.
2008-01-01
The procedures to obtain the sufficient conditions of asymptotic stability for nonlinear nonstationary continuous-time systems are discussed. We consider different types of the following general controlled system: x = X(t,x,u) = F(t,x)+B(t,x)u, x(t 0 ) = x 0 . (*) The basis of investigation is limiting equations, limiting Lyapunov functions, etc. The improved concept of observability of the pair of functional matrices is presented. By these results the problem of synthesis of asymptotically stable control nonlinear nonautonomous systems (with linear parts) involving the quadratic time-dependent Lyapunov functions is solved as well as stabilizing a given unstable system with nonlinear control law.
Auditory motion capturing ambiguous visual motion
Directory of Open Access Journals (Sweden)
Arjen eAlink
2012-01-01
Full Text Available In this study, it is demonstrated that moving sounds have an effect on the direction in which one sees visual stimuli move. During the main experiment sounds were presented consecutively at four speaker locations inducing left- or rightwards auditory apparent motion. On the path of auditory apparent motion, visual apparent motion stimuli were presented with a high degree of directional ambiguity. The main outcome of this experiment is that our participants perceived visual apparent motion stimuli that were ambiguous (equally likely to be perceived as moving left- or rightwards more often as moving in the same direction than in the opposite direction of auditory apparent motion. During the control experiment we replicated this finding and found no effect of sound motion direction on eye movements. This indicates that auditory motion can capture our visual motion percept when visual motion direction is insufficiently determinate without affecting eye movements.
Auditory Motion Elicits a Visual Motion Aftereffect.
Berger, Christopher C; Ehrsson, H Henrik
2016-01-01
The visual motion aftereffect is a visual illusion in which exposure to continuous motion in one direction leads to a subsequent illusion of visual motion in the opposite direction. Previous findings have been mixed with regard to whether this visual illusion can be induced cross-modally by auditory stimuli. Based on research on multisensory perception demonstrating the profound influence auditory perception can have on the interpretation and perceived motion of visual stimuli, we hypothesized that exposure to auditory stimuli with strong directional motion cues should induce a visual motion aftereffect. Here, we demonstrate that horizontally moving auditory stimuli induced a significant visual motion aftereffect-an effect that was driven primarily by a change in visual motion perception following exposure to leftward moving auditory stimuli. This finding is consistent with the notion that visual and auditory motion perception rely on at least partially overlapping neural substrates.
Stable convergence and stable limit theorems
Häusler, Erich
2015-01-01
The authors present a concise but complete exposition of the mathematical theory of stable convergence and give various applications in different areas of probability theory and mathematical statistics to illustrate the usefulness of this concept. Stable convergence holds in many limit theorems of probability theory and statistics – such as the classical central limit theorem – which are usually formulated in terms of convergence in distribution. Originated by Alfred Rényi, the notion of stable convergence is stronger than the classical weak convergence of probability measures. A variety of methods is described which can be used to establish this stronger stable convergence in many limit theorems which were originally formulated only in terms of weak convergence. Naturally, these stronger limit theorems have new and stronger consequences which should not be missed by neglecting the notion of stable convergence. The presentation will be accessible to researchers and advanced students at the master's level...
[Nonlinear magnetohydrodynamics
International Nuclear Information System (INIS)
1994-01-01
Resistive MHD equilibrium, even for small resistivity, differs greatly from ideal equilibrium, as do the dynamical consequences of its instabilities. The requirement, imposed by Faraday's law, that time independent magnetic fields imply curl-free electric fields, greatly restricts the electric fields allowed inside a finite-resistivity plasma. If there is no flow and the implications of the Ohm's law are taken into account (and they need not be, for ideal equilibria), the electric field must equal the resistivity times the current density. The vanishing of the divergence of the current density then provides a partial differential equation which, together with boundary conditions, uniquely determines the scalar potential, the electric field, and the current density, for any given resistivity profile. The situation parallels closely that of driven shear flows in hydrodynamics, in that while dissipative steady states are somewhat more complex than ideal ones, there are vastly fewer of them to consider. Seen in this light, the vast majority of ideal MHD equilibria are just irrelevant, incapable of being set up in the first place. The steady state whose stability thresholds and nonlinear behavior needs to be investigated ceases to be an arbitrary ad hoc exercise dependent upon the whim of the investigator, but is determined by boundary conditions and choice of resistivity profile
E11 and the non-linear dual graviton
Tumanov, Alexander G.; West, Peter
2018-04-01
The non-linear dual graviton equation of motion as well as the duality relation between the gravity and dual gravity fields are found in E theory by carrying out E11 variations of previously found equations of motion. As a result the equations of motion in E theory have now been found at the full non-linear level up to, and including, level three, which contains the dual graviton field. When truncated to contain fields at levels three and less, and the spacetime is restricted to be the familiar eleven dimensional space time, the equations are equivalent to those of eleven dimensional supergravity.
DEFF Research Database (Denmark)
Chen, X.; Cui, W.; Jensen, Jørgen Juncher
2003-01-01
The theory and typical numerical results of a second order nonlinear hydroelastic analysis of floating bodies are presented in a series of papers in which only nonlinearity in fluids is considered. Under the assumption of linear fluid, the hydroelastic analysis methods of nonlinear structure...... are introduced in this paper. With the examples of the motion and displacement reponses of a floating plate undergoing large vertical deflections in multidirectional waves, the analysis method of the couple action between the vertical deflections in multidirectional waves, the analysis method of the couple...
Applicability of linear and non-linear potential flow models on a Wavestar float
DEFF Research Database (Denmark)
Bozonnet, Pauline; Dupin, Victor; Tona, Paolino
2017-01-01
Numerical models based on potential flow theory, including different types of nonlinearities are compared and validated against experimental data for the Wavestar wave energy converter technology. Exact resolution of the rotational motion, non-linear hydrostatic and Froude-Krylov forces as well...... control action, limited to small amplitude motion with a single float, is well predicted by the numerical models, including the linear one. Still, float velocity is better predicted by accounting for non-linear hydrostatic and Froude-Krylov forces....
Identification of Nonlinear Dynamic Systems Possessing Some Non-linearities
Directory of Open Access Journals (Sweden)
Y. N. Pavlov
2015-01-01
Full Text Available The subject of this work is the problem of identification of nonlinear dynamic systems based on the experimental data obtained by applying test signals to the system. The goal is to determinate coefficients of differential equations of systems by experimental frequency hodographs and separate similar, but different, in essence, forces: dissipative forces with the square of the first derivative in the motion equations and dissipative force from the action of dry friction. There was a proposal to use the harmonic linearization method to approximate each of the nonlinearity of "quadratic friction" and "dry friction" by linear friction with the appropriate harmonic linearization coefficient.Assume that a frequency transfer function of the identified system has a known form. Assume as well that there are disturbances while obtaining frequency characteristics of the realworld system. As a result, the points of experimentally obtained hodograph move randomly. Searching for solution of the identification problem was in the hodograph class, specified by the system model, which has the form of the frequency transfer function the same as the form of the frequency transfer function of the system identified. Minimizing a proximity criterion (measure of the experimentally obtained system hodograph and the system hodograph model for all the experimental points described and previously published by one of the authors allowed searching for the unknown coefficients of the frequenc ransfer function of the system model. The paper shows the possibility to identify a nonlinear dynamic system with multiple nonlinearities, obtained on the experimental samples of the frequency system hodograph. The proposed algorithm allows to select the nonlinearity of the type "quadratic friction" and "dry friction", i.e. also in the case where the nonlinearity is dependent on the same dynamic parameter, in particular, on the derivative of the system output value. For the dynamic
2013-01-01
Please note this is a short discount publication. In today's manufacturing environment, Motion Control plays a major role in virtually every project.The Motion Control Report provides a comprehensive overview of the technology of Motion Control:* Design Considerations* Technologies* Methods to Control Motion* Examples of Motion Control in Systems* A Detailed Vendors List
Geometrically Nonlinear Transient Response of Laminated Plates with Nonlinear Elastic Restraints
Directory of Open Access Journals (Sweden)
Shaochong Yang
2017-01-01
Full Text Available To investigate the dynamic behavior of laminated plates with nonlinear elastic restraints, a varied constraint force model and a systematic numerical procedure are presented in this work. Several kinds of typical relationships of force-displacement for spring are established to simulate the nonlinear elastic restraints. In addition, considering the restraining moments of flexible pads, the pads are modeled by translational and rotational springs. The displacement- dependent constraint forces are added to the right-hand side of equations of motion and treated as additional applied loads. These loads can be explicitly defined, via an independent set of nonlinear load functions. The time histories of transverse displacements at typical points of the laminated plate are obtained through the transient analysis. Numerical examples show that the present method can effectively treat the geometrically nonlinear transient response of plates with nonlinear elastic restraints.
A nonlinear model for a towed flexible cylinder
Kheiri, M.; Païdoussis, M. P.; Amabili, M.
2013-04-01
In this paper, a weakly nonlinear equation of motion is derived for the dynamics of a towed, neutrally buoyant flexible slender cylinder. The cylinder is terminated by end-pieces at its two ends and is fastened via a massless towrope to a support rigidly fixed upstream. The motions are considered to take place in a horizontal plane. The equation of motion is obtained via Hamilton's principle after obtaining the Lagrangian of the system and the virtual work associated with the fluid dynamic forces. For convenience, the fluid-related forces are derived separately: inviscid hydrodynamic forces are modelled by an extension of Lighthill's slender-body work to third-order accuracy, and the viscous forces are derived to the same accuracy, by elaboration of Taylor's expressions. The Galerkin method is used to discretize the equation of motion with the free-free Euler-Bernoulli beam eigenfunctions, and the resulting set of first-order equations are solved numerically using a time-integration solver. Numerical results are obtained to illustrate the typical dynamical behaviour of a towed flexible cylinder, generally confirming experimental observations and linear theory predictions made in the past. Also, the effect of the towrope-length to cylinder-length ratio and the effect of the tail end-piece shape on the dynamics and stability of the system are investigated. The results confirm that for a towed flexible cylinder, if the tail end-piece is not blunt and the towrope not too short, both rigid-body and flexural instabilities may develop as the flow velocity is increased. The former occur at low flow velocities, in the form of oscillatory and then static instabilities, whereas the latter generally occur at higher flow velocities in the form of second- and then third-mode flutter. Moreover, it is found that the system becomes less stable and is subject to larger deformations if the towrope is longer. On the other hand, making the tail end-piece sufficiently blunt can
Nonlinear analysis and control of a continuous fermentation process
DEFF Research Database (Denmark)
Szederkényi, G.; Kristensen, Niels Rode; Hangos, K.M
2002-01-01
Different types of nonlinear controllers are designed and compared for a simple continuous bioreactor operating near optimal productivity. This operating point is located close to a fold bifurcation point. Nonlinear analysis of stability, controllability and zero dynamics is used to investigate o...... are recommended for the simple fermenter. Passivity based controllers have been found to be globally stable, not very sensitive to the uncertainties in the reaction rate and controller parameter but they require full nonlinear state feedback....
Multi-parameter actuation of a neutrally stable shell: a flexible gear-less motor
Hamouche, W.; Maurini, C.; Vidoli, S.; Vincenti, A.
2017-08-01
We have designed and tested experimentally a morphing structure consisting of a neutrally stable thin cylindrical shell driven by a multi-parameter piezoelectric actuation. The shell is obtained by plastically deforming an initially flat copper disc, so as to induce large isotropic and almost uniform inelastic curvatures. Following the plastic deformation, in a perfectly isotropic system, the shell is theoretically neutrally stable, having a continuous set of stable cylindrical shapes corresponding to the rotation of the axis of maximal curvature. Small imperfections render the actual structure bistable, giving preferred orientations. A three-parameter piezoelectric actuation, exerted through micro-fibre-composite actuators, allows us to add a small perturbation to the plastic inelastic curvature and to control the direction of maximal curvature. This actuation law is designed through a geometrical analogy based on a fully nonlinear inextensible uniform-curvature shell model. We report on the fabrication, identification and experimental testing of a prototype and demonstrate the effectiveness of the piezoelectric actuators in controlling its shape. The resulting motion is an apparent rotation of the shell, controlled by the voltages as in a `gear-less motor', which is, in reality, a precession of the axis of principal curvature.
... You Dizziness and Motion Sickness Dizziness and Motion Sickness Patient Health Information News media interested in covering the latest ... medications Remember: Most cases of dizziness and motion sickness are ... Health Home Copyright © 2018 American Academy of Otolaryngology–Head ...
Euclidean null controllability of nonlinear infinite delay systems with ...
African Journals Online (AJOL)
Sufficient conditions for the Euclidean null controllability of non-linear delay systems with time varying multiple delays in the control and implicit derivative are derived. If the uncontrolled system is uniformly asymptotically stable and if the control system is controllable, then the non-linear infinite delay system is Euclidean null ...
Westra, H.J.R.
2012-01-01
In this Thesis, nonlinear dynamics and nonlinear interactions are studied from a micromechanical point of view. Single and doubly clamped beams are used as model systems where nonlinearity plays an important role. The nonlinearity also gives rise to rich dynamic behavior with phenomena like
Analytic solutions of nonlinear Cournot duopoly game
Directory of Open Access Journals (Sweden)
Akio Matsumoto
2005-01-01
Full Text Available We construct a Cournot duopoly model with production externality in which reaction functions are unimodal. We consider the case of a Cournot model which has a stable equilibrium point. Then we show the existence of analytic solutions of the model. Moreover, we seek general solutions of the model in the form of nonlinear second-order difference equation.
National Aeronautics and Space Administration — The code in the stableGP package implements Gaussian process calculations using efficient and numerically stable algorithms. Description of the algorithms is in the...
Biological motion cues aid identification of self-motion from optic flow but not heading detection.
Riddell, Hugh; Lappe, Markus
2017-10-01
When we move through the world, a pattern of expanding optic flow is generated on the retina. In completely rigid environments, this pattern signals one's direction of heading and is an important source of information for navigation. When we walk towards an oncoming person, the optic environment is not rigid, as the motion vectors generated by the other person represent a composite of that person's movement, his or her limb motion, and the observer's self-motion. Though this biological motion obfuscates the optic flow pattern, it also provides cues about the movement of other actors in the environment. It may be the case that the visual system takes advantage of these cues to simplify the decomposition of optic flow in the presence of other moving people. The current study sought to probe this possibility. In four experiments self-motion was simulated through an environment that was empty except for a single, walking point-light biological motion stimulus. We found that by using biological motion cues, observers were able to identify the presence of self-motion despite the lack of stable scene information. However, when estimating heading based on these stimuli, the pattern of observer heading estimates could be approximately reproduced by computing the vector sum of the walker's translation and the stimulated self-motion. This suggests that though biological motion can be used to disentangle self-motion in ambiguous situations, optic flow analysis does not use this information to derive heading estimates.
Nonlinear PT-symmetric plaquettes
International Nuclear Information System (INIS)
Li Kai; Kevrekidis, P G; Malomed, Boris A; Günther, Uwe
2012-01-01
We introduce four basic two-dimensional (2D) plaquette configurations with onsite cubic nonlinearities, which may be used as building blocks for 2D PT-symmetric lattices. For each configuration, we develop a dynamical model and examine its PTsymmetry. The corresponding nonlinear modes are analyzed starting from the Hamiltonian limit, with zero value of the gain–loss coefficient, γ. Once the relevant waveforms have been identified (chiefly, in an analytical form), their stability is examined by means of linearization in the vicinity of stationary points. This reveals diverse and, occasionally, fairly complex bifurcations. The evolution of unstable modes is explored by means of direct simulations. In particular, stable localized modes are found in these systems, although the majority of identified solutions are unstable. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘Quantum physics with non-Hermitian operators’. (paper)
Adaptive nonlinear flight control
Rysdyk, Rolf Theoduor
1998-08-01
Research under supervision of Dr. Calise and Dr. Prasad at the Georgia Institute of Technology, School of Aerospace Engineering. has demonstrated the applicability of an adaptive controller architecture. The architecture successfully combines model inversion control with adaptive neural network (NN) compensation to cancel the inversion error. The tiltrotor aircraft provides a specifically interesting control design challenge. The tiltrotor aircraft is capable of converting from stable responsive fixed wing flight to unstable sluggish hover in helicopter configuration. It is desirable to provide the pilot with consistency in handling qualities through a conversion from fixed wing flight to hover. The linear model inversion architecture was adapted by providing frequency separation in the command filter and the error-dynamics, while not exiting the actuator modes. This design of the architecture provides for a model following setup with guaranteed performance. This in turn allowed for convenient implementation of guaranteed handling qualities. A rigorous proof of boundedness is presented making use of compact sets and the LaSalle-Yoshizawa theorem. The analysis allows for the addition of the e-modification which guarantees boundedness of the NN weights in the absence of persistent excitation. The controller is demonstrated on the Generic Tiltrotor Simulator of Bell-Textron and NASA Ames R.C. The model inversion implementation is robustified with respect to unmodeled input dynamics, by adding dynamic nonlinear damping. A proof of boundedness of signals in the system is included. The effectiveness of the robustification is also demonstrated on the XV-15 tiltrotor. The SHL Perceptron NN provides a more powerful application, based on the universal approximation property of this type of NN. The SHL NN based architecture is also robustified with the dynamic nonlinear damping. A proof of boundedness extends the SHL NN augmentation with robustness to unmodeled actuator
Nonlinear Vibration and Mode Shapes of FG Cylindrical Shells
Directory of Open Access Journals (Sweden)
Saeed Mahmoudkhani
Full Text Available Abstract The nonlinear vibration and normal mode shapes of FG cylindrical shells are investigated using an efficient analytical method. The equations of motion of the shell are based on the Donnell’s non-linear shallow-shell, and the material is assumed to be gradually changed across the thickness according to the simple power law. The solution is provided by first discretizing the equations of motion using the multi-mode Galerkin’s method. The nonlinear normal mode of the system is then extracted using the invariant manifold approach and employed to decouple the discretized equations. The homotopy analysis method is finally used to determine the nonlinear frequency. Numerical results are presented for the backbone curves of FG cylindrical shells, nonlinear mode shapes and also the nonlinear invariant modal surfaces. The volume fraction index and the geometric properties of the shell are found to be effective on the type of nonlinear behavior and also the nonlinear mode shapes of the shell. The circumferential half-wave numbers of the nonlinear mode shapes are found to change with time especially in a thinner cylinder.
Nonlinear stage of Z-pinch instability
International Nuclear Information System (INIS)
Garanin, S.F.; Chernyshev, Yu.D.
1987-01-01
Nonlinear development of MHD instability of constriction type for Z-pinch with completely skinned current is considered. The two-dimensional numerical calculations of the constriction show that its development enters the stage described by automodel solution, when the constriction length is fixed and plasma compression takes place in an isentropic way. At the perturbation wave length small, as compared with pinch radius, the stage is preceded by a stage reduced to nonlinear Rayleigh-Taylor instability. For that case dynamics of the motion of magnetic field ''bubbles'' and plasma ''jets'' is considered. It is shown that plasma jets escaping from the pinch region do not close the pinch from current source
Experimental chaos in nonlinear vibration isolation system
International Nuclear Information System (INIS)
Lou Jingjun; Zhu Shijian; He Lin; He Qiwei
2009-01-01
The chaotic vibration isolation method was studied thoroughly from an experimental perspective. The nonlinear load-deflection characteristic of the conical coil spring used in the experiment was surveyed. Chaos and subharmonic responses including period-2 and period-6 motions were observed. The line spectrum reduction and the drop of the acceleration vibration level in chaotic state and that in non-chaotic state were compared, respectively. It was concluded from the experiment that the nonlinear vibration isolation system in chaotic state has strong ability in line spectrum reduction.
Detection of nonlinear crustal movements using global positioning system
Jiang, Yan
The Global Positioning System (GPS) is widely used for measuring crustal movements from varieties of geophysical origins. Nonlinear movement in the observations draws increasing attention owing to the improved measurement precision. We developed an innovative method capable of detecting nonlinear motion from the observation time series. By implementing this new technique, we identified several nonlinear episodic events in the noisy time series that were ignored previously. Two types of nonlinear motion with different mechanisms were presented in this dissertation. In Greenland, the nonlinear motion is presented by accelerating uplift in the vertical GPS time series. The accelerating uplift of the continental crust is caused by accelerating melting of the ice cap near the stations. Another form of nonlinear motion expressed by the slow slip events usually last for several weeks. The displacements in the time series are caused by slow reverse movement to the plate convergence direction on the subduction fault plane. We identified a series of such events in Costa Rica and modeled the surface displacement data. We conclude that the slow slip events in this area will release seismic energy accumulated on the fault plane in a nondestructive way, thus reduce the seismic hazards in Costa Rica.
Non-linear mechanics of a string in a viscous noisy environment
International Nuclear Information System (INIS)
Faris, W.G.; Jona-Lasinio, G.
1983-01-01
Stochastic partial differential equations constitute a relatively new subject. In this paper a non-linear heat equation in a finite interval of space subject to a white noise forcing term is studied. It may be thought of as describing the motion of an elastic string in a high viscosity noise environment (Smoluchowski approximation). Equilibrium configurations are exhibited. The solution of the equation is a stochastic process in space and time with continuous sample paths here studied in the limit of the small noise. The upper and lower bounds for the probability of large fluctuations are obtained. Finally, estimates are applied to the calculation of the transition probability between the stable configurations (tunnelling). It is hoped that this method will prove useful to test how solutions change under the effect of small stochastic perturbations
DEFF Research Database (Denmark)
Korreman, Stine Sofia
2012-01-01
This review considers the management of motion in photon radiation therapy. An overview is given of magnitudes and variability of motion of various structures and organs, and how the motion affects images by producing artifacts and blurring. Imaging of motion is described, including 4DCT and 4DPE...
Nonlinear elliptic differential equations with multivalued nonlinearities
Indian Academy of Sciences (India)
Springer Verlag Heidelberg #4 2048 1996 Dec 15 10:16:45
Nonlinear elliptic differential equations with multivalued ... has a solution. Finally in the last part we consider an eigenvalue problem with a nonmonotone multivalued nonlinearity. Using the critical point theory for nonsmooth .... A is upper semicontinuous (as a set-valued map) from every finite dimensional subspace of X into ...
Temperature and Humidity Control in Livestock Stables
DEFF Research Database (Denmark)
Hansen, Michael; Andersen, Palle; Nielsen, Kirsten M.
2010-01-01
The paper describes temperature and humidity control of a livestock stable. It is important to have a correct air flow pattern in the livestock stable in order to achieve proper temperature and humidity control as well as to avoid draught. In the investigated livestock stable the air flow...... is controlled using wall mounted ventilation flaps. In the paper an algorithm for air flow control is presented meeting the needs for temperature and humidity while taking the air flow pattern in consideration. To obtain simple and realisable controllers a model based control design method is applied....... In the design dynamic models for temperature and humidity are very important elements and effort is put into deriving and testing the models. It turns out that non-linearities are dominating in both models making feedback linearization the natural design method. The air controller as well as the temperature...
Electron dynamics with radiation and nonlinear wigglers
International Nuclear Information System (INIS)
Jowett, J.M.
1986-06-01
The physics of electron motion in storage rings is described by supplementing the Hamiltonian equations of motion with fluctuating radiation reaction forces to describe the effects of synchrotron radiation. This leads to a description of radiation damping and quantum diffusion in single-particle phase-space by means of Fokker-Planck equations. For practical purposes, most storage rings remain in the regime of linear damping and diffusion; this is discussed in some detail with examples, concentrating on longitudinal phase space. However special devices such as nonlinear wigglers may permit the new generation of very large rings to go beyond this into regimes of nonlinear damping. It is shown how a special combined-function wiggler can be used to modify the energy distribution and current profile of electron bunches
Non-linear soil-structure interaction
International Nuclear Information System (INIS)
Wolf, J.P.
1984-01-01
The basic equation of motion to analyse the interaction of a non-linear structure and an irregular soil with the linear unbounded soil is formulated in the time domain. The contribution of the unbounded soil involves convolution integrals of the dynamic-stiffness coefficients in the time domain and the corresponding motions. As another possibility, a flexibility formulation fot the contribution of the unbounded soil using the dynamic-flexibility coefficients in the time domain, together with the direct-stiffness method for the structure and the irregular soil can be applied. As an example of a non-linear soil-structure-interaction analysis, the partial uplift of the basemat of a structure is examined. (Author) [pt
A generalized, periodic nonlinearity-reduced interferometer for straightness measurements
International Nuclear Information System (INIS)
Wu Chienming
2008-01-01
Periodic nonlinearity is a systematic error limiting the accuracy of displacement measurements at the nanometer level. However, an interferometer with a displacement measurement accuracy of less than 1 nm is required in nanometrology and in fundamental scientific research. To meet this requirement, a generalized, periodic nonlinearity-reduced interferometer, based on three construction principles has been developed for straightness measurements. These three construction principles have resulted in an interferometer with a highly stable design with reduced periodic nonlinearity. Verifications by a straightness interferometer have demonstrated that the periodic nonlinearity was less than 40 pm. The results also demonstrate that the interferometer design is capable of subnanometer accuracy and is useful in nanometrology
Counter operation in nonlinear micro-electro-mechanical resonators
International Nuclear Information System (INIS)
Yao, Atsushi; Hikihara, Takashi
2013-01-01
This Letter discusses a logical operation of multi-memories that consist of coupled nonlinear micro-electro-mechanical systems (MEMS) resonators. A MEMS resonator shows two coexisting stable states when nonlinear responses appear. Previous studies addressed that a micro- or nano-electrical-mechanical resonator can be utilized as a mechanical 1-bit memory or mechanical logic gates. The next phase is the development of logic system with coupled multi-resonators. From the viewpoint of application of nonlinear dynamics in coupled MEMS resonators, we show the first experimental success of the controlling nonlinear behavior as a 2-bit binary counter.
On Poisson Nonlinear Transformations
Directory of Open Access Journals (Sweden)
Nasir Ganikhodjaev
2014-01-01
Full Text Available We construct the family of Poisson nonlinear transformations defined on the countable sample space of nonnegative integers and investigate their trajectory behavior. We have proved that these nonlinear transformations are regular.
Nonlinear Interchange Modes in 3D
Bagaipo, Jupiter; Hassam, Adil
2012-10-01
We have shown previously that, in 2D, the ideal magnetohydrodynamic interchange mode stabilized by a constant transverse magnetic field is nonlinearly unstable if near marginal conditions. This study is extended to a 3D system where the mode is marginally stabilized by allowing for wavenumbers weakly transverse to an axial field. Two different boundary conditions are studied: periodic and line-tied in the axial direction. Periodic boundary conditions have applications in toroidal fusion devices while line-tied systems are common in the solar corona. We use reduced equations for a strong axial field to find an analytic solution as a function of the deviation from marginality. Using a systematic perturbation analysis we show that, to lowest order, there exists a secondary, quasistatic equilibrium with a critical field strength. Allowing for deviations from criticality yield a nonlinear time-evolution equation for the perturbation amplitude. The periodic case allows for two types of modes, and it is shown that the mode isomorphic to the earlier 2D problem is nonlinearly unstable, while the ``sausage''-type mode is nonlinearly stable. These modes are modes along a rational surface and ballooning type modes, respectively. The line-tied case is shown to always be nonlinearly stable.
Terahertz semiconductor nonlinear optics
DEFF Research Database (Denmark)
Turchinovich, Dmitry; Hvam, Jørn Märcher; Hoffmann, Matthias
2013-01-01
In this proceedings we describe our recent results on semiconductor nonlinear optics, investigated using single-cycle THz pulses. We demonstrate the nonlinear absorption and self-phase modulation of strong-field THz pulses in doped semiconductors, using n-GaAs as a model system. The THz nonlinear...
Nonlinear Microwave Optomechanics
Shevchuk, O.
2017-01-01
The nonlinearity is essential for creation of non-classical states of the cavity or mechanical resonator such as squeezed or cat states. A microwave cavity can be made nonlinear by, for instance, adding Josephson junctions. The mechanical resonator is inherently nonlinear. The radiation pressure
Chen, Xianfeng; Zeng, Heping; Guo, Qi; She, Weilong
2015-01-01
This book presents an overview of the state of the art of nonlinear optics from weak light nonlinear optics, ultrafast nonlinear optics to electro-optical theory and applications. Topics range from the fundamental studies of the interaction between matter and radiation to the development of devices, components, and systems of tremendous commercial interest for widespread applications in optical telecommunications, medicine, and biotechnology.
Nonlinear Squeeze Film Dampers without Centralized Springs
Directory of Open Access Journals (Sweden)
Zhu Changsheng
2000-01-01
Full Text Available In this paper, the bifurcation behavior of a flexible rotor supported on nonlinear squeeze film dampers without centralized springs is analyzed numerically by means of rotor trajectories, Poincar maps, bifurcation diagrams and power spectra, based on the short bearing and cavitated film assumptions. It is shown that there also exist two different operations (i.e., socalled bistable operations in some speed regions in the rotor system supported on the nonlinear squeeze film dampers without centralized springs. In the bistable operation speed regions, the rotor system exhibits synchronous, sub-synchronous, sub-super-synchronous and almost-periodic as well as nonperiodic motions. The periodic bifurcation behaviors of the rotor system supported on nonlinear squeeze film dampers without centralized springs are very complex and require further investigations.
Ring vortex solitons in nonlocal nonlinear media
DEFF Research Database (Denmark)
Briedis, D.; Petersen, D.E.; Edmundson, D.
2005-01-01
We study the formation and propagation of two-dimensional vortex solitons, i.e. solitons with a phase singularity, in optical materials with a nonlocal focusing nonlinearity. We show that nonlocality stabilizes the dynamics of an otherwise unstable vortex beam. This occurs for either single...... or higher charge fundamental vortices as well as higher order (multiple ring) vortex solitons. Our results pave the way for experimental observation of stable vortex rings in other nonlocal nonlinear systems including Bose-Einstein condensates with pronounced long-range interparticle interaction....
Evolution Of Nonlinear Waves in Compressing Plasma
Energy Technology Data Exchange (ETDEWEB)
P.F. Schmit, I.Y. Dodin, and N.J. Fisch
2011-05-27
Through particle-in-cell simulations, the evolution of nonlinear plasma waves is examined in one-dimensional collisionless plasma undergoing mechanical compression. Unlike linear waves, whose wavelength decreases proportionally to the system length L(t), nonlinear waves, such as solitary electron holes, conserve their characteristic size {Delta} during slow compression. This leads to a substantially stronger adiabatic amplification as well as rapid collisionless damping when L approaches {Delta}. On the other hand, cessation of compression halts the wave evolution, yielding a stable mode.
Articulated Human Motion Tracking Using Sequential Immune Genetic Algorithm
Directory of Open Access Journals (Sweden)
Yi Li
2013-01-01
Full Text Available We formulate human motion tracking as a high-dimensional constrained optimization problem. A novel generative method is proposed for human motion tracking in the framework of evolutionary computation. The main contribution is that we introduce immune genetic algorithm (IGA for pose optimization in latent space of human motion. Firstly, we perform human motion analysis in the learnt latent space of human motion. As the latent space is low dimensional and contents the prior knowledge of human motion, it makes pose analysis more efficient and accurate. Then, in the search strategy, we apply IGA for pose optimization. Compared with genetic algorithm and other evolutionary methods, its main advantage is the ability to use the prior knowledge of human motion. We design an IGA-based method to estimate human pose from static images for initialization of motion tracking. And we propose a sequential IGA (S-IGA algorithm for motion tracking by incorporating the temporal continuity information into the traditional IGA. Experimental results on different videos of different motion types show that our IGA-based pose estimation method can be used for initialization of motion tracking. The S-IGA-based motion tracking method can achieve accurate and stable tracking of 3D human motion.
Interpretation of Fermion system equilibration by energy fluid motion
International Nuclear Information System (INIS)
Jang, S.
1990-01-01
We study the equilibration of fermion system with the help of both linear and non-linear master equations which are originated from the extended time-dependent Hartree-Fock equation of motion. We show how the non-linear master equation for nucleon occupation number transforms into the Navier-Stokes type of one dimensional equation for non-stationary flow of a compressible and viscous fluid. Physical consequences of these equations are investigated by providing illustrative examples
Stable isotopes labelled compounds
International Nuclear Information System (INIS)
1982-09-01
The catalogue on stable isotopes labelled compounds offers deuterium, nitrogen-15, and multiply labelled compounds. It includes: (1) conditions of sale and delivery, (2) the application of stable isotopes, (3) technical information, (4) product specifications, and (5) the complete delivery programme
Steeneveld, G.J.
2012-01-01
Understanding and prediction of the stable atmospheric boundary layer is a challenging task. Many physical processes are relevant in the stable boundary layer, i.e. turbulence, radiation, land surface coupling, orographic turbulent and gravity wave drag, and land surface heterogeneity. The
Indian Academy of Sciences (India)
IAS Admin
After Maynard-Smith and Price [1] mathematically derived why a given behaviour or strategy was adopted by a certain proportion of the population at a given time, it was shown that a strategy which is currently stable in a population need not be stable in evolutionary time (across generations). Additionally it was sug-.
Numerical Nonlinear Robust Control with Applications to Humanoid Robots
2015-07-01
remains the biggest bottleneck to the practical ap- plication of nonlinear H∞ control. For general nonlinear systems, no smooth analytical solution can...consists of q and q̇, contains 30 states. The actual equations of motion are generated using the Dynamic Animation and Robotics Toolkit (DART), which...behaviors often exhibit systematic deviations, such as risk/loss aversio, inaccurately weighting low/high probability events , and displaying greater
NOLB: Nonlinear Rigid Block Normal Mode Analysis Method
Hoffmann , Alexandre; Grudinin , Sergei
2017-01-01
International audience; We present a new conceptually simple and computationally efficient method for nonlinear normal mode analysis called NOLB. It relies on the rotations-translations of blocks (RTB) theoretical basis developed by Y.-H. Sanejouand and colleagues. We demonstrate how to physically interpret the eigenvalues computed in the RTB basis in terms of angular and linear velocities applied to the rigid blocks and how to construct a nonlinear extrapolation of motion out of these veloci...
Discretization model for nonlinear dynamic analysis of three dimensional structures
International Nuclear Information System (INIS)
Hayashi, Y.
1982-12-01
A discretization model for nonlinear dynamic analysis of three dimensional structures is presented. The discretization is achieved through a three dimensional spring-mass system and the dynamic response obtained by direct integration of the equations of motion using central diferences. First the viability of the model is verified through the analysis of homogeneous linear structures and then its performance in the analysis of structures subjected to impulsive or impact loads, taking into account both geometrical and physical nonlinearities is evaluated. (Author) [pt
Directory of Open Access Journals (Sweden)
Aboozar Heydari
2017-09-01
Full Text Available In this paper, the effects of nonlinear forces due to the electromagnetic field of bearing and the unbalancing force on nonlinear vibration behavior of a rotor is investigated. The rotor is modeled as a rigid body that is supported by two magnetic bearings with eight-polar structures. The governing dynamics equations of the system that are coupled nonlinear second order ordinary differential equations (ODEs are derived, and for solving these equations, the homotopy perturbation method (HPM is used. By applying HPM, the possibility of presenting a harmonic semi-analytical solution, is provided. In fact, with equality the coefficient of auxiliary parameter (p, the system of coupled nonlinear second order and non-homogenous differential equations are obtained so that consists of unbalancing effects. By considering some initial condition for displacement and velocity in the horizontal and vertical directions, free vibration analysis is done and next, the forced vibration analysis under the effect of harmonic forces also is investigated. Likewise, various parameters on the vibration behavior of rotor are studied. Changes in amplitude and response phase per excitation frequency are investigated. Results show that by increasing excitation frequency, the motion amplitude is also increases and by passing the critical speed, it decreases. Also it shows that the magnetic bearing system performance is in stable maintenance of rotor. The parameters affecting on vibration behavior, has been studied and by comparison the results with the other references, which have a good precision up to 2nd order of embedding parameter, it implies the accuracy of this method in current research.
Issa, Jimmy S.; Shaw, Steven W.
2015-07-01
In this work we investigate the nonlinear dynamic response of systems composed of a primary inertia to which multiple identical vibration absorbers are attached. This problem is motivated by observations of systems of centrifugal pendulum vibration absorbers that are designed to reduce engine order torsional vibrations in rotating systems, but the results are relevant to translational systems as well. In these systems the total absorber mass is split into multiple equal masses for purposes of distribution and/or balance, and it is generally expected that the absorbers will act in unison, corresponding to a synchronous response. In order to capture nonlinear effects of the responses of the absorbers, specifically, their amplitude-dependent frequency, we consider them to possess nonlinear stiffness. The equations of motion for the system are derived and it is shown how one can uncouple the equations for the absorbers from that for the primary inertia, resulting in a system of identical resonators that are globally coupled. These symmetric equations are scaled for weak nonlinear effects, near resonant forcing, and small damping. The method of averaging is applied, from which steady-state responses and their stability are investigated. The response of systems with two, three, and four absorbers are considered in detail, demonstrating a rich variety of bifurcations of the synchronous response, resulting in responses with various levels of symmetry in which sub-groups of absorbers are mutually synchronous. It is also shown that undamped models with more than two absorbers possess a degenerate response, which is made robust by the addition of damping to the model. Design guidelines are proposed based on the nature of the system response, with the aim of minimizing the acceleration of the primary system. It is shown that the desired absorber parameters are selected so that the system achieves a stable synchronous response which does not undergo jumps via saddle
Unusual motions of a vibrating string
Hanson, Roger J.
2003-10-01
The actual motions of a sinusoidally driven vibrating string can be very complex due to nonlinear effects resulting from varying tension and longitudinal motion not included in simple linear theory. Commonly observed effects are: generation of motion perpendicular to the driving force, sudden jumps in amplitude, hysteresis, and generation of higher harmonics. In addition, these effects are profoundly influenced by wire asymmetries which in a brass harpsichord wire can cause a small splitting of each natural frequency of free vibration into two closely spaced frequencies (relative separation ~0.2% to 2%), each associated with transverse motion along two orthogonal characteristic wire axes. Some unusual resulting patterns of complex motions of a point on the wire are exhibited on videotape. Examples include: sudden changes of harmonic content, generation of subharmonics, and motion which appears nearly chaotic but which has a pattern period of over 10 s. Another unusual phenomenon due to entirely different causes can occur when a violin string is bowed with a higher than normal force resulting in sounds ranging from about a musical third to a twelfth lower than the sound produced when the string is plucked.
Live Speech Driven Head-and-Eye Motion Generators.
Le, Binh H; Ma, Xiaohan; Deng, Zhigang
2012-11-01
This paper describes a fully automated framework to generate realistic head motion, eye gaze, and eyelid motion simultaneously based on live (or recorded) speech input. Its central idea is to learn separate yet interrelated statistical models for each component (head motion, gaze, or eyelid motion) from a prerecorded facial motion data set: 1) Gaussian Mixture Models and gradient descent optimization algorithm are employed to generate head motion from speech features; 2) Nonlinear Dynamic Canonical Correlation Analysis model is used to synthesize eye gaze from head motion and speech features, and 3) nonnegative linear regression is used to model voluntary eye lid motion and log-normal distribution is used to describe involuntary eye blinks. Several user studies are conducted to evaluate the effectiveness of the proposed speech-driven head and eye motion generator using the well-established paired comparison methodology. Our evaluation results clearly show that this approach can significantly outperform the state-of-the-art head and eye motion generation algorithms. In addition, a novel mocap+video hybrid data acquisition technique is introduced to record high-fidelity head movement, eye gaze, and eyelid motion simultaneously.
Nonlinear flight dynamics and stability of hovering model insects
Liang, Bin; Sun, Mao
2013-01-01
Current analyses on insect dynamic flight stability are based on linear theory and limited to small disturbance motions. However, insects' aerial environment is filled with swirling eddies and wind gusts, and large disturbances are common. Here, we numerically solve the equations of motion coupled with the Navier–Stokes equations to simulate the large disturbance motions and analyse the nonlinear flight dynamics of hovering model insects. We consider two representative model insects, a model hawkmoth (large size, low wingbeat frequency) and a model dronefly (small size, high wingbeat frequency). For small and large initial disturbances, the disturbance motion grows with time, and the insects tumble and never return to the equilibrium state; the hovering flight is inherently (passively) unstable. The instability is caused by a pitch moment produced by forward/backward motion and/or a roll moment produced by side motion of the insect. PMID:23697714
Nonlinear earthquake behaviour of highway tunnels
Directory of Open Access Journals (Sweden)
B. Sevim
2011-10-01
Full Text Available This paper describes the Arhavi Highway Tunnel which has two tubes, its geometrical properties, finite element model, and the nonlinear earthquake behaviour under a huge ground motion considering soil-structure interaction. The Arhavi Highway Tunnel is one of the tallest tunnels constructed in the Black Sea region of Turkey as part of the Coast Road Project. The tunnel has two tubes and each of them is about 1000 m tall. In the study, the modal analyses of the tunnel considering soil-structure interaction are performed and natural frequencies and mode shapes are obtained. Then, nonlinear transient analysis of the tunnel using Drucker-Prager criteria is performed applying acceleration components of 1992 Erzincan, Turkey earthquake's ground motion. In the time history analyses, Rayleigh damping coefficients are calculated using main natural frequency obtained from modal analysis. Element matrices are computed using the Gauss numerical integration technique. The Newmark method is used in the solution of the equation of motion. Because too much memory for the analyses is required, the first 7.5 s of the ground motions, which is the most effective duration, is taken into account in calculations. The displacement and stress results are observed to be the allowable level of the concrete material.
Nonlinear control for dual quaternion systems
Price, William D.
The motion of rigid bodies includes three degrees of freedom (DOF) for rotation, generally referred to as roll, pitch and yaw, and 3 DOF for translation, generally described as motion along the x, y and z axis, for a total of 6 DOF. Many complex mechanical systems exhibit this type of motion, with constraints, such as complex humanoid robotic systems, multiple ground vehicles, unmanned aerial vehicles (UAVs), multiple spacecraft vehicles, and even quantum mechanical systems. These motions historically have been analyzed independently, with separate control algorithms being developed for rotation and translation. The goal of this research is to study the full 6 DOF of rigid body motion together, developing control algorithms that will affect both rotation and translation simultaneously. This will prove especially beneficial in complex systems in the aerospace and robotics area where translational motion and rotational motion are highly coupled, such as when spacecraft have body fixed thrusters. A novel mathematical system known as dual quaternions provide an efficient method for mathematically modeling rigid body transformations, expressing both rotation and translation. Dual quaternions can be viewed as a representation of the special Euclidean group SE(3). An eight dimensional representation of screw theory (combining dual numbers with traditional quaternions), dual quaternions allow for the development of control techniques for 6 DOF motion simultaneously. In this work variable structure nonlinear control methods are developed for dual quaternion systems. These techniques include use of sliding mode control. In particular, sliding mode methods are developed for use in dual quaternion systems with unknown control direction. This method, referred to as self-reconfigurable control, is based on the creation of multiple equilibrium surfaces for the system in the extended state space. Also in this work, the control problem for a class of driftless nonlinear systems is
Nonlinear oscillations, bifurcations and chaos of functionally graded materials plate
Hao, Y. X.; Chen, L. H.; Zhang, W.; Lei, J. G.
2008-05-01
An analysis on the nonlinear dynamics of a simply supported functionally graded materials (FGMs) rectangular plate subjected to the transversal and in-plane excitations is presented in a thermal environment for the first time. Material properties are assumed to be temperature dependent. Based on Reddy's third-order plate theory, the nonlinear governing equations of motion for the FGM plates are derived using Hamilton's principle. Galerkin's method is utilized to discretize the governing partial equations to a two-degree-of-freedom nonlinear system including the quadratic and cubic nonlinear terms under combined parametric and external excitations. The resonant case considered here is 1:1 internal resonance and principal parametric resonance. The asymptotic perturbation method is utilized to obtain four-dimensional nonlinear averaged equation. The numerical method is used to find the nonlinear dynamic responses of the FGM rectangular plate. It was found that periodic, quasi-periodic solutions and chaotic motions exist for the FGM rectangular plates under certain conditions. It is believed that the forcing excitations f1 and f2 can change the form of motions for the FGM rectangular plate.
Fragility curves for bridges under differential support motions
DEFF Research Database (Denmark)
Konakli, Katerina
2012-01-01
This paper employs the notion of fragility to investigate the seismic vulnerability of bridges subjected to spatially varying support motions. Fragility curves are developed for four highway bridges in California with vastly different structural characteristics. The input in this analysis consists...... of simulated ground motion arrays with temporal and spectral nonstationarities, and consistent with prescribed spatial variation patterns. Structural damage is quantified through displacement ductility demands obtained from nonlinear time-history analysis. The potential use of the ‘equal displacement’ rule...
Manual materials handling in simulated motion environments.
Holmes, Michael W; MacKinnon, Scott N; Matthews, Julie; Albert, Wayne J; Mills, Steven
2008-05-01
Seafaring occupations have been shown to place operators at an increased risk for injury. The purpose of this study was to understand better the demands of a moving environment on the ability of a person to perform specific lifting tasks. Subjects lifted a 15-kg load under four different lifting conditions. A 6-degree-of-freedom ship motion simulator imposed repeatable deck motions under foot while subjects executed the lifting tasks. Subjects were oriented in three different positions on the simulator floor to inflict different motion profiles. Electromyographic records of four muscles were collected bilaterally, and thoracolumbar kinematics were measured. A repeated-measures ANOVA was employed to assess trunk motions and muscle activities across lifting and motion conditions. The erector spinae muscles showed a trend toward significant differences for motion effects. Maximal sagittal velocities were significantly smaller for all motion states in comparison with the stable condition (p
Damonte, Kathleen
2004-01-01
One thing scientists study is how objects move. A famous scientist named Sir Isaac Newton (1642-1727) spent a lot of time observing objects in motion and came up with three laws that describe how things move. This explanation only deals with the first of his three laws of motion. Newton's First Law of Motion says that moving objects will continue…
Normal modified stable processes
DEFF Research Database (Denmark)
Barndorff-Nielsen, Ole Eiler; Shephard, N.
2002-01-01
This paper discusses two classes of distributions, and stochastic processes derived from them: modified stable (MS) laws and normal modified stable (NMS) laws. This extends corresponding results for the generalised inverse Gaussian (GIG) and generalised hyperbolic (GH) or normal generalised inverse...... Gaussian (NGIG) laws. The wider framework thus established provides, in particular, for added flexibility in the modelling of the dynamics of financial time series, of importance especially as regards OU based stochastic volatility models for equities. In the special case of the tempered stable OU process...
Applications of stable isotopes
International Nuclear Information System (INIS)
Letolle, R.; Mariotti, A.; Bariac, T.
1991-06-01
This report reviews the historical background and the properties of stable isotopes, the methods used for their measurement (mass spectrometry and others), the present technics for isotope enrichment and separation, and at last the various present and foreseeable application (in nuclear energy, physical and chemical research, materials industry and research; tracing in industrial, medical and agronomical tests; the use of natural isotope variations for environmental studies, agronomy, natural resources appraising: water, minerals, energy). Some new possibilities in the use of stable isotope are offered. A last chapter gives the present state and forecast development of stable isotope uses in France and Europe
Fluctuating nonlinear hydrodynamics of flocking
Yadav, Sunil Kumar; Das, Shankar P.
2018-03-01
Starting from a microscopic model, the continuum field theoretic description of the dynamics of a system of active ingredients or "particles" is presented. The equations of motion for the respective collective densities of mass and momentum follow exactly from that of a single element in the flock. The single-particle dynamics has noise and anomalous momentum dependence in its frictional terms. The equations for the collective densities are averaged over a local equilibrium distribution to obtain the corresponding coarse grained equations of fluctuating nonlinear hydrodynamics (FNH). The latter are the equations used frequently for describing active systems on the basis of intuitive arguments. The transport coefficients which appear in the macroscopic FNH equations are determined in terms of the parameters of the microscopic dynamics.
Xiong, Caiqiao; Zhou, Xiaoyu; Zhang, Ning; Zhan, Lingpeng; Chen, Suming; Nie, Zongxiu
2014-11-01
Paul trap working in the second stability region has long been recognized as a possible approach for achieving high-resolution mass spectrometry (MS), which however is still far away from the experimental implementations because of the narrow working area and inefficient ion trapping. Full understanding of the ion motional behavior is helpful for solving the problem. In this article, the ion motion in a superimposed octopole field, which was characterized by the nonlinear Mathieu equation, was solved analytically using Poincare-Lighthill-Kuo (PLK) method. This method equivalently described the nonlinear disturbance by an effective quadrupole field with perturbed Mathieu parameters, a(u) and q(u), which would bring huge convenience in the studies of nonlinear ion dynamics and was, therefore, used for rapid evaluation of the nonlinear effects of ion motion. Fourth-order Runge-Kutta method (4th R-K) indicated the error of PLK for characterizing the frequency shift of ion motion was within 15%.
Brambila, Danilo
2012-01-01
We have theoretically studied Anderson localization in a 2D+1 nonlinear kicked rotor model. The system shows a very rich dynamical behavior, where the Anderson localization is suppressed and soliton wave-particles undergo a superdiffusive motion.
A three-dimensional autonomous nonlinear dynamical system modelling equatorial ocean flows
Ionescu-Kruse, Delia
2018-04-01
We investigate a nonlinear three-dimensional model for equatorial flows, finding exact solutions that capture the most relevant geophysical features: depth-dependent currents, poleward or equatorial surface drift and a vertical mixture of upward and downward motions.
Kelkar, Atul G.; Joshi, Suresh M.
1994-01-01
Global asymptotic stability of a class of nonlinear multibody flexible space structures under dissipative compensation is established. Two cases are considered. The first case allows unlimited nonlinear motions of the entire system and uses quaternion feedback. The second case assumes that the central body motion is in the linear range although the other bodies can undergo unrestricted nonlinear motion. The stability is proved to be robust to the inherent modeling nonlinearities and uncertainties. Furthermore, for the second case, the stability is also shown to be robust to certain actuator and sensor nonlinearities. The stability proofs use the Lyapunov approach and exploit the inherent passivity of such systems. The results are applicable to a wide class of systems, including flexible space structures with articulated flexible appendages.
National Research Council Canada - National Science Library
Adler, Robert
1997-01-01
We describe how to take a stable, ARMA, time series through the various stages of model identification, parameter estimation, and diagnostic checking, and accompany the discussion with a goodly number...
Rolling Shutter Motion Deblurring
Su, Shuochen
2015-06-07
Although motion blur and rolling shutter deformations are closely coupled artifacts in images taken with CMOS image sensors, the two phenomena have so far mostly been treated separately, with deblurring algorithms being unable to handle rolling shutter wobble, and rolling shutter algorithms being incapable of dealing with motion blur. We propose an approach that delivers sharp and undis torted output given a single rolling shutter motion blurred image. The key to achieving this is a global modeling of the camera motion trajectory, which enables each scanline of the image to be deblurred with the corresponding motion segment. We show the results of the proposed framework through experiments on synthetic and real data.
International Nuclear Information System (INIS)
Romeo, Francesco; Rega, Giuseppe
2006-01-01
Free wave propagation properties in one-dimensional chains of nonlinear oscillators are investigated by means of nonlinear maps. In this realm, the governing difference equations are regarded as symplectic nonlinear transformations relating the amplitudes in adjacent chain sites (n, n + 1) thereby considering a dynamical system where the location index n plays the role of the discrete time. Thus, wave propagation becomes synonymous of stability: finding regions of propagating wave solutions is equivalent to finding regions of linearly stable map solutions. Mechanical models of chains of linearly coupled nonlinear oscillators are investigated. Pass- and stop-band regions of the mono-coupled periodic system are analytically determined for period-q orbits as they are governed by the eigenvalues of the linearized 2D map arising from linear stability analysis of periodic orbits. Then, equivalent chains of nonlinear oscillators in complex domain are tackled. Also in this case, where a 4D real map governs the wave transmission, the nonlinear pass- and stop-bands for periodic orbits are analytically determined by extending the 2D map analysis. The analytical findings concerning the propagation properties are then compared with numerical results obtained through nonlinear map iteration
Energy Technology Data Exchange (ETDEWEB)
Romeo, Francesco [Dipartimento di Ingegneria Strutturale e Geotecnica, Universita di Roma ' La Sapienza' , Via Gramsci 53, 00197 Rome (Italy)] e-mail: francesco.romeo@uniromal.it; Rega, Giuseppe [Dipartimento di Ingegneria Strutturale e Geotecnica, Universita di Roma ' La Sapienza' , Via Gramsci 53, 00197 Rome (Italy)] e-mail: giuseppe.rega@uniromal.it
2006-02-01
Free wave propagation properties in one-dimensional chains of nonlinear oscillators are investigated by means of nonlinear maps. In this realm, the governing difference equations are regarded as symplectic nonlinear transformations relating the amplitudes in adjacent chain sites (n, n + 1) thereby considering a dynamical system where the location index n plays the role of the discrete time. Thus, wave propagation becomes synonymous of stability: finding regions of propagating wave solutions is equivalent to finding regions of linearly stable map solutions. Mechanical models of chains of linearly coupled nonlinear oscillators are investigated. Pass- and stop-band regions of the mono-coupled periodic system are analytically determined for period-q orbits as they are governed by the eigenvalues of the linearized 2D map arising from linear stability analysis of periodic orbits. Then, equivalent chains of nonlinear oscillators in complex domain are tackled. Also in this case, where a 4D real map governs the wave transmission, the nonlinear pass- and stop-bands for periodic orbits are analytically determined by extending the 2D map analysis. The analytical findings concerning the propagation properties are then compared with numerical results obtained through nonlinear map iteration.
Smoothing Motion Estimates for Radar Motion Compensation.
Energy Technology Data Exchange (ETDEWEB)
Doerry, Armin W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2017-07-01
Simple motion models for complex motion environments are often not adequate for keeping radar data coherent. Eve n perfect motion samples appli ed to imperfect models may lead to interim calculations e xhibiting errors that lead to degraded processing results. Herein we discuss a specific i ssue involving calculating motion for groups of pulses, with measurements only available at pulse-group boundaries. - 4 - Acknowledgements This report was funded by General A tomics Aeronautical Systems, Inc. (GA-ASI) Mission Systems under Cooperative Re search and Development Agre ement (CRADA) SC08/01749 between Sandia National Laboratories and GA-ASI. General Atomics Aeronautical Systems, Inc. (GA-ASI), an affilia te of privately-held General Atomics, is a leading manufacturer of Remotely Piloted Aircraft (RPA) systems, radars, and electro-optic and rel ated mission systems, includin g the Predator(r)/Gray Eagle(r)-series and Lynx(r) Multi-mode Radar.
Dissipative soliton acceleration in nonlinear optical lattices.
Kominis, Yannis; Papagiannis, Panagiotis; Droulias, Sotiris
2012-07-30
An effective mechanism for dissipative soliton acceleration in nonlinear optical lattices under the presence of linear gain and nonlinear loss is presented. The key idea for soliton acceleration consists of the dynamical reduction of the amplitude of the effective potential experienced by the soliton so that its kinetic energy eventually increases. This is possible through the dependence of the effective potential amplitude on the soliton mass, which can be varied due to the presence of gain and loss mechanisms. In contrast to the case where either the linear or the nonlinear refractive index is spatially modulated, we show that when both indices are modulated with the same period we can have soliton acceleration and mass increasing as well as stable soliton propagation with constant non-oscillating velocity. The acceleration mechanism is shown to be very robust for a wide range of configurations.
Nonlinear estimation and control of automotive drivetrains
Chen, Hong
2014-01-01
Nonlinear Estimation and Control of Automotive Drivetrains discusses the control problems involved in automotive drivetrains, particularly in hydraulic Automatic Transmission (AT), Dual Clutch Transmission (DCT) and Automated Manual Transmission (AMT). Challenging estimation and control problems, such as driveline torque estimation and gear shift control, are addressed by applying the latest nonlinear control theories, including constructive nonlinear control (Backstepping, Input-to-State Stable) and Model Predictive Control (MPC). The estimation and control performance is improved while the calibration effort is reduced significantly. The book presents many detailed examples of design processes and thus enables the readers to understand how to successfully combine purely theoretical methodologies with actual applications in vehicles. The book is intended for researchers, PhD students, control engineers and automotive engineers. Hong Chen is a professor at the State Key Laboratory of Automotive Simulation and...
Nonlinear streak computation using boundary region equations
Energy Technology Data Exchange (ETDEWEB)
Martin, J A; Martel, C, E-mail: juanangel.martin@upm.es, E-mail: carlos.martel@upm.es [Depto. de Fundamentos Matematicos, E.T.S.I Aeronauticos, Universidad Politecnica de Madrid, Plaza Cardenal Cisneros 3, 28040 Madrid (Spain)
2012-08-01
The boundary region equations (BREs) are applied for the simulation of the nonlinear evolution of a spanwise periodic array of streaks in a flat plate boundary layer. The well-known BRE formulation is obtained from the complete Navier-Stokes equations in the high Reynolds number limit, and provides the correct asymptotic description of three-dimensional boundary layer streaks. In this paper, a fast and robust streamwise marching scheme is introduced to perform their numerical integration. Typical streak computations present in the literature correspond to linear streaks or to small-amplitude nonlinear streaks computed using direct numerical simulation (DNS) or the nonlinear parabolized stability equations (PSEs). We use the BREs to numerically compute high-amplitude streaks, a method which requires much lower computational effort than DNS and does not have the consistency and convergence problems of the PSE. It is found that the flow configuration changes substantially as the amplitude of the streaks grows and the nonlinear effects come into play. The transversal motion (in the wall normal-streamwise plane) becomes more important and strongly distorts the streamwise velocity profiles, which end up being quite different from those of the linear case. We analyze in detail the resulting flow patterns for the nonlinearly saturated streaks and compare them with available experimental results. (paper)
Curves from Motion, Motion from Curves
2000-01-01
tautochrone and brachistochrone properties. To Descartes, however, the rectification of curves such as the spiral (3) and the cycloid (4) was suspect - they...UNCLASSIFIED Defense Technical Information Center Compilation Part Notice ADP012017 TITLE: Curves from Motion, Motion from Curves DISTRIBUTION...Approved for public release, distribution unlimited This paper is part of the following report: TITLE: International Conference on Curves and Surfaces [4th
Bifurcation Analysis of a Non-linear On-Board Rotor-Bearing System
Dakel, M. Zaki; Baguet, Sébastien; Dufour, Régis
2014-01-01
International audience; The non-linear dynamic behavior of an on-board rotor mounted on hydrodynamic journal bearings and subject to rigid base excitations is investigated in this work. The proposed finite element rotor model takes into account the geometric asymmetry of shaft and/or rigid disk and considers six types of base deterministic motions (rotations and translations) and non-linear fluid film forces obtained from the Reynoldsequation. The equations of motion contain time-varying para...
Ooi, Kelvin J. A.; Tan, Dawn T. H.
2017-10-01
The rapid development of graphene has opened up exciting new fields in graphene plasmonics and nonlinear optics. Graphene's unique two-dimensional band structure provides extraordinary linear and nonlinear optical properties, which have led to extreme optical confinement in graphene plasmonics and ultrahigh nonlinear optical coefficients, respectively. The synergy between graphene's linear and nonlinear optical properties gave rise to nonlinear graphene plasmonics, which greatly augments graphene-based nonlinear device performance beyond a billion-fold. This nascent field of research will eventually find far-reaching revolutionary technological applications that require device miniaturization, low power consumption and a broad range of operating wavelengths approaching the far-infrared, such as optical computing, medical instrumentation and security applications.
Directory of Open Access Journals (Sweden)
Wei Khim Ng
2009-02-01
Full Text Available We construct nonlinear extensions of Dirac's relativistic electron equation that preserve its other desirable properties such as locality, separability, conservation of probability and Poincaré invariance. We determine the constraints that the nonlinear term must obey and classify the resultant non-polynomial nonlinearities in a double expansion in the degree of nonlinearity and number of derivatives. We give explicit examples of such nonlinear equations, studying their discrete symmetries and other properties. Motivated by some previously suggested applications we then consider nonlinear terms that simultaneously violate Lorentz covariance and again study various explicit examples. We contrast our equations and construction procedure with others in the literature and also show that our equations are not gauge equivalent to the linear Dirac equation. Finally we outline various physical applications for these equations.
Nonlinear generalization of special relativity
International Nuclear Information System (INIS)
Winterberg, F.
1985-01-01
In Poincares axiomatic formulation special relativity is a derived consequence of a true Lorentz contraction, for a rod in absolute motion through a substratum. Furthermore, Lorentz had shown that the rod contraction can be understood by an inverse square law interaction and therefore special relativity derived from more fundamental principles. The derivation by Lorentz shows that the root of the divergence problems is the singular inverse square law. By replacing the inverse square law with a regular one through the introduction of a finite length, the author has succeeded in deriving a nonlinear generalization of special relativity which eliminates all infinities. Besides the relative velocities, these nonlinear transformation equations also contain absolute velocities against a substratum, but in the limit of small energies they go over into the linear Lorentz transformations. Depending on the smallness of the fundamental length, departures from special relativity can be observed only at very high energies. The theorem that the velocity of light is the same in all reference systems still holds and likewise the conservation laws for energy and momentum
Stationary nonlinear Airy beams
International Nuclear Information System (INIS)
Lotti, A.; Faccio, D.; Couairon, A.; Papazoglou, D. G.; Panagiotopoulos, P.; Tzortzakis, S.; Abdollahpour, D.
2011-01-01
We demonstrate the existence of an additional class of stationary accelerating Airy wave forms that exist in the presence of third-order (Kerr) nonlinearity and nonlinear losses. Numerical simulations and experiments, in agreement with the analytical model, highlight how these stationary solutions sustain the nonlinear evolution of Airy beams. The generic nature of the Airy solution allows extension of these results to other settings, and a variety of applications are suggested.
Uraltseva, N N
1995-01-01
This collection focuses on nonlinear problems in partial differential equations. Most of the papers are based on lectures presented at the seminar on partial differential equations and mathematical physics at St. Petersburg University. Among the topics explored are the existence and properties of solutions of various classes of nonlinear evolution equations, nonlinear imbedding theorems, bifurcations of solutions, and equations of mathematical physics (Navier-Stokes type equations and the nonlinear Schrödinger equation). The book will be useful to researchers and graduate students working in p
Kono, Mitsuo
2010-01-01
A nonlinearity is one of the most important notions in modern physics. A plasma is rich in nonlinearities and provides a variety of behaviors inherent to instabilities, coherent wave structures and turbulence. The book covers the basic concepts and mathematical methods, necessary to comprehend nonlinear problems widely encountered in contemporary plasmas, but also in other fields of physics and current research on self-organized structures and magnetized plasma turbulence. The analyses make use of strongly nonlinear models solved by analytical techniques backed by extensive simulations and available experiments. The text is written for senior undergraduates, graduate students, lecturers and researchers in laboratory, space and fusion plasmas.
Nonlinear optics at interfaces
International Nuclear Information System (INIS)
Chen, C.K.
1980-12-01
Two aspects of surface nonlinear optics are explored in this thesis. The first part is a theoretical and experimental study of nonlinear intraction of surface plasmons and bulk photons at metal-dielectric interfaces. The second part is a demonstration and study of surface enhanced second harmonic generation at rough metal surfaces. A general formulation for nonlinear interaction of surface plasmons at metal-dielectric interfaces is presented and applied to both second and third order nonlinear processes. Experimental results for coherent second and third harmonic generation by surface plasmons and surface coherent antiStokes Raman spectroscopy (CARS) are shown to be in good agreement with the theory
Ahmad, Azhar; Azmi, Amirah; Majid, Ahmad Abd.; Hamid, Nur Nadiah Abd
2017-08-01
In this paper, Nonlinear Schrödinger (NLS) equation with Neumann boundary conditions is solved using finite difference method (FDM) and cubic B-spline interpolation method (CuBSIM). First, the approach is based on the FDM applied on the time and space discretization with the help of theta-weighted method. However, our main interest is the second approach, whereby FDM is applied on the time discretization and cubic B-spline is utilized as an interpolation function in the space dimension with the same help of theta-weighted method. The CuBSIM is shown to be stable by using von Neumann stability analysis. The proposed method is tested on a test problem with single soliton motion of the NLS equation. The accuracy of the numerical results is measured by the Euclidean-norm and infinity-norm. CuBSIM is found to produce more accurate results than the FDM.
Lorenz, HW; Nusse, HE
Goodwin's nonlinear accelerator model with periodic investment outlays is reconsidered and used as an economic example of the emergence of complex motion in nonlinear dynamical systems. In addition to chaotic attractors, the model can possess coexisting attracting periodic orbits or simple
Nonlinear roll damping of a barge with and without liquid cargo in spherical tanks
Directory of Open Access Journals (Sweden)
Wenhua Zhao
2016-01-01
Full Text Available Damping plays a significant role on the maximum amplitude of a vessel's roll motion, in particular near the resonant frequency. It is a common practice to predict roll damping using a linear radiation–diffraction code and add that to a linearized viscous damping component, which can be obtained through empirical, semi-empirical equations or free decay tests in calm water. However, it is evident that the viscous roll damping is nonlinear with roll velocity and amplitude. Nonlinear liquid cargo motions inside cargo tanks also contribute to roll damping, which when ignored impedes the accurate prediction of maximum roll motions. In this study, a series of free decay model tests is conducted on a barge-like vessel with two spherical tanks, which allows a better understanding of the nonlinear roll damping components considering the effects of the liquid cargo motion. To examine the effects of the cargo motion on the damping levels, a nonlinear model is adopted to calculate the damping coefficients. The liquid cargo motion is observed to affect both the linear and the quadratic components of the roll damping. The flow memory effect on the roll damping is also studied. The nonlinear damping coefficients of the vessel with liquid cargo motions in spherical tanks are obtained, which are expected to contribute in configurations involving spherical tanks.
Extreme nonlinear energy exchanges in a geometrically nonlinear lattice oscillating in the plane
Zhang, Zhen; Manevitch, Leonid I.; Smirnov, Valeri; Bergman, Lawrence A.; Vakakis, Alexander F.
2018-01-01
We study the in-plane damped oscillations of a finite lattice of particles coupled by linear springs under distributed harmonic excitation. Strong nonlinearity in this system is generated by geometric effects due to the in-plane stretching of the coupling spring elements. The lattice has a finite number of nonlinear transverse standing waves (termed nonlinear normal modes - NNMs), and an equal number of axial linear modes which are nonlinearly coupled to the transverse ones. Nonlinear interactions between the transverse and axial modes under harmonic excitation give rise to unexpected and extreme nonlinear energy exchanges in the lattice. In particular, we directly excite a transverse NNM by harmonic forcing (causing simulataneous indirect excitation of a corresponding axial linear mode due to nonlinear coupling), and identify three energy transfer mechanisms in the lattice. First, we detect the stable response of the directly excited transverse NNM (despite its instability in the absence of forcing), with simultaneous stability of the indirectly excited axial linear mode. Second, by changing the system and forcing parameters we report extreme nonlinear "energy explosions," whereby, after an initial regime of stability, the directly excited transverse NNM loses stability, leading to abrupt excitation of all transverse and axial modes of the lattice, at all possible wave numbers. This strong instability is triggered by the parametric instability of an indirectly excited axial mode which builds energy until the explosion. This is proved through theoretical analysis. Finally, in other parameter ranges we report intermittent, intense energy transfers from the directly excited transverse NNM to a small set of transverse NNMs with smaller wavelengths, and from the indirectly excited axial mode to a small set of axial modes, but with larger wavelengths. These intermittent energy transfers resemble energy cascades occurring in turbulent flows. Our results show that
Nonlinear Damping Identification in Nonlinear Dynamic System Based on Stochastic Inverse Approach
Directory of Open Access Journals (Sweden)
S. L. Han
2012-01-01
Full Text Available The nonlinear model is crucial to prepare, supervise, and analyze mechanical system. In this paper, a new nonparametric and output-only identification procedure for nonlinear damping is studied. By introducing the concept of the stochastic state space, we formulate a stochastic inverse problem for a nonlinear damping. The solution of the stochastic inverse problem is designed as probabilistic expression via the hierarchical Bayesian formulation by considering various uncertainties such as the information insufficiency in parameter of interests or errors in measurement. The probability space is estimated using Markov chain Monte Carlo (MCMC. The applicability of the proposed method is demonstrated through numerical experiment and particular application to a realistic problem related to ship roll motion.
Nonlinear problems in fluid dynamics and inverse scattering: Nonlinear waves and inverse scattering
Ablowitz, Mark J.
1994-12-01
Research investigations involving the fundamental understanding and applications of nonlinear wave motion and related studies of inverse scattering and numerical computation have been carried out and a number of significant results have been obtained. A class of nonlinear wave equations which can be solved by the inverse scattering transform (IST) have been studied, including the Kadaomtsev-Petviashvili (KP) equation, the Davey-Stewartson equation, and the 2+1 Toda system. The solutions obtained by IST correspond to the Cauchy initial value problem with decaying initial data. We have also solved two important systems via the IST method: a 'Volterra' system in 2+1 dimensions and a new one dimensional nonlinear equation which we refer to as the Toda differential-delay equation. Research in computational chaos in moderate to long time numerical simulations continues.
Controlling inertial focussing using rotational motion.
Prohm, Christopher; Zöller, Nikolas; Stark, Holger
2014-05-01
In inertial microfluidics lift forces cause a particle to migrate across streamlines to specific positions in the cross section of a microchannel. We control the rotational motion of a particle and demonstrate that this allows to manipulate the lift-force profile and thereby the particle's equilibrium positions. We perform two-dimensional simulation studies using the method of multi-particle collision dynamics. Particles with unconstrained rotational motion occupy stable equilibrium positions in both halfs of the channel while the center is unstable. When an external torque is applied to the particle, two equilibrium positions annihilate by passing a saddle-node bifurcation and only one stable fixpoint remains so that all particles move to one side of the channel. In contrast, non-rotating particles accumulate in the center and are pushed into one half of the channel when the angular velocity is fixed to a non-zero value.
Calcium stable isotope geochemistry
Energy Technology Data Exchange (ETDEWEB)
Gausonne, Nikolaus [Muenster Univ. (Germany). Inst. fuer Mineralogie; Schmitt, Anne-Desiree [Strasbourg Univ. (France). LHyGeS/EOST; Heuser, Alexander [Bonn Univ. (Germany). Steinmann-Inst. fuer Geologie, Mineralogie und Palaeontologie; Wombacher, Frank [Koeln Univ. (Germany). Inst. fuer Geologie und Mineralogie; Dietzel, Martin [Technische Univ. Graz (Austria). Inst. fuer Angewandte Geowissenschaften; Tipper, Edward [Cambridge Univ. (United Kingdom). Dept. of Earth Sciences; Schiller, Martin [Copenhagen Univ. (Denmark). Natural History Museum of Denmark
2016-08-01
This book provides an overview of the fundamentals and reference values for Ca stable isotope research, as well as current analytical methodologies including detailed instructions for sample preparation and isotope analysis. As such, it introduces readers to the different fields of application, including low-temperature mineral precipitation and biomineralisation, Earth surface processes and global cycling, high-temperature processes and cosmochemistry, and lastly human studies and biomedical applications. The current state of the art in these major areas is discussed, and open questions and possible future directions are identified. In terms of its depth and coverage, the current work extends and complements the previous reviews of Ca stable isotope geochemistry, addressing the needs of graduate students and advanced researchers who want to familiarize themselves with Ca stable isotope research.
Iterative analysis of concrete gravity dam-nonlinear foundation ...
African Journals Online (AJOL)
This paper deals with finite element analysis of the soil–structure systems considering the coupled effect of elastic structure and materially nonlinear soil. The equations of motion of both soil and structure have been expressed in terms of displacement variable. The structure and the soil domain are treated as two separate ...
Solitary wave solutions of two-dimensional nonlinear Kadomtsev ...
Indian Academy of Sciences (India)
Aly R Seadawy
2017-09-13
Sep 13, 2017 ... We considered the two-dimensional DASWs in colli- sionless, unmagnetized cold plasma consisting of dust fluid, ions and electrons. The dynamics of DASWs is governed by the normalized fluid equations of nonlin- ear continuity (1), nonlinear motion of system (2) and. (3) and linear Poisson equation (4) as.
Assessment of Finite Element Approximations for Nonlinear Flexible Multibody Dynamics
1991-05-01
dynamics. Two nonlinear beam finite elements are consistently derived from virtual work principle using Bernoulli Euler and Timoshenko beam...and dynamic buckling. Equations of motion are derived for rigid central body with flexible appendage using virtual work principle. Virtual work principle
Periodic response of nonlinear dynamical system with large number ...
Indian Academy of Sciences (India)
In this paper, a methodology based on shooting technique and Newmark's time integration scheme is proposed for predicting the periodic responses of nonlinear systems directly from solution of second order equations of motion without transforming to double ﬁrst order equations. The proposed methodology is quite ...
Periodic response of nonlinear dynamical system with large number ...
Indian Academy of Sciences (India)
Abstract. In this paper, a methodology based on shooting technique and New- mark's time integration scheme is proposed for predicting the periodic responses of nonlinear systems directly from solution of second order equations of motion without transforming to double first order equations. The proposed methodology.
A nonlinear dynamic corotational finite element model for submerged pipes
De Vries, F. H.; Geijselaers, H. J.M.; Van Den Boogaard, A. H.; Huisman, A.
2017-01-01
A three dimensional finite element model is built to compute the motions of a pipe that is being laid on the seabed. This process is geometrically nonlinear, therefore co-rotational beam elements are used. The pipe is subject to static and dynamic forces. Static forces are due to gravity, current
Nonlinear realizations, the orbit method and Kohn's theorem
Andrzejewski, K.; Gonera, J.; Kosinski, P.
2012-01-01
The orbit method is used to describe the centre of mass motion of the system of particles with fixed charge to mass ratio moving in homogeneous magnetic field and confined by harmonic potential. The nonlinear action of symmetry group on phase space is identified and compared with the one obtained with the help of Eisenhart lift.
Bryan's effect and anisotropic nonlinear damping
Joubert, Stephan V.; Shatalov, Michael Y.; Fay, Temple H.; Manzhirov, Alexander V.
2018-03-01
In 1890, G. H. Bryan discovered the following: "The vibration pattern of a revolving cylinder or bell revolves at a rate proportional to the inertial rotation rate of the cylinder or bell." We call this phenomenon Bryan's law or Bryan's effect. It is well known that any imperfections in a vibratory gyroscope (VG) affect Bryan's law and this affects the accuracy of the VG. Consequently, in this paper, we assume that all such imperfections are either minimised or eliminated by some known control method and that only damping is present within the VG. If the damping is isotropic (linear or nonlinear), then it has been recently demonstrated in this journal, using symbolic analysis, that Bryan's law remains invariant. However, it is known that linear anisotropic damping does affect Bryan's law. In this paper, we generalise Rayleigh's dissipation function so that anisotropic nonlinear damping may be introduced into the equations of motion. Using a mixture of numeric and symbolic analysis on the ODEs of motion of the VG, for anisotropic light nonlinear damping, we demonstrate (up to an approximate average), that Bryan's law is affected by any form of such damping, causing pattern drift, compromising the accuracy of the VG.
Sheen, Jyh-Jong; Bishop, Robert H.
1992-01-01
The feedback linearization technique is applied to the problem of spacecraft attitude control and momentum management with control moment gyros (CMGs). The feedback linearization consists of a coordinate transformation, which transforms the system to a companion form, and a nonlinear feedback control law to cancel the nonlinear dynamics resulting in a linear equivalent model. Pole placement techniques are then used to place the closed-loop poles. The coordinate transformation proposed here evolves from three output functions of relative degree four, three, and two, respectively. The nonlinear feedback control law is presented. Stability in a neighborhood of a controllable torque equilibrium attitude (TEA) is guaranteed and this fact is demonstrated by the simulation results. An investigation of the nonlinear control law shows that singularities exist in the state space outside the neighborhood of the controllable TEA. The nonlinear control law is simplified by a standard linearization technique and it is shown that the linearized nonlinear controller provides a natural way to select control gains for the multiple-input, multiple-output system. Simulation results using the linearized nonlinear controller show good performance relative to the nonlinear controller in the neighborhood of the TEA.
Nonlinear Optics and Applications
Abdeldayem, Hossin A. (Editor); Frazier, Donald O. (Editor)
2007-01-01
Nonlinear optics is the result of laser beam interaction with materials and started with the advent of lasers in the early 1960s. The field is growing daily and plays a major role in emerging photonic technology. Nonlinear optics play a major role in many of the optical applications such as optical signal processing, optical computers, ultrafast switches, ultra-short pulsed lasers, sensors, laser amplifiers, and many others. This special review volume on Nonlinear Optics and Applications is intended for those who want to be aware of the most recent technology. This book presents a survey of the recent advances of nonlinear optical applications. Emphasis will be on novel devices and materials, switching technology, optical computing, and important experimental results. Recent developments in topics which are of historical interest to researchers, and in the same time of potential use in the fields of all-optical communication and computing technologies, are also included. Additionally, a few new related topics which might provoke discussion are presented. The book includes chapters on nonlinear optics and applications; the nonlinear Schrodinger and associated equations that model spatio-temporal propagation; the supercontinuum light source; wideband ultrashort pulse fiber laser sources; lattice fabrication as well as their linear and nonlinear light guiding properties; the second-order EO effect (Pockels), the third-order (Kerr) and thermo-optical effects in optical waveguides and their applications in optical communication; and, the effect of magnetic field and its role in nonlinear optics, among other chapters.
Lasers for nonlinear microscopy.
Wise, Frank
2013-03-01
Various versions of nonlinear microscopy are revolutionizing the life sciences, almost all of which are made possible because of the development of ultrafast lasers. In this article, the main properties and technical features of short-pulse lasers used in nonlinear microscopy are summarized. Recent research results on fiber lasers that will impact future instruments are also discussed.
International Nuclear Information System (INIS)
Piteau, Ph.; Antunes, J.
2010-01-01
In this paper, we develop a theoretical model to predict the nonlinear fluid-structure interaction forces and the dynamics of parallel vibrating plates subjected to an axial gap flow. The gap is assumed small, when compared to the plate dimensions, the plate width being much larger than the length, so that the simplifying assumptions of 1D bulk-flow models are adequate. We thus develop a simplified theoretical squeeze-film formulation, which includes both the distributed and singular dissipative flow terms. This model is suitable for performing effective time-domain numerical simulations of vibrating systems which are coupled by the nonlinear unsteady flow forces, for instance the vibro-impact dynamics of plates with fluid gap interfaces. A linearized version of the flow model is also presented and discussed, which is appropriate for studying the complex modes and linear stability of flow/structure coupled systems as a function of the average axial gap velocity. Two applications of our formulation are presented: (1) first we study how an axial flow modifies the rigid-body motion of immersed plates falling under gravity; (2) then we compute the dynamical behavior of an immersed oscillating plate as a function of the axial gap flow velocity. Linear stability plots of oscillating plates are shown, as a function of the average fluid gap and of the axial flow velocity, for various scenarios of the loss terms. These results highlight the conditions leading to either the divergence or flutter instabilities. Numerical simulations of the nonlinear flow/structure dynamical responses are also presented, for both stable and unstable regimes. This work is of interest to a large body of real-life problems, for instance the dynamics of nuclear spent fuel racks immersed in a pool when subjected to seismic excitations, or the self-excited vibro-impact motions of valve-like components under axial flows. (authors)
A nonlinear dynamic corotational finite element model for submerged pipes
de Vries, F. H.; Geijselaers, H. J. M.; van den Boogaard, A. H.; Huisman, A.
2017-12-01
A three dimensional finite element model is built to compute the motions of a pipe that is being laid on the seabed. This process is geometrically nonlinear, therefore co-rotational beam elements are used. The pipe is subject to static and dynamic forces. Static forces are due to gravity, current and buoyancy. The dynamic forces exerted by the water are incorporated using Morison’s equation. The dynamic motions are computed using implicit time integration. For this the Hilber-Hughes-Taylor method is selected. The Newton-Raphson iteration scheme is used to solve the equations in every time step. During laying, the pipe is connected to the pipe laying vessel, which is subject to wave motion. Response amplitude operators are used to determine the motions of the ship and thus the motions of the top end of the pipe.
Angular motion equations for a satellite with hinged flexible solar panel
Ovchinnikov, M. Yu.; Tkachev, S. S.; Roldugin, D. S.; Nuralieva, A. B.; Mashtakov, Y. V.
2016-11-01
Non-linear mathematical model for the satellite with hinged flexible solar panel is presented. Normal modes of flexible elements are used for motion description. Motion equations are derived using virtual work principle. A comparison of normal modes calculation between finite element method and developed model is presented.
Three dimensional monocular human motion analysis in end-effector space
DEFF Research Database (Denmark)
Hauberg, Søren; Lapuyade, Jerome; Engell-Nørregård, Morten Pol
2009-01-01
In this paper, we present a novel approach to three dimensional human motion estimation from monocular video data. We employ a particle filter to perform the motion estimation. The novelty of the method lies in the choice of state space for the particle filter. Using a non-linear inverse kinematics...
DEFF Research Database (Denmark)
Jensen, Rasmus Ramsbøl; Benjaminsen, Claus; Larsen, Rasmus
2015-01-01
The application of motion tracking is wide, including: industrial production lines, motion interaction in gaming, computer-aided surgery and motion correction in medical brain imaging. Several devices for motion tracking exist using a variety of different methodologies. In order to use such devices...... offset and tracking noise in medical brain imaging. The data are generated from a phantom mounted on a rotary stage and have been collected using a Siemens High Resolution Research Tomograph for positron emission tomography. During acquisition the phantom was tracked with our latest tracking prototype...
Infeld, Leopold
1960-01-01
Motion and Relativity focuses on the methodologies, solutions, and approaches involved in the study of motion and relativity, including the general relativity theory, gravitation, and approximation.The publication first offers information on notation and gravitational interaction and the general theory of motion. Discussions focus on the notation of the general relativity theory, field values on the world-lines, general statement of the physical problem, Newton's theory of gravitation, and forms for the equation of motion of the second kind. The text then takes a look at the approximation meth
Lugiato, Luigi; Brambilla, Massimo
2015-01-01
Guiding graduate students and researchers through the complex world of laser physics and nonlinear optics, this book provides an in-depth exploration of the dynamics of lasers and other relevant optical systems, under the umbrella of a unitary spatio-temporal vision. Adopting a balanced approach, the book covers traditional as well as special topics in laser physics, quantum electronics and nonlinear optics, treating them from the viewpoint of nonlinear dynamical systems. These include laser emission, frequency generation, solitons, optically bistable systems, pulsations and chaos and optical pattern formation. It also provides a coherent and up-to-date treatment of the hierarchy of nonlinear optical models and of the rich variety of phenomena they describe, helping readers to understand the limits of validity of each model and the connections among the phenomena. It is ideal for graduate students and researchers in nonlinear optics, quantum electronics, laser physics and photonics.
Nonlinear optics and photonics
He, Guang S
2015-01-01
This book provides a comprehensive presentation on most of the major topics in nonlinear optics and photonics, with equal emphasis on principles, experiments, techniques, and applications. It covers many major new topics including optical solitons, multi-photon effects, nonlinear photoelectric effects, fast and slow light , and Terahertz photonics. Chapters 1-10 present the fundamentals of modern nonlinear optics, and could be used as a textbook with problems provided at the end of each chapter. Chapters 11-17 cover the more advanced topics of techniques and applications of nonlinear optics and photonics, serving as a highly informative reference for researchers and experts working in related areas. There are also 16 pages of color photographs to illustrate the visual appearances of some typical nonlinear optical effects and phenomena. The book could be adopted as a textbook for both undergraduates and graduate students, and serve as a useful reference work for researchers and experts in the fields of physics...
Ghodousi, Maryam; Shahgholi, Majid; Payganeh, Gholamhassan
2018-03-01
The objective of the present work is to investigate the nonlinear vibrations of the rotating asymmetrical nano-shafts by considering surface effect. In order to compute the surface stress tensor, the surface elasticity theory is used. The governing nonlinear equations of motion are obtained with the aid of variational approach. Bubnov-Galerkin is a very effective method for exploiting the reduced-order model of the equations of motion. The averaging method is employed to analyze the reduced-order model of the system. For this purpose, the well-known Van der Pol transformation in the complex form and angle-action transformation are utilized. The effect of surface stress on the forward and backward speeds, steady state responses of the system, fixed points, close orbits and stability of the solutions is examined. The preliminary results of the research show that the absolute values of forward and backward whirling speeds in the presence of surface effect with positive residual surface stress are higher than those of regarding the system without surface effect and in the presence of surface effect with negative residual surface stress. In addition, it is seen that the undamped rotating asymmetrical nano-shaft, for specified value of detuning parameter, in the absence or presence of surface effect has various number of stable and unstable periodic solutions. Besides, there is different number of separatrix (homoclinic orbit type). Furthermore, bifurcations, number of solutions and their stability for damped rotating asymmetrical nano-shaft are investigated. Also, the above results have been obtained for rotating symmetrical nano-shaft.
Piezoelectric Non-linear Nanomechanical Temperature and Acceleration Intensive Clocks (PENNTAC)
2014-05-01
occurs in a parametric system starting from the Mathieu’s equation . This description solidifies our experimental demonstration from a theoretical...the mechanical (motional) components (Rm, Lm, Cm) on temperature. The resonator is described by the following set of differential equations : 6...Resonator (Bottom) Modified Butterworth Van Dyke (MBVD) Circuit Model with Nonlinear Motional Elements By solving this set of equations , we were
Influences of the Control on the Nonlinear Vibrations of a Variable Compression Ratio Mechanism
Directory of Open Access Journals (Sweden)
Mănescu Bogdan
2018-01-01
Full Text Available For the mechanism described in references the study of the nonlinear vibrations is performed considering a multibody approach for the elements of the mechanism and different laws of motion for the control element. A great attention is paid to the equilibrium of the motion. The influence of different parameters of control is highlighted in the paper. The results are numerically validated.
Painlevйe analysis and integrability of two-coupled non-linear ...
Indian Academy of Sciences (India)
For non-linear systems integrating the equations of motion completely, obtaining analytical solutions and finding acceptable constants of motions seem to be rare. From a qualitative point of view, integrability can be considered as a mathemat- ical property that can be successfully used to obtain more predictive power and.
Linear and non-linear calculations of the hose instability in the ion-focused regime
International Nuclear Information System (INIS)
Buchanan, H.L.
1982-01-01
A simple model is adopted to study the hose instability of an intense relativistic electron beam in a partially neutralized, low density ion channel (ion focused regime). Equations of motion for the beam and the channel are derived and linearized to obtain an approximate dispersion relation. The non-linear equations of motion are then solved numerically and the results compared to linearized data
Scaling earthquake ground motions for performance-based assessment of buildings
Huang, Y.-N.; Whittaker, A.S.; Luco, N.; Hamburger, R.O.
2011-01-01
The impact of alternate ground-motion scaling procedures on the distribution of displacement responses in simplified structural systems is investigated. Recommendations are provided for selecting and scaling ground motions for performance-based assessment of buildings. Four scaling methods are studied, namely, (1)geometric-mean scaling of pairs of ground motions, (2)spectrum matching of ground motions, (3)first-mode-period scaling to a target spectral acceleration, and (4)scaling of ground motions per the distribution of spectral demands. Data were developed by nonlinear response-history analysis of a large family of nonlinear single degree-of-freedom (SDOF) oscillators that could represent fixed-base and base-isolated structures. The advantages and disadvantages of each scaling method are discussed. The relationship between spectral shape and a ground-motion randomness parameter, is presented. A scaling procedure that explicitly considers spectral shape is proposed. ?? 2011 American Society of Civil Engineers.
A direct method for nonlinear ill-posed problems
Lakhal, A.
2018-02-01
We propose a direct method for solving nonlinear ill-posed problems in Banach-spaces. The method is based on a stable inversion formula we explicitly compute by applying techniques for analytic functions. Furthermore, we investigate the convergence and stability of the method and prove that the derived noniterative algorithm is a regularization. The inversion formula provides a systematic sensitivity analysis. The approach is applicable to a wide range of nonlinear ill-posed problems. We test the algorithm on a nonlinear problem of travel-time inversion in seismic tomography. Numerical results illustrate the robustness and efficiency of the algorithm.
Nonlinear Cointegration Approach for Condition Monitoring of Wind Turbines
Directory of Open Access Journals (Sweden)
Konrad Zolna
2015-01-01
Full Text Available Monitoring of trends and removal of undesired trends from operational/process parameters in wind turbines is important for their condition monitoring. This paper presents the homoscedastic nonlinear cointegration for the solution to this problem. The cointegration approach used leads to stable variances in cointegration residuals. The adapted Breusch-Pagan test procedure is developed to test for the presence of heteroscedasticity in cointegration residuals obtained from the nonlinear cointegration analysis. Examples using three different time series data sets—that is, one with a nonlinear quadratic deterministic trend, another with a nonlinear exponential deterministic trend, and experimental data from a wind turbine drivetrain—are used to illustrate the method and demonstrate possible practical applications. The results show that the proposed approach can be used for effective removal of nonlinear trends form various types of data, allowing for possible condition monitoring applications.
Terminal Sliding Modes In Nonlinear Control Systems
Venkataraman, Subramanian T.; Gulati, Sandeep
1993-01-01
Control systems of proposed type called "terminal controllers" offers increased precision and stability of robotic operations in presence of unknown and/or changing parameters. Systems include special computer hardware and software implementing novel control laws involving terminal sliding modes of motion: closed-loop combination of robot and terminal controller converge, in finite time, to point of stable equilibrium in abstract space of velocity and/or position coordinates applicable to particular control problem.
Indian Academy of Sciences (India)
2016-08-26
Aug 26, 2016 ... Home; Journals; Resonance – Journal of Science Education; Volume 21; Issue 9. Evolutionary Stable Strategy: Application of Nash Equilibrium in Biology. General ... Using some examples of classical games, we show how evolutionary game theory can help understand behavioural decisions of animals.
Kearney, M. Kate
2013-01-01
The concordance genus of a knot is the least genus of any knot in its concordance class. Although difficult to compute, it is a useful invariant that highlights the distinction between the three-genus and four-genus. In this paper we define and discuss the stable concordance genus of a knot, which describes the behavior of the concordance genus under connected sum.
Manifolds admitting stable forms
Czech Academy of Sciences Publication Activity Database
Le, Hong-Van; Panák, Martin; Vanžura, Jiří
2008-01-01
Roč. 49, č. 1 (2008), s. 101-11 ISSN 0010-2628 R&D Projects: GA ČR(CZ) GP201/05/P088 Institutional research plan: CEZ:AV0Z10190503 Keywords : stable forms * automorphism groups Subject RIV: BA - General Mathematics
International Nuclear Information System (INIS)
Ishida, T.
1992-01-01
The research has been in four general areas: (1) correlation of isotope effects with molecular forces and molecular structures, (2) correlation of zero-point energy and its isotope effects with molecular structure and molecular forces, (3) vapor pressure isotope effects, and (4) fractionation of stable isotopes. 73 refs, 38 figs, 29 tabs
Interactive Stable Ray Tracing
DEFF Research Database (Denmark)
Dal Corso, Alessandro; Salvi, Marco; Kolb, Craig
2017-01-01
Interactive ray tracing applications running on commodity hardware can suffer from objectionable temporal artifacts due to a low sample count. We introduce stable ray tracing, a technique that improves temporal stability without the over-blurring and ghosting artifacts typical of temporal post-pr...
Directory of Open Access Journals (Sweden)
Behnaz Tolue
2018-07-01
Full Text Available In this paper we introduce stable subgroup graph associated to the group $G$. It is a graph with vertex set all subgroups of $G$ and two distinct subgroups $H_1$ and $H_2$ are adjacent if $St_{G}(H_1\\cap H_2\
Transient Dynamics of Electric Power Systems: Direct Stability Assessment and Chaotic Motions
Chu, Chia-Chi
A power system is continuously experiencing disturbances. Analyzing, predicting, and controlling transient dynamics, which describe transient behaviors of the power system following disturbances, is a major concern in the planning and operation of a power utility. Important conclusions and decisions are made based on the result of system transient behaviors. As today's power network becomes highly interconnected and much more complex, it has become essential to enhance the fundamental understanding of transient dynamics, and to develop fast and reliable computational algorithms. In this thesis, we emphasize mathematical rigor rather than physical insight. Nonlinear dynamical system theory is applied to study two fundamental topics: direct stability assessment and chaotic motions. Conventionally, power system stability is determined by calculating the time-domain transient behaviors for a given disturbance. In contrast, direct methods identify whether or not the system will remain stable once the disturbance is removed by comparing the corresponding energy value of the post-fault system to a calculated threshold value. Direct methods not only avoid the time-consuming numerical integration of the time domain approach, but also provide a quantitative measure of the degree of system stability. We present a general framework for the theoretical foundations of direct methods. Canonical representations of network-reduction models as well as network-preserving models are proposed to facilitate the analysis and the construction of energy functions of various power system models. An advanced and practical method, called the boundary of stability region based controlling unstable equilibrium point method (BCU method), of computing the controlling unstable equilibrium point is proposed along with its theoretical foundation. Numerical solution algorithms capable of supporting on-line applications of direct methods are provided. Further possible improvements and enhancements are
Non-linear rheology of layered systems-a phase model approach
International Nuclear Information System (INIS)
Yoshino, Hajime; Matsukawa, Hiroshi; Yukawa, Satoshi; Kawamura, Hikaru
2007-01-01
We study non-linear rheology of a simple theoretical model developed to mimic layered systems such as lamellar structures under shear. In the present work we study a 2-dimensional version of the model which exhibits a Kosterlitz-Thouless transition in equilibrium at a critical temperature T c . While the system behaves as Newtonain fluid at high temperatures T > T c , it exhibits shear thinning at low temperatures T c . The non-linear rheology in the present model is understood as due to motions of edge dislocations and resembles the non-linear transport phenomena in superconductors by vortex motions
International Nuclear Information System (INIS)
Khoroshun, L.P.
1995-01-01
The characteristic features of the deformation and failure of actual materials in the vicinity of a crack tip are due to their physical nonlinearity in the stress-concentration zone, which is a result of plasticity, microfailure, or a nonlinear dependence of the interatomic forces on the distance. Therefore, adequate models of the failure mechanics must be nonlinear, in principle, although linear failure mechanics is applicable if the zone of nonlinear deformation is small in comparison with the crack length. Models of crack mechanics are based on analytical solutions of the problem of the stress-strain state in the vicinity of the crack. On account of the complexity of the problem, nonlinear models are bason on approximate schematic solutions. In the Leonov-Panasyuk-Dugdale nonlinear model, one of the best known, the actual two-dimensional plastic zone (the nonlinearity zone) is replaced by a narrow one-dimensional zone, which is then modeled by extending the crack with a specified normal load equal to the yield point. The condition of finite stress is applied here, and hence the length of the plastic zone is determined. As a result of this approximation, the displacement in the plastic zone at the abscissa is nonzero
Temporal logic motion planning
CSIR Research Space (South Africa)
Seotsanyana, M
2010-01-01
Full Text Available In this paper, a critical review on temporal logic motion planning is presented. The review paper aims to address the following problems: (a) In a realistic situation, the motion planning problem is carried out in real-time, in a dynamic, uncertain...
Sabanovic, Asif
2011-01-01
"Presents a unified approach to the fundamental issues in motion control, starting from the basics and moving through single degree of freedom and multi-degree of freedom systems In Motion Control Systems, Šabanovic and Ohnishi present a unified approach to very diverse issues covered in motion control systems, offering know-how accumulated through work on very diverse problems into a comprehensive, integrated approach suitable for application in high demanding high-tech products. It covers material from single degree of freedom systems to complex multi-body non-redundant and redundant systems. The discussion of the main subject is based on original research results and will give treatment of the issues in motion control in the framework of the acceleration control method with disturbance rejection technique. This allows consistent unification of different issues in motion control ranging from simple trajectory tracking to topics related to haptics and bilateral control without and with delay in the measure...
Dynamics of breathers in discrete nonlinear Schrodinger models
DEFF Research Database (Denmark)
Christiansen, Peter Leth; Johansson, Magnus; Aubry, Serge
1998-01-01
We review some recent results concerning the existence and stability of spatially localized and temporally quasiperiodic (non-stationary) excitations in discrete nonlinear Schrodinger (DNLS) models. In two dimensions, we show the existence of linearly stable, stationary and non-stationary localiz...... equation where bistability occurs, a controlled switching between stable states is possible by exciting an internal breathing mode above a threshold value. (C) 1998 Elsevier Science B.V....
Hagedorn, Peter
1982-01-01
Thoroughly revised and updated, the second edition of this concise text provides an engineer's view of non-linear oscillations, explaining the most important phenomena and solution methods. Non-linear descriptions are important because under certain conditions there occur large deviations from the behaviors predicted by linear differential equations. In some cases, completely new phenomena arise that are not possible in purely linear systems. The theory of non-linear oscillations thus has important applications in classical mechanics, electronics, communications, biology, and many other branches of science. In addition to many other changes, this edition has a new section on bifurcation theory, including Hopf's theorem.
Li, Tatsien
2017-01-01
This book focuses on nonlinear wave equations, which are of considerable significance from both physical and theoretical perspectives. It also presents complete results on the lower bound estimates of lifespan (including the global existence), which are established for classical solutions to the Cauchy problem of nonlinear wave equations with small initial data in all possible space dimensions and with all possible integer powers of nonlinear terms. Further, the book proposes the global iteration method, which offers a unified and straightforward approach for treating these kinds of problems. Purely based on the properties of solut ions to the corresponding linear problems, the method simply applies the contraction mapping principle.
Chaotic and steady state behaviour of a nonlinear controlled gyro subjected to harmonic disturbances
International Nuclear Information System (INIS)
Perez Polo, Manuel F.; Perez Molina, Manuel
2007-01-01
Chaotic and steady state motions of a nonlinear controlled gimbals suspension gyro used to stabilize an external body are studied in this paper. The equations of the gyro without nonlinear control are deduced from the Euler-Lagrange equations by using the nutation theory. The equations of the system show that a cyclic variable appears. Its elimination allows us to find an auxiliary nonlinear system from which it is possible to deduce a nonlinear control law in order to obtain a desired equilibrium point. From the analysis of the nonlinear control law it is possible to show that due to both harmonic disturbances in the platform of the gyro and in the body to stabilize, regular and chaotic motions can appear. The chaotic motion is researched by means of chaos maps, bifurcation diagrams, sensitivity to initial conditions, Lyapunov exponents and Fourier spectrum density. The transition from chaotic to steady state motion by eliminating the harmonic disturbances from the modification of the initial nonlinear control law is also researched. Next, the paper shows how to use the chaotic motion in order to obtain small input signals so that the desired equilibrium state of the gyro can be reached. The developed methodology and its compared performance are evaluated through analytical methods and numerical simulations
Chaotic and steady state behaviour of a nonlinear controlled gyro subjected to harmonic disturbances
Energy Technology Data Exchange (ETDEWEB)
Perez Polo, Manuel F. [Department of Fisica, Ingenieria de Sistemas y Teoria de la Senal, Universidad de Alicante, Escuela Politecnica Superior, Campus de San Vicente, 03071 Alicante (Spain)]. E-mail: manolo@dfists.ua.es; Perez Molina, Manuel [Facultad de Ciencias Matematicas, Universidad Nacional de Educacion a Distancia, UNED, C/Boyero 12-1A, Alicante 03007 (Spain)]. E-mail: ma_perez_m@hotmail.com
2007-07-15
Chaotic and steady state motions of a nonlinear controlled gimbals suspension gyro used to stabilize an external body are studied in this paper. The equations of the gyro without nonlinear control are deduced from the Euler-Lagrange equations by using the nutation theory. The equations of the system show that a cyclic variable appears. Its elimination allows us to find an auxiliary nonlinear system from which it is possible to deduce a nonlinear control law in order to obtain a desired equilibrium point. From the analysis of the nonlinear control law it is possible to show that due to both harmonic disturbances in the platform of the gyro and in the body to stabilize, regular and chaotic motions can appear. The chaotic motion is researched by means of chaos maps, bifurcation diagrams, sensitivity to initial conditions, Lyapunov exponents and Fourier spectrum density. The transition from chaotic to steady state motion by eliminating the harmonic disturbances from the modification of the initial nonlinear control law is also researched. Next, the paper shows how to use the chaotic motion in order to obtain small input signals so that the desired equilibrium state of the gyro can be reached. The developed methodology and its compared performance are evaluated through analytical methods and numerical simulations.
Motion sickness in migraine sufferers.
Marcus, Dawn A; Furman, Joseph M; Balaban, Carey D
2005-12-01
Motion sickness commonly occurs after exposure to actual motion, such as car or amusement park rides, or virtual motion, such as panoramic movies. Motion sickness symptoms may be disabling, significantly limiting business, travel and leisure activities. Motion sickness occurs in approximately 50% of migraine sufferers. Understanding motion sickness in migraine patients may improve understanding of the physiology of both conditions. Recent literature suggests important relationships between the trigeminal system and vestibular nuclei that may have implications for both motion sickness and migraine. Studies demonstrating an important relationship between serotonin receptors and motion sickness susceptibility in both rodents and humans suggest possible new motion sickness prevention therapies.
Nonlinear robust dual-loop control for electro-hydraulic load simulator.
Wang, Chengwen; Jiao, Zongxia; Quan, Long
2015-11-01
This paper investigates on the high performance torque control of electro-hydraulic load simulator (EHLS). In order to suppress actuator's motion disturbance, a nonlinear robust dual-loop control scheme is developed, which consists of a open-loop nonlinear velocity feed-forward compensator and a closed-loop nonlinear deterministic robust torque controller. The main function of the open-loop compensator is to decouple actuator's active motion disturbance, whereas the torque loop controller aims at guaranteeing the dynamics performance of tracking torque reference. Besides actuator's motion disturbance, both the nonlinearity characteristics and friction problem of the EHLS system are taken into consideration in this paper. The effectiveness of the developed method are verified through comparative co-simulations and experiments. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
Earthquake Ground Motion Selection
2012-05-01
Nonlinear analyses of soils, structures, and soil-structure systems offer the potential for more accurate characterization of geotechnical and structural response under strong earthquake shaking. The increasing use of advanced performance-based desig...
Full-motion video analysis for improved gender classification
Flora, Jeffrey B.; Lochtefeld, Darrell F.; Iftekharuddin, Khan M.
2014-06-01
The ability of computer systems to perform gender classification using the dynamic motion of the human subject has important applications in medicine, human factors, and human-computer interface systems. Previous works in motion analysis have used data from sensors (including gyroscopes, accelerometers, and force plates), radar signatures, and video. However, full-motion video, motion capture, range data provides a higher resolution time and spatial dataset for the analysis of dynamic motion. Works using motion capture data have been limited by small datasets in a controlled environment. In this paper, we explore machine learning techniques to a new dataset that has a larger number of subjects. Additionally, these subjects move unrestricted through a capture volume, representing a more realistic, less controlled environment. We conclude that existing linear classification methods are insufficient for the gender classification for larger dataset captured in relatively uncontrolled environment. A method based on a nonlinear support vector machine classifier is proposed to obtain gender classification for the larger dataset. In experimental testing with a dataset consisting of 98 trials (49 subjects, 2 trials per subject), classification rates using leave-one-out cross-validation are improved from 73% using linear discriminant analysis to 88% using the nonlinear support vector machine classifier.
Mobile localization in nonlinear Schroedinger lattices
Energy Technology Data Exchange (ETDEWEB)
Gomez-Gardenes, J. [Departamento de Fisica de la Materia Condensada and Instituto de Biocomputacion y Fisica de los Sistemas Complejos (BIFI), Universidad de Zaragoza, 50009 Zaragoza (Spain) and Departamento de Teoria y Simulacion de Sistemas Complejos, Instituto de Ciencia de Materiales de Aragon (ICMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza (Spain)]. E-mail: gardenes@unizar.es; Falo, F. [Departamento de Fisica de la Materia Condensada and Instituto de Biocomputacion y Fisica de los Sistemas Complejos (BIFI), Universidad de Zaragoza, 50009 Zaragoza (Spain); Departamento de Teoria y Simulacion de Sistemas Complejos, Instituto de Ciencia de Materiales de Aragon (ICMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza (Spain); Floria, L.M. [Departamento de Fisica de la Materia Condensada and Instituto de Biocomputacion y Fisica de los Sistemas Complejos (BIFI), Universidad de Zaragoza, 50009 Zaragoza (Spain)
2004-11-15
Using continuation methods from the integrable Ablowitz-Ladik lattice, we have studied the structure of numerically exact mobile discrete breathers in the standard discrete nonlinear Schroedinger equation. We show that, away from that integrable limit, the mobile pulse is dressed by a background of resonant plane waves with wavevectors given by a certain selection rule. This background is seen to be essential for supporting mobile localization in the absence of integrability. We show how the variations of the localized pulse energy during its motion are balanced by the interaction with this background, allowing the localization mobility along the lattice.
International Nuclear Information System (INIS)
Tibari, Elghali; Taous, Fouad; Marah, Hamid
2014-01-01
This report presents results related to stable isotopes analysis carried out at the CNESTEN DASTE in Rabat (Morocco), on behalf of Senegal. These analyzes cover 127 samples. These results demonstrate that Oxygen-18 and Deuterium in water analysis were performed by infrared Laser spectroscopy using a LGR / DLT-100 with Autosampler. Also, the results are expressed in δ values (‰) relative to V-SMOW to ± 0.3 ‰ for oxygen-18 and ± 1 ‰ for deuterium.
Forensic Stable Isotope Biogeochemistry
Cerling, Thure E.; Barnette, Janet E.; Bowen, Gabriel J.; Chesson, Lesley A.; Ehleringer, James R.; Remien, Christopher H.; Shea, Patrick; Tipple, Brett J.; West, Jason B.
2016-06-01
Stable isotopes are being used for forensic science studies, with applications to both natural and manufactured products. In this review we discuss how scientific evidence can be used in the legal context and where the scientific progress of hypothesis revisions can be in tension with the legal expectations of widely used methods for measurements. Although this review is written in the context of US law, many of the considerations of scientific reproducibility and acceptance of relevant scientific data span other legal systems that might apply different legal principles and therefore reach different conclusions. Stable isotopes are used in legal situations for comparing samples for authenticity or evidentiary considerations, in understanding trade patterns of illegal materials, and in understanding the origins of unknown decedents. Isotope evidence is particularly useful when considered in the broad framework of physiochemical processes and in recognizing regional to global patterns found in many materials, including foods and food products, drugs, and humans. Stable isotopes considered in the larger spatial context add an important dimension to forensic science.
Nonlinear optical properties of colloidal silver nanoparticles produced by laser ablation in liquids
International Nuclear Information System (INIS)
Karavanskii, V A; Krasovskii, V I; Ivanchenko, P V; Simakin, Aleksandr V
2004-01-01
The optical and nonlinear optical properties of colloidal solutions of silver obtained by laser ablation in water and ethanol are studied. It is shown that freshly prepared colloids experience a full or partial sedimentation by changing their nonlinear optical properties. Aqueous colloids undergo a partial sedimentation and their nonlinear optical absorption changes to nonlinear optical transmission. The obtained results are interpreted using the Drude model for metal particles taking the particle size into account and can be explained by the sedimentation of larger silver particles accompanied by the formation of a stable colloid containing silver nanoparticles with a tentatively silver oxide shell. The characteristic size of particles forming such a stable colloid is determined and its optical nonlinearity is estimated. (nonlinear optical phenomena)
Nonlinear analysis of a rotor-bearing system using describing functions
Maraini, Daniel; Nataraj, C.
2018-04-01
This paper presents a technique for modelling the nonlinear behavior of a rotor-bearing system with Hertzian contact, clearance, and rotating unbalance. The rotor-bearing system is separated into linear and nonlinear components, and the nonlinear bearing force is replaced with an equivalent describing function gain. The describing function captures the relationship between the amplitude of the fundamental input to the nonlinearity and the fundamental output. The frequency response is constructed for various values of the clearance parameter, and the results show the presence of a jump resonance in bearings with both clearance and preload. Nonlinear hardening type behavior is observed in the case with clearance and softening behavior is observed for the case with preload. Numerical integration is also carried out on the nonlinear equations of motion showing strong agreement with the approximate solution. This work could easily be extended to include additional nonlinearities that arise from defects, providing a powerful diagnostic tool.
Nonlinear hydromagnetic Rayleigh-Taylor instability for strong viscous fluids in porous media
El-Dib, Y O
2003-01-01
In the present work a weakly nonlinear stability for magnetic fluid is discussed. The research of an interface between two strong viscous homogeneous incompressible fluids through porous medium is investigated theoretically and graphically. The effect of the vertical magnetic field has been demonstrated in this study. The linear form of equation of motion is solved in the light of the nonlinear boundary conditions. The boundary value problem leads to construct nonlinear characteristic equation having complex coefficients in elevation function. The nonlinearity is kept to third-order expansion. The nonlinear characteristic equation leads to derive the well-known nonlinear Schroedinger equation. This equation having complex coefficients of the disturbance amplitude varies in both space and time. Stability criteria have been performed for nonlinear Chanderasekhar dispersion relation including the porous effects. Stability conditions are discussed through the assumption of equal kinematic viscosity. The calculati...
Self versus environment motion in postural control.
Directory of Open Access Journals (Sweden)
Kalpana Dokka
2010-02-01
Full Text Available To stabilize our position in space we use visual information as well as non-visual physical motion cues. However, visual cues can be ambiguous: visually perceived motion may be caused by self-movement, movement of the environment, or both. The nervous system must combine the ambiguous visual cues with noisy physical motion cues to resolve this ambiguity and control our body posture. Here we have developed a Bayesian model that formalizes how the nervous system could solve this problem. In this model, the nervous system combines the sensory cues to estimate the movement of the body. We analytically demonstrate that, as long as visual stimulation is fast in comparison to the uncertainty in our perception of body movement, the optimal strategy is to weight visually perceived movement velocities proportional to a power law. We find that this model accounts for the nonlinear influence of experimentally induced visual motion on human postural behavior both in our data and in previously published results.
parametric nonlinear quasivariational inequalities
Directory of Open Access Journals (Sweden)
Zeqing Liu
2005-01-01
uniqueness results and sensitivity analysis of solutions are also established for the system of generalized nonlinear parametric quasivariational inequalities and some convergence results of iterative sequence generated by the algorithm with errors are proved.
DEFF Research Database (Denmark)
Nguyen-Duy, Khiem
and remains the prime source of energy in non-terrestrial applications such as those in sky-explorers. However, a renewable energy source is expensive, bulky, and its performance is weather dependent, which make testing of downstream converters very difficult. As a result, a nonlinear source emulator (NSE...... of a proposed NSE system with high dynamic performance. The goal of the work is to achieve a state-of-the art transient time of 10 µs. In order to produce the arbitrary nonlinear curve, the exponential function of a typical diode is used, but the diode can be replaced by other nonlinear curve reference...... simulation of nonlinear source systems with higher output power. In this work, a module will consist of two fundamental units: an isolated power supply and an NSE. The isolated power supply has to possess a very low circuit input-to-output capacitance (very low Cio) in order to reduce the effect...
2013-01-01
filter, Bayesian decision theory, Generalized Likelihood Ratio Test (GLRT), and constant false alarm rate ( CFAR ) processing (31). Once the...Abbreviations, and Acronyms CFAR constant false alarm rate CNR cognitive nonlinear radar EM electromagnetic FCC Federal Communications Comission
Nonlinear Optical Terahertz Technology
National Aeronautics and Space Administration — We develop a new approach to generation of THz radiation. Our method relies on mixing two optical frequency beams in a nonlinear crystalline Whispering Gallery Mode...
Nonlinear differential equations
Struble, Raimond A
2017-01-01
Detailed treatment covers existence and uniqueness of a solution of the initial value problem, properties of solutions, properties of linear systems, stability of nonlinear systems, and two-dimensional systems. 1962 edition.
Nonlinear ambipolar diffusion waves
Energy Technology Data Exchange (ETDEWEB)
Mendonca, J.T.; Rowlands, G.
1985-07-01
The evolution of a plasma perturbation in a neutral gas is considered using the ambipolar diffusion approximation. A nonlinear diffusion equation is derived and, in the one-dimensional case, exact solutions of shock type are obtained.
Degenerate nonlinear diffusion equations
Favini, Angelo
2012-01-01
The aim of these notes is to include in a uniform presentation style several topics related to the theory of degenerate nonlinear diffusion equations, treated in the mathematical framework of evolution equations with multivalued m-accretive operators in Hilbert spaces. The problems concern nonlinear parabolic equations involving two cases of degeneracy. More precisely, one case is due to the vanishing of the time derivative coefficient and the other is provided by the vanishing of the diffusion coefficient on subsets of positive measure of the domain. From the mathematical point of view the results presented in these notes can be considered as general results in the theory of degenerate nonlinear diffusion equations. However, this work does not seek to present an exhaustive study of degenerate diffusion equations, but rather to emphasize some rigorous and efficient techniques for approaching various problems involving degenerate nonlinear diffusion equations, such as well-posedness, periodic solutions, asympt...
Crossing a Nonlinear Resonance
Indian Academy of Sciences (India)
Home; Journals; Resonance – Journal of Science Education; Volume 19; Issue 9. Crossing a Nonlinear Resonance: Adiabatic Invariants and the Melnikov-Arnold Integral. Sudhir R Jain. General Article Volume 19 Issue 9 September 2014 pp 797-813 ...
Introduction to nonlinear science
Nicolis, G
1995-01-01
One of the most unexpected results in science in recent years is that quite ordinary systems obeying simple laws can give rise to complex, nonlinear or chaotic, behavior. In this book, the author presents a unified treatment of the concepts and tools needed to analyze nonlinear phenomena and to outline some representative applications drawn from the physical, engineering, and biological sciences. Some of the interesting topics covered include: dynamical systems with a finite number of degrees of freedom, linear stability analysis of fixed points, nonlinear behavior of fixed points, bifurcation analysis, spatially distributed systems, broken symmetries, pattern formation, and chaotic dynamics. The author makes a special effort to provide a logical connection between ordinary dynamical systems and spatially extended systems, and to balance the emphasis on chaotic behavior and more classical nonlinear behavior. He also develops a statistical approach to complex systems and compares it to traditional deterministi...
Introduction to Wave Propagation in Nonlinear Fluids and Solids
Drumheller, Douglas S.
1998-02-01
Waves occur widely in nature and have innumerable commercial uses. Waves are responsible for the sound of speech, meteors igniting the atmosphere, radio and television broadcasting, medical diagnosis using ultrasound. This book provides a thorough, modern introduction to the study of linear and nonlinear waves. Beginning with fundamental concepts of motion, the book goes on to discuss linear and nonlinear mechanical waves, thermodynamics, and constitutive models for a variety of gases, liquids, and solids. Among the important areas of research and application are impact analysis, shock wave research, explosive detonation, nonlinear acoustics, and hypersonic aerodynamics. Students at an advanced undergraduate/graduate level will find this text a clear and comprehensive introduction to the study of nonlinear wave phenomena, and it will also be valuable as a professional reference in engineering and applied physics.
Approximate Series Solutions for Nonlinear Free Vibration of Suspended Cables
Directory of Open Access Journals (Sweden)
Yaobing Zhao
2014-01-01
Full Text Available This paper presents approximate series solutions for nonlinear free vibration of suspended cables via the Lindstedt-Poincare method and homotopy analysis method, respectively. Firstly, taking into account the geometric nonlinearity of the suspended cable as well as the quasi-static assumption, a mathematical model is presented. Secondly, two analytical methods are introduced to obtain the approximate series solutions in the case of nonlinear free vibration. Moreover, small and large sag-to-span ratios and initial conditions are chosen to study the nonlinear dynamic responses by these two analytical methods. The numerical results indicate that frequency amplitude relationships obtained with different analytical approaches exhibit some quantitative and qualitative differences in the cases of motions, mode shapes, and particular sag-to-span ratios. Finally, a detailed comparison of the differences in the displacement fields and cable axial total tensions is made.
NONLINEAR TIDES IN CLOSE BINARY SYSTEMS
International Nuclear Information System (INIS)
Weinberg, Nevin N.; Arras, Phil; Quataert, Eliot; Burkart, Josh
2012-01-01
We study the excitation and damping of tides in close binary systems, accounting for the leading-order nonlinear corrections to linear tidal theory. These nonlinear corrections include two distinct physical effects: three-mode nonlinear interactions, i.e., the redistribution of energy among stellar modes of oscillation, and nonlinear excitation of stellar normal modes by the time-varying gravitational potential of the companion. This paper, the first in a series, presents the formalism for studying nonlinear tides and studies the nonlinear stability of the linear tidal flow. Although the formalism we present is applicable to binaries containing stars, planets, and/or compact objects, we focus on non-rotating solar-type stars with stellar or planetary companions. Our primary results include the following: (1) The linear tidal solution almost universally used in studies of binary evolution is unstable over much of the parameter space in which it is employed. More specifically, resonantly excited internal gravity waves in solar-type stars are nonlinearly unstable to parametric resonance for companion masses M' ∼> 10-100 M ⊕ at orbital periods P ≈ 1-10 days. The nearly static 'equilibrium' tidal distortion is, however, stable to parametric resonance except for solar binaries with P ∼ 3 [P/10 days] for a solar-type star) and drives them as a single coherent unit with growth rates that are a factor of ≈N faster than the standard three-wave parametric instability. These are local instabilities viewed through the lens of global analysis; the coherent global growth rate follows local rates in the regions where the shear is strongest. In solar-type stars, the dynamical tide is unstable to this collective version of the parametric instability for even sub-Jupiter companion masses with P ∼< a month. (4) Independent of the parametric instability, the dynamical and equilibrium tides excite a wide range of stellar p-modes and g-modes by nonlinear inhomogeneous forcing
Two-dimensional matter-wave solitons and vortices in competing cubic-quintic nonlinear lattices
Gao, Xuzhen; Zeng, Jianhua
2018-02-01
The nonlinear lattice — a new and nonlinear class of periodic potentials — was recently introduced to generate various nonlinear localized modes. Several attempts failed to stabilize two-dimensional (2D) solitons against their intrinsic critical collapse in Kerr media. Here, we provide a possibility for supporting 2D matter-wave solitons and vortices in an extended setting — the cubic and quintic model — by introducing another nonlinear lattice whose period is controllable and can be different from its cubic counterpart, to its quintic nonlinearity, therefore making a fully "nonlinear quasi-crystal". A variational approximation based on Gaussian ansatz is developed for the fundamental solitons and in particular, their stability exactly follows the inverted Vakhitov-Kolokolov stability criterion, whereas the vortex solitons are only studied by means of numerical methods. Stability regions for two types of localized mode — the fundamental and vortex solitons — are provided. A noteworthy feature of the localized solutions is that the vortex solitons are stable only when the period of the quintic nonlinear lattice is the same as the cubic one or when the quintic nonlinearity is constant, while the stable fundamental solitons can be created under looser conditions. Our physical setting (cubic-quintic model) is in the framework of the Gross-Pitaevskii equation or nonlinear Schrödinger equation, the predicted localized modes thus may be implemented in Bose-Einstein condensates and nonlinear optical media with tunable cubic and quintic nonlinearities.
Nonlinear Multiantenna Detection Methods
Directory of Open Access Journals (Sweden)
Chen Sheng
2004-01-01
Full Text Available A nonlinear detection technique designed for multiple-antenna assisted receivers employed in space-division multiple-access systems is investigated. We derive the optimal solution of the nonlinear spatial-processing assisted receiver for binary phase shift keying signalling, which we refer to as the Bayesian detector. It is shown that this optimal Bayesian receiver significantly outperforms the standard linear beamforming assisted receiver in terms of a reduced bit error rate, at the expense of an increased complexity, while the achievable system capacity is substantially enhanced with the advent of employing nonlinear detection. Specifically, when the spatial separation expressed in terms of the angle of arrival between the desired and interfering signals is below a certain threshold, a linear beamformer would fail to separate them, while a nonlinear detection assisted receiver is still capable of performing adequately. The adaptive implementation of the optimal Bayesian detector can be realized using a radial basis function network. Two techniques are presented for constructing block-data-based adaptive nonlinear multiple-antenna assisted receivers. One of them is based on the relevance vector machine invoked for classification, while the other on the orthogonal forward selection procedure combined with the Fisher ratio class-separability measure. A recursive sample-by-sample adaptation procedure is also proposed for training nonlinear detectors based on an amalgam of enhanced -means clustering techniques and the recursive least squares algorithm.
Fundamentals of nonlinear optical materials
Indian Academy of Sciences (India)
Nonlinear optics; nonlinear polarization; optical fiber communication; optical switch- ing. PACS Nos 42.65Tg; ... The importance of nonlinear optics is to understand the nonlinear behavior in the induced polarization and to ..... but much work in material development and characterization remains to be done. 16. Conclusion.
Structural stability of nonlinear population dynamics
Cenci, Simone; Saavedra, Serguei
2018-01-01
In population dynamics, the concept of structural stability has been used to quantify the tolerance of a system to environmental perturbations. Yet, measuring the structural stability of nonlinear dynamical systems remains a challenging task. Focusing on the classic Lotka-Volterra dynamics, because of the linearity of the functional response, it has been possible to measure the conditions compatible with a structurally stable system. However, the functional response of biological communities is not always well approximated by deterministic linear functions. Thus, it is unclear the extent to which this linear approach can be generalized to other population dynamics models. Here, we show that the same approach used to investigate the classic Lotka-Volterra dynamics, which is called the structural approach, can be applied to a much larger class of nonlinear models. This class covers a large number of nonlinear functional responses that have been intensively investigated both theoretically and experimentally. We also investigate the applicability of the structural approach to stochastic dynamical systems and we provide a measure of structural stability for finite populations. Overall, we show that the structural approach can provide reliable and tractable information about the qualitative behavior of many nonlinear dynamical systems.
A novel nonlinear damage resonance intermodulation effect for structural health monitoring
Ciampa, Francesco; Scarselli, Gennaro; Meo, Michele
2017-04-01
This paper is aimed at developing a theoretical model able to predict the generation of nonlinear elastic effects associated to the interaction of ultrasonic waves with the steady-state nonlinear response of local defect resonance (LDR). The LDR effect is used in nonlinear elastic wave spectroscopy to enhance the excitation of the material damage at its local resonance, thus to dramatically increase the vibrational amplitude of material nonlinear phenomena. The main result of this work is to prove both analytically and experimentally the generation of novel nonlinear elastic wave effects, here named as nonlinear damage resonance intermodulation, which correspond to a nonlinear intermodulation between the driving frequency and the LDR one. Beside this intermodulation effect, other nonlinear elastic wave phenomena such as higher harmonics of the input frequency and superharmonics of LDR frequency were found. The analytical model relies on solving the nonlinear equation of motion governing bending displacement under the assumption of both quadratic and cubic nonlinear defect approximation. Experimental tests on a damaged composite laminate confirmed and validated these predictions and showed that using continuous periodic excitation, the nonlinear structural phenomena associated to LDR could also be featured at locations different from the damage resonance. These findings will provide new opportunities for material damage detection using nonlinear ultrasounds.
Robust discrete-time nonlinear sliding mode controller with plant ...
African Journals Online (AJOL)
This paper addresses the new control algorithm, by designing the asymptotically stable nonlinear sliding surface with investigation of the states. This proposed algorithm leads to solve the problem of unstable systems, by proving the asymptotic stability of a class of uncertain discrete-time systems. A particular linear ...
Features of librational motions around L{sub 4}
Energy Technology Data Exchange (ETDEWEB)
Rajnai, Renata; Erdi, Balint [Department of Astronomy, Eoetvoes University, Pazmany Peter setany 1/A, 1117 Budapest (Hungary); Nagy, Imre, E-mail: R.Rajnai@astro.elte.h [Physical Geodesy and Geodesical Research Group of the HAS, Technical University, Muegyetem rkp. 3, 1111 Budapest (Hungary)
2010-03-01
Trojan bodies are present in the Solar system in great number, as Trojan asteroids and also as Trojan moons. Thus it is possible that their presence is similar in extrasolar planetary systems too. We investigated features of librational motions around L{sub 4} with numerical methods on the mass parameter - eccentricity plane in the elliptic restricted three-body problem. We determined the lifetime of Trojan bodies, until they remained in the librational domain around L{sub 4}, also illustrated the distribution of the three possible endgames of trojan motion. Finally we determined the frequences and resonances of the librational motion in the stable region.
Nonlinear Approaches in Engineering Applications
Jazar, Reza
2012-01-01
Nonlinear Approaches in Engineering Applications focuses on nonlinear phenomena that are common in the engineering field. The nonlinear approaches described in this book provide a sound theoretical base and practical tools to design and analyze engineering systems with high efficiency and accuracy and with less energy and downtime. Presented here are nonlinear approaches in areas such as dynamic systems, optimal control and approaches in nonlinear dynamics and acoustics. Coverage encompasses a wide range of applications and fields including mathematical modeling and nonlinear behavior as applied to microresonators, nanotechnologies, nonlinear behavior in soil erosion,nonlinear population dynamics, and optimization in reducing vibration and noise as well as vibration in triple-walled carbon nanotubes. This book also: Provides a complete introduction to nonlinear behavior of systems and the advantages of nonlinearity as a tool for solving engineering problems Includes applications and examples drawn from the el...
... com. Accessed July 29, 2017. Priesol AJ. Motion sickness. https://www.uptodate.com/content/search. Accessed July 29, 2017. Brunette GW, et al. CDC Health Information for International Travel 2018. New York, N. ...
Galus, Pamela J.
2002-01-01
Presents a variety of activities that support the development of an understanding of Newton's laws of motion. Activities use toy cars, mobile roads, and a seat-of-nails. Includes a scoring rubric. (DDR)
Nonlinear behavior of a containment building during an earthquake
International Nuclear Information System (INIS)
Hsieh, B.J.; Kot, C.A.; Srinivasan, M.G.; Costello, J.F.
1989-01-01
The nonlinear behavior of a 1/4-scale containment structure subjected to strong motion earthquake excitation is investigated by analyzing acceleration measurements on the structure and the site/soil surrounding the structure. Acceleration transfer functions obtained from the ratios of Fourier Transforms provide the means to estimate the dynamic characteristics of the soil-structure system. These are compared with results obtained from low-level vibration testing of the structure. Due to strong nonlinear effects during strong-motion excitation the fundamental frequency decreases by about 40% relative to the value obtained in low-level vibration tests (2.3 vs 3.8 Hz). In addition, this frequency as well as the shape of the transfer function moduli vary considerably with time during the strong motion excitation. This preliminary investigation indicates that the analysis of earthquake responses coupled with the results of low level vibration tests provide a means to gain understanding of the nonlinear behavior of soil-structure systems during strong motion, and may lead to the improvement in the modeling of soil-structure interaction phenomenology. 8 refs., 6 figs
A Collection of Nonlinear Aircraft Simulations in MATLAB
Garza, Frederico R.; Morelli, Eugene A.
2003-01-01
Nonlinear six degree-of-freedom simulations for a variety of aircraft were created using MATLAB. Data for aircraft geometry, aerodynamic characteristics, mass / inertia properties, and engine characteristics were obtained from open literature publications documenting wind tunnel experiments and flight tests. Each nonlinear simulation was implemented within a common framework in MATLAB, and includes an interface with another commercially-available program to read pilot inputs and produce a three-dimensional (3-D) display of the simulated airplane motion. Aircraft simulations include the General Dynamics F-16 Fighting Falcon, Convair F-106B Delta Dart, Grumman F-14 Tomcat, McDonnell Douglas F-4 Phantom, NASA Langley Free-Flying Aircraft for Sub-scale Experimental Research (FASER), NASA HL-20 Lifting Body, NASA / DARPA X-31 Enhanced Fighter Maneuverability Demonstrator, and the Vought A-7 Corsair II. All nonlinear simulations and 3-D displays run in real time in response to pilot inputs, using contemporary desktop personal computer hardware. The simulations can also be run in batch mode. Each nonlinear simulation includes the full nonlinear dynamics of the bare airframe, with a scaled direct connection from pilot inputs to control surface deflections to provide adequate pilot control. Since all the nonlinear simulations are implemented entirely in MATLAB, user-defined control laws can be added in a straightforward fashion, and the simulations are portable across various computing platforms. Routines for trim, linearization, and numerical integration are included. The general nonlinear simulation framework and the specifics for each particular aircraft are documented.
Directory of Open Access Journals (Sweden)
Jared Wynn
2010-01-01
Full Text Available The objective of this project is to derive and solve the equation of motion for a pendulum swinging at small angles in one dimension. The pendulum may be either a simple pendulum like a ball hanging from a string or a physical pendulum like a pendulum on a clock. For simplicity, we only considered small rotational angles so that the equation of motion becomes a harmonic oscillator.
International Nuclear Information System (INIS)
Shen Yuanrang
2011-01-01
This article presents a brief introduction to the birth and early investigations of nonlinear optics, such as second harmonic generation,sum and difference frequency generation, stimulated Raman scattering,and self-action of light etc. Several important research achievements and applications of nonlinear optics are presented as well, including nonlinear optical spectroscopy, phase conjugation and adaptive optics, coherent nonlinear optics, and high-order harmonic generation. In the end, current and future research topics in nonlinear optics are summarized. (authors)
Scattered Data Processing Approach Based on Optical Facial Motion Capture
Directory of Open Access Journals (Sweden)
Qiang Zhang
2013-01-01
Full Text Available In recent years, animation reconstruction of facial expressions has become a popular research field in computer science and motion capture-based facial expression reconstruction is now emerging in this field. Based on the facial motion data obtained using a passive optical motion capture system, we propose a scattered data processing approach, which aims to solve the common problems of missing data and noise. To recover missing data, given the nonlinear relationships among neighbors with the current missing marker, we propose an improved version of a previous method, where we use the motion of three muscles rather than one to recover the missing data. To reduce the noise, we initially apply preprocessing to eliminate impulsive noise, before our proposed three-order quasi-uniform B-spline-based fitting method is used to reduce the remaining noise. Our experiments showed that the principles that underlie this method are simple and straightforward, and it delivered acceptable precision during reconstruction.
Coexistence of collapse and stable spatiotemporal solitons in multimode fibers
Shtyrina, Olga V.; Fedoruk, Mikhail P.; Kivshar, Yuri S.; Turitsyn, Sergei K.
2018-01-01
We analyze spatiotemporal solitons in multimode optical fibers and demonstrate the existence of stable solitons, in a sharp contrast to earlier predictions of collapse of multidimensional solitons in three-dimensional media. We discuss the coexistence of blow-up solutions and collapse stabilization by a low-dimensional external potential in graded-index media, and also predict the existence of stable higher-order nonlinear waves such as dipole-mode spatiotemporal solitons. To support the main conclusions of our numerical studies we employ a variational approach and derive analytically the stability criterion for input powers for the collapse stabilization.
Ta, Casey N; Eghtedari, Mohammad; Mattrey, Robert F; Kono, Yuko; Kummel, Andrew C
2014-11-01
Contrast-enhanced ultrasound (CEUS) cines of focal liver lesions (FLLs) can be quantitatively analyzed to measure tumor perfusion on a pixel-by-pixel basis for diagnostic indication. However, CEUS cines acquired freehand and during free breathing cause nonuniform in-plane and out-of-plane motion from frame to frame. These motions create fluctuations in the time-intensity curves (TICs), reducing the accuracy of quantitative measurements. Out-of-plane motion cannot be corrected by image registration in 2-dimensional CEUS and degrades the quality of in-plane motion correction (IPMC). A 2-tier IPMC strategy and adaptive out-of-plane motion filter (OPMF) are proposed to provide a stable correction of nonuniform motion to reduce the impact of motion on quantitative analyses. A total of 22 cines of FLLs were imaged with dual B-mode and contrast specific imaging to acquire a 3-minute TIC. B-mode images were analyzed for motion, and the motion correction was applied to both B-mode and contrast images. For IPMC, the main reference frame was automatically selected for each cine, and subreference frames were selected in each respiratory cycle and sequentially registered toward the main reference frame. All other frames were sequentially registered toward the local subreference frame. Four OPMFs were developed and tested: subsample normalized correlation (NC), subsample sum of absolute differences, mean frame NC, and histogram. The frames that were most dissimilar to the OPMF reference frame using 1 of the 4 above criteria in each respiratory cycle were adaptively removed by thresholding against the low-pass filter of the similarity curve. Out-of-plane motion filter was quantitatively evaluated by an out-of-plane motion metric (OPMM) that measured normalized variance in the high-pass filtered TIC within the tumor region-of-interest with low OPMM being the goal. Results for IPMC and OPMF were qualitatively evaluated by 2 blinded observers who ranked the motion in the cines
Algebraic motion of vertically displacing plasmas
Pfefferlé, D.; Bhattacharjee, A.
2018-02-01
The vertical motion of a tokamak plasma is analytically modelled during its non-linear phase by a free-moving current-carrying rod inductively coupled to a set of fixed conducting wires or a cylindrical conducting shell. The solutions capture the leading term in a Taylor expansion of the Green's function for the interaction between the plasma column and the surrounding vacuum vessel. The plasma shape and profiles are assumed not to vary during the vertical drifting phase such that the plasma column behaves as a rigid body. In the limit of perfectly conducting structures, the plasma is prevented to come in contact with the wall due to steep effective potential barriers created by the induced Eddy currents. Resistivity in the wall allows the equilibrium point to drift towards the vessel on the slow timescale of flux penetration. The initial exponential motion of the plasma, understood as a resistive vertical instability, is succeeded by a non-linear "sinking" behaviour shown to be algebraic and decelerating. The acceleration of the plasma column often observed in experiments is thus concluded to originate from an early sharing of toroidal current between the core, the halo plasma, and the wall or from the thermal quench dynamics precipitating loss of plasma current.
The importance of stimulus noise analysis for self-motion studies.
Directory of Open Access Journals (Sweden)
Alessandro Nesti
Full Text Available Motion simulators are widely employed in basic and applied research to study the neural mechanisms of perception and action during inertial stimulation. In these studies, uncontrolled simulator-introduced noise inevitably leads to a disparity between the reproduced motion and the trajectories meticulously designed by the experimenter, possibly resulting in undesired motion cues to the investigated system. Understanding actual simulator responses to different motion commands is therefore a crucial yet often underestimated step towards the interpretation of experimental results. In this work, we developed analysis methods based on signal processing techniques to quantify the noise in the actual motion, and its deterministic and stochastic components. Our methods allow comparisons between commanded and actual motion as well as between different actual motion profiles. A specific practical example from one of our studies is used to illustrate the methodologies and their relevance, but this does not detract from its general applicability. Analyses of the simulator's inertial recordings show direction-dependent noise and nonlinearity related to the command amplitude. The Signal-to-Noise Ratio is one order of magnitude higher for the larger motion amplitudes we tested, compared to the smaller motion amplitudes. Simulator-introduced noise is found to be primarily of deterministic nature, particularly for the stronger motion intensities. The effect of simulator noise on quantification of animal/human motion sensitivity is discussed. We conclude that accurate recording and characterization of executed simulator motion are a crucial prerequisite for the investigation of uncertainty in self-motion perception.
Evaluation of time integration methods for transient response analysis of nonlinear structures
International Nuclear Information System (INIS)
Park, K.C.
1975-01-01
Recent developments in the evaluation of direct time integration methods for the transient response analysis of nonlinear structures are presented. These developments, which are based on local stability considerations of an integrator, show that the interaction between temporal step size and nonlinearities of structural systems has a pronounced effect on both accuracy and stability of a given time integration method. The resulting evaluation technique is applied to a model nonlinear problem, in order to: 1) demonstrate that it eliminates the present costly process of evaluating time integrator for nonlinear structural systems via extensive numerical experiments; 2) identify the desirable characteristics of time integration methods for nonlinear structural problems; 3) develop improved stiffly-stable methods for application to nonlinear structures. Extension of the methodology for examination of the interaction between a time integrator and the approximate treatment of nonlinearities (such as due to pseudo-force or incremental solution procedures) is also discussed. (Auth.)
New Look at Nonlinear Aerodynamics in Analysis of Hypersonic Panel Flutter
Directory of Open Access Journals (Sweden)
Dan Xie
2017-01-01
Full Text Available A simply supported plate fluttering in hypersonic flow is investigated considering both the airflow and structural nonlinearities. Third-order piston theory is used for nonlinear aerodynamic loading, and von Karman plate theory is used for modeling the nonlinear strain-displacement relation. The Galerkin method is applied to project the partial differential governing equations (PDEs into a set of ordinary differential equations (ODEs in time, which is then solved by numerical integration method. In observation of limit cycle oscillations (LCO and evolution of dynamic behaviors, nonlinear aerodynamic loading produces a smaller positive deflection peak and more complex bifurcation diagrams compared with linear aerodynamics. Moreover, a LCO obtained with the linear aerodynamics is mostly a nonsimple harmonic motion but when the aerodynamic nonlinearity is considered more complex motions are obtained, which is important in the evaluation of fatigue life. The parameters of Mach number, dynamic pressure, and in-plane thermal stresses all affect the aerodynamic nonlinearity. For a specific Mach number, there is a critical dynamic pressure beyond which the aerodynamic nonlinearity has to be considered. For a higher temperature, a lower critical dynamic pressure is required. Each nonlinear aerodynamic term in the full third-order piston theory is evaluated, based on which the nonlinear aerodynamic formulation has been simplified.
Nonlinear Stochastic Analysis of Subharmonic Response of a Shallow Cable
DEFF Research Database (Denmark)
Zhou, Q.; Stærdahl, Jesper Winther; Nielsen, Søren R.K.
2007-01-01
The paper deals with the subharmonic response of a shallow cable due to time variations of the chord length of the equilibrium suspension, caused by time varying support point motions. Initially, the capability of a simple nonlinear two-degree-of-freedom model for the prediction of chaotic...... and stochastic subharmonic response is demonstrated upon comparison with a more involved model based on a spatial finite difference discretization of the full nonlinear partial differential equations of the cable. Since the stochastic response quantities are obtained by Monte Carlo simulation, which is extremely...
Nonlinear fast sausage waves in homogeneous magnetic flux tubes
Mikhalyaev, Badma B.; Ruderman, Michael S.
2015-12-01
> We consider fast sausage waves in straight homogeneous magnetic tubes. The plasma motion is described by the ideal magnetohydrodynamic equations in the cold plasma approximation. We derive the nonlinear Schrödinger equation describing the nonlinear evolution of an envelope of a carrier wave. The coefficients of this equation are expressed in terms Bessel and modified Bessel functions. They are calculated numerically for various values of parameters. In particular, we show that the criterion for the onset of the modulational or Benjamin-Fair instability is satisfied. The implication of the obtained results for solar physics is discussed.
Nonlinear mathematical model for a biaxial MOEMS scanning mirror
Ma, Yunfei; Davis, Wyatt O.; Ellis, Matt; Brown, Dean
2010-02-01
In this paper, a nonlinear mathematic model for Microvision's MOEMS scanning mirror is presented. The pixel placement accuracy requirement for scanned laser spot displays translates into a roughly 80dB signal to noise ratio, noise being a departure from the ideal trajectory. To provide a tool for understanding subtle nonidealities, a detailed nonlinear mathematical model is derived, using coefficients derived from physics, finite element analysis, and experiments. Twelve degrees of freedom parameterize the motion of a gimbal plate and a suspended micromirror; a thirteenth is the device temperature. Illustrations of the application of the model to capture subtleties about the device dynamics and transfer functions are presented.
Superworld volume dynamics of super branes from nonlinear realizations
International Nuclear Information System (INIS)
Bellucci, S.; Ivanov, E.; Krivonos, S.
2000-01-01
Based on the concept of the partial breaking of global supersymmetry (PBGS), it has been derived the world volume superfield equations of motion for N=1, D=4 supermembrane, as well as for the space-time filling D2- and D3-branes, from nonlinear realizations of the corresponding supersymmetries. It has been argued that it is of no need to take care of the relevant automorphism groups when being interested in the dynamical equations. This essentially facilitates computations. As a by-product, it has been obtained a new polynomial representation for the d=3,4 Born-Infeld equations, with merely a cubic nonlinearity
Nonlinear analysis of doubly curved shells: An analytical approach
Indian Academy of Sciences (India)
Е10Ж. 0rЕs└1Ж. iY j. И Й0rs. iY j└1 З 0rs. iY jЗ1Кa2jX. Е11Ж. Nonlinearity in the governing equations of motion is due to the product of the dependent variables. The quadratic extrapolation technique is used for the linearization and a typical nonlinear function Gj can be expressed at any step j as,. Gj И Е0rЖJЕ0sЖJ. И. И.
Some nonlinear problems in the manipulation of beams
International Nuclear Information System (INIS)
Sessler, A.M.
1990-01-01
An overview is given of nonlinear problems that arise in the manipulation of beams. Beams can be made of material particles or photons, can be intense or dilute, can be energetic or not, and they can be propagating in vacuum or in a medium. The nonlinear aspects of the motion are different in each case, and this diversity of behavior is categorized. Many examples are given, which serves to illustrate the categorization and, furthermore, display the richness of behavior encountered in the physics of beams. 25 refs., 5 figs
Variational principle for nonlinear gyrokinetic Vlasov--Maxwell equations
International Nuclear Information System (INIS)
Brizard, Alain J.
2000-01-01
A new variational principle for the nonlinear gyrokinetic Vlasov--Maxwell equations is presented. This Eulerian variational principle uses constrained variations for the gyrocenter Vlasov distribution in eight-dimensional extended phase space and turns out to be simpler than the Lagrangian variational principle recently presented by H. Sugama [Phys. Plasmas 7, 466 (2000)]. A local energy conservation law is then derived explicitly by the Noether method. In future work, this new variational principle will be used to derive self-consistent, nonlinear, low-frequency Vlasov--Maxwell bounce-gyrokinetic equations, in which the fast gyromotion and bounce-motion time scales have been eliminated
Noise in nonlinear nanoelectromechanical resonators
Guerra Vidal, Diego N.
adjusting the resonator's operating parameters. The device can access one of two stable steady states, according to a specific logic function; this operation is mediated by the noise floor, which can be directly adjusted, or dynamically "tuned" via an adjustment of the underlying nonlinearity of the resonator. The demonstration of this reprogrammable nanomechanical logic gate affords a path to the practical realization of a new generation of mechanical computer.
Marginally Stable Nuclear Burning
Strohmayer, Tod E.; Altamirano, D.
2012-01-01
Thermonuclear X-ray bursts result from unstable nuclear burning of the material accreted on neutron stars in some low mass X-ray binaries (LMXBs). Theory predicts that close to the boundary of stability oscillatory burning can occur. This marginally stable regime has so far been identified in only a small number of sources. We present Rossi X-ray Timing Explorer (RXTE) observations of the bursting, high- inclination LMXB 4U 1323-619 that reveal for the first time in this source the signature of marginally stable burning. The source was observed during two successive RXTE orbits for approximately 5 ksec beginning at 10:14:01 UTC on March 28, 2011. Significant mHz quasi- periodic oscillations (QPO) at a frequency of 8.1 mHz are detected for approximately 1600 s from the beginning of the observation until the occurrence of a thermonuclear X-ray burst at 10:42:22 UTC. The mHz oscillations are not detected following the X-ray burst. The average fractional rms amplitude of the mHz QPOs is 6.4% (3 - 20 keV), and the amplitude increases to about 8% below 10 keV.This phenomenology is strikingly similar to that seen in the LMXB 4U 1636-53. Indeed, the frequency of the mHz QPOs in 4U 1323-619 prior to the X-ray burst is very similar to the transition frequency between mHz QPO and bursts found in 4U 1636-53 by Altamirano et al. (2008). These results strongly suggest that the observed QPOs in 4U 1323-619 are, like those in 4U 1636-53, due to marginally stable nuclear burning. We also explore the dependence of the energy spectrum on the oscillation phase, and we place the present observations within the context of the spectral evolution of the accretion-powered flux from the source.
Implementation of Nonlinear Control Laws for an Optical Delay Line
Hench, John J.; Lurie, Boris; Grogan, Robert; Johnson, Richard
2000-01-01
This paper discusses the implementation of a globally stable nonlinear controller algorithm for the Real-Time Interferometer Control System Testbed (RICST) brassboard optical delay line (ODL) developed for the Interferometry Technology Program at the Jet Propulsion Laboratory. The control methodology essentially employs loop shaping to implement linear control laws. while utilizing nonlinear elements as means of ameliorating the effects of actuator saturation in its coarse, main, and vernier stages. The linear controllers were implemented as high-order digital filters and were designed using Bode integral techniques to determine the loop shape. The nonlinear techniques encompass the areas of exact linearization, anti-windup control, nonlinear rate limiting and modal control. Details of the design procedure are given as well as data from the actual mechanism.
Collisions of Two Spatial Solitons in Inhomogeneous Nonlinear Media
International Nuclear Information System (INIS)
Zhong Weiping; Yi Lin; Yang Zhengping; Xie Ruihua; Milivoj, Belic; Chen Goong
2008-01-01
Collisions of spatial solitons occurring in the nonlinear Schroeinger equation with harmonic potential are studied, using conservation laws and the split-step Fourier method. We find an analytical solution for the separation distance between the spatial solitons in an inhomogeneous nonlinear medium when the light beam is self-trapped in the transverse dimension. In the self-focusing nonlinear media the spatial solitons can be transmitted stably, and the interaction between spatial solitons is enhanced due to the linear focusing effect (and also diminished for the linear defocusing effect). In the self-defocusing nonlinear media, in the absence of self-trapping or in the presence of linear self-defocusing, no transmission of stable spatial solitons is possible. However, in such media the linear focusing effect can be exactly compensated, and the spatial solitons can propagate through
Simulated earthquake ground motions
International Nuclear Information System (INIS)
Vanmarcke, E.H.; Gasparini, D.A.
1977-01-01
The paper reviews current methods for generating synthetic earthquake ground motions. Emphasis is on the special requirements demanded of procedures to generate motions for use in nuclear power plant seismic response analysis. Specifically, very close agreement is usually sought between the response spectra of the simulated motions and prescribed, smooth design response spectra. The features and capabilities of the computer program SIMQKE, which has been widely used in power plant seismic work are described. Problems and pitfalls associated with the use of synthetic ground motions in seismic safety assessment are also pointed out. The limitations and paucity of recorded accelerograms together with the widespread use of time-history dynamic analysis for obtaining structural and secondary systems' response have motivated the development of earthquake simulation capabilities. A common model for synthesizing earthquakes is that of superposing sinusoidal components with random phase angles. The input parameters for such a model are, then, the amplitudes and phase angles of the contributing sinusoids as well as the characteristics of the variation of motion intensity with time, especially the duration of the motion. The amplitudes are determined from estimates of the Fourier spectrum or the spectral density function of the ground motion. These amplitudes may be assumed to be varying in time or constant for the duration of the earthquake. In the nuclear industry, the common procedure is to specify a set of smooth response spectra for use in aseismic design. This development and the need for time histories have generated much practical interest in synthesizing earthquakes whose response spectra 'match', or are compatible with a set of specified smooth response spectra
Fermat's principle and nonlinear traveltime tomography
International Nuclear Information System (INIS)
Berryman, J.G.; Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York, New York 10012)
1989-01-01
Fermat's principle shows that a definite convex set of feasible slowness models, depending only on the traveltime data, exists for the fully nonlinear traveltime inversion problem. In a new iterative reconstruction algorithm, the minimum number of nonfeasible ray paths is used as a figure of merit to determine the optimum size of the model correction at each step. The numerical results show that the new algorithm is robust, stable, and produces very good reconstructions even for high contrast materials where standard methods tend to diverge
Multidimensional nonlinear descriptive analysis
Nishisato, Shizuhiko
2006-01-01
Quantification of categorical, or non-numerical, data is a problem that scientists face across a wide range of disciplines. Exploring data analysis in various areas of research, such as the social sciences and biology, Multidimensional Nonlinear Descriptive Analysis presents methods for analyzing categorical data that are not necessarily sampled randomly from a normal population and often involve nonlinear relations. This reference not only provides an overview of multidimensional nonlinear descriptive analysis (MUNDA) of discrete data, it also offers new results in a variety of fields. The first part of the book covers conceptual and technical preliminaries needed to understand the data analysis in subsequent chapters. The next two parts contain applications of MUNDA to diverse data types, with each chapter devoted to one type of categorical data, a brief historical comment, and basic skills peculiar to the data types. The final part examines several problems and then concludes with suggestions for futu...
Nonlinear dynamics of structures
Oller, Sergio
2014-01-01
This book lays the foundation of knowledge that will allow a better understanding of nonlinear phenomena that occur in structural dynamics. This work is intended for graduate engineering students who want to expand their knowledge on the dynamic behavior of structures, specifically in the nonlinear field, by presenting the basis of dynamic balance in non‐linear behavior structures due to the material and kinematics mechanical effects. Particularly, this publication shows the solution of the equation of dynamic equilibrium for structure with nonlinear time‐independent materials (plasticity, damage and frequencies evolution), as well as those time dependent non‐linear behavior materials (viscoelasticity and viscoplasticity). The convergence conditions for the non‐linear dynamic structure solution are studied, and the theoretical concepts and its programming algorithms are presented.
Nonlinear elastic waves in materials
Rushchitsky, Jeremiah J
2014-01-01
The main goal of the book is a coherent treatment of the theory of propagation in materials of nonlinearly elastic waves of displacements, which corresponds to one modern line of development of the nonlinear theory of elastic waves. The book is divided on five basic parts: the necessary information on waves and materials; the necessary information on nonlinear theory of elasticity and elastic materials; analysis of one-dimensional nonlinear elastic waves of displacement – longitudinal, vertically and horizontally polarized transverse plane nonlinear elastic waves of displacement; analysis of one-dimensional nonlinear elastic waves of displacement – cylindrical and torsional nonlinear elastic waves of displacement; analysis of two-dimensional nonlinear elastic waves of displacement – Rayleigh and Love nonlinear elastic surface waves. The book is addressed first of all to people working in solid mechanics – from the students at an advanced undergraduate and graduate level to the scientists, professional...
Directory of Open Access Journals (Sweden)
Liang Hu
2016-10-01
Full Text Available A nonlinear coupled dynamic model of a rod fastening rotor under rub-impact and initial permanent deflection was developed in this paper. The governing motion equation was derived by the D’Alembert principle considering the contact characteristic between disks, nonlinear oil-film force, rub-impact force, unbalance mass, etc. The contact effects between disks was modeled as a flexural spring with cubical nonlinear stiffness. The coupled nonlinear dynamic phenomena of the rub-impact rod fastening rotor bearing system with initial permanent deflection were investigated by the fourth-order Runge-Kutta method. Bifurcation diagram, vibration waveform, frequency spectrum, shaft orbit and Poincaré map are used to illustrate the rich diversity of the system response with complicated dynamics. The studies indicate that the coupled dynamic responses of the rod fastening rotor bearing system under rub-impact and initial permanent deflection exhibit a rich nonlinear dynamic diversity, synchronous periodic-1 motion, multiple periodic motion, quasi-periodic motion and chaotic motion can be observed under certain conditions. Larger radial stiffness of the stator will simplify the system motion and make the oil whirl weaker or even disappear at a certain rotating speed. With the increase of initial permanent deflection length, the instability speed of the system gradually rises, and the chaotic motion region gets smaller and smaller. The corresponding results can provide guidance for the fault diagnosis of a rub-impact rod fastening rotor with initial permanent deflection and contribute to the further understanding of the nonlinear dynamic characteristics of the rod fastening rotor bearing system.
Fundamentals of nonlinear optics
Powers, Peter E
2011-01-01
Peter Powers's rigorous but simple description of a difficult field keeps the reader's attention throughout. … All chapters contain a list of references and large numbers of practice examples to be worked through. … By carefully working through the proposed problems, students will develop a sound understanding of the fundamental principles and applications. … the book serves perfectly for an introductory-level course for second- and third-order nonlinear optical phenomena. The author's writing style is refreshing and original. I expect that Fundamentals of Nonlinear Optics will fast become pop
Agrawal, Govind
2012-01-01
Since the 4e appeared, a fast evolution of the field has occurred. The 5e of this classic work provides an up-to-date account of the nonlinear phenomena occurring inside optical fibers, the basis of all our telecommunications infastructure as well as being used in the medical field. Reflecting the big developments in research, this new edition includes major new content: slow light effects, which offers a reduction in noise and power consumption and more ordered network traffic-stimulated Brillouin scattering; vectorial treatment of highly nonlinear fibers; and a brand new chapter o
Fully nonlinear elliptic equations
Caffarelli, Luis A
1995-01-01
The goal of the book is to extend classical regularity theorems for solutions of linear elliptic partial differential equations to the context of fully nonlinear elliptic equations. This class of equations often arises in control theory, optimization, and other applications. The authors give a detailed presentation of all the necessary techniques. Instead of treating these techniques in their greatest generality, they outline the key ideas and prove the results needed for developing the subsequent theory. Topics discussed in the book include the theory of viscosity solutions for nonlinear equa
DEFF Research Database (Denmark)
Clausen, Carl A. Balslev; Christiansen, Peter Leth; Torner, L.
1999-01-01
We show that with the quasi-phase-matching technique it is possible to fabricate stripes of nonlinearity that trap and guide light like waveguides. We investigate an array of such stripes and find that when the stripes are sufficiently narrow, the beam dynamics is governed by a quadratic nonlinear...... discrete equation. The proposed structure therefore provides an experimental setting for exploring discrete effects in a controlled manner. In particular, we show propagation of breathers that are eventually trapped by discreteness. When the stripes are wide the beams evolve in a structure we term...
Nonlinearity in nanomechanical cantilevers
DEFF Research Database (Denmark)
Villanueva Torrijo, Luis Guillermo; Karabalin, R. B.; Matheny, M. H.
2013-01-01
predictions deviate strongly from our measurements for the nonlinearity of the fundamental flexural mode, which show a systematic dependence on aspect ratio (length/width) together with random scatter. This contrasts with the second mode, which is always found to be in good agreement with theory....... These findings underscore the delicate balance between inertial and geometric nonlinear effects in the fundamental mode, and strongly motivate further work to develop theories beyond the Euler-Bernoulli approximation. DOI: 10.1103/PhysRevB.87.024304...
Directory of Open Access Journals (Sweden)
Akira Abe
2010-01-01
and are the driving and natural frequencies, respectively. The application of Galerkin's procedure to the equation of motion yields nonlinear ordinary differential equations with quadratic and cubic nonlinear terms. The steady-state responses are obtained by using the discretization approach of the MMS in which the definition of the detuning parameter, expressing the relationship between the natural frequency and the driving frequency, is changed in an attempt to improve the accuracy of the solutions. The validity of the solutions is discussed by comparing them with solutions of the direct approach of the MMS and the finite difference method.
Measuring Behavior using Motion Capture
Fikkert, F.W.; van der Kooij, Herman; Ruttkay, Z.M.; van Welbergen, H.; Spink, A.J.; Ballintijn, M.R.; Bogers, N.D.; Grieco, F; Loijens, L.W.S.; Noldus, L.P.J.J.; Smit, G; Zimmerman, P.H.
2008-01-01
Motion capture systems, using optical, magnetic or mechanical sensors are now widely used to record human motion. Motion capture provides us with precise measurements of human motion at a very high recording frequency and accuracy, resulting in a massive amount of movement data on several joints of
Nonlinear Dynamics of Electrostatically Actuated MEMS Arches
Al Hennawi, Qais M.
2015-05-01
In this thesis, we present theoretical and experimental investigation into the nonlinear statics and dynamics of clamped-clamped in-plane MEMS arches when excited by an electrostatic force. Theoretically, we first solve the equation of motion using a multi- mode Galarkin Reduced Order Model (ROM). We investigate the static response of the arch experimentally where we show several jumps due to the snap-through instability. Experimentally, a case study of in-plane silicon micromachined arch is studied and its mechanical behavior is measured using optical techniques. We develop an algorithm to extract various parameters that are needed to model the arch, such as the induced axial force, the modulus of elasticity, and the initially induced initial rise. After that, we excite the arch by a DC electrostatic force superimposed to an AC harmonic load. A softening spring behavior is observed when the excitation is close to the first resonance frequency due to the quadratic nonlinearity coming from the arch geometry and the electrostatic force. Also, a hardening spring behavior is observed when the excitation is close to the third (second symmetric) resonance frequency due to the cubic nonlinearity coming from mid-plane stretching. Then, we excite the arch by an electric load of two AC frequency components, where we report a combination resonance of the summed type. Agreement is reported among the theoretical and experimental work.
Nonlinear Dynamical Analysis for a Plain Bearing
Directory of Open Access Journals (Sweden)
Ali Belhamra
2014-03-01
Full Text Available This paper investigates the nonlinear dynamic behavior for a plain classic bearing (fluid bearing lubricated by a non-Newtonian fluid of a turbo machine rotating with high speed; this type of fluid contains additives viscosity (couple-stress fluid film. The solution of the nonlinear dynamic problem of this type of bearing is determined with a spatial discretisation of the modified Reynolds' equation written in dynamic mode by using the optimized short bearing theory and a temporal discretisation for equations of rotor motion by the help of Euler's explicit diagram. This study analyzes the dynamic behavior of a rotor supported by two couple-stress fluid film journal lubricant enhances the dynamic stability of the rotor-bearing system considerably compared to that obtained when using a traditional Newtonian lubricant. The analysis shows that the dynamic behavior of a shaft which turns with high velocities is strongly nonlinear even for poor eccentricities of unbalance; the presence of parameters of couple stress allows strongly attenuating the will synchrony (unbalance and asynchrony (whipping amplitudes of vibrations of the shaft which supports more severe conditions (large unbalances.
The study on the non-linear soil structure interaction for nuclear power plants
International Nuclear Information System (INIS)
Tetsuya Hagiwara; Yoshio Kitada
2005-01-01
1. Introduction: JNES is planning a new project to study non-linear soil-structure interaction (SSI) effect under large earthquake ground motions equivalent to and/or over a design earthquake ground motion of S2(The extreme design earthquake). Concerning the SSI test, it is pointed out that handling of the scale effect of the specimen together with the surrounding soil on the earthquake response evaluation of the actual structure is essential issue for the scaled model test. Thus, for the test, the largest specimen possible and the biggest input motion possible are necessary. Taking into account the above issues, new test methodology, which utilizes artificial earthquake ground motion, is considered desirable if it can be performed at a realistic cost. Under this motivation, we have studied the test methodology which applying blasting power as for a big earthquake ground motion. The information from a coal mine company in the U.S.A. indicates that the works performed in the surface coal mine to blast a rock covering a coal layer generates a big artificial ground motion, which is similar to earthquake ground motion. Application of this artificial earthquake ground motion for the SSI test is considered very promising because the blasting work is carried out periodically for mining coal so that we can apply artificial motions generated by the work if we construct a building model at a closed point to the blasting work area. The major purposes of the test will be to understand (a) basic earthquake response characteristics of a Nuclear Power Plant (NPP) reactor building when a large earthquake strikes the NPP site and (b) nonlinear characteristics of SSI phenomenon during a big earthquake. In the paper, we introduce the test method and basic characteristics of measured artificial ground motions generated by the blasting works on an actual site. 2. Conclusion: It was confirmed that the artificial ground motions generated by blasting works have enough acceleration level
Wang, Bin; Tang, Yougang; Li, Yan; Cai, Runbo
2018-04-01
This paper presents a study on the motion response of a tension-leg platform (TLP) under first- and second-order wave forces, including the mean-drift force, difference and sum-frequency forces. The second-order wave force is calculated using the full-field quadratic transfer function (QTF). The coupled effect of the horizontal motions, such as surge, sway and yaw motions, and the set-down motion are taken into consideration by the nonlinear restoring matrix. The time-domain analysis with 50-yr random sea state is performed. A comparison of the results of different case studies is made to assess the influence of second-order wave force on the motions of the platform. The analysis shows that the second-order wave force has a major impact on motions of the TLP. The second-order difference-frequency wave force has an obvious influence on the low-frequency motions of surge and sway, and also will induce a large set-down motion which is an important part of heave motion. Besides, the second-order sum-frequency force will induce a set of high-frequency motions of roll and pitch. However, little influence of second-order wave force is found on the yaw motion.
System Reduction in Nonlinear Multibody Dynamics of Wind Turbines
DEFF Research Database (Denmark)
Holm-Jørgensen, Kristian; Nielsen, Søren R.K.; Rubak, Rune
2007-01-01
In this paper the system reduction in nonlinear multibody dynamics of wind turbines is investigated for various updating schemes of the moving frame of reference. In one case, the moving frame of reference is updated to a stiff body, relative to which the elastic deformations are fixed at one end....... In the other case, the stiff body motion is defined as the chord line connecting the end points of the beam, and the elastic deformations are simply supported at the end points. The system reduction is performed by discretizing the spatial motion into a set of rigid body modes and linear elastic eigenmodes...
Incremental Dynamic Analysis of Koyna Dam under Repeated Ground Motions
Zainab Nik Azizan, Nik; Majid, Taksiah A.; Nazri, Fadzli Mohamed; Maity, Damodar; Abdullah, Junaidah
2018-03-01
This paper discovers the incremental dynamic analysis (IDA) of concrete gravity dam under single and repeated earthquake loadings to identify the limit state of the dam. Seven ground motions with horizontal and vertical direction as seismic input considered in the nonlinear dynamic analysis based on the real repeated earthquake in the worldwide. All the ground motions convert to respond spectrum and scaled according to the developed elastic respond spectrum in order to match the characteristic of the ground motion to the soil type. The scaled was depends on the fundamental period, T1 of the dam. The Koyna dam has been selected as a case study for the purpose of the analysis by assuming that no sliding and rigid foundation, has been estimated. IDA curves for Koyna dam developed for single and repeated ground motions and the performance level of the dam identifies. The IDA curve of repeated ground motion shown stiffer rather than single ground motion. The ultimate state displacement for a single event is 45.59mm and decreased to 39.33mm under repeated events which are decreased about 14%. This showed that the performance level of the dam based on seismic loadings depend on ground motion pattern.
Sun, Leping
2016-01-01
This paper is concerned with the backward differential formula or BDF methods for a class of nonlinear 2-delay differential algebraic equations. We obtain two sufficient conditions under which the methods are stable and asymptotically stable. At last, examples show that our methods are true.
Motions in the relativistic fields of a charged dust
International Nuclear Information System (INIS)
Fonseca Teixeira, A.F. da.
1980-04-01
The general relativistic motion of arbitrarily charged test particles is investigated, in the spherically symmetric fields of a charged, static, incoherent matter with T 0 0 = const. The condition for existence of stable circular orbits is established, inside and outside the diffused source. The null geodesics are also investigated, as a limiting case. (Author) [pt
Elastic passive source localization using rotational motion
Li, Zhenhua; van der Baan, Mirko
2017-11-01
As a complement to traditional particle velocity recordings, rotational motion provides information on the spatial gradient of particle displacement motion which aids in imaging passive sources using elastic waves. Event localization is for instance important in earthquake seismology and detection of microseismic events during hydraulic fracturing treatments of hydrocarbon reservoirs or injection of carbon dioxide (CO2) in depleted reservoirs. We propose an elastic reverse time extrapolation technique for passive event localization incorporating a new representation-theorem-based expression that explicitly uses recordings from rotational and particle velocity sensors either simultaneously or separately, leading to enhanced imaging results. We also introduce a novel focusing criterion based on the energy flux which is insensitive to polarity reversals due to non-isotropic source mechanisms. Energy flux combined with the Hough transform leads to a convenient and stable criterion for automatically detecting both event locations and origin times.
International Nuclear Information System (INIS)
Loux, P.C.
1969-01-01
Nuclear generated ground motion is defined and then related to the physical parameters that cause it. Techniques employed for prediction of ground motion peak amplitude, frequency spectra and response spectra are explored, with initial emphasis on the analysis of data collected at the Nevada Test Site (NTS). NTS postshot measurements are compared with pre-shot predictions. Applicability of these techniques to new areas, for example, Plowshare sites, must be questioned. Fortunately, the Atomic Energy Commission is sponsoring complementary studies to improve prediction capabilities primarily in new locations outside the NTS region. Some of these are discussed in the light of anomalous seismic behavior, and comparisons are given showing theoretical versus experimental results. In conclusion, current ground motion prediction techniques are applied to events off the NTS. Predictions are compared with measurements for the event Faultless and for the Plowshare events, Gasbuggy, Cabriolet, and Buggy I. (author)
The moving minimum audible angle is smaller during self motion than during source motion.
Directory of Open Access Journals (Sweden)
W. Owen eBrimijoin
2014-09-01
Full Text Available We are rarely perfectly still: our heads rotate in three axes and move in three dimensions, constantly varying the spectral and binaural cues at the ear drums. In spite of this motion, static sound sources in the world are typically perceived as stable objects. This argues that the auditory system – in a manner not unlike the vestibulo-ocular reflex – works to compensate for self motion and stabilize our sensory representation of the world. We tested a prediction arising from this postulate: that self motion should be processed more accurately than source motion.We used an infrared motion tracking system to measure head angle, and real-time interpolation of head related impulse responses to create head-stabilized signals that appeared to remain fixed in space as the head turned. After being presented with pairs of simultaneous signals consisting of a man and a woman speaking a snippet of speech, normal and hearing impaired listeners were asked to report whether the female voice was to the left or the right of the male voice. In this way we measured the moving minimum audible angle (MMAA. This measurement was made while listeners were asked to turn their heads back and forth between ± 15° and the signals were stabilized in space. After this self-motion condition we measured MMAA in a second source-motion condition when listeners remained still and the virtual locations of the signals were moved using the trajectories from the first condition.For both normal and hearing impaired listeners, we found that the MMAA for signals moving relative to the head was ~1-2° smaller when the movement was the result of self motion than when it was the result of source motion, even though the motion with respect to the head was identical. These results as well as the results of past experiments suggest that spatial processing involves an ongoing and highly accurate comparison of spatial acoustic cues with self-motion cues.
International Nuclear Information System (INIS)
Shooshtari, Alireza; Marzieh Hoseini, Seyedeh; Kalhori, Hamed; Nima Mahmoodi, S
2012-01-01
Nonlinear vibrations of viscoelastic microcantilevers with a piezoelectric actuator layer on the top surface are investigated. In this work, the microcantilever follows a classical linear viscoelastic model, i.e., Kelvin–Voigt. In addition, it is assumed that the microcantilever complies with Euler–Bernoulli beam theory. The Hamilton principle is used to obtain the equations of motion for the microcantilever oscillations. Then, the Galerkin approximation is utilized for separation of time and displacement variables, thus the time function is obtained as a second order nonlinear ordinary differential equation with quadratic and cubic nonlinear terms. Nonlinearities appear in stiffness, inertia and damping terms. Using the method of multiple scales, the analytical relations for nonlinear natural frequency and amplitude of the vibration are derived. Using the obtained analytical relations, the effects of geometric factors and material properties on the free nonlinear behavior of this beam are investigated. The results are also verified by numerical analysis of the equations. (paper)
The plane motion control of the quadrocopter
Directory of Open Access Journals (Sweden)
A. N. Kanatnikov
2015-01-01
Full Text Available Among a large number of modern flying vehicles, the quadrocopter relates to unmanned aerial vehicles (UAV which are relatively cheap and easy to design. Quadrocopters are able to fly in bad weather, hang in the air for quite a long time, observe the objects and perform many other tasks. They have been applied in rescue operations, in agriculture, in the military and many other fields.For quadrocopters, the problems of path planning and control are relevant. These problems have many variants in which limited resources of modern UAV, possible obstacles, for instance, for flying in a cross-country terrain or in a city environment and weather conditions (particularly, wind conditions are taken into account. Many research studies are concerned with these problems and reflected in series of publications (note the interesting survey [1] and references therein. Various methods were used for the control synthesis for these vehicles: linear approximations [2], sliding mode control [3], the covering method [4] and so on.In the paper, a quadrocopter is considered as a rigid body. The kinematic and dynamic equations of the motion are analyzed. Two cases of motion are emphasized: a motion in a vertical plane and in a horizontal plane. The control is based on transferring of the affine system to the canonical form [5] and the nonlinear stabilization method [6].
Gorban, A. N.; Karlin, I. V.
2003-01-01
Nonlinear kinetic equations are reviewed for a wide audience of specialists and postgraduate students in physics, mathematical physics, material science, chemical engineering and interdisciplinary research. Contents: The Boltzmann equation, Phenomenology and Quasi-chemical representation of the Boltzmann equation, Kinetic models, Discrete velocity models, Direct simulation, Lattice Gas and Lattice Boltzmann models, Minimal Boltzmann models for flows at low Knudsen number, Other kinetic equati...
Nonlinear fractional relaxation
Indian Academy of Sciences (India)
Abstract. We define a nonlinear model for fractional relaxation phenomena. We use ε-expansion method to analyse this model. By studying the fundamental solutions of this model we find that when t → 0 the model exhibits a fast decay rate and when t → ∞ the model exhibits a power-law decay. By analysing the frequency ...
Borghi, M.; Castellan, C.; Signorini, S.; Trenti, A.; Pavesi, L.
2017-09-01
Silicon photonics is a technology based on fabricating integrated optical circuits by using the same paradigms as the dominant electronics industry. After twenty years of fervid development, silicon photonics is entering the market with low cost, high performance and mass-manufacturable optical devices. Until now, most silicon photonic devices have been based on linear optical effects, despite the many phenomenologies associated with nonlinear optics in both bulk materials and integrated waveguides. Silicon and silicon-based materials have strong optical nonlinearities which are enhanced in integrated devices by the small cross-section of the high-index contrast silicon waveguides or photonic crystals. Here the photons are made to strongly interact with the medium where they propagate. This is the central argument of nonlinear silicon photonics. It is the aim of this review to describe the state-of-the-art in the field. Starting from the basic nonlinearities in a silicon waveguide or in optical resonator geometries, many phenomena and applications are described—including frequency generation, frequency conversion, frequency-comb generation, supercontinuum generation, soliton formation, temporal imaging and time lensing, Raman lasing, and comb spectroscopy. Emerging quantum photonics applications, such as entangled photon sources, heralded single-photon sources and integrated quantum photonic circuits are also addressed at the end of this review.
Directory of Open Access Journals (Sweden)
Jaydeep Jesur
2000-01-01
and features are added such a way that it can be also used for design of nonlinear control systems to achieve desired performance. It is very simple to learn this tool. One can easily use it with preliminary knowledge of DF and PPT methods.
Nonlinear collisionless magnetic reconnection
Ottaviani, M.; Porcelli, F.
1993-12-01
Collisionless magnetic reconnection in regimes where the mode structure is characterized by global convection cells is found to exhibit a quasiexplosive time behavior in the early nonlinear stage where the fluid displacement is smaller than the equilibrium scale length. This process is accompanied by the formation of a current density sublayer narrower than the skin depth. This sublayer keeps shrinking with time.
Intramolecular and nonlinear dynamics
Energy Technology Data Exchange (ETDEWEB)
Davis, M.J. [Argonne National Laboratory, IL (United States)
1993-12-01
Research in this program focuses on three interconnected areas. The first involves the study of intramolecular dynamics, particularly of highly excited systems. The second area involves the use of nonlinear dynamics as a tool for the study of molecular dynamics and complex kinetics. The third area is the study of the classical/quantum correspondence for highly excited systems, particularly systems exhibiting classical chaos.
Leap Motion development essentials
Spiegelmock, Mischa
2013-01-01
This book is a fast-paced guide with practical examples that aims to help you understand and master the Leap Motion SDK.This book is for developers who are either involved in game development or who are looking to utilize Leap Motion technology in order to create brand new user interaction experiences to distinguish their products from the mass market. You should be comfortable with high-level languages and object-oriented development concepts in order to get the most out of this book.
DEFF Research Database (Denmark)
Perez, Tristan; Blanke, Mogens
2010-01-01
The technical feasibility of roll motion control devices has been amply demonstrated for over 100 years. Performance, however, can still fall short of expectations because of deciencies in control system designs, which have proven to be far from trivial due to fundamental performance limitations....... This tutorial paper presents an account of the development of various ship roll motion control systems and the challenges associated with their design. The paper discusses how to assess performance, the applicability of dierent models, and control methods that have been applied in the past....
Necessary conditions for tumbling in the rotational motion
Carrera, Danny H. Z.; Weber, Hans I.
2012-11-01
The goal of this work is the investigation of the necessary conditions for the possible existence of tumbling in rotational motion of rigid bodies. In a stable spinning satellite, tumbling may occur by sufficient strong action of external impulses, when the conical movement characteristic of the stable attitude is de-characterized. For this purpose a methodology is chosen to simplify the study of rotational motions with great amplitude, for example free bodies in space, allowing an extension of the analysis to non-conservative systems. In the case of a satellite in space, the projection of the angular velocity along the principal axes of inertia must be known, defining completely the initial conditions of motion for stability investigations. In this paper, the coordinate systems are established according to the initial condition in order to allow a simple analytical work on the equations of motion. Also it will be proposed the definition of a parameter, calling it tumbling coefficient, to measure the intensity of the tumbling and the amplitude of the motion when crossing limits of stability in the concept of Lyapunov. Tumbling in the motion of bodies in space is not possible when this coefficient is positive. Magnus Triangle representation will be used to represent the geometry of the body, establishing regions of stability/instability for possible initial conditions of motion. In the study of nonconservative systems for an oblate body, one sufficient condition will be enough to assure damped motion, and this condition is checked for a motion damped by viscous torques. This paper seeks to highlight the physical understanding of the phenomena and the influence of various parameters that are important in the process.
Nonlinearity and disorder: Classification and stability of nonlinear impurity modes
DEFF Research Database (Denmark)
Sukhorukov, Andrey A.; Kivshar, Yuri S.; Bang, Ole
2001-01-01
We study the effects produced by competition of two physical mechanisms of energy localization in inhomogeneous nonlinear systems. As an example, we analyze spatially localized modes supported by a nonlinear impurity in the generalized nonlinear Schrödinger equation and describe three types of no...
Directory of Open Access Journals (Sweden)
Mingzhu Song
2016-01-01
Full Text Available We address the problem of globally asymptotic stability for a class of stochastic nonlinear systems with time-varying delays. By the backstepping method and Lyapunov theory, we design a linear output feedback controller recursively based on the observable linearization for a class of stochastic nonlinear systems with time-varying delays to guarantee that the closed-loop system is globally asymptotically stable in probability. In particular, we extend the deterministic nonlinear system to stochastic nonlinear systems with time-varying delays. Finally, an example and its simulations are given to illustrate the theoretical results.
Two Kinds of Square-Conservative Integrators for Nonlinear Evolution Equations
International Nuclear Information System (INIS)
Jing-Bo, Chen; Hong, Liu
2008-01-01
Based on the Lie-group and Gauss–Legendre methods, two kinds of square-conservative integrators for square-conservative nonlinear evolution equations are presented. Lie-group based square-conservative integrators are linearly implicit, while Gauss–Legendre based square-conservative integrators are nonlinearly implicit and iterative schemes are needed to solve the corresponding integrators. These two kinds of integrators provide natural candidates for simulating square-conservative nonlinear evolution equations in the sense that these integrators not only preserve the square-conservative properties of the continuous equations but also are nonlinearly stable. Numerical experiments are performed to test the presented integrators
Does Dimensionality Reduction improve the Quality of Motion Interpolation?
Bitzer, Sebastian; Klanke, Stefan; Vijayakumar, Sethu
2009-01-01
In recent years nonlinear dimensionality reduction has frequently been suggested for the modelling of high-dimensional motion data. While it is intuitively plausible to use dimensionality reduction to recover low dimensional manifolds which compactly represent a given set of movements, there is a lack of critical investigation into the quality of resulting representations, in particular with respect to generalisability. Furthermore it is unclear how consistently particular m...
Directory of Open Access Journals (Sweden)
Khalis Suhaimi
2014-01-01
Full Text Available This paper concerns the mechanism for harvesting energy from human body motion. The vibration signal from human body motion during walking and jogging was first measured using 3-axes vibration recorder placed at various places on the human body. The measured signal was then processed using Fourier series to investigate its frequency content. A mechanism was proposed to harvest the energy from the low frequency-low amplitude human motion. This mechanism consists of the combined nonlinear hardening and softening mechanism which was aimed at widening the bandwidth as well as amplifying the low human motion frequency. This was realized by using a translation-to-rotary mechanism which converts the translation motion of the human motion into the rotational motion. The nonlinearity in the system was realized by introducing a winding spring stiffness and the magnetic stiffness. Quasi-static and dynamic measurement were conducted to investigate the performance of the mechanism. The results show that, with the right degree of nonlinearity, the two modes can be combined together to produce a wide flat response. For the frequency amplification, the mechanism manages to increase the frequency by around 8 times in terms of rotational speed.
Nonlinear Dynamics of Carbon Nanotubes Under Large Electrostatic Force
Xu, Tiantian
2015-06-01
Because of the inherent nonlinearities involving the behavior of CNTs when excited by electrostatic forces, modeling and simulating their behavior is challenging. The complicated form of the electrostatic force describing the interaction of their cylindrical shape, forming upper electrodes, to lower electrodes poises serious computational challenges. This presents an obstacle against applying and using several nonlinear dynamics tools typically used to analyze the behavior of complicated nonlinear systems undergoing large motion, such as shooting, continuation, and integrity analysis techniques. This works presents an attempt to resolve this issue. We present an investigation of the nonlinear dynamics of carbon nanotubes when actuated by large electrostatic forces. We study expanding the complicated form of the electrostatic force into enough number of terms of the Taylor series. Then, we utilize this form along with an Euler-Bernoulli beam model to study for the first time the dynamic behavior of CNTs when excited by large electrostatic force. The geometric nonlinearity and the nonlinear electrostatic force are considered. An efficient reduced-order model (ROM) based on the Galerkin method is developed and utilized to simulate the static and dynamic responses of the CNTs. Several results are generated demonstrating softening and hardening behavior of the CNTs near their primary and secondary resonances. The effects of the DC and AC voltage loads on the behavior have been studied. The impacts of the initial slack level and CNT diameter are also demonstrated.
NONLINEAR DYNAMICS OF CARBON NANOTUBES UNDER LARGE ELECTROSTATIC FORCE
Xu, Tiantian
2015-06-01
Because of the inherent nonlinearities involving the behavior of CNTs when excited by electrostatic forces, modeling and simulating their behavior is challenging. The complicated form of the electrostatic force describing the interaction of their cylindrical shape, forming upper electrodes, to lower electrodes poises serious computational challenges. This presents an obstacle against applying and using several nonlinear dynamics tools typically used to analyze the behavior of complicated nonlinear systems undergoing large motion, such as shooting, continuation, and integrity analysis techniques. This works presents an attempt to resolve this issue. We present an investigation of the nonlinear dynamics of carbon nanotubes when actuated by large electrostatic forces. We study expanding the complicated form of the electrostatic force into enough number of terms of the Taylor series. Then, we utilize this form along with an Euler-Bernoulli beam model to study for the first time the dynamic behavior of CNTs when excited by large electrostatic force. The geometric nonlinearity and the nonlinear electrostatic force are considered. An efficient reduced-order model (ROM) based on the Galerkin method is developed and utilized to simulate the static and dynamic responses of the CNTs. Several results are generated demonstrating softening and hardening behavior of the CNTs near their primary and secondary resonances. The effects of the DC and AC voltage loads on the behavior have been studied. The impacts of the initial slack level and CNT diameter are also demonstrated.
Nonlinear astrophysical dynamos: bifurcation of steady dynamos from oscillation dynamos
International Nuclear Information System (INIS)
Yoshimura, H.
1978-01-01
The nonlinear dynamo wave equation, which has been formulated to explore oscillating dynamos, is found also to have steady magnetic field condfigurations as its stable solutions. The solutions of the nonlinear wave equation, integrated numerically as the initial-boundary-value problem in the rotating spherical geometry, eventually bifurcate into a stationary oscillating state and a stationary steady state, depending on the initial condition adopted in the integration. Both states are stable with respect to small perturbations. In the steady-state solutions, the magnetic configuration is that of a helical tube so that the dynamo process, being controlled by the nonlinear process, adjusts itself to be exactly balanced with the diffusion process. The relative sensitivity of the bifurcation of the system depends on the structure of the dynamo system and the strength of the nonlinear process. We suggest that the magnetic fields of the Earth and planets, and the fields of non--solar-type magnetic stars, especially stars classified as oblique rotators, can be understood as special stationary solutions of the nonlinear dynamo wave equation, which can also have oscilating solutions. Thus the field reversal of so-called steady dynamos can be understood naturally as the transition governed by the wave nature of the equation between the two stationary states when some change occurs temporarily in the dynamics of the dynamos
Linear Algebraic Method for Non-Linear Map Analysis
International Nuclear Information System (INIS)
Yu, L.; Nash, B.
2009-01-01
We present a newly developed method to analyze some non-linear dynamics problems such as the Henon map using a matrix analysis method from linear algebra. Choosing the Henon map as an example, we analyze the spectral structure, the tune-amplitude dependence, the variation of tune and amplitude during the particle motion, etc., using the method of Jordan decomposition which is widely used in conventional linear algebra.
Carpenter, Mark H.; Fisher, Travis C.; Nielsen, Eric J.; Frankel, Steven H.
2013-01-01
Nonlinear entropy stability and a summation-by-parts framework are used to derive provably stable, polynomial-based spectral collocation methods of arbitrary order. The new methods are closely related to discontinuous Galerkin spectral collocation methods commonly known as DGFEM, but exhibit a more general entropy stability property. Although the new schemes are applicable to a broad class of linear and nonlinear conservation laws, emphasis herein is placed on the entropy stability of the compressible Navier-Stokes equations.
Output-only identification of civil structures using nonlinear finite element model updating
Ebrahimian, Hamed; Astroza, Rodrigo; Conte, Joel P.
2015-03-01
This paper presents a novel approach for output-only nonlinear system identification of structures using data recorded during earthquake events. In this approach, state-of-the-art nonlinear structural FE modeling and analysis techniques are combined with Bayesian Inference method to estimate (i) time-invariant parameters governing the nonlinear hysteretic material constitutive models used in the FE model of the structure, and (ii) the time history of the earthquake ground motion. To validate the performance of the proposed framework, the simulated responses of a bridge pier to an earthquake ground motion is polluted with artificial output measurement noise and used to jointly estimate the unknown material parameters and the time history of the earthquake ground motion. This proof-of-concept example illustrates the successful performance of the proposed approach even in the presence of high measurement noise.
Energy Technology Data Exchange (ETDEWEB)
Boynton, J.A. [SAE, Warrendale, PA (United States)
1994-12-31
A World in Motion is a physical science curriculum supplement for grades four, five, and six which responds to the need to promote and teach sound science and mathematics concepts. Using the A World in Motion kits, teachers work in partnership with practicing engineer or scientists volunteers to provide students with fun, exciting, and relevant hands-on science and math experiences. During the A World in Motion experience, students work together in {open_quotes}Engineering Design Teams{close_quotes} exploring physics concepts through a series of activities. Each student is assigned a role as either a facilities engineer, development engineer, test engineer, or project engineer and is given responsibilities paralleling those of engineers in industry. The program culminates in a {open_quotes}Design Review{close_quotes} where students can communicate their results, demonstrate their designs, and receive recognition for their efforts. They are given a chance to take on responsibility and build self-esteem. Since January 1991, over 12,000 volunteers engineers have been involved with the program, with a distribution of 20,000 A World in Motion kit throughout the U.S. and Canada.
DEFF Research Database (Denmark)
Vorup, Jacob; Seidelin, Kåre
Med denne "opskriftsbog" er I nu klar til at begynde med MotionsFloorball. Ingen vellykket middagsret tilbereder som bekendt sig selv - de vigtigste ingredienser til et succesfuldt forløb er vilje og handlingskraft. Tilsættes værktøjerne og vidensdelen fra denne bog, er der dog ikke langt fra tanke...
Malykin, G. B.; Romanets, E. A.
2012-06-01
Prior to the development of Special Relativity, no restrictions were imposed on the velocity of the motion of particles and material bodies, as well as on energy transfer and signal propagation. At the end of the 19th century and the beginning of the 20th century, it was shown that a charge that moves at a velocity faster than the speed of light in an optical medium, in particular, in vacuum, gives rise to impact radiation, which later was termed the Vavilov-Cherenkov radiation. Shortly after the development of Special Relativity, some researchers considered the possibility of superluminal motion. In 1923, the Soviet physicist L.Ya. Strum suggested the existence of tachyons, which, however, have not been discovered yet. Superluminal motions can occur only for images, e.g., for so-called "light spots," which were considered in 1972 by V.L. Ginzburg and B.M. Bolotovskii. These spots can move with a superluminal phase velocity but are incapable of transferring energy and information. Nevertheless, these light spots may induce quite real generation of microwave radiation in closed waveguides and create the Vavilov-Cherenkov radiation in vacuum. In this work, we consider various paradoxes, illusions, and artifacts associated with superluminal motion.
Gluck, P.; Krakower, Zeev
2010-01-01
We present a unit comprising theory, simulation and experiment for a body oscillating on a vertical spring, in which the simultaneous use of a force probe and an ultrasonic range finder enables one to explore quantitatively and understand many aspects of simple and damped harmonic motions. (Contains 14 figures.)
Algebraic Description of Motion
Davidon, William C.
1974-01-01
An algebraic definition of time differentiation is presented and used to relate independent measurements of position and velocity. With this, students can grasp certain essential physical, geometric, and algebraic properties of motion and differentiation before undertaking the study of limits. (Author)
On nonlinear Fourier transform: towards the nonlinear superposition
Saksida, Pavle
2017-01-01
In the paper we consider the nonlinear Fourier transform associated to the AKNSZS systems. In particular, we discuss the construction of the nonlinear Fourier modes of this transform by means of a perturbation scheme. The linearization of the AKNS-ZS nonlinear Fourier transform is the usual, linear Fourier transform and the linearization of a nonlinear Fourier mode of frequency d is the linear Fourier mode of the same frequency. We show that the first non-trivial term in the perturbation expression of any nonlinear Fourier mode is given by the dilogarithm function.
Nonlinearity, Conservation Law and Shocks
Indian Academy of Sciences (India)
Nonlinearity, Conservation Law and Shocks. Part I : Genuine Nonlinearity and Discontinuous Solutions. Phoolan Prasad is with the. Department of. Mathematics, Indian. Institute of Science and has been working in the area of nonlinear waves and hyperbolic partial differential equations. He is deeply interested in.
Terahertz Nonlinear Optics in Semiconductors
DEFF Research Database (Denmark)
Turchinovich, Dmitry; Hvam, Jørn Märcher; Hoffmann, Matthias C.
2013-01-01
We demonstrate the nonlinear optical effects – selfphase modulation and saturable absorption of a single-cycle THz pulse in a semiconductor. Resulting from THz-induced modulation of Drude plasma, these nonlinear optical effects, in particular, lead to self-shortening and nonlinear spectral...... breathing of a single-cycle THz pulse in a semiconductor....
FRF decoupling of nonlinear systems
Kalaycıoğlu, Taner; Özgüven, H. Nevzat
2018-03-01
Structural decoupling problem, i.e. predicting dynamic behavior of a particular substructure from the knowledge of the dynamics of the coupled structure and the other substructure, has been well investigated for three decades and led to several decoupling methods. In spite of the inherent nonlinearities in a structural system in various forms such as clearances, friction and nonlinear stiffness, all decoupling studies are for linear systems. In this study, decoupling problem for nonlinear systems is addressed for the first time. A method, named as FRF Decoupling Method for Nonlinear Systems (FDM-NS), is proposed for calculating FRFs of a substructure decoupled from a coupled nonlinear structure where nonlinearity can be modeled as a single nonlinear element. Depending on where nonlinear element is, i.e., either in the known or unknown subsystem, or at the connection point, the formulation differs. The method requires relative displacement information between two end points of the nonlinear element, in addition to point and transfer FRFs at some points of the known subsystem. However, it is not necessary to excite the system from the unknown subsystem even when the nonlinear element is in that subsystem. The validation of FDM-NS is demonstrated with two different case studies using nonlinear lumped parameter systems. Finally, a nonlinear experimental test structure is used in order to show the real-life application and accuracy of FDM-NS.
Fault Detection for Nonlinear Systems
DEFF Research Database (Denmark)
Stoustrup, Jakob; Niemann, H.H.
1998-01-01
The paper describes a general method for designing fault detection and isolation (FDI) systems for nonlinear processes. For a rich class of nonlinear systems, a nonlinear FDI system can be designed using convex optimization procedures. The proposed method is a natural extension of methods based o...
H∞ control for path tracking of autonomous underwater vehicle motion
Directory of Open Access Journals (Sweden)
Lin-Lin Wang
2015-05-01
Full Text Available In order to simplify the design of path tracking controller and solve the problem relating to nonlinear dynamic model of autonomous underwater vehicle motion planning, feedback linearization method is first adopted to transform the nonlinear dynamic model into an equivalent pseudo-linear dynamic model in horizontal coordinates. Then considering wave disturbance effect, mixed-sensitivity method of H∞ robust control is applied to design state-feedback controller for this equivalent dynamic model. Finally, control law of pseudo-linear dynamic model is transformed into state (surge velocity and yaw angular rate tracking control law of nonlinear dynamic model through inverse coordinate transformation. Simulation indicates that autonomous underwater vehicle path tracking is successfully implemented with this proposed method, and the influence of parameter variation in autonomous underwater vehicle dynamic model on its tracking performance is reduced by H∞ controller. All the results show that the method proposed in this article is effective and feasible.
Gustafson, Jonathan A.; Robinson, Megan E.; Fitzgerald, G. Kelley; Tashman, Scott; Farrokhi, Shawn
2015-01-01
Background Knee osteoarthritis has been previously associated with a stereotypical knee-stiffening gait pattern and reduced knee joint motion variability due to increased antagonist muscle co-contractions and smaller utilized arc of motion during gait. However, episodic self-reported instability may be a sign of excessive motion variability for a large subgroup of patients with knee osteoarthritis. The objective of this work was to evaluate the differences in knee joint motion variability during gait in patients with knee osteoarthritis with and without self-reported instability compared to a control group of older adults with asymptomatic knees. Methods Forty-three subjects, 8 with knee osteoarthritis but no reports of instability (stable), 11 with knee osteoarthritis and self-reported instability (unstable), and 24 without knee osteoarthritis or instability (control) underwent Dynamic Stereo X-ray analysis during a decline gait task on a treadmill. Knee motion variability was assessed using parametric phase plots during the loading response phase of decline gait. Findings The stable group demonstrated decreased sagittal-plane motion variability compared to the control group (p=0.04), while the unstable group demonstrated increased sagittal-plane motion variability compared to the control (p=0.003) and stable groups (pknee motion variability in patients with knee osteoarthritis without self-reported instability supports previous research. However, presence of self-reported instability is associated with increased knee motion variability in patients with knee osteoarthritis and warrants further investigation. PMID:25796536
Chaotic synchronization of two complex nonlinear oscillators
Energy Technology Data Exchange (ETDEWEB)
Mahmoud, Gamal M. [Department of Mathematics, Faculty of Science, Assiut University, Assiut 71516 (Egypt)], E-mail: gmahmoud@aun.edu.eg; Mahmoud, Emad E. [Department of Mathematics, Faculty of Science, Sohag University (Egypt)], E-mail: emad_eluan@yahoo.com; Farghaly, Ahmed A. [Department of Mathematics, Faculty of Science, Assiut University, Assiut 71516 (Egypt)], E-mail: ahmed_1_66@yahoo.com; Aly, Shaban A. [Department of Mathematics, Faculty of Science, Al-Azhar University, Assiut 71511 (Egypt)], E-mail: shhaly12@yahoo.com
2009-12-15
Synchronization is an important phenomenon commonly observed in nature. It is also often artificially induced because it is desirable for a variety of applications in physics, applied sciences and engineering. In a recent paper [Mahmoud GM, Mohamed AA, Aly SA. Strange attractors and chaos control in periodically forced complex Duffing's oscillators. Physica A 2001;292:193-206], a system of periodically forced complex Duffing's oscillators was introduced and shown to display chaotic behavior and possess strange attractors. Such complex oscillators appear in many problems of physics and engineering, as, for example, nonlinear optics, deep-water wave theory, plasma physics and bimolecular dynamics. Their connection to solutions of the nonlinear Schroedinger equation has also been pointed out. In this paper, we study the remarkable phenomenon of chaotic synchronization on these oscillator systems, using active control and global synchronization techniques. We derive analytical expressions for control functions and show that the dynamics of error evolution is globally stable, by constructing appropriate Lyapunov functions. This means that, for a relatively large set initial conditions, the differences between the drive and response systems vanish exponentially and synchronization is achieved. Numerical results are obtained to test the validity of the analytical expressions and illustrate the efficiency of these techniques for inducing chaos synchronization in our nonlinear oscillators.
Chaotic synchronization of two complex nonlinear oscillators
International Nuclear Information System (INIS)
Mahmoud, Gamal M.; Mahmoud, Emad E.; Farghaly, Ahmed A.; Aly, Shaban A.
2009-01-01
Synchronization is an important phenomenon commonly observed in nature. It is also often artificially induced because it is desirable for a variety of applications in physics, applied sciences and engineering. In a recent paper [Mahmoud GM, Mohamed AA, Aly SA. Strange attractors and chaos control in periodically forced complex Duffing's oscillators. Physica A 2001;292:193-206], a system of periodically forced complex Duffing's oscillators was introduced and shown to display chaotic behavior and possess strange attractors. Such complex oscillators appear in many problems of physics and engineering, as, for example, nonlinear optics, deep-water wave theory, plasma physics and bimolecular dynamics. Their connection to solutions of the nonlinear Schroedinger equation has also been pointed out. In this paper, we study the remarkable phenomenon of chaotic synchronization on these oscillator systems, using active control and global synchronization techniques. We derive analytical expressions for control functions and show that the dynamics of error evolution is globally stable, by constructing appropriate Lyapunov functions. This means that, for a relatively large set initial conditions, the differences between the drive and response systems vanish exponentially and synchronization is achieved. Numerical results are obtained to test the validity of the analytical expressions and illustrate the efficiency of these techniques for inducing chaos synchronization in our nonlinear oscillators.
Stable solitons of quadratic ginzburg-landau equations
Crasovan; Malomed; Mihalache; Mazilu; Lederer
2000-07-01
We present a physical model based on coupled Ginzburg-Landau equations that supports stable temporal solitary-wave pulses. The system consists of two parallel-coupled cores, one having a quadratic nonlinearity, the other one being effectively linear. The former core is active, with bandwidth-limited amplification built into it, while the latter core has only losses. Parameters of the model can be easily selected so that the zero background is stable. The model has nongeneric exact analytical solutions in the form of solitary pulses ("dissipative solitons"). Direct numerical simulations, using these exact solutions as initial configurations, show that they are unstable; however, the evolution initiated by the exact unstable solitons ends up with nontrivial stable localized pulses, which are very robust attractors. Direct simulations also demonstrate that the presence of group-velocity mismatch (walkoff) between the two harmonics in the active core makes the pulses move at a constant velocity, but does not destabilize them.
A practical nonlinear robust control approach of electro-hydraulic load simulator
Directory of Open Access Journals (Sweden)
Wang Chengwen
2014-06-01
Full Text Available This paper studies a nonlinear robust control algorithm of the electro-hydraulic load simulator (EHLS. The tracking performance of the EHLS is mainly limited by the actuator’s motion disturbance, flow nonlinearity, and friction, etc. The developed controller is developed based on the nonlinear motion loading model. The problems of the actuator’s disturbance and flow nonlinearity are considered. To address the friction problem, the friction model of the loading motor is identified experimentally. The friction disturbance is compensated using the obtained friction model. Therefore, this paper considers the main three factors comprehensively. The developed algorithm is easy to apply since the controller can be obtained just with one step back-stepping design. The stability of the developed algorithm is proven via Lyapunov analysis. Both co-simulation and experiments are performed to verify the effectiveness of this method.
Success Stories in Control: Nonlinear Dynamic Inversion Control
Bosworth, John T.
2010-01-01
NASA plays an important role in advancing the state of the art in flight control systems. In the case of Nonlinear Dynamic Inversion (NDI) NASA supported initial implementation of the theory in an aircraft and demonstration in a space vehicle. Dr. Dale Enns of Honeywell Aerospace Advanced Technology performed this work in cooperation with NASA and under NASA contract. Honeywell and Lockheed Martin were subsequently contracted by AFRL to create "Design Guidelines for Multivariable Control Theory". This foundational work directly contributed to the advancement of the technology and the credibility of the control law as a design option. As a result Honeywell collaborated with Lockheed Martin to produce a Nonlinear Dynamic Inversion controller for the X-35 and subsequently Lockheed Martin did the same for the production Lockheed Martin F-35 vehicle. The theory behind NDI is to use a systematic generalized approach to controlling a vehicle. Using general aircraft nonlinear equations of motion and onboard aerodynamic, mass properties, and engine models specific to the vehicle, a relationship between control effectors and desired aircraft motion can be formulated. Using this formulation a control combination is used that provides a predictable response to commanded motion. Control loops around this formulation shape the response as desired and provide robustness to modeling errors. Once the control law is designed it can be used on a similar class of vehicle with only an update to the vehicle specific onboard models.
Nonlinear Schrödinger equations with single power nonlinearity and harmonic potential
Cipolatti, R.; de Macedo Lira, Y.; Trallero-Giner, C.
2018-03-01
We consider a generalized nonlinear Schrödinger equation (GNLS) with a single power nonlinearity of the form λ ≤ft\\vert \\varphi \\right\\vert p , with p > 0 and λ\\in{R} , in the presence of a harmonic confinement. We report the conditions that p and λ must fulfill for the existence and uniqueness of ground states of the GNLS. We discuss the Cauchy problem and summarize which conditions are required for the nonlinear term λ ≤ft\\vert \\varphi \\right\\vert p to render the ground state solutions orbitally stable. Based on a new variational method we provide exact formulæ for the minimum energy for each index p and the changing range of values of the nonlinear parameter λ. Also, we report an approximate close analytical expression for the ground state energy, performing a comparative analysis of the present variational calculations with those obtained by a generalized Thomas-Fermi approach, and soliton solutions for the respective ranges of p and λ where these solutions can be implemented to describe the minimum energy.
Crossing a Nonlinear Resonance
Indian Academy of Sciences (India)
IAS Admin
transformation two independent variables must go over to two other independent variables. Calling θ as the angle vaiable, and J as action, we have a new set of variables. We see that the transformed Hamiltonian, H is independent of the angle variable. With this Hamil- tonian as a function of θ, J, the equations of motion are.
Subramanian, Aneesh C.
2012-11-01
This paper investigates the role of the linear analysis step of the ensemble Kalman filters (EnKF) in disrupting the balanced dynamics in a simple atmospheric model and compares it to a fully nonlinear particle-based filter (PF). The filters have a very similar forecast step but the analysis step of the PF solves the full Bayesian filtering problem while the EnKF analysis only applies to Gaussian distributions. The EnKF is compared to two flavors of the particle filter with different sampling strategies, the sequential importance resampling filter (SIRF) and the sequential kernel resampling filter (SKRF). The model admits a chaotic vortical mode coupled to a comparatively fast gravity wave mode. It can also be configured either to evolve on a so-called slow manifold, where the fast motion is suppressed, or such that the fast-varying variables are diagnosed from the slow-varying variables as slaved modes. Identical twin experiments show that EnKF and PF capture the variables on the slow manifold well as the dynamics is very stable. PFs, especially the SKRF, capture slaved modes better than the EnKF, implying that a full Bayesian analysis estimates the nonlinear model variables better. The PFs perform significantly better in the fully coupled nonlinear model where fast and slow variables modulate each other. This suggests that the analysis step in the PFs maintains the balance in both variables much better than the EnKF. It is also shown that increasing the ensemble size generally improves the performance of the PFs but has less impact on the EnKF after a sufficient number of members have been used.
Signatures of Nonlinear Cavity Optomechanics in the Weak Coupling Regime
Børkje, K.; Nunnenkamp, A.; Teufel, J. D.; Girvin, S. M.
2013-08-01
We identify signatures of the intrinsic nonlinear interaction between light and mechanical motion in cavity optomechanical systems. These signatures are observable even when the cavity linewidth exceeds the optomechanical coupling rate. A strong laser drive red detuned by twice the mechanical frequency from the cavity resonance frequency makes two-phonon processes resonant, which leads to a nonlinear version of optomechanically induced transparency. This effect provides a new method of measuring the average phonon number of the mechanical oscillator. Furthermore, we show that if the strong laser drive is detuned by half the mechanical frequency, optomechanically induced transparency also occurs due to resonant two-photon processes. The cavity response to a second probe drive is in this case nonlinear in the probe power. These effects should be observable with optomechanical coupling strengths that have already been realized in experiments.
Nonlinear Waves and Solitons on Contours and Closed Surfaces
Ludu, Andrei
2007-01-01
The present volume is an introduction to nonlinear waves and soliton theory in the special environment of compact spaces such a closed curves and surfaces and other domain contours. It assumes familiarity with basic soliton theory and nonlinear dynamical systems. The first part of the book introduces the mathematical concept required for treating the manifolds considered. Emphasis on the relevant notions from topology and differential geometry. An introduction to the theory of motion of curves and surfaces - as part of the emerging field of contour dynamics - is given. The second and third parts discuss the modeling of various physical solitons on compact systems, such as filaments, loops and drops made of almost incompressible materials thereby intersecting with a large number of physical disciplines from hydrodynamics to compact object astrophysics. Nonlinear Waves and Solitons on Contours and Closed Surfaces provides graduate students and researchers in mathematics, physics and engineering with a ready tut...
A propagation model of computer virus with nonlinear vaccination probability
Gan, Chenquan; Yang, Xiaofan; Liu, Wanping; Zhu, Qingyi
2014-01-01
This paper is intended to examine the effect of vaccination on the spread of computer viruses. For that purpose, a novel computer virus propagation model, which incorporates a nonlinear vaccination probability, is proposed. A qualitative analysis of this model reveals that, depending on the value of the basic reproduction number, either the virus-free equilibrium or the viral equilibrium is globally asymptotically stable. The results of simulation experiments not only demonstrate the validity of our model, but also show the effectiveness of nonlinear vaccination strategies. Through parameter analysis, some effective strategies for eradicating viruses are suggested.
Nonlinearly driven oscillations in the gyrotron traveling-wave amplifier
International Nuclear Information System (INIS)
Chiu, C. C.; Pao, K. F.; Yan, Y. C.; Chu, K. R.; Barnett, L. R.; Luhmann, N. C. Jr.
2008-01-01
By delivering unprecedented power and gain, the gyrotron traveling-wave amplifier (gyro-TWT) offers great promise for advanced millimeter wave radars. However, the underlying physics of this complex nonlinear system is yet to be fully elucidated. Here, we report a new phenomenon in the form of nonlinearly driven oscillations. A zero-drive stable gyro-TWT is shown to be susceptible to a considerably reduced dynamic range at the band edge, followed by a sudden transition into driven oscillations and then a hysteresis effect. An analysis of this unexpected behavior and its physical interpretation are presented.
Three religious rules of nonlinear physics
International Nuclear Information System (INIS)
Yankov, V.V.
1993-01-01
The theory of strong turbulence is a part of nonlinear physics. The three open-quotes religious rulesclose quotes of nonlinear physics present a heuristic viewpoint that can be used to qualitatively predict the evolution of nonlinear systems. These rules are as follows. (1) The basic results can be obtained from the conservation laws. If some kind of process is not forbidden by these laws, it generally occurs. If it doesn't this means that another conserved quantity imposing the constraint is being missed. (2) The universal law of open-quotes 20/80close quotes takes place: 20% of people drink 80% of beer. In other words, interesting processes usually take place in localized structures occupying a small share of volume. The localized structures interact weakly and therefore maintain their identity. For this reason they are universal and can be investigated. (3) The open-quotes general situationclose quotes is nonintegrable. The special case of exact solutions in integrable models represent a degenerate (nontypical) behavior. Particular exact solutions cannot be taken as representative solutions unless they are attractors. The presence of attractors simplifies the analysis and clarifies the situation. In plasma physics one deals with infinite-dimensional (PDE) systems distributed in space. The application of the religious rules 1 and 2 then leads to the following. If the conservation laws do not prohibit the development of singularities they do occur. If the singularities are prohibited, then stable localized structures take place. Solitons (or solitary waves) and vortices are examples of such stable structures. Wave collapse, wave-breaking, shock waves, magnetic reconnection and singularities in ideal Euler liquid are the examples of singularities. According to rule 3, exact solutions are very essential if they are attractors in some sense. Analysis of this problem is presented for solitons in nonintegrable wave systems and 2D vortices
Dynamical attraction to stable processes
Fisher, Albert M.; Talet, Marina
2012-01-01
We apply dynamical ideas within probability theory, proving an almost-sure invariance principle in log density for stable processes. The familiar scaling property (self-similarity) of the stable process has a stronger expression, that the scaling flow on Skorokhod path space is a Bernoulli flow. We prove that typical paths of a random walk with i.i.d. increments in the domain of attraction of a stable law can be paired with paths of a stable process so that, after applying a non-random regula...
Nonlinear differential equations
Energy Technology Data Exchange (ETDEWEB)
Dresner, L.
1988-01-01
This report is the text of a graduate course on nonlinear differential equations given by the author at the University of Wisconsin-Madison during the summer of 1987. The topics covered are: direction fields of first-order differential equations; the Lie (group) theory of ordinary differential equations; similarity solutions of second-order partial differential equations; maximum principles and differential inequalities; monotone operators and iteration; complementary variational principles; and stability of numerical methods. The report should be of interest to graduate students, faculty, and practicing scientists and engineers. No prior knowledge is required beyond a good working knowledge of the calculus. The emphasis is on practical results. Most of the illustrative examples are taken from the fields of nonlinear diffusion, heat and mass transfer, applied superconductivity, and helium cryogenics.
Nonlinear terahertz superconducting plasmonics
Energy Technology Data Exchange (ETDEWEB)
Wu, Jingbo; Liang, Lanju; Jin, Biaobing, E-mail: bbjin@nju.edu.cn, E-mail: tonouchi@ile.osaka-u.ac.jp, E-mail: phwu@nju.edu.cn; Kang, Lin; Xu, Weiwei; Chen, Jian; Wu, Peiheng, E-mail: bbjin@nju.edu.cn, E-mail: tonouchi@ile.osaka-u.ac.jp, E-mail: phwu@nju.edu.cn [Research Institute of Superconductor Electronics (RISE), School of Electronic Science and Engineering, Nanjing University, Nanjing 210093 (China); Zhang, Caihong; Kawayama, Iwao; Murakami, Hironaru; Tonouchi, Masayoshi, E-mail: bbjin@nju.edu.cn, E-mail: tonouchi@ile.osaka-u.ac.jp, E-mail: phwu@nju.edu.cn [Institute of Laser Engineering, Osaka University, 2-6 Yamadaoka, Suita, Osaka 565-0871 (Japan); Wang, Huabing [Research Institute of Superconductor Electronics (RISE), School of Electronic Science and Engineering, Nanjing University, Nanjing 210093 (China); National Institute for Materials Science, Tsukuba 305-0047 (Japan)
2014-10-20
Nonlinear terahertz (THz) transmission through subwavelength hole array in superconducting niobium nitride (NbN) film is experimentally investigated using intense THz pulses. The good agreement between the measurement and numerical simulations indicates that the field strength dependent transmission mainly arises from the nonlinear properties of the superconducting film. Under weak THz pulses, the transmission peak can be tuned over a frequency range of 145 GHz which is attributed to the high kinetic inductance of 50 nm-thick NbN film. Utilizing the THz pump-THz probe spectroscopy, we study the dynamic process of transmission spectra and demonstrate that the transition time of such superconducting plasmonic device is within 5 ps.
Essentials of nonlinear optics
Murti, Y V G S
2014-01-01
Current literature on Nonlinear Optics varies widely in terms of content, style, and coverage of specific topics, relative emphasis of areas and the depth of treatment. While most of these books are excellent resources for the researchers, there is a strong need for books appropriate for presenting the subject at the undergraduate or postgraduate levels in Universities. The need for such a book to serve as a textbook at the level of the bachelors and masters courses was felt by the authors while teaching courses on nonlinear optics to students of both science and engineering during the past two decades. This book has emerged from an attempt to address the requirement of presenting the subject at college level. A one-semester course covering the essentials can effectively be designed based on this.
Van Leeuwen, Peter Jan; Reich, Sebastian
2015-01-01
This book contains two review articles on nonlinear data assimilation that deal with closely related topics but were written and can be read independently. Both contributions focus on so-called particle filters. The first contribution by Jan van Leeuwen focuses on the potential of proposal densities. It discusses the issues with present-day particle filters and explorers new ideas for proposal densities to solve them, converging to particle filters that work well in systems of any dimension, closing the contribution with a high-dimensional example. The second contribution by Cheng and Reich discusses a unified framework for ensemble-transform particle filters. This allows one to bridge successful ensemble Kalman filters with fully nonlinear particle filters, and allows a proper introduction of localization in particle filters, which has been lacking up to now.
Nonlinear Photonics 2014: introduction.
Akhmediev, N; Kartashov, Yaroslav
2015-01-12
International Conference "Nonlinear Photonics-2014" took place in Barcelona, Spain on July 27-31, 2014. It was a part of the "Advanced Photonics Congress" which is becoming a traditional notable event in the world of photonics. The current focus issue of Optics Express contains contributions from the participants of the Conference and the Congress. The articles in this focus issue by no means represent the total number of the congress contributions (around 400). However, it demonstrates wide range of topics covered at the event. The next conference of this series is to be held in 2016 in Australia, which is the home of many researchers working in the field of photonics in general and nonlinear photonics in particular.
Nonlinear chiral transport phenomena
Chen, Jiunn-Wei; Ishii, Takeaki; Pu, Shi; Yamamoto, Naoki
2016-06-01
We study the nonlinear responses of relativistic chiral matter to the external fields such as the electric field E , gradients of temperature and chemical potential, ∇T and ∇μ . Using the kinetic theory with Berry curvature corrections under the relaxation time approximation, we compute the transport coefficients of possible new electric currents that are forbidden in usual chirally symmetric matter but are allowed in chirally asymmetric matter by parity. In particular, we find a new type of electric current proportional to ∇μ ×E due to the interplay between the effects of the Berry curvature and collisions. We also derive an analog of the "Wiedemann-Franz" law specific for anomalous nonlinear transport in relativistic chiral matter.
Linear and nonlinear quantum Zeno and anti-Zeno effects in a nonlinear optical coupler
Thapliyal, Kishore; Pathak, Anirban; Peřina, Jan
2016-02-01
Quantum Zeno and anti-Zeno effects are studied in a symmetric nonlinear optical coupler, which is composed of two nonlinear (χ(2 )) waveguides that are interacting with each other via the evanescent waves. Both waveguides operate under second harmonic generation. However, to study quantum Zeno and anti-Zeno effects one of them is considered as the system and the other one is considered as the probe. Considering all the fields involved as weak, a completely quantum mechanical description is provided, and the analytic solutions of Heisenberg's equations of motion for all the field modes are obtained using a perturbative technique. Photon number statistics of the second harmonic mode of the system is shown to depend on the presence of the probe, and this dependence is considered as quantum Zeno and anti-Zeno effects. Further, it is established that as a special case of the momentum operator for χ(2 )-χ(2 ) symmetric coupler we can obtain momentum operator of χ(2 )-χ(1 ) asymmetric coupler with linear (χ(1 )) waveguide as the probe, and, in such a particular case, the expressions obtained for Zeno and anti-Zeno effects with nonlinear probe (which we referred to as nonlinear quantum Zeno and anti-Zeno effects) may be reduced to the corresponding expressions with linear probe (which we referred to as the linear quantum Zeno and anti-Zeno effects). Linear and nonlinear quantum Zeno and anti-Zeno effects are rigorously investigated, and it is established that, in the stimulated case, we may switch between quantum Zeno and anti-Zeno effects just by controlling the phase of the second harmonic mode of the system or probe.
Recent advance in nonlinear aeroelastic analysis and control of the aircraft
Directory of Open Access Journals (Sweden)
Xiang Jinwu
2014-02-01
Full Text Available A review on the recent advance in nonlinear aeroelasticity of the aircraft is presented in this paper. The nonlinear aeroelastic problems are divided into three types based on different research objects, namely the two dimensional airfoil, the wing, and the full aircraft. Different nonlinearities encountered in aeroelastic systems are discussed firstly, where the emphases is placed on new nonlinear model to describe tested nonlinear relationship. Research techniques, especially new theoretical methods and aeroelastic flutter control methods are investigated in detail. The route to chaos and the cause of chaotic motion of two-dimensional aeroelastic system are summarized. Various structural modeling methods for the high-aspect-ratio wing with geometric nonlinearity are discussed. Accordingly, aerodynamic modeling approaches have been developed for the aeroelastic modeling of nonlinear high-aspect-ratio wings. Nonlinear aeroelasticity about high-altitude long-endurance (HALE and fight aircrafts are studied separately. Finally, conclusions and the challenges of the development in nonlinear aeroelasticity are concluded. Nonlinear aeroelastic problems of morphing wing, energy harvesting, and flapping aircrafts are proposed as new directions in the future.
The forced nonlinear Schroedinger equation
International Nuclear Information System (INIS)
Kaup, D.J.; Hansen, P.J.
1985-01-01
The nonlinear Schroedinger equation describes the behaviour of a radio frequency wave in the ionosphere near the reflexion point where nonlinear processes are important. A simple model of this phenomenon leads to the forced nonlinear Schroedinger equation in terms of a nonlinear boundary value problem. A WKB analysis of the time evolution equations for the nonlinear Schroedinger equation in the inverse scattering transform formalism gives a crude order of magnitude estimation of the qualitative behaviour of the solutions. This estimation is compared with the numerical solutions. (D.Gy.)
Damped nonlinear Schrodinger equation
International Nuclear Information System (INIS)
Nicholson, D.R.; Goldman, M.V.
1976-01-01
High frequency electrostatic plasma oscillations described by the nonlinear Schrodinger equation in the presence of damping, collisional or Landau, are considered. At early times, Landau damping of an initial soliton profile results in a broader, but smaller amplitude soliton, while collisional damping reduces the soliton size everywhere; soliton speeds at early times are unchanged by either kind of damping. For collisional damping, soliton speeds are unchanged for all time
Adaptive sliding mode control on inner axis for high precision flight motion simulator
Fu, Yongling; Niu, Jianjun; Wang, Yan
2008-10-01
Discrete adaptive sliding mode control (ASMC) with exponential reaching law is proposed to alleviate the influence of the factors such as the periodical fluctuation torque of motor, nonlinear friction, and other disturbance which will deteriorate the tracking performance of a DC torque motor driven inner axis for a high precision flight motion simulator, considering the limited compensating ability of the ASMC for these uncertainty, an equivalent friction advance compensator based on Stribeck model is also presented for extra-low speed servo of the system. Firstly, the way direct using the available parts of the inner axis itself to ascertain the parameters for Stribeck model is listed. Secondly, adaptive approach is used to overcome the difficulty of choice the key parameter for exponential reaching law, and the stability of the algorithm is analyzed. Lastly, comparable experiments are carried out to verify the valid of the combined approach. The experiments results show with a stable 0.00006°/s speed response, 95% of time the tracking error is within 0.0002°, other servos such as sine wave tracking are also with high precision.
Flexible body dynamics in a local frame with explicitly predicted motion
DEFF Research Database (Denmark)
Kawamoto, A.; Krenk, Steen; Suzuki, A.
2010-01-01
This paper deals with formulation of dynamics of a moving flexible body in a local frame of reference. In a conventional approach the local frame is normally fixed to the corresponding body and always represents the positions and angles of the body: the positions and angles are represented...... of motion extremely complicated. This is because the representation of the rotation of a body is highly non-linear and this non-linearity makes the coefficient matrices dependent on the coordinates themselves. In this paper, we propose an alternative way of treating the issue by explicitly predicting...... the body motions and regularly updating the local frame. First, the motion of the local frame is assumed to explicitly follow the associated moving body. Then, the equations of motion are derived in a set of generalized coordinates that express both rigid-body and elastic degrees of freedom in the local...
Effect of Ground Motion Directionality on Fragility Characteristics of a Highway Bridge
Directory of Open Access Journals (Sweden)
Swagata Banerjee Basu
2011-01-01
Full Text Available It is difficult to incorporate multidimensional effect of the ground motion in the design and response analysis of structures. The motion trajectory in the corresponding multi-dimensional space results in time variant principal axes of the motion and defies any meaningful definition of directionality of the motion. However, it is desirable to consider the directionality of the ground motion in assessing the seismic damageability of bridges which are one of the most vulnerable components of highway transportation systems. This paper presents a practice-oriented procedure in which the structure can be designed to ensure the safety under single or a pair of independent orthogonal ground motions traveling horizontally with an arbitrary direction to structural axis. This procedure uses nonlinear time history analysis and accounts for the effect of directionality in the form of fragility curves. The word directionality used here is different from “directivity” used in seismology to mean a specific characteristic of seismic fault movement.
PREFACE Integrability and nonlinear phenomena Integrability and nonlinear phenomena
Gómez-Ullate, David; Lombardo, Sara; Mañas, Manuel; Mazzocco, Marta; Nijhoff, Frank; Sommacal, Matteo
2010-10-01
derivative nonlinear Schroedinger (DNLS) equation. Ragnisco and Zullo [18] construct Backlund transformations for the trigonometric classical Gaudin magnet in the partially anisotropic (xxz) case, identifying the subcase of transformations that preserve the real character of the variables. The recently discovered exceptional polynomials are complete polynomial systems that satisfy Sturm-Liouville problems but differ from the classical families of Hermite, Laguerre and Jacobi. Gomez-Ullate et al [19] prove that the families of exceptional orthogonal polynomials known to date can be obtained from the classical ones via a Darboux transformation, which becomes a useful tool to derive some of their properties. Integrability in the context of classical mechanics is associated to the existence of a sufficient number of conserved quantities, which allows sometimes an explicit integration of the equations of motion. This is the case for the motion of the Chaplygin sleigh, a rigid body motion on a fluid with nonholonomic constraints studied in the paper by Fedorov and Garcia-Naranjo [20], who derive explicit solutions and study their asymptotic behaviour. In connection with classical mechanics, some techniques of KAM theory have been used by Procesi [21] to derive normal forms for the NLS equation in its Hamiltonian formulation and prove existence and stability of quasi-periodic solutions in the case of periodic boundary conditions. Algebraic and group theoretic aspects of integrability are covered in a number of papers in the issue. The quest for symmetries of a system of differential equations usually allows us to reduce the order or the number of equations or to find special solutions possesing that symmetry, but algebraic aspects of integrable systems encompass a wide and rich spectrum of techniques, as evidenced by the following contributions. Muriel and Romero [22] perform a systematic study of all second order nonlinear ODEs that are linearizable by generalized Sundman and
Emergence of coherent motion in aggregates of motile coupled maps
Energy Technology Data Exchange (ETDEWEB)
Garcia Cantu Ros, A., E-mail: anselmo@pik-potsdam.de [Potsdam Institute for Climate Impact Research, 14412 Potsdam (Germany); Interdisciplinary Center for Nonlinear Phenomena and Complex Systems (CENOLI), Service de Physique des Systemes Complexes et Mecanique Statistique, Universite Libre de Bruxelles, 1050 Brussels (Belgium); Antonopoulos, Ch.G., E-mail: cantonop@ulb.ac.be [Interdisciplinary Center for Nonlinear Phenomena and Complex Systems (CENOLI), Service de Physique des Systemes Complexes et Mecanique Statistique, Universite Libre de Bruxelles, 1050 Brussels (Belgium); Basios, V., E-mail: vbasios@ulb.ac.be [Interdisciplinary Center for Nonlinear Phenomena and Complex Systems (CENOLI), Service de Physique des Systemes Complexes et Mecanique Statistique, Universite Libre de Bruxelles, 1050 Brussels (Belgium)
2011-08-15
Highlights: > A minimal model of motile particles with adjustable intrinsic steering is presented. > Collective motion emerges due to self-adaptation of each particle's intrinsic state. > Adaptation is achieved by a map which behavior ranges from periodic to chaotic. > Higher cohesion occurs in a balanced combination of ordered and chaotic motion. > Exhibits an abrupt change in degree of coherence as a function of particle density. - Abstract: In this paper we study the emergence of coherence in collective motion described by a system of interacting motiles endowed with an inner, adaptative, steering mechanism. By means of a nonlinear parametric coupling, the system elements are able to swing along the route to chaos. Thereby, each motile can display different types of behavior, i.e. from ordered to fully erratic motion, accordingly with its surrounding conditions. The appearance of patterns of collective motion is shown to be related to the emergence of interparticle synchronization and the degree of coherence of motion is quantified by means of a graph representation. The effects related to the density of particles and to interparticle distances are explored. It is shown that the higher degrees of coherence and group cohesion are attained when the system elements display a combination of ordered and chaotic behaviors, which emerges from a collective self-organization process.
Lagrangian speckle model and tissue-motion estimation--theory.
Maurice, R L; Bertrand, M
1999-07-01
It is known that when a tissue is subjected to movements such as rotation, shearing, scaling, etc., changes in speckle patterns that result act as a noise source, often responsible for most of the displacement-estimate variance. From a modeling point of view, these changes can be thought of as resulting from two mechanisms: one is the motion of the speckles and the other, the alterations of their morphology. In this paper, we propose a new tissue-motion estimator to counteract these speckle decorrelation effects. The estimator is based on a Lagrangian description of the speckle motion. This description allows us to follow local characteristics of the speckle field as if they were a material property. This method leads to an analytical description of the decorrelation in a way which enables the derivation of an appropriate inverse filter for speckle restoration. The filter is appropriate for linear geometrical transformation of the scattering function (LT), i.e., a constant-strain region of interest (ROI). As the LT itself is a parameter of the filter, a tissue-motion estimator can be formulated as a nonlinear minimization problem, seeking the best match between the pre-tissue-motion image and a restored-speckle post-motion image. The method is tested, using simulated radio-frequency (RF) images of tissue undergoing axial shear.
Emergence of coherent motion in aggregates of motile coupled maps
International Nuclear Information System (INIS)
Garcia Cantu Ros, A.; Antonopoulos, Ch.G.; Basios, V.
2011-01-01
Highlights: → A minimal model of motile particles with adjustable intrinsic steering is presented. → Collective motion emerges due to self-adaptation of each particle's intrinsic state. → Adaptation is achieved by a map which behavior ranges from periodic to chaotic. → Higher cohesion occurs in a balanced combination of ordered and chaotic motion. → Exhibits an abrupt change in degree of coherence as a function of particle density. - Abstract: In this paper we study the emergence of coherence in collective motion described by a system of interacting motiles endowed with an inner, adaptative, steering mechanism. By means of a nonlinear parametric coupling, the system elements are able to swing along the route to chaos. Thereby, each motile can display different types of behavior, i.e. from ordered to fully erratic motion, accordingly with its surrounding conditions. The appearance of patterns of collective motion is shown to be related to the emergence of interparticle synchronization and the degree of coherence of motion is quantified by means of a graph representation. The effects related to the density of particles and to interparticle distances are explored. It is shown that the higher degrees of coherence and group cohesion are attained when the system elements display a combination of ordered and chaotic behaviors, which emerges from a collective self-organization process.
Probability characteristics of nonlinear dynamical systems driven by δ -pulse noise
Dubkov, Alexander A.; Rudenko, Oleg V.; Gurbatov, Sergey N.
2016-06-01
For a nonlinear dynamical system described by the first-order differential equation with Poisson white noise having exponentially distributed amplitudes of δ pulses, some exact results for the stationary probability density function are derived from the Kolmogorov-Feller equation using the inverse differential operator. Specifically, we examine the "effect of normalization" of non-Gaussian noise by a linear system and the steady-state probability density function of particle velocity in the medium with Coulomb friction. Next, the general formulas for the probability distribution of the system perturbed by a non-Poisson δ -pulse train are derived using an analysis of system trajectories between stimuli. As an example, overdamped particle motion in the bistable quadratic-cubic potential under the action of the periodic δ -pulse train is analyzed in detail. The probability density function and the mean value of the particle position together with average characteristics of the first switching time from one stable state to another are found in the framework of the fast relaxation approximation.
Sorokin, Vladislav S; Thomsen, Jon Juel
2016-02-01
The paper deals with analytically predicting the effects of weak nonlinearity on the dispersion relation and frequency band-gaps of a periodic Bernoulli-Euler beam performing bending oscillations. Two cases are considered: (i) large transverse deflections, where nonlinear (true) curvature, nonlinear material and nonlinear inertia owing to longitudinal motions of the beam are taken into account, and (ii) mid-plane stretching nonlinearity. A novel approach is employed, the method of varying amplitudes. As a result, the isolated as well as combined effects of the considered sources of nonlinearities are revealed. It is shown that nonlinear inertia has the most substantial impact on the dispersion relation of a non-uniform beam by removing all frequency band-gaps. Explanations of the revealed effects are suggested, and validated by experiments and numerical simulation.
Motions of elastic solids in fluids under vibration
DEFF Research Database (Denmark)
Sorokin, V. S.; Blekhman, I. I.; Thomsen, Jon Juel
2010-01-01
Motion of a rigid or deformable solid in a viscous incompressible fluid and corresponding fluid–solid interactions are considered. Different cases of applying high frequency vibrations to the solid or to the surrounding fluid are treated. Simple formulas for the mean velocity of the solid...... are derived, under the assumption that the regime of the fluid flow induced by its motion is turbulent and the fluid resistance force is nonlinearly dependent on its velocity. It is shown that vibrations of a fluid’s volume slow down the motion of a submerged solid. This effect is much pronounced in the case...... of a deformable solid (i.e., gas bubble) exposed to near-resonant excitation. The results are relevant to the theory of gravitational enrichment of raw materials, and also contribute to the theory of controlled locomotion of a body with an internal oscillator in continuous deformable (solid or fluid) media....
Damage potential characteristics of near-field earthquake motions
International Nuclear Information System (INIS)
Park, Y.; Chokshi, N.
1997-01-01
In recent major earthquakes; i.e., 1994 Northridge earthquake in the US and 1995 Great Kansai earthquake in Japan, several close-distance strong ground motions have been obtained, which may be of significant interest to earthquake/structural engineers. The damage potential of those recently obtained ground motions is examined based on the nonlinear response analyses of various SDOF systems. For comparison purposes, the El Centro records from the 1940 Imperial Valley earthquake, as well as a set of artificial motions consistent with the R.G. 1.60 spectrum were also used. The engineering insights regarding the seismic design of structures are discussed based on a series of parametric studies
Emittance preservation in plasma-based accelerators with ion motion
Benedetti, Carlo; Schroeder, Carl; Esarey, Eric E.; Leemans, Wim
2017-10-01
In a plasma-accelerator-based linear collider, the density of matched, low-emittance, high-energy particle bunches required for collider applications can be orders of magnitude above the background ion density, leading to ion motion, nonlinear focusing fields, and, hence, to beam emittance growth. By analyzing the response of the background ions to an ultra-high density beam, analytical expressions, valid for nonrelativistic ion motion, are derived for the transverse wakefield and for the final (i.e., after saturation) bunch emittance. Analytical results are validated against numerical modeling. A class of initial beam distributions are derived that are equilibrium solutions, which require head-to-tail bunch shaping, enabling emittance preservation with ion motion. This work was supported by the Director, Office of Science, Office of High Energy Physics, of the U.S. DOE under Contract No. DE-AC02-05CH11231.
Robust stabilization of nonlinear systems: The LMI approach
Directory of Open Access Journals (Sweden)
iljak D. D.
2000-01-01
Full Text Available This paper presents a new approach to robust quadratic stabilization of nonlinear systems within the framework of Linear Matrix Inequalities (LMI. The systems are composed of a linear constant part perturbed by an additive nonlinearity which depends discontinuously on both time and state. The only information about the nonlinearity is that it satisfies a quadratic constraint. Our major objective is to show how linear constant feedback laws can be formulated to stabilize this type of systems and, at the same time, maximize the bounds on the nonlinearity which the system can tolerate without going unstable. We shall broaden the new setting to include design of decentralized control laws for robust stabilization of interconnected systems. Again, the LMI methods will be used to maximize the class of uncertain interconnections which leave the overall system connectively stable. It is useful to learn that the proposed LMI formulation “recognizes” the matching conditions by returning a feedback gain matrix for any prescribed bound on the interconnection terms. More importantly, the new formulation provides a suitable setting for robust stabilization of nonlinear systems where the nonlinear perturbations satisfy the generalized matching conditions.
International Nuclear Information System (INIS)
Blume, J.A.
1969-01-01
Ground motion caused by natural earthquakes or by nuclear explosion causes buildings and other structures to respond in such manner as possibly to have high unit stresses and to be subject to damage or-in some cases-collapse. Even minor damage may constitute a hazard to persons within or adjacent to buildings. The risk of damage may well be the governing restraint on the uses of nuclear energy for peaceful purposes. Theory is advanced regarding structural-dynamic response but real buildings and structures are complex, highly variable, and often difficult to model realistically. This paper discusses the state of knowledge, the art of damage prediction and safety precautions, and shows ground motion effects from explosions of underground nuclear devices in the continental United States including events Salmon, Gasbuggy, Boxcar, Faultless and Benham. (author)
Motion of the esophagus due to cardiac motion.
Directory of Open Access Journals (Sweden)
Jacob Palmer
Full Text Available When imaging studies (e.g. CT are used to quantify morphological changes in an anatomical structure, it is necessary to understand the extent and source of motion which can give imaging artifacts (e.g. blurring or local distortion. The objective of this study was to assess the magnitude of esophageal motion due to cardiac motion. We used retrospective electrocardiogram-gated contrast-enhanced computed tomography angiography images for this study. The anatomic region from the carina to the bottom of the heart was taken at deep-inspiration breath hold with the patients' arms raised above their shoulders, in a position similar to that used for radiation therapy. The esophagus was delineated on the diastolic phase of cardiac motion, and deformable registration was used to sequentially deform the images in nearest-neighbor phases among the 10 cardiac phases, starting from the diastolic phase. Using the 10 deformation fields generated from the deformable registration, the magnitude of the extreme displacements was then calculated for each voxel, and the mean and maximum displacement was calculated for each computed tomography slice for each patient. The average maximum esophageal displacement due to cardiac motion for all patients was 5.8 mm (standard deviation: 1.6 mm, maximum: 10.0 mm in the transverse direction. For 21 of 26 patients, the largest esophageal motion was found in the inferior region of the heart; for the other patients, esophageal motion was approximately independent of superior-inferior position. The esophagus motion was larger at cardiac phases where the electrocardiogram R-wave occurs. In conclusion, the magnitude of esophageal motion near the heart due to cardiac motion is similar to that due to other sources of motion, including respiratory motion and intra-fraction motion. A larger cardiac motion will result into larger esophagus motion in a cardiac cycle.
The application of mean field theory to image motion estimation.
Zhang, J; Hanauer, G G
1995-01-01
Previously, Markov random field (MRF) model-based techniques have been proposed for image motion estimation. Since motion estimation is usually an ill-posed problem, various constraints are needed to obtain a unique and stable solution. The main advantage of the MRF approach is its capacity to incorporate such constraints, for instance, motion continuity within an object and motion discontinuity at the boundaries between objects. In the MRF approach, motion estimation is often formulated as an optimization problem, and two frequently used optimization methods are simulated annealing (SA) and iterative-conditional mode (ICM). Although the SA is theoretically optimal in the sense of finding the global optimum, it usually takes many iterations to converge. The ICM, on the other hand, converges quickly, but its results are often unsatisfactory due to its "hard decision" nature. Previously, the authors have applied the mean field theory to image segmentation and image restoration problems. It provides results nearly as good as SA but with much faster convergence. The present paper shows how the mean field theory can be applied to MRF model-based motion estimation. This approach is demonstrated on both synthetic and real-world images, where it produced good motion estimates.
Early motion protocol for select Galeazzi fractures after radial shaft fixation.
Gwinn, David E; O'Toole, Robert V; Eglseder, W Andrew
2010-01-01
Galeazzi fractures traditionally are treated in long arm casts with the wrist fully supinated for 6 weeks after open reduction and internal fixation. Recent literature suggests that early motion can be permitted for a subset of Galeazzi fractures. Defining a safe postoperative protocol that allows immediate elbow motion, immediate platform weight bearing, and early wrist motion might decrease elbow morbidity, increase range of motion, and improve outcomes. A retrospective review of a prospectively collected database of 26 patients at a level I trauma center was conducted. Early motion protocol was assigned to patients who were radiographically and clinically stable after plate and screw fixation. Elbow flexion and platform weight bearing were allowed immediately; increased wrist rotation was allowed at 2-week intervals. Early motion of elbow and wrist seems to be safe during postoperative rehabilitation of repaired Galeazzi fractures. The postoperative protocol might maximize elbow and wrist range of motion.
Induced modulation instability and recurrence in nonlocal nonlinear media
Energy Technology Data Exchange (ETDEWEB)
Beeckman, J; Neyts, K [Liquid Crystals and Photonics Group, Department of Electronics and Information Systems, Ghent University, Sint-Pietersnieuwstraat 41, 9000 Gent (Belgium); Haelterman, M [Service d' optique et acoustique, Universite libre de Bruxelles CP 194/5, 50 avenue F D Roosevelt, 1050 Bruxelles (Belgium)], E-mail: jeroen.beeckman@elis.ugent.be
2008-03-28
The long-term behaviour of spatial modulation instability in nonlocal nonlinear Kerr media is studied theoretically and numerically. Seeding the modulation instability with a periodic modulation leads to an energy transfer to higher-order modes and the long-term behaviour of the system shows the Fermi-Pasta-Ulam recurrence. For large spatial frequencies, close to the cut-off frequency, the stable solution can be found analytically. The propagation with an initial state different from the stable solution results in a propagation circling around the stable point. For general frequencies, the calculation of the stable point is performed numerically. Comparison of the calculations with earlier reported experimental results in nematic liquid crystals shows a satisfactory agreement.
NSLS-II: Nonlinear Model Calibration for Synchrotrons
Energy Technology Data Exchange (ETDEWEB)
Bengtsson, J.
2010-10-08
This tech note is essentially a summary of a lecture we delivered to the Acc. Phys. Journal Club Apr, 2010. However, since the estimated accuracy of these methods has been naive and misleading in the field of particle accelerators, i.e., ignores the impact of noise, we will elaborate on this in some detail. A prerequisite for a calibration of the nonlinear Hamiltonian is that the quadratic part has been understood, i.e., that the linear optics for the real accelerator has been calibrated. For synchrotron light source operations, this problem has been solved by the interactive LOCO technique/tool (Linear Optics from Closed Orbits). Before that, in the context of hadron accelerators, it has been done by signal processing of turn-by-turn BPM data. We have outlined how to make a basic calibration of the nonlinear model for synchrotrons. In particular, we have shown how this was done for LEAR, CERN (antiprotons) in the mid-80s. Specifically, our accuracy for frequency estimation was {approx} 1 x 10{sup -5} for 1024 turns (to calibrate the linear optics) and {approx} 1 x 10{sup -4} for 256 turns for tune footprint and betatron spectrum. For a comparison, the estimated tune footprint for stable beam for NSLS-II is {approx}0.1. Since the transverse damping time is {approx}20 msec, i.e., {approx}4,000 turns. There is no fundamental difference for: antiprotons, protons, and electrons in this case. Because the estimated accuracy for these methods in the field of particle accelerators has been naive, i.e., ignoring the impact of noise, we have also derived explicit formula, from first principles, for a quantitative statement. For e.g. N = 256 and 5% noise we obtain {delta}{nu} {approx} 1 x 10{sup -5}. A comparison with the state-of-the-arts in e.g. telecomm and electrical engineering since the 60s is quite revealing. For example, Kalman filter (1960), crucial for the: Ranger, Mariner, and Apollo (including the Lunar Module) missions during the 60s. Or Claude Shannon et al
NSLS-II: Nonlinear Model Calibration for Synchrotrons
International Nuclear Information System (INIS)
Bengtsson, J.
2010-01-01
This tech note is essentially a summary of a lecture we delivered to the Acc. Phys. Journal Club Apr, 2010. However, since the estimated accuracy of these methods has been naive and misleading in the field of particle accelerators, i.e., ignores the impact of noise, we will elaborate on this in some detail. A prerequisite for a calibration of the nonlinear Hamiltonian is that the quadratic part has been understood, i.e., that the linear optics for the real accelerator has been calibrated. For synchrotron light source operations, this problem has been solved by the interactive LOCO technique/tool (Linear Optics from Closed Orbits). Before that, in the context of hadron accelerators, it has been done by signal processing of turn-by-turn BPM data. We have outlined how to make a basic calibration of the nonlinear model for synchrotrons. In particular, we have shown how this was done for LEAR, CERN (antiprotons) in the mid-80s. Specifically, our accuracy for frequency estimation was ∼ 1 x 10 -5 for 1024 turns (to calibrate the linear optics) and ∼ 1 x 10 -4 for 256 turns for tune footprint and betatron spectrum. For a comparison, the estimated tune footprint for stable beam for NSLS-II is ∼0.1. Since the transverse damping time is ∼20 msec, i.e., ∼4,000 turns. There is no fundamental difference for: antiprotons, protons, and electrons in this case. Because the estimated accuracy for these methods in the field of particle accelerators has been naive, i.e., ignoring the impact of noise, we have also derived explicit formula, from first principles, for a quantitative statement. For e.g. N = 256 and 5% noise we obtain (delta)ν ∼ 1 x 10 -5 . A comparison with the state-of-the-arts in e.g. telecomm and electrical engineering since the 60s is quite revealing. For example, Kalman filter (1960), crucial for the: Ranger, Mariner, and Apollo (including the Lunar Module) missions during the 60s. Or Claude Shannon et al since the 40s for that matter. Conclusion: what
Robertson, William C
2002-01-01
Intimidated by inertia? Frightened by forces? Mystified by Newton s law of motion? You re not alone and help is at hand. The stop Faking It! Series is perfect for science teachers, home-schoolers, parents wanting to help with homework all of you who need a jargon-free way to learn the background for teaching middle school physical science with confidence. With Bill Roberton as your friendly, able but somewhat irreverent guide, you will discover you CAN come to grips with the basics of force and motion. Combining easy-to-understand explanations with activities using commonly found equipment, this book will lead you through Newton s laws to the physics of space travel. The book is as entertaining as it is informative. Best of all, the author understands the needs of adults who want concrete examples, hands-on activities, clear language, diagrams and yes, a certain amount of empathy. Ideas For Use Newton's laws, and all of the other motion principles presented in this book, do a good job of helping us to underst...
International Nuclear Information System (INIS)
Drechsler, W.; Havas, P.; Rosenblum, A.
1984-01-01
In two recent papers, the general form of the laws of motion for point particles which are multipole sources of the classical coupled Yang-Mills-Higgs fields was determined by Havas, and for the special case of monopole singularities of a Yang-Mills field an iteration procedure was developed by Drechsler and Rosenblum to obtain the equations of motion of mass points, i.e., the laws of motion including the explicit form of the fields of all interacting particles. In this paper we give a detailed derivation of the laws of motion of monopole-dipole singularities of the coupled Yang-Mills-Higgs fields for point particles with mass and spin, following a procedure first applied by Mathisson and developed by Havas. To obtain the equations of motion, a systematic approximation method is developed in the following paper for the solution of the nonlinear field equations and determination of the fields entering the laws of motion found here to any given order in the coupling constant g
The effect of high-frequency ground motion on the MAPLE-X10 reactor
International Nuclear Information System (INIS)
Bhan, S.; Dunbar, S.
1989-06-01
The effect of high-frequency ground motion on structures and equipment in nuclear reactors is examined by subjecting simple linear models to selected recorded ground motions which exhibit low and high frequencies. Computed damage measures indicate that high-frequency short-duration ground motion, such as that observed in eastern North America, have a minimal effect on structures with low natural frequencies. Response spectra of high-frequency ground motion indicate that higher forces are induced in structures with high natural frequencies as compared to those induced by low-frequency ground motion. However, reported observations of earthquake damage in eastern North America suggest that high-frequency ground motion causes little of no damage to structures. This may be due to the energy absorption capability of structures. It is concluded that the response spectrum representative of ground motion observed in eastern North America may give an over-conservative measure of the response of structures with high natural frequencies, since it does not account for the typically observed short duration of high-frequency ground motion and for the energy absorption capability of structures. Detailed nonlinear analysis of specific structures with high natural frequencies should be performed to better predict the actual response. Recommendations for a nonlinear analysis of typical structures with high natural frequencies are made
Motion characterization scheme to minimize motion artifacts in intravital microscopy
Lee, Sungon; Courties, Gabriel; Nahrendorf, Matthias; Weissleder, Ralph; Vinegoni, Claudio
2017-03-01
Respiratory- and cardiac-induced motion artifacts pose a major challenge for in vivo optical imaging, limiting the temporal and spatial imaging resolution in fluorescence laser scanning microscopy. Here, we present an imaging platform developed for in vivo characterization of physiologically induced axial motion. The motion characterization system can be straightforwardly implemented on any conventional laser scanning microscope and can be used to evaluate the effectiveness of different motion stabilization schemes. This method is particularly useful to improve the design of novel tissue stabilizers and to facilitate stabilizer positioning in real time, therefore facilitating optimal tissue immobilization and minimizing motion induced artifacts.
Rolling motion in moving droplets
Indian Academy of Sciences (India)
Abstract. Drops moving on a substrate under the action of gravity display both rolling and sliding motions. The two limits of a thin sheet-like drop in sliding motion on a surface, and a spherical drop in roll, have been extensively studied. We are interested in intermediate shapes. We quantify the contribution of rolling motion ...
Statistics of bicycle rider motion
Moore, J.K.; Hubbard, M.; Schwab, A.L.; Kooijman, J.D.G.; Peterson, D.L.
2010-01-01
An overview of bicycle and rider kinematic motions from a series of experimental treadmill tests is presented. The full kinematics of bicycles and riders were measured with an active motion capture system. Motion across speeds are compared graphically with box and whiskers plots. Trends and ranges
Dynamics and control of twisting bi-stable structures
Arrieta, Andres F.; van Gemmeren, Valentin; Anderson, Aaron J.; Weaver, Paul M.
2018-02-01
Compliance-based morphing structures have the potential to offer large shape adaptation, high stiffness and low weight, while reducing complexity, friction, and scalability problems of mechanism based systems. A promising class of structure that enables these characteristics are multi-stable structures given their ability to exhibit large deflections and rotations without the expensive need for continuous actuation, with the latter only required intermittently. Furthermore, multi-stable structures exhibit inherently fast response due to the snap-through instability governing changes between stable states, enabling rapid configuration switching between the discrete number of programmed shapes of the structure. In this paper, the design and utilisation of the inherent nonlinear dynamics of bi-stable twisting I-beam structures for actuation with low strain piezoelectric materials is presented. The I-beam structure consists of three compliant components assembled into a monolithic single element, free of moving parts, and showing large deflections between two stable states. Finite element analysis is utilised to uncover the distribution of strain across the width of the flange, guiding the choice of positioning for piezoelectric actuators. In addition, the actuation authority is maximised by calculating the generalised coupling coefficient for different positions of the piezoelectric actuators. The results obtained are employed to tailor and test I-beam designs exhibiting desired large deflection between stable states, while still enabling the activation of snap-through with the low strain piezoelectric actuators. To this end, the dynamic response of the I-beams to piezoelectric excitation is investigated, revealing that resonant excitations are insufficient to dynamically trigger snap-through. A novel bang-bang control strategy, which exploits the nonlinear dynamics of the structure successfully triggers both single and constant snap-through between the stable states
Nonlinear behavior: One degree of freedom
International Nuclear Information System (INIS)
Greene, J.M.
1987-01-01
There has been very considerable progress in the past few years on the theory of two conservative, coupled, nonlinear oscillators. This is a very general theory, and applies to many equivalent systems including approximate models of particle accelerators. A typical problem of this class has a solution that is so complicated that it is impossible to find an expression for the state of the system that is valid for all time. However, recent results are making it possible to determine the next most useful type of information. This is the asymptotic behavior of individual orbits in the limit of very long times. It is just the information that is desired in many situations. For example, it determines the stability of the motion. They key to our present understanding is renormalization. The present state of the art has been described in Robert MacKay's thesis, for which this is an advertisement
Semiclassical quantization of the nonlinear Schrodinger equation
International Nuclear Information System (INIS)
Nohl, C.R.
1976-01-01
Using the functional integral technique of Dashen, Hasslacher, and Neveu, we perform a semiclassical quantization of the nonlinear Schrodinger equation (NLSE), which reproduces McGuire's exact result for the energy levels of the bound states of the theory. We show that the stability angle formalism leads to the one-loop normal ordering and self-energy renormalization expected from perturbation theory, and demonstrate that taking into account center-of-mass motion gives the correct nonrelativistic energy--momentum relation. We interpret the classical solution in the context of the quantum theory, relating it to the matrix element of the field operator between adjacent bound states in the limit of large quantum numbers. Finally, we quantize the NLSE as a theory of N component fermion fields and show that the semiclassical method yields the exact energy levels and correct degeneracies
Adaptive control of nonlinear underwater robotic systems
Directory of Open Access Journals (Sweden)
Thor I. Fossen
1991-04-01
Full Text Available The problem of controlling underwater mobile robots in 6 degrees of freedom (DOF is addressed. Uncertainties in the input matrix due to partly known nonlinear thruster characteristics are modeled as multiplicative input uncertainty. This paper proposes two methods to compensate for the model uncertainties: (1 an adaptive passivity-based control scheme and (2 deriving a hybrid (adaptive and sliding controller. The hybrid controller consists of a switching term which compensates for uncertainties in the input matrix and an on-line parameter estimation algorithm. Global stability is ensured by applying Barbalat's Lyapunovlike lemma. The hybrid controller is simulated for the horizontal motion of the Norwegian Experimental Remotely Operated Vehicle (NEROV.
Gauge covariances and nonlinear optical responses
Ventura, G. B.; Passos, D. J.; Lopes dos Santos, J. M. B.; Viana Parente Lopes, J. M.; Peres, N. M. R.
2017-07-01
The formalism of the reduced density matrix is pursued in both length and velocity gauges of the perturbation to the crystal Hamiltonian. The covariant derivative is introduced as a convenient representation of the position operator. This allow us to write compact expressions for the reduced density matrix in any order of the perturbation which simplifies the calculations of nonlinear optical responses; as an example, we compute the first- and third-order contributions of the monolayer graphene. Expressions obtained in both gauges share the same formal structure, allowing a comparison of the effects of truncation to a finite set of bands. This truncation breaks the equivalence between the two approaches: its proper implementation can be done directly in the expressions derived in the length gauge, but requires a revision of the equations of motion of the reduced density matrix in the velocity gauge.
Nonlinear robust hierarchical control for nonlinear uncertain systems
Directory of Open Access Journals (Sweden)
Leonessa Alexander
1999-01-01
Full Text Available A nonlinear robust control-system design framework predicated on a hierarchical switching controller architecture parameterized over a set of moving nominal system equilibria is developed. Specifically, using equilibria-dependent Lyapunov functions, a hierarchical nonlinear robust control strategy is developed that robustly stabilizes a given nonlinear system over a prescribed range of system uncertainty by robustly stabilizing a collection of nonlinear controlled uncertain subsystems. The robust switching nonlinear controller architecture is designed based on a generalized (lower semicontinuous Lyapunov function obtained by minimizing a potential function over a given switching set induced by the parameterized nominal system equilibria. The proposed framework robustly stabilizes a compact positively invariant set of a given nonlinear uncertain dynamical system with structured parametric uncertainty. Finally, the efficacy of the proposed approach is demonstrated on a jet engine propulsion control problem with uncertain pressure-flow map data.
Liapunov, A M; Abramovici, Flavian
1967-01-01
In this book, we study theoretical and practical aspects of computing methods for mathematical modelling of nonlinear systems. A number of computing techniques are considered, such as methods of operator approximation with any given accuracy; operator interpolation techniques including a non-Lagrange interpolation; methods of system representation subject to constraints associated with concepts of causality, memory and stationarity; methods of system representation with an accuracy that is the best within a given class of models; methods of covariance matrix estimation;methods for low-rank mat
Discrete nonlinear Schrodinger equations with arbitrarily high-order nonlinearities
DEFF Research Database (Denmark)
Khare, A.; Rasmussen, Kim Ø; Salerno, M.
2006-01-01
A class of discrete nonlinear Schrodinger equations with arbitrarily high-order nonlinearities is introduced. These equations are derived from the same Hamiltonian using different Poisson brackets and include as particular cases the saturable discrete nonlinear Schrodinger equation and the Ablowitz......-Ladik equation. As a common property, these equations possess three kinds of exact analytical stationary solutions for which the Peierls-Nabarro barrier is zero. Several properties of these solutions, including stability, discrete breathers, and moving solutions, are investigated....
Nonlinear stability and time step selection for the MPM method
Berzins, Martin
2018-01-01
The Material Point Method (MPM) has been developed from the Particle in Cell (PIC) method over the last 25 years and has proved its worth in solving many challenging problems involving large deformations. Nevertheless there are many open questions regarding the theoretical properties of MPM. For example in while Fourier methods, as applied to PIC may provide useful insight, the non-linear nature of MPM makes it necessary to use a full non-linear stability analysis to determine a stable time step for MPM. In order to begin to address this the stability analysis of Spigler and Vianello is adapted to MPM and used to derive a stable time step bound for a model problem. This bound is contrasted against traditional Speed of sound and CFL bounds and shown to be a realistic stability bound for a model problem.
Exponential Stability of Stochastic Nonlinear Dynamical Price System with Delay
Directory of Open Access Journals (Sweden)
Wenli Zhu
2013-01-01
Full Text Available Based on Lyapunov stability theory, Itô formula, stochastic analysis, and matrix theory, we study the exponential stability of the stochastic nonlinear dynamical price system. Using Taylor's theorem, the stochastic nonlinear system with delay is reduced to an n-dimensional semilinear stochastic differential equation with delay. Some sufficient conditions of exponential stability and corollaries for such price system are established by virtue of Lyapunov function. The time delay upper limit is solved by using our theoretical results when the system is exponentially stable. Our theoretical results show that if the classical price Rayleigh equation is exponentially stable, so is its perturbed system with delay provided that both the time delay and the intensity of perturbations are small enough. Two examples are presented to illustrate our results.
Diamond, Jared M.
1966-01-01
1. The relation between osmotic gradient and rate of osmotic water flow has been measured in rabbit gall-bladder by a gravimetric procedure and by a rapid method based on streaming potentials. Streaming potentials were directly proportional to gravimetrically measured water fluxes. 2. As in many other tissues, water flow was found to vary with gradient in a markedly non-linear fashion. There was no consistent relation between the water permeability and either the direction or the rate of water flow. 3. Water flow in response to a given gradient decreased at higher osmolarities. The resistance to water flow increased linearly with osmolarity over the range 186-825 m-osM. 4. The resistance to water flow was the same when the gall-bladder separated any two bathing solutions with the same average osmolarity, regardless of the magnitude of the gradient. In other words, the rate of water flow is given by the expression (Om — Os)/[Ro′ + ½k′ (Om + Os)], where Ro′ and k′ are constants and Om and Os are the bathing solution osmolarities. 5. Of the theories advanced to explain non-linear osmosis in other tissues, flow-induced membrane deformations, unstirred layers, asymmetrical series-membrane effects, and non-osmotic effects of solutes could not explain the results. However, experimental measurements of water permeability as a function of osmolarity permitted quantitative reconstruction of the observed water flow—osmotic gradient curves. Hence non-linear osmosis in rabbit gall-bladder is due to a decrease in water permeability with increasing osmolarity. 6. The results suggest that aqueous channels in the cell membrane behave as osmometers, shrinking in concentrated solutions of impermeant molecules and thereby increasing membrane resistance to water flow. A mathematical formulation of such a membrane structure is offered. PMID:5945254