WorldWideScience

Sample records for stable lithosphere slow

  1. Crustal seismicity and the earthquake catalog maximum moment magnitudes (Mcmax) in stable continental regions (SCRs): correlation with the seismic velocity of the lithosphere

    Science.gov (United States)

    Mooney, Walter D.; Ritsema, Jeroen; Hwang, Yong Keun

    2012-01-01

    A joint analysis of global seismicity and seismic tomography indicates that the seismic potential of continental intraplate regions is correlated with the seismic properties of the lithosphere. Archean and Early Proterozoic cratons with cold, stable continental lithospheric roots have fewer crustal earthquakes and a lower maximum earthquake catalog moment magnitude (Mcmax). The geographic distribution of thick lithospheric roots is inferred from the global seismic model S40RTS that displays shear-velocity perturbations (δVS) relative to the Preliminary Reference Earth Model (PREM). We compare δVS at a depth of 175 km with the locations and moment magnitudes (Mw) of intraplate earthquakes in the crust (Schulte and Mooney, 2005). Many intraplate earthquakes concentrate around the pronounced lateral gradients in lithospheric thickness that surround the cratons and few earthquakes occur within cratonic interiors. Globally, 27% of stable continental lithosphere is underlain by δVS≥3.0%, yet only 6.5% of crustal earthquakes with Mw>4.5 occur above these regions with thick lithosphere. No earthquakes in our catalog with Mw>6 have occurred above mantle lithosphere with δVS>3.5%, although such lithosphere comprises 19% of stable continental regions. Thus, for cratonic interiors with seismically determined thick lithosphere (1) there is a significant decrease in the number of crustal earthquakes, and (2) the maximum moment magnitude found in the earthquake catalog is Mcmax=6.0. We attribute these observations to higher lithospheric strength beneath cratonic interiors due to lower temperatures and dehydration in both the lower crust and the highly depleted lithospheric root.

  2. Crustal seismicity and the earthquake catalog maximum moment magnitude (Mcmax) in stable continental regions (SCRs): Correlation with the seismic velocity of the lithosphere

    Science.gov (United States)

    Mooney, Walter D.; Ritsema, Jeroen; Hwang, Yong Keun

    2012-12-01

    A joint analysis of global seismicity and seismic tomography indicates that the seismic potential of continental intraplate regions is correlated with the seismic properties of the lithosphere. Archean and Early Proterozoic cratons with cold, stable continental lithospheric roots have fewer crustal earthquakes and a lower maximum earthquake catalog moment magnitude (Mcmax). The geographic distribution of thick lithospheric roots is inferred from the global seismic model S40RTS that displays shear-velocity perturbations (δVS) relative to the Preliminary Reference Earth Model (PREM). We compare δVS at a depth of 175 km with the locations and moment magnitudes (Mw) of intraplate earthquakes in the crust (Schulte and Mooney, 2005). Many intraplate earthquakes concentrate around the pronounced lateral gradients in lithospheric thickness that surround the cratons and few earthquakes occur within cratonic interiors. Globally, 27% of stable continental lithosphere is underlain by δVS≥3.0%, yet only 6.5% of crustal earthquakes with Mw>4.5 occur above these regions with thick lithosphere. No earthquakes in our catalog with Mw>6 have occurred above mantle lithosphere with δVS>3.5%, although such lithosphere comprises 19% of stable continental regions. Thus, for cratonic interiors with seismically determined thick lithosphere (1) there is a significant decrease in the number of crustal earthquakes, and (2) the maximum moment magnitude found in the earthquake catalog is Mcmax=6.0. We attribute these observations to higher lithospheric strength beneath cratonic interiors due to lower temperatures and dehydration in both the lower crust and the highly depleted lithospheric root.

  3. Formation of ridges in a stable lithosphere in mantle convection models with a viscoplastic rheology.

    Science.gov (United States)

    Rozel, A; Golabek, G J; Näf, R; Tackley, P J

    2015-06-28

    Numerical simulations of mantle convection with a viscoplastic rheology usually display mobile, episodic or stagnant lid regimes. In this study, we report a new convective regime in which a ridge can form without destabilizing the surrounding lithosphere or forming subduction zones. Using simulations in 2-D spherical annulus geometry, we show that a depth-dependent yield stress is sufficient to reach this ridge only regime. This regime occurs when the friction coefficient is close to the critical value between mobile lid and stagnant lid regimes. Maps of convective regime as a function of the parameters friction coefficients and depth dependence of viscosity are provided for both basal heating and mixed heating situations. The ridge only regime appears for both pure basal heating and mixed heating mode. For basal heating, this regime can occur for all vertical viscosity contrasts, while for mixed heating, a highly viscous deep mantle is required.

  4. Stiffness characteristics of compliant three segment leg with the self-stable region in slow and fast running

    Energy Technology Data Exchange (ETDEWEB)

    Kwak, Oh Seok; Ha, Sung Mok; Lee, Dong Ha [Convergence Research Center for WellnessDaegu Gyeongbuk Institute of Science and TechnologyDaegu (Korea, Republic of)

    2016-12-15

    In this paper, we propose the stiffness characteristics of compliant three segment leg that can have a self-stable region in slow and fast running. This proposition can contribute to reducing the control effort and enhancing the locomotion energy efficiency for the compliant three segment legged robot in slow and fast running. Previous research indicated that the running self-stable region of the spring-mass system is located in a relatively fast running region and that of the two segment leg is located in a relatively slow running region. In this paper, we analyze the stiffness characteristics of the spring-mass system and the two segment leg to explain the previous research results. From this analysis, we propose the stiffness characteristics of the compliant three segment leg with a self-stable region in slow and fast running. We further design the compliant three segment leg based on this proposition and check its structural stability. We examine the running self-stable region of this compliant three segment leg to determine whether it has a self-stable region in slow and fast running. We also examine the walking self-stable region of this compliant three segment leg.

  5. Lithospheric processes

    Energy Technology Data Exchange (ETDEWEB)

    Baldridge, W. [and others

    2000-12-01

    The authors used geophysical, geochemical, and numerical modeling to study selected problems related to Earth's lithosphere. We interpreted seismic waves to better characterize the thickness and properties of the crust and lithosphere. In the southwestern US and Tien Shari, crust of high elevation is dynamically supported above buoyant mantle. In California, mineral fabric in the mantle correlate with regional strain history. Although plumes of buoyant mantle may explain surface deformation and magmatism, our geochemical work does not support this mechanism for Iberia. Generation and ascent of magmas remains puzzling. Our work in Hawaii constrains the residence of magma beneath Hualalai to be a few hundred to about 1000 years. In the crust, heat drives fluid and mass transport. Numerical modeling yielded robust and accurate predictions of these processes. This work is important fundamental science, and applies to mitigation of volcanic and earthquake hazards, Test Ban Treaties, nuclear waste storage, environmental remediation, and hydrothermal energy.

  6. Lithospheric processes

    International Nuclear Information System (INIS)

    Baldridge, W.S.

    2000-01-01

    The authors used geophysical, geochemical, and numerical modeling to study selected problems related to Earth's lithosphere. We interpreted seismic waves to better characterize the thickness and properties of the crust and lithosphere. In the southwestern US and Tien Shari, crust of high elevation is dynamically supported above buoyant mantle. In California, mineral fabric in the mantle correlate with regional strain history. Although plumes of buoyant mantle may explain surface deformation and magmatism, our geochemical work does not support this mechanism for Iberia. Generation and ascent of magmas remains puzzling. Our work in Hawaii constrains the residence of magma beneath Hualalai to be a few hundred to about 1000 years. In the crust, heat drives fluid and mass transport. Numerical modeling yielded robust and accurate predictions of these processes. This work is important fundamental science, and applies to mitigation of volcanic and earthquake hazards, Test Ban Treaties, nuclear waste storage, environmental remediation, and hydrothermal energy

  7. Lithospheric strucutre and relationship to seismicity beneath the Southeastern US using reciever functions

    Science.gov (United States)

    Cunningham, E.; Lekic, V.

    2017-12-01

    Despite being on a passive margin for millions of years, the Southeastern United States (SEUS) contains numerous seismogenic zones with the ability to produce damaging earthquakes. However, mechanisms controlling these intraplate earthquakes are poorly understood. Recently, Biryol et al. 2016 use P-wave tomography suggest that upper mantle structures beneath the SEUS correlate with areas of seismicity and seismic quiescence. Specifically, thick and fast velocity lithosphere beneath North Carolina is stable and indicative of areas of low seismicity. In contrast, thin and slow velocity lithosphere is weak, and the transition between the strong and weak lithosphere may be correlated with seismogenic zones found in the SEUS. (eg. Eastern Tennessee seismic zone and the Central Virginia seismic zone) Therefore, I systematically map the heterogeneity of the mantle lithosphere using converted seismic waves and quantify the spatial correlation between seismicity and lithospheric structure. The extensive network of seismometers that makes up the Earthscope USArray combined with the numerous seismic deployments in the Southeastern United States allows for unprecedented opportunity to map changes in lithospheric structure across seismogenic zones and seismic quiescent regions. To do so, I will use both P-to-s and S-to-p receiver functions (RFS). Since RFs are sensitive to seismic wavespeeds and density discontinuities with depth, they particularly useful for studying lithospheric structure. Ps receiver functions contain high frequency information allowing for high resolution, but can become contaminated by large sediment signals; therefore, I removed sediment multiples and correct for time delays of later phases using the method of Yu et. al 2015 which will allow us to see later arriving phases associated with lithospheric discontinuities. S-to-p receiver functions are not contaminated by shallow layers, making them ideal to study deep lithospheric structures but they can

  8. Slow and preferential flow in the unsaturated zone and its impact on stable isotope composition

    International Nuclear Information System (INIS)

    Seiler, K.P.

    2001-01-01

    Stable isotope methods (δ 18 O and δ 2 H) have been used investigate the importance of bypass flow in the unsaturated zone which leads to unproductive water loss during flood irrigation. Field experiments have been carried out in Jordan and Pakistan in order to determine the occurrence of bypass flow, its amount and its velocity compared to piston flow. Results show that there is not only an advective component of flow (bypass flow) but a diffusive tracer exchange between piston and bypass flow. Infiltration calculations and analysis of tracer distributions are used to show that at the research sites, bypass flow amounts to about 25% of water recharged during winter. This estimate is important as it provides an assessment of the amount of water that passes the root zone and directly recharges groundwater. (author)

  9. Rifting Thick Lithosphere - Canning Basin, Western Australia

    Science.gov (United States)

    Czarnota, Karol; White, Nicky

    2016-04-01

    The subsidence histories and architecture of most, but not all, rift basins are elegantly explained by extension of ~120 km thick lithosphere followed by thermal re-thickening of the lithospheric mantle to its pre-rift thickness. Although this well-established model underpins most basin analysis, it is unclear whether the model explains the subsidence of rift basins developed over substantially thick lithosphere (as imaged by seismic tomography beneath substantial portions of the continents). The Canning Basin of Western Australia is an example where a rift basin putatively overlies lithosphere ≥180 km thick, imaged using shear wave tomography. Subsidence modelling in this study shows that the entire subsidence history of the account for the observed subsidence, at standard crustal densities, the lithospheric mantle is required to be depleted in density by 50-70 kg m-3, which is in line with estimates derived from modelling rare-earth element concentrations of the ~20 Ma lamproites and global isostatic considerations. Together, these results suggest that thick lithosphere thinned to > 120 km is thermally stable and is not accompanied by post-rift thermal subsidence driven by thermal re-thickening of the lithospheric mantle. Our results show that variations in lithospheric thickness place a fundamental control on basin architecture. The discrepancy between estimates of lithospheric thickness derived from subsidence data for the western Canning Basin and those derived from shear wave tomography suggests that the latter technique currently is limited in its ability to resolve lithospheric thickness variations at horizontal half-wavelength scales of <300 km.

  10. A lithospheric perspective on structure and evolution of Precambrian cratons

    DEFF Research Database (Denmark)

    Artemieva, Irina

    2012-01-01

    The purpose of this chapter is to provide a summary of geophysical data on the structure of the stable continental lithosphere and its evolution since the Archean. Here, the term lithosphere is used to define the outer layer of the Earth which includes the crust and uppermost mantle, forms the ro...

  11. The continental lithosphere

    DEFF Research Database (Denmark)

    Artemieva, Irina

    2009-01-01

    The goal of the present study is to extract non-thermal signal from seismic tomography models in order to distinguish compositional variations in the continental lithosphere and to examine if geochemical and petrologic constraints on global-scale compositional variations in the mantle...... are consistent with modern geophysical data. In the lithospheric mantle of the continents, seismic velocity variations of a non-thermal origin (calculated from global Vs seismic tomography data [Grand S.P., 2002. Mantle shear-wave tomography and the fate of subducted slabs. Philosophical Transactions...... and evolution of Precambrian lithosphere: A global study. Journal of Geophysical Research 106, 16387–16414.] show strong correlation with tectono-thermal ages and with regional variations in lithospheric thickness constrained by surface heat flow data and seismic velocities. In agreement with xenolith data...

  12. Fractional Diffusion, Low Exponent Lévy Stable Laws, and 'Slow Motion' Denoising of Helium Ion Microscope Nanoscale Imagery.

    Science.gov (United States)

    Carasso, Alfred S; Vladár, András E

    2012-01-01

    Helium ion microscopes (HIM) are capable of acquiring images with better than 1 nm resolution, and HIM images are particularly rich in morphological surface details. However, such images are generally quite noisy. A major challenge is to denoise these images while preserving delicate surface information. This paper presents a powerful slow motion denoising technique, based on solving linear fractional diffusion equations forward in time. The method is easily implemented computationally, using fast Fourier transform (FFT) algorithms. When applied to actual HIM images, the method is found to reproduce the essential surface morphology of the sample with high fidelity. In contrast, such highly sophisticated methodologies as Curvelet Transform denoising, and Total Variation denoising using split Bregman iterations, are found to eliminate vital fine scale information, along with the noise. Image Lipschitz exponents are a useful image metrology tool for quantifying the fine structure content in an image. In this paper, this tool is applied to rank order the above three distinct denoising approaches, in terms of their texture preserving properties. In several denoising experiments on actual HIM images, it was found that fractional diffusion smoothing performed noticeably better than split Bregman TV, which in turn, performed slightly better than Curvelet denoising.

  13. The westward drift of the lithosphere: A tidal ratchet?

    Directory of Open Access Journals (Sweden)

    A. Carcaterra

    2018-03-01

    Full Text Available Is the westerly rotation of the lithosphere an ephemeral accidental recent phenomenon or is it a stable process of Earth's geodynamics? The reason why the tidal drag has been questioned as the mechanism determining the lithospheric shift relative to the underlying mantle is the apparent too high viscosity of the asthenosphere. However, plate boundaries asymmetries are a robust indication of the ‘westerly’ decoupling of the entire Earth's outer lithospheric shell and new studies support lower viscosities in the low-velocity layer (LVZ atop the asthenosphere. Since the solid Earth tide oscillation is longer in one side relative to the other due to the contemporaneous Moon's revolution, we demonstrate that a non-linear rheological behavior is expected in the lithosphere mantle interplay. This may provide a sort of ratchet favoring lowering of the LVZ viscosity under shear, allowing decoupling in the LVZ and triggering the westerly motion of the lithosphere relative to the mantle.

  14. Slow Recovery of Weight Bearing After Stabilization of Long-Bone Fractures Using Elastic Stable Intramedullary Nails in Children.

    Science.gov (United States)

    Lardelli, Patrizia; Frech-Dörfler, Martina; Holland-Cunz, Stefan; Mayr, Johannes

    2016-03-01

    Stabilization of diaphyseal long-bone fractures using elastic stable intramedullary nails (ESIN) in children promises early mobilization and rapid resumption of full weight bearing. We evaluated the duration of postoperative functional rehabilitation after ESIN, measured by the time from stabilization until first partial weight bearing, full weight bearing, and resumption of school sports. Fifty children with unstable, displaced fractures of the femur or lower leg treated with ESIN between 2002 and 2012 were included in this retrospective analysis. We classified fractures according to the pediatric comprehensive classification of fractures (PCCF). Thirty-five children sustained a femur fracture, and 15 children had a fracture of the lower leg or tibia. The surgeons in charge applied an additional plaster cast in 7 of 15 children who suffered a lower leg fracture. The postoperative time interval until full weight bearing in the group of children who had suffered transverse or short oblique femur fractures was significantly shorter (median: 4.4 weeks; range: 0.1-9.1 weeks) than that in the group who had sustained more complex fracture patterns (median: 6.8 weeks; range: 2.9-13.9 weeks; P = 0.04). Similarly, transverse and short oblique lower leg and tibia fractures required less time until full weight bearing (median: 4.1 weeks; range 2.7-6.0 weeks) than complex lower leg fractures (median: 6.1 weeks; range: 1.3-12.9 weeks; P = 0.04). ESIN proved fairly effective in restoring full weight bearing in transverse or short oblique fractures of the lower extremities but was less effective in complex fractures.

  15. Mercury's Lithospheric Magnetization

    Science.gov (United States)

    Johnson, C.; Phillips, R. J.; Philpott, L. C.; Al Asad, M.; Plattner, A.; Mast, S.; Kinczyk, M. J.; Prockter, L. M.

    2017-12-01

    Magnetic field data obtained by the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft have been used to demonstrate the presence of lithospheric magnetization on Mercury. Larger amplitude fields resulting from the core dynamo and the strongly time-varying magnetospheric current systems are first estimated and subtracted from the magnetic field data to isolate lithospheric signals with wavelengths less than 500 km. These signals (hereafter referred to as data) are only observed at spacecraft altitudes less than 120 km, and are typically a few to 10 nT in amplitude. We present and compare equivalent source dipole magnetization models for latitudes 35°N to 75°N obtained from two distinct approaches to constrain the distribution and origin of lithospheric magnetization. First, models that fit either the data or the surface field predicted from a regional spherical harmonic representation of the data (see Plattner & Johnson abstract) and that minimize the root mean square (RMS) value of the magnetization are derived. Second, models in which the spatial distribution of magnetization required to fit the data is minimized are derived using the approach of Parker (1991). As seen previously, the largest amplitudes of lithospheric magnetization are concentrated around the Caloris basin. With this exception, across the northern hemisphere there are no overall correlations of magnetization with surface geology, although higher magnetizations are found in regions with darker surfaces. Similarly, there is no systematic correlation of magnetization signatures with crater materials, although there are specific instances of craters with interiors or ejecta that have magnetizations distinct from the surrounding region. For the latter case, we observe no correlation of the occurrence of these signatures with crater degradation state (a proxy for age). At the lowest spacecraft altitudes (source depths less than O(10 km) are unlikely in most regions

  16. Seismic evidence of the lithosphere-asthenosphere boundary beneath Izu-Bonin area

    Science.gov (United States)

    Cui, H.; Gao, Y.; Zhou, Y.

    2016-12-01

    The lithosphere-asthenosphere boundary (LAB), separating the rigid lithosphere and the ductile asthenosphere layers, is the seismic discontinuity with the negative velocity contrast of the Earth's interior [Fischer et al., 2010]. The LAB has been also termed the Gutenberg (G) discontinuity that defines the top of the low velocity zone in the upper mantle [Gutenberg, 1959; Revenaugh and Jordan, 1991]. The seismic velocity, viscosity, resistivity and other physical parameters change rapidly with the depths across the boundary [Eaton et al., 2009]. Seismic detections on the LAB in subduction zone regions are of great help to understand the interactions between the lithosphere and asthenosphere layers and the geodynamic processes related with the slab subductions. In this study, the vertical broadband waveforms are collected from three deep earthquake events occurring from 2000 to 2014 with the focal depths of 400 600 km beneath the Izu-Bonin area. The waveform data is processed with the linear slant stack method [Zang and Zhou, 2002] to obtain the vespagrams in the relative travel-time to slowness domain and the stacked waveforms. The sP precursors reflected on the LAB (sLABP), which have the negative polarities with the amplitude ratios of 0.17 0.21 relative to the sP phases, are successfully extracted. Based on the one-dimensional modified velocity model (IASP91-IB), we obtain the distributions for six reflected points of the sLABP phases near the source region. Our results reveal that the LAB depths range between 58 and 65 km beneath the Izu-Bonin Arc, with the average depth of 62 km and the small topography of 7 km. Compared with the results of the tectonic stable areas in Philippine Sea [Kawakatsu et al., 2009; Kumar and Kawakatsu, 2011], the oceanic lithosphere beneath the Izu-Bonin Arc shows the obvious thinning phenomena. We infer that the lithospheric thinning is closely related with the partial melting, which is caused by the volatiles continuously released

  17. Seismic Constraints on the Lithosphere-Asthenosphere Boundary Beneath the Izu-Bonin Area: Implications for the Oceanic Lithospheric Thinning

    Science.gov (United States)

    Cui, Qinghui; Wei, Rongqiang; Zhou, Yuanze; Gao, Yajian; Li, Wenlan

    2018-01-01

    The lithosphere-asthenosphere boundary (LAB) is the seismic discontinuity with negative velocity contrasts in the upper mantle. Seismic detections on the LAB are of great significance in understanding the plate tectonics, mantle convection and lithospheric evolution. In this paper, we study the LAB in the Izu-Bonin subduction zone using four deep earthquakes recorded by the permanent and temporary seismic networks of the USArray. The LAB is clearly revealed with sP precursors (sdP) through the linear slant stacking. As illustrated by reflected points of the identified sdP phases, the depth of LAB beneath the Izu-Bonin Arc (IBA) is about 65 km with a range of 60-68 km. The identified sdP phases with opposite polarities relative to sP phases have the average relative amplitude of 0.21, which means a 3.7% velocity drop and implies partial melting in the asthenosphere. On the basis of the crustal age data, the lithosphere beneath the IBA is located at the 1100 °C isotherm calculated with the GDH1 model. Compared to tectonically stable areas, such as the West Philippine Basin (WPB) and Parece Vela Basin (PVB) in the Philippine Sea, the lithosphere beneath the Izu-Bonin area shows the obvious lithospheric thinning. According to the geodynamic and petrological studies, the oceanic lithospheric thinning phenomenon can be attributed to the strong erosion of the small-scale convection in the mantle wedge enriched in volatiles and melts.

  18. Global equivalent magnetization of the oceanic lithosphere

    Science.gov (United States)

    Dyment, J.; Choi, Y.; Hamoudi, M.; Lesur, V.; Thebault, E.

    2015-11-01

    As a by-product of the construction of a new World Digital Magnetic Anomaly Map over oceanic areas, we use an original approach based on the global forward modeling of seafloor spreading magnetic anomalies and their comparison to the available marine magnetic data to derive the first map of the equivalent magnetization over the World's ocean. This map reveals consistent patterns related to the age of the oceanic lithosphere, the spreading rate at which it was formed, and the presence of mantle thermal anomalies which affects seafloor spreading and the resulting lithosphere. As for the age, the equivalent magnetization decreases significantly during the first 10-15 Myr after its formation, probably due to the alteration of crustal magnetic minerals under pervasive hydrothermal alteration, then increases regularly between 20 and 70 Ma, reflecting variations in the field strength or source effects such as the acquisition of a secondary magnetization. As for the spreading rate, the equivalent magnetization is twice as strong in areas formed at fast rate than in those formed at slow rate, with a threshold at ∼40 km/Myr, in agreement with an independent global analysis of the amplitude of Anomaly 25. This result, combined with those from the study of the anomalous skewness of marine magnetic anomalies, allows building a unified model for the magnetic structure of normal oceanic lithosphere as a function of spreading rate. Finally, specific areas affected by thermal mantle anomalies at the time of their formation exhibit peculiar equivalent magnetization signatures, such as the cold Australian-Antarctic Discordance, marked by a lower magnetization, and several hotspots, marked by a high magnetization.

  19. Slow loaded breathing training improves blood pressure, lung capacity and arm exercise endurance for older people with treated and stable isolated systolic hypertension.

    Science.gov (United States)

    Ublosakka-Jones, Chulee; Tongdee, Phailin; Pachirat, Orathai; Jones, David A

    2018-03-28

    Hypertension and reduced lung function are important features of aging. Slow loaded breathing training reduces resting blood pressure and the question is whether this can also improve lung function. Thirty-two people (67 ± 5 years, 16 male) with controlled isolated systolic hypertension undertook an eight weeks randomised controlled training trial with an inspiratory load of 25% maximum inspiratory pressure (MIP) at 6 breaths per minute (slow loaded breathing; SLB) or deep breathing control (CON). Outcome measures were resting blood pressure (BP) and heart rate; MIP; lung capacity; chest and abdominal expansion; arm cranking exercise endurance at 50% heart rate reserve. Home based measurement of resting systolic BP decreased by 20 mm Hg (15 to 25) (Mean and 95%CI) for SLB and by 5 mm Hg (1 to 7) for CON. Heart rate and diastolic BP also decreased significantly for SLB but not CON. MIP increased by 15.8 cm H 2 O (11.8 to 19.8) and slow vital capacity by 0.21 L (0.15 to 0.27) for SLB but not for CON. Chest and abdominal expansion increased by 2.3 cm (2.05 to 2.55) and 2.5 cm (2.15 to 2.85), respectively for SLB and by 0.5 cm (0.26 to 0.74) and 1.7 cm (1.32 to 2.08) for CON. Arm exercise time increased by 4.9 min (3.65 to 5.15) for SLB with no significant change for CON. Slow inspiratory muscle training is not only effective in reducing resting BP, even in older people with well controlled isolated systolic hypertension but also increases inspiratory muscle strength, lung capacity and arm exercise duration. Copyright © 2018. Published by Elsevier Inc.

  20. Lithosphere erosion atop mantle plumes

    Science.gov (United States)

    Agrusta, R.; Arcay, D.; Tommasi, A.

    2012-12-01

    Mantle plumes are traditionally proposed to play an important role in lithosphere erosion. Seismic images beneath Hawaii and Cape Verde show a lithosphere-asthenosphere-boundary (LAB) up to 50 km shallower than the surroundings. However, numerical models show that unless the plate is stationary the thermo-mechanical erosion of the lithosphere does not exceed 30 km. We use 2D petrological-thermo-mechanical numerical models based on a finite-difference method on a staggered grid and marker in cell method to study the role of partial melting on the plume-lithosphere interaction. A homogeneous peridotite composition with a Newtonian temperature- and pressure-dependent viscosity is used to simulate both the plate and the convective mantle. A constant velocity, ranging from 5 to 12.5 cm/yr, is imposed at the top of the plate. Plumes are created by imposing a thermal anomaly of 150 to 350 K on a 50 km wide domain at the base of the model (700 km depth); the plate right above the thermal anomaly is 40 Myr old. Partial melting is modeled using batch-melting solidus and liquidus in anhydrous conditions. We model the progressive depletion of peridotite and its effect on partial melting by assuming that the melting degree only strictly increases through time. Melt is accumulated until a porosity threshold is reached and the melt in excess is then extracted. The rheology of the partially molten peridotite is determined using viscous constitutive relationship based on a contiguity model, which enables to take into account the effects of grain-scale melt distribution. Above a threshold of 1%, melt is instantaneously extracted. The density varies as a function of partial melting degree and extraction. Besides, we analyze the kinematics of the plume as it impacts a moving plate, the dynamics of time-dependent small-scale convection (SSC) instabilities developing in the low-viscosity layer formed by spreading of hot plume material at the lithosphere base, and the resulting thermal

  1. Synthetic Analysis of the Effective Elastic Thickness of the Lithosphere in China

    Science.gov (United States)

    Lu, Z.; Li, C.

    2017-12-01

    Effective elastic thickness (Te) represents the response of the lithosphere to a long-term (larger than 105 years) geological loading and reflects the deformation mechanism of plate and its thermodynamic state. Temperature and composition of the lithosphere, coupling between crust and lithospheric mantle, and lithospheric structures affect Te. Regional geology in China is quite complex, influenced by the subduction of the Pacific and Philippine Sea plates in the east and the collision of the Eurasia plate with the India-Australia plate in the southwest. Te can help understand the evolution and strength of the lithospheres in different areas and tectonic units. Here we apply the multitaper coherence method to estimate Te in China using the topography (ETOPO1) and Bouguer gravity anomalies (WGM2012) , at different window sizes (600km*600km, 800km*800km, 1000km*1000km) and moving steps. The lateral variation of Te in China coincides well with the geology. The old stable cratons or basins always correspond to larger Te, whereas the oceanic lithosphere or active orogen blocks tend to get smaller Te. We further correlate Te to curie-point depths (Zb) and heat flow to understand how temperature influences the strength of the lithosphere. Despite of a complex correlation between Te and Zb, good positive correlations are found in the North China Block, Tarim Basin, and Lower Yangtze, showing strong influence of temperature on lithospheric strength. Conversely, the Tibetan Plateau, Upper and Middle Yangtze, and East China Sea Basin even show negative correlation, suggesting that lithospheric structures and compositions play more important roles than temperature in these blocks. We also find that earthquakes tend to occur preferably in a certain range of Te. Deeper earthquakes are more likely to occur where the lithosphere is stronger with larger Te. Crust with a larger Te may also have a deeper ductile-brittle boundary, along which deep large earthquakes tend to cluster.

  2. Slow briefs: slow food....slow architecture

    OpenAIRE

    Crotch, Joanna

    2012-01-01

    We are moving too fast…fast lives, fast cars, fast food…..and fast architecture. We are caught up in a world that allows no time to stop and think; to appreciate and enjoy all the really important things in our lives. Recent responses to this seemingly unstoppable trend are the growing movements of Slow Food and Cittaslow. Both initiatives are, within their own realms, attempting to reverse speed, homogeny, expediency and globalisation, considering the values of regionality, patience, craft, ...

  3. Lithospheric thermal-rheological structure of the Ordos Basin and its geodynamics

    Science.gov (United States)

    Pan, J.; Huang, F.; He, L.; Wu, Q.

    2015-12-01

    The study on the destruction of the North China Craton has always been one of the hottest issues in earth sciences.Both mechanism and spatial variation are debated fiercely, still unclear.However, geothermal research on the subject is relatively few. Ordos Basin, located in the west of the North China Craton, is a typical intraplate. Based on two-dimensional thermal modeling along a profile across Ordos Basin from east to west, obtained the lithospheric thermal structure and rheology. Mantle heat flow in different regions of Ordos Basin is from 21.2 to 24.5 mW/m2. In the east mantle heat flow is higher while heat flow in western region is relatively low. But mantle heat flow is smooth and low overall, showing a stable thermal background. Ratio of crustal and mantle heat flow is between 1.51 and 1.84, indicating that thermal contribution from shallow crust is lower than that from the mantle. Rheological characteristics along the profile are almost showed as "jelly sandwich" model and stable continental lithosphere structure,which is represent by a weak crust portion but a strong lithospheric mantle portion in vertical strength profile. Based on above , both thermal structure and lithospheric rheology of Ordos Basin illustrate that tectonic dynamics environment in the west of North China Craton is relatively stable. By the study on lithospheric thermal structure, we focus on the disparity in thickness between the thermal lithosphere and seismic lithosphere.The difference in western Ordos Basin is about 140km, which decreases gradually from Fenwei graben in the eastern Ordos Basin to the Bohai Bay Basin.That is to say the difference decreases gradually from the west to the east of North China Craton.The simulation results imply that viscosity of the asthenosphere under North China Craton also decreases gradually from west to east, confirming that dehydration of the Pacific subduction is likely to have great effect on the North China Craton.

  4. Asymmetric lithosphere as the cause of rifting and magmatism in the Permo-Carboniferous Oslo Graben, in Permo-Carboniferous Rifting and Magmatism in Europe.

    NARCIS (Netherlands)

    Pascal Candas, C.; Cloetingh, S.A.P.L.; Davies, G.R.

    2004-01-01

    Compared to other Permo-Carboniferous rift basins of NW Europe, the Oslo Graben has two distinct characteristics. First, it initiated inside cold and stable Precambrian lithosphere, whereas most Permo-Carboniferous basins developed in weaker Phanerozoic lithosphere, and second, it is characterized

  5. Characterizing Lithospheric Thickness in Australia using Ps and Sp Scattered Waves

    Science.gov (United States)

    Ford, H. A.; Fischer, K. M.; Rychert, C. A.

    2008-12-01

    The purpose of this study is to constrain the morphology of the lithosphere-asthenosphere boundary throughout Australia using scattered waves. Prior surface wave studies have shown a correlation between lithospheric thickness and the three primary geologic provinces of Australia, with the shallowest lithosphere located beneath the Phanerozoic province to the east, and the thicker lithosphere located beneath the Proterozoic and Archean regions. To determine lithospheric thickness, waveform data from twenty permanent broadband stations spanning mainland Australia and the island of Tasmania were analyzed using Ps and Sp migration techniques. Waveform selection for each station was based on epicentral distance (35° to 80° for Ps and 55° to 80° for Sp), and event depth (no greater than 300 km for Sp). For both Ps and Sp a simultaneous deconvolution was performed on the data for each of the twenty stations, and the resulting receiver function for each station was migrated to depth. Data were binned with epicentral distance to differentiate direct discontinuity phases from crustal reverberations (for Ps) and other teleseismic arrivals (for Sp). Early results in both Ps and Sp show a clear Moho discontinuity at most stations in addition to sharp, strong crustal reverberations seen in many of the Ps images. In the eastern Phanerozoic province, a strong negative phase at 100-105 km is evident in Ps for stations CAN and EIDS. The negative phase lies within a depth range that corresponds to the negative velocity gradient between fast lithosphere and slow asthenosphere imaged by surface waves. We therefore think that it is the lithosphere- asthenosphere boundary. On the island of Tasmania, a negative phase at 70-75 km in Ps images at stations TAU and MOO also appears to be the lithosphere-asthenosphere boundary. In the Proterozoic and Archean regions of the Australian continent, initial results for both Ps and Sp migration indicate clear crustal phases, but significantly

  6. The lithosphere-asthenosphere: Italy and surroundings

    International Nuclear Information System (INIS)

    Panza, G.F.; Aoudia, A.; Pontevivo, A.; Chimera, G.; Raykova, R.

    2003-02-01

    The velocity-depth distribution of the lithosphere-asthenosphere in the Italian region and surroundings is imaged, with a lateral resolution of about 100 km, by surface wave velocity tomography and non-linear inversion. Maps of the Moho depth, of the thickness of the lithosphere and of the shear-wave velocities, down to depths of 200 km and more, are constructed. A mantle wedge, identified in the uppermost mantle along the Apennines and the Calabrian Arc, underlies the principal recent volcanoes, and partial melting can be relevant in this part of the uppermost mantle. In Calabria a lithospheric doubling is seen, in connection with the subduction of the Ionian lithosphere. The asthenosphere is shallow in the Southern Tyrrhenian Sea. High velocity bodies, cutting the asthenosphere, outline the Adria-lonian subduction in the Tyrrhenian Sea and the deep-reaching lithospheric root in the Western Alps. Less deep lithospheric roots are seen in the Central Apennines. The lithosphere-asthenosphere properties delineate a differentiation between the northern and the southern sectors of the Adriatic Sea, likely attesting the fragmentation of Adria. (author)

  7. Craton Heterogeneity in the South American Lithosphere

    Science.gov (United States)

    Lloyd, S.; Van der Lee, S.; Assumpcao, M.; Feng, M.; Franca, G. S.

    2012-04-01

    We investigate structure of the lithosphere beneath South America using receiver functions, surface wave dispersion analysis, and seismic tomography. The data used include recordings from 20 temporary broadband seismic stations deployed across eastern Brazil (BLSP02) and from the Chile Ridge Subduction Project seismic array in southern Chile (CRSP). By jointly inverting Moho point constraints, Rayleigh wave group velocities, and regional S and Rayleigh wave forms we obtain a continuous map of Moho depth. The new tomographic Moho map suggests that Moho depth and Moho relief vary slightly with age within the Precambrian crust. Whether or not a correlation between crustal thickness and geologic age can be derived from the pre-interpolation point constraints depends strongly on the selected subset of receiver functions. This implies that using only pre-interpolation point constraints (receiver functions) inadequately samples the spatial variation in geologic age. We also invert for S velocity structure and estimate the depth of the lithosphere-asthenosphere boundary (LAB) in Precambrian South America. The new model reveals a relatively thin lithosphere throughout most of Precambrian South America (< 140 km). Comparing LAB depth with lithospheric age shows they are overall positively correlated, whereby the thickest lithosphere occurs in the relatively small Saõ Francisco craton (200 km). However, within the larger Amazonian craton the younger lithosphere is thicker, indicating that locally even larger cratons are not protected from erosion or reworking of the lithosphere.

  8. The lithosphere-asthenosphere Italy and surroundings

    CERN Document Server

    Panza, G F; Chimera, G; Pontevivo, A; Raykova, R

    2003-01-01

    The velocity-depth distribution of the lithosphere-asthenosphere in the Italian region and surroundings is imaged, with a lateral resolution of about 100 km, by surface wave velocity tomography and non-linear inversion. Maps of the Moho depth, of the thickness of the lithosphere and of the shear-wave velocities, down to depths of 200 km and more, are constructed. A mantle wedge, identified in the uppermost mantle along the Apennines and the Calabrian Arc, underlies the principal recent volcanoes, and partial melting can be relevant in this part of the uppermost mantle. In Calabria a lithospheric doubling is seen, in connection with the subduction of the Ionian lithosphere. The asthenosphere is shallow in the Southern Tyrrhenian Sea. High velocity bodies, cutting the asthenosphere, outline the Adria-lonian subduction in the Tyrrhenian Sea and the deep-reaching lithospheric root in the Western Alps. Less deep lithospheric roots are seen in the Central Apennines. The lithosphere-asthenosphere properties delineat...

  9. Slow Antihydrogen

    International Nuclear Information System (INIS)

    Gabrielse, G.; Speck, A.; Storry, C.H.; Le Sage, D.; Guise, N.; Larochelle, P.C.; Grzonka, D.; Oelert, W.; Schepers, G.; Sefzick, T.; Pittner, H.; Herrmann, M.; Walz, J.; Haensch, T.W.; Comeau, D.; Hessels, E.A.

    2004-01-01

    Slow antihydrogen is now produced by two different production methods. In Method I, large numbers of H atoms are produced during positron-cooling of antiprotons within a nested Penning trap. In a just-demonstrated Method II, lasers control the production of antihydrogen atoms via charge exchange collisions. Field ionization detection makes it possible to probe the internal structure of the antihydrogen atoms being produced - most recently revealing atoms that are too tightly bound to be well described by the guiding center atom approximation. The speed of antihydrogen atoms has recently been measured for the first time. After the requested overview, the recent developments are surveyed

  10. Numerical simulations of the mantle lithosphere delamination

    Science.gov (United States)

    Morency, C.; Doin, M.-P.

    2004-03-01

    Sudden uplift, extension, and increased igneous activity are often explained by rapid mechanical thinning of the lithospheric mantle. Two main thinning mechanisms have been proposed, convective removal of a thickened lithospheric root and delamination of the mantle lithosphere along the Moho. In the latter case, the whole mantle lithosphere peels away from the crust by the propagation of a localized shear zone and sinks into the mantle. To study this mechanism, we perform two-dimensional (2-D) numerical simulations of convection using a viscoplastic rheology with an effective viscosity depending strongly on temperature, depth, composition (crust/mantle), and stress. The simulations develop in four steps. (1) We first obtain "classical" sublithospheric convection for a long time period (˜300 Myr), yielding a slightly heterogeneous lithospheric temperature structure. (2) At some time, in some simulations, a strong thinning of the mantle occurs progressively in a small area (˜100 km wide). This process puts the asthenosphere in direct contact with the lower crust. (3) Large pieces of mantle lithosphere then quickly sink into the mantle by the horizontal propagation of a detachment level away from the "asthenospheric conduit" or by progressive erosion on the flanks of the delaminated area. (4) Delamination pauses or stops when the lithospheric mantle part detaches or when small-scale convection on the flanks of the delaminated area is counterbalanced by heat diffusion. We determine the parameters (crustal thicknesses, activation energies, and friction coefficients) leading to delamination initiation (step 2). We find that delamination initiates where the Moho temperature is the highest, as soon as the crust and mantle viscosities are sufficiently low. Delamination should occur on Earth when the Moho temperature exceeds ˜800°C. This condition can be reached by thermal relaxation in a thickened crust in orogenic setting or by corner flow lithospheric erosion in the

  11. Using crustal thickness and subsidence history on the Iberia-Newfoundland margins to constrain lithosphere deformation modes during continental breakup

    Science.gov (United States)

    Jeanniot, Ludovic; Kusznir, Nick; Manatschal, Gianreto; Mohn, Geoffroy

    2014-05-01

    Observations at magma-poor rifted margins such as Iberia-Newfoundland show a complex lithosphere deformation history during continental breakup and seafloor spreading initiation leading to complex OCT architecture with hyper-extended continental crust and lithosphere, exhumed mantle and scattered embryonic oceanic crust and continental slivers. Initiation of seafloor spreading requires both the rupture of the continental crust and lithospheric mantle, and the onset of decompressional melting. Their relative timing controls when mantle exhumation may occur; the presence or absence of exhumed mantle provides useful information on the timing of these events and constraints on lithosphere deformation modes. A single lithosphere deformation mode leading to continental breakup and sea-floor spreading cannot explain observations. We have determined the sequence of lithosphere deformation events for two profiles across the present-day conjugate Iberia-Newfoundland margins, using forward modelling of continental breakup and seafloor spreading initiation calibrated against observations of crustal basement thickness and subsidence. Flow fields, representing a sequence of lithosphere deformation modes, are generated by a 2D finite element viscous flow model (FeMargin), and used to advect lithosphere and asthenosphere temperature and material. FeMargin is kinematically driven by divergent deformation in the upper 15-20 km of the lithosphere inducing passive upwelling beneath that layer; extensional faulting and magmatic intrusions deform the topmost upper lithosphere, consistent with observations of deformation processes occurring at slow spreading ocean ridges (Cannat, 1996). Buoyancy enhanced upwelling, as predicted by Braun et al. (2000) is also kinematically included in the lithosphere deformation model. Melt generation by decompressional melting is predicted using the parameterization and methodology of Katz et al. (2003). The distribution of lithosphere deformation, the

  12. Impact of lithospheric rheology on surface topography

    Science.gov (United States)

    Liao, K.; Becker, T. W.

    2017-12-01

    The expression of mantle flow such as due to a buoyant plume as surface topography is a classical problem, yet the role of rheological complexities could benefit from further exploration. Here, we investigate the topographic expressions of mantle flow by means of numerical and analytical approaches. In numerical modeling, both conventional, free-slip and more realistic, stress-free boundary conditions are applied. For purely viscous rheology, a high viscosity lithosphere will lead to slight overestimates of topography for certain settings, which can be understood by effectively modified boundary conditions. Under stress-free conditions, numerical and analytical results show that the magnitude of dynamic topography decreases with increasing lithosphere thickness (L) and viscosity (ηL), as L-1 and ηL-3. The wavelength of dynamic topography increases linearly with L and (ηL/ ηM) 1/3. We also explore the time-dependent interactions of a rising plume with the lithosphere. For a layered lithosphere with a decoupling weak lower crust embedded between stronger upper crust and lithospheric mantle, dynamic topography increases with a thinner and weaker lower crust. The dynamic topography saturates when the decoupling viscosity is 3-4 orders lower than the viscosity of upper crust and lithospheric mantle. We further explore the role of visco-elastic and visco-elasto-plastic rheologies.

  13. Preliminary three-dimensional model of mantle convection with deformable, mobile continental lithosphere

    Science.gov (United States)

    Yoshida, Masaki

    2010-06-01

    Characteristic tectonic structures such as young orogenic belts and suture zones in a continent are expected to be mechanically weaker than the stable part of the continental lithosphere with the cratonic root (or cratonic lithosphere) and yield lateral viscosity variations in the continental lithosphere. In the present-day Earth's lithosphere, the pre-existing, mechanically weak zones emerge as a diffuse plate boundary. However, the dynamic role of a weak (low-viscosity) continental margin (WCM) in the stability of continental lithosphere has not been understood in terms of geophysics. Here, a new numerical simulation model of mantle convection with a compositionally and rheologically heterogeneous, deformable, mobile continental lithosphere is presented for the first time by using three-dimensional regional spherical-shell geometry. A compositionally buoyant and highly viscous continental assemblage with pre-existing WCMs, analogous to the past supercontinent, is modeled and imposed on well-developed mantle convection whose vigor of convection, internal heating rate, and rheological parameters are appropriate for the Earth's mantle. The visco-plastic oceanic lithosphere and the associated subduction of oceanic plates are incorporated. The time integration of the advection of continental materials with zero chemical diffusion is performed by a tracer particle method. The time evolution of mantle convection after setting the model supercontinent is followed over 800 Myr. Earth-like continental drift is successfully reproduced, and the characteristic thermal interaction between the mantle and the continent/supercontinent is observed in my new numerical model. Results reveal that the WCM protects the cratonic lithosphere from being stretched by the convecting mantle and may play a significant role in the stability of the cratonic lithosphere during the geological timescale because it acts as a buffer that prevents the cratonic lithosphere from undergoing global

  14. Permeability Barrier Generation in the Martian Lithosphere

    Science.gov (United States)

    Schools, Joe; Montési, Laurent

    2015-11-01

    Permeability barriers develop when a magma produced in the interior of a planet rises into the cooler lithosphere and crystallizes more rapidly than the lithosphere can deform (Sparks and Parmentier, 1991). Crystallization products may then clog the porous network in which melt is propagating, reducing the permeability to almost zero, i.e., forming a permeability barrier. Subsequent melts cannot cross the barrier. Permeability barriers have been useful to explain variations in crustal thickness at mid-ocean ridges on Earth (Magde et al., 1997; Hebert and Montési, 2011; Montési et al., 2011). We explore here under what conditions permeability barriers may form on Mars.We use the MELTS thermodynamic calculator (Ghiorso and Sack, 1995; Ghiorso et al., 2002; Asimow et al., 2004) in conjunction with estimated Martian mantle compositions (Morgan and Anders, 1979; Wänke and Dreibus, 1994; Lodders and Fegley, 1997; Sanloup et al., 1999; Taylor 2013) to model the formation of permeability barriers in the lithosphere of Mars. In order to represent potential past and present conditions of Mars, we vary the lithospheric thickness, mantle potential temperature (heat flux), oxygen fugacity, and water content.Our results show that permeability layers can develop in the thermal boundary layer of the simulated Martian lithosphere if the mantle potential temperature is higher than ~1500°C. The various Martian mantle compositions yield barriers in the same locations, under matching variable conditions. There is no significant difference in barrier location over the range of accepted Martian oxygen fugacity values. Water content is the most significant influence on barrier development as it reduces the temperature of crystallization, allowing melt to rise further into the lithosphere. Our lower temperature and thicker lithosphere model runs, which are likely the most similar to modern Mars, show no permeability barrier generation. Losing the possibility of having a permeability

  15. Colorado Plateau magmatism and uplift by warming of heterogeneous lithosphere.

    Science.gov (United States)

    Roy, Mousumi; Jordan, Thomas H; Pederson, Joel

    2009-06-18

    The forces that drove rock uplift of the low-relief, high-elevation, tectonically stable Colorado Plateau are the subject of long-standing debate. While the adjacent Basin and Range province and Rio Grande rift province underwent Cenozoic shortening followed by extension, the plateau experienced approximately 2 km of rock uplift without significant internal deformation. Here we propose that warming of the thicker, more iron-depleted Colorado Plateau lithosphere over 35-40 Myr following mid-Cenozoic removal of the Farallon plate from beneath North America is the primary mechanism driving rock uplift. In our model, conductive re-equilibration not only explains the rock uplift of the plateau, but also provides a robust geodynamic interpretation of observed contrasts between the Colorado Plateau margins and the plateau interior. In particular, the model matches the encroachment of Cenozoic magmatism from the margins towards the plateau interior at rates of 3-6 km Myr(-1) and is consistent with lower seismic velocities and more negative Bouguer gravity at the margins than in the plateau interior. We suggest that warming of heterogeneous lithosphere is a powerful mechanism for driving epeirogenic rock uplift of the Colorado Plateau and may be of general importance in plate-interior settings.

  16. Continents as lithological icebergs: The importance of buoyant lithospheric roots

    Science.gov (United States)

    Abbott, D.H.; Drury, R.; Mooney, W.D.

    1997-01-01

    An understanding of the formation of new continental crust provides an important guide to locating the oldest terrestrial rocks and minerals. We evaluated the crustal thicknesses of the thinnest stable continental crust and of an unsubductable oceanic plateau and used the resulting data to estimate the amount of mantle melting which produces permanent continental crust. The lithospheric mantle is sufficiently depleted to produce permanent buoyancy (i.e., the crust is unsubductable) at crustal thicknesses greater than 25-27 km. These unsubductable oceanic plateaus and hotspot island chains are important sources of new continental crust. The newest continental crust (e.g., the Ontong Java plateau) has a basaltic composition, not a granitic one. The observed structure and geochemistry of continents are the result of convergent margin magmatism and metamorphism which modify the nascent basaltic crust into a lowermost basaltic layer overlain by a more silicic upper crust. The definition of a continent should imply only that the lithosphere is unsubductable over ??? 0.25 Ga time periods. Therefore, the search for the oldest crustal rocks should include rocks from lower to mid-crustal levels.

  17. Global thermal models of the lithosphere

    Science.gov (United States)

    Cammarano, F.; Guerri, M.

    2017-12-01

    Unraveling the thermal structure of the outermost shell of our planet is key for understanding its evolution. We obtain temperatures from interpretation of global shear-velocity (VS) models. Long-wavelength thermal structure is well determined by seismic models and only slightly affected by compositional effects and uncertainties in mineral-physics properties. Absolute temperatures and gradients with depth, however, are not well constrained. Adding constraints from petrology, heat-flow observations and thermal evolution of oceanic lithosphere help to better estimate absolute temperatures in the top part of the lithosphere. We produce global thermal models of the lithosphere at different spatial resolution, up to spherical-harmonics degree 24, and provide estimated standard deviations. We provide purely seismic thermal (TS) model and hybrid models where temperatures are corrected with steady-state conductive geotherms on continents and cooling model temperatures on oceanic regions. All relevant physical properties, with the exception of thermal conductivity, are based on a self-consistent thermodynamical modelling approach. Our global thermal models also include density and compressional-wave velocities (VP) as obtained either assuming no lateral variations in composition or a simple reference 3-D compositional structure, which takes into account a chemically depleted continental lithosphere. We found that seismically-derived temperatures in continental lithosphere fit well, overall, with continental geotherms, but a large variation in radiogenic heat is required to reconcile them with heat flow (long wavelength) observations. Oceanic shallow lithosphere below mid-oceanic ridges and young oceans is colder than expected, confirming the possible presence of a dehydration boundary around 80 km depth already suggested in previous studies. The global thermal models should serve as the basis to move at a smaller spatial scale, where additional thermo-chemical variations

  18. The lithospheric mantle below southern West Greenland

    DEFF Research Database (Denmark)

    Sand, Karina Krarup; Waight, Tod Earle; Pearson, D. Graham

    2009-01-01

    Geothermobarometry of primarily garnet lherzolitic xenoliths from several localities in southern West Greenland is applied to address the diamond potential, pressure and temperature distribution and the stratigraphy of the subcontinental lithospheric mantle ~600 Ma ago. The samples are from kimbe...... into the reworked Archean North of the Naqssugtoqidian deformation front....

  19. The Lithosphere in Italy: Structure and Seismicity

    International Nuclear Information System (INIS)

    Brandmayr, Enrico; Blagoeva Raykova, Reneta; Zuri, Marco; Romanelli, Fabio; Doglioni, Carlo; Panza, Giuliano Francesco

    2010-07-01

    We propose a structural model for the lithosphere-asthenosphere system for the Italic region by means of the S-wave velocity (V S ) distribution with depth. To obtain the velocity structure the following methods are used in the sequence: frequency-time analysis (FTAN); 2D tomography (plotted on a grid 1 o x 1 o ); non-linear inversion; smoothing optimization method. The 3D V S structure (and its uncertainties) of the study region is assembled as a juxtaposition of the selected representative cellular models. The distribution of seismicity and heat flow is used as an independent constraint for the definition of the crustal and lithospheric thickness. The moment tensor inversion of recent damaging earthquakes which occurred in the Italic region is performed through a powerful non-linear technique and it is related to the different rheologic-mechanic properties of the crust and uppermost mantle. The obtained picture of the lithosphere-asthenosphere system for the Italic region confirms a mantle extremely vertically stratified and laterally strongly heterogeneous. The lateral variability in the mantle is interpreted in terms of subduction zones, slab dehydration, inherited mantle chemical anisotropies, asthenospheric upwellings, and so on. The western Alps and the Dinarides have slabs with low dip, whereas the Apennines show a steeper subduction. No evidence for any type of mantle plume is observed. The asymmetric expansion of the Tyrrhenian Sea, which may be interpreted as related to a relative eastward mantle flow with respect to the overlying lithosphere, is confirmed. (author)

  20. The continental lithosphere: a geochemical perspective

    International Nuclear Information System (INIS)

    Hawkesworth, C.J.; Person, G.; Turner, S.P.; Calsteren, P. Van; Gallagher, K.

    1993-01-01

    The lithosphere is the cool strong outler layer of the Earth that is effectively a boundary layer to the convecting interior. The evidence from mantle xenoliths and continental basalts is that the lower continental crust and uppermost mantle are different beneath Archaen and proterozoic areas. Mantle xenoliths from Archaen terrains, principally the Kaapvaal craton in southern Africa, are significantly depleted in Fe and other major elements which are concentrated in basalts. Nd and Os isotope data on inclusions in diamonds and peridoties respectively, indicate that such mantle is as old as the overlying Archaen crust. Since it appears to have been coupled to the overlying crust, and to have been isolated from the homogenising effects of convection for long periods of time, it is inferred to be within the continental lithosphere. The mantle lithosphere beneath Proterozoic and younger areas is less depleted in major elements, and so it is more fertile, less buoyant, and therefore thinner, than the Archaen mantle lithosphere. (author). 136 refs, 14 figs

  1. Antarctic Lithosphere Studies: Progress, Problems and Promise

    Science.gov (United States)

    Dalziel, I. W. D.; Wilson, T. J.

    2017-12-01

    In the sixty years since the International Geophysical Year, studies of the Antarctic lithosphere have progressed from basic geological observations and sparse geophysical measurements to continental-scale datasets of radiometric dates, ice thickness, bedrock topography and characteristics, seismic imaging and potential fields. These have been augmented by data from increasingly dense broadband seismic and geodetic networks. The Antarctic lithosphere is known to have been an integral part, indeed a "keystone" of the Pangea ( 250-185Ma) and Gondwanaland ( 540-180 Ma) supercontinents. It is widely believed to have been part of hypothetical earlier supercontinents Rodinia ( 1.0-0.75 Ga) and Columbia (Nuna) ( 2.0-1.5 Ga). Despite the paucity of exposure in East Antarctica, the new potential field datasets have emboldened workers to extrapolate Precambrian geological provinces and structures from neighboring continents into Antarctica. Hence models of the configuration of Columbia and its evolution into Rodinia and Gondwana have been proposed, and rift-flank uplift superimposed on a Proterozoic orogenic root has been hypothesized to explain the Gamburtsev Subglacial Mountains. Mesozoic-Cenozoic rifting has imparted a strong imprint on the West Antarctic lithosphere. Seismic tomographic evidence reveals lateral variation in lithospheric thickness, with the thinnest zones within the West Antarctic rift system and underlying the Amundsen Sea Embayment. Upper mantle low velocity zones are extensive, with a deeper mantle velocity anomaly underlying Marie Byrd Land marking a possible mantle plume. Misfits between crustal motions measured by GPS and GIA model predictions can, in part, be linked with the changes in lithosphere thickness and mantle rheology. Unusually high uplift rates measured by GPS in the Amundsen region can be interpreted as the response of regions with thin lithosphere and weak mantle to late Holocene ice mass loss. Horizontal displacements across the TAM

  2. Estimating lithospheric properties at Atla Regio, Venus

    Science.gov (United States)

    Phillips, Roger J.

    1994-01-01

    Magellan spehrical harmonic gravity and topography models are used to estimate lithospheric properties at Alta Regio, Venus, a proposed hotspot with dynamic support from mantle plume(s). Global spherical harmonic and local representations of the gravity field share common properties in the Atla region interms of their spectral behavior over a wavelength band from approximately 2100 to approximately 700 km. The estimated free-air admittance spectrum displays a rather featureless long-wavelength portion followed by a sharp rise at wavelengths shorter than about 1000 km. This sharp rise requires significant flexural support of short-wavelength structures. The Bouguer coherence also displays a sharp drop in this wavelength band, indicating a finite flexural rigidity of the lithosphere. A simple model for lithospheric loading from above and below is introduced (D. W. Forsyth, 1985) with four parameters: f, the ratio of bottom loading to top loading; z(sub m), crustal thickness; z(sub l) depth to bottom loading source; and T(sub e) elastic lithosphere thickness. A dual-mode compensation model is introduced in which the shorter wavelengths (lambda approximately less than 1000 km) might be explained best by a predominance of top loading by the large shield volcanoes Maat Mons, Ozza Mons, and Sapas Mons, and the longer wavelengths (lambda approximately greater than 1500 km) might be explained best by a deep depth of compensation, possibly representing bottom loading by a dynamic source. A Monte Carlo inversion technique is introduced to thoroughly search out the four-space of the model parameters and to examine parameter correlation in the solutions. Venus either is a considerabe deficient in heat sources relative to Earth, or the thermal lithosphere is overthickened in response to an earlier episode of significant heat loss from the planet.

  3. FROM SLOW FOOD TO SLOW TOURISM

    Directory of Open Access Journals (Sweden)

    Bac Dorin Paul

    2014-12-01

    Full Text Available One of the effects of globalization is the faster pace of our lives. This rhythm can be noticed in all aspects of life: travel, work, shopping, etc. and it has serious negative effects. It has become common knowledge that stress and speed generate serious medical issues. Food and eating habits in the modern world have taken their toll on our health. However, some people took a stand and argued for a new kind of lifestyle. It all started in the field of gastronomy, where a new movement emerged – Slow Food, based on the ideas and philosophy of Carlo Petrini. Slow Food represents an important adversary to the concept of fast food, and is promoting local products, enjoyable meals and healthy food. The philosophy of the Slow Food movement developed in several directions: Cittaslow, slow travel and tourism, slow religion and slow money etc. The present paper will account the evolution of the concept and its development during the most recent years. We will present how the philosophy of slow food was applied in all the other fields it reached and some critical points of view. Also we will focus on the presence of the slow movement in Romania, although it is in a very early stage of development. The main objectives of the present paper are: to present the chronological and ideological evolution of the slow movement; to establish a clear separation of slow travel and slow tourism, as many mistake on for the other; to review the presence of the slow movement in Romania. Regarding the research methodology, information was gathered from relevant academic papers and books and also from interviews and discussions with local entrepreneurs. The research is mostly theoretical and empirical, as slow food and slow tourism are emerging research themes in academic circles.

  4. Movement - uncontrolled or slow

    Science.gov (United States)

    Dystonia; Involuntary slow and twisting movements; Choreoathetosis; Leg and arm movements - uncontrollable; Arm and leg movements - uncontrollable; Slow involuntary movements of large muscle groups; Athetoid movements

  5. Using crustal thickness, subsidence and P-T-t history on the Iberia-Newfoundland & Alpine Tethys margins to constrain lithosphere deformation modes during continental breakup

    Science.gov (United States)

    Jeanniot, L.; Kusznir, N. J.; Manatschal, G.; Mohn, G.; Beltrando, M.

    2013-12-01

    Observations at magma-poor rifted margins such as Iberia-Newfoundland show a complex lithosphere deformation history and OCT architecture, resulting in hyper-extended continental crust and lithosphere, exhumed mantle and scattered embryonic oceanic crust before continental breakup and seafloor spreading. Initiation of seafloor spreading requires both the rupture of the continental crust and lithospheric mantle, and the onset of decompressional melting. Their relative timing controls when mantle exhumation may occur; the presence or absence of exhumed mantle provides useful information on the timing of these events and constraints on lithosphere deformation modes. A single kinematic lithosphere deformation mode leading to continental breakup and sea-floor spreading cannot explain observations. We have determined the sequence of lithosphere deformation events, using forward modelling of crustal thickness, subsidence and P-T-t history calibrated against observations on the present-day Iberia-Newfoundland and the fossil analogue Alpine Tethys margins. Lithosphere deformation modes, represented by flow fields, are generated by a 2D finite element viscous flow model (FeMargin), and used to advect lithosphere and asthenosphere temperature and material. FeMargin is kinematically driven by divergent deformation in the topmost upper lithosphere inducing passive upwelling beneath that layer; the upper lithosphere is assumed to deform by extensional faulting and magmatic intrusions, consistent with observations of deformation processes occurring at slow spreading ocean ridges (Cannat, 1996). Buoyancy enhanced upwelling is also included in the kinematic model as predicted by Braun et al (2000). We predict melt generation by decompressional melting using the parameterization and methodology of Katz et al., 2003. We use a series of numerical experiments, tested and calibrated against crustal thicknesses and subsidence observations, to determine the distribution of lithosphere

  6. Lithospheric flexure beneath the Freyja Montes Foredeep, Venus: Constraints on lithospheric thermal gradient and heat flow

    International Nuclear Information System (INIS)

    Solomon, S.C.; Head, J.W.

    1990-01-01

    Analysis of Venera 15 and 16 radar images and topographic data from the Freyja Montes region on Venus suggest that this mountain belt formed as a result of a sequence of underthrusts of the lithosphere of the North Polar Plains beneath the highlands of Ishtar Terra. The Freyja Montes deformation zone consists, south to north, of a linear orogenic belt, an adjacent plateau, a steep scarp separating the plateau from the North Polar Plains, a linear depression at the base of the scarp, and an outer rise. The topographic profile of the depression and outer rise are remarkably similar to that of a foreland deep and rise formed by the flexure of the underthrusting plate beneath a terrestrial mountain range. The authors test the lithospheric flexure hypothesis and they estimate the effective thickness T e of the elastic lithosphere of the underthrusting portion of the North Polar Plains by fitting individual topographic profiles to deflection curves for a broken elastic plate. The theoretical curves fit the observed topographic profiles to within measurement error for values of flexural rigidity D in the range (0.8-3) x 10 22 N m, equivalent to T e in the range 11-18 km. Under the assumption that the base of the mechanical lithosphere is limited by the creep strength of olivine, the mean lithospheric thermal gradient is 14-23 K/km. That the inferred thermal gradient is similar to the value expected for the global mean gradient on the basis of scaling from Earth provides support for the hypothesis that simple conduction dominates lithospheric heat transport on Venus relative to lithospheric recycling and volcanism

  7. Thermal classification of lithospheric discontinuities beneath USArray

    Science.gov (United States)

    Hansen, Steven M.; Dueker, Ken; Schmandt, Brandon

    2015-12-01

    Broadband seismic data from the United States were processed into Ps and Sp receiver function image volumes for the purpose of constraining negative velocity gradients (NVG) at depths between the Moho and 200 km. Moho depth picks from the two independent datasets are in good agreement, however, large discrepancies in NVG picks occur and are attributed to free-surface multiples which obscure deep NVG arrivals in the Ps data. From the Sp data, shallow NVG are found west of the Rockies and in the central US while deep and sporadic NVG are observed beneath the Great Plains and northern Rockies. To aid the interpretation of the observed NVG arrivals, the mantle thermal field is estimated by mapping surface wave tomography velocities to temperature assuming an anelastic olivine model. The distribution of temperature versus NVG depth is bi-modal and displays two distinct thermal populations that are interpreted to represent both the lithosphere-asthenosphere boundary (LAB) and mid-lithosphere discontinuities (MLD). LAB arrivals occur in the western US at 60-85 km and 1200-1400 °C depth suggesting that they manifest partial melt near the base of the thermal plate. MLD arrivals primarily occur at 70-110 km depth and 700-900 °C and we hypothesize that these arrivals are caused by a low-velocity metasomatic layer containing phlogopite resulting from magma crystallization products that accumulate within long-lived thick lithosphere.

  8. A numerical model of mantle convection with deformable, mobile continental lithosphere within three-dimensional spherical geometry

    Science.gov (United States)

    Yoshida, M.

    2010-12-01

    A new numerical simulation model of mantle convection with a compositionally and rheologically heterogeneous, deformable, mobile continental lithosphere is presented for the first time by using three-dimensional regional spherical-shell geometry (Yoshida, 2010, Earth Planet. Sci. Lett.). The numerical results revealed that one of major factor that realizes the supercontinental breakup and subsequent continental drift is a pre-existing, weak (low-viscosity) continental margin (WCM) in the supercontinent. Characteristic tectonic structures such as young orogenic belts and suture zones in a continent are expected to be mechanically weaker than the stable part of the continental lithosphere with the cratonic root (or cratonic lithosphere) and yield lateral viscosity variations in the continental lithosphere. In the present-day Earth's lithosphere, the pre-existing, mechanically weak zones emerge as a diffuse plate boundary. However, the dynamic role of the WCM in the stability of continental lithosphere has not been understood in terms of geophysics. In my numerical model, a compositionally buoyant and highly viscous continental assemblage with pre-existing WCMs, analogous to the past supercontinent, is modeled and imposed on well-developed mantle convection whose vigor of convection, internal heating rate, and rheological parameters are appropriate for the Earth's mantle. The visco-plastic oceanic lithosphere and the associated subduction of oceanic plates are incorporated. The time integration of the advection of continental materials with zero chemical diffusion is performed by a tracer particle method. The time evolution of mantle convection after setting the model supercontinent is followed over 800 Myr. Earth-like continental drift is successfully reproduced, and the characteristic thermal interaction between the mantle and the continent/supercontinent is observed in my new numerical model. Results reveal that the WCM protects the cratonic lithosphere from being

  9. Fossil plume head beneath the Arabian lithosphere?

    Science.gov (United States)

    Stein, Mordechai; Hofmann, Albrecht W.

    1992-12-01

    Phanerozoic alkali basalts from Israel, which have erupted over the past 200 Ma, have isotopic compositions similar to PREMA ("prevalent mantle") with narrow ranges of initial ɛ Nd(T) = +3.9-+5.9; 87Sr/ 86Sr(T)= 0.70292-0.70334; 206Pb/ 204Pb(T)= 18.88-19.99; 207Pb/ 204Pb(T)= 15.58-15.70; and 208Pb/ 204Pb(T)= 38.42-39.57. Their Nb/U(43 ± 9) and Ce/Pb(26 ± 6) ratios are identical to those of normal oceanic basalts, demonstrating that the basalts are essentially free of crustal contamination. Overall, the basalts are chemically and isotopically indistinguishable from many ordinary plume basalts, but no plume track can be identified. We propose that these and other, similar, magmas from the Arabian plate originated from a "fossilized" head of a mantle plume, which was unable to penetrate the continental lithosphere and was therefore trapped and stored beneath it. The plume head was emplaced some time between the late Proterozoic crust formation and the initiation of the Phanerozoic magmatic cycles. Basalts from rift environments in other continental localities show similar geochemistry to that of the Arabian basalts and their sources may also represent fossil plume heads trapped below the continents. We suggest that plume heads are, in general, characterized by the PREMA isotopic mantle signature, because the original plume sources (which may have HIMU or EM-type composition) have been diluted by overlying mantle material, which has been entrained by the plume heads during ascent. On the Arabian plate, rifting and thinning of the lithosphere caused partial melting of the stored plume, which led to periodic volcanism. In the late Cenozoic, the lithosphere broke up and the Red Sea opened. N-MORB tholeiites are now erupting in the central trough of the Red Sea, where the lithosphere has moved apart and the fossil plume has been exhausted, whereas E-MORBs are erupting in the northern and southern troughs, still tapping the plume reservoir. Fossil plumes, which are

  10. Ancient Continental Lithosphere Dislocated Beneath Ocean Basins Along the Mid-Lithosphere Discontinuity: A Hypothesis

    Science.gov (United States)

    Wang, Zhensheng; Kusky, Timothy M.; Capitanio, Fabio A.

    2017-09-01

    The documented occurrence of ancient continental cratonic roots beneath several oceanic basins remains poorly explained by the plate tectonic paradigm. These roots are found beneath some ocean-continent boundaries, on the trailing sides of some continents, extending for hundreds of kilometers or farther into oceanic basins. We postulate that these cratonic roots were left behind during plate motion, by differential shearing along the seismically imaged mid-lithosphere discontinuity (MLD), and then emplaced beneath the ocean-continent boundary. Here we use numerical models of cratons with realistic crustal rheologies drifting at observed plate velocities to support the idea that the mid-lithosphere weak layer fostered the decoupling and offset of the African continent's buoyant cratonic root, which was left behind during Meso-Cenozoic continental drift and emplaced beneath the Atlantic Ocean. We show that in some cratonic areas, the MLD plays a similar role as the lithosphere-asthenosphere boundary for accommodating lateral plate tectonic displacements.

  11. Petrology of Serpentinites and Rodingites in the Oceanic Lithosphere

    OpenAIRE

    Klein, Frieder

    2009-01-01

    Serpentinization, steatitization, and rodingitization are consequences of seawater reaction with lithospheric mantle. These processes take place coevally within the oceanic lithosphere and are related to circulation pathways, lithologic makeup of rocks along the flow path, fluid flux, and temperature. While the boundary conditions are set by the history of magmatic and tectonic accretion of the lithosphere, fluid-rock equilibria determine what reactions take place and where in the system. Pet...

  12. Global model for the lithospheric strength and effective elastic thickness

    OpenAIRE

    Magdala Tesauro; Mikhail Kaban; S. A. P. L. Cloetingh

    2013-01-01

    Global distribution of the strength and effective elastic thickness (Te) of the lithosphere are estimated using physical parameters from recent crustal and lithospheric models. For the Te estimation we apply a new approach, which provides a possibility to take into account variations of Young modulus (E) within the lithosphere. In view of the large uncertainties affecting strength estimates, we evaluate global strength and Te distributions for possible end-member ‘hard’ (HRM) and a ‘soft’ (SR...

  13. The extending lithosphere (Arthur Holmes Medal Lecture)

    Science.gov (United States)

    Brun, Jean-Pierre

    2017-04-01

    Extension of the lithosphere gives birth to a wide range of structures, with characteristic widths between 10 and 1000 km, which includes continental rifts, passive margins, oceanic rifts, core complexes, or back-arc basins. Because the rheology of rocks strongly depends on temperature, this variety of extensional structures falls in two broad categories of extending lithospheres according to the initial Moho temperature TM. "Cold extending systems", with TM 750°C and crustal-dominated strength, lead, depending on strain rate, to either wide rifts or metamorphic core complexes. A much less quoted product of extension is the exhumation of high-pressure (HP ) metamorphic rocks occurring in domains of back-arc extension driven by slab rollback (e.g. Aegean; Appennines-Calabrian) or when the subduction upper plate undergoes extension for plate kinematics reasons (e.g. Norwegian Caledonides; Papua New Guinea). In these tectonic environments, well-documented pressure-temperature-time (P - T - t) paths of HP rocks show a two-stage retrogression path whose the first part corresponds to an isothermal large pressure drop ΔP proportional to the maximum pressure Pmax recorded by the rocks. This linear relation between ΔP and Pmax, which likely results from a stress switch between compression and extension at the onset of exhumation, is in fact observed in all HP metamorphism provinces worldwide, suggesting that the exhumation of HP rocks in extension is a general process rather than an uncommon case. In summary, the modes and products of extension are so diverse that, taken all together, they constitute a very versatile natural laboratory to decipher the rheological complexities of the continental lithosphere and their mechanical implications.

  14. High-temperature peridotites - lithospheric or asthenospheric?

    International Nuclear Information System (INIS)

    Hops, J.J.; Gurney, J.J.

    1990-01-01

    High-temperature peridotites by definition yield equilibration temperatures greater than 1100 degrees C. On the basis of temperature and pressure calculations, these high-temperature peridotites are amongst the deepest samples entrained by kimberlites on route to the surface. Conflicting models proposing either a lithospheric or asthenospheric origin for the high-temperature peridotites have been suggested. A detailed study of these xenoliths from a single locality, the Jagersfontein kimberlite in the Orange Free State, has been completed as a means of resolving this controversy. 10 refs., 2 figs

  15. Piecewise delamination of Moroccan lithosphere from beneath the Atlas Mountains

    Science.gov (United States)

    Bezada, M. J.; Humphreys, E. D.; Davila, J. M.; Carbonell, R.; Harnafi, M.; Palomeras, I.; Levander, A.

    2014-04-01

    The elevation of the intracontinental Atlas Mountains of Morocco and surrounding regions requires a mantle component of buoyancy, and there is consensus that this buoyancy results from an abnormally thin lithosphere. Lithospheric delamination under the Atlas Mountains and thermal erosion caused by upwelling mantle have each been suggested as thinning mechanisms. We use seismic tomography to image the upper mantle of Morocco. Our imaging resolves the location and shape of lithospheric cavities and of delaminated lithosphere ˜400 km beneath the Middle Atlas. We propose discontinuous delamination of an intrinsically unstable Atlas lithosphere, enabled by the presence of anomalously hot mantle, as a mechanism for producing the imaged structures. The Atlas lithosphere was made unstable by a combination of tectonic shortening and eclogite loading during Mesozoic rifting and Cenozoic magmatism. The presence of hot mantle sourced from regional upwellings in northern Africa or the Canary Islands enhanced the instability of this lithosphere. Flow around the retreating Alboran slab focused upwelling mantle under the Middle Atlas, which we infer to be the site of the most recent delamination. The Atlas Mountains of Morocco stand as an example of large-scale lithospheric loss in a mildly contractional orogen.

  16. Global model for the lithospheric strength and effective elastic thickness

    NARCIS (Netherlands)

    Tesauro, M.; Kaban, M.K.; Cloetingh, S.A.P.L.

    2013-01-01

    Global distribution of the strength and effective elastic thickness (Te) of the lithosphere are estimated using physical parameters from recent crustal and lithospheric models. For the Te estimation we apply a new approach, which provides a possibility to take into account variations of Young

  17. Too slow, for Milton

    OpenAIRE

    Armstrong, N.

    2011-01-01

    Too slow, for Milton was written in 2011, as part of a memorial project for Milton Babbitt. The piece borrows harmonies from Babbitt's Composition for 12 Instruments (harmonies which Babbitt had in turn borrowed from Schoenberg's Ode to Napoleon), but unfolds them as part of a musical texture characterised by repetition, resonance, and a slow rate of change. As Babbitt once told me that my music was 'too slow', this seemed an appropriately obstinate form of homage.

  18. Gravity anomalies and flexure of the lithosphere at the Middle Amazon Basin, Brazil

    Science.gov (United States)

    Nunn, Jeffrey A.; Aires, Jose R.

    1988-01-01

    The Middle Amazon Basin is a large Paleozoic sedimentary basin on the Amazonian craton in South America. It contains up to 7 km of mainly shallow water sediments. A chain of Bouguer gravity highs of approximately +40 to +90 mGals transects the basin roughly coincident with the axis of maximum thickness of sediment. The gravity highs are flanked on either side by gravity lows of approximately -40 mGals. The observed gravity anomalies can be explained by a steeply sided zone of high density in the lower crust varying in width from 100 to 200 km wide. Within this region, the continental crust has been intruded/replaced by more dense material to more than half its original thickness of 45-50 km. The much wider sedimentary basin results from regional compensation of the subsurface load and the subsequent load of accumulated sediments by flexure of the lithosphere. The observed geometry of the basin is consistent with an elastic lithosphere model with a mechanical thickness of 15-20 km. Although this value is lower than expected for a stable cratonic region of Early Proterozoic age, it is within the accepted range of effective elastic thicknesses for the earth. Rapid subsidence during the late Paleozoic may be evidence of a second tectonic event or lithospheric relaxation which could lower the effective mechanical thickness of the lithosphere. The high-density zone in the lower crust, as delineated by gravity and flexural modeling, has a complex sinuous geometry which is narrow and south of the axis of maximum sediment thickness on the east and west margins and wide and offset to the north in the center of the basin. The linear trough geometry of the basin itself is a result of smoothing by regional compensation of the load in the lower crust.

  19. Density heterogeneity of the cratonic lithosphere

    DEFF Research Database (Denmark)

    Cherepanova, Yulia; Artemieva, Irina

    2015-01-01

    Using free-board modeling, we examine a vertically-averaged mantle density beneath the Archean-Proterozoic Siberian craton in the layer from the Moho down to base of the chemical boundary layer (CBL). Two models are tested: in Model 1 the base of the CBL coincides with the LAB, whereas in Model 2...... the base of the CBL is at a 180 km depth. The uncertainty of density model is density structure of the Siberian lithospheric mantle with a strong...... correlation between mantle density variations and the tectonic setting. Three types of cratonic mantle are recognized from mantle density anomalies. 'Pristine' cratonic regions not sampled by kimberlites have the strongest depletion with density deficit of 1.8-3.0% (and SPT density of 3.29-3.33 t/m3...

  20. Subduction initiation, recycling of Alboran lower crust, and intracrustal emplacement of subcontinental lithospheric mantle in the Westernmost Mediterranean

    Science.gov (United States)

    Varas-Reus, María Isabel; Garrido, Carlos J.; Bosch, Delphine; Marchesi, Claudio; Hidas, Károly; Booth-Rea, Guillermo; Acosta-Vigil, Antonio

    2015-04-01

    Unraveling the tectonic settings and processes involved in the annihilation of subcontinental mantle lithosphere is of paramount importance for our understanding of the endurance of continents through Earth history. Unlike ophiolites -- their oceanic mantle lithosphere counterparts -- the mechanisms of emplacement of the subcontinental mantle lithosphere in orogens is still poorly known. The emplacement of subcontinental lithospheric mantle peridotites is often attributed to extension in rifted passive margins or continental backarc basins, accretionary processes in subduction zones, or some combination of these processes. One of the most prominent features of the westernmost Mediterranean Alpine orogenic arcs is the presence of the largest outcrops worldwide of diamond facies, subcontinental mantle peridotite massifs; unveiling the mechanisms of emplacement of these massifs may provide important clues on processes involved in the destruction of continents. The western Mediterranean underwent a complex Alpine evolution of subduction initiation, slab fragmentation, and rollback within a context of slow convergence of Africa and Europe In the westernmost Mediterranean, the alpine orogeny ends in the Gibraltar tight arc, which is bounded by the Betic, Rif and Tell belts that surround the Alboran and Algero-Balearic basins. The internal units of these belts are mostly constituted of an allochthonous lithospheric domain that collided and overthrusted Mesozoic and Tertiary sedimentary rocks of the Mesozoic-Paleogene, South Iberian and Maghrebian rifted continental paleomargins. Subcontinental lithospheric peridotite massifs are intercalated between polymetamorphic internal units of the Betic (Ronda, Ojen and Carratraca massifs), Rif (Beni Bousera), and Tell belts. In the Betic chain, the internal zones of the allochthonous Alboran domain include, from bottom to top, polymetamorphic rock of the Alpujarride and Malaguide complexes. The Ronda peridotite massif -- the

  1. Global variations in gravity-derived oceanic crustal thickness: Implications on oceanic crustal accretion and hotspot-lithosphere interactions

    Science.gov (United States)

    Lin, J.; Zhu, J.

    2012-12-01

    We present a new global model of oceanic crustal thickness based on inversion of global oceanic gravity anomaly with constrains from seismic crustal thickness profiles. We first removed from the observed marine free-air gravity anomaly all gravitational effects that can be estimated and removed using independent constraints, including the effects of seafloor topography, marine sediment thickness, and the age-dependent thermal structure of the oceanic lithosphere. We then calculated models of gravity-derived crustal thickness through inversion of the residual mantle Bouguer anomaly using best-fitting gravity-modeling parameters obtained from comparison with seismically determined crustal thickness profiles. Modeling results show that about 5% of the global crustal volume (or 9% of the global oceanic surface area) is associated with model crustal thickness 8.6 km and is interpreted to have been affected by excess magmatism. The percentage of oceanic crustal volume that is associated with thick crustal thickness (>8.6 km) varies greatly among tectonic plates: Pacific (33%), Africa (50%), Antarctic (33%), Australia (30%), South America (34%), Nazca (23%), North America (47%), India (74%), Eurasia (68%), Cocos (20%), Philippine (26%), Scotia (41%), Caribbean (89%), Arabian (82%), and Juan de Fuca (21%). We also found that distribution of thickened oceanic crust (>8.6 km) seems to depend on spreading rate and lithospheric age: (1) On ocean basins younger than 5 Ma, regions of thickened crust are predominantly associated with slow and ultraslow spreading ridges. The relatively strong lithospheric plate at slow and ultraslow ridges might facilitate the loading of large magmatic emplacements on the plate. (2) In contrast, crustal thickness near fast and intermediately fast spreading ridges typically does not exceed 7-8 km. The relatively weak lithosphere at fast and intermediately fast ridges might make it harder for excess magmatism to accrete. We further speculate that

  2. Stable isotopes

    International Nuclear Information System (INIS)

    Evans, D.K.

    1986-01-01

    Seventy-five percent of the world's stable isotope supply comes from one producer, Oak Ridge Nuclear Laboratory (ORNL) in the US. Canadian concern is that foreign needs will be met only after domestic needs, thus creating a shortage of stable isotopes in Canada. This article describes the present situation in Canada (availability and cost) of stable isotopes, the isotope enrichment techniques, and related research programs at Chalk River Nuclear Laboratories (CRNL)

  3. Very slow neutrons

    International Nuclear Information System (INIS)

    Frank, A.

    1983-01-01

    The history is briefly presented of the research so far of very slow neutrons and their basic properties are explained. The methods are described of obtaining very slow neutrons and the problems of their preservation are discussed. The existence of very slow neutrons makes it possible to perform experiments which may deepen the knowledge of the fundamental properties of neutrons. Their wavelength approximates that of visible radiation. The possibilities and use are discussed of neutron optical systems (neutron microscope) which could be an effective instrument for the study of the detailed arrangement, especially of organic substances. (B.S.)

  4. DESTRUCTION OF THE LITHOSPHERE: FAULTBLOCK DIVISIBILITY AND ITS TECTONOPHYSICAL REGULARITIES

    Directory of Open Access Journals (Sweden)

    Semen I. Sherman

    2012-01-01

    Full Text Available A new concept is proposed concerning the origin and inception of ‘initial’ faults and formation of large blocks as a result of cooling of the Archaean lithosphere, during which Benard cells had formed (Fig. 5. At locations where cooling convection currents went down, partial crystallization took place, stresses were localized, and initial fault occurred there. The systems of such fault developed mainly in two directions and gradually formed an initial block pattern of the lithosphere. This pattern is now represented by the largest Archaean faults acting as boundaries of the lithospheric plates and large intraplate blocks (Fig. 6. This group of faults represents the first scaletime level of destruction of the lithosphere. Large blocks of the first (and may be the second order, which are located on the viscous foundation, interacted with each other under the influence of the sublithospheric movements or endogenous sources and thus facilitated the occurrence of high stresses inside the blocks. When the limits of strength characteristics of the block medium were exceeded, the intrablock stresses were released and caused formation of fractures/faults and blocks of various ranks (Fig. 14. This large group, including faultblock structures of various ranks and ages, comprises the second level of the scaletime destruction of the lithosphere.The intense evolution of ensembles of faults and blocks of the second scaletime level is facilitated by shortterm activation of faultblock structures of the lithosphere under the influence of strain waves. Periods of intensive shortterm activation are reliably detected by seismic monitoring over the past fifty years. Investigations of periodical processes specified in the geological records over the post-Proterozoic periods [Khain, Khalilov, 2009] suggest that in so far uninvestigated historical and more ancient times, the top of the lithosphere was subject to wave processes that

  5. Evidence for multiphase folding of the central Indian Ocean lithosphere

    Digital Repository Service at National Institute of Oceanography (India)

    Krishna, K.S.; Bull, J.M.; Scrutton, R.A.

    Long-wavelength (100-300 km) folding in the central Indian Ocean associated with the diffuse plate boundary separating the Indian, Australian, and Capricorn plates is Earth's most convincing example of organized large-scale lithospheric deformation...

  6. Lithospheric Strength Beneath the Zagros Mountains of Southwestern Iran

    Science.gov (United States)

    Adams, A. N.; Nyblade, A.; Brazier, R.; Rodgers, A.; Al-Amri, A.

    2006-05-01

    The Zagros Mountain Belt of southwestern Iran is among the most seismically active mountain belts in the world. Early seismic studies of this area found that the lithosphere underlying the Zagros Mountains follows the "jelly sandwich" model, having a strong upper crust and a strong lithospheric mantle, separated by a weak lower crust. More recent studies, which analyzed earthquakes originating within the Zagros Mountains that were recorded at teleseismic distances, however, found that these earthquakes occurred only within the upper crust, thus indicating that the strength of the Zagros Mountains' lithosphere lies only within the upper crust, in accordance with the "creme brulee" lithospheric model. Preliminary analysis of regionally recorded earthquakes that originated within the Zagros Mountains is presented here. Using earthquakes recorded at regional distances will allow the analysis of a larger dataset than has been used in previous studies. Preliminary results show earthquakes occurring throughout the crust and possibly extending into the upper mantle.

  7. Global strength and elastic thickness of the lithosphere

    NARCIS (Netherlands)

    Tesauro, M.; Kaban, M.K.; Cloetingh, S.A.P.L.

    2012-01-01

    Thestrengthand effective elasticthickness (Te) ofthelithosphere control its response to tectonic and surface processes. Here, we present the first globalstrengthand effective elasticthickness maps, which are determined using physical properties from recent crustal and lithospheric models. Pronounced

  8. Trace element behavior during serpentinization/de-serpentinization of an eclogitized oceanic lithosphere: A LA-ICPMS study of the Lanzo ultramafic massif (Western Alps)

    OpenAIRE

    DEBRET, Baptiste; ANDREANI, Muriel; GODARD, Marguerite; NICOLLET, Christian; SCHWARTZ, Stéphane; LAFAY, Romain

    2013-01-01

    Serpentinites are one of the major components of the oceanic lithosphere and are stable in the slab and the mantle wedge up to 100-150 km depth in subduction zones. During oceanic mantle hydration and alteration, they trap trace and fluid mobile (FME: B, Li, As, Sb, Rb, Ba, Cs, Sr, U and Pb) elements that participate to elemental transfer occurring between the dehydrating slab and the mantle wedge in subduction context. The Lanzo massif is an eclogitized oceanic lithosphere that preserved its...

  9. Transformer Industry Productivity Slows.

    Science.gov (United States)

    Otto, Phyllis Flohr

    1981-01-01

    Annual productivity increases averaged 2.4 percent during 1963-79, slowing since 1972 to 1.5 percent; computer-assisted design and product standardization aided growth in output per employee-hour. (Author)

  10. Lithospheric structure and deformation of the North American continent

    OpenAIRE

    Magdala Tesauro; Mikhail Kaban; S. Cloetingh; W. D. Mooney

    2013-01-01

    We estimate the integrated strength and elastic thickness (Te) of the North American lithosphere based on thermal, density and structural (seismic) models of the crust and upper mantle. The temperature distribution in the lithosphere is estimated considering for the first time the effect of composition as a result of the integrative approach based on a joint analysis of seismic and gravity data. We do this via an iterative adjustment of the model. The upper mantle temperatures are initially e...

  11. Uses of stable isotopes

    International Nuclear Information System (INIS)

    Axente, Damian

    1998-01-01

    The most important fields of stable isotope use with examples are presented. These are: 1. Isotope dilution analysis: trace analysis, measurements of volumes and masses; 2. Stable isotopes as tracers: transport phenomena, environmental studies, agricultural research, authentication of products and objects, archaeometry, studies of reaction mechanisms, structure and function determination of complex biological entities, studies of metabolism, breath test for diagnostic; 3. Isotope equilibrium effects: measurement of equilibrium effects, investigation of equilibrium conditions, mechanism of drug action, study of natural processes, water cycle, temperature measurements; 4. Stable isotope for advanced nuclear reactors: uranium nitride with 15 N as nuclear fuel, 157 Gd for reactor control. In spite of some difficulties of stable isotope use, particularly related to the analytical techniques, which are slow and expensive, the number of papers reporting on this subject is steadily growing as well as the number of scientific meetings organized by International Isotope Section and IAEA, Gordon Conferences, and regional meeting in Germany, France, etc. Stable isotope application development on large scale is determined by improving their production technologies as well as those of labeled compound and the analytical techniques. (author)

  12. Convective removal of the Tibetan Plateau mantle lithosphere by 26 Ma

    Science.gov (United States)

    Lu, Haijian; Tian, Xiaobo; Yun, Kun; Li, Haibing

    2018-04-01

    During the late Oligocene-early Miocene there were several major geological events in and around the Tibetan Plateau (TP). First, crustal shortening deformation ceased completely within the TP before 25 Ma and instead adakitic rocks and potassic-ultrapotassic volcanics were emplaced in the Lhasa terrane since 26-25 Ma. Several recent paleoelevation reconstructions suggest an Oligocene-early Miocene uplift of 1500-3000 m for the Qiangtang (QT) and Songpan-Ganzi (SG) terranes, although the exact timing is unclear. As a possible response to this uplift, significant desertification occurred in the vicinity of the TP at 26-22 Ma, and convergence between India and Eurasia slowed considerably at 26-20 Ma. Subsequently, E-W extension was initiated no later than 18 Ma in the Lhasa and QT terranes. In contrast, the tectonic deformation around the TP was dominated by radial expansion of shortening deformation since 25-22 Ma. The plateau-wide near-synchroneity of these events calls for an internally consistent model which can be best described as convective removal of the lower mantle lithosphere. Geophysical and petrochemical evidence further confirms that this extensive removal occurred beneath the QT and SG terranes. The present review concludes that, other than plate boundary stress, the internal stress within the TP lithosphere could have contributed to rapid wholesale uplift and a series of concomitant tectonic events, accompanied by major aridification, since 26 Ma.

  13. Lithospheric Structure of Antarctica and Implications for Geological and Cryospheric Evolution

    Science.gov (United States)

    Wiens, Douglas; Heeszel, David; Sun, Xinlei; Lloyd, Andrew; Nyblade, Andrew; Anandakrishnan, Sridhar; Aster, Richard; Chaput, Julien; Huerta, Audrey; Hansen, Samantha; Wilson, Terry

    2013-04-01

    Recent broadband seismic deployments, including the AGAP/GAMSEIS array of 24 broadband seismographs over the Gamburtsev Subglacial Mountains (GSM) in East Antarctica and the POLENET/ANET deployment of 33 seismographs across much of West Antarctica, reveal the detailed crust and upper mantle structure of Antarctica for the first time. The seismographs operate year-around even in the coldest parts of Antarctica, due to novel insulated boxes, power systems, and modified instrumentation developed in collaboration with the IRIS PASSCAL Instrument Center. We analyze the data using several different techniques to develop high-resolution models of Antarctic seismic structure. We use Rayleigh wave phase velocities at periods of 20-180 s determined using a modified two-plane wave decomposition of teleseismic Rayleigh waves to invert for the three dimensional shear velocity structure. In addition, Rayleigh wave group and phase velocities obtained by ambient seismic noise correlation methods provide constraints at shorter periods and shallower depths. Receiver functions provide precise estimates of crustal structure beneath the stations, and P and S wave tomography provides models of upper mantle structure down to ~ 500 km depth along transects of greater seismic station density. The new seismic results show that the high elevations of the GSM are supported by thick crust (~ 55 km), and are underlain by thick Precambrian continental lithosphere that initially formed during Archean to mid-Proterozoic times. The absence of lithospheric thermal anomalies suggests that the mountains were formed by a compressional orogeny during the Paleozoic, thus providing a locus for ice sheet nucleation throughout a long period of geological time. Within West Antarctica, the crust and lithosphere are extremely thin near the Transantarctic Mountain Front and topographic lows such as the Bentley Trench and Byrd Basin, which represent currently inactive Cenozoic rift systems. Slow seismic

  14. Global model for the lithospheric strength and effective elastic thickness

    Science.gov (United States)

    Tesauro, Magdala; Kaban, Mikhail K.; Cloetingh, Sierd A. P. L.

    2013-08-01

    Global distribution of the strength and effective elastic thickness (Te) of the lithosphere are estimated using physical parameters from recent crustal and lithospheric models. For the Te estimation we apply a new approach, which provides a possibility to take into account variations of Young modulus (E) within the lithosphere. In view of the large uncertainties affecting strength estimates, we evaluate global strength and Te distributions for possible end-member 'hard' (HRM) and a 'soft' (SRM) rheology models of the continental crust. Temperature within the lithosphere has been estimated using a recent tomography model of Ritsema et al. (2011), which has much higher horizontal resolution than previous global models. Most of the strength is localized in the crust for the HRM and in the mantle for the SRM. These results contribute to the long debates on applicability of the "crème brulée" or "jelly-sandwich" model for the lithosphere structure. Changing from the SRM to HRM turns most of the continental areas from the totally decoupled mode to the fully coupled mode of the lithospheric layers. However, in the areas characterized by a high thermal regime and thick crust, the layers remain decoupled even for the HRM. At the same time, for the inner part of the cratons the lithospheric layers are coupled in both models. Therefore, rheological variations lead to large changes in the integrated strength and Te distribution in the regions characterized by intermediate thermal conditions. In these areas temperature uncertainties have a greater effect, since this parameter principally determines rheological behavior. Comparison of the Te estimates for both models with those determined from the flexural loading and spectral analysis shows that the 'hard' rheology is likely applicable for cratonic areas, whereas the 'soft' rheology is more representative for young orogens.

  15. Updated Reference Model for Heat Generation in the Lithosphere

    Science.gov (United States)

    Wipperfurth, S. A.; Sramek, O.; Roskovec, B.; Mantovani, F.; McDonough, W. F.

    2017-12-01

    Models integrating geophysics and geochemistry allow for characterization of the Earth's heat budget and geochemical evolution. Global lithospheric geophysical models are now constrained by surface and body wave data and are classified into several unique tectonic types. Global lithospheric geochemical models have evolved from petrological characterization of layers to a combination of petrologic and seismic constraints. Because of these advances regarding our knowledge of the lithosphere, it is necessary to create an updated chemical and physical reference model. We are developing a global lithospheric reference model based on LITHO1.0 (segmented into 1°lon x 1°lat x 9-layers) and seismological-geochemical relationships. Uncertainty assignments and correlations are assessed for its physical attributes, including layer thickness, Vp and Vs, and density. This approach yields uncertainties for the masses of the crust and lithospheric mantle. Heat producing element abundances (HPE: U, Th, and K) are ascribed to each volume element. These chemical attributes are based upon the composition of subducting sediment (sediment layers), composition of surface rocks (upper crust), a combination of petrologic and seismic correlations (middle and lower crust), and a compilation of xenolith data (lithospheric mantle). The HPE abundances are correlated within each voxel, but not vertically between layers. Efforts to provide correlation of abundances horizontally between each voxel are discussed. These models are used further to critically evaluate the bulk lithosphere heat production in the continents and the oceans. Cross-checks between our model and results from: 1) heat flux (Artemieva, 2006; Davies, 2013; Cammarano and Guerri, 2017), 2) gravity (Reguzzoni and Sampietro, 2015), and 3) geochemical and petrological models (Rudnick and Gao, 2014; Hacker et al. 2015) are performed.

  16. Post-processing scheme for modelling the lithospheric magnetic field

    Directory of Open Access Journals (Sweden)

    V. Lesur

    2013-03-01

    Full Text Available We investigated how the noise in satellite magnetic data affects magnetic lithospheric field models derived from these data in the special case where this noise is correlated along satellite orbit tracks. For this we describe the satellite data noise as a perturbation magnetic field scaled independently for each orbit, where the scaling factor is a random variable, normally distributed with zero mean. Under this assumption, we have been able to derive a model for errors in lithospheric models generated by the correlated satellite data noise. Unless the perturbation field is known, estimating the noise in the lithospheric field model is a non-linear inverse problem. We therefore proposed an iterative post-processing technique to estimate both the lithospheric field model and its associated noise model. The technique has been successfully applied to derive a lithospheric field model from CHAMP satellite data up to spherical harmonic degree 120. The model is in agreement with other existing models. The technique can, in principle, be extended to all sorts of potential field data with "along-track" correlated errors.

  17. SPS slow extraction septa

    CERN Multimedia

    CERN PhotoLab

    1979-01-01

    SPS long straight section (LSS) with a series of 5 septum tanks for slow extraction (view in the direction of the proton beam). There are 2 of these: in LSS2, towards the N-Area; in LSS6 towards the W-Area. See also Annual Report 1975, p.175.

  18. AGS slow extraction improvements

    International Nuclear Information System (INIS)

    Glenn, J.W.; Smith, G.A.; Sandberg, J.N.; Repeta, L.; Weisberg, H.

    1979-01-01

    Improvement of the straightness of the F5 copper septum increased the AGS slow extraction efficiency from approx. 80% to approx. 90%. Installation of an electrostatic septum at H2O, 24 betatron wavelengths upstream of F5, further improved the extraction efficiency to approx. 97%

  19. PF slow positron source

    International Nuclear Information System (INIS)

    Shirakawa, A.; Enomoto, A.; Kurihara, T.

    1993-01-01

    A new slow-positron source is under construction at the Photon Factory. Positrons are produced by bombarding a tantalum rod with high-energy electrons; they are moderated in multiple tungsten vanes. We report here the present status of this project. (author)

  20. Constraints on Composition, Structure and Evolution of the Lithosphere

    Science.gov (United States)

    Bianchini, Gianluca; Bonadiman, Costanza; Aulbach, Sonja; Schutt, Derek

    2015-05-01

    The idea for this special issue was triggered at the Goldschmidt Conference held in Florence (August 25-30, 2013), where we convened a session titled "Integrated Geophysical-Geochemical Constraints on Composition and Structure of the Lithosphere". The invitation to contribute was extended not only to the session participants but also to a wider spectrum of colleagues working on related topics. Consequently, a diverse group of Earth scientists encompassing geophysicists, geodynamicists, geochemists and petrologists contributed to this Volume, providing a comprehensive overview on the nature and evolution of lithospheric mantle by combining studies that exploit different types of data and interpretative approaches. The integration of geochemical and geodynamic datasets and their interpretation represents the state of the art in our knowledge of the lithosphere and beyond, and could serve as a blueprint for future strategies in concept and methodology to advance our knowledge of this and other terrestrial reservoirs.

  1. Unpredictably Stable

    DEFF Research Database (Denmark)

    Failla, Virgilio; Melillo, Francesca; Reichstein, Toke

    2014-01-01

    Is entrepreneurship a more stable career choice for high employment turnover individuals? We find that a transition to entrepreneurship induces a shift towards stayer behavior and identify job matching, job satisfaction and lock-in effects as main drivers. These findings have major implications...

  2. Seismic imaging of lithospheric discontinuities and continental evolution

    Science.gov (United States)

    Bostock, M. G.

    1999-09-01

    Discontinuities in physical properties within the continental lithosphere reflect a range of processes that have contributed to craton stabilization and evolution. A survey of recent seismological studies concerning lithospheric discontinuities is made in an attempt to document their essential characteristics. Results from long-period seismology are inconsistent with the presence of continuous, laterally invariant, isotropic boundaries within the upper mantle at the global scale. At regional scales, two well-defined interfaces termed H (˜60 km depth) and L (˜200 km depth) of continental affinity are identified, with the latter boundary generally exhibiting an anisotropic character. Long-range refraction profiles are frequently characterized by subcontinental mantle that exhibits a complex stratification within the top 200 km. The shallow layering of this package can behave as an imperfect waveguide giving rise to the so-called teleseismic Pn phase, while the L-discontinuity may define its lower base as the culmination of a low velocity zone. High-resolution, seismic reflection profiling provides sufficient detail in a number of cases to document the merging of mantle interfaces into lower continental crust below former collisional sutures and magmatic arcs, thus unambiguously identifying some lithospheric discontinuities with thrust faults and subducted oceanic lithosphere. Collectively, these and other seismic observations point to a continental lithosphere whose internal structure is dominated by a laterally variable, subhorizontal layering. This stratigraphy appears to be more pronounced at shallower lithospheric levels, includes dense, anisotropic layers of order 10 km in thickness, and exhibits horizontal correlation lengths comparable to the lateral dimensions of overlying crustal blocks. A model of craton evolution which relies on shallow subduction as a principal agent of craton stabilization is shown to be broadly compatible with these characteristics.

  3. The stretching amplitude and thermal regime of the lithosphere in the nonvolcanic passive margin of Antarctica in the Mawson Sea region

    Science.gov (United States)

    Galushkin, Yu. I.; Leitchenkov, G. L.; Guseva, Yu. B.; Dubinin, E. P.

    2018-01-01

    The burial history and thermal evolution of the lithosphere within the passive nonvolcanic Antarctic margin in the region of the Mawson Sea are numerically reconstructed for the margin areas along the seismic profile 5909 with the use of the GALO basin modeling system. The amplitudes of the lithosphere stretching at the different stages of continental rifting which took place from 160 to 90 Ma ago are calculated from the geophysical estimates of the thickness of the consolidated crust and the tectonic analysis of the variations in the thickness of the sedimentary cover and sea depths during the evolution of the basin. It is hypothesized that the formation of the recent sedimentary section sequence in the studied region of the Antarctic margin began 140 Ma ago on a basement that was thinned by a factor of 1.6 to 4.5 during the first episode of margin stretching (160-140 Ma) under a fairly high heat flux. The reconstruction of the thermal regime of the lithosphere has shown that the mantle rocks could occur within the temperature interval of serpentinization and simultaneously within the time interval of lithospheric stretching (-160 serpentinization could take place in these areas as in the other margin segments at the stage of presedimentation ultra slow basement stretching.

  4. Extensional and compressional instabilities in icy satellite lithospheres

    International Nuclear Information System (INIS)

    Herrick, D.L.; Stevenson, D.J.

    1990-01-01

    The plausibility of invoking a lithospheric instability mechanism to account for the grooved terrains on Ganymede, Encedalus, and Miranda is presently evaluated in light of the combination of a simple mechanical model of planetary lithospheres and asthenospheres with recent experimental data for the brittle and ductile deformation of ice. For Ganymede, high surface gravity and warm temperatures render the achievement of an instability sufficiently great for the observed topographic relief virtually impossible; an instability of sufficient strength, however, may be able to develop on such smaller, colder bodies as Encedalus and Miranda. 15 refs

  5. Slow wave cyclotron maser

    International Nuclear Information System (INIS)

    Kho, T.H.; Lin, A.T.

    1988-01-01

    Cyclotron masers such as Gyrotrons and the Autoresonance Masers, are fast wave devices: the electromagnetic wave's phase velocity v rho , is greater than the electron beam velocity, v b . To be able to convert the beam kinetic energy into radiation in these devices the beam must have an initial transverse momentum, usually obtained by propagating the beam through a transverse wiggler magnet, or along a nonuniform guide magnetic field before entry into the interaction region. Either process introduces a significant amount of thermal spread in the beam which degrades the performance of the maser. However, if the wave phase velocity v rho v b , the beam kinetic energy can be converted directly into radiation without the requirement of an initial transverse beam momentum, making a slow wave cyclotron maser a potentially simpler and more compact device. The authors present the linear and nonlinear physics of the slow wave cyclotron maser and examine its potential for practical application

  6. Slow-transit Constipation.

    Science.gov (United States)

    Bharucha, Adil E.; Philips, Sidney F.

    2001-08-01

    Idiopathic slow-transit constipation is a clinical syndrome predominantly affecting women, characterized by intractable constipation and delayed colonic transit. This syndrome is attributed to disordered colonic motor function. The disorder spans a spectrum of variable severity, ranging from patients who have relatively mild delays in transit but are otherwise indistinguishable from irritable bowel syndrome to patients with colonic inertia or chronic megacolon. The diagnosis is made after excluding colonic obstruction, metabolic disorders (hypothyroidism, hypercalcemia), drug-induced constipation, and pelvic floor dysfunction (as discussed by Wald ). Most patients are treated with one or more pharmacologic agents, including dietary fiber supplementation, saline laxatives (milk of magnesia), osmotic agents (lactulose, sorbitol, and polyethylene glycol 3350), and stimulant laxatives (bisacodyl and glycerol). A subtotal colectomy is effective and occasionally is indicated for patients with medically refractory, severe slow-transit constipation, provided pelvic floor dysfunction has been excluded or treated.

  7. Deformation of the Pannonian lithosphere and related tectonic topography: a depth-to-surface analysis

    NARCIS (Netherlands)

    Dombrádi, E.

    2012-01-01

    Fingerprints of deep-seated, lithospheric deformation are often recognised on the surface, contributing to topographic evolution, drainage organisation and mass transport. Interactions between deep and surface processes were investigated in the Carpathian-Pannonian region. The lithosphere beneath

  8. Stable particles

    International Nuclear Information System (INIS)

    Samios, N.P.

    1993-01-01

    I have been asked to review the subject of stable particles, essentially the particles that eventually comprised the meson and baryon octets. with a few more additions -- with an emphasis on the contributions made by experiments utilizing the bubble chamber technique. In this activity, much work had been done by the photographic emulsion technique and cloud chambers-exposed to cosmic rays as well as accelerator based beams. In fact, many if not most of the stable particles were found by these latter two techniques, however, the forte of the bubble chamber (coupled with the newer and more powerful accelerators) was to verify, and reinforce with large statistics, the existence of these states, to find some of the more difficult ones, mainly neutrals and further to elucidate their properties, i.e., spin, parity, lifetimes, decay parameters, etc

  9. Flexural modeling of the elastic lithosphere at an ocean trench: A parameter sensitivity analysis using analytical solutions

    Science.gov (United States)

    Contreras-Reyes, Eduardo; Garay, Jeremías

    2018-01-01

    The outer rise is a topographic bulge seaward of the trench at a subduction zone that is caused by bending and flexure of the oceanic lithosphere as subduction commences. The classic model of the flexure of oceanic lithosphere w (x) is a hydrostatic restoring force acting upon an elastic plate at the trench axis. The governing parameters are elastic thickness Te, shear force V0, and bending moment M0. V0 and M0 are unknown variables that are typically replaced by other quantities such as the height of the fore-bulge, wb, and the half-width of the fore-bulge, (xb - xo). However, this method is difficult to implement with the presence of excessive topographic noise around the bulge of the outer rise. Here, we present an alternative method to the classic model, in which lithospheric flexure w (x) is a function of the flexure at the trench axis w0, the initial dip angle of subduction β0, and the elastic thickness Te. In this investigation, we apply a sensitivity analysis to both methods in order to determine the impact of the differing parameters on the solution, w (x). The parametric sensitivity analysis suggests that stable solutions for the alternative approach requires relatively low β0 values (rise bulge. The alternative method is a more suitable approach, assuming that accurate geometric information at the trench axis (i.e., w0 and β0) is available.

  10. Extension of thickened and hot lithospheres: Inferences from laboratory modeling

    NARCIS (Netherlands)

    Tirel, C.; Brun, J.P.; Sokoutis, D.

    2006-01-01

    The extension of a previously thickened lithosphere is studied through a series of analogue experiments. The models deformed in free and boundary-controlled gravity spreading conditions that simulate the development of wide rift-type and core complex-type structures. In models, the development of

  11. European Lithospheric Mantle; geochemical, petrological and geophysical processes

    Science.gov (United States)

    Ntaflos, Th.; Puziewicz, J.; Downes, H.; Matusiak-Małek, M.

    2017-04-01

    The second European Mantle Workshop occurred at the end of August 2015, in Wroclaw, Poland, attended by leading scientists in the study the lithospheric mantle from around the world. It built upon the results of the first European Mantle Workshop (held in 2007, in Ferrara, Italy) published in the Geological Society of London Special Publication 293 (Coltorti & Gregoire, 2008).

  12. Lithospheric strength variations in Mainland China : Tectonic implications

    NARCIS (Netherlands)

    Deng, Yangfan; Tesauro, M.

    2016-01-01

    We present a new thermal and strength model for the lithosphere of Mainland China. To this purpose, we integrate a thermal model for the crust, using a 3-D steady state heat conduction equation, with estimates for the upper mantle thermal structure, obtained by inverting a S wave tomography model.

  13. Satellite gravity gradient views help reveal the Antarctic lithosphere

    Science.gov (United States)

    Ferraccioli, F.; Ebbing, J.; Pappa, F.; Kern, M.; Forsberg, R.

    2017-12-01

    Here we present and analyse satellite gravity gradient signatures derived from GOCE and superimpose these on tectonic and bedrock topography elements, as well as seismically-derived estimates of crustal thickness for the Antarctic continent. The GIU satellite gravity component images the contrast between the thinner crust and lithosphere underlying the West Antarctic Rift System and the Weddell Sea Rift System and the thicker lithosphere of East Antarctica. The new images also suggest that more distributed wide-mode lithospheric and crustal extension affects both the Ross Sea Embayment and the less well known Ross Ice Shelf segment of the rift system. However, this pattern is less clear towards the Bellingshousen Embayment, indicating that the rift system narrows towards the southern edge of the Antarctic Peninsula. In East Antarctica, the satellite gravity data provides new views into the Archean to Mesoproterozoic Terre Adelie Craton, and clearly shows the contrast wrt to the crust and lithosphere underlying both the Wilkes Subglacial Basin to the east and the Sabrina Subglacial Basin to the west. This finding augments recent interpretations of aeromagnetic and airborne gravity data over the region, suggesting that the Mawson Continent is a composite lithospheric-scale entity, which was affected by several Paleoproterozoic and Mesoproterozoic orogenic events. Thick crust is imaged beneath the Transantarctic Mountains, the Terre Adelie Craton, the Gamburtsev Subglacial Mountains and also Eastern Dronning Maud Land, in particular beneath the recently proposed region of the Tonian Oceanic Arc Superterrane. The GIA and GIU components help delineate the edges of several of these lithospheric provinces. One of the most prominent lithospheric-scale features discovered in East Antarctica from satellite gravity gradient imaging is the Trans East Antarctic Shear Zone that separates the Gamburtsev Province from the Eastern Dronning Maud Land Province and appears to form the

  14. Numerical modeling of continental lithospheric weak zone over plume

    Science.gov (United States)

    Perepechko, Y. V.; Sorokin, K. E.

    2011-12-01

    The work is devoted to the development of magmatic systems in the continental lithosphere over diffluent mantle plumes. The areas of tension originating over them are accompanied by appearance of fault zones, and the formation of permeable channels, which are distributed magmatic melts. The numerical simulation of the dynamics of deformation fields in the lithosphere due to convection currents in the upper mantle, and the formation of weakened zones that extend up to the upper crust and create the necessary conditions for the formation of intermediate magma chambers has been carried out. Thermodynamically consistent non-isothermal model simulates the processes of heat and mass transfer of a wide class of magmatic systems, as well as the process of strain localization in the lithosphere and their influence on the formation of high permeability zones in the lower crust. The substance of the lithosphere is a rheologic heterophase medium, which is described by a two-velocity hydrodynamics. This makes it possible to take into account the process of penetration of the melt from the asthenosphere into the weakened zone. The energy dissipation occurs mainly due to interfacial friction and inelastic relaxation of shear stresses. The results of calculation reveal a nonlinear process of the formation of porous channels and demonstrate the diversity of emerging dissipative structures which are determined by properties of both heterogeneous lithosphere and overlying crust. Mutual effect of a permeable channel and the corresponding filtration process of the melt on the mantle convection and the dynamics of the asthenosphere have been studied. The formation of dissipative structures in heterogeneous lithosphere above mantle plumes occurs in accordance with the following scenario: initially, the elastic behavior of heterophase lithosphere leads to the formation of the narrow weakened zone, though sufficiently extensive, with higher porosity. Further, the increase in the width of

  15. Stable isotopes

    International Nuclear Information System (INIS)

    Brazier, J.L.; Guinamant, J.L.

    1995-01-01

    According to the progress which has been realised in the technology of separating and measuring isotopes, the stable isotopes are used as preferable 'labelling elements' for big number of applications. The isotopic composition of natural products shows significant variations as a result of different reasons like the climate, the seasons, or their geographic origins. So, it was proved that the same product has a different isotopic composition of alimentary and agriculture products. It is also important in detecting the pharmacological and medical chemicals. This review article deals with the technology, like chromatography and spectrophotometry, adapted to this aim, and some important applications. 17 refs. 6 figs

  16. Stable Tetraquarks

    Energy Technology Data Exchange (ETDEWEB)

    Quigg, Chris [Fermilab

    2018-04-13

    For very heavy quarks, relations derived from heavy-quark symmetry imply novel narrow doubly heavy tetraquark states containing two heavy quarks and two light antiquarks. We predict that double-beauty states will be stable against strong decays, whereas the double-charm states and mixed beauty+charm states will dissociate into pairs of heavy-light mesons. Observing a new double-beauty state through its weak decays would establish the existence of tetraquarks and illuminate the role of heavy color-antitriplet diquarks as hadron constituents.

  17. Lithospheric-scale centrifuge models of pull-apart basins

    Science.gov (United States)

    Corti, Giacomo; Dooley, Tim P.

    2015-11-01

    We present here the results of the first lithospheric-scale centrifuge models of pull-apart basins. The experiments simulate relative displacement of two lithospheric blocks along two offset master faults, with the presence of a weak zone in the offset area localising deformation during strike-slip displacement. Reproducing the entire lithosphere-asthenosphere system provides boundary conditions that are more realistic than the horizontal detachment in traditional 1 g experiments and thus provide a better approximation of the dynamic evolution of natural pull-apart basins. Model results show that local extension in the pull-apart basins is accommodated through development of oblique-slip faulting at the basin margins and cross-basin faults obliquely cutting the rift depression. As observed in previous modelling studies, our centrifuge experiments suggest that the angle of offset between the master fault segments is one of the most important parameters controlling the architecture of pull-apart basins: the basins are lozenge shaped in the case of underlapping master faults, lazy-Z shaped in case of neutral offset and rhomboidal shaped for overlapping master faults. Model cross sections show significant along-strike variations in basin morphology, with transition from narrow V- and U-shaped grabens to a more symmetric, boxlike geometry passing from the basin terminations to the basin centre; a flip in the dominance of the sidewall faults from one end of the basin to the other is observed in all models. These geometries are also typical of 1 g models and characterise several pull-apart basins worldwide. Our models show that the complex faulting in the upper brittle layer corresponds at depth to strong thinning of the ductile layer in the weak zone; a rise of the base of the lithosphere occurs beneath the basin, and maximum lithospheric thinning roughly corresponds to the areas of maximum surface subsidence (i.e., the basin depocentre).

  18. Space geodesy validation of the global lithospheric flow

    Science.gov (United States)

    Crespi, M.; Cuffaro, M.; Doglioni, C.; Giannone, F.; Riguzzi, F.

    2007-02-01

    Space geodesy data are used to verify whether plates move chaotically or rather follow a sort of tectonic mainstream. While independent lines of geological evidence support the existence of a global ordered flow of plate motions that is westerly polarized, the Terrestrial Reference Frame (TRF) presents limitations in describing absolute plate motions relative to the mantle. For these reasons we jointly estimated a new plate motions model and three different solutions of net lithospheric rotation. Considering the six major plate boundaries and variable source depths of the main Pacific hotspots, we adapted the TRF plate kinematics by global space geodesy to absolute plate motions models with respect to the mantle. All three reconstructions confirm (i) the tectonic mainstream and (ii) the net rotation of the lithosphere. We still do not know the precise trend of this tectonic flow and the velocity of the differential rotation. However, our results show that assuming faster Pacific motions, as the asthenospheric source of the hotspots would allow, the best lithospheric net rotation estimate is 13.4 +/- 0.7 cm yr-1. This superfast solution seems in contradiction with present knowledge on the lithosphere decoupling, but it matches remarkably better with the geological constraints than those retrieved with slower Pacific motion and net rotation estimates. Assuming faster Pacific motion, it is shown that all plates move orderly `westward' along the tectonic mainstream at different velocities and the equator of the lithospheric net rotation lies inside the corresponding tectonic mainstream latitude band (~ +/-7°), defined by the 1σ confidence intervals.

  19. The effects of subduction termination on the continental lithosphere: Linking volcanism, deformation, surface uplift, and slab tearing in central Anatolia

    Science.gov (United States)

    Delph, Jonathan R.; Abgarmi, Bijan; Ward, Kevin M.; Beck, Susan L.; Arda Ozacar, A.; Zandt, George; Sandvol, Eric; Turkelli, Niyazi; Kalafat, Dogan

    2017-04-01

    The lithospheric evolution of Anatolia is largely defined by processes associated with the terminal stages of subduction along its southern margin. Central Anatolia represents the transition from the subduction of oceanic lithosphere at the Aegean trench in the west to the Arabian - Eurasian continental collision in the east. In the overriding plate, this complicated transition is contemporaneous with uplift along the southern margin of central Anatolia (2 km in 6 Myr), voluminous felsic-intermediate ignimbrite eruptions (>1000 km3), extension, and tectonic deformation reflected by abundant low-magnitude seismic activity. The addition of 72 seismic stations as part of the Continental Dynamics - Central Anatolian Tectonics project, along with development of a new approach to the joint inversion of receiver functions and dispersion data, enables us obtain a high-resolution 3D shear wave velocity model of central Anatolia down to 150 km. This new velocity model has important implications for the complex interactions between the downgoing, segmenting African lithosphere and the overriding Anatolian Plate. These results reveal that the lithosphere of central Anatolia and the northern Arabian Plate is thin (4.5 km/s), indicating the presence of the Cyprean slab beneath central Anatolia. Thus, uplift of the Central Taurus Mountains may be due to slab rebound after the detachment of the oceanic portion of the Cyprean slab beneath Anatolia rather than the presence of shallow asthenospheric material. These fast velocities extend to the northern margin of the Central Taurus Mountains, giving way to a NE-SW trend of very slow upper mantle shear wave velocities (interpreted to be shallow, warm asthenosphere in which melt is present. The combination of a shallow asthenosphere and lithospheric-scale weaknesses associated with relict tectonic structures formed during the assembly of Anatolia are responsible for the spatial distribution of volcanism in the Central Anatolian

  20. Stable beams

    CERN Multimedia

    2015-01-01

    Stable beams: two simple words that carry so much meaning at CERN. When LHC page one switched from "squeeze" to "stable beams" at 10.40 a.m. on Wednesday, 3 June, it triggered scenes of jubilation in control rooms around the CERN sites, as the LHC experiments started to record physics data for the first time in 27 months. This is what CERN is here for, and it’s great to be back in business after such a long period of preparation for the next stage in the LHC adventure.   I’ve said it before, but I’ll say it again. This was a great achievement, and testimony to the hard and dedicated work of so many people in the global CERN community. I could start to list the teams that have contributed, but that would be a mistake. Instead, I’d simply like to say that an achievement as impressive as running the LHC – a machine of superlatives in every respect – takes the combined effort and enthusiasm of everyone ...

  1. Constraints on the Lithospheric Strength at Volcanic Rifted Margins from the Geometry of Seaward Dipping Reflectors Using Analytic and Numerical Models

    Science.gov (United States)

    Tian, X.; Buck, W. R.

    2017-12-01

    Seaward dipping reflectors (SDRs) are found at many rifted margins. Drilling indicates SDRs are interbedded layers of basalts and sediments. Multi-channel seismic reflection data show SDRs with various width (2 100 km), thickness (1 15 km) and dip angles (0 30). Recent studies use analytic thin plate models (AtPM) to describe plate deflections under volcanic loads. They reproduce a wide range of SDRs structures without detachment faulting. These models assume that the solidified dikes provide downward loads at the rifting center. Meanwhile, erupted lava flows and sediments fill in the flexural depression and further load the lithosphere. Because the strength of the lithosphere controls the amount and wavelength of bending, the geometries of SDRs provide a window into the strength of the lithosphere during continental rifting. We attempt to provide a quantitative mapping between the SDR geometry and the lithospheric strength and thickness during rifting. To do this, we first derive analytic solutions to two observables that are functions of effective elastic thickness (Te). One observable (Xf) is the horizontal distance for SDRs to evolve from flat layers to the maximum bent layers. Another observable is the ratio between the thickness and the tangent of the maximum slope of SDRs at Xf. We then extend the AtPM to numerical thin plate models (NtPM) with spatially restricted lava flows. AtPM and NtPM show a stable and small relative difference in terms of the two observables with different values of Te. This provides a mapping of Te between NtPM and AtPM models. We also employ a fully two-dimensional thermal-mechanical treatment with elasto-visco-plastic rheology to simulate SDRs formation. These models show that brittle yielding due to bending can reduce the Te of the lithosphere by as much as 50% of the actual brittle lithospheric thickness. Quantification of effects of plastic deformation on bending allow us to use Te to link SDRs geometries to brittle lithospheric

  2. Lithosphere mantle density of the North China Craton based on gravity data

    Science.gov (United States)

    Xia, B.; Artemieva, I. M.; Thybo, H.

    2017-12-01

    Based on gravity, seismic and thermal data we constrained the lithospheric mantle density at in-situ and STP condition. The gravity effect of topography, sedimentary cover, Moho and Lithosphere-Asthenosphere Boundary variation were removed from free-air gravity anomaly model. The sedimentary covers with density range from 1.80 g/cm3 with soft sediments to 2.40 g/cm3 with sandstone and limestone sediments. The average crustal density with values of 2.70 - 2.78 g/cm3 which corresponds the thickness and density of the sedimentary cover. Based on the new thermal model, the surface heat flow in original the North China Craton including western block is > 60 mW/m2. Moho temperature ranges from 450 - 600 OC in the eastern block and in the western block is 550 - 650 OC. The thermal lithosphere is 100 -140 km thick where have the surface heat flow of 60 - 70 mW/m2. The gravity effect of surface topography, sedimentary cover, Moho depth are 0 to +150 mGal, - 20 to -120 mGal and +50 to -200 mGal, respectively. By driving the thermal lithosphere, the gravity effect of the lithosphere-asthenosphere boundary ranges from 20 mGal to +200 mGal which shows strong correction with the thickness of the lithosphere. The relationship between the gravity effect of the lithosphere-asthenosphere boundary and the lithosphere thickness also for the seismic lithosphere, and the value of gravity effect is 0 to +220 mGal. The lithospheric mantle residual gravity which caused by lithospheric density variation range from -200 to +50 mGal by using the thermal lithosphere and from -250 to +100 mGal by driving the seismic lithosphere. For thermal lithosphere, the lithospheric mantle density with values of 3.21- 3.26 g/cm3 at in-situ condition and 3.33 - 3.38 g/cm3 at STP condition. Using seismic lithosphere, density of lithosphere ranges from 3.20 - 3.26 g/cm3 at in-situ condition and 3.31 - 3.41 g/cm3 at STP condition. The subcontinental lithosphere of the North China Craton is highly heterogeneous

  3. The electrical lithosphere in Archean cratons: examples from Southern Africa

    Science.gov (United States)

    Khoza, D. T.; Jones, A. G.; Muller, M. R.; Webb, S. J.

    2011-12-01

    The southern African tectonic fabric is made up of a number Archean cratons flanked by Proterozoic and younger mobile belts, all with distinctly different but related geological evolutions. The cratonic margins and some intra-cratonic domain boundaries have played major roles in the tectonics of Africa by focusing ascending magmas and localising cycles of extension and rifting. Of these cratons the southern extent of the Congo craton is one of the least-constrained tectonic boundaries in the African tectonic architecture and knowledge of its geometry and in particular the LAB beneath is crucial for understanding geological process of formation and deformation prevailing in the Archean and later. In this work, which forms a component of the hugely successful Southern African MagnetoTelluric Experiment (SAMTEX), we present the lithospheric electrical resistivity image of the southern boundary of the enigmatic Congo craton and the Neoproterozoic Damara-Ghanzi-Chobe (DGC) orogenic belt on its flanks. Magnetotelluric data were collected along profiles crossing all three of these tectonic blocks. The two dimensional resistivity models resulting from inverting the distortion-corrected responses along the profiles all indicate significant lateral variations in the crust and upper mantle structure along and across strike from the younger DGC orogen to the older adjacent craton. The are significant lithospheric thickness variations from each terrane. The The Moho depth in the DGC is mapped at 40 km by active seismic methods, and is also well constrained by S-wave receiver function models. The Damara belt lithosphere, although generally more conductive and significantly thinner (approximately 150 km) than the adjacent Congo and Kalahari cratons, exhibits upper crustal resistive features interpreted to be caused by igneous intrusions emplaced during the Gondwanan Pan-African magmatic event. The thinned lithosphere is consistent with a 50 mW.m-2 steady-state conductive

  4. Out-of-plane reflections - are they evidence for deep subducted lithosphere?

    Science.gov (United States)

    Schumacher, Lina; Thomas, Christine

    2015-04-01

    Subduction zones form dominant tectonic features on the Earth and have complex three-dimensional structures. Tomographic inversions for P- and S-wave seismic velocities in the Earth's mantle give impressive images of slabs descending into the deep Earth. However, direct observations of deep slabs are scarce but necessary to make statements concerning physical parameters, structural differences within the slab and its behavior with depth. The main objective of this study is to investigate the geometry, physical parameters and structural differences of subducted lithosphere by investigating seismic P-wave arrivals that reflect off the base of the slab using seismic array techniques. The great circle paths of the source-receiver combinations used do not intersect the slab and serve as reference. We focus on the North pacific region by using earthquakes from Japan, the Philippines and the Hindukush recorded at North American networks (e.g. USArray, Alaska and Canada). The data cover a period from 2000-2012 with a minimum magnitude of 5.6 Mw and depths below 100 km. We are looking for reflections from the slab region that would arrive at the stations with deviating backazimuths. Information on slowness, backazimuth and travel time of the observed out-of-plane arrivals is used to backtrace the wave to its scattering location and to map seismic heterogeneities associated with subduction zones. The reflection points give an idea for the 3D structures within the mantle. Assuming only single scattering in the backtracing algorithm, most out-of-plane signals have to travel as P*P and only a few as S*P phases, due to their timing. Taking into account the radiation pattern of each event in direction of the great circle path and towards the calculated reflection point, it is possible to compare the polarities of the out-of-plane signals with P and/or PP. Furthermore, we analyze the out-of-plane waveforms in the beam trace of the observed slowness and backazimuth by cross

  5. Preferential mantle lithospheric extension under the South China margin

    International Nuclear Information System (INIS)

    Clift, P.; Jian Lin

    2001-01-01

    Continental rifting in the South China Sea culminated in seafloor spreading at ∼ 30Ma (Late Oligocene). The basin and associated margins form a classic example of break-up in a relatively juvenile arc crust environment. In this study, we documented the timing, distribution and amount of extension in the crust and mantle lithosphere on the South China Margin during this process. Applying a one-dimensional backstripping modeling technique to drilling data from the Pearl River Mouth Basin (PRMB) and Beibu Gulf Basin, we calculated subsidence rates of the wells and examined the timing and amount of extension. Our results show that extension of the crust exceeded that in the mantle lithosphere under the South China Shelf, but that the two varied in phase, suggesting depth-dependent extension rather than a lithospheric-scale detachment. Estimates of total crustal extension derived in this way are similar to those measured by seismic refraction, indicating that isostatic compensation is close to being local. Extension in the Beibu Gulf appears to be more uniform with depth, a difference that we attribute to the different style of strain accommodation during continental break-up compared to intra-continental rifting. Extension in PRMB and South China slope continues for ∼ 5m.y. after the onset of seafloor spreading due to the weakness of the continental lithosphere. The timing of major extension is broadly mid-late Eocene to late Oligocene (∼ 45-25Ma), but is impossible to correlate in detail with poorly dated strike-slip deformation in the Red River Fault Zone. (author)

  6. A Swarm lithospheric magnetic field model to SH degree 80

    OpenAIRE

    Thébault, Erwan; Vigneron, Pierre; Langlais, Benoit; Hulot, Gauthier

    2016-01-01

    International audience; The Swarm constellation of satellites was launched in November 2013 and since then has delivered high-quality scalar and vector magnetic field measurements. A consortium of several research institutions was selected by the European Space Agency to provide a number of scientific products to be made available to the scientific community on a regular basis. In this study, we present the dedicated lithospheric field inversion model. It uses carefully selected magnetic fiel...

  7. Seismological Constraints on Lithospheric Evolution in the Appalachian Orogen

    Science.gov (United States)

    Fischer, K. M.; Hopper, E.; Hawman, R. B.; Wagner, L. S.

    2017-12-01

    Crust and mantle structures beneath the Appalachian orogen, recently resolved by seismic data from the EarthScope SESAME Flexible Array and Transportable Array, provide new constraints on the scale and style of the Appalachian collision and subsequent lithospheric evolution. In the southern Appalachians, imaging with Sp and Ps phases reveals the final (Alleghanian) suture between the crusts of Laurentia and the Gondwanan Suwannee terrane as a low angle (Kellogg, 2017) isostatic arguments indicate crustal thicknesses were 15-25 km larger at the end of the orogeny, indicating a thick crustal root across the region. The present-day residual crustal root beneath the Blue Ridge mountains is estimated to have a density contrast with the mantle of only 104±20 kg/m3. This value is comparable to other old orogens but lower than values typical of young or active orogens, indicating a loss of lower crustal buoyancy over time. At mantle depths, the negative shear velocity gradient that marks the transition from lithosphere to asthenosphere, as illuminated by Sp phases, varies across the Appalachian orogen. This boundary is shallow beneath the northeastern U.S. and in the zone of Eocene volcanism in Virginia, where low velocity anomalies occur in the upper mantle. These correlations suggest recent active lithosphere-asthenosphere interaction.

  8. Mantle Earthquakes in Thinned Proterozoic Lithosphere: Harrat Lunayyir, Saudi Arabia

    Science.gov (United States)

    Blanchette, A. R.; Klemperer, S. L.; Mooney, W. D.; Zahran, H. M.

    2017-12-01

    Harrat Lunayyir is an active volcanic field located in the western Arabian Shield 100 km outside of the Red Sea rift margin. We use common conversion point (CCP) stacking of P-wave receiver functions (PRFs) to show that the Moho is at 38 km depth, close to the 40 km crustal thickness measured in the center of the craton, whereas the lithosphere-asthenosphere boundary (LAB) is at 60 km, far shallower than the 150 km furthest in the craton. We locate 67 high-frequency earthquakes with mL ≤ 2.5 at depths of 40-50 km below the surface, located clearly within the mantle lid. The occurrence of earthquakes within the lithospheric mantle requires a geothermal temperature profile that is below equilibrium. The lithosphere cannot have thinned to its present thickness earlier than 15 Ma, either during an extended period of rifting possibly beginning 24 Ma or, more likely, as part of the second stage of rifting following collision between Arabia and Eurasia.

  9. On the Implications of A Priori Constraints in Transdimensional Bayesian Inversion for Continental Lithospheric Layering

    Science.gov (United States)

    Roy, C.; Romanowicz, B. A.

    2017-12-01

    Monte Carlo methods are powerful approaches to solve nonlinear problems and are becoming very popular in Earth sciences. One reason being that, at first glance, no constraints or explicit regularization of model parameters are required. At second glance, one might realize that regularization is done through a prior. The choice of this prior, however, is subjective, and with its choice, unintended or undesired extra information can be injected into the problem. The principal criticism of Bayesian methods is that the prior can be "tuned" in order to get the expected solution. Consequently, detractors of the Bayesian method could easily argue that the solution is influenced by the form of the prior distribution, which choice is subjective. Hence, models obtained with Monte Carlo methods are still highly debated. Here we investigate the influence of a priori constraints (i.e., fixed crustal discontinuities) on the posterior probability distributions of estimated parameters, that is, vertical polarized shear velocity VSV and radial anisotropy ξ, in a transdimensional Bayesian inversion for continental lithospheric structure. We follow upon the work of Calò et al. (2016), who jointly inverted converted phases (P to S) without deconvolution and surface wave dispersion data, to obtain 1-D radial anisotropic shear wave velocity profiles in the North American craton. We aim at verifying whether the strong lithospheric layering found in the stable part of the craton is robust with respect to artifacts that might be caused by the methodology used. We test the hypothesis that the observed midlithospheric discontinuities result from (1) fixed crustal discontinuities in the reference model and (2) a fixed Vp/Vs ratio. The synthetic tests on two Earth models show that a fixed Vp/Vs ratio does not introduce artificial layering, even if the assumed value is slightly wrong. This is an important finding for real data inversion where the true value is not always available or accurate

  10. Lithospheric flexural strength and effective elastic thicknesses of the Eastern Anatolia (Turkey) and surrounding region

    Science.gov (United States)

    Oruç, Bülent; Gomez-Ortiz, David; Petit, Carole

    2017-12-01

    The Lithospheric structure of Eastern Anatolia and the surrounding region, including the northern part of the Arabian platform is investigated via the analysis and modeling of Bouguer anomalies from the Earth Gravitational Model EGM08. The effective elastic thickness of the lithosphere (EET) that corresponds to the mechanical cores of the crust and lithospheric mantle is determined from the spectral coherence between Bouguer anomalies and surface elevation data. Its average value is 18.7 km. From the logarithmic amplitude spectra of Bouguer anomalies, average depths of the lithosphere-asthenosphere boundary (LAB), Moho, Conrad and basement in the study area are constrained at 84 km, 39 km, 16 km and 7 km, respectively. The geometries of the LAB and Moho are then estimated using the Parker-Oldenburg inversion algorithm. We also present a lithospheric strength map obtained from the spatial variations of EET determined by Yield Stress Envelopes (YSE). The EET varies in the range of 12-23 km, which is in good agreement with the average value obtained from spectral analysis. Low EET values are interpreted as resulting from thermal and flexural lithospheric weakening. According to the lithospheric strength of the Eastern Anatolian region, the rheology model consists of a strong but brittle upper crust, a weak and ductile lower crust, and a weak lower part of the lithosphere. On the other hand, lithosphere strength corresponds to weak and ductile lower crust, a strong upper crust and a strong uppermost lithospheric mantle for the northern part of the Arabian platform.

  11. Metamorphism and Shear Localization in the Oceanic and Continental Lithosphere: A Local or Lithospheric-Scale Effect?

    Science.gov (United States)

    Montesi, L.

    2017-12-01

    Ductile rheologies are characterized by strain rate hardening, which favors deformation zones that are as wide as possible, thus minimizing strain rate and stress. By contrast, plate tectonics and the observation of ductile shear zones in the exposed middle to lower crust show that deformation is often localized, that is, strain (and likely strain rate) is locally very high. This behavior is most easily explained if the material in the shear zone is intrinsically weaker than the reference material forming the wall rocks. Many origins for that weakness have been proposed. They include higher temperature (shear heating), reduced grain size, and fabric. The latter two were shown to be the most effective in the middle crust and upper mantle (given observational limits restricting heating to 50K or less) but they were not very important in the lower crust. They are not sufficient to explain the generation of narrow plate boundaries in the oceans. We evaluate here the importance of metamorphism, especially related to hydration, in weakening the lithosphere. Serpentine is a major player in the dynamics of the oceanic lithosphere. Although its ductile behavior is poorly constrained, serpentine is likely to behave in a brittle or quasi-plastic manner with a reduced coefficient of friction, replacing stronger peridotite. Serpentinization sufficiently weakens the oceanic lithosphere to explain the generation of diffuse plate boundaries and, combined with grain size reduction, the development of narrow plate boundaries. Lower crust outcrops, especially in the Bergen Arc (Norway), display eclogite shear zones hosted in metastable granulites. The introduction of water triggered locally a metamorphic reaction that reduces rock strength and resulted in a ductile shear zone. The presence of these shear zones has been used to explain the weakness of the lower crust perceived from geodesy and seismic activity. We evaluate here how much strain rate may increase as a result of

  12. Using natural laboratories and modeling to decipher lithospheric rheology

    Science.gov (United States)

    Sobolev, Stephan

    2013-04-01

    Rheology is obviously important for geodynamic modeling but at the same time rheological parameters appear to be least constrained. Laboratory experiments give rather large ranges of rheological parameters and their scaling to nature is not entirely clear. Therefore finding rheological proxies in nature is very important. One way to do that is finding appropriate values of rheological parameter by fitting models to the lithospheric structure in the highly deformed regions where lithospheric structure and geologic evolution is well constrained. Here I will present two examples of such studies at plate boundaries. One case is the Dead Sea Transform (DST) that comprises a boundary between African and Arabian plates. During the last 15- 20 Myr more than 100 km of left lateral transform displacement has been accumulated on the DST and about 10 km thick Dead Sea Basin (DSB) was formed in the central part of the DST. Lithospheric structure and geological evolution of DST and DSB is rather well constrained by a number of interdisciplinary projects including DESERT and DESIRE projects leaded by the GFZ Potsdam. Detailed observations reveal apparently contradictory picture. From one hand widespread igneous activity, especially in the last 5 Myr, thin (60-80 km) lithosphere constrained from seismic data and absence of seismicity below the Moho, seem to be quite natural for this tectonically active plate boundary. However, surface heat flow of less than 50-60mW/m2 and deep seismicity in the lower crust ( deeper than 20 km) reported for this region are apparently inconsistent with the tectonic settings specific for an active continental plate boundary and with the crustal structure of the DSB. To address these inconsistencies which comprise what I call the "DST heat-flow paradox", a 3D numerical thermo-mechanical model was developed operating with non-linear elasto-visco-plastic rheology of the lithosphere. Results of the numerical experiments show that the entire set of

  13. Coaxial slow source

    International Nuclear Information System (INIS)

    Brooks, R.D.; Jarboe, T.R.

    1990-01-01

    Field reversed configurations (FRCs) are a class of compact toroid with not toroidal field. The field reversed theta pinch technique has been successfully used for formation of FRCs since their inception in 1958. In this method an initial bias field is produced. After ionization of the fill gas, the current in the coil is rapidly reversed producing the radial implosion of a current sheath. At the ends of the coil the reversed field lines rapidly tear and reconnect with the bias field lines until no more bias flux remains. At this point, vacuum reversed field accumulates around the configuration which contracts axially until an equilibrium is reached. When extrapolating the use of such a technique to reactor size plasmas two main shortcomings are found. First, the initial bias field, and hence flux in a given device, which can be reconnected to form the configuration is limited from above by destructive axial dynamics. Second, the voltages required to produce rapid current reversal in the coil are very large. Clearly, a low voltage formation technique without limitations on flux addition is desirable. The Coaxial Slow Source (CSS) device was designed to meet this need. It has two coaxial theta pinch coils. Coaxial coil geometry allows for the addition of as much magnetic flux to the annular plasma between them as can be generated inside the inner coil. Furthermore the device can be operated at charging voltages less than 10 kV and on resistive diffusion, rather than implosive time scales. The inner coil is a novel, concentric, helical design so as to allow it to be cantilevered on one end to permit translation of the plasma. Following translation off the inner coil the Annular Field Reversed Configuration would be re-formed as a true FRC. In this paper we investigate the formation process in the new parallel configuration., CSSP, in which the inner and outer coils are connected in parallel to the main capacitor bank

  14. The helium flux from the continents and ubiquity of low-3He/4He recycled crust and lithosphere

    Science.gov (United States)

    Day, James M. D.; Barry, Peter H.; Hilton, David R.; Burgess, Ray; Pearson, D. Graham; Taylor, Lawrence A.

    2015-03-01

    New helium isotope and trace-element abundance data are reported for pyroxenites and eclogites from South Africa, Siberia, and the Beni Bousera Massif, Morocco that are widely interpreted to form from recycled oceanic crustal protoliths. The first He isotope data are also presented for Archaean peridotites from the Kaapvaal (South Africa), Slave (Canada), and Siberian cratons, along with recently emplaced off-craton peridotite xenoliths from Kilbourne Hole, San Carlos (USA) and Vitim (Siberia), to complement existing 3He/4He values obtained for continental and oceanic peridotites. Helium isotope compositions of peridotite xenoliths vary from 7.3 to 9.6 RA in recently (volcanics that contain a contribution from asthenospheric sources. Using the new He isotope data for cratonic peridotites and assuming that significant portions (>50%) of the Archaean and Proterozoic continental lithospheric mantle are stable and unaffected by melt or fluid infiltration on geological timescales (>0.1 Ga), and that U and Th contents vary between cratonic lithosphere and non-cratonic lithosphere, calculations yield a 3He flux of 0.25-2.2 atoms/s/cm2 for the continental lithospheric mantle. These estimates differ by a factor of ten from non-cratonic lithospheric mantle and are closer to the observed 3He flux from the continents (<1 atoms/s/cm2). Pyroxenites and eclogites from the continental regions are all characterized by 3He/4He (0.03-5.6 RA) less than the depleted upper mantle, and relatively high U and Th contents. Together with oceanic and continental lithospheric peridotites, these materials represent reservoirs with low time-integrated 3He/(U + Th) in the mantle. Pyroxenites and eclogites are also characterized by higher Fe/Mg, more radiogenic Os-Pb isotope compositions, and more variable δ18O values (∼3‰ to 7‰), compared with peridotitic mantle. These xenoliths are widely interpreted to be the metamorphic/metasomatic equivalents of recycled oceanic crustal protoliths. The

  15. Mantle weakening and strain localization: Implications for the long-term strength of the continental lithosphere

    OpenAIRE

    Précigout , Jacques; Gueydan , Frédéric

    2009-01-01

    International audience; Mechanics of the continental lithosphere require the presence of a high-strength uppermost mantle that defines the "jelly sandwich" model for lithosphere strength layering. However, in deforming regions, growing numbers of geological and geophysical data predict a sub-Moho mantle strength lower than the crustal strength, or a "crème brûlée" model. To reconcile these two opposite views of lithosphere strength layering, we account for a new olivine rheology, which could ...

  16. Impact of the lithosphere on dynamic topography: Insights from analogue modeling

    OpenAIRE

    Sembroni, Andrea; Kiraly, Agnes; Faccenna, Claudio; Funiciello, Francesca; Becker, Thorsten W.; Goblig, Jan; Fernandez, Manel

    2017-01-01

    Density anomalies beneath the lithosphere are expected to generate dynamic topography at the Earth's surface due to the induced mantle flow stresses which scale linearly with density anomalies, while the viscosity of the upper mantle is expected to control uplift rates. However, limited attention has been given to the role of the lithosphere. Here we present results from analogue modeling of the interactions between a density anomaly rising in the mantle and the lithosphere in a Newtonian sys...

  17. The lithospheric shear-wave velocity structure of Saudi Arabia: Young volcanism in an old shield

    KAUST Repository

    Tang, Zheng

    2016-05-11

    We investigate the lithospheric shear-wave velocity structure of Saudi Arabia by conducting H-κ stacking analysis and jointly inverting teleseismic P-receiver functions and fundamental-mode Rayleigh wave group velocities at 56 broadband stations deployed by the Saudi Geological Survey (SGS). The study region, the Arabian plate, is traditionally divided into the western Arabian shield and the eastern Arabian platform: The Arabian shield itself is a complicated mélange of crustal material, composed of several Proterozoic terrains separated by ophiolite-bearing suture zones and dotted by outcropping Cenozoic volcanic rocks (locally known as harrats). The Arabian platform is primarily covered by 8 to 10 km of Paleozoic, Mesozoic and Cenozoic sedimentary rocks. Our results reveal high Vp/Vs ratios in the region of Harrat Lunayyir, which are interpreted as solidified magma intrusions from old magmatic episodes in the shield. Our results also indicate slow velocities and large upper mantle lid temperatures below the southern and northern tips of the Arabian shield, when compared with the values obtained for the central shield. We argue that our inferred patterns of lid velocity and temperature are due to heating by thermal conduction from the Afar plume (and, possibly, the Jordan plume), and that volcanism in western Arabia may result from small-scale adiabatic ascent of magma diapirs.

  18. Slow Tourism: Exploring the discourses

    Directory of Open Access Journals (Sweden)

    J. Guiver

    2016-05-01

    Full Text Available ‘Slow travel’ and ‘slow tourism’ are relatively new, but contested, concepts. This paper examines the meanings ascribed to them in the academic literature and websites targeted at potential tourists. It finds concurrence on aspects of savouring time at the destination and investing time to appreciate the locality, its people, history, culture and products, but detects different emphases. The academic literature stresses the benefits to the destination and global sustainability, while the websites focus on the personal benefits and ways of becoming a ‘slow tourist’. Food and drink epitomise the immersion in and absorption of the destination and the multi-dimensional tourism experience, contrasted with the superficiality of mainstream tourism. The paper discusses whether tourists practising slow tourism without using the label are slow tourists or not.

  19. Towards an improved determination of Earth’s lithospheric field from satellite observations

    DEFF Research Database (Denmark)

    Kotsiaros, Stavros; Olsen, Nils; Finlay, Chris

    Perhaps one of the biggest difficulties in modelling the Earth’s lithospheric magnetic field is the separation of contributions from sources of internal and external origin. In particular, the determination of smaller-scale lithospheric magnetic field features is problematic because the lithosphe......Perhaps one of the biggest difficulties in modelling the Earth’s lithospheric magnetic field is the separation of contributions from sources of internal and external origin. In particular, the determination of smaller-scale lithospheric magnetic field features is problematic because...

  20. Characterising East Antarctic Lithosphere and its Rift Systems using Gravity Inversion

    Science.gov (United States)

    Vaughan, Alan P. M.; Kusznir, Nick J.; Ferraccioli, Fausto; Leat, Phil T.; Jordan, Tom A. R. M.; Purucker, Michael E.; Golynsky, A. V. Sasha; Rogozhina, Irina

    2013-04-01

    Since the International Geophysical Year (1957), a view has prevailed that East Antarctica has a relatively homogeneous lithospheric structure, consisting of a craton-like mosaic of Precambrian terranes, stable since the Pan-African orogeny ~500 million years ago (e.g. Ferracioli et al. 2011). Recent recognition of a continental-scale rift system cutting the East Antarctic interior has crystallised an alternative view of much more recent geological activity with important implications. The newly defined East Antarctic Rift System (EARS) (Ferraccioli et al. 2011) appears to extend from at least the South Pole to the continental margin at the Lambert Rift, a distance of 2500 km. This is comparable in scale to the well-studied East African rift system. New analysis of RadarSat data by Golynsky & Golynsky (2009) indicates that further rift zones may form widely distributed extension zones within the continent. A pilot study (Vaughan et al. 2012), using a newly developed gravity inversion technique (Chappell & Kusznir 2008) with existing public domain satellite data, shows distinct crustal thickness provinces with overall high average thickness separated by thinner, possibly rifted, crust. Understanding the nature of crustal thickness in East Antarctica is critical because: 1) this is poorly known along the ocean-continent transition, but is necessary to improve the plate reconstruction fit between Antarctica, Australia and India in Gondwana, which will also better define how and when these continents separated; 2) lateral variation in crustal thickness can be used to test supercontinent reconstructions and assess the effects of crystalline basement architecture and mechanical properties on rifting; 3) rift zone trajectories through East Antarctica will define the geometry of zones of crustal and lithospheric thinning at plate-scale; 4) it is not clear why or when the crust of East Antarctica became so thick and elevated, but knowing this can be used to test models of

  1. Sub-Moho Reflectors, Mantle Faults and Lithospheric Rheology

    Science.gov (United States)

    Brown, L. D.

    2013-12-01

    One of the most unexpected and dramatic observations from the early years of deep reflection profiling of the continents using multichannel CMP techniques was the existing of prominent reflections from the upper mantle. The first of these, the Flannan thrust/fault/feature, was traced by marine profiling of the continental margin offshore Britain by the BIRPS program, which soon found them to be but one of several clear sub-crustal discontinuities in that area. Subsequently, similar mantle reflectors have been observed in many areas around the world, most commonly beneath Precambrian cratonic areas. Many, but not all, of these mantle reflections appear to arise from near the overlying Moho or within the lower crust before dipping well into the mantle. Others occur as subhorizontal events at various depths with the mantle, with one suite seeming to cluster at a depth of about 75 km. The dipping events have been variously interpreted as mantle roots of crustal normal faults or the deep extension of crustal thrust faults. The most common interpretation, however, is that these dipping events are the relicts of ancient subduction zones, the stumps of now detached Benioff zones long since reclaimed by the deeper mantle. In addition to the BIRPS reflectors, the best known examples include those beneath Fennoscandia in northern Europe, the Abitibi-Grenville of eastern Canada, and the Slave Province of northwestern Canada (e.g. on the SNORCLE profile). The most recently reported example is from beneath the Sichuan Basin of central China. The preservation of these coherent, and relatively delicate appearing, features beneath older continental crust and presumably within equally old (of not older) mantle lithosphere, has profound implications for the history and rheology of the lithosphere in these areas. If they represent, as widely believe, some form of faulting with the lithosphere, they provide corollary constraints on the nature of faulting in both the lower crust and

  2. Linking plate reconstructions with deforming lithosphere to geodynamic models

    Science.gov (United States)

    Müller, R. D.; Gurnis, M.; Flament, N.; Seton, M.; Spasojevic, S.; Williams, S.; Zahirovic, S.

    2011-12-01

    While global computational models are rapidly advancing in terms of their capabilities, there is an increasing need for assimilating observations into these models and/or ground-truthing model outputs. The open-source and platform independent GPlates software fills this gap. It was originally conceived as a tool to interactively visualize and manipulate classical rigid plate reconstructions and represent them as time-dependent topological networks of editable plate boundaries. The user can export time-dependent plate velocity meshes that can be used either to define initial surface boundary conditions for geodynamic models or alternatively impose plate motions throughout a geodynamic model run. However, tectonic plates are not rigid, and neglecting plate deformation, especially that of the edges of overriding plates, can result in significant misplacing of plate boundaries through time. A new, substantially re-engineered version of GPlates is now being developed that allows an embedding of deforming plates into topological plate boundary networks. We use geophysical and geological data to define the limit between rigid and deforming areas, and the deformation history of non-rigid blocks. The velocity field predicted by these reconstructions can then be used as a time-dependent surface boundary condition in regional or global 3-D geodynamic models, or alternatively as an initial boundary condition for a particular plate configuration at a given time. For time-dependent models with imposed plate motions (e.g. using CitcomS) we incorporate the continental lithosphere by embedding compositionally distinct crust and continental lithosphere within the thermal lithosphere. We define three isostatic columns of different thickness and buoyancy based on the tectonothermal age of the continents: Archean, Proterozoic and Phanerozoic. In the fourth isostatic column, the oceans, the thickness of the thermal lithosphere is assimilated using a half-space cooling model. We also

  3. Anomalous variations of lithosphere magnetic field before several earthquakes

    Science.gov (United States)

    Ni, Z.; Chen, B.

    2015-12-01

    Based on the geomagnetic vector data measured each year since 2011 at more than 500 sites with a mean spatial interval of ~70km.we observed anomalous variations of lithospheric magnetic field before and after over 15 earthquakes having magnitude > 5. We find that the field in near proximity (about 50km) to the epicenter of large earthquakes shows high spatial and temporal gradients before the earthquake. Due to the low frequency of repeat measurements it is unclear when these variations occurred and how do them evolve. We point out anomalous magnetic filed using some circles with radius of 50km usually in June of each year, and then we would check whether quake will locat in our circles during one year after that time (June to next June). Now we caught 10 earthquakes of 15 main shocks having magnitude > 5, most of them located at less than10km away from our circles and some of them were in our circles. Most results show that the variations of lithosphere magnetic filed at the epicenter are different with surrending backgroud usually. When we figure out horizontal variations (vector) of lithosphere magnetic field and epicenter during one year after each June, we found half of them show that the earthquakes will locat at "the inlands in a flowing river", that means earthquakes may occur at "quiet"regions while the backgroud show character as"flow" as liquid. When we compared with GPS results, it appears that these variations of lithospere magnetic field may also correlate with displacement of earth's surface. However we do not compared with GPS results for each earthquake, we are not clear whether these anomalous variations of lithospere magnetic field may also correlate with anomalous displacement of earth's surface. Future work will include developing an automated method for identifying this type of anomalous field behavior and trying to short repeat measurement period to 6 month to try to find when these variations occur.

  4. Dynamics of Lithospheric Extension and Residual Topography in Southern Tibet

    Science.gov (United States)

    Chen, B.; Shahnas, M. H.; Pysklywec, R.; Sengul Uluocak, E.

    2017-12-01

    Although the north-south (N-S) convergence between India and Eurasia is ongoing, a number of north-south trending rifts (e.g., Tangra Yum Co Rift, Yadong-Gulu Rift and Cona Rift) and normal faulting are observed at the surface of southern Tibet, suggesting an east-west (E-W) extension tectonic regime. The earthquake focal mechanisms also show that deformation of southern Tibet is dominated by E-W extension across these N-S trending rifts. Because the structure of the lithosphere and underlying mantle is poorly understood, the origin of the east-west extension of southern Tibet is still under debate. Gravitational collapse, oblique convergence, and mantle upwelling are among possible responsible mechanisms. We employ a 3D-spherical control volume model of the present-day mantle flow to understand the relationship between topographic features (e.g., rifts and the west-east extension), intermediate-depth earthquakes, and tectonic stresses induced by mantle flow beneath the region. The thermal structure of the mantle and crust is obtained from P and S-wave seismic inversions and heat flow data. Power-law creep with viscous-plastic rheology, describing the behavior of the lithosphere and mantle material is employed. We determine the models which can best reconcile the observed features of southern Tibet including surface heat flow, residual topography with uplift and subsidence, reported GPS rates of the vertical movements, and the earthquake events. The 3D geodynamic modeling of the contemporary mantle flow-lithospheric response quantifies the relative importance of the various proposed mechanism responsible for the E-W extension and deep earthquakes in southern Tibet. The results also have further implications for the magmatic activities and crustal rheology of the region.

  5. Generation of continental rifts, basins, and swells by lithosphere instabilities

    Science.gov (United States)

    Fourel, Loïc.; Milelli, Laura; Jaupart, Claude; Limare, Angela

    2013-06-01

    Continents may be affected simultaneously by rifting, uplift, volcanic activity, and basin formation in several different locations, suggesting a common driving mechanism that is intrinsic to continents. We describe a new type of convective instability at the base of the lithosphere that leads to a remarkable spatial pattern at the scale of an entire continent. We carried out fluid mechanics laboratory experiments on buoyant blocks of finite size that became unstable due to cooling from above. Dynamical behavior depends on three dimensionless numbers, a Rayleigh number for the unstable block, a buoyancy number that scales the intrinsic density contrast to the thermal one, and the aspect ratio of the block. Within the block, instability develops in two different ways in an outer annulus and in an interior region. In the outer annulus, upwellings and downwellings take the form of periodically spaced radial spokes. The interior region hosts the more familiar convective pattern of polygonal cells. In geological conditions, such instabilities should manifest themselves as linear rifts striking at a right angle to the continent-ocean boundary and an array of domal uplifts, volcanic swells, and basins in the continental interior. Simple scaling laws for the dimensions and spacings of the convective structures are derived. For the subcontinental lithospheric mantle, these dimensions take values in the 500-1000 km range, close to geological examples. The large intrinsic buoyancy of Archean lithospheric roots prevents this type of instability, which explains why the widespread volcanic activity that currently affects Western Africa is confined to post-Archean domains.

  6. The lithosphere-asthenosphere boundary observed with USArray receiver functions

    Directory of Open Access Journals (Sweden)

    P. Kumar

    2012-05-01

    Full Text Available The dense deployment of seismic stations so far in the western half of the United States within the USArray project provides the opportunity to study in greater detail the structure of the lithosphere-asthenosphere system. We use the S receiver function technique for this purpose, which has higher resolution than surface wave tomography, is sensitive to seismic discontinuities, and is free from multiples, unlike P receiver functions. Only two major discontinuities are observed in the entire area down to about 300 km depth. These are the crust-mantle boundary (Moho and a negative boundary, which we correlate with the lithosphere-asthenosphere boundary (LAB, since a low velocity zone is the classical definition of the seismic observation of the asthenosphere by Gutenberg (1926. Our S receiver function LAB is at a depth of 70–80 km in large parts of westernmost North America. East of the Rocky Mountains, its depth is generally between 90 and 110 km. Regions with LAB depths down to about 140 km occur in a stretch from northern Texas, over the Colorado Plateau to the Columbia basalts. These observations agree well with tomography results in the westernmost USA and on the east coast. However, in the central cratonic part of the USA, the tomography LAB is near 200 km depth. At this depth no discontinuity is seen in the S receiver functions. The negative signal near 100 km depth in the central part of the USA is interpreted by Yuan and Romanowicz (2010 and Lekic and Romanowicz (2011 as a recently discovered mid-lithospheric discontinuity (MLD. A solution for the discrepancy between receiver function imaging and surface wave tomography is not yet obvious and requires more high resolution studies at other cratons before a general solution may be found. Our results agree well with petrophysical models of increased water content in the asthenosphere, which predict a sharp and shallow LAB also in continents (Mierdel et al., 2007.

  7. Regional Crustal Deformation and Lithosphere Thickness Observed with Geodetic Techniques

    Science.gov (United States)

    Vermeer, M.; Poutanen, M.; Kollo, K.; Koivula, H.; Ahola, J.

    2009-04-01

    The solid Earth, including the lithosphere, interacts in many ways with other components of the Earth system, oceans, atmosphere and climate. Geodesy is a key provider of data needed for global and environmental research. Geodesy provides methods and accurate measurements of contemporary deformation, sea level and gravity change. The importance of the decades-long stability and availability of reference frames must be stressed for such studies. In the future, the need to accurately monitor 3-D crustal motions will grow, both together with increasingly precise GNSS (Global Navigation Satellite System) positioning, demands for better follow-up of global change, and local needs for crustal motions, especially in coastal areas. These demands cannot yet be satisfied. The project described here is a part of a larger entity: Upper Mantle Dynamics and Quaternary Climate in Cratonic Areas, DynaQlim, an International Lithosphere Project (ILP) -sponsored initiative. The aims of DynaQlim are to understand the relations between upper mantle dynamics, mantle composition, physical properties, temperature and rheology, to study the postglacial uplift and ice thickness models, sea level change and isostatic response, Quaternary climate variations and Weichselian (Laurentian and other) glaciations during the late Quaternary. We aim at studying various aspects of lithospheric motion within the Finnish and Fennoscandian area, but within a global perspective, by the newest geodetic techniques in a multidisciplinary setting. The studies involve observations of three-dimensional motions and gravity change in a multidisciplinary context on a range of spatial scales: the whole of Fennoscandia, Finland, a regional test area of Satakunta, and the local test site Olkiluoto. Objectives of the research include improving our insight into the 3-D motion of a thick lithosphere, and into the gravity effect of the uplift, using novel approaches; improving the kinematic 3-D models in the

  8. Lithosphere Response to Intracratonic Rifting: Examples from Europe and Siberia

    DEFF Research Database (Denmark)

    Artemieva, I. M.; Thybo, H.; Herceg, M.

    2012-01-01

    is based on critically assessed results from various seismic studies, including reflection and refraction profiles and receiver function studies. We also use global shear-wave tomography models, gravity constraints based on GOCE data, and thermal models for the lithosphere to speculate on thermo...... of basaltic magmas and consequently in a change in mantle density and seismic velocities. Although kimberlite magmatism is commonly not considered as a rifting events, its deep causes may be similar to the mantle-driven rifting and, as a consequence, modification of mantle density and velocity structure may...... in it seismic wave velocity and density structure....

  9. Stagnation and Storage of Strongly Depleted Melts in Slow-Ultraslow Spreading Oceans: Evidence from the Ligurian Tethys

    Science.gov (United States)

    Piccardo, Giovanni; Guarnieri, Luisa; Padovano, Matteo

    2013-04-01

    Our studies of Alpine-Apennine ophiolite massifs (i.e., Lanzo, Voltri, Ligurides, Corsica) show that the Jurassic Ligurian Tethys oceanic basin was a slow-ultraslow spreading basin, characterized by the exposures on the seafloor of mantle peridotites with extreme compositional variability. The large majority of these peridotites are made of depleted spinel harzburgites and plagioclase peridotites. The former are interpreted as reactive peridotites formed by the reactive percolation of under-saturated, strongly trace element depleted asthenospheric melts migrated by porous flow through the mantle lithosphere. The latter are considered as refertilized peridotites formed by peridotite impregnation by percolated silica-saturated, strongly trace element depleted melts. Strongly depleted melts were produced as low-degrees, single melt increments by near fractional melting of the passively upwelling asthenosphere during the rifting stage of the basin. They escaped single melt increment aggregation, migrated isolated through the mantle lithosphere by reactive porous or channeled flow before oceanic opening, and were transformed into silica-saturated derivative liquids that underwent entrapment and stagnation in the shallow mantle lithosphere forming plagioclase-enriched peridotites. Widespread small bodies of strongly depleted gabbro-norites testify for the local coalescence of these derivative liquids. These melts never reached the surface (i.e., the hidden magmatism), since lavas with their composition have never been found in the basin. Subsequently, aggregated MORB melts upwelled within replacive dunite channels (as evidenced by composition of magmatic clinopyroxenes in dunites), intruded at shallow levels as olivine gabbro bodies and extruded as basaltic lavas, to form the crustal rocks of the oceanic lithosphere (i.e., the oceanic magmatism). Km-scale bodies of MORB olivine gabbros were intruded into the plagioclase-enriched peridotites, which were formed in the

  10. Slow light in moving media

    Science.gov (United States)

    Leonhardt, U.; Piwnicki, P.

    2001-06-01

    We review the theory of light propagation in moving media with extremely low group velocity. We intend to clarify the most elementary features of monochromatic slow light in a moving medium and, whenever possible, to give an instructive simplified picture.

  11. Birth control - slow release methods

    Science.gov (United States)

    Contraception - slow-release hormonal methods; Progestin implants; Progestin injections; Skin patch; Vaginal ring ... might want to consider a different birth control method. SKIN PATCH The skin patch is placed on ...

  12. Slow rupture of frictional interfaces

    OpenAIRE

    Sinai, Yohai Bar; Brener, Efim A.; Bouchbinder, Eran

    2011-01-01

    The failure of frictional interfaces and the spatiotemporal structures that accompany it are central to a wide range of geophysical, physical and engineering systems. Recent geophysical and laboratory observations indicated that interfacial failure can be mediated by slow slip rupture phenomena which are distinct from ordinary, earthquake-like, fast rupture. These discoveries have influenced the way we think about frictional motion, yet the nature and properties of slow rupture are not comple...

  13. Strain localization at the margins of strong lithospheric domains: insights from analogue models

    NARCIS (Netherlands)

    Calignano, Elisa; Sokoutis, Dimitrios; Willingshofer, Ernst; Gueydan, Frederic; Cloetingh, Sierd

    The lateral variation of the mechanical properties of continental lithosphere is an important factor controlling the localization of deformation and thus the deformation history and geometry of intra-plate mountain belts. A series of three-layer lithospheric-scale analog models, with a strong domain

  14. Implications of a visco-elastic model of the lithosphere for calculating yield strength envelopes

    NARCIS (Netherlands)

    Ershov, A.V.; Stephenson, R.A.

    2006-01-01

    The dominant deformation mechanism in the ductile part of the lithosphere is creep. From a mechanical point of view, creep can be modelled as a viscous phenomenon. On the other hand, yield-strength envelopes (YSEs), commonly used to describe lithosphere rheology, are constructed supposing creep to

  15. Lithosphere erosion and continental breakup : Interaction of extension, plume upwelling and melting

    NARCIS (Netherlands)

    Lavecchia, Alessio; Thieulot, Cedric; Beekman, Fred; Cloetingh, Sierd; Clark, Stuart

    2017-01-01

    We present the results of thermo-mechanical modelling of extension and breakup of a heterogeneous continental lithosphere, subjected to plume impingement in presence of intraplate stress field. We incorporate partial melting of the extending lithosphere, underlying upper mantle and plume, caused by

  16. Robust high resolution models of the continental lithosphere: Methodology and application to Asia

    NARCIS (Netherlands)

    Stolk, W.|info:eu-repo/dai/nl/323259170

    2013-01-01

    Asia is a key natural laboratory for the study of active intra-continental deformation in far-field response to the ongoing collision ofIndiaandEurasia. The resulting tectonic processes strongly depend on the thermo-mechanical structure of the lithosphere. This lithosphere can be separated into

  17. Stable Isotope Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Tissue samples (skin, bone, blood, muscle) are analyzed for stable carbon, stable nitrogen, and stable sulfur analysis. Many samples are used in their entirety for...

  18. The Potential of/for 'Slow': Slow Tourists and Slow Destinations

    Directory of Open Access Journals (Sweden)

    J. Guiver

    2016-05-01

    Full Text Available Slow tourism practices are nothing new; in fact, they were once the norm and still are for millions of people whose annual holiday is spent camping, staying in caravans, rented accommodation, with friends and relations or perhaps in a second home, who immerse themselves in their holiday environment, eat local food, drink local wine and walk or cycle around the area. So why a special edition about slow tourism? Like many aspects of life once considered normal (such as organic farming or free-range eggs, the emergence of new practices has highlighted differences and prompted a re-evaluation of once accepted practices and values. In this way, the concept of ‘slow tourism’ has recently appeared as a type of tourism that contrasts with many contemporary mainstream tourism practices. It has also been associated with similar trends already ‘branded’ slow: slow food and cittaslow (slow towns and concepts such as mindfulness, savouring and well-being.

  19. Seismic structure of the lithosphere beneath NW Namibia: Impact of the Tristan da Cunha mantle plume

    Science.gov (United States)

    Yuan, Xiaohui; Heit, Benjamin; Brune, Sascha; Steinberger, Bernhard; Geissler, Wolfram H.; Jokat, Wilfried; Weber, Michael

    2017-01-01

    Northwestern Namibia, at the landfall of the Walvis Ridge, was affected by the Tristan da Cunha mantle plume during continental rupture between Africa and South America, as evidenced by the presence of the Etendeka continental flood basalts. Here we use data from a passive-source seismological network to investigate the upper mantle structure and to elucidate the Cretaceous mantle plume-lithosphere interaction. Receiver functions reveal an interface associated with a negative velocity contrast within the lithosphere at an average depth of 80 km. We interpret this interface as the relic of the lithosphere-asthenosphere boundary (LAB) formed during the Mesozoic by interaction of the Tristan da Cunha plume head with the pre-existing lithosphere. The velocity contrast might be explained by stagnated and "frozen" melts beneath an intensively depleted and dehydrated peridotitic mantle. The present-day LAB is poorly visible with converted waves, indicating a gradual impedance contrast. Beneath much of the study area, converted phases of the 410 and 660 km mantle transition zone discontinuities arrive 1.5 s earlier than in the landward plume-unaffected continental interior, suggesting high velocities in the upper mantle caused by a thick lithosphere. This indicates that after lithospheric thinning during continental breakup, the lithosphere has increased in thickness during the last 132 Myr. Thermal cooling of the continental lithosphere alone cannot produce the lithospheric thickness required here. We propose that the remnant plume material, which has a higher seismic velocity than the ambient mantle due to melt depletion and dehydration, significantly contributed to the thickening of the mantle lithosphere.

  20. In situ rheology of the oceanic lithosphere along the Hawaiian ridge

    Science.gov (United States)

    Pleus, A.; Ito, G.; Wessel, P.; Frazer, L. N.

    2017-12-01

    Much of our quantitative understanding of lithospheric rheology is based on rock deformation experiments carried out in the laboratory. The accuracy of the relationships between stress and lithosphere deformation, however, are subject to large extrapolations, given that laboratory strain rates (10-7 s-1) are much greater than geologic rates (10-15 to 10-12 s-1). In situ deformation experiments provide independent constraints and are therefore needed to improve our understanding of natural rheology. Zhong and Watts [2013] presented such a study around the main Hawaiian Islands and concluded that the lithosphere flexure requires a much weaker rheology than predicted by laboratory experiments. We build upon this study by investigating flexure around the older volcanoes of the Hawaiian ridge. The ridge is composed of a diversity of volcano sizes that loaded seafloor of nearly constant age (85+/-8 Ma); this fortunate situation allows for an analysis of flexural responses to large variations in applied loads at nearly constant age-dependent lithosphere thermal structure. Our dataset includes new marine gravity and multi-beam bathymetry data collected onboard the Schmidt Ocean Institute's R/V Falkor. These data, along with forward models of lithospheric flexure, are used to obtain a joint posterior probability density function for model parameters that control the lithosphere's flexural response to a given load. These parameters include the frictional coefficient constraining brittle failure in the shallow lithosphere, the activation energy for the low-temperature plasticity regime, and the geothermal gradient of the Hawaiian lithosphere. The resulting in situ rheological parameters may be used to verify or update those derived in the lab. Attaining accurate lithospheric rheological properties is important to our knowledge, not only of the evolution of the Hawaiian lithosphere, but also of other solid-earth geophysical problems, such as oceanic earthquakes, subduction

  1. Formation of cratonic lithosphere: An integrated thermal and petrological model

    Science.gov (United States)

    Herzberg, Claude; Rudnick, Roberta

    2012-09-01

    The formation of cratonic mantle peridotite of Archean age is examined within the time frame of Earth's thermal history, and how it was expressed by temporal variations in magma and residue petrology. Peridotite residues that occupy the lithospheric mantle are rare owing to the effects of melt-rock reaction, metasomatism, and refertilization. Where they are identified, they are very similar to the predicted harzburgite residues of primary magmas of the dominant basalts in greenstone belts, which formed in a non-arc setting (referred to here as "non-arc basalts"). The compositions of these basalts indicate high temperatures of formation that are well-described by the thermal history model of Korenaga. In this model, peridotite residues of extensive ambient mantle melting had the highest Mg-numbers, lowest FeO contents, and lowest densities at ~ 2.5-3.5 Ga. These results are in good agreement with Re-Os ages of kimberlite-hosted cratonic mantle xenoliths and enclosed sulfides, and provide support for the hypothesis of Jordan that low densities of cratonic mantle are a measure of their high preservation potential. Cratonization of the Earth reached its zenith at ~ 2.5-3.5 Ga when ambient mantle was hot and extensive melting produced oceanic crust 30-45 km thick. However, there is a mass imbalance exhibited by the craton-wide distribution of harzburgite residues and the paucity of their complementary magmas that had compositions like the non-arc basalts. We suggest that the problem of the missing basaltic oceanic crust can be resolved by its hydration, cooling and partial transformation to eclogite, which caused foundering of the entire lithosphere. Some of the oceanic crust partially melted during foundering to produce continental crust composed of tonalite-trondhjemite-granodiorite (TTG). The remaining lithosphere gravitationally separated into 1) residual eclogite that continued its descent, and 2) buoyant harzburgite diapirs that rose to underplate cratonic nuclei

  2. Recent progress in modelling 3D lithospheric deformation

    Science.gov (United States)

    Kaus, B. J. P.; Popov, A.; May, D. A.

    2012-04-01

    Modelling 3D lithospheric deformation remains a challenging task, predominantly because the variations in rock types, as well as nonlinearities due to for example plastic deformation result in sharp and very large jumps in effective viscosity contrast. As a result, there are only a limited number of 3D codes available, most of which are using direct solvers which are computationally and memory-wise very demanding. As a result, the resolutions for typical model runs are quite modest, despite the use of hundreds of processors (and using much larger computers is unlikely to bring much improvement in this situation). For this reason we recently developed a new 3D deformation code,called LaMEM: Lithosphere and Mantle Evolution Model. LaMEM is written on top of PETSc, and as a result it runs on massive parallel machines and we have a large number of iterative solvers available (including geometric and algebraic multigrid methods). As it remains unclear which solver combinations work best under which conditions, we have implemented most currently suggested methods (such as schur complement reduction or Fully coupled iterations). In addition, we can use either a finite element discretization (with Q1P0, stabilized Q1Q1 or Q2P-1 elements) or a staggered finite difference discretization for the same input geometry, which is based on a marker and cell technique). This gives us he flexibility to test various solver methodologies on the same model setup, in terms of accuracy, speed, memory usage etc. Here, we will report on some features of LaMEM, on recent code additions, as well as on some lessons we learned which are important for modelling 3D lithospheric deformation. Specifically we will discuss: 1) How we combine a particle-and-cell method to make it work with both a finite difference and a (lagrangian, eulerian or ALE) finite element formulation, with only minor code modifications code 2) How finite difference and finite element discretizations compare in terms of

  3. Implications for anomalous mantle pressure and dynamic topography from lithospheric stress patterns in the North Atlantic Realm

    DEFF Research Database (Denmark)

    Schiffer, Christian; Nielsen, Søren Bom

    2016-01-01

    With convergent plate boundaries at some distance, the sources of the lithospheric stress field of the North Atlantic Realm are mainly mantle tractions at the base of the lithosphere, lithospheric density structure and topography. Given this, we estimate horizontal deviatoric stresses using a wel...

  4. Slow, stopped and stored light

    International Nuclear Information System (INIS)

    Welch, G.; Scully, M.

    2005-01-01

    Light that can been slowed to walking pace could have applications in telecommunications, optical storage and quantum computing. Whether we use it to estimate how far away a thunderstorm is, or simply take it for granted that we can have a conversation with someone on the other side of the world, we all know that light travels extremely fast. Indeed, special relativity teaches us that nothing in the universe can ever move faster than the speed of light in a vacuum: 299 792 458 ms sup - sup 1. However, there is no such limitation on how slowly light can travel. For the last few years, researchers have been routinely slowing light to just a few metres per second, and have recently even stopped it dead in its tracks so that it can be stored for future use. Slow-light has considerable popular appeal, deriving perhaps from the importance of the speed of light in relativity and cosmology. If everyday objects such as cars or people can travel faster than 'slow' light, for example, then it might appear that relativistic effects could be observed at very low speeds. Although this is not the case, slow light nonetheless promises to play an important role in optical technology because it allows light to be delayed for any period of time desired. This could lead to all-optical routers that would increase the bandwidth of the Internet, and applications in optical data storage, quantum information and even radar. (U.K.)

  5. Slow rupture of frictional interfaces

    Science.gov (United States)

    Bar Sinai, Yohai; Brener, Efim A.; Bouchbinder, Eran

    2012-02-01

    The failure of frictional interfaces and the spatiotemporal structures that accompany it are central to a wide range of geophysical, physical and engineering systems. Recent geophysical and laboratory observations indicated that interfacial failure can be mediated by slow slip rupture phenomena which are distinct from ordinary, earthquake-like, fast rupture. These discoveries have influenced the way we think about frictional motion, yet the nature and properties of slow rupture are not completely understood. We show that slow rupture is an intrinsic and robust property of simple non-monotonic rate-and-state friction laws. It is associated with a new velocity scale cmin, determined by the friction law, below which steady state rupture cannot propagate. We further show that rupture can occur in a continuum of states, spanning a wide range of velocities from cmin to elastic wave-speeds, and predict different properties for slow rupture and ordinary fast rupture. Our results are qualitatively consistent with recent high-resolution laboratory experiments and may provide a theoretical framework for understanding slow rupture phenomena along frictional interfaces.

  6. Dynamics of the Pacific Northwest Lithosphere and Asthenosphere

    Science.gov (United States)

    Humphreys, E.

    2013-12-01

    Seismic imaging resolves a complex structure beneath the Pacific Northwest (PNW) that is interpreted as: an high-velocity piece of accreted (~50 Ma) Farallon lithosphere that deepens from being exposed (at coast, where it is called Siletzia) to lower crust in SE Washington and then descending vertically to ~600 km as a 'curtain' beneath central Idaho; a stubby Juan de Fuca slab (to directed tractions on the Cascadia mega-thrust average ~4 TN per meter of along-strike fault length, or probably a shear stress of ~40 MPa over much of the locked mega-thrust (i.e., much more shear stress than the typical earthquake stress drop of 1-10 MPa). Normal to the coast, southern Cascadia is relatively tensional (where margin-normal compression is less than typical ridge push by ~4 TN/m of along-strike fault length) whereas northern Cascadia is compressional. This indicates that the southern Cascadia mega-thrust is more weakly coupled than the northern mega-thrust. Southern Cascadia slab rollback and extension of the Cascade graben and Basin-and-Range are enabled by the weak coupling, in conjunction with high gravitational potential energy of the southern Oregon arc and back-arc. Juan de Fuca-Gorda lithosphere experiences the same stress on its eastern margin as North America does on the PNW Cascadia margin (by stress continuity), although current models of the individual plates do not show this continuity. Gorda plate is strongly compressed across the Mendocino transform by the north-moving Pacific Plate. Development of the NW-trending Blanco transform has created a fault that avoids this strong compression.

  7. Power law olivine crystal size distributions in lithospheric mantle xenoliths

    Science.gov (United States)

    Armienti, P.; Tarquini, S.

    2002-12-01

    Olivine crystal size distributions (CSDs) have been measured in three suites of spinel- and garnet-bearing harzburgites and lherzolites found as xenoliths in alkaline basalts from Canary Islands, Africa; Victoria Land, Antarctica; and Pali Aike, South America. The xenoliths derive from lithospheric mantle, from depths ranging from 80 to 20 km. Their textures vary from coarse to porphyroclastic and mosaic-porphyroclastic up to cataclastic. Data have been collected by processing digital images acquired optically from standard petrographic thin sections. The acquisition method is based on a high-resolution colour scanner that allows image capturing of a whole thin section. Image processing was performed using the VISILOG 5.2 package, resolving crystals larger than about 150 μm and applying stereological corrections based on the Schwartz-Saltykov algorithm. Taking account of truncation effects due to resolution limits and thin section size, all samples show scale invariance of crystal size distributions over almost three orders of magnitude (0.2-25 mm). Power law relations show fractal dimensions varying between 2.4 and 3.8, a range of values observed for distributions of fragment sizes in a variety of other geological contexts. A fragmentation model can reproduce the fractal dimensions around 2.6, which correspond to well-equilibrated granoblastic textures. Fractal dimensions >3 are typical of porphyroclastic and cataclastic samples. Slight bends in some linear arrays suggest selective tectonic crushing of crystals with size larger than 1 mm. The scale invariance shown by lithospheric mantle xenoliths in a variety of tectonic settings forms distant geographic regions, which indicate that this is a common characteristic of the upper mantle and should be taken into account in rheological models and evaluation of metasomatic models.

  8. Slow Images and Entangled Photons

    International Nuclear Information System (INIS)

    Swordy, Simon

    2007-01-01

    I will discuss some recent experiments using slow light and entangled photons. We recently showed that it was possible to map a two dimensional image onto very low light level signals, slow them down in a hot atomic vapor while preserving the amplitude and phase of the images. If time remains, I will discuss some of our recent work with time-energy entangled photons for quantum cryptography. We were able to show that we could have a measurable state space of over 1000 states for a single pair of entangled photons in fiber.

  9. Pulsar slow-down epochs

    International Nuclear Information System (INIS)

    Heintzmann, H.; Novello, M.

    1981-01-01

    The relative importance of magnetospheric currents and low frequency waves for pulsar braking is assessed and a model is developed which tries to account for the available pulsar timing data under the unifying aspect that all pulsars have equal masses and magnetic moments and are born as rapid rotators. Four epochs of slow-down are distinguished which are dominated by different braking mechanisms. According to the model no direct relationship exists between 'slow-down age' and true age of a pulsar and leads to a pulsar birth-rate of one event per hundred years. (Author) [pt

  10. Thinning of heterogeneous lithosphere: insights from field observations and numerical modelling

    Science.gov (United States)

    Petri, B.; Duretz, T.; Mohn, G.; Schmalholz, S. M.

    2017-12-01

    The nature and mechanisms of formation of extremely thinned continental crust (N Italy) and in the Southern Alps (N Italy) were selected for their exceptional level of preservation of rift-related structures. This situation enables us to characterize (1) the pre-rift architecture of the continental lithosphere, (2) the localization of rift-related deformation in distinct portion of the lithosphere and (3) the interaction between initial heterogeneities of the lithosphere and rift-related structures. In a second stage, these observations are integrated in high-resolution, two-dimensional thermo-mechanical models taking into account various patterns of initial mechanical heterogeneities. Our results show the importance of initial pre-rift architecture of the continental lithosphere during rifting. Key roles are given to high-angle and low-angle normal faults, anastomosing shear-zones and decoupling horizons. We propose that during the first stages of thinning, deformation is strongly controlled by the complex pre-rift architecture of the lithosphere, localized along major structures responsible for the lateral extrusion of mid to lower crustal levels. This extrusion juxtaposes mechanically stronger levels in the hyper-thinned continental crust, being exhumed by subsequent low-angle normal faults. Altogether, these results highlight the critical role of the extraction of mechanically strong layers of the lithosphere during the extreme thinning of the continental lithosphere and allows to propose a new model for the formation of continental passive margins.

  11. Major zircon megacryst suites of the Indo-Pacific lithospheric margin (ZIP) and their petrogenetic and regional implications

    Science.gov (United States)

    Sutherland, Lin; Graham, Ian; Yaxley, Gregory; Armstrong, Richard; Giuliani, Gaston; Hoskin, Paul; Nechaev, Victor; Woodhead, Jon

    2016-04-01

    Zircon megacrysts (± gem corundum) appear in basalt fields of Indo-Pacific origin over a 12,000 km zone (ZIP) along West Pacific continental margins. Age-dating, trace element, oxygen and hafnium isotope studies on representative zircons (East Australia-Asia) indicate diverse magmatic sources. The U-Pb (249 to 1 Ma) and zircon fission track (ZFT) ages (65 to 1 Ma) suggest thermal annealing during later basalt transport, with < 1 to 203 Ma gaps between the U-Pb and ZFT ages. Magmatic growth zonation and Zr/Hf ratios (0.01-0.02) suggest alkaline magmatic sources, while Ti—in—zircon thermometry suggests that most zircons crystallized within ranges between 550 and 830 °C. Chondrite-normalised multi-element plots show variable enrichment patterns, mostly without marked Eu depletion, indicating little plagioclase fractionation in source melts. Key elements and ratios matched against zircons from magmatic rocks suggest a range of ultramafic to felsic source melts. Zircon O-isotope ratios (δ18O in the range 4 to 11‰) and initial Hf isotope ratios (ɛHf in the range +2 to +14) encompass ranges for both mantle and crustal melts. Calculated Depleted Mantle (TDM 0.03-0.56 Ga) and Crustal Residence (0.20-1.02 Ga) model ages suggest several mantle events, continental break-ups (Rodinia and Gondwana) and convergent margin collisions left imprints in the zircon source melts. East Australian ZIP sites reflect prolonged intraplate magmatism (~85 Ma), often during times of fast-migrating lithosphere. In contrast, East Asian-Russian ZIP sites reflect later basaltic magmatism (<40 Ma), often linked to episodes of back-arc rifting and spreading, slow-migrating lithosphere and slab subduction.

  12. Imaging Canary Island hotspot material beneath the lithosphere of Morocco and southern Spain

    Science.gov (United States)

    Miller, Meghan S.; O'Driscoll, Leland J.; Butcher, Amber J.; Thomas, Christine

    2015-12-01

    The westernmost Mediterranean has developed into its present day tectonic configuration as a result of complex interactions between late stage subduction of the Neo-Tethys Ocean, continental collision of Africa and Eurasia, and the Canary Island mantle plume. This study utilizes S receiver functions (SRFs) from over 360 broadband seismic stations to seismically image the lithosphere and uppermost mantle from southern Spain through Morocco and the Canary Islands. The lithospheric thickness ranges from ∼65 km beneath the Atlas Mountains and the active volcanic islands to over ∼210 km beneath the cratonic lithosphere in southern Morocco. The common conversion point (CCP) volume of the SRFs indicates that thinned lithosphere extends from beneath the Canary Islands offshore southwestern Morocco, to beneath the continental lithosphere of the Atlas Mountains, and then thickens abruptly at the West African craton. Beneath thin lithosphere between the Canary hot spot and southern Spain, including below the Atlas Mountains and the Alboran Sea, there are distinct pockets of low velocity material, as inferred from high amplitude positive, sub-lithospheric conversions in the SRFs. These regions of low seismic velocity at the base of the lithosphere extend beneath the areas of Pliocene-Quaternary magmatism, which has been linked to a Canary hotspot source via geochemical signatures. However, we find that this volume of low velocity material is discontinuous along strike and occurs only in areas of recent volcanism and where asthenospheric mantle flow is identified with shear wave splitting analyses. We propose that the low velocity structure beneath the lithosphere is material flowing sub-horizontally northeastwards beneath Morocco from the tilted Canary Island plume, and the small, localized volcanoes are the result of small-scale upwellings from this material.

  13. Seismic and Thermal Structure of the Arctic Lithosphere, From Waveform Tomography and Thermodynamic Modelling

    Science.gov (United States)

    Lebedev, S.; Schaeffer, A. J.; Fullea, J.; Pease, V.

    2015-12-01

    Thermal structure of the lithosphere is reflected in the values of seismic velocities within it. Our new tomographic models of the crust and upper mantle of the Arctic are constrained by an unprecedentedly large global waveform dataset and provide substantially improved resolution, compared to previous models. The new tomography reveals lateral variations in the temperature and thickness of the lithosphere and defines deep boundaries between tectonic blocks with different lithospheric properties and age. The shape and evolution of the geotherm beneath a tectonic unit depends on both crustal and mantle-lithosphere structure beneath it: the lithospheric thickness and its changes with time (these determine the supply of heat from the deep Earth), the crustal thickness and heat production (the supply of heat from within the crust), and the thickness and thermal conductivity of the sedimentary cover (the insulation). Detailed thermal structure of the basins can be modelled by combining seismic velocities from tomography with data on the crustal structure and heat production, in the framework of computational petrological modelling. The most prominent lateral contrasts across the Arctic are between the cold, thick lithospheres of the cratons (in North America, Greenland and Eurasia) and the warmer, non-cratonic blocks. The lithosphere of the Canada Basin is cold and thick, similar to old oceanic lithosphere elsewhere around the world; its thermal structure offers evidence on its lithospheric age and formation mechanism. At 150-250 km depth, the central Arctic region shows a moderate low-velocity anomaly, cooler than that beneath Iceland and N Atlantic. An extension of N Atlantic low-velocity anomaly into the Arctic through the Fram Strait may indicate an influx of N Atlantic asthenosphere under the currently opening Eurasia Basin.

  14. Slow control systems of the Reactor Experiment for Neutrino Oscillation

    International Nuclear Information System (INIS)

    Choi, J.H.; Jang, H.I.; Choi, W.Q.; Choi, Y.; Jang, J.S.; Jeon, E.J.; Joo, K.K.; Kim, B.R.; Kim, H.S.; Kim, J.Y.; Kim, S.B.; Kim, S.Y.; Kim, W.; Kim, Y.D.; Ko, Y.J.; Lee, J.K.; Lim, I.T.; Pac, M.Y.; Park, I.G.; Park, J.S.

    2016-01-01

    The RENO experiment has been in operation since August 2011 to measure reactor antineutrino disappearance using identical near and far detectors. For accurate measurements of neutrino mixing parameters and efficient data taking, it is crucial to monitor and control the detector in real time. Environmental conditions also need to be monitored for stable operation of detectors as well as for safety reasons. In this paper, we report the design, hardware, operation, and performance of the slow control system.

  15. A slowing-down problem

    Energy Technology Data Exchange (ETDEWEB)

    Carlvik, I; Pershagen, B

    1958-06-15

    An infinitely long circular cylinder of radius a is surrounded by an infinite moderator. Both media are non-capturing. The cylinder emits neutrons of age zero with a constant source density of S. We assume that the ratios of the slowing-down powers and of the diffusion constants are independent of the neutron energy. The slowing-down density is calculated for two cases, a) when the slowing-down power of the cylinder medium is very small, and b) when the cylinder medium is identical with the moderator. The ratios of the slowing-down density at the age {tau} and the source density in the two cases are called {psi}{sub V}, and {psi}{sub M} respectively. {psi}{sub V} and {psi}{sub M} are functions of y=a{sup 2}/4{tau}. These two functions ({psi}{sub V} and {psi}{sub M}) are calculated and tabulated for y = 0-0.25.

  16. Numerical modeling of slow shocks

    International Nuclear Information System (INIS)

    Winske, D.

    1987-01-01

    This paper reviews previous attempt and the present status of efforts to understand the structure of slow shocks by means of time dependent numerical calculations. Studies carried out using MHD or hybrid-kinetic codes have demonstrated qualitative agreement with theory. A number of unresolved issues related to hybrid simulations of the internal shock structure are discussed in some detail. 43 refs., 8 figs

  17. Stable convergence and stable limit theorems

    CERN Document Server

    Häusler, Erich

    2015-01-01

    The authors present a concise but complete exposition of the mathematical theory of stable convergence and give various applications in different areas of probability theory and mathematical statistics to illustrate the usefulness of this concept. Stable convergence holds in many limit theorems of probability theory and statistics – such as the classical central limit theorem – which are usually formulated in terms of convergence in distribution. Originated by Alfred Rényi, the notion of stable convergence is stronger than the classical weak convergence of probability measures. A variety of methods is described which can be used to establish this stronger stable convergence in many limit theorems which were originally formulated only in terms of weak convergence. Naturally, these stronger limit theorems have new and stronger consequences which should not be missed by neglecting the notion of stable convergence. The presentation will be accessible to researchers and advanced students at the master's level...

  18. The impact of lateral variations in lithospheric thickness on glacial isostatic adjustment in West Antarctica

    Science.gov (United States)

    Nield, Grace A.; Whitehouse, Pippa L.; van der Wal, Wouter; Blank, Bas; O'Donnell, John Paul; Stuart, Graham W.

    2018-04-01

    Differences in predictions of Glacial Isostatic Adjustment (GIA) for Antarctica persist due to uncertainties in deglacial history and Earth rheology. The Earth models adopted in many GIA studies are defined by parameters that vary in the radial direction only and represent a global average Earth structure (referred to as 1D Earth models). Over-simplifying actual Earth structure leads to bias in model predictions in regions where Earth parameters differ significantly from the global average, such as West Antarctica. We investigate the impact of lateral variations in lithospheric thickness on GIA in Antarctica by carrying out two experiments that use different rheological approaches to define 3D Earth models that include spatial variations in lithospheric thickness. The first experiment defines an elastic lithosphere with spatial variations in thickness inferred from seismic studies. We compare the results from this 3D model with results derived from a 1D Earth model that has a uniform lithospheric thickness defined as the average of the 3D lithospheric thickness. Irrespective of deglacial history and sub-lithospheric mantle viscosity, we find higher gradients of present-day uplift rates (i.e. higher amplitude and shorter wavelength) in West Antarctica when using the 3D models, due to the thinner-than-1D-average lithosphere prevalent in this region. The second experiment uses seismically-inferred temperature as input to a power-law rheology thereby allowing the lithosphere to have a viscosity structure. Modelling the lithosphere with a power-law rheology results in behaviour that is equivalent to a thinner-lithosphere model, and it leads to higher amplitude and shorter wavelength deformation compared with the first experiment. We conclude that neglecting spatial variations in lithospheric thickness in GIA models will result in predictions of peak uplift and subsidence that are biased low in West Antarctica. This has important implications for ice-sheet modelling

  19. Magma explains low estimates of lithospheric strength based on flexure of ocean island loads

    Science.gov (United States)

    Buck, W. Roger; Lavier, Luc L.; Choi, Eunseo

    2015-04-01

    One of the best ways to constrain the strength of the Earth's lithosphere is to measure the deformation caused by large, well-defined loads. The largest, simple vertical load is that of the Hawaiian volcanic island chain. An impressively detailed recent analysis of the 3D response to that load by Zhong and Watts (2013) considers the depth range of seismicity below Hawaii and the seismically determined geometry of lithospheric deflection. These authors find that the friction coefficient for the lithosphere must be in the normal range measured for rocks, but conclude that the ductile flow strength has to be far weaker than laboratory measurements suggest. Specifically, Zhong and Watts (2013) find that stress differences in the mantle lithosphere below the island chain are less than about 200 MPa. Standard rheologic models suggest that for the ~50 km thick lithosphere inferred to exist below Hawaii yielding will occur at stress differences of about 1 GPa. Here we suggest that magmatic accommodation of flexural extension may explain Hawaiian lithospheric deflection even with standard mantle flow laws. Flexural stresses are extensional in the deeper part of the lithosphere below a linear island load (i.e. horizontal stresses orthogonal to the line load are lower than vertical stresses). Magma can accommodate lithospheric extension at smaller stress differences than brittle and ductile rock yielding. Dikes opening parallel to an island chain would allow easier downflexing than a continuous plate, but wound not produce a freely broken plate. The extensional stress needed to open dikes at depth depends on the density contrast between magma and lithosphere, assuming magma has an open pathway to the surface. For a uniform lithospheric density ρL and magma density ρM the stress difference to allow dikes to accommodate extension is: Δσxx (z) = g z (ρM - gρL), where g is the acceleration of gravity and z is depth below the surface. For reasonable density values (i.e.

  20. Global map of lithosphere thermal thickness on a 1 deg x 1 deg grid - digitally available

    Science.gov (United States)

    Artemieva, Irina

    2014-05-01

    This presentation reports a 1 deg ×1 deg global thermal model for the continental lithosphere (TC1). The model is digitally available from the author's web-site: www.lithosphere.info. Geotherms for continental terranes of different ages (early Archean to present) are constrained by reliable data on borehole heat flow measurements (Artemieva and Mooney, 2001), checked with the original publications for data quality, and corrected for paleo-temperature effects where needed. These data are supplemented by cratonic geotherms based on xenolith data. Since heat flow measurements cover not more than half of the continents, the remaining areas (ca. 60% of the continents) are filled by the statistical numbers derived from the thermal model constrained by borehole data. Continental geotherms are statistically analyzed as a function of age and are used to estimate lithospheric temperatures in continental regions with no or low quality heat flow data. This analysis requires knowledge of lithosphere age globally. A compilation of tectono-thermal ages of lithospheric terranes on a 1 deg × 1 deg grid forms the basis for the statistical analysis. It shows that, statistically, lithospheric thermal thickness z (in km) depends on tectono-thermal age t (in Ma) as: z=0.04t+93.6. This relationship formed the basis for a global thermal model of the continental lithosphere (TC1). Statistical analysis of continental geotherms also reveals that this relationship holds for the Archean cratons in general, but not in detail. Particularly, thick (more than 250 km) lithosphere is restricted solely to young Archean terranes (3.0-2.6 Ga), while in old Archean cratons (3.6-3.0 Ga) lithospheric roots do not extend deeper than 200-220 km. The TC1 model is presented by a set of maps, which show significant thermal heterogeneity within continental upper mantle. The strongest lateral temperature variations (as large as 800 deg C) are typical of the shallow mantle (depth less than 100 km). A map of the

  1. Lithospheric discontinuities beneath the U.S. Midcontinent - signatures of Proterozoic terrane accretion and failed rifting

    Science.gov (United States)

    Chen, Chen; Gilbert, Hersh; Fischer, Karen M.; Andronicos, Christopher L.; Pavlis, Gary L.; Hamburger, Michael W.; Marshak, Stephen; Larson, Timothy; Yang, Xiaotao

    2018-01-01

    Seismic discontinuities between the Moho and the inferred lithosphere-asthenosphere boundary (LAB) are known as mid-lithospheric discontinuities (MLDs) and have been ascribed to a variety of phenomena that are critical to understanding lithospheric growth and evolution. In this study, we used S-to-P converted waves recorded by the USArray Transportable Array and the OIINK (Ozarks-Illinois-Indiana-Kentucky) Flexible Array to investigate lithospheric structure beneath the central U.S. This region, a portion of North America's cratonic platform, provides an opportunity to explore how terrane accretion, cratonization, and subsequent rifting may have influenced lithospheric structure. The 3D common conversion point (CCP) volume produced by stacking back-projected Sp receiver functions reveals a general absence of negative converted phases at the depths of the LAB across much of the central U.S. This observation suggests a gradual velocity decrease between the lithosphere and asthenosphere. Within the lithosphere, the CCP stacks display negative arrivals at depths between 65 km and 125 km. We interpret these as MLDs resulting from the top of a layer of crystallized melts (sill-like igneous intrusions) or otherwise chemically modified lithosphere that is enriched in water and/or hydrous minerals. Chemical modification in this manner would cause a weak layer in the lithosphere that marks the MLDs. The depth and amplitude of negative MLD phases vary significantly both within and between the physiographic provinces of the midcontinent. Double, or overlapping, MLDs can be seen along Precambrian terrane boundaries and appear to result from stacked or imbricated lithospheric blocks. A prominent negative Sp phase can be clearly identified at 80 km depth within the Reelfoot Rift. This arrival aligns with the top of a zone of low shear-wave velocities, which suggests that it marks an unusually shallow seismic LAB for the midcontinent. This boundary would correspond to the top of a

  2. Lateral heterogeneity and vertical stratification of cratonic lithospheric keels: examples from Europe, Siberia, and North America

    DEFF Research Database (Denmark)

    Artemieva, Irina; Cherepanova, Yulia; Herceg, Matija

    of the Precambrian lithosphere based on surface heat flow data, (ii) non-thermal part of upper mantle seismic velocity heterogeneity based on a joint analysis of thermal and seismic tomography data, and (iii) lithosphere density heterogeneity as constrained by free-board and satellite gravity data. The latter...... of the Gondwanaland does not presently exceed 250 km depth. An analysis of temperature-corrected seismic velocity structure indicates strong vertical and lateral heterogeneity of the cratonic lithospheric mantle, with a pronounced stratification in many Precambrian terranes; the latter is supported by xenolith data...

  3. Lateral heterogeneity and vertical stratification of cratonic lithospheric keels: a case study of the Siberian craton

    DEFF Research Database (Denmark)

    Artemieva, Irina; Cherepanova, Yulia; Herceg, Matija

    2014-01-01

    by regional xenolith P-T arrays,lithosphere density heterogeneity as constrained by free-board and satellite gravity data, and the non-thermalpart of upper mantle seismic velocity heterogeneity based on joint analysis of thermal and seismic tomography data.Density structure of the cratonic lithosphere...... and strongly depleted lithospheric mantle of the Archean nuclei, particularly below the Anabar shield.Since we cannot identify the depth distribution of density anomalies, we complement the approach by seismicdata. An analysis of temperature-corrected seismic velocity structure indicates strong vertical...

  4. The unappreciated slowness of conventional tourism

    Directory of Open Access Journals (Sweden)

    G.R. Larsen

    2016-05-01

    Full Text Available Most tourists are not consciously engaging in ‘slow travel’, but a number of travel behaviours displayed by conventional tourists can be interpreted as slow travel behaviour. Based on Danish tourists’ engagement with the distances they travel across to reach their holiday destination, this paper explores unintended slow travel behaviours displayed by these tourists. None of the tourists participating in this research were consciously doing ‘slow travel’, and yet some of their most valued holiday memories are linked to slow travel behaviours. Based on the analysis of these unintended slow travel behaviours, this paper will discuss the potential this insight might hold for promotion of slow travel. If unappreciated and unintentional slow travel behaviours could be utilised in the deliberate effort of encouraging more people to travel slow, ‘slow travel’ will be in a better position to become integrated into conventional travel behaviour.

  5. Silicate melt metasomatism in the lithospheric mantle beneath SW Poland

    Science.gov (United States)

    Puziewicz, Jacek; Matusiak-Małek, Magdalena; Ntaflos, Theodoros; Grégoire, Michel; Kukuła, Anna

    2014-05-01

    The xenoliths of peridotites representing the subcontinental lithospheric mantle (SCLM) beneath SW Poland and adjacent parts of Germany occur in the Cenozoic alkaline volcanic rocks. Our study is based on detailed characterization of xenoliths occurring in 7 locations (Steinberg in Upper Lusatia, Księginki, Pilchowice, Krzeniów, Wilcza Góra, Winna Góra and Lutynia in Lower Silesia). One of the two major lithologies occurring in the xenoliths, which we call the "B" lithology, comprises peridotites (typically harzburgites) with olivine containing from 90.5 to 84.0 mole % of forsterite. The harzburgites contain no clinopyroxene or are poor in that mineral (eg. in Krzeniów the group "B" harzburgites contain pfu in ortho-, and pfu in clinopyroxene). The exception are xenoliths from Księginki, which contain pyroxenes characterised by negative correlation between mg# and Al. The REE patterns of both ortho- and clinopyroxene in the group "B" peridotites suggest equilibration with silicate melt. The rocks of "B" lithology were formed due to alkaline silicate melt percolation in the depleted peridotitic protolith. The basaltic melts formed at high pressure are usually undersaturated in both ortho- and clinopyroxene at lower pressures (Kelemen et al. 1992). Because of cooling and dissolution of ortho- and clinopyroxene the melts change their composition and become saturated in one or both of those phases. Experimental results (e.g. Tursack & Liang 2012 and references therein) show that the same refers to alkaline basaltic silicate melts and that its reactive percolation in the peridotitic host leads to decrease of Mg/(Mg+Fe) ratios of olivine and pyroxenes. Thus, the variation of relative volumes of olivine and orthopyroxene as well as the decrease of mg# of rock-forming silicates is well explained by reactive melt percolation in the peridotitic protolith consisting of high mg# olivine and pyroxenes (in the area studied by us that protolith was characterised by olivine

  6. Probing the Cypriot Lithosphere: Insights from Broadband Seismology

    Science.gov (United States)

    Ogden, C. S.; Bastow, I. D.; Pilidou, S.; Dimitriadis, I.; Iosif, P.; Constantinou, C.; Kounoudis, R.

    2017-12-01

    Cyprus, an island in the eastern Mediterranean Sea, is an ideal study locale for understanding both the final stages of subduction, and the internal structure of so-called `ophiolites' - rare, on-land exposures of oceanic crust. The Troodos ophiolite offers an excellent opportunity to interrogate a complete ophiolite sequence from mantle rocks to pillow lavas. However, determining its internal architecture, and that of the subducting African plate deep below it, cannot be easily achieved using traditional field geology. To address this issue, we have built a new network of five broadband seismograph stations across the island. These, along with existing permanent stations, record both local and teleseismic earthquakes that we are now using to image Cyprus' crust and mantle seismic structure. Receiver functions are time series, computed from three-component seismograms, which contain information about lithospheric seismic discontinuities. When a P-wave strikes a velocity discontinuity such as the Moho, energy is converted to S-waves (direct Ps phase). The widely-used H-K Stacking technique utilises this arrival, and subsequent crustal reverberations (PpPs and PsPs+PpSs), to calculate crustal thickness (H) and bulk-crustal Vp/Vs ratio (K). Central to the method is the assumption that the Moho produces the largest amplitude conversions, after the direct P-arrival, which is valid where the Moho is sharp. Where the Moho is gradational or upper crustal discontinuities are present, the Moho signals are weakened and masked by shallow crustal conversions, potentially rendering the H-K stacking method unreliable. Using a combination of synthetic and observed seismograms, we explore Cyprus' crustal structure and, specifically, the reliability of the H-K method in constraining it. Data quality is excellent across the island, but the receiver function Ps phase amplitude is low, and crustal reverberations are almost non-existent. Therefore, a simple, abrupt wavespeed jump at the

  7. High-Resolution Gravity Field Modeling for Mercury to Estimate Crust and Lithospheric Properties

    Science.gov (United States)

    Goossens, S.; Mazarico, E.; Genova, A.; James, P. B.

    2018-05-01

    We estimate a gravity field model for Mercury using line-of-sight data to improve the gravity field model at short wavelengths. This can be used to infer crustal density and infer the support mechanism of the lithosphere.

  8. A seismic tomography study of lithospheric structure under the Norwegian Caledonides

    DEFF Research Database (Denmark)

    Hejrani, Babak; Jacobsen, B. H.; Balling, N.

    2012-01-01

    A deep lithospheric transition between southern Norway and southern Sweden has been revealed in papers by Medhus et al. (2009,) and Medhus (2010). This lithospheric transition is crossing various tectonic units including the Caledonides.. We address the question of whether this transition continu...... (Hejrani et al., 2011) (optimizes 2D ray coverage under a crooked profile) is used to resolve the details of the transition boundaries in lithosphere structure across the mountains and its relation to the geological surface settings....... in this area. These results are compared the upper mantle structure obtained by Medhus (2010) and Hejrani et al. (2011) for Caledonian and shield units to the south in southern Norway and Sweden, where the lithospheric transition follows the eastern margin of the Oslo Graben. Crooked line seismic tomography...

  9. Global map of lithosphere thermal thickness on a 1 deg x 1 deg grid - digitally available

    DEFF Research Database (Denmark)

    Artemieva, Irina

    2014-01-01

    with no or low quality heat flow data. This analysis requires knowledge oflithosphere age globally.A compilation of tectono-thermal ages of lithospheric terranes on a 1 deg 1 deg grid forms the basis forthe statistical analysis. It shows that, statistically, lithospheric thermal thickness z (in km) depends......This presentation reports a 1 deg 1 deg global thermal model for the continental lithosphere (TC1). The modelis digitally available from the author’s web-site: www.lithosphere.info.Geotherms for continental terranes of different ages (early Archean to present) are constrained by reliabledata...... on borehole heat flow measurements (Artemieva and Mooney, 2001), checked with the original publicationsfor data quality, and corrected for paleo-temperature effects where needed. These data are supplemented bycratonic geotherms based on xenolith data.Since heat flow measurements cover not more than half...

  10. A Primer to Slow Light

    OpenAIRE

    Leonhardt, U.

    2001-01-01

    Laboratory-based optical analogs of astronomical objects such as black holes rely on the creation of light with an extremely low or even vanishing group velocity (slow light). These brief notes represent a pedagogical attempt towards elucidating this extraordinary form of light. This paper is a contribution to the book Artificial Black Holes edited by Mario Novello, Matt Visser and Grigori Volovik. The paper is intended as a primer, an introduction to the subject for non-experts, not as a det...

  11. Capillary waves in slow motion

    International Nuclear Information System (INIS)

    Seydel, Tilo; Tolan, Metin; Press, Werner; Madsen, Anders; Gruebel, Gerhard

    2001-01-01

    Capillary wave dynamics on glycerol surfaces has been investigated by means of x-ray photon correlation spectroscopy performed at grazing angles. The measurements show that thermally activated capillary wave motion is slowed down exponentially when the sample is cooled below 273 K. This finding directly reflects the freezing of the surface waves. The wave-number dependence of the measured time constants is in quantitative agreement with theoretical predictions for overdamped capillary waves

  12. The fast slow TDPAC spectrometer

    International Nuclear Information System (INIS)

    Cekic, B.; Koicki, S.; Manasijevic, M.; Ivanovic, N.; Koteski, V.; Milosevic, Z.; Radisavljevic, I.; Cavor, J.; Novakovic, N.; Marjanovic, D.

    2001-01-01

    A 2-BaF 2 detector - fast slow time spectrometer for time differential perturbed angular correlations (TDPAC) experiments is described. This apparatus has been developed in the Group for Hyperfine Interactions in the Institute for Nuclear Sciences in VINCA. The excellent time resolution combined with high efficiency offered by these detectors enables one high counting rate performance and is operating in the wide temperature range 78-1200 K. (author)

  13. Hidden slow pulsars in binaries

    Science.gov (United States)

    Tavani, Marco; Brookshaw, Leigh

    1993-01-01

    The recent discovery of the binary containing the slow pulsar PSR 1718-19 orbiting around a low-mass companion star adds new light on the characteristics of binary pulsars. The properties of the radio eclipses of PSR 1718-19 are the most striking observational characteristics of this system. The surface of the companion star produces a mass outflow which leaves only a small 'window' in orbital phase for the detection of PSR 1718-19 around 400 MHz. At this observing frequency, PSR 1718-19 is clearly observable only for about 1 hr out of the total 6.2 hr orbital period. The aim of this Letter is twofold: (1) to model the hydrodynamical behavior of the eclipsing material from the companion star of PSR 1718-19 and (2) to argue that a population of binary slow pulsars might have escaped detection in pulsar surveys carried out at 400 MHz. The possible existence of a population of partially or totally hidden slow pulsars in binaries will have a strong impact on current theories of binary evolution of neutron stars.

  14. Global maps of the magnetic thickness and magnetization of the Earth’s lithosphere

    OpenAIRE

    Foteini Vervelidou; Erwan Thébault

    2015-01-01

    We have constructed global maps of the large-scale magnetic thickness and magnetization of Earth’s lithosphere. Deriving such large-scale maps based on lithospheric magnetic field measurements faces the challenge of the masking effect of the core field. In this study, the maps were obtained through analyses in the spectral domain by means of a new regional spatial power spectrum based on the Revised Spherical Cap Harmonic Analysis (R-SCHA) formalism. A series of regional spectral analyses wer...

  15. Deformation of the Pannonian lithosphere and related tectonic topography: a depth-to-surface analysis

    OpenAIRE

    Dombrádi, E.

    2012-01-01

    Fingerprints of deep-seated, lithospheric deformation are often recognised on the surface, contributing to topographic evolution, drainage organisation and mass transport. Interactions between deep and surface processes were investigated in the Carpathian-Pannonian region. The lithosphere beneath the Pannonian basin has formerly been extended, significantly stretched and heated up and thus became extremely weak from a rheological point of view. From Pliocene times onward the ‘crème brulee’ ty...

  16. Amount of Asian lithospheric mantle subducted during the India/Asia collision

    OpenAIRE

    Replumaz, A.; Guillot, S.; Villaseñor, Antonio; Negredo, A. M.

    2013-01-01

    Body wave seismic tomography is a successful technique for mapping lithospheric material sinking into the mantle. Focusing on the India/Asia collision zone, we postulate the existence of several Asian continental slabs, based on seismic global tomography. We observe a lower mantle positive anomaly between 1100 and 900 km depths, that we interpret as the signature of a past subduction process of Asian lithosphere, based on the anomaly position relative to positive anomalies related to Indian c...

  17. Analysis of Lithospheric Stresses Using Satellite Gravimetry: Hypotheses and Applications to North Atlantic

    Science.gov (United States)

    Minakov, A.; Medvedev, S.

    2017-12-01

    Analysis of lithospheric stresses is necessary to gain understanding of the forces that drive plate tectonics and intraplate deformations and the structure and strength of the lithosphere. A major source of lithospheric stresses is believed to be in variations of surface topography and lithospheric density. The traditional approach to stress estimation is based on direct calculations of the Gravitational Potential Energy (GPE), the depth integrated density moment of the lithosphere column. GPE is highly sensitive to density structure which, however, is often poorly constrained. Density structure of the lithosphere may be refined using methods of gravity modeling. However, the resulted density models suffer from non-uniqueness of the inverse problem. An alternative approach is to directly estimate lithospheric stresses (depth integrated) from satellite gravimetry data. Satellite gravity gradient measurements by the ESA GOCE mission ensures a wealth of data for mapping lithospheric stresses if a link between data and stresses or GPE can be established theoretically. The non-uniqueness of interpretation of sources of the gravity signal holds in this case as well. Therefore, the data analysis was tested for the North Atlantic region where reliable additional constraints are supplied by both controlled-source and earthquake seismology. The study involves comparison of three methods of stress modeling: (1) the traditional modeling approach using a thin sheet approximation; (2) the filtered geoid approach; and (3) the direct utilization of the gravity gradient tensor. Whereas the first two approaches (1)-(2) calculate GPE and utilize a computationally expensive finite element mechanical modeling to calculate stresses, the approach (3) uses a much simpler numerical treatment but requires simplifying assumptions that yet to be tested. The modeled orientation of principal stresses and stress magnitudes by each of the three methods are compared with the World Stress Map.

  18. stableGP

    Data.gov (United States)

    National Aeronautics and Space Administration — The code in the stableGP package implements Gaussian process calculations using efficient and numerically stable algorithms. Description of the algorithms is in the...

  19. Angina Pectoris (Stable Angina)

    Science.gov (United States)

    ... Peripheral Artery Disease Venous Thromboembolism Aortic Aneurysm More Angina Pectoris (Stable Angina) Updated:Aug 21,2017 You may have heard the term “angina pectoris” or “stable angina” in your doctor’s office, ...

  20. A Review of Recent Developments in the Study of Regional Lithospheric Electrical Structure of the Asian Continent

    Science.gov (United States)

    Zhang, Letian

    2017-09-01

    The Asian continent was formed through the amalgamation of several major continental blocks that were formerly separated by the Paleo-Asian and Tethyan Oceans. During this process, the Asian continent underwent a long period of continental crustal growth and tectonic deformation, making it the largest and youngest continent on Earth. This paper presents a review of the application of geophysical electromagnetic methods, mainly the magnetotelluric (MT) method, in recent investigations of the diverse tectonic features across the Asian continent. The case studies cover the major continental blocks of Asia, the Central Asian orogenic system, the Tethyan orogenic system, as well as the western Pacific subduction system. In summary, most of the major continental blocks of Asia exhibit a three-layer structure with a resistive upper crust and upper mantle and a relatively conductive mid-lower crust. Large-scale conductors in the upper mantle were interpreted as an indication of lithospheric modification at the craton margins. The electrical structure of the Central Asian orogenic system is generally more resistive than the bordering continental blocks, whereas the Tethyan orogenic system displays more conductive, with pervasive conductors in the lower crust and upper mantle. The western Pacific subduction system shows increasing complexity in its electrical structure from its northern extent to its southern extent. In general, the following areas of the Asian continent have increasingly conductive lithospheric electrical structures, which correspond to a transition from the most stable areas to the most active tectonic areas of Asia: the major continental blocks, the accretionary Central Asian orogenic system, the collisional Tethyan orogenic system, and the western Pacific subduction system. As a key part of this review, a three-dimensional (3-D) model of the lithospheric electrical structure of a large portion of the Tibetan Plateau is presented and discussed in detail

  1. Migration of plutonium and americium in the lithosphere

    International Nuclear Information System (INIS)

    Fried, S.; Friedman, A.M.; Hines, J.J.; Atcher, R.W.; Quarterman, L.A.; Volesky, A.

    1976-01-01

    When radionuclides are stored as wastes either in permanent repositories or in waste storage areas, the possibility of escape into the environment must be considered. Surface contamination and the transport and migration of radionuclides into the lithosphere through the agency of water are discussed. Water in the form of rain will inevitably wash contaminants into soils and thence into conducting rocks. The migration of radionuclides must follow widely varying paths. In porous rocks, water percolates easily under a slight pressure gradient and rapid movement of large volumes of water can result with concommitant transport of large amounts of contaminating materials. In relatively non-porous rocks such as Niagara limestones the transport meets much more resistance and the volumes of water conducted are correspondingly reduced. In such situations much of the migration of water and its solutes may be through cracks and fissures in the rock. Certain strata of rock or rock products may be almost impervious to flow of water and by this token may be considered to be an especially suitable container for long term safe storage of nuclear wastes, particularly if these strata are quiescent. A series of investigations was undertaken to examine the properties of rocks in acting as a retarding agent in the migration of radionuclides. The rocks that are discussed are Niagara limestone (chosen for its density and fine porosity), basalt from the National Reactor Test site, and Los Alamos tuff

  2. The Lithospheric Structure Beneath Canary Islands from Receiver Function Analysis

    Science.gov (United States)

    Martinez-Arevalo, C.; Mancilla, F.; Helffrich, G. R.; Garcia, A.

    2009-12-01

    The Canary Archipelago is located a few hundred kilometers off the western Moroccan coast, extending 450 km west-to-east. It is composed of seven main islands. All but one have been active in the last million years. The origin of the Canary Islands is not well established and local and regional geology features cannot be completely explained by the current models. The main aim of this study is to provide new data that help us to understand and constrain the archipelago's origin and tectonic evolution. The crustal structure under each station is obtained applying P-receiver function technique to the teleseismic P arrivals recorded by the broadband seismic network installed at the Canary Island by the Instituto Geográfico Nacional (IGN) and two temporary stations (MIDSEA and IRIS). We computed receiver functions using the Extended-Time Multitaper Frequency Domain Cross-Correlation Receiver Function (ET-MTRF) method. The results show that the crust is thicker, around 22 km, in the eastern islands (Fuerteventura and Lanzarote) than in the western ones (El Hierro, La Palma, Tenerife), around 17 km, with the exception of La Gomera island. This island, located in the west, exhibits similar crustal structure to Fuerteventura and Lanzarote. A discontinuity at 70-80 km, possibly the LAB (Lithosphere Asthenosphere Boundary) is clearly observed in all the stations. It appears that Moho depths do not track the LAB discontinuity.

  3. Risk and Geodynamically active areas of Carpathian lithosphere

    Directory of Open Access Journals (Sweden)

    Lubomil Pospíšil

    2007-01-01

    Full Text Available This paper illustrates an application of multidisciplinary data analysis to the Carpathian–Pannonian region and presents a verification of a Complex model of the Carpathian - Pannonian lithosphere by recent data sets and geophysical data analyses and its utilization for the determination of risk and active geodynamic and tectonic zones of Ist order . This model can be used for the analysing any Carpathian area from the point of view of the seismic risk, hazards and geodynamic activity, which is important to know for the building of a repository for the radioactive wasted material. Besides the traditionally used geological (sedimentological and volcanological data and geomorphological data (Remote Sensing, an emphasis was laid on geodetic, grav/mag data, seismic, seismological and other geophysical data (magnetotelluric, heat flow, paleomagnetic etc.. All available geonomic (geologic, geodetic, geophysical, geomorphological data were verified and unified on the basis of the same scale and in the Western Carpathians on the Remote Sensing data. The paper concentrates on two problematic areas – the so call “rebounding area” in the Eastern Carpathians and the Raba – Muran - Malcov tectonic systems.

  4. Detachments of the subducted Indian continental lithosphere based on 3D finite-frequency tomographic images

    Science.gov (United States)

    Liang, X.; Tian, X.; Wang, M.

    2017-12-01

    Indian plate collided with Eurasian plate at 60 Ma and there are about 3000 km crustal shortening since the continental-continental collision. At least one third of the total amount of crustal shortening between Indian and Eurasian plates could not be accounted by thickened Tibetan crust and surface erosion. It will need a combination of possible transfer of lower crust to the mantle by eclogitization and lateral extrusion. Based on the lithosphere-asthenosphere boundary images beneath the Tibetan plateau, there is also at least the same amount deficit for lithospheric mantle subducted into upper/lower mantle or lateral extrusion with the crust. We have to recover a detailed Indian continental lithosphere image beneath the plateau in order to explain this deficit of mass budget. Combining the new teleseismic body waves recorded by SANDWICH passive seismic array with waveforms from several previous temporary seismic arrays, we carried out finite-frequency tomographic inversions to image three-dimensional velocity structures beneath southern and central Tibetan plateau to examine the possible image of subducted Indian lithosphere in the Tibetan upper mantle. We have recovered a continuous high velocity body in upper mantle and piece-wised high velocity anomalies in the mantle transition zone. Based on their geometry and relative locations, we interpreted these high velocity anomalies as the subducted and detached Indian lithosphere at different episodes of the plateau evolution. Detachments of the subducted Indian lithosphere should have a crucial impact on the volcanism activities and uplift history of the plateau.

  5. Three-dimensional lithospheric density distribution of China and surrounding regions

    Directory of Open Access Journals (Sweden)

    Chuantao Li

    2014-01-01

    Full Text Available In this paper, we analyze lithospheric density distribution of China and surrounding regions on the basis of 30′ × 30′ gravity data and 1° × 1° P-wave velocity data. Firstly, we used the empirical equation between the density and the P-wave velocity difference as the base of the initial model of the Asian lithospheric density. Secondly, we calculated the gravity anomaly, caused by the Moho discontinuity and the sedimentary layer discontinuity, by the Parker formula. Thirdly, the gravity anomaly of the spherical harmonics with 2–40 order for the anomalous body below the lithosphere is calculated based on the model of EGM96. Finally, by using Algebra Reconstruction Techniques (ART, the inversion of 30′ × 30′ residual lithospheric Bouguer gravity anomaly caused by the lithosphere yields a rather detailed structural model. The results show that the lithospheric density distribution of China and surrounding regions has a certain connection with the tectonic structure. The density is relatively high in the Philippine Sea plate, Japan Sea, the Indian plate, the Kazakhstan shield and the Western Siberia plain, whereas the Tibetan Plateau has low-density characteristics. The minimum value of density lies in the north of Philippines, in the Taiwan province and in the Ryukyu island arc.

  6. Peeling back the lithosphere: Controlling parameters, surface expressions and the future directions in delamination modeling

    Science.gov (United States)

    Göğüş, Oğuz H.; Ueda, Kosuke

    2018-06-01

    Geodynamical models investigate the rheological and physical properties of the lithosphere that peels back (delaminates) from the upper-middle crust. Meanwhile, model predictions are used to relate to a set of observations in the geological context to the test the validity of delamination. Here, we review numerical and analogue models of delamination from these perspectives and provide a number of first-order topics which future modeling studies may address. Models suggest that the presence of the weak lower crust that resides between the strong mantle lithosphere (at least 100 times more viscous/stronger) and the strong upper crust is necessary to develop delamination. Lower crustal weakening may be induced by melt infiltration, shear heating or it naturally occurs through the jelly sandwich type strength profile of the continental lithosphere. The negative buoyancy of the lithosphere required to facilitate the delamination is induced by the pre-existing ocean subduction and/or the lower crustal eclogitization. Surface expression of the peeling back lithosphere has a distinct transient and migratory imprint on the crust, resulting in rapid surface uplift/subsidence, magmatism, heating and shortening/extension. New generation of geodynamical experiments can explain how different types of melting (e.g hydrated, dry melting) occurs with delamination. Reformation of the lithosphere after removal, three dimensional aspects, and the termination of the process are key investigation areas for future research. The robust model predictions, as with other geodynamic modeling studies should be reconciled with observations.

  7. The rheological structure of the lithosphere in the Eastern Marmara region, Turkey

    Science.gov (United States)

    Oruç, Bülent; Sönmez, Tuba

    2017-05-01

    The aim of this work is to propose the geometries of the crustal-lithospheric mantle boundary (Moho) and lithosphere-asthenosphere boundary (LAB) and the 1D thermal structure of the lithosphere, in order to establish a rheological model of the Eastern Marmara region. The average depths of Moho and LAB are respectively 35 km and 51 km from radially averaged amplitude spectra of EGM08 Bouguer anomalies. The geometries of Moho and LAB interfaces are estimated from the Parker-Oldenburg gravity inversion algorithm. Our results show the Moho depth varies from 31 km at the northern part of North Anatolian Fault Zone (NAFZ) to 39 km below the mountain belt in the southern part of the NAFZ. The depth to the LAB beneath the same parts of the region ranges from 45 km to 55 km. Having lithospheric strength and thermal boundary layer structure, we analyzed the conditions of development of lithosphere thinning. A two-dimensional strength profile has been estimated for rheology model of the study area. Thus we suggest that the rheological structure consists of a strong upper crust, a weak lower crust, and a partly molten upper lithospheric mantle.

  8. Constraints on the Chemistry and Abundance of Hydrous Phases in Sub Continental Lithospheric Mantle: Implications for Mid-Lithospheric Discontinuities

    Science.gov (United States)

    Saha, S.; Dasgupta, R.; Fischer, K. M.; Mookherjee, M.

    2017-12-01

    The origins of a 2-10% reduction in seismic shear wave velocity (Vs) at depths of 60-160 km in sub continental lithospheric mantle (SCLM) regions, identified as the Mid Lithospheric Discontinuity (MLD) [e.g., 1] are highly debated [e.g., 2, 3]. One of the proposed explanations for MLDs is the presence of hydrous minerals such as amphibole and phlogopite at these depths [e.g., 2, 4, 5]. Although the stability and compositions of these phases in peridotite + H2O ± CO2 have been widely explored [e.g., 6], their composition and abundance as a function of permissible SCLM chemistry remain poorly understood. We have compiled phase equilibria experiments conducted over a range of pressure (0.5-8 GPa), temperature (680-1300 °C), major element peridotite compositions, and volatiles (H2O: 0.05-13.79 wt.% and CO2: 0.25-5.3 wt.%). The goal was to constrain how compositional parameters such as CaO and alkali/H2O affect the chemistry and abundance of amphibole and phlogopite. We observe that the abundance of amphibole increases with CaO content and decreasing alkali/H2O. The abundance of phlogopite varies directly with K2O content. Unlike phlogopite compositions that remain consistent, amphibole compositions show variability (pargastitic to K-richterite) depending on bulk CaO and Na2O. Mineral modes, obtained by mass balance on a melt/fluid free basis, were used to calculate aggregate shear wave velocity, Vs for the respective assemblages [e.g., 7] and compared with absolute values observed at MLD depths [e.g., 8]. Vs shows a strong inverse correlation with phlogopite and amphibole modes (particularly where phlogopite is absent). For the Mg# range of cratonic xenoliths, 5-10% phlogopite at MLD depths can match the observed Vs values, while CaO contents in cratonic xenoliths limit the amphibole abundance to 10%, which is lower than previous estimates based on heat flow calculations [e.g., 4]. The modes of hydrous and other phases and corresponding Vs values could be used to

  9. Insights on the lithospheric structure of the Zagros mountain belt from seismological data analysis

    Science.gov (United States)

    Paul, A.; Kaviani, A.; Vergne, J.; Hatzfeld, D.; Mokhtari, M.

    2003-04-01

    As part of a French-Iranian collaboration, we installed a temporary seismological network across the Zagros for 4.5 months in 2000-2001 to investigate the lithospheric structure of the mountain belt. The network included 65 stations located along a 600-km long line (average spacing of ˜10 km) from the coast of the Persian Gulf to the stable block of Central Iran. A migrated depth cross-section computed from radial receiver functions displays clear P-to-S conversions at the Moho beneath most of the profile. The average Moho depth is 45 to 50 km beneath the folded belt. It deepens rather abruptly beneath the suture zone of the MZT (Main Zagros Thrust) and the Sanandaj-Sirjan (SS) metamorphic zone. The maximum crustal thickness of ˜65 km is reached 50 km NE of the surface trace of the MZT. The region of over-thickened crust is shifted to the NE with respect to the areas of highest elevations and the strongest negative Bouguer anomaly. To the NE, the crust of the block of Central Iran is 40-km thick on average. Two patches of Ps converted energy can be seen below the Moho in the northern half of the transect that cannot be attributed to multiple reflections. Teleseismic P residual travel time curves display lateral variations as large as 1.5 s with both long (faster arrivals in the SW than in the NE) and short-scale variations (in the MZT region). They were inverted for variations of P wave velocity with the ACH technique. The crustal layer exhibits rather strong lateral variations of Vp with lower velocities under the MZT and the Urumieh-Dokhtar magmatic assemblage, and faster velocities under the SS zone. In the mantle, a clear difference appears between the faster P wave velocities of the Arabian craton and the relatively lower velocities of the mantle of Central Iran.

  10. Slow electrons kill the ozone

    International Nuclear Information System (INIS)

    Maerk, T.

    2001-01-01

    A new method and apparatus (Trochoidal electron monochromator) to study the interactions of electrons with atoms, molecules and clusters was developed. Two applications are briefly reported: a) the ozone destruction in the atmosphere is caused by different reasons, a new mechanism is proposed, that slow thermal electrons are self added to the ozone molecule (O 3 ) with a high frequency, then O 3 is destroyed ( O 3 + e - → O - + O 2 ); b) another application is the study of the binding energy of the football molecule C60. (nevyjel)

  11. The CUORE slow monitoring systems

    Science.gov (United States)

    Gladstone, L.; Biare, D.; Cappelli, L.; Cushman, J. S.; Del Corso, F.; Fujikawa, B. K.; Hickerson, K. P.; Moggi, N.; Pagliarone, C. E.; Schmidt, B.; Wagaarachchi, S. L.; Welliver, B.; Winslow, L. A.

    2017-09-01

    CUORE is a cryogenic experiment searching primarily for neutrinoless double decay in 130Te. It will begin data-taking operations in 2016. To monitor the cryostat and detector during commissioning and data taking, we have designed and developed Slow Monitoring systems. In addition to real-time systems using LabVIEW, we have an alarm, analysis, and archiving website that uses MongoDB, AngularJS, and Bootstrap software. These modern, state of the art software packages make the monitoring system transparent, easily maintainable, and accessible on many platforms including mobile devices.

  12. Blowup for flat slow manifolds

    DEFF Research Database (Denmark)

    Kristiansen, Kristian Uldall

    2017-01-01

    In this paper, we present a way of extending the blowup method, in the formulation of Krupa and Szmolyan, to flat slow manifolds that lose hyperbolicity beyond any algebraic order. Although these manifolds have infinite co-dimensions, they do appear naturally in certain settings; for example, in (a......) the regularization of piecewise smooth systems by tanh, (b) a particular aircraft landing dynamics model, and finally (c) in a model of earthquake faulting. We demonstrate the approach using a simple model system and the examples (a) and (b)....

  13. Blowup for flat slow manifolds

    Science.gov (United States)

    Kristiansen, K. U.

    2017-05-01

    In this paper, we present a way of extending the blowup method, in the formulation of Krupa and Szmolyan, to flat slow manifolds that lose hyperbolicity beyond any algebraic order. Although these manifolds have infinite co-dimensions, they do appear naturally in certain settings; for example, in (a) the regularization of piecewise smooth systems by \\tanh , (b) a particular aircraft landing dynamics model, and finally (c) in a model of earthquake faulting. We demonstrate the approach using a simple model system and the examples (a) and (b).

  14. Lithospheric-scale analogue modelling of collision zones with a pre-existing weak zone, in "Deformation Mechanisms, Rheology and Tectonics: from Minerals to the Lithosphere"

    NARCIS (Netherlands)

    Willingshofer, E.; Sokoutis, D.; Burg, J.P.

    2005-01-01

    Lithospheric-scale analogue experiments have been conducted to investigate the influence of strength heterogeneities on the distribution and mode of crustal-scale deformation, on the resulting geometry of the deformed area, and on its topographic expression. Strength heterogeneities were

  15. Lithospheric deformation inferred from electrical anisotropy of magnetotelluric data

    Science.gov (United States)

    Yin, Y.; Wei, W.; Jin, S.; Ye, G.; Unsworth, M. J.; Zhang, L.

    2013-12-01

    In our research, a comprehensive procedure of analyzing and modeling electrical anisotropy for MT data is suggested, based on the field examples of the Great Slave Lake shear zone (GSLsz) in western Canada, the North China Craton (NCC) and the Altyn Tagh fault in northern Tibet. Diverse dimensionality tools are used to distinguish heterogeneity and anisotropy from MT data. In addition to the phase splits and phase tensor polarizations, a combination of the phase tensor and induction arrows is applied to judge anisotropy. The skin depths of specific period band are considered to determine whether these features result from anisotropy or heterogeneity. Specific resistivity structures in the 2-D isotropic inversion models can indicate electrical anisotropy as well, like the dike-like media or a series of conductive ';blobs' can be observed in the 2-D isotropic inversion models of the GSLsz and NCC data. Anisotropic inversions can be undertaken using an improved inversion code based on isotropic code but incorporating a trade-off parameter for electrical anisotropy named anisotropic tau. A series of anisotropic tau have been applied to test its effect and to get a best trade-off between anisotropy and heterogeneity. Then, 2-D and 3-D forward modeling works are undertaken to test the robustness of the major anisotropic features. The anisotropic structures inferred from the inversion models are replaced by various alternating isotropic or anisotropic structures to see if they are required. The fitting of the response curves compared with the field data and corresponding r.m.s misfits can help us choose the best model that can generally illustrate the underground structure. Finally, the analysis and modeling result of the MT data from North China Craton is taken as an example to demonstrate how the electrical anisotropy can be linked with the lithospheric deformation. According to the reliable models we got, there may be an anisotropic layer at the mid-lower crustal to

  16. Connecting slow earthquakes to huge earthquakes

    OpenAIRE

    Obara, Kazushige; Kato, Aitaro

    2016-01-01

    Slow earthquakes are characterized by a wide spectrum of fault slip behaviors and seismic radiation patterns that differ from those of traditional earthquakes. However, slow earthquakes and huge megathrust earthquakes can have common slip mechanisms and are located in neighboring regions of the seismogenic zone. The frequent occurrence of slow earthquakes may help to reveal the physics underlying megathrust events as useful analogs. Slow earthquakes may function as stress meters because of th...

  17. Integrated Photonics Enabled by Slow Light

    DEFF Research Database (Denmark)

    Mørk, Jesper; Chen, Yuntian; Ek, Sara

    2012-01-01

    In this talk we will discuss the physics of slow light in semiconductor materials and in particular the possibilities offered for integrated photonics. This includes ultra-compact slow light enabled optical amplifiers, lasers and pulse sources.......In this talk we will discuss the physics of slow light in semiconductor materials and in particular the possibilities offered for integrated photonics. This includes ultra-compact slow light enabled optical amplifiers, lasers and pulse sources....

  18. The role of long-term strain history on the generation and amplification of inherited heterogeneities in continental lithosphere extensional settings

    Science.gov (United States)

    Morena Salerno, V.; Capitanio, Fabio A.

    2017-04-01

    The Earth's lithosphere is characters by various types of heterogeneities, at different scales and located at variable depth. They can be represented at crustal level by remnants of earlier tectonics evolution, such as previous orogenetic structures, remains of passive margins and magmatic bodies intrusion, or at deeper level by mantle anisotropies. These heterogeneities can severely affect the stress and strain localization in subsequent continental lithospheric extension and rift basins evolution, hence contributing to the formation of diverse and complex rift basin types and architectures. In order to explain the difference in rift basin and passive margin types, their subsidence patterns and melt production, previous studies have exanimated the role of initial heterogeneities, rheological layering, geothermal gradients, and extension rates during a single rifting event. However, this approach does not consider the previous strain history of many basins that are characterized by multiple rifting events. In this study we use numerical models of a pristine lithosphere undergoing two rifting events separated by cooling, to show the effect of early events on later evolution. The strain histories are controlled by the variation of velocity of boundary displacement during two rifting events. We use both fast and slow first rifting events, followed by a cooling period, producing diverse mechanical heterogeneities at Moho level that represent inherited initial conditions for the second rifting event. These inherited heterogeneities range from several small perturbations distributed along the numerical domain at the end of the slowest first rifting event, to a single large perturbation at the end of first fastest rifting event. In the second rifting event, the inherited heterogeneities are amplified at different degree and time, depending on the velocity of boundary displacement used. To highlight the role of previous strain history, we parametrize the inherited

  19. Slowing down bubbles with sound

    Science.gov (United States)

    Poulain, Cedric; Dangla, Remie; Guinard, Marion

    2009-11-01

    We present experimental evidence that a bubble moving in a fluid in which a well-chosen acoustic noise is superimposed can be significantly slowed down even for moderate acoustic pressure. Through mean velocity measurements, we show that a condition for this effect to occur is for the acoustic noise spectrum to match or overlap the bubble's fundamental resonant mode. We render the bubble's oscillations and translational movements using high speed video. We show that radial oscillations (Rayleigh-Plesset type) have no effect on the mean velocity, while above a critical pressure, a parametric type instability (Faraday waves) is triggered and gives rise to nonlinear surface oscillations. We evidence that these surface waves are subharmonic and responsible for the bubble's drag increase. When the acoustic intensity is increased, Faraday modes interact and the strongly nonlinear oscillations behave randomly, leading to a random behavior of the bubble's trajectory and consequently to a higher slow down. Our observations may suggest new strategies for bubbly flow control, or two-phase microfluidic devices. It might also be applicable to other elastic objects, such as globules, cells or vesicles, for medical applications such as elasticity-based sorting.

  20. Double subduction of continental lithosphere, a key to form wide plateau

    Science.gov (United States)

    Replumaz, Anne; Funiciello, Francesca; Reitano, Riccardo; Faccenna, Claudio; Balon, Marie

    2016-04-01

    The mechanisms involved in the creation of the high and wide topography, like the Tibetan Plateau, are still controversial. In particular, the behaviour of the indian and asian lower continental lithosphere during the collision is a matter of debate, either thickening, densifying and delaminating, or keeping its rigidity and subducting. But since several decades seismicity, seismic profiles and global tomography highlight the lithospheric structure of the Tibetan Plateau, and make the hypotheses sustaining the models more precise. In particular, in the western syntaxis, it is now clear that the indian lithosphere subducts northward beneath the Hindu Kush down to the transition zone, while the asian one subducts southward beneath Pamir (e.g. Negredo et al., 2007; Kufner et al., 2015). Such double subduction of continental lithospheres with opposite vergence has also been inferred in the early collision time. Cenozoic volcanic rocks between 50 and 30 Ma in the Qiangtang block have been interpreted as related to an asian subduction beneath Qiangtang at that time (De Celles et al., 2011; Guillot and Replumaz, 2013). We present here analogue experiments silicone/honey to explore the subduction of continental lithosphere, using a piston as analogue of far field forces. We explore the parameters that control the subductions dynamics of the 2 continental lithospheres and the thickening of the plates at the surface, and compare with the Tibetan Plateau evolution. We show that a continental lithosphere is able to subduct in a collision context, even lighter than the mantle, if the plate is rigid enough. In that case the horizontal force due to the collision context, modelled by the piston push transmitted by the indenter, is the driving force, not the slab pull which is negative. It is not a subduction driving by the weight of the slab, but a subduction induced by the collision, that we could call "collisional subduction".

  1. Effects of upper mantle heterogeneities on the lithospheric stress field and dynamic topography

    Science.gov (United States)

    Osei Tutu, Anthony; Steinberger, Bernhard; Sobolev, Stephan V.; Rogozhina, Irina; Popov, Anton A.

    2018-05-01

    The orientation and tectonic regime of the observed crustal/lithospheric stress field contribute to our knowledge of different deformation processes occurring within the Earth's crust and lithosphere. In this study, we analyze the influence of the thermal and density structure of the upper mantle on the lithospheric stress field and topography. We use a 3-D lithosphere-asthenosphere numerical model with power-law rheology, coupled to a spectral mantle flow code at 300 km depth. Our results are validated against the World Stress Map 2016 (WSM2016) and the observation-based residual topography. We derive the upper mantle thermal structure from either a heat flow model combined with a seafloor age model (TM1) or a global S-wave velocity model (TM2). We show that lateral density heterogeneities in the upper 300 km have a limited influence on the modeled horizontal stress field as opposed to the resulting dynamic topography that appears more sensitive to such heterogeneities. The modeled stress field directions, using only the mantle heterogeneities below 300 km, are not perturbed much when the effects of lithosphere and crust above 300 km are added. In contrast, modeled stress magnitudes and dynamic topography are to a greater extent controlled by the upper mantle density structure. After correction for the chemical depletion of continents, the TM2 model leads to a much better fit with the observed residual topography giving a good correlation of 0.51 in continents, but this correction leads to no significant improvement of the fit between the WSM2016 and the resulting lithosphere stresses. In continental regions with abundant heat flow data, TM1 results in relatively small angular misfits. For example, in western Europe the misfit between the modeled and observation-based stress is 18.3°. Our findings emphasize that the relative contributions coming from shallow and deep mantle dynamic forces are quite different for the lithospheric stress field and dynamic

  2. Lithospheric controls on magma composition along Earth's longest continental hotspot track.

    Science.gov (United States)

    Davies, D R; Rawlinson, N; Iaffaldano, G; Campbell, I H

    2015-09-24

    Hotspots are anomalous regions of volcanism at Earth's surface that show no obvious association with tectonic plate boundaries. Classic examples include the Hawaiian-Emperor chain and the Yellowstone-Snake River Plain province. The majority are believed to form as Earth's tectonic plates move over long-lived mantle plumes: buoyant upwellings that bring hot material from Earth's deep mantle to its surface. It has long been recognized that lithospheric thickness limits the rise height of plumes and, thereby, their minimum melting pressure. It should, therefore, have a controlling influence on the geochemistry of plume-related magmas, although unambiguous evidence of this has, so far, been lacking. Here we integrate observational constraints from surface geology, geochronology, plate-motion reconstructions, geochemistry and seismology to ascertain plume melting depths beneath Earth's longest continental hotspot track, a 2,000-kilometre-long track in eastern Australia that displays a record of volcanic activity between 33 and 9 million years ago, which we call the Cosgrove track. Our analyses highlight a strong correlation between lithospheric thickness and magma composition along this track, with: (1) standard basaltic compositions in regions where lithospheric thickness is less than 110 kilometres; (2) volcanic gaps in regions where lithospheric thickness exceeds 150 kilometres; and (3) low-volume, leucitite-bearing volcanism in regions of intermediate lithospheric thickness. Trace-element concentrations from samples along this track support the notion that these compositional variations result from different degrees of partial melting, which is controlled by the thickness of overlying lithosphere. Our results place the first observational constraints on the sub-continental melting depth of mantle plumes and provide direct evidence that lithospheric thickness has a dominant influence on the volume and chemical composition of plume-derived magmas.

  3. Interaction between mantle and crustal detachments: a non-linear system controlling lithospheric extension

    Science.gov (United States)

    Rosenbaum, G.; Regenauer-Lieb, K.; Weinberg, R. F.

    2009-12-01

    We use numerical modelling to investigate the development of crustal and mantle detachment faults during lithospheric extension. Our models simulate a wide range of rift systems with varying values of crustal thickness and heat flow, showing how strain localization in the mantle interacts with localization in the upper crust and controls the evolution of extensional systems. Model results reveal a richness of structures and deformation styles, which grow in response to a self-organized mechanism that minimizes the internal stored energy of the system by localizing deformation at different levels of the lithosphere. Crustal detachment faults are well developed during extension of overthickened (60 km) continental crust, even when the initial heat flow is relatively low (50 mW/m2). In contrast, localized mantle deformation is most pronounced when the extended lithosphere has a normal crustal thickness (30-40 km) and an intermediate (60-70 mW/m2) heat flow. Results show a non-linear response to subtle changes in crustal thickness or heat flow, characterized by abrupt and sometime unexpected switches in extension modes (e.g. from diffuse rifting to effective lithospheric-scale rupturing) or from mantle- to crust-dominated strain localization. We interpret this non-linearity to result from the interference of doming wavelengths. Disharmony of crust and mantle doming wavelengths results in efficient communication between shear zones at different lithospheric levels, leading to rupturing of the whole lithosphere. In contrast, harmonious crust and mantle doming inhibits interaction of shear zones across the lithosphere and results in a prolonged rifting history prior to continental breakup.

  4. Lithospheric thickness jumps at the S-Atlantic continental margins from satellite gravity data and modelled isostatic anomalies

    Science.gov (United States)

    Shahraki, Meysam; Schmeling, Harro; Haas, Peter

    2018-01-01

    Isostatic equilibrium is a good approximation for passive continental margins. In these regions, geoid anomalies are proportional to the local dipole moment of density-depth distributions, which can be used to constrain the amount of oceanic to continental lithospheric thickening (lithospheric jumps). We consider a five- or three-layer 1D model for the oceanic and continental lithosphere, respectively, composed of water, a sediment layer (both for the oceanic case), the crust, the mantle lithosphere and the asthenosphere. The mantle lithosphere is defined by a mantle density, which is a function of temperature and composition, due to melt depletion. In addition, a depth-dependent sediment density associated with compaction and ocean floor variation is adopted. We analyzed satellite derived geoid data and, after filtering, extracted typical averaged profiles across the Western and Eastern passive margins of the South Atlantic. They show geoid jumps of 8.1 m and 7.0 m for the Argentinian and African sides, respectively. Together with topography data and an averaged crustal density at the conjugate margins these jumps are interpreted as isostatic geoid anomalies and yield best-fitting crustal and lithospheric thicknesses. In a grid search approach five parameters are systematically varied, namely the thicknesses of the sediment layer, the oceanic and continental crusts and the oceanic and the continental mantle lithosphere. The set of successful models reveals a clear asymmetry between the South Africa and Argentine lithospheres by 15 km. Preferred models predict a sediment layer at the Argentine margin of 3-6 km and at the South Africa margin of 1-2.5 km. Moreover, we derived a linear relationship between, oceanic lithosphere, sediment thickness and lithospheric jumps at the South Atlantic margins. It suggests that the continental lithospheres on the western and eastern South Atlantic are thicker by 45-70 and 60-80 km than the oceanic lithospheres, respectively.

  5. Stable Boundary Layer Issues

    OpenAIRE

    Steeneveld, G.J.

    2012-01-01

    Understanding and prediction of the stable atmospheric boundary layer is a challenging task. Many physical processes are relevant in the stable boundary layer, i.e. turbulence, radiation, land surface coupling, orographic turbulent and gravity wave drag, and land surface heterogeneity. The development of robust stable boundary layer parameterizations for use in NWP and climate models is hampered by the multiplicity of processes and their unknown interactions. As a result, these models suffer ...

  6. Geodynamic inversion to constrain the non-linear rheology of the lithosphere

    Science.gov (United States)

    Baumann, T. S.; Kaus, Boris J. P.

    2015-08-01

    One of the main methods to determine the strength of the lithosphere is by estimating it's effective elastic thickness. This method assumes that the lithosphere is a thin elastic plate that floats on the mantle and uses both topography and gravity anomalies to estimate the plate thickness. Whereas this seems to work well for oceanic plates, it has given controversial results in continental collision zones. For most of these locations, additional geophysical data sets such as receiver functions and seismic tomography exist that constrain the geometry of the lithosphere and often show that it is rather complex. Yet, lithospheric geometry by itself is insufficient to understand the dynamics of the lithosphere as this also requires knowledge of the rheology of the lithosphere. Laboratory experiments suggest that rocks deform in a viscous manner if temperatures are high and stresses low, or in a plastic/brittle manner if the yield stress is exceeded. Yet, the experimental results show significant variability between various rock types and there are large uncertainties in extrapolating laboratory values to nature, which leaves room for speculation. An independent method is thus required to better understand the rheology and dynamics of the lithosphere in collision zones. The goal of this paper is to discuss such an approach. Our method relies on performing numerical thermomechanical forward models of the present-day lithosphere with an initial geometry that is constructed from geophysical data sets. We employ experimentally determined creep-laws for the various parts of the lithosphere, but assume that the parameters of these creep-laws as well as the temperature structure of the lithosphere are uncertain. This is used as a priori information to formulate a Bayesian inverse problem that employs topography, gravity, horizontal and vertical surface velocities to invert for the unknown material parameters and temperature structure. In order to test the general methodology

  7. A fast-slow logic system

    International Nuclear Information System (INIS)

    Kawashima, Hideo.

    1977-01-01

    A fast-slow logic system has been made for use in multi-detector experiments in nuclear physics such as particle-gamma and particle-particle coincidence experiments. The system consists of a fast logic system and a slow logic system. The fast logic system has a function of fast coincidences and provides timing signals for the slow logic system. The slow logic system has a function of slow coincidences and a routing control of input analog signals to the ADCs. (auth.)

  8. Life in the lithosphere, kinetics and the prospects for life elsewhere.

    Science.gov (United States)

    Cockell, Charles S

    2011-02-13

    The global contiguity of life on the Earth today is a result of the high flux of carbon and oxygen from oxygenic photosynthesis over the planetary surface and its use in aerobic respiration. Life's ability to directly use redox couples from components of the planetary lithosphere in a pre-oxygenic photosynthetic world can be investigated by studying the distribution of organisms that use energy sources normally bound within rocks, such as iron. Microbiological data from Iceland and the deep oceans show the kinetic limitations of living directly off igneous rocks in the lithosphere. Using energy directly extracted from rocks the lithosphere will support about six orders of magnitude less productivity than the present-day Earth, and it would be highly localized. Paradoxically, the biologically extreme conditions of the interior of a planet and the inimical conditions of outer space, between which life is trapped, are the locations from which volcanism and impact events, respectively, originate. These processes facilitate the release of redox couples from the planetary lithosphere and might enable it to achieve planetary-scale productivity approximately one to two orders of magnitude lower than that produced by oxygenic photosynthesis. The significance of the detection of extra-terrestrial life is that it will allow us to test these observations elsewhere and establish an understanding of universal relationships between lithospheres and life. These data also show that the search for extra-terrestrial life must be accomplished by 'following the kinetics', which is different from following the water or energy.

  9. The lithosphere-asthenosphere system in the Calabrian Arc and surrounding seas

    Energy Technology Data Exchange (ETDEWEB)

    Panza, G F [Department of Earth Sciences, University of Trieste, Trieste (Italy); [Abdus Salam International Centre for Theoretical Physics, SAND Group, Trieste (Italy)]. E-mail: panza@dst.univ.trieste.it; Pontevivo, A [Department of Earth Sciences, University of Trieste, Trieste (Italy)

    2002-10-01

    Through the non-linear inversion of Surface-Wave Tomography data, using as a priori constraints seismic data from literature, it has been possible to define a fairly detailed structural model of the lithosphere-asthenosphere system (thickness, S-wave and P-wave velocities of the crust and of the upper mantle layers) in the Calabrian Arc region (Southern Tyrrhenian Sea, Calabria and the Northern-Western part of the Ionian Sea). The main features identified by our study are: (1) a very shallow (less then 10 km deep) crust-mantle transition in the Southern Tyrrhenian Sea and very low S-wave velocities just below a very thin lid in correspondence of the submarine volcanic bodies in the study area; (2) a shallow and very low S-wave velocity layer in the mantle in the areas of Aeolian islands, of Vesuvius, Ischia and Phlegraean Fields, representing their shallow-mantle magma source; (3) a thickened continental crust and lithospheric doubling in Calabria; (4) a crust about 25 km thick and a mantle velocity profile versus depth consistent with the presence of a continental rifled, now thermally relaxed, lithosphere in the investigated part of the Ionian Sea; (5) the subduction of the Ionian lithosphere towards NW below the Tyrrhenian Basin; (6) the subduction of the Adriatic lithosphere underneath the Vesuvius and Phlegraean Fields. (author)

  10. Traditional Procurement is too Slow

    Directory of Open Access Journals (Sweden)

    Ann Kong

    2012-11-01

    Full Text Available This paper reports on an exploratory interview survey of construction project participants aimed at identifying the reasons for the decrease in use of the traditional, lump-sum, procurement system in Malaysia. The results show that most people believe it is too slow. This appears to be in part due to the contiguous nature of the various phase and stages of the process and especially the separation of the design and construction phases. The delays caused by disputes between the various parties are also seen as a contributory factor - the most prominent cause being the frequency of variations, with design and scope changes being a particular source of discontent. It is concluded that an up scaling of the whole of the time related reward/penalty system may be the most appropriate measure for the practice in future.

  11. Slow pyrolysis of pistachio shell

    Energy Technology Data Exchange (ETDEWEB)

    Apaydin-Varol, Esin; Putun, Ersan; Putun, Ayse E [Anadolu University, Eskisehir (Turkey). Department of Chemical Engineering

    2007-08-15

    In this study, pistachio shell is taken as the biomass sample to investigate the effects of pyrolysis temperature on the product yields and composition when slow pyrolysis is applied in a fixed-bed reactor at atmospheric pressure to the temperatures of 300, 400, 500, 550, 700{sup o}C. The maximum liquid yield was attained at about 500-550{sup o}C with a yield of 20.5%. The liquid product obtained under this optimum temperature and solid products obtained at all temperatures were characterized. As well as proximate and elemental analysis for the products were the basic steps for characterization, column chromatography, FT-IR, GC/MS and SEM were used for further characterization. The results showed that liquid and solid products from pistachio shells show similarities with high value conventional fuels. 31 refs., 9 figs., 1 tab.

  12. The TTI slowness surface approximation

    KAUST Repository

    Stovas, A.

    2011-01-01

    The relation between the vertical and horizontal slownesses, better known as the dispersion relation, for a transversely isotropic media with titled symmetry axis {left parenthesis, less than bracket}TTI{right parenthesis, greater than bracket} requires solving a quartic polynomial, which does not admit a practical explicit solution to be used, for example, in downward continuation. Using a combination of perturbation theory with respect to the anelliptic parameter and Shanks transform to improve the accuracy of the expansion, we develop an explicit formula for the dispersion relation that is highly accurate for all practical purposes. It also reveals some insights into the anisotropy parameter dependency of the dispersion relation including the low impact that the anelliptic parameter has on the vertical placement of reflectors for small tilt in the symmetry angle. © 2011 Society of Exploration Geophysicists.

  13. Hydrothermal activity at slow-spreading ridges: variability and importance of magmatic controls

    Science.gov (United States)

    Escartin, Javier

    2016-04-01

    Hydrothermal activity along mid-ocean ridge axes is ubiquitous, associated with mass, chemical, and heat exchanges between the deep lithosphere and the overlying envelopes, and sustaining chemiosynthetic ecosystems at the seafloor. Compared with hydrothermal fields at fast-spreading ridges, those at slow spreading ones show a large variability as their location and nature is controlled or influenced by several parameters that are inter-related: a) tectonic setting, ranging from 'volcanic systems' (along the rift valley floor, volcanic ridges, seamounts), to 'tectonic' ones (rift-bounding faults, oceanic detachment faults); b) the nature of the host rock, owing to compositional heterogeneity of slow-spreading lithosphere (basalt, gabbro, peridotite); c) the type of heat source (magmatic bodies at depth, hot lithosphere, serpentinization reactions); d) and the associated temperature of outflow fluids (high- vs.- low temperature venting and their relative proportion). A systematic review of the distribution and characteristics of hydrothermal fields along the slow-spreading Mid-Atlantic Ridge suggests that long-lived hydrothermal activity is concentrated either at oceanic detachment faults, or along volcanic segments with evidence of robust magma supply to the axis. A detailed study of the magmatically robust Lucky Strike segment suggests that all present and past hydrothermal activity is found at the center of the segment. The association of these fields to central volcanos, and the absence of indicators of hydrothermal activity along the remaining of the ridge segment, suggests that long-lived hydrothermal activity in these volcanic systems is maintained by the enhanced melt supply and the associated magma chamber(s) required to build these volcanic edifices. In this setting, hydrothermal outflow zones at the seafloor are systematically controlled by faults, indicating that hydrothermal fluids in the shallow crust exploit permeable fault zones to circulate. While

  14. Stable isotopes labelled compounds

    International Nuclear Information System (INIS)

    1982-09-01

    The catalogue on stable isotopes labelled compounds offers deuterium, nitrogen-15, and multiply labelled compounds. It includes: (1) conditions of sale and delivery, (2) the application of stable isotopes, (3) technical information, (4) product specifications, and (5) the complete delivery programme

  15. Evolutionary Stable Strategy

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 21; Issue 9. Evolutionary Stable Strategy: Application of Nash Equilibrium in Biology. General Article Volume 21 Issue 9 September 2016 pp 803- ... Keywords. Evolutionary game theory, evolutionary stable state, conflict, cooperation, biological games.

  16. Stable Boundary Layer Issues

    NARCIS (Netherlands)

    Steeneveld, G.J.

    2012-01-01

    Understanding and prediction of the stable atmospheric boundary layer is a challenging task. Many physical processes are relevant in the stable boundary layer, i.e. turbulence, radiation, land surface coupling, orographic turbulent and gravity wave drag, and land surface heterogeneity. The

  17. Origin of Starting Earthquakes under Complete Coupling of the Lithosphere Plates and a Base

    Science.gov (United States)

    Babeshko, V. A.; Evdokimova, O. V.; Babeshko, O. M.; Zaretskaya, M. V.; Gorshkova, E. M.; Mukhin, A. S.; Gladskoi, I. B.

    2018-02-01

    The boundary problem of rigid coupling of lithospheric plates modeled by Kirchhoff plates with a base represented by a three-dimensional deformable layered medium is considered. The possibility of occurrence of a starting earthquake in such a block structure is investigated. For this purpose, two states of this medium in the static mode are considered. In the first case, the semi-infinite lithospheric plates in the form of half-planes are at a distance so that the distance between the end faces is different from zero. In the second case, the lithospheric plates come together to zero spacing between them. Calculations have shown that in this case more complex movements of the Earth's surface are possible. Among such movements are the cases described in our previous publications [1, 2].

  18. Determination of intrinsic attenuation in the oceanic lithosphere-asthenosphere system

    Science.gov (United States)

    Takeuchi, Nozomu; Kawakatsu, Hitoshi; Shiobara, Hajime; Isse, Takehi; Sugioka, Hiroko; Ito, Aki; Utada, Hisashi

    2017-12-01

    We recorded P and S waves traveling through the oceanic lithosphere-asthenosphere system (LAS) using broadband ocean-bottom seismometers in the northwest Pacific, and we quantitatively separated the intrinsic (anelastic) and extrinsic (scattering) attenuation effects on seismic wave propagation to directly infer the thermomechanical properties of the oceanic LAS. The strong intrinsic attenuation in the asthenosphere obtained at higher frequency (~3 hertz) is comparable to that constrained at lower frequency (~100 seconds) by surface waves and suggests frequency-independent anelasticity, whereas the intrinsic attenuation in the lithosphere is frequency dependent. This difference in frequency dependence indicates that the strong and broad peak dissipation recently observed in the laboratory exists only in the asthenosphere and provides new insight into what distinguishes the asthenosphere from the lithosphere.

  19. Use of along-track magnetic field differences in lithospheric field modelling

    DEFF Research Database (Denmark)

    Kotsiaros, Stavros; Finlay, Chris; Olsen, Nils

    2015-01-01

    . Experiments in modelling the Earth's lithospheric magnetic field with along-track differences are presented here as a proof of concept. We anticipate that use of such along-track differences in combination with east–west field differences, as are now provided by the Swarm satellite constellation......We demonstrate that first differences of polar orbiting satellite magnetic data in the along-track direction can be used to obtain high resolution models of the lithospheric field. Along-track differences approximate the north–south magnetic field gradients for non-polar latitudes. In a test case......, using 2 yr of low altitude data from the CHAMP satellite, we show that use of along-track differences of vector field data results in an enhanced recovery of the small scale lithospheric field, compared to the use of the vector field data themselves. We show that the along-track technique performs...

  20. An Equivalent Source Method for Modelling the Lithospheric Magnetic Field Using Satellite and Airborne Magnetic Data

    DEFF Research Database (Denmark)

    Kother, Livia Kathleen; Hammer, Magnus Danel; Finlay, Chris

    . Advantages of the equivalent source method include its local nature and the ease of transforming to spherical harmonics when needed. The method can also be applied in local, high resolution, investigations of the lithospheric magnetic field, for example where suitable aeromagnetic data is available......We present a technique for modelling the lithospheric magnetic field based on estimation of equivalent potential field sources. As a first demonstration we present an application to magnetic field measurements made by the CHAMP satellite during the period 2009-2010. Three component vector field...... for the remaining lithospheric magnetic field consists of magnetic point sources (monopoles) arranged in an icosahedron grid with an increasing grid resolution towards the airborne survey area. The corresponding source values are estimated using an iteratively reweighted least squares algorithm that includes model...

  1. Low Seismic Attenuation in Southern New England Lithosphere Implies Little Heating by the Upwelling Asthenosphere

    Science.gov (United States)

    Lamoureux, J. M.; Menke, W. H.

    2017-12-01

    The Northern Appalachian Anomaly (NAA) is a patch of the asthenosphere in southern New England that is unusually hot given its passive margin setting. Previous research has detected large seismic wave delays that imply a temperature of 770 deg C higher than the mantle below the adjacent craton at the same depth. A key outstanding issue is whether the NAA interacts with the lithosphere above it (e.g. by heating it up). We study this issue using Po and So waves from two magnitude >5.5 earthquakes near the Puerto Rico Trench. These waves, propagating in the cold oceanic lithosphere at near Moho speeds, deliver high frequency energy to the shallow continental lithosphere. We hypothesized that: (1) once within the continental lithosphere, Po and So experience attenuation with distance that can be quantified by a quality factor Q, and that (2) any heating of the lithosphere above the NAA would lead to a higher Q than in regions further north or south along the continental margin. Corresponding Po and So velocities would also be lower. The decay rates of Po and So are estimated using least-squares applied to RMS coda amplitudes measured from digital seismograms from stations in northeastern North America, corrected for instrument response. A roughly log-linear decrease in amplitude is observed, corresponding to P and S wave quality factors in the range of 394-1500 and 727-6847, respectively. Measurements are made for four margin-perpendicular geographical bands, with one band overlapping the NAA. We detect no effect on these amplitudes by the NAA; 95% confidence bounds overlap in every case; Furthermore, all quality factors are much higher than the 100 predicted by lab experiments for near-solidus mantle rocks. These results suggest that the NAA is not causing significant heating of the lithosphere above it. The shear velocities, however, are about 10% slower above the NAA - an effect that may be fossil, reflecting processes that occurred millions of years ago.

  2. Interaction between mantle and crustal detachments: A nonlinear system controlling lithospheric extension

    Science.gov (United States)

    Rosenbaum, Gideon; Regenauer-Lieb, Klaus; Weinberg, Roberto F.

    2010-11-01

    We use numerical modeling to investigate the development of crustal and mantle detachments during lithospheric extension. Our models simulate a wide range of extensional systems with varying values of crustal thickness and heat flow, showing how strain localization in the mantle interacts with localization in the upper crust and controls the evolution of extensional systems. Model results reveal a richness of structures and deformation styles as a response to a self-organized mechanism that minimizes the internal stored energy of the system by localizing deformation. Crustal detachments, here referred as low-angle normal decoupling horizons, are well developed during extension of overthickened (60 km) continental crust, even when the initial heat flow is relatively low (50 mW m-2). In contrast, localized mantle deformation is most pronounced when the extended lithosphere has a normal crustal thickness (30-40 km) and an intermediate heat flow (60-70 mW m-2). Results show a nonlinear response to subtle changes in crustal thickness or heat flow, characterized by abrupt and sometimes unexpected switches in extension modes (e.g., from diffuse extensional deformation to effective lithospheric-scale rupturing) or from mantle- to crust-dominated strain localization. We interpret this nonlinearity to result from the interference of doming wavelengths in the presence of multiple necking instabilities. Disharmonic crust and mantle doming wavelengths results in efficient communication between shear zones at different lithospheric levels, leading to rupturing of the whole lithosphere. In contrast, harmonic crust and mantle doming inhibits interaction of shear zones across the lithosphere and results in a prolonged history of extension prior to continental breakup.

  3. Lithospheric Structure of the Yamato Basin Inferred from Trans-dimensional Inversion of Receiver Functions

    Science.gov (United States)

    Akuhara, T.; Nakahigashi, K.; Shinohara, M.; Yamada, T.; Yamashita, Y.; Shiobara, H.; Mochizuki, K.

    2017-12-01

    The Yamato Basin, located at the southeast of the Japan Sea, has been formed by the back-arc opening of the Japan Sea. Wide-angle reflection surveys have revealed that the basin has anomalously thickened crust compared with a normal oceanic crust [e.g., Nakahigashi et al., 2013] while deeper lithospheric structure has not known so far. Revealing the lithospheric structure of the Yamato Basin will lead to better understanding of the formation process of the Japan Sea and thus the Japanese island. In this study, as a first step toward understanding the lithospheric structure, we aim to detect the lithosphere-asthenosphere boundary (LAB) using receiver functions (RFs). We use teleseismic P waveforms recorded by broad-band ocean-bottom seismometers (BBOBS) deployed at the Yamato Basin. We calculated radial-component RFs using the data with the removal of water reverberations from the vertical-component records [Akuhara et al., 2016]. The resultant RFs are more complicated than those calculated at an on-land station, most likely due to sediment-related reverberations. This complexity does not allow either direct detection of a Ps conversion from the LAB or forward modeling by a simple structure composed of a handful number of layers. To overcome this difficulty, we conducted trans-dimensional Markov Chain Monte Carlo inversion of RFs, where we do not need to assume the number of layers in advance [e.g., Bodin et al., 2012; Sambridge et al., 2014]. Our preliminary results show abrupt velocity reduction at 70 km depth, far greater depth than the expected LAB depth from the age of the lithosphere ( 20 Ma, although still debated). If this low-velocity jump truly reflects the LAB, the anomalously thickened lithosphere will provide a new constraint on the complex formation history of the Japan Sea. Further study, however, is required to deny the possibility that the obtained velocity jump is an artificial brought by the overfitting of noisy data.

  4. Estimation of Water Within the Lithospheric Mantle of Central Tibet from Petrological-Geophysical Investigations

    Science.gov (United States)

    Vozar, J.; Fullea, J.; Jones, A. G.

    2013-12-01

    Investigations of the lithosphere and sub-lithospheric upper mantle by integrated petrological-geophysical modeling of magnetotelluric (MT) and seismic surface-wave data, which are differently sensitive to temperature and composition, allows us to reduce the uncertainties associated with modeling these two data sets independently, as commonly undertaken. We use selected INDEPTH MT data, which have appropriate dimensionality and large penetration depths, across central Tibet for 1D modeling. Our deep resistivity models from the data can be classified into two different and distinct groups: (i) the Lhasa Terrane and (ii) the Qiangtang Terrane. For the Lhasa Terrane group, the models show the existence of upper mantle conductive layer localized at depths of 200 km, whereas for the Qiangtang Terrane, this conductive layer is shallower at depths of 120 km. We perform the integrated geophysical-petrological modeling of the MT and surface-wave data using the software package LitMod. The program facilitates definition of realistic temperature and pressure distributions within the upper mantle for given thermal structure and oxide chemistry in the CFMAS system. This allows us to define a bulk geoelectric and seismic model of the upper mantle based on laboratory and xenolith data for the most relevant mantle minerals, and to compute synthetic geophysical observables. Our results suggest an 80-120 km-thick, dry lithosphere in the central part of the Qiangtang Terrane. In contrast, in the central Lhasa Terrane the predicted MT responses are too resistive for a dry lithosphere regardless its thickness; according to seismic and topography data the expected lithospheric thickness is about 200 km. The presence of small amounts of water significantly decreases the electrical resistivity of mantle rocks and is required to fit the MT responses. We test the hypothesis of small amounts of water (ppm scale) in the nominally anhydrous minerals of the lithospheric mantle. Such a small

  5. Lithospheric Contributions to Arc Magmatism: Isotope Variations Along Strike in Volcanoes of Honshu, Japan

    Science.gov (United States)

    Kersting; Arculus; Gust

    1996-06-07

    Major chemical exchange between the crust and mantle occurs in subduction zone environments, profoundly affecting the chemical evolution of Earth. The relative contributions of the subducting slab, mantle wedge, and arc lithosphere to the generation of island arc magmas, and ultimately new continental crust, are controversial. Isotopic data for lavas from a transect of volcanoes in a single arc segment of northern Honshu, Japan, have distinct variations coincident with changes in crustal lithology. These data imply that the relatively thin crustal lithosphere is an active geochemical filter for all traversing magmas and is responsible for significant modification of primary mantle melts.

  6. Normal modified stable processes

    DEFF Research Database (Denmark)

    Barndorff-Nielsen, Ole Eiler; Shephard, N.

    2002-01-01

    Gaussian (NGIG) laws. The wider framework thus established provides, in particular, for added flexibility in the modelling of the dynamics of financial time series, of importance especially as regards OU based stochastic volatility models for equities. In the special case of the tempered stable OU process......This paper discusses two classes of distributions, and stochastic processes derived from them: modified stable (MS) laws and normal modified stable (NMS) laws. This extends corresponding results for the generalised inverse Gaussian (GIG) and generalised hyperbolic (GH) or normal generalised inverse...

  7. Applications of stable isotopes

    International Nuclear Information System (INIS)

    Letolle, R.; Mariotti, A.; Bariac, T.

    1991-06-01

    This report reviews the historical background and the properties of stable isotopes, the methods used for their measurement (mass spectrometry and others), the present technics for isotope enrichment and separation, and at last the various present and foreseeable application (in nuclear energy, physical and chemical research, materials industry and research; tracing in industrial, medical and agronomical tests; the use of natural isotope variations for environmental studies, agronomy, natural resources appraising: water, minerals, energy). Some new possibilities in the use of stable isotope are offered. A last chapter gives the present state and forecast development of stable isotope uses in France and Europe

  8. Plant domestication slows pest evolution.

    Science.gov (United States)

    Turcotte, Martin M; Lochab, Amaneet K; Turley, Nash E; Johnson, Marc T J

    2015-09-01

    Agricultural practices such as breeding resistant varieties and pesticide use can cause rapid evolution of pest species, but it remains unknown how plant domestication itself impacts pest contemporary evolution. Using experimental evolution on a comparative phylogenetic scale, we compared the evolutionary dynamics of a globally important economic pest - the green peach aphid (Myzus persicae) - growing on 34 plant taxa, represented by 17 crop species and their wild relatives. Domestication slowed aphid evolution by 13.5%, maintained 10.4% greater aphid genotypic diversity and 5.6% higher genotypic richness. The direction of evolution (i.e. which genotypes increased in frequency) differed among independent domestication events but was correlated with specific plant traits. Individual-based simulation models suggested that domestication affects aphid evolution directly by reducing the strength of selection and indirectly by increasing aphid density and thus weakening genetic drift. Our results suggest that phenotypic changes during domestication can alter pest evolutionary dynamics. © 2015 John Wiley & Sons Ltd/CNRS.

  9. Comparing gravity-based to seismic-derived lithosphere densities : A case study of the British Isles and surrounding areas

    NARCIS (Netherlands)

    Root, B.C.; Ebbing, J; van der Wal, W.; England, R.W.; Vermeersen, L.L.A.

    2017-01-01

    Lithospheric density structure can be constructed from seismic tomography, gravity modelling, or using both data sets. The different approaches have their own uncertainties and limitations. This study aims to characterize and quantify some of the uncertainties in gravity modelling of lithosphere

  10. The electrical conductivity of the upper mantle and lithosphere from the magnetic signal due to ocean tidal flow

    DEFF Research Database (Denmark)

    Schnepf, Neesha Regmi; Kuvshinov, Alexey; Grayver, Alexander

    galvanically with Earth’s lithosphere (i.e. by direct coupling of the source currents in the ocean with the underlying substrate), enabling conductivity estimations at shallower depths. Here we present the results of determining a 1-D conductivity-depth profile of oceanic lithosphere and upper mantle using...

  11. Analysing Stable Time Series

    National Research Council Canada - National Science Library

    Adler, Robert

    1997-01-01

    We describe how to take a stable, ARMA, time series through the various stages of model identification, parameter estimation, and diagnostic checking, and accompany the discussion with a goodly number...

  12. COMPOSITIONAL AND THERMAL DIFFERENCES BETWEEN LITHOSPHERIC AND ASTHENOSPHERIC MANTLE AND THEIR INFLUENCE ON CONTINENTAL DELAMINATION

    Directory of Open Access Journals (Sweden)

    A. I. Kiselev

    2015-01-01

    Full Text Available The lower part of lithosphere in collisional orogens may delaminate due to density inversion between the asthenosphere and the cold thickened lithospheric mantle. Generally, standard delamination models have neglected density changes within the crust and the lithospheric mantle, which occur due to phase transitions and compositional variations upon changes of P-T parameters. Our attention is focused on effects of phase and density changes that may be very important and even dominant when compared with the effect of a simple change of the thermal mantle structure. The paper presents the results of numerical modeling for eclogitization of basalts of the lower crust as well as phase composition changes and density of underlying peridotite resulted from tectonic thickening of the lithosphere and its foundering into the asthenosphere. As the thickness of the lower crust increases, the mafic granulite (basalt passes into eclogite, and density inversion occurs at the accepted crust-mantle boundary (P=20 kbar because the newly formed eclogite is heavier than the underlying peridotite by 6 % (abyssal peridotite, according to [Boyd, 1989]. The density difference is a potential energy for delamination of the eclogitic portion of the crust. According to the model, P=70 kbar and T=1300 °C correspond to conditions at the lower boundary of the lithosphere. Assuming the temperature adiabatic distribution within the asthenosphere, its value at the given parameters ranges from 1350 °C to 1400 °C. Density inversion at dry conditions occurs with the identical lithospheric and asthenospheric compositions at the expense of the temperature difference at 100 °C with the density difference of only 0.0022 %. Differences of two other asthenospheric compositions (primitive mantle, and lherzolite KH as compared to the lithosphere (abyssal peridotite are not compensated for by a higher temperature. The asthenospheric density is higher than that of the lithospheric base

  13. Applications of Slow Light in Telecommunications

    National Research Council Canada - National Science Library

    Boyd, Robert W; Gauthier, Daniel J; Gaeta, Alexander L

    2006-01-01

    .... Now, optical scientists are turning their attention toward developing useful applications of slow light, including controllable optical delay lines, optical buffers and true time delay methods...

  14. Samovar: a thermomechanical code for modeling of geodynamic processes in the lithosphere-application to basin evolution

    DEFF Research Database (Denmark)

    Elesin, Y; Gerya, T; Artemieva, Irina

    2010-01-01

    We present a new 2D finite difference code, Samovar, for high-resolution numerical modeling of complex geodynamic processes. Examples are collision of lithospheric plates (including mountain building and subduction) and lithosphere extension (including formation of sedimentary basins, regions...... of extended crust, and rift zones). The code models deformation of the lithosphere with viscoelastoplastic rheology, including erosion/sedimentation processes and formation of shear zones in areas of high stresses. It also models steady-state and transient conductive and advective thermal processes including...... partial melting and magma transport in the lithosphere. The thermal and mechanical parts of the code are tested for a series of physical problems with analytical solutions. We apply the code to geodynamic modeling by examining numerically the processes of lithosphere extension and basin formation...

  15. Integrating EarthScope Data to Constrain the Long-Term Effects of Tectonism on Continental Lithosphere

    Science.gov (United States)

    Porter, R. C.; van der Lee, S.

    2017-12-01

    One of the most significant products of the EarthScope experiment has been the development of new seismic tomography models that take advantage of the consistent station design, regular 70-km station spacing, and wide aperture of the EarthScope Transportable Array (TA) network. These models have led to the discovery and interpretation of additional compositional, thermal, and density anomalies throughout the continental US, especially within tectonically stable regions. The goal of this work is use data from the EarthScope experiment to better elucidate the temporal relationship between tectonic activity and seismic velocities. To accomplish this, we compile several upper-mantle seismic velocity models from the Incorporated Research Institute for Seismology (IRIS) Earth Model Collaboration (EMC) and compare these to a tectonic age model we compiled using geochemical ages from the Interdisciplinary Earth Data Alliance: EarthChem Database. Results from this work confirms quantitatively that the time elapsed since the most recent tectonic event is a dominant influence on seismic velocities within the upper mantle across North America. To further understand this relationship, we apply mineral-physics models for peridotite to estimate upper-mantle temperatures for the continental US from tomographically imaged shear velocities. This work shows that the relationship between the estimated temperatures and the time elapsed since the most recent tectonic event is broadly consistent with plate cooling models, yet shows intriguing scatter. Ultimately, this work constrains the long-term thermal evolution of continental mantle lithosphere.

  16. Using open sidewalls for modelling self-consistent lithosphere subduction dynamics

    NARCIS (Netherlands)

    Chertova, M.V.; Geenen, T.; van den Berg, A.; Spakman, W.

    2012-01-01

    Subduction modelling in regional model domains, in 2-D or 3-D, is commonly performed using closed (impermeable) vertical boundaries. Here we investigate the merits of using open boundaries for 2-D modelling of lithosphere subduction. Our experiments are focused on using open and closed (free

  17. Abnormal lithium isotope composition from the ancient lithospheric mantle beneath the North China Craton.

    Science.gov (United States)

    Tang, Yan-Jie; Zhang, Hong-Fu; Deloule, Etienne; Su, Ben-Xun; Ying, Ji-Feng; Santosh, M; Xiao, Yan

    2014-03-04

    Lithium elemental and isotopic compositions of olivines in peridotite xenoliths from Hebi in the North China Craton provide direct evidence for the highly variable δ(7)Li in Archean lithospheric mantle. The δ(7)Li in the cores of olivines from the Hebi high-Mg# peridotites (Fo > 91) show extreme variation from -27 to +21, in marked deviation from the δ(7)Li range of fresh MORB (+1.6 to +5.6) although the Li abundances of the olivines are within the range of normal mantle (1-2 ppm). The Li abundances and δ(7)Li characteristics of the Hebi olivines could not have been produced by recent diffusive-driven isotopic fractionation of Li and therefore the δ(7)Li in the cores of these olivines record the isotopic signature of the subcontinental lithospheric mantle. Our data demonstrate that abnormal δ(7)Li may be preserved in the ancient lithospheric mantle as observed in our study from the central North China Craton, which suggest that the subcontinental lithospheric mantle has experienced modification of fluid/melt derived from recycled oceanic crust.

  18. A Seismic Transmission System for Continuous Monitoring of the Lithosphere : A Proposition

    NARCIS (Netherlands)

    Unger, R.

    2002-01-01

    The main objective of this thesis is to enhance earthquake prediction feasibility. We present the concept and the design layout of a novel seismic transmission system capable of continuously monitoring the Lithosphere for changes in Earth physics parameters governing seismic wave propagation.

  19. Spatial patterns in the distribution of kimberlites: relationship to tectonic processes and lithosphere structure

    DEFF Research Database (Denmark)

    Chemia, Zurab; Artemieva, Irina; Thybo, Hans

    2015-01-01

    of kimberlite melts through the lithospheric mantle, which forms the major pipe. Stage 2 (second-order process) begins when the major pipe splits into daughter sub-pipes (tree-like pattern) at crustal depths. We apply cluster analysis to the spatial distribution of all known kimberlite fields with the goal...

  20. Spatial Patterns in Distribution of Kimberlites: Relationship to Tectonic Processes and Lithosphere Structure

    DEFF Research Database (Denmark)

    Chemia, Zurab; Artemieva, Irina; Thybo, Hans

    2014-01-01

    of kimberlite melts through the lithospheric mantle, which forms the major pipe. Stage 2 (second-order process) begins when the major pipe splits into daughter sub-pipes (tree-like pattern) at crustal depths. We apply cluster analysis to the spatial distribution of all known kimberlite fields with the goal...

  1. Images of lithospheric heterogeneities in the Armorican segment of the Hercynian Range in France

    Czech Academy of Sciences Publication Activity Database

    Judenherc, S.; Granet, M.; Brun, J. P.; Poupinet, G.; Plomerová, Jaroslava; Mocquet, A.; Achauer, U.

    2002-01-01

    Roč. 358, 1/4 (2002), s. 121-134 ISSN 0040-1951 Institutional research plan: CEZ:AV0Z3012916 Keywords : seismic tomography * seismic anisotropy * continental collision * Hercynian lithosphere Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 1.409, year: 2002

  2. Pool Structures: A New Type of Interaction Zones of Lithospheric Plate Flows

    Science.gov (United States)

    Garetskyi, R. G.; Leonov, M. G.

    2018-02-01

    Study of tectono-geodynamic clusters of the continental lithosphere (the Sloboda cluster of the East European Platform and the Pamir cluster of Central Asia) permitted identification of pool structures, which are a specific type of zone of intraplate interaction of rock masses.

  3. Modeling the interaction between lithospheric and surface processes in foreland basins

    NARCIS (Netherlands)

    Garcia-Castellanos, D.; Cloetingh, S.

    2012-01-01

    This chapter reviews a number of key advances in quantitative understanding of foreland basins since the early 1990s, with a focus on the interplay between lithospheric flexure, erosion, and river transport. Flexure can be the result of topographic loading and slab-pull forces, though can also

  4. Lithosphere structure and upper mantle characteristics below the Bay of Bengal

    Digital Repository Service at National Institute of Oceanography (India)

    Rao, G.S.; Radhakrishna, M.; Sreejith, K.M.; Krishna, K.S.; Bull, J.M.

    The oceanic lithosphere in the Bay of Bengal (BOB) formed 80-120 Ma following the breakup of eastern Gondwanaland. Since its formation, it has been affected by the emplacement of two long N-S trending linear aseismic ridges (85°E and Ninetyeast...

  5. Seismic and mechanical anisotropy and the past and present deformation of the Australian lithosphere

    NARCIS (Netherlands)

    Simons, Frederik J.; Hilst, R.D. van der

    2003-01-01

    We interpret the three-dimensional seismic wave-speed structure of the Australian upper mantle by comparing its azimuthal anisotropy to estimates of past and present lithospheric deformation. We infer the fossil strain field from the orientation of gravity anomalies relative to topography,

  6. Lithospheric-scale structures from the perspective of analogue continental collision.

    NARCIS (Netherlands)

    Sokoutis, D.; Burg, J.P.; Bonini, M.; Corti, G.; Cloetingh, S.A.P.L.

    2005-01-01

    Analogue models were employed to investigate continental collision addressing the roles of (1) a suture zone separating different crustal blocks, (2) mid-crustal weak layers and (3) mantle strengths. These models confirmed that low-amplitude lithospheric and crustal buckling is the primary response

  7. Localization instability and the origin of regularly- spaced faults in planetary lithospheres

    Science.gov (United States)

    Montesi, Laurent Gilbert Joseph

    2002-10-01

    Brittle deformation is not distributed uniformly in planetary lithospheres but is instead localized on faults and ductile shear zones. In some regions such as the Central Indian Basin or martian ridged plains, localized shear zones display a characteristic spacing. This pattern can constrain the mechanical structure of the lithosphere if a model that includes the development of localized shear zones and their interaction with the non- localizing levels of the lithosphere is available. I construct such a model by modifying the buckling analysis of a mechanically-stratified lithosphere idealization, by allowing for rheologies that have a tendency to localize. The stability of a rheological system against localization is indicated by its effective stress exponent, ne. That quantity must be negative for the material to have a tendency to localize. I show that a material deforming brittly or by frictional sliding has ne mechanical properties. When this model is subjected to horizontal extension or compression, infinitesimal perturbation of its interfaces grow at a rate that depends on their wavelength. Two superposed instabilities develop if ne Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253- 1690.)

  8. Ancient melt depletion overprinted by young carbonatitic metasomatism in the New Zealand lithospheric mantle

    DEFF Research Database (Denmark)

    Scott, James M.; Hodgkinson, A.; Palin, J.M.

    2014-01-01

    radiogenic than, the HIMU mantle reservoir. Metasomatism appears to pre-date ubiquitous pyroxene core to rim Al diffusion zoning, which may have resulted from cooling of the lithospheric mantle following cessation of Late Cretaceous-Eocene rifting of Zealandia from Gondwana. Nd isotope data, however, suggest...

  9. Earthquake rupture below the brittle-ductile transition in continental lithospheric mantle.

    Science.gov (United States)

    Prieto, Germán A; Froment, Bérénice; Yu, Chunquan; Poli, Piero; Abercrombie, Rachel

    2017-03-01

    Earthquakes deep in the continental lithosphere are rare and hard to interpret in our current understanding of temperature control on brittle failure. The recent lithospheric mantle earthquake with a moment magnitude of 4.8 at a depth of ~75 km in the Wyoming Craton was exceptionally well recorded and thus enabled us to probe the cause of these unusual earthquakes. On the basis of complete earthquake energy balance estimates using broadband waveforms and temperature estimates using surface heat flow and shear wave velocities, we argue that this earthquake occurred in response to ductile deformation at temperatures above 750°C. The high stress drop, low rupture velocity, and low radiation efficiency are all consistent with a dissipative mechanism. Our results imply that earthquake nucleation in the lithospheric mantle is not exclusively limited to the brittle regime; weakening mechanisms in the ductile regime can allow earthquakes to initiate and propagate. This finding has significant implications for understanding deep earthquake rupture mechanics and rheology of the continental lithosphere.

  10. A note on 2-D lithospheric deformation due to a blind strike-slip fault

    Indian Academy of Sciences (India)

    mic deformation. Several researchers have devel- oped models of coseismic lithospheric deformation. Rybicki (1971) found a closed-form analytical solu- tion for the problem of a long vertical strike-slip fault in a two-layer model of the earth. Chinnery and Jovanovich (1972) extended the solution to a three-layer model.

  11. Shallow and buoyant lithospheric subduction : causes and implications from thermo-chemical numerical modeling

    NARCIS (Netherlands)

    Hunen, Jeroen van

    2001-01-01

    Where two lithospheric plates converge on the Earth, one of them disappears into the mantle. The dominant driving mechanism for plate motion is regarded to be `slab pull': the subducted plate, the slab, exerts a pulling force on the attached plate at the surface. However, what has been puzzling

  12. Earth's lithospheric magnetic field determined to spherical harmonic degree 90 from CHAMP satellite measurements

    DEFF Research Database (Denmark)

    Maus, S.; Rother, M.; Hemant, K.

    2006-01-01

    of the lithospheric field down to an altitude of about 50 km at lower latitudes, with reduced accuracy in the polar regions. Crustal features come out significantly sharper than in previous models. In particular, bands of magnetic anomalies along subduction zones become visible by satellite for the first time....

  13. Influence of the lithosphere-asthenosphere boundary on the stress field northwest of the Alps

    Science.gov (United States)

    Maury, J.; Cornet, F. H.; Cara, M.

    2014-11-01

    In 1356, a magnitude 6-7 earthquake occurred near Basel, in Switzerland. But recent compilations of GPS measurements reveal that measured horizontal deformation rates in northwestern continental Europe are smaller than error bars on the measurements, proving present tectonic activity, if any, is very small in this area. We propose to reconcile these apparently antinomic observations with a mechanical model of the lithosphere that takes into account the geometry of the lithosphere-asthenosphere boundary, assuming that the only loading mechanism is gravity. The lithosphere is considered to be an elastoplastic material satisfying a Von Mises plasticity criterion. The model, which is 400 km long, 360 km wide and 230 km thick, is centred near Belfort in eastern France, with its width oriented parallel to the N145°E direction. It also takes into account the real topography of both the ground surface and that of the Moho discontinuity. Not only does the model reproduce observed principal stress directions orientations, it also identifies a plastic zone that fits roughly the most seismically active domain of the region. Interestingly, a somewhat similar stress map may be produced by considering an elastic lithosphere and an ad-hoc horizontal `tectonic' stress field. However, for the latter model, examination of the plasticity criterion suggests that plastic deformation should have taken place. It is concluded that the present-day stress field in this region is likely controlled by gravity and rheology, rather than by active Alpine tectonics.

  14. Lithospheric architecture of the South-Western Alps revealed by multiparameter teleseismic full-waveform inversion

    Science.gov (United States)

    Beller, S.; Monteiller, V.; Operto, S.; Nolet, G.; Paul, A.; Zhao, L.

    2018-02-01

    The Western Alps, although being intensively investigated, remains elusive when it comes to determining its lithospheric structure. New inferences on the latter are important for the understanding of processes and mechanisms of orogeny needed to unravel the dynamic evolution of the Alps. This situation led to the deployment of the CIFALPS temporary experiment, conducted to address the lack of seismological data amenable to high-resolution seismic imaging of the crust and the upper mantle. We perform a 3-D isotropic full-waveform inversion (FWI) of nine teleseismic events recorded by the CIFALPS experiment to infer 3-D models of both density and P- and S-wave velocities of the Alpine lithosphere. Here, by FWI is meant the inversion of the full seismograms including phase and amplitude effects within a time window following the first arrival up to a frequency of 0.2 Hz. We show that the application of the FWI at the lithospheric scale is able to generate images of the lithosphere with unprecedented resolution and can furnish a reliable density model of the upper lithosphere. In the shallowest part of the crust, we retrieve the shape of the fast/dense Ivrea body anomaly and detect the low velocities of the Po and SE France sedimentary basins. The geometry of the Ivrea body as revealed by our density model is consistent with the Bouguer anomaly. A sharp Moho transition is followed from the external part (30 km depth) to the internal part of the Alps (70-80 km depth), giving clear evidence of a continental subduction event during the formation of the Alpine Belt. A low-velocity zone in the lower lithosphere of the S-wave velocity model supports the hypothesis of a slab detachment in the western part of the Alps that is followed by asthenospheric upwelling. The application of FWI to teleseismic data helps to fill the gap of resolution between traditional imaging techniques, and enables integrated interpretations of both upper and lower lithospheric structures.

  15. Response of electret dosemeter to slow neutrons

    International Nuclear Information System (INIS)

    Ghilardi, A.J.P.; Pela, C.A.; Zimmerman, R.L.

    1987-01-01

    The response of electret dosemeter to slow neutrons exposure is cited, mentioning the preparation and the irradiation of dosemeter with Am-Be source. Some theory considerations about the response of electret dosemeter to slow and fast neutrons are also presented. (C.G.C.) [pt

  16. Tandem queue with server slow-down

    NARCIS (Netherlands)

    Miretskiy, D.I.; Scheinhardt, W.R.W.; Mandjes, M.R.H.

    2007-01-01

    We study how rare events happen in the standard two-node tandem Jackson queue and in a generalization, the socalled slow-down network, see [2]. In the latter model the service rate of the first server depends on the number of jobs in the second queue: the first server slows down if the amount of

  17. Slow-light pulses in moving media

    International Nuclear Information System (INIS)

    Fiurasek, J.; Leonhardt, U.; Parentani, R.

    2002-01-01

    Slow light in moving media reaches a counterintuitive regime when the flow speed of the medium approaches the group velocity of light. Pulses can penetrate a region where a counterpropagating flow exceeds the group velocity. When the counterflow slows down, pulses are reflected

  18. Can fast and slow intelligence be differentiated?

    NARCIS (Netherlands)

    Partchev, I.; de Boeck, P.

    2012-01-01

    Responses to items from an intelligence test may be fast or slow. The research issue dealt with in this paper is whether the intelligence involved in fast correct responses differs in nature from the intelligence involved in slow correct responses. There are two questions related to this issue: 1.

  19. Slow Movement/Slow University: Critical Engagements. Introduction to the Thematic Section

    Directory of Open Access Journals (Sweden)

    Maggie O'Neill

    2014-09-01

    Full Text Available This thematic section emerged from two seminars that took place at Durham University in England in November 2013 and March 2014 on the possibilities for thinking through what a change movement towards slow might mean for the University. Slow movements have emerged in relation to a number of topics: Slow food, Citta slow and more recently, slow science. What motivated us in the seminars was to explore how far these movements could help us address the acceleration and intensification of work within our own and other universities, and indeed, what new learning, research, philosophies, practices, structures and governance might emerge. This editorial introduction presents the concept of the "slow university" and introduces our critical engagements with slow. The articles presented here interrogate the potentialities, challenges, problems and pitfalls of the slow university in an era of corporate culture and management rationality. URN: http://nbn-resolving.de/urn:nbn:de:0114-fqs1403166

  20. Highly CO2-supersaturated melts in the Pannonian lithospheric mantle - A transient carbon reservoir?

    Science.gov (United States)

    Créon, Laura; Rouchon, Virgile; Youssef, Souhail; Rosenberg, Elisabeth; Delpech, Guillaume; Szabó, Csaba; Remusat, Laurent; Mostefaoui, Smail; Asimow, Paul D.; Antoshechkina, Paula M.; Ghiorso, Mark S.; Boller, Elodie; Guyot, François

    2017-08-01

    Subduction of carbonated crust is widely believed to generate a flux of carbon into the base of the continental lithospheric mantle, which in turn is the likely source of widespread volcanic and non-volcanic CO2 degassing in active tectonic intracontinental settings such as rifts, continental margin arcs and back-arc domains. However, the magnitude of the carbon flux through the lithosphere and the budget of stored carbon held within the lithospheric reservoir are both poorly known. We provide new constraints on the CO2 budget of the lithospheric mantle below the Pannonian Basin (Central Europe) through the study of a suite of xenoliths from the Bakony-Balaton Highland Volcanic Field. Trails of secondary fluid inclusions, silicate melt inclusions, networks of melt veins, and melt pockets with large and abundant vesicles provide numerous lines of evidence that mantle metasomatism affected the lithosphere beneath this region. We obtain a quantitative estimate of the CO2 budget of the mantle below the Pannonian Basin using a combination of innovative analytical and modeling approaches: (1) synchrotron X-ray microtomography, (2) NanoSIMS, Raman spectroscopy and microthermometry, and (3) thermodynamic models (Rhyolite-MELTS). The three-dimensional volumes reconstructed from synchrotron X-ray microtomography allow us to quantify the proportions of all petrographic phases in the samples and to visualize their textural relationships. The concentration of CO2 in glass veins and pockets ranges from 0.27 to 0.96 wt.%, higher than in typical arc magmas (0-0.25 wt.% CO2), whereas the H2O concentration ranges from 0.54 to 4.25 wt.%, on the low end for estimated primitive arc magmas (1.9-6.3 wt.% H2O). Trapping pressures for vesicles were determined by comparing CO2 concentrations in glass to CO2 saturation as a function of pressure in silicate melts, suggesting pressures between 0.69 to 1.78 GPa. These values are generally higher than trapping pressures for fluid inclusions

  1. Connecting slow earthquakes to huge earthquakes.

    Science.gov (United States)

    Obara, Kazushige; Kato, Aitaro

    2016-07-15

    Slow earthquakes are characterized by a wide spectrum of fault slip behaviors and seismic radiation patterns that differ from those of traditional earthquakes. However, slow earthquakes and huge megathrust earthquakes can have common slip mechanisms and are located in neighboring regions of the seismogenic zone. The frequent occurrence of slow earthquakes may help to reveal the physics underlying megathrust events as useful analogs. Slow earthquakes may function as stress meters because of their high sensitivity to stress changes in the seismogenic zone. Episodic stress transfer to megathrust source faults leads to an increased probability of triggering huge earthquakes if the adjacent locked region is critically loaded. Careful and precise monitoring of slow earthquakes may provide new information on the likelihood of impending huge earthquakes. Copyright © 2016, American Association for the Advancement of Science.

  2. Electromagnetic study of lithospheric structure in Trans-European Suture Zone in Poland

    Science.gov (United States)

    Jóźwiak, Waldemar; Ślęzak, Katarzyna; Nowożyński, Krzysztof; Neska, Anne

    2016-04-01

    The area covered by magnetotelluric surveys in Poland is mostly related to the Trans-European Suture Zone (TESZ), the largest tectonic boundary in Europe. Numerous 1D, 2D, and pseudo-3D and 3D models of the electrical resistivity distribution were constructed, and a new interpretation method based on Horizontal Magnetic Tensor analysis has been applied recently. The results indicate that the TESZ is a lithospheric discontinuity and there are noticeable differences in geoelectric structures between the East European Craton (EEC), the transitional zone (TESZ), and the Paleozoic Platform (PP). The electromagnetic sounding is a very efficient tool for recognizing the lithospheric structure especially it helps in identification of important horizontal (or lateral) inhomogeneities in the crust. Due to our study we can clearly determine the areas of the East European Craton of high resistivity, Paleozoic Platform of somewhat lower resistivity value, and transitional TESZ of complicated structure. At the East European Craton, we observe very highly resistive lithosphere, reaching 220-240 km depth. Underneath, there is distinctly greater conductivity values, most probably resulting from partial melting of rocks; this layer may represent the asthenosphere. The resistivity of the lithosphere under the Paleozoic Platform is somewhat lower, and its thickness does not exceed 150 km. The properties of the lithosphere in the transition zone, under the TESZ, differ significantly. The presented models include prominent, NW-SE striking conductive lineaments. These structures, that related with the TESZ, lie at a depth of 10-30 km. They are located in a mid-crustal level and they reach the boundary of the EEC. The structures we initially connect to the Variscan Deformation Front (VDF) and the Caledonian Deformation Front (CDF). The differentiation of conductivity visible in the crust continues in the upper mantle.

  3. The lithosphere-asthenosphere boundary beneath the Korean Peninsula from S receiver functions

    Science.gov (United States)

    Lee, S. H.; Rhie, J.

    2017-12-01

    The shallow lithosphere in the Eastern Asia at the east of the North-South Gravity Lineament is well published. The reactivation of the upper asthenosphere induced by the subducting plates is regarded as a dominant source of the lithosphere thinning. Additionally, assemblage of various tectonic blocks resulted in complex variation of the lithosphere thickness in the Eastern Asia. Because, the Korean Peninsula located at the margin of the Erasian Plate in close vicinity to the trench of subducting oceanic plate, significant reactivation of the upper asthenosphere is expected. For the study of the tectonic history surrounding the Korean Peninsula, we determined the lithosphere-asthenosphere boundary (LAB) beneath the Korean Peninsula using common conversion point stacking method with S receiver functions. The depth of the LAB beneath the Korean Peninsula ranges from 60 km to 100 km and confirmed to be shallower than that expected for Cambrian blocks as previous global studies. The depth of the LAB is getting shallower to the south, 95 km at the north and 60 km at the south. And rapid change of the LAB depth is observed between 36°N and 37°N. The depth change of the LAB getting shallower to the south implies that the source of the lithosphere thinning is a hot mantle upwelling induced by the northward subduction of the oceanic plates since Mesozoic. Unfortunately, existing tectonic models can hardly explain the different LAB depth in the north and in the south as well as the rapid change of the LAB depth.

  4. Earthquake Source Depths in the Zagros Mountains: A "Jelly Sandwich" or "Creme Brulee" Lithosphere?

    Science.gov (United States)

    Adams, A. N.; Nyblade, A.; Brazier, R.; Rodgers, A.; Al-Amri, A.

    2006-12-01

    The Zagros Mountain Belt of southwestern Iran is one of the most seismically active mountain belts in the world. Previous studies of the depth distribution of earthquakes in this region have shown conflicting results. Early seismic studies of teleseismically recorded events found that earthquakes in the Zagros Mountains nucleated within both the upper crust and upper mantle, indicating that the lithosphere underlying the Zagros Mountains has a strong upper crust and a strong lithospheric mantle, separated by a weak lower crust. Such a model of lithospheric structure is called the "Jelly Sandwich" model. More recent teleseismic studies, however, found that earthquakes in the Zagros Mountains occur only within the upper crust, thus indicating that the strength of the Zagros Mountains' lithosphere is primarily isolated to the upper crust. This model of lithospheric structure is called the "crème brûlée" model. Analysis of regionally recorded earthquakes nucleating within the Zagros Mountains is presented here. Data primarily come from the Saudi Arabian National Digital Seismic Network, although data sources include many regional open and closed networks. The use of regionally recorded earthquakes facilitates the analysis of a larger dataset than has been used in previous teleseismic studies. Regional waveforms have been inverted for source parameters using a range of potential source depths to determine the best fitting source parameters and depths. Results indicate that earthquakes nucleate in two distinct zones. One seismogenic zone lies at shallow, upper crustal depths. The second seismogenic zone lies near the Moho. Due to uncertainty in the source and Moho depths, further study is needed to determine whether these deeper events are nucleating within the lower crust or the upper mantle.

  5. Effect of the lithospheric thermal state on the Moho interface: A case study in South America

    Science.gov (United States)

    Bagherbandi, Mohammad; Bai, Yongliang; Sjöberg, Lars E.; Tenzer, Robert; Abrehdary, Majid; Miranda, Silvia; Alcacer Sanchez, Juan M.

    2017-07-01

    Gravimetric methods applied for Moho recovery in areas with sparse and irregular distribution of seismic data often assume only a constant crustal density. Results of latest studies, however, indicate that corrections for crustal density heterogeneities could improve the gravimetric result, especially in regions with a complex geologic/tectonic structure. Moreover, the isostatic mass balance reflects also the density structure within the lithosphere. The gravimetric methods should therefore incorporate an additional correction for the lithospheric mantle as well as deeper mantle density heterogeneities. Following this principle, we solve the Vening Meinesz-Moritz (VMM) inverse problem of isostasy constrained by seismic data to determine the Moho depth of the South American tectonic plate including surrounding oceans, while taking into consideration the crustal and mantle density heterogeneities. Our numerical result confirms that contribution of sediments significantly modifies the estimation of the Moho geometry especially along the continental margins with large sediment deposits. To account for the mantle density heterogeneities we develop and apply a method in order to correct the Moho geometry for the contribution of the lithospheric thermal state (i.e., the lithospheric thermal-pressure correction). In addition, the misfit between the isostatic and seismic Moho models, attributed mainly to deep mantle density heterogeneities and other geophysical phenomena, is corrected for by applying the non-isostatic correction. The results reveal that the application of the lithospheric thermal-pressure correction improves the RMS fit of the VMM gravimetric Moho solution to the CRUST1.0 (improves ∼ 1.9 km) and GEMMA (∼1.1 km) models and the point-wise seismic data (∼0.7 km) in South America.

  6. Thermodynamic, geophysical and rheological modeling of the lithosphere underneath the North Atlantic Porcupine Basin (Ireland).

    Science.gov (United States)

    Botter, C. D.; Prada, M.; Fullea, J.

    2017-12-01

    The Porcupine is a North-South oriented basin located southwest of Ireland, along the North Atlantic continental margin, formed by several rifting episodes during Late Carboniferous to Early Cretaceous. The sedimentary cover is underlined by a very thin continental crust in the center of the basin (10 in the South. In spite of the abundant literature, most of the oil and gas exploration in the Porcupine Basin has been targeting its northern part and is mostly restricted to relatively shallow depths, giving a restrained overview of the basin structure. Therefore, studying the thermodynamic and composition of the deep and broader structures is needed to understand the processes linked to the formation and the symmetry signature of the basin. Here, we model the present-day thermal and compositional structure of the continental crust and lithospheric mantle underneath the Porcupine basin using gravity, seismic, heat flow and elevation data. We use an integrated geophysical-petrological framework where most relevant rock properties (density, seismic velocities) are determined as a function of temperature, pressure and composition. Our modelling approach solves simultaneously the heat transfer, thermodynamic, geopotential, seismic and isostasy equations, and fit the results to all available geophysical and petrological observables (LitMod software). In this work we have implemented a module to compute self-consistently a laterally variable lithospheric elastic thickness based on mineral physics rheological laws (yield strength envelopes over the 3D volume). An appropriate understanding of local and flexural isostatic behavior of the basin is essential to unravel its tectonic history (i.e. stretching factors, subsidence etc.). Our Porcupine basin 3D model is defined by four lithological layers, representing properties from post- and syn-rift sequences to the lithospheric mantle. The computed yield strength envelopes are representative of hyperextended lithosphere and

  7. Comprehensive analysis of Curie-point depths and lithospheric effective elastic thickness at Arctic Region

    Science.gov (United States)

    Lu, Y.; Li, C. F.

    2017-12-01

    Arctic Ocean remains at the forefront of geological exploration. Here we investigate its deep geological structures and geodynamics on the basis of gravity, magnetic and bathymetric data. We estimate Curie-point depth and lithospheric effective elastic thickness to understand deep geothermal structures and Arctic lithospheric evolution. A fractal exponent of 3.0 for the 3D magnetization model is used in the Curie-point depth inversion. The result shows that Curie-point depths are between 5 and 50 km. Curie depths are mostly small near the active mid-ocean ridges, corresponding well to high heat flow and active shallow volcanism. Large curie depths are distributed mainly at continental marginal seas around the Arctic Ocean. We present a map of effective elastic thickness (Te) of the lithosphere using a multitaper coherence technique, and Te are between 5 and 110 km. Te primarily depends on geothermal gradient and composition, as well as structures in the lithosphere. We find that Te and Curie-point depths are often correlated. Large Te are distributed mainly at continental region and small Te are distributed at oceanic region. The Alpha-Mendeleyev Ridge (AMR) and The Svalbard Archipelago (SA) are symmetrical with the mid-ocean ridge. AMR and SA were formed before an early stage of Eurasian basin spreading, and they are considered as conjugate large igneous provinces, which show small Te and Curie-point depths. Novaya Zemlya region has large Curie-point depths and small Te. We consider that fault and fracture near the Novaya Zemlya orogenic belt cause small Te. A series of transform faults connect Arctic mid-ocean ridge with North Atlantic mid-ocean ridge. We can see large Te near transform faults, but small Curie-point depths. We consider that although temperature near transform faults is high, but mechanically the lithosphere near transform faults are strengthened.

  8. Elysium region, mars: Tests of lithospheric loading models for the formation of tectonic features

    International Nuclear Information System (INIS)

    Hall, J.L.; Solomon, S.C.; Head, J.W.

    1986-01-01

    The second largest volcanic province on Mars lies in the Elysium region. Like the larger Tharsis province, Elysium is marked by a topographic rise and a broad free air gravity anomaly and also exhibits a complex assortment of tectonic and volcanic features. We test the hypothesis that the tectonic features in the Elysium region are the product of stresses produced by loading of the Martian lithosphere. We consider loading at three different scales: local loading by individual volcanoes, regional loading of the lithosphere from above or below, and quasi-global loading by Tharsis. A comparison of flexural stresses with lithospheric strength and with the inferred maximum depth of faulting confirms that concentric graben around Elysium Mons can be explained as resulting from local flexure of an elastic lithosphere about 50 km thick in response to the volcano load. Volcanic loading on a regional scale, however, leads to predicted stresses inconsistent with all observed tectonic features, suggesting that loading by widespread emplacement of thick plains deposits was not an important factor in the tectonic evolution of the Elysium region. A number of linear extensional features oriented generally NW-SE may have been the result of flexural uplift of the lithosphere on the scale of the Elysium rise. The global stress field associated with the support of the Tharsis rise appears to have influenced the development of many of the tectonic features in the Elysium region, including Cerberus Rupes and the systems of ridges in eastern and western Elysium. The comparisons of stress models for Elysium with the preserved tectonic features support a succession of stress fields operating at different times in the region

  9. Lithospheric Strength and Stress State: Persistent Challenges and New Directions in Geodynamics

    Science.gov (United States)

    Hirth, G.

    2017-12-01

    The strength of the lithosphere controls a broad array of geodynamic processes ranging from earthquakes, the formation and evolution of plate boundaries and the thermal evolution of the planet. A combination of laboratory, geologic and geophysical observations provides several independent constraints on the rheological properties of the lithosphere. However, several persistent challenges remain in the interpretation of these data. Problems related to extrapolation in both scale and time (rate) need to be addressed to apply laboratory data. Nonetheless, good agreement between extrapolation of flow laws and the interpretation of microstructures in viscously deformed lithospheric mantle rocks demonstrates a strong foundation to build on to explore the role of scale. Furthermore, agreement between the depth distribution of earthquakes and predictions based on extrapolation of high temperature friction relationships provides a basis to understand links between brittle deformation and stress state. In contrast, problems remain for rationalizing larger scale geodynamic processes with these same rheological constraints. For example, at face value the lab derived values for the activation energy for creep are too large to explain convective instabilities at the base of the lithosphere, but too low to explain the persistence of dangling slabs in the upper mantle. In this presentation, I will outline these problems (and successes) and provide thoughts on where new progress can be made to resolve remaining inconsistencies, including discussion of the role of the distribution of volatiles and alteration on the strength of the lithosphere, new data on the influence of pressure on friction and fracture strength, and links between the location of earthquakes, thermal structure, and stress state.

  10. Calcium stable isotope geochemistry

    Energy Technology Data Exchange (ETDEWEB)

    Gausonne, Nikolaus [Muenster Univ. (Germany). Inst. fuer Mineralogie; Schmitt, Anne-Desiree [Strasbourg Univ. (France). LHyGeS/EOST; Heuser, Alexander [Bonn Univ. (Germany). Steinmann-Inst. fuer Geologie, Mineralogie und Palaeontologie; Wombacher, Frank [Koeln Univ. (Germany). Inst. fuer Geologie und Mineralogie; Dietzel, Martin [Technische Univ. Graz (Austria). Inst. fuer Angewandte Geowissenschaften; Tipper, Edward [Cambridge Univ. (United Kingdom). Dept. of Earth Sciences; Schiller, Martin [Copenhagen Univ. (Denmark). Natural History Museum of Denmark

    2016-08-01

    This book provides an overview of the fundamentals and reference values for Ca stable isotope research, as well as current analytical methodologies including detailed instructions for sample preparation and isotope analysis. As such, it introduces readers to the different fields of application, including low-temperature mineral precipitation and biomineralisation, Earth surface processes and global cycling, high-temperature processes and cosmochemistry, and lastly human studies and biomedical applications. The current state of the art in these major areas is discussed, and open questions and possible future directions are identified. In terms of its depth and coverage, the current work extends and complements the previous reviews of Ca stable isotope geochemistry, addressing the needs of graduate students and advanced researchers who want to familiarize themselves with Ca stable isotope research.

  11. Calcium stable isotope geochemistry

    International Nuclear Information System (INIS)

    Gausonne, Nikolaus; Schmitt, Anne-Desiree; Heuser, Alexander; Wombacher, Frank; Dietzel, Martin; Tipper, Edward; Schiller, Martin

    2016-01-01

    This book provides an overview of the fundamentals and reference values for Ca stable isotope research, as well as current analytical methodologies including detailed instructions for sample preparation and isotope analysis. As such, it introduces readers to the different fields of application, including low-temperature mineral precipitation and biomineralisation, Earth surface processes and global cycling, high-temperature processes and cosmochemistry, and lastly human studies and biomedical applications. The current state of the art in these major areas is discussed, and open questions and possible future directions are identified. In terms of its depth and coverage, the current work extends and complements the previous reviews of Ca stable isotope geochemistry, addressing the needs of graduate students and advanced researchers who want to familiarize themselves with Ca stable isotope research.

  12. Lithospheric structure of northwest Africa: Insights into the tectonic history and influence of mantle flow on large-scale deformation

    Science.gov (United States)

    Miller, Meghan S.; Becker, Thorsten

    2014-05-01

    Northwest Africa is affected by late stage convergence of Africa with Eurasia, the Canary Island hotspot, and bounded by the Proterozoic-age West African craton. We present seismological evidence from receiver functions and shear-wave splitting along with geodynamic modeling to show how the interactions of these tectonic features resulted in dramatic deformation of the lithosphere. We interpret seismic discontinuities from the receiver functions and find evidence for localized, near vertical-offset deformation of both crust-mantle and lithosphere-asthenosphere interfaces at the flanks of the High Atlas. These offsets coincide with the locations of Jurassic-aged normal faults that have been reactivated during the Cenozoic, further suggesting that inherited, lithospheric-scale zones of weakness were involved in the formation of the Atlas. Another significant step in lithospheric thickness is inferred within the Middle Atlas. Its location corresponds to the source of regional Quaternary alkali volcanism, where the influx of melt induced by the shallow asthenosphere appears restricted to a lithospheric-scale fault on the northern side of the mountain belt. Inferred stretching axes from shear-wave splitting are aligned with the topographic grain in the High Atlas, suggesting along-strike asthenospheric shearing in a mantle channel guided by the lithospheric topography. Isostatic modeling based on our improved lithospheric constraints indicates that lithospheric thinning alone does not explain the anomalous Atlas topography. Instead, an mantle upwelling induced by a hot asthenospheric anomaly appears required, likely guided by the West African craton and perhaps sucked northward by subducted lithosphere beneath the Alboran. This dynamic support scenario for the Atlas also suggests that the timing of uplift is contemporaneous with the recent volcanismin the Middle Atlas.

  13. Interaction Between Downwelling Flow and the Laterally-Varying Thickness of the North American Lithosphere Inferred from Seismic Anisotropy

    Science.gov (United States)

    Behn, M. D.; Conrad, C. P.; Silver, P. G.

    2005-12-01

    Shear flow in the asthenosphere tends to align olivine crystals in the direction of shear, producing a seismically anisotropic asthenosphere that can be detected using a number of seismic techniques (e.g., shear-wave splitting (SWS) and surface waves). In the ocean basins, where the asthenosphere has a relatively uniform thickness and lithospheric anisotropy appears to be small, observed azimuthal anisotropy is well fit by asthenospheric shear flow in global flow models driven by a combination of plate motions and mantle density heterogeneity. In contrast, beneath the continents both the lithospheric ceiling and asthenospheric thickness may vary considerably across cratonic regions and ocean-continent boundaries. To examine the influence of a continental lithosphere with variable thickness on predictions of continental seismic anisotropy, we impose lateral variations in lithospheric viscosity in global models of mantle flow driven by plate motions and mantle density heterogeneity. For the North American continent, the Farallon slab descends beneath a deep cratonic root, producing downwelling flow in the upper mantle and convergent flow beneath the cratonic lithosphere. We evaluate both the orientation of the predicted azimuthal anisotropy and the depth dependence of radial anisotropy for this downwelling flow and find that the inclusion of a strong continental root provides an improved fit to observed SWS observations beneath the North American craton. Thus, we hypothesize that at least some continental anisotropy is associated with sub-lithospheric viscous shear, although fossil anisotropy in the lithospheric layer may also contribute significantly. Although we do not observe significant variations in the direction of predicted anisotropy with depth, we do find that the inclusion of deep continental roots pushes the depth of the anisotropy layer deeper into the upper mantle. We test several different models of laterally-varying lithosphere and asthenosphere

  14. KEK-IMSS Slow Positron Facility

    Energy Technology Data Exchange (ETDEWEB)

    Hyodo, T; Wada, K; Yagishita, A; Kosuge, T; Saito, Y; Kurihara, T; Kikuchi, T; Shirakawa, A; Sanami, T; Ikeda, M; Ohsawa, S; Kakihara, K; Shidara, T, E-mail: toshio.hyodo@kek.jp [High Energy Accelerator Research Organization (KEK) 1-1 Oho, Tsukuba, Ibaraki, 305-0801 (Japan)

    2011-12-01

    The Slow Positron Facility at the Institute of Material Structure Science (IMSS) of High Energy Accelerator Research Organization (KEK) is a user dedicated facility with an energy tunable (0.1 - 35 keV) slow positron beam produced by a dedicated 55MeV linac. The present beam line branches have been used for the positronium time-of-flight (Ps-TOF) measurements, the transmission positron microscope (TPM) and the photo-detachment of Ps negative ions (Ps{sup -}). During the year 2010, a reflection high-energy positron diffraction (RHEPD) measurement station is going to be installed. The slow positron generator (converter/ moderator) system will be modified to get a higher slow positron intensity, and a new user-friendly beam line power-supply control and vacuum monitoring system is being developed. Another plan for this year is the transfer of a {sup 22}Na-based slow positron beam from RIKEN. This machine will be used for the continuous slow positron beam applications and for the orientation training of those who are interested in beginning researches with a slow positron beam.

  15. petrography, compositional characteristics and stable isotope

    African Journals Online (AJOL)

    PROF EKWUEME

    African and South American lithospheric plates (Burke et al., 1971). The basin ...... Tectonic evolution Cretaceous stratigraphy of the. Dahomey Basin.Journal of Mining and Geology, ... theory and application of trace element technique.

  16. Preservation of an Archaean whole rock Re-Os isochron for the Venetia lithospheric mantle: Evidence for rapid crustal recycling and lithosphere stabilisation at 3.3 Ga

    Science.gov (United States)

    van der Meer, Quinten H. A.; Klaver, Martijn; Reisberg, Laurie; Riches, Amy J. V.; Davies, Gareth R.

    2017-11-01

    Re-Os and platinum group element analyses are reported for peridotite xenoliths from the 533 Ma Venetia kimberlite cluster situated in the Limpopo Mobile Belt, the Neoarchaean collision zone between the Kaapvaal and Zimbabwe Cratons. The Venetian xenoliths provide a rare opportunity to examine the state of the cratonic lithosphere prior to major regional metasomatic disturbance of Re-Os systematics throughout the Phanerozoic. The 32 studied xenoliths record Si-enrichment that is characteristic of the Kaapvaal lithospheric mantle and can be subdivided into five groups based on Re-Os analyses. The most pristine group I samples (n = 13) display an approximately isochronous relationship and fall on a 3.28 ± 0.17 Ga (95 % conf. int.) reference line that is based on their mean TMA age. This age overlaps with the formation age of the Limpopo crust at 3.35-3.28 Ga. The group I samples derive from ∼50 to ∼170 km depth, suggesting coeval melt depletion of the majority of the Venetia lithospheric mantle column. Group II and III samples have elevated Re/Os due to Re addition during kimberlite magmatism. Group II has otherwise undergone a similar evolution as the group I samples with overlapping 187Os/188Os at eruption age: 187Os/188OsEA, while group III samples have low Os concentrations, unradiogenic 187Os/188OsEA and were effectively Re-free prior to kimberlite magmatism. The other sample groups (IV and V) have disturbed Re-Os systematics and provide no reliable age information. A strong positive correlation is recorded between Os and Re concentrations for group I samples, which is extended to groups II and III after correction for kimberlite addition. This positive correlation precludes a single stage melt depletion history and indicates coupled remobilisation of Re and Os. The combination of Re-Os mobility, preservation of the isochronous relationship, correlation of 187Os/188Os with degree of melt depletion and lack of radiogenic Os addition puts tight constraints on

  17. Stable isotope studies

    International Nuclear Information System (INIS)

    Ishida, T.

    1992-01-01

    The research has been in four general areas: (1) correlation of isotope effects with molecular forces and molecular structures, (2) correlation of zero-point energy and its isotope effects with molecular structure and molecular forces, (3) vapor pressure isotope effects, and (4) fractionation of stable isotopes. 73 refs, 38 figs, 29 tabs

  18. Interactive Stable Ray Tracing

    DEFF Research Database (Denmark)

    Dal Corso, Alessandro; Salvi, Marco; Kolb, Craig

    2017-01-01

    Interactive ray tracing applications running on commodity hardware can suffer from objectionable temporal artifacts due to a low sample count. We introduce stable ray tracing, a technique that improves temporal stability without the over-blurring and ghosting artifacts typical of temporal post-pr...

  19. The Stable Concordance Genus

    OpenAIRE

    Kearney, M. Kate

    2013-01-01

    The concordance genus of a knot is the least genus of any knot in its concordance class. Although difficult to compute, it is a useful invariant that highlights the distinction between the three-genus and four-genus. In this paper we define and discuss the stable concordance genus of a knot, which describes the behavior of the concordance genus under connected sum.

  20. Stable radiographic scanning agents

    International Nuclear Information System (INIS)

    1976-01-01

    Stable compositions which are useful in the preparation of Technetium-99m-based scintigraphic agents are discussed. They are comprised of ascorbic acid or a pharmaceutically acceptable salt or ester thereof in combination with a pertechnetate reducing agent or dissolved in oxidized pertechnetate-99m (sup(99m)TcO 4 - ) solution

  1. Some stable hydromagnetic equilibria

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, J L; Oberman, C R; Kulsrud, R M; Frieman, E A [Project Matterhorn, Princeton University, Princeton, NJ (United States)

    1958-07-01

    We have been able to find and investigate the properties of equilibria which are hydromagnetically stable. These equilibria can be obtained, for example, by wrapping conductors helically around the stellarator tube. Systems with I = 3 or 4 are indicated to be optimum for stability purposes. In some cases an admixture of I = 2 fields can be advantageous for achieving equilibrium. (author)

  2. Slowing of oscillatory brain activity is a stable characteristic of Parkinson's disease without dementia

    NARCIS (Netherlands)

    Stoffers, D.; Bosboom, JL; Deijen, J.B.; Wolters, E.C.M.J.; Berendse, H.W.; Stam, L.

    2007-01-01

    Extensive changes in resting-state oscillatory brain activity have recently been demonstrated using magnetoencephalography (MEG) in moderately advanced, non-demented Parkinson's disease patients relative to age-matched controls. The aim of the present study was to determine the onset and evolution

  3. Rheological structure of the lithosphere in plate boundary strike-slip fault zones

    Science.gov (United States)

    Chatzaras, Vasileios; Tikoff, Basil; Kruckenberg, Seth C.; Newman, Julie; Titus, Sarah J.; Withers, Anthony C.; Drury, Martyn R.

    2016-04-01

    How well constrained is the rheological structure of the lithosphere in plate boundary strike-slip fault systems? Further, how do lithospheric layers, with rheologically distinct behaviors, interact within the strike-slip fault zones? To address these questions, we present rheological observations from the mantle sections of two lithospheric-scale, strike-slip fault zones. Xenoliths from ˜40 km depth (970-1100 ° C) beneath the San Andreas fault system (SAF) provide critical constraints on the mechanical stratification of the lithosphere in this continental transform fault. Samples from the Bogota Peninsula shear zone (BPSZ, New Caledonia), which is an exhumed oceanic transform fault, provide insights on lateral variations in mantle strength and viscosity across the fault zone at a depth corresponding to deformation temperatures of ˜900 ° C. Olivine recrystallized grain size piezometry suggests that the shear stress in the SAF upper mantle is 5-9 MPa and in the BPSZ is 4-10 MPa. Thus, the mantle strength in both fault zones is comparable to the crustal strength (˜10 MPa) of seismogenic strike-slip faults in the SAF system. Across the BPSZ, shear stress increases from 4 MPa in the surrounding rocks to 10 MPa in the mylonites, which comprise the core of the shear zone. Further, the BPSZ is characterized by at least one order of magnitude difference in the viscosity between the mylonites (1018 Paṡs) and the surrounding rocks (1019 Paṡs). Mantle viscosity in both the BPSZ mylonites and the SAF (7.0ṡ1018-3.1ṡ1020 Paṡs) is relatively low. To explain our observations from these two strike-slip fault zones, we propose the "lithospheric feedback" model in which the upper crust and lithospheric mantle act together as an integrated system. Mantle flow controls displacement and the upper crust controls the stress magnitude in the system. Our stress data combined with data that are now available for the middle and lower crustal sections of other transcurrent fault

  4. The cryogenic source of slow monochromatic positrons

    International Nuclear Information System (INIS)

    Meshkov, I.N.; Pavlov, V.N.; Sidorin, A.O.; Yakovenko, S.L.

    2008-01-01

    The cryogenic source of slow monochromatic positrons based on the 22 Na isotope has been designed and constructed at JINR. Positrons emitted from radioactive source 22 Na have a very broad energy spectrum up to 0.5 MeV. To generate monochromatic beam of slow positrons the solid neon is used as a moderator. The solid neon allows forming slow positron beam of the energy of 1.2 eV at the spectrum width of 1 eV. The efficiency of moderation is 1 % of total positron flux

  5. Dystonia Associated with Idiopathic Slow Orthostatic Tremor

    Directory of Open Access Journals (Sweden)

    Christopher Kobylecki

    2016-02-01

    Full Text Available Background: We aimed to characterize the clinical and electrophysiological features of patients with slow orthostatic tremor.Case Report: The clinical and neurophysiological data of patients referred for lower limb tremor on standing were reviewed. Patients with symptomatic or primary orthostatic tremor were excluded. Eight patients were identified with idiopathic slow 4–8 Hz orthostatic tremor, which was associated with tremor and dystonia in cervical and upper limb musculature. Coherence analysis in two patients showed findings different to those seen in primary orthostatic tremor.Discussion: Slow orthostatic tremor may be associated with dystonia and dystonic tremor.

  6. Revealing the cluster of slow transients behind a large slow slip event.

    Science.gov (United States)

    Frank, William B; Rousset, Baptiste; Lasserre, Cécile; Campillo, Michel

    2018-05-01

    Capable of reaching similar magnitudes to large megathrust earthquakes [ M w (moment magnitude) > 7], slow slip events play a major role in accommodating tectonic motion on plate boundaries through predominantly aseismic rupture. We demonstrate here that large slow slip events are a cluster of short-duration slow transients. Using a dense catalog of low-frequency earthquakes as a guide, we investigate the M w 7.5 slow slip event that occurred in 2006 along the subduction interface 40 km beneath Guerrero, Mexico. We show that while the long-period surface displacement, as recorded by Global Positioning System, suggests a 6-month duration, the motion in the direction of tectonic release only sporadically occurs over 55 days, and its surface signature is attenuated by rapid relocking of the plate interface. Our proposed description of slow slip as a cluster of slow transients forces us to re-evaluate our understanding of the physics and scaling of slow earthquakes.

  7. Lithospheric expression of geological units in central and eastern North America from full waveform tomography

    Science.gov (United States)

    Yuan, Huaiyu; French, Scott; Cupillard, Paul; Romanowicz, Barbara

    2014-09-01

    The EarthScope TA deployment has provided dense array coverage throughout the continental US and with it, the opportunity for high resolution 3D seismic velocity imaging of both lithosphere and asthenosphere in the continent. Building upon our previous long-period waveform tomographic modeling in North America, we present a higher resolution 3D isotropic and radially anisotropic shear wave velocity model of the North American lithospheric mantle, constructed tomographically using the spectral element method for wavefield computations and waveform data down to 40 s period. The new model exhibits pronounced spatial correlation between lateral variations in seismic velocity and anisotropy and major tectonic units as defined from surface geology. In the center of the continent, the North American craton exhibits uniformly thick lithosphere down to 200-250 km, while major tectonic sutures of Proterozoic age visible in the surface geology extend down to 100-150 km as relatively narrow zones of distinct radial anisotropy, with Vsv >Vsh. Notably, the upper mantle low velocity zone is present everywhere under the craton between 200 and 300 km depth. East of the continental rift margin, the lithosphere is broken up into a series of large, somewhat thinner (150 km) high velocity blocks, which extend laterally 200-300 km offshore into the Atlantic Ocean. Between the craton and these deep-rooted blocks, we find a prominent narrow band of low velocities that roughly follows the southern and eastern Laurentia rift margin and extends into New England. We suggest that the lithosphere along this band of low velocities may be thinned due to the combined effects of repeated rifting processes and northward extension of the hotspot related Bermuda low-velocity channel across the New England region. We propose that the deep rooted high velocity blocks east of the Laurentia margin represent the Proterozoic Gondwanian terranes of pan-African affinity, which were captured during the Rodinia

  8. Gravity signals from the lithosphere in the Central European Basin System

    Science.gov (United States)

    Yegorova, T.; Bayer, U.; Thybo, H.; Maystrenko, Y.; Scheck-Wenderoth, M.; Lyngsie, S. B.

    2007-01-01

    We study the gravity signals from different depth levels in the lithosphere of the Central European Basin System (CEBS). The major elements of the CEBS are the Northern and Southern Permian Basins which include the Norwegian-Danish Basin (NDB), the North-German Basin (NGB) and the Polish Trough (PT). An up to 10 km thick sedimentary cover of Mesozoic-Cenozoic sediments, hides the gravity signal from below the basin and masks the heterogeneous structure of the consolidated crust, which is assumed to be composed of domains that were accreted during the Paleozoic amalgamation of Europe. We performed a three-dimensional (3D) gravity backstripping to investigate the structure of the lithosphere below the CEBS. Residual anomalies are derived by removing the effect of sediments down to the base of Permian from the observed field. In order to correct for the influence of large salt structures, lateral density variations are incorporated. These sediment-free anomalies are interpreted to reflect Moho relief and density heterogeneities in the crystalline crust and uppermost mantle. The gravity effect of the Moho relief compensates to a large extent the effect of the sediments in the CEBS and in the North Sea. Removal of the effects of large-scale crustal inhomogeneities shows a clear expression of the Variscan arc system at the southern part of the study area and the old crust of Baltica further north-east. The remaining residual anomalies (after stripping off the effects of sediments, Moho topography and large-scale crustal heterogeneities) reveal long wavelength anomalies, which are caused mainly by density variations in the upper mantle, though gravity influence from the lower crust cannot be ruled out. They indicate that the three main subbasins of the CEBS originated on different lithospheric domains. The PT originated on a thick, strong and dense lithosphere of the Baltica type. The NDB was formed on a weakened Baltica low-density lithosphere formed during the Sveco

  9. Lithospheric low-velocity zones associated with a magmatic segment of the Tanzanian Rift, East Africa

    Science.gov (United States)

    Plasman, M.; Tiberi, C.; Ebinger, C.; Gautier, S.; Albaric, J.; Peyrat, S.; Déverchère, J.; Le Gall, B.; Tarits, P.; Roecker, S.; Wambura, F.; Muzuka, A.; Mulibo, G.; Mtelela, K.; Msabi, M.; Kianji, G.; Hautot, S.; Perrot, J.; Gama, R.

    2017-07-01

    Rifting in a cratonic lithosphere is strongly controlled by several interacting processes including crust/mantle rheology, magmatism, inherited structure and stress regime. In order to better understand how these physical parameters interact, a 2 yr long seismological experiment has been carried out in the North Tanzanian Divergence (NTD), at the southern tip of the eastern magmatic branch of the East African rift, where the southward-propagating continental rift is at its earliest stage. We analyse teleseismic data from 38 broad-band stations ca. 25 km spaced and present here results from their receiver function (RF) analysis. The crustal thickness and Vp/Vs ratio are retrieved over a ca. 200 × 200 km2 area encompassing the South Kenya magmatic rift, the NTD and the Ngorongoro-Kilimanjaro transverse volcanic chain. Cratonic nature of the lithosphere is clearly evinced through thick (up to ca. 40 km) homogeneous crust beneath the rift shoulders. Where rifting is present, Moho rises up to 27 km depth and the crust is strongly layered with clear velocity contrasts in the RF signal. The Vp/Vs ratio reaches its highest values (ca. 1.9) beneath volcanic edifices location and thinner crust, advocating for melting within the crust. We also clearly identify two major low-velocity zones (LVZs) within the NTD, one in the lower crust and the second in the upper part of the mantle. The first one starts at 15-18 km depth and correlates well with recent tomographic models. This LVZ does not always coexist with high Vp/Vs ratio, pleading for a supplementary source of velocity decrease, such as temperature or composition. At a greater depth of ca. 60 km, a mid-lithospheric discontinuity roughly mimics the step-like and symmetrically outward-dipping geometry of the Moho but with a more slanting direction (NE-SW) compared to the NS rift. By comparison with synthetic RF, we estimate the associated velocity reduction to be 8-9 per cent. We relate this interface to melt ponding

  10. Earth's evolving subcontinental lithospheric mantle: inferences from LIP continental flood basalt geochemistry

    Science.gov (United States)

    Greenough, John D.; McDivitt, Jordan A.

    2018-04-01

    Archean and Proterozoic subcontinental lithospheric mantle (SLM) is compared using 83 similarly incompatible element ratios (SIER; minimally affected by % melting or differentiation, e.g., Rb/Ba, Nb/Pb, Ti/Y) for >3700 basalts from ten continental flood basalt (CFB) provinces representing nine large igneous provinces (LIPs). Nine transition metals (TM; Fe, Mn, Sc, V, Cr, Co, Ni, Cu, Zn) in 102 primitive basalts (Mg# = 0.69-0.72) from nine provinces yield additional SLM information. An iterative evaluation of SIER values indicates that, regardless of age, CFB transecting Archean lithosphere are enriched in Rb, K, Pb, Th and heavy REE(?); whereas P, Ti, Nb, Ta and light REE(?) are higher in Proterozoic-and-younger SLM sources. This suggests efficient transfer of alkali metals and Pb to the continental lithosphere perhaps in association with melting of subducted ocean floor to form Archean tonalite-trondhjemite-granodiorite terranes. Titanium, Nb and Ta were not efficiently transferred, perhaps due to the stabilization of oxide phases (e.g., rutile or ilmenite) in down-going Archean slabs. CFB transecting Archean lithosphere have EM1-like SIER that are more extreme than seen in oceanic island basalts (OIB) suggesting an Archean SLM origin for OIB-enriched mantle 1 (EM1). In contrast, OIB high U/Pb (HIMU) sources have more extreme SIER than seen in CFB provinces. HIMU may represent subduction-processed ocean floor recycled directly to the convecting mantle, but to avoid convective homogenization and produce its unique Pb isotopic signature may require long-term isolation and incubation in SLM. Based on all TM, CFB transecting Proterozoic lithosphere are distinct from those cutting Archean lithosphere. There is a tendency for lower Sc, Cr, Ni and Cu, and higher Zn, in the sources for Archean-cutting CFB and EM1 OIB, than Proterozoic-cutting CFB and HIMU OIB. All CFB have SiO2 (pressure proxy)-Nb/Y (% melting proxy) relationships supporting low pressure, high % melting

  11. Spatial variations of effective elastic thickness of the Lithosphere in the Southeast Asia regions

    Science.gov (United States)

    Shi, Xiaobin; Kirby, Jon; Yu, Chuanhai; Swain, Chris; Zhao, Junfeng

    2016-04-01

    The effective elastic thickness Te corresponds to the thickness of an idealized elastic beam that would bend similarly to the actual lithosphere under the same applied loads, and could provide important insight into rheology and state of stress. Thus, it is helpful to improve our understanding of the relationship between tectonic styles, distribution of earthquakes and lithospheric rheology in various tectonic settings. The Southeast Asia, located in the southeastern part of the Eurasian Plate, comprises a complex collage of continental fragments, volcanic arcs, and suture zones and marginal oceanic basins, and is surrounded by tectonically active margins which exhibit intense seismicity and volcanism. The Cenozoic southeastward extrusion of the rigid Indochina Block due to the Indo-Asian collision resulted in the drastic surface deformation in the western area. Therefore, a high resolution spatial variation map of Te might be a useful tool for the complex Southeast Asia area to examine the relationships between surface deformation, earthquakes, lithospheric structure and mantle dynamics. In this study, we present a high-resolution map of spatial variations of Te in the Southeast Asia area using the wavelet method, which convolves a range of scaled wavelets with the two data sets of Bouguer gravity anomaly and topography. The topography and bathymetry grid data was extracted from the GEBCO_08 Grid of GEBCO digital atlas. The pattern of Te variations agrees well with the tectonic provinces in the study area. On the whole, low lithosphere strength characterizes the oceanic basins, such as the South China Sea, the Banda sea area, the Celebes Sea, the Sulu Sea and the Andaman Sea. Unlike the oceanic basins, the continental fragments show a complex pattern of Te variations. The Khorat plateau and its adjacent area show strong lithosphere characteristics with a Te range of 20-50 km, suggesting that the Khorat plateau is the strong core of the Indochina Block. The West

  12. VERY SLOW SPEED AXIAL MOTION RELUCTANCE MOTOR

    African Journals Online (AJOL)

    Dr Obe

    1984-09-01

    Sep 1, 1984 ... VERY SLOW SPEED AXIAL MOTION RELUCTANCE MOTOR by. L. A. Agu ... order as that of the screw-thread motor can be obtained. LIST OF .... The n stator have equal non- magnetic spacers .... induction motor. An.

  13. Slow and Fast Light, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — In response to the NASA Small Business Innovation Research (SBIR) Program 2015 Phase I Solicitation S3.08: Slow and Fast Light, Torch Technologies in partnership...

  14. Experimental demonstration of spinor slow light

    Science.gov (United States)

    Lee, Meng-Jung; Ruseckas, Julius; Lee, Chin-Yuan; Kudriašov, Viačeslav; Chang, Kao-Fang; Cho, Hung-Wen; JuzeliÅ«nas, Gediminas; Yu, Ite A.

    2016-03-01

    Over the last decade there has been a continuing interest in slow and stored light based on the electromagnetically induced transparency (EIT) effect, because of their potential applications in quantum information manipulation. However, previous experimental works all dealt with the single-component slow light which cannot be employed as a qubit. In this work, we report the first experimental demonstration of two-component or spinor slow light (SSL) using a double tripod (DT) atom-light coupling scheme. The oscillations between the two components, similar to the Rabi oscillation of a two-level system or a qubit, were observed. Single-photon SSL can be considered as two-color qubits. We experimentally demonstrated a possible application of the DT scheme as quantum memory and quantum rotator for the two-color qubits. This work opens up a new direction in the slow light research.

  15. Elastic scattering of slow positrons by helium

    International Nuclear Information System (INIS)

    Amusia, M.Ya.; Cherepkov, N.A.; Chernysheva, L.V.; Shapiro, S.G.

    1976-01-01

    The s-, p-, d- and f-wave phaseshifts for elastic scattering of slow positrons by He are calculated using a simplified version of the random phase approximation with exchange, with virtual positronium formation effect taken into account. (author)

  16. A tilted transversely isotropic slowness surface approximation

    KAUST Repository

    Stovas, A.; Alkhalifah, Tariq Ali

    2012-01-01

    for the vertical slowness that is highly accurate for all practical purposes. It also reveals some insights into the anisotropy parameter dependency of the dispersion relation including the low impact that the anelliptic parameter has on the vertical placement

  17. Frequency response of slow beam extraction process

    International Nuclear Information System (INIS)

    Toyama, Takeshi; Sato, Hikaru; Marutsuka, Katsumi; Shirakata, Masashi.

    1994-01-01

    A servo control system has been incorporated into the practical slow extraction system in order to stabilize the spill structure less than a few kHz. Frequency responses of the components of the servo-spill control system and the open-loop frequency response were measured. The beam transfer function of the slow extraction process was derived from the measured data and approximated using a simple function. This is utilized to improve the performance of the servo-loop. (author)

  18. Slow potentials in a melody recognition task.

    Science.gov (United States)

    Verleger, R; Schellberg, D

    1990-01-01

    In a previous study, slow negative shifts were found in the EEG of subjects listening to well-known melodies. The two experiments reported here were designed to investigate the variables to which these slow potentials are related. In the first experiment, two opposite hypotheses were tested: The slow shifts might express subjects' acquaintance with the melodies or, on the contrary, the effort invested to identify them. To this end, some of the melodies were presented in the rhythms of other melodies to make recognition more difficult. Further, melodies rated as very well-known and as very unknown were analysed separately. However, the slow shifts were not affected by these experimental variations. Therefore in the second experiment, on the one hand the purely physical parameters intensity and duration were varied, but this variation had no impact on the slow shifts either. On the other hand, recognition was made more difficult by monotonously repeating the pitch of the 4th tone for the rest of some melodies. The slow negative shifts were enhanced with these monotonous melodies. This enhancement supports the "effort" hypothesis. Accordingly, the ofter shifts obtained in both experiments might likewise reflect effort. But since the task was not demanding, it is suggested that these constant shifts reflect the effort invested for coping with the entire underarousing situation rather than with the task. Frequently, slow eye movements occurred in the same time range as the slow potentials, resulting in EOG potentials spreading to the EEG recording sites. Yet results did not change substantially when the EEG recordings were corrected for the influence of EOG potentials.

  19. Characteristics and habitat of deep vs. shallow slow slip events

    Science.gov (United States)

    Wipperfurth, S. A.; Sramek, O.; Roskovec, B.; Mantovani, F.; McDonough, W. F.

    2016-12-01

    Models integrating geophysics and geochemistry allow for characterization of the Earth's heat budget and geochemical evolution. Global lithospheric geophysical models are now constrained by surface and body wave data and are classified into several unique tectonic types. Global lithospheric geochemical models have evolved from petrological characterization of layers to a combination of petrologic and seismic constraints. Because of these advances regarding our knowledge of the lithosphere, it is necessary to create an updated chemical and physical reference model. We are developing a global lithospheric reference model based on LITHO1.0 (segmented into 1°lon x 1°lat x 9-layers) and seismological-geochemical relationships. Uncertainty assignments and correlations are assessed for its physical attributes, including layer thickness, Vp and Vs, and density. This approach yields uncertainties for the masses of the crust and lithospheric mantle. Heat producing element abundances (HPE: U, Th, and K) are ascribed to each volume element. These chemical attributes are based upon the composition of subducting sediment (sediment layers), composition of surface rocks (upper crust), a combination of petrologic and seismic correlations (middle and lower crust), and a compilation of xenolith data (lithospheric mantle). The HPE abundances are correlated within each voxel, but not vertically between layers. Efforts to provide correlation of abundances horizontally between each voxel are discussed. These models are used further to critically evaluate the bulk lithosphere heat production in the continents and the oceans. Cross-checks between our model and results from: 1) heat flux (Artemieva, 2006; Davies, 2013; Cammarano and Guerri, 2017), 2) gravity (Reguzzoni and Sampietro, 2015), and 3) geochemical and petrological models (Rudnick and Gao, 2014; Hacker et al. 2015) are performed.

  20. Stable isotope analysis

    International Nuclear Information System (INIS)

    Tibari, Elghali; Taous, Fouad; Marah, Hamid

    2014-01-01

    This report presents results related to stable isotopes analysis carried out at the CNESTEN DASTE in Rabat (Morocco), on behalf of Senegal. These analyzes cover 127 samples. These results demonstrate that Oxygen-18 and Deuterium in water analysis were performed by infrared Laser spectroscopy using a LGR / DLT-100 with Autosampler. Also, the results are expressed in δ values (‰) relative to V-SMOW to ± 0.3 ‰ for oxygen-18 and ± 1 ‰ for deuterium.

  1. Forensic Stable Isotope Biogeochemistry

    Science.gov (United States)

    Cerling, Thure E.; Barnette, Janet E.; Bowen, Gabriel J.; Chesson, Lesley A.; Ehleringer, James R.; Remien, Christopher H.; Shea, Patrick; Tipple, Brett J.; West, Jason B.

    2016-06-01

    Stable isotopes are being used for forensic science studies, with applications to both natural and manufactured products. In this review we discuss how scientific evidence can be used in the legal context and where the scientific progress of hypothesis revisions can be in tension with the legal expectations of widely used methods for measurements. Although this review is written in the context of US law, many of the considerations of scientific reproducibility and acceptance of relevant scientific data span other legal systems that might apply different legal principles and therefore reach different conclusions. Stable isotopes are used in legal situations for comparing samples for authenticity or evidentiary considerations, in understanding trade patterns of illegal materials, and in understanding the origins of unknown decedents. Isotope evidence is particularly useful when considered in the broad framework of physiochemical processes and in recognizing regional to global patterns found in many materials, including foods and food products, drugs, and humans. Stable isotopes considered in the larger spatial context add an important dimension to forensic science.

  2. Rifting in heterogeneous lithosphere inferences from numerical modeling of the northern North Sea and the Oslo Graben.

    NARCIS (Netherlands)

    Pascal Candas, C.; Cloetingh, S.A.P.L.

    2002-01-01

    Permian rifting and magmatism are widely documented across NW Europe. The different Permian basins often display contrasting structural styles and evolved in lithospheric domains with contrasting past evolution and contrasting thermotectonic ages. In particular, the Oslo Graben and the northern

  3. Simultaneous estimation of lithospheric uplift rates and absolute sea level change in southwest Scandinavia from inversion of sea level data

    DEFF Research Database (Denmark)

    Nielsen, Lars; Hansen, Jens Morten; Hede, Mikkel Ulfeldt

    2014-01-01

    the relative sea level data. Similar independent data do not exist for ancient times. The purpose of this study is to test two simple inversion approaches for simultaneous estimation of lithospheric uplift rates and absolute sea level change rates for ancient times in areas where a dense coverage of relative...... sea level data exists and well-constrained average lithospheric movement values are known from, for example glacial isostatic adjustment (GIA) models. The inversion approaches are tested and used for simultaneous estimation of lithospheric uplift rates and absolute sea level change rates in southwest...... Scandinavia from modern relative sea level data series that cover the period from 1900 to 2000. In both approaches, a priori information is required to solve the inverse problem. A priori information about the average vertical lithospheric movement in the area of interest is critical for the quality...

  4. Mesoproterozoic and Paleoproterozoic subcontinental lithospheric mantle domains beneath southern Patagonia: Isotopic evidence for its connection to Africa and Antarctica

    Czech Academy of Sciences Publication Activity Database

    Mundl, A.; Ntaflos, T.; Ackerman, Lukáš; Bizimis, M.; Bjerg, E. A.; Hauzenberger, Ch. A.

    2015-01-01

    Roč. 43, č. 1 (2015), s. 39-42 ISSN 0091-7613 Institutional support: RVO:67985831 Keywords : lithospheric mantle * Mesoproterozoic * Paleoproterozoic Subject RIV: DD - Geochemistry Impact factor: 4.548, year: 2015

  5. The Lu-Hf isotope composition of cratonic lithosphere: disequilibrium between garnet and clinopyroxene in kimberlite xenoliths

    NARCIS (Netherlands)

    Simon, N.S.C.; Carlson, R.W.; Pearson, D.G.; Davies, G.R.

    2002-01-01

    12th Annual V.M. Goldschmidt Conference Davos Switzerland, The Lu-Hf isotope composition of cratonic lithosphere: disequilibrium between garnet and clinopyroxene in kimberlite xenoliths (DTM, Carnegie Institution of Washington), Pearson, D.G. (University of Durham)

  6. DEFORMATION WAVES AS A TRIGGER MECHANISM OF SEISMIC ACTIVITY IN SEISMIC ZONES OF THE CONTINENTAL LITHOSPHERE

    Directory of Open Access Journals (Sweden)

    S. I. Sherman

    2013-01-01

    Full Text Available Deformation waves as a trigger mechanism of seismic activity and migration of earthquake foci have been under discussion by researchers in seismology and geodynamics for over 50 years. Four sections of this article present available principal data on impacts of wave processes on seismicity and new data. The first section reviews analytical and experimental studies aimed at identification of relationships between wave processes in the lithosphere and seismic activity manifested as space-and-time migration of individual earthquake foci or clusters of earthquakes. It is concluded that with a systematic approach, instead of using a variety of terms to denote waves that trigger seismic process in the lithosphere, it is reasonable to apply the concise definition of ‘deformation waves’, which is most often used in fact.The second section contains a description of deformation waves considered as the trigger mechanism of seismic activity. It is concluded that a variety of methods are applied to identify deformation waves, and such methods are based on various research methods and concepts that naturally differ in sensitivity concerning detection of waves and/or impact of the waves on seismic process. Epicenters of strong earthquakes are grouped into specific linear or arc-shaped systems, which common criterion is the same time interval of the occurrence of events under analysis. On site the systems compose zones with similar time sequences, which correspond to the physical notion of moving waves (Fig. 9. Periods of manifestation of such waves are estimated as millions of years, and a direct consideration of the presence of waves and wave parameters is highly challenging. In the current state-of-the-art, geodynamics and seismology cannot provide any other solution yet.The third section presents a solution considering record of deformation waves in the lithosphere. With account of the fact that all the earthquakes with М≥3.0 are associated with

  7. Fundamentals of converging mining technologies in integrated development of mineral resources of lithosphere

    Science.gov (United States)

    Trubetskoy, KN; Galchenko, YuP; Eremenko, VA

    2018-03-01

    The paper sets forth a theoretical framework for the strategy of the radically new stage in development of geotechnologies under conditions of rapidly aggravating environmental crisis of the contemporary technocratic civilization that utilizes the substance extracted from the lithosphere as the source of energy and materials. The authors of the paper see the opportunity to overcome the conflict between the techno- and bio-spheres in the area of mineral raw materials by means of changing the technological paradigm of integrated mineral development by implementing nature-like technologies oriented to the ideas and methods of converging resources of natural biota as the object of the environmental protection and geotechnologies as the major source of ecological hazards induced in the course of development of mineral resources of lithosphere.

  8. Satellite Tidal Magnetic Signals Constrain Oceanic Lithosphere-Asthenosphere Boundary Earth Tomography with Tidal Magnetic Signals

    Science.gov (United States)

    Grayver, Alexander V.; Schnepf, Neesha R.; Kuvshinov, Alexey V.; Sabaka, Terence J.; Chandrasekharan, Manoj; Olsen, Niles

    2016-01-01

    The tidal flow of electrically conductive oceans through the geomagnetic field results in the generation of secondary magnetic signals, which provide information on the subsurface structure. Data from the new generation of satellites were shown to contain magnetic signals due to tidal flow; however, there are no reports that these signals have been used to infer subsurface structure. Here we use satellite-detected tidal magnetic fields to image the global electrical structure of the oceanic lithosphere and upper mantle down to a depth of about 250 km. The model derived from more than 12 years of satellite data reveals an Approximately 72 km thick upper resistive layer followed by a sharp increase in electrical conductivity likely associated with the lithosphere-asthenosphere boundary, which separates colder rigid oceanic plates from the ductile and hotter asthenosphere.

  9. An Equivalent Source Method for Modelling the Global Lithospheric Magnetic Field

    DEFF Research Database (Denmark)

    Kother, Livia Kathleen; Hammer, Magnus Danel; Finlay, Chris

    2014-01-01

    We present a new technique for modelling the global lithospheric magnetic field at Earth's surface based on the estimation of equivalent potential field sources. As a demonstration we show an application to magnetic field measurements made by the CHAMP satellite during the period 2009-2010 when...... are also employed to minimize the influence of the ionospheric field. The model for the remaining lithospheric magnetic field consists of magnetic point sources (monopoles) arranged in an icosahedron grid. The corresponding source values are estimated using an iteratively reweighted least squares algorithm...... in the CHAOS-4 and MF7 models using more conventional spherical harmonic based approaches. Advantages of the equivalent source method include its local nature, allowing e.g. for regional grid refinement, and the ease of transforming to spherical harmonics when needed. Future applications will make use of Swarm...

  10. Can We Probe the Conductivity of the Lithosphere and Upper Mantle Using Satellite Tidal Magnetic Signals?

    Science.gov (United States)

    Schnepf, N. R.; Kuvshinov, A.; Sabaka, T.

    2015-01-01

    A few studies convincingly demonstrated that the magnetic fields induced by the lunar semidiurnal (M2) ocean flow can be identified in satellite observations. This result encourages using M2 satellite magnetic data to constrain subsurface electrical conductivity in oceanic regions. Traditional satellite-based induction studies using signals of magnetospheric origin are mostly sensitive to conducting structures because of the inductive coupling between primary and induced sources. In contrast, galvanic coupling from the oceanic tidal signal allows for studying less conductive, shallower structures. We perform global 3-D electromagnetic numerical simulations to investigate the sensitivity of M2 signals to conductivity distributions at different depths. The results of our sensitivity analysis suggest it will be promising to use M2 oceanic signals detected at satellite altitude for probing lithospheric and upper mantle conductivity. Our simulations also suggest that M2 seafloor electric and magnetic field data may provide complementary details to better constrain lithospheric conductivity.

  11. The contribution of the Precambrian continental lithosphere to global H2 production.

    Science.gov (United States)

    Lollar, Barbara Sherwood; Onstott, T C; Lacrampe-Couloume, G; Ballentine, C J

    2014-12-18

    Microbial ecosystems can be sustained by hydrogen gas (H2)-producing water-rock interactions in the Earth's subsurface and at deep ocean vents. Current estimates of global H2 production from the marine lithosphere by water-rock reactions (hydration) are in the range of 10(11) moles per year. Recent explorations of saline fracture waters in the Precambrian continental subsurface have identified environments as rich in H2 as hydrothermal vents and seafloor-spreading centres and have suggested a link between dissolved H2 and the radiolytic dissociation of water. However, extrapolation of a regional H2 flux based on the deep gold mines of the Witwatersrand basin in South Africa yields a contribution of the Precambrian lithosphere to global H2 production that was thought to be negligible (0.009 × 10(11) moles per year). Here we present a global compilation of published and new H2 concentration data obtained from Precambrian rocks and find that the H2 production potential of the Precambrian continental lithosphere has been underestimated. We suggest that this can be explained by a lack of consideration of additional H2-producing reactions, such as serpentinization, and the absence of appropriate scaling of H2 measurements from these environments to account for the fact that Precambrian crust represents over 70 per cent of global continental crust surface area. If H2 production via both radiolysis and hydration reactions is taken into account, our estimate of H2 production rates from the Precambrian continental lithosphere of 0.36-2.27 × 10(11) moles per year is comparable to estimates from marine systems.

  12. Seismic anisotropy of the mantle lithosphere beneath the Swedish National Seismological Network (SNSN)

    Czech Academy of Sciences Publication Activity Database

    Eken, T.; Plomerová, Jaroslava; Roberts, R.; Vecsey, Luděk; Babuška, Vladislav; Shomali, H.; Bodvarsson, R.

    2010-01-01

    Roč. 480, č. 1-4 (2010), s. 241-258 ISSN 0040-1951 R&D Projects: GA AV ČR IAA300120709; GA AV ČR(CZ) KJB300120605 Institutional research plan: CEZ:AV0Z30120515 Keywords : Baltic Shield * mantle lithosphere * seismic anisotropy * domains and their boundaries in the mantle Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 2.509, year: 2010

  13. Long memory of mantle lithosphere fabric — European LAB constrained from seismic anisotropy

    Czech Academy of Sciences Publication Activity Database

    Plomerová, Jaroslava; Babuška, Vladislav

    2010-01-01

    Roč. 120, č. 1-2 (2010), s. 131-143 ISSN 0024-4937 R&D Projects: GA AV ČR IAA300120709; GA ČR GA205/07/1088 Institutional research plan: CEZ:AV0Z30120515 Keywords : lithosphere-asthenosphere boundary * fossil anisotropy * travel - time residuals Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 3.121, year: 2010

  14. Asthenosphere versus lithosphere as possible sources for basaltic magmas erupted during formation of the Red Sea

    International Nuclear Information System (INIS)

    Altherr, R.; Henjes-Kunst, F.; Baumann, A.

    1990-01-01

    Representative basalts from the axial trough of the Red Sea and from volcanic fields of the Arabian Peninsula ranging in composition from N-type MORB to basanite and in age from Early Miocene to Recent show a limited variation in their isotopic compositions: 87 Sr/ 86 Sr = 0.70240-0.70361, 206 Pb/ 204 Pb = 18.040-19.634, 207 Pb/ 204 Pb = 15.496-15.666, 208 Pb/ 204 Pb = 37.808-39.710, 143 Nd/ 144 Nd = 0.513194-0.512670. There is a poorly constrained correlation between chemical composition and isotope ratios: with increasing alkalinity, Sr and Pb isotope ratios increase and the Nd isotope ratio tends to decrease. In Pb isotope variation diagrams most of the basalts plot significantly above the NHRLs, irrespective of tectonic setting, i.e. thickness of underlying crust and/or lithosphere. MORBs from the axial trough of the Red Sea have higher Pb isotope ratios for a given 87 Sr/ 86 Sr than MORBs from the Indian Ocean ridges, including the Carlsberg Ridge. It is therefore suggested that both spreading ridges tap different convective systems in the asthenosphere. The tectonic setting of the basalts is reflected in their Nd-Sr isotope characteristics. Basalts from areas where the continental lithosphere is drastically thinned or absent (i.e. Red Sea axial trough and coastal plain, Afar) plot along a reference line defined by N-type MORB and Tristan da Cunha. Basalts erupted in areas with Pan-African crust of normal thickness and moderately thinned lithospheric mantle (i.e. rift shoulder) are characterized by relative low 143 Nd/ 144 Nd ratios and plot below the reference line towards an EM I component which is also found in the subcontinental lithospheric mantle. These differences in the Nd-Sr isotopic compositions of the basalts are independent of bulk-rock chemistry and are therefore controlled by tectonic setting alone. (orig./WL)

  15. Detailed Configuration of the Underthrusting Indian Lithosphere Beneath Western Tibet Revealed by Receiver Function Images

    Science.gov (United States)

    Xu, Qiang; Zhao, Junmeng; Yuan, Xiaohui; Liu, Hongbing; Pei, Shunping

    2017-10-01

    We analyze the teleseismic waveform data recorded by 42 temporary stations from the Y2 and ANTILOPE-1 arrays using the P and S receiver function techniques to investigate the lithospheric structure beneath western Tibet. The Moho is reliably identified as a prominent feature at depths of 55-82 km in the stacked traces and in depth migrated images. It has a concave shape and reaches the deepest location at about 80 km north of the Indus-Yarlung suture (IYS). An intracrustal discontinuity is observed at 55 km depth below the southern Lhasa terrane, which could represent the upper border of the eclogitized underthrusting Indian lower crust. Underthrusting of the Indian crust has been widely observed beneath the Lhasa terrane and correlates well with the Bouguer gravity low, suggesting that the gravity anomalies in the Lhasa terrane are induced by topography of the Moho. At 20 km depth, a midcrustal low-velocity zone (LVZ) is observed beneath the Tethyan Himalaya and southern Lhasa terrane, suggesting a layer of partial melts that decouples the thrust/fold deformation of the upper crust from the shortening and underthrusting in the lower crust. The Sp conversions at the lithosphere-asthenosphere boundary (LAB) can be recognized at depths of 130-200 km, showing that the Indian lithospheric mantle is underthrusting with a ramp-flat shape beneath southern Tibet and probably is detached from the lower crust immediately under the IYS. Our observations reconstruct the configuration of the underthrusting Indian lithosphere and indicate significant along strike variations.

  16. Hf-Nd isotope decoupling in the oceanic lithosphere: constraints from spinel peridotites from Oahu, Hawaii

    Science.gov (United States)

    Bizimis, Michael; Sen, Gautam; Salters, Vincent J. M.

    2004-01-01

    We present a detailed geochemical investigation on the Hf, Nd and Sr isotope compositions and trace and major element contents of clinopyroxene mineral separates from spinel lherzolite xenoliths from the island of Oahu, Hawaii. These peridotites are believed to represent the depleted oceanic lithosphere beneath Oahu, which is a residue of a MORB-related melting event some 80-100 Ma ago at a mid-ocean ridge. Clinopyroxenes from peridotites from the Salt Lake Crater (SLC) show a large range of Hf isotopic compositions, from ɛHf=12.2 (similar to the Honolulu volcanics series) to extremely radiogenic, ɛHf=65, at nearly constant 143Nd/ 144Nd ratios ( ɛNd=7-8). None of these samples show any isotopic evidence for interaction with Koolau-type melts. A single xenolith from the Pali vent is the only sample with Hf and Nd isotopic compositions that falls within the MORB field. The Hf isotopes correlate positively with the degree of depletion in the clinopyroxene (e.g. increasing Mg#, Cr#, decreasing Ti and heavy REE contents), but also with increasing Zr and Hf depletions relative to the adjacent REE in a compatibility diagram. The Lu/Hf isotope systematics of the SLC clinopyroxenes define apparent ages of 500 Ma or older and these compositions cannot be explained by mixing between any type of Hawaiian melts and the depleted Pacific lithosphere. Metasomatism of an ancient (e.g. 1 Ga or older) depleted peridotite protolith can, in principle, explain these apparent ages and the Nd-Hf isotope decoupling, but requires that the most depleted samples were subject to the least amount of metasomatism. Alternatively, the combined isotope, trace and major element compositions of these clinopyroxenes are best described by metasomatism of the 80-100 Ma depleted oceanic lithosphere by melts products of extensive mantle-melt interaction between Honolulu Volcanics-type melts and the depleted lithosphere.

  17. Lithospheric Structure, Crustal Kinematics, and Earthquakes in North China: An Integrated Study

    Science.gov (United States)

    Liu, M.; Yang, Y.; Sandvol, E.; Chen, Y.; Wang, L.; Zhou, S.; Shen, Z.; Wang, Q.

    2007-12-01

    The North China block (NCB) is geologically part of the Archaean Sino-Korean craton. But unusual for a craton, it was thermally rejuvenated since late Mesozoic, and experienced widespread extension and volcanism through much of the Cenozoic. Today, the NCB is characterized by strong internal deformation and seismicity, including the 1976 Tangshan earthquake that killed ~250,000 people. We have started a multidisciplinary study to image the lithospheric and upper mantle structure using seismological methods, to delineate crustal kinematics and deformation via studies of neotectonics and space geodesy, and to investigate the driving forces, the stress states and evolution, and seismicity using geodynamic modeling. Both seismic imaging and GPS results indicate that the Ordos plateau, which is the western part of the NCB and a relic of the Sino-Korean craton, has been encroached around its southern margins by mantle flow and thus is experiencing active cratonic destruction. Some of the mantle flow may be driven by the Indo-Asian collision, although the cause of the broad mantle upwelling responsible for the Mesozoic thinning of the NCB lithosphere remains uncertain. At present, crustal deformation in the NCB is largely driven by gravitational spreading of the expanding Tibetan Plateau. Internal deformation within the NCB is further facilitated by the particular tectonic boundary conditions around the NCB, and the large lateral contrasts of lithospheric strength and rheology. Based on the crustal kinematics and lithospheric structure, we have developed a preliminary geodynamic model for stress states and strain energy in the crust of the NCB. The predicted long-term strain energy distribution is comparable with the spatial pattern of seismic energy release in the past 2000 years. We are exploring the cause of the spatiotemporal occurrence of large earthquakes in the NCB, especially the apparent migration of seismicity from the Weihe-Shanxi grabens around the Ordos to

  18. Bottom to top lithosphere structure and evolution of western Eger Rift (Central Europe)

    Czech Academy of Sciences Publication Activity Database

    Babuška, Vladislav; Fiala, Jiří; Plomerová, Jaroslava

    2010-01-01

    Roč. 99, č. 4 (2010), s. 891-907 ISSN 1437-3254 R&D Projects: GA ČR GA205/07/1088; GA AV ČR IAA300120709 Institutional research plan: CEZ:AV0Z30120515; CEZ:AV0Z30130516 Keywords : western Bohemian Massif * Eger (Ohře) Rift * lithosphere structure and development * mantle seismic anisotropy Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 1.980, year: 2010

  19. Mars: Lithospheric Flexure of the Tharsis Montes Volcanoes and the Evolutionary Relationship to Their Tectonic History

    Science.gov (United States)

    Chute, H.; Dombard, A. J.; Byrne, P. K.

    2017-12-01

    Lithospheric flexure associated with Arsia, Pavonis, and Ascraeus Montes has been previously studied to constrain the timeline and breadth of endogenic surface features surrounding these volcanoes. Here, we simulate the radial extent of two specific load-related features: annular graben and flank terraces. Detailed mapping of Ascraeus Mons (the youngest of the three volcanoes) showed a phase of compression of the edifice, forming the terraces and an annulus of graben immediately off the flanks, followed by a period of extension that formed additional graben superposed on the terraces on the lower flanks of the edifice. This transition from compression to extension on the lower flanks has been difficult to reconcile in mechanical models. We explore, with finite-element simulations, the effects of a thermal anomaly associated with an intrusive crustal underplate, which results in locally thinning the lithosphere (in contrast to past efforts that assumed a constant-thickness lithosphere). We find that it is primarily the horizontal extent of this thermal anomaly that governs how the lithosphere flexes under a volcano, as well as the transition from flank compression to a tight annulus of extensional stresses. Specifically, we propose that the structures on Ascraeus may be consistent with an early stage of volcanic growth accompanied by an underplate about the same width as the edifice that narrowed as volcanism waned, resulting in an inward migration of the extensional horizontal stresses from the surrounding plains onto the lower flanks. By linking the surface strains on the volcano with the volcano-tectonic evolution predicted by our flexure model, we can further constrain a more accurate timeline for the tectonic history of Ascraeus Mons. More broadly, because these tectonic structures are commonly observed, our results provide a general evolutionary model for large shield volcanoes on Mars.

  20. Recycling of Oceanic Lithosphere: Water, fO2 and Fe-isotope Constraints

    Science.gov (United States)

    Bizmis, M.; Peslier, A. H.; McCammon, C. A.; Keshav, S.; Williams, H. M.

    2014-01-01

    Spinel peridotite and garnet pyroxenite xenoliths from Hawaii provide important clues about the composition of the oceanic lithosphere, and can be used to assess its contribution to mantle heterogeneity upon recycling. The peridotites have lower bulk H2O (approximately 70-114 ppm) than the MORB source, qualitatively consistent with melt depletion. The garnet pyroxenites (high pressure cumulates) have higher H2O (200-460 ppm, up to 550 ppm accounting for phlogopite) and low H2O/Ce ratios (less than 100). The peridotites have relatively light Fe-isotopes (delta Fe -57 = -0.34 to 0.13) that decrease with increasing depletion, while the pyroxenites are significantly heavier (delta Fe-57 up to 0.3). The observed xenolith, as well as MORB and OIB total Fe-isotope variability is larger that can be explained by existing melting models. The high H2O and low H2O/Ce ratios of pyroxenites are similar to estimates of EM-type OIB sources, while their heavy delta Fe-57 are similar to some Society and Cook-Austral basalts. Therefore, recycling of mineralogically enriched oceanic lithosphere (i.e. pyroxenites) may contribute to OIB sources and mantle heterogeneity. The Fe(3+)/Sigma? systematics of these xenoliths also suggest that there might be lateral redox gradients within the lithosphere, between juxtaposed oxidized spinel peridotites (deltaFMQ = -0.7 to 1.6, at 15 kb) and more reduced pyroxenites (deltaFMQ = -2 to -0.4, at 20-25kb). Such mineralogically and compositionally imposed fO2 gradients may generate local redox melting due to changes in fluid speciation (e.g. reduced fluids from pyroxenite encountering more oxidized peridotite). Formation of such incipient, small degree melts could further contribute to metasomatic features seen in peridotites, mantle heterogeneity, as well as the low velocity and high electrical conductivity structures near the base of the lithosphere and upper mantle.

  1. Short wavelength lateral variability of lithospheric mantle beneath the Middle Atlas (Morocco) as recorded by mantle xenoliths

    Science.gov (United States)

    El Messbahi, Hicham; Bodinier, Jean-Louis; Vauchez, Alain; Dautria, Jean-Marie; Ouali, Houssa; Garrido, Carlos J.

    2015-05-01

    The Middle Atlas is a region where xenolith-bearing volcanism roughly coincides with the maximum of lithospheric thinning beneath continental Morocco. It is therefore a key area to study the mechanisms of lithospheric thinning and constrain the component of mantle buoyancy that is required to explain the Moroccan topography. Samples from the two main xenolith localities, the Bou Ibalghatene and Tafraoute maars, have been investigated for their mineralogy, microstructures, crystallographic preferred orientation, and whole-rock and mineral compositions. While Bou Ibalghatene belongs to the main Middle Atlas volcanic field, in the 'tabular' Middle Atlas, Tafraoute is situated about 45 km away, on the North Middle Atlas Fault that separates the 'folded' Middle Atlas, to the South-East, from the 'tabular' Middle Atlas, to the North-West. Both xenolith suites record infiltration of sub-lithospheric melts that are akin to the Middle Atlas volcanism but were differentiated to variable degrees as a result of interactions with lithospheric mantle. However, while the Bou Ibalghatene mantle was densely traversed by high melt fractions, mostly focused in melt conduits, the Tafraoute suite records heterogeneous infiltration of smaller melt fractions that migrated diffusively, by intergranular porous flow. As a consequence the lithospheric mantle beneath Bou Ibalghaten was strongly modified by melt-rock interactions in the Cenozoic whereas the Tafraoute mantle preserves the record of extensional lithospheric thinning, most likely related to Mesozoic rifting. The two xenolith suites illustrate distinct mechanisms of lithospheric thinning: extensional thinning in Tafraoute, where hydrous incongruent melting triggered by decompression probably played a key role in favouring strain localisation, vs. thermal erosion in Bou Ibalghatene, favoured and guided by a dense network of melt conduits. Our results lend support to the suggestion that lithospheric thinning beneath the Atlas

  2. On the Rheology of Slow Slip Events Around Continental Moho

    Science.gov (United States)

    Gao, X.; Wang, K.; Wada, I.; He, J.

    2015-12-01

    Slow slip events (SSEs) occur in various tectonic settings but are the most abundant around the depth of upper-plate Moho in warm-slab subduction zones such as Cascadia and Nankai, accompanied with non-valcanic tremor. The paucity or absence of these near-Moho SSEs in many other subduction zones and the relationship of these SSEs with the megathrust seismogenic zone are intriguing questions of fundamental importance. We address these questions by examining Frictional-Viscous Transitions (FVTs) along subduction faults. Our key hypothesis is that there is a sharp decrease in the frictional stength of subduction faults across its intersection with the continental Moho for two reasons: (1) Enrichment of weak hydrous minerals such as talc due to the hydration of the base of the mantle wedge, and (2) elevated pore fluid pressure in the fault zone because of serpentine (antigorite) saturation of the mantle wedge corner which retards further fluid consumption and decreases permeability. Through thermal modelling using heat flow data as constraints, we found that for Cascadia, Nankai, and Hikurangi, there are two FVTs, with the first one being shallower than the Moho. At the Moho, the fault returns to the friction mode, but with slip behaviour affected by the presence of hydrous minerals and high fluid pressure. We propose this is where near-Moho SSEs occur. Farther downdip, the second FVT occurs and serves to limit the depth extent of the SSEs. Coseismic slip is limited to be shallower than the first FVT, such that frictional slip around the Moho occurs interseismically as SSEs. This mechanism also explains the occurrence of tremor, believed to represent very small SSEs, along the San Andreas fault around the Moho depth. In a way, this mechanism is akin to the "jelly-sandwich" rheology model of the continental lithosphere, but the onset of the lower slice of bread is due to a decrease in frictional strength as opposed to an increase in viscous strength. For the other

  3. A point implicit time integration technique for slow transient flow problems

    Energy Technology Data Exchange (ETDEWEB)

    Kadioglu, Samet Y., E-mail: kadioglu@yildiz.edu.tr [Department of Mathematical Engineering, Yildiz Technical University, 34210 Davutpasa-Esenler, Istanbul (Turkey); Berry, Ray A., E-mail: ray.berry@inl.gov [Idaho National Laboratory, P.O. Box 1625, MS 3840, Idaho Falls, ID 83415 (United States); Martineau, Richard C. [Idaho National Laboratory, P.O. Box 1625, MS 3840, Idaho Falls, ID 83415 (United States)

    2015-05-15

    Highlights: • This new method does not require implicit iteration; instead it time advances the solutions in a similar spirit to explicit methods. • It is unconditionally stable, as a fully implicit method would be. • It exhibits the simplicity of implementation of an explicit method. • It is specifically designed for slow transient flow problems of long duration such as can occur inside nuclear reactor coolant systems. • Our findings indicate the new method can integrate slow transient problems very efficiently; and its implementation is very robust. - Abstract: We introduce a point implicit time integration technique for slow transient flow problems. The method treats the solution variables of interest (that can be located at cell centers, cell edges, or cell nodes) implicitly and the rest of the information related to same or other variables are handled explicitly. The method does not require implicit iteration; instead it time advances the solutions in a similar spirit to explicit methods, except it involves a few additional function(s) evaluation steps. Moreover, the method is unconditionally stable, as a fully implicit method would be. This new approach exhibits the simplicity of implementation of explicit methods and the stability of implicit methods. It is specifically designed for slow transient flow problems of long duration wherein one would like to perform time integrations with very large time steps. Because the method can be time inaccurate for fast transient problems, particularly with larger time steps, an appropriate solution strategy for a problem that evolves from a fast to a slow transient would be to integrate the fast transient with an explicit or semi-implicit technique and then switch to this point implicit method as soon as the time variation slows sufficiently. We have solved several test problems that result from scalar or systems of flow equations. Our findings indicate the new method can integrate slow transient problems very

  4. A point implicit time integration technique for slow transient flow problems

    International Nuclear Information System (INIS)

    Kadioglu, Samet Y.; Berry, Ray A.; Martineau, Richard C.

    2015-01-01

    Highlights: • This new method does not require implicit iteration; instead it time advances the solutions in a similar spirit to explicit methods. • It is unconditionally stable, as a fully implicit method would be. • It exhibits the simplicity of implementation of an explicit method. • It is specifically designed for slow transient flow problems of long duration such as can occur inside nuclear reactor coolant systems. • Our findings indicate the new method can integrate slow transient problems very efficiently; and its implementation is very robust. - Abstract: We introduce a point implicit time integration technique for slow transient flow problems. The method treats the solution variables of interest (that can be located at cell centers, cell edges, or cell nodes) implicitly and the rest of the information related to same or other variables are handled explicitly. The method does not require implicit iteration; instead it time advances the solutions in a similar spirit to explicit methods, except it involves a few additional function(s) evaluation steps. Moreover, the method is unconditionally stable, as a fully implicit method would be. This new approach exhibits the simplicity of implementation of explicit methods and the stability of implicit methods. It is specifically designed for slow transient flow problems of long duration wherein one would like to perform time integrations with very large time steps. Because the method can be time inaccurate for fast transient problems, particularly with larger time steps, an appropriate solution strategy for a problem that evolves from a fast to a slow transient would be to integrate the fast transient with an explicit or semi-implicit technique and then switch to this point implicit method as soon as the time variation slows sufficiently. We have solved several test problems that result from scalar or systems of flow equations. Our findings indicate the new method can integrate slow transient problems very

  5. Mechanical Properties of Stable Glasses Using Nanoindentation

    Science.gov (United States)

    Wolf, Sarah; Liu, Tianyi; Jiang, Yijie; Ablajan, Keyume; Zhang, Yue; Walsh, Patrick; Turner, Kevin; Fakhraai, Zahra

    Glasses with enhanced stability over ordinary, liquid quenched glasses have been formed via the process of Physical Vapor Deposition (PVD) by using a sufficiently slow deposition rate and a substrate temperature slightly below the glass transition temperature. These stable glasses have been shown to exhibit higher density, lower enthalpy, and better kinetic stability over ordinary glass, and are typically optically birefringent, due to packing and orientational anisotropy. Given these exceptional properties, it is of interest to further investigate how the properties of stable glasses compare to those of ordinary glass. In particular, the mechanical properties of stable glasses remain relatively under-investigated. While the speed of sound and elastic moduli have been shown to increase with increased stability, little is known about their hardness and fracture toughness compared to ordinary glasses. In this study, glasses of 9-(3,5-di(naphthalen-1-yl)phenyl)anthracene were deposited at varying temperatures relative to their glass transition temperature, and their mechanical properties measured by nanoindentation. Hardness and elastic modulus of the glasses were compared across substrate temperatures. After indentation, the topography of these films were studied using Atomic Force Microscopy (AFM) in order to further compare the relationship between thermodynamic and kinetic stability and mechanical failure. Z.F. and P.W. acknowledge funding from NSF(DMREF-1628407).

  6. Electromagnetic study of lithospheric structure in the marginal zone of East European Craton in NW Poland

    Science.gov (United States)

    Jóźwiak, Waldemar

    2013-10-01

    The marginal zone of the East European Platform, an area of key importance for our understanding of the geotectonic history of Europe, has been a challenge for geophysicists for many years. The basic research method is seismic survey, but many important data on physical properties and structure of the lithosphere may also be provided by the electromagnetic methods. In this paper, results of deep basement study by electromagnetic methods performed in Poland since the mid-1960s are presented. Over this time, several hundred long-period soundings have been executed providing an assessment of the electric conductivity distribution in the crust and upper mantle. Numerous 1D, 2D, and pseudo-3D electric conductivity models were constructed, and a new interpretation method based on Horizontal Magnetic Tensor analysis has been applied recently. The results show that the contact zone is of lithospheric discontinuity character and there are distinct differences in geoelectric structures between the Precambrian Platform, transitional zone (TESZ), and the Paleozoic Platform. The wide-spread conducting complexes in the crust with integral conductivity values reaching 10 000 S at 20-30 km depths are most spectacular. They are most likely consequences of geological processes related to Caledonian and Variscan orogenesis. The upper mantle conductivity is also variable, the thickness of high-resistive lithospheric plates ranging from 120-140 km under the Paleozoic Platform to 220-240 km under the East European Platform.

  7. Observatory geoelectric fields induced in a two-layer lithosphere during magnetic storms

    Science.gov (United States)

    Love, Jeffrey J.; Swidinsky, Andrei

    2015-01-01

    We report on the development and validation of an algorithm for estimating geoelectric fields induced in the lithosphere beneath an observatory during a magnetic storm. To accommodate induction in three-dimensional lithospheric electrical conductivity, we analyze a simple nine-parameter model: two horizontal layers, each with uniform electrical conductivity properties given by independent distortion tensors. With Laplace transformation of the induction equations into the complex frequency domain, we obtain a transfer function describing induction of observatory geoelectric fields having frequency-dependent polarization. Upon inverse transformation back to the time domain, the convolution of the corresponding impulse-response function with a geomagnetic time series yields an estimated geoelectric time series. We obtain an optimized set of conductivity parameters using 1-s resolution geomagnetic and geoelectric field data collected at the Kakioka, Japan, observatory for five different intense magnetic storms, including the October 2003 Halloween storm; our estimated geoelectric field accounts for 93% of that measured during the Halloween storm. This work demonstrates the need for detailed modeling of the Earth’s lithospheric conductivity structure and the utility of co-located geomagnetic and geoelectric monitoring.

  8. A lithospheric magnetic field model derived from the Swarm satellite magnetic field measurements

    Science.gov (United States)

    Hulot, G.; Thebault, E.; Vigneron, P.

    2015-12-01

    The Swarm constellation of satellites was launched in November 2013 and has since then delivered high quality scalar and vector magnetic field measurements. A consortium of several research institutions was selected by the European Space Agency (ESA) to provide a number of scientific products which will be made available to the scientific community. Within this framework, specific tools were tailor-made to better extract the magnetic signal emanating from Earth's the lithospheric. These tools rely on the scalar gradient measured by the lower pair of Swarm satellites and rely on a regional modeling scheme that is more sensitive to small spatial scales and weak signals than the standard spherical harmonic modeling. In this presentation, we report on various activities related to data analysis and processing. We assess the efficiency of this dedicated chain for modeling the lithospheric magnetic field using more than one year of measurements, and finally discuss refinements that are continuously implemented in order to further improve the robustness and the spatial resolution of the lithospheric field model.

  9. Isotopic characterisation of the sub-continental lithospheric mantle beneath Zealandia, a rifted fragment of Gondwana

    DEFF Research Database (Denmark)

    Waight, Tod Earle; Scott, James M.; van der Meer, Quinten Har Adriaan

    2013-01-01

    The greater New Zealand region, known as Zealandia, represents an amalgamation of crustal fragments accreted to the paleo-Pacific Gondwana margin and which underwent significant thinning during the subsequent split from Australia and Antarctica in the mid-Cretaceous following opening of the Tasma...... Sea and the Southern Ocean. We present Sr, Nd and Pb isotopes and laser ablation trace element data for a comprehensive suite of clinopyroxene separates from spinel peridotite xenoliths (lherzolite to harzburgite) from the sub-continental lithospheric mantle across southern New Zealand...... composition, age or geographical separation. These isotopic compositions indicate that the sub-continental lithospheric mantle under southern New Zealand has a regionally distinct and pervasive FOZO to HIMU – like signature. The isotopic signatures are also similar to those of the alkaline magmas...... that transported the xenoliths and suggest that most of the HIMU signature observed in the volcanics could be derived from a major source component in the sub-continental lithospheric mantle. Trace element abundances in clinopyroxene are highly heterogeneous and vary from LREE-enriched, relatively flat and MORB...

  10. Tectonically asymmetric Earth: From net rotation to polarized westward drift of the lithosphere

    Directory of Open Access Journals (Sweden)

    Carlo Doglioni

    2015-05-01

    Full Text Available The possibility of a net rotation of the lithosphere with respect to the mantle is generally overlooked since it depends on the adopted mantle reference frames, which are arbitrary. We review the geological and geophysical signatures of plate boundaries, and show that they are markedly asymmetric worldwide. Then we compare available reference frames of plate motions relative to the mantle and discuss which is at best able to fit global tectonic data. Different assumptions about the depths of hotspot sources (below or within the asthenosphere, which decouples the lithosphere from the deep mantle predict different rates of net rotation of the lithosphere relative to the mantle. The widely used no-net-rotation (NNR reference frame, and low (1°/Ma net rotation (shallow hotspots source, all plates, albeit at different velocity, move westerly along a curved trajectory, with a tectonic equator tilted about 30° relative to the geographic equator. This is consistent with the observed global tectonic asymmetries.

  11. Insights into the lithospheric architecture of Iberia and Morocco from teleseismic body-wave attenuation

    Science.gov (United States)

    Bezada, Maximiliano J.

    2017-11-01

    The long and often complicated tectonic history of continental lithosphere results in lateral strength heterogeneities which in turn affect the style and localization of deformation. In this study, we produce a model for the attenuation structure of Iberia and northern Morocco using a waveform-matching approach on P-wave data from teleseismic deep-focus earthquakes. We find that attenuation is correlated with zones of intraplate deformation and seismicity, but do not find a consistent relationship between attenuation and recent volcanism. The main features of our model are low to moderate Δt* in the undeformed Tertiary basins of Spain and high Δt* in areas deformed by the Alpine orogeny. Additionally, low Δt* is found in areas where the Alboran slab is thought to be attached to the Iberian and African lithosphere, and high Δt* where it has detached. These features are robust with respect to inversion parameters, and are consistent with independent data. Very mild backazimuthal dependence of the measurements and comparison with previous results suggest that the source of the attenuation is sub-crustal. In line with other recent studies, the range of Δt* we observe is much larger than can be expected from lithospheric thickness or temperature variations.

  12. Global Models of Ridge-Push Force, Geoid, and Lithospheric Strength of Oceanic plates

    Science.gov (United States)

    Mahatsente, Rezene

    2017-12-01

    An understanding of the transmission of ridge-push related stresses in the interior of oceanic plates is important because ridge-push force is one of the principal forces driving plate motion. Here, I assess the transmission of ridge-push related stresses in oceanic plates by comparing the magnitude of the ridge-push force to the integrated strength of oceanic plates. The strength is determined based on plate cooling and rheological models. The strength analysis includes low-temperature plasticity (LTP) in the upper mantle and assumes a range of possible tectonic conditions and rheology in the plates. The ridge-push force has been derived from the thermal state of oceanic lithosphere, seafloor depth and crustal age data. The results of modeling show that the transmission of ridge-push related stresses in oceanic plates mainly depends on rheology and predominant tectonic conditions. If a lithosphere has dry rheology, the estimated strength is higher than the ridge-push force at all ages for compressional tectonics and at old ages (>75 Ma) for extension. Therefore, under such conditions, oceanic plates may not respond to ridge-push force by intraplate deformation. Instead, the plates may transmit the ridge-push related stress in their interior. For a wet rheology, however, the strength of young lithosphere (stress may dissipate in the interior of oceanic plates and diffuses by intraplate deformation. The state of stress within a plate depends on the balance of far-field and intraplate forces.

  13. Xenoliths in Eocene lavas from Central Tibet record carbonated metasomatism of the lithosphere

    Science.gov (United States)

    Goussin, Fanny; Cordier, Carole; Boulvais, Philippe; Guillot, Stéphane; Roperch, Pierrick; Replumaz, Anne

    2017-04-01

    Cenozoic post-collisional volcanism of the Tibetan Plateau, emplaced on an accreted continental margin under compression, could bring important information regarding the edification of the Plateau. In this study, we combined petrography, whole rock geochemistry, stable isotopes and in situ mineral analysis to decipher the genesis of Eocene-Oligocene magmatic rocks from the Nangqian basin (35-38 Ma, [Spurlin et al., 2005; Xu et al., 2016]), located at the hinge between Central Tibet and the Eastern Indo-Asia Collision Zone. Our dataset includes potassic trachyandesites; amphibole-bearing potassic trachytes; and rare ultrapotassic (K2O/Na2O ≥ 4) mafic syenites. All samples have high REE abundances (La = 100 - 500 x primitive mantle). Fractionation of heavy REE (Gd/YbN > 3) indicates melting in the garnet stability field, and relative depletion in high-field strength elements (Nb, Ta) indicates a selective enrichment of the source by metasomatic fluids. This metasomatism event is also evidenced by the occurrence of re-equilibrated mantle xenocrysts of phlogopite (Mg# = 88 - 90 and Cr2O3 content = 0.9 - 1.82 wt%) in mafic syenites. Potassic trachyandesites have specific composition, with negative Zr-Hf anomaly and low Hf/Sm (0.2 - 0.4). Indeed, they include xenocrystic aggregates, composed of magmatic clinopyroxene, apatite and subordinate biotite and feldspar, with interstitial calcite and dolomite. δ18OV -SMOW (9.2 - 11.0 ) and δ13CV -PDB (-6.1 - -4.0 ) of these rocks indicate the presence of primary, mantle-derived carbonates. In situ analysis of the major and trace element compositions of the carbonates, clinopyroxenes and apatites further suggest that these aggregates represent cumulates of a carbonate-bearing magma. These xenoliths thus show that the lithospheric mantle was also metasomatized by CO2-rich fluids. Cenozoic carbonatites in China have been identified in Maoniuping in Western Sichuan (31.7 Ma), Lixian in the Western Qinlin (22-23 Ma), and

  14. Contrast of lithospheric dynamics across the southern and eastern margins of the Tibetan Plateau: a numerical study

    Science.gov (United States)

    Sun, Yujun; Fan, Taoyuan; Wu, Zhonghai

    2018-05-01

    Both of the southern and eastern margins of the Tibetan Plateau are bounded by the cratonic blocks (Indian plate and Sichuan basin). However, there are many differences in tectonic deformation, lithospheric structure and surface heat flow between these two margins. What dynamics cause these differences? With the constraints of the lithospheric structure and surface heat flow across the southern and eastern margins of Tibetan Plateau, we constructed 2-D thermal-mechanical finite-element models to investigate the dynamics across these two margins. The results show that the delamination of mantle lithosphere beneath the Lhasa terrane in Oligocene and the rheological contrast between the Indian and Tibetan crust are the two main factors that control the subduction of the Indian plate. The dynamics across the eastern margin of the Tibetan Plateau are different from the southern margin. During the lateral expansion of the Tibetan Plateau, pure shear thickening is the main deformation characteristic for the Songpan-Ganzi lithosphere. This thickening results in the reduction of geothermal gradient and surface heat flow. From this study, it can be seen that the delamination of the mantle lithosphere and the rheological contrast between the Tibetan Plateau and its bounding blocks are the two main factors that control the lithospheric deformation and surface heat flow.

  15. Slow brushing reduces heat pain in humans.

    Science.gov (United States)

    Liljencrantz, J; Strigo, I; Ellingsen, D M; Krämer, H H; Lundblad, L C; Nagi, S S; Leknes, S; Olausson, H

    2017-08-01

    C-tactile (CT) afferents are unmyelinated low-threshold mechanoreceptors optimized for signalling affective, gentle touch. In three separate psychophysical experiments, we examined the contribution of CT afferents to pain modulation. In total, 44 healthy volunteers experienced heat pain and CT optimal (slow brushing) and CT sub-optimal (fast brushing or vibration) stimuli. Three different experimental paradigms were used: Concurrent application of heat pain and tactile (slow brushing or vibration) stimulation; Slow brushing, applied for variable duration and intervals, preceding heat pain; Slow versus fast brushing preceding heat pain. Slow brushing was effective in reducing pain, whereas fast brushing or vibration was not. The reduction in pain was significant not only when the CT optimal touch was applied simultaneously with the painful stimulus but also when the two stimuli were separated in time. For subsequent stimulation, the pain reduction was more pronounced for a shorter time interval between brushing and pain. Likewise, the effect was more robust when pain was preceded by a longer duration of brush stimulation. Strong CT-related pain reduction was associated with low anxiety and high calmness scores obtained by a state anxiety questionnaire. Slow brushing - optimal for CT activation - is effective in reducing pain from cutaneous heating. The precise mechanisms for the pain relief are as yet unknown but possible mechanisms include inhibition of nociceptive projection neurons at the level of the dorsal horn as well as analgesia through cortical mechanisms. Slow brushing stimuli - optimal for activation of C-tactile fibres - can reduce pain from cutaneous heating. No such effect was seen with fast brushing or vibration. These observations indicate the role of C-tactile fibres in pain modulation. © 2017 European Pain Federation - EFIC®.

  16. STRUCTURE OF THE LITHOSPHERE AND SEISMOTECTONIC DEFORMATIONS IN CONTACT ZONE OF LITHOSPHERIC PLATES IN THE SUMATRA ISLAND REGION

    Directory of Open Access Journals (Sweden)

    O. A. Kuchay

    2015-01-01

    Full Text Available The inversion seismic tomography algorithm (ITS was used to calculate 3D seismic anomalies models for velocities of P- and S-waves in the zone of the Sunda arc, Indonesia. In the area under study, strong earthquakes (M>4.8 are clustered in the zone of high P-wave velocities. Earthquake hypocenters are located in zones of both high and low velocity anomalies of S-waves. The giant Sumatra earthquake (December 26, 2004, Mw=9.0 ruptured the greatest fault length of any recorded earthquake, and the rupture started in the area wherein the sign of P-wave velo­city anomalies is abruptly changed. We calculated seismotectonic deformations (STD from data on mechanisms of 2227 earthquakes recorded from 1977 to 2013, and our calculations show that the STD component, that controls vertical extension of rocks, is most stable through all the depth levels. In the marginal regions at the western and eastern sides of the Sunda arc, the crustal areas (depths from 0 to 35 km are subject to deformations which sign is opposite to that of deformations in the central part. Besides, at depths from 70 to 150 km beneath the Sumatra earthquake epicentre area, the zone is subject to deformations which sign is opposite to that of deformations in the studied part of the Sunda arc. For earthquakes that may occur in the crust in the Sunda arc in the contact zone of the plates, maximum magnitudes depend on the direction of pressure imposed by the actively subducting plate, which is an additional criteria for determining the limit magnitude for the region under study. 

  17. Lithosphere destabilization by melt percolation during pre-oceanic rifting: Evidence from Alpine-Apennine ophiolitic peridotites

    Science.gov (United States)

    Piccardo, Giovanni; Ranalli, Giorgio

    2017-04-01

    Orogenic peridotites from Alpine-Apennine ophiolite Massifs (Lanzo, Voltri, External and Internal Ligurides, - NW Italy, and Mt. Maggiore - Corsica) derive from the mantle lithosphere of the Ligurian Tethys. Field/structural and petrologic/geochemical studies provide constraints on the evolution of the lithospheric mantle during pre-oceanic passive rifting of the late Jurassic Ligurian Tethys ocean. Continental rifting by far-field tectonic forces induced extension of the lithosphere by means of km-scale extensional shear zones that developed before infiltration of melts from the asthenosphere (Piccardo and Vissers, 2007). After significant thinning of the lithosphere, the passively upwelling asthenosphere underwent spinel-facies decompression melting along the axial zone of the extensional system. Silica-undersaturated melt fractions percolated through the lithospheric mantle via diffuse/focused porous flow and interacted with the host peridotite through pyroxenes-dissolving/olivine-precipitating melt/rock reactions. Pyroxene dissolution and olivine precipitation modified the composition of the primary silica-undersaturated melts into derivative silica-saturated melts, while the host lithospheric spinel lherzolites were transformed into pyroxene-depleted/olivine-enriched reactive spinel harzburgites and dunites. The derivative liquids interacted through olivine-dissolving/orthopyroxene+plagioclase-crystallizing reactions with the host peridotites that were impregnated and refertilized (Piccardo et al., 2015). The saturated melts stagnated and crystallized in the shallow mantle lithosphere (as testified by diffuse interstitial crystallization of euhedral orthopyroxene and anhedral plagioclase) and locally ponded, forming orthopyroxene-rich/olivine-free gabbro-norite pods (Piccardo and Guarnieri, 2011). Reactive and impregnated peridotites are characterized by high equilibration temperatures (up to 1250 °C) even at low pressure, plagioclase-peridotite facies

  18. Slow electron contribution to inelastic reflection anisotropy

    International Nuclear Information System (INIS)

    Podsvirov, O.A.; Kuznetsov, Yu.A.

    1980-01-01

    Investigated is electron contribution with low energy (up to 1 keV) to the anisotropy of electron inelastic reflection (IRE) from silicon monocrystal (111) within 12-50 keV energy range of primary electrons. Experimental data on IRE anisotropy are presented: delay curves for silicon monocrystal, permitting to separate electrons with the energy up to 1 keV, dependences of IRE anisotropy on the energy of primary electrons for the systems - monocrystalline silicon-amorphous silicon film and delay curves for such systems (film thickness varies from 20 to 2000 A). Suggested is a phenomenologic model, permitting to take into account the contribution of slow electrons to IRE anisotropy: it is supposed, that three groups of electrons take part in the formation of the latter: elastic and inelastic reflected electrons, slow electrons, excited by primary electrons and slow electrons, generated by the reverse flow of the scattered electrons. Contribution of electrons, different by origin, to IRE anisotropy is evaluated in accordance with the experimental data on the basis of this model. It is stated, that slow electrons constitute approximately one half of the IRE anisotropy value, the contribution of both groups of slow electrons being approximately equal

  19. Human gamma oscillations during slow wave sleep.

    Directory of Open Access Journals (Sweden)

    Mario Valderrama

    Full Text Available Neocortical local field potentials have shown that gamma oscillations occur spontaneously during slow-wave sleep (SWS. At the macroscopic EEG level in the human brain, no evidences were reported so far. In this study, by using simultaneous scalp and intracranial EEG recordings in 20 epileptic subjects, we examined gamma oscillations in cerebral cortex during SWS. We report that gamma oscillations in low (30-50 Hz and high (60-120 Hz frequency bands recurrently emerged in all investigated regions and their amplitudes coincided with specific phases of the cortical slow wave. In most of the cases, multiple oscillatory bursts in different frequency bands from 30 to 120 Hz were correlated with positive peaks of scalp slow waves ("IN-phase" pattern, confirming previous animal findings. In addition, we report another gamma pattern that appears preferentially during the negative phase of the slow wave ("ANTI-phase" pattern. This new pattern presented dominant peaks in the high gamma range and was preferentially expressed in the temporal cortex. Finally, we found that the spatial coherence between cortical sites exhibiting gamma activities was local and fell off quickly when computed between distant sites. Overall, these results provide the first human evidences that gamma oscillations can be observed in macroscopic EEG recordings during sleep. They support the concept that these high-frequency activities might be associated with phasic increases of neural activity during slow oscillations. Such patterned activity in the sleeping brain could play a role in off-line processing of cortical networks.

  20. Magnon inflation: slow roll with steep potentials

    Energy Technology Data Exchange (ETDEWEB)

    Adshead, Peter [Department of Physics, University of Illinois at Urbana-Champaign,Urbana, IL 61801 (United States); Blas, Diego [Theoretical Physics Department, CERN,CH-1211 Geneva 23 (Switzerland); Burgess, C.P.; Hayman, Peter [Physics & Astronomy, McMaster University,Hamilton, ON, L8S 4M1 (Canada); Perimeter Institute for Theoretical Physics, Waterloo, Ontario N2L 2Y5 (Canada); Patil, Subodh P. [Department of Theoretical Physics, University of Geneva,24 Quai Ansermet, Geneva, CH-1211 (Switzerland)

    2016-11-04

    We find multi-scalar effective field theories (EFTs) that can achieve a slow inflationary roll despite having a scalar potential that does not satisfy G{sup ab}∂{sub a}V∂{sub b}V≪V{sup 2}/M{sub p}{sup 2} (where G{sub ab} is the target-space metric). They evade the usual slow-roll conditions on V because their kinetic energies are dominated by single-derivative terms rather than the usual two-derivative terms. Single derivatives dominate during slow roll and so do not require a breakdown of the usual derivative expansion that underpins calculational control in much of cosmology. The presence of such terms requires some sort of UV Lorentz-symmetry breaking during inflation (besides the usual cosmological breaking). Chromo-natural inflation provides one particular example of a UV theory that can generate the multi-field single-derivative terms we consider, and we argue that the EFT we find indeed captures the slow-roll conditions for its background evolution. We also show that our EFT can be understood as a multi-field generalization of the single-field Cuscuton models. The multi-field case introduces a new feature, however: the scalar kinetic terms define a target-space 2-form, F{sub ab}, whose antisymmetry gives new ways for slow roll to be achieved.

  1. Magnon Inflation: Slow Roll with Steep Potentials

    CERN Document Server

    Adshead, Peter; Burgess, C P; Hayman, Peter; Patil, Subodh P

    2016-01-01

    We find multi-scalar effective field theories (EFTs) that can achieve a slow inflationary roll despite having a scalar potential that does not satisfy the usual slow-roll condition (d V)^2 << V^2/Mp^2. They evade the usual slow-roll conditions on $V$ because their kinetic energies are dominated by single-derivative terms rather than the usual two-derivative terms. Single derivatives dominate during slow roll and so do not require a breakdown of the usual derivative expansion that underpins calculational control in much of cosmology. The presence of such terms requires some sort of UV Lorentz-symmetry breaking during inflation (besides the usual cosmological breaking). Chromo-natural inflation provides an example of a UV theory that can generate the multi-field single-derivative terms we consider, and we argue that the EFT we find indeed captures the slow-roll conditions for the background evolution for Chromo-natural inflation. We also show that our EFT can be understood as a multi-field generalization ...

  2. Garnet Pyroxenites from Kaula, Hawaii: Implications for Plume-Lithosphere Interaction

    Science.gov (United States)

    Bizimis, M.; Garcia, M. O.; Norman, M. D.

    2006-12-01

    The presence of garnet pyroxenite xenoliths on Oahu and Kaula Islands, Hawaii, provides the rare opportunity to investigate the composition of the deeper oceanic mantle lithosphere and the nature of plume-lithosphere interaction in two dimensions, downstream from the center of the Hawaiian plume. Kaula (60 miles SW of Kauai) is on the same bathymetric shallow as Kauai and the Kaula-Niihau-Kauai islands form a cross-trend relationship to the Hawaiian Island ridge. Here, we present the first Sr-Nd isotope data on clinopyroxenes (cpx) from Kaula pyroxenites, and we compare them with the Salt Lake Crater (SLC) pyroxenites from Oahu. The Kaula cpx major element compositions overlap those of the (more variable) SLC pyroxenites (e.g. Mg# = 0.79-0.83), except for their higher Al2O3 contents (9% vs. 5-8%) than the SLC. The Kaula cpx are LREE enriched with elevated Dy/Yb ratios, similar to the SLC pyroxenites and characteristic of the presence of garnet that preferentially incorporates the HREE. In Sr-Nd isotope space, the Kaula pyroxenite compositions (87Sr/86Sr= 0.70312-0.70326, ɛNd= 7.2-8.6) overlap those of both the Oahu-Kauai post erosional lavas and the SLC pyroxenites, falling at the isotopically depleted end of the Hawaiian lava compositions. The depleted Sr-Nd isotope compositions of the Kaula pyroxenites suggest that they are not related to the isotopically enriched shield stage Hawaiian lavas, either as a source material (i.e. recycled eclogite) or as cumulates. Their elevated 87Sr/86Sr ratios relative to MORB also suggests that they are not likely MORB-related cumulates. The similarities between the Oahu and Kaula pyroxenites, some 200 km apart, suggest the widespread presence of pyroxenitic material in the deeper (>60km) Pacific lithosphere between Oahu and Kaula-Kauai, as high pressure cumulates from melts isotopically similar to the secondary Hawaiian volcanism. The presence of this material within the lower lithosphere is consistent with seismic observations

  3. Deep magmatism alters and erodes lithosphere and facilitates decoupling of Rwenzori crustal block

    Science.gov (United States)

    Wallner, Herbert; Schmeling, Harro

    2013-04-01

    The title is the answer to the initiating question "Why are the Rwenzori Mountains so high?" posed at the EGU 2008. Our motivation origins in the extreme topography of the Rwenzori Mountains. The strong, cold proterozoic crustal horst is situated between rift segments of the western branch of the East African Rift System. Ideas of rift induced delamination (RID) and melt induced weakening (MIW) have been tested with one- and two-phase flow physics. Numerical model parameter variations and new observations lead to a favoured model with simple and plausible definitions. Results coincide in the scope of their comparability with different observations or vice versa reduce ambiguity and uncertainties in model input. Principle laws of the thermo-mechanical physics are the equations of conservation of mass, momentum, energy and composition for a two-phase (matrix-melt) system with nonlinear rheology. A simple solid solution model determines melting and solidification under consideration of depletion and enrichment. The Finite Difference Method with markers is applied to visco-plastic flow using the streamfunction in an Eulerian formulation in 2D. The Compaction Boussinesq and the high Prandtl number Approximation are employed. Lateral kinematic boundary conditions provide long-wavelength asthenospheric upwelling and extensional stress conditions. Partial melts are generated in the asthenosphere, extracted above a critical fraction, and emplaced into a given intrusion level. Temperature anomalies positioned beneath the future rifts, the sole specialization to the Rwenzori situation, localize melts which are very effective in weakening the lithosphere. Convection patterns tend to generate dripping instabilities at the lithospheric base; multiple slabs detach and distort uprising asthenosphere; plumes migrate, join and split. In spite of appearing chaotic flow behaviour a characteristic recurrence time of high velocity events (drips, plumes) emerges. Chimneys of increased

  4. The Lithosphere-asthenosphere Boundary beneath the South Island of New Zealand

    Science.gov (United States)

    Hua, J.; Fischer, K. M.; Savage, M. K.

    2017-12-01

    Lithosphere-asthenosphere boundary (LAB) properties beneath the South Island of New Zealand have been imaged by Sp receiver function common-conversion point stacking. In this transpressional boundary between the Australian and Pacific plates, dextral offset on the Alpine fault and convergence have occurred for the past 20 My, with the Alpine fault now bounded by Australian plate subduction to the south and Pacific plate subduction to the north. This study takes advantage of the long-duration and high-density seismometer networks deployed on or near the South Island, especially 29 broadband stations of the New Zealand permanent seismic network (GeoNet). We obtained 24,980 individual receiver functions by extended-time multi-taper deconvolution, mapping to three-dimensional space using a Fresnel zone approximation. Pervasive strong positive Sp phases are observed in the LAB depth range indicated by surface wave tomography (Ball et al., 2015) and geochemical studies. These phases are interpreted as conversions from a velocity decrease across the LAB. In the central South Island, the LAB is observed to be deeper and broader to the west of the Alpine fault. The deeper LAB to the west of the Alpine fault is consistent with oceanic lithosphere attached to the Australian plate that was partially subducted while also translating parallel to the Alpine fault (e.g. Sutherland, 2000). However, models in which the Pacific lithosphere has been underthrust to the west past the Alpine fault cannot be ruled out. Further north, a zone of thin lithosphere with a strong and vertically localized LAB velocity gradient occurs to the west of the fault, juxtaposed against a region of anomalously weak LAB conversions to the east of the fault. This structure, similar to results of Sp imaging beneath the central segment of the San Andreas fault (Ford et al., 2014), also suggests that lithospheric blocks with contrasting LAB properties meet beneath the Alpine fault. The observed variations in

  5. Craton stability and continental lithosphere dynamics during plume-plate interaction

    Science.gov (United States)

    Wang, H.; Van Hunen, J.; Pearson, D.

    2013-12-01

    Survival of thick cratonic roots in a vigorously convecting mantle system for billions of years has long been studied by the geodynamical community. A high cratonic root strength is generally considered to be the most important factor. We first perform and discuss new numerical models to investigate craton stability in both Newtonian and non-Newtonian rheology in the stagnant lid regime. The results show that only a modest compositional rheological factor of Δη=10 with non-Newtonian rheology is required for the survival of cratonic roots in a stagnant lid regime. A larger rheological factor (100 or more) is needed to maintain similar craton longevity in a Newtonian rheology environment. Furthermore, chemical buoyancy plays an important role on craton stability and its evolution, but could only work with suitable compositional rheology. During their long lifespan, cratons experienced a suite of dynamic, tectonothermal events, such as nearby subduction and mantle plume activity. Cratonic nuclei are embedded in shorter-lived, more vulnerable continental areas of different thickness, composition and rheology, which would influence the lithosphere dynamic when tectonothermal events happen nearby. South Africa provides a very good example to investigate such dynamic processes as it hosts several cratons and there are many episodic thermal events since the Mesozoic as indicated by a spectrum of magmatic activity. We numerically investigate such an integrated system using the topographic evolution of cratons and surrounding lithosphere as a diagnostic observable. The post-70Ma thinning of pericratonic lithosphere by ~50km around Kaapvaal craton (Mather et al., 2011) is also investigated through our numerical models. The results show that the pericratonic lithosphere cools and grows faster than cratons do, but is also more likely to be effected by episodic thermal events. This leads to surface topography change that is significantly larger around the craton than within

  6. 3D Thermo-Mechanical Models of Plume-Lithosphere Interactions: Implications for the Kenya rift

    Science.gov (United States)

    Scheck-Wenderoth, M.; Koptev, A.; Sippel, J.

    2017-12-01

    We present three-dimensional (3D) thermo-mechanical models aiming to explore the interaction of an active mantle plume with heterogeneous pre-stressed lithosphere in the Kenya rift region. As shown by the recent data-driven 3D gravity and thermal modeling (Sippel et al., 2017), the integrated strength of the lithosphere for the region of Kenya and northern Tanzania appears to be strongly controlled by the complex inherited crustal structure, which may have been decisive for the onset, localization and propagation of rifting. In order to test this hypothesis, we have performed a series of ultra-high resolution 3D numerical experiments that include a coupled mantle/lithosphere system in a dynamically and rheologically consistent framework. In contrast to our previous studies assuming a simple and quasi-symmetrical initial condition (Koptev et al., 2015, 2016, 2017), the complex 3D distribution of rock physical properties inferred from geological and geophysical observations (Sippel et al., 2017) has been incorporated into the model setup that comprises a stratified three-layer continental lithosphere composed of an upper and lower crust and lithospheric mantle overlaying the upper mantle. Following the evidence of the presence of a broad low-velocity seismic anomaly under the central parts of the East African Rift system (e.g. Nyblade et al, 2000; Chang et al., 2015), a 200-km radius mantle plume has been seeded at the bottom of a 635 km-depth model box representing a thermal anomaly of 300°C temperature excess. In all model runs, results show that the spatial distribution of surface deformation is indeed strongly controlled by crustal structure: within the southern part of the model box, a localized narrow zone stretched in NS direction (i.e. perpendicularly to applied far-field extension) is aligned along a structural boundary within the lower crust, whereas in the northern part of the model domain, deformation is more diffused and its eastern limit coincides with

  7. Lithospheric Expressions of the Precambrian Shield, Mesozoic Rifting, and Cenozoic Subduction and Mountain Building in Venezuela

    Science.gov (United States)

    Levander, A.; Masy, J.; Niu, F.

    2013-05-01

    The Caribbean (CAR)-South American (SA) plate boundary in Venezuela is a broad zone of faulting and diffuse deformation. GPS measurements show the CAR moving approximately 2 cm/yr relative to SA, parallel to the strike slip fault system in the east, with more oblique convergence in the west (Weber et al., 2001) causing the southern edge of the Caribbean to subduct beneath northwestern South America. The west is further complicated by the motion of the triangular Maracaibo block, which is escaping northeastward relative to SA along the Bocono and Santa Marta Faults. In central and eastern Venezuela, plate motion is accommodated by transpression and transtension along the right lateral San Sebastian- El Pilar strike-slip fault system. The strike-slip system marks the northern edge of coastal thrust belts and their associated foreland basins. The Archean-Proterozoic Guayana Shield, part of the Amazonian Craton, underlies southeastern and south-central Venezuela. We used the 87 station Venezuela-U.S. BOLIVAR array (Levander et al., 2006) to investigate lithospheric structure in northern South America. We combined finite-frequency Rayleigh wave tomography with Ps and Sp receiver functions to determine lithosphere-asthenosphere boundary (LAB) depth. We measured Rayleigh phase velocities from 45 earthquakes in the period band 20-100s. The phase velocities were inverted for 1D shear velocity structure on a 0.5 by 0.5 degree grid. Crustal thickness for the starting model was determined from active seismic experiments and receiver function analysis. The resulting 3D shear velocity model was then used to determine the depth of the LAB, and to CCP stack Ps and Sp receiver functions from ~45 earthquakes. The receiver functions were calculated in several frequency bands using iterative deconvolution and inverse filtering. Lithospheric thickness varies by more a factor of 2.5 across Venezuela. We can divide the lithosphere into several distinct provinces, with LAB depth

  8. How does continental lithosphere break-apart? A 3D seismic view on the transition from magma-poor rifted margin to magmatic oceanic lithosphere

    Science.gov (United States)

    Emmanuel, M.; Lescanne, M.; Picazo, S.; Tomasi, S.

    2017-12-01

    In the last decade, high-quality seismic data and drilling results drastically challenged our ideas about how continents break apart. New models address their observed variability and are presently redefining basics of rifting as well as exploration potential along deepwater rifted margins. Seafloor spreading is even more constrained by decades of scientific exploration along Mid Oceanic Ridges. By contrast, the transition between rifting and drifting remains a debated subject. This lithospheric breakup "event" is geologically recorded along Ocean-Continent Transitions (OCT) at the most distal part of margins before indubitable oceanic crust. Often lying along ultra-deepwater margin domains and buried beneath a thick sedimentary pile, high-quality images of these domains are rare but mandatory to get strong insights on the processes responsible for lithospheric break up and what are the consequences for the overlying basins. We intend to answer these questions by studying a world-class 3D seismic survey in a segment of a rifted margin exposed in the Atlantic. Through these data, we can show in details the OCT architecture between a magma-poor hyper-extended margin (with exhumed mantle) and a classical layered oceanic crust. It is characterized by 1- the development of out-of-sequence detachment systems with a landward-dipping geometry and 2- the increasing magmatic additions oceanwards (intrusives and extrusives). Geometry of these faults suggests that they may be decoupled at a mantle brittle-ductile interface what may be an indicator on thermicity. Furthermore, magmatism increases as deformation migrates to the future first indubitable oceanic crust what controls a progressive magmatic crustal thickening below, above and across a tapering rest of margin. As the magmatic budget increases oceanwards, full-rate divergence is less and less accommodated by faulting. Magmatic-sedimentary architectures of OCT is therefore changing from supra-detachment to magmatic

  9. Neutron slowing-down time in matter

    Energy Technology Data Exchange (ETDEWEB)

    Chabod, Sebastien P., E-mail: sebastien.chabod@lpsc.in2p3.fr [LPSC, Universite Joseph Fourier Grenoble 1, CNRS/IN2P3, Institut Polytechnique de Grenoble, 38000 Grenoble (France)

    2012-03-21

    We formulate the neutron slowing-down time through elastic collisions in a homogeneous, non-absorbing, infinite medium. Our approach allows taking into account for the first time the energy dependence of the scattering cross-section as well as the energy and temporal distribution of the source neutron population in the results. Starting from this development, we investigate the specific case of the propagation in matter of a mono-energetic neutron pulse. We then quantify the perturbation on the neutron slowing-down time induced by resonances in the scattering cross-section. We show that a resonance can induce a permanent reduction of the slowing-down time, preceded by two discontinuities: a first one at the resonance peak position and an echo one, appearing later. From this study, we suggest that a temperature increase of the propagating medium in presence of large resonances could modestly accelerate the neutron moderation.

  10. Kinetic slow mode-type solitons

    Directory of Open Access Journals (Sweden)

    K. Baumgärtel

    2005-01-01

    Full Text Available One-dimensional hybrid code simulations are presented, carried out in order both to study solitary waves of the slow mode branch in an isotropic, collisionless, medium-β plasma (βi=0.25 and to test the fluid based soliton interpretation of Cluster observed strong magnetic depressions (Stasiewicz et al., 2003; Stasiewicz, 2004 against kinetic theory. In the simulations, a variety of strongly oblique, large amplitude, solitons are seen, including solitons with Alfvenic polarization, similar to those predicted by the Hall-MHD theory, and robust, almost non-propagating, solitary structures of slow magnetosonic type with strong magnetic field depressions and perpendicular ion heating, which have no counterpart in fluid theory. The results support the soliton-based interpretation of the Cluster observations, but reveal substantial deficiencies of Hall-MHD theory in describing slow mode-type solitons in a plasma of moderate beta.

  11. Perceptually stable regions for arbitrary polygons.

    Science.gov (United States)

    Rocha, J

    2003-01-01

    Zou and Yan have recently developed a skeletonization algorithm of digital shapes based on a regularity/singularity analysis; they use the polygon whose vertices are the boundary pixels of the image to compute a constrained Delaunay triangulation (CDT) in order to find local symmetries and stable regions. Their method has produced good results but it is slow since its complexity depends on the number of contour pixels. This paper presents an extension of their technique to handle arbitrary polygons, not only polygons of short edges. Consequently, not only can we achieve results as good as theirs for digital images, but we can also compute skeletons of polygons of any number of edges. Since we can handle polygonal approximations of figures, the skeletons are more resilient to noise and faster to process.

  12. Generalized slow roll for noncanonical kinetic terms

    International Nuclear Information System (INIS)

    Hu, Wayne

    2011-01-01

    We show that the generalized slow roll approach for calculating the power spectrum where the inflationary slow roll parameters are neither small nor slowly varying can be readily extended to models with noncanonical kinetic terms in the inflaton action. For example, rapid sound speed variations can arise in Dirac-Born-Infeld models with features in the warp factor leading to features in the power spectrum. Nonetheless there remains a single source function for deviations that is simply related to the power spectrum. Empirical constraints on this source function can be readily interpreted in the context of features in the inflaton potential or sound speed.

  13. Fast and slow spindles during the sleep slow oscillation: disparate coalescence and engagement in memory processing.

    Science.gov (United States)

    Mölle, Matthias; Bergmann, Til O; Marshall, Lisa; Born, Jan

    2011-10-01

    Thalamo-cortical spindles driven by the up-state of neocortical slow (memory consolidation during sleep. We examined interactions between SOs and spindles in human slow wave sleep, focusing on the presumed existence of 2 kinds of spindles, i.e., slow frontocortical and fast centro-parietal spindles. Two experiments were performed in healthy humans (24.5 ± 0.9 y) investigating undisturbed sleep (Experiment I) and the effects of prior learning (word paired associates) vs. non-learning (Experiment II) on multichannel EEG recordings during sleep. Only fast spindles (12-15 Hz) were synchronized to the depolarizing SO up-state. Slow spindles (9-12 Hz) occurred preferentially at the transition into the SO down-state, i.e., during waning depolarization. Slow spindles also revealed a higher probability to follow rather than precede fast spindles. For sequences of individual SOs, fast spindle activity was largest for "initial" SOs, whereas SO amplitude and slow spindle activity were largest for succeeding SOs. Prior learning enhanced this pattern. The finding that fast and slow spindles occur at different times of the SO cycle points to disparate generating mechanisms for the 2 kinds of spindles. The reported temporal relationships during SO sequences suggest that fast spindles, driven by the SO up-state feed back to enhance the likelihood of succeeding SOs together with slow spindles. By enforcing such SO-spindle cycles, particularly after prior learning, fast spindles possibly play a key role in sleep-dependent memory processing.

  14. Once upon a (slow) time in the land of recurrent neuronal networks….

    Science.gov (United States)

    Huang, Chengcheng; Doiron, Brent

    2017-10-01

    The brain must both react quickly to new inputs as well as store a memory of past activity. This requires biology that operates over a vast range of time scales. Fast time scales are determined by the kinetics of synaptic conductances and ionic channels; however, the mechanics of slow time scales are more complicated. In this opinion article we review two distinct network-based mechanisms that impart slow time scales in recurrently coupled neuronal networks. The first is in strongly coupled networks where the time scale of the internally generated fluctuations diverges at the transition between stable and chaotic firing rate activity. The second is in networks with finitely many members where noise-induced transitions between metastable states appear as a slow time scale in the ongoing network firing activity. We discuss these mechanisms with an emphasis on their similarities and differences. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Light storage via slow-light four-wave mixing

    International Nuclear Information System (INIS)

    Fan, Yun-Fei; Wang, Hai-Hua; Wei, Xiao-Gang; Li, Ai-Jun; Kang, Zhi-Hui; Wu, Jin-Hui; Zhang, Han-Zhuang; Xu, Huai-Liang; Gao, Jin-Yue

    2012-01-01

    We experimentally demonstrate a light storage via slow-light four-wave mixing in a solid-state medium with a four-level double lambda scheme. Using slow light based on electromagnetically induced transparency, we obtain a slowed four-wave mixing signal pulse together with the slowed probe pulse. During the propagation of light pulses, the storage and retrieval of both the slowed four-wave mixing pulse and the slowed probe pulse are studied by manipulating the intensities of the control fields. -- Highlights: ► A light storage via slow-light four-wave mixing is observed in a solid. ► The probe pulse is slowed under electromagnetically induced transparency. ► A slowed four-wave mixing pulse is obtained by slow light. ► The storage of slowed double pulses is studied.

  16. Theory of stable allocations

    Directory of Open Access Journals (Sweden)

    Pantelić Svetlana

    2014-01-01

    Full Text Available The Swedish Royal Academy awarded the 2012 Nobel Prize in Economics to Lloyd Shapley and Alvin Roth, for the theory of stable allocations and the practice of market design. These two American researchers worked independently from each other, combining basic theory and empirical investigations. Through their experiments and practical design they generated a flourishing field of research and improved the performance of many markets. Born in 1923 in Cambridge, Massachusetts, Shapley defended his doctoral thesis at Princeton University in 1953. For many years he worked at RAND, and for more than thirty years he was a professor at UCLA University. He published numerous scientific papers, either by himself or in cooperation with other economists.

  17. Is Slow Slip a Cause or a Result of Tremor?

    Science.gov (United States)

    Luo, Y.; Ampuero, J. P.

    2017-12-01

    While various modeling efforts have been conducted to reproduce subsets of observations of tremor and slow-slip events (SSE), a fundamental but yet unanswered question is whether slow slip is a cause or a result of tremor. Tremor is commonly regarded as driven by SSE. This view is mainly based on observations of SSE without detected tremors and on (frequency-limited) estimates of total tremor seismic moment being lower than 1% of their concomitant SSE moment. In previous studies we showed that models of heterogeneous faults, composed of seismic asperities embedded in an aseismic fault zone matrix, reproduce quantitatively the hierarchical patterns of tremor migration observed in Cascadia and Shikoku. To address the title question, we design two end-member models of a heterogeneous fault. In the SSE-driven-tremor model, slow slip events are spontaneously generated by the matrix (even in the absence of seismic asperities) and drive tremor. In the Tremor-driven-SSE model the matrix is stable (it slips steadily in the absence of asperities) and slow slip events result from the collective behavior of tremor asperities interacting via transient creep (local afterslip fronts). We study these two end-member models through 2D quasi-dynamic multi-cycle simulations of faults governed by rate-and-state friction with heterogeneous frictional properties and effective normal stress, using the earthquake simulation software QDYN (https://zenodo.org/record/322459). We find that both models reproduce first-order observations of SSE and tremor and have very low seismic to aseismic moment ratio. However, the Tremor-driven-SSE model assumes a simpler rheology than the SSE-driven-tremor model and matches key observations better and without fine tuning, including the ratio of propagation speeds of forward SSE and rapid tremor reversals and the decay of inter-event times of Low Frequency Earthquakes. These modeling results indicate that, in contrast to a common view, SSE could be a result

  18. Bi-stable optical actuator

    Science.gov (United States)

    Holdener, Fred R.; Boyd, Robert D.

    2000-01-01

    The present invention is a bi-stable optical actuator device that is depowered in both stable positions. A bearing is used to transfer motion and smoothly transition from one state to another. The optical actuator device may be maintained in a stable position either by gravity or a restraining device.

  19. Continental lithosphere of the Arabian Plate: A geologic, petrologic, and geophysical synthesis

    Science.gov (United States)

    Stern, Robert J.; Johnson, Peter

    2010-07-01

    The Arabian Plate originated ˜ 25 Ma ago by rifting of NE Africa to form the Gulf of Aden and Red Sea. It is one of the smaller and younger of the Earth's lithospheric plates. The upper part of its crust consists of crystalline Precambrian basement, Phanerozoic sedimentary cover as much as 10 km thick, and Cenozoic flood basalt (harrat). The distribution of these rocks and variations in elevation across the Plate cause a pronounced geologic and topographic asymmetry, with extensive basement exposures (the Arabian Shield) and elevations of as much as 3000 m in the west, and a Phanerozoic succession (Arabian Platform) that thickens, and a surface that descends to sea level, eastward between the Shield and the northeastern margin of the Plate. This tilt in the Plate is partly the result of marginal uplift during rifting in the south and west, and loading during collision with, and subduction beneath, the Eurasian Plate in the northeast. But a variety of evidence suggests that the asymmetry also reflects a fundamental crustal and mantle heterogeneity in the Plate that dates from Neoproterozoic time when the crust formed. The bulk of the Plate's upper crystalline crust is Neoproterozoic in age (1000-540 Ma) reflecting, in the west, a 300-million year process of continental crustal growth between ˜ 850 and 550 Ma represented by amalgamated juvenile magmatic arcs, post-amalgamation sedimentary and volcanic basins, and granitoid intrusions that make up as much as 50% of the Shield's surface. Locally, Archean and Paleoproterozoic rocks are structurally intercalated with the juvenile Neoproterozoic rocks in the southern and eastern parts of the Shield. The geologic dataset for the age, composition, and origin of the upper crust of the Plate in the east is smaller than the database for the Shield, and conclusions made about the crust in the east are correspondingly less definitive. In the absence of exposures, furthermore, nothing is known by direct observation about the

  20. Slow evaporation method and enhancement in photoluminescence ...

    Indian Academy of Sciences (India)

    nescence (PL) properties and decay time of phosphors were studied at room temperature. The YPO4 ... Keywords. Slow evaporation method; YPO4 : Eu3+, Bi3+; quenching effect; optical material. 1. ... intensity of Eu3+-doped compounds such as CaMoO4 : Bi3+, .... Figure 4 shows FESEM images of YPO4 : Eu3+ and Bi3+.

  1. Quick-Connect, Slow-Disconnect Bolt

    Science.gov (United States)

    Weddendorf, Bruce

    1995-01-01

    Proposed bolt functions similarly to device described in article "Quick-Connect, Slow-Disconnect Nut" (MFS-28833). Bolt installed in standard threaded hole simply by pushing it into hole. Once inserted, bolt withdrawn only by turning it in conventional way.

  2. A slow component of classic Stroop interference

    NARCIS (Netherlands)

    Phaf, R. Hans; Horsman, Hark H.; van der Moolen, Bas; Roos, Yvo B. W. E. M.; Schmand, Ben

    2010-01-01

    The interference in colour naming may extend beyond critical Stroop trials. This "slow'' effect was first discovered in emotional Stroop tasks, but is extended here to classical Stroop. In two experiments, meaningless coloured letter strings followed a colour word or neutral word. Student

  3. Slow Reading: Reading along "Lectio" Lines

    Science.gov (United States)

    Badley, K. Jo-Ann; Badley, Ken

    2011-01-01

    The medieval monastic movement preserved and developed reading practices--lectio--from ancient Greek pedagogy as a slow, mindful approach to reading for formation. This ancient way of reading, now better known as lectio divina, challenges the fast, pragmatic reading so characteristic of our time. We propose that the present moment may be ripe for…

  4. Slowed ageing, welfare, and population problems.

    Science.gov (United States)

    Wareham, Christopher

    2015-10-01

    Biological studies have demonstrated that it is possible to slow the ageing process and extend lifespan in a wide variety of organisms, perhaps including humans. Making use of the findings of these studies, this article examines two problems concerning the effect of life extension on population size and welfare. The first--the problem of overpopulation--is that as a result of life extension too many people will co-exist at the same time, resulting in decreases in average welfare. The second--the problem of underpopulation--is that life extension will result in too few people existing across time, resulting in decreases in total welfare. I argue that overpopulation is highly unlikely to result from technologies that slow ageing. Moreover, I claim that the problem of underpopulation relies on claims about life extension that are false in the case of life extension by slowed ageing. The upshot of these arguments is that the population problems discussed provide scant reason to oppose life extension by slowed ageing.

  5. Response of electret dosemeter to slow neutrons

    International Nuclear Information System (INIS)

    Ghilardi, A.J.P.; Pela, C.A.; Zimmerman, R.L.

    1987-01-01

    The response of the electret dosemeter to exposition of slow neutrons is studied. Different external coatings are used on the dosemeter (polyethylene, alminium, polyethylene + boron, aluminium + boron) and exposure curves (with and without water) are compared. (M.A.C.) [pt

  6. Analysis of the neutron slowing down equation

    International Nuclear Information System (INIS)

    Sengupta, A.; Karnick, H.

    1978-01-01

    The infinite series solution of the elementary neutron slowing down equation is studied using the theory of entire functions of exponential type and nonharmonic Fourier series. It is shown from Muntz--Szasz and Paley--Wiener theorems, that the set of exponentials ]exp(ilambda/sub n/u) ]/sup infinity//sub n/=-infinity, where ]lambda/sub n/]/sup infinity//sub n/=-infinity are the roots of the transcendental equation in slowing down theory, is complete and forms a basis in a lethargy interval epsilon. This distinctive role of the maximum lethargy change per collision is due to the Fredholm character of the slowing down operator which need not be quasinilpotent. The discontinuities in the derivatives of the collision density are examined by treating the slowing down equation in its differential-difference form. The solution (Hilbert) space is the union of a countable number of subspaces L 2 (-epsilon/2, epsilon/2) over each of which the exponential functions are complete

  7. Probabilistic Slow Features for Behavior Analysis

    NARCIS (Netherlands)

    Zafeiriou, Lazaros; Nicolaou, Mihalis A.; Zafeiriou, Stefanos; Nikitidis, Symeon; Pantic, Maja

    A recently introduced latent feature learning technique for time-varying dynamic phenomena analysis is the so-called slow feature analysis (SFA). SFA is a deterministic component analysis technique for multidimensional sequences that, by minimizing the variance of the first-order time derivative

  8. Learning slow features for behavior analysis

    NARCIS (Netherlands)

    Zafeiriou, Lazaros; Nicolaou, Mihalis A.; Zafeiriou, Stefanos; Nikitids, Symeon; Pantic, Maja

    2013-01-01

    A recently introduced latent feature learning technique for time varying dynamic phenomena analysis is the socalled Slow Feature Analysis (SFA). SFA is a deterministic component analysis technique for multi-dimensional sequences that by minimizing the variance of the first order time derivative

  9. Proton energy dependence of slow neutron intensity

    International Nuclear Information System (INIS)

    Teshigawara, Makoto; Harada, Masahide; Watanabe, Noboru; Kai, Tetsuya; Sakata, Hideaki; Ikeda, Yujiro

    2001-01-01

    The choice of the proton energy is an important issue for the design of an intense-pulsed-spallation source. The optimal proton beam energy is rather unique from a viewpoint of the leakage neutron intensity but no yet clear from the slow-neutron intensity view point. It also depends on an accelerator type. Since it is also important to know the proton energy dependence of slow-neutrons from the moderators in a realistic target-moderator-reflector assembly (TMRA). We studied on the TMRA proposed for Japan Spallation Neutron Source. The slow-neutron intensities from the moderators per unit proton beam power (MW) exhibit the maximum at about 1-2 GeV. At higher proton energies the intensity per MW goes down; at 3 and 50 GeV about 0.91 and 0.47 times as low as that at 1 GeV. The proton energy dependence of slow-neutron intensities was found to be almost the same as that of total neutron yield (leakage neutrons) from the same bare target. It was also found that proton energy dependence was almost the same for the coupled and decoupled moderators, regardless the different moderator type, geometry and coupling scheme. (author)

  10. Preliminary characterization of slow growing rhizobial strains ...

    African Journals Online (AJOL)

    In this paper, we did some preliminary characterization of six slow growing rhizobial strains, isolated from Retama monosperma (L.) Boiss. root nodules sampled from 3 sites along the coast of Oran (CapeFalcon, Bousfer and MersElHadjadj) in Northwestern Algeria. Results of this study showed that all strains had a very ...

  11. Preliminary characterization of slow growing rhizobial strains ...

    African Journals Online (AJOL)

    COMPAQ

    2016-05-18

    May 18, 2016 ... strains had a very slow growth rate in yeast malt (YM) agar medium, forming colonies less than 1 mm in ... dominant genus of symbiotic nitrogen-fixing bacteria ... Single colonies were picked up and checked for purity by.

  12. WORKSHOP: Stable particle motion

    International Nuclear Information System (INIS)

    Ruggiero, Alessandro G.

    1993-01-01

    Full text: Particle beam stability is crucial to any accelerator or collider, particularly big ones, such as Brookhaven's RHIC heavy ion collider and the larger SSC and LHC proton collider schemes. A workshop on the Stability of Particle Motion in Storage Rings held at Brookhaven in October dealt with the important issue of determining the short- and long-term stability of single particle motion in hadron storage rings and colliders, and explored new methods for ensuring it. In the quest for realistic environments, the imperfections of superconducting magnets and the effects of field modulation and noise were taken into account. The workshop was divided into three study groups: Short-Term Stability in storage rings, including chromatic and geometric effects and correction strategies; Long-Term Stability, including modulation and random noise effects and slow varying effects; and Methods for determining the stability of particle motion. The first two were run in parallel, but the third was attended by everyone. Each group considered analytical, computational and experimental methods, reviewing work done so far, comparing results and approaches and underlining outstanding issues. By resolving conflicts, it was possible to identify problems of common interest. The workshop reaffirmed the validity of methods proposed several years ago. Major breakthroughs have been in the rapid improvement of computer capacity and speed, in the development of more sophisticated mathematical packages, and in the introduction of more powerful analytic approaches. In a typical storage ring, a particle may be required to circulate for about a billion revolutions. While ten years ago it was only possible to predict accurately stability over about a thousand revolutions, it is now possible to predict over as many as one million turns. If this trend continues, in ten years it could become feasible to predict particle stability over the entire storage period. About ninety participants

  13. S-Wave's Velocities of the Lithosphere-Asthenosphere System in the Caribbean Region

    International Nuclear Information System (INIS)

    Gonzalez, O'Leary; Alvarez, Jose Leonardo; Moreno, Bladimir; Panza, Giuliano F.

    2010-06-01

    An overview of the S-wave velocity (Vs) structural model of the Caribbean is presented with a resolution of 2 o x2 o . As a result of the frequency time analysis (FTAN) of more than 400 trajectories epicenter-stations in this region, new tomographic maps of Rayleigh waves group velocity dispersion at periods ranging from 10 s to 40 s have been determined. For each 2 o x2 o cell, group velocity dispersion curves were determined and extended to 150 s adding data from a larger scale tomographic study (Vdovin et al., 1999). Using, as independent a priori information, the available geological and geophysical data of the region, each dispersion curve has been mapped, by non-linear inversion, into a set of Vs vs. depth models in the depth range from 0 km to 300 km. Due to the non-uniqueness of the solutions for each cell a Local Smoothness Optimization (LSO) has been applied to the whole region to identify a tridimensional model of Vs vs. depth in cells of 2 o x2 o , thus satisfying the Occam razor concept. Through these models some main features of the lithosphere and asthenosphere are evidenced, such as: the west directed subduction zone of the eastern Caribbean region with a clear mantle wedge between the Caribbean lithosphere and the subducted slab; the complex and asymmetric behavior of the crustal and lithospheric thickness in the Cayman ridge; the diffused presence of oceanic crust in the region; the presence of continental type crust in the South America, Central America and North America plates, as well as the bottom of the upper asthenosphere that gets shallower going from west to east. (author)

  14. Magnetotelluric investigations of the lithosphere beneath the central Rae craton, mainland Nunavut, Canada

    Science.gov (United States)

    Spratt, Jessica E.; Skulski, Thomas; Craven, James A.; Jones, Alan G.; Snyder, David B.; Kiyan, Duygu

    2014-03-01

    New magnetotelluric soundings at 64 locations throughout the central Rae craton on mainland Nunavut constrain 2-D resistivity models of the crust and lithospheric mantle beneath three regional transects. Responses determined from colocated broadband and long-period magnetotelluric recording instruments enabled resistivity imaging to depths of > 300 km. Strike analysis and distortion decomposition on all data reveal a regional trend of 45-53°, but locally the geoelectric strike angle varies laterally and with depth. The 2-D models reveal a resistive upper crust to depths of 15-35 km that is underlain by a conductive layer that appears to be discontinuous at or near major mapped geological boundaries. Surface projections of the conductive layer coincide with areas of high grade, Archean metasedimentary rocks. Tectonic burial of these rocks and thickening of the crust occurred during the Paleoproterozoic Arrowsmith (2.3 Ga) and Trans-Hudson orogenies (1.85 Ga). Overall, the uppermost mantle of the Rae craton shows resistivity values that range from 3000 Ω m in the northeast (beneath Baffin Island and the Melville Peninsula) to 10,000 Ω m beneath the central Rae craton, to >50,000 Ω m in the south near the Hearne Domain. Near-vertical zones of reduced resistivity are identified within the uppermost mantle lithosphere that may be related to areas affected by mantle melt or metasomatism associated with emplacement of Hudsonian granites. A regional decrease in resistivities to values of 500 Ω m at depths of 180-220 km, increasing to 300 km near the southern margin of the Rae craton, is interpreted as the lithosphere-asthenosphere boundary.

  15. Heat flow, heat transfer and lithosphere rheology in geothermal areas: Features and examples

    Science.gov (United States)

    Ranalli, G.; Rybach, L.

    2005-10-01

    Surface heat flow measurements over active geothermal systems indicate strongly positive thermal anomalies. Whereas in "normal" geothermal settings, the surface heat flow is usually below 100-120 mW m - 2 , in active geothermal areas heat flow values as high as several watts per meter squared can be found. Systematic interpretation of heat flow patterns sheds light on heat transfer mechanisms at depth on different lateral, depth and time scales. Borehole temperature profiles in active geothermal areas show various signs of subsurface fluid movement, depending on position in the active system. The heat transfer regime is dominated by heat advection (mainly free convection). The onset of free convection depends on various factors, such as permeability, temperature gradient and fluid properties. The features of heat transfer are different for single or two-phase flow. Characteristic heat flow and heat transfer features in active geothermal systems are demonstrated by examples from Iceland, Italy, New Zealand and the USA. Two main factors affect the rheology of the lithosphere in active geothermal areas: steep temperature gradients and high pore fluid pressures. Combined with lithology and structure, these factors result in a rheological zonation with important consequences both for geodynamic processes and for the exploitation of geothermal energy. As a consequence of anomalously high temperature, the mechanical lithosphere is thin and its total strength can be reduced by almost one order of magnitude with respect to the average strength of continental lithosphere of comparable age and thickness. The top of the brittle/ductile transition is located within the upper crust at depths less than 10 km, acts as the root zone of listric normal faults in extensional environments and, at least in some cases, is visible on seismic reflection lines. These structural and rheological features are well illustrated in the Larderello geothermal field in Tuscany.

  16. Helium as a tracer for fluids released from Juan de Fuca lithosphere beneath the Cascadia forearc

    Science.gov (United States)

    McCrory, Patricia A.; Constantz, James E.; Hunt, Andrew G.; Blair, James Luke

    2016-01-01

    The ratio between helium isotopes (3He/4He) provides an excellent geochemical tracer for investigating the sources of fluids sampled at the Earth's surface. 3He/4He values observed in 25 mineral springs and wells above the Cascadia forearc document a significant component of mantle-derived helium above Juan de Fuca lithosphere, as well as variability in 3He enrichment across the forearc. Sample sites arcward of the forearc mantle corner (FMC) generally yield significantly higher ratios (1.2-4.0 RA) than those seaward of the corner (0.03-0.7 RA). The highest ratios in the Cascadia forearc coincide with slab depths (40-45 km) where metamorphic dehydration of young oceanic lithosphere is expected to release significant fluid and where tectonic tremor occurs, whereas little fluid is expected to be released from the slab depths (25-30 km) beneath sites seaward of the corner.Tremor (considered a marker for high fluid pressure) and high RA values in the forearc are spatially correlated. The Cascadia tremor band is centered on its FMC, and we tentatively postulate that hydrated forearc mantle beneath Cascadia deflects a significant portion of slab-derived fluids updip along the subduction interface, to vent in the vicinity of its corner. Furthermore, high RA values within the tremor band just arcward of the FMC, suggest that the innermost mantle wedge is relatively permeable.Conceptual models require: (1) a deep fluid source as a medium to transport primordial 3He; (2) conduits through the lithosphere which serve to speed fluid ascent to the surface before significant dilution from radiogenic 4He can occur; and (3) near lithostatic fluid pressure to keep conduits open. Our spatial correlation between high RA values and tectonic tremor provides independent evidence that tremor is associated with deep fluids, and it further suggests that high pore pressures associated with tremor may serve to keep fractures open for 3He migration through ductile upper mantle and lower crust.

  17. Lithospheric electrical structure of the middle Lhasa terrane in the south Tibetan plateau

    Science.gov (United States)

    Liang, Hongda; Jin, Sheng; Wei, Wenbo; Gao, Rui; Ye, Gaofeng; Zhang, Letian; Yin, Yaotian; Lu, Zhanwu

    2018-04-01

    The Lhasa terrane in southern Tibetan plateau is a huge tectono-magmatic belt and an important metallogenic belt. Its formation evolution process and mineralization are affected by the subduction of oceanic plate and subsequent continental collision. However, the evolution of Lhasa terrane has been a subject of much debate for a long time. The Lithospheric structure records the deep processes of the subduction of oceanic plate and continental collision. The magnetotelluric (MT) method can probe the sub-surface electrical conductivity, newly dense broadband and long period magnetotelluric data were collected along a south-north trending profile that across the Lhasa terrane at 88°-89°E. Dimensionality analyses demonstrated that the MT data can be interpreted using two-dimensional approaches, and the regional strike direction was determined as N110°E.Based on data analysis results, a two-dimensional (2-D) resistivity model of crust and upper mantle was derived from inversion of the transverse electric mode, transverse magnetic mode and vertical magnetic field data. Inversion model shows a large north-dipping resistor that extended from the upper crust to upper mantle beneath the Himalaya and the south of Lhasa Terrane, which may represent the subducting Indian continental lithosphere. The 31°N may be an important boundary in the Lhasa Terrane, the south performs a prominent high-conductivity anomaly from the lower crust to upper mantle which indicates the existence of asthenosphere upwelling, while the north performs a higher resistivity and may have a reworking ancient basement. The formation of the ore deposits in the study area may be related to the upwelling of the mantle material triggered by slab tearing and/or breaking off of the Indian lithosphere, and the mantle material input also contributed the total thickness of the present-day Tibetan crust. The results provide helpful constrains to understand the mechanism of the continent-continent collision and

  18. Deformation and hydration state of the lithospheric mantle beneath the Styrian Basin (Pannonian Basin, Eastern Austria)

    Science.gov (United States)

    Aradi, L. E.; Hidas, K.; Kovács, I. J.; Klébesz, R.; Szabo, C.

    2016-12-01

    In the Carpathian-Pannonian Region, Neogene alkali basaltic volcanism occurred in six volcanic fields, from which the Styrian Basin Volcanic Field (SBVF) is the westernmost one. In this study, we present new petrographic and crystal preferred orientation (CPO) data, and structural hydroxyl ("water") contents of upper mantle xenoliths from 12 volcanic outcrops across the SBVF. The studied xenoliths are mostly coarse granular lherzolites, amphiboles are present in almost every sample and often replace pyroxenes and spinels. The peridotites are highly annealed, olivines and pyroxenes do not show significant amount of intragranular deformation. Despite the annealed texture of the peridotites, olivine CPO is unambiguous, and varies between [010]-fiber, orthogonal and [100]-fiber symmetry. The CPO of pyroxenes is coherent with coeval deformation with olivine, showing [100]OL distributed subparallel to [001]OPX. The CPO of amphiboles suggest postkinematic epitaxial overgrowth on the precursor pyroxenes. The "water" content of the studied xenoliths exhibit rather high values, up to 10, 290 and 675 ppm in olivine, ortho- and clinopyroxene, respectively. Ortho- and clinopyroxene pairs show equilibrium in all samples, however "water" loss in olivines is observed in several xenoliths. The xenoliths show equilibrium temperatures from 850 to 1100 °C, which corresponds to lithospheric mantle depths between 30 and 60 km. Equilibrium temperatures show correlation with the varying CPO symmetries and grain size: coarser grained xenoliths with [100]-fiber and orthorhombic symmetry appear in the high temperature (>1000 °C) xenoliths, which is characteristic for asthenospheric origin. Most of the samples display transitional CPO symmetry between [010]-fiber and orthogonal, which indicate extensive lithospheric deformation under varying stress field from transtensional to transpressional settings. Based on the estimated seismic properties of the studied samples, a significant part of

  19. 3-D lithospheric structure and regional/residual Bouguer anomalies in the Arabia-Eurasia collision (Iran)

    Science.gov (United States)

    Jiménez-Munt, I.; Fernãndez, M.; Saura, E.; Vergés, J.; Garcia-Castellanos, D.

    2012-09-01

    The aim of this work is to propose a first-order estimate of the crustal and lithospheric mantle geometry of the Arabia-Eurasia collision zone and to separate the measured Bouguer anomaly into its regional and local components. The crustal and lithospheric mantle structure is calculated from the geoid height and elevation data combined with thermal analysis. Our results show that Moho depth varies from ˜42 km at the Mesopotamian-Persian Gulf foreland basin to ˜60 km below the High Zagros. The lithosphere is thicker beneath the foreland basin (˜200 km) and thinner underneath the High Zagros and Central Iran (˜140 km). Most of this lithospheric mantle thinning is accommodated under the Zagros mountain belt coinciding with the suture between two different mantle domains on the Sanandaj-Sirjan Zone. The regional gravity field is obtained by calculating the gravimetric response of the 3-D crustal and lithospheric mantle structure obtained by combining elevation and geoid data. The calculated regional Bouguer anomaly differs noticeably from those obtained by filtering or just isostatic methods. The residual gravity anomaly, obtained by subtraction of the regional components to the measured field, is analyzed in terms of the dominating upper crustal structures. Deep basins and areas with salt deposits are characterized by negative values (˜-20 mGal), whereas the positive values are related to igneous and ophiolite complexes and shallow basement depths (˜20 mGal).

  20. 3D Numerical Examination of Continental Mantle Lithosphere Response to Lower Crust Eclogitization and Nearby Slab Subduction

    Science.gov (United States)

    Janbakhsh, P.; Pysklywec, R.

    2017-12-01

    2D numerical modeling techniques have made great contribution to understanding geodynamic processes involved in crustal and lithospheric scale deformations for the past 20 years. The aim of this presentation is to expand the scope covered by previous researchers to 3 dimensions to address out-of-plane intrusion and extrusion of mantle material in and out of model space, and toroidal mantle wedge flows. In addition, 3D velocity boundary conditions can create more realistic models to replicate real case scenarios. 3D numerical experiments that will be presented are designed to investigate the density and viscosity effects of lower crustal eclogitization on the decoupling process of continental mantle lithosphere from the crust and its delamination. In addition, these models examine near-field effects of a subducting ocean lithosphere and a lithospheric scale fault zone on the evolution of the processes. The model solutions and predictions will also be compared against the Anatolian geology where subduction of Aegean and Arabian slabs, and the northern boundary with the North Anatolian Fault Zone are considered as two main contributing factors to anomalous crustal uplift, missing mantle lithosphere, and anomalous surface heat flux.

  1. Lateral displacement of crustal units relative to underlying mantle lithosphere: Example from the Bohemian Massif

    Czech Academy of Sciences Publication Activity Database

    Babuška, Vladislav; Plomerová, Jaroslava

    2017-01-01

    Roč. 48, December (2017), s. 125-138 ISSN 1342-937X R&D Projects: GA ČR GAP210/12/2381; GA MŠk(CZ) LD15029; GA MŠk LM2010008; GA MŠk(CZ) LM2015079 Institutional support: RVO:67985530 Keywords : Bohemian Massif * Teplá-Barrandian mantle lithosphere * Zone Erbendorf-Vohenstrauss * Jáchymov Fault Zone Subject RIV: DC - Siesmology, Volcanology, Earth Structure OBOR OECD: Volcanology Impact factor: 6.959, year: 2016

  2. Nature of the basement of the East Anatolian plateau: Implications for the lithospheric foundering processes

    Science.gov (United States)

    Topuz, G.; Candan, O.; Zack, T.; Yılmaz, A.

    2017-12-01

    The East Anatolian Plateau (Turkey) is characterized by (1) an extensive volcanic-sedimentary cover of Neogene to Quaternary age, (2) crustal thicknesses of 42-50 km, and (3) an extremely thinned lithospheric mantle. Its basement beneath the young cover is thought to consist of oceanic accretionary complexes of Late Cretaceous to Oligocene age. The attenuated state of the lithospheric mantle and the causes of the young volcanism are accounted for by slab steepening and subsequent break-off. We present field geological, petrological and geochronological data on three basement inliers (Taşlıçay, Akdağ and Ilıca) in the region. These areas are made up of amphibolite- to granulite-facies rocks, comprising marble, amphibolite, metapelite, quartzite and metagranite. The granulite-facies domain is equilibrated at 0.7 GPa and 800 ˚C at 83 ± 2 Ma (2σ). The metamorphic rocks are intruded by subduction-related coeval gabbroic, quartz monzonitic to tonalitic rocks. Both the metamorphic rocks and the intrusions are tectonically overlain by ophiolitic rocks. All these crystalline rocks are unconformably overlain by lower Maastrichtien clastic rocks and reefal limestone, suggesting that the exhumation at the earth's surface and juxtaposition with ophiolitic rocks occurred by early Maastrichtien. U-Pb dating on igneous zircon from metagranite yielded a protolith age of 445 ± 10 Ma (2σ). The detrital zircons from a metaquartzite point to Neoproterozoic to Early Paleozoic provenance. All these data favor a more or less continuous continental substrate to the allochthonous ophiolitic rocks beneath the young volcanic-sedimentary cover. The metamorphism and coeval magmatism can be regarded as the middle- to lower-crustal root of the Late Cretaceous magmatic arc that developed due to northward subduction along the Bitlis-Zagros suture. The presence of a continental basement beneath the young cover requires that the loss of the lithospheric mantle from beneath the East

  3. Late Miocene Pacific plate kinematic change explained with coupled global models of mantle and lithosphere dynamics

    DEFF Research Database (Denmark)

    Stotz, Ingo Leonardo; Iaffaldano, Giampiero; Davies, DR

    2017-01-01

    and the consequent subduction polarity reversal. The uncertainties associated with the timing of this event, however, make it difficult to quantitatively demonstrate a dynamical association. Here, we first reconstruct the Pacific plate's absolute motion since the mid-Miocene (15 Ma), at high-temporal resolution....../lithosphere system to test hypotheses on the dynamics driving this change. These indicate that the arrival of the OJP at the Melanesian arc, between 10 and 5 Ma, followed by a subduction polarity reversal that marked the initiation of subduction of the Australian plate underneath the Pacific realm, were the key...... drivers of this kinematic change....

  4. Spatial patterns in the distribution of kimberlites: relationship to tectonic processes and lithosphere structure

    DEFF Research Database (Denmark)

    Chemia, Zurab; Artemieva, Irina; Thybo, Hans

    2015-01-01

    Since the discovery of diamonds in kimberlite-type rocks more than a century ago, a number of theories regarding the processes involved in kimberlite emplacement have been put forward to explain the unique properties of kimberlite magmatism. Geological data suggests that pre-existing lithosphere...... of establishing characteristic scales for the stage 1 and stage 2 processes. To reveal similarities between the Kimberlite data we use the density-based clustering technique, such as density-based spatial clustering of applications with noise (DBSCAN), which is efficient for large data sets, requires one input...

  5. The role of mechanical heterogeneities during continental breakup: a 3D lithospheric-scale modelling approach

    Science.gov (United States)

    Duclaux, Guillaume; Huismans, Ritske S.; May, Dave

    2015-04-01

    How and why do continents break? More than two decades of analogue and 2D plane-strain numerical experiments have shown that despite the origin of the forces driving extension, the geometry of continental rifts falls into three categories - or modes: narrow rift, wide rift, or core complex. The mode of extension itself is strongly influenced by the rheology (and rheological behaviour) of the modelled layered system. In every model, an initial thermal or mechanical heterogeneity, such as a weak seed or a notch, is imposed to help localise the deformation and avoid uniform stretching of the lithosphere by pure shear. While it is widely accepted that structural inheritance is a key parameter for controlling rift localisation - as implied by the Wilson Cycle - modelling the effect of lithospheric heterogeneities on the long-term tectonic evolution of an extending plate in full 3D remains challenging. Recent progress in finite-element methods applied to computational tectonics along with the improved accessibility to high performance computers, now enable to switch from plane strain thermo-mechanical experiments to full 3D high-resolution experiments. Here we investigate the role of mechanical heterogeneities on rift opening, linkage and propagation during extension of a layered lithospheric systems with pTatin3d, a geodynamics modeling package utilising the material-point-method for tracking material composition, combined with a multigrid finite-element method to solve heterogeneous, incompressible visco-plastic Stokes problems. The initial model setup consists in a box of 1200 km horizontally by 250 km deep. It includes a 35 km layer of continental crust, underlaid by 85 km of sub-continental lithospheric mantle, and an asthenospheric mantle. Crust and mantle have visco-plastic rheologies with a pressure dependent yielding, which includes strain weakening, and a temperature, stress, strain-rate-dependent viscosity based on wet quartzite rheology for the crust, and wet

  6. Bridging the gap between the deep Earth and lithospheric gravity field

    Science.gov (United States)

    Root, B. C.; Ebbing, J.; Martinec, Z.; van der Wal, W.

    2017-12-01

    Global gravity field data obtained by dedicated satellite missions can be used to study the density distribution of the lithosphere. The gravitational signal from the deep Earth is usually removed by high-pass filtering of the data. However, this will also remove any long-wavelength signal of the lithosphere. Furthermore, it is still unclear what value for the truncation limit is best suited. An alternative is to forward model the deep situated mass anomalies and subtract the gravitational signal from the observed data. This requires knowledge of the mantle mass anomalies, dynamic topography, and CMB topography. Global tomography provides the VS distribution in the mantle, which is related to the density distribution in the mantle. There are difficulties in constructing a density model from this data. Tomography relies on regularisation which smoothens the mantle anomalies. Also, the VS anomalies need to be converted to density anomalies with uncertain conversion factors. We study the observed reduction in magnitude of the density anomalies due to the regularisation of the global tomography models. The reduced magnitude of the anomalies cannot be recovered by increasing the conversion factor from VS-to-density transformation. The reduction of the tomographic results seems to resemble the effect of a spatial Gaussian filter. By determining the spectral difference between tomographic and gravimetric models a reverse filter can be constructed to reproduce correct density variations in the complete mantle. The long-wavelengths of the global tomography models are less affected by the regularisation and can fix the value of the conversion factor. However, the low degree gravity signals are also dominated by the D" region. Therefore, different approaches are used to determine the effect of this region on the gravity field. The density anomalies in the mantle, as well as the effect of CMB undulations, are forward modelled into their gravitational potential field, such that

  7. Structure of the lithosphere-asthenosphere and volcanism in the Tyrrhenian Sea and surroundings

    International Nuclear Information System (INIS)

    Panza, G.F.; Aoudia, A.; Pontevivo, A.; Sarao, A.; Peccerillo, A.

    2003-01-01

    The Italian peninsula and the Tyrrhenian Sea are some of the geologically most complex regions on Earth. Such a complexity is expressed by large lateral and vertical variations of the physical properties as inferred from the lithosphere-asthenosphere structure and by the wide varieties of Polio-Quaternary magmatic rocks ranging from teacloth to calcalkaline to sodium- and potassium-alkaline and ultra- alkaline compositions. The integration of geophysical, petrological and geochemical data allows us to recognise various sectors in the Tyrrhenian Sea and surrounding areas and compare different volcanic complexes in order to better constrain the regional geodynamics. A thin crust overlying a soft mantle (10% of partial melting) is typical of the back arc volcanism of the central Tyrrhenian Sea (Magnaghi, Vavilov and Marsili) where tholeiitic rocks dominate. Similar lithosphere-asthenosphere structure is observed for Ustica, Vulture and Etna volcanoes where the geochemical signatures could be related to the contamination of the side intraplate mantle by material coming from the either ancient or active roll-back. The lithosphere-asthenosphere structure and geochemical-isotopic composition do not change significantly when we move to the Stromboli-Campanian volcanoes, where we identify a well developed low-velocity layer, about 10 km thick, below a thin lid, overlain by a thin continental crust. The geochemical signature of the nearby Ischia volcano is characteristic of the Campanian sector and the relative lithosphere-asthenosphere structure may likely represent a transition to the back arc volcanism sector acting in the central Tyrrhenian. The difference in terms of structure beneath Stromboli and the nearby Vulcano and Lipari is confirmed by different geochemical signatures. The affinity between Vulcano, Lipari and Etna could be explained by their common position along the Tindari-Letoianni-Malta fault zone. A low velocity mantle wedge, just below the Moho, is present

  8. Origin and Distribution of Water Contents in Continental and Oceanic Lithospheric Mantle

    Science.gov (United States)

    Peslier, Anne H.

    2013-01-01

    The water content distribution of the upper mantle will be reviewed as based on the peridotite record. The amount of water in cratonic xenoliths appears controlled by metasomatism while that of the oceanic mantle retains in part the signature of melting events. In both cases, the water distribution is heterogeneous both with depth and laterally, depending on localized water re-enrichments next to melt/fluid channels. The consequence of the water distribution on the rheology of the upper mantle and the location of the lithosphere-asthenosphere boundary will also be discussed.

  9. Lithospheric Structure of Northeastern Tibet Plateau from P and S Receiver Functions

    Science.gov (United States)

    Zhang, C.; Guo, Z.; Chen, Y. J.

    2017-12-01

    We obtain the lithospheric structure of the Northeast Tibet (NE Tibet) along an N-S trending profile using P- and S-wave receiver function recorded by ChinArray-Himalaya II project. Both P- and S-receiver function migration images show highly consistent lithospheric features. The Moho depth is estimated to be 50 km beneath the Songpan-ganzi (SPGZ) and Qaidam-Kunlun-West Qinling (QD) blocks with little or no fluctuation. However, at the northern boundary of QD, the crust abruptly uplifts to 40 km depth within a distance of 50 km. Meanwhile, at the southernmost of QD, the Moho is found at the depth of 60 km, which forms a double Moho conversion beneath the western Qinling fault (WQF). At the Qilian block, the first order feature of the PRF image is the northward crustal thinning from 60 km to 45 km. The strong Moho fluctuations beneath the Qilian block reflects the on-going mountain building processes. Further to the north, the Moho depth begins to deepen to 55 km and then gradually thins to 40 km at the Alxa block. We observe significant Moho variations at the Central Asian Orogenic belt (CAOB). Furthermore, Moho jumps and offsets are shown beneath major thrust and strike-slip faults zones, such as the a >5 km Moho uplift across the North Qilian Fault (NQF), implying that these faults cut through the crust and partly accommodate the continuous deformation/crustal shorting that is propagated from the India-Eurasia collision. Strong negative signals found in both P and S receiver functions at around 100-150 km depth can be interpreted as the lithosphere-asthenosphere boundary (LAB). The LAB deepens from 100 km at the northern to a maximum of 150 km at the southern end of the CAOB. A relatively flat LAB with the depth of 150 km is shown beneath the Alax block, and then it gradually thins to 100 km from the QD to SPGZ. Beneath the SPGZ, our results indicate a thin and flat lithosphere ( 100 km).

  10. Polymeric membrane studied using slow positron beam

    International Nuclear Information System (INIS)

    Hung, W.-S.; Lo, C.-H.; Cheng, M.-L.; Chen Hongmin; Liu Guang; Chakka, Lakshmi; Nanda, D.; Tung, K.-L.; Huang, S.-H.; Lee, Kueir-Rarn; Lai, J.-Y.; Sun Yiming; Yu Changcheng; Zhang Renwu; Jean, Y.C.

    2008-01-01

    A radioisotope slow positron beam has been built at the Chung Yuan Christian University in Taiwan for the research and development in membrane science and technology. Doppler broadening energy spectra and positron annihilation lifetime have been measured as a function of positron energy up to 30 keV in a polyamide membrane prepared by the interfacial polymerization between triethylenetetraamine (TETA) and trimesoyl chloride (TMC) on modified porous polyacrylonitrile (PAN) asymmetric membrane. The multilayer structures and free-volume depth profile for this asymmetric membrane system are obtained. Positron annihilation spectroscopy coupled with a slow beam could provide new information about size selectivity of transporting molecules and guidance for molecular designs in polymeric membranes

  11. A tilted transversely isotropic slowness surface approximation

    KAUST Repository

    Stovas, A.

    2012-05-09

    The relation between vertical and horizontal slownesses, better known as the dispersion relation, for transversely isotropic media with a tilted symmetry axis (TTI) requires solving a quartic polynomial equation, which does not admit a practical explicit solution to be used, for example, in downward continuation. Using a combination of the perturbation theory with respect to the anelliptic parameter and Shanks transform to improve the accuracy of the expansion, we develop an explicit formula for the vertical slowness that is highly accurate for all practical purposes. It also reveals some insights into the anisotropy parameter dependency of the dispersion relation including the low impact that the anelliptic parameter has on the vertical placement of reflectors for a small tilt in the symmetry angle. © 2012 European Association of Geoscientists & Engineers.

  12. Slow and fast light in semiconductor waveguides

    DEFF Research Database (Denmark)

    Mørk, Jesper; Hansen, Per Lunnemann; Xue, Weiqi

    2010-01-01

    Investigations of slow and fast light effects in semiconductor waveguides entail interesting physics and point to a number of promising applications. In this review we give an overview of recent progress in the field, in particular focusing on the physical mechanisms of electromagnetically induced...... transparency and coherent population oscillations. While electromagnetically induced transparency has been the most important effect in realizing slowdown effects in atomic gasses, progress has been comparatively slow in semiconductors due to inherent problems of fast dephasing times and inhomogeneous...... broadening in quantum dots. The physics of electromagnetically induced transparency in semiconductors is discussed, emphasizing these limitations and recent suggestions for overcoming them. On the other hand, the mechanism of coherent population oscillations relies on wave mixing effects and is well suited...

  13. Slow Invariant Manifolds in Chemically Reactive Systems

    Science.gov (United States)

    Paolucci, Samuel; Powers, Joseph M.

    2006-11-01

    The scientific design of practical gas phase combustion devices has come to rely on the use of mathematical models which include detailed chemical kinetics. Such models intrinsically admit a wide range of scales which renders their accurate numerical approximation difficult. Over the past decade, rational strategies, such as Intrinsic Low Dimensional Manifolds (ILDM) or Computational Singular Perturbations (CSP), for equilibrating fast time scale events have been successfully developed, though their computation can be challenging and their accuracy in most cases uncertain. Both are approximations to the preferable slow invariant manifold which best describes how the system evolves in the long time limit. Strategies for computing the slow invariant manifold are examined, and results are presented for practical combustion systems.

  14. Magnetotelluric Imaging of Lower Crustal Melt and Lithospheric Hydration in the Rocky Mountain Front Transition Zone, Colorado, USA

    Science.gov (United States)

    Feucht, D. W.; Sheehan, A. F.; Bedrosian, P. A.

    2017-12-01

    We present an electrical resistivity model of the crust and upper mantle from two-dimensional (2-D) anisotropic inversion of magnetotelluric data collected along a 450 km transect of the Rio Grande rift, southern Rocky Mountains, and High Plains in Colorado, USA. Our model provides a window into the modern-day lithosphere beneath the Rocky Mountain Front to depths in excess of 150 km. Two key features of the 2-D resistivity model are (1) a broad zone ( 200 km wide) of enhanced electrical conductivity (minerals, with maximum hydration occurring beneath the Rocky Mountain Front. This lithospheric "hydration front" has implications for the tectonic evolution of the continental interior and the mechanisms by which water infiltrates the lithosphere.

  15. Slowed demand ushers in summer season

    International Nuclear Information System (INIS)

    Anon.

    1996-01-01

    This article is the June 1996 market summary in uranium market. During this reporting period, there were six deals in the U3O8 spot market and three long-term deals for U3O8. There were four deals for UF6 conversion, and the spot market for uranium separation services had no transactions. This was little change from the previous month's activities, and this slowness was reflected in the price trends of little or no increase

  16. Fundamental research with polarized slow neutrons

    International Nuclear Information System (INIS)

    Krupchitsky, P.A.

    1987-01-01

    In the last twenty years polarized beams of slow neutrons have been used effectively in fundamental research in nuclear physics. This book gives a thorough introduction to these experimental methods including the most recent techniques of generating and analyzing polarized neutron beams. It clearly shows the close relationship between elementary particle physics and nuclear physics. The book not only addresses specialists but also those interested in the foundations of elementary particle and nuclear physics. With 42 figs

  17. Testing algorithms for critical slowing down

    Directory of Open Access Journals (Sweden)

    Cossu Guido

    2018-01-01

    Full Text Available We present the preliminary tests on two modifications of the Hybrid Monte Carlo (HMC algorithm. Both algorithms are designed to travel much farther in the Hamiltonian phase space for each trajectory and reduce the autocorrelations among physical observables thus tackling the critical slowing down towards the continuum limit. We present a comparison of costs of the new algorithms with the standard HMC evolution for pure gauge fields, studying the autocorrelation times for various quantities including the topological charge.

  18. SOFTWARE Manual for VMM3 Slow Control

    CERN Document Server

    Guth, Manuel

    2017-01-01

    For the New Small Wheel upgrade of the ATLAS detector a new readout chip, called VMM3(a), was developed. In order to provide this new technology to a larger community, the RD51 collaboration is integrating the VMM3 in their scalable readout system (SRS). For this purpose, a new slow control and calibration tool is necessary. This new software was developed and improved within a CERN Summer Student project.

  19. Theory of a slow-light catastrophe

    International Nuclear Information System (INIS)

    Leonhardt, Ulf

    2002-01-01

    In diffraction catastrophes such as the rainbow, the wave nature of light resolves ray singularities and draws delicate interference patterns. In quantum catastrophes such as the black hole, the quantum nature of light resolves wave singularities and creates characteristic quantum effects related to Hawking radiation. This paper describes the theory behind a recent proposal [U. Leonhardt, Nature (London) 415, 406 (2002)] to generate a quantum catastrophe of slow light

  20. Theory of a slow-light catastrophe

    Science.gov (United States)

    Leonhardt, Ulf

    2002-04-01

    In diffraction catastrophes such as the rainbow, the wave nature of light resolves ray singularities and draws delicate interference patterns. In quantum catastrophes such as the black hole, the quantum nature of light resolves wave singularities and creates characteristic quantum effects related to Hawking radiation. This paper describes the theory behind a recent proposal [U. Leonhardt, Nature (London) 415, 406 (2002)] to generate a quantum catastrophe of slow light.

  1. Theory of a Slow-Light Catastrophe

    OpenAIRE

    Leonhardt, Ulf

    2001-01-01

    In diffraction catastrophes such as the rainbow the wave nature of light resolves ray singularities and draws delicate interference patterns. In quantum catastrophes such as the black hole the quantum nature of light resolves wave singularities and creates characteristic quantum effects related to Hawking radiation. The paper describes the theory behind a recent proposal [U. Leonhardt, arXiv:physics/0111058, Nature (in press)] to generate a quantum catastrophe of slow light.

  2. Magnetic energy analyser for slow electrons

    International Nuclear Information System (INIS)

    Limberg, W.

    1974-08-01

    A differential spectrometer with high time and energy resolution has been developed using the principle of energy analysis with a longitudinal homogeneous magnetic field. This way it is possible to measure the energy distribution of low energy electrons (eV-range) in the presence of high energy electrons without distortions by secondary electrons. The functioning and application of the analyzer is demonstrated by measuring the energy distributions of slow electrons emitted by a filament. (orig.) [de

  3. γ-ray emission from slow pulsars

    International Nuclear Information System (INIS)

    Morini, M.; Treves, A.

    1981-01-01

    The scope of this communication is to calculate the expected γ-ray flux from slow pulsars, neglecting the problem of the reliability of the observations. The key hypothesis is that since the γ-ray luminosity is a substantial fraction of Lsub(T) (the intrinsic energy loss), it should be produced in the vicinity of the speed of light radius. This comes from the well known argument of simultaneous conservation of energy and angular momentum. (Auth.)

  4. Slowing down modernity: A critique : A critique

    OpenAIRE

    Vostal , Filip

    2017-01-01

    International audience; The connection between modernization and social acceleration is now a prominent theme in critical social analysis. Taking a cue from these debates, I explore attempts that aim to 'slow down modernity' by resisting the dynamic tempo of various social processes and experiences. The issue of slowdown now accounts for a largely unquestioned measure, expected to deliver unhasty tempo conditioning good and ethical life, mental well-being and accountable democracy. In princip...

  5. Implications for anomalous mantle pressure and dynamic topography from lithospheric stress patterns in the North Atlantic Realm

    Science.gov (United States)

    Schiffer, Christian; Nielsen, Søren Bom

    2016-08-01

    With convergent plate boundaries at some distance, the sources of the lithospheric stress field of the North Atlantic Realm are mainly mantle tractions at the base of the lithosphere, lithospheric density structure and topography. Given this, we estimate horizontal deviatoric stresses using a well-established thin sheet model in a global finite element representation. We adjust the lithospheric thickness and the sub-lithospheric pressure iteratively, comparing modelled in plane stress with the observations of the World Stress Map. We find that an anomalous mantle pressure associated with the Iceland and Azores melt anomalies, as well as topography are able to explain the general pattern of the principle horizontal stress directions. The Iceland melt anomaly overprints the classic ridge push perpendicular to the Mid Atlantic ridge and affects the conjugate passive margins in East Greenland more than in western Scandinavia. The dynamic support of topography shows a distinct maximum of c. 1000 m in Iceland and amounts <150 m along the coast of south-western Norway and 250-350 m along the coast of East Greenland. Considering that large areas of the North Atlantic Realm have been estimated to be sub-aerial during the time of break-up, two components of dynamic topography seem to have affected the area: a short-lived, which affected a wider area along the rift system and quickly dissipated after break-up, and a more durable in the close vicinity of Iceland. This is consistent with the appearance of a buoyancy anomaly at the base of the North Atlantic lithosphere at or slightly before continental breakup, relatively fast dissipation of the fringes of this, and continued melt generation below Iceland.

  6. Lithosphere structure and subsidence evolution of the conjugate S-African and Argentine margins

    Science.gov (United States)

    Dressel, Ingo; Scheck-Wenderoth, Magdalena; Cacace, Mauro; Götze, Hans-Jürgen; Franke, Dieter

    2016-04-01

    The bathymetric evolution of the South Atlantic passive continental margins is a matter of debate. Though it is commonly accepted that passive margins experience thermal subsidence as a result of lithospheric cooling as well as load induced subsidence in response to sediment deposition it is disputed if the South Atlantic passive margins were affected by additional processes affecting the subsidence history after continental breakup. We present a subsidence analysis along the SW African margin and offshore Argentina and restore paleobathymetries to assess the subsidence evolution of the margin. These results are discussed with respect to mechanisms behind margin evolution. Therefore, we use available information about the lithosphere-scale present-day structural configuration of these margins as a starting point for the subsidence analysis. A multi 1D backward modelling method is applied to separate individual subsidence components such as the thermal- as well as the load induced subsidence and to restore paleobathymetries for the conjugate margins. The comparison of the restored paleobathymetries shows that the conjugate margins evolve differently: Continuous subsidence is obtained offshore Argentina whereas the subsidence history of the SW African margin is interrupted by phases of uplift. This differing results for both margins correlate also with different structural configurations of the subcrustal mantle. In the light of these results we discuss possible implications for uplift mechanisms.

  7. Does the "mantle" helium signature provide useful information about lithospheric architecture of Tibet/Himalaya?

    Science.gov (United States)

    Klemperer, S. L.; Liu, T.; Hilton, D. R.; Karlstrom, K. E.; Crossey, L. J.; Zhao, P.

    2015-12-01

    Measurements of 3He/4He > 0.1*Ra (where Ra = 3He/4He in Earth's atmosphere) in geothermal fluids are conventionally taken to represent derivation from a mantle source. 3He/4He values 0.1*Ra may still be argued to result from mantle-derived 3He previously stored in the crust. However, our growing regional database of widely spaced observations of 3He/4He > 0.1*Ra, from the Karakoram Fault in the west to the Sangri-Cona rift and Yalaxiangbo Dome in the east, and from south of the Yarlung-Zangbo suture (YZS) to north of the Banggong-Nujiang suture, makes such special pleading increasingly implausible. The observation of 3He/4He > 0.1*Ra at the YZS and even within the Tethyan Himalaya south of the YZS cannot represent melting of Indian mantle close to the Moho unless existing thermal models are grossly in error. The source of 3He close to the YZS is likely either asthenosphere accessed by faults and shear zones that cut through subducting Indian lithospheric mantle; or incipient melt of Asian lithospheric mantle at the Moho north of the northern edge of underthrust India (the "mantle suture") which must therefore lie close to the YZS. Thus far we have barely tapped the rich potential that helium-isotope data offer for understanding transit of mantle volatiles through some of Earth's thickest (and ductilely flowing) crust.

  8. Thermal regime of the lithosphere and prediction of seismic hazard in the Caspian region

    International Nuclear Information System (INIS)

    Levin, L.E.; Solodilov, L.N.; Kondorskaya, N.V.; Gasanov, A.G; Panahi, B.M.

    2002-01-01

    Full text : Prediction of seicmicity is one of elements of ecology hazard warning. In this collective research, it is elaborated in three directions : quantitative estimate of regional faults by level of seismic activity; ascertainment of space position of earthquake risk zones, determination of high seismic potential sites for the period of the next 3-5 years. During elaboration of prediction, it takes into account that peculiar feature all over the is determined by relationship of about 90 percent of earthquake hypocenters and released energy of seismic waves with elactic-brittle ayer of the lithosphere. Concetration of earthquakes epicenters is established predominantly in zones of complex structure of elastic-brittle layer where gradient of it thickness is 20-30 km. Directions of hypocenters migration in the plastic-viscous layer reveal a space position of seismic dangerous zones. All this provides a necessity for generalization of data on location of earthquakes epicenters; determination of their magnitudes, space position of regional faults and heat flow with calculation of thermal regime being made for clarification of the lithosphere and elastic-brittle thickness variations separately. General analysis includes a calculation of released seismic wave energy and determination of peculiar features of its distribution in the entire region and also studies of hypocenters migration in the plastic-viscous layer of the litosphere in time.

  9. Low crustal velocities and mantle lithospheric variations in southern Tibet from regional Pnl waveforms

    Science.gov (United States)

    Rodgers, Arthur J.; Schwartz, Susan Y.

    We report low average crustal P-wave velocities (5.9-6.1 km/s, Poisson's ratio 0.23-0.27, thickness 68-76 km) in southern Tibet from modelling regional Pnl waveforms recorded by the 1991-1992 Tibetan Plateau Experiment. We also find that the mantle lithosphere beneath the Indus-Tsangpo Suture and the Lhasa Terrane is shield-like (Pn velocity 8.20-8.25 km/s, lid thickness 80-140 km, positive velocity gradient 0.0015-0.0025 s-1). Analysis of relative Pn travel time residuals requires a decrease in the mantle velocities beneath the northern Lhasa Terrane, the Banggong-Nujiang Suture and the southern Qiangtang Terrane. Tectonic and petrologic considerations suggest that low bulk crustal velocities could result from a thick (50-60 km) felsic upper crust with vertically limited and laterally pervasive partial melt. These results are consistent with underthrusting of Indian Shield lithosphere beneath the Tibetan Plateau to at least the central Lhasa Terrane.

  10. Topographic asymmetry of the South Atlantic from global models of mantle flow and lithospheric stretching

    Science.gov (United States)

    Flament, Nicolas; Gurnis, Michael; Williams, Simon; Seton, Maria; Skogseid, Jakob; Heine, Christian; Müller, Dietmar

    2014-05-01

    The relief of the South Atlantic is characterized by elevated passive continental margins along southern Africa and eastern Brazil, and by the bathymetric asymmetry of the southern oceanic basin where the western flank is much deeper than the eastern flank. We investigate the origin of these topographic features in the present and over time since the Jurassic with a model of global mantle flow and lithospheric deformation. The model progressively assimilates plate kinematics, plate boundaries and lithospheric age derived from global tectonic reconstructions with deforming plates, and predicts the evolution of mantle temperature, continental crustal thickness, long-wavelength dynamic topography, and isostatic topography. Mantle viscosity and the kinematics of the opening of the South Atlantic are adjustable parameters in multiple model cases. Model predictions are compared to observables both for the present-day and in the past. Present-day predictions are compared to topography, mantle tomography, and an estimate of residual topography. Predictions for the past are compared to tectonic subsidence from backstripped borehole data along the South American passive margin, and to dynamic uplift as constrained by thermochronology in southern Africa. Comparison between model predictions and observations suggests that the first-order features of the topography of the South Atlantic are due to long-wavelength dynamic topography, rather than to asthenospheric processes. We find the uplift of southern Africa to be best reproduced with a lower mantle that is at least 40 times more viscous than the upper mantle.

  11. Evaluation of surface-wave waveform modeling for lithosphere velocity structure

    Science.gov (United States)

    Chang, Tao-Ming

    Surface-waveform modeling methods will become standard tools for studying the lithosphere structures because they can place greater constraints on earth structure and because of interest in the three-dimensional earth. The purpose of this study is to begin to learn the applicabilities and limitations of these methods. A surface-waveform inversion method is implemented using generalized seismological data functional theory. The method has been tested using synthetic and real seismic data and show that this method is well suited for teleseismic and regional seismograms. Like other linear inversion problems, this method also requires a good starting model. To ease reliance on good starting models, a global search technique, the genetic algorithm, has been applied to surface waveform modeling. This method can rapidly find good models for explaining surface-wave waveform at regional distance. However, this implementation also reveals that criteria which are widely used in seismological studies are not good enough to indicate the goodness of waveform fit. These two methods with the linear waveform inversion method, and traditional surface wave dispersion inversion method have been applied to a western Texas earthquake to test their abilities. The focal mechanism of the Texas event has been reestimated using a grid search for surface wave spectral amplitudes. A comparison of these four algorithms shows some interesting seismic evidences for lithosphere structure.

  12. One-dimensional stable distributions

    CERN Document Server

    Zolotarev, V M

    1986-01-01

    This is the first book specifically devoted to a systematic exposition of the essential facts known about the properties of stable distributions. In addition to its main focus on the analytic properties of stable laws, the book also includes examples of the occurrence of stable distributions in applied problems and a chapter on the problem of statistical estimation of the parameters determining stable laws. A valuable feature of the book is the author's use of several formally different ways of expressing characteristic functions corresponding to these laws.

  13. Extreme Hf-Os Isotope Compositions in Hawaiian Peridotite Xenoliths: Evidence for an Ancient Recycled Lithosphere

    Science.gov (United States)

    Bizimis, M.; Lassiter, J. C.; Salters, V. J.; Sen, G.; Griselin, M.

    2004-12-01

    We report on the first combined Hf-Os isotope systematics of spinel peridotite xenoliths from the Salt Lake Crater (SLC), Pali and Kaau (PK) vents from the island of Oahu, Hawaii. These peridotites are thought to represent the Pacific oceanic lithosphere beneath Oahu, as residues of MORB-type melting at a paleo-ridge some 80-100Ma ago. Clinopyroxene mineral separates in these peridotites have very similar Nd and Sr isotope compositions with the post erosional Honolulu Volcanics (HV) lavas that bring these xenoliths to the surface. This and their relatively elevated Na and LREE contents suggest that these peridotites are not simple residues of MORB-type melting but have experience some metasomatic enrichment by the host HV lavas. However, the SLC and PK xenoliths show an extreme range in Hf isotope compositions towards highly radiogenic values (ɛ Hf= 7-80), at nearly constant Nd isotope compositions (ɛ Nd= 7-10), unlike any OIB or MORB basalt. Furthermore, these Oahu peridotites show a bimodal distribution in their bulk rock 187Os/186Os ratios: the PK peridotites have similar ratios to the abyssal peridotites (0.130-0.1238), while the SLC peridotites have highly subchondritic ratios (0.1237-0.1134) that yield 500Ma to 2Ga Re-depletion ages. Hf-Os isotopes show a broad negative correlation whereby the samples with the most radiogenic 176Hf/177Hf have the most unradiogenic 187Os/186Os ratios. Based on their combined Hf-Os-Nd isotope and major element compositions, the PK peridotites can be interpreted as fragments of the Hawaiian lithosphere, residue of MORB melting 80-100Ma ago, that have been variably metasomatized by the host HV lavas. In contrast, the extreme Hf-Os isotope compositions of the SLC peridotites suggest that they cannot be the source nor residue of any kind of Hawaiian lavas, and that Hf and Os isotopes survived the metasomatism or melt-rock reaction that has overprinted the Nd and Sr isotope compositions of these peridotites. The ancient (>1Ga

  14. Three-Dimensional Rheological Structure of North China Craton Determined by Integration of Multiple observations: Controlling Role for Lithospheric Rifting

    Science.gov (United States)

    Xiong, X.; Shan, B.; Li, Y.

    2017-12-01

    The North China Craton (NCC) has undergone significant lithospheric rejuvenation in late Mesozoic and Cenozoic, one feature of which is the widespread extension and rifting. The extension is distinct between the two parts of NCC: widespread rifting in the eastern NCC and localized narrow rifting in the west. The mechanism being responsible for this difference is uncertain and highly debated. Since lithospheric deformation can be regarded as the response of lithosphere to various dynamic actions, the rheological properties of lithosphere must have a fundamental influence on its tectonics and deformation behavior. In this study, we investigated the 3D thermal and rheological structure of NCC by developing a model integrating several geophysical observables (such as surface heatflow, regional elevation, gravity and geoid anomalies, and seismic tomography models). The results exhibit obvious lateral variation in rheological structure between the eastern and western NCC. The overall lithospheric strength is higher in the western NCC than in the east. Despite of such difference in rheology, both parts of NCC are characterized by mantle dominated strength regime, which facilitates the development of narrow rifting. Using ancient heatflow derived from mantle xenoliths studies, and taking the subduction-related dehydration reactions during Mesozoic into account, we constructed the thermal and rheological structure of NCC in Ordovician, early Cretaceous and early Cenozoic. Combining the evidence from numerical simulations, we proposed an evolution path of the rifting in NCC. The lithosphere of NCC in Ordovician was characterized by a normal craton features: low geotherm, high strength and mantle dominated regime. During Jurassic and Cretaceous, the mantle lithosphere in the eastern NCC was hydrated by fluid released by the suduction of the Pacific plate, resulting in weakening of the lithosphere and a transition from mantle dominated to crust dominated regime, which

  15. Lithosphere/asthenosphere interaction during continental breakup: preliminary isotopic date on the passive Galicia margin (North-Atlantic)

    International Nuclear Information System (INIS)

    Charpentier, S.; Kornprobst, J.; Chazot, G.; Cornen, G.

    1998-01-01

    The Galicia Margin ultramafic ridge has been cross-cut by diorites, pyroxenites and gabbros before the end of the rifting stage, and then by dolerites, after the continental break-full; it has been further overlaid by basaltic lava flows. The younger the rocks, the higher the initial ξ Nd (2.2-8.8). This evolution would be the result of the contamination of liquids extracted from the asthenosphere, by the enriched (ξ Ndi =4.0) and partially melted previous continental lithosphere. Time-decreasing contamination is related to progressive lithospheric thinning from the end to the beginning of oceanic spreading. (authors)

  16. Nonlinear dynamical triggering of slow slip

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Paul A [Los Alamos National Laboratory; Knuth, Matthew W [WISCONSIN; Kaproth, Bryan M [PENN STATE; Carpenter, Brett [PENN STATE; Guyer, Robert A [Los Alamos National Laboratory; Le Bas, Pierre - Yves [Los Alamos National Laboratory; Daub, Eric G [Los Alamos National Laboratory; Marone, Chris [PENN STATE

    2010-12-10

    Among the most fascinating, recent discoveries in seismology have been the phenomena of triggered slip, including triggered earthquakes and triggered-tremor, as well as triggered slow, silent-slip during which no seismic energy is radiated. Because fault nucleation depths cannot be probed directly, the physical regimes in which these phenomena occur are poorly understood. Thus determining physical properties that control diverse types of triggered fault sliding and what frictional constitutive laws govern triggered faulting variability is challenging. We are characterizing the physical controls of triggered faulting with the goal of developing constitutive relations by conducting laboratory and numerical modeling experiments in sheared granular media at varying load conditions. In order to simulate granular fault zone gouge in the laboratory, glass beads are sheared in a double-direct configuration under constant normal stress, while subject to transient perturbation by acoustic waves. We find that triggered, slow, silent-slip occurs at very small confining loads ({approx}1-3 MPa) that are smaller than those where dynamic earthquake triggering takes place (4-7 MPa), and that triggered slow-slip is associated with bursts of LFE-like acoustic emission. Experimental evidence suggests that the nonlinear dynamical response of the gouge material induced by dynamic waves may be responsible for the triggered slip behavior: the slip-duration, stress-drop and along-strike slip displacement are proportional to the triggering wave amplitude. Further, we observe a shear-modulus decrease corresponding to dynamic-wave triggering relative to the shear modulus of stick-slips. Modulus decrease in response to dynamical wave amplitudes of roughly a microstrain and above is a hallmark of elastic nonlinear behavior. We believe that the dynamical waves increase the material non-affine elastic deformation during shearing, simultaneously leading to instability and slow-slip. The inferred

  17. Slow movement execution in event-related potentials (P300).

    Science.gov (United States)

    Naruse, Kumi; Sakuma, Haruo; Hirai, Takane

    2002-02-01

    We examined whether slow movement execution has an effect on cognitive and information processing by measuring the P300 component. 8 subjects performed a continuous slow forearm rotational movement using 2 task speeds. Slow (a 30-50% decrease from the subject's Preferred speed) and Very Slow (a 60-80% decrease). The mean coefficient of variation for rotation speed under Very Slow was higher than that under Slow, showing that the subjects found it difficult to perform the Very Slow task smoothly. The EEG score of alpha-1 (8-10 Hz) under Slow Condition was increased significantly more than under the Preferred Condition; however, the increase under Very Slow was small when compared with Preferred. After performing the task. P300 latency under Very Slow increased significantly as compared to that at pretask. Further, P300 amplitude decreased tinder both speed conditions when compared to that at pretask, and a significant decrease was seen under the Slow Condition at Fz, whereas the decrease under the Very Slow Condition was small. These differences indicated that a more complicated neural composition and an increase in subjects' attention might have been involved when the task was performed under the Very Slow Condition. We concluded that slow movement execution may have an influence on cognitive function and may depend on the percentage of decrease from the Preferred speed of the individual.

  18. Stable isotope research pool inventory

    International Nuclear Information System (INIS)

    1980-12-01

    This report contains a listing of electromagnetically separated stable isotopes which are available for distribution within the United States for non-destructive research use from the Oak Ridge National Laboratory on a loan basis. This inventory includes all samples of stable isotopes in the Materials Research Collection and does not designate whether a sample is out on loan or in reprocessing

  19. Counting graphene layers with very slow electrons

    Energy Technology Data Exchange (ETDEWEB)

    Frank, Ludĕk; Mikmeková, Eliška; Müllerová, Ilona [Institute of Scientific Instruments AS CR, v.v.i., Královopolská 147, 61264 Brno (Czech Republic); Lejeune, Michaël [Laboratoire de Physique de la Matière Condensée, Faculté des Sciences d' Amiens, Universite de Picardie Jules Verne, 33 rue Saint Leu, 80039 Amiens Cedex 2 (France)

    2015-01-05

    The study aimed at collection of data regarding the transmissivity of freestanding graphene for electrons across their full energy scale down to the lowest energies. Here, we show that the electron transmissivity of graphene drops with the decreasing energy of the electrons and remains below 10% for energies below 30 eV, and that the slow electron transmissivity value is suitable for reliable determination of the number of graphene layers. Moreover, electrons incident below 50 eV release adsorbed hydrocarbon molecules and effectively clean graphene in contrast to faster electrons that decompose these molecules and create carbonaceous contamination.

  20. Slow relaxation in weakly open rational polygons.

    Science.gov (United States)

    Kokshenev, Valery B; Vicentini, Eduardo

    2003-07-01

    The interplay between the regular (piecewise-linear) and irregular (vertex-angle) boundary effects in nonintegrable rational polygonal billiards (of m equal sides) is discussed. Decay dynamics in polygons (of perimeter P(m) and small opening Delta) is analyzed through the late-time survival probability S(m) approximately equal t(-delta). Two distinct slow relaxation channels are established. The primary universal channel exhibits relaxation of regular sliding orbits, with delta=1. The secondary channel is given by delta>1 and becomes open when m>P(m)/Delta. It originates from vertex order-disorder dual effects and is due to relaxation of chaoticlike excitations.

  1. Quasistatic modelling of the coaxial slow source

    International Nuclear Information System (INIS)

    Hahn, K.D.; Pietrzyk, Z.A.; Vlases, G.C.

    1986-01-01

    A new 1-D Lagrangian MHD numerical code in flux coordinates has been developed for the Coaxial Slow Source (CSS) geometry. It utilizes the quasistatic approximation so that the plasma evolves as a succession of equilibria. The P=P (psi) equilibrium constraint, along with the assumption of infinitely fast axial temperature relaxation on closed field lines, is incorporated. An axially elongated, rectangular plasma is assumed. The axial length is adjusted by the global average condition, or assumed to be fixed. In this paper predictions obtained with the code, and a limited amount of comparison with experimental data are presented

  2. Hot big bang or slow freeze?

    Science.gov (United States)

    Wetterich, C.

    2014-09-01

    We confront the big bang for the beginning of the universe with an equivalent picture of a slow freeze - a very cold and slowly evolving universe. In the freeze picture the masses of elementary particles increase and the gravitational constant decreases with cosmic time, while the Newtonian attraction remains unchanged. The freeze and big bang pictures both describe the same observations or physical reality. We present a simple ;crossover model; without a big bang singularity. In the infinite past space-time is flat. Our model is compatible with present observations, describing the generation of primordial density fluctuations during inflation as well as the present transition to a dark energy-dominated universe.

  3. Lead Slowing Down Spectrometer Status Report

    International Nuclear Information System (INIS)

    Warren, Glen A.; Anderson, Kevin K.; Bonebrake, Eric; Casella, Andrew M.; Danon, Yaron; Devlin, M.; Gavron, Victor A.; Haight, R.C.; Imel, G.R.; Kulisek, Jonathan A.; O'Donnell, J.M.; Weltz, Adam

    2012-01-01

    This report documents the progress that has been completed in the first half of FY2012 in the MPACT-funded Lead Slowing Down Spectrometer project. Significant progress has been made on the algorithm development. We have an improve understanding of the experimental responses in LSDS for fuel-related material. The calibration of the ultra-depleted uranium foils was completed, but the results are inconsistent from measurement to measurement. Future work includes developing a conceptual model of an LSDS system to assay plutonium in used fuel, improving agreement between simulations and measurement, design of a thorium fission chamber, and evaluation of additional detector techniques.

  4. Water in the oceanic lithosphere: Salt Lake Crater xenoliths, Oahu, Hawaii

    Science.gov (United States)

    Peslier, A. H.; Bizimis, M.

    2010-12-01

    Water can be present in nominally anhydrous minerals of peridotites in the form of hydrogen bonded to structural oxygen. Such water in the oceanic upper mantle could have a significant effect on its physical and chemical properties. However, the water content of the MORB source has been inferred indirectly from the compositions of basalts. Direct determinations on abyssal peridotites are scarce because they have been heavily hydrothermally altered. Here we present the first water analyses of minerals from spinel peridotite xenoliths of Salt Lake Crater, Oahu, Hawaii, which are exceptionally fresh. These peridotites are thought to represent fragments of the Pacific oceanic lithosphere that was refertilized by alkalic Hawaiian melts. A few have unradiogenic Os and radiogenic Hf isotopes and may be fragments of an ancient ( 2 Ga) depleted and recycled lithosphere. Water contents in olivine (Ol), orthopyroxene (Opx), and clinopyroxene (Cpx) were determined by FTIR spectrometry. Preliminary H_{2}O contents show ranges of 8-10 ppm for Ol, 151-277 ppm for Opx, and 337-603 ppm for Cpx. Reconstructed bulk rock H_{2}O contents range from 88-131 ppm overlapping estimates for the MORB source. Water contents between Ol minerals of the same xenolith are heterogeneous and individual OH infrared bands vary within a mineral with lower 3230 cm^{-1} and higher 3650-3400 cm^{-1} band heights from core to edge. This observation suggests disturbance of the hydrogen in Ol likely occurring during xenolith entrainment to the surface. Pyroxene water contents are higher than most water contents in pyroxenes from continental peridotite xenoliths and higher than those of abyssal peridotites. Cpx water contents decrease with increasing degree of depletion (e.g. increasing Fo in Ol and Cr# in spinel) consistent with an incompatible behavior of water. However Cpx water contents also show a positive correlation with LREE/HREE ratios and LREE concentrations consistent with refertilization. Opx

  5. Using open sidewalls for modelling self-consistent lithosphere subduction dynamics

    Directory of Open Access Journals (Sweden)

    M. V. Chertova

    2012-10-01

    Full Text Available Subduction modelling in regional model domains, in 2-D or 3-D, is commonly performed using closed (impermeable vertical boundaries. Here we investigate the merits of using open boundaries for 2-D modelling of lithosphere subduction. Our experiments are focused on using open and closed (free slip sidewalls while comparing results for two model aspect ratios of 3:1 and 6:1. Slab buoyancy driven subduction with open boundaries and free plates immediately develops into strong rollback with high trench retreat velocities and predominantly laminar asthenospheric flow. In contrast, free-slip sidewalls prove highly restrictive on subduction rollback evolution, unless the lithosphere plates are allowed to move away from the sidewalls. This initiates return flows pushing both plates toward the subduction zone speeding up subduction. Increasing the aspect ratio to 6:1 does not change the overall flow pattern when using open sidewalls but only the flow magnitude. In contrast, for free-slip boundaries, the slab evolution does change with respect to the 3:1 aspect ratio model and slab evolution does not resemble the evolution obtained with open boundaries using 6:1 aspect ratio. For models with open side boundaries, we could develop a flow-speed scaling based on energy dissipation arguments to convert between flow fields of different model aspect ratios. We have also investigated incorporating the effect of far-field generated lithosphere stress in our open boundary models. By applying realistic normal stress conditions to the strong part of the overriding plate at the sidewalls, we can transfer intraplate stress to influence subduction dynamics varying from slab roll-back, stationary subduction, to advancing subduction. The relative independence of the flow field on model aspect ratio allows for a smaller modelling domain. Open boundaries allow for subduction to evolve freely and avoid the adverse effects (e.g. forced return flows of free-slip boundaries. We

  6. Water in the Oceanic Lithosphere: Salt Lake Crater Xenoliths, Oahu, Hawaii

    Science.gov (United States)

    Peslier, Anne H.; Bizimis, Michael

    2010-01-01

    Water can be present in nominally anhydrous minerals of peridotites in the form of hydrogen bonded to structural oxygen. Such water in the oceanic upper mantle could have a significant effect on its physical and chemical properties. However, the water content of the MORB source has been inferred indirectly from the compositions of basalts. Direct determinations on abyssal peridotites are scarce because they have been heavily hydrothermally altered. Here we present the first water analyses of minerals from spinel peridotite xenoliths of Salt Lake Crater, Oahu, Hawaii, which are exceptionally fresh. These peridotites are thought to represent fragments of the Pacific oceanic lithosphere that was refertilized by alkalic Hawaiian melts. A few have unradiogenic Os and radiogenic Hf isotopes and may be fragments of an ancient (2 Ga) depleted and recycled lithosphere. Water contents in olivine (Ol), orthopyroxene (Opx), and clinopyroxene (Cpx) were determined by FTIR spectrometry. Preliminary H_{2}O contents show ranges of 8-10 ppm for Ol, 151-277 ppm for Opx, and 337-603 ppm for Cpx. Reconstructed bulk rock H_{2}O contents range from 88-131 ppm overlapping estimates for the MORB source. Water contents between Ol minerals of the same xenolith are heterogeneous and individual OH infrared bands vary within a mineral with lower 3230 cm^{-1} and higher 3650-3400 cm^{-1} band heights from core to edge. This observation suggests disturbance of the hydrogen in Ol likely occurring during xenolith entrainment to the surface. Pyroxene water contents are higher than most water contents in pyroxenes from continental peridotite xenoliths and higher than those of abyssal peridotites. Cpx water contents decrease with increasing degree of depletion (e.g. increasing Fo in Ol and Cr# in spinel) consistent with an incompatible behavior of water. However Cpx water contents also show a positive correlation with LREE/HREE ratios and LREE concentrations consistent with refertilization. Opx water

  7. Imaging Lithospheric-scale Structure Beneath Northern Altiplano in Southern Peru and Northern Bolivia

    Science.gov (United States)

    Kumar, A.; Wagner, L. S.; Beck, S. L.; Zandt, G.; Long, M. D.

    2014-12-01

    The northern Altiplano plateau of southern Peru and northern Bolivia is one of the highest topographic features on the Earth, flanked by Western and Eastern Cordillera along its margin. It has strongly influenced the local and far field lithospheric deformation since the early Miocene (Masek et al., 1994). Previous studies have emphasized the importance of both the crust and upper mantle in the evolution of Altiplano plateau (McQuarrie et al., 2005). Early tomographic and receiver function studies, south of 16° S, show significant variations in the crust and upper mantle properties in both perpendicular and along strike direction of the Altiplano plateau (Dorbath et. al., 1993; Myers et al., 1998; Beck and Zandt, 2002). In order to investigate the nature of subsurface lithospheric structure below the northern Altiplano, between 15-18° S, we have determined three-dimensional seismic tomography models for Vp and Vs using P and S-wave travel time data from two recently deployed local seismic networks of CAUGHT and PULSE. We also used data from 8 stations from the PERUSE network (PERU Subduction Experiment). Our preliminary tomographic models show a complex variation in the upper mantle velocity structure with depth, northwest and southeast of lake Titicaca. We see the following trend, at ~85 km depth, northwest of lake Titicaca: low Vp and Vs beneath the Western Cordillera, high Vs beneath the Altiplano and low Vp and Vs beneath the Eastern Cordillera. This low velocity anomaly, beneath Eastern Cordillera, seems to coincide with Kimsachata, a Holocene volcano in southern Peru. At depth greater than ~85 km: we find high velocity anomaly beneath the Western Cordillera and low Vs beneath the Altiplano. This high velocity anomaly, beneath Western Cordillera, coincides with the well-located Wadati-Benioff zone seismicity and perhaps represents the subducting Nazca slab. On the southeast of lake Titicaca, in northern Bolivia, we see a consistently high velocity anomaly

  8. Finding the last 200Ma of subducted lithosphere in tomography and incorporating it into plate reconstructions

    Science.gov (United States)

    Suppe, J.; Wu, J.; Chen, Y. W.

    2016-12-01

    Precise plate-tectonic reconstruction of the Earth has been constrained largely by the seafloor magnetic-anomaly record of the present oceans formed during the dispersal of the last supercontinent since 200Ma. The corresponding world that was lost to subduction has been only sketchily known. We have developed methodologies to map in 3D these subducted slabs of lithosphere in seismic tomography and unfold them to the Earth surface, constraining their initial size, shapes and locations. Slab edges are commonly formed at times of plate reorganization (for example bottom edges typically record initiation of subduction) such that unfolded slabs fit together at times of reorganization, as we illustrate for the Nazca slab at 80Ma and the western Pacific slabs between Kamchatka and New Zealand at 50Ma. Mapping to date suggests that a relatively complete and decipherable record of lithosphere subducted over the last 200Ma may exist in the mantle today, providing a storehouse for new discoveries. We briefly illustrate our procedure for obtaining slab-constrained plate-tectonic models from tomography with our recent study of the Philippine Sea plate, whose motions and tectonic history have been the least known of the major plates because it has been isolated from the global plate and hotspot circuit by trenches. We mapped and unfolded 28 subducted slabs in the mantle under East Asia and Australia/Oceania to depths of 1200km, with a subducted area of 25% of present-day global oceanic lithosphere, and incorporated them as constraints into a new globally-consistent plate reconstruction of the Philippine Sea and surrounding East Asia, leading to a number of new insights, including: [1] discovery of a major (8000 km x 2500 km) set of vanished oceans that we call the East Asia Sea that existed between the Pacific and Indian Oceans, now represented by flat slabs in the lower mantle under present-day Philippine Sea, eastern Sundaland and northern Australia and [2] the Philippine Sea

  9. Rayleigh and S wave tomography constraints on subduction termination and lithospheric foundering in central California

    Science.gov (United States)

    Jiang, Chengxin; Schmandt, Brandon; Hansen, Steven M.; Dougherty, Sara L.; Clayton, Robert W.; Farrell, Jamie; Lin, Fan-Chi

    2018-01-01

    The crust and upper mantle structure of central California have been modified by subduction termination, growth of the San Andreas plate boundary fault system, and small-scale upper mantle convection since the early Miocene. Here we investigate the contributions of these processes to the creation of the Isabella Anomaly, which is a high seismic velocity volume in the upper mantle. There are two types of hypotheses for its origin. One is that it is the foundered mafic lower crust and mantle lithosphere of the southern Sierra Nevada batholith. The alternative suggests that it is a fossil slab connected to the Monterey microplate. A dense broadband seismic transect was deployed from the coast to the western Sierra Nevada to fill in the least sampled areas above the Isabella Anomaly, and regional-scale Rayleigh and S wave tomography are used to evaluate the two hypotheses. New shear velocity (Vs) tomography images a high-velocity anomaly beneath coastal California that is sub-horizontal at depths of ∼40–80 km. East of the San Andreas Fault a continuous extension of the high-velocity anomaly dips east and is located beneath the Sierra Nevada at ∼150–200 km depth. The western position of the Isabella Anomaly in the uppermost mantle is inconsistent with earlier interpretations that the Isabella Anomaly is connected to actively foundering foothills lower crust. Based on the new Vs images, we interpret that the Isabella Anomaly is not the dense destabilized root of the Sierra Nevada, but rather a remnant of Miocene subduction termination that is translating north beneath the central San Andreas Fault. Our results support the occurrence of localized lithospheric foundering beneath the high elevation eastern Sierra Nevada, where we find a lower crustal low Vs layer consistent with a small amount of partial melt. The high elevations relative to crust thickness and lower crustal low Vs zone are consistent with geological inferences that lithospheric foundering drove

  10. Lithospheric Layering beneath the Contiguous United States Constrained by S-to-P Receiver Functions

    Science.gov (United States)

    Liu, L.; Liu, K. H.; Kong, F.; Gao, S. S.

    2017-12-01

    The greatly-improved spatial coverage of broadband seismic stations as a result of the deployment of the EarthScope Transportable Array (TA) stations and the diversity of tectonic environments in the contiguous United States provide a unique opportunity to investigate the depth variation and nature of intra-lithospheric interfaces in different tectonic regimes. A total of 284,121 high-quality S-to-P receiver functions (SRFs) are obtained from 3,809 broadband seismic stations in the TA and other permanent and temporary deployments in the contiguous United States. The SRFs are computed using frequency domain deconvolution, and are stacked in consecutive circles with a radius of 2°. They are converted to depth series after move-out corrections using the IASP91 Earth model. Similar to previous SRF studies, a robust negative arrival, representing a sharp discontinuity of velocity reduction with depth, is visible in virtually all the stacked traces in the depth range of 30-110 km. Beneath the western US, the depth of this discontinuity is 69±17 km, and beneath the eastern US, it ranges from 75 to 90 km, both of which are comparable to the depth of the tomographically-determined lithosphere-asthenosphere boundary (LAB). In contrast, the depth of the discontinuity beneath the central US is 83±10 km which is significantly smaller than the 250 km LAB depth determined by seismic surface wave tomography. Based on previous seismic tomography, shear-wave splitting and mantle xenolith studies, we interpret this discontinuity as the top of a frozen-in layer of volatile-rich melt beneath the central US. The observations and the discrepancy between the SRF and seismic tomography results for the central US as well as the amplitude of the corresponding arrival on the SRFs may be explained by spatial variations of the thickness of the transitional layer between the "pure" lithosphere and the "pure" asthenosphere. Under this hypothesis, the consistency between the results from the

  11. Rayleigh and S wave tomography constraints on subduction termination and lithospheric foundering in central California

    Science.gov (United States)

    Jiang, Chengxin; Schmandt, Brandon; Hansen, Steven M.; Dougherty, Sara L.; Clayton, Robert W.; Farrell, Jamie; Lin, Fan-Chi

    2018-04-01

    The crust and upper mantle structure of central California have been modified by subduction termination, growth of the San Andreas plate boundary fault system, and small-scale upper mantle convection since the early Miocene. Here we investigate the contributions of these processes to the creation of the Isabella Anomaly, which is a high seismic velocity volume in the upper mantle. There are two types of hypotheses for its origin. One is that it is the foundered mafic lower crust and mantle lithosphere of the southern Sierra Nevada batholith. The alternative suggests that it is a fossil slab connected to the Monterey microplate. A dense broadband seismic transect was deployed from the coast to the western Sierra Nevada to fill in the least sampled areas above the Isabella Anomaly, and regional-scale Rayleigh and S wave tomography are used to evaluate the two hypotheses. New shear velocity (Vs) tomography images a high-velocity anomaly beneath coastal California that is sub-horizontal at depths of ∼40-80 km. East of the San Andreas Fault a continuous extension of the high-velocity anomaly dips east and is located beneath the Sierra Nevada at ∼150-200 km depth. The western position of the Isabella Anomaly in the uppermost mantle is inconsistent with earlier interpretations that the Isabella Anomaly is connected to actively foundering foothills lower crust. Based on the new Vs images, we interpret that the Isabella Anomaly is not the dense destabilized root of the Sierra Nevada, but rather a remnant of Miocene subduction termination that is translating north beneath the central San Andreas Fault. Our results support the occurrence of localized lithospheric foundering beneath the high elevation eastern Sierra Nevada, where we find a lower crustal low Vs layer consistent with a small amount of partial melt. The high elevations relative to crust thickness and lower crustal low Vs zone are consistent with geological inferences that lithospheric foundering drove uplift

  12. Thermo-mechanical models of the European lithosphere for geothermal exploration

    Science.gov (United States)

    Limberger, Jon; van Wees, Jan-Diederik; Tesauro, Magdala; Bonté, Damien; Lipsey, Lindsay; Beekman, Fred; Cloetingh, Sierd

    2015-04-01

    One of the critical exploration parameters for geothermal systems is the subsurface temperature. Temperature data are reliable up to a depth of 1 km in most parts of Europe. Accordingly, the robustness of temperature estimation rapidly decreases with depth, as temperature data from wells become sparser and unevenly distributed. We developed a two-layer temperature model for assessing the prospective resource base of enhanced geothermal systems in Europe. The surface heat flow and the Moho depth were used to constrain the radiogenic heat production in the upper crust. Only conduction was considered for heat transfer. The most recent and comprehensive regional temperature models and maps available were directly used to constrain the 3D temperature distribution up to a depth of 6 km. The model shows high average geothermal gradients of up to 60 °C in volcanically active regions such as Iceland, parts of Italy, Greece and Turkey. Temperatures at 5 km depth range between 40 °C and 310 °C and at 10 km depth between 80 °C and 590 °C. However, this direct use of regional models is not fully consistent with the calculated and observed heat flow. Furthermore, only fixed thermal conductivity values were assigned to the sediments and the crystalline basement. As part of the EU FP7-funded Integrated Methods for Advanced Geothermal Exploration (IMAGE) project we are going to develop a methodology to obtain a more advanced 3D lithosphere-scale thermal model of Europe. This will include a more realistic distribution of thermal properties, according with lithological variations of the European crust. Further improvements of the thermal model, aiming at consistency between temperature and heat flow observations and tectonic model predictions, will be obtained by adopting data assimilation techniques derived from reservoir engineering best practices. The newly derived thermal model of the European lithosphere together with compositional data will be used to estimate the strength

  13. Continental lithospheric evolution: Constraints from the geochemistry of felsic volcanic rocks in the Dharwar Craton, India

    Science.gov (United States)

    Manikyamba, C.; Ganguly, Sohini; Saha, Abhishek; Santosh, M.; Rajanikanta Singh, M.; Subba Rao, D. V.

    2014-12-01

    Felsic magmatism associated with ocean-ocean and ocean-continent subduction processes provide important evidence for distinct episodes of crust-generation and continental lithospheric evolution. Rhyolites constitute an integral component of the tholeiitic to calc-alkaline basalt-andesite-dacite-rhyolite (BADR) association and contribute to crustal growth processes at convergent plate margins. The evolution of the Dharwar Craton of southern peninsular India during Meso- to Neoarchean times was marked by extensive development of greenstone belts. These granite-greenstone terranes have distinct volcano-sedimentary associations consistent with their geodynamic setting. The present study deals with geochemistry of rhyolites from the Chitradurga-Shimoga greenstone belts of western (WDC) and the Gadwal-Kadiri greenstone belts of eastern (EDC) sectors of Dharwar Craton to compare and evaluate their petrogenesis and geodynamic setting and their control on the continental lithospheric evolution of the Dharwar Craton. At a similar range of SiO2, Al2O3, Fe2O3, the rhyolites of WDC are more potassic, whereas the EDC rhyolites are more sodic and less magnesian with slight increase in TiO2. Minor increase in MgO content of WDC rhyolites reflects their ferromagnesian trace elements which are comparatively lower in the rhyolites of EDC. The relative enrichment in LILE (K, Rb) and depletion in HFSE (Nb, Ta, Zr, Hf) marked by negative Nb-Ta, Zr-Hf and Ti anomalies endorse the convergent margin processes for the generation of rhyolites of both the sectors of Dharwar Craton. The high silica potassic rhyolites of Shimoga and Chitradurga greenstone belts of WDC showing prominent negative Eu and Ti anomalies, flat HREE patterns correspond to Type 3 rhyolites and clearly point towards their generation and emplacement in an active continental margin environment. The geochemical characteristics of Gadwal and Kadiri rhyolites from eastern Dharwar Craton marked by aluminous compositions with

  14. Lithospheric flexure under the Hawaiian volcanic load: Internal stresses and a broken plate revealed by earthquakes

    Science.gov (United States)

    Klein, Fred W.

    2016-01-01

    Several lines of earthquake evidence indicate that the lithospheric plate is broken under the load of the island of Hawai`i, where the geometry of the lithosphere is circular with a central depression. The plate bends concave downward surrounding a stress-free hole, rather than bending concave upward as with past assumptions. Earthquake focal mechanisms show that the center of load stress and the weak hole is between the summits of Mauna Loa and Mauna Kea where the load is greatest. The earthquake gap at 21 km depth coincides with the predicted neutral plane of flexure where horizontal stress changes sign. Focal mechanism P axes below the neutral plane display a striking radial pattern pointing to the stress center. Earthquakes above the neutral plane in the north part of the island have opposite stress patterns; T axes tend to be radial. The M6.2 Honomu and M6.7 Kiholo main shocks (both at 39 km depth) are below the neutral plane and show radial compression, and the M6.0 Kiholo aftershock above the neutral plane has tangential compression. Earthquakes deeper than 20 km define a donut of seismicity around the stress center where flexural bending is a maximum. The hole is interpreted as the soft center where the lithospheric plate is broken. Kilauea's deep conduit is seismically active because it is in the ring of maximum bending. A simplified two-dimensional stress model for a bending slab with a load at one end yields stress orientations that agree with earthquake stress axes and radial P axes below the neutral plane. A previous inversion of deep Hawaiian focal mechanisms found a circular solution around the stress center that agrees with the model. For horizontal faults, the shear stress within the bending slab matches the slip in the deep Kilauea seismic zone and enhances outward slip of active flanks.

  15. Dynamic analysis of the conditional oscillator underlying slow waves in thalamocortical neurons

    Directory of Open Access Journals (Sweden)

    Francois eDavid

    2016-02-01

    Full Text Available During non-REM sleep the EEG shows characteristics waves that are generated by the dynamic interactions between cortical and thalamic oscillators. In thalamic neurons, low-threshold T-type Ca2+ channels play a pivotal role in almost every type of neuronal oscillations, including slow (<1 Hz waves, sleep spindles and delta waves. The transient opening of T channels gives rise to the low threshold spikes (LTSs, and associated high frequency bursts of action potentials, that are characteristically present during sleep spindles and delta waves, whereas the persistent opening of a small fraction of T channels, (i.e. ITwindow is responsible for the membrane potential bistability underlying sleep slow oscillations. Surprisingly thalamocortical (TC neurons express a very high density of T channels that largely exceed the amount required to generate LTSs and therefore, to support certain, if not all, sleep oscillations. Here, to clarify the relationship between T current density and sleep oscillations, we systematically investigated the impact of the T conductance level on the intrinsic rhythmic activities generated in TC neurons, combining in vitro experiments and TC neuron simulation. Using bifurcation analysis, we provide insights into the dynamical processes taking place at the transition between slow and delta oscillations. Our results show that although stable delta oscillations can be evoked with minimal T conductance, the full range of slow oscillation patterns, including groups of delta oscillations separated by Up states (grouped-delta slow waves requires a high density of T channels. Moreover, high levels of T conductance ensure the robustness of different types of slow oscillations.

  16. Sustainable Development of Slow Fashion Businesses: Customer Value Approach

    Directory of Open Access Journals (Sweden)

    Sojin Jung

    2016-06-01

    Full Text Available As an alternative to the prevalent fast fashion model, slow fashion has emerged as a way of enhancing sustainability in the fashion industry, yet how slow fashion can enhance profitability is still largely unknown. Based on a customer value creation framework, this study empirically tested a structural model that specified the slow fashion attributes that contribute to creating perceived customer value, which subsequently increases a consumer’s intention to buy and pay a price premium for slow fashion products. An analysis of 221 U.S. consumer data revealed that delivering exclusive product value is significantly critical in creating customer value for slow fashion, and customer value, in turn, positively affects consumers’ purchase intentions. Further analysis also revealed that different slow fashion attributes distinctively affect customer value. This provides potential strategies on which slow fashion businesses can focus to secure an economically sustainable business model, thereby continuously improving environmental and social sustainability with the slow fashion ideal.

  17. Domains of Archean mantle lithosphere deciphered by seismic anisotropy – inferences from the LAPNET array in northern Fennoscandia

    Czech Academy of Sciences Publication Activity Database

    Plomerová, Jaroslava; Vecsey, Luděk; Babuška, Vladislav

    2011-01-01

    Roč. 2, č. 2 (2011), s. 303-313 ISSN 1869-9510 R&D Projects: GA AV ČR IAA300120709 Institutional research plan: CEZ:AV0Z30120515 Keywords : Baltic Shield * continental lithosphere * teleseismic tomography Subject RIV: DC - Siesmology, Volcanology, Earth Structure

  18. Attenuation of S-waves in the lithosphere of the Sea of Crete according to OBS observations

    Science.gov (United States)

    Kovachev, S. A.; Kuzin, I. P.; Shoda, O. Yu.; Soloviev, S. L.

    1991-11-01

    Five OBS were installed in the Sea of Crete in 1987. During a period of nine days 430 local earthquakes were recorded. Hypocentres were determined for 85 microearthquakes. A correlation between magnitude ML and duration of seismic events on the records of the ocean bottom seismographs (OBS) was found from data of 14 shocks recorded simultaneously by OBS and some land-based Greek stations. A magnitude-frequency relationship for earthquakes recorded by OBS was obtained in the magnitude range ML = 2-4. Amplitude curves describing the attenuation of body waves in the lithosphere of the Sea of Crete were compiled. Assessment of quality factor Qs was made by comparison of empirical and theoretical amplitude curves. The values of Qs for the lithosphere of the Sea of Crete were calculated and found equal to 200-300. Low values of Qs and consequently strong attenuation of S-waves in the lithosphere of the Sea of Crete could be explained by extension of the lithosphere accompanied by its partial contamination with melted magma.

  19. Inward migration of faulting during continental rifting: Effects of pre-existing lithospheric structure and extension rate

    NARCIS (Netherlands)

    Corti, G.; Ranalli, G.; Agostini, A.; Sokoutis, D.

    Lithospheric-scale analogue models are used to analyse the parameters controlling the typical evolution of deformation during continental narrow rifting, characterized by early activation of large boundary faults and basin subsidence, followed by localization of tectonic activity in internal faults

  20. Anisotropic lithosphere under the Fennoscandian shield from P receiver functions and SKS waveforms of the POLENET/LAPNET array

    Czech Academy of Sciences Publication Activity Database

    Vinnik, L.; Oreshin, S.; Makeyeva, L.; Peregoudov, D.; Kozlovskaya, E.; Pedersen, H.; Plomerová, Jaroslava; Achauer, U.; Kissling, E.; Sanina, I.; Jämsen, T.; Silvennoinen, H.; Pequegnat, C.; Hurskainen, R.; Guiguet, R.; Hausmann, H.; Jedlička, Petr; Aleshin, I.; Bourova, E.; Bodvarsson, R.; Brückl, E.; Eken, T.; Heikkinen, P.; Houseman, G.; Johnsen, H.; Kremenetskaya, E.; Komminaho, K.; Munzarová, Helena; Roberts, R.; Růžek, Bohuslav; Shomali, H.; Schweitzer, J.; Shaumyan, A.; Vecsey, Luděk; Volosov, S.

    2014-01-01

    Roč. 628, July (2014), s. 45-54 ISSN 0040-1951 R&D Projects: GA AV ČR IAA300120709 Institutional support: RVO:67985530 Keywords : lithosphere * asthenosphere * seismic anisotropy * mantle flow * receiver functions * shear-wave splitting Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 2.872, year: 2014

  1. Formation and temporal evolution of the Kalahari sub-cratonic lithospheric mantle: Constraints from Venetia xenoliths, South Africa

    NARCIS (Netherlands)

    Hin, R.C.; Morel, M.L.A.; Nebel, O.; Mason, P.R.D.; van Westrenen, W.; Davies, G.R.

    2009-01-01

    The ~533 Ma Venetia Diamond Mine is located between the Kaapvaal and Zimbabwe Cratons and the study of selected xenoliths provides the opportunity to investigate the temporal evolution of the sub-continental lithospheric mantle (SCLM) underneath southern Africa, as well as the extent and potentially

  2. Lithosphere tectonics and thermo-mechanical properties: An integrated modeling approach for enhanced geothermal systems exploration in Europe

    NARCIS (Netherlands)

    Wees, J.D. van; Cloetingh, S.; Ziegler, P.A.; Lenkey, L.; Beekman, F.; Tesauro, M.; Förster, A.; Norden, B.; Kaban, M.; Hardebol, N.; Voorde, M.T.; Willingshofer, E.; Cornu, T.; Bonté, D.

    2009-01-01

    For geothermal exploration and the development of enhanced geothermal systems (EGS) knowlegde of temperature at drillable depth is a prerequisite for site selection. Equally important is the thermo-mechanical signature of the lithosphere and crust which allow to obtain critical constraints for the

  3. Peridotitic lithosphere metasomatised by volatile-bearing melts, and its association with intraplate alkaline HIMU-like magmatism

    DEFF Research Database (Denmark)

    Scott, James; Brenna, Marco; Crase, Jordan

    2016-01-01

    The role of lithospheric mantle metasomatized by CO2-bearing melts in the genesis of HIMU-like alkaline intraplate basalts is investigated using a suite of peridotite xenoliths from New Zealand. The xenoliths have Sr–Nd–Pb–Hf isotope compositions (87Sr/86Sr =0.7029, eNd = +5 to +6, 206Pb/204Pb = ...

  4. A mechanism for upper airway stability during slow wave sleep.

    Science.gov (United States)

    McSharry, David G; Saboisky, Julian P; Deyoung, Pam; Matteis, Paul; Jordan, Amy S; Trinder, John; Smales, Erik; Hess, Lauren; Guo, Mengshuang; Malhotra, Atul

    2013-04-01

    The severity of obstructive sleep apnea is diminished (sometimes markedly) during slow wave sleep (SWS). We sought to understand why SWS stabilizes the upper airway. Increased single motor unit (SMU) activity of the major upper airway dilating muscle (genioglossus) should improve upper airway stability. Therefore, we hypothesized that genioglossus SMUs would increase their activity during SWS in comparison with Stage N2 sleep. The activity of genioglossus SMUs was studied on both sides of the transition between Stage N2 sleep and SWS. Sleep laboratory. Twenty-nine subjects (age 38 ± 13 yr, 17 males) were studied. SWS. Subjects slept overnight with fine-wire electrodes in their genioglossus muscles and with full polysomnographic and end tidal carbon dioxide monitors. Fifteen inspiratory phasic (IP) and 11 inspiratory tonic (IT) units were identified from seven subjects and these units exhibited significantly increased inspiratory discharge frequencies during SWS compared with Stage N2 sleep. The peak discharge frequency of the inspiratory units (IP and IT) was 22.7 ± 4.1 Hz in SWS versus 20.3 ± 4.5 Hz in Stage N2 (P sleep (82.6 ± 39.5 %TI, P sleep (12.6 ± 3.1 Hz, P = 0.035). There was minimal recruitment or derecruitment of units between SWS and Stage N2 sleep. Increased genioglossus SMU activity likely makes the airway more stable and resistant to collapse throughout the respiratory cycle during SWS.

  5. Slow-light dynamics in nonlinear periodic waveguides couplers

    DEFF Research Database (Denmark)

    Sukhorukov, A.A.; Ha, S.; Powell, D.A.

    2009-01-01

    We predict pulse switching and reshaping through nonlinear mixing of two slow-light states with different phase velocities in the same frequency range, and report on the first experimental observation of slow-light tunneling between coupled periodic waveguides.......We predict pulse switching and reshaping through nonlinear mixing of two slow-light states with different phase velocities in the same frequency range, and report on the first experimental observation of slow-light tunneling between coupled periodic waveguides....

  6. Slow-light effects in photonic crystal membrane lasers

    DEFF Research Database (Denmark)

    Xue, Weiqi; Yu, Yi; Ottaviano, Luisa

    2015-01-01

    In this paper, we present a systematic investigation of photonic crystal cavity laser operating in the slow-light regime. The dependence of lasing threshold on the effect of slow-light will be particularly highlighted.......In this paper, we present a systematic investigation of photonic crystal cavity laser operating in the slow-light regime. The dependence of lasing threshold on the effect of slow-light will be particularly highlighted....

  7. Nonlinear Gain Saturation in Active Slow Light Photonic Crystal Waveguides

    DEFF Research Database (Denmark)

    Chen, Yaohui; Mørk, Jesper

    2013-01-01

    We present a quantitative three-dimensional analysis of slow-light enhanced traveling wave amplification in an active semiconductor photonic crystal waveguides. The impact of slow-light propagation on the nonlinear gain saturation of the device is investigated.......We present a quantitative three-dimensional analysis of slow-light enhanced traveling wave amplification in an active semiconductor photonic crystal waveguides. The impact of slow-light propagation on the nonlinear gain saturation of the device is investigated....

  8. Interaction of slow pions with atomic nuclei

    International Nuclear Information System (INIS)

    Troitskij, M.A.; Tsybul'nikov, A.V.; Chekunaev, N.I.

    1984-01-01

    Interactions of slow pions with atomic nuclei near to pion condensation are investigated. From comparison of experimental data with the theoretical calculation results on the basis of precise microscopic approach not bound with the random phase approximation (RPA) nuclear matter fundamental parameters near a critical point can be found. Optical potential of slow pions in nuclei, πN-scattering amplitudes and lengths, π-atom level isotopic shift, phenomenon of single-nucleon pion absorption by nucleus, phenomenon of nuclear critical opalescence are considered. The results of πN-scattering lengths calculation, sup(40-44)Ca, sup(24-29)Mg, sup(16-18)O π-atom level shift are presented. It is shown that the presence of π-condensate in nuclei can explain the observed suppression of p-wave potential terms. The phenomenon of single-nucleon pion absorption by nucleus is one of direct experiments which permits to reveal the π-condensate. The nuclear opalescence phenomenon is manifested in increase of pion photoproduction reaction cross section for account of nucleus proximity to π-condensation as compared with the calculated in the Fermi-gas model. The suggested method for calculating precondensate phenomena operates the better, the nearer is the system to the condensation threshold whereas the RPA method in this region is inapplicable

  9. Lithospheric structure of southern Indian shield and adjoining oceans: integrated modelling of topography, gravity, geoid and heat flow data

    Science.gov (United States)

    Kumar, Niraj; Zeyen, H.; Singh, A. P.; Singh, B.

    2013-07-01

    For the present 2-D lithospheric density modelling, we selected three geotransects of more than 1000 km in length each crossing the southern Indian shield, south of 16°N, in N-S and E-W directions. The model is based on the assumption of local isostatic equilibrium and is constrained by the topography, gravity and geoid anomalies, by geothermal data, and where available by seismic data. Our integrated modelling approach reveals a crustal configuration with the Moho depth varying from ˜40 km beneath the Dharwar Craton, and ˜39 km beneath the Southern Granulite Terrane to about 15-20 km beneath the adjoining oceans. The lithospheric thickness varies significantly along the three profiles from ˜70-100 km under the adjoining oceans to ˜130-135 km under the southern block of Southern Granulite Terrane including Sri Lanka and increasing gradually to ˜165-180 km beneath the northern block of Southern Granulite Terrane and the Dharwar Craton. This step-like lithosphere-asthenosphere boundary (LAB) structure indicates a normal lithospheric thickness beneath the adjoining oceans, the northern block of Southern Granulite Terrane and the Dharwar Craton. The thin lithosphere below the southern block of Southern Granulite Terrane including Sri Lanka is, however, atypical considering its age. Our results suggest that the southern Indian shield as a whole cannot be supported isostatically only by thickened crust; a thin and hot lithosphere beneath the southern block of Southern Granulite Terrane including Sri Lanka is required to explain the high topography, gravity, geoid and crustal temperatures. The widespread thermal perturbation during Pan-African (550 Ma) metamorphism and the breakup of Gondwana during late Cretaceous are proposed as twin cause mechanism for the stretching and/or convective removal of the lower part of lithospheric mantle and its replacement by hotter and lighter asthenosphere in the southern block of Southern Granulite Terrane including Sri Lanka

  10. Factors Contributing Decreased Performance Of Slow Learners

    Directory of Open Access Journals (Sweden)

    Dr. L. Kannan

    2015-03-01

    Full Text Available Back ground Even experienced teaching faculty and administrators can be challenged by learners who have not able to perform up to expected need in their annual performance of their students these students are called as slow learnersStruggle learners. There should be a designed study to foster discussion about diagnosing particular problems that contribute with meeting objectives of slow learners. Methodology The study was performed on the entire current first year of Medical students were all the three internal assessments of 250 students performance is taken in to consideration for the study. This study is of cross section type.After obtaining the list of all students marks in internal examination from medical education unit supporting mentors are contacted to meet the students and confidentiality is maintained throughout the study. After obtaining informed consent a questionnaire was administered to the students by the investigator. The questionnaire contains the following sections. Section I will be on the background characteristics of the student name age sex type of family. Section II will be on the details of their learning capabilities. Section III will focus on the awareness of the slow learners in which the precipitating factors contributing to them. Results The prevalence of slow learners as low achievers were contributed to be 32.4 percentages.The performance of the students is based on combination of all three internal assessment marks including theory and practical performance. In this the students age ranges from 17 to 21 years the mean age of student was contributed to be 17.81 and majority of the students were in the age group of 18 years which contributed to be 16867.2.In the present study majority were males 13252.8 compared to females 11847.2.but when study is compared to percentage of attendance majority of the individual 15177 scored more than 50 percentage of marks have more than 80 percentage of attendance but when

  11. Good, Clean, Fair: The Rhetoric of the Slow Food Movement

    Science.gov (United States)

    Schneider, Stephen

    2008-01-01

    This article outlines the origins of the Slow Food movement before examining the ways in which Slow Food rhetoric seeks to redefine gastronomy and combat the more deleterious effects of globalization. In articulating a new gastronomy, Slow Food founder Carlo Petrini attempts to reconstruct the gastronomy of Jean Anthelme Brillat-Savarin, at once…

  12. Heat Flow, Regional Geophysics and Lithosphere Structure In The Czech Republic

    Science.gov (United States)

    Safanda, J.; Cermak, V.; Kresl, M.; Dedecek, P.

    Paper summarises and critically revises heat flow data that have been collected in the Czech Republic to date. The regional heat flow density map was prepared in view of all existing heat flow data completed with the similar in the surrounding countries and taking into consideration also temperature measurements in deep boreholes. Crustal temperature profiles were calculated by using the available geological information, results of deep seismic sounding and the laboratory data on radiogenic heat produc- tion and thermal conductivity. Special attention was paid to numerous temperature logs in two sedimentary basins, namely in the Cheb and Ostrava-Karvina coal basins, for which detailed heat flow patterns were proposed. Relationships between heat flow distribution and the crustal/lithosphere evolution, between heat flow and the heat pro- duction of the crustal rocks, heat flow and crustal thickness and the steady-state vs. transient heat transport are discussed.

  13. Role of magmatism in continental lithosphere extension: an introduction to tectnophysics special issue

    Energy Technology Data Exchange (ETDEWEB)

    Van Wijk, Jolante W [Los Alamos National Laboratory

    2008-01-01

    The dynamics and evolution of rifts and continental rifted margins have been the subject of intense study and debate for many years and still remain the focus of active investigation. The 2006 AGU Fall Meeting session 'Extensional Processes Leading to the Formation of Basins and Rifted Margins, From Volcanic to Magma-Limited' included several contributions that illustrated recent advances in our understanding of rifting processes, from the early stages of extension to breakup and incipient seafloor spreading. Following this session, we aimed to assemble a multi-disciplinary collection of papers focussing on the architecture, formation and evolution of continental rift zones and rifted margins. This Tectonophysics Special Issue 'Role of magmatism in continental lithosphere extension' comprises 14 papers that present some of the recent insights on rift and rifted margins dynamics, emphasising the role of magmatism in extensional processes. The purpose of this contribution is to introduce these papers.

  14. Asthenospheric and lithospheric sources for Mesozoic dolerites from Liberia (Africa): Trace element and isotopic evidence

    International Nuclear Information System (INIS)

    Dupuy, C.; Marsh, J.

    1988-01-01

    Combined elemental, and Sr and Nd isotopic data are presented for Mesozoic dolerite dikes of Liberia (Africa) which are related to the initial stage of opening of the Atlantic Ocean. The large scatter of both trace element and isotopic data allows the identification of five groups of dolerites which cannot be related to each other by simple processes of mineral fractionation from a common source. On the contrary, the observed chemical and isotopic variation within some dolerites (Groups I and II) may result either from variable degrees of melting of an isotopically heterogeneous source or mixing between enriched and depleted oceanic type mantle. For the other dolerites (Groups III-V) mixing with a third mantle source with more radiogenic Sr and with element ratios characteristic of subduction environments is suggested. This third source is probably the subcontinental lithospheric mantle. Finally, no significant modification by interaction with continental crust is apparent in most of the analyzed samples. (orig.)

  15. Sensitivity analysis of crustal correction for calculation of lithospheric mantle density from gravity data

    DEFF Research Database (Denmark)

    Herceg, Matija; Artemieva, Irina; Thybo, Hans

    2016-01-01

    for the crust and (ii) uncertainties in the seismic crustal structure (thickness and average VP velocities of individual crustal layers, including the sedimentary cover). We examine the propagation of these uncertainties into determinations of lithospheric mantle density and analyse both sources of possible......We investigate how uncertainties in seismic and density structure of the crust propagate to uncertainties in mantle density structure. The analysis is based on interpretation of residual upper-mantle gravity anomalies which are calculated by subtracting (stripping) the gravitational effect...... mantle, knowledge on uncertainties associated with incomplete information on crustal structure is of utmost importance for progress in gravity modelling. Uncertainties in the residual upper-mantle gravity anomalies result chiefly from uncertainties in (i) seismic VP velocity-density conversion...

  16. Geochemical Consequences of Lithospheric Delamination in the Eastern Mediterranean: Evidence From Young Turkish Basalts

    Science.gov (United States)

    Furman, T.; Kurkcuoglu, B.; Plummer, C.

    2007-12-01

    Magmatism associated with continental collision is increasingly attributed to major disturbance of or within the lithosphere. Geochemical and isotopic data on post-collisional primitive mafic lavas from across the Anatolian plate enable us to assess the effects of lithospheric delamination (slab rollback and breakoff) as indicated by geophysical studies. The Anatolian province displays geodynamically complex manifestations of the closure of neo-Tethys and the collision between Africa and Europe that commenced circa 30 Ma. The current south- southwestward motion of Anatolia, a.k.a. "Turkish escape", is accommodated by slab rollback along the Hellenic trench and orogenic collapse along both the eastern and western margins of the microplate. Volcanism occurs primarily along the fault zones that border and cross-cut Anatolia, and major element characteristics of the lavas vary with both space and time. In Western Anatolia, early Miocene collisional calc- alkaline magmatism was followed by Quaternary alkaline volcanism (Alici et al. 1998, 2002; Aldanmaz et al. 2000, 2006) related to orogenic collapse, presumably resulting from slab rollback. Orogenic collapse in Eastern Anatolia is facilitated by slab breakoff as determined by geophysical studies (Zor et al. 2003; Angus et al. 2006; Lei & Zhao 2007). This transition was accompanied a change from mid-Miocene calc-alkaline to Quaternary alkaline volcanism (e.g., Yilmaz 1990; Pearce et al. 1990). Central Anatolia displays calc-alkaline and tholeiitic volcanism, including alkali olivine basalts; plate tectonic reconstructions (Lyberis et al. 1992) indicate that the African slab did not reach Central Anatolia. Sr-Nd isotope values from each volcanic province define linear arrays that converge upon a common unradiogenic value typical of global depleted mantle. We suggest that mafic volcanism throughout Anatolia is supported by a common asthenospheric component, modified by identifiable, location-specific additions. In areas

  17. Birth of the Program for Array Seismic Studies of the Continental Lithosphere (PASSCAL)

    Science.gov (United States)

    James, D. E.; Sacks, I. S.

    2002-05-01

    As recently as 1984 institutions doing portable seismology depended upon their own complement of instruments, almost all designed and built in-house, and all of limited recording capability and flexibility. No data standards existed. Around 1980 the National Research Council (NRC) of the National Academy of Sciences (NAS), with National Science Foundation (NSF) support, empanelled a committee to study a major new initiative in Seismic Studies of the Continental Lithosphere (SSCL). The SSCL report in 1983 recommended that substantial numbers (1000 or more) of new generation digital seismographs be acquired for 3-D high resolution imaging of the continental lithosphere. Recommendations of the SSCL committee dovetailed with other NRC/NAS and NSF reports that highlighted imaging of the continental lithosphere as an area of highest priority. For the first time in the history of portable seismology the question asked was "What do seismologists need to do the job right?" A grassroots effort was undertaken to define instrumentation and data standards for a powerful new set of modern seismic research tools to serve the national seismological community. In the spring and fall of 1983 NSF and IASPEI sponsored workshops were convened to develop specifications for the design of a new generation of portable instrumentation. PASSCAL was the outgrowth of these seminal studies and workshops. The first step toward the formal formation of PASSCAL began with an ad-hoc organizing committee, comprised largely of the members of the NAS lithospheric seismology panel, convened by the authors at Carnegie Institution in Washington in November 1983. From that meeting emerged plans and promises of NSF support for an open organizational meeting to be held in January 1984, in Madison, Wisconsin. By the end of the two-day Madison meeting PASSCAL and an official consortium of seismological institutions for portable seismology were realities. Shortly after, PASSCAL merged with the complementary

  18. Lithosphere stress changes due to groundwater unloading in North China Plain

    Science.gov (United States)

    Pang, Yajin; Zhang, Huai; Shi, Yaolin

    2015-04-01

    During the past 50 years, excessive groundwater pumping has led to the continuous decline of groundwater table in North China Plain, which becomes one of the global hotspots of groundwater depletion. Over most of the rural areas of the plain, the shallow aquifer has experienced a water-table decline of more than 15m, with greater declines up to 50m in most urban centres, such as Beijing, Tangshan, Shijiangzhuang and so forth in 1960-2000. The entire groundwater depletion area covers a total area of approximately 56,273 km2 , more than 40% of the North China Plain. The vast area of enormous groundwater exploitation in North China Plain will definitely unload the lithosphere and create stress perturbations, the problem is if the stresses change large enough to affect tectonic activities. In this essay, we set up a 3 dimensional numerical visco-elastic model to discuss the effect of groundwater over-pumping on the lithosphere deformation and stress state in North China Plain. Based on the records of total groundwater-table decline during 1960-2010 in North China Plain, we estimate the accumulated deformation and lithosphere stress due to unloading of human-induced groundwater depletion. The area in the model ranges from 34° To 42°N, and 112° To 119°E, including the major groundwater depression cones in North China Plain. According to the simulating result, the maximum surface vertical uplift caused by groundwater unloading is 8cm. Meanwhile cumulative horizontal crustal stress changes near the surface goes up to 100kPa, and up to 40kPa at 15km depth where most earthquakes occurred in this area. The tectonic compressive stress rate is about 0.25kPa per year. Therefore, the stress changes due to groundwater pumping is significant compared with the tectonic driven stress changes. As China developed rapidly since 1978, the groundwater table mainly declined after 1978. Taking the earthquake catalog in the vicinity of groundwater depression zone into consideration, we

  19. Lithosphere-Surfacesphere–Atmosphere-Ionosphere coupling model for Vrancea seismic zone in Romania

    Energy Technology Data Exchange (ETDEWEB)

    Zoran, Maria; Savastru, Roxana; Savastru, Dan [National Institute of R& D for Optoelectronics, MG5 Bucharest -Magurele, 077125 Romania, maria@dnt.ro (Romania)

    2016-03-25

    This paper presents a complex multidisciplinary approach concept to explain the nature of short-term earthquake precursors observed in land surface, atmosphere, ionosphere and magnetosphere for strong intermediate depth earthquakes recorded in Vrancea region in Romania. A developed Lithosphere-Surfacesphere-Atmosphere-Ionosphere (LSAI) coupling model can explain most of these presignals as a synergy between different anomalies of geophysical/geochemical parameters. These anomalies prior to medium to strong earthquakes are attributed to the thermodynamic, degassing and ionization processes in the Earth-Atmosphere system and micro-fracturing in the rocks especially along area’s active faults. The main outcome of this paper is an unified concept for systematic validation of different types of earthquake precursors of which Land Surface Temperature (LST), outgoing Long wave Radiation (OLR), Surface Latent Heat Flux (SLHF), Air Temperature (AT), radon gas concentration, ionospheric Total Electron Content (TEC) are the most reliable parameters within the chain of the processes described by LSAI model.

  20. Stable configurations in social networks

    Science.gov (United States)

    Bronski, Jared C.; DeVille, Lee; Ferguson, Timothy; Livesay, Michael

    2018-06-01

    We present and analyze a model of opinion formation on an arbitrary network whose dynamics comes from a global energy function. We study the global and local minimizers of this energy, which we call stable opinion configurations, and describe the global minimizers under certain assumptions on the friendship graph. We show a surprising result that the number of stable configurations is not necessarily monotone in the strength of connection in the social network, i.e. the model sometimes supports more stable configurations when the interpersonal connections are made stronger.

  1. Development of Stable Isotope Technology

    International Nuclear Information System (INIS)

    Jeong, Do Young; Kim, Cheol Jung; Han, Jae Min

    2009-03-01

    KAERI has obtained an advanced technology with singular originality for laser stable isotope separation. Objectives for this project are to get production technology of Tl-203 stable isotope used for medical application and are to establish the foundation of the pilot system, while we are taking aim at 'Laser Isotope Separation Technology to make resistance to the nuclear proliferation'. And we will contribute to ensuring a nuclear transparency in the world society by taking part in a practical group of NSG and being collaboration with various international groups related to stable isotope separation technology

  2. A New Model of Lithosphere Deformation Beneath the Okinawa Trough Based on Gravity Data

    Institute of Scientific and Technical Information of China (English)

    ZHAO Lihong; JIANG Xiaodian; ZHANG Weigang

    2002-01-01

    The Ryukyu trench-arc system can be divided into two types according to its subduction model. The normal sub-duction in the northern part of the Philippine Sea plate creates a hinge sedimentary wedge with large deformation at the col-lision front, while the oblique subduction in the southern part gives rise to a smaller accretion with small deformation thanthat in the northern part. The mechanisms that cause the distinction between these two types have been analysed and calcu-lated by using gravity data based on the lithosphere rheology and the stress state of the lithosphere in the subduction bound-ary. The two types of subduction model are associated with the internal extension in the southern Okinawa Trough and thesmall extension in the northern part. The difference of the stress state between the two types of subduction model is alsomanifested in other tectonic features, such as topography, volcanic activity and crust movement. Modeling bathymetric andgravity data from this area suggests that the oblique subduction of low angle, together with smooth geometry of the overlyingplate crust, results in small stress released on the south of the trench by the subduction plate. The intraplate faults in thesouthern Okinawa Trough behind the trench stand in surplus intensive stress. On the other hand, the normal subduction ofhigh angle, together with strong undulation geometry of the overlying crust, results in more intensive stress released in thenorthern Ryukyu Trench than that in the south. The intraplate faults in the northern Okinawa Trough behind the northernRyukyu Trench stand in small stress.

  3. Thermochronology of the Sulu ultrahigh-pressure metamorphic terrane: Implications for continental collision and lithospheric thinning

    Science.gov (United States)

    Liu, Li-Ping; Li, Zheng-Xiang; Danišík, Martin; Li, Sanzhong; Evans, Noreen; Jourdan, Fred; Tao, Ni

    2017-08-01

    The thermal history of the Dabie-Sulu orogenic belt provides important constraints on the collision process between the South China and North China blocks during the Mesozoic, and possible lithospheric thinning event(s) in the eastern North China Block. This study reports on the thermal evolution of the Sulu ultrahigh-pressure metamorphic (UHP) terrane using zircon U-Pb geochronology and multiple thermochronology methods such as mica and hornblende 40Ar/39Ar, zircon and apatite fission track, and zircon and apatite (U-Th)/He dating. 40Ar/39Ar and zircon (U-Th)/He data show that the UHP terrane experienced accelerated cooling during 180-160 Ma. This cooling event could be interpreted to have resulted from extensional unroofing of an earlier southward thrusting nappe, or, more likely, an episode of northward thrusting of the UHP rocks as a hanging wall. A subsequent episode of exhumation took place between ca. 125 Ma and 90 Ma as recorded by zircon (U-Th)/He data. This event was more pronounced in the northwest section of the UHP terrane, whereas in the southeast section, the zircon (U-Th)/He system retained Jurassic cooling ages of ca. 180-160 Ma. The mid-Cretaceous episode of exhumation is interpreted to have resulted from crustal extension due to the removal of thickened, enriched mantle. A younger episode of exhumation was recorded by apatite fission track and apatite (U-Th)/He ages at ca. 65-40 Ma. Both latter events were linked to episodic thinning of lithosphere along the Sulu UHP terrane in an extensional environment, likely caused by the roll-back of the Western Pacific subduction system.

  4. Water Content of the Oceanic Lithosphere at Hawaii from FTIR Analysis of Peridotite Xenoliths

    Science.gov (United States)

    Peslier, Anne H.; Bizmis, Michael

    2013-01-01

    Although water in the mantle is mostly present as trace H dissolved in minerals, it has a large influence on its melting and rheological properties. The water content of the mantle lithosphere beneath continents is better constrained by abundant mantle xenolith data than beneath oceans where it is mainly inferred from MORB glass analysis. Using Fourier transform infrared (FTIR) spectrometry, we determined the water content of olivine (Ol), clinopyroxene (Cpx) and orthopyroxene (Opx) in spinel peridotite xenoliths from Salt Lake Crater, Oahu, Hawaii, which are thought to represent fragments of the Pacific oceanic lithosphere that was refertilized by alkalic Hawaiian melts. Only Ol exhibits H diffusion profiles, evidence of limited H loss during xenolith transport to the surface. Water concentrations (Ol: 9-28 ppm H2O, Cpx: 246-566 ppm H2O, Opx: 116-224 ppm H2O) are within the range of those from continental settings but higher than those from Gakkel ridge abyssal peridotites. The Opx H2O contents are similar to those of abyssal peridotites from Atlantic ridge Leg 153 (170-230 ppm) but higher than those from Leg 209 (10- 14 ppm). The calculated bulk peridotite water contents (94 to 144 ppm H2O) are in agreement with MORB mantle source water estimates and lower than estimates for the source of Hawaiian rejuvenated volcanism (approx 540 ppm H2O) . The water content of Cpx and most Opx correlates negatively with spinel Cr#, and positively with pyroxene Al and HREE contents. This is qualitatively consistent with the partitioning of H into the melt during partial melting, but the water contents are too high for the degree of melting these peridotites experienced. Melts in equilibrium with xenolith minerals have H2O/Ce ratios similar to those of OIB

  5. Combining CHAMP and Swarm Satellite Data to Invert the Lithospheric Magnetic Field in the Tibetan Plateau.

    Science.gov (United States)

    Qiu, Yaodong; Wang, Zhengtao; Jiang, Weiping; Zhang, Bingbing; Li, Fupeng; Guo, Fei

    2017-01-26

    CHAMP and Swarm satellite magnetic data are combined to establish the lithospheric magnetic field over the Tibetan Plateau at satellite altitude by using zonal revised spherical cap harmonic analysis (R-SCHA). These data are integrated with geological structures data to analyze the relationship between magnetic anomaly signals and large-scale geological tectonic over the Tibetan Plateau and to explore the active tectonic region based on the angle of the magnetic anomaly. Results show that the model fitting error is small for a layer 250-500 km high, and the RMSE of the horizontal and radial geomagnetic components is better than 0.3 nT. The proposed model can accurately describe medium- to long-scale lithospheric magnetic anomalies. Analysis indicates that a negative magnetic anomaly in the Tibetan Plateau significantly differs with a positive magnetic anomaly in the surrounding area, and the boundary of the positive and negative regions is generally consistent with the geological tectonic boundary in the plateau region. Significant differences exist between the basement structures of the hinterland of the plateau and the surrounding area. The magnetic anomaly in the Central and Western Tibetan Plateau shows an east-west trend, which is identical to the direction of the geological structures. The magnetic anomaly in the eastern part is arc-shaped and extends along the northeast direction. Its direction is significantly different from the trend of the geological structures. The strongest negative anomaly is located in the Himalaya block, with a central strength of up to -9 nT at a height of 300 km. The presence of a strong negative anomaly implies that the Curie isotherm in this area is relatively shallow and deep geological tectonic activity may exist.

  6. Lithosphere structure in Madagascar as revealed from receiver functions and surface waves analysis.

    Science.gov (United States)

    Rindraharisaona, E. J.; Tilmann, F. J.; Yuan, X.; Dreiling, J.; Priestley, K. F.; Barruol, G.; Wysession, M. E.

    2017-12-01

    The geological history of Madagascar makes it an ideal place to study the lithospheric structure and its evolution. It comprises Archean to Proterozoic units on the central eastern part, which is surrounded by a Triassic to Jurassic basin formation in the west and Cretaceous volcanics along the coasts. Quaternary volcanic rocks have been embedded in crystalline and sedimentary rocks. The aim of the present work is to characterize the crustal structure and determine the imprint of the dominant geodynamic events that have affected Madagascar: the Pan-African orogeny, the breakup of Gondwanaland and Neogene tectonic activity. From 2011 to 2014 different temporary seismic arrays were deployed in Madagascar. We based the current study mostly on SELASOMA project, which is composed of 50 seismic stations that were installed traversing southern Madagascar from the west to the east, sampling the different geological units. To measured seismic dispersion curves, one a wide period ranges using ambient noise, Rayleigh and Love surface waves. To compute the average crustal Vp/Vs ratio internal crustal structure and discontinuities in the mantle, we use both P- and S-waves receiver functions. To better resolve of the crustal structure, we jointly inverted P-wave receiver functions and Rayleigh wave group velocity.The crustal extension during the Carboniferous to Cenozoic has thinned the igneous crust down to 15 km in the western Morondava basin by removing much of the lower crust, while the thickness of the upper crust is nearly identical in the sedimentary basin and under Proterozoic and Archaean rocks of the eastern two thirds of Southern Madagascar. In general, the Archean crust is thicker than the Proterozoic, because mafic component is missing in the Proterozoic domain while it forms the bottom of the Archean crust. The lithosphere thickness in the southern part of Madagascar is estimated to be between 90 and 125 km.

  7. FAULTING IN THE LITHOSPHERE: THE 35TH ANNIVERSARY OF THE IRKUTSK SCHOOL OF TECTONOPHYSICS

    Directory of Open Access Journals (Sweden)

    S. I. Sherman

    2014-01-01

    Full Text Available The history of tectonophysical studies in Irkutsk began in the 1950s at the initiative of Prof. V.N. Danilovich. Tectonophysics as a new scientific field in geology was enthusiastically supported by research institutes of the actively develo­ping Siberian Branch of the USSR Academy of Sciences, including the Institute of the Earth's Crust (IEC. In late 1950s, V.N. Danilovich, G.V. Charushin, O.V. Pavlov, P.M. Khrenov, S.I. Sherman and other scientists began to conduct large-scale studies of faults and rock fracturing with application of methods of structural analysis of fault tectonics and taking into account types of physical and mechanical destruction of the crust. In 1979, the IEC Scientific Council reviewed the initiative of Prof. S.I. Sherman, who was supported by Academician N.A. Logachev and Doctor of Geology and Mineralogy O.V. Pavlov, and approved the decision to establish the Laboratory of Tectonophysics, that has been and is the only scientific research team of the kind in the territory of Russia eastward of the Urals and, in fact, the second in the Russian Federation. Its studies are based on concepts dealing with physical regularities of crustal faulting that are described in the monograph published by S.I. Sherman [Sherman, 1977], three co-authored volumes of Faulting in the Lithosphere [Sherman et al., 1991, 1992, 1994] and other scientific papers. These publications have consolidated results of studies conducted by the team of researchers from the Laboratory, which can be called the Irkutsk school of tectonophysics. On the eve of the 21st century, the Laboratory successfully extended application of physics of destruction of materials and mathematical methods of analysis to studies of structural patterns of faults varying in ranks in the crust and the upper lithosphere.We conducted comprehensive studies of tectonophysical regularities of formation of large crustal faults, pioneered in establishing quantitative relationships

  8. Possible contribution of ice-sheet/lithosphere interactions to past glaciological changes in Greenland

    Science.gov (United States)

    Alley, R. B.; Parizek, B. R.; Anandakrishnan, S.; Pollard, D.; Stevens, N. T.; Pourpoint, M.

    2017-12-01

    Ice-lithosphere interactions may have influenced the history of ice-sheet sensitivity to climate change. The Greenland ice sheet (GIS) is sensitive to warming, and is likely to be largely removed if subjected to relatively small additional temperature increases. The recent report (Schaefer et al., 2016, Nature) of near-complete GIS removal under modest Pleistocene forcing suggests that GIS sensitivity may be even greater than generally modeled, but lack of major Holocene retreat is more consistent with existing models. As shown by Stevens et al. (2016, JGR), peak lithospheric flexural stresses associated with ice-age GIS cycling are of the same order as dike-driving stresses in plutonic systems, and migrate over ice-age cycles. The full analysis by Stevens et al. suggests the possibility that the onset of cyclic ice-sheet loading allowed deep melt associated with the passage of the Icelandic hot spot beneath Greenland to work up though the crust to or near the base of the ice sheet, helping explain the anomalous geothermal heat fluxes observed at the head of the Northeast Greenland Ice Stream and elsewhere in the northern part of GIS. If ice-age cycling aided extraction of an existing reservoir of melted rock, then geothermal heat flux would have risen with the onset of extraction and migration, but with a subsequent fall associated with reservoir depletion. Simple parameterized flow-model simulations confirm intuition that a higher geothermal flux makes deglaciation easier, with the northern part of the ice sheet especially important. Large uncertainties remain in quantification, but we suggest the hypothesis that, following the onset of ice-age cycling, deglaciation of the GIS first became easier and then more difficult in response to feedbacks involving the ice sheet and the geological system beneath. In turn, this suggests that evidence of past deglaciation under moderate forcing is consistent with existing ice-sheet models.

  9. Finite-frequency Rayleigh wave tomography of the western Mediterranean: Mapping its lithospheric structure

    Science.gov (United States)

    Palomeras, I.; Thurner, S.; Levander, A.; Liu, K.; Villasenor, A.; Carbonell, R.; Harnafi, M.

    2014-01-01

    We present a 3-D shear wave velocity model for the crust and upper mantle of the western Mediterranean from Rayleigh wave tomography. We analyzed the fundamental mode in the 20-167 s period band (6.0-50.0 mHz) from earthquakes recorded by a number of temporary and permanent seismograph arrays. Using the two-plane wave method, we obtained phase velocity dispersion curves that were inverted for an isotropic Vs model that extends from the southern Iberian Massif, across the Gibraltar Arc and the Atlas mountains to the Saharan Craton. The area of the western Mediterranean that we have studied has been the site of complex subduction, slab rollback, and simultaneous compression and extension during African-European convergence since the Oligocene. The shear velocity model shows high velocities beneath the Rif from 65 km depth and beneath the Granada Basin from ˜70 km depth that extend beneath the Alboran Domain to more than 250 km depth, which we interpret as a near-vertical slab dangling from beneath the western Alboran Sea. The slab appears to be attached to the crust beneath the Rif and possibly beneath the Granada Basin and Sierra Nevada where low shear velocities (3.8 km/s) are mapped to >55 km depth. The attached slab is pulling down the Gibraltar Arc crust, thickening it, and removing the continental margin lithospheric mantle beneath both Iberia and Morocco as it descends into the deeper mantle. Thin lithosphere is indicated by very low upper mantle velocities beneath the Alboran Sea, above and east of the dangling slab and beneath the Cenozoic volcanics.

  10. Driving Forces of Plate Tectonics and Evolution of the Oceanic Lithosphere and Asthenosphere

    Science.gov (United States)

    Forsyth, D. W.

    2017-12-01

    As plate tectonics became established as an excellent kinematic description of the relative motions of different blocks of the Earth's lithosphere, many investigators also began exploring the forces involved in driving the plate motions. Because the plates move at nearly constant velocities over long periods of time and inertial terms are unimportant, driving forces must always be balanced by resisting forces in a way that regulates the velocities. Forsyth and Uyeda (1975) incorporated the balancing of torques on the individual plates to help constrain the relative importance of the driving and resisting forces, as parameterized in a way based on prior model investigations of individual parts of the convecting system. We found that the primary driving force was sinking of subducting lithosphere at trenches, balanced largely by viscous resisting forces in the sub-asthenospheric mantle; that viscous drag beneath the oceanic plates was negligible; and that mid-ocean ridges provided a relatively small push. One of the early questions was whether there was buoyant upwelling on a large scale beneath mid-ocean ridges as part of a whole mantle convection system with subduction of the plates representing the downwelling limb. If so, then it would be likely that the plates were just riding on top of large convection cells. Seismic tomography has demonstrated that, on average, there are no deep roots beneath mid-ocean ridges, so that active, buoyant upwelling from the deep mantle does not exist beneath spreading centers. However, more recent tomographic studies have found asymmetry of the shear velocity structure beneath ridges in some areas, pointing to a smaller scale of active convection in the shallow mantle perhaps induced by melt retention buoyancy or the local effects of ridge/hotspot interaction.

  11. Combined constraints on the structure and physical properties of the East Antarctic lithosphere from geology and geophysics.

    Science.gov (United States)

    Reading, A. M.; Staal, T.; Halpin, J.; Whittaker, J. M.; Morse, P. E.

    2017-12-01

    The lithosphere of East Antarctica is one of the least explored regions of the planet, yet it is gaining in importance in global scientific research. Continental heat flux density and 3D glacial isostatic adjustment studies, for example, rely on a good knowledge of the deep structure in constraining model inputs.In this contribution, we use a multidisciplinary approach to constrain lithospheric domains. To seismic tomography models, we add constraints from magnetic studies and also new geological constraints. Geological knowledge exists around the periphery of East Antarctica and is reinforced in the knowledge of plate tectonic reconstructions. The subglacial geology of the Antarctic hinterland is largely unknown but the plate reconstructions allow the well-posed extrapolation of major terranes into the interior of the continent, guided by the seismic tomography and magnetic images. We find that the northern boundary of the lithospheric domain centred on the Gamburtsev Subglacial Mountains has a possible trend that runs south of the Lambert Glacier region, turning coastward through Wilkes Land. Other periphery-to-interior connections are less well constrained and the possibility of lithospheric domains that are entirely sub-glacial is high. We develop this framework to include a probabilistic method of handling alternate models and quantifiable uncertainties. We also show first results in using a Bayesian approach to predicting lithospheric boundaries from multivariate data.Within the newly constrained domains, we constrain heat flux (density) as the sum of basal heat flux and upper crustal heat flux. The basal heat flux is constrained by geophysical methods while the upper crustal heat flux is constrained by geology or predicted geology. In addition to heat flux constraints, we also consider the variations in friction experienced by moving ice sheets due to varying geology.

  12. Lithospheric Shear Velocity Structure of South Island, New Zealand from Rayleigh Wave Tomography of Amphibious Array Data

    Science.gov (United States)

    Ball, J. S.; Sheehan, A. F.; Stachnik, J. C.; Lin, F. C.; Collins, J. A.

    2015-12-01

    We present the first 3D shear velocity model extending well offshore of New Zealand's South Island, imaging the lithosphere beneath Campbell and Challenger plateaus. Our model is constructed via linearized inversion of both teleseismic (18 -70 s period) and ambient noise-based (8 - 25 s period) Rayleigh wave dispersion measurements. We augment an array of 29 ocean-bottom instruments deployed off the South Island's east and west coasts in 2009-2010 with 28 New Zealand land-based seismometers. The ocean-bottom seismometers and 4 of the land seismometers were part of the Marine Observations of Anisotropy Near Aotearoa (MOANA) experiment, and the remaining land seismometers are from New Zealand's permanent GeoNet array. Major features of our shear wave velocity (Vs) model include a low-velocity (Vs<4.3km/s) body extending to at least 75km depth beneath the Banks and Otago peninsulas, a high-velocity (Vs~4.7km/s) upper mantle anomaly underlying the Southern Alps to a depth of 100km, and discontinuous lithospheric velocity structure between eastern and western Challenger Plateau. Using the 4.5km/s contour as a proxy for the lithosphere-asthenosphere boundary, our model suggests that the lithospheric thickness of Challenger Plateau is substantially greater than that of Campbell Plateau. The high-velocity anomaly we resolve beneath the central South Island exhibits strong spatial correlation with subcrustal earthquake hypocenters along the Alpine Fault (Boese et al., 2013). The ~400km-long low velocity zone we image beneath eastern South Island underlies Cenozoic volcanics and mantle-derived helium observations (Hoke et al., 2000) on the surface. The NE-trending low-velocity zone dividing Challenger Plateau in our model underlies a prominent magnetic discontinuity (Sutherland et al., 1999). The latter feature has been interpreted to represent a pre-Cretaceous crustal boundary, which our results suggest may involve the entire mantle lithosphere.

  13. Imaging rifting at the lithospheric scale in the northern East African Rift using S-to-P receiver functions

    Science.gov (United States)

    Lavayssiere, A.; Rychert, C.; Harmon, N.; Keir, D.; Hammond, J. O. S.; Kendall, J. M.; Leroy, S. D.; Doubre, C.

    2017-12-01

    The lithosphere is modified during rifting by a combination of mechanical stretching, heating and potentially partial melt. We image the crust and upper mantle discontinuity structure beneath the northern East African Rift System (EARS), a unique tectonically active continental rift exposing along strike the transition from continental rifting in the Main Ethiopian rift (MER) to incipient seafloor spreading in Afar and the Red Sea. S-to-P receiver functions from 182 stations across the northern EARS were generated from 3688 high quality waveforms using a multitaper technique and then migrated to depth using a regional velocity model. Waveform modelling of data stacked in large conversion point bins confirms the depth and strength of imaged discontinuities. We image the Moho at 29.6±4.7 km depth beneath the Ethiopian plateaux with a variability in depth that is possibly due to lower crustal intrusions. The crust is 27.3±3.9 km thick in the MER and thinner in northern Afar, 17.5±0.7 km. The model requires a 3±1.2% reduction in shear velocity with increasing depth at 68.5±1.5 km beneath the Ethiopian plateaux, consistent with the lithosphere-asthenosphere boundary (LAB). We do not resolve a LAB beneath Afar and the MER. This is likely associated with partial melt near the base of the lithosphere, reducing the velocity contrast between the melt-intruded lithosphere and the partially molten asthenosphere. We identify a 4.5±0.7% increase in velocity with depth at 91±3 km beneath the MER. This change in velocity is consistent with the onset of melting found by previous receiver functions and petrology studies. Our results provide independent constraints on the depth of melt production in the asthenosphere and suggest melt percolation through the base of the lithosphere beneath the northernmost East African rift.

  14. Peridotites and mafic igneous rocks at the foot of the Galicia Margin: an oceanic or continental lithosphere? A discussion

    Energy Technology Data Exchange (ETDEWEB)

    Korprobst, J.; Chazot, G.

    2016-10-01

    An ultramafic/mafic complex is exposed on the sea floor at the foot of the Galicia Margin (Spain and Portugal). It comprises various types of peridotites and pyroxenites, as well as amphibole-diorites, gabbros, dolerites and basalts. For chronological and structural reasons (gabbros were emplaced within peridotites before the continental break-up) this unit cannot be assigned to the Atlantic oceanic crust. The compilation of all available petrological and geochemical data suggests that peridotites are derived from the sub-continental lithospheric mantle, deeply transformed during Cretaceous rifting. Thus, websterite dykes extracted from the depleted MORB mantle reservoir (DMM), were emplaced early within the lithospheric harzburgites; subsequent boudinage and tectonic dispersion of these dykes in the peridotites, during deformation stages at the beginning of rifting, resulted in the formation of fertile but isotopically depleted lherzolites. Sterile but isotopically enriched websterites, would represent melting residues in the peridotites, after significant partial melting and melt extraction related to the thermal erosion of the lithosphere. The latter melts are probably the source of brown amphibole metasomatic crystallization in some peridotites, as well as of the emplacement of amphibole-diorite dykes. Melts directly extracted from the asthenosphere were emplaced as gabbro within the sub-continental mantle. Mixing these DMM melts together with the enriched melts extracted from the lithosphere, provided the intermediate isotopic melt-compositions - in between the DMM and Oceanic Islands Basalts reservoir - observed for the dolerites and basalts, none of which are characterized by a genuine N-MORB signature. An enriched lithospheric mantle, present prior to rifting of the Galicia margin, is in good agreement with data from the Messejana dyke (Portugal) and more generally, with those of all continental tholeiites of the Central Atlantic Magmatic Province (CAMP

  15. Lithospheric architecture of NE China from joint Inversions of receiver functions and surface wave dispersion through Bayesian optimisation

    Science.gov (United States)

    Sebastian, Nita; Kim, Seongryong; Tkalčić, Hrvoje; Sippl, Christian

    2017-04-01

    The purpose of this study is to develop an integrated inference on the lithospheric structure of NE China using three passive seismic networks comprised of 92 stations. The NE China plain consists of complex lithospheric domains characterised by the co-existence of complex geodynamic processes such as crustal thinning, active intraplate cenozoic volcanism and low velocity anomalies. To estimate lithospheric structures with greater detail, we chose to perform the joint inversion of independent data sets such as receiver functions and surface wave dispersion curves (group and phase velocity). We perform a joint inversion based on principles of Bayesian transdimensional optimisation techniques (Kim etal., 2016). Unlike in the previous studies of NE China, the complexity of the model is determined from the data in the first stage of the inversion, and the data uncertainty is computed based on Bayesian statistics in the second stage of the inversion. The computed crustal properties are retrieved from an ensemble of probable models. We obtain major structural inferences with well constrained absolute velocity estimates, which are vital for inferring properties of the lithosphere and bulk crustal Vp/Vs ratio. The Vp/Vs estimate obtained from joint inversions confirms the high Vp/Vs ratio ( 1.98) obtained using the H-Kappa method beneath some stations. Moreover, we could confirm the existence of a lower crustal velocity beneath several stations (eg: station SHS) within the NE China plain. Based on these findings we attempt to identify a plausible origin for structural complexity. We compile a high-resolution 3D image of the lithospheric architecture of the NE China plain.

  16. Crust-Lithosphere-Asthenosphere Dynamics in Mantle Plume Provinces with Emphasis on the Galapagos =

    Science.gov (United States)

    Orellana, Felipe

    Hotspot tracks, which most geoscientists attribute to the effects of mantle plumes on the overlying lithospheric plates, are characterized by distinct bathymetry, gravity signatures, structural geology, volcanology, petrology, and geochemistry; motivating us to try to understand the dynamics behind the space-time-histories of these systems. Making use of classical geodynamic paradigms, such as highly-viscous fluids (Stokes flow, for the mantle and/or lithosphere), elastic plate behavior, and heat flow, we develop conceptual frameworks to explain a number of distinct hotspot track features, and present quantitative models aimed at elucidating their origins. There is much diversity among the population of mantle plume hotspot tracks on the Earth's oceanic crust. For example, there are marked differences in the style of their bathymetry, as well as in their gravimetric signals, and also in the isotopic signature of extruded lavas. At the same time, important underlying differences are given by the age of the lithospheric plates under which the mantle plumes are impinging, lithospheric elastic thickness, the heat (or buoyancy) flux of individual mantle plumes, their melt production, crustal thickening, the proximity of spreading centers, etc. In the first chapter of this dissertation, making use of scaling theory, we show that for most oceanic hotspot tracks, the character of bathymetric expression (primarily rough vs. smooth topography) can be explained by three independent primary underlying factors - plate thickness, or equivalently plate age; plate speed; and plume buoyancy flux - combined into a single parameter, R, the ratio of plume heat flux to the effective thermal capacity of the moving plate overlying the plume. The Galapagos archipelago (off the west coast of equatorial South America), part of a >20 Ma old hotspot track formed by the underlying Galapagos mantle plume, currently exhibits a broad geographic distribution of volcanic centers of surprisingly

  17. Lu-Hf isotope constraints on plume-lithosphere interaction during emplacement of the Bushveld Large Igneous Province at 2.06 Ga: Implications for the structure and evolution of the Kaapvaal Craton's lithospheric mantle

    Science.gov (United States)

    Zirakparvar, N. A.; Mathez, E. A.; Rajesh, H.; Vervoort, J. D.; Choe, S.

    2016-12-01

    The Bushveld Large Igneous Province (B-LIP) comprises a diverse array of >30 magma bodies that intruded the Kaapvaal Craton at 2.06 Ga. In this talk we use zircon and bulk-rock Lu-Hf isotope data to show that the B-LIP formed in response to the arrival of a plume(s) from the deep mantle. New zircon Hf isotope compositions for four B-LIP bodies yield intrusion-specific average ɛHf (2.06 Ga) values that range from -20.7 ± 2.8 to -2.7 ± 2.8, largely consistent with literature zircon data for other B-LIP intrusions. Bulk-rock solution ɛHf (2.06 Ga) values for a variety of B-LIP intrusions range from -2.1 ± 0.2 to -10.6 ± 0.2. Because the most radiogenic Hf isotope compositions across the entire B-LIP are nearly primordial with an ɛHf (2.06 Ga) close to 0, it is likely that the heat source of the B-LIP was a plume(s) from deep mantle. The Hf isotope data further suggests that individual intrusions in the B-LIP can be grouped into four categories based on their ultimate sources: 1) melts generated in subduction and plume modified continental lithospheric mantle; 2) melts generated by melting of a mafic-ultramafic reservoir composed of older ( 2.7 Ga) plume-related material trapped in the Kaapvaal lithosphere; 3) melts generated in the mid- to upper crust; and 4) melts generated from the 2.06 Ga mantle plume itself. The presence of 2.7 Ga mafic-ultramafic material in the Kaapvaal lithosphere may have acted to strengthen the lithosphere so that it was able to resist being dispered by the arrival of the B-LIP plume at 2.06 Ga. Because the B-LIP extends into a 2.7 Ga aged suture zone between the Kaapvaal and Zimbabwe cratons, it is also possible to understand the role of the lithospheric mantle in producing the Lu-Hf signatures observed in the various B-LIP intrusions as a function of two different types of the continental lithosphere: The very old lithosphere comprising the Kaapvaal Craton and the somewhat younger lithosphere comprising the suture zone. A basic

  18. Stable isotope research pool inventory

    International Nuclear Information System (INIS)

    1984-03-01

    This report contains a listing of electromagnetically separated stable isotopes which are available at the Oak Ridge National Laboratory for distribution for nondestructive research use on a loan basis. This inventory includes all samples of stable isotopes in the Research Materials Collection and does not designate whether a sample is out on loan or is in reprocessing. For some of the high abundance naturally occurring isotopes, larger amounts can be made available; for example, Ca-40 and Fe-56

  19. French days on stable isotopes

    International Nuclear Information System (INIS)

    2000-01-01

    These first French days on stable isotopes took place in parallel with the 1. French days of environmental chemistry. Both conferences had common plenary sessions. The conference covers all aspects of the use of stable isotopes in the following domains: medicine, biology, environment, tracer techniques, agronomy, food industry, geology, petroleum geochemistry, cosmo-geochemistry, archaeology, bio-geochemistry, hydrology, climatology, nuclear and particle physics, astrophysics, isotope separations etc.. Abstracts available on CD-Rom only. (J.S.)

  20. Stable isotope research pool inventory

    International Nuclear Information System (INIS)

    1982-01-01

    This report contains a listing of electromagnetically separated stable isotopes which are available for distribution within the United States for nondestructive research use from the Oak Ridge National Laboratory on a loan basis. This inventory includes all samples of stable isotopes in the Material Research Collection and does not designate whether a sample is out on loan or in reprocessing. For some of the high abundance naturally occurring isotopes, larger amounts can be made available; for example, Ca-40 and Fe-56

  1. Pharmaceuticals labelled with stable isotopes

    International Nuclear Information System (INIS)

    Krumbiegel, P.

    1986-11-01

    The relatively new field of pharmaceuticals labelled with stable isotopes is reviewed. Scientific, juridical, and ethical questions are discussed concerning the application of these pharmaceuticals in human medicine. 13 C, 15 N, and 2 H are the stable isotopes mainly utilized in metabolic function tests. Methodical contributions are given to the application of 2 H, 13 C, and 15 N pharmaceuticals showing new aspects and different states of development in the field under discussion. (author)

  2. Lithospheric diamond formation as a consequence of methane-rich volatile flooding: An example from diamondiferous eclogite xenoliths of the Karelian craton (Finland)

    Science.gov (United States)

    Smart, K. A.; Cartigny, P.; Tappe, S.; O'Brien, H.; Klemme, S.

    2017-06-01

    -rich kimberlites and olivine lamproites between 1200 and 700 Ma. We argue that this punctuated volatile-rich magmatism simultaneously metasomatised the cratonic mantle lithosphere, forming nitrogen enriched phlogopite-bearing metasomes. We propose that reduced, carbon-bearing and nitrogen-rich fluids were remobilized to form the Lahtojoki diamonds. The diamond-forming event(s) most probably occurred during or shortly prior to the entraining kimberlite magmatism as indicated by the diamond nitrogen aggregation systematics. Involvement of reduced diamond-forming fluids is supported by both the negative skewness of Lahtojoki diamond δ13C values and the more reduced nature of the diamondiferous Lahtojoki eclogites compared with their more oxidized barren counterparts. Our results from the diamondiferous eclogites derived from the deepest parts of the Karelian cratonic mantle root are in support of methane being the stable carbon volatile species at the base of thick continental lithosphere.

  3. Improved Slow-Positron Yield using a Single Crystal Tungsten Moderator

    DEFF Research Database (Denmark)

    Vehanen, A.; Lynn, K. G.; Schultz, P. J.

    1983-01-01

    A well-annealed W(110) single crystal was used as a fast-to-slow positron moderator. The measured moderator efficiency at room temperature using a58Co positron source in the backscattering geometry isɛ =(3.2±0.4)×10−3, roughly a factor of three better thanɛ for the best previously reported Cu(111......)+S moderator. We find a stable positron moderation efficiency over a period of several weeks when maintained at pressures around 10−9 Torr and an energy spreadΔE = 0.7 eV of the emitted slow positrons. An initial attempt was made to fabricate a hybrid Cu on W(110) moderator, which yieldedɛ of about 1...

  4. Hot big bang or slow freeze?

    Energy Technology Data Exchange (ETDEWEB)

    Wetterich, C.

    2014-09-07

    We confront the big bang for the beginning of the universe with an equivalent picture of a slow freeze — a very cold and slowly evolving universe. In the freeze picture the masses of elementary particles increase and the gravitational constant decreases with cosmic time, while the Newtonian attraction remains unchanged. The freeze and big bang pictures both describe the same observations or physical reality. We present a simple “crossover model” without a big bang singularity. In the infinite past space–time is flat. Our model is compatible with present observations, describing the generation of primordial density fluctuations during inflation as well as the present transition to a dark energy-dominated universe.

  5. Interaction of slow electrons with surfaces. II

    International Nuclear Information System (INIS)

    Komolov, S.A.; Chadderton, L.T.

    1976-01-01

    Total current spectroscopy (TCS) has been used to study the growth of films of gold and silver on (100) vanadium surfaces. A slow transition from TCS curves characteristic of vanadium to curves characteristic of the noble metals is observed, accompanied by an increase in the net work function - more rapid for silver than for gold. Vanadium characteristics are lost from the TCS curves for mean overlayer thicknesses > approximately 15A, and a simple analysis shows that the thickness of the surface zone from which TCS signals originate is approximately given by the electron mean free path. Observations of progressive attenuation of a characteristic vanadium feature with increasing mean thickness of overlayer permits separation into stages of nucleation and growth. There is a critical nucleus size of approximately 2A for silver and approximately 4A for gold. (Auth.)

  6. Limits of slow light in photonic crystals

    DEFF Research Database (Denmark)

    Pedersen, Jesper Goor; Xiao, Sanshui; Mortensen, N. Asger

    2008-01-01

    in the group velocity acquiring a finite value above zero at the band-gap edges while attaining uperluminal values within the band gap. Simple scalings of the minimum and maximum group velocities with the imaginary part of the dielectric function or, equivalently, the linewidth of the broadened states......While ideal photonic crystals would support modes with a vanishing group velocity, state-of-the-art structures have still only provided a slow down by roughly two orders of magnitude. We find that the induced density of states caused by lifetime broadening of the electromagnetic modes results...... are presented. The results obtained are entirely general and may be applied to any effect which results in a broadening of the electromagnetic states, such as loss, disorder, and finite-size effects. This significantly limits the reduction in group velocity attainable via photonic crystals....

  7. Slow neutron scattering by water molecules

    Energy Technology Data Exchange (ETDEWEB)

    Stancic, V [Boris Kidric Institute of Nuclear Sciences Vinca, Beograd (Yugoslavia)

    1970-07-01

    In this work some new, preliminary formulae for slow neutron scattering cross section calculation by heavy and light water molecules have been done. The idea was to find, from the sum which exists in well known Nelkin model, other cross sections in a more simple analytical form, so that next approximations may be possible. In order to sum a series it was starting from Euler-Mclaurin formula. Some new summation formulae have been derived there, and defined in two theorems. Extensive calculations, especially during the evaluation of residues, have been made at the CDC 3600 computer. validation of derived formulae was done by comparison with the BNL-325 results. Good agreement is shown. (author)

  8. Acoustic slow waves and the consolidation transition

    International Nuclear Information System (INIS)

    Johnson, D.L.; Plona, T.J.

    1982-01-01

    We have investigated the ultrasonic properties of unconsolidated (loose) glass beads and of lightly fused (consolidated) glass beads when the pore space is saturated with water. At a frequency of 500 kHz we have observed a single compressional wave in the former whose speed is 1.79 km/s and two distinct compressional waves with speeds 2.81 km/s and 0.96 km/s in the latter. The Biot theory is shown to give an accurate description of this phenomenon. We also analyze the acoustics of low temperature He ii in packed powder superleaks; either the fast wave for unconsolidated systems or the slow wave in a highly consolidated (fused) frame may be considered to be the 4th sound mode. In all such systems, the acoustic properties can be very simply understood by considering the velocities of propagation as continuous functions of the elastic moduli of the solid skeletal frames

  9. Hot big bang or slow freeze?

    International Nuclear Information System (INIS)

    Wetterich, C.

    2014-01-01

    We confront the big bang for the beginning of the universe with an equivalent picture of a slow freeze — a very cold and slowly evolving universe. In the freeze picture the masses of elementary particles increase and the gravitational constant decreases with cosmic time, while the Newtonian attraction remains unchanged. The freeze and big bang pictures both describe the same observations or physical reality. We present a simple “crossover model” without a big bang singularity. In the infinite past space–time is flat. Our model is compatible with present observations, describing the generation of primordial density fluctuations during inflation as well as the present transition to a dark energy-dominated universe

  10. Slow speed object detection for haul trucks

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-09-15

    Caterpillar integrates radar technology with its current camera based system. Caterpillar has developed the Integrated Object Detection System, a slow speed object detection system for mining haul trucks. Object detection is a system that aids the truck operator's awareness of their surroundings. The system consists of a color touch screen display along with medium- and short-range radar as well as cameras, harnesses and mounting hardware. It is integrated into the truck's Work Area Vision System (WAVS). After field testing in 2007, system commercialization began in 2008. Prototype systems are in operation in Australia, Utah and Arizona and the Integrated Object Detection System will be available in the fourth quarter of 2009 and on production trucks 785C, 789C, 793D and 797B. The article is adapted from a presentation by Mark Richards of Caterpillar to the Haulage & Loading 2009 conference, May, held in Phoenix, AZ. 1 fig., 5 photos.

  11. Slow neutron scattering by water molecules

    International Nuclear Information System (INIS)

    Stancic, V.

    1970-01-01

    In this work some new, preliminary formulae for slow neutron scattering cross section calculation by heavy and light water molecules have been done. The idea was to find, from the sum which exists in well known Nelkin model, other cross sections in a more simple analytical form, so that next approximations may be possible. In order to sum a series it was starting from Euler-Mclaurin formula. Some new summation formulae have been derived there, and defined in two theorems. Extensive calculations, especially during the evaluation of residues, have been made at the CDC 3600 computer. validation of derived formulae was done by comparison with the BNL-325 results. Good agreement is shown. (author)

  12. Hot big bang or slow freeze?

    Directory of Open Access Journals (Sweden)

    C. Wetterich

    2014-09-01

    Full Text Available We confront the big bang for the beginning of the universe with an equivalent picture of a slow freeze — a very cold and slowly evolving universe. In the freeze picture the masses of elementary particles increase and the gravitational constant decreases with cosmic time, while the Newtonian attraction remains unchanged. The freeze and big bang pictures both describe the same observations or physical reality. We present a simple “crossover model” without a big bang singularity. In the infinite past space–time is flat. Our model is compatible with present observations, describing the generation of primordial density fluctuations during inflation as well as the present transition to a dark energy-dominated universe.

  13. Slow creep in soft granular packings.

    Science.gov (United States)

    Srivastava, Ishan; Fisher, Timothy S

    2017-05-14

    Transient creep mechanisms in soft granular packings are studied numerically using a constant pressure and constant stress simulation method. Rapid compression followed by slow dilation is predicted on the basis of a logarithmic creep phenomenon. Characteristic scales of creep strain and time exhibit a power-law dependence on jamming pressure, and they diverge at the jamming point. Microscopic analysis indicates the existence of a correlation between rheology and nonaffine fluctuations. Localized regions of large strain appear during creep and grow in magnitude and size at short times. At long times, the spatial structure of highly correlated local deformation becomes time-invariant. Finally, a microscale connection between local rheology and local fluctuations is demonstrated in the form of a linear scaling between granular fluidity and nonaffine velocity.

  14. Building and Modification of the Continental Lithosphere: the History of the Contiguous U.S. as told by MLDs and LABs

    Science.gov (United States)

    Hopper, E.; Fischer, K. M.

    2016-12-01

    The lithosphere preserves a record of past and present tectonic processes in its internal structures and its boundary with the underlying asthenosphere. We use common conversion point stacked Sp converted waves recorded by EarthScope's Transportable Array, as well as other available permanent and temporary broadband stations, to image such structures in the lithospheric mantle of the contiguous U.S. In the tectonically youngest western U.S., a shallow, sharp velocity gradient at the base of the lithosphere suggests a boundary defined by ponded melt. The lithosphere thickens with age of volcanism, implying the lithosphere is a melt-mitigated, conductively cooling thermal boundary layer. Beneath older, colder lithosphere where melt fractions are likely much lower, the velocity gradient at the base of such a layer should be a more diffuse, primarily thermal boundary. This is consistent with observations in the eastern U.S. where the lithosphere-asthenosphere boundary (LAB) is locally sharp and shallower only in areas of inferred enhanced upwelling - such as ancient hot spot tracks and areas of inferred delamination. In the cratonic interior, the LAB is even more gradual in depth, and is transparent to Sp waves with dominant periods of 10 s. Although seismic imaging only provides a snapshot of the lithosphere as it is today, preserved internal structures extend the utility of this imaging back into deep geological time. Ancient accretion within the cratonic lithospheric mantle is preserved as dipping structures associated with relict subducted slabs from Paleoproterozoic continental accretion, suggesting that lateral accretion was integral to the cratonic mantle root formation process. Metasomatism, melt migration and ponding below a carbonated peridotite solidus explain a sub-horizontal mid-lithospheric discontinuity (MLD) commonly observed at 70-100 km depth. This type of MLD is strongest in Mesoproterozoic and older lithosphere, suggesting that it formed more

  15. Production of Slow Protonium in Vacuum

    CERN Document Server

    Zurlo, N; Amsler, C; Bonomi, G; Carraro, C; Cesar, C L; Charlton, M; Doser, M; Fontana, A; Funakoshi, R; Genova, P; Hayano, R S; Jørgensen, L V; Kellerbauer, A G; Lagomarsino, V; Landua, R; Lodi-Rizzini, E; Macri', M; Madsen, N; Manuzio, G; Mitchard, D; Montagna, P; Posada, L G; Pruys, H; Regenfus, C; Rotondi, A; Testera, G; Van der Werf, D P; Variola, A; Venturelli, L; Yamazaki, Y

    2006-01-01

    We describe how protonium, the quasi-stable antiproton-proton bound system, has been synthesized following the interaction of antiprotons with the molecular ion H$_2^+$ in a nested Penning trap environment. From a careful analysis of the spatial distributions of antiproton annihilation events in the ATHENA experiment, evidence is presented for protonium production with sub-eV kinetic energies in states around $n$ = 70, with low angular momenta. This work provides a new 2-body system for study using laser spectroscopic techniques.

  16. Chaotic behavior in a relativistic electron beam interacting with a transverse slow electromagnetic wave

    International Nuclear Information System (INIS)

    Serbeto, A.; Alves, M.V.

    1993-01-01

    Using a nonlinear set of equations which describes the excitation of a purely transverse slow electromagnetic wave by a relativistic electron beam, it is shown that the system runs from chaotic behavior to a regular stable state due to crisis phenomenon and from stabilized soliton and repeated stabilized explosive solutions to a temporal chaos. These behaviors suggest that the primary mechanism for the saturation of the explosive instability is not only the cubic nonlinear frequency shift as pointed out by many authors until now. The inclusion of the velocity perturbation in the beam charge initial equilibrium state leads the system to these strange behaviors. (author)

  17. Large scale deformation of the oceanic lithosphere: insights from numerical modeling of the Indo-Australian intraplate deformation

    Science.gov (United States)

    Royer, J.; Brandon, V.

    2011-12-01

    The large-scale deformation observed in the Indo-Australian plate seems to challenge tenets of plate tectonics: plate rigidity and narrow oceanic plate boundaries. Its distribution along with kinematic data inversions however suggest that the Indo-Australian plate can be viewed as a composite plate made of three rigid component plates - India, Capricorn, Australia - separated by wide and diffuse boundaries either extensional or compressional. We tested this model using the SHELLS numerical code (Kong & Bird, 1995) where the Indo-Australian plate was meshed into 5281 spherical triangular finite elements. Model boundary conditions are defined only by the plate velocities of the rigid parts of the Indo-Australian plate relative to their neighboring plates. Different plate velocity models were tested. From these boundary conditions, and taking into account the age of the lithosphere, seafloor topography, and assumptions on the rheology of the oceanic lithosphere, SHELLS predicts strain rates within the plate. We also tested the role of fossil fracture zones as potential lithospheric weaknesses. In a first step, we considered different component plate pairs (India/Capricorn, Capricorn/Australia, India/Australia). Since the limits of their respective diffuse boundary (i.e. the limits of the rigid component plates) are not known, we let the corresponding edge free. In a second step, we merged the previous meshes to consider the whole Indo-Australian plate. In this case, the velocities on the model boundaries are all fully defined and were set relative to the Capricorn plate. Our models predict deformation patterns very consistent with that observed. Pre-existing structures of the lithosphere play an important role in the intraplate deformation and its distribution. The Chagos Bank focuses the extensional deformation between the Indian and Capricorn plates. Reactivation of fossil fracture zones may accommodate large part of the deformation both in extensional areas, off

  18. Upper mantle beneath foothills of the western Himalaya: subducted lithospheric slab or a keel of the Indian shield?

    Science.gov (United States)

    Vinnik, L.; Singh, A.; Kiselev, S.; Kumar, M. Ravi

    2007-12-01

    The fate of the mantle lithosphere of the Indian Plate in the India-Eurasia collision zone is not well understood. Tomographic studies reveal high P velocity in the uppermost mantle to the south of the western Himalaya, and these high velocities are sometimes interpreted as an image of subducting Indian lithosphere. We suggest that these high velocities are unrelated to the ongoing subduction but correspond to a near-horizontal mantle keel of the Indian shield. In the south of the Indian shield upper-mantle velocities are anomalously low, and relatively high velocities may signify a recovery of the normal shield structure in the north. Our analysis is based on the recordings of seismograph station NIL in the foothills of the western Himalaya. The T component of the P receiver functions is weak relative to the Q component, which is indicative of a subhorizontally layered structure. Joint inversion of the P and S receiver functions favours high uppermost mantle velocities, typical of the lithosphere of Archean cratons. The arrival of the Ps converted phase from 410 km discontinuity at NIL is 2.2 s earlier than in IASP91 global model. This can be an effect of remnants of Tethys subduction in the mantle transition zone and of high velocities in the keel of the Indian shield. Joint inversion of SKS particle motions and P receiver functions reveals a change in the fast direction of seismic azimuthal anisotropy from 60° at 80-160 km depths to 150° at 160-220 km. The fast direction in the lower layer is parallel to the trend of the Himalaya. The change of deformation regimes at a depth of 160 km suggests that this is the base of the lithosphere of the Indian shield. A similar boundary was found with similar techniques in central Europe and the Tien Shan region, but the base of the lithosphere in these regions is relatively shallow, in agreement with the higher upper-mantle temperatures. The ongoing continental collision is expressed in crustal structure: the crust

  19. Slow Earthquake Hunters: A New Citizen Science Project to Identify and Catalog Slow Slip Events in Geodetic Data

    Science.gov (United States)

    Bartlow, N. M.

    2017-12-01

    Slow Earthquake Hunters is a new citizen science project to detect, catalog, and monitor slow slip events. Slow slip events, also called "slow earthquakes", occur when faults slip too slowly to generate significant seismic radiation. They typically take between a few days and over a year to occur, and are most often found on subduction zone plate interfaces. While not dangerous in and of themselves, recent evidence suggests that monitoring slow slip events is important for earthquake hazards, as slow slip events have been known to trigger damaging "regular" earthquakes. Slow slip events, because they do not radiate seismically, are detected with a variety of methods, most commonly continuous geodetic Global Positioning System (GPS) stations. There is now a wealth of GPS data in some regions that experience slow slip events, but a reliable automated method to detect them in GPS data remains elusive. This project aims to recruit human users to view GPS time series data, with some post-processing to highlight slow slip signals, and flag slow slip events for further analysis by the scientific team. Slow Earthquake Hunters will begin with data from the Cascadia subduction zone, where geodetically detectable slow slip events with a duration of at least a few days recur at regular intervals. The project will then expand to other areas with slow slip events or other transient geodetic signals, including other subduction zones, and areas with strike-slip faults. This project has not yet rolled out to the public, and is in a beta testing phase. This presentation will show results from an initial pilot group of student participants at the University of Missouri, and solicit feedback for the future of Slow Earthquake Hunters.

  20. Construction report of the PF slow-positron source. 1

    International Nuclear Information System (INIS)

    Enomoto, Atsushi; Kurihara, Toshikazu; Kobayashi, Hitoshi

    1993-12-01

    The slow positron source utilizing the electron beam of the 2.5 GeV electron beam accelerator which is the synchrotron radiation injector is being constructed. The outline of the project and the present state of construction are reported. As of November, 1993, by injecting the electron beam of about 10 W to the targets for producing positrons, the slow positrons of 4 x 10 4 e + /s has been obtained in the laboratory. Finally, with the electron beam of 30 kW, it is aimed at to obtain the slow positron beam of 2 x 10 9 e + /s. In the slow positron source, the electron beam from the 2.5 GeV linear accelerator is used as the primary beam. This beam is led to the target with electromagnets. Radiation shields were strengthened, and the electrostatic lens system was attached to efficiently extract and send out slow positrons. The conveying system for slow positrons is explained. Primary electron beam, target and moderator for producing slow positrons, the change to continuous current of pulsed slow positron beam and the heightening of luminance of slow positron beam, and the experiment on the utilization of slow positron beam, and the control system for positron conveyance path are reported. (K.I.)