WorldWideScience

Sample records for stable intermetallic compounds

  1. Charge and spin density in s-stable rare earth intermetallic compounds

    International Nuclear Information System (INIS)

    Graaf, H. de.

    1982-01-01

    This thesis deals with a study of the electronic structure of rare earth intermetallic compounds, in particular the electronic charge and spin density distribution. These are closely related to the properties of the rare earth ions, which carry the partly filled 4f shell. In chapter 1 a survey of the theory of hyperfine interaction as far as it has a bearing on the Moessbauer effect of 155 Gd and 151 Eu is given. Also some details of the Moessbauer spectra, which have practical importance are discussed. In chapter 2 the experimental set-up is described. Special attention is paid to the gamma radiation source and gamma detection requirements. In chapter 3 the author introduces the theoretical framework which will be used to interpret the measurements. In chapter 4 the results of the 155 Gd Moessbauer measurements are presented. Also it is discussed how the result can be understood in terms of the charge and spin density in rare earth intermetallic compounds. In order to lend support to the picture emerging from the previous chapter, in chapter 5 the conduction electron band structure of some representative Gd intermetallics is computed with an approximate semi-empirical LCAO method. The results are compared with those from chapter 4. Finally, in chapter 6, the 151 Eu resonance is used to investigate the temperature dependence of the hyperfine field and line width in the Eu intermetallic compounds Eu 2 Mg 17 and EuMg 5 . (Auth.)

  2. Syntheses and properties of several metastable and stable hydrides derived from intermetallic compounds under high hydrogen pressure

    Energy Technology Data Exchange (ETDEWEB)

    Filipek, S.M., E-mail: sfilipek@unipress.waw.pl [Institute of High Pressure Physics PAS, ul. Sokolowska 29, 01-142 Warsaw (Poland); Paul-Boncour, V. [ICMPE-CMTR, CNRS-UPEC, 2-8 rue Henri Dunant, 94320 Thiais (France); Liu, R.S. [Department of Chemistry, National Taiwan University, Taipei 106, Taiwan (China); Jacob, I. [Unit Nuclear Eng., Ben Gurion University of the Negev, Beer-Sheva (Israel); Tsutaoka, T. [Dept. of Sci. Educ., Grad. School of Educ., Hiroshima University, Hiroshima (Japan); Budziak, A. [Institute of Nuclear Physics PAS, 31-342 Kraków (Poland); Morawski, A. [Institute of High Pressure Physics PAS, ul. Sokolowska 29, 01-142 Warsaw (Poland); Sugiura, H. [Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama 236-0027 (Japan); Zachariasz, P. [Institute of Electron Technology Cracow Division, ul. Zablocie 39, 30-701 Krakow (Poland); Dybko, K. [Institute of Physics, PAS, 02-668 Warsaw (Poland); Diduszko, R. [Tele and Radio Research Institute, ul. Ratuszowa 11, Warsaw (Poland)

    2016-12-01

    Brief summary of our former work on high hydrogen pressure syntheses of novel hydrides and studies of their properties is supplemented with new results. Syntheses and properties of a number of hydrides (unstable, metastable or stable in ambient conditions) derived under high hydrogen pressure from intermetallic compounds, like MeT{sub 2}, MeNi{sub 5}, Me{sub 7}T{sub 3}, Y{sub 6}Mn{sub 23} and YMn{sub 12} (where Me = zirconium, yttrium or rare earth; T = transition metal) are presented. Stabilization of ZrFe{sub 2}H{sub 4} due to surface phenomena was revealed. Unusual role of manganese in hydride forming processes is pointed out. Hydrogen induced phase transitions, suppression of magnetism, antiferromagnetic-ferromagnetic and metal-insulator or semimetal-metal transitions are described. Equations of state (EOS) of hydrides submitted to hydrostatic pressures up to 30 GPa are presented and discussed.

  3. 2. Intermetallic compounds with lanthanides

    International Nuclear Information System (INIS)

    Elemans, J.B.A.A.

    1975-01-01

    Theoretical considerations are given concerning the structures of intermetallic compounds of the lanthanides and thorium (R) on the one hand, and with Fe, Co or Ni (M) on the other. They all derive from the parent composition RM 5 with the CaCu 5 hexagonal structure. This consists of alternate layers in which the M atoms are distinguished as M 1 and M 2 . The other compounds whose structures are studied are obtained by systematic replacement of R by M, or vice versa. In the first type, every third R is replaced by two M's yielding R 2 M 17 compounds. The substitution may be truly random or structured in two ways: so that either the hexagonal structure is maintained or that it is converted into a rhombihedral one. In the second type, one M (in a M 1 position) out of every five is replaced by one R, giving rise to RM 2 compounds which form Laves phases. In the third type, the M 1 's are replaced by R's, resulting in compounds RM 3 . In the fourth type, every third M is replaced by R, yielding R 2 M 7 compounds. With M = Co and R a light lanthanide, the compounds are ferromagnets; with R yttrium, thorium, or a heavy lanthanide, they are ferrimagnets. The preparation of the compounds in an arc-melting apparatus under an Ar-atmosphere followed by annealing is described

  4. Crystal structure analysis of intermetallic compounds

    Science.gov (United States)

    Conner, R. A., Jr.; Downey, J. W.; Dwight, A. E.

    1968-01-01

    Study concerns crystal structures and lattice parameters for a number of new intermetallic compounds. Crystal structure data have been collected on equiatomic compounds, formed between an element of the Sc, Ti, V, or Cr group and an element of the Co or Ni group. The data, obtained by conventional methods, are presented in an easily usable tabular form.

  5. Chemical effect on diffusion in intermetallic compounds

    Science.gov (United States)

    Chen, Yi-Ting

    With the trend of big data and the Internet of things, we live in a world full of personal electronic devices and small electronic devices. In order to make the devices more powerful, advanced electronic packaging such as wafer level packaging or 3D IC packaging play an important role. Furthermore, ?-bumps, which connect silicon dies together with dimension less than 10 ?m, are crucial parts in advanced packaging. Owing to the dimension of ?-bumps, they transform into intermetallic compound from tin based solder after the liquid state bonding process. Moreover, many new reliability issues will occur in electronic packaging when the bonding materials change; in this case, we no longer have tin based solder joint, instead, we have intermetallic compound ?-bumps. Most of the potential reliability issues in intermetallic compounds are caused by the chemical reactions driven by atomic diffusion in the material; thus, to know the diffusivities of atoms inside a material is significant and can help us to further analyze the reliability issues. However, we are lacking these kinds of data in intermetallic compound because there are some problems if used traditional Darken's analysis. Therefore, we considered Wagner diffusivity in our system to solve the problems and applied the concept of chemical effect on diffusion by taking the advantage that large amount of energy will release when compounds formed. Moreover, by inventing the holes markers made by Focus ion beam (FIB), we can conduct the diffusion experiment and obtain the tracer diffusivities of atoms inside the intermetallic compound. We applied the technique on Ni3Sn4 and Cu3Sn, which are two of the most common materials in electronic packaging, and the tracer diffusivities are measured under several different temperatures; moreover, microstructure of the intermetallic compounds are investigated to ensure the diffusion environment. Additionally, the detail diffusion mechanism was also discussed in aspect of diffusion

  6. Forging of FeAl intermetallic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Flores, O.; Juarez, J.; Campillo, B.; Martinez, L. [UNAM, Cuernavaca (Mexico). Lab. de Cuernavaca; Schneibel, J.H. [Oak Ridge National Lab., TN (United States)

    1994-09-01

    Much activity has been concentrated on the development of intermetallic compounds with the aim of improving tensile ductility, fracture toughness and high notch sensitivity in order to develop an attractive combination of properties for high and low temperature applications. This paper reports experience in processing and forging of FeAl intermetallic of B2 type. During the experiments two different temperatures were employed, and the specimens were forged after annealing in air, 10{sup {minus}2} torr vacuum and argon. From the results it was learned that annealing FeAl in argon atmosphere prior to forging resulted in better deformation behavior than for the other two environments. For the higher forging temperature used in the experiments (700C), the as-cast microstructure becomes partially recrystallized.

  7. Neutron scattering on hydrides of intermetallic compounds

    International Nuclear Information System (INIS)

    Hempelmann, R.

    1986-11-01

    This review surveys the application of neutron scattering for the investigation of the microscopic behaviour of hydrogen in intermetallic compounds. This concerns the structure as well as the dynamics. Neutron diffraction experiments were performed on Ti 1.2 Mn 1.8 D 3 and LaNi 5 D 7 . In the latter case the dominant nickel scattering could be suppressed by isotope substitution with 60 Ni, and the anisotropic broadening of the Bragg peaks could be modelled in a correspondingly modified Rietveld-profile refinement. For the investigation of hydrogen diffusion in intermetallic hydrides by means of quasielastic neutron scattering an iterative multiple scattering correction procedure has been developped which allows a reliable determination of hydrogen diffusion coefficients. The mechanism of hydrogen diffusion in intermetallic hydrides comprises three types of jumps: escape jumps out of energetically lower interstitials, transport jumps over the energetically higher sites and locally restricted jump processes. For Ti 1.2 Mn 1.8 H 3 the main features of the diffusional behaviour could be described quantitatively in the framework of a three state model. By means of neutron vibrational spectroscopy information about the occupied hydrogen sites and thus about the structure can be extracted from the symmetry splitting of the vibrational modes. In this way we showed that in α-LaNi 5 H x , La 2 Ni 4 -octahedral and La 2 Ni 2 -tetrahedral interstitial sites are occupied. (orig./GG)

  8. Novel routes to new intermetallic compounds

    International Nuclear Information System (INIS)

    Kilcoyne, S.H.; Manuel, P.; Ritter, C.

    1999-01-01

    Recent kinetic in situ neutron diffraction measurements of the crystallisation and phase formation processes in amorphous metallic alloys have shown that it is possible to create entirely new, intermetallic compounds with extremely novel structures and magnetic properties. The technique therefore offers the opportunity of probing the interplay of structural, magnetic and electronic properties in more detail than ever before. In this report, we illustrate the technique with the results of a kinetic neutron diffraction experiment in which the very high count rates available on the D20 powder diffractometer have allowed the crystallisation of amorphous Y 7 Fe 3 to be followed in situ. (authors)

  9. Roles of Titanium-Intermetallic Compound Layer

    Science.gov (United States)

    Lee, Chii-Chang

    Four different configurations have been tested: Al-Cu, Ti/Al-Cu, Al-Cu/Ti, and Ti/Al-Cu/Ti to evaluate the possible contributions of Ti-intermetallic compound layer(s) to enhancement of the lifetime to failure. Basically, the proposed mechanisms can be classified into two groups: shunting effect and effects limited to changes in Al-Cu conducting layer(s). A resistance monitoring technique was adopted to supplement lifetime measurement to separate these two effects. By correlating the first resistance jump (spike) to the happening of a complete open across Al-Cu layer, it was found that the shunting effect contributes to enhancement of the lifetime by 4 times in Ti/Al-Cu, 2 times in Al-Cu/Ti, and 2 times in Ti/Al-Cu/Ti. A Ti underlayer was found to contribute mainly the shunting effect. However, from drift velocity measurements and failure mode analysis, it is possible to deduce that a Ti overlayer contributes not only the shunting effect but also another effect that acts to diminish the grain boundary mass transport rate by a factor of about 76. It is believed that the latter effect is a consequence of the high compressive yield stength conferred by the Ti-intermetallic compound overlayer to the Al-Cu layer. Finally, an important non-destructive technique, based on the characteristic x-rays generated by energetic electrons, to characterize the mass divergences in multilayer interconnects, was developed in this research, called SMEISIS, representing Simultaneous Multiple Elements Intensity Scanning of Interconnecting Stripes. This technique was proved to be capable of revealing detail about the shapes, nature, and location of mass divergence that cannot be revealed by thermal wave image technique and that requires time consuming multiple sectioning in TEM and SEM methods.

  10. Synthesis of hydrides by interaction of intermetallic compounds with ammonia

    Energy Technology Data Exchange (ETDEWEB)

    Tarasov, Boris P., E-mail: tarasov@icp.ac.ru [Institute of Problems of Chemical Physics of the Russian Academy of Sciences, Chernogolovka 142432 (Russian Federation); Fokin, Valentin N.; Fokina, Evelina E. [Institute of Problems of Chemical Physics of the Russian Academy of Sciences, Chernogolovka 142432 (Russian Federation); Yartys, Volodymyr A., E-mail: volodymyr.yartys@ife.no [Institute for Energy Technology, Kjeller NO 2027 (Norway); Department of Materials Science and Engineering, Norwegian University of Science and Technology, Trondheim NO 7491 (Norway)

    2015-10-05

    Highlights: • Interaction of the intermetallics A{sub 2}B, AB, AB{sub 2}, AB{sub 5} and A{sub 2}B{sub 17} with NH{sub 3} was studied. • The mechanism of interaction of the alloys with ammonia is temperature-dependent. • Hydrides, hydridonitrides, disproportionation products or metal–N–H compounds are formed. • NH{sub 4}Cl was used as an activator of the reaction between ammonia and intermetallics. • Interaction with ammonia results in the synthesis of the nanopowders. - Abstract: Interaction of intermetallic compounds with ammonia was studied as a processing route to synthesize hydrides and hydridonitrides of intermetallic compounds having various stoichiometries and types of crystal structures, including A{sub 2}B, AB, AB{sub 2}, AB{sub 5} and A{sub 2}B{sub 17} (A = Mg, Ti, Zr, Sc, Nd, Sm; B = transition metals, including Fe, Co, Ni, Ti and nontransition elements, Al and B). In presence of NH{sub 4}Cl used as an activator of the reaction between ammonia and intermetallic alloys, their interaction proceeds at rather mild P–T conditions, at temperatures 100–200 °C and at pressures of 0.6–0.8 MPa. The mechanism of interaction of the alloys with ammonia appears to be temperature-dependent and, following a rise of the interaction temperature, it leads to the formation of interstitial hydrides; interstitial hydridonitrides; disproportionation products (binary hydride; new intermetallic hydrides and binary nitrides) or new metal–nitrogen–hydrogen compounds like magnesium amide Mg(NH{sub 2}){sub 2}. The interaction results in the synthesis of the nanopowders where hydrogen and nitrogen atoms become incorporated into the crystal lattices of the intermetallic alloys. The nitrogenated materials have the smallest particle size, down to 40 nm, and a specific surface area close to 20 m{sup 2}/g.

  11. Crystal field in rare-earth metals and intermetallic compounds

    International Nuclear Information System (INIS)

    Ray, D.K.

    1978-01-01

    Reasons for the success of the crystal-field model for the rare-earth metals and intermetallic compounds are discussed. A review of some of the available experimental results is made with emphasis on cubic intermetallic compounds. Various sources of the origin of the crystal field in these metals are discussed in the background of the recent APW picture of the conduction electrons. The importance of the non-spherical part of the muffin-tin potential on the single-ion anisotropy is stressed. (author)

  12. Hydrogen trapping properties of Zr-based intermetallic compounds in the presence of CO contaminant gas

    Energy Technology Data Exchange (ETDEWEB)

    Prigent, Jocelyn [Chimie Metallurgie des Terres Rares, ICMPE-UMR 7182, CNRS, 2-8 rue Henri Dunant, 94320 Thiais (France); Latroche, Michel, E-mail: latroche@icmpe.cnrs.fr [Chimie Metallurgie des Terres Rares, ICMPE-UMR 7182, CNRS, 2-8 rue Henri Dunant, 94320 Thiais (France); Leoni, Elisa; Rohr, Valentin [AREVA NC, 1, rue des Herons, 78182 Montigny Le Bretonneux (France)

    2011-09-15

    Research highlights: > Hydrogen absorption in the presence of carbon monoxide is reported for several Zr rich intermetallic compounds. > Absorption rates have been determined and compared for pure and CO-containing hydrogen gases. > Using intermetallic compounds as getter materials in the presence of contaminant gases has been demonstrated. - Abstract: Intermetallic compounds, as hydrogen getters, are considered to control the quantity of hydrogen generated in radioactive waste packaging. The compounds ZrCo, Zr{sub 2}Fe and a Zr-rich Zr-Ti-V alloy have been chosen as they form very stable hydrides at ambient temperature. However, other gases are produced in the packaging such as carbon monoxide, a gas known to poison the surface of intermetallic compounds and to hinder the hydrogen sorption reaction. The three Zr-based compounds have been first characterized regarding their metallurgical state and their gas sorption properties toward pure hydrogen. Then, the sorption properties of the activated materials have been studied using a mixture of 5 vol.% CO + 95 vol.% H{sub 2}. We demonstrated that though the presence of CO sharply slows down the reaction rate the activated compounds still show significant sorption properties. Therefore, the presence of contaminant gases is not detrimental for the target application.

  13. 111Cd PAC Study of Gd-Ni Intermetallic Compounds

    International Nuclear Information System (INIS)

    Presa, P. de la; Forker, M.

    2004-01-01

    This paper presents a perturbed angular correlation study of the magnetic and electric hyperfine interactions of 111 Cd on Gd sites of the Gd-Ni intermetallic compounds GdNi, GdNi 2 , GdNi 3 , Gd 2 Ni 7 , GdNi 5 and Gd 2 Ni 17 .

  14. Lattice and magnetic anisotropies in uranium intermetallic compounds

    DEFF Research Database (Denmark)

    Havela, L.; Mašková, S.; Adamska, A.

    2013-01-01

    Examples of UNiAlD and UCoGe illustrate that the soft crystallographic direction coincides quite generally with the shortest U-U links in U intermetallics. Added to existing experimental evidence on U compounds it leads to a simple rule, that the easy magnetization direction and the soft crystall...

  15. Stable isotopes labelled compounds

    International Nuclear Information System (INIS)

    1982-09-01

    The catalogue on stable isotopes labelled compounds offers deuterium, nitrogen-15, and multiply labelled compounds. It includes: (1) conditions of sale and delivery, (2) the application of stable isotopes, (3) technical information, (4) product specifications, and (5) the complete delivery programme

  16. Thermochemical investigations on intermetallic UMe3 compounds (Me=Ru,Rh,Pd)

    International Nuclear Information System (INIS)

    Wijbenga, G.

    1981-10-01

    The subject of this thesis is the determination of the thermodynamic properties of the intermetallic compounds of uranium with the light platinum metals, ruthenium, rhodium and palladium. These intermetallics are formed as very stable compounds during fission in nuclear fuel by the reaction of the fission products Ru, Rh and Pd with the matrix. Methods for the preparation of URu 3 , URh 3 and UPd 3 , experiments showing the chemical reactivities of these compounds, and studies of the stoichiometry of hexagonal UPd 3 by X-ray diffraction of solubility experiments of UN and palladium in UPd 3 , are described. Thermodynamic properties of the UMe 3 compounds have been obtained using several experimental thermodynamic techniques: fluorine bomb calorimetry, low-temperature cryogenic calorimetry, high-temperature drop calorimetry and EMF measurements of reversible cells. (Auth.)

  17. Transformations of intermetallic compounds in Zr alloys at room temperature

    International Nuclear Information System (INIS)

    Filippov, V.P.; Shikanova, Yu.A.

    2004-01-01

    The formation of intermetallic compound Zr 3 Fe is shown to take place in a quaternary Zr-Fe-Sn-Cr alloy on long-term holding at room temperature. Alloys of Zr-1.0% Fe-1.27% Sn-0.51% Cr are melted in an arc furnace, quenched, hot and cold rolled. Final heat treatment is performed at 873 K for 3 h. It is assumed that the formation of intermetallic particles at low temperature is due to rearrangement of pre-precipitate structure by way of iron atom transitions at small distances. No noticeable change is found out in values of quadrupole splitting and isomer shift of Zr(Fe , Cr) 2 particles after a two-year holding at room temperature [ru

  18. Rare earth intermetallic compounds produced by a reduction-diffusion process

    International Nuclear Information System (INIS)

    Cech, R.E.

    1975-01-01

    A reduction-diffusion process is given for producing novel rare earth intermetallic compounds, such as cobalt--rare earth intermetallic compounds, especially compounds useful in preparing permanent magnets. A particulate mixture of rare earth metal halide, cobalt and calcium hydride is heated to effect reduction of the rare earth metal halide and to diffuse the resulting rare earth metal into the cobalt to form the intermetallic compound

  19. Discovery of a Superconducting Cu-Bi Intermetallic Compound by High-Pressure Synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Clarke, Samantha M. [Department of Chemistry, Northwestern University, Evanston IL 60208 USA; Walsh, James P. S. [Department of Chemistry, Northwestern University, Evanston IL 60208 USA; Amsler, Maximilian [Department of Materials Science and Engineering, Northwestern University, Evanston IL 60208 USA; Malliakas, Christos D. [Department of Chemistry, Northwestern University, Evanston IL 60208 USA; Yu, Tony [Center for Advanced Radiation Sources, The University of Chicago, Chicago IL 60637 USA; Goedecker, Stefan [Department of Physics, Universität Basel, Kingelbergstr. 82 4056 Basel Switzerland; Wang, Yanbin [Center for Advanced Radiation Sources, The University of Chicago, Chicago IL 60637 USA; Wolverton, Chris [Department of Materials Science and Engineering, Northwestern University, Evanston IL 60208 USA; Freedman, Danna E. [Department of Chemistry, Northwestern University, Evanston IL 60208 USA

    2016-09-26

    A new intermetallic compound, the first to be structurally identified in the Cu-Bi binary system, is reported. This compound is accessed by high-pressure reaction of the elements. Its detailed characterization, physical property measurements, and ab initio calculations are described. The commensurate crystal structure of Cu11Bi7 is a unique variation of the NiAs structure type. Temperature-dependent electrical resistivity and heat capacity measurements reveal a bulk superconducting transition at Tc=1.36 K. Density functional theory calculations further demonstrate that Cu11Bi7 can be stabilized (relative to decomposition into the elements) at high pressure and temperature. These results highlight the ability of high-pressure syntheses to allow for inroads into heretofore-undiscovered intermetallic systems for which no thermodynamically stable binaries are known.

  20. Discovery of a superconducting Cu-Bi intermetallic compound by high-pressure synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Clarke, Samantha M.; Walsh, James P.S.; Malliakas, Christos D.; Freedman, Danna E. [Northwestern Univ., Evanston, IL (United States). Dept. of Chemistry; Amsler, Maximilian; Wolverton, Chris [Northwestern Univ., Evanston, IL (United States). Dept. of Materials Science and Engineering; Yu, Tony; Wang, Yanbin [Chicago Univ., IL (United States). Center for Advanced Radiation Sources; Goedecker, Stefan [Basel Univ. (Switzerland). Dept. of Physics

    2016-10-17

    A new intermetallic compound, the first to be structurally identified in the Cu-Bi binary system, is reported. This compound is accessed by high-pressure reaction of the elements. Its detailed characterization, physical property measurements, and ab initio calculations are described. The commensurate crystal structure of Cu{sub 11}Bi{sub 7} is a unique variation of the NiAs structure type. Temperature-dependent electrical resistivity and heat capacity measurements reveal a bulk superconducting transition at T{sub c}=1.36 K. Density functional theory calculations further demonstrate that Cu{sub 11}Bi{sub 7} can be stabilized (relative to decomposition into the elements) at high pressure and temperature. These results highlight the ability of high-pressure syntheses to allow for inroads into heretofore-undiscovered intermetallic systems for which no thermodynamically stable binaries are known.

  1. Composites of Ti-Al Intermetallic Compounds With a Ductile Ti Matrix, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Many properties of intermetallic compounds (IMC's) would make them strong candidates for vehicle structures, tankage, secondary structures, and appendages for NASA...

  2. NMR and domain wall mobility in intermetallic compounds

    International Nuclear Information System (INIS)

    Guimaraes, A.P.; Sampaio, L.C.; Cunha, S.F.; Alves, K.M.B.

    1991-01-01

    The technique of pulsed NMR can be used to study the distribution of hyperfine fields in a magnetic matrix. The dynamics of the domain walls are relevant to the generation of NMR signals. In the present study on the (R x Y 1-x ) Fe 2 intermetallic compounds, the reduction in the signals is associated to increased propagation fields. This indicates that a smaller domain wall mobility is at the origin of these effects. NMR spectra in this system show the importance of direct and indirect (i.e., mediated by Fe atoms) terms in the transferred hyperfine field. (author)

  3. Structural and Electronic Investigations of Complex Intermetallic Compounds

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Hyunjin [Iowa State Univ., Ames, IA (United States)

    2008-01-01

    In solid state chemistry, numerous investigations have been attempted to address the relationships between chemical structure and physical properties. Such questions include: (1) How can we understand the driving forces of the atomic arrangements in complex solids that exhibit interesting chemical and physical properties? (2) How do different elements distribute themselves in a solid-state structure? (3) Can we develop a chemical understanding to predict the effects of valence electron concentration on the structures and magnetic ordering of systems by both experimental and theoretical means? Although these issues are relevant to various compound classes, intermetallic compounds are especially interesting and well suited for a joint experimental and theoretical effort. For intermetallic compounds, the questions listed above are difficult to answer since many of the constituent atoms simply do not crystallize in the same manner as in their separate, elemental structures. Also, theoretical studies suggest that the energy differences between various structural alternatives are small. For example, Al and Ga both belong in the same group on the Periodic Table of Elements and share many similar chemical properties. Al crystallizes in the fcc lattice with 4 atoms per unit cell and Ga crystallizes in an orthorhombic unit cell lattice with 8 atoms per unit cell, which are both fairly simple structures (Figure 1). However, when combined with Mn, which itself has a very complex cubic crystal structure with 58 atoms per unit cell, the resulting intermetallic compounds crystallize in a completely different fashion. At the 1:1 stoichiometry, MnAl forms a very simple tetragonal lattice with two atoms per primitive unit cell, while MnGa crystallizes in a complicated rhombohedral unit cell with 26 atoms within the primitive unit cell. The mechanisms influencing the arrangements of atoms in numerous crystal structures have been studied theoretically by calculating electronic

  4. Diffusion in intermetallic compounds studied using short-lived radioisotopes

    CERN Multimedia

    Diffusion – the long range movement of atoms – plays an important role in materials processing and in determining suitable applications for materials. Conventional radiotracer methods for measuring diffusion can determine readily how distributions of radioactive probe atoms in samples evolve under varying experimental conditions. It is possible to obtain limited information about atomic jump rates and pathways from these measurements; however, it is desirable to make more direct observations of the atomic jumps by using experimental methods that are sensitive to atomic scale processes. One such method is time-differential perturbed $\\gamma$–$\\gamma$-angular correlation spectroscopy (PAC). Two series of PAC experiments using $^{111m}$Cd are proposed to contribute to fundamental understanding of diffusion in intermetallic compounds. The goal of the first is to determine the dominant vacancy species in several Li$_{2}$-structured compounds and see if the previously observed change in diffusion mechanism th...

  5. A spin echo study of A15 intermetallic compounds

    International Nuclear Information System (INIS)

    Schoep, G.K.

    1976-01-01

    This thesis mainly concerns the measurement of spin-lattice relaxation times in intermetallic compounds of the bcc lattice structure, having the formula V 3 X (C = Pt, Ir, Os, Pd, Rh, Ni, Co, Au). When, in a spin echo experiment, a two-pulse sequence was applied, several quadrupolar echoes were observed. Special attention is given to the 'forbidden' echoes (absol.(Δm')GT1) in V 3 Au and V 3 Co. In relation to the V 3 X compounds, several characteristics are discussed including temperature dependence and concentration dependence of spin relaxation times, superconductivity and the importance of d-state electrons in determination of the spin relaxation times. Finally, the above characteristics were determined for 6 different samples of the vanadium-gold alloy, V 3 Au, specifically

  6. Electronic Structure of GdCuGe Intermetallic Compound

    Science.gov (United States)

    Lukoyanov, A. V.; Knyazev, Yu. V.; Kuz'min, Yu. I.

    2018-04-01

    The electronic structure of GdCuGe intermetallic compound has been studied. Spin-polarized energy spectrum calculations have been performed by the band method with allowance for strong electron correlations in the 4 f-shell of gadolinium ions. Antiferromagnetic ordering of GdCuGe at low temperatures has been obtained in a theoretical calculation, with the value of the effective magnetic moment of gadolinium ions reproduced in fair agreement with experimental data. The electronic density of states has been analyzed. An optical conductivity spectrum has been calculated for GdCuGe; it reveals specific features that are analogous to the ones discovered previously in the GdCuSi compound with a similar hexagonal structure.

  7. Investigation Of Intermetallic Compounds In Sn-Cu-Ni Lead-Free Solders

    Directory of Open Access Journals (Sweden)

    Nagy E.

    2015-06-01

    Full Text Available Interfacial intermetallic compounds (IMC play an important role in Sn-Cu lead-free soldering. The size and morphology of the intermetallic compounds formed between the lead-free solder and the Cu substrate have a significant effect on the mechanical strength of the solder joint.

  8. Effect of Reflow Profile on Intermetallic Compound Formation

    International Nuclear Information System (INIS)

    Aisha, I Siti Rabiatull; Ourdjini, A; Hanim, M A Azmah; Azlina, O Saliza

    2013-01-01

    Reflow soldering in a nitrogen atmosphere is a common process consideration in surface mount technology assembly. This is because the use of nitrogen in reflow equipment may benefit the process as well as the quality of the end product, where it can increase the reliability of the solder joint. So far, many papers have reported effects of cooling speed, type of solder pastes and solder fluxes on the reliability of lead-free solder joints. While the effects of reflow conditions on intermetallic compound (IMC) formation at the solder joint such as the atmosphere during the reflow process are still unclear. The present study investigated thoroughly the effect of different reflow soldering atmosphere, which is air and nitrogen on IMC formation and growth. Several techniques of materials characterization including optical, image analysis, scanning electron microscopy and energy dispersive X-ray analysis will be used to characterise the intermetallics in terms of composition, thickness and morphology. In addition, the effects of cooling rate and isothermal aging were also studied for the solder alloy Sn–4Ag–0.5Cu on electroless nickel/immersion gold (ENIG) surface finish. From the study, it was found that reflowing under nitrogen atmosphere had better effect on IMC formation and growth compared to reflowing under air. Besides, the cooling rate of solder during reflow also appears to have a significant effect on the final structure of the solder joint, and controlling the growth behaviour of the IMC during subsequent isothermal aging.

  9. Ethylene hydrogenation over catalysts formed by oxidation of intermetallic compounds

    International Nuclear Information System (INIS)

    Imamura, H.; Wallace, W.E.

    1980-01-01

    The intermetallic compounds (LaNi 5 , CeNi 5 , PrNi 5 , ThNi 5 , ThFe 5 , and ThCo 5 ) readily react with oxygen. Examination of the oxidized materials by using x-ray diffraction showed that they consisted of a mixture of transition metal and rare earth oxide (or ThO 2 ). The transition metals exhibited particle sizes ranging from 90 to 350A, as estimated by x-ray diffraction line broadening. These mixtures exhibited high catalytic activity for the hydrogenation of ethylene compared to oxide-supported catalysts prepared by the conventional impregnation method, with turnover frequencies higher for the former materials by an order of magnitude. The oxidation process is a novel means of producing very active supported catalysts

  10. Effect of Flux onto Intermetallic Compound Formation and Growth

    Directory of Open Access Journals (Sweden)

    Idris Siti Rabiatull Aisha

    2016-01-01

    Full Text Available In this study, the effect of different composition of no-clean flux onto intermetallic compound (IMC formation and growth was investigated. The solder joint between Sn-3Ag-0.5Cu solder alloy and printed circuit board (PCB was made through reflow soldering. They were further aged at 125°C and 150°C for up to 1000 hours. Results showed that fluxes significantly affect the IMC thickness and growth. In addition, during aging, the scallop and columnar morphology of IMC changed to a more planar type for both type of flux during isothermal aging. It was observed that the growth behavior of IMC was closely related to initial soldering condition.

  11. Effects of elastic anisotropy on mechanical behavior of intermetallic compounds

    International Nuclear Information System (INIS)

    Yoo, M.H.

    1991-01-01

    Fundamental aspects of the deformation and fracture behavior of ordered intermetallic compounds are examined within the framework of linear anisotropic elasticity theory of dislocations and cracks. The orientation dependence and the tension/compression asymmetry of yield stress are explained in terms of the anisotropic coupling effect of non-glide stresses to the glide strain. The anomalous yield behavior is related to the disparity (edge/screw) of dislocation mobility and the critical stress required for the dislocation multiplication mechanism of Frank-Read type. The slip-twin conjugate relationship, extensive faulting, and pseudo-twinning (martensitic transformation) at a crack tip can be enhanced also by the anisotropic coupling effect, which may lead to transformation toughening of shear type

  12. Ultra-high vacuum compatible preparation chain for intermetallic compounds.

    Science.gov (United States)

    Bauer, A; Benka, G; Regnat, A; Franz, C; Pfleiderer, C

    2016-11-01

    We report the development of a versatile material preparation chain for intermetallic compounds, which focuses on the realization of a high-purity growth environment. The preparation chain comprises an argon glovebox, an inductively heated horizontal cold boat furnace, an arc melting furnace, an inductively heated rod casting furnace, an optically heated floating-zone furnace, a resistively heated annealing furnace, and an inductively heated annealing furnace. The cold boat furnace and the arc melting furnace may be loaded from the glovebox by means of a load-lock permitting to synthesize compounds starting with air-sensitive elements while handling the constituents exclusively in an inert gas atmosphere. All furnaces are all-metal sealed, bakeable, and may be pumped to ultra-high vacuum. We find that the latter represents an important prerequisite for handling compounds with high vapor pressure under high-purity argon atmosphere. We illustrate the operational aspects of the preparation chain in terms of the single-crystal growth of the heavy-fermion compound CeNi 2 Ge 2 .

  13. Microstructural characterization of the intermetallic compound Al7Cu4Ni

    International Nuclear Information System (INIS)

    Herrera, R.; Soriano, O.; Dorantes, H. J.; Lopez, V. M.

    2004-01-01

    A study of the microstructural characterization of the intermetallic compound Al 7 Cu 4 Ni was carried out. The intermetallic compound was fabricated using the melting and casting process followed by a homogenization treatment at 750 degree centigrade for 240 h. The structural evolution during homogenizing was analyzed by X-ray diffraction. The microstructure of intermetallic compound was also characterized by scanning electron and transmission electron microscopes. Additionally, the micro homogeneity of this compound was studied by the Energy Dispersive and Wavelength Dispersive Spectroscopy. The results of this work showed that it was possible to obtain the intermetallic compound with the crystalline structure and at the composition reported in the literature. Besides, this compound showed a good chemical micro homogeneity, which makes it a possible candidate as a material reference for either microanalysis or hardness testing. (Author) 12 refs

  14. Properties of vacancies type defects in intermetallic compounds of the Al-Mo system

    International Nuclear Information System (INIS)

    Pascuet, M.I; Fernandez, J.R; Monti, A.M

    2006-01-01

    There are five intermetallic compounds in the Al-Mo system that are stable at low temperatures. Of these, the richest phases in some of the two components are the compounds Al 12 Mo and AlMo 3 , whose Pearson symbols are cI26 and cP8, respectively. In both structures, the atoms of the minority component occupy positions bcc and each one of them is surrounded by 12 atoms first neighbors of the other component. These 13 atoms form icosahedron shaped units or heaps. Unlike what occurs in Al 12 Mo, the AlMo 3 heaps are superposed by sharing atoms from the majority component. The neighboring environment of the majority component is mixed but differs considerably in one or another intermetallic. In each structure, the sites occupied by any given species are crystallographically equivalent, that is, they can self generate from one of the positions and from the crystalline structure's elements of symmetry. This work studies the energy of vacancies and antisites in both compounds and the atomic-jump processes to vacant sites. Computer simulation techniques were used based on minimizing the system's energy. Many-body embedded-atom potentials were used to represent the atomic interactions. The potential mixture used resulted in an adjustment to the crystalline structure of the AlMo 3 phase at low temperatures and to its formation energy (cw)

  15. Synthesis of Be–Ti–V ternary beryllium intermetallic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae-Hwan, E-mail: kim.jaehwan@jaea.go.jp; Nakamichi, Masaru

    2015-08-15

    Highlights: • Preliminary synthesis of ternary Be–Ti–V beryllides was investigated. • An area fraction of Be phase increased with increase of V amount in the beryllide because of increasing melting temperature. • The increase of Be phase fraction resulted in increase of weight gain as well as H{sub 2} generation. • The beryllides with lower V contents indicated to better phase stability at high temperature. - Abstract: Beryllium intermetallic compounds (beryllides) such as Be{sub 12}Ti and Be{sub 12}V are the most promising advanced neutron multipliers in demonstration power reactors. Advanced neutron multipliers are being developed by Japan and the EU as part of their Broader Approach activities. It has been previously shown, however, that beryllides are too brittle to fabricate into pebble- or rod-like shapes using conventional methods such as arc melting and hot isostatic pressing. To overcome this issue, we developed a new combined plasma sintering and rotating electrode method for the fabrication of beryllide rods and pebbles. Previously, we prepared a beryllide pebble with a Be–7.7 at.% Ti composition as the stoichiometric value of the Be{sub 12}Ti phase; however, Be{sub 17}Ti{sub 2} and Be phases were present along with the Be{sub 12}Ti phase that formed as the result of a peritectic reaction due to re-melting during granulation using the rotating electrode method. This Be phase was found to be highly reactive with oxygen and water vapor. Accordingly, to investigate the Be phase reduction and applicability for fabrication of electrodes prior to granulation using the rotating electrode method, Be–Ti–V ternary beryllides were synthesized using the plasma sintering method. Surface observation results indicated that increasing plasma sintering time and V addition led to an increase in the intermetallic compound phases compared with plasma-sintered beryllide with a Be–7.7 at.% Ti composition. Additionally, evaluation of the reactivity of

  16. Safety handling procedures of beryllium intermetallic compound on fusion blanket study

    International Nuclear Information System (INIS)

    Shibayama, Tamaki; Nakamichi, Masaru; Miyamoto, Mitsutaka; Kuga, Noriyoshi; Dorn, Christopher K.; Knudson, Theodore L.

    2011-01-01

    Beryllium generates neutrons through (n, 2n) reaction; therefore, it is the essential functional material in the nuclear engineering as neutron multiplier. In thermonuclear reactors, it is the important candidate for plasma-facing materials. In recent years, the development of Beryllium intermetallic compounds with improved thermal properties and safety in handling has made considerable progress especially in Japan. In the present review, the state-of-the-art studies on Beryllium intermetallic compounds are introduced. (J.P.N.)

  17. Dynamic recrystallization in TiAl and Ti3Al intermetallic compounds

    International Nuclear Information System (INIS)

    Salishchev, G.A.; Imayev, R.M.; Imayev, V.M.; Gabdullin, N.K.

    1993-01-01

    The mechanical behaviour and microstructure evolution during hot deformation were investigated in TiAl and Ti 3 Al intermetallic compounds. The features of development of dynamic recrystallization in the both titanium aluminides were established. It is shown that we can use the dynamic recrystallization to obtain the micro- ( anti d∼1 μm) and submicrocrystalline ( anti d∼0,1 μm) structures in the TiAl and Ti 3 Al intermetallic compounds. (orig.)

  18. Dendrite Growth Kinetics in Undercooled Melts of Intermetallic Compounds

    Directory of Open Access Journals (Sweden)

    Dieter M. Herlach

    2015-09-01

    Full Text Available Solidification needs an undercooling to drive the solidification front. If large undercoolings are achieved, metastable solid materials are solidified from the undercooled melt. Containerless processing provides the conditions to achieve large undercoolings since heterogeneous nucleation on container walls is completely avoided. In the present contribution both electromagnetic and electrostatic levitation are applied. The velocity of rapidly advancing dendrites is measured as a function of undercooling by a High-Speed-Camera. The dendrite growth dynamics is investigated in undercooled melts of intermetallic compounds. The Al50Ni50 alloy is studied with respect to disorder trapping that leads to a disordered superlattice structure if the melt is undercooled beyond a critical undercooling. Disorder trapping is evidenced by in situ energy dispersive diffraction using synchrotron radiation of high intensity to record full diffraction pattern on levitated samples within a short time interval. Experiments on Ni2B using different processing techniques of varying the level of convection reveal convection-induced faceting of rapidly growing dendrites. Eventually, the growth velocity is measured in an undercooled melt of glass forming Cu50Zr50 alloy. A maximum in the growth velocity–undercooling relation is proved. This is understood by the fact that the temperature dependent diffusion coefficient counteracts the thermodynamic driving force for rapid growth if the temperature of the undercooled melt is approaching the temperature regime above the glass transition temperature. The analysis of this result allows for determining the activation energy of atomic attachment kinetics at the solid–liquid interface that is comparable to the activation energy of atomic diffusion as determined by independent measurements of the atomic diffusion in undercooled Cu50Zr50 alloy melt.

  19. Large positive magnetoresistance in intermetallic compound NdCo2Si2

    Science.gov (United States)

    Roy Chowdhury, R.; Dhara, S.; Das, I.; Bandyopadhyay, B.; Rawat, R.

    2018-04-01

    The magnetic, magneto-transport and magnetocaloric properties of antiferromagnetic intermetallic compound NdCo2Si2 (TN = 32K) have been studied. The compound yields a positive magnetoresistance (MR) of about ∼ 123 % at ∼ 5K in 8 T magnetic field. The MR value is significantly large vis - a - vis earlier reports of large MR in intermetallic compounds, and possibly associated with the changes in magnetic structure of the compound. The large MR value can be explained in terms of field induced pseudo-gaps on Fermi surface.

  20. The influence of pressure on diffusion leading to intermetallic compounds

    International Nuclear Information System (INIS)

    Adda, Y.; Beyeler, M.; Kirianenko, A.; Pernot, B.

    1961-01-01

    Some investigators A.D. LE CLAIRE, J.L. ZAMBROW, L. CASTLEMAN, have shown that the application of uniaxial pressure parallel to the direction of diffusion may notably modify the kinetics of growth of the intermediate phases which can be formed in this direction. The interpretation of this phenomenon being obscure, an attempt is made to explain it by detailed analysis of the experimental facts. The microscopic studies of the kinetics of growth of the zones formed shows particularly in the couples Uranium-Copper and Uranium-Nickel that it is influenced in a similar manner by a uniaxial pressure and a hydrostatic one. On the other hand the rate of growth of these zones increases as a function of the applied pressure in the systems Uranium-Copper, Uranium-Nickel and Uranium-Aluminium (this effect being particularly marked in Uranium-Aluminium). To determine with precision the limits of the range of stability of the intermetallic compounds, the curves of concentration penetration characteristics of the diffusion have been established by means of the CASTAING electronic microanalyser. The examination of the results indicates that when diffusion takes place without external pressure (couples U-Cu and U-Ni) or with a pressure less than 300 kg/cm 2 (couple U-Al) the concentration varies notably in the compounds obtained, which theoretically are stoichiometric. Thus, when crossing the zone of diffusion of one base metal to another one notes a continual passage of: UCu 4.70 to UCu 5.25 in the couple U-Cu; UNi 4.75 to UNi 5.25 in the couple U-Ni; UAl 2.2 to UAl 3.3 in the couple U-Al. If an uniaxial or hydrostatic pressure above 500 kg/cm 2 is applied to the couples U-Cu and U-Ni, or above 1000 kg/cm 2 for the couple U-Al, the composition is then constant in the zones formed. It corresponds to: UCu 5 in the couple U-Cu; UNi 5 in the couple U-Ni; UAl 3 in the couple U-Al. These results are confirmed by an X-ray diffraction study, mainly in the U-Cu system. Experiments in

  1. X-Ray Diffraction of Intermetallic Compounds: A Physical Chemistry Laboratory Experiment

    Science.gov (United States)

    Varberg, Thomas D.; Skakuj, Kacper

    2015-01-01

    Here we describe an experiment for the undergraduate physical chemistry laboratory in which students synthesize the intermetallic compounds AlNi and AlNi3 and study them by X-ray diffractometry. The compounds are synthesized in a simple one-step reaction occurring in the solid state. Powder X-ray diffractograms are recorded for the two compounds…

  2. Characterization of intermetallic compounds in Cu-Al ball bonds: layer growth, mechanical properties and oxidation

    NARCIS (Netherlands)

    Kouters, M.H.M.; Gubbels, G.H.M.; O'Halloran, O.; Rongen, R.

    2011-01-01

    In high power automotive electronics copper wire bonding is regarded as most promising alternative for gold wire bonding in 1 st level interconnects and therefore subjected to severe functional requirements. In the Cu-Al ball bond interface the growth of intermetallic compounds may deteriorate the

  3. Pressure effect on magnetic and magnetotransport properties of intermetallic and colossal magnetoresistance oxide compounds

    Czech Academy of Sciences Publication Activity Database

    Arnold, Zdeněk; Ibarra, M. R.; Algarabel, P. A.; Marquina, C.; De Teresa, J. M.; Morellon, L.; Blasco, J.; Magen, C.; Prokhnenko, Olexandr; Kamarád, Jiří; Ritter, C.

    2005-01-01

    Roč. 17, - (2005), S3035-S3055 ISSN 0953-8984 Institutional research plan: CEZ:AV0Z10100521 Keywords : pressure effect * intermetallic compounds * magnetic properties * magnetic phase transitions * magnetotransport properties * oxides Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.145, year: 2005

  4. Synthesis, Characterization and Properties of Nanoparticles of Intermetallic Compounds

    Energy Technology Data Exchange (ETDEWEB)

    DiSalvo, Francis J. [Cornell Univ., Ithaca, NY (United States)

    2015-03-12

    The research program from 2010 to the end of the grant focused on understanding the factors important to the synthesis of single phase intermetallic nano-particles (NPs), their size, crystalline order, surface properties and electrochemical activity. The synthetic method developed is a co-reduction of mixtures of single metal precursors by strong, soluble reducing agents in a non-protic solvent, tetrahydrofuran (THF). With some exceptions, the particles obtained by room temperature reduction are random alloys that need to be annealed at modest temperatures (200 to 600 °C) in order to develop an ordered structure. To avoid significant particle size growth and agglomeration, the particles must be protected by surface coatings. We developed a novel method of coating the metal nanoparticles with KCl, a by-product of the reduction reaction if the proper reducing agents are employed. In that case, a composite product containing individual metal nanoparticles in a KCl matrix is obtained. The composite can be heated to at least 600 °C without significant agglomeration or growth in particle size. Washing the annealed product in the presence of catalyst supports in ethylene glycol removes the KCl and deposits the particles on the support. Six publications present the method and its application to producing and studying new catalyst/support combinations for fuel cell applications. Three publications concern the use of related methods to explore new lithium-sulfur battery concepts.

  5. Thermal Expansion of Ni3Al Intermetallic Compound: Experiment and Simulation

    International Nuclear Information System (INIS)

    Wang Hai-Peng; Lü Peng; Zhou Kai; Wei Bing-Bo

    2016-01-01

    The thermal expansion of Ni 3 Al intermetallic compound is determined by a thermal dilatometer and simulated by the molecular dynamics method. The results of the linear thermal expansion coefficients are presented from 200 K up to the maximum temperature of 1600 K. The single phase of Ni 3 Al intermetallic compound is confirmed by x-ray diffraction together with DSC melting and solidification peaks, from which the solidus and the liquidus temperatures are obtained to be 1660 and 1695 K, respectively. The measured linear thermal expansion coefficient increases from 1.5 × 10 −5 to 2.7 × 10 −5 K −1 in the experimental temperature range, in good agreement with the data obtained by the molecular dynamics simulation, just a slight difference from the temperature dependence coefficient. Furthermore, the atomic structure and position are presented to reveal the atom distribution change during thermal expansion of Ni 3 Al compound. (paper)

  6. Pressure effect on magnetic and magnetotransport properties of intermetallic and colossal magnetoresistance oxide compounds

    International Nuclear Information System (INIS)

    Arnold, Z; Ibarra, M R; Algarabel, P A; Marquina, C; Teresa, Jose MarIa de; Morellon, L; Blasco, J; Magen, C; Prokhnenko, O; Kamarad, J; Ritter, C

    2005-01-01

    The joint power of neutron diffraction and pressure techniques allows us to characterize under unique conditions the nature and different role of basic interactions in solids. We have covered a broad phenomenology in archetypical compounds: intermetallics and magnetic oxides. We have selected compounds in which the effect of moderate pressure is able to modify the electronic structure and bond angles that in turn are in the bases of magnetic and structural transitions. Complex magnetic and structural phase diagrams are reported for compounds with magnetic (Tb 1-X Y X Mn 2 ) and structural (RE 5 Si 4-X Ge X ) instabilities. Pressure-induced change of the magnetic structure in (R 2 Fe 17 ) intermetallics and the effect on the colossal magnetoresistance manganites are described

  7. Temperature effects in the valence fluctuation of europium intermetallic compounds

    International Nuclear Information System (INIS)

    Menezes, O.L.T. de; Troper, A.; Gomes, A.A.

    1978-03-01

    A previously reported model for valence fluctuations in europium compound in order to account for thermal occupation effect. Experimental results are critically discussed and new experiments are suggested

  8. Structure and properties of intermetallic ternary rare earth compounds

    Energy Technology Data Exchange (ETDEWEB)

    Casper, Frederick

    2008-12-17

    The so called material science is an always growing field in modern research. For the development of new materials not only the experimental characterization but also theoretical calculation of the electronic structure plays an important role. A class of compounds that has attracted a great deal of attention in recent years is known as REME compounds. These compounds are often referred to with RE designating rare earth, actinide or an element from group 1-4, M representing a late transition metal from groups 8-12, and E belonging to groups 13-15. There are more than 2000 compounds with 1:1:1 stoichiometry belonging to this class of compounds and they offer a broad variety of different structure types. Although many REME compounds are know to exist, mainly only structure and magnetism has been determined for these compounds. In particular, in the field of electronic and transport properties relatively few efforts have been made. The main focus in this study is on compounds crystallizing in MgAgAs and LiGaGe structure. Both structures can only be found among 18 valence electron compounds. The f electrons are localized and therefor not count as valence electrons. A special focus here was also on the magnetoresistance effects and spintronic properties found among the REME compounds. An examination of the following compounds was made: GdAuE (E=In,Cd,Mg), GdPdSb, GdNiSb, REAuSn (RE=Gd,Er,Tm) and RENiBi (RE=Pr,Sm,Gd-Tm,Lu). The experimental results were compared with theoretic band structure calculations. The first half metallic ferromagnet with LiGaGe structure (GdPdSb) was found. All semiconducting REME compounds with MgAgAs structure show giant magnetoresistance (GMR) at low temperatures. The GMR is related to a metal-insulator transition, and the value of the GMR depends on the value of the spin-orbit coupling. Inhomogeneous DyNiBi samples show a small positive MR at low temperature that depends on the amount of metallic impurities. At higher fields the samples show a

  9. Control of interfacial intermetallic compounds in Fe–Al joining by Zn addition

    Energy Technology Data Exchange (ETDEWEB)

    Yang, J. [Key Laboratory of Robot and Welding Automation of Jiangxi Province, School of Mechanical and Electrical Engineering, Nanchang University, Nanchang, Jiangxi 330031 (China); Center for Advanced Materials Joining, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1 (Canada); Li, Y.L., E-mail: liyulong1112ster@gmail.com [Key Laboratory of Robot and Welding Automation of Jiangxi Province, School of Mechanical and Electrical Engineering, Nanchang University, Nanchang, Jiangxi 330031 (China); Zhang, H. [Key Laboratory of Robot and Welding Automation of Jiangxi Province, School of Mechanical and Electrical Engineering, Nanchang University, Nanchang, Jiangxi 330031 (China); Guo, W. [Center for Advanced Materials Joining, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1 (Canada); School of Mechanical Engineering and Automation, Beijing University of Aeronautics and Astronautics, Beijing 100191 (China); Zhou, Y. [Center for Advanced Materials Joining, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1 (Canada)

    2015-10-01

    By Zn addition to the fusion zone, the interfacial intermetallic compounds (IMCs) of laser Al/steel joint changed from layered Fe{sub 2}Al{sub 5} and needle-like FeAl{sub 3} to layered Fe{sub 2}Al{sub 5−x}Zn{sub x} and dispersed FeZn{sub 10} with minor Al-rich amorphous phase. This resulted in an improvement in the joint strength and the change of failure mode.

  10. Highly stable carbon coated Mg2Si intermetallic nanoparticles for lithium-ion battery anode

    Science.gov (United States)

    Tamirat, Andebet Gedamu; Hou, Mengyan; Liu, Yao; Bin, Duan; Sun, Yunhe; Fan, Long; Wang, Yonggang; Xia, Yongyao

    2018-04-01

    Silicon is an ideal candidate anode material for Li-ion batteries (LIBs). However, it suffers from rapid capacity fading due to large volume expansion upon lithium insertion. Herein, we design and fabricate highly stable carbon coated porous Mg2Si intermetallic anode material using facile mechano-thermal technique followed by carbon coating using thermal vapour deposition (TVD), toluene as carbon source. The electrode exhibits an excellent first reversible capacity of 726 mAh g-1 at a rate of 100 mA g-1. More importantly, the electrode demonstrates high rate capability (380 mAh g-1 at high rate of 2 A g-1) as well as high cycle stability, with capacity retentions of 65% over 500 cycles. These improvements are attributable to both Mg supporting medium and the uniform carbon coating, which can effectively increase the conductivity and electronic contact of the active material and protects large volume alterations during the electrochemical cycling process.

  11. Magnetic anisotropy of Ho-Fe-Co-Cr intermetallic compounds

    International Nuclear Information System (INIS)

    Sheloudko, N.; Sarafidis, C.; Gjoka, M.; Efthimiadis, K.G.; Kalogirou, O.

    2009-01-01

    Starting with a Ho 3 (Fe 1-x Co x ) 29-y Cr y , (x,y) = (0.6,4.5) and (0.8,5.5) nominal stoichiometry, a disordered variant of the hexagonal 2:17 phase (Th 2 Ni 17 -type, S.G. P6 3 /mmc) occurs, since both the monoclinic 3:29 and the transition-metal-rich disordered Th 2 Ni 17 -type hexagonal compounds have the same rare earth to transition metal ratio, 1:9.7. The magnetic properties and the magnetocrystalline anisotropy of these compounds have been investigated. The anisotropy constant, K's, and the anisotropy field, μ 0 H A , values have been deduced from the magnetization curves measured on powder samples magnetically aligned in a rotating magnetic field. The compound with (x,y) = (0.8,5.5) shows a compensation point at about 55 K. The magnetic anisotropy of both compounds is that of easy-plane from room temperature to low temperatures down to 5 K.

  12. A new method to estimate the atomic volume of ternary intermetallic compounds

    International Nuclear Information System (INIS)

    Pani, M.; Merlo, F.

    2011-01-01

    The atomic volume of an A x B y C z ternary intermetallic compound can be calculated starting from volumes of some proper A-B, A-C and B-C binary phases. The three methods by Colinet, Muggianu and Kohler, originally used to estimate thermodynamic quantities, and a new method here proposed, were tested to derive volume data in eight systems containing 91 ternary phases with the known structure. The comparison between experimental and calculated volume values shows the best agreement both for the Kohler method and for the new proposed procedure. -- Graphical abstract: Synopsys: the volume of a ternary intermetallic compound can be calculated starting from volumes of some binary phases, selected by the methods of Colinet, Muggianu, Kohler and a new method proposed here. The so obtained values are compared with the experimental ones for eight ternary systems. Display Omitted Research highlights: → The application of some thermodinamic methods to a crystallochemical problem. → The prevision of the average atomic volume of ternary intermetallic phases. → The proposal of a new procedure to select the proper starting set of binary phases.

  13. Effects of Metallic Nanoparticles on Interfacial Intermetallic Compounds in Tin-Based Solders for Microelectronic Packaging

    Science.gov (United States)

    Haseeb, A. S. M. A.; Arafat, M. M.; Tay, S. L.; Leong, Y. M.

    2017-10-01

    Tin (Sn)-based solders have established themselves as the main alternative to the traditional lead (Pb)-based solders in many applications. However, the reliability of the Sn-based solders continues to be a concern. In order to make Sn-based solders microstructurally more stable and hence more reliable, researchers are showing great interest in investigating the effects of the incorporation of different nanoparticles into them. This paper gives an overview of the influence of metallic nanoparticles on the characteristics of interfacial intermetallic compounds (IMCs) in Sn-based solder joints on copper substrates during reflow and thermal aging. Nanocomposite solders were prepared by mechanically blending nanoparticles of nickel (Ni), cobalt (Co), zinc (Zn), molybdenum (Mo), manganese (Mn) and titanium (Ti) with Sn-3.8Ag-0.7Cu and Sn-3.5Ag solder pastes. The composite solders were then reflowed and their wetting characteristics and interfacial microstructural evolution were investigated. Through the paste mixing route, Ni, Co, Zn and Mo nanoparticles alter the morphology and thickness of the IMCs in beneficial ways for the performance of solder joints. The thickness of Cu3Sn IMC is decreased with the addition of Ni, Co and Zn nanoparticles. The thickness of total IMC layer is decreased with the addition of Zn and Mo nanoparticles in the solder. The metallic nanoparticles can be divided into two groups. Ni, Co, and Zn nanoparticles undergo reactive dissolution during solder reflow, causing in situ alloying and therefore offering an alternative route of alloy additions to solders. Mo nanoparticles remain intact during reflow and impart their influence as discrete particles. Mechanisms of interactions between different types of metallic nanoparticles and solder are discussed.

  14. Fabrication and characterization of crushed titanium-beryllium intermetallic compounds

    Science.gov (United States)

    Kim, Jae-Hwan; Nakamichi, Masaru

    2018-01-01

    To develop a technique for the mass production of beryllide pebbles, a crushing method for the granulation of beryllides was used in this study. Two types of crushed Be12Ti pebbles were prepared using mortar-ground (MG) and planetary-ball-milled (PM) powders. A granulation yield of approximately 50 wt.% with sizes in the range of 0.85-1.18 mm was achieved. Scanning electron microscopy (SEM) images revealed that the MG pebbles exhibited larger porosity because the larger size of the powder resulted in lower density with higher porosity. However, the considerably larger fraction of fine pores in the PM pebbles resulted in an increased Brunauer-Emmett-Teller (BET) specific surface area, as clearly demonstrated by high-magnification SEM images. To evaluate the reactivity with water vapor, the weight gain and H2 generation rate were also investigated. The results suggested that the PM pebbles exhibited notably lower reactivity, weight gain, and H2 generation rate, which may be due to the dramatically decreased BET specific surface. The fine pores were filled with stable oxides followed by a significant decrease of the surface area during oxidation. Optimization was performed to improve the circularity of the crushed pebbles. Grinding tests using planetary milling without balls for different times clearly demonstrated that the circularity improved (with an estimated value of 0.8) by cutting and polishing the sharp edges; however, long-duration milling for 99 h resulted in attachment of the polished powders to the pebble surface, leading to surface color variation of the crushed pebbles.

  15. Synthesis of Xenon and Iron/Nickel intermetallic compounds at Earth's core thermodynamic conditions

    OpenAIRE

    Stavrou, Elissaios; Yao, Yansun; Goncharov, Alexander F.; Lobanov, Sergey; Zaug, Joseph M.; Liu, Hanyu; Greenberg, Eran; Prakapenka, Vitali B.

    2017-01-01

    Although Xe is known to form stable compounds with strong electronegative elements, evidence on the formation of stable compounds with electropositive elements, such as Fe and Ni, was missing until very recently. In addition to the significance of the emerging field of noble gas elements chemistry, the possible formation of Xe-Fe/Ni compounds has been proposed as a plausible explanation of the so-called "missing Xe paradox". Here we explore the possible formation of stable compounds in the Xe...

  16. Intermetallic nanoparticles

    Science.gov (United States)

    Singh, Dileep; Yusufoglu, Yusuf; Timofeeva, Elena; Routbort, Jules

    2015-07-14

    A process for preparing intermetallic nanoparticles of two or more metals is provided. In particular, the process includes the steps: a) dispersing nanoparticles of a first metal in a solvent to prepare a first metal solution, b) forming a reaction mixture with the first metal solution and a reducing agent, c) heating the reaction mixture to a reaction temperature; and d) adding a second metal solution containing a salt of a second metal to the reaction mixture. During this process, intermetallic nanoparticles, which contain a compound with the first and second metals are formed. The intermetallic nanoparticles with uniform size and a narrow size distribution is also provided. An electrochemical device such as a battery with the intermetallic nanoparticles is also provided.

  17. High hardness in the biocompatible intermetallic compound β-Ti3Au.

    Science.gov (United States)

    Svanidze, Eteri; Besara, Tiglet; Ozaydin, M Fevsi; Tiwary, Chandra Sekhar; Wang, Jiakui K; Radhakrishnan, Sruthi; Mani, Sendurai; Xin, Yan; Han, Ke; Liang, Hong; Siegrist, Theo; Ajayan, Pulickel M; Morosan, E

    2016-07-01

    The search for new hard materials is often challenging, but strongly motivated by the vast application potential such materials hold. Ti3Au exhibits high hardness values (about four times those of pure Ti and most steel alloys), reduced coefficient of friction and wear rates, and biocompatibility, all of which are optimal traits for orthopedic, dental, and prosthetic applications. In addition, the ability of this compound to adhere to ceramic parts can reduce both the weight and the cost of medical components. The fourfold increase in the hardness of Ti3Au compared to other Ti-Au alloys and compounds can be attributed to the elevated valence electron density, the reduced bond length, and the pseudogap formation. Understanding the origin of hardness in this intermetallic compound provides an avenue toward designing superior biocompatible, hard materials.

  18. Effects of surface polishing and annealing on the optical conductivity of intermetallic compounds

    CERN Document Server

    Rhee, J Y

    1999-01-01

    The optical conductivity spectra of several intermetallic compounds were measured by spectroscopic ellipsometry. Three spectra were measured for each compound; just after the sample was mechanically polished, at high temperature, and after the sample was annealed at 110 .deg. C for at least one day and cooled to room temperature. An equiatomic FeTi alloy showed the typical effects of annealing after mechanical polishing of surface. The spectrum after annealing had a larger magnitude and sharper structures than the spectrum before annealing. We also observed shifts of peaks in the spectrum. A relatively low-temperature annealing gave rise to unexpectedly substantial effects, and the effects were explained by recrystallization and/or a disorder -> order transition of the surface of the sample which was damaged and, hence, became highly disordered by mechanical polishing. Similar effects were also observed when the sample temperature was lowered. The observed changes upon annealing could partly be explained by p...

  19. Electronic structure of new MgCNi sub 3 superconductor and related intermetallic compounds

    CERN Document Server

    Shein, I R; Medvedeva, N I

    2001-01-01

    On the basis of self-congruent FP-LMTO method one investigated into band structure of a new MgCNi sub 3 perovskite-like superconductor. MgCNi sub 3 superconducting properties are linked with occurrence of density intensive peak of Ni3d-states near the Fermi level. Absence of superconductivity for MgC sub 1 sub - sub x Ni sub 3 nonstoichiometric compound is caused by system transition to magnetic state. One discussed possibilities to detect superconductivity for isostructural MgCNi sub 3 of ScBNi sub 3 , InBNi sub 3 , MgCCo sub 3 and MgCCu sub 3 intermetallic compounds

  20. Electrochemical preparation of Al–Sm intermetallic compound whisker in LiCl–KCl Eutectic Melts

    International Nuclear Information System (INIS)

    Ji, De−Bin; Yan, Yong−De; Zhang, Mi−Lin; Li, Xing; Jing, Xiao−Yan; Han, Wei; Xue, Yun; Zhang, Zhi−Jian; Hartmann, Thomas

    2015-01-01

    Highlights: • The reduction process of Sm(III) was investigated in LiCl–KCl melt on an aluminum electrode at 773 K. • Al–Sm alloy with different phase structure (Al 2 Sm and Al 3 Sm) was prepared by potentiostatic electrolysis on an aluminum electrode with the change of electrolytic potentials and time in LiCl–KCl–SmCl 3 melts. • Al − Sm alloy containing whiskers (Al 4 Sm) was obtained by potentiostatic electrolysis (−2.10 V) on an aluminum electrode for 7 hours with the change of electrolytic temperature and cooling rate in LiCl–KCl–SmCl 3 (16.5 wt. %) melts. The results from micro–hardness test and potentiodynamic polarization test show the micro hardness and corrosion property are remarkably improved with the help of Al–Sm intermetallic compound whiskers. - Abstract: This work presents the electrochemical study of Sm(III) on an aluminum electrode in LiCl–KCl melts at 773 K by different electrochemical methods. Three electrochemical signals in cyclic voltammetry, square wave voltammetry, open circuit chronopotentiometry, and cathode polarization curve are attributed to different kinds of Al–Sm intermetallic compounds, Al 2 Sm, Al 3 Sm, and Al 4 Sm, respectively. Al–Sm alloy with different phase structure (Al 2 Sm and Al 3 Sm) could be obtained by the potentiostatic electrolysis with the change of electrolytic potentials and time. Al–Sm alloy containing whiskers (Al 4 Sm) was obtained by potentiostatic electrolysis (−2.10 V) on an aluminum electrode for 7 hours with the change of electrolytic temperature and cooling rate in LiCl–KCl–SmCl 3 (16.5 wt. %) melts. The XRD and SEM&EDS were employed to investigate the phase composition and microstructure of Al–Sm alloy. SEM analysis shows that lots of needle−like precipitates formed in Al–Sm alloy, and their ratios of length to diameter are found to be greater than 10 to 1. The TEM and electron diffraction pattern were performed to investigate the crystal structure of the

  1. The Intermetallic Compound Formation for the Wire Bond Between an Al Pad and Ag-xPd Alloy Wire

    Science.gov (United States)

    Huang, Wei-Hsiang; Lin, Kwang-Lung; Lin, Yu-Wei; Cheng, Yun-Kai

    2016-12-01

    Silver-palladium alloy wire has been shown as an economical and reliable substitute for gold wire in various applications in the electronic packaging industry. The success of wire bonding relies on the formation of an interfacial intermetallic compound (IMC). This study is aimed to investigate the formation behavior of IMCs between an Al pad and Ag-Pd alloy wire with various Pd concentrations of 1.0-6.0% for the as-bonded commercial Ag/Al joint. The interfacial IMCs were investigated with scanning electron microscopy and energy-dispersive x-ray spectroscopy. The IMCs formed are separate (Ag, Pd)2Al and (Ag, Pd)3Al2 for a Ag6Pd wire bond, while (Ag, Pd)2Al and (Ag, Pd)3Al2 are mixed for the other Ag(1-4.5)Pd alloy wire bonds. The thickness of the total IMC layer varies from 0.65 μm for Ag1Pd to 0.91 μm for Ag6Pd, yet a minimum of 0.44 μm exists for Ag3.5Pd. The compound formation behavior was found to correspond with the Ag-Al phase diagram. After pressure cooker tests, a less stable IMC (Ag, Pd)3Al formed at the AgxPd/Al interface.

  2. Free energy of melts and intermetallic compounds of binary alloys determined by a molecular dynamics approach.

    Science.gov (United States)

    Guerdane, M

    2014-02-01

    We present an atomistic approach aimed at determining the free energy g(liq) of binary alloy liquids, a quantity which governs the thermodynamics of phase transformations and whose evaluation has long been a challenge to modeling methods. Our approach, illustrated here for a metallic system model NiZr, combines two methods: the quasiharmonic approximation, applied for some existing (real or hypothetical) intermetallic compounds, and the liquid-solid coexistence conditions. The underlying equations for g(liq) are solved by means of a subregular-solution approximation. We demonstrate the high reliability of our calculated free energies in determining the phase diagram of a binary system and describing quantitatively the growth kinetics. The latter issue is illustrated by linking molecular dynamics simulations to phase-field modeling with regard to directional solidification and melting in a two-phase system [Ni(x)Zr(1-x)](liq)-Zr(cryst) out of chemical equilibrium.

  3. Passivation characteristics of beta-FeAl intermetallic compound in sulphate solutions

    Energy Technology Data Exchange (ETDEWEB)

    Frangini, S.; De Cristofaro, N.; Lascovich, J.C.; Mignone, A. [ENEA, Casaccia (Italy). Dipt. Tecnologie Intersettoriali di Base

    1992-12-31

    The corrosion and passivation behaviour of a Fe-24 wt% Al intermetallic compound was studied in sulphate solutions using cyclic voltammetry and potentiodynamic curves, combined with x-ray photoelectron spectrocopy (XPS). The voltagrams performed in H{sub 2}SO{sub 4} 0.5M show the peak characteristics of the oxidation/reduction process of iron. The comparison of the anodic polarization curve of FeAI in acid solution with those of the pure elements shows the beneficial effect of Al when added to Fe in terms of both passive range and current. At higher pH (6.0 and 13.6), the FeAI passivates spontaneously. Preliminary studies of the passive film grown in air and anodically performed by XPS revealed the co-existence of iron and aluminium oxide, thus explaining the superior corrosion resistance of iron aluminides as compared with iron.

  4. Formation mechanism of pillar-shaped intermetallic compounds dispersed lead-free solder joint

    Science.gov (United States)

    Nakata, Y.; Hashimoto, T.; Kurasawa, M.; Hayashi, Y.; Shohji, I.

    2017-10-01

    Large area joining between a substrate and a heat sink is desirable for high performance power modules. An intermetallic compounds (IMCs) pillar dispersed solder joint has been developed as a highly durable joint to achieve large area joining. The aim of this study is to clarify the generation and growth mechanism of the IMC pillar during soldering process. The structural characteristic of the IMC pillar was also examined by cross-sectional observation. The area ratio of the IMC pillars in the cross section of the joint increased with increasing the joining temperature. The shape of the IMC pillar became finer when the cooling rate was fast. In addition, the IMC pillar grew along the cooling direction.

  5. The formation of intermetallic compounds during interdiffusion of Mg–Al/Mg–Ce diffusion couples

    International Nuclear Information System (INIS)

    Dai, Jiahong; Jiang, Bin; Li, Xin; Yang, Qingshan; Dong, Hanwu; Xia, Xiangsheng; Pan, Fusheng

    2015-01-01

    Graphical abstract: Al–Ce intermetallic compounds (IMCs) formed in Mg–Al/Mg–Ce diffusion couples. During the whole diffusion process, Al was the dominant diffusing species, and it substituted for Mg atoms of the Mg–Ce substrate. Five Al–Ce IMCs of Al 4 Ce, Al 11 Ce 3 , Al 3 Ce, Al 2 Ce, and AlCe were formed via the reaction of Al and Ce. - Highlights: • Al–Ce IMCs formation in the Mg–Al/Mg–Ce diffusion couples was studied. • Formation of Al 4 Ce as the first phase was rationalized using the Gibbs free energy. • The activation energy for the growth of the diffusion reaction zones was 36.6 kJ/mol. - Abstract: The formation of Al–Ce intermetallic compounds (IMCs) during interdiffusion of Mg–Al/Mg–Ce diffusion couples prepared by solid–liquid contact method was investigated at 623 K, 648 K and 673 K for 24 h, 48 h and 72 h, respectively. During the whole diffusion process, Al was the dominant diffusing species, and it substituted for Mg of the Mg–Ce substrate. Five Al–Ce IMCs of Al 4 Ce, Al 11 Ce 3 , Al 3 Ce, Al 2 Ce and AlCe were formed via the reaction of Al and Ce. The formation of Al 4 Ce as the first kind of IMC was rationalized on the basis of an effective Gibbs free energy model. The activation energy for the growth of the total diffusion reaction layer was 36.6 kJ/mol

  6. Magneto-caloric effect in the pseudo-binary intermetallic YPrFe{sub 17} compound

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez, Pablo [Departamento de Fisica, Universidad de Oviedo, Calvo Sotelo, s/n, 33007 Oviedo (Spain); Gorria, Pedro, E-mail: pgorria@uniovi.es [Departamento de Fisica, Universidad de Oviedo, Calvo Sotelo, s/n, 33007 Oviedo (Spain); Sanchez Llamazares, Jose L. [Division de Materiales Avanzados, Instituto Potosino de Investigacion Cientifica y Tecnologica, Camino a la presa San Jose 2055, CP 78216, San Luis Potosi (Mexico); Perez, Maria J. [Departamento de Fisica, Universidad de Oviedo, Calvo Sotelo, s/n, 33007 Oviedo (Spain); Franco, Victorino [Departamento de Fisica de la Materia Condensada, ICMSE-CSIC, Universidad de Sevilla, P.O. Box 1065, 41080 Sevilla (Spain); Reiffers, Marian; Kovac, Jozef [Institute of Experimental Physics, Watsonova 47, SK-04001 Kosice (Slovakia); Puente-Orench, Ines [Institute Laue Langevin, 6 rue Jules Horowitz, 38042 Grenoble (France); Blanco, Jesus A. [Departamento de Fisica, Universidad de Oviedo, Calvo Sotelo, s/n, 33007 Oviedo (Spain)

    2011-12-15

    Highlights: Black-Right-Pointing-Pointer YPrFe{sub 17} exhibits a broad {Delta}S{sub M}(T) associated with the ferro-to-paramagnetic phase transition (T{sub C} Almost-Equal-To 290 K). Black-Right-Pointing-Pointer We obtain |{Delta}S{sub M}| Almost-Equal-To 2.3 J kg{sup -1} K{sup -1} and RCP Almost-Equal-To 100 J kg{sup -1}for a magnetic field change of 1.5 T. Black-Right-Pointing-Pointer A single master curve for {Delta}S{sub M} is found when compared with other isostructural R{sub 2}Fe{sub 17} binary alloys. - Abstract: We have synthesized the intermetallic YPrFe{sub 17} compound by arc-melting. X-ray and neutron powder diffraction show that the crystal structure is rhombohedral with R3{sup Macron }m space group (Th{sub 2}Zn{sub 17}-type). The investigated compound exhibits a broad isothermal magnetic entropy change {Delta}S{sub M}(T) associated with the ferro-to-paramagnetic phase transition (T{sub C} Almost-Equal-To 290 K). The |{Delta}S{sub M}| ( Almost-Equal-To 2.3 J kg{sup -1} K{sup -1}) and the relative cooling power ( Almost-Equal-To 100 J kg{sup -1}) have been calculated for applied magnetic field changes up to 1.5 T. A single master curve for {Delta}S{sub M} under different values of the magnetic field change can be obtained by a rescaling of the temperature axis. The results are compared and discussed in terms of the magneto-caloric effect in the isostructural R{sub 2}Fe{sub 17} (R = Y, Pr and Nd) binary intermetallic alloys.

  7. NMR measurements in milled GdCo2 and GdFe2 intermetallic compounds

    International Nuclear Information System (INIS)

    Tribuzy, C.V.B.; Guimaraes, A.P.; Biondo, A.; Larica, C.; Alves, K.M.B.

    1998-12-01

    We have used the nuclear magnetic resonance technique to study the magnetic and structural properties of the Gd-Co and Gd-Fe metallic systems, starting with the C15 laves phase intermetallic compounds, and submitting them to a high energy milling process. This leads to the amorphization of the samples, as determined by the X-ray diffraction spectra. For the Gd-Co system the NMR study used the 59 Co nucleus; in the Gd-Fe system, 155,157 Gd and 57 Fe were used. Both systems showed segregation of the pure elements, after a few hours of milling. In the Gd-Co system, a single line, of increasing width, was observed in the 59 Co spectrum. In the Gd-Fe system, the 155 Gd and 157 Gd resonances show three lines, arising from electrical quadrupole interaction. With increasing milling time, the lines broaden, and extra lines appear attributed to a cubic phase of Gd; this interpretation is supported by the X-ray analysis of the samples. The 57 Fe NMR spectrum of this system also informs on the direction of magnetization of the samples in the early stages of milling. From 1 h to 7 h of milling, a spectrum of α-Fe was observed. The study of the NMR line intensity as a function of radio frequency (r.f.) power in Gd Co 2 suggests the existence of regions of the samples with different degrees of disorder. We have observed the persistence of NMR signals from the original intermetallic compounds in the samples with up to 10 h and 7 h of milling, respectively, for Gd Co 2 and Gd Fe 2 . (author)

  8. Thermal expansion and thermal diffusivity properties of Co-Si solid solutions and intermetallic compounds

    International Nuclear Information System (INIS)

    Ruan, Ying; Li, Liuhui; Gu, Qianqian; Zhou, Kai; Yan, Na; Wei, Bingbo

    2016-01-01

    Highlights: • Length change difference between rapidly and slowly solidified Co-Si alloy occurs at high temperature. • Generally CTE increases with an increasing Si content. • The thermal diffusion abilities are CoSi 2 > Co 95 Si 5 > Co 90 Si 10 > Co 2 Si > CoSi if T exceeds 565 K. • All the CTE and thermal diffusivity variations with T satisfy linear or polynomial relations. - Abstract: The thermal expansion of Co-Si solid solutions and intermetallic compounds was measured via dilatometric method, compared with the results of first-principles calculations, and their thermal diffusivities were investigated using laser flash method. The length changes of rapidly solidified Co-Si alloys are larger than those of slowly solidified alloys when temperature increases to around 1000 K due to the more competitive atom motion. The coefficient of thermal expansion (α) of Co-Si alloy increases with an increasing Si content, except that the coefficient of thermal expansion of Co 95 Si 5 influenced by both metastable structure and allotropic transformation is lower than that of Co 90 Si 10 at a higher temperature. The thermal expansion abilities of Co-Si intermetallic compounds satisfy the relationship of Co 2 Si > CoSi > CoSi 2 , and the differences of the coefficients of thermal expansion between them increase with the rise of temperature. The thermal diffusivity of CoSi 2 is evidently larger than the values of other Co-Si alloys. If temperature exceeds 565 K, their thermal diffusion abilities are CoSi 2 > Co 95 Si 5 > Co 90 Si 10 > Co 2 Si > CoSi. All the coefficient of thermal expansion and thermal diffusivity variations with temperature satisfy linear or polynomial relations.

  9. Void formation and its impact on Cu−Sn intermetallic compound formation

    International Nuclear Information System (INIS)

    Ross, Glenn; Vuorinen, Vesa; Paulasto-Kröckel, Mervi

    2016-01-01

    Void formation in the Cu−Sn system has been identified as a major reliability issue with small volume electronic interconnects. Voids form during the interdiffusion of electrochemically deposited Cu and Sn, with varying magnitude and density. Electroplating parameters include the electrolytic chemistry composition and the electroplating current density, all of which appear to effect the voiding characteristics of the Cu−Sn system. In addition, interfacial voiding affects the growth kinetics of the Cu 3 Sn and Cu 6 Sn 5 intermetallic compounds of the Cu−Sn system. The aim here is to present voiding data as a function of electroplating chemistry and current density over a duration (up to 72 h) of isothermal annealing at 423 K (150 °C). Voiding data includes the average interfacial void size and average void density. Voids sizes grew proportionally as a function of thermal annealing time, whereas the void density grew initially very quickly but tended to saturate at a fixed density. A morphological evolution analysis called the physicochemical approach is utilised to understand the processes that occur when a voided Cu/Cu 3 Sn interface causes changes to the IMC phase growth. The method is used to simulate the intermetallic thickness growths' response to interfacial voiding. The Cu/Cu 3 Sn interface acts as a Cu diffusion barrier disrupting the diffusion of Cu. This resulted in a reduction in the Cu 3 Sn thickness and an accelerated growth rate of Cu 6 Sn 5 . - Highlights: • Average void size is proportional linearly to thermal annealing time. • Average void density grows initially very rapidly followed by saturation. • Voids located close to the Cu/Cu 3 Sn interface affect IMC growth rates. • Voids act as a diffusion barrier inhibiting Cu diffusion towards Sn. • Voids located at the interface cause Cu 3 Sn to be consumed by Cu 6 Sn 5 .

  10. Atomistic simulation of radiation-induced amorphization of the B2 ordered intermetallic compound NiTi

    International Nuclear Information System (INIS)

    Sabochick, M.J.

    1990-12-01

    Amorphization of the B2 intermetallic compound NiTi under electron irradiation has been investigated using molecular dynamics. The effect of irradiation was simulated using two processes: (1) Ni and Ti atoms were exchanged, resulting in chemical disorder, and (2) Frenkel pairs were introduced, leading to the formation of stable point defects and also chemical disorder upon mutual recombination of interstitials and vacancies. After ∼0.4 exchanges per atom, the first process resulted in an energy increase of approximately 0.11 eV/atom and a volume increase of 1.91%. On the other hand, after introducing ∼0.5 Frenkel pairs per atom, the second process led to smaller increases of 0.092 eV/atom in energy and 1.43% in volume. The calculated radial distribution functions (RDFs) were essentially identical to each other and to the calculated RDF of a quenched liquid. The structure factor, however, showed that long-range order was still present after atom exchanges, while the introduction of Frenkel pairs resulted in the loss of long-range order. It was concluded that point defects are necessary for amorphization to occur in NiTi, although chemical disorder alone is capable of storing enough energy to make the transition possible. 18 refs., 3 figs

  11. Microstructural analyses of intermetallic TiAl(Nb)-compounds prepared by arc melting and by powder metallurgy

    International Nuclear Information System (INIS)

    Chen, S.

    1988-01-01

    Intermetallic compounds based on TiAl with Nb or V as alloying additions prepared by powder metallurgy (P/M) and arc melting (A/M) techniques have been investigated with respect to their potential as new high temperature materials. All the alloys with nominal Al-concentrations 34-36 wt% contain two phases, γ-TiAl and α 2 -Ti 3 Al, but significant differences in the distribution of γ and α 2 were found between the P/M and A/M materials. The role of impurities during processing and the microstructural stability in the planned service temperature range 700-1000 0 C are discussed. In the P/M TiAl alloys two carbide precipitates have been found, which are the cubic Perovskite-AlTi 3 C phase in the γ-matrix and the hexagonal H-AlTi 2 (C, N) phase at grain boundaries. At high temperatures the AlTi 3 C phase dissolves and is replaced by more stable H-phase, and therefore no longer contributes to the high temperature strength of the material. Mechanical properties of both the P/M and A/M alloys are compared in association with the processing methods and the resulting microstructures. (orig.) With 71 figs., 22 tabs [de

  12. Characterization and formation mechanism of nanocrystalline (Fe,Ti){sub 3}Al intermetallic compound prepared by mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Rafiei, M. [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Enayati, M.H. [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of)], E-mail: ena78@cc.iut.ac.ir; Karimzadeh, F. [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of)

    2009-07-08

    The nanocrystalline (Fe,Ti){sub 3}Al intermetallic compound was synthesized by mechanical alloying (MA) of elemental powder with composition Fe{sub 50}Al{sub 25}Ti{sub 25}. The structural changes of powder particles during mechanical alloying were studied by X-ray diffractometry and microhardness measurements. Morphology and cross-sectional microstructure of powder particles were characterized by scanning electron microscopy. It was found that a Fe/Al/Ti layered structure was formed at the early stages of milling followed by the formation of Fe(Ti,Al) solid solution. This structure transformed to (Fe,Ti){sub 3}Al intermetallic compound at longer milling times. Upon heat treatment of (Fe,Ti){sub 3}Al phase the degree of DO{sub 3} ordering was increased. The (Fe,Ti){sub 3}Al compound exhibited high microhardness value of about 1050 Hv.

  13. Theoretical study of elastic, mechanical and thermodynamic properties of MgRh intermetallic compound

    Directory of Open Access Journals (Sweden)

    S. Boucetta

    2014-03-01

    Full Text Available In the last years, Magnesium alloys are known to be of great technological importance and high scientific interest. In this work, density functional theory plane-wave pseudo potential method, with local density approximation (LDA and generalized gradient approximation (GGA are used to perform first-principles quantum mechanics calculations in order to investigate the structural, elastic and mechanical properties of the intermetallic compound MgRh with a CsCl-type structure. Comparison of the calculated equilibrium lattice constant and experimental data shows good agreement. The elastic constants were determined from a linear fit of the calculated stress–strain function according to Hooke's law. From the elastic constants, the bulk modulus B, shear modulus G, Young's modulus E, Poisson's ratio σ, anisotropy factor A and the ratio B/G for MgRh compound are obtained. The sound velocities and Debye temperature are also predicted from elastic constants. Finally, the linear response method has been used to calculate the thermodynamic properties. The temperature dependence of the enthalpy H, free energy F, entropy S, and heat capacity at constant volume Cv of MgRh crystal in a quasi-harmonic approximation have been obtained from phonon density of states and discussed for the first report. This is the first quantitative theoretical prediction of these properties.

  14. Calorimetric study of the intermetallic compounds UAl2 and PuAl2

    International Nuclear Information System (INIS)

    Trainor, R.J.; Brodsky, M.B.; Knapp, G.S.

    1975-01-01

    Results of low temperature specific heat measurements are presented on the strongly paramagnetic intermetallic compounds UAl 2 and PuAl 2 in the temperature intervals 0.9 to 20 0 K, respectively. These compounds are characterized by very narrow 5f bands near the Fermi energy. The low-temperature properties of UAl 2 and PuAl 2 are dominated by long lived spin fluctuations within these narrow bands. In UAl 2 a nearly field-independent T 3 logT contribution dominates the specific heat below 10 0 K, consistent with the predictions of ferromagnetic spin-fluctuation theory. The specific heat, static susceptibility, and electrical resistivity are mutually consistent with T/sub sf/ = 25 +- 10 0 K, where T/sub sf/ is the characteristic spin-fluctuation temperature of the system. Below 20 0 K, the specific heat of PuAl 2 contains a very large linear term, C greater than or approximately equal to 260T (mJ/mole- 0 K), which is approximately four times the magnitude of the measured susceptibility, when both quantities are expressed in the same units. The specific heat of PuAl 2 exhibits no anomalous behavior below 10 0 K, where a resistivity anomaly has been previously obser []ed. The properties of PuAl 2 are qualitatively discussed in terms of antiferromagnetic spin fluctuations. (auth)

  15. Influence of low Co substitution on magnetoelastic properties of HoFe11Ti intermetallic compound

    International Nuclear Information System (INIS)

    Motevalizadeh, L.; Tajabor, N.; Sanavi Khoshnoud, D.; Fruchart, D.; Pourarian, F.

    2012-01-01

    The thermal expansion and magnetostriction of HoFe 11−x Co x Ti (x=0, 0.3, 0.7 and 1) intermetallic compounds were measured, using the strain gauge method in the temperature range 77–590 K under applied magnetic fields up to 1.5 T. Results show that for samples with x=0 and 0.3, both linear thermal expansion and linear thermal expansion coefficient exhibit anomalies below the Curie temperature. Below room temperature, the spontaneous volume magnetostriction decreases with Co content. For all compounds studied, the anisotropic magnetostriction shows similar behaviour in the measured temperature range. The magnetostriction compensation occurs above room temperature in all samples. The volume magnetostriction shows a linear dependence on the applied field and by approaching the Curie temperature this trend changes to parastrictive behaviour. The results of the spontaneous magnetostriction are discussed based on the local magnetic moment model. The contribution of magnetostriction attributed to the magnetic sublattices R and T (Fe or Co) is discussed. - Highlights: ► Magnetostriction of HoFe 11−x Co x Ti have been measured by using strain gauge method. ► The measurement was carried in 77–590 K under applied magnetic fields up to 1.5 T. ► Spontaneous volume magnetostriction and Invar effect decrease with Co substitution. ► Ho sublattice has negative contribution to spontaneous volume magnetostriction. ► Absolute values of anisotropic magnetostriction decrease slightly with Co content.

  16. Competition between magnetism and superconductivity in Eu-based intermetallic compounds

    Science.gov (United States)

    Stavinoha, Macy; Green, Lance; Chan, Julia; Morosan, Emilia

    Eu-based intermetallic compounds present a path to discover new correlated electronic behavior in quantum materials. Reports of superconductivity, intermediate valence behavior, and heavy fermions indicate that Eu-based compounds are promising routes to study the relationship between crystallography and electronic properties. The present work is focused on EuGa4, an antiferromagnet with TN = 16 K isostructural with the tetragonal RT2M2 (R = rare earth, T = transition metal, M = metal or metalloid) family that exhibits heavy fermion behavior and unconventional superconductivity. Single crystals of the doped series (Eu1-xLax)Ga4, (Eu1-xCax)Ga4, and Eu(Ga1-xAlx)4 have been grown using the self-flux method and tested for change in unit cell volume and magnetic susceptibility. Results show that doping with Ca (isoelectronic doping) and La (hole doping) reduce TN to 12.4 K and 2.3 K, respectively, for Ca doping up to x = 0.11 and La doping up to x = 0.74 without an associated change in unit cell volume. The series Eu(Ga1-xAlx)4 has shown incommensurate-to-commensurate magnetic transitions. Future studies will aim to further decrease TN and the unit cell volume using physical pressure and chemical pressure through doping. ICAM, Gordon and Betty Moore Foundation.

  17. Density functional investigation on structural, elastic, thermal and mechanical properties of NiTi intermetallic compound

    Science.gov (United States)

    Pagare, Gitanjali

    2017-05-01

    Theoretical study of structural, elastic, mechanical and thermal properties of B2-type binary intermetallic NiTi is performed using full-potential linearized augmented plane wave (FP-LAPW) method. In this approach the generalized gradient approximation and local spin density approximation is used for exchange-correlation (XC) potential. We have calculated the ground state properties using PBE-GGA and LDA approximations respectively such as lattice constant (a0 = 3.0140 Å and 2.9439 Å), bulk modulus (B = 161.58 GPa and 191.92 GPa) and pressure derivative of bulk modulus (B‧ = 4.21 and 4.15) for NiTi. Our calculated lattice constants are in good agreement with the experimental data available. A special attention has been paid to the determination of the second order elastic constants. The second order elastic constants (C11 = 308.58 GPa, C12 = 87.97 GPa and C44 = 57.90 GPa) have been calculated using PBE-GGA at ambient condition. In addition Poisson’s ratio (σ), Young’s Modulus (E), Shear modulus (GH) and the ratio of anisotropy factor (A) are also reported. Ductility/brittleness of this compound is further analyzed by calculating the B/GH ratio and Cauchy pressure (C12-C44). The studied compound is found to be ductile in nature. Sound wave velocities with Debye Temperature (θD) are also investigated.

  18. Effects of surface polishing and annealing on the optical conductivity of intermetallic compounds

    International Nuclear Information System (INIS)

    Rhee, Joo Yull

    1999-01-01

    The optical conductivity spectra of several intermetallic compounds were measured by spectroscopic ellipsometry. Three spectra were measured for each compound; just after the sample was mechanically polished, at high temperature, and after the sample was annealed at 110 .deg. C for at least one day and cooled to room temperature. An equiatomic FeTi alloy showed the typical effects of annealing after mechanical polishing of surface. The spectrum after annealing had a larger magnitude and sharper structures than the spectrum before annealing. We also observed shifts of peaks in the spectrum. A relatively low-temperature annealing gave rise to unexpectedly substantial effects, and the effects were explained by recrystallization and/or a disorder → order transition of the surface of the sample which was damaged and, hence, became highly disordered by mechanical polishing. Similar effects were also observed when the sample temperature was lowered. The observed changes upon annealing could partly be explained by presumption that the recrystallization would be realized in such a way that the average atomic spacing would be reduced

  19. Synthesis and reactivity of single-phase Be{sub 17}Ti{sub 2} intermetallic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae-Hwan, E-mail: kim.jaehwan@jaea.go.jp [Breeding Functional Materials Development Group, Sector of Fusion Research and Development, Japan Atomic Energy Agency (Japan); Iwakiri, Hirotomo; Furugen, Tatsuaki [Faculty of Education Elementary and Secondary School Teacher Training Program, University of the Ryukyus, Okinawa (Japan); Nakamichi, Masaru [Breeding Functional Materials Development Group, Sector of Fusion Research and Development, Japan Atomic Energy Agency (Japan)

    2016-01-15

    Highlights: • Preliminary synthesis of single-phase Be{sub 17}Ti{sub 2} was succeeded. • Reactivity difference between beryllium and beryllides may be caused by a lattice strain. • Oxidation of Be{sub 17}Ti{sub 2} at high temperatures results in the formation of TiO{sub 2}. • Simulation results reveal that a stable site for hydrogen at the center of tetrahedron exists. - Abstract: To investigate feasibility for application of Be{sub 17}Ti{sub 2} as a neutron multiplier as well as a refractory material, single-phase Be{sub 17}Ti{sub 2} intermetallic compounds were synthesized using an annealing heat treatment of the starting powder and a plasma sintering method. Scanning electron microscopic observations and X-ray diffraction measurements reveal that the single-phase Be{sub 17}Ti{sub 2} compounds were successfully synthesized. We examined the reactivity of Be{sub 17}Ti{sub 2} with 1% H{sub 2}O and discovered that a larger stoichiometric amount of Ti resulted in the formation of TiO{sub 2} on the surface at high temperatures. This oxidation may also contribute to an increase in both weight gain and generation of H{sub 2}. This suggests that the formation of the Ti-depleted Be{sub 17}Ti{sub 2−x} layer as a result of oxidation facilitates an increased reactivity with H{sub 2}O. To evaluate the safety aspects of Be{sub 17}Ti{sub 2}, we also investigated the hydrogen positions and solution energies based on the first principle. The calculations reveal that there are 10 theoretical sites, where 9 of these sites have hydrogen solution energies with a positive value (endothermic) and 1 site located at the center of a tetrahedron comprising two Be and two Ti atoms gives a negative value (exothermic).

  20. Mictomagnetic, ferromagnetic, and antiferromagnetic transitions in La(FexAl1–x)13 intermetallic compounds

    NARCIS (Netherlands)

    Palstra, T.T.M.; Nieuwenhuys, G.J.; Mydosh, J.A.; Buschow, K.H.J.

    1985-01-01

    Cubic La(FexAl1–x)13 intermetallic compounds can be stabilized with iron concentration x between 0.46 and 0.92 in the NaZn13-type structure (D23) with Fm3c (Oh6) space-group symmetry. Here the Fe-Fe coordination number can increase up to 12. At low x values, a mictomagnetic regime occurs with

  1. First-principles screening of structural properties of intermetallic compounds on martensitic transformation

    Science.gov (United States)

    Lee, Joohwi; Ikeda, Yuji; Tanaka, Isao

    2017-11-01

    Martensitic transformation with good structural compatibility between parent and martensitic phases are required for shape memory alloys (SMAs) in terms of functional stability. In this study, first-principles-based materials screening is systematically performed to investigate the intermetallic compounds with the martensitic phases by focusing on energetic and dynamical stabilities as well as structural compatibility with the parent phase. The B2, D03, and L21 crystal structures are considered as the parent phases, and the 2H and 6M structures are considered as the martensitic phases. In total, 3384 binary and 3243 ternary alloys with stoichiometric composition ratios are investigated. It is found that 187 alloys survive after the screening. Some of the surviving alloys are constituted by the chemical elements already widely used in SMAs, but other various metallic elements are also found in the surviving alloys. The energetic stability of the surviving alloys is further analyzed by comparison with the data in Materials Project Database (MPD) to examine the alloys whose martensitic structures may cause further phase separation or transition to the other structures.

  2. Growth of intermetallic compounds in the Au–In system: Experimental study and 1-D modelling

    International Nuclear Information System (INIS)

    Deillon, L.; Hessler, T.; Hessler-Wyser, A.; Rappaz, M.

    2014-01-01

    The gold–indium system is of primary interest for bonding processes such as solid–liquid interdiffusion bonding. In order to optimize the manufacturing parameters, it is essential to know which intermetallic compounds (IMCs) are formed when solid Au and liquid In are brought into close contact with each other, and what are their growth kinetics. For this purpose, we fabricated diffusion couples above and below the melting point of In (for T=250 and 150 °C respectively). Three IMCs, identified as AuIn 2 , AuIn and Au 7 In 3 , are always observed in the reaction zone, even after short times. AuIn 2 is the thickest and fastest growing layer and AuIn is only present as a thin layer. Whereas AuIn 2 and AuIn exhibit an equiaxed structure, Au 7 In 3 is found to grow as columnar grains. The diffusion coefficients in each phase were determined by means of a 1-D finite difference modelling of In diffusion. The values are consistent and can be used to predict the growth rate as a function of temperature and time, i.e. to simulate a whole bonding process with finite thicknesses

  3. Oxidation behavior of plasma sintered beryllium–titanium intermetallic compounds as an advanced neutron multiplier

    International Nuclear Information System (INIS)

    Kim, Jae-Hwan; Nakamichi, Masaru

    2013-01-01

    Beryllium intermetallic compounds (beryllides) such as Be 12 Ti are very promising candidates for advanced neutron multiplier materials in a demonstration fusion power reactor (DEMO). However, beryllides are too brittle to be fabricated either into pebble-type or rod-type shapes via conventional methods (i.e. arc melting and hot isostatic pressing). We have proposed a plasma sintering technique as a new method for beryllide fabrication, and our studies on the properties of plasma sintered beryllides are ongoing. In the present work, the oxidation properties of plasma sintered beryllides were investigated at 1273 K for 24 h in a dry air atmosphere to evaluate the high temperature properties of this material. Thermal gravimetry measurements indicate that specimens with larger fractions of Be 12 Ti phase corresponding to samples that have been sintered for longer time periods, exhibit superior oxidation properties. Our evaluation of the oxidation behavior of each phase in our beryllide samples is as follows: Be 12 Ti and Be 17 Ti 2 both have good oxidation resistance, owing to the formation of dense and protective scales, while the Be and Be 2 Ti phases are mainly responsible for thermal-gravimetry (TG) weight gains, which is indicative of severe oxidation. We attribute the degradation in oxidation resistance specifically to Be 2 Ti that transforms into TiO 2 , and also find this phase to be the cause of deterioration in the mechanical properties of samples, owing to cracks near Be 2 Ti phase conglomerates

  4. Computer modeling of point defects and diffusion in ordered intermetallic compounds

    Science.gov (United States)

    Mishin, Y.

    2003-03-01

    This paper gives an overview of the recent progress in the understanding of diffusion mechanisms in ordered intermetallic compounds, particularly the structural aluminides TiAl and NiAl. The long-range order of the crystal structure imposes selection rules on possible diffusion mechanisms. It favors mechanisms that either do not affect the order or destroy it only locally and temporarily but recover it once the diffusion cycle is complete. Atomistic simulation tools for studying point defects and diffusion in ordered structures are discussed and their applications are demonstrated. The compositional disorder in TiAl is accommodated by antisite defects on both sides of the stoichiometry. Diffusion in TiAl involves sublattice vacancy jumps, inter-sublattice jumps, and three-jump vacancy cycles. NiAl contains antisites on the Al sublattice in Ni-rich compositions and constitutional vacancies on the Ni sublattice in Al-rich compositions. Diffusion in NiAl is governed by several mechanisms operating concurrently, including sublattice diffusion of Ni vacancies, six-jump vacancy cycles, and other processes. Many of the vacancy jumps are collective transitions involving two atoms. The dominant diffusion mechanism depends on the temperature and the degree of off-stoichiometry. The diffusion coefficients obtained by atomistic calculations compare well with experimental data.

  5. Improving of Corrosion Resistance of Aluminum Alloys by Removing Intermetallic Compound

    International Nuclear Information System (INIS)

    Seri, Osami

    2008-01-01

    It is well known that iron is one of the most common impurity elements sound in aluminum and its alloys. Iron in the aluminum forms an intermetallic compounds such as FeAl 3 . The FeAl 3 particles on the aluminum surface are one of the most detrimental phases to the corrosion process and anodizing procedure for aluminum and its alloys. Trial and error surface treatment will be carried out to find the preferential and effective removal of FeAl 3 particles on the surfaces without dissolution of aluminum matrix around the particles. One of the preferable surface treatments for the aim of getting FeAl 3 free surface was an electrochemical treatment such as cathodic current density of -2 kAm -2 in a 20-30 mass% HNO 3 solution for the period of 300s. The corrosion characteristics of aluminum surface with FeAl 3 free particles are examined in a 0.1 kmol/m 3 NaCl solution. It is found that aluminum with free FeAl 3 particles shows higher corrosion resistance than aluminum with FeAl 3 particles

  6. Controlling intermetallic compound formation reaction between Sn and Ni-P by Zn addition

    International Nuclear Information System (INIS)

    Zhang, X.F.; Guo, J.D.; Shang, J.K.

    2009-01-01

    Effects of Zn addition on the interfacial reaction between Sn and Ni(P) were investigated by systematically varying the Zn concentration in the Sn solder. It was found that the typical Ni-Sn reaction product, Ni 3 Sn 4 phase, was changed substantially by adding small amounts of Zn to the Sn. With the Zn addition, the ternary Ni 4 (Sn 1-x ,Zn x ) phase formed at the interface during reflow and aging according to X-ray diffraction analysis. In the Ni 4 (Sn 1-x ,Zn x ) phase, the lattice parameters contracted with increasing Zn content, in agreement with the Vegard's law. Since diffusions of the reactive species through the denser ternary intermetallic compound were more unlikely than through the binary Ni 3 Sn 4 , the Zn-containing solder showed a much slower electroless Ni-P consumption rate than Sn. The decrease in Ni consumption rate increased with the increasing Zn content in Sn. The reason for the decrease was that the growth rate of Ni 4 (Sn 1-x ,Zn x ) phase was directly determined by substitution of Zn atoms into the Sn sublattice.

  7. Structural-Phase Low-Stability States of BCC-Intermetallic Compounds with APB Complexes

    Science.gov (United States)

    Potekaev, A. I.; Chaplygina, A. A.; Chaplygin, P. A.; Starostenkov, M. D.; Kulagina, V. V.; Klopotov, A. A.

    2018-02-01

    Using a mono-nickel aluminide (NiAl) as an example, the influence of APB complexes (a pair of shear APBs along the direction and a pair of APBs along the direction) on the low-stability pre-transitional states of BCC-intermetallic compounds is investigated by the Monte Carlo method. It is shown that in the region of the low-stability states of this compound the formation energy of a complex of thermal APBs is higher than that of a complex of shear APBs. The contribution of APBs into disordering is essential up to the structural-phase transformation temperature. The most significant factor for the long-range ordering in the system is the appearance of a defect in the form of an APB itself, while the differences in the APB types and planes of their occurrence do not so essentially affect the long-range order behavior with the temperature variations. A system with structural defects is obviously less ordered compared to a defect-free system. The presence of a defect in the form of an APB promotes disordering of the system at lower temperatures: the degree of ordering starts to decrease in the case of thermal APBs at a lower temperature compared to the case of shear APBs. In the NiAl alloy with a complex of APBs, the first distortions of the structural order invariably appear near the Al-Al boundary. In the alloy with a complex of shear APBs, the distortions of the structural order are observed only in the regions where the boundaries cross. The presence of antiphase boundaries affects the alloy stability during heating. It is shown that the process of disordering is accompanied by smearing of the boundaries and their faceting.

  8. A study of atomic distribution in the intermetallic compound by AP-FIM

    International Nuclear Information System (INIS)

    Ren, D.G.

    1993-01-01

    This paper reports a study of the atomic distributions in the intermetallic compound by field ion microscope and atom probe (AP-FIM). The samples used in this work had nearly stoichiometry composition of Ni 3 Al with boron and without boron. The samples of TiAl also had nearly stoichiometry composition and adding Zr and Mn. The field ion image of Ni 3 Al without boron displays essentially the ordered f.c.c. crystal structure (Ll 2 ) with the center of (001) face. The field ion image of B-doped Ni 3 Al shows that the extent of ordering is reduced by addition of boron. The results of AP analysis show that the distribution of boron atom in Ni 3 Al is approximately homogeneous for the low boron contents. The atomic arrangements of Ni and Al in Ni 3 Al crystal lattice were changed by addition of boron. It is shown in the probability of consecutive evaporative sequence Al-Al and Ni-Ni is increased with B-doping. The field ion image of TiAl shows two regions with ordered f.c.t crystal structure (r-TiAl) and disordered. The distributions of Ti and Al atoms in the TiAl alloy show that the structure of a lamellar mixture were confirmed by AP profiles. The results of AP analysis show that distributions of Ti, Al, Mn and Zr in the alloy essentially is homogeneous. The results of AP analysis also exhibit that the interface of an oxide exists in the alloys. These interfaces of oxides consist of TiO and AlO in the TiAl, NiO in the Ni 3 Al. The broadness of the oxides interface were estimated about 8-10nm

  9. The atomic structure of low-index surfaces of the intermetallic compound InPd

    Energy Technology Data Exchange (ETDEWEB)

    McGuirk, G. M.; Ledieu, J.; Gaudry, É.; Weerd, M.-C.; Fournée, V. de, E-mail: vincent.fournee@univ-lorraine.fr [Institut Jean Lamour (UMR 7198 CNRS-Université de Lorraine), Parc de Saurupt, F-54011 Nancy Cedex (France); Hahne, M.; Gille, P. [Department of Earth and Environmental Sciences, Crystallography Section, Ludwig-Maximilians-Universität München, Theresienstrasse 41, D-80333 München (Germany); Ivarsson, D. C. A.; Armbrüster, M. [Faculty of Natural Sciences, Institute of Chemistry, Materials for Innovative Energy Concepts, Technische Universität Chemnitz, D-09107 Chemnitz (Germany); Ardini, J.; Held, G. [Department of Chemistry, University of Reading, Reading RG6 6AD (United Kingdom); Diamond Light Source Ltd, Didcot OX11 0DE (United Kingdom); Maccherozzi, F. [Diamond Light Source Ltd, Didcot OX11 0DE (United Kingdom); Bayer, A. [Lehrstuhl für Physikalische Chemie II, Universität Erlangen-Nürnberg, Egerlandstraße 3, D-91058 Erlangen (Germany); Lowe, M. [Surface Science Research Centre and Department of Physics, The University of Liverpool, Liverpool L69 3BX (United Kingdom); Pussi, K. [Department of Mathematics and Physics, Lappeenranta University of Technology, P.O. Box 20, FIN-53851 Lappeenranta (Finland); Diehl, R. D. [Department of Physics, Penn State University, University Park, Pennsylvania 16802 (United States)

    2015-08-21

    The intermetallic compound InPd (CsCl type of crystal structure with a broad compositional range) is considered as a candidate catalyst for the steam reforming of methanol. Single crystals of this phase have been grown to study the structure of its three low-index surfaces under ultra-high vacuum conditions, using low energy electron diffraction (LEED), X-ray photoemission spectroscopy (XPS), and scanning tunneling microscopy (STM). During surface preparation, preferential sputtering leads to a depletion of In within the top few layers for all three surfaces. The near-surface regions remain slightly Pd-rich until annealing to ∼580 K. A transition occurs between 580 and 660 K where In segregates towards the surface and the near-surface regions become slightly In-rich above ∼660 K. This transition is accompanied by a sharpening of LEED patterns and formation of flat step-terrace morphology, as observed by STM. Several superstructures have been identified for the different surfaces associated with this process. Annealing to higher temperatures (≥750 K) leads to faceting via thermal etching as shown for the (110) surface, with a bulk In composition close to the In-rich limit of the existence domain of the cubic phase. The Pd-rich InPd(111) is found to be consistent with a Pd-terminated bulk truncation model as shown by dynamical LEED analysis while, after annealing at higher temperature, the In-rich InPd(111) is consistent with an In-terminated bulk truncation, in agreement with density functional theory (DFT) calculations of the relative surface energies. More complex surface structures are observed for the (100) surface. Additionally, individual grains of a polycrystalline sample are characterized by micro-spot XPS and LEED as well as low-energy electron microscopy. Results from both individual grains and “global” measurements are interpreted based on comparison to our single crystals findings, DFT calculations and previous literature.

  10. Intermetallic compounds of Ni and Ga as catalysts for the synthesis of methanol

    DEFF Research Database (Denmark)

    Sharafutdinov, Irek; Elkjær, Christian Fink; de Carvalho, Hudson Wallace Pereira

    2014-01-01

    In this work, we present a detailed study of the formation of supported intermetallic Ni–Ga catalysts for CO2 hydrogenation to methanol. The bimetallic phase is formed during a temperature-programmed reduction of the metal nitrates. By utilizing a combination of characterization techniques......, in particular in situ and ex situ X-ray diffraction, in situ X-ray absorption spectroscopy, transmission electron microscopy combined with electron energy loss spectroscopy and X-ray fluorescence, we have studied the formation of intermetallic Ni–Ga catalysts of two compositions: NiGa and Ni5Ga3. These methods...... demonstrate that the catalysts with the desired intermetallic phase and composition are formed upon reduction in hydrogen and enable us to propose a mechanism of the Ni–Ga nanoparticles formation. By studying the effect of calcination prior to catalyst reduction, we show that the reactivity depends...

  11. Icosahedron oligomerization and condensation in intermetallic compounds. Bonding and electronic requirements.

    Science.gov (United States)

    Tillard-Charbonnel, M; Manteghetti, A; Belin, C

    2000-04-17

    Icosahedron-based clustering has been found to be very common in intermetallics, particularly for group 13 and early p-block icosogen elements. Linking of the icosahedral building blocks depends on the valence electron concentrations. Vertex-, edge-, or face-sharing icosahedra occur as the structure compensates for electron deficiency. Some examples of icosahedron-based clusters have been selected for an analysis of the relationships between the structural features (icosahedron oligomerization, atomic defects, etc.) and the bonding and electronic requirements. The extended Hückel method has been used with either a molecular approach or an electronic band structure calculation to rationalize bonding in the intermetallic framework.

  12. The effect of microstructures on mechanical behaviors of Ti2AlNb intermetallic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Liming; Yao, Mei; Zou, Dunxu; Zhu, Dong; Cai, Qigong (Harbin Institute of Technology, (China) Central Iron and Steel Research Institute, Beijing, (China))

    1992-03-01

    Ti2AlNb intermetallics are presently heat-treated and subjected to compressive loading at various temperatures, in order to ascertain microstructure-mechanical behavior relationships. Heat-treated and oil-quenched samples exhibit beta phase; the 'O' phase transformation was restrained by quenching. The O phase increased with rising heat-treatment temperature. 10 refs.

  13. Magnetic anisotropy in intermetallic compounds containing both uranium and 3d-metal

    Czech Academy of Sciences Publication Activity Database

    Andreev, Alexander V.; Tereshina, Evgeniya; Gorbunov, Denis; Šantavá, Eva; Šebek, Josef; Žáček, Martin; Homma, Y.; Shiokawa, Y.; Satoh, I.; Yamamura, Y.; Komatsubara, T.; Watanabe, K.; Koyama, K.

    2013-01-01

    Roč. 114, č. 9 (2013), s. 727-733 ISSN 0031-918X R&D Projects: GA ČR GAP204/12/0150 Institutional support: RVO:68378271 Keywords : uranium intermetallics * magnetic anisotropy * ferromagnetism Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.605, year: 2013

  14. Effects of metallic nanoparticle doped flux on the interfacial intermetallic compounds between lead-free solder ball and copper substrate

    International Nuclear Information System (INIS)

    Sujan, G.K.; Haseeb, A.S.M.A.; Afifi, A.B.M.

    2014-01-01

    Lead free solders currently in use are prone to develop thick interfacial intermetallic compound layers with rough morphology which are detrimental to the long term solder joint reliability. A novel method has been developed to control the morphology and growth of intermetallic compound layers between lead-free Sn–3.0Ag–0.5Cu solder ball and copper substrate by doping a water soluble flux with metallic nanoparticles. Four types of metallic nanoparticles (nickel, cobalt, molybdenum and titanium) were used to investigate their effects on the wetting behavior and interfacial microstructural evaluations after reflow. Nanoparticles were dispersed manually with a water soluble flux and the resulting nanoparticle doped flux was placed on copper substrate. Lead-free Sn–3.0Ag–0.5Cu solder balls of diameter 0.45 mm were placed on top of the flux and were reflowed at a peak temperature of 240 °C for 45 s. Angle of contact, wetting area and interfacial microstructure were studied by optical microscopy, field emission scanning electron microscopy and energy-dispersive X-ray spectroscopy. It was observed that the angle of contact increased and wetting area decreased with the addition of cobalt, molybdenum and titanium nanoparticles to flux. On the other hand, wettability improved with the addition of nickel nanoparticles. Cross-sectional micrographs revealed that both nickel and cobalt nanoparticle doping transformed the morphology of Cu 6 Sn 5 from a typical scallop type to a planer one and reduced the intermetallic compound thickness under optimum condition. These effects were suggested to be related to in-situ interfacial alloying at the interface during reflow. The minimum amount of nanoparticles required to produce the planer morphology was found to be 0.1 wt.% for both nickel and cobalt. Molybdenum and titanium nanoparticles neither appear to undergo alloying during reflow nor have any influence at the solder/substrate interfacial reaction. Thus, doping of flux

  15. Effects of metallic nanoparticle doped flux on the interfacial intermetallic compounds between lead-free solder ball and copper substrate

    Energy Technology Data Exchange (ETDEWEB)

    Sujan, G.K., E-mail: sgkumer@gmail.com; Haseeb, A.S.M.A., E-mail: haseeb@um.edu.my; Afifi, A.B.M., E-mail: amalina@um.edu.my

    2014-11-15

    Lead free solders currently in use are prone to develop thick interfacial intermetallic compound layers with rough morphology which are detrimental to the long term solder joint reliability. A novel method has been developed to control the morphology and growth of intermetallic compound layers between lead-free Sn–3.0Ag–0.5Cu solder ball and copper substrate by doping a water soluble flux with metallic nanoparticles. Four types of metallic nanoparticles (nickel, cobalt, molybdenum and titanium) were used to investigate their effects on the wetting behavior and interfacial microstructural evaluations after reflow. Nanoparticles were dispersed manually with a water soluble flux and the resulting nanoparticle doped flux was placed on copper substrate. Lead-free Sn–3.0Ag–0.5Cu solder balls of diameter 0.45 mm were placed on top of the flux and were reflowed at a peak temperature of 240 °C for 45 s. Angle of contact, wetting area and interfacial microstructure were studied by optical microscopy, field emission scanning electron microscopy and energy-dispersive X-ray spectroscopy. It was observed that the angle of contact increased and wetting area decreased with the addition of cobalt, molybdenum and titanium nanoparticles to flux. On the other hand, wettability improved with the addition of nickel nanoparticles. Cross-sectional micrographs revealed that both nickel and cobalt nanoparticle doping transformed the morphology of Cu{sub 6}Sn{sub 5} from a typical scallop type to a planer one and reduced the intermetallic compound thickness under optimum condition. These effects were suggested to be related to in-situ interfacial alloying at the interface during reflow. The minimum amount of nanoparticles required to produce the planer morphology was found to be 0.1 wt.% for both nickel and cobalt. Molybdenum and titanium nanoparticles neither appear to undergo alloying during reflow nor have any influence at the solder/substrate interfacial reaction. Thus, doping

  16. Stability of molybdenum nanoparticles in Sn-3.8Ag-0.7Cu solder during multiple reflow and their influence on interfacial intermetallic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Haseeb, A.S.M.A., E-mail: haseeb@um.edu.my; Arafat, M.M., E-mail: arafat_mahmood@yahoo.com; Johan, Mohd Rafie, E-mail: mrafiej@um.edu.my

    2012-02-15

    This work investigates the effects of molybdenum nanoparticles on the growth of interfacial intermetallic compound between Sn-3.8Ag-0.7Cu solder and copper substrate during multiple reflow. Molybdenum nanoparticles were mixed with Sn-3.8Ag-0.7Cu solder paste by manual mixing. Solder samples were reflowed on a copper substrate in a 250 Degree-Sign C reflow oven up to six times. The molybdenum content of the bulk solder was determined by inductive coupled plasma-optical emission spectrometry. It is found that upon the addition of molybdenum nanoparticles to Sn-3.8Ag-0.7Cu solder, the interfacial intermetallic compound thickness and scallop diameter decreases under all reflow conditions. Molybdenum nanoparticles do not appear to dissolve or react with the solder. They tend to adsorb preferentially at the interface between solder and the intermetallic compound scallops. It is suggested that molybdenum nanoparticles impart their influence on the interfacial intermetallic compound as discrete particles. The intact, discrete nanoparticles, by absorbing preferentially at the interface, hinder the diffusion flux of the substrate and thereby suppress the intermetallic compound growth. - Highlights: Black-Right-Pointing-Pointer Mo nanoparticles do not dissolve or react with the SAC solder during reflow. Black-Right-Pointing-Pointer Addition of Mo nanoparticles results smaller IMC thickness and scallop diameter. Black-Right-Pointing-Pointer Mo nanoparticles influence the interfacial IMC through discrete particle effect.

  17. Determination of the enthalpy of formation of Ni-Al intermetallic compounds using differential scanning calorimetry technique

    International Nuclear Information System (INIS)

    Kubaski, Evaldo Toniolo; Capocchi, Jose Deodoro Trani; Cintho, Osvaldo Mitsuyuki

    2010-01-01

    The compositions Ni20Al80, Ni25Al75, Ni40Al60, Ni50Al50, Ni60Al40 and Ni75Al25 (at. %) were heated in a calibrated thermal analysis equipment. All runs were conducted at a heating rate of 10 deg C/min under a dynamic argon atmosphere. Each composition was heated until the completion of the corresponding exothermic reaction responsible for intermetallic compound formation, and, also heated to 1480 deg C. The products obtained were characterized using X ray diffraction in order to identify the intermetallic compounds that were synthesized. Moreover, the results were evaluated using variance analysis. As a result, enthalpies of formation of Ni 2 Al 3 and Ni 3 Al compounds were determined by means of this methodology. Experimental values were 167 kJ/mol and 93 kJ/mol for Ni 2 Al 3 and Ni 3 Al, respectively. The former is 18% lower than the value found on literature, while the latter is 6% greater. (author)

  18. Synthesis of Xenon and Iron-Nickel Intermetallic Compounds at Earth's Core Thermodynamic Conditions

    Science.gov (United States)

    Stavrou, Elissaios; Yao, Yansun; Goncharov, Alexander F.; Lobanov, Sergey S.; Zaug, Joseph M.; Liu, Hanyu; Greenberg, Eran; Prakapenka, Vitali B.

    2018-03-01

    Using in situ synchrotron x-ray diffraction and Raman spectroscopy in concert with first principles calculations we demonstrate the synthesis of stable Xe (Fe ,Fe /Ni )3 and XeNi3 compounds at thermodynamic conditions representative of Earth's core. Surprisingly, in the case of both the Xe-Fe and Xe-Ni systems Fe and Ni become highly electronegative and can act as oxidants. The results indicate the changing chemical properties of elements under extreme conditions by documenting that electropositive at ambient pressure elements could gain electrons and form anions.

  19. Topological fingerprints for intermetallic compounds for the automated classification of atomistic simulation data

    International Nuclear Information System (INIS)

    Schablitzki, T; Rogal, J; Drautz, R

    2013-01-01

    We introduce a method to determine intermetallic crystal phases by creating topological fingerprints using coordination polyhedra. Many intermetallic crystal phases have complex structures that cannot be determined from the information of their nearest neighbour environment alone, but need information from a further reaching local environment. We obtain the coordination polyhedra of each atom in the structure and use this information in a topological fingerprint to determine the crystal phases in the structure as locally as possible. This allows us to analyse complex crystal phases like the topologically close-packed phases and multi-phase structures. With the information extracted from the coordination polyhedra and topological fingerprint, it is also possible to find and identify point and extended defects. Therefore, our method is able to track interface regions in multi-phase structures, and follow structural changes during phase transformations. (paper)

  20. The role of zinc on the chemistry of complex intermetallic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Weiwei [Iowa State Univ., Ames, IA (United States)

    2014-01-01

    Combining experiments and electronic structure theory provides the framework to design and discover new families of complex intermetallic phases and to understand factors that stabilize both new and known phases. Using solid state synthesis and multiple structural determinations, ferromagnetic β-Mn type Co8+xZn12–x was analyzed for their crystal and electronic structures.

  1. Thermal, structural, and magnetic studies of metals and intermetallic compounds. Final report

    International Nuclear Information System (INIS)

    Wallace, W.E.; Craig, R.S.; Rao, V.U.S.

    1976-01-01

    The powerful magnetism of certain intermetallics, e.g., SmCo 5 , has been established to originate with the powerful magnetic anisotropy of SmCo 5 , not its large magnetization. The anisotropy is, in turn, a crystal field effect. The crystal field interaction has been elucidated by the method of quantum mechanics. Studies of the systems RFe 2 , RFe 3 , RCo 3 , and R 2 Co 7 (R = a rare earth, Y or Th) reveals them to be important for hydrogen storage. In addition, important effects associated with hydrogenation of metals have been found--great enhancement of magnetization of certain systems (e.g., ErFe 2 ) and substantial increase in superconducting transition temperatures (e.g., Zr/sub .5/H/sub .5/V 2 ). Results of studies suggest that the surfaces of rare earth intermetallics are atypical. The spectrum of properties exhibited by the rare earth intermetallics suggests their utility in the efficient capture and storage of solar energy and the use of it for powering a vehicle. These aspects of the systems warrant further attention

  2. Reaction of intermetallic compounds of the ScT composition (T=Ag, Cu, Zn, Ni) with hydrogen

    International Nuclear Information System (INIS)

    Shilkin, S.P.; Volkova, L.S.; Tarasov, B.P.

    1995-01-01

    Reaction of intermetallic compounds of ScT composition (T=Ag, Cu, Zn, Ni), crystallized in CsCl structural type, with hydrogen at 0.2-10 MPa pressure and 293-673 K temperature is studied by chemical, x-ray phase and complex thermogravimetry analysis methods. It is shown that under such conditions hydrogen absorption by ScAg and ScCu is accompanied by the decay of their source matrices into scandium dihydride and metal silver and copper respectively. For ScZn a fine-dispersion mixture of scandium dihydride with zinc and hydride phase of a new zinc-containing intermetallic compound appears to be the finite reaction product. In case of ScNi a hydride phase of ScNiH 2.6 composition is produced, which is crystallized in a rhombic syngony with the lattice periods: a=0.5281±0.0007, b=0.7393±0.0009 and c=0.3327±0.0004 nm. 9 refs.; 2 tabs

  3. Massive spalling of Cu-Zn and Cu-Al intermetallic compounds at the interface between solders and Cu substrate during liquid state reaction

    Science.gov (United States)

    Kotadia, H. R.; Panneerselvam, A.; Mokhtari, O.; Green, M. A.; Mannan, S. H.

    2012-04-01

    The interfacial intermetallic compound (IMC) formation between Cu substrate and Sn-3.8Ag-0.7Cu-X (wt.%) solder alloys has been studied, where X consists of 0-5% Zn or 0-2% Al. The study has focused on the effect of solder volume as well as the Zn or Al concentration. With low solder volume, when the Zn and Al concentrations in the solder are also low, the initial Cu-Zn and Al-Cu IMC layers, which form at the solder/substrate interface, are not stable and spall off, displaced by a Cu6Sn5 IMC layer. As the total Zn or Al content in the system increases by increasing solder volume, stable CuZn or Al2Cu IMCs form on the substrate and are not displaced. Increasing concentration of Zn has a similar effect of stabilizing the Cu-Zn IMC layer and also of forming a stable Cu5Zn8 layer, but increasing Al concentration alone does not prevent spalling of Al2Cu. These results are explained using a combination of thermodynamic- and kinetics-based arguments.

  4. Interaction of intermetallic compounds formed by rare earths, scandium, yttrium and 3d-transition metals, with gaseous ammonia

    International Nuclear Information System (INIS)

    Shilkin, S.P.; Volkova, L.S.

    1992-01-01

    Interaction of the RT n intermetallic compounds, where R Sc, Y, rare earths, T = Fe, Co, Ni; n = 2,3,5, with gaseous ammonia under pressure of 1MPa and at temperatures of 293, 723 and 798 K is studied. It is established on the basis of roentgenographic studied, chemical analysis data, X-ray photoelectron spectroscopy and specific surface measurements that metallic matrixes of intermetallides decompose into nitrides and transition metal phases at temperatures of 723 and 798 K under effect of ammonia and independent of structural types of the source materials; partial or complete decomposition of intermetallides through ammonia with formation of transition metal mixture, binary hydrides and nitrides of the most electropositive metal the above systems occurs at the temperature of 293 K depending on the heat of the source compounds and their tendency to decomposition under ammonia effect

  5. Quadrupolar interactions and magneto-elastic effects in rare earth intermetallic compounds. Ch. 1

    International Nuclear Information System (INIS)

    Morin, P.; Schmitt, D.

    1990-01-01

    First the quantum hamiltonian is built, which describes both the one- and two-ion, spin and quadrupole couplings in systems of cubic, tetragonal and hexagonal symmetries. The power of the susceptibility formalism, which allows for independent determinations of the various coefficients, is emphasized. The main experimental evidence of quadrupolar orderings is presented and the quadrupolar consequences on the magnetic properties is given. The experimental techniques, which are based upon the susceptibility formalism, are illustrated, The magneto-elastic and pair interaction coefficients, which have been determined in the rare earth intermetallics, are reveiwed. Due to the anisotropic character of the magneto-elasticity, studies on single crystals are of fundamental importance and these are the only ones considered here. Finally an analysis of all these results from both a macroscopic and a microscopic point of view is given. (author). 282 refs.; 65 figs.; 24 tabs

  6. Molecular dynamics simulations of radiation damage in D019 Ti3Al intermetallic compound

    International Nuclear Information System (INIS)

    Voskoboinikov, Roman E.

    2013-01-01

    Molecular dynamics (MD) has been applied to simulate the radiation damage created in displacement cascades in D0 19 Ti 3 Al structural intermetallics. Collision cascades formed by the recoil of either Al or Ti primary knock-on atoms (PKA) with energy E PKA = 5, 10, 15 or 20 keV were considered in Ti 3 Al single crystals at T = 100, 300, 600 and 900 K. At least 24 different cascades for each (E PKA , T, PKA type) set were simulated. A comprehensive treatment of the modelling results has been carried out. We have evaluated the number of Frenkel pairs, fraction of Al and Ti vacancies, self-interstitial atoms and anti-sites as a function of (E PKA ,T, PKA type). Preferred formation of both Al vacancies and self-interstitial atoms in D0 19 Ti 3 Al exposed to irradiation has been detected

  7. The Influence of Grain Structure on Intermetallic Compound Layer Growth Rates in Fe-Al Dissimilar Welds

    Science.gov (United States)

    Xu, Lei; Robson, Joseph D.; Wang, Li; Prangnell, Philip B.

    2018-02-01

    The thickness of the intermetallic compound (IMC) layer that forms when aluminum is welded to steel is critical in determining the properties of the dissimilar joints. The IMC reaction layer typically consists of two phases ( η and θ) and many attempts have been made to determine the apparent activation energy for its growth, an essential parameter in developing any predictive model for layer thickness. However, even with alloys of similar composition, there is no agreement of the correct value of this activation energy. In the present work, the IMC layer growth has been characterized in detail for AA6111 aluminum to DC04 steel couples under isothermal annealing conditions. The samples were initially lightly ultrasonically welded to produce a metallic bond, and the structure and thickness of the layer were then characterized in detail, including tracking the evolution of composition and grain size in the IMC phases. A model developed previously for Al-Mg dissimilar welds was adapted to predict the coupled growth of the two phases in the layer, whilst accounting explicitly for grain boundary and lattice diffusion, and considering the influence of grain growth. It has been shown that the intermetallic layer has a submicron grain size, and grain boundary diffusion as well as grain growth plays a critical role in determining the thickening rate for both phases. The model was used to demonstrate how this explains the wide scatter in the apparent activation energies previously reported. From this, process maps were developed that show the relative importance of each diffusion path to layer growth as a function of temperature and time.

  8. Microstructural characterization of the intermetallic compound Al{sub 7}Cu{sub 4}Ni; Caracterizacion microestructural del compuesto intermetalico Al{sub 7}Cu{sub 4}Ni

    Energy Technology Data Exchange (ETDEWEB)

    Herrera, R.; Soriano, O.; Dorantes, H. J.; Lopez, V. M.

    2004-07-01

    A study of the microstructural characterization of the intermetallic compound Al{sub 7}Cu{sub 4}Ni was carried out. The intermetallic compound was fabricated using the melting and casting process followed by a homogenization treatment at 750 degree centigree for 240 h. The structural evolution during homogenizing was analyzed by X-ray diffraction. The microstructure of intermetallic compound was also characterized by scanning electron and transmission electron microscopes. Additionally, the micro homogeneity of this compound was studied by the Energy Dispersive and Wavelength Dispersive Spectroscopy. The results of this work showed that it was possible to obtain the intermetallic compound with the crystalline structure and at the composition reported in the literature. Besides, this compound showed a good chemical micro homogeneity, which makes it a possible candidate as a material reference for either microanalysis or hardness testing. (Author) 12 refs.

  9. Effects of heat treatment on the intermetallic compounds and mechanical properties of the stainless steel 321-aluminum 1230 explosive-welding interface

    Science.gov (United States)

    Shiran, Mohammadreza Khanzadeh Gharah; Khalaj, Gholamreza; Pouraliakbar, Hesam; Jandaghi, Mohammadreza; Bakhtiari, Hamid; Shirazi, Masoud

    2017-11-01

    The effects of heat treatment on the microstructure and mechanical properties of intermetallic compounds in the interface of stainless steel 321 explosively bonded to aluminum 1230 were investigated in this study. Experimental investigations were performed by optical microscopy, scanning electron microscopy, and microhardness and shear tensile strength testing. Prior to heat treatment, increasing the stand-off distance between samples from 1 to 2.5 mm caused their interface to become wavy and the thickness of intermetallic layers to increase from 3.5 to 102.3 μm. The microhardness increased from HV 766 in the sample prepared at a stand-off distance of 1 mm to HV 927 in the sample prepared at a stand-off distance of 2.5 mm; in addition, the sample strength increased from 103.2 to 214.5 MPa. Heat treatment at 450°C for 6 h increased the thickness of intermetallic compound layers to 4.4 and 118.5 μm in the samples prepared at stand-off distances of 1 and 2.5 mm, respectively. These results indicated that increasing the duration and temperature of heat treatment decreased the microhardness and strength of the interface of explosively welded stainless steel 321-Al 1230 and increased the thickness of the intermetallic region.

  10. Effects of Bonding Wires and Epoxy Molding Compound on Gold and Copper Ball Bonds Intermetallic Growth Kinetics in Electronic Packaging

    Science.gov (United States)

    Gan, C. L.; Classe, F. C.; Chan, B. L.; Hashim, U.

    2014-04-01

    This paper discusses the influence of bonding wires and epoxy mold compounds (EMC) on intermetallic compound (IMC) diffusion kinetics and apparent activation energies ( E aa) of CuAl and AuAl IMCs in a fineline ball grid array package. The objective of this study is to study the CuAl and AuAl IMC growth rates with different epoxy mold compounds and to determine the apparent activation energies of different combination of package bills of materials. IMC thickness measurement has been carried out to estimate the coefficient of diffusion ( D o) and E aa various aging conditions of different EMCs and bonding wires. Apparent activation energies ( E aa) of both wire types were investigated after high temperature storage life tests (HTSL) for both molding compounds. Au bonds were identified to have faster IMC formation, compared to slower IMC growth of Cu. The E aa obtained for CuAl IMC diffusion kinetics are 1.08 and 1.04 eV with EMC A and EMC B, respectively. For AuAl IMC diffusion kinetics, the E aa obtained are 1.04 and 0.98 eV, respectively, on EMC A and EMC B. These values are close to previous HTSL studies conducted on Au and Cu ball bonds and are in agreement to the theory of HTSL performance of Au and Cu bonding wires.Overall, EMC B shows slightly lower apparent activation energy ( E aa) valueas in CuAl and AuAl IMCs. This proves that the different types of epoxy mold compounds have some influence on IMC growth rates.

  11. Design and fabrication of a mechanical alloying system for preparing intermetallic, nanocrystalline, amorphous and quasicrystalline compounds

    International Nuclear Information System (INIS)

    Bonifacio M, J.; Iturbe G, J.L.; Castaneda J, G.

    2002-01-01

    In this work a grinding system was designed and fabricated which allowed to improve the operation conditions in time, frequency, temperature and selection of the grinding media and that allow the contamination decrease of the compounds. By means of this method of mechanical alloying new metallic compounds can be produced, starting from elemental powders, with fine and controlled microstructures. These compounds prepared by this method are going to be used as materials for the hydrogen storage. (Author)

  12. Magnetic, transport and magnetocaloric properties in the Laves phase intermetallic Ho (Co1−xAlx)2 compounds

    International Nuclear Information System (INIS)

    Ivanova, T.I.; Nikitin, S.A.; Tskhadadze, G.A.; Koshkid’ko, Yu.S.; Suski, W.; Iwasieczko, W.; Badurski, D.

    2014-01-01

    Highlights: • The Al influence on magnetic properties of the Ho (Co 1-x Al x ) 2 compounds is analyzed. • The first-order magnetic transition appears in sample with Al concentrations x ≤ 0.06. • The MCE and Curie temperature TC demonstrate complex Al concentration dependences. • The magnetoresistance for sample with Al concentration x = 0.06 (58%) is maximum. • High magnetic fields changes the Curie temperature T c of the Ho (Co 1−x Al x ) 2 compounds. - Abstract: The magnetization, magnetoresistivity and magnetocaloric effect (MCE) of the Ho (Co 1−x Al x ) 2 Laves phase intermetallic compounds for x ⩽ 0.2 have been investigated. Complex measurements have been carried out in order to determine the influence of substitution in the Co sublattice by Al on the Co moment, type of the magnetic transition and related properties of these compounds. A comparative analysis of the magnetic, transport and magnetocaloric properties of Ho (Co 1−x Al x ) 2 alloys under various Al concentration is represented. Substitutions at the Co site by Al are found to result in the appearance of itinerant electron metamagnetism (IEM) at the small Al concentrations and in positive magnetovolume effect, leading to an initial increase in the ordering temperature; on the other hand the magnetic phase transition temperature as well as ΔT (MCE) do not depend in direct way on the Al concentration. The 16% increase of magnetocaloric effect for the alloy with x = 0.02 is detected in relation to maternal HoCo 2 . A giant value of magnetoresistivity (58%) is observed for the alloy with the same Al concentration

  13. Inhibition of the formation of intermetallic compounds in aluminum-steel welded joints by friction stir welding

    Directory of Open Access Journals (Sweden)

    Torres López, Edwar A.

    2015-12-01

    Full Text Available Formation of deleterious phases during welding of aluminum and steel is a challenge of the welding processes, for decades. Friction Stir Welding (FSW has been used in an attempt to reduce formation of intermetallic compounds trough reducing the heat input. In this research, dissimilar joint of 6063-T5 aluminum alloy and AISI-SAE 1020 steel were welded using this technique. The temperature of welded joints was measured during the process. The interface of the welded joints was characterized using optical microscopy, scanning and transmission electron microscopy. Additionally, composition measurements were carried out by X-EDS and DRX. The experimental results revealed that the maximum temperature on the joint studied is less than 360 °C. The microstructural characterization in the aluminum-steel interface showed the absence of intermetallic compounds, which is a condition attributed to the use of welding with low thermal input parameters.La unión de juntas aluminio-acero, sin la formación de fases deletéreas del tipo FexAly, ha sido, por décadas, un desafío para los procesos de soldadura. La soldadura por fricción-agitación ha sido empleada para intentar reducir el aporte térmico y evitar la formación de compuestos intermetálicos. Usando esta técnica fueron soldadas juntas disimilares de aluminio 6063-T5 y acero AISI-SAE 1020. La soldadura fue acompañada de medidas de temperatura durante su ejecución. La interfase de las juntas soldadas fue caracterizada utilizando microscopía óptica, electrónica de barrido y electrónica de transmisión. Adicionalmente fueron realizadas medidas puntuales X-EDS y DRX. Los resultados experimentales revelan que la temperatura máxima en la junta es inferior a 360 °C. La caracterización microestructural en la interfase aluminio-acero demostró la ausencia de compuestos intermetálicos, condición atribuida al uso de parámetros de soldadura con bajo aporte térmico.

  14. Development of production technology by metallic powder injection molding for TiAl-type intermetallic compound with high efficiency

    International Nuclear Information System (INIS)

    Terauchi, S.; Teraoka, T.; Shinkuma, T.; Sugimoto, T.; Ahida, Y.

    2001-01-01

    Since a TiAl-type intermetallic compound has an excellent high temperature strength and corrosion resistance, in addition to light weight, it is expected to be applicable to the engine parts. However, it is difficult for TiAI to produce a part with a complex shape, and considerable cost will be required. In this study, it was tried to develop a technology for producing TiAl products with high density and high efficiency by using metal powder injection molding (MIM) process. Several kinds of TiAI alloy powders made by the self-propagating high temperature synthesis process were mixed with an organic binder, kneaded and then injection-molded into tensile specimens. These compacts were subjected to the treatment for removing the binder and sintering, resulted in a relative density as high as 97 %. By room and high temperature tensile tests, it was found that, Ti-47.4Al-2.6Cr (at%) has the strength and ductility as those of the conventional processed materials. (author)

  15. Wearout Reliability and Intermetallic Compound Diffusion Kinetics of Au and PdCu Wires Used in Nanoscale Device Packaging

    Directory of Open Access Journals (Sweden)

    C. L. Gan

    2013-01-01

    Full Text Available Wearout reliability and diffusion kinetics of Au and Pd-coated Cu (PdCu ball bonds are useful technical information for Cu wire deployment in nanoscale semiconductor device packaging. This paper discusses the HAST (with bias and UHAST (unbiased HAST wearout reliability performance of Au and PdCu wires used in fine pitch BGA packages. In-depth failure analysis has been carried out to identify the failure mechanism under various wearout conditions. Intermetallic compound (IMC diffusion constants and apparent activation energies (Eaa of both wire types were investigated after high temperature storage life test (HTSL. Au bonds were identified to have faster IMC formation, compared to slower IMC growth of PdCu. PdCu wire was found to exhibit equivalent or better wearout reliability margin compared to conventional Au wire bonds. Failure mechanisms of Au, Cu ball bonds post-HAST and UHAST tests are been proposed, and both Au and PdCu IMC diffusion kinetics and their characteristics are discussed in this paper.

  16. Vacuum brazing of TiAl48Cr2Nb2 casting alloys based on TiAl (γ intermetallic compound

    Directory of Open Access Journals (Sweden)

    Z. Mirski

    2010-01-01

    Full Text Available A growing interest in modern engineering materials characterised by increasingly better operational parameters combined with a necessity to obtain joints of such materials representing good operation properties create important research and technological problems of today. These issues include also titanium joints or joints of titanium alloys based on intermetallic compounds. Brazing is one of the basic and sometimes even the only available welding method used for joining the aforesaid materials in production of various systems, heat exchangers and, in case of titanium alloys based on intermetallic compounds, turbine elements and space shuttle plating etc. This article presents the basic physical and chemical properties as well as the brazability of alloys based on intermetallic compounds. The work also describes the principle and mechanisms of diffusion-brazed joint formation as well as reveals the results of metallographic and strength tests involving diffusion-welded joints of TiAl48Cr3Nb2 casting alloy based on TiAl (γ phase with the use of sandwich-type layers of silver-based parent metal (grade B- Ag72Cu-780 (AG 401 and copper (grade CF032A. Structural examination was performed by means of light microscopy, scanning electron microscope (SEM and energy dispersion spectrometer (EDS. Furthermore, the article reveals the results of shear strength tests involving the aforementioned joints.

  17. Ce-valence state and hydrogen-induced volume effects in Ce-based intermetallic compounds and their hydrides

    International Nuclear Information System (INIS)

    Stange, M.; Paul-Boncour, V.; Latroche, M.; Percheron-Guegan, A.; Isnard, O.; Yartys, V.A.

    2005-01-01

    An average Ce-valence state (v) of two types of Ce-containing intermetallic compounds, equiatomic CeNiX (X= Al, Ga, Sn) and CeM 3 (M= Ni, Co, Mn), and their hydrides was estimated from X-ray absorption spectroscopy (XAS) and analysed in parallel with hydrogen-induced volume changes on hydrogenation. The largest valence states in the initial compounds were found in CeM 3(v=3.32-3.36) followed by CeNiAl 1-x Ga x (v=3.25-3.27). This contrasts to CeNiSn, which is close to a pure trivalent state (v=3.07). On hydrogenation, a conversion from mixed-valent CeNiAl 1-x Ga x , x=0.5, 1, to pure Ce III hydrides takes place (ΔV /V=19.6-20.0 %). In CeNiSnD z (z=1, 1.8, ΔV/V=3.0, 8.0%) the changes in the valence state towards Ce III are very small. The situation for the CeM 3 -hydrides is complex. For CeNi 3 D 2.8 , CeNi 2.75 Mn 0.25 D 3.4 and CeCo 3 D 3.4 (ΔV /V=24-32%) where rather similar electronic properties can be expected, a decrease in the contribution of Ce IV for CeNi 3 D 3 and CeNi 2.75 Mn 0.25 D 3.4 (v=3.18 and 3.12, respectively) contrasts to the behaviour of CeCo 3 D 3.4 where the hydrogen induced valence change is very small (v=3.32)

  18. Magnetic structures of rare earth intermetallic compounds RCuAs2 (R = Pr, Nd, Tb, Dy, Ho, and Yb)

    Science.gov (United States)

    Zhao, Y.; Lynn, J. W.; Thakur, G. S.; Haque, Z.; Gupta, L. C.; Ganguli, A. K.

    2017-12-01

    Neutron scattering studies have been carried out on polycrystalline samples of a series of rare earth intermetallic compounds RCuAs2 (R = Pr, Nd, Dy, Tb, Ho and Yb) as a function of temperature to determine the magnetic structures and the order parameters. These compounds crystallize in the ZrCuSi2 type structure, which is similar to that of the RFeAsO (space group P4/nmm) class of iron-based superconductors. PrCuAs2 develops commensurate magnetic order with K = (0, 0, 0.5) below TN = 6.4(2) K, with the ordered moments pointing along the c-axis. The irreducible representation analysis shows either a Γ12 or Γ13 representation. NdCuAs2 and DyCuAs2 order below TN = 3.54(5) K and TN = 10.1(2) K, respectively, with the same ordering wave vector but the moments lying in the a-b plane (with a Γ29 or Γ210 representation). TbCuAs2 and HoCuAs2 exhibit incommensurate magnetic structures below TN = 9.44(7) and 4.41(2) K, respectively. For TbCuAs2, two separate magnetic ordering wave vectors are established as K1(Tb) = (0.240,0.155,0.48) and K2(Tb) = (0.205, 0.115, 0.28), whereas HoCuAs2 forms a single K(Ho) = (0.121, 0.041, 0.376) magnetic structure with 3rd order harmonic magnetic peaks. YbCuAs2 does not exhibit any magnetic Bragg peaks at 1.5 K, while susceptibility measurements indicate an antiferromagnetic-like transition at 4 K, suggesting that either the ordering is not long range in nature or the ordered moment is below the sensitivity limit of ≈0.2 μB.

  19. Influence of low Co substitution on magnetoelastic properties of HoFe{sub 11}Ti intermetallic compound

    Energy Technology Data Exchange (ETDEWEB)

    Motevalizadeh, L., E-mail: lmotevali@mshdiau.ac.ir [Department of Physics, Mashhad Branch, Islamic Azad University, Mashhad (Iran, Islamic Republic of); Tajabor, N. [Department of Physics, Faculty of Sciences, Ferdowsi University of Mashhad, Mashhad (Iran, Islamic Republic of); Sanavi Khoshnoud, D. [Department of Physics, Semnan University, Semnan 35195-363 (Iran, Islamic Republic of); Fruchart, D. [Institut. Neel, Departement MCMF, Groupe IICF, BP 166, 38042 Grenoble Cedex 9 (France); Pourarian, F. [Department of Material Science and Engineering, Carnegie Mellon University, Pittsburgh, PA 15213 (United States)

    2012-09-15

    The thermal expansion and magnetostriction of HoFe{sub 11-x}Co{sub x}Ti (x=0, 0.3, 0.7 and 1) intermetallic compounds were measured, using the strain gauge method in the temperature range 77-590 K under applied magnetic fields up to 1.5 T. Results show that for samples with x=0 and 0.3, both linear thermal expansion and linear thermal expansion coefficient exhibit anomalies below the Curie temperature. Below room temperature, the spontaneous volume magnetostriction decreases with Co content. For all compounds studied, the anisotropic magnetostriction shows similar behaviour in the measured temperature range. The magnetostriction compensation occurs above room temperature in all samples. The volume magnetostriction shows a linear dependence on the applied field and by approaching the Curie temperature this trend changes to parastrictive behaviour. The results of the spontaneous magnetostriction are discussed based on the local magnetic moment model. The contribution of magnetostriction attributed to the magnetic sublattices R and T (Fe or Co) is discussed. - Highlights: Black-Right-Pointing-Pointer Magnetostriction of HoFe{sub 11-x}Co{sub x}Ti have been measured by using strain gauge method. Black-Right-Pointing-Pointer The measurement was carried in 77-590 K under applied magnetic fields up to 1.5 T. Black-Right-Pointing-Pointer Spontaneous volume magnetostriction and Invar effect decrease with Co substitution. Black-Right-Pointing-Pointer Ho sublattice has negative contribution to spontaneous volume magnetostriction. Black-Right-Pointing-Pointer Absolute values of anisotropic magnetostriction decrease slightly with Co content.

  20. Ab initio study of the structural, electronic, elastic and thermal properties of RMn{sub 2}Ge{sub 2} (R = Ca, Nd and Y) intermetallic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Miloud Abid, O.; Yakoubi, A. [Laboratoire d’Etudes des Matériaux et Instrumentations Expérimentales, Université Djilali Liabes de Sidi Bel-Abbes, 22000 (Algeria); Tadjer, A. [Modeling and Simulation in Materials Science Laboratory, Physics Department, University of Sidi Bel-Abbes, Sidi Bel-Abbes (Algeria); Khenata, R., E-mail: khenata_rabah@yahoo.fr [Laboratoire de Physique Quantique de la Modélisation Mathématique (LPQ3M), Université de Mascara, 29000 (Algeria); Ahmed, R. [Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, UTM Skudai, 81310 Johor (Malaysia); Murtaza, G. [Materials Modeling Laboratory, Department of Physics, Islamia College University, Peshawar (Pakistan); Bin Omran, S. [Department of Physics and Astronomy, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451 (Saudi Arabia); Azam, Sikander [New Technologies – Research Center, University of West Bohemia, Univerzitni 8, 306 14 Pilsen (Czech Republic)

    2014-12-15

    Highlights: • The calculated structural parameters of RMn{sub 2}Ge{sub 2} (R = Ca, Nd and Y) compounds are found in good agreement with the experimental data. • The structural and band structure calculation reveals that these compounds are ferromagnetic brittle metals. • The elastic and thermodynamic properties for the herein studied compounds are investigated for the first time. - Abstract: Intermetallic RMn{sub 2}Ge{sub 2} ternary compounds have attracted considerable attention from researchers in recent years because they show strong indications for novel magnetic characteristics and they have the potential to reveal the mechanism of superlattices. The study of the paramagnetic, ferromagnetic and antiferromagnetic phases affirms the strong dependence to the distance between atomic species in these compounds. In this study, we investigated the structural, elastic, electronic and thermodynamic properties of the intermetallic RMn{sub 2}Ge{sub 2} (R = Ca, Nd and Y) compounds. To carry out this study, we used the full potential (FP) linearized (L) augmented plane wave plus local orbitals (APW + lo), a scheme of calculations developed within the frame work of density functional theory (DFT). To incorporate the exchange correlation (XC) energy and corresponding potential into the total energy calculations, local density approximation (LDA) parameterized by Perdew and Wang is taken into account. Analysis of the density of states (DOS) profile illustrates the conducting nature of these intermetallic compounds; with a predominantly contribution from the R and Mn-d states. At ambient conditions, calculations for elastic constants (C{sub 11}, C{sub 12}, C{sub 13}, C{sub 44}, C{sub 33} and C{sub 66}) are also performed, which point to their brittle character. In addition, the quasi harmonic Debye model was used to predict the thermal properties, together with relative expansion coefficients and heat capacity.

  1. Magnetic properties and structure of Gd-Ti-Ge intermetallic compound with nanocrystalline structure

    International Nuclear Information System (INIS)

    Korznikova, G.F.; Mulyukov, Kh.Ya.; Nikitin, S.A.; Ovchenkova, Yu.A.

    2001-01-01

    The magnetization processes and structure of the Gd-Ti-Ge compound at the initial coarse-grained and nanostructural state obtained by torsion under quasi-hydrostatic pressure are experimentally studied. It is established that magnetic ordering temperature in the nanocrystalline sample is by 30 K lower, coercion force by 8 times higher and magnetization by 3.7 times lesser than in the coarse-grained sample. It is shown that changes in the magnetic properties identified are connected first of all with the transformation of the part of the initial phase with the CeScSi-type lattice into the slightly magnetic phase with the CeFeSi-type lattice. The effect of structural defects and partial disordering on the compound magnetic characteristics is also discussed [ru

  2. Metamagnetic transitions in cubic La(FexAl1-x)13 intermetallic compounds

    NARCIS (Netherlands)

    Palstra, T.T.M.; Werij, H.G.C.; Nieuwenhuys, G.J.; Mydosh, J.A.; Boer, F.R. de; Buschow, K.H.J.

    1984-01-01

    Cubic NaZn13-type compounds of the form La(FexAl1-x)13 were stabilised with compositions between LaFe6Al7 and LaFe12Al1. For compositions above LaFe11.2Al1.8 (x = 0.861) a low-temperature antiferromagnetic state is present in small external fields. However. upon increasing the field to a few tesla,

  3. Contribution to the study of the amorphization mechanisms of intermetallic compounds by mechanical grinding

    International Nuclear Information System (INIS)

    Galy, D.

    1995-01-01

    This work aims at identifying the mechanisms responsible for amorphization of NiZr and NiZr 2 compounds under ball-milling. In the first part, the effect of a localized deformation is studied: the deformation is produced by indentation on bulk samples, very high local strains can be achieved by this technique. The resulting microstructure is studied by transmission electron microscopy (TEM). No evidence for amorphization is found in these compounds, contrary to what is known to occur in silicon and germanium. Despite of their high brittleness, the NiZr and NiZr 2 compounds accommodate the multiaxial localized stress by plastic deformation: dislocations multiplication and glide, micro-twinning. Dislocations (both perfect and imperfect) and micro-twins have been analysed into details for the first time. The twinning mechanism in NiZr 2 has been elucidated. In the second part of this work, the microstructure of NiZr 2 in the course of amorphization by ball-milling is studied by TEM observation are prepared by ultra-microtomy. The following evolution is observed: first, the material is fragmented and plastically deformed; the microstructure is refined by polygonation. Second, aggregates are formed by a fragmentation and sticking process, leading to a stationary size for the aggregates. The aggregates themselves are made of a mixture of nanocrystalline (about 10 nm) material and coarser crystallites. As milling proceeds, the latter disappear to the benefit of the former. Once aggregates are 100% nanocrystalline, the amorphous phase appears and develops to the expense of the nanocrystalline phase. At late stages, small crystallites embedded in an amorphous matrix are observed. No massive chemical disordering is observed but a small amount can not be ruled out. It is suggested that amorphization occurs by chemical disordering at interfaces, induced by shear waves. (Author). 76 refs., 57 figs., 12 tabs

  4. Thermal expansion and spontaneous magnetostriction of R2Co7 intermetallic compounds

    International Nuclear Information System (INIS)

    Andreev, A.V.; Bartashevich, M.I.; Deryagin, A.V.; Zadvorkin, S.M.; Tarasov, E.N.

    1988-01-01

    Thermal expansion of R 2 Co 7 (R=Y, Nd, Gd, Tb) single crystals was invesigated by the method of X-ray dilatometry. Anomalous of thermal expansion, taking place during magnetic ordering and spin reorientation were used to determine linear and volumetric magnetistriction deformations. Constants of anisotropic magnetostriction of all R 2 Co 7 compounds with nonzero orbital moment of rare earth ion were calculated on the basis of single-ion model according to deformation values and with account of temperature dependences of the magnitude and direction of magnetic moment

  5. The reaction mechanism and selectivity of acetylene hydrogenation over Ni-Ga intermetallic compound catalysts: a density functional theory study.

    Science.gov (United States)

    Rao, De-Ming; Zhang, Shi-Tong; Li, Chang-Ming; Chen, Yu-Di; Pu, Min; Yan, Hong; Wei, Min

    2018-03-28

    Intermetallic compounds (IMCs) have shown excellent catalytic performance toward the selective hydrogenation of acetylene, but the theoretical understanding on this reaction over Ni-based IMCs is rather limited. In this work, the adsorptions of the C 2 species, Bader charge, projected density of states (PDOS) and the reaction pathways were calculated by the density functional theory (DFT) method to investigate the mechanism and selectivity for the acetylene hydrogenation on the (111) surface of Ni n Ga (n = 1, 3) IMCs, with a comparative study on the pristine Ni(111) surface. The results indicate that the adsorption energy of acetylene increased along with the Ni/Ga ratio, therefore a feasible acetylene adsorption on the Ga-rich surface guaranteed a low effective barrier, leading to the best activity for the NiGa(111) surface among three surfaces. Bader charge analysis shows that electrons transferred from Ga atoms to Ni atoms and further delivered to C 2 species, decreasing the adsorption capacity of C 2 species on NiGa(111) in comparison with those on Ni(111) and Ni 3 Ga(111). The reaction pathway of acetylene hydrogenation to ethylene via vinyl or even over-hydrogenation to ethane via ethyl is more favorable than the pathway involving the ethylidene intermediate on all surfaces. Moreover, the ethylene selectivity has a positive correlation with the gallium content by comparing the desorption barrier with the hydrogenation barrier of ethylene, thus the NiGa(111) surface also exhibits the best selectivity. Therefore, the NiGa(111) surface demonstrates to be an excellent reaction facet for the semihydrogenation of acetylene, which agreed with the experimental findings, and would provide helpful instructions for designing and preparing highly-selective and noble-substitute catalysts of alkyne semihydrogenation.

  6. Multifunctional phenomena in rare-earth intermetallic compounds with a laves phase structure: giant magnetostriction and magnetocaloric effect

    Czech Academy of Sciences Publication Activity Database

    Tereshina, I.; Cwik, J.; Tereshina, Evgeniya; Politova, G.; Burkhanov, G.; Chzhan, V.; Ilyushin, A.; Miller, M.; Zaleski, A.; Nenkov, K.; Schultz, L.

    2014-01-01

    Roč. 50, č. 11 (2014), s. 2504604 ISSN 0018-9464 Institutional support: RVO:68378271 Keywords : giant magnetostriction * Laves phase structure * magnetic anisotropy * magnetocaloric effect * rare-earth intermetallic Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.386, year: 2014

  7. Abrasive wear of intermetallics

    International Nuclear Information System (INIS)

    Hawk, J.A.; Alman, D.E.; Wilson, R.D.

    1995-01-01

    The US Bureau of Mines is investigating the wear behavior of a variety of advanced materials. Among the many materials under evaluation are intermetallic alloys based on the compounds: Fe 3 Al, Ti 3 Al, TiAl, Al 3 Ti, NiAl and MoSi 2 . The high hardness, high modulus, low density, and superior environmental stability of these compounds make them attractive for wear materials. This paper reports on the abrasive wear of alloys and composites based on the above compounds. The abrasive wear behavior of these alloys and composites are compared to other engineering materials used in wear applications

  8. Preparation and characterization of the Li(17)Pb(83) eutectic alloy and the LiPb intermetallic compound

    International Nuclear Information System (INIS)

    Jauch, U.; Karcher, V.; Schulz, B.

    1986-01-01

    Li(17)Pb(83) and LiPb were prepared from the pure elements in amounts of several hundred grams. The resolidified samples were characterized by melting points (eutectic temperature), chemical analysis and metallography. Using differential thermal analysis the heats of fusion were determined and the behaviour of the intermetallic phase LiPb in vacuum and high purified He was studied. The results from these investigations were applied to characterize Li(17)Pb(83) prepared in high amounts for technical application as a potential liquid breeder material. (orig.)

  9. Photoemission Study of the Rare Earth Intermetallic Compounds: RNi2Ge2 (R=Eu, Gd)

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jongik [Iowa State Univ., Ames, IA (United States)

    2004-01-01

    EuNi2Ge2 and GdNi2Ge2 are two members of the RT2X2 (R = rare earth, T = transition metal and X = Si, Ge) family of intermetallic compounds, which has been studied since the early 1980s. These ternary rare-earth intermetallic compounds with the tetragonal ThCr2Si2 structure are known for their wide variety of magnetic properties, Extensive studies of the RT2X2 series can be found in Refs [ 1,2,3]. The magnetic properties of the rare-earth nickel germanides RNi2Ge2 were recently studied in more detail [4]. The purpose of this dissertation is to investigate the electronic structure (both valence band and shallow core levels) of single crystals of EuNi2Ge2 and GdNi2Ge2 and to check the assumptions that the f electrons are non-interacting and, consequently, the rigid-band model for these crystals would work [11], using synchrotron radiation because, to the best of our knowledge, no photoemission measurements on those have been reported. Photoemission spectroscopy has been widely used to study the detailed electronic structure of metals and alloys, and especially angle-resolved photoemission spectroscopy (ARPES) has proven to be a powerful technique for investigating Fermi surfaces (FSs) of single-crystal compounds.

  10. Combined effects of ultrasonic vibration and manganese on Fe-containing inter-metallic compounds and mechanical properties of Al-17Si alloy with 3wt.%Fe

    Directory of Open Access Journals (Sweden)

    Lin Chong

    2013-05-01

    Full Text Available The research studied the combined effects of ultrasonic vibration (USV and manganese on the Fe-containing inter-metallic compounds and mechanical properties of Al-17Si-3Fe-2Cu-1Ni (wt.% alloys. The results showed that, without USV, the alloys with 0.4wt.% Mn or 0.8wt.% Mn both contain a large amount of coarse plate-like δ-Al4(Fe,MnSi2 phase and long needle-like β-Al5(Fe,MnSi phase. When the Mn content changes from 0.4wt.% to 0.8wt.% in the alloys, the amount and the length of needle-like β-Al5(Fe,MnSi phase decrease and the plate-like δ-Al4(Fe,MnSi2 phase becomes much coarser. After USV treatment, the Fe-containing compounds in the alloys are refined and exist mainly as δ-Al4(Fe,MnSi2 particles with an average grain size of about 20 μm, and only a small amount of β-Al5(Fe,MnSi phase remains. With USV treatment, the ultimate tensile strengths (UTS of the alloys containing 0.4wt.%Mn and 0.8wt.%Mn at room temperature are 253 MPa and 262 MPa, respectively, and the ultimate tensile strengths at 350 °C are 129 MPa and 135 MPa, respectively. It is considered that the modified morphology and uniform distribution of the Fe-containing inter-metallic compounds, which are caused by the USV process, are the main reasons for the increase in the tensile strength of these two alloys.

  11. Modeling of the self-organization processes in crystal-forming systems. Tetrahedral metal clusters and the self-assembly of crystal structures of intermetallic compounds

    Science.gov (United States)

    Ilyushin, G. D.

    2017-09-01

    A combinatorial and topological modeling of 1D, 2D, and 3D packings of symmetrically linked A4 tetrahedra has been performed. Three types of 1D chains with tetrahedra connectivities of 4, 6, and 8 were used to model 2D layers L-1, L-2, and L-3 and 3D frameworks FR-1, FR-2, FR-3, and FR-4. A family of tetrahedral structures with FR-1, FR-2, and FR-3 frameworks has been selected among the intermetallic compounds with chemical compositions of A 3 B, A 2 B 2, AB 3, A 2 BC, AB 2 C, and ABCD; this family includes more than 1900 compounds (TOPOS program package). It is found that the topological models of tetrahedral 3D frameworks are in correspondence with all types of the crystal structures formed in Au-Cu binary systems (FR-1 for Cu3Au (auricupride), Cu2Au2 (tetraauricupride), and CuAu3 (bogdanovite)), in the Mg-Cd system (FR-3 for Mg3Cd, Mg2Cd2, and MgCd3), in the Li-Hg system (FR-2 for Li3Hg and Li2Hg2 and FR-3 for LiHg3), in the Li-Ag-Al ternary system (FR-2 for LiAg2Al and Li2AgAl), and in the Li-Mg-Pd-Sn quaternary system (FR-2 for LiMgPdSn). Framework FR-4 has been established in ternary intermetallic compounds A(Li2Sn2); A = Cu, Ag, Au.

  12. Method to increase the transition temperature and for the critical magnetic field strength of the known intermetallic compounds of vanadium or niobium

    International Nuclear Information System (INIS)

    Winter, H.

    1977-01-01

    The invention deals with a method to raise the transition temperature and critical magnetic field strength of superconducting, intermetallic compounds of vanadium and niobium. For example, a niobium alloy with 4 wt.% Al in melted in vacuum electric arc and formed into a sheet of about 1 mm thick. Strips of this sheet are electrically heated up to 1,900 0 C for one hour in a high-vacuum oven. The strips are then annealed in evacuated quartz ampoules for 120 hours at 800 0 C. These strips have a transition temperature of 24 K and a critical magnetic field strength of 600 kg; the critical current density was 5 x 10 4 A/cm 2 . (HPOE) [de

  13. Intensive structural investigation of R{sub 2}Fe{sub 17-x}M{sub x} intermetallic compounds using high resolution powder neutron diffractometer

    Energy Technology Data Exchange (ETDEWEB)

    Mujamilah; Ridwan [Materials Science Research Center, National Atomic Energy Agency of Indonesia, Jakarta (Indonesia)

    1998-10-01

    The crystallographic and magnetic structure of R{sub 2}Fe{sub 17-x}M{sub x} intermetallic compounds system were refined by Rietveld analyses of the high resolution neutron powder diffraction data. The analyses results show that the substituent atoms were not distributed randomly over the Fe sites, but preferentially occupied some Fe sites. More further, it was also found that the substituent atoms which atomic radius smaller than Fe tend to avoid the 6c site at low concentration while the larger substituent atom tend to replace the Fe atom at this 6c site corresponding to their concentration. From these crystallographic data, it was suggested that the change of magnetic ordering temperature Tc, is not mainly determined by the change of short bond distance between this `dumb-bell` atoms, but it was also influenced by the nearest coordinated atoms to this site. (author)

  14. Intermetallic semiconducting films

    CERN Document Server

    Wieder, H H

    1970-01-01

    Intermetallic Semiconducting Films introduces the physics and technology of AшВv compound films. This material is a type of a polycrystalline semiconductor that is used for galvanomagnetic device applications. Such material has a high electron mobility that is ideal for generators and magnetoresistors. The book discusses the available references on the preparation and identification of the material. An assessment of its device applications and other possible use is also enumerated. The book describes the structures and physical parts of different films. A section of the book covers the three t

  15. A Comparative Discussion of the Catalytic Activity and CO2-Selectivity of Cu-Zr and Pd-Zr (Intermetallic Compounds in Methanol Steam Reforming

    Directory of Open Access Journals (Sweden)

    Norbert Köpfle

    2017-02-01

    Full Text Available The activation and catalytic performance of two representative Zr-containing intermetallic systems, namely Cu-Zr and Pd-Zr, have been comparatively studied operando using methanol steam reforming (MSR as test reaction. Using an inverse surface science and bulk model catalyst approach, we monitored the transition of the initial metal/intermetallic compound structures into the eventual active and CO2-selective states upon contact to the methanol steam reforming mixture. For Cu-Zr, selected nominal stoichiometries ranging from Cu:Zr = 9:2 over 2:1 to 1:2 have been prepared by mixing the respective amounts of metallic Cu and Zr to yield different Cu-Zr bulk phases as initial catalyst structures. In addition, the methanol steam reforming performance of two Pd-Zr systems, that is, a bulk system with a nominal Pd:Zr = 2:1 stoichiometry and an inverse model system consisting of CVD-grown ZrOxHy layers on a polycrystalline Pd foil, has been comparatively assessed. While the CO2-selectivity and the overall catalytic performance of the Cu-Zr system is promising due to operando formation of a catalytically beneficial Cu-ZrO2 interface, the case for Pd-Zr is different. For both Pd-Zr systems, the low-temperature coking tendency, the high water-activation temperature and the CO2-selectivity spoiling inverse WGS reaction limit the use of the Pd-Zr systems for selective MSR applications, although alloying of Pd with Zr opens water activation channels to increase the CO2 selectivity.

  16. Investigation of local magnetism in RZn (R = Ce, Gd, Tb, Dy) and GdCu intermetallic compounds using perturbed angular correlation gamma-gamma spectroscopy

    International Nuclear Information System (INIS)

    Santos, Brianna Bosch dos

    2010-01-01

    This work presents, from a microscopic point of view, a systematic study of the local magnetism in RZn (R = Ce, Gd, Tb, Dy) and GdCu intermetallic compounds through measurements of hyperfine interactions using the Perturbed Angular Correlation Gamma- Gamma Spectroscopy technique with 111 In → 111 Cd and 140 La → 140 Ce as probe nuclei. As the magnetism in these compounds originates from the 4f electrons of the rare-earth elements it is interesting to observe in a systematic study of RZn compounds the behavior of the magnetic hyperfine field with the variation of the number of 4f electrons in the R element. The use of probe nuclei 140 La → 140 Ce is interesting because Ce +3 ion posses one 4f electron which may contribute to the total hyperfine field, and the results showed anomalous behavior. The results for 111 Cd probe showed that the temperature dependence of the magnetic hyperfine field follows the Brillouin function, and the magnetic hyperfine field decreases linearly with increase of the atomic number of rare earth when plotted as a function of the rare-earth J spin projection, showing that the main contribution to the magnetic hyperfine field in RZn compounds comes from the polarization of the conduction electrons. The results for the electric field gradient measured with 111 Cd for all compounds showed a strong decrease with the atomic number of the rare-earth element. We have therefore assumed that the major contribution to the electric field gradient originates from the 4f electrons of the rare-earths. The measurements of the electric field gradient for GdCu with 111 Cd, after temperature decreases and increases again showed that two different structures, CsCl-type cubic and FeB-type orthorhombic structures co-exist. Finally, it is the first time that measurements of hyperfine parameters have been carried out with theses two probe nuclei in the studied RZn. (author)

  17. Monte Carlo simulation of quasielastic neutron scattering from localised and long-range hydrogen motion in C15 Laves phase intermetallic compounds

    International Nuclear Information System (INIS)

    Bull, D.J.; Broom, D.P.; Ross, D.K.

    2003-01-01

    A number of cubic C15 Laves phase intermetallic compounds are able to absorb large amounts of hydrogen. At low solute concentrations, the protons occupy tetrahedral interstitial sites, which form a network of hexagons. It is believed that the motion of hydrogen occurs on two distinct time-scales; a rapid localised motion around the hexagons, coupled with a slower long-range diffusion between hexagons. Results from Monte Carlo simulations of hydrogen diffusion in a Laves phase compound are presented. It is demonstrated that the incoherent quasielastic neutron scattering function, obtained from the simulations, can be interpreted in terms of a broad and a narrow Lorentzian component, emanating from hydrogen motion on the two time scales. The narrower component follows a Chudley-Elliot model, indicative of long-range diffusion, whilst the broader component can be interpreted in terms of localised motion. The calculated effective jump length for long-range diffusion is significantly in excess of the actual jump-length, in agreement with experimental observation. The model is briefly discussed in relation to hydrogen diffusion in ZrV 2 H 1.1

  18. Understanding the multiple magnetic structures of the intermetallic compound NdMn{sub 1.4}Co{sub 0.6}Si{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Halder, Madhumita, E-mail: mhalder@phy.iitb.ac.in [Department of Physics, Indian Institute of Technology Bombay, Mumbai 400076 (India); Bera, A.K.; Kumar, Amit [Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Keller, L. [Laboratory for Neutron Scattering, Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland); Yusuf, S.M., E-mail: smyusuf@barc.gov.in [Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India)

    2014-04-01

    Highlights: • Multiple magnetic phases of NdMn{sub 1.4}Co{sub 0.6}Si{sub 2} compound have been investigated. • Five distinct magnetic phases are found with temperature. • Collinear AFM, incommensurate AFM, mixed FM and AFM structures found. • Nd site contributes distinctly to the observed magnetic phases at low temperature. - Abstract: Magnetic phases for the intermetallic compound NdMn{sub 1.4}Co{sub 0.6}Si{sub 2} have been investigated at various temperatures by dc magnetization, neutron diffraction and neutron depolarization. Our study shows multiple magnetic phase transitions with temperature (T) over 1.5–300 K. In agreement with dc-magnetization and neutron depolarization results, the temperature dependence of the neutron diffraction patterns shows five distinct regions with different magnetic phases. These temperature regions are (i) T ⩾ 215 K, (ii) 215 K > T ⩾ 50 K, (iii) 50 K > T ⩾ 40 K, (iv) 40 K > T > 15 K, and (v) T ⩽ 15 K. The corresponding magnetic structures are paramagnetic, commensurate collinear antiferromagnetic (AFM-I), incommensurate AFM (AFM-II), mixed ferromagnetic and AFM (FM + AFM-II), and incommensurate AFM (AFM-II), respectively.

  19. Application of AOPs for Removal of Stable Cyanide Compounds

    Science.gov (United States)

    Tsybikova, B.

    2017-11-01

    The main kinetic regularities of the photochemical oxidation of stable cyanide compounds (exemplified by hexacyanoferrates) by combined treatments involving direct photolysis and persulfate (oxidative system UV/S2O8 2‑) and direct photolysis and hydrogen peroxide (oxidative system UV/H2O2) were studied. The possibility to perform oxidation processes within a wide pH range was shown. Based on to the energy efficiency, the rate of reaction and duration of the treatment, the considered oxidative systems can be arranged in the following order: {UV/S2O8 2‑}>{UV/H2O2}>{UV}. The enhanced efficiency of hexacyanoferrates’ degradation by the combined system {UV/S2O8 2‑} is due to the high oxidative capacity of sulfate anion radicals SO4 ‑· formed as a result of persulfate photolysis and its further disproportionation by Fe3+ and Fe2+ released through the decomposition of [Fe(CN)6]3‑. Furthermore, the formation of ·OH radicals as a result of SO4 ‑· reacting with water also contributes to the enhanced oxidation efficiency. The combined method of {UV/S2O8 2‑} treatment could be applied for the treatment of cyanide-containing wastewater and recycled water of different industries.

  20. Inhibition of the formation of intermetallic compounds in aluminum-steel welded joints by friction stir welding; Inhibicion de la formacion de compuestos intermetalicos en juntas aluminio-acero soldadas por friccion-agitacion

    Energy Technology Data Exchange (ETDEWEB)

    Torres Lopez, E. A.; Ramirez, A. J.

    2015-07-01

    Formation of deleterious phases during welding of aluminum and steel is a challenge of the welding processes, for decades. Friction Stir Welding (FSW) has been used in an attempt to reduce formation of intermetallic compounds trough reducing the heat input. In this research, dissimilar joint of 6063-T5 aluminum alloy and AISI-SAE 1020 steel were welded using this technique. The temperature of welded joints was measured during the process. The interface of the welded joints was characterized using optical microscopy, scanning and transmission electron microscopy. Additionally, composition measurements were carried out by X-EDS and DRX. The experimental results revealed that the maximum temperature on the joint studied is less than 360 degree centigrade. The microstructural characterization in the aluminum-steel interface showed the absence of intermetallic compounds, which is a condition attributed to the use of welding with low thermal input parameters. (Author)

  1. Experimental and computational study of the morphological evolution of intermetallic compound (Cu6Sn5) layers at the Cu/Sn interface under isothermal soldering conditions

    International Nuclear Information System (INIS)

    Park, M.S.; Stephenson, M.K.; Shannon, C.; Cáceres Díaz, L.A.; Hudspeth, K.A.; Gibbons, S.L.; Muñoz-Saldaña, J.; Arróyave, R.

    2012-01-01

    Cu/Sn soldering alloys have emerged as a viable alternative to Pb-based solders, and thus have been extensively explored in the past decade, although the fine-scale behavior of the resulting intermetallic compounds (IMCs), particularly during the early stages of interface formation, is still a source of debate. In this work, the microstructural evolution of Cu 6 Sn 5 , in a Cu/Sn soldering reaction at 523 K, was experimentally investigated by dipping a single Cu sample into molten Sn at a near-constant speed, yielding a continuous set of time evolution samples. The thickness, coarsening and morphology evolution of the Cu 6 Sn 5 layer is investigated through the use of scanning electron microscopy. The experimental results are also compared to phase-field simulations of the microstructural evolution of the Cu 6 Sn 5 layer. The influence of model parameters on the kinetics and morphological evolution of the IMC layer was examined. In general, good qualitative agreement is found between experiments and simulations and for a limited parameter set there appears to be good quantitative agreement between the growth kinetics of the Cu 6 Sn 5 layer, the grain boundary (GB) effect on grain coarsening, and the substrate/IMC interface roughness evolution. Furthermore, the parametric investigations of the model suggests that good agreement between experiments and simulations is achieved when the dominant transport mechanism for the reacting elements (Cu and Sn) is GB diffusion.

  2. A Correlation between the Ultimate Shear Stress and the Thickness Affected by Intermetallic Compounds in Friction Stir Welding of Dissimilar Aluminum Alloy–Stainless Steel Joints

    Directory of Open Access Journals (Sweden)

    Florent Picot

    2018-03-01

    Full Text Available In this work, Friction Stir Welding (FSW was applied to join a stainless steel 316L and an aluminum alloy 5083. Ranges of rotation and translation speeds of the tool were used to obtain welding samples with different heat input coefficients. Depending on the process parameters, the heat generated by FSW creates thin layers of Al-rich InterMetallic Compound (IMC mainly composed of FeAl3, identified by energy dispersive spectrometry. Traces of Fe2Al5 were also depicted in some samples by X-ray diffraction analysis and transmission electron microscopy. Monotonous tensile tests performed on the weld joint show the existence of a maximum mechanical resistance for a judicious choice of rotation and translation speeds. It can be linked to an affected zone of average thickness of 15 µm which encompass the presence of IMC and the chaotic mixing caused by plastic deformation in this area. A thickness of less than 15 µm is not sufficient to ensure a good mechanical resistance of the joint. For a thickness higher than 15 µm, IMC layers become more brittle and less adhesive due to high residual stresses which induces numerous cracks after cooling. This leads to a progressive decrease of the ultimate shear stress supported by the bond.

  3. Phase transformation and morphology of the intermetallic compounds formed at the Sn-9Zn-3.5Ag/Cu interface in aging

    International Nuclear Information System (INIS)

    Hon, M.-H.; Chang, T.-C.; Wang, M.-C.

    2008-01-01

    The morphology and phase transformation of the intermetallic compounds (IMCs) formed at the Sn-9Zn-3.5Ag/Cu interface in a solid-state reaction have been investigated by X-ray diffraction (XRD), transmission electron microscopy (TEM), electron diffraction (ED), scanning electron microscopy (SEM) and energy dispersive spectrometry (EDS). The monoclinic η'-Cu 6 Sn 5 transforms to the hexagonal η-Cu 6 Sn 5 and the orthorhombic Cu 5 Zn 8 transforms to the body-centered cubic (bcc) γ-Cu 5 Zn 8 as aged at 180 deg. C. The scallop-shaped Cu 6 Sn 5 layer is retained after aging at 180 deg. C for 1000 h. In the solid-state reaction, Ag is repelled from η'-Cu 6 Sn 5 and reacts with Sn to form Ag 3 Sn, and the Cu 5 Zn 8 layer decomposes. Kirkendall voids are not observed at the Sn-9Zn-3.5Ag/Cu interface even after aging at 180 deg. C for 1000 h

  4. Phase transformation and morphology of the intermetallic compounds formed at the Sn-9Zn-3.5Ag/Cu interface in aging

    Energy Technology Data Exchange (ETDEWEB)

    Hon, M.-H. [Department of Materials Science and Engineering, National Cheng Kung University, 1 Ta-Hsueh Road, Tainan 70101, Taiwan (China); Chang, T.-C. [Department of Materials Science and Engineering, National Cheng Kung University, 1 Ta-Hsueh Road, Tainan 70101, Taiwan (China); Electronic and Optoelectronics Research Laboratories, Industrial Technology Research Institute, Bldg. 11, 195, Sec. 4, Chung-Hsing Road, Chutung, Hsinchu, 310, Taiwan (China); Wang, M.-C. [Faculty of Fragrance and Cosmetics, Kaohsiung Medical University, 100 Shi-Chuan 1st Road, Kaohsiung 807, Taiwan (China)], E-mail: mcwang@kmu.edu.tw

    2008-06-30

    The morphology and phase transformation of the intermetallic compounds (IMCs) formed at the Sn-9Zn-3.5Ag/Cu interface in a solid-state reaction have been investigated by X-ray diffraction (XRD), transmission electron microscopy (TEM), electron diffraction (ED), scanning electron microscopy (SEM) and energy dispersive spectrometry (EDS). The monoclinic {eta}'-Cu{sub 6}Sn{sub 5} transforms to the hexagonal {eta}-Cu{sub 6}Sn{sub 5} and the orthorhombic Cu{sub 5}Zn{sub 8} transforms to the body-centered cubic (bcc) {gamma}-Cu{sub 5}Zn{sub 8} as aged at 180 deg. C. The scallop-shaped Cu{sub 6}Sn{sub 5} layer is retained after aging at 180 deg. C for 1000 h. In the solid-state reaction, Ag is repelled from {eta}'-Cu{sub 6}Sn{sub 5} and reacts with Sn to form Ag{sub 3}Sn, and the Cu{sub 5}Zn{sub 8} layer decomposes. Kirkendall voids are not observed at the Sn-9Zn-3.5Ag/Cu interface even after aging at 180 deg. C for 1000 h.

  5. The effect of compositional changes on the structural and hydrogen storage properties of (La–Ce)Ni5 type intermetallics towards compounds suitable for metal hydride hydrogen compression

    International Nuclear Information System (INIS)

    Odysseos, M.; De Rango, P.; Christodoulou, C.N.; Hlil, E.K.; Steriotis, T.; Karagiorgis, G.; Charalambopoulou, G.; Papapanagiotou, T.; Ampoumogli, A.; Psycharis, V.; Koultoukis, E.; Fruchart, D.; Stubos, A.

    2013-01-01

    Graphical abstract: The effect of the partial substitution of La with Ce on the crystal structure and the final hydrogen storage properties of the alloys. Highlights: ► Absorption-based systems exploit the properties of reversible metal hydrides. ► AB5 intermetallics are mostly popular for thermal desorption compressors. ► Investigation of H2 absorption/desorption properties of LaNi5 and its derivatives. ► LaNi5 thermodynamic properties adjustment by partially replacing La with rare earths. -- Abstract: The present work has been aiming at the synthesis and study of a series of La 1−x Ce x Ni 5 (x = 0, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8) alloys in an attempt to investigate possible alterations of the hydrogen absorption/desorption properties The alloys were prepared by induction melting of the constituent elements. The systematic characterization of all new compounds by means of XRD and hydrogen sorption measurements revealed the effect of the partial substitution of La with Ce on the crystal structure and the final hydrogen storage properties of the alloys. Extensive absorption/desorption experiments (Van’t Hoff diagrams) have shown that such alloys can be used to build a metal hydride compressor (MHC), compressing H 2 gas from 0.2 MPa to 4.2 MPa using cold (20 °C) and hot (80 °C) water

  6. Asymmetrical Precipitation of Ag3Sn Intermetallic Compounds Induced by Thermomigration of Ag in Pb-Free Microbumps During Solid-State Aging

    Science.gov (United States)

    Su, Yu-Ping; Wu, Chun-Sen; Ouyang, Fan-Yi

    2016-01-01

    Three-dimensional integrated circuit technology has become a major trend in electronics packaging in the microelectronics industry. To effectively remove heat from stacked integrated circuitry, a temperature gradient must be established across the chips. Furthermore, because of the trend toward higher device current density, Joule heating is more serious and temperature gradients across soldered joints are expected to increase. In this study we used heat-sink and heat-source devices to establish a temperature gradient across SnAg microbumps to investigate the thermomigration behavior of Ag in SnAg solder. Compared with isothermal conditions, small Ag3Sn particles near the hot end were dissolved and redistributed toward the cold end under a temperature gradient. The results indicated that temperature gradient-induced movement of Ag atoms occurred from the hot side toward the cold side, and asymmetrical precipitation of Ag3Sn resulted. The mechanism of growth of the intermetallic compound (IMC) Ag3Sn, caused by thermomigration of Ag, is discussed. The rate of growth Ag3Sn IMC at the cold side was found to increase linearly with solid-aging time under a temperature gradient. To understand the force driving Ag diffusion under the temperature gradient, the molar heat of transport ( Q*) of Ag in Sn was calculated as +13.34 kJ/mole.

  7. Wear out Reliability and Intermetallic Compound Diffusion Kinetics of Au and PdCu Wires Used in Nano scale Device Packaging

    International Nuclear Information System (INIS)

    Gan, C.L.; Ng, E.K.; Chan, B.L.; Gan, C.L.; Hashim, U.; Classe, F.C.; Kwuanjai, T.

    2013-01-01

    Wear out reliability and diffusion kinetics of Au and Pd-coated Cu (PdCu) ball bonds are useful technical information for Cu wire deployment in nano scale semiconductor device packaging. This paper discusses the HAST (with bias) and UHAST (unbiased HAST) wear out reliability performance of Au and PdCu wires used in fine pitch BGA packages. In-depth failure analysis has been carried out to identify the failure mechanism under various wear out conditions. Intermetallic compound (IMC) diffusion constants and apparent activation energies (E a a) of both wire types were investigated after high temperature storage life test (HTSL). Au bonds were identified to have faster IMC formation, compared to slower IMC growth of PdCu. PdCu wire was found to exhibit equivalent or better wear out reliability margin compared to conventional Au wire bonds. Failure mechanisms of Au, Cu ball bonds post-HAST and UHAST tests are been proposed, and both Au and PdCu IMC diffusion kinetics and their characteristics are discussed in this paper.

  8. Effect of rapid quenching on the magnetism and magnetocaloric effect of equiatomic rare earth intermetallic compounds RNi (R = Gd, Tb and Ho)

    Energy Technology Data Exchange (ETDEWEB)

    Rajivgandhi, R. [Department of Physics, Indian Institute of Technology Madras, Chennai 600 036 (India); Arout Chelvane, J. [Defence Metallurgical Research Laboratory, Hyderabad 500 058 (India); Quezado, S.; Malik, S.K. [Departamento de F’ısica Teorica e Experimental, Universidade Federal do Rio Grande do Norte, Natal 59072-970 (Brazil); Nirmala, R., E-mail: nirmala@physics.iitm.ac.in [Department of Physics, Indian Institute of Technology Madras, Chennai 600 036 (India)

    2017-07-01

    Highlights: • Melt-spinning yields microcrystalline RNi (R = Gd, Tb and Ho) samples with texture. • The texture-induced anisotropy affects magnetic and magnetocaloric properties. • Melt-spinning helps one engineer magnetocaloric effect in rare-earth compounds. - Abstract: Magnetocaloric effect (MCE) in RNi (where R = Gd, Tb and Ho) compounds has been studied in their arc-melted and melt-spun forms. The compound GdNi has the orthorhombic CrB-type structure (Space group Cmcm, No. 63) and the compound HoNi has the orthorhombic FeB-type structure (Space group Pnma, No. 62) at room temperature regardless of their synthesis condition. However, arc-melted TbNi orders in a monoclinic structure (Space group P2{sub 1}/m, No. 11) and when it is rapidly quenched to a melt-spun form, it crystallizes in an orthorhombic structure (Space group Pnma, No. 62). The arc-melted GdNi, TbNi and HoNi compounds order ferromagnetically at ∼69 K, ∼67 K and ∼36 K (T{sub C}) respectively. While the melt-spun GdNi shows about 6 K increase in T{sub C}, the ordering temperature of TbNi remains nearly the same in both arc-melted and melt-spun forms. In contrast, a reduction in T{sub C} by about 8 K is observed in melt-spun HoNi, when compared to its arc-melted counterpart. Isothermal magnetic entropy change, ∆S{sub m}, calculated from the field dependent magnetization data indicates an enhanced relative cooling power (RCP) for melt-spun GdNi for field changes of 20 kOe and 50 kOe. A lowered RCP value is observed in melt-spun TbNi and HoNi. These changes could have resulted from the competing shape anisotropy and the granular microstructure induced by the melt-spinning process. Tailoring the MCE of rare earth intermetallic compounds by suitably controlled synthesis techniques is certainly one of the directions to go forward in the search of giant magnetocaloric materials.

  9. Characterization of phenols biodegradation by compound specific stable isotope analysis

    Science.gov (United States)

    Wei, Xi; Gilevska, Tetyana; Wenzig, Felix; Hans, Richnow; Vogt, Carsten

    2015-04-01

    -cresol degradation and 2.2±0.3‰ for m-cresol degradation, respectively. The carbon isotope fractionation patterns of phenol degradation differed more profoundly. Oxygen-dependent monooxygenation of phenol by A.calcoaceticus as the initial reaction yielded ƐC values of -1.5±0.02‰. In contrast, the anaerobic degradation initiated by ATP-dependent carboxylation performed by Thauera aromatia DSM 6984, produced no detectable fractionation (ƐC 0±0.1‰). D. cetonica showed a slight inverse carbon isotope fractionation (ƐC 0.4±0.1‰). In conclusion, a validated method for compound specific stable isotope analysis was developed for phenolic compounds, and the first data set of carbon enrichment factors upon the biodegradation of phenol and cresols with different activation mechanisms has been obtained in the present study. Carbon isotope fractionation analysis is a potentially powerful tool to monitor phenolic compounds degradation in the environment.

  10. Anisotropy in the paramagnetic phase of RAl/sub 2/ cubic intermetallic compounds (R = Tb, Dy, and Er)

    Energy Technology Data Exchange (ETDEWEB)

    del Moral, A.; Ibarra, M.R.; Abell, J.S.; Montenegro, J.F.D.

    1987-05-01

    In this paper it is shown that the anisotropy in the paramagnetic phase is a useful characteristic when used to single out high-rank susceptibility tensor components in the paramagnetic regime of cubic crystals. Application of this technique to RAl/sub 2/ compounds (R = Tb,Dy,Er) allows the determination of longitudinal and transverse (in the form of linear combinations) fourth- and sixth-rank paramagnetic susceptibilities. The use of the fourth-rank longitudinal susceptibility allows quadrupolar pair interactions in these compounds to be probed.

  11. Fermi surface properties of AB3 (A = Y, La; B = Pb, In, Tl) intermetallic compounds under pressure

    DEFF Research Database (Denmark)

    Ram, Swetarekha; Kanchana, V; Svane, Axel

    2013-01-01

    The electronic structures, densities of states, Fermi surfaces and elastic properties of AB3 (A = La, Y; B = Pb, In, Tl) compounds are studied under pressure using the full-potential linear augmented plane wave (FP-LAPW) method within the local density approximation for the exchange–correlation f...

  12. Electronic and Magnetic Structures, Magnetic Hyperfine Fields and Electric Field Gradients in UX3 (X = In, Tl, Pb) Intermetallic Compounds

    Science.gov (United States)

    Khan, Sajid; Yazdani-Kachoei, Majid; Jalali-Asadabadi, Saeid; Farooq, Muhammad Bilal; Ahmad, Iftikhar

    2018-02-01

    Cubic uranium compounds such as UX3 (X is a non-transition element of groups IIIA or IVA) exhibit highly diverse magnetic properties, including Pauli paramagnetism, spin fluctuation and anti-ferromagnetism. In the present paper, we explore the structural, electronic and magnetic properties as well as the hyperfine fields (HFFs) and electric field gradients (EFGs) with quadrupole coupling constant of UX3 (X = In, Tl, Pb) compounds using local density approximation, Perdew-Burke-Ernzerhof parametrization of generalized gradient approximation (PBE-GGA) including the Hubbard U parameter (GGA + U), a revised version of PBE-GGA that improves equilibrium properties of densely packed solids and their surfaces (PBEsol-GGA), and a hybrid functional (HF-PBEsol). The spin orbit-coupling calculations have been added to investigate the relativistic effect of electrons in these materials. The comparison between the experimental parameters and our calculated structural parameters we confirm the consistency and effectiveness of our theoretical tools. The computed magnetic moments show that magnetic moment increases from indium to lead in the UX3 family, and all these compounds are antiferromagnetic in nature. The EFGs and HFFs, as well as the quadrupole coupling constant of UX3 (X = In, Tl, Pb), are discussed in detail. These properties primarily originate from f and p states of uranium and post-transition sites.

  13. Sintered cobalt-rare earth intermetallic product

    International Nuclear Information System (INIS)

    Benz, M.G.

    1975-01-01

    This patent describes a sintered product having substantially stable permanent magnet properties in air at room temperature. It comprises compacted particulate cobalt--rare earth alloy consisting essentially of a Co 5 R intermetallic phase and a CoR intermetallic phase which is richer in rare earth metal content than the Co 5 R phase, where R is a rare earth metal. The Co 5 R intermetallic phase is present in an amount of at least 65 percent by weight of the sintered product and the CoR intermetallic phase which is richer in rare earth metal content than the Co 5 R phase is present in a positive amount having a value ranging up to about 35 percent by weight of the product. The sintered product has a density of at least 87 percent and has pores which are substantially noninterconnecting and wherein the component grains have an average size less than 30 microns

  14. Synthesis of TiCr2 intermetallic compound from mechanically activated starting powders via calcio-thermic co-reduction

    Science.gov (United States)

    Bayat, O.; Khavandi, A. R.; Ghasemzadeh, R.

    2017-05-01

    Effect of mechanical activation of TiO2 and Cr2O3 oxides as starting materials was investigated for direct synthesis of TiCr2. Differential thermal analysis (DTA) indicated that increasing the ball milling time resulted in lower exothermic reaction temperatures between molten Ca-Cr2O3 and molten Ca-TiO2. A model-free Kissinger type method was applied to DTA data to evaluate the reaction kinetics. The results reveal that the activation energy of the exothermic reactions decreased with increasing the milling time. The structure, oxygen content, and average particle sizes of the obtained TiCr2 product were affected by the ball milling time of the starting materials. Increasing the milling time from 10 to 40 h decreased the average particle size and oxygen content of the obtained TiCr2 from 10 to 2 μm and from 1690 to 1290 ppm, respectively. The X-ray diffraction (XRD) results showed that TiCr2 compounds with metastable bcc phase can be produced using nano-sized starting materials, while only a slight amount of bcc phase can be obtained in the TiCr2 compounds, using micron-sized starting materials. The TiCr2 obtained by this method had a hydrogen absorption capability of 0.63 wt % and the kinetics of the hydrogen absorption increased for the 40 h milled sample.

  15. Magnetic properties of rare-earth intermetallics

    International Nuclear Information System (INIS)

    Kirchmayr, H.

    1978-01-01

    A review is given of the concepts at present used to explain the magnetic properties of rare-earth intermetallics which have been the subject of numerous investigations in recent years. Rare-earth intermetallics with the formula Rsub(a)Bsub(b) are divided according to the magnetic moment of the B atom(s). If there is no magnetic moment present at the B-site, the exchange is only between the magnetic moments at the R-sites, which can only be of indirect character. One possible model is still the RKKY model, although it usually gives in practice only a qualitative description of the magnetic properties. Typical R-B compounds with the B-moment equal to zero are (for instance) the RA1 2 compounds, and related compounds such as the RZn and RCd compounds as well as compounds of the general formula RB 2 (B = Ni, Os, Ir, Pd, Ru or Rh). Of all intermetallics with nonzero B-moment, the R-3d intermetallics are the most important. These intermetallics can be formed with Mn, Fe, Co and Ni. In these systems there exist in principle three interactions, namely between the R-R, R-3d and 3d-3d atoms. The most important is usually the latter interaction. After a short discussion of the crystal structures which occur with R-3d intermetallics, the basic magnetic properties of R-3d intermetallics are presented. These properties are discussed with respect to the formation of a magnetic moment at the 3d site in the framework of present band theories. Special emphasis is given to a discussion of the localized or itinerant character of 3d electrons. (author)

  16. Temperature dependence of the field-induced magnetic form factor of the intermetallic compound PrSn3

    International Nuclear Information System (INIS)

    Loong, C.; Stassis, C.; Zarestky, J.; McMasters, O.D.; Moon, R.M.

    1984-01-01

    The spatial distribution of the magnetization induced by a magnetic field of 42.5 kG in a single crystal of PrSn 3 has been studied at 100 and 20 K using polarized neutron scattering techniques. We find that at both temperatures the measured form factor is in good agreement with the theoretical 4f magnetic form factor of the Pr 3+ ion. This result is in contrast to the large deviations from the 4f magnetic form factor of Ce 3+ observed, at low temperatures, for the mixed-valence compounds CeSn 3 and CePd 3 . The localized static susceptibility of PrSn 3 at 100 and 20 K, obtained by extrapolating the measured form factor to the forward direction, agrees very well with bulk susceptibility measurements

  17. Satelite structure in 59Co NMR spectrum of magnetically ordered Dysub(1-x)Ysub(x)Co2 intermetallic compound

    International Nuclear Information System (INIS)

    Yoshimura, Kazuyoshi; Hirosawa, Satoshi; Nakamura, Yoji

    1984-01-01

    The magnetic environment effect of cobalt in Dysub(1-x)Ysub(x)Co 2 has been studied by means of bulk magnetization and 59 Co spin-echo NMR measurements at 4.2K. Clearly resolved satellite structures of the NMR spectra have been observed. The hyperfine field distributions of 59 Co are decomposed into contributions of Co atoms in various nearest neighbor configurations of rare earth atoms. In this analysis the dipole field due to nearest neighbor rare earth moments plays an important role. The result indicates that the magnetic moment of Co in the RCo 2 cubic Laves phase pseudobinary compounds is quite sensitive to the nearest neighbor rare earth environment. (author)

  18. One-pot solvothermal synthesis of ordered intermetallic Pt2In3 as stable and efficient electrocatalyst towards direct alcohol fuel cell application

    Science.gov (United States)

    Jana, Rajkumar; Peter, Sebastian C.

    2016-10-01

    Ordered intermetallic Pt2In3 nanoparticles have been synthesized by superhydride reduction of K2PtCl4 and InCl3.xH2O precursors using facile, one-pot solvothermal method. We report surfactant free solvothermal synthesis of a novel ordered Pt2In3 intermetallic nanoparticles for the first time. The structure and morphology of the catalyst has been confirmed by powder X-ray diffraction, transmission electron microscopy, field emission scanning electron microscopy, energy-dispersive spectrometry and X-ray photoelectron spectroscopy. The electrocatalytic properties of the catalysts have been investigated by cyclic voltammetry and chronoamperometry. The as prepared Pt2In3 catalyst exhibit far superior electrocatalytic activity and stability towards alcohol oxidation over commercial Pt/C. The specific activity of as synthesized catalyst was found to be 3.2 and 2.3 times higher than commercial Pt/C for methanol and ethanol oxidation, respectively. This improved activity and durability of the Pt2In3 nanoparticles can make the catalyst an ideal catalyst candidate for direct alcohol fuel cell.

  19. R5T4 compounds - unique multifunctional intermetallics for basic research and applications

    Energy Technology Data Exchange (ETDEWEB)

    Mudryk, Yaroslav

    2016-10-01

    The unique properties of the rare-earth elements and their alloys have brought them from relative obscurity to high profile use in common high-tech applications. The broad technological impact of these remarkable materials may have never been known by the general public if not for the supply concerns that placed the rare-earth materials on the front page of newspapers and magazines. Neodymium and dysprosium, two essential components of Nd2Fe14B-based high-performance permanent magnets, have drawn much attention and have been deemed critical materials for many energy-related applications. Ironically, the notoriety of rare-earth elements and their alloys is the result of a global movement to reduce their use in industrial applications and, thus, ease concerns about their supply and ultimately to reduce their position in high-tech supply chains. Research into the applications of lanthanide alloys has been de-emphasized recently due to the perception that industry is moving away from the use of rare-earth elements in new products. While lanthanide supply challenges justify efforts to diversify the supply chain, a strategy to completely replace the materials overlooks the reasons rare earths became important in the first place -- their unique properties are too beneficial to ignore. Rare-earth alloys and compounds possess truly exciting potential for basic science exploration and application development such as solid-state caloric cooling. In this brief review, we touch upon several promising systems containing lanthanide elements that show important and interesting magnetism-related phenomena.

  20. Magnetostriction and thermal expansion of HoFe{sub 11−x}Co{sub x}Ti intermetallic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Sanavi Khoshnoud, D., E-mail: dskhoshnoud@profs.semnan.ac.ir [Department of Physics, Semnan University, Semnan 35195-363 (Iran, Islamic Republic of); Tajabor, N. [Department of Physics, Faculty of Sciences, Ferdowsi University of Mashhad, Mashhad (Iran, Islamic Republic of); Motevalizadeh, L. [Department of Physics, Mashhad Branch, Islamic Azad University, Mashhad (Iran, Islamic Republic of); Fruchart, D. [Institut. Néel, Département MCMF, Groupe IICF, BP 166, 38042 Grenoble Cedex 9 (France)

    2014-08-01

    The thermal expansion and magnetostriction of the HoFe{sub 11−x}Co{sub x}Ti (0≤x≤11) alloys have been investigated, using the strain gauge technique in the temperature range 77–600 K. Both thermal expansion and thermal expansion coefficient exhibit an anomalous behaviour and Invar effect below Curie temperature (T{sub C}=516 K) in sample with x=0. The increase of x in HoFe{sub 11−x}Co{sub x}Ti system leads to disappearing of the Invar effect and increasing of the average thermal expansion coefficient from 6.370×10{sup −6} K{sup −1} in x=0 to 10.735×10{sup −6} K{sup −1} in x=11 below room temperature. In addition, the spontaneous volume magnetostriction decreases with Co content. The magnetostriction compensation point is observed in the anisotropic magnetostriction curve of all samples. The maximum value of anisotropic magnetostriction (Δλ≈50×10{sup −6}) at room temperature is observed in sample with x=9. The saturation behaviour only appears in samples with x=5, 7 and 9. In samples with x=3, 5 and 7, a noticeable volume magnetostriction (ΔV/V) is observed in low temperature due to first-order magnetisation process. Moreover, ΔV/V exhibits a large anomaly about 45×10{sup −6} and 20×10{sup −6} around room temperature related to spin reorientation transition in samples with x=9 and 11, respectively. The results are discussed based on the local magnetic moment model and irreducible magnetoelastic coupling modes. - Highlights: • Magnetoelastic properties of HoFe{sub 11−x}Co{sub x}Ti (x=0–11) compounds is investigated. • Thermal expansion coefficient values increase with Co substitution. • The maximum value of anisotropic magnetostriction at room temperature is observed in x=9. • A considerable volume effect is exhibited in low temperatures due to FOMP in samples with x=3, 5 and 7, and due to SRT in samples x=9 and 11 around room temperature.

  1. One-pot solvothermal synthesis of ordered intermetallic Pt{sub 2}In{sub 3} as stable and efficient electrocatalyst towards direct alcohol fuel cell application

    Energy Technology Data Exchange (ETDEWEB)

    Jana, Rajkumar; Peter, Sebastian C., E-mail: sebastiancp@jncasr.ac.in

    2016-10-15

    Ordered intermetallic Pt{sub 2}In{sub 3} nanoparticles have been synthesized by superhydride reduction of K{sub 2}PtCl{sub 4} and InCl{sub 3}.xH{sub 2}O precursors using facile, one-pot solvothermal method. We report surfactant free solvothermal synthesis of a novel ordered Pt{sub 2}In{sub 3} intermetallic nanoparticles for the first time. The structure and morphology of the catalyst has been confirmed by powder X-ray diffraction, transmission electron microscopy, field emission scanning electron microscopy, energy-dispersive spectrometry and X-ray photoelectron spectroscopy. The electrocatalytic properties of the catalysts have been investigated by cyclic voltammetry and chronoamperometry. The as prepared Pt{sub 2}In{sub 3} catalyst exhibit far superior electrocatalytic activity and stability towards alcohol oxidation over commercial Pt/C. The specific activity of as synthesized catalyst was found to be ~3.2 and ~2.3 times higher than commercial Pt/C for methanol and ethanol oxidation, respectively. This improved activity and durability of the Pt{sub 2}In{sub 3} nanoparticles can make the catalyst an ideal catalyst candidate for direct alcohol fuel cell. - Graphical abstract: The ordered structure of Pt{sub 2}In{sub 3} nanoparticles synthesized by solvothermal method has confirmed through XRD and TEM. Cyclic voltametry and chronoamperometry showed improved catalytic activity and stability compared to commercial Pt/C. - Highlights: • Ordered Pt{sub 2}In{sub 3} nanoparticles were synthesized by solvothermal method. • Electrooxidation of alcohols on Pt{sub 2}In{sub 3} catalyst was investigated in acidic medium. • Pt{sub 2}In{sub 3} catalyst has superior catalytic activity compared to commercial Pt/C. • Pt{sub 2}In{sub 3} catalyst exhibited much higher stability than commercial Pt/C.

  2. Magnetization and specific heat study of metamagnetism in Lu.sub.2./sub.Fe.sub.17./sub.-based intermetallic compounds

    Czech Academy of Sciences Publication Activity Database

    Tereshina, Evgeniya; Andreev, Alexander V.

    2010-01-01

    Roč. 18, č. 6 (2010), 1205-1210 ISSN 0966-9795 R&D Projects: GA ČR GA202/09/0339 Institutional research plan: CEZ:AV0Z10100520 Keywords : rare-earth intermetallics * magnetic properties * single crystal growth Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.327, year: 2010

  3. The Application of CPA to Calculations of the Mean Magnetic Moment in the Gd1-xNi, Gd1-xFe, Gd1xCox, and Y1-xCox Intermetallic Compounds

    DEFF Research Database (Denmark)

    Szpunar, B.; Kozarzewski, B.

    1977-01-01

    with a narrow d-band is considered. The magnetic moment of the alloy at zero temperature is calculated within the molecular field and Hartree-Fock approximations. Disorder is treated in the coherent potential approximation. Results are in good agreement with the experimental data obtained for the crystalline......Calculations are made of the mean magnetic moment per atom of the transition metal and the rare-earth metal in the intermetallic compounds, Gd1-x,Nix, Gd1-x Fex, Gd1-x Cox, and Y1-x Cox. A simple model of the disordered alloy consisting of spins localized on the rare-earth atoms and interacting...

  4. Interfacial reaction of Ni{sub 3}Sn{sub 4} intermetallic compound in Ni/SnAg solder/Ni system under thermomigration

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yi-Shan; Yang, Chia-Jung; Ouyang, Fan-Yi, E-mail: fyouyang@ess.nthu.edu.tw

    2016-07-25

    The growth of Ni{sub 3}Sn{sub 4} intermetallic compound (IMC) between liquid–solid interface in micro-scale Ni/SnAg/Ni system was investigated under a temperature gradient of 160 °C/cm at 260 °C on a hot plate. In contrast to a symmetrical growth of Ni{sub 3}Sn{sub 4} on both interfaces under isothermally annealed at 260 °C, the interfacial Ni{sub 3}Sn{sub 4} IMC exhibited asymmetric growth under a temperature gradient; the growth of Ni{sub 3}Sn{sub 4} at cold interface was faster than that at hot side because of temperature gradient induced mass migration of Ni atoms from the hot end toward the cold end. It was found that two-stage growth behavior of Ni{sub 3}Sn{sub 4} IMC under a temperature gradient. A growth model was established and growth kinetic analysis suggested that the chemical potential gradient controlled the growth of Ni{sub 3}Sn{sub 4} at stage I (0–120 min) whereas the dynamic equilibrium between chemical potential gradient and temperature gradient forces was attained at the hot end at stage II (120–210 min). When dynamic equilibrium was achieved at 260 °C, the critical length-temperature gradient product at the hot end was experimentally estimated to be 489.18 μm × °C/cm and the moving velocity of Ni{sub 3}Sn{sub 4} interface due to Ni consumption was calculated to be 0.134 μm/h. The molar heat of transport (Q*) of Ni atoms in molten SnAg solder was calculated to be +0.76 kJ/mol. - Highlights: • Interfacial reaction in Ni/SnAg solder/Ni system under thermal gradient. • Growth rate of Ni{sub 3}Sn{sub 4} at cold end is faster than that at hot end. • Critical length-temperature gradient product at hot end is 489.2 μm°C/cm at 260 °C. • Velocity of Ni{sub 3}Sn{sub 4} moving interface is 0.134 μm/h during dynamic equilibrium. • Molar heat of transport (Q*) of Ni in molten SnAg was +0.76 kJ/mol.

  5. Determination of the enthalpy of formation of Ni-Al intermetallic compounds using differential scanning calorimetry technique; Determinacao das entalpias de formacao de intermetalicos do sistema Ni-Al atraves da tecnica de calorimetria diferencial de varredura

    Energy Technology Data Exchange (ETDEWEB)

    Kubaski, Evaldo Toniolo; Capocchi, Jose Deodoro Trani, E-mail: evaldotk@usp.br, E-mail: jdtcapoc@usp.br [Universidade de Sao Paulo (EP/USP), Sao Paulo, SP (Brazil). Escola Politecnica. Dept. de Engenharia Metalurgica e de Materiais; Cintho, Osvaldo Mitsuyuki, E-mail: omcintho@uepg.br [Universidade Estadual de Ponta Grossa (UEPG), PR (Brazil). Dept. de Engenharia de Materiais

    2010-07-01

    The compositions Ni20Al80, Ni25Al75, Ni40Al60, Ni50Al50, Ni60Al40 and Ni75Al25 (at. %) were heated in a calibrated thermal analysis equipment. All runs were conducted at a heating rate of 10 deg C/min under a dynamic argon atmosphere. Each composition was heated until the completion of the corresponding exothermic reaction responsible for intermetallic compound formation, and, also heated to 1480 deg C. The products obtained were characterized using X ray diffraction in order to identify the intermetallic compounds that were synthesized. Moreover, the results were evaluated using variance analysis. As a result, enthalpies of formation of Ni{sub 2}Al{sub 3} and Ni{sub 3}Al compounds were determined by means of this methodology. Experimental values were 167 kJ/mol and 93 kJ/mol for Ni{sub 2}Al{sub 3} and Ni{sub 3}Al, respectively. The former is 18% lower than the value found on literature, while the latter is 6% greater. (author)

  6. Identification of stable fly attractant compounds in vinasse, a byproduct of sugarcane-ethanol distillation.

    Science.gov (United States)

    Jelvez Serra, N S; Goulart, H F; Triana, M F; Dos Santos Tavares, S; Almeida, C I M; DA Costa, J G; Santana, A E G; Zhu, J J

    2017-12-01

    The stable fly, Stomoxys calcitrans (Diptera: Muscidae), is a worldwide pest of livestock. Recent outbreaks of stable flies in sugarcane fields in Brazil have become a serious problem for livestock producers. Larvae and pupae found inside sugarcane stems after harvesting may indicate that stable flies use these stems as potential oviposition or larval development sites. Field observations suggest that outbreaks of stable flies are associated with the vinasse and filter cake derived from biomass distillation in sugarcane ethanol production that are used as fertilizers in sugarcane fields. Adult stable flies are attracted to vinasse, which appears to present an ideal larval development site. The primary goal of the present study is to demonstrate the role of vinasse in influencing the sensory physiological and behavioural responses of stable flies, and to identify its associated volatile attractant compounds. Both laboratory and field studies showed that vinasse is extremely attractive to adult stable flies. Chemical analyses of volatiles collected revealed a wide range of carboxylic acids, alcohols, phenols and aldehydes as potential attractant compounds. These newly identified attractants could be used to develop a tool for the attractant-baited mass trapping of stable flies in order to reduce infestations. Published 2017. This article is a U.S. Government work and is in the public domain in the USA.

  7. Formation of abrasion-resistant coatings of the AlSiFe{sub x}Mny intermetallic compound type on the AISI 304L alloy

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Peralez, L. G.; Flores-Valdes, A.; Salinas-Rodriguez, A.; Ochoa-Palacios, R. M.; Toscano-giles, J. A.; Torres-Torres, J.

    2016-05-01

    The α-Al{sub 9}FeMnSi and α-Al{sub 9}FeMn{sub 2}Si intermetallics formed by reactive sintering of Al, Si, Mn, Fe, Cr and Ni powders have been used in AISI 304L steels to enhance microhardness. Processing variables of the reactive sintering treatment were temperature (600, 650, 700, 750 and 800 degree centigrade), pressure (5, 10 y 20 MPa) and holding time (3600, 5400 y 7200 seconds). Experimental results show that temperature is the most important variable affecting the substrate/coating formation, while pressure does not appear to have a significant effect. The results show the optimum conditions of the reactive sintering that favor the substrate/coating formation are 800 degree centigrade, 20 MPa and 7200 seconds. Under these conditions, the reaction zone between the substrate and coating is more compacted and well-adhered, with a microhardness of 1300 Vickers. The results of SEM and X-Ray diffraction confirmed the formation of β-Al{sub 9}FeMnSi and β-Al{sub 9}FeMn{sub 2}Si intermetallics in the substrate/coating interface as well as the presence of Cr and Ni, indicating diffusion of these two elements from the substrate to the interface. (Author)

  8. Influence of Co substitution on magnetoelastic properties of Er{sub 2}Fe{sub 14-x}Co{sub x}B (x = 1, 3 and 5) intermetallic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Khoshnoud, D. Sanavi [Faculty of Science, Department of Physics, Ferdowsi University of Mashhad, Mashhad, Khorasan Razavi (Iran, Islamic Republic of); Tajabor, N. [Faculty of Science, Department of Physics, Ferdowsi University of Mashhad, Mashhad, Khorasan Razavi (Iran, Islamic Republic of)], E-mail: tajabor@ferdowsi.um.ac.ir; Fruchart, D.; Gignoux, D.; Miraglia, S. [Institut. Neel, Departement MCMF, Groupe IICF, BP 166, 38042 Grenoble Cedex 9 (France); Pourarian, F. [Department of Material Science and Engineering, Carengie Mellon University, Pittsburgh, PA 15219 (United States)

    2009-07-08

    The magnetostriction and thermal expansion of Er{sub 2}Fe{sub 14-x}Co{sub x}B (x = 1, 3 and 5) intermetallic compounds were measured, using the strain gauge method in the temperature range 75-450 K under applied magnetic fields up to 1.5 T. For all samples the longitudinal magnetostriction ({lambda}{sub l}) undergoes an anomaly around the spin reorientation temperature (T{sub SR}). It is also observed that {lambda}{sub l} decreases with increasing the Co content. All compounds show saturation type behaviour in their anisotropic magnetostriction curves at different temperatures and applied fields. The saturation behaviour of the compound with x = 3 occurs at higher temperatures than with x = 1 and 5. The volume magnetostriction strongly increases below {mu}{sub 0}H = 0.3 T, then monotonically rises with applied field up to the spin reorientation temperature. An invar type behaviour is observed above 200 K in the compound with x = 1. The results are discussed based on the temperature dependence of magnetocrystalline anisotropy of compounds below and above their T{sub SR}.

  9. Determination of slip systems and their relation to the high ductility and fracture toughness of the B2 DyCu intermetallic compound

    International Nuclear Information System (INIS)

    Cao, G.H.; Shechtman, D.; Wu, D.M.; Becker, A.T.; Chumbley, L.S.; Lograsso, T.A.; Russell, A.M.; Gschneidner, K.A.

    2007-01-01

    DyCu single crystals with CsCl-type B2 structure were tensile tested at room temperature. Slip trace analysis shows that the primary slip system in DyCu with a tensile axis orientation of is {1 1 0} and the critical resolved shear stress for {1 1 0} slip is 18 MPa. Slip traces were also observed from a secondary slip system, {1 1 0} , and this slip system appears to be a key contributor to the previously reported high ductility and high fracture toughness of polycrystalline DyCu. Transmission electron microscopy determinations of the Burgers vectors of dislocations in tensile tested specimens revealed and dislocations, with -type dislocations being more abundant. The implications of these findings for the understanding of the mechanical properties of DyCu and the large family of ductile rare earth B2 intermetallics are discussed

  10. Analytical modelling of stable isotope fractionation of volatile organic compounds in the unsaturated zone

    OpenAIRE

    Bouchard, D.; Cornaton, F.; Höhener, P.; Hunkeler, D.

    2011-01-01

    Analytical models were developed that simulate stable isotope ratios of volatile organic compounds (VOCs) near a point source contamination in the unsaturated zone. The models describe diffusive transport of VOCs, biodegradation and source ageing. The mass transport is governed by Fick's law for diffusion. The equation for reactive transport of VOCs in the soil gas phase was solved for different source geometries and for different boundary conditions. Model results were compared to experiment...

  11. The search for the most stable structures of silicon-carbon monolayer compounds.

    Science.gov (United States)

    Li, Pengfei; Zhou, Rulong; Zeng, Xiao Cheng

    2014-10-21

    The most stable structures of two-dimensional (2D) silicon-carbon monolayer compounds with different stoichiometric compositions (i.e., Si : C ratio = 2 : 3, 1 : 3 and 1 : 4) are predicted for the first time based on the particle-swarm optimization (PSO) technique combined with density functional theory optimization. Although the 2D Si-C monolayer compounds considered here are rich in carbon, many of the low-energy metastable and the lowest-energy silicon-carbon structures are not graphene (carbon monolayer) like. Phonon-spectrum calculations and ab initio molecular dynamics simulations were also performed to confirm the dynamical stability of the predicted most stable 2D silicon-carbon structures as well their thermal stability at elevated temperature. The computed electronic band structures show that all three predicted silicon-carbon compounds are semiconductors with direct or indirect bandgaps. Importantly, their bandgaps are predicted to be close to those of bulk silicon or bulk germanium. If confirmed in the laboratory, these 2D silicon-carbon compounds with different stoichiometric compositions may be exploited for future applications in nanoelectronic devices.

  12. Fatigue of superalloys and intermetallics

    International Nuclear Information System (INIS)

    Stoloff, N.S.

    1993-01-01

    The fatigue behavior of intermetallic alloys and their composites is contrasted to that of nickel-base superalloys. The roles of microstructure and slip planarity are emphasized. Obstacles to use of intermetallics under cyclic loading conditions are described and future research directions are suggested

  13. FY 1998 annual report on the improvement of toughness of silicide-based intermetallic compounds by controlling their composite structures; 1998 nendo fukugo soshikika ni yoru shirisaidokei kinzokukan kagobutsu no kyojinsei kaizen chosa hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    Intermetallic compounds, although attracting much attention as most promising materials serviceable at superhigh temperature, are very fragile at normal temperature, which is one of their major disadvantages. Structures of these compounds prepared by the melting method are controlled to improve their toughness by, e.g., changing phase ratio of the initial crystal for the Mo-Si-Nb system to prevent cracking during the melting and casting stages, addition of a third element (e.g., Zr, Ti or Hf) or a mixed component of Nb and Zr to control the structure of Mo{sub 5}Si{sub 3} considered to be a cause for the cracking, and controlling melting and solidification rates for the FZ melting method. The three-phase microstructures with added Hf or Zr show improved toughness, but need additional procedures for controlling solidification and cooling conditions. For the powder method, the MA conditions are investigated with a two-element system, and the effects of Al or Zr as the third element added to the base composition on the composite microstructures and constituent phases are also investigated. Unlike the melting method, the powder method causes no cracking problems during the stock preparation stage and hence is expected to be applicable to production of larger stocks. However, the products by this method are found to be insufficient both in toughness and high-temperature strength. It is necessary to develop methods for cutting down and controlling oxides in the grain boundaries, in order to prevent deterioration of their strength at high temperature. (NEDO)

  14. Phase transformations in intermetallic phases in zirconium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Filippov, V. P., E-mail: vpfilippov@mephi.ru [National Research Nuclear University MEPhI (Moscow Engineering Physics Institute) (Russian Federation); Kirichenko, V. G. [Kharkiv National Karazin University (Ukraine); Salomasov, V. A. [National Research Nuclear University MEPhI (Moscow Engineering Physics Institute) (Russian Federation); Khasanov, A. M. [University of North Carolina – Asheville, Chemistry Department (United States)

    2017-11-15

    Phase change was analyzed in intermetallic compounds of zirconium alloys (Zr – 1.03 at.% Fe; Zr – 0.51 at.% Fe; Zr – 0.51 at.% Fe – M(M = Nb, Sn). Mössbauer spectroscopy on {sup 57}Fe nuclei in backscattering geometry with the registration of the internal conversion electrons and XRD were used. Four types of iron bearing intermetallic compounds with Nb were detected. A relationship was found between the growth process of intermetallic inclusions and segregation of these phases. The growth kinetics of inclusions possibly is not controlled by bulk diffusion, and a lower value of the iron atom’s activation energy of migration can be attributed to the existence of enhanced diffusion paths and interface boundaries.

  15. The effect of Co doping on the magnetic, hyperfine and transport properties of the metamagnetic LaFe11.44Al1.56 intermetallic compound

    International Nuclear Information System (INIS)

    Proveti, J R; Passamani, E C; Larica, C; Gomes, A M; Takeuchi, A Y; Massioli, A

    2005-01-01

    The influence of Co doping on the hyperfine, structural, magnetic and transport properties of La(Fe 1-x Co x ) 11.44 Al 1.56 (x = 0, 0.04, 0.08 and 0.12) compounds was investigated by Moessbauer spectroscopy, x-ray diffraction, magnetization and electric resistivity measurements. Stabilization of the NaZn 13 structure by Al atoms was also investigated in Co undoped samples and a relatively large amount of α -Fe segregated phase was observed for Al content lower than 0.10, which indicate a solubility limit for Al substitution. The Moessbauer spectra indicate that Fe atoms see a chemically disordered environment, which is related to the presence of substitutional Al and/or Co atoms. The electric field gradient value at the Fe sites of the compounds is not affected by the Al substitution, with a quadrupole splitting value of 0.44 mm s -1 . The compound magnetic ordering temperature varies from 195 to 360 K and can be set according to the Co content. An enhancement of the Fe effective magnetic moment with increasing Co doping has also been observed. The applied magnetic field induces antiferromagnetic (AFM) to ferromagnetic (FM) phase transition, with a field value depending on the Co concentration, and is about 5 T for x = 0 and about 0.5 T for x = 0.04. A second magnetic phase transition occurs on cooling to low temperatures from an AFM to a spin-glass-like (SGL) state for x = 0. A possibly reentrant SGL state may occur from the FM state for x = 0.04. For x > 0.04, the compounds behave as FM for measuring field of 0.04 T

  16. Calorimetric measurement of the intermetallic compounds Cr{sub 3}Ga and CrGa{sub 4} and thermodynamic assessment of the (Cr-Ga) system

    Energy Technology Data Exchange (ETDEWEB)

    Belgacem-Bouzida, A. [Laboratoire d' etude Physico-Chimique des Materiaux, Departement de Physique, Faculte des Sciences, Universite de Batna, Rue Chahid Boukhlouf, 05000 Batna (Algeria)]. E-mail: bouzida.aissa@caramail.com; Djaballah, Y. [Laboratoire d' etude Physico-Chimique des Materiaux, Departement de Physique, Faculte des Sciences, Universite de Batna, Rue Chahid Boukhlouf, 05000 Batna (Algeria)]. E-mail: djaballah.y@caramail.com; Notin, M. [Laboratoire de Chimie du Solide Mineral, Faculte des Sciences, Universite Henri Poincare Nancy I, B.P. 239, F-54506 Vandoeuvre-les-Nancy Cedex (France)

    2005-07-19

    The enthalpies of formation have been measured for the two binary compounds Cr{sub 3}Ga and CrGa{sub 4} richest and least rich in chromium of the (Cr-Ga) system. We have used two types of calorimetric method: direct reaction and progressive precipitation calorimetry. Thermodynamic optimizations for the binary (Cr-Ga) system using Calphad method are investigated and a set of parameters describing the Gibbs energy of the different phases is given, the phase diagram has been also calculated and presented.

  17. Calculation of the magnetic properties of pseudo-ternary R2M14B intermetallic compounds (R = rare earth, M = Fe, Co

    Directory of Open Access Journals (Sweden)

    Gabriel Gómez Eslava

    2016-06-01

    Full Text Available The extrinsic properties of NdFeB-based magnets can be tuned through partial substitution of Nd by another rare-earth element and Fe by Co, as such substitution leads to a modification in the intrinsic properties of the main phase. Optimisation of a magnet's composition through trial and error is time consuming and not straightforward, since the interplay existing between magnetocrystalline anisotropy and coercivity is not completely understood. In this paper we present a model to calculate the intrinsic magnetic properties of pseudo-ternary Nd2Fe14B-based compounds. As concrete examples, which are relevant for the optimisation of NdFeB-based high-performance magnets used in (hybrid electric vehicles and wind turbines, we consider partial substitution of Nd by Dy or Tb, and Fe by Co.

  18. Structure and magnetism of new rare-earth-free intermetallic compounds: Fe3+xCo3−xTi2 (0 ≤ x ≤ 3

    Directory of Open Access Journals (Sweden)

    Balamurugan Balasubramanian

    2016-11-01

    Full Text Available We report the fabrication of a set of new rare-earth-free magnetic compounds, which form the Fe3Co3Ti2-type hexagonal structure with P-6m2 symmetry. Neutron powder diffraction shows a significant Fe/Co anti-site mixing in the Fe3Co3Ti2 structure, which has a strong effect on the magnetocrystalline anisotropy as revealed by first-principle calculations. Increasing substitution of Fe atoms for Co in the Fe3Co3Ti2 lattice leads to the formation of Fe4Co2Ti2, Fe5CoTi, and Fe6Ti2 with significantly improved permanent-magnet properties. A high magnetic anisotropy (13.0 Mergs/cm3 and saturation magnetic polarization (11.4 kG are achieved at 10 K by altering the atomic arrangements and decreasing Fe/Co occupancy disorder.

  19. Thermal-expansion anomalies and spontaneous magnetostriction of Lu{sub 2}Fe{sub 17-x}Si{sub x} intermetallic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Andreev, A.V. [Institute of Physics, Academy of Sciences, Na Slovance 2, Prague 18221 (Czech Republic)], E-mail: andreev@mag.mff.cuni.cz; Danis, S. [Department of Condenced Matter Physics, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, Prague 12116 (Czech Republic)

    2008-07-15

    The thermal expansion of Lu{sub 2}Fe{sub 17-x}Si{sub x} solid solutions has been measured by X-ray powder diffraction. The magnetic ordering in all compounds within the homogeneity range (x{<=}3.4) is accompanied by a large spontaneous volume magnetostriction, distributed anisotropically over the principal axes of the hexagonal crystal structure. The volume effect {omega}{sub s} in the ground state reaches 14.7x10{sup -3} in Lu{sub 2}Fe{sub 17} and decreases monotonously to 8.9x10{sup -3} for x=3.4, following the reduction of magnetic moment. Despite a still large {omega}{sub s}, the Invar behavior observed in Lu{sub 2}Fe{sub 17} changes to a positive thermal expansion for x>1 due to an increasing Curie temperature.

  20. Single crystal growth of europium and ytterbium based intermetallic ...

    Indian Academy of Sciences (India)

    Abstract. This article covers the use of indium as a potential metal solvent for the crystal growth of europium and ytterbium-based intermetallic compounds. A brief view about the advantage of metal flux technique and the use of indium as reactive and non-reactive flux are outlined. Large single crystals of EuGe2, EuCoGe3.

  1. Nanoscale grain growth behaviour of CoAl intermetallic synthesized ...

    Indian Academy of Sciences (India)

    Grain growth behaviour of the nanocrystalline CoAl intermetallic compound synthesized by mechanical alloying has been studied by isothermal annealing at different temperatures and durations. X-ray diffraction method was employed to investigate structural evolutions during mechanical alloying and annealing processes.

  2. The effect of compositional changes on the structural and hydrogen storage properties of (La–Ce)Ni{sub 5} type intermetallics towards compounds suitable for metal hydride hydrogen compression

    Energy Technology Data Exchange (ETDEWEB)

    Odysseos, M., E-mail: marios.odysseos@grenoble.cnrs.fr [Hystore Technologies Ltd., 30, Spyrou Kyprianou, 2643 Ergates, Nicosia-Cyprus (France); De Rango, P. [Institut NEEL and CRETA, CNRS, BP 166, 38042 Grenoble Cedex (France); Christodoulou, C.N. [Hystore Technologies Ltd., 30, Spyrou Kyprianou, 2643 Ergates, Nicosia-Cyprus (France); Hlil, E.K. [Institut NEEL and CRETA, CNRS, BP 166, 38042 Grenoble Cedex (France); Steriotis, T. [National Center for Scientific Research “Demokritos”, 15310 Agia Paraskevi Attikis, Athens (Greece); Karagiorgis, G. [Hystore Technologies Ltd., 30, Spyrou Kyprianou, 2643 Ergates, Nicosia-Cyprus (France); Charalambopoulou, G. [National Center for Scientific Research “Demokritos”, 15310 Agia Paraskevi Attikis, Athens (Greece); Papapanagiotou, T. [Hystore Technologies Ltd., 30, Spyrou Kyprianou, 2643 Ergates, Nicosia-Cyprus (France); Ampoumogli, A.; Psycharis, V. [National Center for Scientific Research “Demokritos”, 15310 Agia Paraskevi Attikis, Athens (Greece); Koultoukis, E. [McPhy Energy S.A., Z.A. Quartier Rietiere, 26190 La Motte-Fanjas (France); Fruchart, D. [Institut NEEL and CRETA, CNRS, BP 166, 38042 Grenoble Cedex (France); Stubos, A. [National Center for Scientific Research “Demokritos”, 15310 Agia Paraskevi Attikis, Athens (Greece)

    2013-12-15

    Graphical abstract: The effect of the partial substitution of La with Ce on the crystal structure and the final hydrogen storage properties of the alloys. Highlights: ► Absorption-based systems exploit the properties of reversible metal hydrides. ► AB5 intermetallics are mostly popular for thermal desorption compressors. ► Investigation of H2 absorption/desorption properties of LaNi5 and its derivatives. ► LaNi5 thermodynamic properties adjustment by partially replacing La with rare earths. -- Abstract: The present work has been aiming at the synthesis and study of a series of La{sub 1−x}Ce{sub x}Ni{sub 5} (x = 0, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8) alloys in an attempt to investigate possible alterations of the hydrogen absorption/desorption properties The alloys were prepared by induction melting of the constituent elements. The systematic characterization of all new compounds by means of XRD and hydrogen sorption measurements revealed the effect of the partial substitution of La with Ce on the crystal structure and the final hydrogen storage properties of the alloys. Extensive absorption/desorption experiments (Van’t Hoff diagrams) have shown that such alloys can be used to build a metal hydride compressor (MHC), compressing H{sub 2} gas from 0.2 MPa to 4.2 MPa using cold (20 °C) and hot (80 °C) water.

  3. Electronic structure, elasticity, bonding features and mechanical behaviour of zinc intermetallics: A DFT study

    Energy Technology Data Exchange (ETDEWEB)

    Fatima, Bushra, E-mail: bushrafatima25@gmail.com; Acharya, Nikita; Sanyal, Sankar P. [Department of Physics, Barkatullah University, Bhopal, 462026 (India)

    2016-05-06

    The structural stability, electronic structure, elastic and mechanical properties of TiZn and ZrZn intermetallics have been studied using ab-initio full potential linearized augmented plane wave (FP-LAPW) method within generalized gradient approximation for exchange and correlation potentials. The various structural parameters, such as lattice constant (a{sub 0}), bulk modulus (B), and its pressure derivative (B’) are analysed and compared. The investigation of elastic constants affirm that both TiZn and ZrZn are elastically stable in CsCl (B{sub 2} phase) structure. The electronic structures have been analysed quantitatively from the band structure which reveals the metallic nature of these compounds. To better illustrate the nature of bonding and charge transfer, we have also studied the Fermi surfaces. The three well known criterion of ductility namely Pugh’s rule, Cauchy’s pressure and Frantsevich rule elucidate the ductile nature of these compounds.

  4. Synthesis of novel stable compounds in the phosphorous-nitrogen system under pressure

    Science.gov (United States)

    Stavrou, Elissaios; Batyrev, Iskander; Ciezak-Jenkins, Jennifer; Grivickas, Paulius; Zaug, Joseph; Greenberg, Eran; Kunz, Martin

    2017-06-01

    We explore the possible formation of stable, and metastable at ambient conditions, polynitrogen compounds in the P-N system under pressure using in situ X-ray diffraction and Raman spectroscopy in synergy with first-principles evolutionary structural search algorithms (USPEX). We have performed numerous synthesis experiments at pressures from near ambient up to +50 GPa using both a mixture of elemental P and N2 and relevant precursors such as P3N5. Calculation of P-N extended structures at 10, 30, and 50 GPa was done using USPEX based on density functional theory (DFT) plane-waves calculations (VASP) with ultrasoft pseudopotentials. Full convex plot was found for N rich concentrations of P-N binary system. Variable content calculations were complemented by fixed concentration calculations at certain nitrogen rich concentration. Stable structures refined by DFT calculations using norm-concerning pseudopotentials. A comparison between our results and previous studies in the same system will be also given. Part of this work was performed under the auspices of the U. S. DoE by LLNS, LLC under Contract DE-AC52-07NA27344. We thank the Joint DoD/DOE Munitions Technology Development Program and the HE science C-II program at LLNL for supporting this study.

  5. High temperature oxidation behavior of TiAl-based intermetallics

    International Nuclear Information System (INIS)

    Stroosnijder, M.F.; Sunderkoetter, J.D.; Haanappel, V.A.C.

    1996-01-01

    TiAl-based intermetallic compounds have attracted considerable interest as structural materials for high-temperature applications due to their low density and substantial mechanical strength at high temperatures. However, one major drawback hindering industrial application arises from the insufficient oxidation resistance at temperatures beyond 700 C. In the present contribution some general aspects of high temperature oxidation of TiAl-based intermetallics will be presented. This will be followed by a discussion of the influence of alloying elements, in particular niobium, and of the effect of nitrogen in the oxidizing environment on the high temperature oxidation behavior of such materials

  6. Analytical modelling of stable isotope fractionation of volatile organic compounds in the unsaturated zone

    Science.gov (United States)

    Bouchard, Daniel; Cornaton, Fabien; Höhener, Patrick; Hunkeler, Daniel

    2011-01-01

    Analytical models were developed that simulate stable isotope ratios of volatile organic compounds (VOCs) near a point source contamination in the unsaturated zone. The models describe diffusive transport of VOCs, biodegradation and source ageing. The mass transport is governed by Fick's law for diffusion. The equation for reactive transport of VOCs in the soil gas phase was solved for different source geometries and for different boundary conditions. Model results were compared to experimental data from a one-dimensional laboratory column and a radial-symmetric field experiment. The comparison yielded a satisfying agreement. The model results clearly illustrate the significant isotope fractionation by gas phase diffusion under transient state conditions. This leads to an initial depletion of heavy isotopes with increasing distance from the source. The isotope evolution of the source is governed by the combined effects of isotope fractionation due to vaporisation, diffusion and biodegradation. The net effect can lead to an enrichment or depletion of the heavy isotope in the remaining organic phase, depending on the compound and element considered. Finally, the isotope evolution of molecules migrating away from the source and undergoing degradation is governed by a combined degradation and diffusion isotope effect. This suggests that, in the unsaturated zone, the interpretation of biodegradation of VOC based on isotopic data must always be based on a model combining gas phase diffusion and degradation.

  7. Ab initio study of the compound-energy modeling of multisublattice structures: The (hP6) Ni{sub 2}In-type intermetallics of the Ni–In–Sn system

    Energy Technology Data Exchange (ETDEWEB)

    Ramos de Debiaggi, S., E-mail: susana.ramos@fain.uncoma.edu.ar [Facultad de Ingeniería, Universidad Nacional del Comahue, Buenos Aires 1400, 8300 Neuquén (Argentina); Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas – CONICET-UNCo (Argentina); González Lemus, N.V. [Facultad de Ingeniería, Universidad Nacional del Comahue, Buenos Aires 1400, 8300 Neuquén (Argentina); Deluque Toro, C. [Grupo de Nuevos Materiales, Universidad de la Guajira, Riohacha (Colombia); Fernández Guillermet, A. [CONICET - Instituto Balseiro, Centro Atómico Bariloche, Avda. Bustillo 9500, 8400 Bariloche (Argentina)

    2015-01-15

    Highlights: • A DFT study of the compounds involved in CALPHAD modeling of the Ni–In–Sn (hP6) phase. • Several three-sublattice compounds of Ni, In, Sn and vacancies are studied ab initio. • Structural, cohesive and thermodynamic properties and the electronic DOS are reported. • Trends in calculated properties are correlated with changes in electronic structure. • A picture of the chemical bonding trends for these s-p/d type compounds is discussed. - Abstract: The thermodynamic modeling of non-stoichiometric, multisublattice intermetallic phases using the Compound-Energy Formalism (CEF) involves the determination of parameters representing the Gibbs energy (G{sub m}) of binary compounds, the so-called “end-member compounds” (EMCs), which are often metastable or hypothetical. In current CALPHAD (i.e., “Calculation of Phase Diagrams”) work, these quantities are treated as free parameters to be determined by searching for the best fit to the available information in the optimization procedure. The general purpose of this paper is to propose a theoretical approach to the study of the EMCs which makes use of density-functional-theory (DFT) ab initio calculations. The present method is applied to the EMCs involved in the CEF modeling of the non-stoichiometric (hP6) Ni{sub 2}In-structure type phase of the Ni–In and Ni–In–Sn systems using the three-sublattice models (Ni){sub 1}(Ni,Va){sub 1}(In,Ni){sub 1} and (Ni,Va){sub 1}(Ni,Va){sub 1}(In,Ni,Sn){sub 1}, respectively. By means of systematic ab initio projected augmented waves (PAW) calculations using the VASP code we study the EMCs involved in the CEF formulations of the G{sub m} for this phase in the binary and the ternary systems. Specifically, we study the twelve EMCs corresponding to the following sublattice occupations: (Ni){sub 1}(Ni){sub 1}(In){sub 1}, which is usually described as Ni:Ni:In (i.e., a compound with formula “Ni{sub 2}In”), Ni:Ni:Ni (i.e., “Ni{sub 3}”), Ni:Ni:Sn (

  8. Development of stable isotope dilution assays for the quantitation of Amadori compounds in foods.

    Science.gov (United States)

    Meitinger, Michael; Hartmann, Sandra; Schieberle, Peter

    2014-06-04

    During thermal processing of foods, reducing carbohydrates and amino acids may form 1-amino-1-desoxyketoses named Amadori rearrangement products after the Italian chemist Mario Amadori. Although these compounds are transient intermediates of the Maillard reaction, they are often used as suitable markers to measure the extent of a thermal food processing, such as for spray-dried milk or dried fruits. Several methods are already available in the literature for their quantitation, but measurements are often done with external calibration without addressing losses during the workup procedure. To cope with this challenge, stable isotope dilution assays in combination with LC-MS/MS were developed for the glucose-derived Amadori products of the seven amino acids valine, leucine, isoleucine, phenylalanine, tyrosine, methionine, and histidine using the respective synthesized [(13)C6]-labeled isotopologues as internal standards. The quantitation of the analytes added to a model matrix showed a very good sensitivity with the lowest limits of detection for the Amadori compound of phenylalanine of 0.1 μg/kg starch and 0.2 μg/kg oil, respectively. Also, the standard deviation measured in, for example, wheat beer was only ±2% for this analyte. Application of the method to several foods showed the highest concentrations of the Amadori product of valine in unroasted cocoa (342 mg/kg) as well as in dried bell pepper (3460 mg/kg). In agreement with literature data, drying of foods led to the formation of Amadori products, whereas they were degraded during roasting of, for example, coffee or cocoa. The study presents for the first time results on concentrations of the Amadori compounds of tyrosine and histidine in foods.

  9. Stable isotope applications in biomolecular structure and mechanisms. A meeting to bring together producers and users of stable-isotope-labeled compounds to assess current and future needs

    Energy Technology Data Exchange (ETDEWEB)

    Trewhella, J.; Cross, T.A.; Unkefer, C.J. [eds.

    1994-12-01

    Knowledge of biomolecular structure is a prerequisite for understanding biomolecular function, and stable isotopes play an increasingly important role in structure determination of biological molecules. The first Conference on Stable Isotope Applications in Biomolecular Structure and Mechanisms was held in Santa Fe, New Mexico, March 27--31, 1994. More than 120 participants from 8 countries and 44 institutions reviewed significant developments, discussed the most promising applications for stable isotopes, and addressed future needs and challenges. Participants focused on applications of stable isotopes for studies of the structure and function of proteins, peptides, RNA, and DNA. Recent advances in NMR techniques neutron scattering, EPR, and vibrational spectroscopy were highlighted in addition to the production and synthesis of labeled compounds. This volume includes invited speaker and poster presentations as well as a set of reports from discussion panels that focused on the needs of the scientific community and the potential roles of private industry, the National Stable Isotope Resource, and the National High Magnetic Field Laboratory in serving those needs. This is the leading abstract. Individual papers are processed separately for the database.

  10. Stable isotope applications in biomolecular structure and mechanisms. A meeting to bring together producers and users of stable-isotope-labeled compounds to assess current and future needs

    International Nuclear Information System (INIS)

    Trewhella, J.; Cross, T.A.; Unkefer, C.J.

    1994-12-01

    Knowledge of biomolecular structure is a prerequisite for understanding biomolecular function, and stable isotopes play an increasingly important role in structure determination of biological molecules. The first Conference on Stable Isotope Applications in Biomolecular Structure and Mechanisms was held in Santa Fe, New Mexico, March 27--31, 1994. More than 120 participants from 8 countries and 44 institutions reviewed significant developments, discussed the most promising applications for stable isotopes, and addressed future needs and challenges. Participants focused on applications of stable isotopes for studies of the structure and function of proteins, peptides, RNA, and DNA. Recent advances in NMR techniques neutron scattering, EPR, and vibrational spectroscopy were highlighted in addition to the production and synthesis of labeled compounds. This volume includes invited speaker and poster presentations as well as a set of reports from discussion panels that focused on the needs of the scientific community and the potential roles of private industry, the National Stable Isotope Resource, and the National High Magnetic Field Laboratory in serving those needs. This is the leading abstract. Individual papers are processed separately for the database

  11. Solute-solute interactions in intermetallic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, Debashis; Murray, Ryan; Collins, Gary S., E-mail: collins@wsu.edu [Washington State University, Department of Physics and Astronomy (United States); Zacate, Matthew O. [Northern Kentucky University, Department of Physics and Geology (United States)

    2017-11-15

    Experiments were carried out on highly ordered GdAl{sub 2} samples containing extremely dilute mole fractions of{sup 111}In/Cd probe-atom solutes (about 10{sup −11}), intrinsic antisite atoms Al{sub Gd} having mole fractions of order 0-10{sup −2}, and doped with Ag solutes at mole fractions of order 10{sup −2}. Three types of defect interactions were investigated. (1) Quadrupole interactions caused by Ag-solute atoms neighboring{sup 111}In/Cd solute probe atoms were detected using the method of perturbed angular correlation of gamma rays (PAC). Three complexes of pairs of In-probes and Ag-solutes occupying neighboring positions on Gd- and Al-sublattices were identified by comparing site fractions in Gd-poor and Gd-rich GdAl{sub 2}(Ag) samples and from the symmetry of the quadrupole interactions. Interaction enthalpies between solute-atom pairs were determined from temperature dependences of observed site fractions. Repulsive interactions were observed for close-neighbor complexes In{sub Gd}+Ag{sub Gd} and In{sub Gd}+Ag{sub Al} pairs, whereas a slightly attractive interaction was observed for In{sub Al}+Ag{sub Al}. Interaction enthalpies were all small, in the range ±0.15 eV. (2) Quadrupole interactions caused by intrinsic antisite atoms Al{sub Gd} neighboring In{sub Gd} probes were also detected and site fractions measured as a function of temperature, as in previous work on samples not doped with Ag-solutes [Temperature- and composition-driven changes in site occupation of solutes in Gd{sub 1+3x}Al{sub 2−3x}, Zacate and Collins (Phys. Rev. B69, 174202 (1))]. However, the effective binding enthalpy between In{sub Gd} probe and Al{sub Gd} antisite was found to change sign from -0.12 eV (attractive interaction) in undoped samples to + 0.24 eV (repulsive) in Ag-doped samples. This may be attributed to an attractive interaction between Al{sub Gd} antisite atoms and Ag-dopants that competes with the attractive interaction between In{sub Gd} and Al{sub Gd} defects observed in undoped samples. Alternatively, it may be attributed to competing flows of Ag and Al atoms that, in effect, change the numbers of available sites on the two sublattices (termed degeneracies). (3) The site preference of In-probes to occupy Gd- and Al-sublattices, without nearby defects, in Ag-doped samples was measured. Effective transfer enthalpies between the two sublattices were found in doped samples that were much smaller than the value 0.343(3) eV found in the previous study in undoped GdAl{sub 2}. Two approaches to understanding why the measured enthalpies in doped and undoped samples differ are discussed.

  12. Assessing the functional diversity of herbivorous reef fishes using a compound-specific stable isotope approach

    KAUST Repository

    Tietbohl, Matthew

    2016-12-01

    Herbivorous coral reef fishes play an important role in helping to structure their environment directly by consuming algae and indirectly by promoting coral health and growth. These fishes are generally separated into three broad groups: browsers, grazers, and excavators/scrapers, with these groupings often thought to have a fixed general function and all fishes within a group thought to have similar ecological roles. This categorization assumes a high level of functional redundancy within herbivorous fishes. However, recent evidence questions the use of this broad classification scheme, and posits that there may actually be more resource partitioning within these functional groupings. Here, I use a compound-specific stable isotope approach (CSIA) to show there appears to be a greater diversity of functional roles than previously assumed within broad functional groups. The δ13C signatures from essential amino acids of reef end-members (coral, macroalgae, detritus, and phytoplankton) and fish muscle were analyzed to investigate differences in resource use between fishes. Most end-members displayed clear isotopic differences, and most fishes within functional groups were dissimilar in their isotopic signature, implying differences in the resources they target. No grazers closely resembled each other isotopically, implying a much lower level of functional redundancy within this group; scraping parrotfish were also distinct from excavating parrotfish and to a lesser degree distinct between scrapers. This study highlights the potential of CSIA to help distinguish fine-scale ecological differences within other groups of reef organisms as well. These results question the utility of lumping nominally herbivorous fishes into broad groups with assumed similar roles. Given the apparent functional differences between nominally herbivorous reef fishes, it is important for managers to incorporate the diversity of functional roles these fish play.

  13. Exploration of stable compounds, crystal structures, and superconductivity in the Be-H system

    Directory of Open Access Journals (Sweden)

    Shuyin Yu

    2014-10-01

    Full Text Available Using first-principles variable-composition evolutionary methodology, we explored the high-pressure structures of beryllium hydrides between 0 and 400 GPa. We found that BeH2 remains the only stable compound in this pressure range. The pressure-induced transformations are predicted as I b a m → P 3 ̄ m 1 → R 3 ̄ m → C m c m → P 4 / n m m , which occur at 24, 139, 204 and 349 GPa, respectively. P 3 ̄ m 1 and R 3 ̄ m structures are layered polytypes based on close packings of H atoms with Be atoms filling all octahedral voids in alternating layers. Cmcm and P4/nmm contain two-dimensional triangular networks with each layer forming a kinked slab in the ab-plane. P 3 ̄ m 1 and R 3 ̄ m are semiconductors while Cmcm and P4/nmm are metallic. We have explored superconductivity of both metal phases, and found large electron-phonon coupling parameters of λ = 0.63 for Cmcm with a Tc of 32.1-44.1 K at 250 GPa and λ = 0.65 for P4/nmm with a Tc of 46.1-62.4 K at 400 GPa. The dependence of Tc on pressure indicates that Tc initially increases to a maximum of 45.1 K for Cmcm at 275 GPa and 97.0 K for P4/nmm at 365 GPa, and then decreases with increasing pressure for both phases.

  14. Tracing carbon flow through coral reef food webs using a compound-specific stable isotope approach.

    Science.gov (United States)

    McMahon, Kelton W; Thorrold, Simon R; Houghton, Leah A; Berumen, Michael L

    2016-03-01

    Coral reefs support spectacularly productive and diverse communities in tropical and sub-tropical waters throughout the world's oceans. Debate continues, however, on the degree to which reef biomass is supported by new water column production, benthic primary production, and recycled detrital carbon (C). We coupled compound-specific stable C isotope ratio (δ(13)C) analyses with Bayesian mixing models to quantify C flow from primary producers to coral reef fishes across multiple feeding guilds and trophic positions in the Red Sea. Analyses of reef fishes with putative diets composed primarily of zooplankton (Amblyglyphidodon indicus), benthic macroalgae (Stegastes nigricans), reef-associated detritus (Ctenochaetus striatus), and coral tissue (Chaetodon trifascialis) confirmed that δ(13)C values of essential amino acids from all baseline C sources were both isotopically diagnostic and accurately recorded in consumer tissues. While all four source end-members contributed to the production of coral reef fishes in our study, a single-source end-member often dominated dietary C assimilation of a given species, even for highly mobile, generalist top predators. Microbially reworked detritus was an important secondary C source for most species. Seascape configuration played an important role in structuring resource utilization patterns. For instance, Lutjanus ehrenbergii showed a significant shift from a benthic macroalgal food web on shelf reefs (71 ± 13 % of dietary C) to a phytoplankton-based food web (72 ± 11 %) on oceanic reefs. Our work provides insights into the roles that diverse C sources play in the structure and function of coral reef ecosystems and illustrates a powerful fingerprinting method to develop and test nutritional frameworks for understanding resource utilization.

  15. Tracing carbon flow through coral reef food webs using a compound-specific stable isotope approach

    KAUST Repository

    McMahon, Kelton

    2015-11-21

    Coral reefs support spectacularly productive and diverse communities in tropical and sub-tropical waters throughout the world’s oceans. Debate continues, however, on the degree to which reef biomass is supported by new water column production, benthic primary production, and recycled detrital carbon (C). We coupled compound-specific stable C isotope ratio (δ13C) analyses with Bayesian mixing models to quantify C flow from primary producers to coral reef fishes across multiple feeding guilds and trophic positions in the Red Sea. Analyses of reef fishes with putative diets composed primarily of zooplankton (Amblyglyphidodon indicus), benthic macroalgae (Stegastes nigricans), reef-associated detritus (Ctenochaetus striatus), and coral tissue (Chaetodon trifascialis) confirmed that δ13C values of essential amino acids from all baseline C sources were both isotopically diagnostic and accurately recorded in consumer tissues. While all four source end-members contributed to the production of coral reef fishes in our study, a single-source end-member often dominated dietary C assimilation of a given species, even for highly mobile, generalist top predators. Microbially reworked detritus was an important secondary C source for most species. Seascape configuration played an important role in structuring resource utilization patterns. For instance, Lutjanus ehrenbergii showed a significant shift from a benthic macroalgal food web on shelf reefs (71 ± 13 % of dietary C) to a phytoplankton-based food web (72 ± 11 %) on oceanic reefs. Our work provides insights into the roles that diverse C sources play in the structure and function of coral reef ecosystems and illustrates a powerful fingerprinting method to develop and test nutritional frameworks for understanding resource utilization.

  16. Deformation mechanisms of D022 ordered intermetallic phase in superalloys

    International Nuclear Information System (INIS)

    Lv, D.C.; McAllister, D.; Mills, M.J.; Wang, Y.

    2016-01-01

    High-temperature alloys in general and superalloys in particular are strengthened by ordered intermetallic phases that are relatively stable at elevated temperatures. Because of their low symmetry, however, these ordered intermetallic phases have rather complicated deformation mechanisms that are difficult to uncover by experiment alone. In this study we use a combination of ab initio calculation and phase field simulation at the elementary defect level to illustrate how dislocations interact with precipitates of an ordered intermetallic phase, γ″ (D0 22 , tetragonal), the primary strengthening phase in Ni-Nb-Fe-Cr-Ti-Al-Mo alloy (Inconel 718 or IN718 superalloy). A rich variety of new and sophisticated deformation mechanisms are discovered, including a novel mechanism of dislocation generation (accompanied by a spontaneous stacking fault (SF) transition), formation of superlattice intrinsic SF ribbons (SISF-ribbons) and 1/3<112>-type compact super-dislocations, along with ISF shearing and Orowan looping. The predicted deformation microstructures seem to agree with recent electron microscopy observations in IN718. The detailed deformation mechanisms uncovered can be incorporated in constitutive microstructure-property relationships for advanced crystal plasticity modeling and the approach developed can be used to study plastic deformation of other intermetallic phases in different alloy systems.

  17. Advisory group meeting on stable isotope labelled compounds in biomedical studies

    International Nuclear Information System (INIS)

    Vera Ruiz, H.; Parr, R.M.

    1985-11-01

    The programme of the meeting was restricted to topics involving applications of stable isotopes of the lighter elements (H, C, N, O). The current status of stable isotope techniques and applications in nutritional and biomedical studies, the applicability of these techniques in developing countries and the IAEA's future programmes on this topic were discussed

  18. Compound specific carbon and hydrogen stable isotope analyses of volatile organic compounds in various emissions of combustion processes.

    Science.gov (United States)

    Vitzthum von Eckstaedt, Christiane D; Grice, Kliti; Ioppolo-Armanios, Marisa; Kelly, David; Gibberd, Mark

    2012-11-01

    This study presents carbon (δ(13)C) and hydrogen (δD) isotope values of volatile organic compounds (VOCs) in various emission sources using thermal desorption-gas chromatography-isotope ratio mass spectrometry (TD-GC-irMS). The investigated VOCs ranged from C6 to C10. Samples were taken from (i) car exhaust emissions as well as from plant combustion experiments of (ii) various C3 and (iii) various C4 plants. We found significant differences in δ values of analysed VOCs between these sources, e.g. δ(13)C of benzene ranged between (i) -21.7 ± 0.2 ‰, (ii) -27.6 ± 1.6 ‰ and (iii) -16.3 ± 2.2 ‰, respectively and δD of benzene ranged between (i) -73 ± 13 ‰, (ii) -111 ± 10 ‰ and (iii) -70 ± 24 ‰, respectively. Results of VOCs present in investigated emission sources were compared to values from the literature (aluminium refinery emission). All source groups could be clearly distinguished using the dual approach of δ(13)C and δD analysis. The results of this study indicate that the correlation of compound specific carbon and hydrogen isotope analysis provides the potential for future research to trace the fate and to determine the origin of VOCs in the atmosphere using thermal desorption compound specific isotope analysis. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. First principle studies of electronic and magnetic properties of Lanthanide-Gold (RAu) binary intermetallics

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Sardar [Center for Computational Materials Science, University of Malakand, Chakdara, 18800 Pakistan (Pakistan); Department of Chemistry, University of Malakand, Chakdara, 18800 Pakistan (Pakistan); Ahmad, Rashid, E-mail: rashmad@gmail.com [Center for Computational Materials Science, University of Malakand, Chakdara, 18800 Pakistan (Pakistan); Department of Chemistry, University of Malakand, Chakdara, 18800 Pakistan (Pakistan); Jalali-Asadabadi, S. [Department of Physics, Faculty of Sciences, University of Isfahan (UI), Hezar Gerib Avenue, Isfahan 81746-73441 (Iran, Islamic Republic of); Ali, Zahid [Center for Computational Materials Science, University of Malakand, Chakdara, 18800 Pakistan (Pakistan); Department of Physics, University of Malakand, Chakdara, 18800 Pakistan (Pakistan); Ahmad, Iftikhar [Center for Computational Materials Science, University of Malakand, Chakdara, 18800 Pakistan (Pakistan); Vice Chancellor, Abbott Abad University of Science and Technology, Abbott Abad (Pakistan)

    2017-01-15

    In this article we explore the electronic and magnetic properties of RAu intermetallics (R=Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu) for the first time. These properties are calculated by using GGA, GGA+U and hybrid density functional theory (HF) approaches. Our calculations show that HF provides superior results, consistent to the experimentally reported data. The chemical bonding between rare-earth and gold atoms within these compounds are explained on the basis of spin dependent electronic clouds in different planes, which shows predominantly ionic and metallic nature between Au and R atoms. The Cohesive energies of RAu compounds show direct relation with the melting points. Spin-dependent electronic band structure demonstrates that all these compounds are metallic in nature. The magnetic studies show that HoAu and LuAu are stable in non-magnetic structure, PrAu is stable in ferromagnetic phase and CeAu, NdAu, SmAu, GdAu, TbAu, DyAu, ErAu, TmAu, YbAu are anti-ferromagnetic materials.

  20. Electronic structure and properties of rare earth and actinide intermetallics

    International Nuclear Information System (INIS)

    Kirchmayr, H.R.

    1984-01-01

    There are 188 contributions, experimental and theoretical, a few on rare earth and actinide elements but mostly on rare earth and actinide intermetallic compounds and alloys. The properties dealt with include 1) crystal structure, 2) magnetic properties and magnetic structure, 3) magnetic phase transformations and valence fluctuations, 4) electrical properties and superconductivity and their temperature, pressure and magnetic field dependence. A few papers deal with crystal growth and novel measuring methods. (G.Q.)

  1. Prediction of the first stable compound with flat hexagonal tin layers

    Science.gov (United States)

    Shao, Junping; Beaufils, Clement; Kolmogorov, Aleksey

    An analysis of stability trends in a large family of metal stannides has directed our attention towards a previously unknown compound featuring a backbone of flat hexagonal tin layers. Ab initio calculations show that this compound is at least metastable under ambient conditions and is furthermore stabilized under pressure. Compounds with such layered frameworks may possess exotic electronic properties and also serve as precursors for the synthesis of 2D derivatives. Supported by NSF Grant DMR-1410514.

  2. Topology of Intermetallic Structures: From Statistics to Rational Design.

    Science.gov (United States)

    Akhmetshina, Tatiana G; Blatov, Vladislav A; Proserpio, Davide M; Shevchenko, Alexander P

    2018-01-16

    More than 38 000 substances made only of metal atoms are collected in modern structural databases; we may call them intermetallic compounds. They have important industrial applications, and yet they are terra incognita for most of our undergraduate students. Their structural complexity and synthesis are not easily adaptable to first years laboratories, keeping them away from the standard curricula. They have been described over the years following alternative and complementary views such as coordination polyhedra, atomic layers, and polyatomic clusters. All of these descriptions, albeit relying on grounded principles, have been applied on a subjective basis and never implemented as a strict computational algorithm. Sometimes, the authors generated multiple views of the same structure reported with beautifully drawn figures and/or photos of hand-crafted models in seminal works of the precomputer age. With the use of our multipurpose crystallochemical program package ToposPro, we explored the structural chemistry of intermetallics with objective and reproducible topological methods that allow us to reconcile different structure descriptions. After computing the connectivity patterns between the metal atoms on the basis of Voronoi partitioning of the crystal space, we were able to group the 38 000 intermetallic compounds into 3700 sets of crystal structures with the same topology of atomic net. We have described the different views used in the literature and shown that 12-vertex polyhedra are the most frequent (33%) and that almost half of them are icosahedron-like (46%), followed by cuboctahedron (25%) and, unexpectedly, by bicapped pentagonal prism (13%). Looking for layers, we have found that the hexagonal lattice, which corresponds to the closest packing of spheres on a plane, exists in more than 11 000 crystal structures, confirming the close-packed nature of intermetallics. We have also applied the nanocluster approach, which goes beyond the first

  3. Low-Temperature Synthesis Routes to Intermetallic Superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Schaak, Raymond E

    2008-01-08

    Over the past few years, our group has gained expertise at developing low-temperature solution-based synthetic pathways to complex nanoscale solids, with particular emphasis on nanocrystalline intermetallic compounds. Our synthetic capabilities are providing tools to reproducibly generate intermetallic nanostructures with simultaneous control over crystal structure, composition, and morphology. This DOE-funded project aims to expand these capabilities to intermetallic superconductors. This could represent an important addition to the tools that are available for the synthesis and processing of intermetallic superconductors, which traditionally utilize high-temperature, high-pressure, thin film, or gas-phase vacuum deposition methods. Our current knowledge of intermetallic superconductors suggests that significant enhancements could result from the inherent benefits of low-temperature solution synthesis, e.g. metastable phase formation, control over nanoscale morphology to facilitate size-dependent property studies, robust and inexpensive processability, low-temperature annealing and consolidation, and impurity incorporation (for doping, stoichiometry control, flux pinning, and improving the critical fields). Our focus is on understanding the superconducting properties as a function of synthetic route, crystal structure, crystallite size, and morphology, and developing the synthetic tools necessary to accomplish this. This research program can currently be divided into two classes of superconducting materials: intermetallics (transition metal/post transition metal) and metal carbides/borides. Both involve the development and exploitation of low-temperature synthesis routes followed by detailed characterization of structures and properties, with the goal of understanding how the synthetic pathways influence key superconducting properties of selected target materials. Because of the low-temperature methods used to synthesize them and the nanocrystalline morphologies

  4. Intermetallic-Based High-Temperature Materials

    Energy Technology Data Exchange (ETDEWEB)

    Sikka, V.K.

    1999-04-25

    The intermetallic-based alloys for high-temperature applications are introduced. General characteristics of intermetallics are followed by identification of nickel and iron aluminides as the most practical alloys for commercial applications. An overview of the alloy compositions, melting processes, and mechanical properties for nickel and iron aluminizes are presented. The current applications and commercial producers of nickel and iron aluminizes are given. A brief description of the future prospects of intermetallic-based alloys is also given.

  5. Study of hyperfine interactions in intermetallic compounds Gd(Ni,Pd,Cu)In, Tb(Ni,Pd)In, Dy(Ni,Pd)In and Ho(Ni,Pd)In; Estudo de interacoes hiperfinas em compostos intermetalicos Gd(Ni,Pd,Cu)In, Tb(Ni,Pd)In, Dy(Ni,Pd)In e Ho(Ni,Pd)In

    Energy Technology Data Exchange (ETDEWEB)

    Lapolli, Andre Luis

    2006-07-01

    Systematic behavior of magnetic hyperfine field (B{sub hf}) in the intermetallic compounds Gd(Ni,Pd,Cu)In Tb(Ni,Pd)In, Dy(Ni,Pd)In and Ho(Ni,Pd)In was studied by Perturbed Gamma-Gamma Angular Correlation spectroscopy. The measurements of B{sub hf} were carried out at the rare earth atom and in sites using the nuclear probes {sup 140}Ce and {sup 11}'1Cd respectively. The variation of hyperfine field with temperature, in most cases, follows the Brillouin function predicted from the molecular field theory. The hyperfine field values at rare earth atom sites obtained from {sup 140}Ce probe as well as at in sites obtained from {sup 111}Cd probe for each series of compounds were extrapolated to zero Kelvin B{sub hf}(T=0) from these curves. These values were compared with the values of the literature for other compounds containing the same rare earth element and all of them show a linear relationship with the ordering temperature. This indicates that the main contribution to B{sub hf} comes from the conduction electron polarization (CEP) through Fermi contact interaction and the principal mechanism of magnetic interaction in these compounds can be described by the RKKY type interaction. The values of B{sub hf}(T=0) for each family of intermetallic compounds RNiIn and RPdIn when plotted as a function of 4f spin projection of rare earth element also shows a linear relationship. Exceptions are the results for the compounds RNiIn obtained with {sup 111}Cd probe where a small deviation from linearity is observed. The results of the measurements carried out with the {sup 111}Cd probe were also analyzed to obtain the hyperfine parameters of the quadrupole interaction as a function of temperature for RPdln and GdNiIn compounds. The results show that for the compound GdPdIn there might be some Gd-In disorder at high temperature. (author)

  6. Method for making devices having intermetallic structures and intermetallic devices made thereby

    Energy Technology Data Exchange (ETDEWEB)

    Paul, Brian Kevin (Oregon State University, Corvallis, OR); Wilson, Rick D.; Alman, David E.

    2004-01-06

    A method and system for making a monolithic intermetallic structure are presented. The structure is made from lamina blanks which comprise multiple layers of metals which are patternable, or intermetallic lamina blanks that are patternable. Lamina blanks are patterned, stacked and registered, and processed to form a monolithic intermetallic structure. The advantages of a patterned monolithic intermetallic structure include physical characteristics such as melting temperature, thermal conductivity, and corrosion resistance. Applications are broad, and include among others, use as a microreactor, heat recycling device, and apparatus for producing superheated steam. Monolithic intermetallic structures may contain one or more catalysts within the internal features.

  7. A Method to Evaluate Isotopic and Energy Turnover Rates in Larval Culex quinquefasciatus (Diptera: Culicidae) Using Stable Isotope Labeled Compounds.

    Science.gov (United States)

    Healy, Kristen

    2018-03-14

    The goal of this study was to evaluate the use of stable isotope labeled compounds to better understand factors influencing energy turnover in larval Culex quinquefasciatus (Say; Diptera: Culicidae). Three isotope labeled compounds were evaluated in this study, including 15N-labeled potassium nitrate, 13C-labeled glucose, and 13C-labeled leucine. Conditions were first optimized in the laboratory to determine the most appropriate concentration of isotope, as well as the half-life of enrichment. Once optimum conditions were established we used standard equations to predict and determine temperature and density-dependent energy turnover rates. Our results showed that higher concentrations of isotope had an impact on mosquito survivability, overall enrichment, and adult wing length. We predicted the half-life of to be around 0.614 to 0.971 d, and our observed half-lives were determined to be 0.72 to 1.44 d depending on temperature, larval density, and isotope compound. Both density and temperature had a strong influence on isotopic turnover rates in all isotopes evaluated. Our results suggest that stable isotopes can provide a useful tool in understanding how different stress factors influence energy turnover in larval Cx. quinquefasciatus. These data can also help lay a foundation on ways to improve larvicide efficacy under different biotic and abiotic conditions.

  8. Rare earth-ruthenium-magnesium intermetallics

    Energy Technology Data Exchange (ETDEWEB)

    Stein, Sebastian; Kersting, Marcel; Heletta, Lukas; Poettgen, Rainer [Muenster Univ. (Germany). Inst. fuer Anorganische und Analytische Chemie

    2017-07-01

    Eight new intermetallic rare earth-ruthenium-magnesium compounds have been synthesized from the elements in sealed niobium ampoules using different annealing sequences in muffle furnaces. The compounds have been characterized by powder and single crystal X-ray diffraction. Sm{sub 9.2}Ru{sub 6}Mg{sub 17.8} (a=939.6(2), c=1779(1) pm), Gd{sub 11}Ru{sub 6}Mg{sub 16} (a=951.9(2), c=1756.8(8) pm), and Tb{sub 10.5}Ru{sub 6}Mg{sub 16.5} (a=942.5(1), c=1758.3(4) pm) crystallize with the tetragonal Nd{sub 9.34}Ru{sub 6}Mg{sub 17.66} type structure, space group I4/mmm. This structure exhibits a complex condensation pattern of square-prisms and square-antiprisms around the magnesium and ruthenium atoms, respectively. Y{sub 2}RuMg{sub 2} (a=344.0(1), c=2019(1) pm) and Tb{sub 2}RuMg{sub 2} (a=341.43(6), c=2054.2(7) pm) adopt the Er{sub 2}RuMg{sub 2} structure and Tm{sub 3}Ru{sub 2}Mg (a=337.72(9), c=1129.8(4) pm) is isotypic with Sc{sub 3}Ru{sub 2}Mg. Tm{sub 3}Ru{sub 2}Mg{sub 2} (a=337.35(9), c=2671(1) pm) and Lu{sub 3}Ru{sub 2}Mg{sub 2} (a=335.83(5), c=2652.2(5) pm) are the first ternary ordered variants of the Ti{sub 3}Cu{sub 4} type, space group I4/mmm. These five compounds belong to a large family of intermetallics which are completely ordered superstructures of the bcc subcell. The group-subgroup scheme for Lu{sub 3}Ru{sub 2}Mg{sub 2} is presented. The common structural motif of all three structure types are ruthenium-centered rare earth cubes reminicent of the CsCl type. Magnetic susceptibility measurements of Y{sub 2}RuMg{sub 2} and Lu{sub 3}Ru{sub 2}Mg{sub 2} samples revealed Pauli paramagnetism of the conduction electrons.

  9. Suppressors made from intermetallic materials

    Science.gov (United States)

    Klett, James W; Muth, Thomas R; Cler, Dan L

    2014-11-04

    Disclosed are several examples of apparatuses for suppressing the blast and flash produced as a projectile is expelled by gases from a firearm. In some examples, gases are diverted away from the central chamber to an expansion chamber by baffles. The gases are absorbed by the expansion chamber and desorbed slowly, thus decreasing pressure and increasing residence time of the gases. In other examples, the gases impinge against a plurality of rods before expanding through passages between the rods to decrease the pressure and increase the residence time of the gases. These and other exemplary suppressors are made from an intermetallic material composition for enhanced strength and oxidation resistance at high operational temperatures.

  10. Intermetallic alloys: Deformation, mechanical and fracture behaviour

    International Nuclear Information System (INIS)

    Dogan, B.

    1988-01-01

    The state of the art in intermetallic alloys development with particular emphasis on deformation, mechanical and fracture behaviour is documented. This review paper is prepared to lay the ground stones for a future work on mechanical property characterization and fracture behaviour of intermetallic alloys at GKSS. (orig.)

  11. Behavior of radon, chemical compounds and stable elements in underground water

    International Nuclear Information System (INIS)

    Lopez R, N.; Segovia, N.; Lopez, M.B.E.; Pena, P.; Armienta, M.A.; Godinez, L.; Seidel, J.L.

    2001-01-01

    The radon behavior, chemical compounds, major and trace elements in water samples of four springs and three wells of urban and agricultural zones around the Jocotitlan volcano and El Oro region was determined, both of them located in the medium part of the Mexican neo-volcanic axis. The 222 Rn was measured by the liquid scintillation method, the analysis of major components was realized with conventional chemical techniques, while the trace elements were quantified using an Icp-Ms. The average values of the radon concentrations obtained during one year were constant relatively, in an interval from 0.97 to 4.99 Bq/lt indicating a fast transport from the reload area toward the sampling points. the compounds, major and trace elements showed differences which indicate distinct origins of water from the site studies. (Author)

  12. Environmental Forensics: Using Compound-Specific Stable Carbon Isotope Analysis to Track Petroleum Contamination

    Science.gov (United States)

    Imfeld, A.; Ouellet, A.; Gelinas, Y.

    2016-12-01

    Crude oil and petroleum products are continually being introduced into the environment during transportation, production, consumption and storage. Source identification of these organic contaminants proves challenging due to a variety of factors; samples tend to be convoluted, compounds need to be separated from an unresolved complex mixtures of highly altered aliphatic and aromatic compounds, and chemical composition and biomarker distributions can be altered by weathering, aging, and degradation processes. The aim of our research is to optimize a molecular and isotopic (δ13C, δ2H) method to fingerprint and identify petroleum contaminants in soil and sediment matrices, and to trace the temporal and spatial extent of the contamination event. This method includes the extraction, separation and analysis of the petroleum derived hydrocarbons. Sample extraction and separation is achieved using sonication, column chromatography and urea adduction. Compound identification and molecular/isotopic fingerprinting is obtained by gas chromatography with flame ionization (GC-FID) and mass spectrometer (GC-MS) detection, as well as gas chromatography coupled to an isotope ratio mass spectrometer (GC-IRMS). This method will be used to assist the Centre d'Expertise en Analyse Environnementale du Québec to determine the nature, sources and timing of contamination events as well as for investigating the residual contamination involving petroleum products.

  13. Intermetallics structures, properties, and statistics

    CERN Document Server

    Steurer, Walter

    2016-01-01

    The focus of this book is clearly on the statistics, topology, and geometry of crystal structures and crystal structure types. This allows one to uncover important structural relationships and to illustrate the relative simplicity of most of the general structural building principles. It also allows one to show that a large variety of actual structures can be related to a rather small number of aristotypes. It is important that this book is readable and beneficial in the one way or another for everyone interested in intermetallic phases, from graduate students to experts in solid-state chemistry/physics/materials science. For that purpose it avoids using an enigmatic abstract terminology for the classification of structures. The focus on the statistical analysis of structures and structure types should be seen as an attempt to draw the background of the big picture of intermetallics, and to point to the white spots in it, which could be worthwhile exploring. This book was not planned as a textbook; rather, it...

  14. Optimizing sample pretreatment for compound-specific stable carbon isotopic analysis of amino sugars in marine sediment

    Science.gov (United States)

    Zhu, R.; Lin, Y.-S.; Lipp, J. S.; Meador, T. B.; Hinrichs, K.-U.

    2014-09-01

    Amino sugars are quantitatively significant constituents of soil and marine sediment, but their sources and turnover in environmental samples remain poorly understood. The stable carbon isotopic composition of amino sugars can provide information on the lifestyles of their source organisms and can be monitored during incubations with labeled substrates to estimate the turnover rates of microbial populations. However, until now, such investigation has been carried out only with soil samples, partly because of the much lower abundance of amino sugars in marine environments. We therefore optimized a procedure for compound-specific isotopic analysis of amino sugars in marine sediment, employing gas chromatography-isotope ratio mass spectrometry. The whole procedure consisted of hydrolysis, neutralization, enrichment, and derivatization of amino sugars. Except for the derivatization step, the protocol introduced negligible isotopic fractionation, and the minimum requirement of amino sugar for isotopic analysis was 20 ng, i.e., equivalent to ~8 ng of amino sugar carbon. Compound-specific stable carbon isotopic analysis of amino sugars obtained from marine sediment extracts indicated that glucosamine and galactosamine were mainly derived from organic detritus, whereas muramic acid showed isotopic imprints from indigenous bacterial activities. The δ13C analysis of amino sugars provides a valuable addition to the biomarker-based characterization of microbial metabolism in the deep marine biosphere, which so far has been lipid oriented and biased towards the detection of archaeal signals.

  15. Compound-specific stable carbon isotopic signature of carbohydrate pyrolysis products from C3 and C4 plants.

    Science.gov (United States)

    González-Pérez, José A; Jiménez-Morillo, Nicasio T; de la Rosa, José M; Almendros, Gonzalo; González-Vila, Francisco J

    2016-02-01

    Pyrolysis-compound specific isotopic analysis (Py-CSIA: Py-GC-(FID)-C-IRMS) is a relatively novel technique that allows on-line quantification of stable isotope proportions in chromatographically separated products released by pyrolysis. Validation of the Py-CSIA technique is compulsory for molecular traceability in basic and applied research. In this work, commercial sucrose from C4 (sugarcane) and C3 (sugarbeet) photosystem plants and admixtures were studied using analytical pyrolysis (Py-GC/MS), bulk δ(13)C IRMS and δ(13)C Py-CSIA. Major pyrolysis compounds were furfural (F), furfural-5-hydroxymethyl (HMF) and levoglucosan (LV). Bulk and main pyrolysis compound δ(13)C (‰) values were dependent on plant origin: C3 (F, -24.65 ± 0.89; HMF, -22.07 ± 0.41‰; LV, -21.74 ± 0.17‰) and C4 (F, -14.35 ± 0.89‰; HMF, -11.22 ± 0.54‰; LV, -11.44 ± 1.26‰). Significant regressions were obtained for δ(13)C of bulk and pyrolysis compounds in C3 and C4 admixtures. Furfural (F) was found (13)C depleted with respect to bulk and HMF and LV, indicating the incorporation of the light carbon atom in position 6 of carbohydrates in the furan ring after pyrolysis. This is the first detailed report on the δ(13)C signature of major pyrolytically generated carbohydrate-derived molecules. The information provided by Py-CSIA is valuable for identifying source marker compounds of use in food science/fraud detection or in environmental research. © 2015 Society of Chemical Industry.

  16. Structure Defect Property Relationships in Binary Intermetallics

    Science.gov (United States)

    Medasani, Bharat; Ding, Hong; Chen, Wei; Persson, Kristin; Canning, Andrew; Haranczyk, Maciej; Asta, Mark

    2015-03-01

    Ordered intermetallics are light weight materials with technologically useful high temperature properties such as creep resistance. Knowledge of constitutional and thermal defects is required to understand these properties. Vacancies and antisites are the dominant defects in the intermetallics and their concentrations and formation enthalpies could be computed by using first principles density functional theory and thermodynamic formalisms such as dilute solution method. Previously many properties of the intermetallics such as melting temperatures and formation enthalpies were statistically analyzed for large number of intermetallics using structure maps and data mining approaches. We undertook a similar exercise to establish the dependence of the defect properties in binary intermetallics on the underlying structural and chemical composition. For more than 200 binary intermetallics comprising of AB, AB2 and AB3 structures, we computed the concentrations and formation enthalpies of vacancies and antisites in a small range of stoichiometries deviating from ideal stoichiometry. The calculated defect properties were datamined to gain predictive capabilities of defect properties as well as to classify the intermetallics for their suitability in high-T applications. Supported by the US DOE under Contract No. DEAC02-05CH11231 under the Materials Project Center grant (Award No. EDCBEE).

  17. Phase transition of intermetallic TbPt at high temperature and high pressure

    Science.gov (United States)

    Qin, Fei; Wu, Xiang; Yang, Ke; Qin, Shan

    2018-04-01

    Here we present synchrotron-based x-ray diffraction experiments combined with diamond anvil cell and laser heating techniques on the intermetallic rare earth compound TbPt (Pnma and Z  =  4) up to 32.5 GPa and ~1800 K. The lattice parameters of TbPt exhibit continuous compression behavior up to 18.2 GPa without any evidence of phase transformation. Pressure-volume data were fitted to a third-order Birch-Murnaghan equation of state with V 0  =  175.5(2) Å3, {{K}{{T0}}}   =  110(5) GPa and K{{T0}}\\prime   =  3.8(7). TbPt exhibits anisotropic compression with β a   >  β b   >  β c and the ratio of axial compressibility is 2.50:1.26:1.00. A new monoclinic phase of TbPt assigned to the Pc or P2/c space group was observed at 32.5 GPa after laser heating at ~1800 K. This new phase is stable at high pressure and presented a quenchable property on decompression to ambient conditions. The pressure-volume relationship is well described by the second-order Birch-Murnaghan equation of state, which yields V 0  =  672(4) Å3, {{K}{{T0}}}   =  123(6) GPa, which is about ~14% more compressible than the orthorhombic TbPt. Our results provide more information on the structure and elastic property view, and thus a better understanding of the physical properties related to magnetic structure in some intermetallic rare earth alloys.

  18. Magnetic properties of Gd intermetallics

    Science.gov (United States)

    Petit, L.; Szotek, Z.; Jackson, J.; Lüders, M.; Paudyal, D.; Mudryk, Y.; Pecharsky, V.; Gschneidner, K. A.; Staunton, J. B.

    2018-02-01

    Using first-principles calculations, based on disordered local moment theory, combined with the self-interaction corrected local spin density approximation, we study magnetic interactions in GdX intermetallics for X = Cu, Zn, Ga, Cd, and Mg. Our predicted magnetic orders and ordering temperatures both at zero and other pressures agree well with experiments including the large increase in the Curie temperature of GdCd under pressure that is shown by our own experimental measurements. From our results it emerges that the Ruderman-Kittel-Kasuya-Yosida interaction on its own can not explain the observed behaviour under pressure, and that the magnetic ordering mechanism is strongly influenced by the occupations of both Gd and anion d-bands.

  19. Intermetallics: past, present and future

    Directory of Open Access Journals (Sweden)

    Morris, D. G.

    2005-12-01

    Full Text Available Intermetallics have seen extensive world-wide attention over the past decades. For the most part these studies have examined multi-phase aluminide based alloys, because of their high stiffness, combined with reasonable strength and ductility, good structural stability and oxidation resistance, and attempted to improve current Ni-base superalloys, Ti-base alloys, or Fe-base stainless steels for structural aerospace applications. The current status of development and application of such materials is briefly reviewed. Future developments are taking intermetallics from the realm of "improved high-temperature but low-ductility metallic alloys" into the realm of "improved aggressive-environment, high-toughness ceramic-like alloys". Such evolution will be outlined.

    Durante los últimos décadas ha habido un desarrollo de los intermetálicos, sobre todo por aplicaciones estructurales a alta temperatura en aplicaciones aeroespaciales, donde, por su rigidez alta, en combinación con una resistencia mecánica y ductilidad razonable, su buena estabilidad estructural y resistencia a la oxidación, han sido vistos como versiones avanzadas y mejoradas de las aleaciones metálicas como, por ejemplo, las superaleaciones a base de nitrógeno y las aleaciones de titanio. Se discute el desarrollo importante durante las últimas décadas, y también los nuevos desarrollos probables durante los próximos años. Se podrían ver los intermetálicos como versiones mejoradas de los cerámicos.

  20. Irregular Homogeneity Domains in Ternary Intermetallic Systems

    Directory of Open Access Journals (Sweden)

    Jean-Marc Joubert

    2015-12-01

    Full Text Available Ternary intermetallic A–B–C systems sometimes have unexpected behaviors. The present paper examines situations in which there is a tendency to simultaneously form the compounds ABx, ACx and BCx with the same crystal structure. This causes irregular shapes of the phase homogeneity domains and, from a structural point of view, a complete reversal of site occupancies for the B atom when crossing the homogeneity domain. This work reviews previous studies done in the systems Fe–Nb–Zr, Hf–Mo–Re, Hf–Re–W, Mo–Re–Zr, Re–W–Zr, Cr–Mn–Si, Cr–Mo–Re, and Mo–Ni–Re, and involving the topologically close-packed Laves, χ and σ phases. These systems have been studied using ternary isothermal section determination, DFT calculations, site occupancy measurement using joint X-ray, and neutron diffraction Rietveld refinement. Conclusions are drawn concerning this phenomenon. The paper also reports new experimental or calculated data on Co–Cr–Re and Fe–Nb–Zr systems.

  1. Negative thermal expansion induced by intermetallic charge transfer.

    Science.gov (United States)

    Azuma, Masaki; Oka, Kengo; Nabetani, Koichiro

    2015-06-01

    Suppression of thermal expansion is of great importance for industry. Negative thermal expansion (NTE) materials which shrink on heating and expand on cooling are therefore attracting keen attention. Here we provide a brief overview of NTE induced by intermetallic charge transfer in A-site ordered double perovskites SaCu 3 Fe 4 O 12 and LaCu 3 Fe 4- x Mn x O 12 , as well as in Bi or Ni substituted BiNiO 3 . The last compound shows a colossal dilatometric linear thermal expansion coefficient exceeding -70 × 10 -6 K -1 near room temperature, in the temperature range which can be controlled by substitution.

  2. Electronic structure and transport properties of intermetallics. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Freeman, A.J.; Ellis, D.E.; Welsh, L.B.

    1975-12-01

    The electronic interactions responsible for the unusual properties of several important classes of materials (including the highly anisotropic layered dichalcogenides, and network and cage structure materials and pseudobinary alloys) have been investigated experimentally and theoretically. The unique ability of NMR to probe the local electronic properties of the various constituents of an intermetallic compound or alloy has provided important new information including correlations with observed changes in superconducting transition temperatures. Novel theoretical models (including relativistic effects) are found to yield energy band structures, Fermi surfaces, transport properties, charge and spin densities, generalized magnetic susceptibilities, and optical properties in very good agreement with experimental determinations of these observable phenomena. (Author) (GRA)

  3. Negative thermal expansion induced by intermetallic charge transfer

    OpenAIRE

    Azuma, Masaki; Oka, Kengo; Nabetani, Koichiro

    2015-01-01

    Suppression of thermal expansion is of great importance for industry. Negative thermal expansion (NTE) materials which shrink on heating and expand on cooling are therefore attracting keen attention. Here we provide a brief overview of NTE induced by intermetallic charge transfer in A-site ordered double perovskites SaCu3Fe4O12 and LaCu3Fe4?x Mn x O12, as well as in Bi or Ni substituted BiNiO3. The last compound shows a colossal dilatometric linear thermal expansion coefficient exceeding ?70 ...

  4. Processing and mechanical behaviour of TiAl/NiAl intermetallic composites produced by cryogenic mechanical alloying

    International Nuclear Information System (INIS)

    Mao, Scott X.; McMinn, N.A.; Wu, N.Q.

    2003-01-01

    Cryogenic mechanical alloying of intermetallic powders has been used to produce TiAl/NiAl intermetallic composites. High-energy milling of prealloyed titanium aluminide and nickel aluminide powders at liquid nitrogen temperature results in the stable non-equilibrium mixtures with a fine grain size. Subsequent consolidation by uniaxial hot pressing produces unusual intermetallic composites. Powders and consolidated materials are characterised using microscopy and X-ray diffraction (XRD). Mechanical properties are evaluated by small punch testing and through microindentation measurement. It has been found that no new phase is formed during milling of intermetallic mixtures. Consolidated powders have exhibited exceptionally high hardness. The low fracture toughness of consolidated materials is attributed to the formation of ternary phases during consolidation

  5. Investigations of intermetallic alloy hydriding mechanisms. Annual progress report, May 1 1979-April 30, 1980

    International Nuclear Information System (INIS)

    Livesay, B.R.; Larsen, J.W.

    1980-05-01

    Investigations are being conducted on mechanisms involved with the hydrogen-metal interactions which control the absorption and desorption processes in intermetallic compounds. The status of the following investigations is reported: modeling of hydride formation; microbalance investigations; microstructure investigations; flexure experiments; resistivity experiments; and nuclear backscattering measurements. These investigations concern fundamental hydrogen interaction mechanisms involved in storage alloys

  6. Design and fabrication of a mechanical alloying system for preparing intermetallic, nanocrystalline, amorphous and quasicrystalline compounds; Diseno y fabricacion de un sistema de aleado mecanico para preparar compuestos intermetalicos, nanocristalinos, amorfos y cuasicristalinos

    Energy Technology Data Exchange (ETDEWEB)

    Bonifacio M, J.; Iturbe G, J.L.; Castaneda J, G. [Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    2002-07-01

    In this work a grinding system was designed and fabricated which allowed to improve the operation conditions in time, frequency, temperature and selection of the grinding media and that allow the contamination decrease of the compounds. By means of this method of mechanical alloying new metallic compounds can be produced, starting from elemental powders, with fine and controlled microstructures. These compounds prepared by this method are going to be used as materials for the hydrogen storage. (Author)

  7. Chemistry and Properties of Complex Intermetallics from Metallic Fluxes

    Energy Technology Data Exchange (ETDEWEB)

    Kanatzidis, Mercouri G. [Northwestern Univ., Evanston, IL (United States)

    2015-03-28

    This project investigated the reaction chemistry and synthesis of new intermetallic materials with complex compositions and structures using metallic fluxes as solvents. It was found that the metallic fluxes offer several key advantages in facilitating the formation and crystal growth of new materials. The fluxes mostly explored were liquid aluminum, gallium and indium. The main purpose of this project was to exploit the potential of metallic fluxes as high temperature solvent for materials discovery in the broad class of intermetallics. This work opened new paths to compound formation. We discovered many new Si (or Ge)-based compounds with novel structures, bonding and physicochemical properties. We created new insights about the reaction chemistry that is responsible for stabilizing the new materials. We also studied the structural and compositional relationships to understand their properties. We investigated the use of Group-13 metals Al, Ga and In as solvents and have generated a wide variety of new results including several new ternary and quaternary materials with fascinating structures and properties as well as new insights as to how these systems are stabilized in the fluxes. The project focused on reactions of metals from the rare earth element family in combination with transition metals with Si and Ge. For example molten gallium has serves both as a reactive and non-reactive solvent in the preparation and crystallization of intermetallics in the system RE/M/Ga/Ge(Si). Molten indium behaves similarly in that it too is an excellent reaction medium, but it gives compounds that are different from those obtained from gallium. Some of the new phase identified in the aluminide class are complex phases and may be present in many advanced Al-matrix alloys. Such phases play a key role in determining (either beneficially or detrimentally) the mechanical properties of advanced Al-matrix alloys. This project enhanced our basic knowledge of the solid state chemistry

  8. Microstructure and Tribological Properties of Mo-40Ni-13Si Multiphase Intermetallic Alloy.

    Science.gov (United States)

    Song, Chunyan; Wang, Shuhuan; Gui, Yongliang; Cheng, Zihao; Ni, Guolong

    2016-12-06

    Intermetallic compounds are increasingly being expected to be utilized in tribological environments, but to date their implementation is hindered by insufficient ductility at low and medium temperatures. This paper presents a novel multiphase intermetallic alloy with the chemical composition of Mo-40Ni-13Si (at %). Microstructure characterization reveals that a certain amount of ductile Mo phases formed during the solidification process of a ternary Mo-Ni-Si molten alloy, which is beneficial to the improvement of ductility of intermetallic alloys. Tribological properties of the designed alloy-including wear resistance, friction coefficient, and metallic tribological compatibility-were evaluated under dry sliding wear test conditions at room temperature. Results suggest that the multiphase alloy possesses an excellent tribological property, which is attributed to unique microstructural features and thereby a good combination in hardness and ductility. The corresponding wear mechanism is explained by observing the worn surface, subsurface, and wear debris of the alloy, which was found to be soft abrasive wear.

  9. Compound specific stable isotopes as probes for distinguishing the sources of biomolecules in terrestrial and extraterrestrial materials

    Science.gov (United States)

    Engel, M. H.; Macko, S. A.

    2003-04-01

    Life on Earth consists of orderly arrangements of several key types of organic compounds (amino acids, sugars, fatty acids, nucleic bases) that are the building blocks of proteins, carbohydrates, lipids and nucleotides. Subsequent to death, macromolecules are commonly broken down to their molecular constituents or other similar scale components. Thus, in ancient terrestrial and extraterrestrial materials, it is far more likely to expect the presence of simple compounds such as amino acids rather than the proteins from which they were possibly derived. Given that amino acids, for example, are common components of all extinct and extant organisms, the challenge has been to develop methods for distinguishing their sources. Stable isotopes are powerful probes for determining the origins of organic matter. Amino acid constituents of all organisms on Earth exhibit characteristic stable isotope compositions owing to fractionations associated with their biosynthesis. These fractionations are distinct from those observed for amino acids formed by abiotic processes. Thus it should be possible to use isotopes as probes for determining whether amino acids in ancient rocks on Earth are biotic or abiotic, based on their relative isotopic compositions. Also, owing to differences in the isotope compositions of precursors, amino acids in extraterrestrial materials such as carbonaceous meteorites are moderately to substantially enriched in the heavy isotopes of C, N and H relative to terrestrial amino acids. Assuming that the isotope compositions of the gaseous components of, for example, the Martian atmosphere were distinct from Earth at such time when organic molecules may have formed, it should be possible to distinguish these components from terrestrial contaminants by determining their isotope compositions and/or those of their respective enantiomers. Also, if life as we know it existed on another planet such as Mars, fractionations characteristic of biosynthesis should be

  10. Degradation of sulfamethoxazole using ozone and chlorine dioxide - Compound-specific stable isotope analysis, transformation product analysis and mechanistic aspects.

    Science.gov (United States)

    Willach, Sarah; Lutze, Holger V; Eckey, Kevin; Löppenberg, Katja; Lüling, Michelle; Terhalle, Jens; Wolbert, Jens-Benjamin; Jochmann, Maik A; Karst, Uwe; Schmidt, Torsten C

    2017-10-01

    The sulfonamide antibiotic sulfamethoxazole (SMX) is a widely detected micropollutant in surface and groundwaters. Oxidative treatment with e.g. ozone or chlorine dioxide is regularly applied for disinfection purposes at the same time exhibiting a high potential for removal of micropollutants. Especially for nitrogen containing compounds such as SMX, the related reaction mechanisms are largely unknown. In this study, we systematically investigated reaction stoichiometry, product formation and reaction mechanisms in reactions of SMX with ozone and chlorine dioxide. To this end, the neutral and anionic SMX species, which may occur at typical pH-values of water treatment were studied. Two moles of chlorine dioxide and approximately three moles of ozone were consumed per mole SMX degraded. Oxidation of SMX with ozone and chlorine dioxide leads in both cases to six major transformation products (TPs) as revealed by high-resolution mass spectrometry (HRMS). Tentatively formulated TP structures from other studies could partly be confirmed by compound-specific stable isotope analysis (CSIA). However, for one TP, a hydroxylated SMX, it was not possible by HRMS alone to identify whether hydroxylation occurred at the aromatic ring, as suggested in literature before, or at the anilinic nitrogen. By means of CSIA and an analytical standard it was possible to identify sulfamethoxazole hydroxylamine unequivocally as one of the TPs of the reaction of SMX with ozone as well as with chlorine dioxide. H-abstraction and electron transfer at the anilinic nitrogen are suggested as likely initial reactions of ozone and chlorine dioxide, respectively, leading to its formation. Oxidation of anionic SMX with ozone did not show any significant isotopic fractionation whereas the other reactions studied resulted in a significant carbon isotope fractionation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Zirconium intermetallics and hydrogen uptake during corrosion

    International Nuclear Information System (INIS)

    Cox, B.

    1987-04-01

    The routes by which hydrogen can enter zirconium alloys containing second phase particles during corrosion are discussed. Both direct diffusion through the bulk of the oxide film, and migration through second phase particles that intersect the surface are considered. An examination of results for hydrogen uptake by zirconium alloys during the early stages of oxidation, when the oxide film is still coherent, suggests that for Zr, Zr-1%Cu and Zr-1%Fe the hydrogen enters by diffusing through the bulk ZrO 2 film, whereas for the Zircaloys the primary migration route may be through the intermetallics. The steps in the latter process are discussed and the evidence available on the properties of the intermetallics collated. A comparison of these data with results for hydrogen uptake by two series of ternary alloys (Zr-1%Nb - 1%X, Zr-1%Cu - 1%X) suggests that high hydrogen uptakes often correlate with intermetallics with high hydrogen solubilities and vice versa. The properties of Zr(Fe/Cr) 2+x intermetallics are examined in an attempt to understand the behaviour of the Zircaloys, and it is concluded that present data establishing composition and unit cell dimensions for such intermetallic particles are not of sufficient accuracy to permit a correlation

  12. Structural and functional intermetallics - an overview

    International Nuclear Information System (INIS)

    Varin, R.A.

    2000-01-01

    This overview presents the current status of the research and development of both structural and functional intermetallics. On the one hand, the discussion is focused on commercialization and existing industrial applications of intermetallics. Within this frame the applications of titanium aluminides (TiAl) for turbocharger rotors and exhaust valves in automotive industry are being discussed. Advances in the applications of TiAl alloys for the next generation of turbine blades in aerospace/aircraft segment are also presented. The entire spectrum of nickel and iron aluminide alloys developed commercially by the Oak Ridge national Laboratory (USA) and the examples of their application in various segments of industry are thoroughly discussed. Some inroads made in the application of directionally solidified (DS) multiphase niobium silicides (Nb 3 Si+Nb 5 Si 3 ) in situ intermetallic composites with the goal of pushing the service temperature envelope of turbine blades to ∼ 1200-1300 o C are also discussed. On the other hand, various topics in basic or curiosity driven research of titanium aluminides and trialuminides, iron aluminides and high temperature structural silicides are discussed. Some very recent findings on the improvements in fracture toughness and strength of titanium trialuminides and magnetic behaviour of unconventionally cold - worked iron aluminides are highlighted. The topic of functional intermetallics is limited to the systems must suitable for hydrogen storage applications. A perspective on the directions of future research and development of intermetallics is also provided. (author)

  13. Magnetic properties and magnetocaloric effect in the HoNi{sub 1−x}Cu{sub x}In (x=0, 0.1, 0.3, 0.4) intermetallic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Mo, Zhao-Jun [School of Material Science and Engineering, Hebei University of Technology, Tianjin (China); Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing (China); Shen, Jun, E-mail: jshen@mail.ipc.ac.cn [Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing (China); Yan, Li-Qin [State Key Laboratory of Magnetism, Beijing National Laboratory for Condensed Matter, Physics and Institute of Physics, Chinese Academy of Sciences, Beijing (China); Tang, Cheng-Chun [School of Material Science and Engineering, Hebei University of Technology, Tianjin (China); He, Xiao-Nan [Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing (China); Zheng, Xinqi [State Key Laboratory of Magnetism, Beijing National Laboratory for Condensed Matter, Physics and Institute of Physics, Chinese Academy of Sciences, Beijing (China); Wu, Jian-Feng [Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing (China); Sun, Ji-Rong; Shen, Bao-Gen [State Key Laboratory of Magnetism, Beijing National Laboratory for Condensed Matter, Physics and Institute of Physics, Chinese Academy of Sciences, Beijing (China)

    2014-03-15

    The magnetic properties and magnetocaloric effect (MCE) in HoNi{sub 1−x}Cu{sub x}In (x=0, 0.1, 0.3, 0.4) compounds have been investigated. With the substitution of Cu for Ni, the Ho magnetic moment will cant from the c-axis, and form a complicated magnetic structure. These compounds exhibit two successive magnetic transitions with the increase in temperature. The large reversible magnetocaloric effects have been observed in HoNi{sub 1−x}Cu{sub x}In compounds around T{sub ord}, with no thermal and magnetic hysteresis loss. The large reversible isothermal magnetic entropy change (−ΔS{sub M}) is 20.2 J/kg K and the refrigeration capacity (RC) reaches 356.7 J/kg for field changes of 5 T for HoNi{sub 0.7}Cu{sub 0.3}In. Especially, the value of −ΔS{sub M} (12.5 J/kg K) and the large RC (132 J/kg) are observed for field changes of 2 T for HoNi{sub 0.9}Cu{sub 0.1}In. Additionally, the values of RC are improved to 149 J/K for the field changes of 2 T due to a wide temperature span for the mix of HoNi{sub 0.9}Cu{sub 0.1}In and HoNi{sub 0.7}Cu{sub 0.3}In compounds with the mass ratio of 1:1. These compounds with excellent MCE are expected to have effective applications in magnetic refrigeration around 20 K. - Highlights: • For magnetic-field changes of 2 T, the values of RC are improved to 149 J/K. • MCEs of these compounds show no thermal and magnetic hysteresis. • Compounds show two successive magnetic transitions with the increase in temperature. • With the substitution of Cu for Ni, compounds form a complicated magnetic structure.

  14. Investigation of local magnetism in RZn (R = Ce, Gd, Tb, Dy) and GdCu intermetallic compounds using perturbed angular correlation gamma-gamma spectroscopy; Investigacao do magnetismo local em compostos intermetalicos do tipo RZn (R = Ce, Gd, Tb, Dy) e GdCu pela espectroscopia de correlacao angular gama-gama perturbada

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Brianna Bosch dos

    2010-07-01

    This work presents, from a microscopic point of view, a systematic study of the local magnetism in RZn (R = Ce, Gd, Tb, Dy) and GdCu intermetallic compounds through measurements of hyperfine interactions using the Perturbed Angular Correlation Gamma- Gamma Spectroscopy technique with {sup 111}In {yields} {sup 111}Cd and {sup 140}La {yields} {sup 140}Ce as probe nuclei. As the magnetism in these compounds originates from the 4f electrons of the rare-earth elements it is interesting to observe in a systematic study of RZn compounds the behavior of the magnetic hyperfine field with the variation of the number of 4f electrons in the R element. The use of probe nuclei {sup 140}La {yields} {sup 140}Ce is interesting because Ce{sup +3} ion posses one 4f electron which may contribute to the total hyperfine field, and the results showed anomalous behavior. The results for {sup 111}Cd probe showed that the temperature dependence of the magnetic hyperfine field follows the Brillouin function, and the magnetic hyperfine field decreases linearly with increase of the atomic number of rare earth when plotted as a function of the rare-earth J spin projection, showing that the main contribution to the magnetic hyperfine field in RZn compounds comes from the polarization of the conduction electrons. The results for the electric field gradient measured with {sup 111}Cd for all compounds showed a strong decrease with the atomic number of the rare-earth element. We have therefore assumed that the major contribution to the electric field gradient originates from the 4f electrons of the rare-earths. The measurements of the electric field gradient for GdCu with {sup 111}Cd, after temperature decreases and increases again showed that two different structures, CsCl-type cubic and FeB-type orthorhombic structures co-exist. Finally, it is the first time that measurements of hyperfine parameters have been carried out with theses two probe nuclei in the studied RZn. (author)

  15. Study of the hyperfine magnetic field acting on Ce probes substituting for the rare earth and the magnetic ordering in intermetallic compounds RAg (R=rare earth) by first principles calculations

    International Nuclear Information System (INIS)

    Pereira, Luciano Fabricio Dias

    2006-01-01

    In this work the magnetic hyperfine field acting on Ce atoms substituting the rare-earths in R Ag compounds (R = Gd e Nd) was studied by means of first-principles electronic structure calculations. The employed method was the Augmented Plane Waves plus local orbitals (APW+lo), embodied in the WIEN2k program, within the framework of the Density Functional Theory (DFT) and with the Generalized Gradient Approximation (GGA) for the exchange and correlation potential. The super-cell approach was utilized in order to simulate for the Ce atoms acting as impurities in the R Ag matrix. In order to improve for correlation effects within the 4f shells, a Hubbard term was added to the DFT Hamiltonian, within a procedure called GGA+U. It was found that the magnetic hyperfine field (MHF) generated by the Ce 4f electron is the main component of the total MHF and that the Ce 4f ground state level is probably a combination of the m l = -2 and m l = -1 sub-levels. In addition, the ground-state magnetic structure was determined for Ho Ag and Nd Ag by observing the behavior of the total energy as a function of the lattice volume for several possible magnetic ordering in these compounds, namely, ferromagnetic, and the (0,0,π), (π,π,0) and ((π,π,π) types of anti-ferromagnetic ordering of rare-earth atoms. It was found that the ground-state magnetic structure is anti-ferromagnetic of type (π,π,0) for both, the Ho Ag and Nd Ag compounds. The energy difference of the ferromagnetic and antiferromagnetic ordering is very small in the case of the Nd Ag compound. (author)

  16. Tuning intermetallic electronic coupling in polyruthenium systems ...

    Indian Academy of Sciences (India)

    A large number of polynuclear ruthenium complexes encompassing selective combinations of spacer (bridging ligand, BL) and ancillary (AL) functionalities have been designed. The extent of intermetallic electronic communication in mixed-valent states and the efficacy of the ligand frameworks towards the tuning of ...

  17. High temperature fatigue behaviour of intermetallics

    Indian Academy of Sciences (India)

    M. Senthilkumar (Newgen Imaging) 1461 1996 Oct 15 13:05:22

    brittle to ductile transition temperature, mean stress and environment on fatigue behaviour of same γ-TiAl alloys are discussed. Keywords. Nickel aluminides; titanium aluminides; low cycle fatigue; micro- alloying. 1. Introduction. Ordered intermetallic alloys have undergone extensive development over the past two decades.

  18. Surfaces of Intermetallics: Quasicrystals and Beyond

    Energy Technology Data Exchange (ETDEWEB)

    Yuen, Chad [Iowa State Univ., Ames, IA (United States)

    2012-01-01

    The goal of this work is to characterize surfaces of intermetallics, including quasicrystals. In this work, surface characterization is primarily focused on composition and structure using X-ray photoelectron spectroscopy (XPS) and scanning tunneling microscopy (STM) performed under ultrahigh vacuum (UHV) conditions.

  19. Contribution to the study of the amorphization mechanisms of intermetallic compounds by mechanical grinding; Contribution a l`etude des mecanismes d`amorphisation par sollicitation mecanique de composes intermetalliques

    Energy Technology Data Exchange (ETDEWEB)

    Galy, D.

    1995-01-11

    This work aims at identifying the mechanisms responsible for amorphization of NiZr and NiZr{sub 2} compounds under ball-milling. In the first part, the effect of a localized deformation is studied: the deformation is produced by indentation on bulk samples, very high local strains can be achieved by this technique. The resulting microstructure is studied by transmission electron microscopy (TEM). No evidence for amorphization is found in these compounds, contrary to what is known to occur in silicon and germanium. Despite of their high brittleness, the NiZr and NiZr{sub 2} compounds accommodate the multiaxial localized stress by plastic deformation: dislocations multiplication and glide, micro-twinning. Dislocations (both perfect and imperfect) and micro-twins have been analysed into details for the first time. The twinning mechanism in NiZr{sub 2} has been elucidated. In the second part of this work, the microstructure of NiZr{sub 2} in the course of amorphization by ball-milling is studied by TEM observation are prepared by ultra-microtomy. The following evolution is observed: first, the material is fragmented and plastically deformed; the microstructure is refined by polygonation. Second, aggregates are formed by a fragmentation and sticking process, leading to a stationary size for the aggregates. The aggregates themselves are made of a mixture of nanocrystalline (about 10 nm) material and coarser crystallites. As milling proceeds, the latter disappear to the benefit of the former. Once aggregates are 100% nanocrystalline, the amorphous phase appears and develops to the expense of the nanocrystalline phase. At late stages, small crystallites embedded in an amorphous matrix are observed. No massive chemical disordering is observed but a small amount can not be ruled out. It is suggested that amorphization occurs by chemical disordering at interfaces, induced by shear waves. (Author). 76 refs., 57 figs., 12 tabs.

  20. Vacancies and atomic processes in intermetallics - From crystals to quasicrystals and bulk metallic glasses

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, Hans-Eckhardt [Institute of Theoretical and Applied Physics, Stuttgart University, Pfaffenwaldring 57, 70569 Stuttgart (Germany); Baier, Falko [Voith Turbo Comp., Alexanderstr. 2, 89552 Heidenheim (Germany); Mueller, Markus A. [GFT Technologies A. G., Filderhauptstr. 142, 70599 Stuttgart (Germany); Reichle, Klaus J. [Philipp-Matthaeus-Hahn School, Jakob-Beutter-Str. 15, 72336 Balingen (Germany); Reimann, Klaus [NXP Semiconductors, Central Research and Development, High Tech Campus 4, 5656 AE Eindhoven (Netherlands); Rempel, Andrey A. [Institute of Solid State Chemistry, Russian Academy of Sciences, Ul. Pervomaiskaya 91, 620041 Ekaterinburg (Russian Federation); Sato, Kiminori [Tokyo Gakugei University, Nukuikita 4-1-1, Koganei, Tokyo 184-8501 (Japan); Ye, Feng [State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, 30 Xue Yuan Road, Beijing 100083 (China); Zhang, Xiangyi [Yanshan University, Qinhuangdao 066004 (China); Sprengel, Wolfgang [Institute of Materials Physics, Graz University of Technology, Petersgasse 16, 8010 Graz (Austria)

    2011-10-15

    A review is given on atomic vacancies in intermetallic compounds. The intermetallic compounds cover crystalline, quasicrystalline, and bulk metallic glass (BMG) structures. Vacancies can be specifically characterized by their positron lifetimes, by the coincident measurement of the Doppler broadening of the two quanta emitted by positron-electron annihilation, or by time-differential dilatometry. By these techniques, high concentrations and low mobilities of thermal vacancies were found in open-structured B2 intermetallics such as FeAl or NiAl, whereas the concentrations of vacancies are low and their mobilities high in close-packed structure as, e.g., L1{sub 2}-Ni{sub 3}Al. The activation volumes of vacancy formation and migration are determined by high-pressure experiments. The favorable sublattice for vacancy formation is found to be the majority sublattice in Fe{sub 61}Al{sub 39} and in MoSi{sub 2}. In the icosahedral quasicrystal Al{sub 70}Pd{sub 21}Mn{sub 9} the thermal vacancy concentration is low, whereas in the BMG Zr{sub 57}Cu{sub 15.4}Ni{sub 12.6}Nb{sub 3}Al{sub 10} thermal vacancies are found in high concentrations with low mobilities. This may determine the basic mechanisms of the glass transition. Making use of the experimentally determined vacancy data, the main features of atomic diffusion studies in crystalline intermetallics, in quasicrystals, and in BMGs can be understood. Manfred Faehnle and his group have substantially contributed to the theoretical understanding of vacancies and diffusion mechanisms in intermetallics. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. Branched GDGTs in Lacustrine Environments: Tracing Allochthonous and Autochthonous Sources Using Compound-Specific Stable Carbon Isotope Analysis

    Science.gov (United States)

    Weber, Y.; S Sinninghe Damsté, J.; Lehmann, M. F.; Niemann, H.; Schubert, C. J.

    2015-12-01

    Branched glycerol dialkyl glycerol tetraethers (brGDGTs) are bacterial membrane lipids that are ubiquitous in soils and peat, as well as in sediments of lakes, rivers and coastal marine environments. It has been found that the distribution of brGDGTs changes systematically with ambient temperature and pH, attesting to their potential as proxy indicators for paleoclimatic reconstruction. In lacustrine sedimentary archives, brGDGTs can originate from two sources: (1) allochthonous soil organic matter and (2) autochthonous brGDGTs produced within the lake system, both of which display fairly distinct temperature-brGDGT relationships. Until now, disentangling the relative contribution of these sources was impossible, complicating the use of brGDGTs for quantitative paleotemperature reconstructions. BrGDGTs in soils display a narrow range with respect to their stable carbon isotope composition (δ13C), generally between -27 and -30 ‰, whereas we recently found contrasting δ13C values as low as -43 ‰ to -46 ‰ for brGDGTs in sediments of a small Alpine lake. To trace the origin of this distinct isotope signal, we determined the 13C content of brGDGTs in suspended particulate matter (SPM) from the water column of Lake Lugano (Switzerland). The δ13C of SPM-derived brGDGTs decreased systematically from -34 ‰ in the mixolimnion to -41 ‰ in the anoxic monimolimnion of Lake Lugano, providing evidence for aquatic in situ production of 13C-depleted brGDGT. In order to study whether the negative δ13C offset of water column- vs. soil-derived brGDGTs may serve as an indicator for lacustrine brGDGT production, we also analyzed surface sediments from 36 lakes across the Alpine Region. In most (~85 %) of the studied lake sediments, the δ13C of brGDGTs ranged between -34 ‰ and -45 ‰, indicating predominance or a substantial contribution of aquatically produced brGDGTs. However, in some lakes (~15 %) δ13C values between -27 ‰ and -30 ‰ suggest a mainly

  2. Functional connectivity of coral reef fishes in a tropical seascape assessed by compound-specific stable isotope analyses

    KAUST Repository

    McMahon, Kelton W.

    2011-01-01

    The ecological integrity of tropical habitats, including mangroves, seagrass beds and coral reefs, is coming under increasing pressure from human activities. Many coral reef fish species are thought to use mangroves and seagrass beds as juvenile nurseries before migrating to coral reefs as adults. Identifying essential habitats and preserving functional linkages among these habitats is likely necessary to promote ecosystem health and sustainable fisheries on coral reefs. This necessitates quantitative assessment of functional connectivity among essential habitats at the seascape level. This thesis presents the development and first application of a method for tracking fish migration using amino acid (AA) δ13C analysis in otoliths. In a controlled feeding experiment with fish reared on isotopically distinct diets, we showed that essential AAs exhibited minimal trophic fractionation between consumer and diet, providing a δ13C record of the baseline isoscape. We explored the potential for geochemical signatures in otoliths of snapper to act as natural tags of residency in seagrass beds, mangroves and coral reefs in the Red Sea, Caribbean Sea and Eastern Pacific Ocean. The δ13C values of otolith essential AAs varied as a function of habitat type and provided a better tracer of residence in juvenile nursery habitats than conventional bulk stable isotope analyses (SIA). Using our otolith AA SIA approach, we quantified the relative contribution of coastal wetlands and reef habitats to Lutjanus ehrenbergii populations on coastal, shelf and oceanic coral reefs in the Red Sea. L. ehrenbergii made significant ontogenetic migrations, traveling more than 30 km from juvenile nurseries to coral reefs and across deep open water. Coastal wetlands were important nurseries for L. ehrenbergii; however, there was significant plasticity in L. ehrenbergii juvenile habitat requirements. Seascape configuration played an important role in determining the functional connectivity of L

  3. MD study of primary damage in L10 TiAl structural intermetallics

    International Nuclear Information System (INIS)

    Voskoboinikov, Roman E.

    2013-01-01

    Computer modelling by molecular dynamics has been applied to study the radiation damage created in collision cascades in L1 0 TiAl intermetallic compound. Either Al or Ti primary knock-on atoms (PKA) with energy 5 keV ⩽ E PKA ⩽ 20 keV were introduced in the intermetallic crystals at temperatures ranging from 100 K to 900 K. At least 24 different cascade for each (E PKA , T, PKA type) set were modelled in order to simulate a random spatial and temporal distribution of PKAs and provide statistical reliability of the results. The total yield of more than 760 simulated cascades is the largest yet reported for this binary intermetallic material. A comprehensive treatment of the modelling results has been carried out. The number of Frenkel pairs, fraction of Al and Ti vacancies, self-interstitial atoms and anti-sites as a function of (E PKA , T, PKA type) has been established. Preferred formation of Al self-interstitial atoms has been detected in L1 0 TiAl structural intermetallics exposed to irradiation

  4. Theory of Valence Transitions in Ytterbium and Europium Intermetallics

    International Nuclear Information System (INIS)

    Zlatic, V.; Freericks, J.K.

    2001-01-01

    The exact solution of the multi-component Falicov-Kimball model in infinite-dimensions is presented and used to discuss a new fixed point of valence fluctuating intermetallics with Yb and Eu ions. In these compounds, temperature, external magnetic field, pressure, or chemical pressure induce a transition between a metallic state with the f-ions in a mixed-valent (non-magnetic) configuration and a semi-metallic state with the f-ions in an integral-valence (paramagnetic) configuration. The zero-field transition occurs at the temperature T V , while the zero-temperature transition sets in at the critical field H c . We present the thermodynamic and dynamic properties of the model for an arbitrary concentration of d- and f -electrons. For large U, we find a MI transition, triggered by the temperature or field- induced change in the f-occupancy. (author)

  5. Stable and High OSNR Compound Linear-Cavity Single-Longitudinal-Mode Erbium-Doped Silica Fiber Laser Based on an Asymmetric Four-Cavity Structure

    International Nuclear Information System (INIS)

    Feng Ting; Yan Feng-Ping; Li Qi; Peng Wan-Jing; Feng Su-Chun; Wen Xiao-Dong; Tan Si-Yu; Liu Peng

    2012-01-01

    We propose a stable and high optical signal-to-noise ratio (OSNR) compound linear-cavity single-longitudinal-mode (SLM) erbium-doped silica fiber laser. It consists of three uniform fiber Bragg gratings (FBGs) and two fiber couplers to form a simple asymmetric four-cavity structure to select the longitudinal mode. The stable SLM operation at the wavelength of 1544.053 nm with a 3 dB bandwidth of 0.014 nm and an OSNR of ∼60 dB was verified experimentally. Under laboratory conditions, a power fluctuation performance of less than 0.05 dB for 5 h and wavelength variation of less than 0.01 nm for about 150 min is demonstrated. Finally, the characteristic of laser output power as a function of pump power is investigated. The proposed system provides a simple and cost-effective approach to realize a stable SLM fiber laser

  6. Formation of Ni-Ti intermetallics during reactive sintering at 500-650 degrees C

    Czech Academy of Sciences Publication Activity Database

    Novák, P.; Pokorný, P.; Vojtěch, V.; Knaislová, A.; Školáková, A.; Čapek, J.; Karlík, M.; Kopeček, Jaromír

    2015-01-01

    Roč. 155, Apr (2015), s. 113-121 ISSN 0254-0584 R&D Projects: GA ČR(CZ) GA14-03044S Institutional support: RVO:68378271 Keywords : intermetallic compounds * powder metallurgy * electron microscopy * microstructure Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 2.101, year: 2015

  7. The back stresses in creep of a Fe–30Al–4Cr intermetallic alloy with addition of Zr

    Czech Academy of Sciences Publication Activity Database

    Dobeš, Ferdinand

    2008-01-01

    Roč. 59, č. 1 (2008), s. 59-62 ISSN 1359-6462 R&D Projects: GA ČR GA106/05/0409 Institutional research plan: CEZ:AV0Z20410507 Keywords : Intermetallic compound * Dislocation mobility * Mechanical properties Subject RIV: JG - Metallurgy Impact factor: 2.887, year: 2008

  8. Reversible hydrogen storage in the Ni-rich pseudo-binary Mg{sub 6}Pd{sub 0.25}Ni{sub 0.75} intermetallic compound: Reaction pathway, thermodynamic and kinetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Ponthieu, M. [Dpto. Fisica de Materiales, Facultad de Ciencias, Universidad Autonoma de Madrid, 28049 Madrid (Spain); ICMPE/CNRS-UPEC UMR 7182, 2-8 rue Henri Dunant, 94320 Thiais (France); Fernandez, J.F., E-mail: josefrancisco.fernandez@uam.es [Dpto. Fisica de Materiales, Facultad de Ciencias, Universidad Autonoma de Madrid, 28049 Madrid (Spain); Cuevas, F. [ICMPE/CNRS-UPEC UMR 7182, 2-8 rue Henri Dunant, 94320 Thiais (France); Ares, J.R.; Leardini, F.; Bodega, J.; Sanchez, C. [Dpto. Fisica de Materiales, Facultad de Ciencias, Universidad Autonoma de Madrid, 28049 Madrid (Spain)

    2013-01-25

    Highlights: Black-Right-Pointing-Pointer Mg{sub 6.2}Pd{sub 0.25}Ni{sub 0.65} reversibly absorbs 5.6 wt.% H in a two plateau pressure PCI. Black-Right-Pointing-Pointer The ternary phase depletes in Mg and Ni at low hydrogen pressure to form Mg{sub 2}Ni. Black-Right-Pointing-Pointer Reaction pathway of hydrogenation has been determined. Black-Right-Pointing-Pointer Enthalpy of the high pressure plateau is less negative than the one of pure Mg. Black-Right-Pointing-Pointer Low activation energy for desorption has been found for highly hydrided material. - Abstract: To improve the hydrogen storage properties of Mg{sub 6}Pd and to reduce its cost, Pd has been partly substituted by Ni at the solubility limit of the Mg{sub 6}(Pd,Ni) {rho}-phase. The attained composition is Mg{sub 6.2}Pd{sub 0.25}Ni{sub 0.65} as determined by Energy Dispersive X-Ray (EDX) and X-Ray Diffraction (XRD). Hydrogenation of this compound has been investigated by X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM-EDX), Pressure-Composition-Isotherms (PCI) and thermal desorption analysis. On absorption, it decomposes in two steps as evidenced by two distinct plateau pressures. At low pressure, a partial segregation of Mg and Ni out of the pseudo-binary Mg{sub 6.2}Pd{sub 0.25}Ni{sub 0.65} {rho}-phase occurs leading to the formation of MgH{sub 2}, Mg{sub 2}Ni and Mg{sub 6}Pd{sub 0.7}Ni{sub 0.3} phases. At high pressure, the Mg{sub 6}Pd{sub 0.7}Ni{sub 0.3} phase disproportionates into MgH{sub 2}, Mg{sub 2}NiH{sub 4}, MgPd and Mg{sub 5}Pd{sub 2} phases. The hydrogenation reaction is reversible providing a hydrogen capacity of 5.6 wt.% H. The reaction enthalpy of the high pressure plateau is less negative than for pure Mg. Furthermore, the activation energy for H-desorption exhibits a dramatic decrease for hydrogen contents above 4 wt.% H, i.e. after the alloy disproportionation.

  9. Pressure-induced phenomena in U intermetallics

    Czech Academy of Sciences Publication Activity Database

    Sechovský, V.; Honda, F.; Prokeš, K.; Syshchenko, O.; Andreev, Alexander V.; Kamarád, Jiří

    2003-01-01

    Roč. 34, č. 2 (2003), s. 1377-1386 ISSN 0587-4254. [International Conference on Strongly Correlated Electron Systems (SCES 02). Cracow, 10.07.2002-13.07.2002] R&D Projects: GA ČR GA202/02/0739 Institutional research plan: CEZ:AV0Z1010914; CEZ:MSM 113200002 Keywords : pressure effect * intermetallics Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.752, year: 2003

  10. The μ3 model of acids and bases: extending the Lewis theory to intermetallics.

    Science.gov (United States)

    Stacey, Timothy E; Fredrickson, Daniel C

    2012-04-02

    A central challenge in the design of new metallic materials is the elucidation of the chemical factors underlying the structures of intermetallic compounds. Analogies to molecular bonding phenomena, such as the Zintl concept, have proven very productive in approaching this goal. In this Article, we extend a foundational concept of molecular chemistry to intermetallics: the Lewis theory of acids and bases. The connection is developed through the method of moments, as applied to DFT-calibrated Hückel calculations. We begin by illustrating that the third and fourth moments (μ(3) and μ(4)) of the electronic density of states (DOS) distribution tune the properties of a pseudogap. μ(3) controls the balance of states above and below the DOS minimum, with μ(4) then determining the minimum's depth. In this way, μ(3) predicts an ideal occupancy for the DOS distribution. The μ(3)-ideal electron count is used to forge a link between the reactivity of transition metals toward intermetallic phase formation, and that of Lewis acids and bases toward adduct formation. This is accomplished through a moments-based definition of acidity which classifies systems that are electron-poor relative to the μ(3)-ideal as μ(3)-acidic, and those that are electron-rich as μ(3)-basic. The reaction of μ(3) acids and bases, whether in the formation of a Lewis acid/base adduct or an intermetallic phase, tends to neutralize the μ(3) acidity or basicity of the reactants. This μ(3)-neutralization is traced to the influence of electronegativity differences at heteroatomic contacts on the projected DOS curves of the atoms involved. The role of μ(3)-acid/base interactions in intermetallic phases is demonstrated through the examination of 23 binary phases forming between 3d metals, the stability range of the CsCl type, and structural trends within the Ti-Ni system.

  11. Brushing up on the history of intermetallics in dentistry

    Science.gov (United States)

    Waterstrat, Richard M.

    1990-03-01

    Employing a silver-tin-mercury intermetallic to repair cavities may seem a little unusual, but intermetallics are quite common in dentistry, ranging from gold crowns to braces. Although the human mouth can be unfriendly territory for a brittle intermetallic alloy, dental amalgam has been around since 659 A.D., and its technology has been developed to the point where a filling can be expected to last 30 years or more.

  12. Reduced workfunction intermetallic seed layers allow growth of porous n-GaN and low resistivity, ohmic electron transport.

    Science.gov (United States)

    Bilousov, Oleksandr V; Carvajal, Joan J; Drouin, Dominique; Mateos, Xavier; Díaz, Francesc; Aguiló, Magdalena; O'Dwyer, Colm

    2012-12-01

    Porous GaN crystals have been successfully grown and electrically contacted simultaneously on Pt- and Au-coated silicon substrates as porous crystals and as porous layers. By the direct reaction of metallic Ga and NH(3) gas through chemical vapor deposition, intermetallic metal-Ga alloys form at the GaN-metal interface, allowing vapor-solid-solid seeding and subsequent growth of porous GaN. Current-voltage and capacitance-voltage measurements confirm that the intermetallic seed layers prevent interface oxidation and give a high-quality reduced workfunction contact that allows exceptionally low contact resistivities. Additionally, the simultaneous formation of a lower workfunction intermetallic permits ohmic electron transport to n-type GaN grown using high workfunction metals that best catalyze the formation of porous GaN layers and may be employed to seed and ohmically contact a range of III-N compounds and alloys for broadband absorption and emission.

  13. Highly water-soluble ruthenium(II terpyridine coordination compounds form stable adducts with blood-borne metal transporting proteins

    Directory of Open Access Journals (Sweden)

    Marija Nišavić

    2018-03-01

    Full Text Available Three coordination compounds of ruthenium(II, belonging to a recently synthesised series of water-soluble compounds of general formula mer-[Ru(L3(N-NCl]Cl, where L3 = 4'-chloro-2,2':6',2″-terpyridine (Cl-tpy, N-N = ethylenediamine (en, 1,2-diaminocyclohexane (dach or 2,2'-bipyridine (bpy, have shown strong binding to calf thymus DNA and moderate in vitro cytotoxicity towards cancer cell lines. Knowing that serum proteins play a crucial role in the transport and deactivation of ruthenium drugs, we have conducted a detailed study of their interactions with two major metal-transporting serum proteins, albumin and transferrin, and it is presented herein. Ruthenated protein adducts were formed with various concentrations of the three compounds and then separated from the unbound portions by ultrafiltration through 10 kDa cut-off centrifugal filter units. The stoichiometry of binding was determined using inductively coupled plasma optical emission spectrometry. One mol of albumin bound up to 7, 8.5 and 1.5 mol of compound 1 ([Ru(Cl-tpy(enCl][Cl], 2 ([Ru(Cl-tpy(dachCl][Cl] and 3 ([Ru(Cl-tpy(bpyCl][Cl], respectively. One mol of transferrin bound up to 3, 3.5 and 0.4 mol of 1, 2 and 3, respectively. The affinity of albumin and transferrin for the three ruthenium compounds was evaluated using fluorescence quenching. The binding constants for 1 and 2 lay within the range 104–105 M−1, suggesting moderate-to-strong attachment to albumin. Both compounds showed much lower affinity for transferrin (102–103 M−1. Compound 3 bound weakly to each studied protein. High resolution ESI qTOF mass spectra of albumin before and after binding of 1 revealed the high stoichiometry of binding. Although the binding of the compounds 1–3 to albumin and transferrin did not affect proteins’ secondary structure much, their tertiary structures underwent some alterations, as deduced from the circular dichroism study. Changes in the stability of albumin, after

  14. New ternary intermetallics, based magnesium, for hydrogen storage

    International Nuclear Information System (INIS)

    Roquefere, J.G.

    2009-05-01

    The use of fossil fuels (non-renewable energy) is responsible for increasing the concentration of greenhouse gases in the atmosphere. Among the considered alternatives, hydrogen is seen as the most attractive energy vector. The storage in intermetallics makes it possible to obtain mass and volume capacities (e.g. 140 g/L) higher than those obtained by liquid form or under pressure (respectively 71 and 40 g/L). We have synthesised Mg and Rare Earth based compounds (RE = Y, Ce and Gd), derived from the cubic Laves phases AB2. Their physical and chemical properties have been studied (hydrogenation, electrochemistry, magnetism,...). The conditions of sorption (P and T) are particularly favorable (i.e. absorption at room temperature and atmospheric pressure). Besides, to improve the sorption kinetics of metallic magnesium, the compounds developed previously were used as catalysts. Thus, GdMgNi4 was milled with magnesium and the speeds of absorption and desorption of the mixture are found higher than those obtained for the composites Mg+Ni or Mg+V, which are reference systems. A theoretical approach (DFT) was used to model the electronic structure of the ternary compounds (i.e. REMgNi4) and thus to predict or confirm the experimental results. (authors)

  15. Investigation and modeling of stable phase of crystal in Gd2X(X=Al, Ga, In) IMC

    International Nuclear Information System (INIS)

    Sabouri, F.; Yazdani, A.

    2007-01-01

    The rare earth metals have special importance for their high magnetic moments, various magnetic and crystal structures. The experiments show in constant conditions, such as electro negativity, ionic radii, hybridasion that are important factors that determine the existence of a stable phase of a crystal; there are anomalous behaviors in formation of Rare-earth Compounds. The gadolinium with 7 electron in its 4f shell has spherical symmetry and stability in magnetic and crystal structure but Gd 2 X(X=Ai, Ga,In) compounds show anomalous behavior in ones, Gd 2 Al intermetallic compound crystallize in orthorhombic structure and Gd 2 In in hexagonal, while there is no report about Gd 2 Ga IMCO. The manner of preparing of Gd 2 Ga intermetallic compound that is not in scripted in Gd-Ga phase diagram was probed by Arc melted furnace. X-ray diffraction and scanning electron microscopy data show that its structure is orthorhombic and very sensitive to annealing temperature. Then stability of crystal structures of Gd 2 X (X=Al,Ga,In compounds were researched by calculating of total energy of systems, based on the DFT calculations by use of Wien2k program that their data are in good agreement with the experimental ones

  16. High Temperature Oxidation of Superalloys and Intermetallic Compounds

    Science.gov (United States)

    2010-02-28

    7] The charpy impact energy is satisfactory at room temperature, and, depending on the grain size, the FeAI(40 at.%) offers a yielding point...alumina (Al203).[7] The charpy impact energy is satisfactory at room temperature, and, depending on the grain size, the FeAI(40 at.%) offers a yielding...IN 718) superalloy was investigated by Electrochemical Impedance Spectroscopy (EIS). The corrosion test temperatures used were salt melting points

  17. Addressing Machining Issues for the Intermetallic Compound 60-NITINOL

    Science.gov (United States)

    Stanford, Malcolm K.; Wozniak, Walter A.; McCue, Terry R.

    2012-01-01

    60-NITINOL (60 wt.% Ni - 40 wt.% Ti) is being studied as a material for advanced aerospace components. Frequent wire breakage during electrical-discharge machining of this material was investigated. The studied material was fabricated from hot isostatically pressed 60-NITINOL powder obtained through a commercial source. Bulk chemical analysis of the material showed that the composition was nominal but had relatively high levels of certain impurities, including Al and O. It was later determined that Al2O3 particles had contaminated the material during the hot isostatic pressing procedure and that these particles were the most likely cause of the wire breakage. The results of this investigation highlight the importance of material cleanliness to its further implementation.

  18. The motion of hydrogen isotopes in metals and intermetallic compounds

    International Nuclear Information System (INIS)

    Drexel, W.; Murani, A.; Tocchetti, D.; Kley, W.

    1976-08-01

    The existence of local and band modes of hydrogen and deuterium impurities in α-palladium hydride was observed by inelastic scattering of thermal neutrons of 12.6 meV. The first and second harmonic of the hydrogen local mode could be observed at Esub(1)sup(H)=(66+-4)meV and Esub(2)sup(H)=(135+-15)meV. For deuterium the first harmonics appears at Esub(1)sup(D)=(48+-4)meV. The width of the hydrogen local mode Esub(1)sup(H) is changing from 30 to 20 meV and its position from 63 to 66meV if the hydrogen concentration is altered from 2.7 to 0.2 atom percent. The intensity of the Esub(1)sup(H) mode, integrated for scattering angles from 11 0 till 68 0 and a mean k-vector pointing in the [210]-direction, is decreasing by a factor of 5 with respect to harmonic oscillator while the intensity of the second harmonic Esub(2)sup(H) and of the band modes stays almost constant if the temperature is changed from 423 0 K till 673 0 K. The behavior of this intensity distributions with temperature indicates a partition of the proton motions in diffusive and localized motions and supports the assumption of an anharmonic periodic potential along the [110] direction. The frequency distribution function of the hydrogen band modes has a shape as expected from measured dispersion curves. For [Pdsub(0.018)sup(D)-Pd] a broad quasielastic line is observed that indicates the existence of overdamped phonons in the vicinity of the impurity atom

  19. A Stable, Magnetic, and Metallic Li3O4 Compound as a Discharge Product in a Li-Air Battery.

    Science.gov (United States)

    Yang, Guochun; Wang, Yanchao; Ma, Yanming

    2014-08-07

    The Li-air battery with the specific energy exceeding that of a Li ion battery has been aimed as the next-generation battery. The improvement of the performance of the Li-air battery needs a full resolution of the actual discharge products. Li2O2 has been long recognized as the main discharge product, with which, however, there are obvious failures on the understanding of various experimental observations (e.g., magnetism, oxygen K-edge spectrum, etc.) on discharge products. There is a possibility of the existence of other Li-O compounds unknown thus far. Here, a hitherto unknown Li3O4 compound as a discharge product of the Li-air battery was predicted through first-principles swarm structure searching calculations. The new compound has a unique structure featuring the mixture of superoxide O2(-) and peroxide O2(2-), the first such example in the Li-O system. The existence of superoxide O2(-) creates magnetism and hole-doped metallicity. Findings of Li3O4 gave rise to direct explanations of the unresolved experimental magnetism, triple peaks of oxygen K-edge spectra, and the Raman peak at 1125 cm(-1) of the discharge products. Our work enables an opportunity for the performance of capacity, charge overpotential, and round-trip efficiency of the Li-air battery.

  20. NTFD--a stand-alone application for the non-targeted detection of stable isotope-labeled compounds in GC/MS data.

    Science.gov (United States)

    Hiller, Karsten; Wegner, André; Weindl, Daniel; Cordes, Thekla; Metallo, Christian M; Kelleher, Joanne K; Stephanopoulos, Gregory

    2013-05-01

    Most current stable isotope-based methodologies are targeted and focus only on the well-described aspects of metabolic networks. Here, we present NTFD (non-targeted tracer fate detection), a software for the non-targeted analysis of all detectable compounds derived from a stable isotope-labeled tracer present in a GC/MS dataset. In contrast to traditional metabolic flux analysis approaches, NTFD does not depend on any a priori knowledge or library information. To obtain dynamic information on metabolic pathway activity, NTFD determines mass isotopomer distributions for all detected and labeled compounds. These data provide information on relative fluxes in a metabolic network. The graphical user interface allows users to import GC/MS data in netCDF format and export all information into a tab-separated format. NTFD is C++- and Qt4-based, and it is freely available under an open-source license. Pre-compiled packages for the installation on Debian- and Redhat-based Linux distributions, as well as Windows operating systems, along with example data, are provided for download at http://ntfd.mit.edu/.

  1. Sediment Origin Determination in the Sub-Catchment of Mistelbach (Austria) using Fatty Acids Biomarkers and Compound-Specific Stable Isotope Techniques

    International Nuclear Information System (INIS)

    Mabit, L.; Chen, X.; Resch, C.; Toloza, A.; Meusburger, K.; Alewell, C.; Gibbs, M.; Klik, A.; Eder, A.; Strauss, P.

    2016-01-01

    Compound-specific stable isotope (CSSI) signatures of inherent soil organic biomarkers allow discriminating and apportioning the source of soil contribution from different land uses. Plant communities label the soil where they grow by exuding organic biomarkers. Although all plants produce the same biomarkers, the stable isotopic signature of those biomarkers is different for each plant species. For agri-environmental investigations, the CSSI technique is based on the measurement of carbon-13 ( 13 C) natural abundance signatures of specific organic compounds such as natural fatty acids (FAs) in the soil. By linking fingerprints of land use to the sediment in deposition zones, this approach has been shown to be a useful technique for determining the source of eroded soil and thereby identifying areas prone to soil degradation. The authors have used this innovative technique to investigate a 3 hectares sub-catchment of Mistelbach situated 60 km north of Vienna. Using the 137 Cs technique, Mabit et al. (2009) reported a local maximum sedimentation rate reaching 20 to 50 t ha -1 yr -1 in the lowest part of this Austrian catchment. To test the ability of the CSSI technique to discriminate different sediment sources of these deposited sediments, representative soil samples from four main agricultural fields of the site were analyzed

  2. Thermochemical stability of Li-Cu-O ternary compounds stable at room temperature analyzed by experimental and theoretical methods

    Energy Technology Data Exchange (ETDEWEB)

    Lepple, Maren [Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen (Germany). Inst. for Applied Materials - Applied Materials Physics; Technische Univ. Darmstadt (Germany). Eduard-Zintl-Inst. of Inorganic and Physical Chemistry; Rohrer, Jochen; Albe, Karsten [Technische Univ. Darmstadt (Germany). Fachgebiet Materialmodellierung; Adam, Robert; Rafaja, David [Technical Univ. Freiberg (Germany). Inst. of Materials Science; Cupid, Damian M. [Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen (Germany). Inst. for Applied Materials - Applied Materials Physics; Austrian Institute of Technology GmbH, Vienna (Austria). Center for Low-Emission Transport TECHbase; Seifert, Hans J. [Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen (Germany). Inst. for Applied Materials - Applied Materials Physics

    2017-11-15

    Compounds in the Li-Cu-O system are of technological interest due to their electrochemical properties which make them attractive as electrode materials, i.e., in future lithium ion batteries. In order to select promising compositions for such applications reliable thermochemical data are a prerequisite. Although various groups have investigated individual ternary phases using different experimental setups, up to now, no systematic study of all relevant phases is available in the literature. In this study, we combine drop solution calorimetry with density function theory calculations to systematically investigate the thermodynamic properties of ternary Li-Cu-O phases. In particular, we present a consistently determined set of enthalpies of formation, Gibbs energies and heat capacities for LiCuO, Li{sub 2}CuO{sub 2} and LiCu{sub 2}O{sub 2} and compare our results with existing literature.

  3. Microstructure and Tribological Properties of Mo–40Ni–13Si Multiphase Intermetallic Alloy

    Science.gov (United States)

    Song, Chunyan; Wang, Shuhuan; Gui, Yongliang; Cheng, Zihao; Ni, Guolong

    2016-01-01

    Intermetallic compounds are increasingly being expected to be utilized in tribological environments, but to date their implementation is hindered by insufficient ductility at low and medium temperatures. This paper presents a novel multiphase intermetallic alloy with the chemical composition of Mo–40Ni–13Si (at %). Microstructure characterization reveals that a certain amount of ductile Mo phases formed during the solidification process of a ternary Mo–Ni–Si molten alloy, which is beneficial to the improvement of ductility of intermetallic alloys. Tribological properties of the designed alloy—including wear resistance, friction coefficient, and metallic tribological compatibility—were evaluated under dry sliding wear test conditions at room temperature. Results suggest that the multiphase alloy possesses an excellent tribological property, which is attributed to unique microstructural features and thereby a good combination in hardness and ductility. The corresponding wear mechanism is explained by observing the worn surface, subsurface, and wear debris of the alloy, which was found to be soft abrasive wear. PMID:28774106

  4. Molecular distributions and compound-specific stable carbon isotopic compositions of lipids in wintertime aerosols from Beijing.

    Science.gov (United States)

    Ren, Lujie; Fu, Pingqing; He, Yue; Hou, Juzhi; Chen, Jing; Pavuluri, Chandra Mouli; Sun, Yele; Wang, Zifa

    2016-06-08

    Molecular distributions and stable carbon isotopic compositions (δ(13)C) of n-alkanes, fatty acids and n-alcohols were investigated in urban aerosols from Beijing, northern China to better understand the sources and long-range atmospheric transport of terrestrial organic matter during polluted and clear days in winter. n-Alkanes (C19-C36), fatty acids (C8-C32) and n-alcohols (C16-C32) detected in Beijing aerosols are characterized by the predominance of C23, C16 and C28, respectively. Carbon preference index (CPI) values of n-alkanes, the ratios of the sum of odd-numbered n-alkanes to the sum of even-numbered n-alkanes, are close to 1, indicating a heavy influence of fossil fuel combustion. Relatively higher ratios of C(18:0+16:0)/C(18:n+16:1) (fatty acids) on clear days than polluted days indicate that long-distance transport and/or photochemical aging are more significant during clear days. δ(13)C values of n-alkanes and low molecular weight fatty acids (C16:0, C18:0) ranged from -34.1 to -24.7% and -26.9 to -24.6%, respectively, which are generally heavier on polluted days than those on clear days. Such a wide range suggests that atmospheric lipids in Beijing aerosols originate from multiple sources and encounter complicated atmospheric processes during long-range transport in North China.

  5. Compound-specific stable carbon isotopic composition of petroleum hydrocarbons as a tool for tracing the source of oil spills

    International Nuclear Information System (INIS)

    Li Yun; Xiong Yongqiang; Yang Wanying; Xie Yueliang; Li Siyuan; Sun Yongge

    2009-01-01

    With the increasing demand for and consumption of crude oils, oil spill accidents happen frequently during the transportation of crude oils and oil products, and the environmental hazard they pose has become increasingly serious in China. The exact identification of the source of spilled oil can act as forensic evidence in the investigation and handling of oil spill accidents. In this study, a weathering simulation experiment demonstrates that the mass loss of crude oils caused by short-term weathering mainly occurs within the first 24 h after a spill, and is dominated by the depletion of low-molecular weight hydrocarbons ( 18 n-alkanes). Short-term weathering has no significant effect on δ 13 C values of individual n-alkanes (C 12 -C 33 ), suggesting that a stable carbon isotope profile of n-alkanes can be a useful tool for tracing the source of an oil spill, particularly for weathered oils or those with a relatively low concentration or absence of sterane and terpane biomarkers

  6. Isothermal section of the ternary phase diagram U–Fe–Ge at 900 °C and its new intermetallic phases

    Energy Technology Data Exchange (ETDEWEB)

    Henriques, M.S., E-mail: mish@itn.pt [Institute of Physics, Academy of Sciences of the Czech Republic, Na Slovance 2, 182 21 Prague (Czech Republic); CCTN, IST/CFMCUL, University of Lisbon, Nuclear and Technological Campus, P-2695-066 Bobadela (Portugal); Berthebaud, D.; Lignie, A.; El Sayah, Z.; Moussa, C.; Tougait, O. [Institut des Sciences Chimiques de Rennes, Chimie du Solide et Matériaux, Université Rennes 1, UMR CNRS 6226, 263 Avenue du Général Leclerc, 35042 Rennes (France); Havela, L. [Department of Condensed Matter Physics, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, 121 16 Prague (Czech Republic); Gonçalves, A.P. [CCTN, IST/CFMCUL, University of Lisbon, Nuclear and Technological Campus, P-2695-066 Bobadela (Portugal)

    2015-08-05

    Highlights: • Isothermal section of the U–Fe–Ge at 900 °C was investigated. • Ten ternary compounds and four significant solubility ranges were found. • Three new compounds and a solid solution were discovered. - Abstract: The isothermal section at 900 °C of the U–Fe–Ge ternary system was assessed using experimental results from X-ray diffraction and observations by scanning electron microscopy coupled with energy dispersive X-ray spectroscopy chemical analysis. The phase diagram at this temperature is characterized by the formation of fourteen stable phases: four homogeneity ranges and ten intermetallic compounds. Among these, there is an extension of the binary compound UFe{sub 2} into the ternary system (UFe{sub 2−x}Ge{sub x,}x < 0.15), three ternary line compounds, U{sub 2}Fe{sub 17−x}Ge{sub x} (2 < x < 3.7), UFe{sub 1−x}Ge{sub 2} (0.58 < x < 0.78), UFe{sub 6+x}Ge{sub 6−x} (x < 0.7), and ten ternary stoichiometric compounds, U{sub 2}Fe{sub 3}Ge, U{sub 6}Fe{sub 16}Ge{sub 7}, UFe{sub 4}Ge{sub 2}, U{sub 6}Fe{sub 22}Ge{sub 13}, UFeGe, U{sub 3}Fe{sub 4}Ge{sub 4}, UFe{sub 2}Ge{sub 2}, U{sub 34}Fe{sub 3.32}Ge{sub 33}, U{sub 3}Fe{sub 2}Ge{sub 7}, and U{sub 9}Fe{sub 7}Ge{sub 24}.

  7. Titanium aluminide intermetallic alloys with improved wear resistance

    Science.gov (United States)

    Qu, Jun; Lin, Hua-Tay; Blau, Peter J.; Sikka, Vinod K.

    2014-07-08

    The invention is directed to a method for producing a titanium aluminide intermetallic alloy composition having an improved wear resistance, the method comprising heating a titanium aluminide intermetallic alloy material in an oxygen-containing environment at a temperature and for a time sufficient to produce a top oxide layer and underlying oxygen-diffused layer, followed by removal of the top oxide layer such that the oxygen-diffused layer is exposed. The invention is also directed to the resulting oxygen-diffused titanium aluminide intermetallic alloy, as well as mechanical components or devices containing the improved alloy composition.

  8. Relationship between tolerance factor and temperature coefficient of permittivity of temperature-stable high permittivity BaTiO3–Bi(MeO3 compounds

    Directory of Open Access Journals (Sweden)

    Natthaphon Raengthon

    2016-03-01

    Full Text Available The temperature coefficient of permittivity (TCε of BaTiO3–Bi(MeO3 solid solutions were investigated. It was determined that as the tolerance factor was decreased with the addition of Bi(MeO3, the TCε shifted from large negative values to TCε values approaching zero. It is proposed that the different bonding nature of the dopant cation affects the magnitude and temperature stability of the permittivity. This study suggests that the relationship between tolerance factor and TCε can be used as a guide to design new dielectric compounds exhibiting temperature-stable high permittivity characteristics, which is similar to past research on perovskite and pyrochlore-based microwave dielectrics.

  9. The CSSIAR v.1.00 Software: A new tool based on SIAR to assess soil redistribution using Compound Specific Stable Isotopes

    Science.gov (United States)

    Sergio, de los Santos-Villalobos; Claudio, Bravo-Linares; dos Anjos Roberto, Meigikos; Renan, Cardoso; Max, Gibbs; Andrew, Swales; Lionel, Mabit; Gerd, Dercon

    Soil erosion is one of the biggest challenges for food production around the world. Many techniques have been used to evaluate and mitigate soil degradation. Nowadays isotopic techniques are becoming a powerful tool to assess soil apportionment. One of the innovative techniques used is the Compound Specific Stable Isotopes (CSSI) analysis, which has been used to track down sediments and specify their sources by the isotopic signature of δ13 C in specific fatty acids. The application of this technique on soil apportionment has been recently developed, however there is a lack of user-friendly Software for data processing and interpretation. The aim of this article is to introduce a new open source tool for working with data sets generated by the use of the CSSI technique to assess soil apportionment, called the CSSIARv1.00 Software

  10. The CSSIAR v.1.00 Software: A new tool based on SIAR to assess soil redistribution using Compound Specific Stable Isotopes

    Directory of Open Access Journals (Sweden)

    de los Santos-Villalobos Sergio

    2017-01-01

    Full Text Available Soil erosion is one of the biggest challenges for food production around the world. Many techniques have been used to evaluate and mitigate soil degradation. Nowadays isotopic techniques are becoming a powerful tool to assess soil apportionment. One of the innovative techniques used is the Compound Specific Stable Isotopes (CSSI analysis, which has been used to track down sediments and specify their sources by the isotopic signature of δ13C in specific fatty acids. The application of this technique on soil apportionment has been recently developed, however there is a lack of user-friendly Software for data processing and interpretation. The aim of this article is to introduce a new open source tool for working with data sets generated by the use of the CSSI technique to assess soil apportionment, called the CSSIARv1.00 Software

  11. Lattice disorder in strongly correlated lanthanide and actinide intermetallics

    International Nuclear Information System (INIS)

    Booth, C.H.; Bauer, E.D.; Maple, M.B.; Lawrence, J.M.; Kwei, G.H.; Sarrao, J.L.

    2001-01-01

    Lanthanide and actinide intermetallic compounds display a wide range of correlated-electron behavior, including ferromagnetism, antiferromagnetism, nonmagnetic (Kondo) ground states, and so-called 'non-Fermi liquid' (NFL) behavior. The interaction between f electrons and the conduction band is a dominant factor in determining the ground state of a given system. However, lattice disorder can create a distribution of interactions, generating unusual physical properties. These properties may include NFL behavior in many materials. In addition, lattice disorder can cause deviations from standard Kondo behavior that is less severe than NFL behavior. A review of the lattice disorder mechanism within a tight-binding model is presented, along with measurements of the YbBCu 4 and UPd x Cu 5-x systems, demonstrating the applicability of the model. These measurements indicate that while the YbBCu 4 system appears to be well ordered, both site interchange and continuous bond-length disorder occur in the UPd x Cu 5-x series. Nevertheless, the measured bond-length disorder in UPdCu 4 does not appear to be enough to explain the NFL properties simply with the Kondo disorder model. (au)

  12. Structural transitions in RNi(10)Si(2) intermetallics.

    Science.gov (United States)

    Moze, O; Kockelmann, W A; Hofmann, M; Cadogan, J M; Ryan, D H; Buschow, K H J

    2009-03-25

    Intermetallic compounds of the type RFe(10)Si(2) and RCo(10)Si(2) crystallize in the ThMn(12) structure (space group I4/mmm) whilst the heavy rare earth series RNi(10)Si(2) crystallize in a maximal subgroup of I4/mmm, P4/nmm. Reported here are neutron powder diffraction investigations for TbNi(10)Si(2) and ErNi(10)Si(2) which show that the P4/nmm structure undergoes a high temperature order-disorder phase transition at approximately 930 °C above which the ordered Ni and Si fractions revert to a random distribution on 4d and 4e sites. The volume expansion has been tracked in detail via the temperature dependence of the lattice parameters, whilst the temperature dependence of the thermal expansion coefficients α(11), α(33) and α(volume) has been determined from the lattice parameters. Associated with the order-disorder transition is a transition associated with a displacement of the R ion along the c-axis. Both transitions are of second order and the critical exponent associated with the order-disorder and displacive transitions, β = 0.31, is in excellent agreement with the exponent determined for the three-dimensional Ising model.

  13. Lattice disorder in strongly correlated lanthanide and actinide intermetallics.

    Science.gov (United States)

    Booth, C H; Bauer, E D; Maple, M B; Lawrence, J M; Kwei, G H; Sarrao, J L

    2001-03-01

    Lanthanide and actinide intermetallic compounds display a wide range of correlated-electron behavior, including ferromagnetism, antiferromagnetism, nonmagnetic (Kondo) ground states, and so-called 'non-Fermi liquid' (NFL) behavior. The interaction between f electrons and the conduction band is a dominant factor in determining the ground state of a given system. However, lattice disorder can create a distribution of interactions, generating unusual physical properties. These properties may include NFL behavior in many materials. In addition, lattice disorder can cause deviations from standard Kondo behavior that is less severe than NFL behavior. A review of the lattice disorder mechanism within a tight-binding model is presented, along with measurements of the YbBCu4 and UPd(x)Cu(5-x) systems, demonstrating the applicability of the model. These measurements indicate that while the YbBCu4 system appears to be well ordered, both site interchange and continuous bond-length disorder occur in the UPd(x)Cu(5-x) series. Nevertheless, the measured bond-length disorder in UPdCu4 does not appear to be enough to explain the NFL properties simply with the Kondo disorder model.

  14. Sources of variability in fatty acid (FA) biomarkers in the application of compound-specific stable isotopes (CSSIs) to soil and sediment fingerprinting and tracing: A review

    International Nuclear Information System (INIS)

    Reiffarth, D.G.; Petticrew, E.L.; Owens, P.N.; Lobb, D.A.

    2016-01-01

    Determining soil redistribution and sediment budgets in watersheds is often challenging. One of the methods for making such determinations employs soil and sediment fingerprinting techniques, using sediment properties such as geochemistry, fallout radionuclides, and mineral magnetism. These methods greatly improve the estimation of erosion and deposition within a watershed, but are limited when determining land use-based soil and sediment movement. Recently, compound-specific stable isotopes (CSSIs), which employ fatty acids naturally occurring in the vegetative cover of soils, offer the possibility of refining fingerprinting techniques based on land use, complementing other methods that are currently in use. The CSSI method has been met with some success; however, challenges still remain with respect to scale and resolution due to a potentially large degree of biological, environmental and analytical uncertainty. By better understanding the source of tracers used in CSSI work and the inherent biochemical variability in those tracers, improvement in sample design and tracer selection is possible. Furthermore, an understanding of environmental and analytical factors affecting the CSSI signal will lead to refinement of the approach and the ability to generate more robust data. This review focuses on sources of biological, environmental and analytical variability in applying CSSI to soil and sediment fingerprinting, and presents recommendations based on past work and current research in this area for improving the CSSI technique. A recommendation, based on current information available in the literature, is to use very-long chain saturated fatty acids and to avoid the use of the ubiquitous saturated fatty acids, C 16 and C 18 . - Highlights: • Compound-specific stable isotopes (CSSIs) of carbon may be used as soil tracers. • The variables affecting CSSI data are: biological, environmental and analytical. • Understanding sources of variability will lead to more

  15. Development of Intelligent Processing Methodology for Intermetallic Matrix Composites

    National Research Council Canada - National Science Library

    1997-01-01

    .... Intermetallic matrix composites (IMCs), reinforced with a dispersed ceramic phase, will be incorporated into metallic matrices to serve as reinforcing entities within the resulting multi-lithic reinforced composite (MRC...

  16. Synchrotron radiation-based experimental determination of the optimal energy for cell radiotoxicity enhancement following photoelectric effect on stable iodinated compounds.

    Science.gov (United States)

    Corde, S; Joubert, A; Adam, J F; Charvet, A M; Le Bas, J F; Estève, F; Elleaume, H; Balosso, J

    2004-08-02

    This study was designed to experimentally evaluate the optimal X-ray energy for increasing the radiation energy absorbed in tumours loaded with iodinated compounds, using the photoelectric effect. SQ20B human cells were irradiated with synchrotron monochromatic beam tuned at 32.8, 33.5, 50 and 70 keV. Two cell treatments were compared to the control: cells suspended in 10 mg ml(-1) of iodine radiological contrast agent or cells pre-exposed with 10 microM of iodo-desoxyuridine (IUdR) for 48 h. Our radiobiological end point was clonogenic cell survival. Cells irradiated with both iodine compounds exhibited a radiation sensitisation enhancement. Moreover, it was energy dependent, with a maximum at 50 keV. At this energy, the sensitisation calculated at 10% survival was equal to 2.03 for cells suspended in iodinated contrast agent and 2.60 for IUdR. Cells pretreated with IUdR had higher sensitisation factors over the energy range than for those suspended in iodine contrast agent. Also, their survival curves presented no shoulder, suggesting complex lethal damages from Auger electrons. Our results confirm the existence of the 50 keV energy optimum for a binary therapeutic irradiation based on the presence of stable iodine in tumours and an external irradiation. Monochromatic synchrotron radiotherapy concept is hence proposed for increasing the differential effect between healthy and cancerous tissue irradiation.

  17. Compound-specific stable isotope analysis of organic contaminants in natural environments: a critical review of the state of the art, prospects, and future challenges

    International Nuclear Information System (INIS)

    Schmidt, Torsten C.; Haderlein, Stefan B.; Zwank, Luc; Elsner, Martin; Berg, Michael; Meckenstock, Rainer U.

    2004-01-01

    Compound-specific stable isotope analysis (CSIA) using gas chromatography-isotope ratio mass spectrometry (GC/IRMS) has developed into a mature analytical method in many application areas over the last decade. This is in particular true for carbon isotope analysis, whereas measurements of the other elements amenable to CSIA (hydrogen, nitrogen, oxygen) are much less routine. In environmental sciences, successful applications to date include (i) the allocation of contaminant sources on a local, regional, and global scale, (ii) the identification and quantification of (bio)transformation reactions on scales ranging from batch experiments to contaminated field sites, and (iii) the characterization of elementary reaction mechanisms that govern product formation. These three application areas are discussed in detail. The investigated spectrum of compounds comprises mainly n-alkanes, monoaromatics such as benzene and toluene, methyl tert-butyl ether (MTBE), polycyclic aromatic hydrocarbons (PAHs), and chlorinated hydrocarbons such as tetrachloromethane, trichloroethylene, and polychlorinated biphenyls (PCBs). Future research directions are primarily set by the state of the art in analytical instrumentation and method development. Approaches to utilize HPLC separation in CSIA, the enhancement of sensitivity of CSIA to allow field investigations in the μg L -1 range, and the development of methods for CSIA of other elements are reviewed. Furthermore, an alternative scheme to evaluate isotope data is outlined that would enable estimates of position-specific kinetic isotope effects and, thus, allow one to extract mechanistic chemical and biochemical information. (orig.)

  18. Lattice anisotropy in uranium ternary compounds

    DEFF Research Database (Denmark)

    Maskova, S.; Adamska, A.M.; Havela, L.

    2012-01-01

    Several U-based intermetallic compounds (UCoGe, UNiGe with the TiNiSi structure type and UNiAl with the ZrNiAl structure type) and their hydrides were studied from the point of view of compressibility and thermal expansion. Confronted with existing data for the compounds with the ZrNiAl structure...

  19. High temperature intermetallic binders for HVOF carbides

    International Nuclear Information System (INIS)

    Shaw, K.G.; Gruninger, M.F.; Jarosinski, W.J.

    1994-01-01

    Gas turbines technology has a long history of employing the desirable high temperature physical attributes of ceramic-metallic (cermet) materials. The most commonly used coatings incorporate combinations of WC-Co and Cr 3 C 2 -NiCr, which have also been successfully utilized in other non-turbine coating applications. Increased turbine operating temperatures and other high temperature service conditions have made apparent the attractive notion of increasing the temperature capability and corrosion resistance of these coatings. In this study the intermetallic binder NiAl has been used to replace the cobalt and NiCr constituents of conventional WC and Cr 3 C 2 cermet powders. The composite carbide thermal spray powders were fabricated for use in the HVOF coating process. The structure of HVOF deposited NiAl-carbide coatings are compared directly to the more familiar WC-Co and Cr 3 C 2 -NiCr coatings using X-ray diffraction, back-scattered electron imaging (BEI) and electron dispersive spectroscopy (EDS). Hardness variations with temperature are reported and compared between the NiAl and Co/NiCr binders

  20. Compound-specific 15N stable isotope probing of N assimilation by the soil microbial biomass: a new methodological paradigm in soil N cycling

    Science.gov (United States)

    Charteris, A. F.; Knowles, T. D. J.; Michaelides, K.; Evershed, R. P.

    2015-10-01

    A compound-specific nitrogen-15 stable isotope probing (15N-SIP) technique is described which allows investigation of the fate of inorganic- or organic-N amendments to soils. The technique uses gas chromatography-combustion-isotope ratio mass spectrometry (GC-C-IRMS) to determine the δ15N values of individual amino acids (AAs; determined as N-acetyl, O-isopropyl derivatives) as proxies of biomass protein production. The δ15N values are used together with AA concentrations to quantify N assimilation of 15N-labelled substrates by the soil microbial biomass. The utility of the approach is demonstrated through incubation experiments using inorganic 15N-labelled substrates ammonium (15NH4+) and nitrate (15NO3-) and an organic 15N-labelled substrate, glutamic acid (15N-Glu). Assimilation of all the applied substrates was undetectable based on bulk soil properties, i.e. % total N (% TN), bulk soil N isotope composition and AA concentrations, all of which remained relatively constant throughout the incubation experiments. In contrast, compound-specific AA δ15N values were highly sensitive to N assimilation, providing qualitative and quantitative insights into the cycling and fate of the applied 15N-labelled substrates. The utility of this 15N-AA-SIP technique is considered in relation to other currently available methods for investigating the microbially-mediated assimilation of nitrogenous substrates into the soil organic N pool. This approach will be generally applicable to the study of N cycling in any soil, or indeed, in any complex ecosystem.

  1. Direct Tracking and Compound-Specific Stable Isotope Analysis Identifies Dispersal Routes and Cryptic Latitudinal Trends in the Winter Distribution of Two Antarctic Penguin Species

    Science.gov (United States)

    Polito, M. J.; Houghton, L. A.; Hinke, J.; Thorrold, S.

    2016-02-01

    Animal dispersal behaviors have both ecological and evolutionary significance. However, due to the logistical challenges of tracking animals in the Antarctic marine environment little is known about the winter dispersal and migration of Antarctic marine predators. We used a combination of direct tracking (Geolocation sensors; GLS) and compound-specific stable isotope analysis of carbon in essential amino acids (CSIA-AA) to describe the winter distribution of two wide-ranging marine predators, the Adélie penguin (Pygoscelis adeliae) and chinstrap penguin (P. antarctica) along the Antarctic Peninsula and Scotia Arc. GLS and CSIA-AA identified two general migration strategies, with animals overwintering to the east or west of the Antarctic Peninsula, with CSIA-AA also being able to discriminate between ice-free vs. pack-ice habitats. In addition, CSIA-AA provided the ability to assign non GLS-tracked chinstrap penguins from multiple breeding sites across the Scotia Arc to specific over-wintering areas. This provided a first ever, regional-scale analyses of the winter movements and distributions of the species and identified a cryptic latitudinal trend that would have been otherwise undetectable. Breeding colonies farther north were more likely to have individuals dispersing eastwards relative to colonies further south where most individual dispersed westwards, possibly due to a combination of proximity and competition avoidance. Finally we highlight how CSIA-AA approaches can be applied to other studies of the distribution and ecology of marine top predators.

  2. Construction and characterization of a stable subgenomic dengue virus type 2 replicon system for antiviral compound and siRNA testing.

    Science.gov (United States)

    Ng, Chuan Young; Gu, Feng; Phong, Wai Yee; Chen, Yen-Liang; Lim, Siew Pheng; Davidson, Andrew; Vasudevan, Subhash G

    2007-12-01

    Self-replicating, non-infectious flavivirus subgenomic replicons have been broadly used in the studies of trans-complementation, adaptive mutation, viral assembly and packaging in Kunjin, yellow fever and West Nile viruses. We describe here the construction of subgenomic EGFP- or Renilla luciferase-reporter based dengue replicons of the type 2 New Guinea C (NGC) strain and the establishment of stable BHK21 cell lines harboring the replicons. In replicon cells, viral proteins and RNAs are stably expressed at levels similar to cells transfected with the full length NGC infectious RNA. Furthermore, the replicon can be packaged by separately transfected C (core)-prM (pre-membrane)-E (envelope) polyprotein construct. The replicon cells were subjected to treatment with several antiviral compounds and inhibition of the replicon was observed in treatment with known nucleoside analog inhibitors of NS5 such as 2'-C-methyladenosine (EC(50)=2.42 +/- 0.59 microM), or ribavirin (EC(50)=6.77 +/- 1.33 microM), mycophenolic acid (EC(50)=1.31 +/- 0.27 microM) and siRNA against NS3. The BHK-replicon cells have been stably maintained for about 10 passages without significant loss in reporter intensity and are sufficiently robust for both research and drug discovery.

  3. Electrodeposition of alloys or compounds in molten salts and applications

    Directory of Open Access Journals (Sweden)

    Taxil P.

    2003-01-01

    Full Text Available This article deals with the different modes of preparation of alloys or intermetallic compounds using the electrodeposition in molten salts, more particularly molten alkali fluorides. The interest in this process is to obtain new materials for high technology, particularly the compounds of reactive components such as actinides, rare earth and refractory metals. Two ways of preparation are considered: (i electrocoating of the more reactive metal on a cathode made of the noble one and reaction between the two metals in contact, and (ii electrocoating on an inert cathode of the intermetallic compound by coreduction of the ions of each elements. The kinetic is controlled by the reaction at the electrolyte interface. A wide bibliographic survey on the preparation of various compounds (intermetallic compounds, borides, carbides… is given and a special attention is paid to the own experience of the authors in the preparation of these compounds and interpretation of their results.

  4. Superplastic ceramics and intermetallics and their potential applications

    International Nuclear Information System (INIS)

    Wadsworth, J.; Nieh, T.G.

    1994-11-01

    Recent advances in the basic understanding of superplasticity and superplastic forming of ceramics and intermetallics are reviewed. Fine-grained superplastic ceramics, including yttria-stabilized tetragonal zirconia polycrystal, Y- or MgO-doped Al 2 O 3 Hydroxyapatite, β-spodumene glass ceramics, Al 2 0 3 -YTZP two-phase composites, SiC-Si 3 N 4 and Fe-Fe 3 C composites, are discussed. Superplasticity in the nickel-base (e.g., Ni 3 Al and Ni 3 Si) and titanium-base intermetallics (TiAl and T1 3 Al), is described. Deformation mechanisms as well as microstructural requirements and effects such as grain size, grain growth, and grain-boundary phases, on the superplastic deformation behavior am addressed. Factors that control the superplastic tensile elongation of ceramics are discussed. Superplastic forming, and particularly biaxial gas-pressure forming, of several ceramics and intermetallics are presented with comments on the likelihood of commercial application

  5. Transformation of iron containing constituent intermetallic particles during hydrothermal treatment

    DEFF Research Database (Denmark)

    Borgaonkar, Shruti; Din, Rameez Ud; Kasama, Takeshi

    2018-01-01

    Aluminium alloys AA3102 and AA9108 were treated with high temperature steam, which resulted in the formation of an oxide layer of average thickness of 300–400 nm. Hydrothermal steam treatment resulted in the removal or oxidation of Al (Fe) Mn and Al (Fe-Si) Mn type intermetallic particles present...... in the alloys. Furthermore, electron energy loss spectroscopy analysis revealed that the during the steam treatment, the Fe enriched areas of the Al (Fe-Si) Mn type intermetallic particles were transformed into Fe2O3 and Fe3O4 phases, while energy-dispersive X-ray spectroscopy line profile measurements...

  6. First use of a compound-specific stable isotope (CSSI) technique to trace sediment transport in upland forest catchments of Chile.

    Science.gov (United States)

    Bravo-Linares, Claudio; Schuller, Paulina; Castillo, Alejandra; Ovando-Fuentealba, Luis; Muñoz-Arcos, Enrique; Alarcón, Oscar; de Los Santos-Villalobos, Sergio; Cardoso, Renan; Muniz, Marcelo; Meigikos Dos Anjos, Roberto; Bustamante-Ortega, Ramón; Dercon, Gerd

    2018-03-15

    Land degradation is a problem affecting the sustainability of commercial forest plantations. The identification of critical areas prone to erosion can assist this activity to better target soil conservation efforts. Here we present the first use of the carbon-13 signatures of fatty acids (C14 to C24) in soil samples for spatial and temporal tracing of sediment transport in river bodies of upland commercial forest catchments in Chile. This compound-specific stable isotope (CSSI) technique was tested as a fingerprinting approach to determine the degree of soil erosion in pre-harvested forest catchments with surface areas ranging from 12 to 40ha. For soil apportionment a mixing model based on a Bayesian inference framework was used (CSSIAR v.2.0). Approximately four potential sediment sources were used for the calculations of all of the selected catchments. Unpaved forestry roads were shown to be the main source of sediment deposited at the outlet of the catchments (30-75%). Furthermore, sampling along the stream channel demonstrated that sediments were mainly comprised of sediment coming from the unpaved roads in the upper part of the catchments (74-98%). From this it was possible to identify the location and type of primary land use contributing to the sediment delivered at the outlet of the catchments. The derived information will allow management to focus efforts to control or mitigate soil erosion by improving the runoff features of the forest roads. The use of this CSSI technique has a high potential to help forestry managers and decision makers to evaluate and mitigate sources of soil erosion in upland forest catchments. It is important to highlight that this technique can also be a good complement to other soil erosion assessment and geological fingerprinting techniques, especially when attempting to quantify (sediment loads) and differentiate which type of land use most contributes to sediment accumulation. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Benzylic rearrangement stable isotope labeling for quantitation of guanidino and ureido compounds in thyroid tissues by liquid chromatography-electrospray ionization mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Ruo-Jing [State Key Laboratory of Organmetallic Chemistry and National Center for Organic Mass Spectrometry in Shanghai, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032 (China); Guan, Qing [Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032 (China); Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 (China); Zhang, Fang, E-mail: fzhang@sioc.ac.cn [State Key Laboratory of Organmetallic Chemistry and National Center for Organic Mass Spectrometry in Shanghai, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032 (China); Leng, Jia-Peng [State Key Laboratory of Organmetallic Chemistry and National Center for Organic Mass Spectrometry in Shanghai, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032 (China); Sun, Tuan-Qi, E-mail: tuanqisun@163.com [Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032 (China); Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 (China); Guo, Yin-Long, E-mail: ylguo@sioc.ac.cn [State Key Laboratory of Organmetallic Chemistry and National Center for Organic Mass Spectrometry in Shanghai, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032 (China)

    2016-02-18

    Benzylic rearrangement stable isotope labeling (BRSIL) was explored to quantify the guanidino and ureido compounds (GCs and UCs). This method employed a common reagent, benzil, to label the guanidino and ureido groups through nucleophilic attacking then benzylic migrating. The use of BRSIL was investigated in the analysis of five GCs (creatine, L-arginine, homoarginine, 4-guanidinobutyric acid, and methylguanidine) and two UCs (urea and citrulline). The labeling was found simple and specific. The introduction of bi-phenyl group and the generation of nitrogen heterocyclic ring in the benzil-d0/d5 labeled GCs and UCs improved the retention behaviors in liquid chromatography (LC) and increased the sensitivity of electrospray ionization mass spectrometry (ESI MS) detection. The fragment ion pairs of m/z 182/187 and m/z 210/215 from the benzil-d0/d5 tags facilitated the discovery of potential GCs and UCs candidates residing in biological matrices. The use of BRSIL combined with LC-ESI MS was applied for simultaneously quantitation of GCs and UCs in thyroid tissues. It was demonstrated that nine GCs and UCs were detected, six of which were further quantified based on corresponding standards. It was concluded that five GCs and UCs (L-arginine, homoarginine, 4-guanidinobutyric acid, methylguanidine, and citrulline) were statistically significantly different (p < 0.05) between the para-carcinoma and carcinoma thyroid tissue samples. - Highlights: • A common reagent, benzil-d0/d5 was employed to label the GCs and UCs through BRSIL. • The benzil-d0/d5 labeling improved the retention behavior in RPLC and increased the sensitivity by ESI MS detection. • BRSIL coupled with LC-ESI MS was applied to the qualitation and quantitation of GCs and UCs in thyroid tissues.

  8. Direct Photolysis of Sulfamethoxazole Using Various Irradiation Sources and Wavelength Ranges-Insights from Degradation Product Analysis and Compound-Specific Stable Isotope Analysis.

    Science.gov (United States)

    Willach, Sarah; Lutze, Holger V; Eckey, Kevin; Löppenberg, Katja; Lüling, Michelle; Wolbert, Jens-Benjamin; Kujawinski, Dorothea M; Jochmann, Maik A; Karst, Uwe; Schmidt, Torsten C

    2018-02-06

    The environmental micropollutant sulfamethoxazole (SMX) is susceptible to phototransformation by sunlight and UV-C light which is used for water disinfection. Depending on the environmental pH conditions SMX may be present as neutral or anionic species. This study systematically investigates the phototransformation of these two relevant SMX species using four different irradiation scenarios, i.e., a low, medium, and high pressure Hg lamp and simulated sunlight. The observed phototransformation kinetics are complemented by data from compound-specific stable isotope and transformation product analysis using isotope-ratio and high-resolution mass spectrometry (HRMS). Observed phototransformation kinetics were faster for the neutral than for the anionic SMX species (from 3.4 (LP lamp) up to 6.6 (HP lamp) times). Furthermore, four phototransformation products (with m/z 189, 202, 242, and 260) were detected by HRMS that have not yet been described for direct photolysis of SMX. Isotopic fractionation occurred only if UV-B and UV-A wavelengths prevailed in the emitted irradiation and was most pronounced for the neutral species with simulated sunlight (ε C = -4.8 ± 0.1 ‰). Phototransformation of SMX with UV-C light did not cause significant isotopic fractionation. Consequently, it was possible to differentiate sunlight and UV-C light induced phototransformation of SMX. Thus, CSIA might be implemented to trace back wastewater point sources or to assess natural attenuation of SMX by sunlight photolysis. In contrast to the wavelength range, pH-dependent speciation of SMX hardly impacted isotopic fractionation.

  9. High temperature corrosion performance of FeAl intermetallic alloys in molten salts

    Energy Technology Data Exchange (ETDEWEB)

    Amaya, M.; Espinosa-Medina, M.A.; Porcayo-Calderon, J.; Martinez, L.; Gonzalez-Rodriguez, J.G

    2003-05-25

    The corrosion performance of FeAl base intermetallic alloys fabricated by spray-atomization and deposition during their immersion in molten sodium metavanadate (NaVO{sub 3}), 80% (wt.%) sodium pentoxide (V{sub 2}O{sub 5}) +20% sodium sulfate (Na{sub 2}SO{sub 4}) and pure Na{sub 2}SO{sub 4} in the temperature range of 600-1000 deg. C during 200 h was investigated. The experiments were realized by the weight loss method in the intermetallic alloys of composition FeAl40(at.%), FeAl40+0.1B and FeAl40+0.1B+10Al{sub 2}O{sub 3}. In all cases, the FeAl40+0.1B+10Al{sub 2}O{sub 3} alloy showed the best corrosion resistance in the temperatures interval studied here. This behavior was discussed in terms of the formation of a protective Al{sub 2}O{sub 3} layer and its dissolution by vanadate phases and internal sulfidation in the case of experiments carried out in pure Na{sub 2}SO{sub 4}. The morphology of the external layers and the corrosion products formed during the tests revealed that the corrosion rate of this type alloy depends on the corrosion compounds that are formed and the development of protective alumina scales.

  10. Thermodynamic analysis of Ti–Al–C intermetallics formation by mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Sadeghi, E., E-mail: ehsansadeghi120@gmail.com; Karimzadeh, F.; Abbasi, M.H.

    2013-11-05

    Highlights: •Titanium carbide and γ-TiAl take place during mechanical alloying of Ti–Al–C system. •Intermetallic compound formation in Ti–Al, Ti–C and Al–C systems has the lowest free energy. •There is thermodynamic driving force to form Ti{sub 3}AlC{sub 2}, Ti{sub 2}AlC MAX phase. -- Abstract: In the present study the behavior of Ti–Al–C ternary system is investigated during mechanical alloying. The mixture of Ti, Al and C powders was used with initial stoichiometric composition of Ti{sub 3}AlC{sub 2}. X-ray diffraction (XRD) was used to characterize the milled powders and a thermodynamic analysis of the process was then carried out using Miedema model. This thermodynamic analysis showed that for all binary Ti–C, Al–C, Ti–Al systems and ternary Ti–Al–C systems, among all compositions, the thermodynamic driving force for intermetallic phase formation is much greater when compared with the formation of solid solutions or amorphous phases. Finally the reactions that are feasible to occur during mechanical alloying (MA) of Ti–Al–C system were investigated thermodynamically.

  11. BaGe(5): a new type of intermetallic clathrate.

    Science.gov (United States)

    Aydemir, Umut; Akselrud, Lev; Carrillo-Cabrera, Wilder; Candolfi, Christophe; Oeschler, Niels; Baitinger, Michael; Steglich, Frank; Grin, Yuri

    2010-08-18

    BaGe(5) constitutes a new type of intermetallic clathrate obtained by decomposition of clathrate-I Ba(8)Ge(43)(3) at low temperatures. The crystal structure consists of characteristic layers interconnected by covalent bonds. BaGe(5) is a semiconducting Zintl phase.

  12. High-pressure structural stability of the ductile intermetallic ...

    Indian Academy of Sciences (India)

    Administrator

    Murnaghan equation of state fit to the pressure, volume data yielded a bulk modulus of 67∙6 GPa with the pressure derivative of bulk modulus fixed at 4. Keywords. Intermetallics; X-ray ... ners of the unit cell cube occupied by the 'M' element and cube centre occupied by the 'R' element. Although some ductility has been ...

  13. High-pressure structural stability of the ductile intermetallic ...

    Indian Academy of Sciences (India)

    Keywords. Intermetallics; X-ray diffraction; high pressure; synchrotron radiation. Abstract. High-pressure angle dispersive ... Author Affiliations. S Meenakshi1. High Pressure and Synchrotron Radiation Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085, India. Dates. Manuscript received: 10 July 2013 ...

  14. Structural and electronic properties of non-magnetic intermetallic ...

    Indian Academy of Sciences (India)

    Abstract. The structural and electronic properties of non-magnetic intermetallic YAuX (X = Ge and Si) crys- tallized in hexagonal phase have been investigated using the full potential linearized augmented-plane wave (FP-. LAPW) method based on the density functional theory (DFT), within the generalized gradient ...

  15. Decomposition of intermetallics during high-energy ball-milling

    International Nuclear Information System (INIS)

    Kwon, Y.S.; Choi, P.P.; Kim, J.S.; Kwon, D.H.; Gerasimov, K.B.

    2007-01-01

    The decomposition behavior of FeSn, CoSn and CoIn 2 intermetallics under high-energy ball-milling has been investigated using X-ray diffraction, calorimetric and magnetization measurements. Upon milling a large amount of the FeSn intermetallic decomposes into Fe 5 Sn 3 and FeSn 2 , where the average grain size of the product phases stays nearly constant with milling-time. Similar observations are made for the CoSn intermetallic, which decomposes into Co 3 Sn 2 and Sn. It is suggested that the mechanically driven decomposition of FeSn and CoSn results from local melting of powder particles due to high temperature pulses during ball collisions. In contrast to FeSn and CoSn, CoIn 2 does not undergo decomposition upon milling. The different decomposition behaviors of the studied intermetallics may be attributed to the volume changes occurring with a decomposition process. Whereas a negative volume change is associated with the decomposition of FeSn and CoSn into their product phases, the decomposition of CoIn 2 leads to an increase in volume. Hence, high local stresses under ball collisions are expected to make the mechanically induced decomposition of FeSn and CoSn favorable but rather hinder the decomposition of CoIn 2

  16. Crystal Structure, Chemical Bonding and Magnetism Studies for Three Quinary Polar Intermetallic Compounds in the (Eu1−xCax9In8(Ge1−ySny8 (x = 0.66, y = 0.03 and the (Eu1−xCax3In(Ge3−ySn1+y (x = 0.66, 0.68; y = 0.13, 0.27 Phases

    Directory of Open Access Journals (Sweden)

    Hyein Woo

    2015-04-01

    Full Text Available Three quinary polar intermetallic compounds in the (Eu1−xCax9In8(Ge1−ySny8 (x = 0.66, y = 0.03 and the (Eu1−xCax3In(Ge3-ySn1+y (x = 0.66, 0.68; y = 0.13, 0.27 phases have been synthesized using the molten In-metal flux method, and the crystal structures are characterized by powder and single-crystal X-ray diffractions. Two orthorhombic structural types can be viewed as an assembly of polyanionic frameworks consisting of the In(Ge/Sn4 tetrahedral chains, the bridging Ge2 dimers, either the annulene-like “12-membered rings” for the (Eu1−xCax9In8(Ge1−ySny8 series or the cis-trans Ge/Sn-chains for the (Eu1−xCax3In(Ge3−ySn1+y series, and several Eu/Ca-mixed cations. The most noticeable difference between two structural types is the amount and the location of the Sn-substitution for Ge: only a partial substitution (11% occurs at the In(Ge/Sn4 tetrahedron in the (Eu1−xCax9In8(Ge1−ySny8 series, whereas both a complete and a partial substitution (up to 27% are observed, respectively, at the cis-trans Ge/Sn-chain and at the In(Ge/Sn4 tetrahedron in the (Eu1−xCax3In(Ge3−ySn1+y series. A series of tight-binding linear muffin-tin orbital calculations is conducted to understand overall electronic structures and chemical bonding among components. Magnetic susceptibility measurement indicates a ferromagnetic ordering of Eu atoms below 5 K for Eu1.02(1Ca1.98InGe2.87(1Sn1.13.

  17. Crystal structure, chemical bonding and magnetism studies for three quinary polar intermetallic compounds in the (Eu(1-x)Ca(x))9In8(Ge(1-y)Sn(y))8 (x = 0.66, y = 0.03) and the (Eu(1-x)Ca(x))3In(Ge(3-y)Sn(1+y)) (x = 0.66, 0.68; y = 0.13, 0.27) phases.

    Science.gov (United States)

    Woo, Hyein; Jang, Eunyoung; Kim, Jin; Lee, Yunho; Kim, Jongsik; You, Tae-Soo

    2015-04-22

    Three quinary polar intermetallic compounds in the (Eu(1-x)Ca(x))9In8(Ge(1-y)Sn(y))8 (x = 0.66, y = 0.03) and the (Eu(1-x)Ca(x))3In(Ge(3-y)Sn(1+y)) (x = 0.66, 0.68; y = 0.13, 0.27) phases have been synthesized using the molten In-metal flux method, and the crystal structures are characterized by powder and single-crystal X-ray diffractions. Two orthorhombic structural types can be viewed as an assembly of polyanionic frameworks consisting of the In(Ge/Sn)4 tetrahedral chains, the bridging Ge2 dimers, either the annulene-like "12-membered rings" for the (Eu(1-x)Ca(x))9In8(Ge(1-y)Sn(y))8 series or the cis-trans Ge/Sn-chains for the (Eu(1-x)Ca(x))3In(Ge(3-y)Sn(1+y)) series, and several Eu/Ca-mixed cations. The most noticeable difference between two structural types is the amount and the location of the Sn-substitution for Ge: only a partial substitution (11%) occurs at the In(Ge/Sn)4 tetrahedron in the (Eu(1-x)Ca(x))9In8(Ge(1-y)Sn(y))8 series, whereas both a complete and a partial substitution (up to 27%) are observed, respectively, at the cis-trans Ge/Sn-chain and at the In(Ge/Sn)4 tetrahedron in the (Eu(1-x)Ca(x))3In(Ge(3-y)Sn(1+y)) series. A series of tight-binding linear muffin-tin orbital calculations is conducted to understand overall electronic structures and chemical bonding among components. Magnetic susceptibility measurement indicates a ferromagnetic ordering of Eu atoms below 5 K for Eu1.02(1)Ca1.98InGe2.87(1)Sn1.13.

  18. Hybridization and pressure effects in UTX compounds

    Czech Academy of Sciences Publication Activity Database

    Alsmadi, A. M.; Sechovský, V.; Lacerda, A. H.; Prokes, K.; Kamarád, Jiří; Chang, S.; Jung, M. H.; Nakotte, H.

    2002-01-01

    Roč. 91, - (2002), s. 8123-8125 ISSN 0021-8979 Institutional research plan: CEZ:AV0Z1010914 Keywords : UTX intermetallic compounds * pressure effects magnetoresistance Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.281, year: 2002

  19. Catalytic Hydrogenation of Levulinic Acid in Water into g-Valerolactone over Bulk Structure of Inexpensive Intermetallic Ni-Sn Alloy Catalysts

    Directory of Open Access Journals (Sweden)

    Rodiansono Rodiansono

    2015-07-01

    Full Text Available A bulk structure of inexpensive intermetallic nickel-tin (Ni-Sn alloys catalysts demonstrated highly selective in the hydrogenation of levulinic acid in water into g-valerolactone. The intermetallic Ni-Sn catalysts were synthesized via a very simple thermochemical method from non-organometallic precursor at low temperature followed by hydrogen treatment at 673 K for 90 min. The molar ratio of nickel salt and tin salt was varied to obtain the corresponding Ni/Sn ratio of 4.0, 3.0, 2.0, 1.5, and 0.75. The formation of Ni-Sn alloy species was mainly depended on the composition and temperature of H2 treatment. Intermetallics Ni-Sn that contain Ni3Sn, Ni3Sn2, and Ni3Sn4 alloy phases are known to be effective heterogeneous catalysts for levulinic acid hydrogenation giving very excellence g-valerolactone yield of >99% at 433 K, initial H2 pressure of 4.0 MPa within 6 h. The effective hydrogenation was obtained in H2O without the formation of by-product. Intermetallic Ni-Sn(1.5 that contains Ni3Sn2 alloy species demonstrated very stable and reusable catalyst without any significant loss of its selectivity. © 2015 BCREC UNDIP. All rights reserved. Received: 26th February 2015; Revised: 16th April 2015; Accepted: 22nd April 2015  How to Cite: Rodiansono, R., Astuti, M.D., Ghofur, A., Sembiring, K.C. (2015. Catalytic Hydrogenation of Levulinic Acid in Water into g-Valerolactone over Bulk Structure of Inexpensive Intermetallic Ni-Sn Alloy Catalysts. Bulletin of Chemical Reaction Engineering & Catalysis, 10 (2: 192-200. (doi:10.9767/bcrec.10.2.8284.192-200Permalink/DOI: http://dx.doi.org/10.9767/bcrec.10.2.8284.192-200  

  20. Welding technology of the intermetallic Fe3 Al phase

    Directory of Open Access Journals (Sweden)

    K. Garbala

    2010-01-01

    Full Text Available This paper presents the analyses of the welding terms and estimation of the welded joints quality for intermetallic Fe3Al. Materials, on the base which, joints were made and some welding technologies has been examined. Results of that investigations let one to type welding methods and materials that gives the best physicochemical effects of the joints. Regarding to the specific properties of the welded material especially its quite high hardness and fragility, it has been proposed that when joining intermetallic Fe3Al advisable would be welding in an argon cover with using Es9CrNiB electrode optionally electrowelding with Es 9CrNiB electrode. Welds made that way are thought to have the best properties within methods and welding materials being tested.

  1. Anisotropic spreading of liquid metal on a rough intermetallic surface

    Directory of Open Access Journals (Sweden)

    Liu Wen

    2011-01-01

    Full Text Available An anisotropic wicking of molten Sn-Pb solder over an intermetallic rough surface has been studied. The phenomenon features preferential spreading and forming of an elliptical spread domain. A theoretically formulated model was established to predict the ratio of the wicking distance along the long axis (rx to that along the short axis (ry of the final wicking pattern. The phenomenon was simultaneously experimentally observed and recorded with a hotstage microscopy technique. The anisotropic wicking is established to be caused by a non-uniform topography of surface micro structures as opposed to an isotropic wicking on an intermetallic surface with uniformly distributed surface micro features. The relative deviation between the theoretically predicted rx/ry ratio and the corresponding average experimental value is 5%. Hence, the small margin of error confirms the validity of the proposed theoretical model of anisotropic wicking.

  2. Theoretical energy release of thermites, intermetallics, and combustible metals

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, S.H.; Grubelich, M.C.

    1998-06-01

    Thermite (metal oxide) mixtures, intermetallic reactants, and metal fuels have long been used in pyrotechnic applications. Advantages of these systems typically include high energy density, impact insensitivity, high combustion temperature, and a wide range of gas production. They generally exhibit high temperature stability, and possess insensitive ignition properties. In this paper, the authors review the applications, benefits, and characteristics of thermite mixtures, intermetallic reactants, and metal fuels. Calculated values for reactant density, heat of reaction (per unit mass and per unit volume), and reaction temperature (without and with consideration of phase changes and the variation of specific heat values) are tabulated. These data are ranked in several ways, according to density, heat of reaction, reaction temperature, and gas production.

  3. Welding technology of the intermetallic Fe3 Al phase

    OpenAIRE

    K. Garbala; A. Patejuk

    2010-01-01

    This paper presents the analyses of the welding terms and estimation of the welded joints quality for intermetallic Fe3Al. Materials, on the base which, joints were made and some welding technologies has been examined. Results of that investigations let one to type welding methods and materials that gives the best physicochemical effects of the joints. Regarding to the specific properties of the welded material especially its quite high hardness and fragility, it has been proposed that when j...

  4. Micromechanisms and Micromechanics of Fracture of TiAl Intermetallics

    Czech Academy of Sciences Publication Activity Database

    Dlouhý, Ivo; Chlup, Zdeněk; Hadraba, Hynek; Krahula, Karel

    2009-01-01

    Roč. 31, č. 1 (2009), s. 81-96 ISSN 1024-1809 R&D Projects: GA ČR GA106/07/0762; GA ČR GD106/05/H008 Institutional research plan: CEZ:AV0Z20410507 Keywords : fracture toughness * micromechanisms of fracture * dhear ligament toughening * TiAl * intermetallics Subject RIV: JG - Metallurgy Impact factor: 0.089, year: 2009

  5. Production of nanograined intermetallics using high-pressure torsion

    Energy Technology Data Exchange (ETDEWEB)

    Alhamidi, Ali; Edalati, Kaveh; Horita, Zenji, E-mail: horita@zaiko.kyushu-u.ac.jp [Department of Materials Science and Engineering, Faculty of Engineering, Kyushu University, Fukuoka (Japan)

    2013-11-01

    Formation of intermetallics is generally feasible at high temperatures when the lattice diffusion is fast enough to form the ordered phases. This study shows that nanograined intermetallics are formed at a low temperature as 573 K in Al- 25 mol% Ni, Al- 50 mol.% Ni and Al- 50 mol% Ti powder mixtures through powder consolidation using high-pressure torsion (HPT). For the three compositions, the hardness gradually increases with straining but saturates to the levels as high as 550-920 Hv. In addition to the high hardness, the TiAl material exhibits high yield strength as {approx}3 GPa with good ductility as {approx}23%, when they are examined by micropillar compression tests. X-ray diffraction analysis and high-resolution transmission electron microscopy reveal that the significant increase in hardness and strength is due to the formation of nanograined intermetallics such as Al{sub 3}Ni, Al{sub 3}Ni{sub 2}, TiAl{sub 3}, TiAl{sub 2} and TiAl with average grain sizes of 20-40 nm (author)

  6. Laves intermetallics in stainless steel-zirconium alloys

    International Nuclear Information System (INIS)

    Abraham, D.P.; McDeavitt, S.M.; Richardson, J.W. Jr.

    1997-01-01

    Laves intermetallics have a significant effect on properties of metal waste forms being developed at Argonne National Laboratory. These waste forms are stainless steel-zirconium alloys that will contain radioactive metal isotopes isolated from spent nuclear fuel by electrometallurgical treatment. The baseline waste form composition for stainless steel-clad fuels is stainless steel-15 wt.% zirconium (SS-15Zr). This article presents results of neutron diffraction measurements, heat-treatment studies and mechanical testing on SS-15Zr alloys. The Laves intermetallics in these alloys, labeled Zr(Fe,Cr,Ni) 2+x , have both C36 and C15 crystal structures. A fraction of these intermetallics transform into (Fe,Cr,Ni) 23 Zr 6 during high-temperature annealing; the authors have proposed a mechanism for this transformation. The SS-15Zr alloys show virtually no elongation in uniaxial tension, but exhibit good strength and ductility in compression tests. This article also presents neutron diffraction and microstructural data for a stainless steel-42 wt.% zirconium (SS-42Zr) alloy

  7. Rare-earth transition-metal intermetallics: Structure-bonding-property relationships

    Energy Technology Data Exchange (ETDEWEB)

    Han, M. K. [Iowa State Univ., Ames, IA (United States)

    2006-01-01

    The explorations of rare-earth, transition metal intermetallics have resulted in the synthesis and characterization, and electronic structure investigation, as well as understanding the structure-bonding property relationships. The work has presented the following results: (1) Understanding the relationship between compositions and properties in LaFe13-xSix system: A detailed structural and theoretical investigation provided the understanding of the role of a third element on stabilizing the structure and controlling the transformation of cubic NaZn{sub 13}-type structures to the tetragonal derivative, as well as the relationship between the structures and properties. (2) Synthesis of new ternary rare-earth iron silicides Re2-xFe4Si14-y and proposed superstructure: This compound offers complex structural challenges such as fractional occupancies and their ordering in superstructure. (3) Electronic structure calculation of FeSi2: This shows that the metal-semiconductor phase transition depends on the structure. The mechanism of band gap opening is described in terms of bonding and structural distortion. This result shows that the electronic structure calculations are an essential tool for understanding the relationship between structure and chemical bonding in these compounds. (4) Synthesis of new ternary rare-earth Zinc aluminides Tb3Zn3.6Al7.4: Partially ordered structure of Tb3Zn3.6Al7.4 compound provides new insights into the formation, composition and structure of rare-earth transition-metal intermetallics. Electronic structure calculations attribute the observed composition to optimizing metal-metal bonding in the electronegative (Zn, Al) framework, while the specific ordering is strongly influenced by specific orbital interactions. (5) Synthesis of new structure type of Zn39(CrxAl1-x)81

  8. Rare-Earth Transition-Metal Intermetallics: Structure-bonding-Property Relationships

    Energy Technology Data Exchange (ETDEWEB)

    Han, Mi-Kyung [Iowa State Univ., Ames, IA (United States)

    2006-01-01

    Our explorations of rare-earth, transition metal intermetallics have resulted in the synthesis and characterization, and electronic structure investigation, as well as understanding the structure-bonding-property relationships. Our work has presented the following results: (1) Understanding the relationship between compositions and properties in LaFe13-xSix system: A detailed structural and theoretical investigation provided the understanding of the role of a third element on stabilizing the structure and controlling the transformation of cubic NaZn13-type structures to the tetragonal derivative, as well as the relationship between the structures and properties. (2) Synthesis of new ternary rare-earth iron silicides RE2-xFe4Si14-y and proposed superstructure: This compound offers complex structural challenges such as fractional occupancies and their ordering in superstructure. (3) Electronic structure calculation of FeSi2: This shows that the metal-semiconductor phase transition depends on the structure. The mechanism of band gap opening is described in terms of bonding and structural distortion. This result shows that the electronic structure calculations are an essential tool for understanding the relationship between structure and chemical bonding in these compounds. (4) Synthesis of new ternary rare-earth Zinc aluminides Tb3Zn3.6Al7.4: Partially ordered structure of Tb3.6Zn13-xAl7.4 compound provides new insights into the formation, composition and structure of rare-earth transition-metal intermetallics. Electronic structure calculations attribute the observed composition to optimizing metal-metal bonding in the electronegative (Zn, Al) framework, while the specific ordering is strongly influenced by specific orbital interactions. (5) Synthesis of new structure type of Zn39(CrxAl1-x

  9. Electron Density Determination, Bonding and Properties of Tetragonal Ferromagnetic Intermetallics

    Energy Technology Data Exchange (ETDEWEB)

    Wiezorek, Jorg [Univ. of Pittsburgh, PA (United States)

    2016-09-01

    The project developed quantitative convergent-beam electron diffraction (QCBED) methods by energy-filtered transmission electron microscopy (EFTEM) and used them in combination with density functional theory (DFT) calculations to study the electron density distribution in metallic and intermetallic phases with different cubic and non-cubic crystal structures that comprise elements with d-electron shells. The experimental methods developed here focus on the bonding charge distribution as one of the quantum mechanical characteristics central for understanding of intrinsic properties and validation of DFT calculations. Multiple structure and temperature factors have been measured simultaneously from nano-scale volumes of high-quality crystal with sufficient accuracy and precision for comparison with electron density distribution calculations by DFT. The often anisotropic temperature factors for the different atoms and atom sites in chemically ordered phases can differ significantly from those known for relevant pure element crystals due to bonding effects. Thus they have been measured from the same crystal volumes from which the structure factors have been determined. The ferromagnetic ordered intermetallic phases FePd and FePt are selected as model systems for 3d-4d and 3d-5d electron interactions, while the intermetallic phases NiAl and TiAl are used to probe 3d-3p electron interactions. Additionally, pure transition metal elements with d-electrons have been studied. FCC metals exhibit well defined delocalized bonding charge in tetrahedral sites, while less directional, more distributed bonding charge attains in BCC metals. Agreement between DFT calculated and QCBED results degrades as d-electron levels fill in the elements, and for intermetallics as d-d interactions become prominent over p-d interactions. Utilizing the LDA+U approach enabled inclusion of onsite Coulomb-repulsion effects in DFT calculations, which can afford improved agreements with QCBED results

  10. Niobium-Based Intermetallics for Affordable In-Space Propulsion Applications, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR Phase I effort proposes an innovative class of refractory metal intermetallic composites as alternatives to high temperature metallic materials presently...

  11. Insights into the Key Aroma Compounds in Mango (Mangifera indica L. 'Haden') Fruits by Stable Isotope Dilution Quantitation and Aroma Simulation Experiments.

    Science.gov (United States)

    Munafo, John P; Didzbalis, John; Schnell, Raymond J; Steinhaus, Martin

    2016-06-01

    Thirty-four aroma-active compounds, previously identified with high flavor dilution factors by application of an aroma extract dilution analysis, were quantified in tree-ripened fruits of mango (Mangifera indica L. 'Haden'). From the results, the odor activity value (OAV) was calculated for each compound as the ratio of its concentration in the mangoes to its odor threshold in water. OAVs > 1 were obtained for 24 compounds, among which ethyl 2-methylbutanoate (fruity; OAV 2100), (3E,5Z)-undeca-1,3,5-triene (pineapple-like; OAV 1900), ethyl 3-methylbutanoate (fruity; OAV 1600), and ethyl butanoate (fruity; OAV 980) were the most potent, followed by (2E,6Z)-nona-2,6-dienal (cucumber-like), ethyl 2-methylpropanoate (fruity), (E)-β-damascenone (cooked apple-like), ethyl hexanoate (fruity), 4-hydroxy-2,5-dimethyl-3(2H)-furanone (caramel-like), 3-methylbut-2-ene-1-thiol (sulfurous), γ-decalactone (peach-like), β-myrcene (terpeny), (3Z)-hex-3-enal (green), 4-methyl-4-sulfanylpentan-2-one (tropical fruit-like), and ethyl octanoate (fruity). Aroma simulation and omission experiments revealed that these 15 compounds, when combined in a model mixture in their natural concentrations, were able to mimic the aroma of the fruits.

  12. Radionuclides, stable isotopes, inorganic constituents, and organic compounds in water from selected wells and springs from the southern boundary of the Idaho National Engineering Laboratory to the Hagerman Area, Idaho, 1995

    International Nuclear Information System (INIS)

    Bartholomay, R.C.; Williams, L.M.; Campbell, L.J.

    1996-09-01

    The US Geological Survey and the Idaho Department of Water Resources, in cooperation with the US Department of Energy, sampled 17 sites as part of a long-term project to monitor water quality of the Snake River Plain aquifer from the southern boundary of the Idaho National Engineering Laboratory to the Hagerman area. Water samples were collected and analyzed for selected radionuclides, stable isotopes, inorganic constituents, and organic compounds. The samples were collected from 11 irrigation wells, 2 domestic wells, 2 stock wells, 1 spring, and 1 public-supply well. Two quality assurance samples also were collected and analyzed. None of the radionuclide, inorganic constituents, or organic compound concentrations exceeded the established maximum contaminant levels for drinking water. Many of the radionuclide and inorganic constituent concentrations were greater than their respective reporting levels. All samples analyzed for dissolved organic carbon had concentrations that were greater than the minimum reporting level

  13. Behavior of radon, chemical compounds and stable elements in underground water; Comportamiento de radon, compuestos quimicos y elementos estables en agua subterranea

    Energy Technology Data Exchange (ETDEWEB)

    Lopez R, N.; Segovia, N.; Lopez, M.B.E.; Pena, P. [Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico); Armienta, M.A.; Godinez, L. [IGFUNAM, Ciudad Universitaria, 04510 Mexico D.F. (Mexico); Seidel, J.L. [ISTEEM, M.S.E. Montpellier (France)

    2001-07-01

    The radon behavior, chemical compounds, major and trace elements in water samples of four springs and three wells of urban and agricultural zones around the Jocotitlan volcano and El Oro region was determined, both of them located in the medium part of the Mexican neo-volcanic axis. The {sup 222} Rn was measured by the liquid scintillation method, the analysis of major components was realized with conventional chemical techniques, while the trace elements were quantified using an Icp-Ms. The average values of the radon concentrations obtained during one year were constant relatively, in an interval from 0.97 to 4.99 Bq/lt indicating a fast transport from the reload area toward the sampling points. the compounds, major and trace elements showed differences which indicate distinct origins of water from the site studies. (Author)

  14. High Relative Abundance of Biofuel Sourced Ethanol in Precipitation in the US and Brazil Determined Using Compound Specific Stable Carbon Isotopes

    Science.gov (United States)

    Shimizu, M. S.; Felix, J. D. D.; Casas, M.; Avery, G. B., Jr.; Kieber, R. J.; Mead, R. N.; Willey, J. D.; Lane, C.

    2017-12-01

    Ethanol biofuel production and consumption have increased exponentially over the last two decades to help reduce greenhouse gas emissions. Currently, 85% of global ethanol production and consumption occurs in the US and Brazil. Increasing biofuel ethanol usage in these two countries enhances emissions of uncombusted ethanol to the atmosphere contributing to poor air quality. Although measurements of ethanol in the air and the precipitation reveal elevated ethanol concentrations in densely populated cities, other sources such as natural vegetation can contribute to emission to the atmosphere. Previous modeling studies indicated up to 12% of atmospheric ethanol is from anthropogenic emissions. Only one gas phase study in southern Florida attempted to constrain the two sources through direct isotopic measurements. The current study used a stable carbon isotope method to constrain sources of ethanol in rainwater from the US and Brazil. A method was developed using solid phase microextraction (SPME) with subsequent analysis by gas chromatography-combustion-isotope ratio mass spectrometry (GC-C-IRMS). Stable carbon isotope signatures (δ13C) of vehicle ethanol emission sources for both the US (-9.8‰) and Brazil (-12.7‰) represented C4 plants as feedstock (corn and sugarcane) for biofuel production. An isotope mixing model using biofuel from vehicles (C4 plants) and biogenic (C3 plants) end-members was implemented to estimate ethanol source apportionment in the rain. We found that stable carbon isotope ratio of ethanol in the rain ranged between -22.6‰ and -12.7‰. Our results suggest that the contribution of biofuel to atmospheric ethanol can be higher than previously estimated. As biofuel usage increasing globally, it is essential to determine the relative abundance of anthropogenic ethanol in other areas of the world.

  15. Study of Intermetallic Nanostructures for Light-Water Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, Niels Grobech [Univ. of California, Davis, CA (United States); Asta, Mark D. [Univ. of California, Berkeley, CA (United States); Hosemann, Peter [Univ. of California, Berkeley, CA (United States); Maloy, Stuart [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-09-30

    High temperature mechanical measurements were conducted to study the effect of the dynamic precipitation process of PH 13-8 Mo maraging steel. Yield stress, ultimate tensile strength, total elongation, hardness, strain rate sensitivity and activation volume were evaluated as a function of the temperature. The dynamic changes in the mechanical properties at different temperatures were evaluated and a balance between precipitation hardening and annealed softening is discussed. A comparison between hardness and yield stress and ultimate tensile strength over a temperature range from 300 to 600 °C is made. The behavior of the strain rate sensitivity was correlated with the intermetallic precipitates formed during the experiments.

  16. A survey of combustible metals, thermites, and intermetallics for pyrotechnic applications

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, S.H.; Grubelich, M.C.

    1996-08-01

    Thermite mixtures, intermetallic reactants, and metal fuels have long been used in pyrotechnics. Advantages include high energy density, impact insensitivity, high combustion temperature, and a wide range of gas production. They generally exhibit high temperature stability and possess insensitive ignition properties. This paper reviews the applications, benefits, and characteristics of thermite mixtures, intermetallic reactants, and metal fuels. 50 refs, tables.

  17. FP-LAPW study of structural, electronic, elastic, mechanical and thermal properties of AlFe intermetallic

    Energy Technology Data Exchange (ETDEWEB)

    Jain, Ekta, E-mail: jainekta05@gmail.com [Department of Physics, Government M. L. B. Girls P. G. Autonomous College, Bhopal-462002 (India); Pagare, Gitanjali, E-mail: gita-pagare@yahoo.co.in [Department of Physics, Sarojini Naidu Government Girls P. G. Autonomous College, Bhopal-462016 (India); Sanyal, S. P., E-mail: sps.physicsbu@gmail.com [Department of Physics, Barkatullah University, Bhopal-462026 (India)

    2016-05-06

    The structural, electronic, elastic, mechanical and thermal properties of AlFe intermetallic compound in B{sub 2}-type (CsCl) structure have been investigated using first-principles calculations. The exchange-correlation term was treated within generalized gradient approximation. Ground state properties i.e. lattice constants (a{sub 0}), bulk modulus (B) and first-order pressure derivative of bulk modulus (B’) are presented. The density of states are derived which show the metallic character of present compound. Our results for C{sub 11}, C{sub 12} and C{sub 44} agree well with previous theoretical data. Using Pugh’s criteria (B/G{sub H} < 1.75), brittle character of AlFe is satisfied. In addition shear modulus (G{sub H}), Young’s modulus (E), sound wave velocities and Debye temperature (θ{sub D}) have also been estimated.

  18. Vertical distributions of bound saturated fatty acids and compound-specific stable carbon isotope compositions in sediments of two lakes in China: implication for the influence of eutrophication.

    Science.gov (United States)

    Wang, Lifang; Xiong, Yongqiang; Wu, Fengchang; Li, Qiuhua; Lin, Tian; Giesy, John P

    2014-11-01

    Lakes Dianchi (DC) and Bosten (BST) were determined to be at different stages of eutrophication, by use of total organic carbon content, bulk carbon isotopic composition, bulk nitrogen isotopic composition, and bound saturated fatty acid (BSFA) concentrations in sediment cores. A rapid increase in the supply of organic matter (OM) to DC began after the 1950s, while the environment and trophic status of BST remained constant as indicated by characteristics of OM input to sediments. The BSFA ratios of nC14 + nC16 + nC18/nC24 + nC26 + nC28 increase upward from 7 to 13 in the DC core, which are significantly greater than those from BST (2 to 3). This result is consistent with algae or bacteria being the dominant contribution of the OM increase induced by eutrophication in DC. The positive shift of nC16 compound-specific δ (13)C in the upper section might be an indicator of excess algal productivity, which was observed in the two lakes. The positive shifts of compound-specific δ (13)C of other BSFAs were also observed in the upper section of the core only from DC. The observed trends of compound-specific δ(13)C of BSFA originated from different sources became more consistent, which reflected the intensified eutrophication had profoundly affected production and preservation of OM in DC. The results observed for BST indicated that accumulation of algae did not affect the entire aquatic ecosystem until now.

  19. Study of the hyperfine magnetic field acting on Ce probes substituting for the rare earth and the magnetic ordering in intermetallic compounds RAg (R=rare earth) by first principles calculations; Estudo do campo hiperfino magnetico na sonda de Ce colocada nos compostos intermetalicos do tipo RAg (R=terra rara) e do ordenamento magnetico desses compostos usando calculos de primeiros principios

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Luciano Fabricio Dias

    2006-07-01

    In this work the magnetic hyperfine field acting on Ce atoms substituting the rare-earths in R Ag compounds (R = Gd e Nd) was studied by means of first-principles electronic structure calculations. The employed method was the Augmented Plane Waves plus local orbitals (APW+lo), embodied in the WIEN2k program, within the framework of the Density Functional Theory (DFT) and with the Generalized Gradient Approximation (GGA) for the exchange and correlation potential. The super-cell approach was utilized in order to simulate for the Ce atoms acting as impurities in the R Ag matrix. In order to improve for correlation effects within the 4f shells, a Hubbard term was added to the DFT Hamiltonian, within a procedure called GGA+U. It was found that the magnetic hyperfine field (MHF) generated by the Ce 4f electron is the main component of the total MHF and that the Ce 4f ground state level is probably a combination of the m{sub l} = -2 and m{sub l} = -1 sub-levels. In addition, the ground-state magnetic structure was determined for Ho Ag and Nd Ag by observing the behavior of the total energy as a function of the lattice volume for several possible magnetic ordering in these compounds, namely, ferromagnetic, and the (0,0,{pi}), ({pi},{pi},0) and (({pi},{pi},{pi}) types of anti-ferromagnetic ordering of rare-earth atoms. It was found that the ground-state magnetic structure is anti-ferromagnetic of type ({pi},{pi},0) for both, the Ho Ag and Nd Ag compounds. The energy difference of the ferromagnetic and antiferromagnetic ordering is very small in the case of the Nd Ag compound. (author)

  20. Synthesis and fundamental properties of stable Ph(3)SnSiH(3) and Ph(3)SnGeH(3) hydrides: model compounds for the design of Si-Ge-Sn photonic alloys.

    Science.gov (United States)

    Tice, Jesse B; Chizmeshya, Andrew V G; Groy, Thomas L; Kouvetakis, John

    2009-07-06

    The compounds Ph(3)SnSiH(3) and Ph(3)SnGeH(3) (Ph = C(6)H(5)) have been synthesized as colorless solids containing Sn-MH(3) (M = Si, Ge) moieties that are stable in air despite the presence of multiple and highly reactive Si-H and Ge-H bonds. These molecules are of interest since they represent potential model compounds for the design of new classes of IR semiconductors in the Si-Ge-Sn system. Their unexpected stability and high solubility also makes them a safe, convenient, and potentially useful delivery source of -SiH(3) and -GeH(3) ligands in molecular synthesis. The structure and composition of both compounds has been determined by chemical analysis and a range of spectroscopic methods including multinuclear NMR. Single crystal X-ray structures were determined and indicated that both compounds condense in a Z = 2 triclinic (P1) space group with lattice parameters (a = 9.7754(4) A, b = 9.8008(4) A, c = 10.4093(5) A, alpha = 73.35(10)(o), beta = 65.39(10)(o), gamma = 73.18(10)(o)) for Ph(3)SnSiH(3) and (a = 9.7927(2) A, b = 9.8005(2) A, c = 10.4224(2) A, alpha = 74.01(3)(o), beta = 65.48(3)(o), gamma = 73.43(3)(o)) for Ph(3)SnGeH(3). First principles density functional theory simulations are used to corroborate the molecular structures of Ph(3)SnSiH(3) and Ph(3)SnGeH(3), gain valuable insight into the relative stability of the two compounds, and provide correlations between the Si-Sn and Ge-Sn bonds in the molecules and those in tetrahedral Si-Ge-Sn solids.

  1. Stable isotopes

    International Nuclear Information System (INIS)

    Evans, D.K.

    1986-01-01

    Seventy-five percent of the world's stable isotope supply comes from one producer, Oak Ridge Nuclear Laboratory (ORNL) in the US. Canadian concern is that foreign needs will be met only after domestic needs, thus creating a shortage of stable isotopes in Canada. This article describes the present situation in Canada (availability and cost) of stable isotopes, the isotope enrichment techniques, and related research programs at Chalk River Nuclear Laboratories (CRNL)

  2. Theoretical Energy Release of Thermites, Intermetallics, and Combustible Metals

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, S.H.; Grubelich, M.C.

    1999-05-14

    Thermite mixtures, intermetallic reactants, and metal fuels have long been used in pyrotechnic applications. Advantages of these systems typically include high energy density, high combustion temperature, and a wide range of gas production. They generally exhibit high temperature stability and possess insensitive ignition properties. For the specific applications of humanitarian demining and disposal of unexploded ordnance, these pyrotechnic formulations offer additional benefits. The combination of high thermal input with low brisance can be used to neutralize the energetic materials in mines and other ordnance without the "explosive" high-blast-pressure events that can cause extensive collateral damage to personnel, facilities, and the environment. In this paper, we review the applications, benefits, and characteristics of thermite mixtures, intermetallic reactants, and metal fuels. Calculated values for reactant density, heat of reaction (per unit mass and per unit volume), and reaction temperature (without and with consideration of phase changes and the variation of specific heat values) are tabulated. These data are ranked in several ways, according to density, heat of reaction, reaction temperature, and gas production.

  3. Molecular distribution and compound-specific stable carbon isotopic composition of dicarboxylic acids, oxocarboxylic acids and α-dicarbonyls in PM2.5 from Beijing, China

    Science.gov (United States)

    Zhao, Wanyu; Kawamura, Kimitaka; Yue, Siyao; Wei, Lianfang; Ren, Hong; Yan, Yu; Kang, Mingjie; Li, Linjie; Ren, Lujie; Lai, Senchao; Li, Jie; Sun, Yele; Wang, Zifa; Fu, Pingqing

    2018-02-01

    This study investigates the seasonal variation, molecular distribution and stable carbon isotopic composition of diacids, oxocarboxylic acids and α-dicarbonyls to better understand the sources and formation processes of fine aerosols (PM2.5) in Beijing. The concentrations of total dicarboxylic acids varied from 110 to 2580 ng m-3, whereas oxoacids (9.50-353 ng m-3) and dicarbonyls (1.50-85.9 ng m-3) were less abundant. Oxalic acid was found to be the most abundant individual species, followed by succinic acid or occasionally by terephthalic acid (tPh), a plastic waste burning tracer. Ambient concentrations of phthalic acid (37.9 ± 27.3 ng m-3) and tPh (48.7 ± 51.1 ng m-3) were larger in winter than in other seasons, illustrating that fossil fuel combustion and plastic waste incineration contribute more to wintertime aerosols. The year-round mass concentration ratios of malonic acid to succinic acid (C3 / C4) were relatively low by comparison with those in other urban aerosols and remote marine aerosols. The values were less than or equal to unity in Beijing, implying that the degree of photochemical formation of diacids in Beijing is insignificant. Moreover, strong correlation coefficients of major oxocarboxylic acids and α-dicarbonyls with nss-K+ suggest that biomass burning contributes significantly to these organic acids and related precursors. The mean δ13C value of succinic acid is the highest among all species, with values of -17.1 ± 3.9 ‰ (winter) and -17.1 ± 2.0 ‰ (spring), while malonic acid is more enriched in 13C than others in autumn (-17.6 ± 4.6 ‰) and summer (-18.7 ± 4.0 ‰). The δ13C values of major species in Beijing aerosols are generally lower than those in the western North Pacific atmosphere, the downwind region, which indicates that stable carbon isotopic compositions of diacids depend on their precursor sources in Beijing. Therefore, our study demonstrates that in addition to photochemical oxidation, high abundances of diacids

  4. Molecular distribution and compound-specific stable carbon isotopic composition of dicarboxylic acids, oxocarboxylic acids and α-dicarbonyls in PM2.5 from Beijing, China

    Directory of Open Access Journals (Sweden)

    W. Zhao

    2018-02-01

    Full Text Available This study investigates the seasonal variation, molecular distribution and stable carbon isotopic composition of diacids, oxocarboxylic acids and α-dicarbonyls to better understand the sources and formation processes of fine aerosols (PM2.5 in Beijing. The concentrations of total dicarboxylic acids varied from 110 to 2580 ng m−3, whereas oxoacids (9.50–353 ng m−3 and dicarbonyls (1.50–85.9 ng m−3 were less abundant. Oxalic acid was found to be the most abundant individual species, followed by succinic acid or occasionally by terephthalic acid (tPh, a plastic waste burning tracer. Ambient concentrations of phthalic acid (37.9 ± 27.3 ng m−3 and tPh (48.7 ± 51.1 ng m−3 were larger in winter than in other seasons, illustrating that fossil fuel combustion and plastic waste incineration contribute more to wintertime aerosols. The year-round mass concentration ratios of malonic acid to succinic acid (C3 ∕ C4 were relatively low by comparison with those in other urban aerosols and remote marine aerosols. The values were less than or equal to unity in Beijing, implying that the degree of photochemical formation of diacids in Beijing is insignificant. Moreover, strong correlation coefficients of major oxocarboxylic acids and α-dicarbonyls with nss-K+ suggest that biomass burning contributes significantly to these organic acids and related precursors. The mean δ13C value of succinic acid is the highest among all species, with values of −17.1 ± 3.9 ‰ (winter and −17.1 ± 2.0 ‰ (spring, while malonic acid is more enriched in 13C than others in autumn (−17.6 ± 4.6 ‰ and summer (−18.7 ± 4.0 ‰. The δ13C values of major species in Beijing aerosols are generally lower than those in the western North Pacific atmosphere, the downwind region, which indicates that stable carbon isotopic compositions of diacids depend on their precursor sources in Beijing. Therefore, our

  5. Tracing crystal-field splittings in the rare-earth-based intermetallic CeIrIn5

    Science.gov (United States)

    Chen, Q. Y.; Wen, C. H. P.; Yao, Q.; Huang, K.; Ding, Z. F.; Shu, L.; Niu, X. H.; Zhang, Y.; Lai, X. C.; Huang, Y. B.; Zhang, G. B.; Kirchner, S.; Feng, D. L.

    2018-02-01

    Crystal electric field states in rare earth intermetallics show an intricate entanglement with the many-body physics that occurs in these systems and that is known to lead to a plethora of electronic phases. Here we attempt to trace different contributions to the crystal electric field (CEF) splittings in CeIrIn5, a heavy-fermion compound and member of the Ce M In5 (M = Co, Rh, Ir) family. To this end, we utilize high-resolution resonant angle-resolved photoemission spectroscopy (ARPES) and present a spectroscopic study of the electronic structure of this unconventional superconductor over a wide temperature range. As a result, we show how ARPES can be used in combination with thermodynamic measurements or neutron scattering to disentangle different contributions to the CEF splitting in rare earth intermetallics. We also find that the hybridization is stronger in CeIrIn5 than CeCoIn5 and the effects of the hybridization on the Fermi volume increase is much smaller than predicted. By providing experimental evidence for 4 f7/2 1 splittings which, in CeIrIn5, split the octet into four doublets, we clearly demonstrate the many-body origin of the so-called 4 f7/2 1 state.

  6. Tracing Carbon Flow Through Food Webs on Isolated Coral Reefs in the Central Pacific Ocean Using a Compound-Specific Stable Isotope Approach

    Science.gov (United States)

    Thorrold, S.; McMahon, K.; Braun, C.; Berumen, M. L.; Houghton, L. A.

    2016-02-01

    Coral reefs support spectacularly productive and diverse communities in tropical and sub-tropical waters throughout the world's oceans. Debate continues, however, on the degree to which reef biomass is supported by new water column or benthic primary production and recycled detrital carbon. We coupled analyses of stable carbon isotopes in essential amino acids with Bayesian mixing models to quantify carbon flow from pelagic primary producers, benthic macroalgae and autotrophic symbionts in corals, along with detrital carbon, to coral reef fishes across several feeding guilds and trophic positions, including apex predators (gray reef and black tip reef sharks), on reefs in the Phoenix Islands Protected Area. Excellent separation in multivariate isotope space among end-members at the base of the food web allowed us to quantify the relative proportion of carbon produced by each of the end-members that is assimilated by focal reef fish species. Low local human impacts on the study reefs provided the opportunity to examine carbon fluxs in fully functioning reef food webs, thereby providing an important baseline for examingn human impacts in food webs on stressed reefs in more populated regions in the tropics. Moreover the study reefs are located along a significant gradient in dissolved N concentrations, allowing us to test if end-member proportions vary as a function of pelagic primary productivity levels. Our work provides insights into the roles that diverse carbon sources may play in the structure, function and resilience of coral reef ecosystems.

  7. Microstructure study of the rare-earth intermetallic compounds R5(SixGe1-x)4 and R5(SixGe1-x)3

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Qing [Iowa State Univ., Ames, IA (United States)

    2012-01-01

    The unique combination of magnetic properties and structural transitions exhibited by many members of the R5(SixGe1-x)4 family (R = rare earths, 0 ≤ x ≤ 1) presents numerous opportunities for these materials in advanced energy transformation applications. Past research has proven that the crystal structure and magnetic ordering of the R5(SixGe1-x)4 compounds can be altered by temperature, magnetic field, pressure and the Si/Ge ratio. Results of this thesis study on the crystal structure of the Er5Si4 compound have for the first time shown that the application of mechanical forces (i.e. shear stress introduced during the mechanical grinding) can also result in a structural transition from Gd5Si4-type orthorhombic to Gd5Si2Ge2-type monoclinic. This structural transition is reversible, moving in the opposite direction when the material is subjected to low-temperature annealing at 500 °C.

  8. The Effect of CuSn Intermetallics on the Interstrand Contact Resistance in Superconducting Cables for the Large Hadron Collider (LHC)

    CERN Document Server

    Scheuerlein, C; Jacob, P; Leroy, D; Oberli, L R; Taborelli, M

    2005-01-01

    The LHC superconducting cables are submitted to a 200°C heat-treatment in air in order to increase the resistance between the crossing strands (RC) within the cable. During this treatment the as-applied Sn-Ag alloy strand coating is transformed into a CuSn intermetallic compound layer. The microstructure, the surface topography and the surface chemistry of the non-reacted and reacted coatings have been characterised by different techniques, notably focused ion beam (FIB), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS). Based on the results obtained by these techniques the different influences that the intermetallics have on RC are discussed. The desired RC is obtained only when a continuous Cu3Sn layer is formed, i.e. a sufficient wetting of the Cu substrate by the tinning alloy is crucial. Among other effects the formation of the comparatively hard intermetallics roughens the surface and, thus, reduces the true contact area and i...

  9. Seasonal variations of stable carbon isotopic composition and biogenic tracer compounds of water-soluble organic aerosols in a deciduous forest

    Directory of Open Access Journals (Sweden)

    Y. Miyazaki

    2012-02-01

    Full Text Available To investigate the seasonal changes in biogenic water-soluble organic carbon (WSOC aerosols in a boreal forest, aerosol samples were collected continuously in the canopy of a deciduous forest in northern Japan during 2009–2010. Stable carbon isotopic composition of WSOC (δ13CWSOC in total suspended particulate matter (TSP exhibited a distinct seasonal cycle, with lower values from June through September (−25.5±0.5 ‰. This cycle follows the net CO2 exchange between the forest ecosystem and the atmosphere, indicating that δ13CWSOC likely reflects the biological activity at the forest site. WSOC concentrations showed the highest values in early summer and autumn. Positive matrix factorization (PMF analysis indicated that the factor in which biogenic secondary organic aerosols (BSOAs dominated accounted for ~40 % of the highest concentrations of WSOC, where BSOAs mostly consisted of α-/β-pinene SOA. In addition, primary biological aerosol particles (PBAPs made similar contributions (~57 % to the WSOC near the forest floor in early summer. This finding indicates that the production of both primary and secondary WSOC aerosols is important during the growing season in a deciduous forest. The methanesulfonic acid (MSA maximum was also found in early summer and had a distinct vertical gradient with larger concentrations near the forest floor. Together with the similar vertical gradients found for WSOC and δ13CWSOC as well as the α-/β-pinene SOA tracers, our results indicate that the forest floor, including ground vegetation and soil, acts as a significant source of WSOC in TSP within a forest canopy at the study site.

  10. Study and development of NiAl intermetallic coating on hypo-eutectoid steel using highly activated composite granules of the Ni-Al system

    Energy Technology Data Exchange (ETDEWEB)

    Shahzad, Aamir; Zadorozhnyy, Vladislav Yu.; Pavlov, Mikhail D.; Semenov, Dmitri V.; Kaloshkin, Sergey D. [National Univ. of Science and Technology (MISIS), Moscow (Russian Federation)

    2018-01-15

    NiAl intermetallic coating thickness of about 50 μm was fabricated on hypo-eutectoid steel by mechanical alloying using pre-activated Ni-Al composite granules as coating material. First, Ni and Al powders were mixed with the composition of Ni-50 at.% Al and mechanically activated in a planetary ball mill, until the composite granules of this powder mixture, having maximum activity (9 cm sec{sup -1}), were formed after 120 min of milling at 200 rpm. The composite granules were then taken out from the planetary ball mill just before the critical time, i. e. the time at which these granules synthesize and convert to an intermetallic NiAl compound. The highly activated composite granules of Ni-Al were then put into the vial of a vibratory ball mill with the substrate on top of the chamber. After mechanical alloying for 60 min in the vibratory ball mill, the composite granules were synthesized fully and heat was produced during the synthesis which helped producing a thick and strong adhesive coating of NiAl intermetallic on the steel substrate. The main advantage of this technique is that not only is time saved but also there is no need for any post mechanical alloying process such as annealing or laser treatment etc. to get homogeneous, strongly bonded intermetallic coatings. X-ray diffraction analysis clearly indicates the formation of NiAl phase. Micro-hardness of the coating and substrate was also measured. The cross-sectional microstructure of the composite granules and the final coating were studied by scanning electron microscopy.

  11. Bioactive compound loaded stable silver nanoparticle synthesis from microwave irradiated aqueous extracellular leaf extracts of Naringi crenulata and its wound healing activity in experimental rat model.

    Science.gov (United States)

    Bhuvaneswari, T; Thiyagarajan, M; Geetha, N; Venkatachalam, P

    2014-07-01

    An efficient and eco-friendly protocol for the synthesis of bioactive silver nanoparticles was developed using Naringi crenulata leaf extracts via microwave irradiation method. Silver nanoparticles were synthesized by treating N. crenulata leaf extracts with 1mM of aqueous silver nitrate solution. An effective bioactive compound such as alkaloids, phenols, saponins and quinines present in the N. crenulata reduces the Ag(+) into Ag(0). The synthesized silver nanoparticles were monitored by UV-vis spectrophotometer and further characterized by X-ray diffraction (XRD), Fourier Transform Infra Red (FTIR), Energy-dispersive X-ray spectroscopy (EDX) and field emission scanning electron microscopy (FESEM). UV-vis spectroscopy showed maximum absorbance at 390nm due to surface plasmon resonance of AgNPs. From FESEM results, an average crystal size of the synthesized nanoparticle was 72-98nm. FT-IR results showed sharp absorption peaks and they were assigned to phosphine, alkyl halides and sulfonate groups. Silver nanoparticles synthesized were generally found to be spherical and cubic shape. Topical application of ointment prepared from silver nanoparticles of N. crenulata were formulated and evaluated in vivo using the excision wound healing model on Wistar albino rats. The measurement of the wound areas was performed on 3rd, 6th, 9th, 12th and 15th days and the percentage of wound closures was calculated accordingly. By the 15th day, the ointment base containing 5% (w/w) of silver nanoparticles showed 100% wound healing activity compared with that of the reference as well as control bases. The results strongly suggested that the batch C ointment containing silver nanaoparticles synthesized from the leaf extracts of N. crenulata was found to be very effective in wound repair and encourages harnessing the potentials of the plant biomolecules loaded silver nanoparticle in the treatment of tropical diseases including wound healing. Copyright © 2014 Elsevier B.V. All rights

  12. A compounded rare-earth iron garnet single crystal exhibiting stable Faraday rotation against wavelength and temperature variation in the 1.55 μm band

    International Nuclear Information System (INIS)

    Xu, Z.C.; Huang, M.; Li Miao

    2006-01-01

    The Bi, Tb and Yb partially substituted iron garnet bulk single crystals of Tb 3- x - y Yb y Bi x Fe 5 O 12 were grown by using Bi 2 O 3 /B 2 O 3 as flux and accelerated crucible rotation technique for single-crystal growth. Faraday rotation (FR) spectra showed that the specific FR of the (Tb 0.91 Yb 1.38 Bi 0.71 )Fe 5 O 12 crystal under magnetic field at saturation was measured to be about -1617 o /cm at λ=1.55 μm, Faraday rotation wavelength coefficient (FWC, 0.009%/nm) in the wavelength range of 1.50-1.62 μm and Faraday rotation temperature coefficient (FTC, 3.92x10 -5 /K) at λ=1.55 μm were even smaller than that of YIG. It is proven that through combining two types of Bi-substituted rare-earth iron garnets with opposite FWC and FTC signs, the compound rare-earth iron garnets with low FWC and FTC may be obtained due to the compensation effect. The saturation magnetization of (Tb 0.91 Yb 1.38 Bi 0.71 ) Fe 5 O 12 crystal is 0.48x10 6 A/M and is also much smaller than that of YIG. We have found empirically that there is a simple relationship between the FR θ f (x) and Bi content x for Tb 3- x - y Yb y Bi x Fe 5 O 12 , which is given by θ f (x)=(-2759x+400) o /cm

  13. Optimizing the formation of colloidal compounds with components of different shapes

    Science.gov (United States)

    Escobedo, Fernando A.

    2017-12-01

    By introducing favorable inter-species interactions, stoichiometric compound phases (C*), akin to intermetallic alloys, can be formed by binary mixtures of nanoparticle components of different shapes. The stability of such C* phases is expected to be affected by asymmetries in both the energetics of like vs. unlike species contacts, and the packing entropy of components, as captured by their shapes and relative sizes. Using Monte Carlo simulations, we explore the effect of changes in size ratio (for fixed contact energy) and in binding energy (for fixed size ratio) in the stability of the CsCl compound phase for equimolar mixtures of octahedra and spheres and of the NaCl compound for equimolar mixtures of cubes and spheres. As a general design rule, it is proposed that enhanced compound stability is associated with inter-species interactions that minimize the free-energy of the C* phase at coexistence with the (disordered) phase that is stable at lower concentrations. For the systems studied, this rule identifies optimal relative particle sizes and inter-species binding energies that are consistent with physically grounded expectations.

  14. Rate of uptake and distribution of Hg in dissolved organic carbon compounds in darkwater ecosystems by ICP-MS and enriched stable isotope spiking

    International Nuclear Information System (INIS)

    Telmer, Kevin; Dario Bermudez, Rafael; Veiga, Marcello M.; Souza, Terezinha Cid da

    2001-01-01

    The role of natural organic acids on mercury binding, transportation, net uptake rates and possibly net methylation rates will be evaluated by tracing these processes with isotope enriched mercury and ICP-MS technology. The correlation between dissolved organic matter and Hg in waters is well documented. It appears that organic acids can react with mercury residing in or emitted from different sources such as soils (particularly hydromorphic soils), laterites, natural degassing, forest fires, fuel combustion, gold mining activities, etc. to form soluble Hg-organo-complexes. The formation of these complexes is believed to greatly enhance Hg transport and be an important preliminary step in the formation of Methyl-Hg and biological uptake. The rates of these reactions and the key organic compounds involved in mercury binding will be determined by reacting isotopically-enriched Hg with samples containing a variety of concentrations and types of organic acids and subsequently analysing both reactants and organisms exposed to the reactants (bioassays) for Hg isotopes by ICP-MS. The Hg spike will allow the precise determination of rates of uptake and the most active agents of uptake. Initially, the method will be used to examine total Hg uptake and distribution but if technological limitations are overcome, this same approach can be used to determine net rates of methylation and net MeHg uptake. After the method is validated the experimental design can be altered to test the relative effects of such things as the addition of CO 2 (pH change), or adding a substrate such as Fe-Mn oxyhydroxides. The addition of synthetic materials such as mulched automobile tires, can also be tested with the goal developing a pragmatic remedial method for Hg containment. Ultimately, this research should contribute to an understanding of mercury mobilization, transport and bio-concentration mechanisms, and provide a basis for developing management and treatment strategies. Emphasis will be

  15. Liquid Metal Phagocytosis: Intermetallic Wetting Induced Particle Internalization.

    Science.gov (United States)

    Tang, Jianbo; Zhao, Xi; Li, Jing; Zhou, Yuan; Liu, Jing

    2017-05-01

    A biomimetic cellular-eating phenomenon in gallium-based liquid metal to realize particle internalization in full-pH-range solutions is reported. The effect, which is called liquid metal phagocytosis, represents a wet-processing strategy to prepare various metallic liquid metal-particle mixtures through introducing excitations such as an electrical polarization, a dissolving medium, or a sacrificial metal. A nonwetting-to-wetting transition resulting from surface transition and the reactive nature of the intermetallic wetting between the two metallic phases are found to be primarily responsible for such particle-eating behavior. Theoretical study brings forward a physical picture to the problem, together with a generalized interpretation. The model developed here, which uses the macroscopic contact angle between the two metallic phases as a criterion to predict the particle internalization behavior, shows good consistency with experimental results.

  16. Wear deformation of ordered Fe-Al intermetallic alloys

    Energy Technology Data Exchange (ETDEWEB)

    Maupin, H.E. (US Bureau of Mines, Albany Research Center, OR (United States)); Wilson, R.D. (US Bureau of Mines, Albany Research Center, OR (United States)); Hawk, J.A. (US Bureau of Mines, Albany Research Center, OR (United States))

    1993-04-13

    The Bureau of Mines conducted abrasive wear research on DO[sub 3] ordered and disordered Fe[sub 3]Al intermetallics. The effect of abrasion on these alloys was studied through mixroscopy, X-ray diffraction and hardness measurements. The region near the wear surface undergoes dynamic recrystallization, i.e. the original microstructural morphology of micron-size grains is replaced by one with nanosize grains. Abrasion of the Fe[sub 3]Al alloys also results in a loss of the DO[sub 3] ordering in the wear surface region. The bulk temperature rise of the specimen during abrasion was approximately 28 C which is insufficient to cause recrystallization in these alloys. Therefore, the flash temperature due to interface frictional heating is considered more important than the bulk temperature when considering dynamic recrystallization as the transformation mechanism in the near wear surface region. (orig.)

  17. Environmental embrittlement of ordered intermetallics at ambient temperatures

    International Nuclear Information System (INIS)

    Takasugi, Takayuki

    1993-01-01

    It is demonstrated that the environmental embrittlement of ordered intermetallics, which is caused by hydrogen released from moisture in air or hydrogen gas in environment at ambient temperatures, takes place in various kinds of crystal structures, alloys and microstructures. First, the phenomenology of the environmental embrittlement, i.e. atmosphere, temperature and strain rate dependencies, as well as alloying, doping and microstructural effects, is presented in terms of mechanical properties, fractography and microstructural features. Next, possible mechanisms of embrittlement involving the kinetics (i.e. decomposition, migration and condensation of hydrogen) and the bond breaking are discussed. Finally, some evidence indicating suppression of the embrittlement through selection of deformation condition, alloying and microstructural modification is presented. 52 refs., 11 figs., 2 tabs

  18. Tensile behavior of directionally solidified Ni3Al intermetallics with different Al contents and solidification rates

    Science.gov (United States)

    Lu, Yun; Gu, Jiho; Kim, Sangshik; Hong, Hyunuk; Choi, Heekyu; Lee, Jehyun

    2014-03-01

    Despite the excellent high temperature mechanical properties of the Ni3Al intermetallic compound, its application is still limited due to its inherently weak grain boundary. Recent research advances have demonstrated that the tensile ductility can be enhanced by controlling the grain morphology using a directional solidification. In this study, a series of directional solidification experiments were carried out to increase both the tensile ductility and the strength of Ni3Al alloys by arraying either the ductile phase of γ-Ni-rich dendrite fibers or the hard phase of β-NiAl dendrite fibers in the γ'-Ni3Al matrix. The dendrite arm spacing could be controlled by the solidification rate, and the volume fraction of the γ or β phase could be altered by the Al content, ranging from 23 at.% to 27 at.%. With an increasing Al content, the γ dendritic microstructure was transformed into the β dendrite in the γ' matrix, thereby reducing the tensile ductility by increasing the volume fraction of brittle β dendrites in the γ' matrix. With an increasing solidification rate, the dendrite arm spacing decreased and the tensile properties of Ni3Al varied in a complex manner. The microstructural evolution affecting the tensile behavior of directionally solidified Ni3Al alloy specimens with different solidification rates and Al contents is discussed.

  19. Behavior of aluminum oxide, intermetallics and voids in Cu-Al wire bonds

    International Nuclear Information System (INIS)

    Xu, H.; Liu, C.; Silberschmidt, V.V.; Pramana, S.S.; White, T.J.; Chen, Z.; Acoff, V.L.

    2011-01-01

    Nanoscale interfacial evolution in Cu-Al wire bonds during isothermal annealing from 175 deg. C to 250 deg. C was investigated by high resolution transmission electron microscopy (HRTEM). The native aluminum oxide film (∼5 nm thick) of the Al pad migrates towards the Cu ball during annealing. The formation of intermetallic compounds (IMC) is controlled by Cu diffusion, where the kinetics obey a parabolic growth law until complete consumption of the Al pad. The activation energies to initiate crystallization of CuAl 2 and Cu 9 Al 4 are 60.66 kJ mol -1 and 75.61 kJ mol -1 , respectively. During IMC development, Cu 9 Al 4 emerges as a second layer and grows together with the initial CuAl 2 . When Al is completely consumed, CuAl 2 transforms to Cu 9 Al 4 , which is the terminal product. Unlike the excessive void growth in Au-Al bonds, only a few voids nucleate in Cu-Al bonds after long-term annealing at high temperatures (e.g., 250 o C for 25 h), and their diameters are usually in the range of tens of nanometers. This is due to the lower oxidation rate and volumetric shrinkage of Cu-Al IMC compared with Au-Al IMC.

  20. DFT modeling of the electronic and magnetic structures and chemical bonding properties of intermetallic hydrides

    International Nuclear Information System (INIS)

    Al Alam, A.F.

    2009-06-01

    This thesis presents an ab initio study of several classes of intermetallics and their hydrides. These compounds are interesting from both a fundamental and an applied points of view. To achieve this aim two complementary methods, constructed within the DFT, were chosen: (i) pseudo potential based VASP for geometry optimization, structural investigations and electron localization mapping (ELF), and (ii) all-electrons ASW method for a detailed description of the electronic structure, chemical bonding properties following different schemes as well as quantities depending on core electrons such as the hyperfine field. A special interest is given with respect to the interplay between magneto-volume and chemical interactions (metal-H) effects within the following hydrided systems: binary Laves (e.g. ScFe 2 ) and Haucke (e.g. LaNi 5 ) phases on one hand, and ternary cerium based (e.g. CeRhSn) and uranium based (e.g. U 2 Ni 2 Sn) alloys on the other hand. (author)

  1. Characterization of ceramics and intermetallics fabricated by self-propagating high-temperature synthesis

    International Nuclear Information System (INIS)

    Hurst, J.B.

    1989-05-01

    Three efforts aimed at investigating the process of self-propagating high temperature synthesis (SHS) for the fabrication of structural ceramics and intermetallics are summarized. Of special interest was the influence of processing variables such as exothermic dopants, gravity, and green state morphology in materials produced by SHS. In the first effort directed toward the fabrication of SiC, exothermic dopants of yttrium and zirconium were added to SiO2 or SiO2 + NiO plus carbon powder mix and processed by SHS. This approach was unsuccessful since it did not produce the desired product of crystalline SiC. In the second effort, the influence of gravity was investigated by examining Ni-Al microstructures which were produced by SHS combustion waves traveling with and opposite the gravity direction. Although final composition and total porosities of the combusted Ni-Al compounds were found to be gravity independent, larger pores were created in those specimens which were combusted opposite to the gravity force direction. Finally, it was found that green microstructure has a significant effect on the appearance of the combusted piece. Severe pressing laminations were observed to arrest the combustion front for TiC samples

  2. Physical properties of the GaPd2 intermetallic catalyst in bulk and nanoparticle morphology

    DEFF Research Database (Denmark)

    Wencka, M.; Schwerin, J.; Klanjšek, M.

    2015-01-01

    Intermetallic compound GaPd2 is a highly selective catalyst material for the semi-hydrogenation of acetylene. We have determined anisotropic electronic, thermal and magnetic properties of a GaPd2 monocrystal along three orthogonal orthorhombic directions of the structure. By using 69Ga and 71Ga NMR...... properties of the GaPd2 phase on going from the bulk material to the nanoparticles morphology, we have synthesized GaPd2/SiO2 supported nanoparticles and determined their electronic DOS at εF from the 71Ga NMR spin-lattice relaxation rate. The electronic DOS of the GaPd2 was also studied theoretically from...... spectroscopy, we have determined the electric-field-gradient tensor at the Ga site in the unit cell and the Knight shift, which yields the electronic density of states (DOS) at the Fermi energy εF. The DOS at εF was determined independently also from the specific heat. To see the change of electronic...

  3. The Wiedemann–Franz–Lorenz relation for lead-free solder and intermetallic materials

    International Nuclear Information System (INIS)

    Yao, Yao; Fry, Jared; Fine, Morris E.; Keer, Leon M.

    2013-01-01

    Lead-free solders are replacing lead-rich solders in the electronics industry. Due to the limitation of available experimental data for thermal conductivity of lead-free solder and intermetallic compound (IMC) materials, the Wiedemann–Franz–Lorenz (WFL) relation is presented in this paper as a possible solution to predict thermal conductivity with known electrical conductivity. The method is based upon the fact that heat and electrical transport both involve free electrons. The thermal and electrical conductivities of Cu, Ni, Sn and different Sn-rich lead-free solder and IMC materials are studied by employing the WFL relation. Generally, analysis of the experimental data shows that the WFL relation is obeyed in both solder alloy and IMC materials, especially matching close to the relation for Sn, with a positive deviation from the theoretical Lorenz number. Thus, with the available electrical conductivity data, the thermal conductivity of solder and IMC materials can be obtained based on the proper WFL relation, and vice versa. A coupled thermal–electrical three-dimensional finite element analysis is performed to study the behavior of lead-free solder/IMC interconnects. Solder and IMC material properties predicted using the WFL relation are adopted in the computational model. By applying the WFL relation, the number of experiments required to determine the material properties for different lead-free solder/IMC interconnects can be significantly reduced, which can lead to pronounced savings of time and cost

  4. Fe Al intermetallic formation results using the thermal spray technique with aluminium and alonization; Comparacao da obtencao de intermetalicos FeAl atraves de aspersao termica com aluminio e alonizacao

    Energy Technology Data Exchange (ETDEWEB)

    Paredes, R.C. [Instituto de Tecnologia para o Desenvolvimento (LACTEC), Curitiba, PR (Brazil)]. E-mail: ramon@demec.ufpr.br; ramon@lactec.org.br; Rodriguez, R.M.P.H.; Capra, A.; Lima, D.F.B. [Parana Univ., Curitiba, PR (Brazil). Dept. de Engenharia Mecanica; Bond, D.; Silva, P.S.C.P. da [Financiadora de Estudos e Projetos (FINEP), Rio de Janeiro, RJ (Brazil). CTPETRO - Fundo Setorial do Petroleo e Gas Natural. REPRONAF - Revestimentos Protetores contra Corrosao pelo Acido Naftenico

    2003-07-01

    There are several publications that certify the excellent protection conferred to the steel for the aluminum covering against the corrosion. This covering represents an ideal commitment between the pure passive protection and the active protection. Moreover, the presence of Fe Al a intermetallic layer in the linking area between aluminum and the steel, possible of being made by thermal treatment, represents an additional protective barrier, in particular against the hydrogen diffusion into the steel. In industrial scale they are manufactured through the process of Alonization, steel pipes that require of a thermal treatment at 1050 deg C to allow the aluminium diffusion and and let grow up Fe Al intermetallic compound., which has recognized resistance to the sulphurous corrosive ways. This work presents Fe Al intermetallic formation results using the thermal spray technique to deposit aluminum and to carry it through posterior remelting of the aluminum covering. This procedure allows aluminum spread out on metallic surface and the formation of intermetallic rich in aluminum and other rich in iron. (author)

  5. Bibliography of physical and chemical properties of plutonium and of some of its compounds

    International Nuclear Information System (INIS)

    Lefevre, J.

    1957-02-01

    This document proposes two lists of bibliographical references which respectively concern the physical properties of metallic plutonium and intermetallic plutonium compounds (addressed topics in these documents are state diagrams, crystal structure, and so on), and the chemical properties of plutonium and of some of its compounds (addressed topics are heavy elements, transuranium elements, and so on)

  6. Uranium magnetism in UGa2 and U(Gasub(1-x)Alsub(x))2 compounds

    International Nuclear Information System (INIS)

    Ballou, R.

    1983-01-01

    Magnetism of intermetallic compounds of uranium is studied. A monocrystal of the highly anisotropic ferromagnetic material UGa 2 is studied by polarized neutron diffraction. Localisation of 5f electrons is evidenced. Magnetic structure of uranium in UGa 2 is determined. The pseudobinary compound U(Gasub(1-x)Alsub(x)) 2 is studied for crystal structure, ferromagnetism, paramagnetism, specific heat and resistivity [fr

  7. Influence of Al grain boundaries segregations and La-doping on embrittlement of intermetallic NiAl

    Science.gov (United States)

    Kovalev, Anatoly I.; Wainstein, Dmitry L.; Rashkovskiy, Alexander Yu.

    2015-11-01

    The microscopic nature of intergranular fracture of NiAl was experimentally investigated by the set of electron spectroscopy techniques. The paper demonstrates that embrittlement of NiAl intermetallic compound is caused by ordering of atomic structure that leads to formation of structural aluminum segregations at grain boundaries (GB). Such segregations contain high number of brittle covalent interatomic bonds. The alloying by La increases the ductility of material avoiding Al GB enrichment and disordering GB atomic structure. The influence of La alloying on NiAl mechanical properties was investigated. GB chemical composition, atomic and electronic structure transformations after La doping were investigated by AES, XPS and EELFS techniques. To qualify the interatomic bonds metallicity the Fermi level (EF) position and electrons density (neff) in conduction band were determined in both undoped and doped NiAl. Basing on experimental results the physical model of GB brittleness formation was proposed.

  8. Study on growth factors of intermetallic layer within hot-dipped

    Indian Academy of Sciences (India)

    Al-Zn-Si coating with regard to general seawater corrosion protection. This study deals with the interfacial intermetallic layer's growth, which affects considerably the corrosion resistance and mechanical properties of 25%Al-Zn alloy coatings, ...

  9. A Collection of Topological Types of Nanoclusters and Its Application to Icosahedron-Based Intermetallics.

    Science.gov (United States)

    Pankova, Arina A; Akhmetshina, Tatiana G; Blatov, Vladislav A; Proserpio, Davide M

    2015-07-06

    In this study, we carried out a topological and geometrical analysis of more than 27 000 intermetallics. More than 2000 topologically different nanoclusters were determined and stored in an electronic database as the Topological Types of Nanoclusters (TTN) collection. Besides the topology of the nanoclusters, the TTN collection contains the information on their occurrence as well as on motifs of their assembly in intermetallics; it is included to the set of the ToposPro topological collections. With the TTN collection we analyzed the topology of local binding and overall topological motifs in the 1528 intermetallics assembled with icosahedron-based building units. Taking the TTN collection as a starting point, we present the concept of a knowledge database and an expert system that can be used to process a huge set of data to find general regularities in the crystal structures of intermetallics and to predict some of their features.

  10. Transformation of intermetallic layer due to oxidation heat treatment on hot-dipped aluminium coated steel

    International Nuclear Information System (INIS)

    Hishamuddin Husain; Abdul Razak Daud; Muhamad Daud; Nadira Kamarudin

    2013-01-01

    Heat treatment was introduced onto the aluminum coated low carbon steel to promote the formation of thin layer of oxide for enhancement of oxidation protection of steel. This process has transformed the existing intermetallic layer formed during hot dip aluminising process. Experiment was conducted on the low carbon steel substrates with 10 mm x 10 mm x 2 mm dimension. Hot dip aluminising of low carbon steel was carried out at 750 degree Celsius dipping temperature in a molten pure aluminum for 5 minutes. Aluminized samples were heat treated at 600, 700, 800, and 900 degree Celsius for 1 hour. X-ray Diffraction (XRD), Scanning Electron Microscope (SEM) and EDAX were used in investigation. From the observation, it showed the intermetallic thickness increased with the increase in temperature. The result of EDAX analysis revealed the existence of oxide phase and the intermetallics. The XRD identified the intermetallics as Fe 2 Al 5 and FeAl 3 . (Author)

  11. 3D study of intermetallics and their effect on the corrosion morphology of rheocast aluminium alloy

    International Nuclear Information System (INIS)

    Mingo, B.; Arrabal, R.; Pardo, A.; Matykina, E.; Skeldon, P.

    2016-01-01

    In the present study, the effect of heat treatment T6.1 on the microstructure and corrosion behaviour of rheocast aluminium alloy A356 is investigated on the basis of 2D/3D characterization techniques and electrochemical and SKPFM measurements. Heat treatment strengthens the α-Al matrix, modifies the intermetallic particles and spheroidizes eutectic Si. These changes do not modify significantly the corrosion behaviour of the alloy. 3D SEM-Tomography clearly shows that the corrosion advances in the shape of narrow paths between closely spaced intermetallics without a major influence of eutectic Si. - Highlights: • T6.1 spheroidizes Si, strengthens the matrix and modifies the intermetallics. • Electrochemical behaviour of untreated and heat-treated alloys is similar. • 3D SEM-Tomography provides additional information on the corrosion morphology. • Corrosion advances as paths between intermetallics with little influence of Si.

  12. Elemental analysis of the Al-Fe intermetallic prepared by fast solidification

    International Nuclear Information System (INIS)

    Sandoval J, R.A.; Lopez M, J.; Ramirez T, J.J.; Aspiazu F, J.; Villasenor S, P.

    2003-01-01

    Applying the PIXE technique samples of the Al-Fe intermetallic prepared by fast solidification, obtained starting from Al recycled were analyzed. The concentrations of the found elements are given. (Author)

  13. Influence of annealing time and temperature on the Fe3Al intermetallic alloys microstructure modification

    OpenAIRE

    K. Garbala; A. Patejuk

    2011-01-01

    There is an industry interesting in intermetallic alloys in recent years. There are widely possibilities to adopt this kind of materials for structural units. More expensive materials can be replaced by them. A property which limits their wider application is the low plasticity at environment and elevated temperatures. In paper the results of the thermal microstructure modification are shown. To this end, the influence of annealing time and temperature on the intermetallic phase Fe3Al grain s...

  14. From Structural Complexity to Structure-Property Relationships in Intermetallics: Development of Density Functional Theory-Chemical Pressure Analysis

    Science.gov (United States)

    Engelkemier, Joshua

    The unparalleled structural diversity of intermetallic compounds provides nearly unlimited potential for the discovery and optimization of materials with useful properties, such as thermoelectricity, superconductivity, magnetism, hydrogen storage, superelasticity, and catalysis. This same diversity, however, creates challenges for understanding and controlling the unpredictable structure of intermetallic phases. Moreover, the fundamental design principles that have proven so powerful in molecular chemistry do not have simple analogues for metallic, solid state materials. One of these basic principles is the concept of atomic size effects. Especially in densely packed crystal structures where the need to fill space is in competition with the atoms' preferences for ideal interatomic distances, substitution of one element in a compound for another with similar chemical properties yet different atomic size can have dramatic effects on the ordering of the atoms (which in turn affects the electronic structure, vibrational properties, and materials properties). But because the forces that hold metallic phases together are less easily understood from a local perspective than covalent or ionic interactions in other kinds of materials, it is usually unclear whether the atoms are organized to optimize stabilizing, bonding interactions or rather forced to be close together despite repulsive, steric interactions. This dissertation details the development of a theoretical method, called Density Functional Theory-Chemical Pressure (DFT-CP) analysis, to address this issue. It works by converting the distribution of total energy density from a DFT calculation into a map of chemical pressure through a numerical approximation of the first derivative of energy with respect to voxel volume. The CP distribution is then carefully divided into contact volumes between neighboring atoms, from which it is possible to determine whether atoms are too close together (positive CP) or too far

  15. Sub-4 nm PtZn Intermetallic Nanoparticles for Enhanced Mass and Specific Activities in Catalytic Electrooxidation Reaction

    Energy Technology Data Exchange (ETDEWEB)

    Qi, Zhiyuan; Xiao, Chaoxian; Liu, Cong; Goh, Tian Wei; Zhou, Lin; Maligal-Ganesh, Raghu; Pei, Yuchen; Li, Xinle; Curtiss, Larry A.; Huang, Wenyu

    2017-03-22

    Atomically ordered intermetallic nanoparticles (iNPs) have sparked considerable interest in fuel cell applications by virtue of their exceptional electronic and structural properties. However, the synthesis of small iNPs in a controllable manner remains a formidable challenge because of the high temperature generally required in the formation of intermetallic phases. Here we report a general method for the synthesis of PtZn. iNPs (3.2 +/- 0.4 nm) on multiwalled carbon nanotubes (MWNT) via a facile and capping agent free strategy using a sacrificial mesoporous silica (mSiO(2)) shell. The as-prepared PtZn iNPs exhibited ca. 10 times higher mass activity in both acidic and basic solution toward the methanol oxidation reaction (MOR) compared to larger PtZn iNPs synthesized on MWNT without the mSiO2 shell. Density functional theory (DFT) calculations predict that PtZn systems go through a "non-CO" pathway for MOR because of the stabilization of the OH* intermediate by Zn atoms, while a pure Pt system forms highly stable COH* and CO* intermediates, leading to catalyst deactivation. Experimental studies on the origin of the backward oxidation peak of MOR coincide well with DFT predictions. Moreover, the calculations demonstrate that MOR on smaller PtZn iNPs is energetically more favorable than larger iNPs, due to their high density of corner sites and lower-lying energetic pathway. Therefore, smaller PtZn iNPs not only increase the number but also enhance the activity of the active sites in MOR compared with larger ones. This work opens a new avenue for the synthesis of small iNPs with more undercoordinated and enhanced active sites for fuel cell applications.

  16. A New Thermodynamic Parameter to Predict Formation of Solid Solution or Intermetallic Phases in High Entropy Alloys (Postprint)

    Science.gov (United States)

    2015-11-02

    AFRL-RX-WP-JA-2016-0345 A NEW THERMODYNAMIC PARAMETER TO PREDICT FORMATION OF SOLID SOLUTION OR INTERMETALLIC PHASES IN HIGH ENTROPY ...INTERMETALLIC PHASES IN HIGH ENTROPY ALLOYS (POSTPRINT) 5a. CONTRACT NUMBER FA8650-10-D-5226-0005 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER...simple thermodynamic criterion is proposed to predict the presence or absence of equilibrium intermetallic phases in a high entropy alloy at a given

  17. EFFECT OF INTERMETALLIC PHASES ON CORROSION BEHAVIOR AND MECHANICAL PROPERTIES OF DUPLEX STAINLESS STEEL AND SUPER-DUPLEX STAINLESS STEEL

    OpenAIRE

    Prabhu Paulraj; Rajnish Garg

    2015-01-01

    Duplex Stainless Steels (DSS) and Super Duplex Stainless Steel (SDSS) have excellent integration of mechanical and corrosion properties. However, the formation of intermetallic phases is a major problem in their usage. The mechanical and corrosion properties are deteriorated due to the presence of intermetallic phases. These phases are induced during welding, prolonged exposure to high temperatures, and improper heat treatments. The main emphasis of this review article is on intermetallic pha...

  18. Isotope effects associated with the preparation and methylation of fatty acids by boron trifluoride in methanol for compound-specific stable hydrogen isotope analysis via gas chromatography/thermal conversion/isotope ratio mass spectrometry.

    Science.gov (United States)

    Chivall, David; Berstan, Robert; Bull, Ian D; Evershed, Richard P

    2012-05-30

    Compound-specific stable hydrogen isotope analysis of fatty acids is being used increasingly as a means of deriving information from a diverse range of materials of archaeological, geological and environmental interest. Preparative steps required prior to isotope ratio mass spectrometry (IRMS) analysis have the potential to alter determined δD values and hence must be accounted for if accurate δD values for target compounds are to be obtained. Myristic, palmitic, stearic, arachidic and behenic saturated fatty acids were derivatised to their respective fatty acid methyl esters (FAMEs), using 14% (w/v) boron trifluoride in methanol then analysed by gas chromatography/thermal conversion/IRMS (GC/TC/IRMS). FAMEs generated from fatty acid sodium salts of unknown δD values were then used to test a correction factor determined for this method of derivatisation. Derivatisation was found to alter the hydrogen isotopic composition of FAMEs although this effect was reproducible and can be accounted for. The difference between the mean corrected and mean bulk δD values was always less than 6.7 ‰. Extraction of saturated fatty acids and acyl lipids from samples, subsequent hydrolysis, then separation on a solid-phase extraction cartridge, was found to alter the determined δD values by less than one standard deviation. Overall, it has been shown that for natural abundance hydrogen isotope determinations, the isolation and derivatisation of extracted fatty acids alters the determined δD values only by a numerical increment comparable with the experimental error. This supports the use of the described analytical protocol as an effective means of determining fatty acid δD values by GC/TC/IRMS. Copyright © 2012 John Wiley & Sons, Ltd.

  19. Stable particles

    International Nuclear Information System (INIS)

    Samios, N.P.

    1994-01-01

    I have been asked to review the subject of stable particles, essentially the particles that eventually comprised the meson and baryon octets, with a few more additions - with an emphasis on the contributions made by experiments utilizing the bubble chamber technique. In this activity, much work had been done by the photographic emulsion technique and cloud chambers - exposed to cosmic rays as well as accelerator based beams. In fact, many if not most of the stable particles were found by these latter two techniques, however, the foree of the bubble chamber (coupled with the newer and more powerful accelerators) was to verify, and reinforce with large statistics, the existence of these states, to find some of the more difficult ones, mainly neutrals and further to elucidate their properties, i.e., spin, parity, lifetimes, decay parameters, etc. (orig.)

  20. Stable particles

    International Nuclear Information System (INIS)

    Samios, N.P.

    1993-01-01

    I have been asked to review the subject of stable particles, essentially the particles that eventually comprised the meson and baryon octets. with a few more additions -- with an emphasis on the contributions made by experiments utilizing the bubble chamber technique. In this activity, much work had been done by the photographic emulsion technique and cloud chambers-exposed to cosmic rays as well as accelerator based beams. In fact, many if not most of the stable particles were found by these latter two techniques, however, the forte of the bubble chamber (coupled with the newer and more powerful accelerators) was to verify, and reinforce with large statistics, the existence of these states, to find some of the more difficult ones, mainly neutrals and further to elucidate their properties, i.e., spin, parity, lifetimes, decay parameters, etc

  1. Electronic and Spectral Properties of RRhSn (R = Gd, Tb) Intermetallic Compounds

    Science.gov (United States)

    Knyazev, Yu. V.; Lukoyanov, A. V.; Kuz'min, Yu. I.; Gupta, S.; Suresh, K. G.

    2018-02-01

    The investigations of electronic structure and optical properties of GdRhSn and TbRhSn were carried out. The calculations of band spectrum, taking into account the spin polarization, were performed in a local electron density approximation with a correction for strong correlation effects in 4f shell of rare earth metal (LSDA + U method). The optical studies were done by ellipsometry in a wide range of wavelengths, and the set of spectral and electronic characteristics was determined. It was shown that optical absorption in a region of interband transitions has a satisfactory explanation within a scope of calculations of density of electronic states carried out.

  2. Electronic properties of Sn/Pd intermetallic compounds on Pd(110)

    Czech Academy of Sciences Publication Activity Database

    Tsud, N.; Skála, T.; Šutara, F.; Veltruská, K.; Dudr, Viktor; Fabík, S.; Sedláček, L.; Cháb, Vladimír; Prince, K. C.; Matolín, V.

    2005-01-01

    Roč. 595, - (2005), s. 138-150 ISSN 0039-6028 R&D Projects: GA MŠk(CZ) LA 151 Institutional research plan: CEZ:AV0Z10100521 Keywords : tin * palladium * metal-metal interfaces * CO adsorption * low-energy electron diffraction * X-ray photoelectrons pectroscopy * synchrotron radiation Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.780, year: 2005

  3. Neutron Diffraction and Magnetostriction of Cubic La(FexAl1-x)13 Intermetallic Compounds

    NARCIS (Netherlands)

    Palstra, T.T.M.; Nieuwenhuys, G.J.; Mydosh, J.A.; Helmholdt, R.B.; Buschow, K.H.J.

    1986-01-01

    The ferromagnetic and antiferromagnetic states of La(FexAl1-x)13 were studied by neutron diffraction and magnetostriction measurements. We present a model for the magnetic structure of the antiferromagnetic state, consisting of ferromagnetic clusters, coupled antiferromagnetically. Magnetostriction

  4. RETRACTED ARTICLE: Microstructure and strengthening mechanism of Ni3Al intermetallic compound

    Science.gov (United States)

    Oh, Chang-Sup; Han, Chang-Suk

    2013-09-01

    Structural studies have been performed on precipitation hardening found in Ni3Al-base ordered alloys using transmission electron microscopy. The γ' phase hardens appreciably by the fine precipitation of disordered γ. The strength of γ' increases over the temperature range of experiment by the precipitation of fine γ particles. The peak temperature where a maximum strength was obtained shifted to higher temperature. Superlattice dislocations dissociate into fourfold Shockley partial dislocations in a uniform supersaturated solid solution of the γ' phase. Dislocations are attracted into the disordered γ phase and dissociate further in the particles. At any stage of aging, dislocations cut through the particles and the Orowan bypassing process does not occur even in the overaged stage of this alloy system. When the applied stress is removed, the dislocations make cross slip into (010) plane, while those in γ precipitates remain on the (111) primary slip plane. The increase of high temperature strength in γ' containing γ precipitates is due to the restraint of cross slip of dislocations from (111) to (010) by the dispersion of disordered γ particles. The orientation dependence of strength is decreased by the fine precipitation of a disordered γ phase.

  5. Pitting Corrosion of Ni3(Si,Ti+2Cr Intermetallic Compound at Various Chloride Concentrations

    Directory of Open Access Journals (Sweden)

    Gadang Priyotomo

    2014-05-01

    Full Text Available The pitting corrosion of Ni3(Si,Ti with 2 at% Cr containing two regions of a Ni3(Si,Ti single-phase of L12 structure and a mixture phase of of (L12 +Niss was investigated as function of chloride concentrations by using a polarization method, scanning electron microscope and energy dispersive X-Ray spectroscopy in neutral sodium chloride solutions at 293 K.  The pitting corrosion of Ni3(Si,Ti with and without the addition of aluminium and type C276 alloy were also studied under the same experimental condition for the comparison.  The pitting potential obtained for the Ni3(Si,Ti with 2 at% Cr decreased with increasing chloride concentration.  The specific pitting potentials and the pitting potentials were decreased in the order of C276 alloy > Ni3(Si,Ti > Ni3(Si,Ti + 2Cr > Ni3(Si,Ti + 4Al, which means that the pitting corrosion resistance of Ni3(Si,Ti with 2 at% Cr was higher than Ni3(Si,Ti with 4 at% Al, but lower than that of Ni3(Si,Ti.  A critical chloride concentration of Ni3(Si,Ti with 2 at% Cr was found to be higher than that of Ni3(Si,Ti with at% Al. In addition, the presence of high concentration for oxygen indicates the occurrence of pit formation.

  6. Exchange interactions in the intermetallic compounds GdCo4-xNixAl

    International Nuclear Information System (INIS)

    Prasongkit, J.; Tang, I.M.

    2004-01-01

    The two sub-lattice model is modified to take into account the presence of two types of transition metal ions in GdCo 4-x Ni x Al. An expression for magnetization is obtained and is used to fit the experimental results of Burzo and Pop (J. Magn. Magn. Mater. 196-97 (1999) 768)). From the values of the molecular field coefficients n ij (i, j=Gd, Co or Ni), the values of the exchange interactions J GdGd , J GdCo , J GdNi , J CoCo , J CoNi and J NiNi were found. It is seen that three of them, J GdGd , J NiNi and J GdNi , exhibit clear exponential decreases as the Ni content increases; one of them, J CoCo , exhibits a clear exponential increase. The other two exchange interactions, J GdCo (J CoNi ), appear to exhibit a parabolic (inverted parabolic) dependence on the Ni content

  7. Hydrogen diffusion in Mg2NiH4 intermetallic compound

    Czech Academy of Sciences Publication Activity Database

    Čermák, Jiří; Král, Lubomír; David, Bohumil

    2008-01-01

    Roč. 16, č. 4 (2008), s. 508-517 ISSN 0966-9795 R&D Projects: GA ČR GA106/07/0010 Institutional research plan: CEZ:AV0Z20410507 Keywords : diffusion * hydrogen storage * phase transformations Subject RIV: BJ - Thermodynamics Impact factor: 2.034, year: 2008

  8. Magnetostriction and thermal expansion of HoFe11-xCoxTi intermetallic compounds

    Science.gov (United States)

    Sanavi Khoshnoud, D.; Tajabor, N.; Motevalizadeh, L.; Fruchart, D.

    2014-08-01

    The thermal expansion and magnetostriction of the HoFe11-xCoxTi (0≤x≤11) alloys have been investigated, using the strain gauge technique in the temperature range 77-600 K. Both thermal expansion and thermal expansion coefficient exhibit an anomalous behaviour and Invar effect below Curie temperature (TC=516 K) in sample with x=0. The increase of x in HoFe11-xCoxTi system leads to disappearing of the Invar effect and increasing of the average thermal expansion coefficient from 6.370×10-6 K-1 in x=0 to 10.735×10-6 K-1 in x=11 below room temperature. In addition, the spontaneous volume magnetostriction decreases with Co content. The magnetostriction compensation point is observed in the anisotropic magnetostriction curve of all samples. The maximum value of anisotropic magnetostriction (Δλ≈50×10-6) at room temperature is observed in sample with x=9. The saturation behaviour only appears in samples with x=5, 7 and 9. In samples with x=3, 5 and 7, a noticeable volume magnetostriction (ΔV/V) is observed in low temperature due to first-order magnetisation process. Moreover, ΔV/V exhibits a large anomaly about 45×10-6 and 20×10-6 around room temperature related to spin reorientation transition in samples with x=9 and 11, respectively. The results are discussed based on the local magnetic moment model and irreducible magnetoelastic coupling modes.

  9. Stable beams

    CERN Multimedia

    2015-01-01

    Stable beams: two simple words that carry so much meaning at CERN. When LHC page one switched from "squeeze" to "stable beams" at 10.40 a.m. on Wednesday, 3 June, it triggered scenes of jubilation in control rooms around the CERN sites, as the LHC experiments started to record physics data for the first time in 27 months. This is what CERN is here for, and it’s great to be back in business after such a long period of preparation for the next stage in the LHC adventure.   I’ve said it before, but I’ll say it again. This was a great achievement, and testimony to the hard and dedicated work of so many people in the global CERN community. I could start to list the teams that have contributed, but that would be a mistake. Instead, I’d simply like to say that an achievement as impressive as running the LHC – a machine of superlatives in every respect – takes the combined effort and enthusiasm of everyone ...

  10. AA6082 to DX56-Steel Laser Brazing: Process Parameter-Intermetallic Formation Correlation

    Science.gov (United States)

    Narsimhachary, D.; Pal, S.; Shariff, S. M.; Padmanabham, G.; Basu, A.

    2017-09-01

    In the present study, laser-brazed AA6082 to DX56-galvanized steel joints were investigated to understand the influence of process parameters on joint strength in terms of intermetallic layer formation. 1.5-mm-thick sheet of aluminum alloy (AA6082-T6) and galvanized steel (DX56) sheet of 0.7 mm thickness were laser-brazed with 1.5-mm-diameter Al-12% Si solid filler wire. During laser brazing, laser power (4.6 kW) and wire feed rate (3.4 m/min) were kept constant with a varying laser scan speed of 3.5, 3, 2.5, 2, 1.5, and 1 m/min. Microstructure of brazed joint reveals epitaxial growth at the aluminum side and intermetallic layer formation at steel interface. Intermetallic layer formation was confirmed by EDS analysis and XRD study. Hardness profile showed hardness drop in filler region, and failure during tensile testing was initiated through the filler region near the steel interface. As per both experimental study and numerical analysis, it was observed that intermetallic layer thickness decreases with increasing brazing speed. Zn vaporization from galvanized steel interface also affected the joint strength. It was found that high laser scan speed or faster cooling rate can be chosen for suppressing intermetallic layer formation or at least decreasing the layer thickness which results in improved mechanical properties.

  11. A Review on the Properties of Iron Aluminide Intermetallics

    Directory of Open Access Journals (Sweden)

    Mohammad Zamanzade

    2016-01-01

    Full Text Available Iron aluminides have been among the most studied intermetallics since the 1930s, when their excellent oxidation resistance was first noticed. Their low cost of production, low density, high strength-to-weight ratios, good wear resistance, ease of fabrication and resistance to high temperature oxidation and sulfurization make them very attractive as a substitute for routine stainless steel in industrial applications. Furthermore, iron aluminides allow for the conservation of less accessible and expensive elements such as nickel and molybdenum. These advantages have led to the consideration of many applications, such as brake disks for windmills and trucks, filtration systems in refineries and fossil power plants, transfer rolls for hot-rolled steel strips, and ethylene crackers and air deflectors for burning high-sulfur coal. A wide application for iron aluminides in industry strictly depends on the fundamental understanding of the influence of (i alloy composition; (ii microstructure; and (iii number (type of defects on the thermo-mechanical properties. Additionally, environmental degradation of the alloys, consisting of hydrogen embrittlement, anodic or cathodic dissolution, localized corrosion and oxidation resistance, in different environments should be well known. Recently, some progress in the development of new micro- and nano-mechanical testing methods in addition to the fabrication techniques of micro- and nano-scaled samples has enabled scientists to resolve more clearly the effects of alloying elements, environmental items and crystal structure on the deformation behavior of alloys. In this paper, we will review the extensive work which has been done during the last decades to address each of the points mentioned above.

  12. Tribological properties of the Fe-Al intermetallic alloys after annealing

    Directory of Open Access Journals (Sweden)

    K. Garbala

    2011-04-01

    Full Text Available In paper researching results of tribological proprieties Fe3Al intermetallic alloys after annealing are presented. Studies were conducted in the following environments: a water; an air and oil. For investigation purposes the tribotester pin-on-disk type with the contrsample made of steel 40H quenched and tempered was used. Tests were carried out with the following process parameters: pressure p = 2MPa and linear velocity (circuital V = 0.46m/s. It was noted, that intermetallic samples with the small distinction in chemical compositions, annealed at different temperatures showed a large difference in the quantity of material loss in the all tested environments. Appropriately selected parameters of the intermetallic alloys annealing, provide their greater resistance to abrasion in the air and oil environments than in the case of steel.

  13. Proton Transfer Reaction Time-of-Flight Mass Spectrometric (PTR-TOF-MS) determination of volatile organic compounds (VOCs) emitted from a biomass fire developed under stable nocturnal conditions

    Science.gov (United States)

    Brilli, Federico; Gioli, Beniamino; Ciccioli, Paolo; Zona, Donatella; Loreto, Francesco; Janssens, Ivan A.; Ceulemans, Reinhart

    2014-11-01

    Combustion of solid and liquid fuels is the largest source of potentially toxic volatile organic compounds (VOCs), which can strongly affect health and the physical and chemical properties of the atmosphere. Among combustion processes, biomass burning is one of the largest at global scale. We used a Proton Transfer Reaction “Time-of-Flight” Mass Spectrometer (PTR-TOF-MS), which couples high sensitivity with high mass resolution, for real-time detection of multiple VOCs emitted by burned hay and straw in a barn located near our measuring station. We detected 132 different organic ions directly attributable to VOCs emitted from the fire. Methanol, acetaldehyde, acetone, methyl vinyl ether (MVE), acetic acid and glycolaldehyde dominated the VOC mixture composition. The time-course of the 25 most abundant VOCs, representing ∼85% of the whole mixture of VOCs, was associated with that of carbon monoxide (CO), carbon dioxide (CO2) and methane (CH4) emissions. The strong linear relationship between the concentrations of pyrogenic VOC and of a reference species (i.e. CO) allowed us to compile a list of emission ratios (ERs) and emission factors (EFs), but values of ER (and EF) were overestimated due to the limited mixing of the gases under the stable (non-turbulent) nocturnal conditions. In addition to the 25 most abundant VOCs, chemical formula and concentrations of the residual, less abundant VOCs in the emitted mixture were also estimated by PTR-TOF-MS. Furthermore, the evolution of the complex combustion process was described on the basis of the diverse types of pyrogenic gases recorded.

  14. EFFECT OF INTERMETALLIC PHASES ON CORROSION BEHAVIOR AND MECHANICAL PROPERTIES OF DUPLEX STAINLESS STEEL AND SUPER-DUPLEX STAINLESS STEEL

    Directory of Open Access Journals (Sweden)

    Prabhu Paulraj

    2015-08-01

    Full Text Available Duplex Stainless Steels (DSS and Super Duplex Stainless Steel (SDSS have excellent integration of mechanical and corrosion properties. However, the formation of intermetallic phases is a major problem in their usage. The mechanical and corrosion properties are deteriorated due to the presence of intermetallic phases. These phases are induced during welding, prolonged exposure to high temperatures, and improper heat treatments. The main emphasis of this review article is on intermetallic phases and their effects on corrosion and mechanical properties. First the effect of various alloying elements on DSS and SDSS has been discussed followed by formation of various intermetallic phases. The intermetallic phases affect impact toughness and corrosion resistance significantly. Their deleterious effect on weldments has also been reviewed.

  15. Influence of annealing time and temperature on the Fe3Al intermetallic alloys microstructure modification

    Directory of Open Access Journals (Sweden)

    K. Garbala

    2011-04-01

    Full Text Available There is an industry interesting in intermetallic alloys in recent years. There are widely possibilities to adopt this kind of materials for structural units. More expensive materials can be replaced by them. A property which limits their wider application is the low plasticity at environment and elevated temperatures. In paper the results of the thermal microstructure modification are shown. To this end, the influence of annealing time and temperature on the intermetallic phase Fe3Al grain size was investigated. The impact of these factors on micro-hardness was examined as well. It was found that these operations cause the grain size reduction and the micro-hardness decrease.

  16. Tribological properties of the Fe-Al intermetallic alloys after annealing

    OpenAIRE

    K. Garbala; A. Patejuk

    2011-01-01

    In paper researching results of tribological proprieties Fe3Al intermetallic alloys after annealing are presented. Studies were conducted in the following environments: a water; an air and oil. For investigation purposes the tribotester pin-on-disk type with the contrsample made of steel 40H quenched and tempered was used. Tests were carried out with the following process parameters: pressure p = 2MPa and linear velocity (circuital) V = 0.46m/s. It was noted, that intermetallic samples with t...

  17. A Self-Propagating Foaming Process of Porous Al-Ni Intermetallics Assisted by Combustion Reactions

    Directory of Open Access Journals (Sweden)

    Makoto Kobashi

    2009-12-01

    Full Text Available The self-propagating foaming process of porous Al-Ni intermetallics was investigated. Aluminum and nickel powders were blended, and titanium and boron carbide powders were added as reactive exothermic agents. The blended powder was extruded to make a rod-shape precursor. Only one end of the rod precursor was heated to ignite the reaction. The reaction propagated spontaneously throughout the precursor. Pore formation took place at the same time as the reaction occurred. Adding the exothermic agent was effective to increase the porosity. Preheating the precursor before the ignition was also very effective to produce porous Al-Ni intermetallics with high porosity.

  18. Ab initio study of antiphase boundaries and stacking faults in L12 and DO22 compounds

    DEFF Research Database (Denmark)

    Rosengaard, N. M.; Skriver, Hans Lomholt

    1994-01-01

    We have performed ab initio calculations of the energies of antiphase boundaries as well as complex and superlattice intrinsic stacking faults in nine intermetallic compounds observed in the face-centered-cubic L1(2) and DO22 structures. The calculations were performed by means of a Green...

  19. Intermetallic Strengthened Alumina-Forming Austenitic Steels for Energy Applications

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Bin [Dartmouth College, Hanover, NH (United States); Baker, Ian [Dartmouth College, Hanover, NH (United States)

    2016-03-31

    In order to achieve energy conversion efficiencies of >50 % for steam turbines/boilers in power generation systems, the materials required must be strong, corrosion-resistant at high temperatures (>700°C), and economically viable. Austenitic steels strengthened with Laves phase and L12 precipitates, and alloyed with aluminum to improve oxidation resistance, are potential candidate materials for these applications. The creep resistance of these alloys is significantly improved through intermetallic strengthening (Laves-Fe2Nb + L12-Ni3Al precipitates) without harmful effects on oxidation resistance. Microstructural and microchemical analyses of the recently developed alumina-forming austenitic (AFA) steels (Fe-14Cr-32Ni-3Nb-3Al-2Ti-based) indicated they are strengthened by Ni3Al(Ti) L12, NiAl B2, Fe2Nb Laves phase and MC carbide precipitates. Different thermomechanical treatments (TMTs) were performed on these stainless steels in an attempt to further improve their mechanical properties. The thermo-mechanical processing produced nanocrystalline grains in AFA alloys and dramatically increased their yield strength at room temperature. Unfortunately, the TMTs didn’t increase the yield strengths of AFA alloys at ≥700ºC. At these temperatures, dislocation climb is the dominant mechanism for deformation of TMT alloys according to strain rate jump tests. After the characterization of aged AFA alloys, we found that the largest strengthening effect from L12 precipitates can be obtained by aging for less than 24 h. The coarsening behavior of the L12 precipitates was not influenced by carbon and boron additions. Failure analysis and post-mortem TEM analysis were performed to study the creep failure mechanisms of these AFA steels after creep tests. Though the Laves and B2-NiAl phase precipitated along the boundaries can improve the creep properties, cracks were

  20. Stable agents for imaging investigations

    International Nuclear Information System (INIS)

    Tofe, A.J.

    1976-01-01

    This invention concerns highly stable compounds useful in preparing technetium 99m based scintiscanning exploration agents. The compounds of this invention include a pertechnetate reducing agent or a solution of oxidized pertechnetate and an efficient proportion, sufficient to stabilize the compounds in the presence of oxygen and of radiolysis products, of ascorbic acid or a pharmaceutically acceptable salt or ester of this acid. The invention also concerns a perfected process for preparing a technetium based exploration agent, consisting in codissolving the ascorbic acid or a pharmaceutically acceptable salt or ester of such an acid and a pertechnetate reducing agent in a solution of oxidized pertechnetate [fr

  1. Intermetallics in the Mg-Ca-Sn ternary system: Structural, vibrational, and thermodynamic properties from first principles

    Science.gov (United States)

    Arróyave, Raymundo; Liu, Zi-Kui

    2006-11-01

    A comprehensive analysis of the structural, vibrational, and thermodynamic properties of the intermetallic compounds in the Mg-Ca-Sn system has been performed via first-principles calculations. The enthalpies of formation at 0K for all the known structures in this ternary system are calculated and the results are favorably compared—within ˜5kJ/mol-atom in most cases—to the available experimental data. The vibrational contributions to the thermodynamic properties of fcc Ca, hcp Mg, β-Sn , Mg2Ca , Ca2Sn , CaSn , Ca5Sn3 , CaSn3 , Mg2Sn , and MgCaSn are calculated using the supercell method. In all cases, bond stiffening resulting from compound formation results in upward frequency shifts in the phonon density of states, yielding in turn negative entropies of formation. The effects of volume expansion on the vibrational properties were considered through the quasiharmonic approximation. Thermal electronic contributions were also calculated from the electronic density of states. The electronic degrees of freedom were found to be less important than volume expansion at determining the high temperature thermodynamic properties. The predicted thermodynamic properties of the structures agreed satisfactorily with the experimental data available. The relative importance of these two nonharmonic corrections is reversed when analyzing the formation properties. In all compounds, except for CaSn3 , it was found that the variation of both the formation enthalpies and entropies with temperature is negative. This results in a destabilization of the compounds with respect to their constituent elements as the temperature is increased.

  2. Calorimetric investigations of UPb{sub 3} compound

    Energy Technology Data Exchange (ETDEWEB)

    Agarwal, Renu, E-mail: arenu@barc.gov.in; Samui, Pradeep; Mukerjee, S.K.

    2016-08-10

    Highlights: • First time reporting of enthalpy increment and heat capacity data of UPb{sub 3} compound. • First time reporting of high temperature calorimetric determination of enthalpy of formation of UPb{sub 3} compound. • Miedema model was used to calculate enthalpies of formation of UPb{sub 3} and UPb. • Thermodynamic table of the compound UPb{sub 3} was generated. - Abstract: Interaction of uranium based metallic fuels and lead coolant can lead to formation of intermetallic compounds of U-Pb system. To understand U-Pb interactions, it is important to know thermodynamic properties of intermetallic compounds present in this system, UPb{sub 3} and UPb. In the present work, enthalpy increment, heat capacity and enthalpy of formation of UPb{sub 3} intermetallic compound were determined. The enthalpy increment was determined by high temperature Calvet calorimeter and heat capacity was determined using DSC. The heat capacity data was used to calculate thermodynamic parameters of the compound as a function of temperature. The enthalpy of formation at 843 K was determined using successive precipitation method, by direct reaction calorimetry. The enthalpy of formation at 843 K, from Pb(l) and U(l), was −28.9 kJ at-mol{sup −1} and after adjusting enthalpy increments of pure elements and compound, the enthalpy of formation of the compound at 298 K, from Pb(s) and U(α) was found to be −20.0 kJ at-mol{sup −1}.

  3. Growth of intermetallics between Sn/Ni/Cu, Sn/Ag/Cu and Sn/Cu layered structures

    International Nuclear Information System (INIS)

    Horváth, Barbara; Illés, Balázs; Shinohara, Tadashi

    2014-01-01

    Intermetallic growth mechanisms and rates are investigated in Sn/Ni/Cu, Sn/Ag/Cu and Sn/Cu layer systems. An 8–10 μm thick Sn surface finish layer was electroplated onto a Cu substrate with a 1.5–2 μm thick Ni or Ag barrier layer. In order to induce intermetallic layer growth, the samples were aged in elevated temperatures: 50 °C and 125 °C. Intermetallic layer growth was checked by focused ion beam–scanning ion microscope. The microstructures and chemical compositions of the intermetallic layers were observed with a transmission electron microscope. It has been found that Ni barrier layers can effectively block the development of Cu 6 Sn 5 intermetallics. The intermetallic growth characteristics in the Sn/Cu and Sn/Ni/Cu systems are very similar. The intermetallic layer grows towards the Sn layer and forms a discrete layer. Differences were observed only in the growth gradients and surface roughness of the intermetallic layer which may explain the different tin whiskering properties. It was observed that the intermetallic layer growth mechanisms are completely different in the Ag barrier layers compared to the Ni layers. In the case of Sn/Ag/Cu systems, the Sn and Cu diffused through the Ag layer, formed Cu 6 Sn 5 intermetallics mainly at the Sn/Ag interface and consumed the Ag barrier layer. - Highlights: • Intermetallic growth was characterised in Sn/Ni/Cu, Sn/Ag/Cu and Sn/Cu layer systems. • Intermetallic growth rates and roughness are similar in the Sn/Cu and Sn/Ni/Cu systems. • Sn/Ni/Cu system contains the following intermetallic layer structure Sn–Ni3Sn4–Ni3Sn2–Ni3Sn–Ni. • In the case of Sn/Ag/Cu systems the Sn and Cu diffusion consumes the Ag barrier layer. • When Cu reaches the Sn/Ag interface a large amount of Cu 6 Sn 5 forms above the Ag layer

  4. Fe-Zn intermetallic phases prepared by diffusion annealing and spark-plasma sintering

    Czech Academy of Sciences Publication Activity Database

    Pokorný, P.; Cinert, Jakub; Pala, Zdeněk

    2016-01-01

    Roč. 50, č. 2 (2016), s. 253-256 ISSN 1580-2949 R&D Projects: GA ČR GB14-36566G Institutional support: RVO:61389021 Keywords : Fe-Zn intermetallics * spark-plasma sintering * diffusion annealing * phase composition * hardness Subject RIV: JK - Corrosion ; Surface Treatment of Materials Impact factor: 0.436, year: 2016

  5. Design fundamentals of high temperature composites, intermetallics, and metal-ceramics systems

    International Nuclear Information System (INIS)

    Lin, R.Y.; Chang, Y.A.; Reddy, R.G.; Liu, C.T.

    1996-01-01

    Papers collected in this volume contain the most recent findings worldwide on composites, intermetallics, joining of advanced materials and processing of materials. Fundamental issues which are valuable for industrial applications in designing engineering components are addressed. Separate abstracts were prepared for 32 papers in this volume

  6. FIB-SEM investigation of trapped intermetallic particles in anodic oxide films on AA1050 aluminium

    DEFF Research Database (Denmark)

    Jariyaboon, Manthana; Møller, Per; Dunin-Borkowski, Rafal E.

    2011-01-01

    Purpose - The purpose of this investigation is to understand the structure of trapped intermetallics particles and localized composition changes in the anodized anodic oxide film on AA1050 aluminium substrates. Design/methodology/approach - The morphology and composition of Fe-containing intermet...

  7. Review on magnetic and related properties of RTX compounds

    OpenAIRE

    Gupta, Sachin; Suresh, K. G.

    2014-01-01

    RTX (R=rare earths, T= 3d/4d/5d, transition metals such as Sc, Ti, Mn, Fe, Co, Ni, Cu, Ru, Rh, Pd, Ag, Os, Ir, Pt, Au, and X=p-block elements such as Al, Ga, In, Si, Ge, Sn, As, Sb, Bi) series is a huge family of intermetallics compounds. These compounds crystallize in different crystal structures depending on the constituents. Though these compounds have been known for a long time, they came to limelight recently in view of the large magnetocaloric effect (MCE) and magnetoresistance (MR) sho...

  8. A metastable HCP intermetallic phase in Cu-Al bilayer films

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Limei

    2006-07-01

    For the present study, three kinds of layered Cu/Al films have been fabricated. The first kind of samples were multilayered Cu/Al films deposited by sputtering on (001)Si. The individual layer thicknesses were 100 nm, 200 nm and 400 nm, while the total film thickness of 800 nm was kept constant, thus leading to multilayer systems with 8, 4 and 2 layers, respectively. The second type of samples were Cu/Al bilayer films grown on (0001) sapphire by sputtering, with individual layer thicknesses of 400 nm. The third type of samples were bilayer films (100 nm Cu and 100 nm Al) deposited on (0001)sapphire by MBE at room temperature. Applying conventional transmission electron microscopy and X-ray diffraction, different epitaxial growth behaviors were found in these films. All multilayer films from the first type were polycrystalline. The second type of films show a (111) FCC texture and possess intermetallic phases at the interfaces. HRTEM investigations displayed that along [111]FCC, the atomic structure of the interlayer has an ABAB stacking sequence, which is identical with a hexagonal close-packed (HCP) structure in [0001] direction, but not with the ABCABC stacking sequence of Cu and Al in [111]FCC. The lattice parameters of the HCP structure at the interlayer were determined from a model which gave the best agreement between the experimental and simulated images. The parameters are: a=b=0.256 nm, c=0.419 nm, ?=120 , with the space group of P6m2. Furthermore, lattice distortion analysis revealed that the lattice parameters of the HCP phase are increasing from the near-Cu-side to the near-Al-side. The chemical composition of the interlayer was investigated by energy dispersive X-ray spectroscopy (EDS). EDS linescans were performed from pure Al to pure Cu layers. In order to examine the stability of this HCP phase, in-situ heating experiments were performed in the HRTEM at {proportional_to}600 C. Ex-situ heating experiments were performed at different temperatures to

  9. Aging Studies of Cu-Sn Intermetallics in Cu Micropillars Used in Flip Chip Attachment onto Cu Lead Frames

    Science.gov (United States)

    Roma, Maria Penafrancia C.; Kudtarkar, Santosh; Kierse, Oliver; Sengupta, Dipak; Cho, Junghyun

    2018-02-01

    Copper micropillars plated onto a silicon die and soldered with Sn-Ag solder to a copper lead frame in a flip chip on lead package have been subjected to high-temperature storage at 150°C and 175°C for 500 h, 1000 h, and 1500 h. Cu6Sn5 and Cu3Sn intermetallic compounds were found on both sides of the solder, but the growth rates were not the same as evidenced by different values of the growth exponent n. Cu and Sn diffusion controlled the Cu3Sn growth in the Cu pillar interface ( n ≈ 0.5), while interface reactions controlled the growth in the Cu lead frame interface ( n ≈ 0.8). Increasing the aging temperature increased the growth of Cu3Sn as well as the presence of microvoids in the Cu lead frame side. Adding Ni as a barrier layer on the Cu pillar prevented the growth of Cu3Sn in the Cu pillar interface and reduced its growth rate on the lead frame side, even at higher aging temperatures.

  10. The sequence of intermetallic formation and solidification pathway of an Al–13Mg–7Si–2Cu in-situ composite

    Energy Technology Data Exchange (ETDEWEB)

    Farahany, Saeed, E-mail: saeedfarahany@gmail.com [Department of Materials, Manufacturing and Industrial Engineering, Faculty of Mechanical Engineering, Universiti Teknologi Malaysia (UTM), 81310 Johor Bahru (Malaysia); Nordin, Nur Azmah; Ourdjini, Ali; Abu Bakar, TutyAsma; Hamzah, Esah; Idris, Mohd Hasbullah [Department of Materials, Manufacturing and Industrial Engineering, Faculty of Mechanical Engineering, Universiti Teknologi Malaysia (UTM), 81310 Johor Bahru (Malaysia); Hekmat-Ardakan, Alireza [École Polytechnique de Montréal, Dép. de Génie Chimique, P.O. Box 6079, Centre-ville, Montreal, Quebec H3C 3A7 (Canada)

    2014-12-15

    The phase transformation sequence and solidification behaviour of an Al–13Mg–7Si–2Cu in-situ composite was examined using a combination of computer-aided cooling curve thermal analysis and interrupted quenching techniques. Five different phases were identified by analysing the derivative cooling curves, the X-ray diffraction profile, optical and scanning electron microscopy images and the corresponding energy dispersive spectroscopy. It has been found that the solidification of this alloy begins with primary Mg{sub 2}Si precipitation and continues with the formation of eutectic Al–Mg{sub 2}Si, followed by Al{sub 5}FeSi and simultaneous precipitation of Al{sub 5}Cu{sub 2}Mg{sub 8}Si{sub 6} and Al{sub 2}Cu complex intermetallic phases. The formation of the last three intermetallic compounds changes the solidification behaviour of these composites remarkably due to their complex eutectic formation reactions. The solidification of the alloy, calculated using the Factsage thermochemical analysis software, has demonstrated a good agreement with the experiments in terms of compound prediction, their weight fractions and reaction temperatures. - Highlights: • Solidification path of a commercial Al-13Mg-7Si-2Cu composite was characterized. • Five different phases were identified and then confirmed with EDS and XRD results. • Mg{sub 2}Si, Al-Mg{sub 2}Si,Al{sub 5}FeSi (β),Al{sub 5}Cu{sub 2}Mg{sub 8}Si{sub 6} (Q) and Al{sub 2}Cu(θ) precipitated respectively. • Solidification was predicted using the Factsage thermochemical analysis software.

  11. Chemical Frustration. A Design Principle for the Discovery of New Complex Alloy and Intermetallic Phases, Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Fredrickson, Daniel C [Univ. of Wisconsin, Madison, WI (United States)

    2015-06-23

    Final technical report for "Chemical Frustration: A Design Principle for the Discovery of New Complex Alloy and Intermetallic Phases" funded by the Office of Science through the Materials Chemistry Program of the Office of Basic Energy Sciences.

  12. Magnetocaloric effect in rare-earth intermetallics: Recent trends

    Indian Academy of Sciences (India)

    the magnetism. The giant magnetocaloric material Gd5Si2Ge2 and the related Gd5(Si, Ge)4 phases are considered the next best candidates (table 1) [2,3,25]. The variation in Si:Ge ratio in these compounds yields a wide tunability in magnetic transition temperature (from. ∼20 K to ∼280 K) retaining the giant MCE through ...

  13. Magnetic Properties of the Ternary Compounds CeT2Si2 and UT2Si2

    NARCIS (Netherlands)

    Palstra, T.T.M.; Menovsky, A.A.; Nieuwenhuys, G.J.; Mydosh, J.A.

    1986-01-01

    We have investigated the magnetic properties of the intermetallic compounds CeT2Si2 and UT2Si2, with T a transition metal. From our measurements we have determined a trend from Pauli-paramagnetism via antiferromagnetism to canted antiferromagnetism with increasing number of d-electrons.

  14. Preparation, thermal and flammability properties of a novel form-stable phase change materials based on high density polyethylene/poly(ethylene-co-vinyl acetate)/organophilic montmorillonite nanocomposites/paraffin compounds

    International Nuclear Information System (INIS)

    Cai Yibing; Song Lei; He Qingliang; Yang Dandan; Hu Yuan

    2008-01-01

    The paraffin is one of important thermal energy storage materials with many desirable characteristics (i.e., high heat of fusion, varied phase change temperature, negligible supercooling, self-nucleating, no phase segregation and cheap, etc.), but has low thermal stability and flammable. Hence, a novel form-stable phase change materials (PCM) based on high density polyethylene (HDPE)/poly(ethylene-co-vinyl acetate) (EVA)/organophilic montmorillonite (OMT) nanocomposites and paraffin are prepared by twin-screw extruder technique. The structures of the HDPE-EVA/OMT nanocomposites and the form-stable PCM are evidenced by the X-ray diffraction (XRD), transmission electronic microscopy (TEM) and scanning electronic microscope (SEM). The results of XRD and TEM show that the HDPE-EVA/OMT nanocomposites form the ordered intercalated nanomorphology. The form-stable PCM consists of the paraffin, which acts as a dispersed phase change material and the HDPE-EVA/OMT nanocomposites, which acts as the supporting material. The paraffin disperses in the three-dimensional net structure formed by HDPE-EVA/OMT nanocomposites. The thermal stability, latent heat and flammability properties are characterized by thermogravimetry analysis (TGA), dynamic Fourier-transform infrared (FTIR), differential scanning calorimeter (DSC) and cone calorimeter, respectively. The TGA and dynamic FTIR analyses indicate that the incorporation of suitable amount of OMT into the form-stable PCM increase the thermal stability. The DSC results show that the latent heat of the form-stable PCM has a certain degree decrease. The cone calorimeter shows that the heat release rate (HRR) has remarkably decreases with loading of OMT in the form-stable PCM, contributing to the improved flammability properties

  15. An Investigation of the Microstructure of an Intermetallic Layer in Welding Aluminum Alloys to Steel by MIG Process.

    Science.gov (United States)

    Nguyen, Quoc Manh; Huang, Shyh-Chour

    2015-12-02

    Butt joints of A5052 aluminum alloy and SS400 steel, with a new type of chamfered edge, are welded by means of metal inert gas welding and ER4043 Al-Si filler metal. The microhardness and microstructure of the joint are investigated. An intermetallic layer is found on the surface of the welding seam and SS400 steel sheet. The hardness of the intermetallic layer is examined using the Vickers hardness test. The average hardness values at the Intermetallic (IMC) layer zone and without the IMC layer zone were higher than that of the welding wire ER4043. The tensile strength test showed a fracture at the intermetallic layer when the tensile strength is 225.9 MPa. The tensile value test indicated the average of welds was equivalent to the 85% tensile strength of the A5052 aluminum alloy. The thickness of the intermetallic layers is non-uniform at different positions with the ranges from 1.95 to 5 μm. The quality of the butt joint is better if the intermetallic layer is minimized. The Si crystals which appeared at the welding seam, indicating that this element participated actively during the welding process, also contributed to the IMC layer's formation.

  16. An Investigation of the Microstructure of an Intermetallic Layer in Welding Aluminum Alloys to Steel by MIG Process

    Directory of Open Access Journals (Sweden)

    Quoc Manh Nguyen

    2015-12-01

    Full Text Available Butt joints of A5052 aluminum alloy and SS400 steel, with a new type of chamfered edge, are welded by means of metal inert gas welding and ER4043 Al-Si filler metal. The microhardness and microstructure of the joint are investigated. An intermetallic layer is found on the surface of the welding seam and SS400 steel sheet. The hardness of the intermetallic layer is examined using the Vickers hardness test. The average hardness values at the Intermetallic (IMC layer zone and without the IMC layer zone were higher than that of the welding wire ER4043. The tensile strength test showed a fracture at the intermetallic layer when the tensile strength is 225.9 MPa. The tensile value test indicated the average of welds was equivalent to the 85% tensile strength of the A5052 aluminum alloy. The thickness of the intermetallic layers is non-uniform at different positions with the ranges from 1.95 to 5 μm. The quality of the butt joint is better if the intermetallic layer is minimized. The Si crystals which appeared at the welding seam, indicating that this element participated actively during the welding process, also contributed to the IMC layer’s formation.

  17. Intermetallic alloys - overview on new materials developments for structural applications in West Germany

    International Nuclear Information System (INIS)

    Sauthoff, G.

    1990-01-01

    As a result of recent research on intermetallics for high-temperature applications several alloy systems which are based on intermetallics are regarded as promising for new materials developments, and respective developments have been initiated in West Germany. The present work is aimed a lightweight materials on one hand and at high-temperature high-strength materials on the other hand. The overview surveys the work in West Germany on γ-TiAl, Ti 5 Si 3 -based alloys, Mg 2 Si-Al, NiAl-Cr, Al 3 Nb-NiAl and Laves phase-based alloys, and the mechanical properties - strength, ductility and/or toughness - are described. (orig.) [de

  18. Isothermal analysis of intermetallic MmNi5-xAlx in air decomposition processes

    International Nuclear Information System (INIS)

    Obregon, S.A.; Andrade Gamboa, J.J.; Esquivel, M.R.

    2012-01-01

    In this paper, it is analyzed the behavior of the degree of reaction as function of time α (t) of a sample of MmNi 4.3 Al 0.7 (Mm mischmetal = La 0.25 Ce 0.52 Nd 0.17 Pr 0.06 ) at different temperatures. The curves were obtained by isothermal calorimetric techniques. As a result of this study, it was observed that the kinetics of intermetallic can be separated into two main stages. At temperatures below 350 o C, the first stage is the oxidation of Mm and Al. At temperatures over 400 o C, the oxidation of Ni is also produced parallel to the above mentioned reactions. But the kinetics of the last one is at least three orders of magnitude slower. It was also observed that no thermal event occurs below 180 o C. It indicates that the intermetallic do not react at temperatures below this temperature value (author)

  19. Electronic structure and phase stability during martensitic transformation in Al-doped ZrCu intermetallics

    International Nuclear Information System (INIS)

    Qiu Feng; Shen Ping; Liu Tao; Lin Qiaoli; Jiang Qichuan

    2010-01-01

    Martensitic transformation, phase stability and electronic structure of Al-doped ZrCu intermetallics were investigated by experiments and first-principles calculations using the pseudopotentials plane wave method. The formation energy calculations indicate that the stability of the ZrCu phase increases with the increasing Al content. Al plays a decisive role in controlling the formation and microstructures of the martensite phases in Zr-Cu-Al alloys. The total energy difference between ZrCu (B2) austenite and ZrCu martensite plays an important role in the martensitic transformation. The phase stability is dependent on its electronic structure. The densities of states (DOS) of the intermetallics were discussed in detail.

  20. Microstructures and mechanical properties of nanocrystalline NiTi intermetallics formed by mechanosynthesis

    Science.gov (United States)

    Arunkumar, S.; Kumaravel, P.; Velmurugan, C.; Senthilkumar, V.

    2018-01-01

    The formulation of nanocrystalline NiTi shape memory alloys has potential effects in mechanical stimulation and medical implantology. The present work elucidates the effect of milling time on the product's structural characteristics, chemical composition, and microhardness for NiTi synthesized by mechanical alloying for different milling durations. Increasing the milling duration led to the formation of a nanocrystalline NiTi intermetallic at a higher level. The formation of nanocrystalline materials was directed through cold fusion, fracturing, and the development of a steady state, which were influenced by the accumulation of strain energy. In the morphological study, uninterrupted cold diffusion and fracturing were visualized using transmission electron microscopy. Particle size analysis revealed that the mean particle size was reduced to 93 μm after 20 h of milling. The mechanical strength was enhanced by the formation of a nanocrystalline intermetallic phase at longer milling time, which was confirmed by the results of Vickers hardness analyses.

  1. The intermetallic bonding between a ring carrier and aluminum piston alloy

    Energy Technology Data Exchange (ETDEWEB)

    Manasijevie, S.; Dolie, N.; Djurdjevic, M.; Misic, N.; Davitkov, N.

    2015-07-01

    This paper presents the results of investigating the formation of intermetallic bond between a ring carrier and aluminum piston alloy. The ring carrier is made of austenitic cast iron (Ni-Resist) in order to increase the wear resistance of the first ring groove and applied in highly loaded diesel engines. Metallographic examination of the quality of al fin bond was done. A metallographic investigation using an optical microscope in combination with the SEM/EDS analysis of the quality of the intermetallic bonding layer was done. The test results show that can be made successfully as well as the formation of metal connection (alfin bond) between the ring carrier and aluminum piston alloy. (Author)

  2. Stable Isotope Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Tissue samples (skin, bone, blood, muscle) are analyzed for stable carbon, stable nitrogen, and stable sulfur analysis. Many samples are used in their entirety for...

  3. Magnetic-field induced phase transitions in intermetallic rare-earth ferrimagnets with a compensation point

    Czech Academy of Sciences Publication Activity Database

    Sabdenov, Ch.K.; Davydova, M.D.; Zvezdin, K.A.; Gorbunov, Denis; Tereshina, I. S.; Andreev, Alexander V.; Zvezdin, A. K.

    2017-01-01

    Roč. 43, č. 5 (2017), s. 551-558 ISSN 1063-777X R&D Projects: GA ČR GA16-03593S Institutional support: RVO:68378271 Keywords : rare -earth intermetallics * phase diagram * field-induced transition * magnetic anisotropy * high magnetic fields Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 0.804, year: 2016

  4. Gas-Solid Reaction Route toward the Production of Intermetallics from Their Corresponding Oxide Mixtures

    Directory of Open Access Journals (Sweden)

    Hesham Ahmed

    2016-08-01

    Full Text Available Near-net shape forming of metallic components from metallic powders produced in situ from reduction of corresponding pure metal oxides has not been explored to a large extent. Such a process can be probably termed in short as the “Reduction-Sintering” process. This methodology can be especially effective in producing components containing refractory metals. Additionally, in situ production of metallic powder from complex oxides containing more than one metallic element may result in in situ alloying during reduction, possibly at lower temperatures. With this motivation, in situ reduction of complex oxides mixtures containing more than one metallic element has been investigated intensively over a period of years in the department of materials science, KTH, Sweden. This review highlights the most important features of that investigation. The investigation includes not only synthesis of intermetallics and refractory metals using the gas solid reaction route but also study the reaction kinetics and mechanism. Environmentally friendly gases like H2, CH4 and N2 were used for simultaneous reduction, carburization and nitridation, respectively. Different techniques have been utilized. A thermogravimetric analyzer was used to accurately control the process conditions and obtain reaction kinetics. The fluidized bed technique has been utilized to study the possibility of bulk production of intermetallics compared to milligrams in TGA. Carburization and nitridation of nascent formed intermetallics were successfully carried out. A novel method based on material thermal property was explored to track the reaction progress and estimate the reaction kinetics. This method implies the dynamic measure of thermal diffusivity using laser flash method. These efforts end up with a successful preparation of nanograined intermetallics like Fe-Mo and Ni-W. In addition, it ends up with simultaneous reduction and synthesis of Ni-WN and Ni-WC from their oxide mixtures

  5. Formation of optical properties of intermetallic nanoclusters formed by sequential ion implantation

    Energy Technology Data Exchange (ETDEWEB)

    Zuhr, R.A. [Oak Ridge National Lab., TN (United States). Solid State Div.; Magruder, R.H. III; Anderson, T.S. [Vanderbilt Univ., Nashville, TN (United States). Dept. of Applied and Engineering Sciences

    1997-09-01

    Recent demonstrations that large third order nonlinear responses can be achieved in metal nanocluster glass composites are of significant interest because of their potential for use in all optical switching networks. These composite materials exhibit picosecond switching and relaxation times, thermal and chemical stability, high laser damage thresholds, and low two photon absorption. Ion implantation has been shown to be a useful fabrication method to form these nanoclusters in silica because of its ability to produce thin films in waveguide configurations containing a high volume fraction (> 1%) of metal colloids with well defined vertical and horizontal dimensional control. Using sequential ion implantation of more than one element the authors can modify the composition and microstructure of the composites by forming intermetallic metal colloids. In this work the authors report on the improved optical response of metallic nanocluster composites formed by sequential implantation of Cd and Ag and Sb and Ag. Characterization of the samples by transmission electron microscopy (TEM) reveals that approximately spherical metallic colloids are formed for all implanted species during the implantation process. Selected area diffraction patterns indicate that the colloids formed are intermetallic in composition. Linear optical absorption measurements made at room temperature in air from 900 to 200 nm show significant changes in both the magnitude and wavelength of the surface plasmon resonance. The formation of intermetallic nanoclusters results in changes in both the linear and nonlinear optical properties of the composite material that are not possible with single element colloids alone. The results are explained in terms of effective medium theory.

  6. Evolution, Interaction, and Intrinsic Properties of Dislocations in Intermetallics: Anisotropic 3D Dislocation Dynamics Approach

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Qian [Iowa State Univ., Ames, IA (United States)

    2008-01-01

    The generation, motion, and interaction of dislocations play key roles during the plastic deformation process of crystalline solids. 3D Dislocation Dynamics has been employed as a mesoscale simulation algorithm to investigate the collective and cooperative behavior of dislocations. Most current research on 3D Dislocation Dynamics is based on the solutions available in the framework of classical isotropic elasticity. However, due to some degree of elastic anisotropy in almost all crystalline solids, it is very necessary to extend 3D Dislocation Dynamics into anisotropic elasticity. In this study, first, the details of efficient and accurate incorporation of the fully anisotropic elasticity into 3D discrete Dislocation Dynamics by numerically evaluating the derivatives of Green's functions are described. Then the intrinsic properties of perfect dislocations, including their stability, their core properties and disassociation characteristics, in newly discovered rare earth-based intermetallics and in conventional intermetallics are investigated, within the framework of fully anisotropic elasticity supplemented with the atomistic information obtained from the ab initio calculations. Moreover, the evolution and interaction of dislocations in these intermetallics as well as the role of solute segregation are presented by utilizing fully anisotropic 3D dislocation dynamics. The results from this work clearly indicate the role and the importance of elastic anisotropy on the evolution of dislocation microstructures, the overall ductility and the hardening behavior in these systems.

  7. Evolution of Intermetallic Phases in Soldering of the Die Casting of Aluminum Alloys

    Science.gov (United States)

    Song, Jie; Wang, Xiaoming; DenOuden, Tony; Han, Qingyou

    2016-06-01

    Most die failures are resulted from chemical reactions of dies and molten aluminum in the die casting of aluminum. The formation of intermetallic phases between a steel die and molten aluminum is investigated by stationary immersion tests and compared to a real die casting process. Three intermetallic phases are identified in the stationary immersion tests: a composite layer and two compact layers. The composite layer is a mixture of α bcc, Al, and Si phases. The α bcc phase changes in morphology from rod-like to spherical shape, while the growth rate of the layer changes from parabolic to linear pattern with immersion time. The first compact layer forms rapidly after immersion and maintains a relatively constant thickness. The second compact layer forms after 4 hours of immersion and exhibits parabolic growth with immersion time. In comparison, only a composite layer and the first compact layer are observed in a real die casting process. The fresh molten aluminum of high growth rate washes away the second intermetallic layer easily.

  8. Structure of acid-stable carmine.

    Science.gov (United States)

    Sugimoto, Naoki; Kawasaki, Yoko; Sato, Kyoko; Aoki, Hiromitsu; Ichi, Takahito; Koda, Takatoshi; Yamazaki, Takeshi; Maitani, Tamio

    2002-02-01

    Acid-stable carmine has recently been distributed in the U.S. market because of its good acid stability, but it is not permitted in Japan. We analyzed and determined the structure of the major pigment in acid-stable carmine, in order to establish an analytical method for it. Carminic acid was transformed into a different type of pigment, named acid-stable carmine, through amination when heated in ammonia solution. The features of the structure were clarified using a model compound, purpurin, in which the orientation of hydroxyl groups on the A ring of the anthraquinone skeleton is the same as that of carminic acid. By spectroscopic means and the synthesis of acid-stable carmine and purpurin derivatives, the structure of the major pigment in acid-stable carmine was established as 4-aminocarminic acid, a novel compound.

  9. The role of intermetallic phases in the corrosion of magnesium-rare earth alloys

    International Nuclear Information System (INIS)

    Silva Campos, Maria del Rosario

    2016-01-01

    A new concept to develop a RE based Mg alloy with improved corrosion resistance was followed in the current work. Based on subsequent characterisation steps to eliminate less suitable RE elements the best microstructure for improved corrosion resistance was identified. At first, the corrosion properties of selected RE elements were determined. Based on these results RE elements that have a potential to enhance the corrosion resistance of Mg-RE alloys were selected. Two aspects of RE elements were important for the selection: the electrochemical properties and the solid solubility in Mg. If the solubility limit of RE elements in the Mg matrix is exceeded, they form intermetallic phases with Mg. By performing galvanic coupling measurements the compatibility between Mg matrix and intermetallic phases were estimated. At that point three binary Mg-RE alloys systems remained (Mg-Ce, Mg-La, and Mg-Gd). To evaluate the influence of composition (amount of intermetallic phases) on the corrosion behaviour, four concentrations were cast with 1, 5, 10 and 15 wt. % of RE. Ce and La have a lower solid solubility in Mg matrix generating higher volume fraction of the secondary phases, thus higher dissolution rates in the binary Mg-RE alloys. While Gd with higher solid solubility shows a different behaviour. Additions of up to 10 wt. % Gd resulted in similar behaviour compared to 1 wt. % Gd addition. The most promising results were obtained for the Mg-Gd system with 10 wt. % Gd. Thus, the microstructure of this alloy was further modified by heat treatments to understand the influence of microstructural changes on corrosion behaviour. A ternary element was used to attempt further optimisation of the corrosion performance. Additions of Al, Zn, Ga and Y did not show any improvement in the corrosion resistance of Mg10Gd. This is due to increasing volume fractions of critical more noble phases and the microstructure dominated by eutectic phase formation. Thus galvanic effects became much

  10. The role of intermetallic phases in the corrosion of magnesium-rare earth alloys

    Energy Technology Data Exchange (ETDEWEB)

    Silva Campos, Maria del Rosario

    2016-07-25

    A new concept to develop a RE based Mg alloy with improved corrosion resistance was followed in the current work. Based on subsequent characterisation steps to eliminate less suitable RE elements the best microstructure for improved corrosion resistance was identified. At first, the corrosion properties of selected RE elements were determined. Based on these results RE elements that have a potential to enhance the corrosion resistance of Mg-RE alloys were selected. Two aspects of RE elements were important for the selection: the electrochemical properties and the solid solubility in Mg. If the solubility limit of RE elements in the Mg matrix is exceeded, they form intermetallic phases with Mg. By performing galvanic coupling measurements the compatibility between Mg matrix and intermetallic phases were estimated. At that point three binary Mg-RE alloys systems remained (Mg-Ce, Mg-La, and Mg-Gd). To evaluate the influence of composition (amount of intermetallic phases) on the corrosion behaviour, four concentrations were cast with 1, 5, 10 and 15 wt. % of RE. Ce and La have a lower solid solubility in Mg matrix generating higher volume fraction of the secondary phases, thus higher dissolution rates in the binary Mg-RE alloys. While Gd with higher solid solubility shows a different behaviour. Additions of up to 10 wt. % Gd resulted in similar behaviour compared to 1 wt. % Gd addition. The most promising results were obtained for the Mg-Gd system with 10 wt. % Gd. Thus, the microstructure of this alloy was further modified by heat treatments to understand the influence of microstructural changes on corrosion behaviour. A ternary element was used to attempt further optimisation of the corrosion performance. Additions of Al, Zn, Ga and Y did not show any improvement in the corrosion resistance of Mg10Gd. This is due to increasing volume fractions of critical more noble phases and the microstructure dominated by eutectic phase formation. Thus galvanic effects became much

  11. Mesoionic Compounds

    Indian Academy of Sciences (India)

    property has been used to determine whether a compound is aromatic or not. Mesoionic compounds are structurally very different from ben- zenoid compounds, but they fulfill most of the criteria of aroma- ticity and form a part of a variety of aromatic compounds, which can be classified as follows. A) Benzenoid Compounds.

  12. In-situ study of morphology and growth of primary α-Al(FeMnCr)Si intermetallics in an Al-Si alloy

    International Nuclear Information System (INIS)

    Bjurenstedt, Anton; Casari, Daniele; Seifeddine, Salem; Mathiesen, Ragnvald H.; Dahle, Arne K.

    2017-01-01

    Morphology and growth of primary α-Al(FeMnCr)Si intermetallics have been studied in-situ during solidification of a commercial secondary aluminum alloy employing X-radiographic imaging combined with deep-etching. The α-Al(FeMnCr)Si intermetallics were found to nucleate primarily on surface oxides, and the continued growth yielded both rhombic dodecahedrons and elongated rod-like morphologies. Both morphologies were observed as hopper and massive types, where the hopper intermetallics had the higher growth rates. The growth rate, which determines the type, appears to be linked to nucleation frequency; higher nucleation frequency promoted massive types and lower nucleation frequency promoted hopper intermetallics.

  13. Superconducting transition temperature and the formation of closed electron shells in the atoms of superconducting compounds

    International Nuclear Information System (INIS)

    Chapnik, I.M.

    1985-01-01

    The relationship between the regularities in the tansition temperature (T/sub c/) values in analogous compounds (having the same structure and stoichiometry) and the formation of the closed electron shells outside inert gas shells in the atoms of the variable component of the 158 intermetallic superconducting compounds has been discussed. The T/sub c/ data for compounds of the elements from the first long period of the Periodic Table (K to Se) are compared with the T/sub c/ data for the analogous compounds of the elements from the second long period (Rb to Te)

  14. Synthesis and formation mechanism of nanostructured NbAl{sub 3} intermetallic during mechanical alloying and a kinetic study on its formation

    Energy Technology Data Exchange (ETDEWEB)

    Mostaan, H. [Department of Materials Engineering, Nanotechnology and Advanced Materials Institute, Isfahan University of Technology, 84156-83111 (Iran, Islamic Republic of); Karimzadeh, F., E-mail: karimzadeh_f@cc.iut.ac.ir [Department of Materials Engineering, Nanotechnology and Advanced Materials Institute, Isfahan University of Technology, 84156-83111 (Iran, Islamic Republic of); Abbasi, M.H. [Department of Materials Engineering, Nanotechnology and Advanced Materials Institute, Isfahan University of Technology, 84156-83111 (Iran, Islamic Republic of)

    2012-02-10

    Highlights: Black-Right-Pointing-Pointer NbAl{sub 3} is formed after 6 h of milling and no other intermediate phase is formed. Black-Right-Pointing-Pointer The activation energy for formation of NbAl{sub 3} intermetallic varies slightly with {alpha}. Black-Right-Pointing-Pointer Activation energy at {alpha} = 0.5 for formation of NbAl{sub 3} is 356 kJ mol{sup -1}. Black-Right-Pointing-Pointer KAS, Tang, FWO and Starink methods are in good agreement. - Abstract: The feasibility of nanocrystalline NbAl{sub 3} intermetallic synthesis by mechanical alloying, and its formation kinetics were investigated. The structural changes of powder particles during milling were studied by X-ray diffractometry (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) techniques and the reaction mechanism and activation energy (E{sub {alpha}}) for the formation of NbAl{sub 3} compound were determined under nonisothermal conditions using differential thermal analysis (DTA). DTA results of the specimens mechanically treated for 3 h showed a temperature decrease from 933 Degree-Sign C to 454 Degree-Sign C for the formation of NbAl{sub 3} and suitable thermal stability of nanostructured NbAl{sub 3}. Two isoconversional methods, of Starink and Friedman (FR) were used to determine the activation energy, E{sub {alpha}}, for NbAl{sub 3} formation reaction and its variation with conversion degree ({alpha}). The results showed that Starink method lead to values of E{sub {alpha}} which are comparable to the results obtained by FR method.

  15. Magnetic and superconducting order in some random pseudobinary compounds

    International Nuclear Information System (INIS)

    Dongen, J.C.M. van.

    1982-01-01

    This thesis presents the results of a study on the magnetic and superconducting ordering phenomena in some random pseudobinary compounds. In the investigations ternary systems are utilised in which two of the elements form a binary intermetallic compound, e.g. PdH, GdCu and YCo 2 . A third element is then randomly substituted into one of the sublattices without changing the basic intermetallic compound structure. In chapter II a study is presented on the Kondo effect and spin-glass freezing of the magnetic impurities Cr, Mn, and Fe in superconducting palladium hydride. Chapter III contains a study on crystal structure transformations and magnetic ordering phenomena in GdCusub(1-x)Gasub(x) and related pseudobinary compounds. In Chapter IV experiments on the magnetic properties and the electrical resistivity of the transition metal Laves phase compounds Y(Cosub(1-x)Fesub(x)) 2 , Y(Irsub(1-x)Fesub(x)) 2 and Hf(Cosub(1-x)Fesub(x)) 2 are described. (Auth.)

  16. Transition-metal interactions in aluminum-rich intermetallics

    International Nuclear Information System (INIS)

    Al-Lehyani, Ibrahim; Widom, Mike; Wang, Yang; Moghadam, Nassrin; Stocks, G. Malcolm; Moriarty, John A.

    2001-01-01

    The extension of the first-principles generalized pseudopotential theory (GPT) to transition-metal (TM) aluminides produces pair and many-body interactions that allow efficient calculations of total energies. In aluminum-rich systems treated at the pair-potential level, one practical limitation is a transition-metal overbinding that creates an unrealistic TM-TM attraction at short separations in the absence of balancing many-body contributions. Even with this limitation, the GPT pair potentials have been used effectively in total-energy calculations for Al-TM systems with TM atoms at separations greater than 4 Aa. An additional potential term may be added for systems with shorter TM atom separations, formally folding repulsive contributions of the three- and higher-body interactions into the pair potentials, resulting in structure-dependent TM-TM potentials. Towards this end, we have performed numerical ab initio total-energy calculations using the Vienna ab initio simulation package for an Al-Co-Ni compound in a particular quasicrystalline approximant structure. The results allow us to fit a short-ranged, many-body correction of the form a(r 0 /r) b to the GPT pair potentials for Co-Co, Co-Ni, and Ni-Ni interactions

  17. Stable convergence and stable limit theorems

    CERN Document Server

    Häusler, Erich

    2015-01-01

    The authors present a concise but complete exposition of the mathematical theory of stable convergence and give various applications in different areas of probability theory and mathematical statistics to illustrate the usefulness of this concept. Stable convergence holds in many limit theorems of probability theory and statistics – such as the classical central limit theorem – which are usually formulated in terms of convergence in distribution. Originated by Alfred Rényi, the notion of stable convergence is stronger than the classical weak convergence of probability measures. A variety of methods is described which can be used to establish this stronger stable convergence in many limit theorems which were originally formulated only in terms of weak convergence. Naturally, these stronger limit theorems have new and stronger consequences which should not be missed by neglecting the notion of stable convergence. The presentation will be accessible to researchers and advanced students at the master's level...

  18. Relative contribution of natural productivity and compound feed to tissue growth in blue shrimp (Litopenaeus stylirostris) reared in biofloc: Assessment by C and N stable isotope ratios and effect on key digestive enzymes

    OpenAIRE

    Cardona, Emilie; Lorgeoux, Benedicte; Geffroy, Claire; Richard, Pierre; Saulnier, Denis; Gueguen, Yannick; Guillou, Gael; Chim, Liet

    2015-01-01

    The aim of this study was to assess the relative contribution of natural productivity and compound food to the growth of the juvenile blue shrimp Litopenaeus stylirostris reared in a biofloc system. Two experiments were carried out based on the same protocol with three treatments: clear water with experimental diet (CW), biofloc with experimental diet (BF) and biofloc unfed (BU). Shrimp survival was significantly higher in biofloc rearing than in CW rearing. The contribution of the biofloc to...

  19. A comparison of freeze-drying and oven-drying preparation methods for bulk and compound-specific carbon stable isotope analyses: examples using the benthic macroinvertebrates Stenopsyche marmorata and Epeorus latifolium.

    Science.gov (United States)

    Akamatsu, Fumikazu; Suzuki, Yaeko; Kato, Yoshikazu; Yoshimizu, Chikage; Tayasu, Ichiro

    2016-01-15

    Carbon stable isotope analysis of bulk samples and fatty acids is an established method for tracing carbon flow pathways and reconstructing trophic interactions, but there is no consensus on which sample drying method should be used for sample preparation. The aim of this study was to determine if freeze-drying and oven-drying treatments used to prepare samples of the benthic macroinvertebrates Stenopsyche marmorata and Epeorus latifolium for bulk and fatty-acid-specific carbon stable isotope analysis yield different isotopic ratio values. Five individuals each from two species were split in half; one half was freeze-dried and the other half was oven-dried. The samples were ground and the δ(13)C values of the bulk samples and eight fatty acids were measured following combustion using an isotope ratio mass spectrometer coupled to an elemental analyzer or gas chromatography system. The mean difference in the bulk and fatty acid δ(13)C values between freeze-dried and oven-dried samples was small (≤0.1‰ in both cases), although relatively large variations were observed in individual fatty-acid-specific δ(13)C values (maximum of ≤0.9 ‰). There were no significant differences in either bulk sample or fatty-acid-specific δ(13)C values between freeze-dried or oven-dried samples of the same species. Freeze-drying and oven-drying are equally acceptable methods for preparing freshly caught S. marmorata and E. latifolium samples for bulk and fatty-acid-specific carbon stable isotope analyses. Copyright © 2015 John Wiley & Sons, Ltd.

  20. Prediction of formation enthalpies for Al2X-type intermetallics using back-propagation neural network

    International Nuclear Information System (INIS)

    Sun, S.P.; Yi, D.Q.; Jiang, Y.; Wu, C.P.; Zang, B.; Li, Y.

    2011-01-01

    Research highlights: → An ANN was built to predict the formation enthalpies of Al 2 X-type intermetallics. → The values predicted by the ANN agree with experiments well to typically within 10%. → The method comparison suggests that our ANN method is superior to Miedema's model. → Some trends of formation enthalpies for Al 2 X-type intermetallics were observed. - Abstract: A back-propagation artificial neural network (ANN) was established to predict the formation enthalpies of Al 2 X-type intermetallics as a function of some physical parameters. These physical parameters include the electronegativity difference, the electron density difference, the atomic size difference, and the electron-atom ratio (e/a). The values calculated by the ANN method agree with experiments well to typically within 10%, indicating that the well-trained back-propagation (BP) neural network is feasible, and can precisely predict the formation enthalpies of Al 2 X-type intermetallics. The method comparison based on the predicted formation enthalpies suggests that our ANN method is superior to Miedema's model. Some trends of formation enthalpies for Al 2 X-type intermetallics were also observed from the ANN.

  1. State diagram of U-Al-Si as a basis for analysis of the processes in nuclear fuel compositions based on U(Al, Si)3 and U3Si compounds

    International Nuclear Information System (INIS)

    Chebotarev, N.T.; Konovalov, L.N.; Zhmak, V.A.; Chebotarev, Ya.N.

    1996-01-01

    Results of studies into the Al-UAl 3 -USi 3 -Si of the U-Al-Si ternary system are presented. It is established that phase equilibrium between the intermetallic compound U(Al, Si) 3 and the aluminium-silicon alloys may be presented in form of conodes on the isothermal cross-section of the state diagram. It is shown that the U(Al, Si) 3 intermetallic compound, containing up to 6.5 at.% silicon, interacts both with liquid and solid aluminium with the U(Al, Si) 4 phase formation [ru

  2. Optimization of on-line hydrogen stable isotope ratio measurements of halogen- and sulfur-bearing organic compounds using elemental analyzer–chromium/high-temperature conversion isotope ratio mass spectrometry (EA-Cr/HTC-IRMS)

    Science.gov (United States)

    Gehre, Matthias; Renpenning, Julian; Geilmann, Heike; Qi, Haiping; Coplen, Tyler B.; Kümmel, Steffen; Ivdra, Natalija; Brand, Willi A.; Schimmelmann, Arndt

    2017-01-01

    Rationale: Accurate hydrogen isotopic analysis of halogen- and sulfur-bearing organics has not been possible with traditional high-temperature conversion (HTC) because the formation of hydrogen-bearing reaction products other than molecular hydrogen (H2) is responsible for non-quantitative H2 yields and possible hydrogen isotopic fractionation. Our previously introduced, new chromium-based EA-Cr/HTC-IRMS (Elemental Analyzer–Chromium/High-Temperature Conversion Isotope Ratio Mass Spectrometry) technique focused primarily on nitrogen-bearing compounds. Several technical and analytical issues concerning halogen- and sulfur-bearing samples, however, remained unresolved and required further refinement of the reactor systems.

  3. The corrosion resistance of HVOF sprayed coatings with intermetallic phases in aggressive environments

    OpenAIRE

    B. Formanek; J. Cizner; B. Szczucka-Lasota; R. Przeliorz

    2006-01-01

    Purpose: The cyclic corrosion behavior of coatings with intermetallic matrix ( FeAl, NiAl and FeAl-TiAl) was investigated in aggressive gases.Design/methodology/approach: The composite coatings strengthened by a fine dispersive Al2O3 and other ceramic phases were thermally sprayed by HVOF method in Jet Kote 2 system. A kinetics test was carried out by periodic method for exposure times of up to 500 hours. Mass changes of the studied coatings during the corrosion test are presented. The surfac...

  4. Hydrogen Sorption Properties of the Intermetallic Mg2Ni Obtained by Using a Simoloyer Ball Milling

    Directory of Open Access Journals (Sweden)

    Bormann R.

    2010-07-01

    Full Text Available Intermetallic Mg2Ni was produced from elemental powder blends by mechanical alloying in a batch scale using a rotary horizontal mill (Simoloyer. Fast hydrogenation kinetics are obtained: 2.2 wt.% of hydrogen is absorbed within 10 minutes at 300 °C. Hydrogen sorption kinetics were further improved by adding Pd (1 mol% powder as a catalyst during ball milling. Crack formation and concomitant particle size reduction was observed by scanning electron microscopy after hydrogen cycling, which is attributed to internal stresses in the particles.

  5. Effect of Iron-Containing Intermetallic Particles on the Corrosion Behaviour of Aluminium

    DEFF Research Database (Denmark)

    Ambat, Rajan

    2006-01-01

    The effect of heat treatment on the corrosion behaviour of binary Al-Fe alloys containing iron at levels between 0.04 and 0.42 wt.% was investigated by electrochemical measurements in both acidic and alkaline chloride solutions. Comparing solution heat-treated and quenched materials with samples...... with {100} facets, and are observed to contain numerous intermetallic particles. Fine facetted filaments also radiate out from the periphery of pits. The results demonstrate that the corrosion of "pure" 99.96% Al is thus dominated by the role of iron, which is the main impurity, and its electrochemical...

  6. Primary Crystals of AlfeMnSi Intermetallics in the Cast AlSi Alloys

    Directory of Open Access Journals (Sweden)

    Warmuzek M.

    2017-09-01

    Full Text Available In this paper the results of the microscopic observations of the intermetallic AlFeMnSi phases crystals formed in the liquid hypo- and eutectic AlSi alloys containing transition metals 3.0 wt.% Fe and 0.1, 0.5 and 2.0 wt.% Mn were presented. The crystals morphology has been revealed on both polished and deep etched microsections. The different stages of the primary AlFeMnSi phases particles formation in the solidifying alloy and their final morphology were shown as influenced by cooling rate and alloy chemical composition.

  7. Amorphous phase formation in intermetallic Mg2Ni alloy synthesized by ethanol wet milling

    International Nuclear Information System (INIS)

    Wang, H.-W.; Chyou, S.-D.; Wang, S.-H.; Yang, M.-W.; Hsu, C.-Y.; Tien, H.-C.; Huang, N.-N.

    2009-01-01

    The hydriding/dehydriding properties of an intermetallic Mg 2 Ni alloy synthesized by wet ball milling in ethanol have been investigated. The appearance of the particle surface after different milling methods is one obvious difference. The alloyed powders prepared by either dry milling or wet milling under ethanol were characterized for phase content by X-ray diffractometer (XRD). The results show that two broad diffuse peaks, which are an ionic-organic-Mg amorphous material, appear in addition to the nickel element peaks. This unexpected amorphous phase has the special hydrogen absorbing/desorbing features.

  8. < c >-component plastic displacements in different microstructures of TiAl-base intermetallics

    Czech Academy of Sciences Publication Activity Database

    Orlová, Alena; Kuchařová, Květa; Dlouhý, Antonín

    2008-01-01

    Roč. 483, Sp.Iss.SI (2008), s. 109-112 ISSN 0921-5093. [International Conference on the Strength of Materials /14./. Xian, 04.06.2006-09.06.2006] R&D Projects: GA AV ČR(CZ) 1QS200410502; GA MŠk OC 522.100 Institutional research plan: CEZ:AV0Z20410507 Keywords : intermetallics * creep * transmission electron microscopy * titanium aluminides Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.806, year: 2008

  9. stableGP

    Data.gov (United States)

    National Aeronautics and Space Administration — The code in the stableGP package implements Gaussian process calculations using efficient and numerically stable algorithms. Description of the algorithms is in the...

  10. DFT Study on Intermetallic Pd–Cu Alloy with Cover Layer Pd as Efficient Catalyst for Oxygen Reduction Reaction

    Directory of Open Access Journals (Sweden)

    Ji Liu

    2017-12-01

    Full Text Available Detailed density functional theory (DFT calculations of the adsorption energies (Ead for oxygen on monolayer Pd on top of the Pd–Cu face-centered cubic (FCC alloy and intermetallic B2 structure revealed a linear correspondence between the adsorption energies and the d-band center position. The calculated barrier (Ebarrier for oxygen dissociation depends linearly on the reaction energy difference (ΔE. The O2 has a stronger adsorption strength and smaller barrier on the intermetallic Pd–Cu surface than on its FCC alloy surface. The room-temperature free energy (ΔG analysis suggests the oxygen reduction reaction (ORR pathways proceed by a direct dissociation mechanism instead of hydrogenation into OOH. These results might be of use in designing intermetallic Pd–Cu as ORR electrocatalysts.

  11. NiTi intermetallic surface coatings by laser metal deposition for improving wear properties of Ti-6Al-4V substrates

    CSIR Research Space (South Africa)

    Mokgalaka, MN

    2014-03-01

    Full Text Available The NiTi intermetallic possesses a number of good properties, such as high wear, oxidation, and corrosion resistance. This paper focuses on the deposition of NiTi intermetallic coatings on Ti6Al4V substrate by laser melting of Ti and Ni elemental...

  12. X-ray diffraction and high resolution transmission electron microscopy characterization of intermetallics formed in Fe/Ti nanometer-scale multilayers during thermal annealing

    International Nuclear Information System (INIS)

    Wu, Z.L.; Peng, T.X.; Cao, B.S.; Lei, M.K.

    2009-01-01

    Intermetallics formation in the Fe/Ti nanometer-scale multilayers magnetron-sputtering deposited on Si(100) substrate during thermal annealing at 623-873 K was investigated by using small and wide angle X-ray diffraction and cross-sectional high-resolution transmission electron microscopy. The Fe/Ti nanometer-scale multilayers were constructed with bilayer thickness of 16.2 nm and the sublayer thickness ratio of 1:1. At the annealing temperature of 623 K, intermetallics FeTi were formed by nucleation at the triple joins of α-Fe(Ti)/α-Ti interface and α-Ti grain boundary with an orientational correlation of FeTi(110)//α-Ti(100) and FeTi[001]//α-Ti[001] to adjacent α-Ti grains. The lateral growth of intermetallics FeTi which is dependent on the diffusion path of Ti led to a coalescence into an intermetallic layer. With an increase in the annealing temperature, intermetallics Fe 2 Ti were formed between the intermetallics FeTi and the excess Fe due to the limitation of Fe and Ti atomic concentrations, resulting in the coexistence of intermetallics FeTi and Fe 2 Ti. It was found that the low energy interface as well as the dominant diffusion path constrained the nucleation and growth of intermetallics during interfacial reaction in the nanometer-scale metallic multilayers.

  13. Synthesis, Crystal Structure, and Magnetic Properties of Giant Unit Cell Intermetallics R117Co52+δSn112+γ (R = Y, La, Pr, Nd, Ho

    Directory of Open Access Journals (Sweden)

    Ping Chai

    2016-12-01

    Full Text Available Ternary intermetallics R117Co52+δSn112+γ (R = Y, La, Pr, Nd, and Ho have been prepared by arc-melting followed by annealing at 800 °C. All the compounds belong to the Tb117Fe52Ge112 structure type (space group Fm 3 ¯ m characterized by a complex giant cubic unit cell with a ~ 30 Å. The single-crystal structure determination of Y- and La-containing compounds reveals a significant structural disorder. A comparison of these and earlier reported crystal structures of R117Co52+δSn112+γ suggests that more extensive disorder occurs for structures that contain larger lanthanide atoms. This observation can be explained by the need to maintain optimal bonding interactions as the size of the unit cell increases. Y117Co56Sn115 exhibits weak paramagnetism due to the Co sublattice and does not show magnetic ordering in the 1.8–300 K range. Ho117Co55Sn108 shows ferromagnetic ordering at 10.6 K. Both Pr117Co54Sn112 and Nd117Co54Sn111 exhibit antiferromagnetic ordering at 17 K and 24.7 K, respectively, followed by a spin reorientation transition at lower temperature.

  14. Stable Organic Neutral Diradical via Reversible Coordination.

    Science.gov (United States)

    Lu, Zhenpin; Quanz, Henrik; Burghaus, Olaf; Hofmann, Jonas; Logemann, Christian; Beeck, Sebastian; Schreiner, Peter R; Wegner, Hermann A

    2017-12-27

    We report the formation of a stable neutral diboron diradical simply by coordination of an aromatic dinitrogen compound to an ortho-phenyldiborane. This process is reversible upon addition of pyridine. The diradical species is stable above 200 °C. Computations are consistent with an open-shell triplet diradical with a very small open-shell singlet-triplet energy gap that is indicative of the electronic disjointness of the two radical sites. This opens a new way of generating stable radicals with fascinating electronic properties useful for a large variety of applications.

  15. Joining Thick Section Aluminum to Steel with Suppressed FeAl Intermetallic Formation via Friction Stir Dovetailing

    Energy Technology Data Exchange (ETDEWEB)

    Reza E Rabby, MD; Ross, Kenneth A.; Overman, Nicole R.; Olszta, Matthew J.; Mcdonnell, Martin; Whalen, Scott A.

    2018-04-17

    A new solid-phase technique called friction stir dovetailing (FSD) has been developed for joining thick section aluminum to steel. In FSD, mechanical interlocks are formed at the aluminum-steel interface and are reinforced by metallurgical bonds where intermetallic growth has been uniquely suppressed. Lap shear testing shows superior strength and extension at failure compared to popular friction stir approaches where metallurgical bonding is the only joining mechanism. High resolution microscopy revealed the presence of a 40-70 nm interlayer having a composition of 76.4 at% Al, 18.4 at% Fe, and 5.2 at% Si, suggestive of limited FeAl3 intermetallic formation.

  16. Corrosion Behavior of Fe-40at.%Al-Based Intermetallic in 0.25 M H2SO4 Solution

    Science.gov (United States)

    Hernández-Hernández, M.; Liu, H. B.; Alvarez-Ramirez, J.; Espinosa-Medina, M. A.; Sosa, E.

    2017-12-01

    The electrochemical behavior of Fe-40at.%Al-based intermetallic microalloyed with 3 and 5 at.% Cu additions in 0.25 M H2SO4 solution over time was studied. A complementary study to characterize the surface morphology and semiquantitative chemical analysis of the corrosion products after 24 h of immersion was performed using scanning electron microscopy and x-ray energy dispersion spectrum. By means of electrochemical techniques, it was shown that Cu addition has a positive effect on corrosion resistance of Fe-40at.%Al-based intermetallic alloy. Additionally, the relatively high concentration of Cu consolidated the passive film of corrosion products and its stability.

  17. Electronic structure and magnetic properties of Pr-Co intermetallics: ab initio FP-LAPW calculations and correlation with experiments

    Science.gov (United States)

    Bakkari, Karim; Fersi, Riadh; Kebir Hlil, El; Bessais, Lotfi; Thabet Mliki, Najeh

    2018-03-01

    First-principle calculations combining density functional theory and the full-potential linearized augmented plane wave (FP-LAPW) method are performed to investigate the electronic and magnetic structure of Pr2Co7 in its two polymorphic forms, (2:7 H) and (2:7 R), for the first time. This type of calculation was also performed for PrCo5 and PrCo2 intermetallics. We have computed the valence density of states separately for spin-up and spin-down states in order to investigate the electronic band structure. This is governed by the strong contribution of the partial DOS of 3d-Co bands compared to the partial DOS of the 4f-Pr bands. Such a high ferromagnetic state is discussed in terms of the strong spin polarization observed in the total DOS. The magnetic moments carried by the Co and Pr atoms located in several sites for all compounds are computed. These results mainly indicate that cobalt atoms make a dominant contribution to the magnetic moments. The notable difference in the atomic moments of Pr and Co atoms between different structural slabs is explained in terms of the magnetic characteristics of the PrCo2 and PrCo5 compounds and the local chemical environments of the Pr and Co atoms in different structural slabs of Pr2Co7. From spin-polarized calculations we have simulated the 3d and 4f band population to estimate the local magnetic moments. These results are in accordance with the magnetic moments calculated using the FP-LAPW method. In addition, the exchange interactions J ij are calculated and used as input for M(T) simulations. Involving the data obtained from the electronic structure calculations, the appropriate Padé Table is applied to simulate the magnetization M(T) and to estimate the mean-field Curie temperature. We report a fairly good agreement between the ab initio calculation of magnetization and Curie temperature with the experimental data.

  18. Influence of gas detonation spraying conditions on the quality of Fe-Al intermetallic protective coatings

    Directory of Open Access Journals (Sweden)

    Senderowski C.

    2007-01-01

    Full Text Available The aim of this paper is to present generalized research results and analyses of the quality of coatings produced with self decomposing Fe-Al intermetallic powders deposited on 1045 steel in the gas detonation spraying (GDS. A number of GDS experiments has been carried out with significantly changed operational spraying parameters (the volume of the fuel gas, carrier gas, distance and the frequency of spraying which define the process energy level directly influencing the quality of the coating. On the basis of the initial results the choice of the process parameters has been made to obtain the most advantageous set of geometrical and physical-mechanical properties of the coating material and substrate. The quality of the coatings was considered by taking into account the grain morphology, chemical content, phase inhomogeneity, cohesive porosity, as well as adhesive porosity in the substrate coating joint. The coating roughness was also considered. It was found that all GDS coatings produced are built with lamellar splats which result from the GDS process transformed (changed plasticity and geometry powder particles forming the deposit. The result of the GDS spraying parameters optimization is the lack of signs of melting of the material (even in microareas while the geometry of the deposited grains is considerably changed. This phenomenon has been considered as a proof of high plasticity of the GDS formed Fe-Al intermetallic coatings.

  19. Behavior of palladium and its impact on intermetallic growth in palladium-coated Cu wire bonding

    International Nuclear Information System (INIS)

    Xu Hui; Qin, Ivy; Clauberg, Horst; Chylak, Bob; Acoff, Viola L.

    2013-01-01

    This paper describes the behavior of palladium in palladium-coated Cu (PdCu) wire bonding and its impact on bond reliability by utilizing transmission electron microscopy (TEM). A Pd layer approximately 80 nm thick, which is coated on the surface of Cu wire, dissolves into the Cu matrix during ball formation (under N 2 gas protection) when the wire tip is melted to form a ball. As a result of dissolving the very thin Pd layer into the ball, Pd is almost undetectable along the entire bond interface between the ball and the Al pad. The behavior of Pd during thermal aging in air, however, is different for central and peripheral interfaces. At the central interface, less than 5 at.% Pd is present after 168 h aging at 175 °C. At the periphery, however, Pd diffuses back and congregates, reaching a level of ∼12 at.% after 24 h, and a Pd-rich (Cu,Pd) 9 Al 4 layer (>40 at.% Pd) forms after 168 h. Pd acts substitutionally in Cu 9 Al 4 but cannot penetrate into the CuAl 2 or CuAl. By comparison of intermetallic thickness and interfacial morphology between PdCu and bare Cu wire bonds, it is concluded that the presence of Pd reduces intermetallic growth rate, and is associated with numerous nanovoids in PdCu bonds.

  20. Iron Intermetallic Phases in the Alloy Based on Al-Si-Mg by Applying Manganese

    Directory of Open Access Journals (Sweden)

    Podprocká R.

    2017-09-01

    Full Text Available Manganese is an effective element used for the modification of needle intermetallic phases in Al-Si alloy. These particles seriously degrade mechanical characteristics of the alloy and promote the formation of porosity. By adding manganese the particles are being excluded in more compact shape of “Chinese script” or skeletal form, which are less initiative to cracks as Al5FeSi phase. In the present article, AlSi7Mg0.3 aluminium foundry alloy with several manganese content were studied. The alloy was controlled pollution for achieve higher iron content (about 0.7 wt. % Fe. The manganese were added in amount of 0.2 wt. %, 0.6 wt. %, 1.0 wt. % and 1.4 wt. %. The influence of the alloying element on the process of crystallization of intermetallic phases were compared to microstructural observations. The results indicate that increasing manganese content (> 0.2 wt. % Mn lead to increase the temperature of solidification iron rich phase (TAl5FeSi and reduction this particles. The temperature of nucleation Al-Si eutectic increase with higher manganese content also. At adding 1.4 wt. % Mn grain refinement and skeleton particles were observed.

  1. Microstructural and Material Quality Effects on Rolling Contact Fatigue of Highly Elastic Intermetallic Ball Bearings

    Science.gov (United States)

    DellaCorte, Christopher; Howard, S. Adam; Thomas, Fransua; Stanford, Malcolm K.

    2016-01-01

    Rolling element bearings made from highly-elastic intermetallic materials (HIM)s, such as 60NiTi, are under development for applications that require superior corrosion and shock resistance. Compared to steel, intermetallics have been shown to have much lower rolling contact fatigue (RCF) stress capability in simplified 3-ball on rod (ASTM STP 771) fatigue tests. In the 3-ball tests, poor material quality and microstructural flaws negatively affect fatigue life but such relationships have not been established for full-scale 60NiTi bearings. In this paper, 3-ball-on-rod fatigue behavior of two quality grades of 60NiTi are compared to the fatigue life of full-scale 50mm bore ball bearings made from the same materials. 60NiTi RCF rods with material or microstructural flaws suffered from infant mortality failures at all tested stress levels while high quality 60NiTi rods exhibited no failures at lower stress levels. Similarly, tests of full-scale bearings made from flawed materials exhibited early surface fatigue and through crack type failures while bearings made from high quality material did not fail even in long-term tests. Though the full-scale bearing test data is yet preliminary, the results suggest that the simplified RCF test is a good qualitative predictor of bearing performance. These results provide guidance for materials development and to establish minimum quality levels required for successful bearing operation and life.

  2. Self-irradiation damage to the local structure of plutonium and plutonium intermetallics

    Energy Technology Data Exchange (ETDEWEB)

    Booth, C. H.; Jiang Yu; Medling, S. A. [Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Wang, D. L. [Nuclear Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Costello, A. L.; Schwartz, D. S.; Mitchell, J. N.; Tobash, P. H. [Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Bauer, E. D. [Materials Physics and Applications Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); McCall, S. K.; Wall, M. A.; Allen, P. G. [Condensed Matter and Materials Division, Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)

    2013-03-07

    The effect of self-irradiation damage on the local structure of {delta}-Pu, PuAl{sub 2}, PuGa{sub 3}, and other Pu intermetallics has been determined for samples stored at room temperature using the extended x-ray absorption fine-structure (EXAFS) technique. These measurements indicate that the intermetallic samples damage at a similar rate as indicated in previous studies of PuCoGa{sub 5}. In contrast, {delta}-Pu data indicate a much slower damage accumulation rate. To explore the effect of storage temperature and possible room temperature annealing effects, we also collected EXAFS data on a {delta}-Pu sample that was held at less than 32 K for a two month period. This sample damaged much more quickly. In addition, the measurable damage was annealed out at above only 135 K. Data from samples of {delta}-Pu with different Ga concentrations and results on all samples collected from different absorption edges are also reported. These results are discussed in terms of the vibrational properties of the materials and the role of Ga in {delta}-Pu as a network former.

  3. Ceramic-intermetallic composites produced by mechanical alloying and spark plasma sintering

    CERN Document Server

    Cabanas-Moreno, J G; Martínez-Sanchez, R; Delgado-Gutierrez, O; Palacios-Gomez, J; Umemoto, M

    1998-01-01

    Nano-and microcomposites of intermetallic (Co/sub 3/Ti, AlCo/sub 2 /Ti) and ceramic (TiN, Ti(C, N), Al/sub 2/O/sub 3/) phases have been produced by spark plasma sintering (SPS) of powders resulting from mechanical alloying of Al-Co-Ti elemental powder mixtures. The mechanically alloyed powders consisted of mixtures of nanocrystalline and amorphous phases which, on sintering, transformed into complex microstructures of the intermetallic and ceramic phases. For Al contents lower than about 30 at% in the original powder mixtures, the use of SPS led to porosities of 1-2% in the sintered compacts and hardness values as high as ~1700 kg/mm/sup 2/; in these cases, the composite matrix was TiN and Ti(C, N), with the Al/sub 2/O/sub 3/ phase found as finely dispersed particles in the matrix and the Co /sub 3/Ti and AlCo/sub 2/Ti phases as interdispersed grains. (19 refs).

  4. Thermal expansion and elastic moduli of the silicide based intermetallic alloys Ti5Si3(X) and Nb5Si3

    International Nuclear Information System (INIS)

    Zhang, L.; Wu, J.

    1997-01-01

    Silicides are among those potential candidates for high temperature application because of their high melting temperature, low density and good oxidation resistance. Recent interest is focused on molybdenum silicides and titanium silicides. Extensive investigation has been carried out on MoSi 2 , yet comparatively less work was performed on titanium silicides such as Ti 5 Si 3 and Ti 3 and TiSi 2 which are of lower density than MoSi 2 . Fundamental understanding of the titanium silicides' properties for further evaluation their potential for practical application are thus needed. The thermal expansion coefficients and elastic moduli of intermetallic compounds are two properties important for evaluation as a first step. The thermal expansion determines the possible stress that might arise during cooling for these high melting point compounds, which is crucial to the preparation of defect free specimens; and the elastic moduli are usually reflections of the cohesion in crystal. In Frommeyer's work and some works afterwards, the coefficients of thermal expansion were measured on both polycrystalline and single crystal Ti 5 Si 3 . The elastic modulus of polycrystalline Ti 5 Si 3 was measured by Frommeyer and Rosenkranz. However, in the above works, the referred Ti 5 Si 3 was the binary one, no alloying effect has been reported on this matter. Moreover, the above parameters (coefficient of thermal expansion and elastic modulus) of Nb 5 Si 3 remain unreported so far. In this paper, the authors try to extend the knowledge of alloyed Ti 5 Si 3 compounds with Nb and Cr additions. Results on the coefficients of thermal expansion and elastic moduli of Ti 5 Si 3 compounds and Nb 5 Si 3 are presented and the discussion is focused on the alloying effect

  5. Kondo effect and heavy fermions in Yb compounds

    International Nuclear Information System (INIS)

    Bonville, P.

    1987-01-01

    The Kondo properties of Yb dilute alloys and intermetallics have been investigated using Moessbauer spectroscopy on 170 Yb. In the dilute alloys AuYb and LaBe 13 Yb, the Kondo logarithmic anomaly of the impurity relaxation rate has been detected, and in the concentrated Yb compounds YbBe 13 , YbP and YbAs, and YbCuAl, the manifestations of the interplay between the Kondo effect and the magnetic ordering due to the RKKY interaction have been characterized

  6. Stable emulsions in extraction systems containing zirconium and silicic acid

    International Nuclear Information System (INIS)

    Sinegribova, O.A.; Chizhevskaya, S.V.; Kotenko, A.A.

    1989-01-01

    The effect of zirconium nitrate compound nature and silicic acid on the rate of emulsions stratification in extraction systems depending on the components concentration, solution acidity, its past history, is studied. It is stated that stable multinuclear zirconium compounds have an influence on formation of stable emulsions in systems containing silicic acid. On the basis of results of chemical analysis and properties of interphase precipitates, being part of stable emulsion, suppositions on mechanism of interaction of zirconium nitrate compounds with silicic acid β-form are made

  7. Identification of Intermetallic Compounds and Its Formation Mechanism in Boron Steel Hot-Dipped in Al-7 wt.% Mn Alloy

    Directory of Open Access Journals (Sweden)

    Sung-Yun Kwak

    2017-12-01

    Full Text Available In laser welding and hot stamping Al-Si-coated boron steel, there is a problem that the strength of the joint is lowered due to ferrite formation in the fusion zone. The purpose of this study is to develop an Al-7 wt.% Mn hot-dip coating in which Mn, an austenite stabilizing element, replaces the ferrite stabilizing element Si. The nucleation and formation mechanism of the reaction layer was studied in detail by varying the dipping time between 0 and 120 s at 773 °C. The microstructure and phase constitution of the reaction layer were investigated by various observational methods. Phase formation is discussed using a phase diagram calculated by Thermo-CalcTM. Under a 30 s hot-dipping process, no reaction occurred due to the formation of a Fe3O4 layer on the steel surface. The Fe3O4 layer decomposed by a reduction reaction with Al-Mn molten alloy, constituent elements of steel dissolved into a liquid, and the reaction-layer nucleus was formed toward the liquid phase. A coated layer consists of a solidified layer of Al and Al6Mn and a reactive layer formed beneath it. The reaction layer is formed mainly by inter-diffusion of Al and Fe in the solid state, which is arranged on the steel in the order of Al11Mn4 → FeAl3 (θ → Fe2Al5 (η phases, and the Fe3AlC (κ in several nm bands formed at the interface between the η-phase and steel.

  8. Influence of Activated Carbon Particles on Intermetallic Compound Growth Mechanism in Sn-Cu-Ni Composite Solder

    Directory of Open Access Journals (Sweden)

    Ramli M.I.I.

    2016-01-01

    Full Text Available The influence of Activated Carbon (AC particles on mechanical properties of Sn-Cu-Ni-xAC solder joint was investigated. Five different Activated Carbon (AC percentage addition (0 wt. %, 0.25 wt. %, 0.5 wt. %, 0.75 wt. %, and 1.0 wt. % were prepared via powder metallurgy (PM technique. Interfacial IMC thickness measurement and shear strength results showed that with thinner IMC layer (by increasing amount of wt.% of AC, the higher the shear strength of the joint. It is believed that the AC particles suppresses the interfacial IMC growth and thus improves the shear strength.

  9. Hydrogenation and its effect on crystal structure and magnetism in .I.R./I.ENiAl intermetallic compounds

    Czech Academy of Sciences Publication Activity Database

    Kolomiets, A. V.; Havela, L.; Yartys, V. A.; Andreev, Alexander V.

    1999-01-01

    Roč. 3, č. 1 (1999), s. 55-59 ISSN 1027-4642 R&D Projects: GA ČR GA106/98/0507 Grant - others:GA UK(CZ) 61/1998; ICF (UA) UCQ200 Institutional research plan: CEZ:AV0Z1010914 Subject RIV: BM - Solid Matter Physics ; Magnetism

  10. Elastic and magnetoelastic properties of intermetallic compound NdCo5 in the spin-reorientation region

    International Nuclear Information System (INIS)

    Deryagin, A.V.; Kvashnin, G.M.; Kapitonov, A.M.

    1984-01-01

    By the ultrasonic method the temperature dependences of elastic constants of the NdCO 5 monocrystal in the temperature range (4.2 ...350) K are determined. In the spontaneous spin-reorientation (SR) region an anomalous behaviour of all NdCO 5 elastic constants is revealed. The dependence of velocities of longitudinal elastic waves propagation along hexagonal axis on the value and orientation of the magnetic field is investigated. The influence of the magnetoelastic interaction on SR boundaries and K 1 anisotropy constant is estimated. Magnetoelastic Bsub(a)sup(theta) and Bsub(c)sup(theta) constants are calculated

  11. Development of Small-Volume, High-Precision, and Reliable Cryogenic Linear Actuators by Using Novel Intermetallic Compounds

    Data.gov (United States)

    National Aeronautics and Space Administration — Space missions often involve ultra-cold environments, and cryogenic actuators must be mechanically robust for long-term cyclic work, generate high power per volume,...

  12. First principle study of structural, electronic and thermodynamic behavior of ternary intermetallic compound: CeMgTl

    Directory of Open Access Journals (Sweden)

    R.P. Singh

    2014-12-01

    Full Text Available To study the structural, electronic and thermodynamic behavior of CeMgTl, full-potential linear augmented plane wave plus local orbital (FP-LAPW + lo method has been used. The lattice parameters (a0, c0, bulk modulus (B0 and its first order pressure derivative (B0′ have been calculated for CeMgTl. Band structure and density of states histograms depicts that “5d” orbital electrons of Tl have dominant character in the electronic contribution to CeMgTl. Impact of the temperature and pressure on unit cell volume, bulk modulus, Debye temperature, Grüneisen parameter, specific heat and thermal expansion coefficient (α have been studied in wide temperature range (0–300 K and pressure range (0–15 GPa.

  13. Effect of Sr and solidification conditions on characteristics of intermetallic in Al-Si 319 industrial alloys

    International Nuclear Information System (INIS)

    Espinoza-Cuadra, J.; Gallegos-Acevedo, P.; Mancha-Molinar, H.; Picado, A.

    2010-01-01

    An experimental study was carried out to determine the effect of strontium (Sr) on the characteristic of intermetallic phases, particularly the Al 5 FeSi phase which present morphology of platelets or needle-like. The results showed that within the range of variables studied, the modification process caused the disappearance of the needles and only occur the precipitation of phase α (chinese script-like). Refinement of the intermetallic phases occurs in conjunction with the refinement in grain size. Both parameters depend strongly on local cooling rate (T), temperature gradient (G) and apparent rate of solidification front (V). In the case of equiaxed structures the refinement of grain size and intermetallic occurs with increasing local cooling rate and temperature gradient and decrease the apparent rate of solidification front. In the case of columnar structures, refinement of grains and intermetallic requires the increase in values of the three variables indicated. Moreover, the addition of Sr resulted in the modification of silicon eutectic, as noted in others research works.

  14. Intermetallic Pd 3 Pb nanowire networks boost ethanol oxidation and oxygen reduction reactions with significantly improved methanol tolerance

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Qiurong [School of Mechanical and Materials Engineering; Washington State University; Pullman; USA; Zhu, Chengzhou [School of Mechanical and Materials Engineering; Washington State University; Pullman; USA; Key Laboratory of Pesticide and Chemical Biology; Bi, Cuixia [Institute of Crystal Materials; Shandong University; Jinan 250100; P. R. China; Xia, Haibing [Institute of Crystal Materials; Shandong University; Jinan 250100; P. R. China; Engelhard, Mark H. [Environmental Molecular Sciences Laboratory; Pacific Northwest National Laboratory; Richland; USA; Du, Dan [School of Mechanical and Materials Engineering; Washington State University; Pullman; USA; Key Laboratory of Pesticide and Chemical Biology; Lin, Yuehe [School of Mechanical and Materials Engineering; Washington State University; Pullman; USA

    2017-01-01

    Intermetallic nanocrystals are currently receiving extensive attention due to their well-defined crystal structures, highly ordered atomic distribution and superior structural stability that endow them with optimized catalytic activities, stabilities and high selectivity for use as electrocatalysts for fuel cells.

  15. Influence of severe plastic deformation on intermetallic particles in Mg-12wt.%Zn alloy investigated using transmission electron microscopy

    Czech Academy of Sciences Publication Activity Database

    Němec, Martin; Gärtnerová, Viera; Jäger, Aleš

    2016-01-01

    Roč. 119, Sep (2016), 129-136 ISSN 1044-5803 R&D Projects: GA ČR GBP108/12/G043 Institutional support: RVO:68378271 Keywords : Mg-Zn * severe plastic deformation * equal channel angular pressing * transmission electron microscopy * microstructure * intermetallic particles Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.714, year: 2016

  16. Enhanced cycling stability of hybrid Li-air batteries enabled by ordered Pd3Fe intermetallic electrocatalyst.

    Science.gov (United States)

    Cui, Zhiming; Li, Longjun; Manthiram, Arumugam; Goodenough, John B

    2015-06-17

    We report an ordered Pd3Fe intermetallic catalyst that exhibits significantly enhanced activity and durability for the oxygen reduction reaction under alkaline conditions. Ordered Pd3Fe enables a hybrid Li-air battery to exhibit the best reported full-cell cycling performance (220 cycles, 880 h).

  17. Microstructure and properties of Ti-Al intermetallic/Al2O3 layers produced on Ti6Al2Mo2Cr titanium alloy by PACVD method

    Science.gov (United States)

    Sitek, R.; Bolek, T.; Mizera, J.

    2018-04-01

    The paper presents investigation of microstructure and corrosion resistance of the multi-component surface layers built of intermetallic phases of the Ti-Al system and an outer Al2O3 ceramic sub-layer. The layers were produced on a two phase (α + β) Ti6Al2Mo2Cr titanium alloy using the PACVD method with the participation of trimethylaluminum vapors. The layers are characterized by a high surface hardness and good corrosion, better than that of these materials in the starting state. In order to find the correlation between their structure and properties, the layers were subjected to examinations using optical microscopy, X-ray diffraction analysis (XRD), surface analysis by XPS, scanning electron microscopy (SEM), and analyses of the chemical composition (EDS). The properties examined included: the corrosion resistance and the hydrogen absorptiveness. Moreover growth of the Al2O3 ceramic layer and its influence on the residual stress distribution was simulated using finite element method [FEM]. The results showed that the produced layer has amorphous-nano-crystalline structure, improved corrosion resistance and reduces the permeability of hydrogen as compared with the base material of Ti6Al2Mo2Cr -titanium alloy.

  18. On ternary intermetallic aurides. CaAu{sub 2}Al{sub 2}, SrAu{sub 2-x}Al{sub 2+x} and Ba{sub 3}Au{sub 5+x}Al{sub 6-x}

    Energy Technology Data Exchange (ETDEWEB)

    Stegemann, Frank [Institut fuer Anorganische und Analytische Chemie, Westfaelische Wilhelms-Universitaet Muenster (Germany); Benndorf, Christopher [Institut fuer Anorganische und Analytische Chemie, Westfaelische Wilhelms-Universitaet Muenster (Germany); Institut fuer Physikalische Chemie, Westfaelische Wilhelms-Universitaet Muenster (Germany); Institut fuer Mineralogie, Kristallographie und Materialwissenschaften, Universitaet Leipzig (Germany); Zhang, Yuemei; Fokwa, Boniface P.T. [Department of Chemistry, University of California, Riverside, CA (United States); Bartsch, Manfred; Zacharias, Helmut [Physikalisches Institut, Westfaelische Wilhelms-Universitaet Muenster (Germany); Eckert, Hellmut [Institut fuer Physikalische Chemie, Westfaelische Wilhelms-Universitaet Muenster (Germany); Instituto de Fisica de Sao Carlos, Universidade de Sao Paulo, Sao Carlos, SP (Brazil); Janka, Oliver [Institut fuer Anorganische und Analytische Chemie, Westfaelische Wilhelms-Universitaet Muenster (Germany); Institut fuer Chemie, Carl von Ossietzky Universitaet Oldenburg (Germany)

    2017-11-17

    The intermetallic compound CaAu{sub 2}Al{sub 2}, and the members of the solid solutions SrAu{sub 2-x}Al{sub 2+x} (0 ≤ x ≤ 0.33) and Ba{sub 3}Au{sub 5+x}Al{sub 6-x} (x = 0, 0.14, 0.49) were synthesized from the elements in sealed tantalum ampoules. The Ca compound crystallizes with the orthorhombic ThRu{sub 2}P{sub 2} type structure, whereas the targeted SrAu{sub 2}Al{sub 2} was found to form a solid solution according to SrAu{sub 2-x}Al{sub 2+x}. For the Ba system no ''BaAu{sub 2}Al{sub 2}'' was found, however, Ba{sub 3}Au{sub 5+x}Al{sub 6-x} was discovered to crystallize in the monoclinic space group C2/c with its own structure type. The samples were investigated by powder X-ray diffraction and their crystal structures were refined on the basis of single-crystal X-ray diffraction data. All compounds were characterized furthermore by susceptibility measurements. The crystallographic aluminum sites of CaAu{sub 2}Al{sub 2} and Ba{sub 3}Au{sub 5}Al{sub 6} can be differentiated by {sup 27}Al solid state NMR spectra on the basis of their different electric field gradients, in agreement with theoretical calculations. The electron transfer from the alkaline earth metals and the aluminum atoms onto the gold atoms was investigated by X-ray photoelectron spectroscopy (XPS) classifying these intermetallics as aurides, in full agreement with the calculated Bader charges. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. Stable Boundary Layer Issues

    NARCIS (Netherlands)

    Steeneveld, G.J.

    2012-01-01

    Understanding and prediction of the stable atmospheric boundary layer is a challenging task. Many physical processes are relevant in the stable boundary layer, i.e. turbulence, radiation, land surface coupling, orographic turbulent and gravity wave drag, and land surface heterogeneity. The

  20. Evolutionary Stable Strategy

    Indian Academy of Sciences (India)

    IAS Admin

    After Maynard-Smith and Price [1] mathematically derived why a given behaviour or strategy was adopted by a certain proportion of the population at a given time, it was shown that a strategy which is currently stable in a population need not be stable in evolutionary time (across generations). Additionally it was sug-.

  1. Intermetallic Cu3Sn Phase Layer on Electrode’s Tip of Galvanized Resistance Spot Welding

    Directory of Open Access Journals (Sweden)

    Muhammad Anis

    2010-10-01

    Full Text Available A resistance spot welding method is commonly used in automotive industries application. In a resistance spot welding method, the copper electrode has a significant role as an electric current carrier for joining thin metal sheet. This research was focused on studying the effect of tin layer at the electrode tip for joining galvanized steel sheet. The main variable of this research is in the thickness of the intermetallic Cu3Sn layer. The result showed that the introduction of tin layer less than 1 μm in thickness on the electrode tip gives a comparable shear strength and nugget diameter distribution with the unplated electrode tip.

  2. Application of feal intermetallic phase matrix based alloys in the turbine components of a turbocharger

    Directory of Open Access Journals (Sweden)

    J. Cebulski

    2015-01-01

    Full Text Available This paper presents a possible application of the state-of-the-art alloys based on the FeAl intermetallic phases as materials for the manufacture of heat-proof turbine components in an automobile turbocharger. The research was aimed at determining the resistance to corrosion of Fe40Al5CrTiB alloy in a gaseous environment containing 9 % O2 + 0,2 % HCl + 0,08 % SO2 + N2. First the kinetics of corrosion processes for the considered alloy were determined at the temperatures of 900 °C, 1 000 °C and 1 100 °C, which was followed by validation under operating conditions. To do so, the tests were carried out over a distance of 20 000 km. The last stage involved examination of the surfaces after the test drive. The obtained results are the basis for further research in this field.

  3. Production of low oxygen contamination orthorhombic Ti-Al-Nb intermetallic foil

    International Nuclear Information System (INIS)

    Gill, S.C.; Peters, J.A.; Blatter, P.; Jaquet, J.C.; Morris, M.A.

    1996-01-01

    Aerospace industries continue the search for high performance materials, and recent years have seen rapid developments being made in the capabilities of Ti-Al based intermetallic alloys. Interest in these alloys is caused by their attractive combination of strength and density, but major drawbacks include brittleness at low temperature and sensitivity to interstitial contamination. Development of a relatively new class of alloys was stimulated in 1988 by the discovery of Banerjee et al. of a Ti-Al-Nb orthorhombic (O) phase based on the Ti 2 AlNb composition. Some important applications for these alloys require the use of foil ( 2 phase and leads to material embrittlement. ELIT (Extra Low Interstitial Transfer) pack-rolling, developed by Sulzer Innotec, offers a technique to avoid oxygen contamination

  4. Low-temperature thermal expansion of metastable intermetallic Fe-Cr phases

    International Nuclear Information System (INIS)

    Gorbunoff, A.; Levin, A.A.; Meyer, D.C.

    2009-01-01

    The thermal expansion coefficients (TEC) of metastable disordered intermetallic Fe-Cr phases formed in thin Fe-Cr alloy films prepared by an extremely non-equilibrium method of the pulsed laser deposition are studied. The lattice parameters of the alloys calculated from the low-temperature wide-angle X-ray diffraction (WAXRD) patterns show linear temperature dependencies in the temperature range 143-293 K and a deviation from the linearity at lower temperatures. The linear thermal expansion coefficients determined from the slopes of the linear portions of the temperature-lattice parameter dependencies differ significantly from phase to phase and from the values expected for the body-centered cubic (b.c.c.) Fe 1-x Cr x solid solutions. Strain-crystallite size analysis of the samples is performed. Predictions about the Debye temperature and the mechanical properties of the alloys are made.

  5. Crystal structure and electrical resistivity studies of Gd(Fe1-x Cox)2 intermetallics

    International Nuclear Information System (INIS)

    Onak, M.; Guzdek, P.; Stoch, P.; Chmist, J.; Bednarski, M.; Panta, A.; Pszczola, J.

    2007-01-01

    From X-ray analysis (295 K) it was found that the cubic, MgCu 2 -type, Fd3m crystal structure appears across the Gd(Fe 1-x Co x ) 2 series. Electrical resistivity measurements for the Gd(Fe 1-x Co x ) 2 intermetallics were performed in a wide temperature region and the parameters characterizing the resistivity dependence on temperature and composition were determined. The differential of the electrical resistivity against temperature was used to estimate Curie temperatures. The Curie temperature versus x, high and moderately increasing in the iron-rich area, rapidly drops in the cobalt-rich region. The obtained results are compared with the data known for the Dy(Fe 1-x Co x ) 2 series. The Curie temperature is related to both the number of 3d electrons and the de Gennes factor

  6. The creep properties of a low alloy ferritic steel containing an intermetallic precipitate dispersion

    International Nuclear Information System (INIS)

    Batte, A.D.; Murphy, M.C.; Edmonds, D.V.

    1976-01-01

    A good combination of creep rupture ductility and strength together with excellent long term thermal stability, has been obtained from a dispersion of intermetallic Laves phase precipitate in a non-transforming ferritic low alloy steel. The steel is without many of the problems currently associated with the heat affected zone microstructures of low alloy transformable ferritic steels, and can be used as a weld metal. Following suitable development to optimize the composition and heat treatment, such alloys may provide a useful range of weldable creep resistant steels for steam turbine and other high temperature applications. They would offer the unique possibility of easily achievable microstructural uniformity, giving good long term strength and ductility across the entire welded joint

  7. Angle-resolved and resonant photoemission spectroscopy of rare-earth and actinide intermetallics

    Science.gov (United States)

    Reihl, Bruno

    1985-07-01

    In this paper, some aspects of our angle-resolved and resonant photoemission work on rare-earth and actinide intermetallics will be summarized. The systems specifically mentioned are Gd(0001), UIr 3(100), UN(100), UO 2, α-γ- Ce 0.9Th 0.1, U xTh 1- xSb, USb xTe 1- x, UPd 3, UCu xNi 5- x, CeCu 2Si 2, UBe 13, U 2Zn 17 , SmAl 2, EuPd 13, YbBe 13, TmS, Yb xY 1- xAl 2, EuPd 2Si 2, TmSe, and UAs xSe 1- x.

  8. Mechanical Behavior and Fracture Properties of NiAl Intermetallic Alloy with Different Copper Contents

    Directory of Open Access Journals (Sweden)

    Tao-Hsing Chen

    2016-03-01

    Full Text Available The deformation behavior and fracture characteristics of NiAl intermetallic alloy containing 5~7 at% Cu are investigated at room temperature under strain rates ranging from 1 × 10−3 to 5 × 103 s−1. It is shown that the copper contents and strain rate both have a significant effect on the mechanical behavior of the NiAl alloy. Specifically, the flow stress increases with an increasing copper content and strain rate. Moreover, the ductility also improves as the copper content increases. The change in the mechanical response and fracture behavior of the NiAl alloy given a higher copper content is thought to be the result of the precipitation of β-phase (Ni,CuAl and γ'-phase (Ni,Cu3Al in the NiAl matrix.

  9. The intermetallic bonding between a ring carrier and aluminum piston alloy

    Directory of Open Access Journals (Sweden)

    Manasijevic, Srećko

    2015-09-01

    Full Text Available This paper presents the results of investigating the formation of intermetallic bond between a ring carrier and aluminum piston alloy. The ring carrier is made of austenitic cast iron (Ni-Resist in order to increase the wear resistance of the first ring groove and applied in highly loaded diesel engines. Metallographic examination of the quality of alfin bond was done. A metallographic investigation using an optical microscope in combination with the SEM/EDS analysis of the quality of the intermetallic bonding layer was done. The test results show that can be made successfully as well as the formation of metal connection (alfin bond between the ring carrier and aluminum piston alloy.El artículo presenta los resultados de la investigación sobre la formación de una unión intermetálica entre el portasegmento y la aleación de aluminio del pistón. El portasegmento es una fundición de hierro austenítico (Ni-Resist con el fin de aumentar la resistencia al desgaste de la unión Al-fin del primer segmento y se utiliza en motores diésel altamente cargados. Se realizó un examen metalográfico de la unión intermetálica, mediante un microscopio óptico en combinación con SEM/EDS. Los satisfactorios resultados obtenidos muestran la formación de contacto metálico (unión Al-fin del primer segmento entre el portasegmento y la aleación de aluminio del pistón.

  10. Ultrafast and Highly Reversible Sodium Storage in Zinc-Antimony Intermetallic Nanomaterials

    KAUST Repository

    Nie, Anmin

    2015-12-17

    The progress on sodium-ion battery technology faces many grand challenges, one of which is the considerably lower rate of sodium insertion/deinsertion in electrode materials due to the larger size of sodium (Na) ions and complicated redox reactions compared to the lithium-ion systems. Here, it is demonstrated that sodium ions can be reversibly stored in Zn-Sb intermetallic nanowires at speeds that can exceed 295 nm s-1. Remarkably, these values are one to three orders of magnitude higher than the sodiation rate of other nanowires electrochemically tested with in situ transmission electron microscopy. It is found that the nanowires display about 161% volume expansion after the first sodiation and then cycle with an 83% reversible volume expansion. Despite their massive expansion, the nanowires can be cycled without any cracking or facture during the ultrafast sodiation/desodiation process. In addition, most of the phases involved in the sodiation/desodiation process possess high electrical conductivity. More specifically, the NaZnSb exhibits a layered structure, which provides channels for fast Na+ diffusion. This observation indicates that Zn-Sb intermetallic nanomaterials offer great promise as high rate and good cycling stability anodic materials for the next generation of sodium-ion batteries. Sodium ions can be stored in Zn4 Sb3 nanowires with a speed of 295.5 nm/s, which is one to three orders of magnitude higher than that of other nanowires electrochemically tested by the same method. Despite their massive expansion, the nanowires can be cycled dozens of times without any internal fracture during the ultrafast sodiation/desodiation process. © 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Fast diffusion in the intermetallics Ni3Sb and Fe3Si: a neutron scattering study

    International Nuclear Information System (INIS)

    Randl, O.G.

    1994-02-01

    We present the results of neutron scattering experiments designed to elucidate the reason for the extraordinarily fast majority component diffusion in two intermetallic alloys of DO 3 structure, Fe 3 Si and Ni 3 Sb: We have performed diffraction measurements in order to determine the crystal structure and the state of order of both alloys as a function of composition and temperature. The results on Fe 3 Si essentially confirm the classical phase diagram: The alloys of a composition between 16 and 25 at % Si are DO 3 -ordered at room temperature and disorder at high temperatures. The high-temperature phase Ni 3 Sb also crystallizes in the DO 3 structure. Vacancies are created in one Ni sublattice at Sb contents beyond 25 at %. In a second step the diffusion mechanism in Ni 3 Sb has been studied by means of quasielastic neutron scattering. The results are reconcileable with a very simple NN jump model between the two different Ni sublattices. Finally, the lattice dynamics of Fe 3 Si and Ni 3 Sb has been studied by inelastic neutron scattering in dependence of temperature (both alloys) and alloy composition (Fe 3 Si only). The results on Fe 3 Si indicate clearly that phonon enhancement is not the main reason for fast diffusion in this alloy. In Ni 3 Sb no typical signs of phonon-enhanced diffusion have been found either. As a conclusion, fast diffusion in DO 3 intermetallics is explained by extraordinarily high vacancy concentrations (several atomic percent) in the majority component sublattices. (author)

  12. Application of mechanical alloying to synthesis of intermetallic phases based alloys

    International Nuclear Information System (INIS)

    Dymek, S.

    2001-01-01

    Mechanical alloying is the process of synthesis of powder materials during milling in high energetic mills, usually ball mills. The central event in mechanical alloying is the ball-powder-ball collision. Powder particles are trapped between the colliding balls during milling and undergo deformation and/or fracture. Fractured parts are cold welded. The continued fracture and cold welding results in a uniform size and chemical composition of powder particles. The main applications of mechanical alloying are: processing of ODS alloys, syntheses of intermetallic phases, synthesis of nonequilibrium structures (amorphous alloys, extended solid solutions, nanocrystalline, quasi crystals) and magnetic materials. The present paper deals with application of mechanical alloying to synthesis Ni A l base intermetallic phases as well as phases from the Nb-Al binary system. The alloy were processed from elemental powders. The course of milling was monitored by scanning electron microscopy and X-ray diffraction. After milling, the collected powders were sieved by 45 μm grid and hot pressed (Nb alloys and NiAl) or hot extruded (NiAl). The resulting material was fully dense and exhibited fine grain (< 1 μm) and uniform distribution of oxide dispersoid. The consolidated material was compression and creep tested. The mechanical properties of mechanically alloys were superior to properties of their cast counterparts both in the room and elevated temperatures. Higher strength of mechanically alloyed materials results from their fine grains and from the presence of dispersoid. At elevated temperatures, the Nb-Al alloys have higher compression strength than NiAl-based alloys processed at the same conditions. The minimum creep rates of mechanically alloyed Nb alloys are an order of magnitude lower than analogously processed NiAl-base alloys. (author)

  13. Synthesis of the intermetallic clathrate Na2Ba6Si46 by oxidation of Na2BaSi4 with HCl

    Directory of Open Access Journals (Sweden)

    Bodo Böhme, Umut Aydemir, Alim Ormeci, Walter Schnelle, Michael Baitinger and Yuri Grin

    2007-01-01

    Full Text Available A new preparation route to the intermetallic clathrate-I compound Na2Ba6Si46 is introduced, which allows one to make large amounts of product with standard laboratory equipment. The precursor Na2BaSi4 is oxidized with gaseous HCl at 673 K to Na2Ba6Si46, NaCl and BaCl2. Full-profile refinement of the crystal structure from the X-ray powder diffraction data revealed a composition close to Na2Ba6Si46 (Na1.94(1Ba6.06(1Si46, space group Pmbar 3n, a=10.281(1 Å. Differential scanning calorimetry showed an exothermic effect at 874 K, indicating that Na2Ba6Si46 is metastable. The product was additionally characterized by scanning electron microscopy. The electronic structure of Na2Ba6Si46 was investigated by a first-principles, all-electron full-potential method, predicting metallic conductivity. Na2Ba6Si46 obtained by oxidation with HCl shows Pauli paramagnetism; no bulk superconductivity was found down to 1.8 K in a magnetic field of 20 Oe.

  14. On the Functionality of Complex Intermetallics: Frustration, Chemical Pressure Relief, and Potential Rattling Atoms in Y11Ni60C6.

    Science.gov (United States)

    Guo, Yiming; Fredrickson, Daniel C

    2016-10-17

    Intermetallic carbides provide excellent model systems for exploring how frustration can shape the structures and properties of inorganic materials. Combinations of several metals with carbon can be designed in which the formation of tetrahedrally close-packed (TCP) intermetallics conflicts with the C atoms' requirement of trigonal prismatic or octahedral coordination environments, as offered by the simple close-packings (SCP) of equally sized spheres. In this Article, we explore the driving forces that lead to the coexistence of these incompatible arrangements in the Yb 11 Ni 60 C 6 -type compound Y 11 Ni 60 C 6 (cI154), as well as potential consequences of this intergrowth for the phase's physical properties. Our focus begins on the structure's SCP regions, which appear as C-stuffed versions of a AuCu 3 -type YNi 3 phase that is not observed on its own in the Y-Ni system. DFT-Chemical Pressure (DFT-CP) calculations on this hypothetical YNi 3 phase reveal large negative pressures within the Ni sublattice, as it is stretched to accommodate the size requirements of the Y atoms. In the Y 11 Ni 60 C 6 structure, two structural mechanisms for addressing these CP issues appear: the incorporation of interstitial C atoms, and the presence of interfaces with CaCu 5 -type domains. The relative roles of these two mechanisms are investigated with the CP analysis on a hypothetical YNi 3 C x series of C-stuffed AuCu 3 -type phases, the Y-Ni sublattice of Y 11 Ni 60 C 6 , and finally the full Y 11 Ni 60 C 6 structure. Through these calculations, the C atoms appear to play the roles of relieving positive Y CPs and supporting relaxation at the AuCu 3 -type/CaCu 5 -type interfaces, where the cancellation occurs between opposite CPs experienced by the Y atoms in the two parent structures (following the epitaxial stabilization mechanism). The CP analysis of Y 11 Ni 60 C 6 also highlights a sublattice of Y and Ni atoms with large negative CPs (and thus the potential for soft

  15. Normal modified stable processes

    DEFF Research Database (Denmark)

    Barndorff-Nielsen, Ole Eiler; Shephard, N.

    2002-01-01

    This paper discusses two classes of distributions, and stochastic processes derived from them: modified stable (MS) laws and normal modified stable (NMS) laws. This extends corresponding results for the generalised inverse Gaussian (GIG) and generalised hyperbolic (GH) or normal generalised inverse...... Gaussian (NGIG) laws. The wider framework thus established provides, in particular, for added flexibility in the modelling of the dynamics of financial time series, of importance especially as regards OU based stochastic volatility models for equities. In the special case of the tempered stable OU process...

  16. Applications of stable isotopes

    International Nuclear Information System (INIS)

    Letolle, R.; Mariotti, A.; Bariac, T.

    1991-06-01

    This report reviews the historical background and the properties of stable isotopes, the methods used for their measurement (mass spectrometry and others), the present technics for isotope enrichment and separation, and at last the various present and foreseeable application (in nuclear energy, physical and chemical research, materials industry and research; tracing in industrial, medical and agronomical tests; the use of natural isotope variations for environmental studies, agronomy, natural resources appraising: water, minerals, energy). Some new possibilities in the use of stable isotope are offered. A last chapter gives the present state and forecast development of stable isotope uses in France and Europe

  17. Large scale simulations of the mechanical properties of layered transition metal ternary compounds for fossil energy power system applications

    Energy Technology Data Exchange (ETDEWEB)

    Ching, Wai-Yim [Univ. of Missouri, Kansas City, MO (United States)

    2014-12-31

    Advanced materials with applications in extreme conditions such as high temperature, high pressure, and corrosive environments play a critical role in the development of new technologies to significantly improve the performance of different types of power plants. Materials that are currently employed in fossil energy conversion systems are typically the Ni-based alloys and stainless steels that have already reached their ultimate performance limits. Incremental improvements are unlikely to meet the more stringent requirements aimed at increased efficiency and reduce risks while addressing environmental concerns and keeping costs low. Computational studies can lead the way in the search for novel materials or for significant improvements in existing materials that can meet such requirements. Detailed computational studies with sufficient predictive power can provide an atomistic level understanding of the key characteristics that lead to desirable properties. This project focuses on the comprehensive study of a new class of materials called MAX phases, or Mn+1AXn (M = a transition metal, A = Al or other group III, IV, and V elements, X = C or N). The MAX phases are layered transition metal carbides or nitrides with a rare combination of metallic and ceramic properties. Due to their unique structural arrangements and special types of bonding, these thermodynamically stable alloys possess some of the most outstanding properties. We used a genomic approach in screening a large number of potential MAX phases and established a database for 665 viable MAX compounds on the structure, mechanical and electronic properties and investigated the correlations between them. This database if then used as a tool for materials informatics for further exploration of this class of intermetallic compounds.

  18. Analysing Stable Time Series

    National Research Council Canada - National Science Library

    Adler, Robert

    1997-01-01

    We describe how to take a stable, ARMA, time series through the various stages of model identification, parameter estimation, and diagnostic checking, and accompany the discussion with a goodly number...

  19. Elemental analysis of the Al-Fe intermetallic prepared by fast solidification; Analisis elemental del intermetalico Al-Fe preparado por solidificacion rapida

    Energy Technology Data Exchange (ETDEWEB)

    Sandoval J, R.A.; Lopez M, J.; Ramirez T, J.J.; Aspiazu F, J.; Villasenor S, P. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    2003-07-01

    Applying the PIXE technique samples of the Al-Fe intermetallic prepared by fast solidification, obtained starting from Al recycled were analyzed. The concentrations of the found elements are given. (Author)

  20. Strong electronic correlations in a new Yb-based compound: YbCu.sub.4./sub.Ni

    Czech Academy of Sciences Publication Activity Database

    Čurlik, I.; Reiffers, M.; Giovannini, M.; Gažo, E.; Šebek, Josef; Šantavá, Eva

    2010-01-01

    Roč. 118, č. 5 (2010), s. 919-921 ISSN 0587-4246 R&D Projects: GA ČR GA202/09/0030 Institutional research plan: CEZ:AV0Z10100520 Keywords : specific heat * intermetalic compounds Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.467, year: 2010 http://przyrbwn.icm.edu.pl/ APP /PDF/118/a118z5p082.pdf

  1. Synthesis, shape control, and methanol electro-oxidation properties of Pt-Zn alloy and Pt3Zn intermetallic nanocrystals.

    Science.gov (United States)

    Kang, Yijin; Pyo, Jun Beom; Ye, Xingchen; Gordon, Thomas R; Murray, Christopher B

    2012-06-26

    We report the first synthesis of highly monodisperse Pt(3)Zn nanocrystals (NCs). Shape-controlled synthesis generates cubic and spherical Pt-Zn NCs. Reaction temperature is the key to incorporate Zn into Pt, even in the absence of a strong reducing agent. The Pt-Zn NCs are active toward methanol oxidation, with the spherical NCs exhibiting higher activity than the cubic NCs. The Pt-Zn alloy phase can be transformed into the Pt(3)Zn intermetallic phase, upon annealing. The intermetallic Pt(3)Zn shows better performance than the alloy phase Pt-Zn. Besides the activity toward methanol oxidation, Pt-Zn NCs show excellent poisoning tolerance. With activities comparable to the commercial Pt catalyst, enhanced poisoning tolerance and lower cost, Pt-Zn and Pt(3)Zn NCs are a promising new family of catalysts for direct methanol fuel cells.

  2. Characterization of oxidation products on a ZrFe2-type laves intermetallic exposed to 200degreeC steam

    International Nuclear Information System (INIS)

    Abraham, D. P.; Dietz, N.; Finnegan, N.

    2000-01-01

    The release of radioactive elements from the stainless steel-15 wt% zirconium (SS-15Zr) metal waste form will be governed by the corrosion behavior of ZrFe 2 -type intermetallics phases present in the alloy. In this article, oxidation products that formed on a ZrFe 2 -type intermetallic sample exposed to 200 C steam were characterized by Auger Electron Spectroscopy (AES) and Transmission Electron Microscopy (TEM). The data revealed two oxide layers on the sample surface: an outer crystalline iron-oxide layer and an inner amorphous zirconium-rich layer believed to be zirconium oxide. Thermodynamic considerations indicate that the zirconium-rich layer formed first. The iron-oxide layer appears to have resulted from the diffusion of iron through the zirconium-rich layer to the oxide-vapor interface

  3. Lattice anisotropy in uranium ternary compounds: UTX

    International Nuclear Information System (INIS)

    Mašková, S.; Adamska, A.M.; Havela, L.; Kim-Ngan, N.-T.H.; Przewoźnik, J.; Daniš, S.; Kothapalli, K.; Kolomiets, A.V.; Heathman, S.; Nakotte, H.; Bordallo, H.

    2012-01-01

    Highlights: ► Compressibility and thermal expansion of several U-based compounds were established. ► The direction of the U–U bonds is the “soft” crystallographic direction. ► Highest coefficient of linear thermal expansion is in the direction of the U–U bonds. ► The closer the U atoms are together the better they can be compressed together. - Abstract: Several U-based intermetallic compounds (UCoGe, UNiGe with the TiNiSi structure type and UNiAl with the ZrNiAl structure type) and their hydrides were studied from the point of view of compressibility and thermal expansion. Confronted with existing data for the compounds with the ZrNiAl structure type a common pattern emerges. The direction of the U–U bonds with participation of the 5f states is distinctly the “soft” crystallographic direction, exhibiting also the highest coefficient of linear thermal expansion. The finding leads to an apparent paradox: the closer the U atoms are together in a particular direction the better they can be additionally compressed together by applied hydrostatic pressure.

  4. Microstructure and mechanical properties of Ni3Al intermetallics prepared by directional solidification electromagnetic cold crucible technique

    OpenAIRE

    Hong-sheng Ding; Guo-tian Wang; Rui-run Chen

    2017-01-01

    The present work focused on the Ni3Al-based alloy with a high melting point. The aim of the research is to study the effect of withdrawal rate on the microstructures and mechanical properties of directionally solidified Ni-25Al alloy. Ni3Al intermetallics were prepared at different withdrawal rates by directional solidification (DS) in an electromagnetic cold crucible directional solidification furnace. The DS samples contain Ni3Al and NiAl phases. The primary dendritic spacing (λ) decreases ...

  5. Features peculiar to the acoustic properties of intermetallic SmFe2 in the spin reorientation region

    International Nuclear Information System (INIS)

    Artma, E.E.; Zinoveva, G.P.; Korolyov, A.V.; Gaviko, V.S.

    1991-01-01

    In polycrystalline specimens of intermetallic SmFe 2 the temperature dependences are measured of the sound velocity and of the sound absorption coefficients. By contrast with earlier investigations, anomalies are detected in the acoustic properties at two spin-reorientation temperatures rather than at one. The temperature dependences are characterized by a hysteresis. Possible causes of the observed anomalies in the acoustic properties of SmFe 2 are discussed. (orig.)

  6. Effect of grain refiner on intermetallic phase formation in directional solidification of 6xxx series wrought Al alloys

    Energy Technology Data Exchange (ETDEWEB)

    Sha, G.; O' Reilly, K.; Cantor, B. [Oxford Univ. (United Kingdom). Centre for Adv. Mat. and Composites; Hamerton, R.; Worth, J.

    2000-07-01

    The effect of a grain refiner on the formation of intermetallic phases in a directionally solidified (Bridgman grown) model 6xxx series wrought Al alloy has been investigated using X-ray diffractometry (XRD), transmission electron microscopy (TEM) and differential scanning calorimetry (DSC). A base alloy with and without Al-Ti-B grain refiner was directionally solidified in a Bridgman furnace at growth velocities in the range of 5-120 mm/min. In both cases, the Fe-containing intermetallic phases present were found to be mainly {alpha}-AlFeSi and {beta}-AlFeSi. However, in the alloy with grain refiner solidified at 5mm/min, Al{sub 13}Fe{sub 4} was also observed. Quantitative XRD results indicated that the addition of Al-Ti-B grain refiner has a strong influence on the relative quantities of intermetallic phases forming during solidification at different growth velocities, which was also confirmed by TEM observations. TEM observations also show that depending on where the {beta}-AlFeSi particles solidified e.g. grain boundaries or triple grain junctions, the size and morphology of the particles may change dramatically. TiB{sub 2} particles were observed to nucleate {beta}-AlFeSi at low and high growth velocities in the 6xxx series Al alloys. (orig.)

  7. Calcium stable isotope geochemistry

    Energy Technology Data Exchange (ETDEWEB)

    Gausonne, Nikolaus [Muenster Univ. (Germany). Inst. fuer Mineralogie; Schmitt, Anne-Desiree [Strasbourg Univ. (France). LHyGeS/EOST; Heuser, Alexander [Bonn Univ. (Germany). Steinmann-Inst. fuer Geologie, Mineralogie und Palaeontologie; Wombacher, Frank [Koeln Univ. (Germany). Inst. fuer Geologie und Mineralogie; Dietzel, Martin [Technische Univ. Graz (Austria). Inst. fuer Angewandte Geowissenschaften; Tipper, Edward [Cambridge Univ. (United Kingdom). Dept. of Earth Sciences; Schiller, Martin [Copenhagen Univ. (Denmark). Natural History Museum of Denmark

    2016-08-01

    This book provides an overview of the fundamentals and reference values for Ca stable isotope research, as well as current analytical methodologies including detailed instructions for sample preparation and isotope analysis. As such, it introduces readers to the different fields of application, including low-temperature mineral precipitation and biomineralisation, Earth surface processes and global cycling, high-temperature processes and cosmochemistry, and lastly human studies and biomedical applications. The current state of the art in these major areas is discussed, and open questions and possible future directions are identified. In terms of its depth and coverage, the current work extends and complements the previous reviews of Ca stable isotope geochemistry, addressing the needs of graduate students and advanced researchers who want to familiarize themselves with Ca stable isotope research.

  8. Beneficial Role of Copper in the Enhancement of Durability of Ordered Intermetallic PtFeCu Catalyst for Electrocatalytic Oxygen Reduction.

    Science.gov (United States)

    Arumugam, Balamurugan; Tamaki, Takanori; Yamaguchi, Takeo

    2015-08-05

    Design of Pt alloy catalysts with enhanced activity and durability is a key challenge for polymer electrolyte membrane fuel cells. In the present work, we compare the durability of the ordered intermetallic face-centered tetragonal (fct) PtFeCu catalyst for the oxygen reduction reaction (ORR) relative to its counterpart bimetallic catalysts, i.e., the ordered intermetallic fct-PtFe catalyst and the commercial catalyst from Tanaka Kikinzoku Kogyo, TKK-PtC. Although both fct catalysts initially exhibited an ordered structure and mass activity approximately 2.5 times higher than that of TKK-Pt/C, the presence of Cu at the ordered intermetallic fct-PtFeCu catalyst led to a significant enhancement in durability compared to that of the ordered intermetallic fct-PtFe catalyst. The ordered intermetallic fct-PtFeCu catalyst retained more than 70% of its mass activity and electrochemically active surface area (ECSA) over 10 000 durability cycles carried out at 60 °C. In contrast, the ordered intermetallic fct-PtFe catalyst maintained only about 40% of its activity. The temperature of the durability experiment is also shown to be important: the catalyst was more severely degraded at 60 °C than at room temperature. To obtain insight into the observed enhancement in durability of fct-PtFeCu catalyst, a postmortem analysis of the ordered intermetallic fct-PtFeCu catalyst was carried out using scanning transmission electron microscopy-energy dispersive X-ray spectroscopy (STEM-EDX) line scan. The STEM-EDX line scans of the ordered intermetallic fct-PtFeCu catalyst over 10 000 durability cycles showed a smaller degree of Fe and Cu dissolution from the catalyst. Conversely, large dissolution of Fe was identified in the ordered intermetallic fct-PtFe catalyst, indicating a lesser retention of Fe that causes the destruction of ordered structure and gives rise to poor durability. The enhancement in the durability of the ordered intermetallic fct-PtFeCu catalyst is ascribed to

  9. Toxicology of perfluorinated compounds

    Energy Technology Data Exchange (ETDEWEB)

    Stahl, Thorsten [Hessian State Laboratory, Wiesbaden (Germany); Mattern, Daniela; Brunn, Hubertus [Hessian State Laboratory, Giessen (Germany)

    2011-12-15

    Perfluorinated compounds [PFCs] have found a wide use in industrial products and processes and in a vast array of consumer products. PFCs are molecules made up of carbon chains to which fluorine atoms are bound. Due to the strength of the carbon/fluorine bond, the molecules are chemically very stable and are highly resistant to biological degradation; therefore, they belong to a class of compounds that tend to persist in the environment. These compounds can bioaccumulate and also undergo biomagnification. Within the class of PFC chemicals, perfluorooctanoic acid and perfluorosulphonic acid are generally considered reference substances. Meanwhile, PFCs can be detected almost ubiquitously, e.g., in water, plants, different kinds of foodstuffs, in animals such as fish, birds, in mammals, as well as in human breast milk and blood. PFCs are proposed as a new class of 'persistent organic pollutants'. Numerous publications allude to the negative effects of PFCs on human health. The following review describes both external and internal exposures to PFCs, the toxicokinetics (uptake, distribution, metabolism, excretion), and the toxicodynamics (acute toxicity, subacute and subchronic toxicities, chronic toxicity including carcinogenesis, genotoxicity and epigenetic effects, reproductive and developmental toxicities, neurotoxicity, effects on the endocrine system, immunotoxicity and potential modes of action, combinational effects, and epidemiological studies on perfluorinated compounds). (orig.)

  10. Organic Compounds in Carbonaceous Meteorites

    Science.gov (United States)

    Cooper, Grorge

    2001-01-01

    Carbonaceous meteorites are relatively enriched in soluble organic compounds. To date, these compounds provide the only record available to study a range of organic chemical processes in the early Solar System chemistry. The Murchison meteorite is the best-characterized carbonaceous meteorite with respect to organic chemistry. The study of its organic compounds has related principally to aqueous meteorite parent body chemistry and compounds of potential importance for the origin of life. Among the classes of organic compounds found in Murchison are amino acids, amides, carboxylic acids, hydroxy acids, sulfonic acids, phosphonic acids, purines and pyrimidines (Table 1). Compounds such as these were quite likely delivered to the early Earth in asteroids and comets. Until now, polyhydroxylated compounds (polyols), including sugars (polyhydroxy aldehydes or ketones), sugar alcohols, sugar acids, etc., had not been identified in Murchison. Ribose and deoxyribose, five-carbon sugars, are central to the role of contemporary nucleic acids, DNA and RNA. Glycerol, a three-carbon sugar alcohol, is a constituent of all known biological membranes. Due to the relative lability of sugars, some researchers have questioned the lifetime of sugars under the presumed conditions on the early Earth and postulated other (more stable) compounds as constituents of the first replicating molecules. The identification of potential sources and/or formation mechanisms of pre-biotic polyols would add to the understanding of what organic compounds were available, and for what length of time, on the ancient Earth.

  11. Multipurpose Compound

    Science.gov (United States)

    1983-01-01

    Specially formulated derivatives of an unusual basic compound known as Alcide may be the answer to effective treatment and prevention of the disease bovine mastitis, a bacterial inflammation of a cow's mammary gland that results in loss of milk production and in extreme cases, death. Manufactured by Alcide Corporation the Alcide compound has killed all tested bacteria, virus and fungi, shortly after contact, with minimal toxic effects on humans or animals. Alcide Corporation credits the existence of the mastitis treatment/prevention products to assistance provided the company by NERAC, Inc.

  12. Evolutionary Stable Strategy

    Indian Academy of Sciences (India)

    2016-08-26

    Aug 26, 2016 ... Home; Journals; Resonance – Journal of Science Education; Volume 21; Issue 9. Evolutionary Stable Strategy: Application of Nash Equilibrium in Biology. General ... Using some examples of classical games, we show how evolutionary game theory can help understand behavioural decisions of animals.

  13. The Stable Concordance Genus

    OpenAIRE

    Kearney, M. Kate

    2013-01-01

    The concordance genus of a knot is the least genus of any knot in its concordance class. Although difficult to compute, it is a useful invariant that highlights the distinction between the three-genus and four-genus. In this paper we define and discuss the stable concordance genus of a knot, which describes the behavior of the concordance genus under connected sum.

  14. Manifolds admitting stable forms

    Czech Academy of Sciences Publication Activity Database

    Le, Hong-Van; Panák, Martin; Vanžura, Jiří

    2008-01-01

    Roč. 49, č. 1 (2008), s. 101-11 ISSN 0010-2628 R&D Projects: GA ČR(CZ) GP201/05/P088 Institutional research plan: CEZ:AV0Z10190503 Keywords : stable forms * automorphism groups Subject RIV: BA - General Mathematics

  15. Stable isotope studies

    International Nuclear Information System (INIS)

    Ishida, T.

    1992-01-01

    The research has been in four general areas: (1) correlation of isotope effects with molecular forces and molecular structures, (2) correlation of zero-point energy and its isotope effects with molecular structure and molecular forces, (3) vapor pressure isotope effects, and (4) fractionation of stable isotopes. 73 refs, 38 figs, 29 tabs

  16. Interactive Stable Ray Tracing

    DEFF Research Database (Denmark)

    Dal Corso, Alessandro; Salvi, Marco; Kolb, Craig

    2017-01-01

    Interactive ray tracing applications running on commodity hardware can suffer from objectionable temporal artifacts due to a low sample count. We introduce stable ray tracing, a technique that improves temporal stability without the over-blurring and ghosting artifacts typical of temporal post-pr...

  17. The stable subgroup graph

    Directory of Open Access Journals (Sweden)

    Behnaz Tolue

    2018-07-01

    Full Text Available In this paper we introduce stable subgroup graph associated to the group $G$. It is a graph with vertex set all subgroups of $G$ and two distinct subgroups $H_1$ and $H_2$ are adjacent if $St_{G}(H_1\\cap H_2\

  18. Microcracking and macroscopic failure in intermetallic titanium aluminides; Mikrorissbildung und makroskopisches Versagen in intermetallischen Titanaluminiden

    Energy Technology Data Exchange (ETDEWEB)

    Wiesand-Valk, B. [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Werkstofforschung

    2000-07-01

    This paper deals with the correlations between microstructural disorder, that means statistical distribution of phases and local material properties, and macroscopic failure of disordered multiphase materials. On a microscopic level the microstructural disorder leads to randomly distributed local damage before failure (in brittle materials to microcracks) and eventually to localisation of damage. On a macroscopic level the value and scatter of fracture strength and its dependence on specimen size are essentially determined by the microstructural disorder. The failure behaviour is treated by using the discrete chain-of-bundles-model, which treats the details of the microstructure not explicitly but as locally distributed fluctuations of characteristical material parameters. The model has been verified by comparing with experimental results for four intermetallic titanium aluminides and its validity has been demonstrated. (orig.) [German] Die Arbeit behandelt die Zusammenhaenge zwischen der Stochastizitaet des Gefueges, das heisst, einer statistischen Verteilung von Phasen und lokalen Materialeigenschaften und dem makroskopischen Versagen von ungeordneten mehrphasigen Werkstoffen. Auf mikroskopischer Ebene fuehrt die Stochastizitaet des Gefueges vor dem Versagen zu lokalen Schaedigungen (in sproeden Werkstoffen zu Mikrorissen) und schliesslich (abhaengig vom Grad der Unordnung) zur Lokalisierung des Bruchgeschehens. Makroskopisch werden die Groesse und Streuung von Bruchfestigkeitswerten und ihre Probengroessenabhaengigkeit durch die mikrostrukturelle Unordnung wesentlich bestimmt. Dieses Versagensverhalten wird in dem diskreten Chain-of-Bundles-Modell beschrieben, das die Details der Mikrostruktur nicht explizit sondern als lokale statistische Schwankungen von charakteristischen Werkstoffparametern erfasst. Am Beispiel von vier ausgewaehlten Titan-Aluminiden wird das Modell validiert und verifiziert. (orig.)

  19. Strained lattice with persistent atomic order in Pt3Fe2 intermetallic core-shell nanocatalysts.

    Science.gov (United States)

    Prabhudev, Sagar; Bugnet, Matthieu; Bock, Christina; Botton, Gianluigi A

    2013-07-23

    Fine-tuning nanocatalysts to enhance their catalytic activity and durability is crucial to commercialize proton exchange membrane fuel cells. The structural ordering and time evolution of ordered Pt3Fe2 intermetallic core-shell nanocatalysts for the oxygen reduction reaction that exhibit increased mass activity (228%) and an enhanced catalytic activity (155%) compared to Pt/C has been quantified using aberration-corrected scanning transmission electron microscopy. These catalysts were found to exhibit a static core-dynamic shell regime wherein, despite treating over 10,000 cycles, there is negligible decrease (9%) in catalytic activity and the ordered Pt3Fe2 core remained virtually intact while the Pt shell suffered a continuous enrichment. The existence of this regime was further confirmed by X-ray diffraction and the compositional analyses using energy-dispersive spectroscopy. With atomic-scale two-dimensional (2-D) surface relaxation mapping, we demonstrate that the Pt atoms on the surface are slightly relaxed with respect to bulk. The cycled nanocatalysts were found to exhibit a greater surface relaxation compared to noncycled catalysts. With 2-D lattice strain mapping, we show that the particle was about -3% strained with respect to pure Pt. While the observed enhancement in their activity is ascribed to such a strained lattice, our findings on the degradation kinetics establish that their extended catalytic durability is attributable to a sustained atomic order.

  20. Applications of Ni3Al Based Intermetallic Alloys—Current Stage and Potential Perceptivities

    Science.gov (United States)

    Jozwik, Pawel; Polkowski, Wojciech; Bojar, Zbigniew

    2015-01-01

    The paper presents an overview of current and prospective applications of Ni3Al based intermetallic alloys—modern engineering materials with special properties that are potentially useful for both structural and functional purposes. The bulk components manufactured from these materials are intended mainly for forging dies, furnace assembly, turbocharger components, valves, and piston head of internal combustion engines. The Ni3Al based alloys produced by a directional solidification are also considered as a material for the fabrication of jet engine turbine blades. Moreover, development of composite materials with Ni3Al based alloys as a matrix hardened by, e.g., TiC, ZrO2, WC, SiC and graphene, is also reported. Due to special physical and chemical properties; it is expected that these materials in the form of thin foils and strips should make a significant contribution to the production of high tech devices, e.g., Micro Electro-Mechanical Systems (MEMS) or Microtechnology-based Energy and Chemical Systems (MECS); as well as heat exchangers; microreactors; micro-actuators; components of combustion chambers and gasket of rocket and jet engines as well components of high specific strength systems. Additionally, their catalytic properties may find an application in catalytic converters, air purification systems from chemical and biological toxic agents or in a hydrogen “production” by a decomposition of hydrocarbons.