WorldWideScience

Sample records for stable extracellular tyrosinase

  1. Molecular Cloning and Characteristic Features of a Novel Extracellular Tyrosinase from Aspergillus niger PA2.

    Science.gov (United States)

    Agarwal, Pragati; Singh, Jyoti; Singh, R P

    2017-05-01

    Aspergillus niger PA2, a novel strain isolated from waste effluents of food industry, is a potential extracellular tyrosinase producer. Enzyme activity and L-DOPA production were maximum when glucose and peptone were employed as C source and nitrogen source respectively in the medium and enhanced notably when the copper was supplemented, thus depicting the significance of copper in tyrosinase activity. Tyrosinase-encoding gene from the fungus was cloned, and amplification of the tyrosinase gene yielded a 1127-bp DNA fragment and 374 amino acid residue long product that encoded for a predicted protein of 42.3 kDa with an isoelectric point of 4.8. Primary sequence analysis of A. niger PA2 tyrosinase had shown that it had approximately 99% identity with that of A. niger CBS 513.88, which was further confirmed by phylogenetic analysis. The inferred amino acid sequence of A. niger tyrosinase contained two putative copper-binding sites comprising of six histidines, a characteristic feature for type-3 copper proteins, which were highly conserved in all tyrosinases throughout the Aspergillus species. When superimposed onto the tertiary structure of A. oryzae tyrosinase, the conserved residues from both the organisms occupied same spatial positions to provide a di-copper-binding peptide groove.

  2. Purification and characterization of RNA allied extracellular tyrosinase from Aspergillus species.

    Science.gov (United States)

    Inamdar, Shrirang; Joshi, Swati; Bapat, Vishwas; Jadhav, Jyoti

    2014-02-01

    Production of L-DOPA, an anti-Parkinson's drug, using biological sources is widely studied in which tyrosinase is known to play a vital role. Tyrosinase is an omnipresent type 3 copper enzyme participating in many essential biological functions. Understanding properties of tyrosinase is essential for developing useful tyrosinase-based applications. Hence, extracellular tyrosinase from Aspergillus flavus UWFP 570 was purified using ammonium sulphate precipitation and DEAE ion exchange chromatography up to 8.3-fold. Purified protein was a riboprotein in nature containing significant amount of RNA which was confirmed colorimetrically and by electrophoresis. Removal of RNA reduced the activity and altered the conformation of tyrosinase as suggested by spectroflurometric results. Optimum pH and temperature of this 140 kDa protein were 7 and 40 °C, respectively. Copper sulphate and magnesium chloride enhanced the activity whereas in contrast FeCl₃ inhibited the activity completely. Purified tyrosinase transformed L-tyrosine (5 mM) to L-DOPA within 5 h.

  3. Commercial cow milk contains physically stable extracellular vesicles expressing immunoregulatory TGF-β.

    Science.gov (United States)

    Pieters, Bartijn C H; Arntz, Onno J; Bennink, Miranda B; Broeren, Mathijs G A; van Caam, Arjan P M; Koenders, Marije I; van Lent, Peter L E M; van den Berg, Wim B; de Vries, Marieke; van der Kraan, Peter M; van de Loo, Fons A J

    2015-01-01

    Extracellular vesicles, including exosomes, have been identified in all biological fluids and rediscovered as an important part of the intercellular communication. Breast milk also contains extracellular vesicles and the proposed biological function is to enhance the antimicrobial defense in newborns. It is, however, unknown whether extracellular vesicles are still present in commercial milk and, more importantly, whether they retained their bioactivity. Here, we characterize the extracellular vesicles present in semi-skimmed cow milk available for consumers and study their effect on T cells. Extracellular vesicles from commercial milk were isolated and characterized. Milk-derived extracellular vesicles contained several immunomodulating miRNAs and membrane protein CD63, characteristics of exosomes. In contrast to RAW 267.4 derived extracellular vesicles the milk-derived extracellular vesicles were extremely stable under degrading conditions, including low pH, boiling and freezing. Milk-derived extracellular vesicles were easily taken up by murine macrophages in vitro. Furthermore, we found that they can facilitate T cell differentiation towards the pathogenic Th17 lineage. Using a (CAGA)12-luc reporter assay we showed that these extracellular vesicles carried bioactive TGF-β, and that anti-TGF-β antibodies blocked Th17 differentiation. Our findings show that commercial milk contains stable extracellular vesicles, including exosomes, and carry immunoregulatory cargo. These data suggest that the extracellular vesicles present in commercial cow milk remains intact in the gastrointestinal tract and exert an immunoregulatory effect.

  4. An immunofluorescence assay for extracellular matrix components highlights the role of epithelial cells in producing a stable, fibrillar extracellular matrix

    Directory of Open Access Journals (Sweden)

    Omar S. Qureshi

    2017-10-01

    Full Text Available Activated fibroblasts are considered major drivers of fibrotic disease progression through the production of excessive extracellular matrix (ECM in response to signals from damaged epithelial and inflammatory cells. Nevertheless, epithelial cells are capable of expressing components of the ECM, cross-linking enzymes that increase its stability and are sensitive to factors involved in the early stages of fibrosis. We therefore wanted to test the hypothesis that epithelial cells can deposit ECM in response to stimulation in a comparable manner to fibroblasts. We performed immunofluorescence analysis of components of stable, mature extracellular matrix produced by primary human renal proximal tubular epithelial cells and renal fibroblasts in response to cytokine stimulation. Whilst fibroblasts produced a higher basal level of extracellular matrix components, epithelial cells were able to deposit significant levels of fibronectin, collagen I, III and IV in response to cytokine stimulation. In response to hypoxia, epithelial cells showed an increase in collagen IV deposition but not in response to the acute stress stimuli aristolochic acid or hydrogen peroxide. When epithelial cells were in co-culture with fibroblasts we observed significant increases in the level of matrix deposition which could be reduced by transforming growth factor beta (TGF-β blockade. Our results highlight the role of epithelial cells acting as efficient producers of stable extracellular matrix which could contribute to renal tubule thickening in fibrosis.

  5. On the conformational state of photoinactivated tyrosinase

    International Nuclear Information System (INIS)

    Khan, I.A.; Ali, R.

    1985-01-01

    Ultraviolet irradiation of tyrosinase rapidly decreased the dopa oxidase activity of the enzyme. Hydrodynamic, kinetic and thermodynamic parameters revealed gross differences in the native and photoinactivated states of the enzyme. The native state of tyrosinase was characterized as a tetramer with a compact, globular and rigid conformation. However, the photoinactivated state of tyrosinase was thermodynamically less stable and unusually sensitive to temperatures as low as 35 0 C. From the dose dependent loss in conformational integrity, thermodynamic stability and catalytic activity of tyrosinase, it is speculated that there are various structural segments distributed throughout the enzyme molecule. These structural segments act as centres of major molecular forces which hold the tetrameric enzyme into a compact and globular conformation. UV modification of these segments triggers a series of conformational changes leading to formation of a partially unfolded and catalytically inactive form of tyrosinase. (author)

  6. Inhibitory mechanisms of glabridin on tyrosinase

    Science.gov (United States)

    Chen, Jianmin; Yu, Xiaojing; Huang, Yufeng

    2016-11-01

    Tyrosinase is an oxidase that is the rate-limiting enzyme for controlling the production of melanin in the human body. Overproduction of melanin could lead to a variety of skin disorders. Glabridin, an isoflavan, isolated from the root of Glycyrrhiza glabra Linn, has exhibited several pharmacological activities, including excellent inhibitory effects on tyrosinase. In this paper, the inhibitory kinetics of glabridin on tyrosinase and their binding mechanisms were determined using spectroscopic, zebrafish model and molecular docking techniques. The results indicate that glabridin reversibly inhibits tyrosinase in a noncompetitive manner through a multiphase kinetic process with the IC50 of 0.43 μmol/L. It has been shown that glabridin had a strong ability to quench the intrinsic fluorescence of tyrosinase mainly through a static quenching procedure, suggesting a stable glabridin-tyrosinase complex may be generated. The results of molecular docking suggest that glabridin did not directly bind to the active site of tyrosinase. Moreover, according to the results of zebrafish model system, glabridin shows no effects on melanin synthesis in zebrafish but presents toxicity to zebrafish embryo. The possible inhibitory mechanisms, which will help to design and search for tyrosinase inhibitors especially for glabridin analogues, were proposed.

  7. Commercial cow milk contains physically stable extracellular vesicles expressing immunoregulatory TGF-beta

    NARCIS (Netherlands)

    Pieters, B.C.; Arntz, O.J.; Bennink, M.B.; Broeren, M.G.; Caam, A.P.M. van; Koenders, M.I.; Lent, P.L. van; Berg, W.B. van den; Vries, M. de; Kraan, P.M. van der; Loo, F.A.J. van de

    2015-01-01

    SCOPE: Extracellular vesicles, including exosomes, have been identified in all biological fluids and rediscovered as an important part of the intercellular communication. Breast milk also contains extracellular vesicles and the proposed biological function is to enhance the antimicrobial defense in

  8. Biological variation of extracellular matrix biomarkers in patients with stable chronic heart failure.

    Science.gov (United States)

    Täger, Tobias; Wiebalck, Clara; Fröhlich, Hanna; Corletto, Anna; Katus, Hugo A; Frankenstein, Lutz

    2017-12-01

    Extracellular matrix (ECM) biomarkers such as matrix metalloproteinases (MMPs) and their inhibitors (TIMPs) are pathophysiological key, prognostic marker and therapeutic target in chronic heart failure (HF). Serial measurements of MMPs and TIMPs may be useful for guidance of these applications. However, interpretation of time-dependent changes requires knowledge about the biological variation of ECM biomarkers. We performed measurements of MMP-2, MMP-9, TIMP-1, and TIMP-4 in 50 patients with chronic HF who met rigid criteria for clinical stability at 3-h, 6-h, 1-week and 2-week time intervals. In addition, clinical and haemodynamic assessment was performed at baseline, at 1- and 2-week intervals. Haemodynamic variables were measured using inert gas rebreathing and impedance cardiography. Heart rhythm was monitored with external ECG event recorders throughout the complete study. Reference change values (RCVs) and minimal important differences (MIDs) were determined for MMP-2, MMP-9, TIMP-1, and TIMP-4. Clinical and haemodynamic variables were stable over time. Depending on the time-interval, RCVs ranged between 4.9 and 11.7% for MMP-2, 26.4 and 56.7% for MMP-9, 10.8 and 30.7% for TIMP-1, and 16.0 and 47.4% for TIMP-4, respectively. The MIDs varied between 43.38 and 65.22 ng/ml for MMP-2, 28.71 and 40.96 ng/ml for MMP-9, 52.32 and 156.07 ng/ml for TIMP-1, and 293.92 and 798.04 pg/ml for TIMP-4, respectively. The biological variation of ECM biomarkers differs with respect to individual biomarkers and time intervals. MMP-2 may be most suitable for serial biomarker measurements, as the biological variation is low irrespective of the time interval between measurements.

  9. Fluorescence properties of Neurospora tyrosinase.

    Science.gov (United States)

    Beltramini, M; Lerch, K

    1982-01-01

    Some structural properties of Neurospora tyrosinase have been studied by fluorescence spectroscopy. The emission spectra observed for oxy-, deoxy-, met- and apo-tyrosinase and the Co2+-substituted form are indicative of a protein containing buried tryptophan residues. By using acrylamide and iodide, part of the emission is quenched, indicating heterogeneity in the tryptophan environment. Upon binding of Cu2+ or Co2+ to apo-tyrosinase, a marked decrease of the tryptophan quantum yield is observed. A further decrease in emission intensity results from the binding of molecular O2 to the deoxy form. The fluorescent probe 8-anilinonaphthalene-1-sulphonate binds to tyrosinase only when the metal ions are removed. Reconstitution of apo-tyrosinase with Cu2+ completely displaces the probe, suggesting that 8-anilinonaphthalene-1-sulphonate binds to apo-tyrosinase at the active site. The fluorescence properties of Neurospora tyrosinase are compared with those of haemocyanin. PMID:6215031

  10. Induction of pigmentation in mouse fibroblasts by expression of human tyrosinase cDNA

    Science.gov (United States)

    1989-01-01

    A distinguishing characteristic of cells of the melanocyte lineage is the expression of the melanosomal enzyme tyrosinase that catalyzes the synthesis of the pigment melanin. A tyrosinase cDNA clone, designated BBTY-1, was isolated from a library constructed from the pigmented TA99+/CF21+ melanoma cell line SK-MEL-19. Expression of BBTY-1 in mouse L929 fibroblasts led to synthesis and expression of active tyrosinase, and, unexpectedly, to stable production of melanin. Melanin was synthesized and stored within membrane-bound vesicles in the cytoplasm of transfected fibroblasts. BBTY-1 detected a 2.4-kb mRNA transcript in nine of nine pigmented, tyrosinase-positive melanoma cell lines. Tyrosinase transcripts of the same size and abundance were detected in a subset (three of eight) of nonpigmented, tyrosinase-negative melanoma cell lines, suggesting that post-transcriptional events are important in regulating tyrosinase activity. Two melanocyte antigens, recognized by mAbs TA99 and CF21, that are specifically located within melanosomes and are coexpressed with tyrosinase activity, did not react with transfected mouse fibroblasts expressing human tyrosinase, supporting the conclusion that these antigenic determinants are distinct from the tyrosinase molecule coded for by BBTY-1. PMID:2499655

  11. Purification and characterization of an extracellular, thermo-alkali-stable, metal tolerant laccase from Bacillus tequilensis SN4.

    Directory of Open Access Journals (Sweden)

    Sonica Sondhi

    Full Text Available A novel extracellular thermo-alkali-stable laccase from Bacillus tequilensis SN4 (SN4LAC was purified to homogeneity. The laccase was a monomeric protein of molecular weight 32 KDa. UV-visible spectrum and peptide mass fingerprinting results showed that SN4LAC is a multicopper oxidase. Laccase was active in broad range of phenolic and non-phenolic substrates. Catalytic efficiency (kcat/Km showed that 2, 6-dimethoxyphenol was most efficiently oxidized by the enzyme. The enzyme was inhibited by conventional inhibitors of laccase like sodium azide, cysteine, dithiothreitol and β-mercaptoethanol. SN4LAC was found to be highly thermostable, having temperature optimum at 85°C and could retain more than 80% activity at 70°C for 24 h. The optimum pH of activity for 2, 6-dimethoxyphenol, 2, 2'-azino bis[3-ethylbenzthiazoline-6-sulfonate], syringaldazine and guaiacol was 8.0, 5.5, 6.5 and 8.0 respectively. Enzyme was alkali-stable as it retained more than 75% activity at pH 9.0 for 24 h. Activity of the enzyme was significantly enhanced by Cu2+, Co2+, SDS and CTAB, while it was stable in the presence of halides, most of the other metal ions and surfactants. The extracellular nature and stability of SN4LAC in extreme conditions such as high temperature, pH, heavy metals, halides and detergents makes it a highly suitable candidate for biotechnological and industrial applications.

  12. Kinetics Study of Extracellular Detergent Stable Alkaline Protease from Rhizopus oryzae

    Directory of Open Access Journals (Sweden)

    Zareena Mushtaq

    2015-04-01

    Full Text Available In this study, extracellular alkaline protease was produced from Rhizopus oryzae in submerged fermentation using dairy waste (whey as a substrate. Fermentation kinetics was studied and various parameters were optimized. The strain produced maximum protease at initial medium pH of 6.0 medium depth of 26 mm, inoculum size of 2% at incubation temperature of 35ºC for 168 h of fermentation. Alkaline protease was purified to homogeneity by ammonium sulphate fractionation followed by sephadex G-100 chromatography. The molecular mass of alkaline protease was 69 kDa determined by 10% SDS-PAGE. The optimum pH and temperature of alkaline protease was 9.0 and 40ºC, respectively. Metal profile of the enzyme showed that the enzyme was non-metallic in nature. The Km , Kcat , Vmax and Kcat/Km values of purified protease were 7.0 mg/mL, 3.8 x102S-1, 54.30 µmol/min and 54.28 s-1mg -1.mL respectively, using casein as substrate. The purified alkaline protease had stability with commercial detergents.

  13. An extracellular thermo-alkali-stable laccase from Bacillus tequilensis SN4, with a potential to biobleach softwood pulp.

    Science.gov (United States)

    Sondhi, Sonica; Sharma, Prince; George, Nancy; Chauhan, Prakram Singh; Puri, Neena; Gupta, Naveen

    2015-04-01

    Degradation of residual lignin in kraft pulp by chemical bleaching is implicated in causing environmental pollution. The use of thermo- and alkali-tolerant bacterial laccases is considered to be important biological alternative to chemical processing. Laccases from Bacillus species have shown promise in this respect but their intracellular/spore bound presence make their industrial application economically unfeasible. We report here on a novel extracellular active thermo-alkali-stable laccase (SN4 laccase)  which is active at 90 °C and pH 8.0 using 2,6-dimethoxyphenol as substrate from Bacillus tequilensis SN4. SN4 laccase retained 27 % activity for 5 min at 100 °C and more than 80 % activity for 24 h at 70 °C. The enzyme is also stable at a higher pH (9.0-10.0). Enzyme production was optimized by submerged fermentation. Relatively high yields (18,356 nkats ml -1 ) of SN4 laccase was obtained in a medium containing 650 μM MnSO 4 , 350 μM FeSO 4 , and 3.5 % ethanol. A 764-fold increase in laccase activity was observed under optimal conditions. In addition, reduction in kappa number and increase in brightness of softwood pulp by 28 and 7.6 %, respectively, were observed after treatment with SN4 laccase without a mediator. When N-hydroxybenzotriazole was used as a mediator, the kappa number was decreased to 47 % and brightness was increased to 12 %.

  14. Inhibitory Effect of Arctigenin from Fructus Arctii Extract on Melanin Synthesis via Repression of Tyrosinase Expression

    Directory of Open Access Journals (Sweden)

    Hwayong Park

    2013-01-01

    Full Text Available To identify the active compound arctigenin in Fructus Arctii (dried seed of medicinal plant Arctium lappa and to elucidate the inhibitory mechanism in melanogenesis, we analyzed melanin content and tyrosinase activity on B16BL6 murine melanoma and melan-A cell cultures. Water extracts of Fructus Arctii were shown to inhibit tyrosinase activity in vitro and melanin content in α-melanocyte stimulating hormone-stimulated cells to similar levels as the well-known kojic acid and arbutin, respectively. The active compound arctigenin of Fructus Arctii displayed little or no cytotoxicity at all concentrations examined and decreased the relative melanin content and tyrosinase activity in a dose-dependent manner. Melanogenic inhibitory activity was also identified in vivo with zebrafish embryo. To determine the mechanism of inhibition, the effects of arctigenin on tyrosinase gene expression and tyrosinase promoter activity were examined. Also in addition, in the signaling cascade, arctigenin dose dependently decreased the cAMP level and promoted the phosphorylation of extracellular signal-regulated kinase. This result suggests that arctigenin downregulates cAMP and the tyrosinase enzyme through its gene promoter and subsequently upregulates extracellular signal-regulated kinase activity by increasing phosphorylation in the melanogenesis signaling pathway, which leads to a lower melanin content.

  15. Inhibitory Effect of Arctigenin from Fructus Arctii Extract on Melanin Synthesis via Repression of Tyrosinase Expression

    Science.gov (United States)

    Park, Hwayong; Song, Kwang Hoon; Jung, Pil Mun; Kim, Ji-Eun; Kim, Mi Yoon; Ma, Jin Yeul

    2013-01-01

    To identify the active compound arctigenin in Fructus Arctii (dried seed of medicinal plant Arctium lappa) and to elucidate the inhibitory mechanism in melanogenesis, we analyzed melanin content and tyrosinase activity on B16BL6 murine melanoma and melan-A cell cultures. Water extracts of Fructus Arctii were shown to inhibit tyrosinase activity in vitro and melanin content in α-melanocyte stimulating hormone-stimulated cells to similar levels as the well-known kojic acid and arbutin, respectively. The active compound arctigenin of Fructus Arctii displayed little or no cytotoxicity at all concentrations examined and decreased the relative melanin content and tyrosinase activity in a dose-dependent manner. Melanogenic inhibitory activity was also identified in vivo with zebrafish embryo. To determine the mechanism of inhibition, the effects of arctigenin on tyrosinase gene expression and tyrosinase promoter activity were examined. Also in addition, in the signaling cascade, arctigenin dose dependently decreased the cAMP level and promoted the phosphorylation of extracellular signal-regulated kinase. This result suggests that arctigenin downregulates cAMP and the tyrosinase enzyme through its gene promoter and subsequently upregulates extracellular signal-regulated kinase activity by increasing phosphorylation in the melanogenesis signaling pathway, which leads to a lower melanin content. PMID:23781272

  16. Purification of Recombinant Human Tyrosinase from Insect Larvae Infected with the Baculovirus Vector.

    Science.gov (United States)

    Dolinska, Monika B; Wingfield, Paul T; Sergeev, Yuri V

    2017-08-01

    The purification of an enzyme from insect larvae infected with a baculovirus vector is described. The enzyme tyrosinase is of biomedical importance and catalyzes the first rate-limiting steps in melanin production. Tyrosinase mutations can result in oculocutaneous albinism type 1 (OCA1), an inherited eye disease associated with decreased melanin pigment production and vision defects. To simplify expression and subsequent purification, the extracellular domain is expressed in insect cells, produced in Trichoplusia ni larvae, and purified using affinity and size-exclusion chromatography. The purified recombinant human tyrosinase is a soluble monomeric glycoprotein with an activity that mirrors the tyrosinase in vivo function. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.

  17. Homozygous tyrosinase gene mutation in an American black with tyrosinase-negative (type IA) oculocutaneous albinism.

    OpenAIRE

    Spritz, R A; Strunk, K M; Hsieh, C L; Sekhon, G S; Francke, U

    1991-01-01

    We have identified a tyrosinase gene mutation in an American black with classic, tyrosinase-negative oculocutaneous albinism. This mutation results in an amino acid substitution (Cys----Arg) at codon 89 of the tyrosinase polypeptide. The proband is homozygous for the substitution, suggesting that this mutation may be frequently associated with tyrosinase-negative oculocutaneous albinism in blacks.

  18. Light stimulation of iris tyrosinase in vivo

    International Nuclear Information System (INIS)

    Dryja, T.P.; Kimball, G.P.; Albert, D.M.

    1980-01-01

    This paper presents evidence that light stimulates tyrosinase activity in iris melanocytes in rabbits. Levels of iris tyrosinase were found to be greater in eyes of rabbits exposed to light for 6 weeks than in eyes of rabbits maintained in darkness. Despite increasing tyrosinase levels, exposure to light produced no clinically observable change in iris color

  19. Novel peptides with tyrosinase inhibitory activity

    NARCIS (Netherlands)

    Schurink, M.; Berkel, van W.J.H.; Wichers, H.J.; Boeriu, C.G.

    2007-01-01

    Tyrosinase inhibition by peptides may find its application in food, cosmetics or medicine. In order to identify novel tyrosinase inhibitory peptides, protein-based peptide libraries made by SPOT synthesis were used to screen for peptides that show direct interaction with tyrosinase. One of the

  20. A frequent tyrosinase gene mutation in classic, tyrosinase-negative (type IA) oculocutaneous albinism.

    OpenAIRE

    Giebel, L B; Strunk, K M; King, R A; Hanifin, J M; Spritz, R A

    1990-01-01

    We have identified a tyrosinase gene mutation in several patients with classic, tyrosinase-negative (type IA) oculocutaneous albinism. This mutation, which results in a proline----leucine substitution at codon 81 of the tyrosinase polypeptide (EC 1.14.18.1), was observed in 20% (6 of 30) of oculocutaneous albinism alleles from independent probands, but it was not observed in any normal individuals. This mutation thus appears to be a frequent cause of tyrosinase-negative oculocutaneous albinism.

  1. Microwave-assisted rapid extracellular synthesis of stable bio-functionalized silver nanoparticles from guava (Psidium guajava) leaf extract

    Energy Technology Data Exchange (ETDEWEB)

    Raghunandan, Deshpande [H.K.E.S' s College of Pharmacy (India); Mahesh, Bedre D. [Gulbarga University, Materials Chemistry Laboratory, Department of Material Science (India); Basavaraja, S. [Jawaharlal Nehru Centre for Advanced Scientific Research, Veeco-India Nanotechnology Laboratory (India); Balaji, S. D. [Gulbarga University, Materials Chemistry Laboratory, Department of Material Science (India); Manjunath, S. Y. [Sri Krupa, Institute of Pharmaceutical Science (India); Venkataraman, A., E-mail: raman_chem@rediffmail.com [Gulbarga University, Materials Chemistry Laboratory, Department of Material Science (India)

    2011-05-15

    Our research interest centers on microwave-assisted rapid extracellular synthesis of bio-functionalized silver nanoparticles of 26 {+-} 5 nm from guava (Psidium guajava) leaf extract with control over dimension and composition. The reaction occurs very rapidly as the formation of spherical nanoparticles almost completed within 90 s. The probable pathway of the biosynthesis is suggested. Appearance, crystalline nature, size and shape of nanoparticles are understood by UV-vis (UV-vis spectroscopy), FTIR (fourier transform infrared spectroscopy), XRD (X-ray diffraction), FESEM (field emission scanning electron microscopy) and TEM (transmission electron microscopy) techniques. Microwave-assisted route is selected for the synthesis of silver nanoparticles to carry out the reaction fast, suppress the enzymatic action and to keep the process environmentally clean and green.

  2. Microwave-assisted rapid extracellular synthesis of stable bio-functionalized silver nanoparticles from guava ( Psidium guajava) leaf extract

    Science.gov (United States)

    Raghunandan, Deshpande; Mahesh, Bedre D.; Basavaraja, S.; Balaji, S. D.; Manjunath, S. Y.; Venkataraman, A.

    2011-05-01

    Our research interest centers on microwave-assisted rapid extracellular synthesis of bio-functionalized silver nanoparticles of 26 ± 5 nm from guava ( Psidium guajava) leaf extract with control over dimension and composition. The reaction occurs very rapidly as the formation of spherical nanoparticles almost completed within 90 s. The probable pathway of the biosynthesis is suggested. Appearance, crystalline nature, size and shape of nanoparticles are understood by UV-vis (UV-vis spectroscopy), FTIR (fourier transform infrared spectroscopy), XRD (X-ray diffraction), FESEM (field emission scanning electron microscopy) and TEM (transmission electron microscopy) techniques. Microwave-assisted route is selected for the synthesis of silver nanoparticles to carry out the reaction fast, suppress the enzymatic action and to keep the process environmentally clean and green.

  3. Microwave-assisted rapid extracellular synthesis of stable bio-functionalized silver nanoparticles from guava (Psidium guajava) leaf extract

    International Nuclear Information System (INIS)

    Raghunandan, Deshpande; Mahesh, Bedre D.; Basavaraja, S.; Balaji, S. D.; Manjunath, S. Y.; Venkataraman, A.

    2011-01-01

    Our research interest centers on microwave-assisted rapid extracellular synthesis of bio-functionalized silver nanoparticles of 26 ± 5 nm from guava (Psidium guajava) leaf extract with control over dimension and composition. The reaction occurs very rapidly as the formation of spherical nanoparticles almost completed within 90 s. The probable pathway of the biosynthesis is suggested. Appearance, crystalline nature, size and shape of nanoparticles are understood by UV–vis (UV–vis spectroscopy), FTIR (fourier transform infrared spectroscopy), XRD (X-ray diffraction), FESEM (field emission scanning electron microscopy) and TEM (transmission electron microscopy) techniques. Microwave-assisted route is selected for the synthesis of silver nanoparticles to carry out the reaction fast, suppress the enzymatic action and to keep the process environmentally clean and green.

  4. Molecular inhibitory mechanism of tricin on tyrosinase

    Science.gov (United States)

    Mu, Yan; Li, Lin; Hu, Song-Qing

    2013-04-01

    Tricin was evaluated as a type of tyrosinase inhibitor with good efficacy compared to arbutin. Tricin functioned as a non-competitive inhibitor of tyrosinase, with an equilibrium constant of 2.30 mmol/L. The molecular mechanisms underlying the inhibition of tyrosinase by tricin were investigated by means of circular dichroism spectra, fluorescence quenching and molecular docking. These assays demonstrated that the interactions between tricin and tyrosinase did not change the secondary structure. The interaction of tricin with residues in the hydrophobic pocket of tyrosinase was revealed by fluorescence quenching; the complex was stabilized by hydrophobic associations and hydrogen bonding (with residues Asn80 and Arg267). Docking results implied that the possible inhibitory mechanisms may be attributed to the stereospecific blockade effects of tricin on substrates or products and flexible conformation alterations in the tyrosinase active center caused by weak interactions between tyrosinase and tricin. The application of this type of flavonoid as a tyrosinase inhibitor will lead to significant advances in the field of depigmentation.

  5. Tyrosinase inactivation in organic solvents.

    Science.gov (United States)

    Warrington, J C; Saville, B A

    1999-11-05

    The inactivation of the catecholase activity of mushroom tyrosinase was investigated under nonaqueous conditions. The enzyme was immobilized on glass beads, and assays were conducted in chloroform, toluene, amyl acetate, isopropyl ether, and butanol. The reaction components were pre-equilibrated for 2 weeks with a saturated salt solution at a water activity of 0.90. The initial reaction velocity varied between 1.3 x 10(3) mol product/((mol enzyme)(min)) in toluene and 8.7 x 10(3) mol product/((mol enzyme)(min)) in amyl acetate. The turnover number varied between 8.1 x 10(3) mol product/mol enzyme in toluene and 7.2 x 10(4) mol product/mol enzyme in amyl acetate. In each solvent, the tyrosinase reaction inactivation parameters were represented by a probabilistic model. Changes in the probability of inactivation were followed throughout the course of the reaction using a second model which relates the reaction velocity to the amount of product formed. These models reveal that the inactivation rate of tyrosinase decreases as the reaction progresses, and that the inactivation kinetics are independent of the quinone concentration in toluene, chloroform, butanol, and amyl acetate. Significant effects of quinone concentration were, however, observed in isopropyl ether. The likelihood of inactivation of the enzyme was found to be greatest toward the beginning of the reaction. In the latter phase of the reaction, inactivation probability was less and tended to remain constant until the completion of the reaction. Copyright 1999 John Wiley & Sons, Inc.

  6. Expression of the murine wild-type tyrosinase gene in transgenic rabbits.

    Science.gov (United States)

    Aigner, B; Besenfelder, U; Seregi, J; Frenyo, L V; Sahin-Toth, T; Brem, G

    1996-11-01

    The tyrosinase gene is known to be essential for melanization and has been shown to rescue pigmentation in albino mice. Previously we have described the strict copy-number-dependent expression of a murine wild-type tyrosinase gene construct over several generations in transgenic mice. In this study, we analysed the same gene construct as a marker gene for the transmission and expression of transgenes in rabbits. Using an albino hybrid strain, we produced transgenic rabbits expressing the murine tyrosinase gene. Strict correlation between integration and expression of the transgene and stable germline transmission of the integrated gene construct according to the Mendelian pattern of inheritance was observed. Thus, breeding control was facilitated by simple phenotypic examination of the transgenic animals. In contrast to mice transgenic for the same gene construct, tyrosinase-transgenic rabbits showed a greater variety in hue, intensity and extent of coat pigmentation, which is caused by the diversity in the loci affecting the melanization. Benefits and limitations of tyrosinase as a marker gene for the detection of homozygous individuals in the albino hybrid strain used are discussed.

  7. Regioselective hydroxylation of trans-resveratrol via inhibition of tyrosinase from Streptomyces avermitilis MA4680.

    Science.gov (United States)

    Lee, Nahum; Kim, Eun Jung; Kim, Byung-Gee

    2012-10-19

    Secreted tyrosinase from melanin-forming Streptomyces avermitilis MA4680 was involved in both ortho-hydroxylation and further oxidation of trans-resveratrol, leading to the formation of melanin. This finding was confirmed by constructing deletion mutants of melC(2) and melD(2) encoding extracellular and intracellular tyrosinase, respectively; the melC2 deletion mutant did not produce piceatannol as well as melanin, whereas the melD2 deletion mutant oxidized resveratrol and synthesized melanin with the same yields, suggesting that MelC2 is responsible for ortho-hydroxylation of resveratrol. Extracellular tyrosinase (MelC2) efficiently converted trans-resveratrol into piceatannol in the presence of either tyrosinase inhibitors or reducing agents such as catechol, NADH, and ascorbic acid. Reducing agents slow down the dioxygenase reaction of tyrosinase. In the presence of catechol, the regio-specific hydroxylation of trans-resveratrol was successfully performed by whole cell biotransformation, and further oxidation of trans-resveratrol was efficiently blocked. The yield of this ortho-hydroxylation of trans-resveratrol was dependent upon inhibitor concentration. Using 1.8 mg of wild-type Streptomyces avermitilis cells, the conversion yield of 100 μM trans-resveratrol to piceatannol was 78% in 3 h in the presence of 1 mM catechol, indicating 14 μM piceatannol h(-1) DCW mg(-1) specific productivity, which was a 14-fold increase in conversion yield compared to that without catechol, which is a remarkably higher reaction rate than that of P450 bioconversion. This method could be generally applied to biocatalysis of various dioxygenases.

  8. Human tyrosinase inhibitor in rum distillate wastewater.

    Science.gov (United States)

    Takara, Kensaku; Iwasaki, Hironori; Ujihara, Kunihiro; Wada, Koji

    2008-01-01

    An inhibitor of human tyrosinase activity in rum distillate wastewater was isolated and identified as (S)-(+)-imperanene (1). (S)-(+)-Imperanene significantly inhibited tyrosinase isolated from HMV-II cells (IC(50) 1.85 mM). Inhibition kinetics studies revealed that imperanene is a competitive inhibitor of tyrosinase when L-3,4-dihydroxyphenylalanine is used as the substrate. The inhibitory activities of 1, O-beta-D-glucopyranosyl imperanene (2) and O-beta-D-glucopyranosyl-3-methoxyl imperanene (3) were 1>2>3.

  9. An Updated Review of Tyrosinase Inhibitors

    Directory of Open Access Journals (Sweden)

    Te-Sheng Chang

    2009-05-01

    Full Text Available Tyrosinase is a multifunctional, glycosylated, and copper-containing oxidase, which catalyzes the first two steps in mammalian melanogenesis and is responsible for enzymatic browning reactions in damaged fruits during post-harvest handling and processing. Neither hyperpigmentation in human skin nor enzymatic browning in fruits are desirable. These phenomena have encouraged researchers to seek new potent tyrosinase inhibitors for use in foods and cosmetics. This article surveys tyrosinase inhibitors newly discovered from natural and synthetic sources. The inhibitory strength is compared with that of a standard inhibitor, kojic acid, and their inhibitory mechanisms are discussed.

  10. An Updated Review of Tyrosinase Inhibitors

    Science.gov (United States)

    Chang, Te-Sheng

    2009-01-01

    Tyrosinase is a multifunctional, glycosylated, and copper-containing oxidase, which catalyzes the first two steps in mammalian melanogenesis and is responsible for enzymatic browning reactions in damaged fruits during post-harvest handling and processing. Neither hyperpigmentation in human skin nor enzymatic browning in fruits are desirable. These phenomena have encouraged researchers to seek new potent tyrosinase inhibitors for use in foods and cosmetics. This article surveys tyrosinase inhibitors newly discovered from natural and synthetic sources. The inhibitory strength is compared with that of a standard inhibitor, kojic acid, and their inhibitory mechanisms are discussed. PMID:19582213

  11. Using tyrosinase as a monophenol monooxygenase: A combined strategy for effective inhibition of melanin formation.

    Science.gov (United States)

    Lee, Sang-Hyuk; Baek, Kiheon; Lee, Ju-Eun; Kim, Byung-Gee

    2016-04-01

    Tyrosinase is a binuclear copper-containing metalloprotein that leads the fast and regio-selective o-hydroxylation of monophenols to o-diphenols. However, the subsequent second oxidation to produce o-quinones, i.e., melanin precursors, from the o-diphenols has restricted its use to the production of functional o-diphenol derivatives. Herein, we present a combined strategy for the effective inhibition of melanin formation in tyrosinase reaction, which allows the use of tyrosinase as a monophenol monooxygenase. The o-diphenolic products were protected from being oxidized in the tyrosinase reaction by borate ions and L-ascorbic acid (LAA). Borate-o-diphenol complexes were favorable formed at high pH and consequentially protected the o-diphenolic products from the catecholase activity of tyrosinase. LAA not only directly reduced the byproduct, o-quinones, into o-diphenols but also assisted the completion of the tyrosinase reaction cycle by removing a hydroxyl group attached to the copper metal cluster at the active site of the met-form tyrosinase. The regio-selective o-hydroxylation of 7,4'-dihydroxyisoflavone (daidzein) to produce 7,3',4'-trihydroxyisoflavone (3'-ODI) was successfully carried out by whole E. coli cell biotransformation with heterologously expressed tyrosinase from Bacillus megaterium. The yield of this o-hydroxylation of 5 mM daidzein in one-pot 400 mL reaction was ca. 100% in 90 min and the productivity was 16.3 mg 3'-ODI · L(-1)  ·  h(-1)  ·  DCW mg(-1), which is considerably higher than that of other monooxygenases. The method effectively abolished melanin synthesis, so that the o-diphenolic product remained stable without enzyme inactivation. Other monophenolic phytochemicals such as resveratrol and genistein could be subjected to the same strategy. After 1 h, 1 mM of genistein and resveratrol were both converted to orobol and piceatannol, respectively, with ca. 95% conversion yield. These results support the strong

  12. Structure–function correlations in tyrosinases

    Science.gov (United States)

    Kanteev, Margarita; Goldfeder, Mor; Fishman, Ayelet

    2015-01-01

    Tyrosinases are metalloenzymes belonging to the type-3 copper protein family which contain two copper ions in the active site. They are found in various prokaryotes as well as in plants, fungi, arthropods, and mammals and are responsible for pigmentation, wound healing, radiation protection, and primary immune response. Tyrosinases perform two sequential enzymatic reactions: hydroxylation of monophenols and oxidation of diphenols to form quinones which polymerize spontaneously to melanin. Two other members of this family are catechol oxidases, which are prevalent mainly in plants and perform only the second oxidation step, and hemocyanins, which lack enzymatic activity and are oxygen carriers. In the last decade, several structures of plant and bacterial tyrosinases were determined, some with substrates or inhibitors, highlighting features and residues which are important for copper uptake and catalysis. This review summarizes the updated information on structure–function correlations in tyrosinases along with comparison to other type-3 copper proteins. PMID:26104241

  13. Inhibition of Mushroom Tyrosinase Activity by Orsellinates.

    Science.gov (United States)

    Lopes, Thiago Inácio Barros; Coelho, Roberta Gomes; Honda, Neli Kika

    2018-01-01

    Several applications have been proposed for tyrosinase inhibitors in the pharmaceutical, food bioprocessing, and environmental industries. However, only a few compounds are known to serve as effective tyrosinase inhibitors. This study evaluated the tyrosinase-related activity of resorcinol (1), orcinol (2) lecanoric acid (3), and derivatives of this acid (4-15). Subjected to alcoholysis, lecanoric acid (3), a depside isolated from the lichen Parmotrema tinctorum, produces orsellinic acid (2,4-dihydroxy-6-methylbenzoic acid) (4) and orsellinates (2,4-dihydroxy-6-methyl benzoates) (5-15). At 0.50 mM, methyl (5), ethyl (6), n-propyl (7), tert-butyl (11), and n-cetyl orsellinates (15) acted as tyrosinase activators, whereas n-butyl (8), iso-propyl (9), sec-butyl (10), n-pentyl (12), n-hexyl (13), and n-octyl orsellinates (14) behaved as inhibitors. Tyrosinase inhibition rose with chain elongation-n-butyl (8)tyrosinase, with an inhibition constant of 0.99 mM.

  14. Structure and Function of Human Tyrosinase and Tyrosinase-Related Proteins

    NARCIS (Netherlands)

    Lai, Xuelei; Wichers, Harry J.; Soler-Lopez, Montserrat; Dijkstra, Bauke W.

    2018-01-01

    Melanin is the main pigment responsible for the color of human skin, hair and eye. Its biosynthesis requires three melanogenic enzymes, tyrosinase (TYR), and the tyrosinase-related proteins TYRP1 and TYRP2. The difficulty of isolating pure and homogeneous proteins from endogenous sources has

  15. SEARCH OF NEW SYNTHETIC INHIBITORS OF TYROSINASE

    Directory of Open Access Journals (Sweden)

    Yu. Shesterenko

    2017-11-01

    Full Text Available Melanin pigmentation of skin plays the most important role in the protection of organism against UV-irradiation, but the excessive accumulation of melanin brings to toxic melanodermia, melasma, lentigo and other skin lesions. Tyrosinase is the key enzyme of skin melanin pigment biosynthesis. In spite of certain progress in investigation of natural and synthetic tyrosinase inhibitors, actuality of such studies is of a high level, because the existing inhibitors are in some cases unstable, expensive, toxic, requires complex methods of synthesis or isolation from natural sources. The aim of the work is screening of new tyrosinase inhibitors, using the enzyme, isolated from Agaricus bisporus. Tyrosinase was isolated from Agaricus bisporus mushrooms by a modified method. It was found, that the introduction of polyethylene glycol 4000 in the extraction process promotes 3-fold reduction of polyphenol content, which leads to increase purity of enzyme with an increase in its activity by 25%. A search for new tyrosinase inhibitors among a wide range of compounds, including derivatives of 3-chloro-1,4-naphthoquinone, isatin, 3-hydroxy-2-naphthoic acid, etc was conducted. The studied substances did not displayed inhibitory effect at concentration of 0,1-0,5 mmol/dm3.

  16. Inactivation of tyrosinase photoinduced by pterin

    Energy Technology Data Exchange (ETDEWEB)

    Laura Dantola, M., E-mail: ldantola@inifta.unlp.edu.ar [Instituto de Investigaciones Fisicoquimicas Teoricas y Aplicadas (INIFTA), Departamento de Quimica, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), CCT La Plata-CONICET, Boulevard 113 y 64, 1900, La Plata (Argentina); Gojanovich, Aldana D. [Instituto de Investigaciones Fisicoquimicas Teoricas y Aplicadas (INIFTA), Departamento de Quimica, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), CCT La Plata-CONICET, Boulevard 113 y 64, 1900, La Plata (Argentina); Thomas, Andres H., E-mail: athomas@inifta.unlp.edu.ar [Instituto de Investigaciones Fisicoquimicas Teoricas y Aplicadas (INIFTA), Departamento de Quimica, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), CCT La Plata-CONICET, Boulevard 113 y 64, 1900, La Plata (Argentina)

    2012-08-03

    Highlights: Black-Right-Pointing-Pointer Under UV-A radiation, tirosinase is photoinactivated by pterin. Black-Right-Pointing-Pointer The mechanism involves an electron transfer-initiated process. Black-Right-Pointing-Pointer The photochemical process affects both activities of tyrosinase. -- Abstract: Tyrosinase catalyzes in mammals the first and rate-limiting step in the biosynthesis of the melanin, the main pigment of the skin. Pterins, heterocyclic compounds able to photoinduce oxidation of DNA and its components, accumulate in the skin of patients suffering from vitiligo, a chronic depigmentation disorder in which the protection against UV radiation fails due to the lack of melanin. Aqueous solutions of tyrosinase were exposed to UV-A irradiation (350 nm) in the presence of pterin, the parent compound of oxidized pterins, under different experimental conditions. The enzyme activity in the irradiated solutions was determined by spectrophotometry and HPLC. In this work, we present data that demonstrate unequivocally that the enzyme is photoinactivated by pterin. The mechanism of the photosensitized process involves an electron transfer from tyrosinase to the triplet excited state of pterin, formed after UV-A excitation of pterin. The biological implications of the results are discussed.

  17. Antioxidant and tyrosinase inhibitor from Leucaena leucocephala ...

    African Journals Online (AJOL)

    The experimental design is divided into two parts: chemical analysis and bioactive assay. One antioxidant lupeol (4) and one inhibition of tyrosinase pheophorbide a methyl ester (7) were identified in Leucaena leucocephala. Both showed effective 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity compared ...

  18. Phenols displaying tyrosinase inhibition from Humulus lupulus.

    Science.gov (United States)

    Kim, Dae Wook; Woo, Hyun Sim; Kim, Jeong Yoon; Ryuk, Jin Ah; Park, Ki Hun; Ko, Byoung Seob

    2016-10-01

    Tyrosinase is the rate-limiting enzyme for the production of melanin and other pigments via the oxidation of l-tyrosine. The methanol extract from Humulus lupulus showed potent inhibition against mushroom tyrosinase. The bioactivity-guided fractionation of this methanol extract resulted in the isolation of seven flavonoids (1-7), identified as xanthohumol (1), 4'-O-methylxanthohumol (2), xanthohumol C (3), flavokawain C (4), xanthoumol B (5), 6-prenylnaringenin (6) and isoxanthohumol (7). All isolated flavonoids (1-7) effectively inhibited the monophenolase (IC50s = 15.4-58.4 µM) and diphenolase (IC50s = 27.1-117.4 µM) activities of tyrosinase. Kinetic studies using Lineweaver-Burk and Dixon-plots revealed that chalcones (1-5) were competitive inhibitors, whereas flavanones (6 and 7) exhibited both mixed and non-competitive inhibitory characteristics. In conclusion, this study is the first to demonstrate that the phenolic phytochemicals of H. lupulus display potent inhibitory activities against tyrosinase.

  19. Inactivation of tyrosinase photoinduced by pterin

    International Nuclear Information System (INIS)

    Laura Dántola, M.; Gojanovich, Aldana D.; Thomas, Andrés H.

    2012-01-01

    Highlights: ► Under UV-A radiation, tirosinase is photoinactivated by pterin. ► The mechanism involves an electron transfer-initiated process. ► The photochemical process affects both activities of tyrosinase. -- Abstract: Tyrosinase catalyzes in mammals the first and rate-limiting step in the biosynthesis of the melanin, the main pigment of the skin. Pterins, heterocyclic compounds able to photoinduce oxidation of DNA and its components, accumulate in the skin of patients suffering from vitiligo, a chronic depigmentation disorder in which the protection against UV radiation fails due to the lack of melanin. Aqueous solutions of tyrosinase were exposed to UV-A irradiation (350 nm) in the presence of pterin, the parent compound of oxidized pterins, under different experimental conditions. The enzyme activity in the irradiated solutions was determined by spectrophotometry and HPLC. In this work, we present data that demonstrate unequivocally that the enzyme is photoinactivated by pterin. The mechanism of the photosensitized process involves an electron transfer from tyrosinase to the triplet excited state of pterin, formed after UV-A excitation of pterin. The biological implications of the results are discussed.

  20. Peptides as inhibitors of lipoxygenase and tyrosinase

    NARCIS (Netherlands)

    Minderhout-Schurink, M.

    2007-01-01

    Oxidation reactions catalyzed by enzymes such as lipoxygenase (LOX) and tyrosinase (TYR) initiate food quality decay. Besides their physiological role in the human body, LOX and TYR are involved in certain types of cancer, neurodegenerative diseases and processes of aging. Most common antioxidants

  1. Quantitative analysis of tyrosinase transcripts in blood.

    Science.gov (United States)

    Johansson, M; Pisa, E K; Törmänen, V; Arstrand, K; Kågedal, B

    2000-07-01

    Tyrosinase is an enzyme unique to pigment-forming cells. Methods using this transcript for detection of melanoma cells in blood have given divergent results. Quantitative analytical procedures are therefore needed to study the analytical performance of the methods. Mononucleated cells were isolated by Percoll centrifugation. RNA was isolated by each of three methods: Ultraspec(TM)-II RNA isolation system, FastRNA(TM) GREEN Kit, and QIAamp RNA Blood Mini Kit. cDNA was synthesized using random hexamer primers. A tyrosinase-specific product of 207 bp was amplified by PCR. As an internal standard (and competitor) we used a 207-bp cDNA with a base sequence identical to the tyrosinase target except for a 20-bp probe-binding region. The PCR products were identified by 2, 4-dinitrophenol (DNP)-labeled probes specific for tyrosinase (5'DNP-GGGGAGCCTTGGGGTTCTGG-3') and internal standard (5'DNP-CGGAGCCCCGAAACCACATC-3') and quantified by ELISA. The calibration curves were linear and had a broad dynamic measuring range. A detection limit (2 SD above zero) of 48 transcripts/mL of blood was obtained from a low control. The analytical imprecision was 50% and 48% at concentrations of 1775 and 17 929 transcripts/mL (n = 12 and 14, respectively). With the cell line SK-Mel 28 added to blood and RNA extracted with the Ultraspec, Fast RNA, and QIAamp RNA methods, we found (mean +/- SD) 1716+/-1341, 2670+/-3174, and 24 320+/-5332 transcripts/mL of blood. Corresponding values were 527+/-497, 2497+/-1033, 14 930+/-1927 transcripts/mL of blood when the cell line JKM86-4 was added. One high-risk patient was followed by repeated analysis of tyrosinase transcripts in blood. The melanoma marker 5-S-cysteinyldopa in serum and urine was within reference values, but tyrosinase mRNA was slightly increased (120-168 transcripts/mL of blood). The tyrosinase mRNA increased to 1860 transcripts/mL concomitant with the increase in 5-S-cysteinyldopa; later a spleen metastasis was found. The results

  2. Screening of Peruvian Medicinal Plants for Tyrosinase Inhibitory Properties: Identification of Tyrosinase Inhibitors in Hypericum laricifolium Juss

    Directory of Open Access Journals (Sweden)

    Yanymee Nimesia Guillen Quispe

    2017-03-01

    Full Text Available Tyrosinase inhibitors are of far-ranging importance in cosmetics, medicinal products, and food industries. Peru is a diverse country with a wide variety of plants that may contain excellent anti-tyrosinase inhibitors. In the present study, the tyrosinase inhibitory properties of 50 medicinal plant extracts from Peru were investigated using tyrosinase assay. Among plant extracts, those that showed an inhibition rate >50% were Hypericum laricifolium Juss., Taraxacum officinaleF.H.Wigg., and Muehlenbeckia vulcanicaMeisn., with H. laricifolium Juss. showing the greatest anti-tyrosinase activity. Although H. laricifolium Juss. has been widely used as a medicinal plant by Peruvians, little is known regarding its bioactive components and effects on tyrosinase activity. For this reason, we attempted to discover tyrosinase inhibitors in H. laricifolium Juss. for the first time. The bioactive components were separated by Sephadex LH-20 chromatography and eluted with 100% methanol. Eight compounds were discovered and characterized by high-performance liquid chromatography coupled with diode array detection (HPLC-DAD: protocatechuic acid, p-hydroxybenzoic acid, chlorogenic acid, vanilic acid, caffeic acid, kaempferol 3-O-glucuronide, quercetin, and kaempferol. In addition, the concentration of these compounds required for 50% inhibition (IC50 of tyrosinase activity were evaluated. Quercetin exhibited the strongest tyrosinase inhibition (IC50 14.29 ± 0.3 μM. Therefore, the Peruvian plant H. laricifolium Juss. could be a novel source for anti-tyrosinase activity.

  3. Repositioning of Thiourea-Containing Drugs as Tyrosinase Inhibitors

    Science.gov (United States)

    Choi, Joonhyeok; Jee, Jun-Goo

    2015-01-01

    Tyrosinase catalyzes two distinct sequential reactions in melanin biosynthesis: The hydroxylation of tyrosine to dihydroxyphenylalanine (DOPA) and the oxidation of DOPA to dopaquinone. Developing functional modulators of tyrosinase is important for therapeutic and cosmetic purposes. Given the abundance of thiourea moiety in known tyrosinase inhibitors, we studied other thiourea-containing drugs as potential tyrosinase inhibitors. The thiourea-containing drugs in clinical use were retrieved and tested for their ability to inhibit tyrosinase. We observed that methimazole, thiouracil, methylthiouracil, propylthiouracil, ambazone, and thioacetazone inhibited mushroom tyrosinase. Except for methimazole, there was limited information regarding the activity of other drugs against tyrosinase. Both thioacetazone and ambazone significantly inhibited tyrosinase, with IC50 of 14 and 15 μM, respectively. Ambazone decreased melanin content without causing cellular toxicity at 20 μM in B16F10 cells. The activity of ambazone was stronger than that of kojic acid both in enzyme and melanin content assays. Kinetics of enzyme inhibition assigned the thiourea-containg drugs as non-competitive inhibitors. The complex models by docking simulation suggested that the intermolecular hydrogen bond via the nitrogen of thiourea and the contacts via thione were equally important for interacting with tyrosinase. These data were consistent with the results of enzyme assays with the analogues of thiourea. PMID:26633377

  4. Fermented Broth in Tyrosinase- and Melanogenesis Inhibition

    OpenAIRE

    Chin-Feng Chan; Ching-Cheng Huang; Ming-Yuan Lee; Yung-Sheng Lin

    2014-01-01

    Fermented broth has a long history of applications in the food, pharmaceutical and cosmetic industries. Recently, the use of fermented broth in skin care products is in ascendance. This review investigates the efficacy of fermented broth in inhibiting tyrosinase and melanogenesis. Possible active ingredients and hypopigmentation mechanisms of fermented broth are discussed, and potential applications of fermented broth in the cosmetic industry are also addressed.

  5. Fermented Broth in Tyrosinase- and Melanogenesis Inhibition

    Directory of Open Access Journals (Sweden)

    Chin-Feng Chan

    2014-08-01

    Full Text Available Fermented broth has a long history of applications in the food, pharmaceutical and cosmetic industries. Recently, the use of fermented broth in skin care products is in ascendance. This review investigates the efficacy of fermented broth in inhibiting tyrosinase and melanogenesis. Possible active ingredients and hypopigmentation mechanisms of fermented broth are discussed, and potential applications of fermented broth in the cosmetic industry are also addressed.

  6. Development of tyrosinase-based reporter genes for preclinical photoacoustic imaging of mesenchymal stem cells

    Science.gov (United States)

    Märk, Julia; Ruschke, Karen; Dortay, Hakan; Schreiber, Isabelle; Sass, Andrea; Qazi, Taimoor; Pumberger, Matthias; Laufer, Jan

    2014-03-01

    The capability to image stem cells in vivo in small animal models over extended periods of time is important to furthering our understanding of the processes involved in tissue regeneration. Photoacoustic imaging is suited to this application as it can provide high resolution (tens of microns) absorption-based images of superficial tissues (cm depths). However, stem cells are rare, highly migratory, and can divide into more specialised cells. Genetic labelling strategies are therefore advantageous for their visualisation. In this study, methods for the transfection and viral transduction of mesenchymal stem cells with reporter genes for the co-expression of tyrosinase and a fluorescent protein (mCherry). Initial photoacoustic imaging experiments of tyrosinase expressing cells in small animal models of tissue regeneration were also conducted. Lentiviral transduction methods were shown to result in stable expression of tyrosinase and mCherry in mesenchymal stem cells. The results suggest that photoacoustic imaging using reporter genes is suitable for the study of stem cell driven tissue regeneration in small animals.

  7. Tyrosinase Inhibitory Activity and Thermostability of the Flavonoid ...

    African Journals Online (AJOL)

    Purpose: To investigate the tyrosinase inhibitory activity and thermostability of weak acid-treated Sophora japonica L. flavonoid complex (SJ-FC) in different solutions. Methods: The flavonoid complex of S. japonica was isolated and treated with weak acid to generate SJ-FC. The anti-tyrosinase activities of SJ-FC and ...

  8. Tyrosinase activity and isoform composition in separate tissues during development of Agaricus bisporus fruit bodies

    NARCIS (Netherlands)

    Leeuwen, van J.; Wichers, H.J.

    1999-01-01

    During growth of Agaricus bisporus fruit bodies the amount of active tyrosinase increased. The amount of active tyrosinase can be related to the degree of browning, as opposed to the fully activated tyrosinase level. Isoelectric focusing revealed that active and latent tyrosinase isoforms having

  9. Microplate based optical biosensor for L-Dopa using tyrosinase from Amorphophallus campanulatus

    Energy Technology Data Exchange (ETDEWEB)

    Saini, Amardeep Singh, E-mail: saini_amardeepsingh@yahoo.co.in; Kumar, Jitendra, E-mail: jkumar@barc.gov.in; Melo, Jose Savio, E-mail: jsmelo@barc.gov.in

    2014-11-07

    Highlights: • Simple, rapid method of detection requiring small sample volume. • First report on immobilization of tyrosinase from A. campanulatus on microplate. • A wide linear range and low detection limit were obtained. • Multiple sample analysis on single platform. • Analysis of real sample (spiked blood plasma) was carried out. - Abstract: Developing a biosensor which is capable of simultaneously monitoring L-Dopa levels in multiple samples besides requiring small reaction volume is of great value. The present study describes the detection of L-Dopa using tyrosinase enzyme extracted from Amorphophallus campanulatus and immobilized on the surface of the microplate wells. Among the different approaches used for immobilizing tyrosinase onto the microplate wells, glutaraldehyde treatment was found to be most effective. Besides enzyme activity, ESEM–EDS (environmental scanning electron microscope–energy dispersive system) and Atomic Force Microscopy (AFM) were also carried out to confirm the immobilization of tyrosinase enzyme onto the microplate well surface. This immobilized biocomponent was then integrated with an optical transducer for L-Dopa detection and it showed good reproducibility. The sensing property of the system was studied by measuring the initial rate of dopachrome formation at 475 nm. The calibration plot gave a linear range of detection from 10–1000 μM and the detection limit was calculated to be 3 μM. The immobilized biocomponent was stable for 41 days and was reused up to nine times. Spiked samples (blood plasma) were also analyzed using this biocomponent. This microplate based biosensor thus provides a convenient system for detection of multiple samples in a single run.

  10. Structural insight with mutational impact on tyrosinase and PKC-β interaction from Homo sapiens: Molecular modeling and docking studies for melanogenesis, albinism and increased risk for melanoma.

    Science.gov (United States)

    Banerjee, Arundhati; Ray, Sujay

    2016-10-30

    Human tyrosinase, is an important protein for biosynthetic pathway of melanin. It was studied to be phosphorylated and activated by protein kinase-C, β-subunit (PKC-β) through earlier experimentations with in vivo evidences. Documentation documents that mutation in two essentially vital serine residues in C-terminal end of tyrosinase leads to albinism. Due to the deficiency of protective shield like enzyme; melanin, albinos are at an increased peril for melanoma and other skin cancers. So, computational and residue-level insight including a mutational exploration with evolutionary importance into this mechanism lies obligatory for future pathological and therapeutic developments. Therefore, functional tertiary models of the relevant proteins were analyzed after satisfying their stereo-chemical features. Evolutionarily paramount residues for the activation of tyrosinase were perceived via multiple sequence alignment phenomena. Mutant-type tyrosinase protein (S98A and S102A) was thereby modeled, maintaining the wild-type proteins' functionality. Furthermore, this present comparative study discloses the variation in the stable residual participation (for mutant-type and wild-type tyrosinase-PKCβ complex). Mainly, an increased number of polar negatively charged residues from the wild-type tyrosinase participated with PKC-β, predominantly. Fascinatingly supported by evaluation of statistical significances, mutation even led to a destabilizing impact in tyrosinase accompanied by conformational switches with a helix-to-coil transition in the mutated protein. Even the allosteric sites in the protein got poorly hampered upon mutation leading to weaker tendency for binding partners to interact. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Inhibitory effects of cefotaxime on the activity of mushroom tyrosinase.

    Science.gov (United States)

    Hu, Yong-Hua; Zhuang, Jiang-Xing; Yu, Feng; Cui, Yi; Yu, Wen-Wen; Yan, Chong-Ling; Chen, Qing-Xi

    2016-04-01

    Tyrosinase (EC 1.14.18.1) catalyzes both the hydroxylation of tyrosine into o-diphenols and the oxidation of o-diphenols into o-quinones that form brown or black pigments. In the present paper, cefotaxime, a cephalosporin antibacterial drug, was tested as an inhibitor of tyrosinase. The results show that cefotaxime inhibits both the monophenolase and diphenolase activities of tyrosinase. For the monophenolase activity, cefotaxime increased the lag time and decreased the steady-state activity with an IC50 of 3.2 mM. For the diphenolase activity, the inhibition by cefotaxime is reversible and mix-I type with an IC50 of 0.14 mM. The inhibition constants (K(I) and K(IS)) were determined to be 0.14 and 0.36 mM, respectively. The molecular mechanism of inhibition of tyrosinase by cefotaxime was determined by fluorescence quenching and molecular docking. The results demonstrated that cefotaxime was a static quencher of tyrosinase and that cefotaxime could dock favorably in the active site of tyrosinase. This research may offer a lead for designing and synthesizing novel and effective tyrosinase inhibitors in the future. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  12. Recombinant Tyrosinase from Polyporus arcularius: Overproduction in Escherichia coli, Characterization, and Use in a Study of Aurones as Tyrosinase Effectors.

    Science.gov (United States)

    Marková, Eva; Kotik, Michael; Křenková, Alena; Man, Petr; Haudecoeur, Romain; Boumendjel, Ahcène; Hardré, Renaud; Mekmouche, Yasmina; Courvoisier-Dezord, Elise; Réglier, Marius; Martínková, Ludmila

    2016-04-13

    Tyrosinases act in the development of organoleptic properties of tea, raisins, etc., but also cause unwanted browning of fruits, vegetables, and mushrooms. The tyrosinase from Agaricus bisporus has been used as a model to study tyrosinase inhibitors, which are also indispensable in the treatment of skin pigmentation disorders. However, this model has disadvantages such as side enzyme activities and the presence of multiple isoenzymes. Therefore, we aimed to introduce a new tyrosinase model. The pro-tyrosinase from Polyporus arcularius was overproduced in Escherichia coli. Trypsin digestion led to a cleavage after R388 and hence enzyme activation. The tyrosinase was a homodimer and transformed L-DOPA and tert-butylcatechol preferentially. Various aurons were examined as effectors of this enzyme. 2'- and 3'-hydroxyaurones acted as its activators and 2',4'-dihydroxyaurone as an inhibitor, whereas 4'-hydroxyaurones were its substrates. The enzyme is a promising model for tyrosinase effector studies, being a single isoenzyme and void of side enzyme activities.

  13. Mutations of the tyrosinase gene in Indo-Pakistani patients with type I (tyrosinase-deficient) oculocutaneous albinsm (OCA)

    Energy Technology Data Exchange (ETDEWEB)

    Tripathi, R.K.; Droetto, S.; Strunk, K.M.; Holmes, S.A.; Spritz, R.A. (Univ. of Wisconsin, Madison, WI (United States)); Bundey, S.; Musarella, M.A.

    1993-12-01

    Oculocutaneous albinism (OCA) is a group of autosomal recessive disorders characterized by deficient synthesis of melanin pigment. Type I (tyrosinase-deficient) OCA results from mutations of the tyrosinase gene (TYR gene) encoding tyrosinase, the enzyme that catalyzes the first two steps of melanin biosynthesis. Mutations of the TYR gene have been identified in a large number of patients, most of Caucasian ethnic origin, with various forms of type I OCA. The authors present an analysis of the TYR gene in eight Indo-Pakistani patients with type I OCA. The authors describe four novel TYR gene mutations and a fifth mutation previously observed in a Caucasian patient. 16 refs., 6 figs.

  14. Structure and Function of Human Tyrosinase and Tyrosinase-Related Proteins.

    Science.gov (United States)

    Lai, Xuelei; Wichers, Harry J; Soler-Lopez, Montserrat; Dijkstra, Bauke W

    2018-01-02

    Melanin is the main pigment responsible for the color of human skin, hair and eye. Its biosynthesis requires three melanogenic enzymes, tyrosinase (TYR), and the tyrosinase-related proteins TYRP1 and TYRP2. The difficulty of isolating pure and homogeneous proteins from endogenous sources has hampered their study, and resulted in many contradictory findings regarding their physiological functions. In this review, we summarize recent advances on the structure and function of TYR and TYRPs by virtue of the crystal structure of human TYRP1, which is the first available structure of a mammalian melanogenic enzyme. This structure, combined with tyrosinase structures from other lower eukaryotes and mutagenesis studies of key active site residues, sheds light on the mechanism of TYR and TYRPs. Furthermore, a TYRP1-based homology model of TYR provides a high-quality platform to map and analyze albinism-related mutations, as well as the design of specific antimelanogenic compounds. Finally, we provide perspectives for future structure/function studies of TYR and TYRPs. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Tyrosinase versus Catechol Oxidase: One Asparagine Makes the Difference.

    Science.gov (United States)

    Solem, Even; Tuczek, Felix; Decker, Heinz

    2016-02-18

    Tyrosinases mediate the ortho-hydroxylation and two-electron oxidation of monophenols to ortho-quinones. Catechol oxidases only catalyze the oxidation of diphenols. Although it is of significant interest, the origin of the functional discrimination between tyrosinases and catechol oxidases has been unclear. Recently, it has been postulated that a glutamate and an asparagine bind and activate a conserved water molecule towards deprotonation of monophenols. Here we demonstrate for the first time that a polyphenoloxidase, which exhibits only diphenolase activity, can be transformed to a tyrosinase by mutation to introduce an asparagine. The asparagine and a conserved glutamate are necessary to properly orient the conserved water in order to abstract a proton from the monophenol. These results provide direct evidence for the crucial importance of a proton shuttle for tyrosinase activity of type 3 copper proteins, allowing a consistent understanding of their different chemical reactivities. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Hydroxylated biphenyls as tyrosinase inhibitor: A spectrophotometric and electrochemical study.

    Science.gov (United States)

    Ruzza, Paolo; Serra, Pier Andrea; Fabbri, Davide; Dettori, Maria Antonietta; Rocchitta, Gaia; Delogu, Giovanna

    2017-01-27

    A small collection of C 2 -symmetry hydroxylated biphenyls was prepared by straightforward methods and the capability to act as inhibitors of tyrosinase has been evaluated by both spectrophotometric and electrochemical assays. Our attention was focused on the diphenolase activity of this enzyme characterized by the absence of the characteristic lag time of enzymatic reaction of its monophenolase activity. To this purpose, we evaluated the capability of tyrosinase to oxidize a natural o-diphenol substrate to o-quinone analyzing the changes in the UV-Vis spectrum of a solution of caffeic acid and the reduction of the cathodic current in a tyrosinase-biosensor, respectively. Results of both the methods were comparable. Most of the compounds possessed higher inhibitory activity compared to compound 1, a known hydroxylated biphenyl inhibitor of tyrosinase. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  17. Variations in IC50 Values with Purity of Mushroom Tyrosinase

    Directory of Open Access Journals (Sweden)

    Elizabeth Neeley

    2009-09-01

    Full Text Available The effects of various inhibitors on crude, commercial and partially purified commercial mushroom tyrosinase were examined by comparing IC50 values. Kojic acid, salicylhydroxamic acid, tropolone, methimazole, and ammonium tetrathiomolybdate had relatively similar IC50 values for the crude, commercial and partially purified enzyme. 4-Hexylresorcinol seemed to have a somewhat higher IC50 value using crude extracts, compared to commercial or purified tyrosinase. Some inhibitors (NaCl, esculetin, biphenol, phloridzin showed variations in IC50 values between the enzyme samples. In contrast, hydroquinone, lysozyme, Zn2+, and anisaldehyde showed little or no inhibition in concentration ranges reported to be effective inhibitors. Organic solvents (DMSO and ethanol had IC50 values that were similar for some of the tyrosinase samples. Depending of the source of tyrosinase and choice of inhibitor, variations in IC50 values were observed.

  18. High level production of tyrosinase in recombinant Escherichia coli

    Science.gov (United States)

    2013-01-01

    Background Tyrosinase is a bifunctional enzyme that catalyzes both the hydroxylation of monophenols to o-diphenols (monophenolase activity) and the subsequent oxidation of the diphenols to o-quinones (diphenolase activity). Due to the potential applications of tyrosinase in biotechnology, in particular in biocatalysis and for biosensors, it is desirable to develop a suitable low-cost process for efficient production of this enzyme. So far, the best production yield reported for tyrosinase was about 1 g L-1, which was achieved by cultivating the filamentous fungus Trichoderma reesei for 6 days. Results In this work, tyrosinase from Verrucomicrobium spinosum was expressed in Escherichia coli and its production was studied in both batch and fed-batch cultivations. Effects of various key cultivation parameters on tyrosinase production were first examined in batch cultures to identify optimal conditions. It was found that a culture temperature of 32 °C and induction at the late growth stage were favorable, leading to a highest tyrosinase activity of 0.76 U mL-1. The fed-batch process was performed by using an exponential feeding strategy to achieve high cell density. With the fed-batch process, a final biomass concentration of 37 g L-1 (based on optical density) and a tyrosinase activity of 13 U mL-1 were obtained in 28 hours, leading to a yield of active tyrosinase of about 3 g L-1. The highest overall volumetric productivity of 103 mg of active tyrosinase per liter and hour (corresponding to 464 mU L-1 h-1) was determined, which is approximately 15 times higher than that obtained in batch cultures. Conclusions We have successfully expressed and produced gram quantities per liter of active tyrosinase in recombinant E. coli by optimizing the expression conditions and fed-batch cultivation strategy. Exponential feed of substrate helped to prolong the exponential phase of growth, to reduce the fermentation time and thus the cost. A specific

  19. Identification of tyrosinase inhibitors from Marrubium velutinum and Marrubium cylleneum.

    Science.gov (United States)

    Karioti, Anastasia; Protopappa, Anastasia; Megoulas, Nikolaos; Skaltsa, Helen

    2007-04-01

    Tyrosinase is a key enzyme in the production of melanins in plants and animals. Forty-five secondary metabolites isolated from Marrubium velutinum and Marrubium cylleneum belonging to the classes of flavonoids, phenylethanoid glycosides, phenolic acids and lignan glycosides were screened for their inhibitory activity against mushroom tyrosinase. Flavonoids and phenylethanoid glycosides showed moderate inhibitory activity, while phenolic acids were less active than phenylethanoid glycosides, suggesting that both phenolic groups are important for the activity.

  20. A single base insertion in the putative transmembrane domain of the tyrosinase gene as a cause for tyrosinase-negative oculocutaneous albinism

    Energy Technology Data Exchange (ETDEWEB)

    Chintamaneni, C.D.; Kobayashi, Y.; Kwon, B.S. (Indiana Univ. School of Medicine, Indianapolis (United States)); Halaban, R. (Yale Univ. School of Medicine, New Haven, CT (United States)); Witkop, C.J. Jr. (Univ. of Minnesota, Minneapolis (United States))

    1991-06-15

    The authors have determined a molecular defect to be the likely basis for inactivity of the tyrosinase from a patient with tyrosinase-negative oculocutaneous albinism. A single base (thymine) was inserted in exon 5 of the tyrosinase gene following codon 471 in the putative transmembrane coding region. This insertion caused a shift in the reading frame of 19 amino acids at the 3{prime} end and introduced a premature termination signal that would be expected to truncate the protein by 21 amino acids at the carboxyl terminus. The albino tyrosinase was not recognized by antibodies directed to the carboxyl terminus of tyrosinase. Furthermore, as shown by gel electrophoresis of the immunoprecipitated protein, the tyrosinase was {approx} 3kDa smaller than normal. Similar immunoprecipitation data were obtained when cloned normal and mutant tyrosinases were expressed in COS-1 cells.

  1. Data in support of covalent attachment of tyrosinase onto cyanuric chloride crosslinked magnetic nanoparticles

    Directory of Open Access Journals (Sweden)

    Kourosh Abdollahi

    2016-12-01

    Full Text Available Preparation and characterization of cross linked amine-functionalized magnetic nanoparticles as an appropriate support for covalent immobilization on tyrosinase was presented in the study "Covalent immobilization of tyrosinase onto cyanuric chloride crosslinked amine-functionalized superparamagnetic nanoparticles: synthesis and characterization of the recyclable nanobiocatalyst" (Abdollahi et al., 2016 [1]. Herein, complementary data regarding X-ray powder diffraction (XRD to characterize the synthesized magnetic nanoparticles, and transmission electron microscopy (TEM to determine the size and morphology of tyrosinase immobilized magnetic nanoparticles (tyrosinase-MNPs were reported. The purification results of the extracted tyrosinase from mushroom Agaricus bisporus were provided in a purification table. The covalent immobilization of tyrosinase onto cyanuric chloride functionalized magnetic nanoparticles was proved by performing thermo-gravimetric and energy-dispersive X-ray spectroscopy analyses. The operational stability of immobilized tyrosinase was investigated by incubating tyrosinase-MNPs at different pH and temperatures.

  2. Tyrosinase expression in malignant melanoma, desmoplastic melanoma, and peripheral nerve tumors

    DEFF Research Database (Denmark)

    Boyle, Jenny L; Haupt, Helen M; Stern, Jere B

    2002-01-01

    . CONCLUSIONS: Our results support the sensitivity of tyrosinase expression and demonstrate the relative specificity of tyrosinase as a marker for melanocytic lesions, including desmoplastic melanoma, although pigmented peripheral nerve tumors may demonstrate focal positive staining. Immunoreactivity...

  3. Zwitterionic sulfobetaine polymer-immobilized surface by simple tyrosinase-mediated grafting for enhanced antifouling property.

    Science.gov (United States)

    Kwon, Ho Joon; Lee, Yunki; Phuong, Le Thi; Seon, Gyeung Mi; Kim, Eunsuk; Park, Jong Chul; Yoon, Hyunjin; Park, Ki Dong

    2017-10-01

    Introducing antifouling property to biomaterial surfaces has been considered an effective method for preventing the failure of implanted devices. In order to achieve this, the immobilization of zwitterions on biomaterial surfaces has been proven to be an excellent way of improving anti-adhesive potency. In this study, poly(sulfobetaine-co-tyramine), a tyramine-conjugated sulfobetaine polymer, was synthesized and simply grafted onto the surface of polyurethane via a tyrosinase-mediated reaction. Surface characterization by water contact angle measurements, X-ray photoelectron spectroscopy and atomic force microscopy demonstrated that the zwitterionic polymer was successfully introduced onto the surface of polyurethane and remained stable for 7days. In vitro studies revealed that poly(sulfobetaine-co-tyramine)-coated surfaces dramatically reduced the adhesion of fibrinogen, platelets, fibroblasts, and S. aureus by over 90% in comparison with bare surfaces. These results proved that polyurethane surfaces grafted with poly(sulfobetaine-co-tyramine) via a tyrosinase-catalyzed reaction could be promising candidates for an implantable medical device with excellent bioinert abilities. Antifouling surface modification is one of the key strategy to prevent the thrombus formation or infection which occurs on the surface of biomaterial after transplantation. Although there are many methods to modify the surface have been reported, necessity of simple modification technique still exists to apply for practical applications. The purpose of this study is to modify the biomaterial's surface by simply immobilizing antifouling zwitterion polymer via enzyme tyrosinase-mediated reaction which could modify versatile substrates in mild aqueous condition within fast time period. After modification, pSBTA grafted surface becomes resistant to various biological factors including proteins, cells, and bacterias. This approach appears to be a promising method to impart antifouling property on

  4. Effective L-Tyrosine Hydroxylation by Native and Immobilized Tyrosinase.

    Science.gov (United States)

    Cieńska, Małgorzata; Labus, Karolina; Lewańczuk, Marcin; Koźlecki, Tomasz; Liesiene, Jolanta; Bryjak, Jolanta

    2016-01-01

    Hydroxylation of L-tyrosine to 3,4-dihydroxyphenylalanine (L-DOPA) by immobilized tyrosinase in the presence of ascorbic acid (AH2), which reduces DOPA-quinone to L-DOPA, is characterized by low reaction yields that are mainly caused by the suicide inactivation of tyrosinase by L-DOPA and AH2. The main aim of this work was to compare processes with native and immobilized tyrosinase to identify the conditions that limit suicide inactivation and produce substrate conversions to L-DOPA of above 50% using HPLC analysis. It was shown that immobilized tyrosinase does not suffer from partitioning and diffusion effects, allowing a direct comparison of the reactions performed with both forms of the enzyme. In typical processes, additional aeration was applied and boron ions to produce the L-DOPA and AH2 complex and hydroxylamine to close the cycle of enzyme active center transformations. It was shown that the commonly used pH 9 buffer increased enzyme stability, with concomitant reduced reactivity of 76%, and that under these conditions, the maximal substrate conversion was approximately 25 (native) to 30% (immobilized enzyme). To increase reaction yield, the pH of the reaction mixture was reduced to 8 and 7, producing L-DOPA yields of approximately 95% (native enzyme) and 70% (immobilized). A three-fold increase in the bound enzyme load achieved 95% conversion in two successive runs, but in the third one, tyrosinase lost its activity due to strong suicide inactivation caused by L-DOPA processing. In this case, the cost of the immobilized enzyme preparation is not overcome by its reuse over time, and native tyrosinase may be more economically feasible for a single use in L-DOPA production. The practical importance of the obtained results is that highly efficient hydroxylation of monophenols by tyrosinase can be obtained by selecting the proper reaction pH and is a compromise between complexation and enzyme reactivity.

  5. Effective L-Tyrosine Hydroxylation by Native and Immobilized Tyrosinase.

    Directory of Open Access Journals (Sweden)

    Małgorzata Cieńska

    Full Text Available Hydroxylation of L-tyrosine to 3,4-dihydroxyphenylalanine (L-DOPA by immobilized tyrosinase in the presence of ascorbic acid (AH2, which reduces DOPA-quinone to L-DOPA, is characterized by low reaction yields that are mainly caused by the suicide inactivation of tyrosinase by L-DOPA and AH2. The main aim of this work was to compare processes with native and immobilized tyrosinase to identify the conditions that limit suicide inactivation and produce substrate conversions to L-DOPA of above 50% using HPLC analysis. It was shown that immobilized tyrosinase does not suffer from partitioning and diffusion effects, allowing a direct comparison of the reactions performed with both forms of the enzyme. In typical processes, additional aeration was applied and boron ions to produce the L-DOPA and AH2 complex and hydroxylamine to close the cycle of enzyme active center transformations. It was shown that the commonly used pH 9 buffer increased enzyme stability, with concomitant reduced reactivity of 76%, and that under these conditions, the maximal substrate conversion was approximately 25 (native to 30% (immobilized enzyme. To increase reaction yield, the pH of the reaction mixture was reduced to 8 and 7, producing L-DOPA yields of approximately 95% (native enzyme and 70% (immobilized. A three-fold increase in the bound enzyme load achieved 95% conversion in two successive runs, but in the third one, tyrosinase lost its activity due to strong suicide inactivation caused by L-DOPA processing. In this case, the cost of the immobilized enzyme preparation is not overcome by its reuse over time, and native tyrosinase may be more economically feasible for a single use in L-DOPA production. The practical importance of the obtained results is that highly efficient hydroxylation of monophenols by tyrosinase can be obtained by selecting the proper reaction pH and is a compromise between complexation and enzyme reactivity.

  6. Absorption and Circular Dichroism Spectra of Different Forms of Mushroom Tyrosinase

    NARCIS (Netherlands)

    Schoot Uiterkamp, A.J.M.; Jolley, R.L.; Mason, H.S.

    1976-01-01

    The circular dichroism spectrum of resting mushroom tyrosinase between 800 and 400 nm showed two bands at 755, and 653 nm. The CD spectrum of resting tyrosinase between 400 and 250 nm showed oxygen-sensitive changes at 350 nm upon treatment of tyrosinase with hydroxylamine or hydrogen peroxide.

  7. Plants from Brazilian Cerrado with potent tyrosinase inhibitory activity.

    Directory of Open Access Journals (Sweden)

    Paula Monteiro Souza

    Full Text Available The increased amount of melanin leads to skin disorders such as age spots, freckles, melasma and malignant melanoma. Tyrosinase is known to be the key enzyme in melanin production. Plants and their extracts are inexpensive and rich resources of active compounds that can be utilized to inhibit tyrosinase as well as can be used for the treatment of dermatological disorders associated with melanin hyperpigmentation. Using in vitro tyrosinase inhibitory activity assay, extracts from 13 plant species from Brazilian Cerrado were evaluated. The results showed that Pouteria torta and Eugenia dysenterica extracts presented potent in vitro tyrosinase inhibition compared to positive control kojic acid. Ethanol extract of Eugenia dysenterica leaves showed significant (p<0.05 tyrosinase inhibitory activity exhibiting the IC₅₀ value of 11.88 µg/mL, compared to kojic acid (IC₅₀ value of 13.14 µg/mL. Pouteria torta aqueous extract leaves also showed significant inhibitory activity with IC₅₀ value of 30.01 µg/mL. These results indicate that Pouteria torta and Eugenia dysenterica extracts and their isolated constituents are promising agents for skin-whitening or antimelanogenesis formulations.

  8. Purification and Characterization of Melanogenic Enzyme Tyrosinase from Button Mushroom

    Directory of Open Access Journals (Sweden)

    Kamal Uddin Zaidi

    2014-01-01

    Full Text Available Melanogenesis is a biosynthetic pathway for the formation of the pigment melanin in human skin. A key enzyme, tyrosinase, catalyzes the first and only rate-limiting steps in melanogenesis. Since the discovery of its melanogenic properties, tyrosinase has been in prime focus and microbial sources of the enzyme are sought. Agaricus bisporus widely known as the common edible mushroom, it’s taking place in high amounts of proteins, enzyme, carbohydrates, fibers, and low fat contents are frequently cited in the literature in relation to their nutritional value. In the present study tyrosinase from Agaricus bisporus was purified by ammonium sulphate precipitation, dialysis followed by gel filtration chromatography on Sephadex G-100, and ion exchange chromatography on DEAE-Cellulose; the enzyme was purified, 16.36-fold to give 26.6% yield on total activity in the crude extract and final specific activity of 52.19 U/mg. The SDS-PAGE electrophoresis showed a migrating protein band molecular weight of 95 kDa. The purified tyrosinase was optimized and the results revealed that the optimum values are pH 7.0 and temperature 35°C. The highest activity was reported towards its natural substrate, L-DOPA, with an apparent Km value of 0.933 mM. This indicated that tyrosinase purified from Agaricus bisporus is a potential source for medical applications.

  9. Oxidized tyrosinase: A possible antigenic stimulus for non-segmental vitiligo autoantibodies.

    Science.gov (United States)

    Al-Shobaili, Hani A; Rasheed, Zafar

    2015-09-01

    Vitiligo is a common pigmentary disorder, the precise etiology of which remains obscure. Tyrosinase, a key enzyme involved in melanin synthesis, has now been implicated as an autoantigen for vitiligo patients, but it is not clear how this prevalent protein becomes antigenic in vitiligo. To investigate the status and contribution of oxidized tyrosinase in vitiligo and to explore whether oxidized tyrosinase has a role in disease progression. Tyrosinase was modified by reactive-oxygen-species (ROS). Binding characteristics of antibodies in vitiligo patients (n=25) with varying disease duration (DD) and disease severity were screened against ROS-modified tyrosinase (ROS-tyrosinase) by immunoassays and their results were compared with healthy controls (n=23). The ROS caused extensive alterations in conformation and function of tyrosinase. Protein-A purified IgGs from vitiligo patients (Vt-IgG) showed strong binding to ROS-tyrosinase in comparison with IgGs from healthy controls (ptyrosinase-IgGs, but also the levels of these IgGs were significantly higher among vitiligo patients, whose DD were ≥10 years as compared to patients with short DD (tyrosinase-IgGs and the patients' ages or with disease severity. Experimentally induced anti-ROS-tyrosinase-IgGs show reactivity with tyrosinase from vitiligo patients. Furthermore, vitiligo patients had lower levels of tyrosinase activity compared with healthy controls. Not only these, levels of carbonylation were also higher among vitiligo patients whose DD were ≥10 years as compared to patients with DDtyrosinase in vitiligo. Our novel results support an association between oxidized tyrosinase and vitiligo autoimmunity. The stronger antibodies response to oxidized tyrosinase in vitiligo patients with higher DD or with severe patients suggests that oxidized tyrosinase may be a useful biomarker in evaluating the progression of vitiligo and in elucidating the mechanisms of disease pathogenesis. Copyright © 2015 Elsevier Ireland

  10. Tyrosinase Inhibitory Chemical Constituents from Cleyera japonica Thunberg Branches

    Directory of Open Access Journals (Sweden)

    Jung Eun Kim

    2014-05-01

    Full Text Available Bioassay-guided investigation of the branches of Cleyera japonica led to the isolation of four phenolic constituents: 3,3’-di-O-methylellagic acid (1, 3,3’-di-O-methylellagic acid 4’-O-β-D-xylofuranoside (2, 3,5,7-trihydroxychromone 3-O-α-L-arabinofuranoside (3 and aviculin (4. Their structures were elucidated on the basis of spectral studies, as well as by comparison with literature data. Tyrosinase inhibition activities were carried out for the isolated compounds using arbutin as a positive control. Among them, compound 2 was identified as a potent tyrosinase inhibitor. It inhibited mushroom tyrosinase with an IC50 value of 0.078 mM, which is about three times more active than arbutin (IC50 =0.25 mM. All of the compounds 1-4 were isolated for the first time from this plant.

  11. Inhibitory Effects of Resveratrol Analogs on Mushroom Tyrosinase Activity

    Directory of Open Access Journals (Sweden)

    Nádia Rezende Barbosa Raposo

    2012-10-01

    Full Text Available Skin pigmentation disorders typically involve an overproduction or uneven distribution of melanin, which results in skin spots. Resveratrol can inhibit tyrosinase, the active enzyme in the synthesis of melanin, but it does not inhibit the synthesis of melanin to an extent that enables its use alone as a skin whitening agent in pharmaceutical formulations, so its use as a coadjuvant in treatment of hyperpigmentation is suggested. Six resveratrol analogs were tested for tyrosinase inhibitory activity in vitro. Among the analogs tested, compound D was the most powerful tyrosinase inhibitor (IC50 = 28.66 µg/mL, two times more active than resveratrol (IC50 = 57.05 µg/mL, followed by the analogs A, E, B, F and C, respectively. This demonstrated that the hydroxylation at C4' on the phenolic ring was the molecular modification with most importance for the observed activity.

  12. Mechanistic studies of the inactivation of tyrosinase by resorcinol.

    Science.gov (United States)

    Stratford, Michael R L; Ramsden, Christopher A; Riley, Patrick A

    2013-03-01

    The inactivation of tyrosinase by resorcinol (1,3-dihydroxybenzene) and seventeen simple derivatives has been investigated using combined spectrophotometry and oximetry together with hplc/ms examination of the oxidation products. The results are consistent with a Quintox mechanism, analogous to that proposed for catechol inactivation of tyrosinase, in which the resorcinol substrate is oxidised via the monooxygenase route leading to a hydroxy intermediate that undergoes deprotonation and results in irreversible elimination of Cu(0) from the active site. Hplc/ms evidence for formation of the resorcinol monooxygenase product (3-hydroxy-ortho-quinone) is presented and the relationship between the ring position of simple resorcinol substituents (H, Me, F, Cl) and tyrosinase inactivation is rationalised. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Aloin, cinnamic acid and sophorcarpidine are potent inhibitors of tyrosinase.

    Science.gov (United States)

    Tan, Cheng; Zhu, Wenyuan; Lu, Yan

    2002-12-01

    To evaluate the effects of aloin, cinnamic acid and 15 other kinds of natural chemicals on the activity of tyrosinase, in order to provide lightening agents in the treatment of hyperpigmentation disorders and cosmetic additives. Tyrosinase activity was estimated by measuring the oxidation rate of L-dopa. Inhibition of the enzyme was deduced according to the Lineweaver-Burk plots compared to the control. Cadabine, paeonal, farrerol, evodin, cinnamic acid, aloin and sophorcarpidine had different levels of inhibition of tyrosinase. The inhibitory rates of cinnamic acid (2 mmol/L, 0.5 mmol/L), aloin (2 mmol/L) and the rest were significantly higher than that of hydroquinone (0.5 mmol/L) (P aloin and sophorcarpidine, of which sophorcarpidine functions as an uncompetitive inhibitor, compared to aloin and cinnamic acid, which are mixed-type inhibitors.

  14. Effect of the tyrosinase inhibitor (S)-N-trans-feruloyloctopamine from garlic skin on tyrosinase gene expression and melanine accumulation in melanoma cells.

    Science.gov (United States)

    Wu, Yan; Wu, Zheng-Rong; Chen, Peng; Yang-Li; Deng, Wan-Rong; Wang, You-Quan; Li, Hong-Yu

    2015-04-01

    In our searching for novel tyrosinase inhibitors from natural sources, (S)-N-trans-feruloyloctopamine isolated from garlic skin was found to be a potential mushroom tyrosinase inhibitor. Here, we examined the effects of the potential tyrosinase inhibitor in B16F10 cells on intracellular melanin contents, cytotoxicity, and the signaling mechanism involved in the expression of tyrosinase. The results showed the inhibitor displayed little or no cytotoxicity at all concentrations examined and decreased the relative melanin contents in a dose-dependent manner in the α-MSH-stimulated B16F10 cells. Real-time PCR and Western blot analysis showed that it inhibits melanogenesis signaling by down-regulates mRNA and protein expression levels of tyrosinase, which leads to a lower melanin contents. These results suggested that (S)-N-trans-feruloyloctopamine was an ideal tyrosinase inhibitor, and could be used in food and medical industry. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Moraceae Plants with Tyrosinase Inhibitory Activity: A Review.

    Science.gov (United States)

    Burlando, Bruno; Clericuzio, Marco; Cornara, Laura

    2017-01-01

    Hyperpigmentation is an abnormal darkening of the skin mostly derived from excessive melanin production. It is typical of skin disorders including melasma associated to pregnancy or age, freckles, sun freckles and photoaging, age spots, and actinic keratosis. These conditions can be uncomfortable for aesthetic reasons and specific depigmenting treatment is frequently requested. Tyrosinase (EC 1.14.18.1) is the rate-limiting enzyme of melanin synthesis and the main target of antihyperpigmentation remedies. Much interest is focused on compounds able to inhibit tyrosinase activity, particularly natural products, for which there is an increasing demand in the fields of cosmetics and pharmaceutical applications. This review concerns plants from the Moraceae family that have shown tyrosinase inhibition in vitro, including species from the genera Morus, Artocarpus, Maclura (Cudrania), Broussonetia, Milicia (Chlorophora), and Ficus. Compounds with remarkable tyrosinase inhibitory properties have been isolated from the wood and bark of different species, such as calchones, stilbenoids, flavonoids and diterpenes. Studies of structure-activity relationships have suggested that an unsubstituted resorcinol moiety is important for the acquirement of strong tyrosinase inhibition, but various exceptions have been reported. A few species, such as M. alba, A. heterophyllus, A. incisus, Maclura tricuspidata, and C. excelsa, have also shown inhibition of melanin biosynthesis on cultured melanoma cells. In addition, wood extract and the stilbene artocarpin from A. incisus have induced whitening effects on guinea pig skin, while an extract from A. lakoocha has hindered melanin formation in human volunteers. The complex of data indicates that Moraceae plants deserve attention for the development of natural and semi-synthetic tyrosinase inhibitors able to compete with, or outclass, currently available skin whitening drugs.

  16. An electrometric method for the determination of tyrosinase activity.

    Science.gov (United States)

    Solano-Muñoz, F; Peñafiel, R; Galindo, J D

    1985-01-01

    The pathway of dopachrome formation from L-dopa involves the net release of one proton for each molecule of dopachrome formed. The protons produced as a consequence of the enzymic step catalysed by tyrosinase can be measured by an electrometric device able to monitor changes in H+ concentration below 1 microM. This electrometric recording can be used as a simple, sensitive and continuous method for determining tyrosinase activity. The electrometric method can also be used in the presence of ascorbate by the spontaneous coupling of ascorbate oxidation to dopaquinone reduction, but measuring proton uptake instead of proton release. PMID:2996485

  17. In vivo photoacoustic imaging of tyrosinase expressing tumours in mice

    Science.gov (United States)

    Laufer, Jan; Jathoul, Amit; Johnson, Peter; Zhang, Edward; Lythgoe, Mark; Pedley, R. Barbara; Pule, Martin; Beard, Paul

    2012-02-01

    Two human tumour cell lines (K562, 293T) were stably transfected to achieve the genetic expression of tyrosinase, which is involved in the production of the pigment eumelanin. The cells were injected subcutaneously into nude mice to form tumour xenografts, which were imaged over a period of up to 26 days using an all-optical photoacoustic imaging system. 3D photoacoustic images of the tumours and the surrounding vasculature were acquired at excitation wavelengths ranging from 600nm to 770nm. The images showed tumour growth and continued tyrosinase expression over the full 26 day duration of the study. These findings were confirmed by histological analysis of excised tumour samples.

  18. Inhibition of tyrosinase activity and melanine pigmentation by 2-hydroxytyrosol

    Directory of Open Access Journals (Sweden)

    Ryuji Uchida

    2014-04-01

    Full Text Available 2-Hydroxytyrosol (2-HT, originally reported as a synthetic compound, was isolated for the first time as a fungal metabolite. 2-HT was found to inhibit mushroom tyrosinase with an IC50 value of 13.0 µmol/L. Furthermore, 2-HT dose-dependently inhibited tyrosinase activity (IC50, 32.5 µmol/L in the cell-free extract of B16 melanoma cells and α-melanocyte stimulating hormone (α-MSH-stimulated melanin formation in intact B16 melanoma cells.

  19. Hydroxylation of p-substituted phenols by tyrosinase: Further insight into the mechanism of tyrosinase activity

    Energy Technology Data Exchange (ETDEWEB)

    Munoz-Munoz, Jose Luis [GENZ - Grupo de Investigacion Enzimologia, Departamento de Bioquimica y Biologia Molecular-A, Facultad de Biologia, Campus Internacional de Excelencia Campus Mare Nostrum, Universidad de Murcia, E-30100 Espinardo, Murcia (Spain); Berna, Jose [Grupo de Quimica Organica Sintetica, Departamento de Quimica Organica, Facultad de Quimica Campus Internacional de Excelencia Campus Mare Nostrum, Universidad de Murcia (Spain); Garcia-Molina, Maria del Mar; Garcia-Molina, Francisco [GENZ - Grupo de Investigacion Enzimologia, Departamento de Bioquimica y Biologia Molecular-A, Facultad de Biologia, Campus Internacional de Excelencia Campus Mare Nostrum, Universidad de Murcia, E-30100 Espinardo, Murcia (Spain); Garcia-Ruiz, Pedro Antonio [QCPAI - Grupo de Quimica de Carbohidratos, Polimeros y Aditivos Industriales, Departamento de Quimica Organica, Facultad de Quimica Campus Internacional de Excelencia Campus Mare Nostrum, Universidad de Murcia (Spain); Varon, Ramon [Departamento de Quimica-Fisica, Escuela de Ingenieros Industriales de Albacete, Universidad de Castilla la Mancha, Avda. Espana s/n. Campus Universitario, E-02071 Albacete (Spain); and others

    2012-07-27

    Highlights: Black-Right-Pointing-Pointer The action the copper complexes and tyrosinase on phenols is equivalent. Black-Right-Pointing-Pointer Isotope effect showed that nucleophilic attack to copper atom may be the slower step. Black-Right-Pointing-Pointer The value of {rho} (Hammett constant) supports an electrophilic aromatic substitution. Black-Right-Pointing-Pointer Data obtained in steady state pH 7 conditions support the mechanism of Scheme 1SM. -- Abstract: A study of the monophenolase activity of tyrosinase by measuring the steady state rate with a group of p-substituted monophenols provides the following kinetic information: k{sub cat}{sup m} and the Michaelis constant, K{sub M}{sup m}. Analysis of these data taking into account chemical shifts of the carbon atom supporting the hydroxyl group ({delta}) and {sigma}{sub p}{sup +}, enables a mechanism to be proposed for the transformation of monophenols into o-diphenols, in which the first step is a nucleophilic attack on the copper atom on the form E{sub ox} (attack of the oxygen of the hydroxyl group of C-1 on the copper atom) followed by an electrophilic attack (attack of the hydroperoxide group on the ortho position with respect to the hydroxyl group of the benzene ring, electrophilic aromatic substitution with a reaction constant {rho} of -1.75). These steps show the same dependency on the electronic effect of the substituent groups in C-4. Furthermore, a study of a solvent deuterium isotope effect on the oxidation of monophenols by tyrosinase points to an appreciable isotopic effect. In a proton inventory study with a series of p-substituted phenols, the representation of k{sub cat}{sup f{sub n}}/k{sub cat}{sup f{sub 0}} against n (atom fractions of deuterium), where k{sub cat}{sup f{sub n}} is the catalytic constant for a molar fraction of deuterium (n) and k{sub cat}{sup f{sub 0}} is the corresponding kinetic parameter in a water solution, was linear for all substrates. These results indicate that

  20. Hydroxylation of p-substituted phenols by tyrosinase: Further insight into the mechanism of tyrosinase activity

    International Nuclear Information System (INIS)

    Muñoz-Muñoz, Jose Luis; Berna, Jose; García-Molina, María del Mar; Garcia-Molina, Francisco; Garcia-Ruiz, Pedro Antonio; Varon, Ramon

    2012-01-01

    Highlights: ► The action the copper complexes and tyrosinase on phenols is equivalent. ► Isotope effect showed that nucleophilic attack to copper atom may be the slower step. ► The value of ρ (Hammett constant) supports an electrophilic aromatic substitution. ► Data obtained in steady state pH 7 conditions support the mechanism of Scheme 1SM. -- Abstract: A study of the monophenolase activity of tyrosinase by measuring the steady state rate with a group of p-substituted monophenols provides the following kinetic information: k cat m and the Michaelis constant, K M m . Analysis of these data taking into account chemical shifts of the carbon atom supporting the hydroxyl group (δ) and σ p + , enables a mechanism to be proposed for the transformation of monophenols into o-diphenols, in which the first step is a nucleophilic attack on the copper atom on the form E ox (attack of the oxygen of the hydroxyl group of C-1 on the copper atom) followed by an electrophilic attack (attack of the hydroperoxide group on the ortho position with respect to the hydroxyl group of the benzene ring, electrophilic aromatic substitution with a reaction constant ρ of −1.75). These steps show the same dependency on the electronic effect of the substituent groups in C-4. Furthermore, a study of a solvent deuterium isotope effect on the oxidation of monophenols by tyrosinase points to an appreciable isotopic effect. In a proton inventory study with a series of p-substituted phenols, the representation of k cat f n /k cat f 0 against n (atom fractions of deuterium), where k cat f n is the catalytic constant for a molar fraction of deuterium (n) and k cat f 0 is the corresponding kinetic parameter in a water solution, was linear for all substrates. These results indicate that only one of the proton transfer processes from the hydroxyl groups involved the catalytic cycle is responsible for the isotope effects. We suggest that this step is the proton transfer from the hydroxyl group

  1. Molecular analyses of a tyrosinase-negative albino family

    Energy Technology Data Exchange (ETDEWEB)

    Park, K.C.; Chintamaneni, C.D.; Kwon, B.S. (Indiana Univ., Indianapolis (United States)); Halaban, R. (Yale Univ., New Haven, CT (United States)); Witkop, C.J. Jr. (Univ. of Minnesota, Minneapolis (United States))

    1993-02-01

    Sequence analysis of the tyrosinase coding region from an individual with tyrosinase-negative oculocutaneous albinism revealed that the patient was a compound heterozygote. One allele carried a C[r arrow]A single-base substitution in codon 355 of exon 3, and the other carried a two-nucleotide deletion in exon 1. The nucleotide substitution caused a putative amino acid change from threonine (ACA) to lysine (AAA), abolishing a signal for N-glycosylation. The two base-pair deletion caused a frameshift, creating a putative premature termination signal at codon 226. The melanocytes from the proband and her affected brother were amelanotic and devoid of measurable tyrosinase activity. Moreover, gel electrophoretic analysis of the immunoprecipitated proband tyrosinase showed that the protein was no processed to the mature glycosylated form, confirming the predicted consequence of the amino acid change. The two-base deletion on the homologous allele was detected only by sequencing genomic DNA. The transcript of this allele was not represented in the cDNA library and could not be detected by PCR mRNA, and the putative truncated protein ([approximately]25 kDa) was not present in immunoprecipitates, suggesting that the allele with the missense mutation may be preferentially expressed. 29 refs., 6 figs., 1 tab.

  2. Structure and activity studies of tyrosinases and related proteins

    NARCIS (Netherlands)

    Lai, Xuelei

    2017-01-01

    The copper-containing enzyme tyrosinase catalyzes the conversion of tyrosine into DOPAquinone, which is the precursor of melanin in almost all organisms. In humans, melanin is an essential pigment that protects the skin and eyes against the UV radiation from the sun. Mutations in the genes of the

  3. A Novel Photoelectrochemical Biosensor for Tyrosinase and Thrombin Detection

    Science.gov (United States)

    Chen, Jiexia; Liu, Yifan; Zhao, Guang-Chao

    2016-01-01

    A novel photoelectrochemical biosensor for step-by-step assay of tyrosinase and thrombin was fabricated based on the specific interactions between the designed peptide and the target enzymes. A peptide chain with a special sequence which contains a positively charged lysine-labeled terminal, tyrosine at the other end and a cleavage site recognized by thrombin between them was designed. The designed peptide can be fixed on surface of the CdTe quantum dots (QDs)-modified indium-tin oxide (ITO) electrode through electrostatic attraction to construct the photoelectrochemical biosensor. The tyrosinase target can catalyze the oxidization of tyrosine by oxygen into ortho-benzoquinone residues, which results in a decrease in the sensor photocurrent. Subsequently, the cleavage site could be recognized and cut off by another thrombin target, restoring the sensor photocurrent. The decrease or increase of photocurrent in the sensor enables us to assay tyrosinase and thrombin. Thus, the detection of tyrosinase and thrombin can be achieved in the linear range from 2.6 to 32 μg/mL and from 4.5 to 100 μg/mL with detection limits of 1.5 μg/mL and 1.9 μg/mL, respectively. Most importantly, this strategy shall allow us to detect different classes of enzymes simultaneously by designing various enzyme-specific peptide substrates. PMID:26805846

  4. A Novel Photoelectrochemical Biosensor for Tyrosinase and Thrombin Detection

    Directory of Open Access Journals (Sweden)

    Jiexia Chen

    2016-01-01

    Full Text Available A novel photoelectrochemical biosensor for step-by-step assay of tyrosinase and thrombin was fabricated based on the specific interactions between the designed peptide and the target enzymes. A peptide chain with a special sequence which contains a positively charged lysine-labeled terminal, tyrosine at the other end and a cleavage site recognized by thrombin between them was designed. The designed peptide can be fixed on surface of the CdTe quantum dots (QDs-modified indium-tin oxide (ITO electrode through electrostatic attraction to construct the photoelectrochemical biosensor. The tyrosinase target can catalyze the oxidization of tyrosine by oxygen into ortho-benzoquinone residues, which results in a decrease in the sensor photocurrent. Subsequently, the cleavage site could be recognized and cut off by another thrombin target, restoring the sensor photocurrent. The decrease or increase of photocurrent in the sensor enables us to assay tyrosinase and thrombin. Thus, the detection of tyrosinase and thrombin can be achieved in the linear range from 2.6 to 32 μg/mL and from 4.5 to 100 μg/mL with detection limits of 1.5 μg/mL and 1.9 μg/mL, respectively. Most importantly, this strategy shall allow us to detect different classes of enzymes simultaneously by designing various enzyme-specific peptide substrates.

  5. Mutations of the tyrosinase gene produce autosomal recessive ocular albinism

    Energy Technology Data Exchange (ETDEWEB)

    King, R.A.; Summers, C.G.; Oetting, W.S. [Univ. of Minnesota, Minneapolis, MN (United States)] [and others

    1994-09-01

    Albinism has historically been divided into ocular (OA) and oculocutaneous (OCA) types based on the presence or absence of clinically apparent skin and hair involvement in an individual with the ocular features of albinism. The major genes for OCA include the tyrosinase gene in OCA1 and the P gene in OCA2. X-linked and autosomal recessive OA have been described and the responsible genes have not been identified. We now present six Caucasian individuals who have the phenotype of autosomal recessive OA but who have OCA1 as shown by the presence of mutations of the tyrosinase. They had white or very light hair and white skin at birth, and cutaneous pigment developed in the first decade of life. At ages ranging from 1.5-23 years, hair color was dark blond to light brown. The skin had generalized pigment and well developed tan was present on the exposed arm and face skin of four. Iris pigment was present and iris translucency varied. Molecular analysis of the tyrosinase gene, using PCR amplification and direct di-deoxy sequencing showed the following mutations: E398Z/E398Q, P406S/g346a, R402E/T373K, ?/D383N, and H211N/T373K. The homozygous individual was not from a known consanguineous mating. T373K is the most common tyrosinase gene mutation in our laboratory. Three of these mutations are associated with a total loss of tyrosinase activity (g346a splice-site, T373K, and D383N), while four are associated with residual enzyme activity (H211N, R402E, E398Q, and P406S). These studies show that mutations of the tyrosinase gene can produce the phenotype of autosomal recessive OA in an individual who has normal amounts of cutaneous pigment and the ability to tan after birth. This extends the phenotypic range of OCA1 to normal cutaneous pigment after early childhood, and suggest that mutations of the tyrosinase gene account for a significant number of individuals with autosomal recessive OA.

  6. Quantitative structure activity relationship studies of mushroom tyrosinase inhibitors

    Science.gov (United States)

    Xue, Chao-Bin; Luo, Wan-Chun; Ding, Qi; Liu, Shou-Zhu; Gao, Xing-Xiang

    2008-05-01

    Here, we report our results from quantitative structure-activity relationship studies on tyrosinase inhibitors. Interactions between benzoic acid derivatives and tyrosinase active sites were also studied using a molecular docking method. These studies indicated that one possible mechanism for the interaction between benzoic acid derivatives and the tyrosinase active site is the formation of a hydrogen-bond between the hydroxyl (aOH) and carbonyl oxygen atoms of Tyr98, which stabilized the position of Tyr98 and prevented Tyr98 from participating in the interaction between tyrosinase and ORF378. Tyrosinase, also known as phenoloxidase, is a key enzyme in animals, plants and insects that is responsible for catalyzing the hydroxylation of tyrosine into o-diphenols and the oxidation of o-diphenols into o-quinones. In the present study, the bioactivities of 48 derivatives of benzaldehyde, benzoic acid, and cinnamic acid compounds were used to construct three-dimensional quantitative structure-activity relationship (3D-QSAR) models using comparative molecular field (CoMFA) and comparative molecular similarity indices (CoMSIA) analyses. After superimposition using common substructure-based alignments, robust and predictive 3D-QSAR models were obtained from CoMFA ( q 2 = 0.855, r 2 = 0.978) and CoMSIA ( q 2 = 0.841, r 2 = 0.946), with 6 optimum components. Chemical descriptors, including electronic (Hammett σ), hydrophobic (π), and steric (MR) parameters, hydrogen bond acceptor (H-acc), and indicator variable ( I), were used to construct a 2D-QSAR model. The results of this QSAR indicated that π, MR, and H-acc account for 34.9, 31.6, and 26.7% of the calculated biological variance, respectively. The molecular interactions between ligand and target were studied using a flexible docking method (FlexX). The best scored candidates were docked flexibly, and the interaction between the benzoic acid derivatives and the tyrosinase active site was elucidated in detail. We believe

  7. Tyrosinase inhibition and antioxidant properties of Asphodelus microcarpus extracts.

    Science.gov (United States)

    Di Petrillo, Amalia; González-Paramás, Ana Maria; Era, Benedetta; Medda, Rosaria; Pintus, Francesca; Santos-Buelga, Celestino; Fais, Antonella

    2016-11-09

    Asphodelus microcarpus belongs to the family Liliaceae that include several medicinal plants. In the traditional medicine plants of the genus Asphodelus are used to treat skin disorders such as ectodermal parasites, psoriasis, microbial infection and for lightening freckles. In order to find novel skin depigmenting agents, the present work was carry out to evaluate antioxidant activity and tyrosinase inhibitory potential of leaves, flowers and tubers extracts of A. microcarpus. The phytochemical composition of the active extract was also evaluated. Three different extracts (water, methanol and ethanol) from leaves, flowers and tubers of A. microcarpus were evaluated for their inhibitory effect on tyrosinase activity using L-3,4-dihydroxyphenylalanine (L-DOPA) as substrate. Inhibition of cellular tyrosinase activity and melanin production was also investigated in melanoma B16F10 cells. Antioxidant activity, total phenolic and flavonoids contents were determined using standard in vitro methods. HPLC-DAD-MS was used to identify phenolic profile of the active extract. The results showed that all extracts have a direct inhibitory anti-tyrosinase activity, with ethanolic extract from flowers (FEE) exhibiting the stronger effect. Kinetic analysis revealed that FEE acts as an uncompetitive inhibitor with a Ki value of 0.19 mg/mL. The same effect was observed in murine melanoma B16F10 cells. Cellular tyrosinase activity as well as melanin content were reduced in FEE-treated cells. The results were comparable to that of the standard tyrosinase inhibitor (kojic acid). Furthermore, the same extract showed the highest antioxidant activity and an elevated levels of total phenolics and flavonoid content. Eleven phenolic components were identified as chlorogenic acid, luteolin derivates, naringenin and apigenin. Our findings showed that FEE from A. microcarpus inhibits tyrosinase and exerted antimelanogenesis effect in B16F10 cells. This extract also showed the highest scavenging

  8. Phenolic tyrosinase inhibitors from the stems of Cudrania cochinchinensis.

    Science.gov (United States)

    Zheng, Zong-Ping; Zhu, Qin; Fan, Chun-Lin; Tan, Hui-Yuan; Wang, Mingfu

    2011-05-01

    The phytochemcal profiles of Cudrania cochinchinensis leaf, twig, stem and root were compared by HPLC analysis. It was found that C. cochinchinensis stem extract contained some unknown natural products with potential tyrosinase inhibitory activities. Therefore, the chemical constitutes in extract (95% ethanol) of C. cochinchinensis stem were further investigated in this study. A new racemic mixture, (±)2,3-cis-dihydromorin, and fifteen known phenolic compounds, dihydrokaempferol 7-O-β-d-qlucopyranoside, skimmin, quercetin-7-O-β-d-glucoside, 2,3-dihydroquercetin 7-O-β-d-glucoside, kaempferol-7-O-β-glucopyranoside, quercetin-3,7-di-O-β-d-glucoside, morin-7-O-β-d-glucoside, 1,3,5,8-tetrahydroxyxanthen-9-one, 2,3-trans-dihydromorin, aromadendrin, oxyresveratrol, genistin, protocatechuic acid, kaempferol 3,7-di-O-β-glucopyranoside, and naringenin were isolated. Spectral techniques (MS, (1)H NMR and (13)C NMR) were utilized for their structural identification and their inhibitory activities on mushroom tyrosinase were also evaluated. The results showed that tyrosinase inhibitory activities of (±)2,3-cis-dihydromorin (IC(50) = 31.1 μM), 2,3-trans-dihydromorin (IC(50) = 21.1 μM), and oxyresveratrol (IC(50) = 2.33 μM), were more potent than that of kojic acid (IC(50) = 50.8 μM), a well-known tyrosinase inhibitor, indicating that Cudrania cochinchinensis stem will be a great potential agent for the development of effective natural tyrosinase inhibitors.

  9. Screening of marine algae for potential tyrosinase inhibitor: those inhibitors reduced tyrosinase activity and melanin synthesis in zebrafish.

    Science.gov (United States)

    Cha, Seon-Heui; Ko, Seok-Chun; Kim, Daekyung; Jeon, You-Jin

    2011-04-01

    In order to find new anti-browning and whitening agents in this study, we investigated 43 indigenous marine algae for tyrosinase inhibitory activity. The extracts from Endarachne binghamiae, Schizymenia dubyi, Ecklonia cava (EC) and Sargassum silquastrum (SS) evidenced potent tyrosinase inhibitory activity similar to that of positive control, kojic acid. Among those marine algae, EC and SS are distributed abundantly on Jeju Island. Therefore, we selected those two species for further studies. Our results evidenced that both species reduced cellular melanin synthesis and tyrosinase activity. On the other hand, we utilized zebrafish as an alternative in vivo model. All the tested samples evidenced excellent inhibitory effects on the pigmentation of zebrafish, most likely due to their potential tyrosinase inhibitory activity. In simultaneous in vivo toxicity tests, no toxicity was observed in either algal species, on the other hand, toxicity was observed in positive controls. These results provided that EC and SS extract could be used as an ingredient for whiting cosmetics and that zebrafish is an alternative in vivo model. © 2010 Japanese Dermatological Association.

  10. Recombinant Tyrosinase from Polyporus arcularius: Overproduction in Escherichia coli, Characterization, and Use in a Study of Aurones as Tyrosinase Effectors

    Czech Academy of Sciences Publication Activity Database

    Marková, Eva; Kotík, Michael; Křenková, Alena; Man, Petr; Haudecoeur, R.; Boumendjel, A.; Hardré, R.; Mekmouche, Y.; Dezord-Courvoisier, E.; Réglier, M.; Martínková, Ludmila

    2016-01-01

    Roč. 64, č. 14 (2016), s. 2925-2931 ISSN 0021-8561 R&D Projects: GA MŠk LD12049; GA MŠk LO1509; GA TA ČR TA04021212 Institutional support: RVO:61388971 Keywords : tyrosinase * Polyporus arcularius * Escherichia coli Subject RIV: CE - Biochemistry Impact factor: 3.154, year: 2016

  11. A Molecular Mechanism for Copper Transportation to Tyrosinase That Is Assisted by a Metallochaperone, Caddie Protein*

    Science.gov (United States)

    Matoba, Yasuyuki; Bando, Naohiko; Oda, Kosuke; Noda, Masafumi; Higashikawa, Fumiko; Kumagai, Takanori; Sugiyama, Masanori

    2011-01-01

    The Cu(II)-soaked crystal structure of tyrosinase that is present in a complex with a protein, designated “caddie,” which we previously determined, possesses two copper ions at its catalytic center. We had identified two copper-binding sites in the caddie protein and speculated that copper bound to caddie may be transported to the tyrosinase catalytic center. In our present study, at a 1.16–1.58 Å resolution, we determined the crystal structures of tyrosinase complexed with caddie prepared by altering the soaking time of the copper ion and the structures of tyrosinase complexed with different caddie mutants that display little or no capacity to activate tyrosinase. Based on these structures, we propose a molecular mechanism by which two copper ions are transported to the tyrosinase catalytic center with the assistance of caddie acting as a metallochaperone. PMID:21730070

  12. Effect of Purified Mushroom Tyrosinase on Melanin Content and Melanogenic Protein Expression

    OpenAIRE

    Zaidi, Kamal Uddin; Ali, Sharique A.; Ali, Ayesha S.

    2016-01-01

    In mammalian melanocytes, melanosome is a highly specialized organelle where melanin is synthesized. Melanin synthesis is controlled by tyrosinase, the vital enzyme in melanogenic pathway. The present investigation is based on an effect of purified mushroom tyrosinase of Agaricus bisporus on B16F10 melanocytes for the melanin production via blocking pigment cell machinery. Using B16F10 melanocytes showed that the stimulation of melanogenesis by purified tyrosinase is due to increased tyrosina...

  13. Inhibition kinetics and molecular simulation of p-substituted cinnamic acid derivatives on tyrosinase.

    Science.gov (United States)

    Cui, Yi; Hu, Yong-Hua; Yu, Feng; Zheng, Jing; Chen, Lin-Shan; Chen, Qing-Xi; Wang, Qin

    2017-02-01

    This study was to investigate the inhibition effects of para-substituted cinnamic acid derivatives (4-chlorocinnamic acid, 4-ethoxycinnamic acid and 4-nitrocinnamic acid) on tyrosinase catalyzing the substrates, with the purpose of elucidating the inhibition mechanism of the tested derivatives on tyrosinase by the UV-vis spectrum, fluorescence spectroscopy, copper interacting and molecular docking, respectively. The native-PAGE results showed that 4-chlorocinnamic acid (4-CCA), 4-ethoxycinnamic acid (4-ECA) and 4-nitrocinnamic acid (4-NCA) had inhibitory effects on tyrosinase. Spectrophotometric analysis used to determine the inhibition capabilities of these compounds on tyrosinase catalyzing L-tyrosine (L-Tyr) and L-3,4-Dihydroxyphenylalanine (L-DOPA) as well. The IC 50 values and inhibition constants were further determined. Moreover, quenching mechanisms of tested compounds to tyrosinase belonged to static type and a red shift on fluorescence emission peak occurred when 4-NCA added. Copper interacting and molecular docking demonstrated that 4-CCA could not bind directly to the copper, but it could interact with residues in the active center of tyrosinase. Meanwhile, 4-ECA and 4-NCA could chelate a copper ion of tyrosinase. Anti-tyrosinase activities of para-substituted cinnamic acid derivatives would lay scientific foundation for their utilization in designing of novel tyrosinase inhibitors. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Structural insight into the active site of mushroom tyrosinase using phenylbenzoic acid derivatives.

    Science.gov (United States)

    Oyama, Takahiro; Yoshimori, Atsushi; Takahashi, Satoshi; Yamamoto, Tetsuya; Sato, Akira; Kamiya, Takanori; Abe, Hideaki; Abe, Takehiko; Tanuma, Sei-Ichi

    2017-07-01

    So far, many inhibitors of tyrosinase have been discovered for cosmetic and clinical agents. However, the molecular mechanisms underlying the inhibition in the active site of tyrosinase have not been well understood. To explore this problem, we examined here the inhibitory effects of 4'-hydroxylation and methoxylation of phenylbenzoic acid (PBA) isomers, which have a unique scaffold to inhibit mushroom tyrosinase. The inhibitory effect of 3-PBA, which has the most potent inhibitory activity among the isomers, was slightly decreased by 4'-hydroxylation and further decreased by 4'-methoxylation against mushroom tyrosinase. Surprisingly, 4'-hydroxylation but not methoxylation of 2-PBA appeared inhibitory activity. On the other hand, both 4'-hydroxylation and methoxylation of 4-PBA increased the inhibitory activity against mushroom tyrosinase. In silico docking analyses using the crystallographic structure of mushroom tyrosinase indicated that the carboxylic acid or 4'-hydroxyl group of PBA derivatives could chelate with cupric ions in the active site of mushroom tyrosinase, and that the interactions of Asn260 and Phe264 in the active site with the adequate-angled biphenyl group are involved in the inhibitory activities of the modified PBAs, by parallel and T-shaped π-π interactions, respectively. Furthermore, Arg268 could fix the angle of the aromatic ring of Phe264, and Val248 is supposed to interact with the inhibitors as a hydrophobic manner. These results may enhance the structural insight into mushroom tyrosinase for the creation of novel tyrosinase inhibitors. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Discovery of a new type of scaffold for the creation of novel tyrosinase inhibitors.

    Science.gov (United States)

    Oyama, Takahiro; Takahashi, Satoshi; Yoshimori, Atsushi; Yamamoto, Tetsuya; Sato, Akira; Kamiya, Takanori; Abe, Hideaki; Abe, Takehiko; Tanuma, Sei-Ichi

    2016-09-15

    Tyrosinase is known as the key enzyme for melanin biosynthesis, which is effective in preventing skin injury by ultra violet (UV). In past decades, tyrosinase has been well studied in the field of cosmetics, medicine, agriculture and environmental sciences, and a lot of tyrosinase inhibitors have been developed for their needs. Here, we searched for new types of tyrosinase inhibitors and found phenylbenzoic acid (PBA) as a unique scaffold. Among three isomers of PBA, 3-phenylbenzoic acid (3-PBA) was revealed to be the most potent inhibitor against mushroom tyrosinase (IC50=6.97μM, monophenolase activity; IC50=36.3μM, diphenolase activity). The kinetic studies suggested that the apparent inhibition modes for the monophenolase and diphenolase activities were noncompetitive and mixed type inhibition, respectively. Analyses by in silico docking studies using the crystallographic structure of mushroom tyrosinase indicated that the carboxylic acid group of the 3-PBA could adequately bind to two cupric ions in the tyrosinase. To prove this hypothesis, we examined the effect of modification of the carboxylic acid group of the 3-PBA on its inhibitory activity. As expected, the esterification abrogated the inhibitory activity. These observations suggest that 3-PBA is a useful lead compound for the generation of novel tyrosinase inhibitors and provides a new insight into the molecular basis of tyrosinase catalytic mechanisms. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. The inhibition effect of starch nanoparticles on tyrosinase activity and its mechanism.

    Science.gov (United States)

    Yang, Jie; Chang, Ranran; Ge, Shengju; Zhao, Mei; Liang, Caifeng; Xiong, Liu; Sun, Qingjie

    2016-12-07

    The objective of the current research was to investigate the effects of starch nanoparticles (SNPs) prepared from waxy maize, potato, normal corn, and tapioca starches on the activity of tyrosinase. As a main polyphenol oxidase, tyrosinase not only induces fruit and vegetable browning but also causes skin diseases by overproducing melanin. Herein, for the first time, we evaluated the inhibitory kinetics of SNPs on tyrosinase. It turned out that SNPs inhibited tyrosinase activity reversibly. The IC 50 values of hollow nanoparticles, amylopectin nanoparticles, corn starch nanoparticles, and tapioca starch nanoparticles were 0.308, 0.669, 1.490, and 4.774 μM, respectively. Assay of fluorescence spectra demonstrated that SNPs quenched the tyrosinase intrinsic fluorescence. Moreover, binding constant and binding sites found that SNPs were bound to tyrosinase through van der Waals forces, hydrogen bonds, as well as electrostatic interactions. Analysis of circular dichroism indicated that the incorporation of SNPs into tyrosinase prompted conformational alteration of the enzyme. Furthermore, inhibition of browning by SNPs loading with l-dopa compound indicated that not only the tyrosinase activity was inhibited, but also SNPs decreased free dopa content by adsorption. This research on SNPs as potential inhibitors could give rise to advancement in the realm of anti-tyrosinase and have versatile applications in medicine, food, cosmetics, materials and drugs.

  17. Structure-activity relationships of the thujaplicins for inhibition of human tyrosinase.

    Science.gov (United States)

    Yoshimori, Atsushi; Oyama, Takahiro; Takahashi, Satoshi; Abe, Hideaki; Kamiya, Takanori; Abe, Takehiko; Tanuma, Sei-ichi

    2014-11-01

    Tyrosinase inhibitors have become increasingly critical agents in cosmetic, agricultural, and medicinal products. Although a large number of tyrosinase inhibitors have been reported, almost all the inhibitors were unfortunately evaluated by using commercial available mushroom tyrosinase. Here, we examined the inhibitory effects of three isomers of thujaplicin (α, β, and γ) on human tyrosinase and analyzed their binding modes using homology model and docking studies. As the results, γ-thujaplicin was found to strongly inhibit human tyrosinase with the IC50 of 1.15 μM, extremely superior to a well-known tyrosinase inhibitor kojic acid (IC50 = 571.17 μM). MM-GB/SA binding free energy decomposition analyses suggested that the potent inhibitory activity of γ-thujaplicin may be due to the interactions with His367, Ile368, and Val377 (hot spot amino acid residues) in human tyrosinase. Furthermore, the binding mode of α-thujaplicin indicated that Val377 and Ser380 may cause van der Waals clashes with the isopropyl group of α-thujaplicin. These results provide a novel structural insight into the hot spot of human tyrosinase for the specific binding of γ-thujaplicin and a way to optimize not only thujaplicins but also other lead compounds as specific inhibitors for human tyrosinase in a rational manner. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Inducible expression of photoacoustic reporter gene tyrosinase in cells using a single plasmid

    Science.gov (United States)

    Paproski, Robert J.; Zemp, Roger J.

    2012-02-01

    We have previously demonstrated that tyrosinase is a reporter gene for photoacoustic imaging since tyrosinase is the rate-limiting step in the synthesis of melanin, a pigment capable of producing strong photoacoustic signals. We previously created a cell line capable of inducible tyrosinase expression (important due to toxicity of melanin) by stably transfecting tyrosinase in MCF-7 Tet-OnR cell line (Clontech) which expresses a doxycycline-controlled transactivator. Unfortunately, Clontech provides few Tet-On Advanced cell lines making it difficult to have inducible tyrosinase expression in cell lines not provided by Clontech. In order to simplify the creation of cell lines with inducible expression of tyrosinase, we created a single plasmid that encodes both the transactivator as well as tyrosinase. PCR was used to amplify both the transactivator and tyrosinase from the Tet-OnR Advanced and pTRE-Tight-TYR plasmids, respectively. Both PCR products were cloned into the pEGFP-N1 plasmid and the newly created plasmid was transfected into ZR-75-1, MCF-7, and MIA PaCa-1 cells using lipofectamine. After several days, brown melanin was only observed in cells incubated with doxycycline, suggesting that the newly created single plasmid allowed inducible tyrosinase expression in many different cells lines.

  19. Inhibitory Effects of 5,6,7-Trihydroxyflavones on Tyrosinase

    Directory of Open Access Journals (Sweden)

    Jun Kawabata

    2007-01-01

    Full Text Available Baicalein (1, 6-hydroxyapigenin (6, 6-hydroxygalangin (13 and 6-hydroxy-kaempferol (14, which are naturally occurring flavonoids from a set of 14 hydroxy-flavones tested, exhibited high inhibitory effects on tyrosinase with respect to L-DOPA,while each of the 5,6,7-trihydroxyflavones 1, 6, 13 or 14 acted as a cofactor tomonophenolase. Moreover, 6-hydroxykaempferol (14 showed the highest activity andwas a competitive inhibitor of tyrosinase compared to L-DOPA. 5,6,7-Trihydroxyflavones 1, 6, 13 or 14 showed also high antioxidant activities. Hence, weconclude that the 5,6,7-trihydroxy-flavones are useful as good depigmentation agentswith inhibitory effects in addition to their antioxidant properties.

  20. Tyrosinase inhibitory components from Aloe vera and their antiviral activity.

    Science.gov (United States)

    Kim, Jang Hoon; Yoon, Ju-Yeon; Yang, Seo Young; Choi, Seung-Kook; Kwon, Sun Jung; Cho, In Sook; Jeong, Min Hee; Ho Kim, Young; Choi, Gug Seoun

    2017-12-01

    A new compound, 9-dihydroxyl-2'-O-(Z)-cinnamoyl-7-methoxy-aloesin (1), and eight known compounds (2-9) were isolated from Aloe vera. Their structures were elucidated using 1D/2D nuclear magnetic resonance and mass spectra. Compound 9 exhibited reversible competitive inhibitory activity against the enzyme tyrosinase, with an IC 50 value of 9.8 ± 0.9 µM. A molecular simulation revealed that compound 9 interacts via hydrogen bonding with residues His244, Thr261, and Val283 of tyrosinase. Additionally, compounds 3 and 7 were shown by half-leaf assays to exhibit inhibitory activity towards Pepper mild mottle virus.

  1. Amino acid sequence of tyrosinase from Neurospora crassa.

    Science.gov (United States)

    Lerch, K

    1978-01-01

    The amino-acid sequence of tyrosinase from Neurospora crassa (monophenol,dihydroxyphenylalanine:oxygen oxidoreductase, EC 1.14.18.1) is reported. This copper-containing oxidase consists of a single polypeptide chain of 407 amino acids. The primary structure was determined by automated and manual sequence analysis on fragments produced by cleavage with cyanogen bromide and on peptides obtained by digestion with trypsin, pepsin, thermolysin, or chymotrypsin. The amino terminus of the protein is acetylated and the single cysteinyl residue 96 is covalently linked via a thioether bridge to histidyl residue 94. The formation and the possible role of this unusual structure in Neurospora tyrosinase is discussed. Dye-sensitized photooxidation of apotyrosinase and active-site-directed inactivation of the native enzyme indicate the possible involvement of histidyl residues 188, 192, 289, and 305 or 306 as ligands to the active-site copper as well as in the catalytic mechanism of this monooxygenase. PMID:151279

  2. Photoacoustic microscopy of tyrosinase reporter gene in vivo

    Science.gov (United States)

    Krumholz, Arie; Vanvickle-Chavez, Sarah J.; Yao, Junjie; Fleming, Timothy P.; Gillanders, William E.; Wang, Lihong V.

    2011-08-01

    Photoacoustic tomography is a hybrid modality based on optical absorption excitation and ultrasonic detection. It is sensitive to melanin, one of the primary absorbers in skin. For cells that do not naturally contain melanin, melanin production can be induced by introducing the gene for tyrosinase, the primary enzyme responsible for expression of melanin in melanogenic cells. Optical resolution photoacoustic microscopy was used in the ex vivo study reported here, where the signal from transfected cells increased by more than 10 times over wild-type cells. A subsequent in vivo experiment was conducted to demonstrate the capability of photoacoustic microscopy to spectrally differentiate between tyrosinase-catalyzed melanin and various other absorbers in tissue.

  3. An inhibition mechanism of dihydromyricetin on tyrosinase and the joint effects of vitamins B6, D3or E.

    Science.gov (United States)

    Fan, Meihui; Zhang, Guowen; Pan, Junhui; Gong, Deming

    2017-07-19

    Dihydromyricetin (DMY), a natural flavonoid, was found to effectively inhibit tyrosinase activity in a mixed-type manner with an IC 50 value of (3.66 ± 0.14) × 10 -5 mol L -1 . DMY combined with the dietary vitamin D 3 at lower concentrations exhibited a synergistic effect on the inhibition of tyrosinase. The formation of a DMY-tyrosinase complex led to fluorescence quenching and conformational changes of tyrosinase, which was driven mainly by hydrophobic interactions and hydrogen bonds. The molecular simulation further found that DMY inserted into the active pocket of tyrosinase interacted with amino acid residues Tyr78, His85, and Ala323, occupying the catalytic center of tyrosinase to hinder entrance of the substrate, leading to the inhibition of tyrosinase. This study may provide a scientific foundation for screening effective tyrosinase inhibitors.

  4. Screening Marker Components Of Tyrosinase Inhibitor From Xylocarpus Granatum Stem

    Directory of Open Access Journals (Sweden)

    Latifah K Darusman

    2017-03-01

    Full Text Available The aim of our research was to screen the marker components of tyrosinase inhibitor from Xylocarpus granatum stem collected from Pulau Sebuku, South Kalimantan, Indonesia.  The screening method started from selection of part of X. granatum, stem or stem bark.  Stem and stem bark of X. granatum were dried and grounded before submitted to methanol.  The stem extracts is more potent as tyrosinase inhibitor (IC50 for monophenolase is 45.12 μg/ml and diphenolase is 31.59μg/ml compared to the bark extracts. The IC50 values of kojic acid as positive control are 17.43μg/ml for monophenolase and 20.69 μg/ml for diphenolase. The stem extract then separated with silica gel column chromatography and preparative thin layer chromatography.  The results showed that component with Rf 0,25 and 0.63 (TLC analysis with stationary phase silica gel GF254 and mobile phase ethyl acetic: methanol (8:2 are the marker components as tyrosinase inhibitor for X. granatum.

  5. Influencing the monophenolase/diphenolase activity ratio in tyrosinase.

    Science.gov (United States)

    Goldfeder, Mor; Kanteev, Margarita; Adir, Noam; Fishman, Ayelet

    2013-03-01

    Tyrosinase is a type 3 copper enzyme with great potential for production of commercially valuable diphenols from monophenols. However, the use of tyrosinase is limited by its further oxidation of diphenols to quinones. We recently determined the structure of the Bacillus megaterium tyrosinase revealing a residue, V218, which we proposed to take part in positioning of substrates within the active site. In the structure of catechol oxidase from Ipomoea batatas, the lack of monophenolase activity was attributed to the presence of F261 near CuA. Consequently, we engineered two variants, V218F and V218G. V218F was expected to have a decreased monophenolase activity, due to the bulky residue extending into the active site. Surprisingly, both V218F and V218G exhibited a 9- and 4.4-fold higher monophenolase/diphenolase activity ratio, respectively. X-ray structures of variant V218F display a flexibility of the phenylalanine residue along with an adjacent histidine, which we propose to be the source of the change in activity ratio. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Association of Tyrosinase (TYR and Tyrosinase-related Protein 1 (TYRP1 with Melanic Plumage Color in Korean Quails (

    Directory of Open Access Journals (Sweden)

    Ying Xu

    2013-11-01

    Full Text Available TYR (Tyrosinase and TYRP1 (Tyrosinase-related protein 1 play crucial roles in determining the coat color of birds. In this paper, we aimed to characterize the relationship of TYR and TYRP1 genes with plumage colors in Korean quails. The SNPs were searched by cDNA sequencing and PCR-SSCP in three plumage color Korean quails (maroon, white and black plumage. Two SNPs (367T→C and 1153C→T were found in the coding region of TYRP1 gene, but had no significant association with plumage phenotype in Korean quails. The expression of TYR was higher in black plumage quails than that in maroon plumage quails. In contrast, the expression of TYRP1 was lower in black plumage quails than that in maroon plumage quails. This study suggested that the melanic plumage color in Korean quails may be associated with either increased production of TYR or decreased production of TYRP1.

  7. Tyrosinase: the four oxidation states of the active site and their relevance to enzymatic activation, oxidation and inactivation.

    Science.gov (United States)

    Ramsden, Christopher A; Riley, Patrick A

    2014-04-15

    Tyrosinase is an enzyme widely distributed in the biosphere. It is one of a group of proteins with a strongly conserved bicopper active centre able to bind molecular oxygen. Tyrosinase manifests two catalytic properties; monooxygenase and oxidase activity. These actions reflect the oxidation states of the active centre. Tyrosinase has four possible oxidation states and the details of their interaction are shown to give rise to the unusual kinetic behaviour of the enzyme. The resting state of the enzyme is met-tyrosinase [Cu(II)2] and activation, associated with a 'lag period', involves reduction to deoxy-tyrosinase [Cu(I)2] which is capable of binding dioxygen to form oxy-tyrosinase [Cu(II)2·O2]. Initially the conversion of met- to deoxy-tyrosinase is brought about by a catechol that is indirectly formed from an ortho-quinone product of tyrosinase action. The primary function of the enzyme is monooxygenation of phenols to ortho-quinones by oxy-tyrosinase. Inactivation of the enzyme results from monooxygenase processing of catechols which can lead to reductive elimination of one of the active-site copper ions and conversion of oxy-tyrosinase to the inactive deact-tyrosinase [Cu(II)Cu(0)]. This review describes the tyrosinase pathways and the role of each oxidation state in the enzyme's oxidative transformations of phenols and catechols. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Determination of variants in the 3'-region of the Tyrosinase gene requires locus specific amplification.

    NARCIS (Netherlands)

    Chaki, M.; Mukhopadhyay, A.; Ray, K.

    2005-01-01

    Mutations in the Tyrosinase gene (TYR, 11q14-q21) cause oculocutaneous albinism type 1 (OCA1). The 3'-region of the TYR shows 98.55% sequence identity with a pseudogene, known as Tyrosinase-Like Gene (TYRL, 11p11.2-cen). A large number of publicly available nucleotide variants of TYR in this region

  9. Photoacoustic imaging of gene expression using tyrosinase as a reporter gene

    Science.gov (United States)

    Paproski, Robert J.; Forbrich, Alexander; Harrison, Tyler; Hitt, Mary; Zemp, Roger J.

    2011-03-01

    Optical reporter genes, such as green fluorescence protein, are powerful research tools that allow visualization of gene expression. We have successfully used tyrosinase as a reporter gene for photoacoustic imaging. Tyrosinase is the key regulatory enzyme in the production of melanin which has a broad optical absorption spectrum. MCF-7 cells were stably transfected with tyrosinase under the control of an inducible promoter. For photoacoustic experiments, MCF-7 cells were resuspended at 108 cells/mL and injected in 700 μm (inner diameter) plastic tubing. Photoacoustic signal of MCF-7 cells expressing tyrosinase were >20-fold greater than those of untransfected MCF-7 cells. Photoacoustic signal of tyrosinaseexpressing MCF-7 cells were approximately 2-fold lesser and greater than those of blood at 576 and 650 nm, respectively, suggesting that photoacoustic signal from blood and tyrosinase-expressing cells can be separated by dualwavelength analysis. Photoacoustic signal from tyrosinase-expressing MCF-7 cells covered by chicken tissue could even be detected at a laser penetration depth of 4 cm, suggesting that tyrosinase can be used to image gene expression in relatively deep tissues. The current data suggests that tyrosinase is a strong reporter gene for photoacoustic imaging.

  10. Functionality study of santalin as tyrosinase inhibitor: A potential depigmentation agent.

    Science.gov (United States)

    Hridya, Hemachandran; Amrita, Anantharaman; Mohan, Sankari; Gopalakrishnan, Mohan; Dakshinamurthy, Thirumal Kumar; Doss, George Priya; Siva, Ramamoorthy

    2016-05-01

    Excessive melanin production leads to hyperpigmentation disorders which results in distressing aesthetic values. Though there are some synthetic depigmentation agents available it has been reported to possess cytotoxic and mutagenic effects. Hence there is a need for the development of safe and non toxic natural tyrosinase inhibitors. Here we report the role of santalin, the chief constituent of Pterocarpus santalinus in inhibition of tyrosinase and melanin synthesis. Santalin inhibited tyrosinase activity dose dependently. Inhibitory kinetic studies revealed mixed type of inhibition with reversible mechanism. Santalin was found to interact with the fluorophore amino acid residue of tyrosinase. Analysis of circular dichroism spectra showed the binding of santalin to tyrosinase which induced the loss of secondary helical structure. Molecular docking result suggested that santalin interact with the catalytic core of tyrosinase through strong hydrogen and hydrophobic bonding. The results of in vitro studies showed santalin inhibited melanogenesis through down regulation of MITF, tyrosinase, TRP-1 and TRP-2 without any cytotoxic effects towards B16F0 melanoma cells. Therefore, our results suggested that santalin possesses anti-tyrosinase activity, which could be utilized as a safe depigmentation agent in the cosmetic field for the treatment of hyperpigmentation disorder. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Effect of Cd2+on tyrosinase: Integration of inhibition kinetics with computational simulation.

    Science.gov (United States)

    Yue, Li-Mei; Lee, Jinhyuk; Lü, Zhi-Rong; Yang, Jun-Mo; Ye, Zhuo-Ming; Park, Yong-Doo

    2017-01-01

    Cadmium ions (Cd 2+ ) are a widespread and easily absorbed toxin to both humans and animals that can be spread via food, water, and air pollution. Tyrosinase (EC 1.14.18.1) is a multifunctional copper-containing enzyme that is ubiquitously expressed in animals and plays a critical role in melanin production. We evaluated the toxic effects of Cd 2+ on tyrosinase activity and conformation by measuring kinetics and computationally simulating the interactions. We found Cd 2+ to be a slope-hyperbolic noncompetitive-inhibition reversible inhibitor of tyrosinase, with an IC 50 of 2.92±0.16mM and K i of 0.23±0.02mM. Spectrofluorimetric measurements of intrinsic and ANS-binding fluorescence showed that Cd 2+ did not induce significant changes to tyrosinase overall or to its regional active site conformations. Cd 2+ showed its inactivation effect not by modulating apparent structural changes to tyrosinase, but by occupying binding sites. To gain further insight into the Cd 2+ /tyrosinase interaction, we performed computational docking and molecular dynamics simulations. The results consistently indicated that Cd 2+ can interact with several residues near the tyrosinase active site, primarily HIS85 and ASN260. Our study provides insight into the mechanism of the toxic effects Cd 2+ has on tyrosinase, which could affect the normal pigmentation pathway in animals. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Crystal Structure of Agaricus bisporus Mushroom Tyrosinase: Identity of the Tetramer Subunits and Interaction with Tropolone

    NARCIS (Netherlands)

    Ismaya, W.T.; Rozeboom, H.J.; Weijn, A.; Mes, J.J.; Fusetti, F.; Wichers, H.J.; Dijkstra, B.W.

    2011-01-01

    Tyrosinase catalyzes the conversion of phenolic compounds into their quinone derivatives, which are precursors for the formation of melanin, a ubiquitous pigment in living organisms. Because of its importance for browning reactions in the food industry, the tyrosinase from the mushroom Agaricus

  13. New insights into the active site structure and catalytic mechanism of tyrosinase and its related proteins.

    Science.gov (United States)

    Olivares, Concepcion; Solano, Francisco

    2009-12-01

    Tyrosinases are widely distributed in nature. They are copper-containing oxidases belonging to the type 3 copper protein family, together with catechol oxidases and haemocyanins. Tyrosinases are essential enzymes in melanin biosynthesis and therefore responsible for pigmentation of skin and hair in mammals, where two more enzymes, the tyrosinase-related proteins (Tyrps), participate in the pathway. The structure and catalytic mechanism of mammalian tyrosinases have been extensively studied but they are not completely understood because of the lack of information on the tertiary structure. The availability of crystallographic data of one plant catechol oxidase and one bacterial tyrosinase has improved the model of the three-dimensional structure of the active site of the enzyme. Furthermore, sequence comparison of tyrosinase and the Tyrps reveals that the three orthologue proteins share many key structural features, because of their common origin from an ancestral gene, although the specific residues responsible for their different catalytic capabilities have not been identified yet. This review summarizes our current knowledge of tyrosinase and Tyrps structure and function and describes the catalytic mechanism of tyrosinase and Dct/Tyrp2, which are better characterized.

  14. Tyrosinase kinetics in epidermal melanocytes: analysis of DAG-PKC-dependent signaling pathway

    Science.gov (United States)

    Stolnitz, Mikhail M.; Peshkova, Anna Y.

    2001-05-01

    Tyrosinase is the key enzyme of melanogenesis with unusual enzyme kinetics. Protein kinase C plays an important role in regulating of tyrosinase activity. In the paper the mathematical model of PKC-DAG-dependent signal transduction pathway for UV-radiation is presented.

  15. Structure of Human Tyrosinase Related Protein 1 Reveals a Binuclear Zinc Active Site Important for Melanogenesis

    NARCIS (Netherlands)

    Lai, Xuelei; Wichers, Harry J.; Soler-Lopez, Montserrat; Dijkstra, Bauke W.

    2017-01-01

    Tyrosinase-related protein 1 (TYRP1) is one of three tyrosinase-like glycoenzymes in human melanocytes that are key to the production of melanin, the compound responsible for the pigmentation of skin, eye, and hair. Difficulties with producing these enzymes in pure form have hampered the

  16. Tyrosinase-based TLC Autography for anti-melanogenic drug screening.

    Science.gov (United States)

    Hsu, Kai-Di; Chan, Yu-Hin; Chen, Hong-Jhang; Lin, Shi-Ping; Cheng, Kuan-Chen

    2018-01-10

    Tyrosinase-based TLC (thin layer chromatography) was developed for screening of anti-melanogenic drugs. In particular, this technique enables researchers to identify melanogenic inhibitor(s) in tested mixtures with the naked eye. In comparison with traditional colorimetric screening assays for tyrosinase inhibitor(s), not only is tyrosinase-based TLC a more cost-effective option (nearly one-tenth the enzyme cost of colorimetric methods) but also is a more sensitive detection approach for kojic acid (KA), a standard anti-melanogenic drug. The detection limit of tyrosinase-based TLC and colorimetric tyrosinase assay for KA was 0.0125 and 1.25 μg, respectively, demonstrating that the former was 100-fold more sensitive than the latter to determine the tyrosinase inhibitory rate of KA. Furthermore, the results of this method have demonstrated excellent precision by Gage Repeatability and Reproducibility (Gage R&R), with the variation of total Gage R&R being 28.24%. To verify the applicability of tyrosinase-based TLC, this platform was employed to screen melanogenic inhibitor(s) from Ganoderma formosanum extracts and two of all fractions (GFE-EA F4, F5) obtained showed depigmenting activity. It is noteworthy that these two fractions also exerted anti-melanogenesis activity on zebrafish, therefore verifying the credibility of tyrosinase-based TLC. In sum, this technique provides new insight into the discovery of novel melanogenic inhibitor(s).

  17. Tyrosinase expression in malignant melanoma, desmoplastic melanoma, and peripheral nerve tumors

    DEFF Research Database (Denmark)

    Boyle, Jenny L; Haupt, Helen M; Stern, Jere B

    2002-01-01

    CONTEXT: Pathologists may encounter problems in the differential diagnosis of malignant melanoma, spindle and epithelioid neoplasms of peripheral nerves, and fibrohistiocytic tumors. Tyrosinase has been demonstrated to be a sensitive marker for melanoma. OBJECTIVE: To determine the specificity...... of tyrosinase expression in the differential diagnosis of melanoma, desmoplastic melanoma, and peripheral nerve sheath tumors. DESIGN: Immunoreactivity for tyrosinase, HMB-45 (anti-gp100 protein), S100 protein, CD34, and vimentin was studied in 70 tumors, including 15 melanomas (5 desmoplastic, 4 amelanotic, 6...... at 121 degrees C. RESULTS: All melanomas demonstrated positive immunostaining for tyrosinase, HMB-45, and S100 protein. Immunoreactivity for HMB-45 was generally stronger than that for tyrosinase in amelanotic lesions and significantly stronger in 1 of the desmoplastic lesions. The 4 pigmented...

  18. Serendipitous discovery of short peptides from natural products as tyrosinase inhibitors.

    Science.gov (United States)

    Hsiao, Nai-Wan; Tseng, Tien-Sheng; Lee, Yu-Ching; Chen, Wang-Chuan; Lin, Hui-Hsiung; Chen, Yun-Ru; Wang, Yeng-Tseng; Hsu, Hung-Ju; Tsai, Keng-Chang

    2014-11-24

    Tyrosinase, which is the crucial copper-containing enzyme involved in melanin synthesis, is strongly associated with hyperpigmentation disorders, cancer, and neurodegenerative disease; thus, it has attracted considerable interest in the fields of medicine and cosmetics. The known tyrosinase inhibitors show numerous adverse side effects, and there is a lack of safety regulations governing their use. As a result, there is a need to develop novel inhibitors with no toxicity and long-term stability. In this study, we use molecular docking and pharmacophore modeling to construct a reasonable and reliable pharmacophore model, called Hypo 1, that could be used for identifying potent natural products with crucial complementary functional groups for mushroom tyrosinase inhibition. It was observed that, out of 47,263 natural compounds, A5 structurally resembles a dipeptide (WY) and natural compound B16 is the equivalent of a tripeptide (KFY), revealing that the C-terminus tyrosine residues play a key role in tyrosinase inhibition. Tripeptides RCY and CRY, which show high tyrosinase inhibitory potency, revealed a positional and functional preference for the cysteine residue at the N-terminus of the tripeptides, essentially determining the capacity of tyrosinase inhibition. CRY and RCY used the thiol group of cysteine residues to coordinate with the Cu ions in the active site of tyrosinase and showed reduced tyrosinase activity. We discovered the novel tripeptide CRY that shows the most striking inhibitory potency against mushroom tyrosinase (IC50 = 6.16 μM); this tripeptide is more potent than the known oligopeptides and comparable with kojic acid-tripeptides. Our study provides an insight into the structural and functional roles of key amino acids of tripeptides derived from the natural compound B16, and the results are expected to be useful for the development of tyrosinase inhibitors.

  19. Inhibitory effect of burdock leaves on elastase and tyrosinase activity

    Science.gov (United States)

    Horng, Chi-Ting; Wu, Hsing-Chen; Chiang, Ni-Na; Lee, Chiu-Fang; Huang, Yu-Syuan; Wang, Hui-Yun; Yang, Jai-Sing; Chen, Fu-An

    2017-01-01

    Burdock (Arctium lappa L.) leaves generate a considerable amount of waste following burdock root harvest in Taiwan. To increase the use of burdock leaves, the present study investigated the optimal methods for producing burdock leaf extract (BLE) with high antioxidant polyphenolic content, including drying methods and solvent extraction concentration. In addition, the elastase and tyrosinase inhibitory activity of BLE was examined. Burdock leaves were dried by four methods: Shadow drying, oven drying, sun drying and freeze-drying. The extract solution was then subjected to total polyphenol content analysis and the method that produced BLE with the highest amount of total antioxidant components was taken forward for further analysis. The 1,1-diphenyl-2-pycrylhydrazyl scavenging, antielastase and antityrosinase activity of the BLE were measured to enable the evaluation of the antioxidant and skin aging-associated enzyme inhibitory activities of BLE. The results indicated that the total polyphenolic content following extraction with ethanol (EtOH) was highest using the freeze-drying method, followed by the oven drying, shadow drying and sun drying methods. BLE yielded a higher polyphenol content and stronger antioxidant activity as the ratio of the aqueous content of the extraction solvent used increased. BLE possesses marked tyrosinase and elastase inhibitory activities, with its antielastase activity notably stronger compared with its antityrosinase activity. These results indicate that the concentration of the extraction solvent was associated with the antioxidant and skin aging-associated enzyme inhibitory activity of BLE. The reactive oxygen species scavenging theory of skin aging may explain the tyrosinase and elastase inhibitory activity of BLE. In conclusion, the optimal method for obtaining BLE with a high antioxidant polyphenolic content was freeze-drying followed by 30–50% EtOH extraction. In addition, the antielastase and antityrosinase activities of the

  20. Membrane-Associated Transporter Protein (MATP Regulates Melanosomal pH and Influences Tyrosinase Activity.

    Directory of Open Access Journals (Sweden)

    Bum-Ho Bin

    Full Text Available The SLC45A2 gene encodes a Membrane-Associated Transporter Protein (MATP. Mutations of this gene cause oculocutaneous albinism type 4 (OCA4. However, the molecular mechanism of its action in melanogenesis has not been elucidated. Here, we discuss the role of MATP in melanin production. The SLC45A2 gene is highly enriched in human melanocytes and melanoma cell lines, and its protein, MATP, is located in melanosomes. The knockdown of MATP using siRNAs reduced melanin content and tyrosinase activity without any morphological change in melanosomes or the expression of melanogenesis-related proteins. Interestingly, the knockdown of MATP significantly lowered the melanosomal pH, as verified through DAMP analysis, suggesting that MATP regulates melanosomal pH and therefore affects tyrosinase activity. Finally, we found that the reduction of tyrosinase activity associated with the knockdown of MATP was readily recovered by copper treatment in the in vitro L-DOPA oxidase activity assay of tyrosinase. Considering that copper is an important element for tyrosinase activity and that its binding to tyrosinase depends on melanosomal pH, MATP may play an important role in regulating tyrosinase activity via controlling melanosomal pH.

  1. The Tyrosinase Produced by Lentinula boryana (Berk. & Mont. Pegler Suffers Substrate Inhibition by L-DOPA

    Directory of Open Access Journals (Sweden)

    Rodrigo Otávio de Faria

    2007-01-01

    Full Text Available We undertook a preliminary characterization of the tyrosinase produced by a strain of Lentinula boryana from Brazil, with a view to evaluate its potential for biotechnological applications. The enzyme was similar to other fungal tyrosinases in many respects. When the crude extract was characterized, the tyrosinase activity was optimal at pH=6 and was not particularly thermostable, with half-lives of about 10 min and 1 min at 50 and 60 °C, respectively. We purified the enzyme with ammonium sulfate precipitation followed by ion exchange chromatography on a DEAE Sepharose column, obtaining a yield of 33 % and a 5.3-fold enrichment. The purified preparation gave three bands on SDS-PAGE, with molecular masses of 20, 27 and 47 kDa. This preparation showed substrate inhibition kinetics with L-DOPA (3,4-dihydroxy-L-phenylalanine, with a KM of 1.9 mM and a KI of 72 mM. Under the same reaction conditions, a commercial mushroom tyrosinase followed Michaelis-Menten kinetics, with a KM of 0.51 mM. Although the present study did not identify properties that would make the tyrosinase of L. boryana more suitable in biotechnological applications than tyrosinases from other mushrooms, it has made a contribution by showing that the enzyme suffers substrate inhibition by L-DOPA, something that has not previously been reported for mushroom tyrosinases.

  2. In vivo imaging of inducible tyrosinase gene expression with an ultrasound array-based photoacoustic system

    Science.gov (United States)

    Harrison, Tyler; Paproski, Robert J.; Zemp, Roger J.

    2012-02-01

    Tyrosinase, a key enzyme in the production of melanin, has shown promise as a reporter of genetic activity. While green fluorescent protein has been used extensively in this capacity, it is limited in its ability to provide information deep in tissue at a reasonable resolution. As melanin is a strong absorber of light, it is possible to image gene expression using tyrosinase with photoacoustic imaging technologies, resulting in excellent resolutions at multiple-centimeter depths. While our previous work has focused on creating and imaging MCF-7 cells with doxycycline-controlled tyrosinase expression, we have now established the viability of these cells in a murine model. Using an array-based photoacoustic imaging system with 5 MHz center frequency, we capture interleaved ultrasound and photoacoustic images of tyrosinase-expressing MCF-7 tumors both in a tissue mimicking phantom, and in vivo. Images of both the tyrosinase-expressing tumor and a control tumor are presented as both coregistered ultrasound-photoacoustic B-scan images and 3-dimensional photoacoustic volumes created by mechanically scanning the transducer. We find that the tyrosinase-expressing tumor is visible with a signal level 12dB greater than that of the control tumor in vivo. Phantom studies with excised tumors show that the tyrosinase-expressing tumor is visible at depths in excess of 2cm, and have suggested that our imaging system is sensitive to a transfection rate of less than 1%.

  3. DMEM enhances tyrosinase activity in B16 mouse melanoma cells and human melanocytes

    Directory of Open Access Journals (Sweden)

    Panpen Diawpanich

    2008-07-01

    Full Text Available Media components may affect the activities of cultured cells. In this study, tyrosinase activity was evaluated by using B16-F10 mouse melanoma cell lines (B16-F10 and primary human melanocytes cultured in different media. An optical density measurement and a L-dopa reaction assay were used as the determination of the tyrosinase activity. The study of B16-F10 found the optical density to be 2010, 2246 and 2961 in cells cultured in RPMI Medium 1640 (RPMI1640,Minimum Essential Medium (MEM and Dulbecco’s Modified Eagle Medium (DMEM, respectively. Moreover, compared to RPMI 1640 and MEM, DMEM showed the darkest color of melanin formation in culture media and in cells after the L-dopa reaction assay. Addition of kojic acid showed a significant inhibitory effect on tyrosinase activity in all media.Whereas MCDB153 showed no significant effect on human melanocytes, DMEM caused a dramatic increase in tyrosinase activity after 4 days of cultivation. Addition of kojic acid showed a significant tyrosinase inhibitory effect in DMEM only. Furthermore, an active ingredient in green tea, epigallocathechin gallate (EGCG could inhibit tyrosinase activity in both B16-F10 and human melanocytes cultured in DMEM. In summary, these results suggest that DMEM is a suitable medium that provides high detection sensitivity in a tyrosinase inhibition assay.

  4. A Novel Heptapeptide with Tyrosinase Inhibitory Activity Identified from a Phage Display Library.

    Science.gov (United States)

    Nie, Huali; Liu, Lin; Yang, Huiqin; Guo, Hongzhen; Liu, Xiang; Tan, Yuanhao; Wang, Wen; Quan, Jing; Zhu, Limin

    2017-01-01

    Peptidic inhibition of the enzyme tyrosinase, responsible for skin pigmentation and food browning, would be extremely useful for the food, cosmetics, and pharmaceutical industries. In order to identify novel inhibitory peptides, a library of short sequence oligopeptides was screened to reveal direct interaction with the tyrosinase. A phage displaying heptapeptide (IQSPHFF) was found to bind most strongly to tyrosinase. The inhibitory activity of the heptapeptide was evaluated using mushroom tyrosinase. The results showed that the peptide inhibited both the monophenolase and diphenolase activities of mushroom tyrosinase with IC 50 values of 1.7 and 4.0 mM, respectively. The heptapeptide is thought to be a reversible competitive inhibitor of diphenolase with the inhibition constants (Ki) of 0.765 mM. To further investigate how the heptapeptide exerts its inhibitory effect, a docking study between tyrosinase and heptapeptide was performed. The simulation showed that the heptapeptide binds in the active site of the enzyme near the catalytically active Cu ions and forms hydrogen bonds with five histidine residues on the active site. Phage display technology is thus a useful approach for the screening of potential tyrosinase inhibitors and could be widely applicable to a much wider range of enzymes.

  5. Mammalian tyrosinase: biosynthesis, processing, and modulation by melanocyte-stimulating hormone.

    Science.gov (United States)

    Jiménez, M; Kameyama, K; Maloy, W L; Tomita, Y; Hearing, V J

    1988-01-01

    We have examined the rate of synthesis and degradation of tyrosinase (monophenol, 3,4-dihydroxyphenylalanine:oxygen oxidoreductase, EC 1.14.18.1), the critical enzyme involved in mammalian pigmentation, using pulse-chase metabolic labeling of murine melanoma cells and immunoprecipitation of protein extracts with antibodies directed specifically against the enzyme. We have found that tyrosinase is synthesized and glycosylated within melanocytes rapidly, since significant quantities of pulse-labeled enzyme could be detected within 30 min. The maximum amount of enzyme was processed within 4 hr, and the t1/2 of tyrosinase in vivo was 10 hr (compared to 120 hr with purified enzyme), suggesting that tyrosinase activity in melanocytes is at least in part regulated by rapid synthesis and active degradation. We also have examined the melanogenic stimulation caused by melanocyte-stimulating hormone, using metabolic labeling, radiometric assays, and immunofluorescence techniques; responding cells increased their melanogenic potential more than 7-fold within 4 days without increasing their levels of tyrosinase synthesis. The results demonstrate that a pool of inactive tyrosinase exists in melanocytes and that rapid increases in enzyme activity elicited by melanocyte-stimulating hormone reflect an alteration in the activity of a preexisting pool of intracellular tyrosinase. Images PMID:3131764

  6. Screening of tyrosinase inhibitors by capillary electrophoresis with immobilized enzyme microreactor and molecular docking.

    Science.gov (United States)

    Cheng, Mengxia; Chen, Zilin

    2017-02-01

    A new method for screening tyrosinase inhibitors from traditional Chinese medicines (TCMs) was successfully developed by capillary electrophoresis with reliable online immobilized enzyme microreactor (IMER). In addition, molecular docking study has been used for supporting inhibition interaction between enzyme and inhibitors. The IMER of tyrosinase was constructed at the outlet of the capillary by using glutaraldehyde as cross-linker. The parameters including enzyme reaction, separation of the substrate and product, and the performance of immobilized tyrosinase were investigated systematically. Because of using short-end injection procedure, the product and substrate were effectively separated within 2 min. The immobilized tyrosinase could remain 80% active for 30 days at 4°C. The Michaelis-Menten constant of tyrosinase was determined as 1.78 mM. Kojic acid, a known tyrosinase inhibitor, was used as a model compound for the validation of the inhibitors screening method. The half-maximal inhibitory concentration of kojic acid was 5.55 μM. The method was successfully applied for screening tyrosinase inhibitors from 15 compounds of TCM. Four compounds including quercetin, kaempferol, bavachinin, and bakuchiol were found having inhibitory potentials. The results obtained in this work were supported by molecular docking study. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Antioxidant Activity of Some Plant Extracts Towards Xanthine Oxidase, Lipoxygenase and Tyrosinase

    Directory of Open Access Journals (Sweden)

    Pi-Yu Chen

    2009-08-01

    Full Text Available Natural products have the potential to be developed into new drugs for the treatment of various diseases. The aim of the present study was to screen the antioxidant activities of some common edible fruits, garden plants and medicinal plants indigenous to Taiwan. This was performed by assessing the activities of lipoxygenase, xanthine oxidase and tyrosinase following incubation with extracts from these plants. A further aim was to use HPLC-DAD and tyrosinase to chromatographically identify the antioxidative constituents obtained from an extract exhibiting strong antioxidative properties. The acetone extracts of 27 cultivated plant species from Taiwan were tested for antioxidant activities towards xanthine oxidase, tyrosinase and lipoxygenase using spectrophotometric assays. Koelreuteria henryi, Prunus campanulata, and Rhodiola rosea showed the highest xanthine oxidase inhibitory activities. Camellia sinensis, Rhodiola rosea, and Koelreuteria henryi exhibited good tyrosinase inhibitory activities and potent anti-lipoxygenase activities. As Koelreuteria henryi had notable significant inhibitory activities towards xanthine oxidase, tyrosinase, and lipoxygenase, it was further tested with tyrosinase and HPLC-DAD. The results from this part of the study revealed that the more powerful the antioxidant capability of the extracted component, the greater the decrease in peak height obtained after reacting with tyrosinase. Additional studies are warranted to further characterize the compounds responsible for the antioxidant properties of the examined extracts.

  8. Inhibitory effect of Cinnamomum osmophloeum Kanehira ethanol extracts on melanin synthesis via repression of tyrosinase expression.

    Science.gov (United States)

    Lee, Shih-Chieh; Chen, Chun-Hao; Yu, Chih-Wen; Chen, Hsiao Ling; Huang, Wei-Tung; Chang, Yun-Shiang; Hung, Shu-Hsien; Lee, Tai-Lin

    2016-09-01

    Melanin contributes to skin color, and tyrosinase is the enzyme that catalyzes the initial steps of melanin formation. Therefore, tyrosinase inhibitors may contribute to the control of skin hyperpigmentation. The inhibition of tyrosinase activity by Cinnamomum zeylanicum extracts was previously reported. In this report, we test the hypothesis that Cinnamomum osmophloeum Kanehira, an endemic plant to Taiwan, contains compounds that inhibit tyrosinase activity, similar to C. zeylanicum. The cytotoxicity of three sources of C. osmophloeum Kanehira ethanol extracts was measured in B16-F10 cells using a methyl thiazolyl tetrazolium bromide (MTT) assay. At concentrations greater than 21.25 μg/mL, the ethanol extracts were toxic to the cells; therefore, 21.25 μg/mL was selected to test the tyrosinase activities. At this concentration, all three ethanol extracts decreased the melanin content by 50% in IBMX-induced B16-F10 cells. In addition to the melanin content, greater than 20% of the tyrosinase activity was inhibited by these ethanol extracts. The RT-PCR results showed that tyrosinase and transcription factor MITF mRNAs expression were down-regulated. Consistent with the mRNA results, greater than 40% of the human tyrosinase promoter activity was inhibited based on the reporter assay. Furthermore, our results demonstrate that the ethanol extracts protect cells from UV exposure. C. osmophloeum Kanehira neutralized the IBMX-induced increase in melanin content in B16-F10 cells by inhibiting tyrosinase gene expression at the level of transcription. Moreover, the ethanol extracts also partially inhibited UV-induced cell damage and prevented cell death. Taken together, we conclude that C. osmophloeum Kanehira is a potential skin-whitening and protective agent. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  9. Effect of methimazole on the activity of mushroom tyrosinase.

    Science.gov (United States)

    Andrawis, A; Kahn, V

    1986-01-01

    Methimazole (1-methyl-2-mercaptoimidazole) inhibits both the mono- and the o-dihydroxyphenolase activities of mushroom tyrosinase when assayed spectrophotometrically. With DL-3,4-dihydroxyphenylalanine as substrate, the inhibition was found to be a mixed-type one with Ki 4.6 X 10(-6) M. We found that methimazole can interact with the oxidation products of o-dihydroxyphenols, probably with o-quinones, to form a conjugate. The conjugate formed between methimazole and o-benzoquinone was separated by chromatography on Sephadex G-10 and was characterized by an absorption maximum at 248-260 nm. Our data suggest that methimazole inhibits mushroom tyrosinase activity in two ways: by conjugating with o-quinones, thereby causing an apparent inhibition in pigmented product formation as judged by the spectrophotometric assay; and by chelating copper at the active site of the enzyme, as judged by assaying the release of 3HHO from L-[3,5-3H]tyrosine. PMID:3091005

  10. Purification and characterization of tyrosinase from walnut leaves (Juglans regia).

    Science.gov (United States)

    Zekiri, Florime; Molitor, Christian; Mauracher, Stephan G; Michael, Claudia; Mayer, Rupert L; Gerner, Christopher; Rompel, Annette

    2014-05-01

    Polyphenol oxidase (PPO) is a type-3 copper enzyme catalyzing the oxidation of phenolic compounds to their quinone derivates, which are further converted to melanin, a ubiquitous pigment in living organisms. In this study a plant originated tyrosinase was isolated from walnut leaves (Juglans regia) and biochemically characterized. It was possible to isolate and purify the enzyme by means of an aqueous two-phase extraction method followed by chromatographic purification and identification. Interestingly, the enzyme showed a rather high monophenolase activity considering that the main part of plant PPOs with some exceptions solely possess diphenolase activity. The average molecular mass of 39,047 Da (Asp(101)→Arg(445)) was determined very accurately by high resolution mass spectrometry. This proteolytically activated tyrosinase species was identified as a polyphenol oxidase corresponding to the known jrPPO1 sequence by peptide sequencing applying nanoUHPLC-ESI-MS/MS. The polypeptide backbone with sequence coverage of 96% was determined to start from Asp(101) and not to exceed Arg(445). Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  11. Catalysis and inactivation of tyrosinase in its action on hydroxyhydroquinone.

    Science.gov (United States)

    del Mar Garcia-Molina, Maria; Muñoz-Muñoz, Jose Luis; Berna, Jose; García-Ruiz, Pedro Antonio; Rodriguez-Lopez, Jose Neptuno; Garcia-Canovas, Francisco

    2014-02-01

    Hydroxyhydroquinone (HHQ) was characterized kinetically as a tyrosinase substrate. A kinetic mechanism is proposed, in which HHQ is considered as a monophenol or as an o-diphenol, depending on the part of the molecule that interacts with the enzyme. The kinetic parameters obtained from an analysis of the measurements of the initial steady state rate of 2-hydroxy p-benzoquinone formation were kcatapp=229.0±7.7 s(-1) and KMapp,HHQ=0.40±0.05 mM. Furthermore, the action of tyrosinase on HHQ led to the enzyme's inactivation through a suicide inactivation mechanism. This suicide inactivation process was characterized kinetically by λmaxapp (the apparent maximum inactivation constant) and r, the number of turnovers made by 1 mol of enzyme before being inactivated. The values of λmaxapp and r were (8.2±0.1)×10(-3) s(-1) and 35,740±2,548, respectively. © 2014 International Union of Biochemistry and Molecular Biology.

  12. Inhibition of tyrosinase by 4H-chromene analogs: Synthesis, kinetic studies, and computational analysis.

    Science.gov (United States)

    Brasil, Edikarlos M; Canavieira, Luciana M; Cardoso, Érica T C; Silva, Edilene O; Lameira, Jerônimo; Nascimento, José L M; Eifler-Lima, Vera L; Macchi, Barbarella M; Sriram, Dharmarajan; Bernhardt, Paul V; Silva, José Rogério Araújo; Williams, Craig M; Alves, Cláudio N

    2017-11-01

    Inhibition of mushroom tyrosinase was observed with synthetic dihydropyrano[3,2-b]chromenediones. Among them, DHPC04 displayed the most potent tyrosinase inhibitory activity with a K i value of 4 μm, comparable to the reference standard inhibitor kojic acid. A kinetic study suggested that these synthetic heterocyclic compounds behave as competitive inhibitors for the L-DOPA binding site of the enzyme. Furthermore, molecular modeling provided important insight into the mechanism of binding interactions with the tyrosinase copper active site. © 2017 John Wiley & Sons A/S.

  13. Bionanoconjugates of tyrosinase and peptide-derivatised gold nanoparticles for biosensing of phenolic compounds

    Science.gov (United States)

    Cortez, J.; Vorobieva, E.; Gralheira, D.; Osório, I.; Soares, L.; Vale, N.; Pereira, E.; Gomes, P.; Franco, R.

    2011-03-01

    Bionanoconjugates of the enzyme tyrosinase (TYR) and gold nanoparticles (AuNPs) functionalised with a peptide (CALNN) were produced in solution and characterised. The formation of stable TYR-AuNP:CALNN bionanoconjugates (BNCs) was supported by a decrease of the surface charge of the BNCs as determined by ζ-potential and an increase in hydrodynamic diameter as determined by Dynamic Light Scattering (DLS). UV/Vis studies of pH-induced aggregation revealed distinct protonation patterns for the BNCs when compared with AuNP:CALNN alone, further substantiating BNC formation. Activity studies of the BNCs for the reduction of di-phenols in solution indicated that TYR not only remains active after conjugation, but interestingly its activity in the BNCs is higher than for the free enzyme. In conclusion, AuNP:CALNN can provide a suitable platform for the immobilisation of TYR, leading to BNCs with increased enzyme activity and a wider pH working range, with promising uses in electrochemical biosensors for the detection of mono- and di-phenolic compounds.

  14. Studying the anti-tyrosinase effect of Arbutus andrachne L. extracts.

    Science.gov (United States)

    Issa, R A; Afifi, F U; Amro, B I

    2008-08-01

    Arbutus andrachne L. is widely distributed in Jordan. Tyrosinase is the key enzyme in the biosynthesis of melanin. This preliminary study was carried out to assess the possible anti-tyrosinase activity of A. andrachne extracts. Arbutin, hydroquinone and kojic acid were selected as inhibitor standards. Five different extracts (chloroform, butanol, ethanol, methanol and water) were prepared from A. andrachne stems and their activities were compared with the selected tyrosinase inhibitors. IC(50) was measured for both, standard and plant extracts. Among the different extracts, the methanolic extract exhibited the highest anttyrosinase activity with an IC(50) value (1 mg mL(-1)). Furthermore, 9 mg A. andrachne methanolic extract showed 97.49% inhibition of tyrosinase activity. Arbutin, hydroquinone, beta-sitosterol and ursolic acid were identified in the different extracts of A. andrachne by thin layer chromatography (TLC) and isolated by preparative TLC from the methanolic and chloroform stem extracts, respectively.

  15. Molecular Docking Studies and Anti-Tyrosinase Activity of Thai Mango Seed Kernel Extract

    Directory of Open Access Journals (Sweden)

    Patchreenart Saparpakorn

    2009-01-01

    Full Text Available The alcoholic extract from seed kernels of Thai mango (Mangifera indica L. cv. ‘Fahlun’ (Anacardiaceae and its major phenolic principle (pentagalloylglucopyranose exhibited potent, dose-dependent inhibitory effects on tyrosinase with respect to L-DOPA. Molecular docking studies revealed that the binding orientations of the phenolic principles were in the tyrosinase binding pocket and their orientations were located in the hydrophobic binding pocket surrounding the binuclear copper active site. The results indicated a possible mechanism for their anti-tyrosinase activity which may involve an ability to chelate the copper atoms which are required for the catalytic activity of tyrosinase.

  16. Tyrosinase-catalyzed site-specific immobilization of engineered C-phycocyanin to surface

    Science.gov (United States)

    Faccio, Greta; Kämpf, Michael M.; Piatti, Chiara; Thöny-Meyer, Linda; Richter, Michael

    2014-06-01

    Enzymatic crosslinking of proteins is often limited by the steric availability of the target residues, as of tyrosyl side chains in the case of tyrosinase. Carrying an N-terminal peptide-tag containing two tyrosine residues, the fluorescent protein C-phycocyanin HisCPC from Synechocystis sp. PCC6803 was crosslinked to fluorescent high-molecular weight forms with tyrosinase. Crosslinking with tyrosinase in the presence of L-tyrosine produced non fluorescent high-molecular weight products. Incubated in the presence of tyrosinase, HisCPC could also be immobilized to amino-modified polystyrene beads thus conferring a blue fluorescence. Crosslinking and immobilization were site-specific as both processes required the presence of the N-terminal peptide in HisCPC.

  17. A review on spectrophotometric methods for measuring the monophenolase and diphenolase activities of tyrosinase.

    Science.gov (United States)

    García-Molina, F; Muñoz, J L; Varón, R; Rodríguez-López, J N; García-Cánovas, F; Tudela, J

    2007-11-28

    Tyrosinase is a copper enzyme with broad substrate specifity toward a lot of phenols with different biotechnological applications. The availability of quick and reliable measurement methods of the enzymatic activity of tyrosinase is of outstanding interest. A series of spectrophotometric methods for determining the monophenolase and diphenolase activities of tyrosinase are discussed. The product of both reactions is the o-quinone of the corresponding monophenol/diphenol. According to the stability and properties of the o-quinone, the substrate is classified as four substrate types. For each of these substrate types, we indicate the best method for measuring diphenolase activity (among eight methods) and, when applicable, for measuring monophenolase activity (among four methods). The analytical and numerical solutions to the system of differential equations corresponding to the reaction mechanism of each case confirm the underlying validity of the different spectrophotometric methods proposed for the kinetic characterization of tyrosinase in its action on different substrates.

  18. SCREEN-PRINTED TYROSINASE-CONTAINING ELECTRODES FOR THE BIOSENSING OF ENZYME INHIBITORS

    Science.gov (United States)

    Disposal amperometric inhibition biosensors have been microfabricated by screen printing a tyrosinase-containing carbon ink. The decrease in the substrate (catechol) steady-state current, caused by the addition of various pesticides and herbicides, offers convenient quantitation ...

  19. Microwave-assisted synthesis and tyrosinase inhibitory activity of chalcone derivatives.

    Science.gov (United States)

    Liu, Jinbing; Chen, Changhong; Wu, Fengyan; Zhao, Liangzhong

    2013-07-01

    A series of chalcones and their derivatives were synthesized, and their inhibitory effects on the diphenolase activity of mushroom tyrosinase were evaluated. The results showed that some of the synthesized compounds exhibited significant inhibitory activity, and four compounds exhibited more potent tyrosinase inhibitory activity than the reference standard inhibitor kojic acid (5-hydroxy-2-(hydroxymethyl)-4H-pyran-4-one). Specifically, 1-(-1-(4-methoxyphen- yl)-3-phenylallylidene)thiosemicarbazide (18) exhibited the most potent tyrosinase inhibitory activity with IC₅₀ value of 0.274 μM. The inhibition mechanism analysis of 1-(-1-(2,4-dihydroxyphenyl)-3-phenylallylidene) thiosemicarbazide (16) and 1-(-1-(4-methoxyphenyl)-3-phenylallylidene) thiosemicarbazide (18) demonstrated that the inhibitory effects of the two compounds on the tyrosinase were irreversible. Preliminary structure activity relationships' analysis suggested that further development of such compounds might be of interest. © 2013 John Wiley & Sons A/S.

  20. Visual evoked potentials in Negro carriers of the gene for tyrosinase positive oculocutaneous albinism.

    Science.gov (United States)

    Castle, D; Kromberg, J; Kowalsky, R; Moosa, R; Gillman, N; Zwane, E; Fritz, V

    1988-01-01

    Visual evoked potential testing was performed on 15 Negro carriers of the gene for tyrosinase positive oculocutaneous albinism in order to detect whether they have the same visual pathway decussation anomalies as do homozygotes. No subject showed 01-02 asymmetry on monocular testing, indicating that decussation follows the normal pattern. It is concluded that visual evoked potential testing is probably not useful in the detection of Negroes heterozygous for the gene for tyrosinase positive oculocutaneous albinism. PMID:3148727

  1. Inhibitory Effect of Arctigenin from Fructus Arctii Extract on Melanin Synthesis via Repression of Tyrosinase Expression

    OpenAIRE

    Park, Hwayong; Song, Kwang Hoon; Jung, Pil Mun; Kim, Ji-Eun; Ro, Hyunju; Kim, Mi Yoon; Ma, Jin Yeul

    2013-01-01

    To identify the active compound arctigenin in Fructus Arctii (dried seed of medicinal plant Arctium lappa) and to elucidate the inhibitory mechanism in melanogenesis, we analyzed melanin content and tyrosinase activity on B16BL6 murine melanoma and melan-A cell cultures. Water extracts of Fructus Arctii were shown to inhibit tyrosinase activity in vitro and melanin content in ? -melanocyte stimulating hormone-stimulated cells to similar levels as the well-known kojic acid and arbutin, respect...

  2. Inhibition of tyrosinase by fumaric acid: Integration of inhibition kinetics with computational docking simulations.

    Science.gov (United States)

    Gou, Lin; Lee, Jinhyuk; Yang, Jun-Mo; Park, Yong-Doo; Zhou, Hai-Meng; Zhan, Yi; Lü, Zhi-Rong

    2017-12-01

    Fumaric acid (FA), which is naturally found in organisms, is a well known intermediate of the citric acid cycle. We evaluated the effects of FA on tyrosinase activity and structure via enzyme kinetics and computational simulations. FA was found to be a reversible inhibitor of tyrosinase and its induced mechanism was the parabolic non-competitive inhibition type with IC 50 =13.7±0.25mM and K i slope =12.64±0.75mM. We newly established the equation for the dissociation constant (K islope ) for the parabolic inhibition type in this study. Kinetic measurements and spectrofluorimetry studies showed that FA induced regional changes in the active site of tyrosinase. One possible binding site for FA was identified under the condition without L-DOPA. The computational docking simulations further revealed that FA can interact with HIS263 and HIS85 at the active site. Furthermore, four important hydrogen bonds were found to be involved with the docking of FA on tyrosinase. Our study provides insight into the mechanism by which dicarboxylic acids such as FA inhibit tyrosinase. By inhibiting tyrosinase and its central role in pigment production, FA is a potential natural antipigmentation agent. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Oculocutaneous albinism type 1: link between mutations, tyrosinase conformational stability, and enzymatic activity.

    Science.gov (United States)

    Dolinska, Monika B; Kus, Nicole J; Farney, S Katie; Wingfield, Paul T; Brooks, Brian P; Sergeev, Yuri V

    2017-01-01

    Oculocutaneous albinism type 1 (OCA1) is an autosomal recessive disorder caused by mutations in the tyrosinase gene. Two subtypes of OCA1 have been described: severe OCA1A with complete absence of tyrosinase activity and less severe OCA1B with residual tyrosinase activity. Here, we characterize the recombinant human tyrosinase intramelanosomal domain and mutant variants, which mimic genetic changes in both subtypes of OCA1 patients. Proteins were prepared using site-directed mutagenesis, expressed in insect larvae, purified by chromatography, and characterized by enzymatic activities, tryptophan fluorescence, and Gibbs free energy changes. The OCA1A mutants showed very low protein expression and protein yield and are enzymatically inactive. Mutants mimicking OCA1B were biochemically similar to the wild type, but exhibited lower specific activities and protein stabilities. The results are consistent with clinical data, which indicates that OCA1A mutations inactivate tyrosinase and result in severe phenotype, while OCA1B mutations partially inactivate tyrosinase and result in OCA1B albinism. Published 2017. This article is a U.S. Government work and is in the public domain in the USA.

  4. Activation mechanism of melB tyrosinase from Aspergillus oryzae by acidic treatment.

    Science.gov (United States)

    Fujieda, Nobutaka; Murata, Michiaki; Yabuta, Shintaro; Ikeda, Takuya; Shimokawa, Chizu; Nakamura, Yukihiro; Hata, Yoji; Itoh, Shinobu

    2013-01-01

    The pro form of recombinant tyrosinase from Aspergillus oryzae (melB) shows no catalytic activity, but acid treatment (around pH 3.5) of protyrosinase activates it to induce tyrosinase activity. Circular dichroism spectra, gel filtration analysis, and colorimetric assay have indicated that acid treatment around pH 3.5 induced the disruption of the conformation of the C-terminal domain covering the enzyme active site. These structural changes induced by the acid treatment may open the entrance to the enzyme active site for substrate incorporation. To compare the mechanism of hydroxylation by the acid-treated tyrosinase with that by trypsin-treated tyrosinase, a detailed steady-state kinetic analysis of the phenolase activity was performed by monitoring the O(2)-consumption rate using a Clark-type oxygen electrode. The results clearly show that the phenolase activity (phenol hydroxylation) of the activated tyrosinase involves an electrophilic aromatic substitution mechanism as in the case of mushroom tyrosinase (Yamazaki and Itoh in J. Am. Chem. Soc. 125:13034-13035, 2003) and activated hemocyanin with urea (Morioka et al. in J. Am. Chem. Soc. 128:6788-6789, 2006).

  5. Integrated kinetic studies and computational analysis on naphthyl chalcones as mushroom tyrosinase inhibitors.

    Science.gov (United States)

    Radhakrishnan, Sini; Shimmon, Ronald; Conn, Costa; Baker, Anthony

    2015-10-01

    Melanin helps to protect skin from the damaging ultraviolet radiation of the sun. Tyrosinase, the key enzyme in melanogenesis is responsible for coloration of skin, hair and eyes. This enzyme is considered to have a critical role in governing the quality and economics of fruits and vegetables, as tyrosinase activity can lead to spoilage through browning. Development of tyrosinase inhibitors is a promising approach to combat hyperpigmentation conditions like ephelides, lentigo, freckles and post-inflammatory hyperpigmentation. In the present study, we have used a docking algorithm to simulate binding between tyrosinase and hydroxy-substituted naphthyl chalcone oxime compounds and studied the inhibition of tyrosinase. The results of virtual screening studies indicated that the estimated free energy of binding of all the docked ligands ranged between -19.29 and -9.12 kcal/mol. Two of the oximes synthesized were identified as competitive tyrosinase inhibitors and were found to be twice as potent as the control kojic acid with their IC50 values of 12.22 μM and 19.45 μM, respectively. This strategy of integrating experimental and virtual screening methods could give better insights to explore potent depigmentation agents. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Tyrosinase Inhibition Type of Isolated Compounds Obtained from Pachyrhizus erosus

    Directory of Open Access Journals (Sweden)

    Endang Lukitaningsih

    2013-12-01

    Full Text Available In Indonesia, Bengkoang (Phacyrhizus erosus have been used as one of cosmetics especially as sun screening and skin whitening materials. Six active compounds in Bengkoang with antioxidant and skin whitening activities have been isolated, namely daidzein, daidzin, genistin, (8,9-furanyl-pterocarpan-3-ol, 4-(2-(furane-2-ylethyl-2-methyl-2,5-dihydro-furane-3-carbaldehyde and 2-butoxy-2,5-bis(hydroxymethyl-tetrahydrofurane-3,4-diol. According to literatures, the type of their tyrosinase inhibitory activity has not yet reported. The determination of whitening activity of each compound was evaluated by the evaluation of Lineweaver-Burk plot. The result showed that five compounds had competitive inhibitory activity and 8,9-furanyl-pterocarpan-3-ol showed a non-competitive inhibition.

  7. Inhibitory Effects of Physalis alkekengi L., Alcea rosea L., Bunium persicum B. Fedtsch. and Marrubium vulgare L. on Mushroom Tyrosinase.

    Science.gov (United States)

    Namjoyan, Foroogh; Jahangiri, Alireza; Azemi, Mohammad Ebrahim; Arkian, Elaheh; Mousavi, Hamideh

    2015-02-01

    The key enzyme in the process of melanin biosynthesis is tyrosinase. Skin hyperpigmentation and browning of foods are undesirable phenomena which tyrosinase represents. Therefore, tyrosinase inhibitors have been used increasingly for medicinal and cosmetic products. In this study, inhibitory effects of four plants including: physalis alkekengi L., Alcea rosea L., Bunium persicum B. Fedtsch. and Marrubium vulgare L. on diphenolase activity of mushroom tyrosinase were evaluated. The inhibitory activities of hydroalcoholic extracts of plants against oxidation of L-Dopa (as a substrate) by mushroom tyrosinase were investigated. The hydroalcoholic extract of P. alkekengi showed the most tyrosinase inhibitory effect with IC50 of 0.09 mg/mL vs. 0.38, 0.38 and 2.82 mg/mL of B. persicum, A. rosea and M. vulgare, respectively. M. vulgare exhibited uncompetitive inhibition and other plants showed mixed type inhibition on mushroom tyrosinase. All plants could inhibit mushroom tyrosinase, but more investigations on human tyrosinase and clinical studies are needed.

  8. Depigmentation caused by application of the active brightening material, rhododendrol, is related to tyrosinase activity at a certain threshold.

    Science.gov (United States)

    Kasamatsu, Shinya; Hachiya, Akira; Nakamura, Shun; Yasuda, Yuka; Fujimori, Taketoshi; Takano, Kei; Moriwaki, Shigeru; Hase, Tadashi; Suzuki, Tamio; Matsunaga, Kayoko

    2014-10-01

    Tyrosinase, the rate-limiting enzyme required for melanin production, has been targeted to develop active brightening/lightening materials for skin products. Unexpected depigmentation of the skin characterized with the diverse symptoms was reported in some subjects who used a tyrosinase-competitive inhibiting quasi-drug, rhododendrol. To investigate the mechanism underlying the depigmentation caused by rhododendrol-containing cosmetics, this study was performed. The mechanism above was examined using more than dozen of melanocytes derived from donors of different ethnic backgrounds. The RNAi technology was utilized to confirm the effect of tyrosinase to induce the cytotoxicity of rhododendrol and liquid chromatography-tandem mass spectrometry was introduced to detect rhododendrol and its metabolites in the presence of tyrosinase. Melanocyte damage was related to tyrosinase activity at a certain threshold. Treatment with a tyrosinase-specific siRNA was shown to dramatically rescue the rhododendrol-induced melanocyte impairment. Hydroxyl-rhododendrol was detected only in melanocytes with higher tyrosinase activity. When an equivalent amount of hydroxyl-rhododendrol was administered, cell viability was almost equally suppressed even in melanocytes with lower tyrosinase activity. The generation of a tyrosinase-catalyzed hydroxyl-metabolite is one of the causes for the diminishment of the melanocyte viability by rhododendrol. Copyright © 2014 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.

  9. The Antioxidant and Tyrosinase-inhibiting Activities of 8-O-4′ N eolignans from Crataegus pinnatifida Seeds

    Directory of Open Access Journals (Sweden)

    Xiao-Xiao Huang

    2015-04-01

    Full Text Available Many tyrosinase inhibitors have been alleged to have serious side effects. To search for relatively mild and safe tyrosinase inhibitors, two new 8-O-4′ neolignans, named huangnin A (1 and B (2, and four known analogs (3-6 were isolated from the seeds of Crataegus pinnatifida. Their structures were elucidated by spectroscopic analyses (1D, 2D NMR, HRESIMS, CD and Rh 2(OCOCF 3 4-induced CD. In addition, the in vitro antioxidant and anti-tyrosinase activities of all isolates were evaluated. The results showed that compound 5 has good antioxidant and promising tyrosinase-inhibiting activities.

  10. Effect of inhibition on tyrosinase and melanogenesis of Agastache rugosa Kuntze by lactic acid bacteria fermentation.

    Science.gov (United States)

    Kim, Nam Young; Kwon, Hee Souk; Lee, Hyeon Yong

    2017-09-01

    This work presents the first report that A. rugosa could have tyrosinase and melanogenesis inhibition and that its activities also be improved by fermentation with Lactobacillus rhamnosus and Lactobacillus paracasei. It was found that the tyrosinase and melanogenesis inhibition was correlated with antioxidant activity of acacetin, the major biologically active substances in A. rugosa. we pursued an improvement in tyrosinase and melanogenesis inhibition of A. rugosa extract by fermentation process. A. rugosa was extracted by lactic acid fermentation process; we measured antioxidant activities and tyrosinase and melanogenesis inhibition of A. rugosa extracts. In particular, reducing power of the extract from fermentation process (FE) was measured as 0.562 (O.D.), whereas reducing power of the extracts from 70% ethanol extraction (EE) was lower than the FE as 0.496 (O.D.). Polyphenols and flavonoids in the FE were higher than the EE: 69.3 mg/g vs. 60.5 mg/g, and 187 mg/g vs. 138 mg/g. The FE was estimated as 51.04% tyrosinase inhibition and 41.88% for the EE. Similarly, melanin inhibition in melanocyte B16F10 was observed as 66.60% vs. 42.23% for the FE and EE. The increase in tyrosinase and melanogenesis inhibition activity was confirmed by high elution of acacetin through fermentation process such as 289.97 mg/100 g vs. 198.04 mg/100 g in the FE and EE. These results indicate that tyrosinase and melanogenesis inhibition activities of the extracts should be associated with antioxidant activity because acacetin is known to have strong antioxidant activity, which can also positively affect whitening activities. © 2016 Wiley Periodicals, Inc.

  11. Activation Mechanism of the Streptomyces Tyrosinase Assisted by the Caddie Protein.

    Science.gov (United States)

    Matoba, Yasuyuki; Kihara, Shogo; Muraki, Yoshimi; Bando, Naohiko; Yoshitsu, Hironari; Kuroda, Teruo; Sakaguchi, Miyuki; Kayama, Kure'e; Tai, Hulin; Hirota, Shun; Ogura, Takashi; Sugiyama, Masanori

    2017-10-17

    Tyrosinase (EC 1.14.18.1), which possesses two copper ions at the active center, catalyzes a rate-limiting reaction of melanogenesis, that is, the conversion of a phenol to the corresponding ortho-quinone. The enzyme from the genus Streptomyces is generated as a complex with a "caddie" protein that assists the transport of two copper ions into the active center. In this complex, the Tyr 98 residue in the caddie protein was found to be accommodated in the pocket of the active center of tyrosinase, probably in a manner similar to that of l-tyrosine as a genuine substrate of tyrosinase. Under physiological conditions, the addition of the copper ion to the complex releases tyrosinase from the complex, in accordance with the aggregation of the caddie protein. The release of the copper-bound tyrosinase was found to be accelerated by adding reducing agents under aerobic conditions. Mass spectroscopic analysis indicated that the Tyr 98 residue was converted to a reactive quinone, and resonance Raman spectroscopic analysis indicated that the conversion occurred through the formations of μ-η 2 :η 2 -peroxo-dicopper(II) and Cu(II)-semiquinone. Electron paramagnetic resonance analysis under anaerobic conditions and Fourier transform infrared spectroscopic analysis using CO as a structural probe under anaerobic conditions indicated that the copper transportation process to the active center is a reversible event in the tyrosinase/caddie complex. Aggregation of the caddie protein, which is triggered by the conversion of the Tyr 98 residue to dopaquinone, may ensure the generation of fully activated tyrosinase.

  12. Stable isotopes

    International Nuclear Information System (INIS)

    Evans, D.K.

    1986-01-01

    Seventy-five percent of the world's stable isotope supply comes from one producer, Oak Ridge Nuclear Laboratory (ORNL) in the US. Canadian concern is that foreign needs will be met only after domestic needs, thus creating a shortage of stable isotopes in Canada. This article describes the present situation in Canada (availability and cost) of stable isotopes, the isotope enrichment techniques, and related research programs at Chalk River Nuclear Laboratories (CRNL)

  13. Magnetic Dipole-Dipole Coupled Cu(II) Pairs in Nitric Oxide-Treated Tyrosinase : A Structural Relationship Between the Active Sites of Tyrosinase and Hemocyanin

    NARCIS (Netherlands)

    Schoot Uiterkamp, A.J.M.; Mason, H.S.; Boekelheide, V.

    1973-01-01

    The Tr and T"' states of tyrosinase were treated with NO. EPR spectra of the products observed at 14°K and at 113°K showed mixtures of two signals. One had components in the region of g = 2, about 1200 G wide, and in the region of g = 4, showing hyperfine splitting. The other signal was similar to

  14. Tyrosinase inhibitory properties of phenylpropanoid glycosides and flavonoids from Teucrium polium L. var. gnaphalodes

    Directory of Open Access Journals (Sweden)

    Zahra Boghrati

    2016-08-01

    Full Text Available Objective(s: In food industry, the inhibition of tyrosinase is very important, because this enzyme catalyzes the oxidation of phenolic compounds found in fruits and vegetables into quinones, which contribute in undesirable color and taste of fruits and vegetables. Teucrium polium L. var. gnaphalodes (Lamiaceae, a wild-growing flowering plant that has many applications in food preparations and traditional medicine. In Persian language, this medicinal herb is called Kalpoureh. Materials and Methods: 1D- and 2D-NMR experiments were used to determine the chemical structures of the isolated compounds. Antioxidant and tyrosinase inhibitory activities of the isolated compounds were evaluated using DPPH, FRAP and mushroom tyrosinase inhibition assays. Results: In this research, we isolated two phenylpropanoid glycosides including verbascoside and poliumoside and two flavonoids including jaranol and isorhoifolin using chromatographic techniques. We found promising antioxidant and anti-tyrosinase compounds from Teucrium polium L. var. gnaphalodes. Conclusion: To date, different compounds have been isolated and characterized from T. polium including terpenoids and flavonoids. But no phytochemical study has been reported from T. polium var. gnaphalodes. Poliumoside and jaranol showed promising antioxidant and tyrosinase inhibitory activities, respectively.

  15. 4-Hydroxy cinnamic acid as mushroom preservation: Anti-tyrosinase activity kinetics and application.

    Science.gov (United States)

    Hu, Yong-Hua; Chen, Qing-Xi; Cui, Yi; Gao, Huan-Juan; Xu, Lian; Yu, Xin-Yuan; Wang, Ying; Yan, Chong-Ling; Wang, Qin

    2016-05-01

    Tyrosinase is a key enzyme in post-harvest browning of fruit and vegetable. To control and inhibit its activity is the most effective method for delaying the browning and extend the shelf life. In this paper, the inhibitory kinetics of 4-hydroxy cinnamic acid on mushroom tyrosinase was investigated using the kinetics method of substrate reaction. The results showed that the inhibition of tyrosinase by 4-hydroxy cinnamic acid was a slow, reversible reaction with fractional remaining activity. The microscopic rate constants were determined for the reaction on 4-hydroxy cinnamic acid with tyrosinase. Furthermore, the molecular docking was used to simulate 4-hydroxy cinnamic acid dock with tyrosinase. The results showed that 4-hydroxy cinnamic acid interacted with the enzyme active site mainly through the hydroxy competed with the substrate hydroxy group. The cytotoxicity study of 4-hydroxy cinnamic acid indicated that it had no effects on the proliferation of normal liver cells. Moreover, the results of effects of 4-hydroxy cinnamic acid on the preservation of mushroom showed that it could delay the mushroom browning. These results provide a comprehensive underlying the inhibitory mechanisms of 4-hydroxy cinnamic acid and its delaying post-harvest browning, that is beneficial for the application of this compound. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Tyrosinase, a new innate humoral immune parameter in large yellow croaker ( Pseudosciaena crocea R)

    Science.gov (United States)

    Wang, Shuhong; Wang, Yilei; Zhang, Ziping; Xie, Fangjing; Lin, Peng; Tai, Zhengang

    2009-09-01

    We evaluated the immune response to infection with a pathogen in large yellow croaker ( Pseudosciaena crocea Richardson). The fish were given an intraperitoneal (i.p.) injection of Vibrio parahaemolyticus or sterile sea water (control). We collected blood sera from the fish 0.17, 1, 2, 4, 8, 12, or 16 d after injection (dpi). We measured tyrosinase activity and the concentrations of lysozyme, NOS, and antibodies. Serum tyrosinase activity was significantly higher at 0.17 and 4 dpi than in the control group, and peaked at 8 dpi. Lysozyme activity was significantly higher at 2 and 12 dpi than in the control group, but lower at 16 dpi. There is no statistical difference in the level of nitric oxides synthase (NOS) activity or antibodies between the control and injection groups. This is the first report of the tyrosinase activity in the serum of large yellow croaker. Our results indicate that tyrosinase plays an important role in the immediate immune defense against V. parahaemolyticus in large yellow croaker. Tyrosinase is a candidate parameter for investigation of fish innate immune defense.

  17. Highly potent tyrosinase inhibitor, neorauflavane from Campylotropis hirtella and inhibitory mechanism with molecular docking.

    Science.gov (United States)

    Tan, Xuefei; Song, Yeong Hun; Park, Chanin; Lee, Ki-Won; Kim, Jeong Yoon; Kim, Dae Wook; Kim, Kwang Dong; Lee, Keun Woo; Curtis-Long, Marcus J; Park, Ki Hun

    2016-01-15

    Tyrosinase inhibition may be a means to alleviate not only skin hyperpigmentation but also neurodegeneration associated with Parkinson's disease. In the course of metabolite analysis from tyrosinase inhibitory methanol extract (80% inhibition at 20 μg/ml) of Campylotropis hirtella, we isolated fourteen phenolic compounds, among which neorauflavane 3 emerged as a lead structure for tyrosinase inhibition. Neorauflavane 3 inhibited tyrosinase monophenolase activity with an IC50 of 30 nM. Thus this compound is 400-fold more active than kojic acid. It also inhibited diphenolase (IC50=500 nM), significantly. Another potent inhibitor 1 (IC50=2.9 μM) was found to be the most abundant metabolite in C. hirtella. In kinetic studies, compounds 3 showed competitive inhibitory behavior against both monophenolase and diphenolase. It manifested simple reversible slow-binding inhibition against monophenolase with the following kinetic parameters: Ki(app)=1.48 nM, k3=0.0033 nM(-1) min(-1) and k4=0.0049 min(-1). Neorauflavane 3 efficiently reduced melanin content in B16 melanoma cells with 12.95 μM of IC50. To develop a pharmacophore model, we explored the binding mode of neuroflavane 3 in the active site of tyrosinase. Docking results show that resorcinol motif of B-ring and methoxy group in A-ring play crucial roles in the binding the enzyme. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Induction of a tyrosinase mRNA in Agaricus bisporus upon treatment with a tolaasin preparation from Pseudomonas tolaasii

    NARCIS (Netherlands)

    Soler Rivas, C.; Moeller, A.C.; Arpin, N.; Olivier, J.; Wichers, H.J.

    2001-01-01

    In Agaricus bisporus infected with Pseudomonas tolaasii, or treated with a partially purified tolaasin extract or with purified tolaasin, induction of a specific mRNA of the two sequences encoding tyrosinase was found. Tyrosinase isoforms in samples treated with several concentrations of a partially

  19. Crystal structure of recombinant tyrosinase-binding protein MtaL at 1.35 Å resolution

    NARCIS (Netherlands)

    Lai, X.; Soler-Lopez, M.; Ismaya, W.T.; Wichers, H.J.; Dijkstra, B.W.

    2016-01-01

    Mushroom tyrosinase-associated lectin-like protein (MtaL) binds to mature Agaricus bisporus tyrosinase in vivo, but the exact physiological function of MtaL is unknown. In this study, the crystal structure of recombinant MtaL is reported at 1.35 Å resolution. Comparison of its structure with that of

  20. Molecular and biochemical characterization of Paragonimus westermani tyrosinase.

    Science.gov (United States)

    Bae, Y-A; Kim, S-H; Ahn, C-S; Kim, J-G; Kong, Y

    2015-05-01

    Trematode tyrosinases (TYRs) play a major role in the tanning process during eggshell formation. We investigated the molecular and biochemical features of Paragonimus westermani TYR (PwTYR). The PwTYR cDNA was composed of 1568-bp encompassing a 1422-bp-long open reading frame (474-amino acid polypeptide). A strong phylogenetic relationship with Platyhelminthes and Deuterostomian orthologues was evident. The recombinant PwTYR expressed in prokaryotic cells promptly oxidized diphenol substrates, with a preferential affinity toward ortho-positioned hydroxyl groups. It demonstrated fairly weak activity for monophenol compounds. Diphenol oxidase activity was augmented with an increase of pH from 5.0 to 8.0, while monophenol oxidase activity was highest at an acidic pH and gradually decreased as pH increased. Transcription profile of PwTYR was temporally upregulated along with worm development. PwTYR was specifically localized in vitellocytes and eggs. The results suggested that conversion of tyrosine to L-dihydroxyphenylalanine by PwTYR monophenol oxidase activity might be rate-limiting step during the sclerotization process of P. westermani eggs. The pH-dependent pattern of monophenol and diphenol oxidase activity further proposes that the initial hydroxylation might slowly but steadily progress in acidic secreted vesicles of vitellocytes and the second oxidation process might be rapidly accelerated by neural or weak alkaline pH environments within the ootype.

  1. Wearable Wireless Tyrosinase Bandage and Microneedle Sensors: Toward Melanoma Screening.

    Science.gov (United States)

    Ciui, Bianca; Martin, Aida; Mishra, Rupesh K; Brunetti, Barbara; Nakagawa, Tatsuo; Dawkins, Thomas J; Lyu, Mengjia; Cristea, Cecilia; Sandulescu, Robert; Wang, Joseph

    2018-04-01

    Wearable bendable bandage-based sensor and a minimally invasive microneedle biosensor are described toward rapid screening of skin melanoma. These wearable electrochemical sensors are capable of detecting the presence of the tyrosinase (TYR) enzyme cancer biomarker in the presence of its catechol substrate, immobilized on the transducer surface. In the presence of the surface TYR biomarker, the immobilized catechol is rapidly converted to benzoquinone that is detected amperometrically, with a current signal proportional to the TYR level. The flexible epidermal bandage sensor relies on printing stress-enduring inks which display good resiliency against mechanical deformations, whereas the hollow microneedle device is filled with catechol-coated carbon paste for assessing tissue TYR levels. The bandage sensor can thus be used directly on the skin whereas microneedle device can reach melanoma tissues under the skin. Both wearable sensors are interfaced to an ultralight flexible electronic board, which transmits data wirelessly to a mobile device. The analytical performance of the resulting bandage and microneedle sensing systems are evaluated using TYR-containing agarose phantom gel and porcine skin. The new integrated conformal portable sensing platforms hold considerable promise for decentralized melanoma screening, and can be extended to the screening of other key biomarkers in skin moles. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Mutations of the tyrosinase gene in patients with oculocutaneous albinism from various ethnic groups in Israel

    Energy Technology Data Exchange (ETDEWEB)

    Gershoni-Baruch, R. (Technion-Israel Institute of Technology, Haifa (Israel)); Rosenmann, A. (Hadassah Medical Center, Jerusalem (Israel)); Droetto, S.; Holmes, S.; Tripathi, R.K.; Spritz, R.A. (Univ. of Wisconsin, Madison, WI (United States))

    1994-04-01

    The authors have analyzed the tyrosinase (TYR) gene in 38 unrelated patients with oculocutaneous albinism (OCA), derived from several different ethnic groups of the diverse population of Israel. They detected TYR gene mutations in 23 of the 34 patients with apparent type I (i.e., tyrosinase-deficient) OCA and in none of the patients with other clinical forms of albinism. Among Moroccan Jews with type IA (i.e., tyrosinase-negative) OCA, they detected a highly predominant mutant allele containing a missense substitution, Gly47Asp (G47D). This mutation occurs on the same haplotype as in patients from the Canary Islands and Puerto Rico, suggesting that the G47D mutation in these ethnically distinct populations may stem from a common origin. 28 refs., 1 fig., 2 tabs.

  3. Enzymatic synthesis of arbutin undecylenic acid ester and its inhibitory effect on mushroom tyrosinase.

    Science.gov (United States)

    Tokiwa, Y; Kitagawa, M; Raku, T

    2007-03-01

    A novel tyrosinase inhibitor, an arbutin derivative having undecylenic acid at the 6-position of its glucose moiety, was enzymatically synthesized. Its inhibitory activity was studied in vitro by using catechol and phenol as substrates. The IC(50) value of the arbutin ester on tyrosinase using catechol (4 x 10(-4) M) was 1% of that when arbutin (4 x 10(-2) M) was used. Using phenol, IC(50) of the arbutin ester (3 x 10(-4) M) as substrate was 10% of that of arbutin (3 x 10(-3) M). These results suggest that the arbutin ester inhibits the latter part of the tyrosinase reaction, which consists of hydroxylation and oxidation.

  4. Influence of plasma-activated compounds on melanogenesis and tyrosinase activity

    Science.gov (United States)

    Ali, Anser; Ashraf, Zaman; Kumar, Naresh; Rafiq, Muhammad; Jabeen, Farukh; Park, Ji Hoon; Choi, Ki Hong; Lee, SeungHyun; Seo, Sung-Yum; Choi, Eun Ha; Attri, Pankaj

    2016-01-01

    Many organic chemists around the world synthesize medicinal compounds or extract multiple compounds from plants in order to increase the activity and quality of medicines. In this work, we synthesized new eugenol derivatives (ED) and then treated them with an N2 feeding gas atmospheric pressure plasma jet (APPJ) to increase their utility. We studied the tyrosinase-inhibition activity (activity test) and structural changes (circular dichroism) of tyrosinase with ED and plasma activated eugenol derivatives (PAED) in a cell-free environment. Later, we used docking studies to determine the possible interaction sites of ED and PAED compounds with tyrosinase enzyme. Moreover, we studied the possible effect of ED and PAED on melanin synthesis and its mechanism in melanoma (B16F10) cells. Additionally, we investigated the structural changes that occurred in activated ED after plasma treatment using nuclear magnetic resonance (NMR). Hence, this study provides a new perspective on PAED for the field of plasma medicine. PMID:26931617

  5. Influence of plasma-activated compounds on melanogenesis and tyrosinase activity

    Science.gov (United States)

    Ali, Anser; Ashraf, Zaman; Kumar, Naresh; Rafiq, Muhammad; Jabeen, Farukh; Park, Ji Hoon; Choi, Ki Hong; Lee, Seunghyun; Seo, Sung-Yum; Choi, Eun Ha; Attri, Pankaj

    2016-03-01

    Many organic chemists around the world synthesize medicinal compounds or extract multiple compounds from plants in order to increase the activity and quality of medicines. In this work, we synthesized new eugenol derivatives (ED) and then treated them with an N2 feeding gas atmospheric pressure plasma jet (APPJ) to increase their utility. We studied the tyrosinase-inhibition activity (activity test) and structural changes (circular dichroism) of tyrosinase with ED and plasma activated eugenol derivatives (PAED) in a cell-free environment. Later, we used docking studies to determine the possible interaction sites of ED and PAED compounds with tyrosinase enzyme. Moreover, we studied the possible effect of ED and PAED on melanin synthesis and its mechanism in melanoma (B16F10) cells. Additionally, we investigated the structural changes that occurred in activated ED after plasma treatment using nuclear magnetic resonance (NMR). Hence, this study provides a new perspective on PAED for the field of plasma medicine.

  6. Tyrosinase-Expressing Neuronal Cell Line as in Vitro Model of Parkinson’s Disease

    Science.gov (United States)

    Hasegawa, Takafumi

    2010-01-01

    Oxidized metabolites of dopamine known as dopamine quinone derivatives are thought to play a pivotal role in the degeneration of nigrostriatal dopaminergic neurons in Parkinson’s disease. Although such quinone derivatives are usually produced via the autoxidation of catecholamines, tyrosinase, which is a key enzyme in melanin biosynthesis via the production of DOPA and subsequent molecules, can potentially accelerate the induction of catecholamine quinone derivatives by its oxidase activity. We have developed neuronal cell lines in which the expression of human tyrosinase was inducible. Overexpression of tyrosinase resulted in increased intracellular dopamine content in association with the formation of melanin pigments in neuronal somata, which eventually causes apoptotic cell death. This cellular model will provide a useful tool for detailed analyses of the neurotoxicity of oxidized catechol metabolites. PMID:20480001

  7. Chemical and enzymic oxidation by tyrosinase of 3,4-dihydroxymandelate.

    Science.gov (United States)

    Cabanes, J; Sanchez-Ferrer, A; Bru, R; García-Carmona, F

    1988-01-01

    Tyrosinase usually catalyses the conversion of monophenols into o-diphenols and the oxidation of diphenols to the corresponding o-quinones. Sugumaran [(1986) Biochemistry 25, 4489-4492] has previously proposed an unusual oxidative decarboxylation of 3,4-dihydroxymandelate catalysed by tyrosinase. Our determination of the intermediates involved in the reaction demonstrated that 3,4-dihydroxybenzaldehyde is not the first intermediate appearing in the medium during the enzymic reaction. Re-examination of this new activity of tyrosinase has demonstrated that the product of the enzyme action is the o-quinone, which, owing to its instability, evolves to the final product, 3,4-dihydroxybenzaldehyde, by a chemical reaction of oxidative decarboxylation. PMID:3146978

  8. Subunit interactions in tyrosinase from frog epidermis in immobilized enzyme systems.

    Science.gov (United States)

    Iborra, J L; Ferragut, J A; Lozano, J A

    1981-01-01

    1. Frog epidermis tyrosinase was coupled to Sepharose activated with low concentrations of CNBr. The tetrameric form of the enzyme was linked to the matrix via its subunits. Dissociation of the bound active enzyme with guanidinium chloride yielded an active immobilized dimeric derivative. 2. Immobilized dimeric derivative was able to interact with soluble subunits formed transiently during renaturation. An 85% recovery of the native dopa oxidase specific activity was achieved after hybridization. 3. Fluorescence spectra of different immobilized derivatives suggested that tryptophan residues were involved in the interactions between tyrosinase subunits. 4. It is suggested that the activation of the subunits of tyrosinase involves a conformational change towards a more unfolded state, which favours a reassociation to the dimeric active state. Images Fig. 2. PMID:6798971

  9. Tyrosinase inhibitory effects and antioxidative activities of saponins from Xanthoceras Sorbifolia nutshell.

    Directory of Open Access Journals (Sweden)

    Hongmei Zhang

    Full Text Available Certain saponins are bioactive compounds with anticancer, antivirus and antioxidant activities. This paper discussed inhibitory effects of saponins from Xanthoceras Sorbifolia on tyrosinase, through the research of the rate of tyrosinase catalyzed L-DOPA oxidation. The inhibition rate of tyrosinase activity presented non-linear changes with the saponins concentration. The rate reached 52.0% when the saponins concentration was 0.96 mg/ml. Antioxidant activities of saponins from Xanthoceras Sorbifolia were evaluated by using hydroxyl and superoxide radical scavenging assays. The hydroxyl radical scavenging effects of the saponins were 15.5-68.7%, respectively at the concentration of 0.18-2.52 mg/ml. The superoxide radical scavenging activity reduced from 96.6% to 7.05% with the time increasing at the concentration of 1.44 mg/ml. All the above antioxidant evaluation indicated that saponins from Xanthoceras Sorbifolia exhibited good antioxidant activity in a concentration- dependent manner.

  10. Condensed Tannins from Longan Bark as Inhibitor of Tyrosinase: Structure, Activity, and Mechanism.

    Science.gov (United States)

    Chai, Wei-Ming; Huang, Qian; Lin, Mei-Zhen; Ou-Yang, Chong; Huang, Wen-Yang; Wang, Ying-Xia; Xu, Kai-Li; Feng, Hui-Ling

    2018-01-31

    In this study, the content, structure, antityrosinase activity, and mechanism of longan bark condensed tannins were evaluated. The findings obtained from mass spectrometry demonstrated that longan bark condensed tannins were mixtures of procyanidins, propelargonidins, prodelphinidins, and their acyl derivatives (galloyl and p-hydroxybenzoate). The enzyme analysis indicated that these mixtures were efficient, reversible, and mixed (competitive is dominant) inhibitor of tyrosinase. What's more, the mixtures showed good inhibitions on proliferation, intracellular enzyme activity and melanogenesis of mouse melanoma cells (B 16 ). From molecular docking, the results showed the interactions between inhibitors and tyrosinase were driven by hydrogen bond, electrostatic, and hydrophobic interactions. In addition, high levels of total phenolic and extractable condensed tannins suggested that longan bark might be a good source of tyrosinase inhibitor. This study would offer theoretical basis for the development of longan bark condensed tannins as novel food preservatives and medicines of skin diseases.

  11. Synthesis, kinetic mechanism and docking studies of vanillin derivatives as inhibitors of mushroom tyrosinase.

    Science.gov (United States)

    Ashraf, Zaman; Rafiq, Muhammad; Seo, Sung-Yum; Babar, Mustafeez Mujtaba; Zaidi, Najam-us-Sahar Sadaf

    2015-09-01

    The purpose of the present study was to discover the extent of contribution to antityrosinase activity by adding hydroxy substituted benzoic acid, cinnamic acid and piperazine residues to vanillin. The study showed the transformation of vanillin into esters as shown in (4a-4d), (6a-6b), and (8a-8b). In addition, the relationship between structures of these esters and their mushroom tyrosinase inhibitory activity was explored. The kinetics of inhibition on mushroom tyrosinase by these esters was also investigated. It was found that hydroxyl substituted benzoic acid derivatives were weak inhibitors; however hydroxy or chloro substituted cinnamic acid and piperazine substituted derivatives were able to induce significant tyrosinase inhibition. The mushroom tyrosinase (PDBID 2ZWE) was docked with synthesized vanillin derivatives and their calculated binding energies were compared with experimental IC50 values which provided positive correlation. The most potent derivative 2-(4-formyl-2-methoxyphenoxy)-2-oxoethyl (2E)-3-(4-hydroxyphenyl)prop-2-enoate (6a) possesses hydroxy substituted cinnamic acid scaffold having IC50 value 16.13 μM with binding energy of -7.2 kcal/mol. The tyrosinase inhibitory activity of (6a) is comparable with standard kojic acid. Kinetic analysis indicated that compound 6a was mixed-type tyrosinase inhibitor with inhibition constant values Ki (13 μM) and Ki' (53 μM) and formed reversible enzyme inhibitor complex. The active vanillin analog (6a) was devoid of toxic effects as shown in cytotoxic studies. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Tyrosinase Inhibitory and Anti-oxidative Effects of Lactic Acid Bacteria Isolated from Dairy Cow Feces.

    Science.gov (United States)

    Ji, Keunho; Cho, Youn Su; Kim, Young Tae

    2018-03-01

    Overproduction and accumulation of melanin cause a number of skin diseases. The inhibitors of tyrosinase are important for the treatment of skin diseases associated with hyper-pigmentation after UV exposure and application in cosmetics for whitening and depigmentation. Reactive oxygen species (ROS) including hydrogen peroxide are generated by chemical substances and metabolic intermediates and cause various diseases including cancer and heart diseases. We have isolated four different lactic acid bacteria (LAB) strains from dairy cow feces and investigated the tyrosinase inhibition and anti-oxidative effects of culture filtrates prepared from the isolated bacteria, which are designated as EA3, EB2, PC2, and PD3. To investigate optimal culture conditions isolated LAB strains, the measurements of tyrosinase inhibitory and anti-oxidative activities were performed. The results of tyrosinase inhibitory activities revealed that Enterococcus sp. EA3 showed about 65% at culture conditions (14 h, 30 °C, pH 8, and 0% NaCl), Enterococcus sp. EB2 about 65% at culture conditions (12 h, 30 °C, pH 9, and 0% NaCl), Pediococcus sp. PC2 about 80% at culture conditions (20 h, 30 °C, pH 6, and 0% NaCl), and Pediococcus sp. PD3 about 80% at culture conditions (20 h, 30 °C, pH 8, and 0% NaCl), respectively. In addition, anti-oxidative activities against four different LAB strains showed approximately more than 30% at optimal conditions for the measurements of tyrosinase inhibitory activities. From the results, we have suggested that the isolated four LAB strains could be useful for a potential agent for developing anti-oxidants and tyrosinase inhibitors.

  13. Carvacrol derivatives as mushroom tyrosinase inhibitors; synthesis, kinetics mechanism and molecular docking studies.

    Science.gov (United States)

    Ashraf, Zaman; Rafiq, Muhammad; Nadeem, Humaira; Hassan, Mubashir; Afzal, Samina; Waseem, Muhammad; Afzal, Khurram; Latip, Jalifah

    2017-01-01

    The present work describesthe development of highly potent mushroom tyrosinase inhibitor better than the standard kojic acid. Carvacrol derivatives 4a-f and 6a-d having substituted benzoic acid and cinnamic acidresidues were synthesized with the aim to possess potent tyrosinase inhibitory activity.The structures of the synthesized compounds were ascertained by their spectroscopic data (FTIR, 1HNMR, 13CNMR and Mass Spectroscopy).Mushroom tyrosinase inhibitory activity of synthesized compounds was determined and it was found that one of the derivative 6c possess higher activity (IC50 0.0167μM) than standard kojic acid (IC50 16.69μM). The derivatives 4c and 6b also showed good tyrosinase inhibitory activity with (IC50 16.69μM) and (IC50 16.69μM) respectively.Lineweaver-Burk and Dixon plots were used for the determination of kinetic mechanism of the compounds 4c and 6b and 6c. The kinetic analysis revealed that compounds 4c and 6b showed mixed-type inhibition while 6c is a non-competitive inhibitor having Ki values19 μM, 10 μM, and 0.05 μMrespectively. The enzyme inhibitory kinetics further showed thatcompounds 6b and 6c formed irreversible enzyme inhibitor complex while 4c bind reversibly with mushroom tyrosinase.The docking studies showed that compound 6c have maximum binding affinity against mushroom tyrosinase (PDBID: 2Y9X) with binding energy value (-7.90 kcal/mol) as compared to others.The 2-hydroxy group in compound 6c interacts with amino acid HIS85 which is present in active binding site. The wet lab results are in good agreement with the dry lab findings.Based upon our investigation we may propose that the compound 6c is promising candidate for the development of safe cosmetic agent.

  14. Carvacrol derivatives as mushroom tyrosinase inhibitors; synthesis, kinetics mechanism and molecular docking studies.

    Directory of Open Access Journals (Sweden)

    Zaman Ashraf

    Full Text Available The present work describesthe development of highly potent mushroom tyrosinase inhibitor better than the standard kojic acid. Carvacrol derivatives 4a-f and 6a-d having substituted benzoic acid and cinnamic acidresidues were synthesized with the aim to possess potent tyrosinase inhibitory activity.The structures of the synthesized compounds were ascertained by their spectroscopic data (FTIR, 1HNMR, 13CNMR and Mass Spectroscopy.Mushroom tyrosinase inhibitory activity of synthesized compounds was determined and it was found that one of the derivative 6c possess higher activity (IC50 0.0167μM than standard kojic acid (IC50 16.69μM. The derivatives 4c and 6b also showed good tyrosinase inhibitory activity with (IC50 16.69μM and (IC50 16.69μM respectively.Lineweaver-Burk and Dixon plots were used for the determination of kinetic mechanism of the compounds 4c and 6b and 6c. The kinetic analysis revealed that compounds 4c and 6b showed mixed-type inhibition while 6c is a non-competitive inhibitor having Ki values19 μM, 10 μM, and 0.05 μMrespectively. The enzyme inhibitory kinetics further showed thatcompounds 6b and 6c formed irreversible enzyme inhibitor complex while 4c bind reversibly with mushroom tyrosinase.The docking studies showed that compound 6c have maximum binding affinity against mushroom tyrosinase (PDBID: 2Y9X with binding energy value (-7.90 kcal/mol as compared to others.The 2-hydroxy group in compound 6c interacts with amino acid HIS85 which is present in active binding site. The wet lab results are in good agreement with the dry lab findings.Based upon our investigation we may propose that the compound 6c is promising candidate for the development of safe cosmetic agent.

  15. Crystal Structures of Copper-depleted and Copper-bound Fungal Pro-tyrosinase

    Science.gov (United States)

    Fujieda, Nobutaka; Yabuta, Shintaro; Ikeda, Takuya; Oyama, Takuji; Muraki, Norifumi; Kurisu, Genji; Itoh, Shinobu

    2013-01-01

    Tyrosinase, a dinuclear copper monooxygenase/oxidase, plays a crucial role in the melanin pigment biosynthesis. The structure and functions of tyrosinase have so far been studied extensively, but the post-translational maturation process from the pro-form to the active form has been less explored. In this study, we provide the crystal structures of Aspergillus oryzae full-length pro-tyrosinase in the holo- and the apo-forms at 1.39 and 2.05 Å resolution, respectively, revealing that Phe513 on the C-terminal domain is accommodated in the substrate-binding site as a substrate analog to protect the dicopper active site from substrate access (proteolytic cleavage of the C-terminal domain or deformation of the C-terminal domain by acid treatment transforms the pro-tyrosinase to the active enzyme (Fujieda, N., Murata, M., Yabuta, S., Ikeda, T., Shimokawa, C., Nakamura, Y., Hata, Y., and Itoh, S. (2012) ChemBioChem. 13, 193–201 and Fujieda, N., Murata, M., Yabuta, S., Ikeda, T., Shimokawa, C., Nakamura, Y., Hata, Yl, and Itoh, S. (2013) J. Biol. Inorg. Chem. 18, 19–26). Detailed crystallographic analysis and structure-based mutational studies have shown that the copper incorporation into the active site is governed by three cysteines as follows: Cys92, which is covalently bound to His94 via an unusual thioether linkage in the holo-form, and Cys522 and Cys525 of the CXXC motif located on the C-terminal domain. Molecular mechanisms of the maturation processes of fungal tyrosinase involving the accommodation of the dinuclear copper unit, the post-translational His-Cys thioether cross-linkage formation, and the proteolytic C-terminal cleavage to produce the active tyrosinase have been discussed on the basis of the detailed structural information. PMID:23749993

  16. Microbial Tyrosinases: Promising Enzymes for Pharmaceutical, Food Bioprocessing, and Environmental Industry

    OpenAIRE

    Zaidi, Kamal Uddin; Ali, Ayesha S.; Ali, Sharique A.; Naaz, Ishrat

    2014-01-01

    Tyrosinase is a natural enzyme and is often purified to only a low degree and it is involved in a variety of functions which mainly catalyse the o-hydroxylation of monophenols into their corresponding o-diphenols and the oxidation of o-diphenols to o-quinones using molecular oxygen, which then polymerizes to form brown or black pigments. The synthesis of o-diphenols is a potentially valuable catalytic ability and thus tyrosinase has attracted a lot of attention with respect to industrial appl...

  17. Inhibitory and Acceleratory Effects of Inonotus obliquus on Tyrosinase Activity and Melanin Formation in B16 Melanoma Cells

    Directory of Open Access Journals (Sweden)

    Zheng-Fei Yan

    2014-01-01

    Full Text Available The aim of the present study is to preliminarily investigate the antimelanogenesis effect of Inonotus obliquus extracts by cell-free mushroom tyrosinase assay. It was found that petroleum ether and n-butanol extracts might contain unknown potential tyrosinase inhibitors, while its ethyl acetate extract might contain some unknown accelerators. Six compounds were isolated and their structures were identified by interpretation of NMR data and nicotinic acid was first discovered in Inonotus obliquus. In cells testing, betulin and trametenolic acid decreased tyrosinase activity and melanin content, while inotodiol and lanosterol significantly increased tyrosinase activity and melanin content, showing an AC⁡50 of 9.74 and 8.43 μM, respectively. Nicotinie acid, 3β,22,25-trihydroxy-lanosta-8-ene, had a little or no effect on tyrosinase. Betulin exhibited a mode of noncompetitive inhibition with a KI=KIS of 0.4 μM on tyrosinase activity showing an IC50 of 5.13 μM and being more effective than kojic acid (6.43 μM, and trametenolic acid exhibited a mode of mixed inhibition with a KI of 0.9 μM, KIS of 0.5 μM, and an IC50 of 7.25 μM. We proposed betulin and trametenolic acid as a new candidate of potent tyrosinase inhibitors and inotodiol and lanosterol as accelerators that could be used as therapeutic agent.

  18. Insights into tyrosinase inhibition by compounds isolated from Greyia radlkoferi Szyszyl using biological activity, molecular docking and gene expression analysis.

    Science.gov (United States)

    Lall, Namrita; Mogapi, Elizabeth; de Canha, Marco Nuno; Crampton, Bridget; Nqephe, Mabatho; Hussein, Ahmed A; Kumar, Vivek

    2016-11-15

    Greyia radlkoferi ethanol extract and its five compounds were tested for their inhibitory activity against the mushroom tyrosinase enzyme and melanin production on melanocytes. The crude extract showed significant tyrosinase inhibition with IC 50 of 17.96μg/ml. This is the first report of the isolation of these 5 compounds from Greyia radlkoferi. 2',4',6'-Trihydroxydihydrochalcone showed the highest tyrosinase inhibition at 17.70μg/ml (68.48μM), with low toxicity when compared with crude extract. This compound is therefore, a key component in the crude extract, which is responsible for tyrosinase inhibitory activity. The RT-qPCR indicated that the mechanism of action is most likely post transcriptional. Further, the molecular docking study showed that tyrosinase inhibitory activity depends on interaction of the compound with Cu 2+ ions at the active site. This is the first report of the tyrosinase inhibitory activity of the G. radlkoferi extract and molecular insights on interaction of its compounds with Cu 2+ ions as the driving factor for tyrosinase inhibition. These results suggest that the extract of G. radlkoferi and the compound 2',4',6'-trihydroxydihydrochalcone have great potential to be further developed as pharmaceutical or cosmetic agents for use against dermatological disorders associated with melanin. Copyright © 2016. Published by Elsevier Ltd.

  19. Synthesis, molecular docking studies of coumarinyl-pyrazolinyl substituted thiazoles as non-competitive inhibitors of mushroom tyrosinase.

    Science.gov (United States)

    Saeed, Aamer; Mahesar, Parvez Ali; Channar, Pervaiz Ali; Abbas, Qamar; Larik, Fayaz Ali; Hassan, Mubashir; Raza, Hussain; Seo, Sung-Yum

    2017-10-01

    A series of coumarinyl-pyrazolinyl substituted thiazoles derivatives were synthesized and their inhibitory effects on the DPPH and mushroom tyrosinase were evaluated. The results showed that all of the synthesized compounds exhibited significant mushroom tyrosinase inhibitory activities. In particular, 3-(5-(4-(benzyloxy)-3-methoxyphenyl)-1-(4-(4-bromophenyl)thiazol-2-yl)-4,5-dihydro-1H-pyrazol-3-yl)-2H-chromen-2-one (7j) exhibited the most potent tyrosinase inhibitory activity with IC 50 value 0.00458±0.00022μM compared with the IC 50 value of kojic acid is 16.84±0.052μM. The inhibition mechanism analyzed by Lineweaver-Burk plots revealed that the type of inhibition of compound 7j on tyrosinase was noncompetitive. The docking study against tyrosinase enzyme was also performed to determine the binding affinity of the compounds. The compound 7a showed the highest binding affinity (-10.20kcal/mol) with active binding site of tyrosinase. The initial structure activity relationships (SARs) analysis suggested that further development of such compounds might be of interest. The statistics of our results endorses that compound 7j may serve asa structural template for the design and development of novel tyrosinase inhibitors. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Surface display of bacterial tyrosinase on spores of Bacillus subtilis using CotE as an anchor protein.

    Science.gov (United States)

    Hosseini-Abari, Afrouzossadat; Kim, Byung-Gee; Lee, Sang-Hyuk; Emtiazi, Giti; Kim, Wooil; Kim, June-Hyung

    2016-12-01

    Tyrosinases, copper-containing monooxygenases, are widely used enzymes for industrial, medical, and environmental applications. We report the first functional surface display of Bacillus megaterium tyrosinase on Bacillus subtilis spores using CotE as an anchor protein. Flow Cytometry was used to verify surface expression of tyrosinase on the purified spores. Moreover, tyrosinase activity of the displayed enzyme on B. subtilis spores was monitored in the presence of L-tyrosine (substrate) and CuSO 4 (inducer). The stability of the spore-displayed tyrosinase was then evaluated after 15 days maintenance of the spores at room temperature, and no significant decrease in the enzyme activity was observed. In addition, the tyrosinase-expressing spores could be repeatedly used with 62% retained enzymatic activity after six times washing with Tris-HCl buffer. This genetically immobilized tyrosinase on the spores would make a new advance in industrial, medical, and environmental applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Inulavosin and its benzo-derivatives, melanogenesis inhibitors, target the copper loading mechanism to the active site of tyrosinase.

    Science.gov (United States)

    Fujita, Hideaki; Menezes, José C J M D S; Santos, Sérgio M; Yokota, Sadaki; Kamat, Shrivallabh P; Cavaleiro, José A S; Motokawa, Tomonori; Kato, Tomomi; Mochizuki, Mayu; Fujiwara, Toshiyuki; Fujii, Yuki; Tanaka, Yoshitaka

    2014-05-01

    Tyrosinase, a melanosomal membrane protein containing copper, is a key enzyme for melanin synthesis in melanocytes. Inulavosin inhibits melanogenesis by enhancing a degradation of tyrosinase in lysosomes. However, the mechanism by which inulavosin redirects tyrosinase to lysosomes is yet unknown. The analyses of structure-activity relationship of inulavosin and its benzo-derivatives reveal that the hydroxyl and the methyl groups play a critical role in their inhibitory activity. Intriguingly, the docking studies to tyrosinase suggest that the compounds showing inhibitory activity bind through hydrophobic interactions to the cavity of tyrosinase below which the copper-binding sites are located. This cavity is proposed to be required for the association with a chaperon that assists in copper loading to tyrosinase in Streptomyces antibioticus. Inulavosin and its benzo-derivatives may compete with the copper chaperon and result in a lysosomal mistargeting of apo-tyrosinase that has a conformational defect. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. Experimental and bioinformatic investigation of the proteolytic degradation of the C-terminal domain of a fungal tyrosinase.

    Science.gov (United States)

    Faccio, Greta; Arvas, Mikko; Thöny-Meyer, Linda; Saloheimo, Markku

    2013-04-01

    Proteolytic processing is a key step in the production of polyphenol oxidases such as tyrosinases, converting the inactive proenzyme to an active form. In general, the fungal tyrosinase gene codes for a ~60 kDa protein that is, however, isolated as an active enzyme of ~40 kDa, lacking the C-terminal domain. Using the secreted tyrosinase 2 from Trichoderma reesei as a model protein, we performed a mutagenesis study of the residues in proximity of the experimentally determined cleavage site which are possibly involved in the proteolytic process. However, the mutant forms of tyrosinase 2 were not secreted in a full-length form retaining the C-terminal domain, but they were processed to give a ~45 kDa active form. Aiming at explaining this phenomenon, we analysed in silico the properties of the C-terminal domain of tyrosinase 2, of 23 previously retrieved homologous tyrosinase sequences from fungi (C. Gasparetti, G. Faccio, M. Arvas, J. Buchert, M. Saloheimo, K. Kruus, Appl. Microbiol. Biotechnol. 86 (2010) 213-226) and of nine well-characterised polyphenol oxidases. Based on the results of our study, we exclude the key role of specific amino acids at the cleavage site in the proteolytic process and report an overall higher sensitivity to proteolysis of the linker region and of the whole C-terminal domain of fungal tyrosinases. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. Characterization of tyrosinase inhibitory constituents from the aerial parts of Humulus japonicus using LC-MS/MS coupled online assay.

    Science.gov (United States)

    Yang, Hyo Hee; Oh, Kyung-Eon; Jo, Yang Hee; Ahn, Jong Hoon; Liu, Qing; Turk, Ayman; Jang, Jae Young; Hwang, Bang Yeon; Lee, Ki Yong; Lee, Mi Kyeong

    2018-01-15

    In the screening of natural products for the development as cosmetic ingredients, the EtOAc-soluble fraction of Humulus japonicus showed tyrosinase inhibitory activity. HPLC-MS/MS coupled online tyrosinase assay of EtOAc-soluble fraction of H. japonicus characterized the twenty-eight constituents including two unknown ones and their tyrosinase inhibitory activity. Fractionation of H. japonicus using various chromatographic techniques yielded thirty-eight compounds. The chemical structures of isolated compounds were identified by spectroscopic analysis. As characterized by HPLC-MS/MS analysis, we isolated twenty-four predicted compounds and further identified two unknown ones, named humulusides A (1) and B (2). Additional ten compounds were also identified by purification. Tyrosinase inhibitory activity of isolated compounds were evaluated, which was closely correlated with the results from HPLC-MS/MS coupled online tyrosinase assay. Consistent with predicted data, two major compounds, trans-N-coumaroyltyramine (14) and cis-N-coumaroyltyramine (15) showed tyrosinase inhibition with IC 50 values of 40.6 and 36.4 μM. Taken together, H. japonicus is suggested as whitening ingredient in cosmetic products. In addition, HPLC-MS/MS coupled tyrosinase assay is powerful tool for predicting active compounds with short time and limited amounts, although identification of new compounds and verification of predicted data are also needs to be demonstrated by further experiment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. The Effect of D-(−-arabinose on Tyrosinase: An Integrated Study Using Computational Simulation and Inhibition Kinetics

    Directory of Open Access Journals (Sweden)

    Hong-Jian Liu

    2012-01-01

    Full Text Available Tyrosinase is a ubiquitous enzyme with diverse physiologic roles related to pigment production. Tyrosinase inhibition has been well studied for cosmetic, medicinal, and agricultural purposes. We simulated the docking of tyrosinase and D-(−-arabinose and found a binding energy of −4.5 kcal/mol for theup-formof D-(−-arabinose and −4.4 kcal/mol for thedown-form of D-(−-arabinose. The results of molecular dynamics simulation suggested that D-(−-arabinose interacts mostly with HIS85, HIS259, and HIS263, which are believed to be in the active site. Our kinetic study showed that D-(−-arabinose is a reversible, mixed-type inhibitor of tyrosinase (α-value =6.11±0.98, Ki=0.21±0.19 M. Measurements of intrinsic fluorescence showed that D-(−-arabinose induced obvious tertiary changes to tyrosinase (binding constant K=1.58±0.02 M−1, binding number n=1.49±0.06. This strategy of predicting tyrosinase inhibition based on specific interactions of aldehyde and hydroxyl groups with the enzyme may prove useful for screening potential tyrosinase inhibitors.

  5. Design and synthesis of 5-(substituted benzylidene)thiazolidine-2,4-dione derivatives as novel tyrosinase inhibitors.

    Science.gov (United States)

    Ha, Young Mi; Park, Yun Jung; Kim, Jin-Ah; Park, Daeui; Park, Ji Young; Lee, Hye Jin; Lee, Ji Yeon; Moon, Hyung Ryong; Chung, Hae Young

    2012-03-01

    In continuing our search for novel tyrosinase inhibitors, a series of 5-(substituted benzylidene)thiazolidine-2,4-diones were rationally designed and synthesized, and their inhibitory effects on mushroom tyrosinase activity were evaluated. Twelve target compounds 2a-2l were designed and synthesized based on the structural characteristics of N-phenylthiourea, a tyrosinase inhibitor, and tyrosine and L-DOPA, the natural substrates of tyrosinase. Among them, (Z)-5-(4-hydroxybenzylidene)thiazolidine-2,4-dione (2a) and (Z)-5-(3-hydroxy-4-methoxybenzylidene)thiazolidine-2,4-dione (2f) exhibited much higher tyrosinase inhibitory activities, with IC(50) values of 13.36 and 9.87 μM, respectively, than kojic acid (IC(50) = 24.72 μM). Kinetic analysis of tyrosinase inhibition revealed that 2a and 2f are competitive inhibitors of mushroom tyrosinase. In addition, through prediction of the potato catechol oxidase tertiary structure and simulation of docking with compounds 2a and 2f using DOCK6, we found that these inhibitors likely bind to the active site of the enzyme. Docking simulation results suggested that 2a and 2f have high binding affinities with potato catechol oxidase. In addition, compounds 2a and 2f effectively inhibited tyrosinase activity and reduced melanin levels in B16 cells treated with α-melanocyte-stimulating hormone (α-MSH). These data strongly suggest that compounds 2a and 2f suppress the production of melanin via the inhibition of tyrosinase activity. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  6. Microbial tyrosinases: promising enzymes for pharmaceutical, food bioprocessing, and environmental industry.

    Science.gov (United States)

    Zaidi, Kamal Uddin; Ali, Ayesha S; Ali, Sharique A; Naaz, Ishrat

    2014-01-01

    Tyrosinase is a natural enzyme and is often purified to only a low degree and it is involved in a variety of functions which mainly catalyse the o-hydroxylation of monophenols into their corresponding o-diphenols and the oxidation of o-diphenols to o-quinones using molecular oxygen, which then polymerizes to form brown or black pigments. The synthesis of o-diphenols is a potentially valuable catalytic ability and thus tyrosinase has attracted a lot of attention with respect to industrial applications. In environmental technology it is used for the detoxification of phenol-containing wastewaters and contaminated soils, as biosensors for phenol monitoring, and for the production of L-DOPA in pharmaceutical industries, and is also used in cosmetic and food industries as important catalytic enzyme. Melanin pigment synthesized by tyrosinase has found applications for protection against radiation cation exchangers, drug carriers, antioxidants, antiviral agents, or immunogen. The recombinant V. spinosum tryosinase protein can be used to produce tailor-made melanin and other polyphenolic materials using various phenols and catechols as starting materials. This review compiles the recent data on biochemical and molecular properties of microbial tyrosinases, underlining their importance in the industrial use of these enzymes. After that, their most promising applications in pharmaceutical, food processing, and environmental fields are presented.

  7. Antioxidant, Iron Chelating and Tyrosinase Inhibitory Activities of Extracts from Talinum triangulare Leach Stem

    Directory of Open Access Journals (Sweden)

    Ana Paula Oliveira Amorim

    2013-07-01

    Full Text Available The aim of this work is to evaluate the antioxidant activity against the radical species DPPH, the reducing capacity against Fe II ions, and the inhibitory activity on the tyrosinase enzyme of the T. triangulare. Hydromethanolic crude extract provided two fractions after the liquid/liquid partition with chloroform. The Folin-Ciocalteu method determined the total phenolic content of the crude extract (CE and the hydromethanolic fraction (Fraction 1, resulting in a concentration of 0.5853 g/100 g for Fraction 1, and 0.1400 g/100 g for the CE. Taking into account the results of the DPPH, the free radical scavenging capacity was confirmed. The formation of complexes with Fe II ions was evaluated by UV/visible spectrometry; results showed that CE has complexing power similar to the positive control (Gingko biloba extract.The inhibitory capacity of samples against the tyrosinase enzyme was determined by the oxidation of L-DOPA, providing IC50 values of 13.3 μg·mL−1 (CE and 6.6 μg·mL−1 (Fraction 1. The values indicate that Fraction 1 was more active and showed a higher inhibitory power on the tyrosinase enzyme than the ascorbic acid, used as positive control. The hydromethanolic extract of T. triangulare proved to have powerful antioxidant activity and to inhibit the tyrosinase enzyme; its potential is increased after the partition with chloroform.

  8. Determination of the Bridging Ligand in the Active Site of Tyrosinase

    Directory of Open Access Journals (Sweden)

    Congming Zou

    2017-10-01

    Full Text Available Tyrosinase is a type-3 copper enzyme that is widely distributed in plants, fungi, insects, and mammals. Developing high potent inhibitors against tyrosinase is of great interest in diverse fields including tobacco curing, food processing, bio-insecticides development, cosmetic development, and human healthcare-related research. In the crystal structure of Agaricus bisporus mushroom tyrosinase, there is an oxygen atom bridging the two copper ions in the active site. It is unclear whether the identity of this bridging oxygen is a water molecule or a hydroxide anion. In the present study, we theoretically determine the identity of this critical bridging oxygen by performing first-principles hybrid quantum mechanics/molecular mechanics/Poisson-Boltzmann-surface area (QM/MM-PBSA calculations along with a thermodynamic cycle that aim to improve the accuracy. Our results show that the binding with water molecule is energy favored and the QM/MM-optimized structure is very close to the crystal structure, whereas the binding with hydroxide anions causes the increase of energy and significant structural changes of the active site, indicating that the identity of the bridging oxygen must be a water molecule rather than a hydroxide anion. The different binding behavior between water and hydroxide anions may explain why molecules with a carboxyl group or too many negative charges have lower inhibitory activity. In light of this, the design of high potent active inhibitors against tyrosinase should satisfy both the affinity to the copper ions and the charge neutrality of the entire molecule.

  9. Large-scale recombinant expression and purificatoin of human tyrosinase suitabel for structural studies

    NARCIS (Netherlands)

    Lai, X.; Soler-Lopez, M.; Wichers, H.J.; Dijkstra, Bouke

    2016-01-01

    Human tyrosinase (TYR) is a glycoprotein that initiates the first two reactions in the melanin biosynthesis pathway. Mutations in its encoding gene cause Oculocutaneous Albinism type I (OCA1), the most severe form of albinism, which is a group of autosomal recessive disorders characterized by

  10. Identification of a tyrosinase gene and its functional analysis in melanin synthesis of Pteria penguin.

    Science.gov (United States)

    Yu, Feifei; Pan, Zhenni; Qu, Bingliang; Yu, Xiangyong; Xu, Kaihang; Deng, Yuewen; Liang, Feilong

    2018-02-26

    Tyrosinase is a key rate-limiting enzyme in melanin synthesis. In this study, a new tyrosinase gene (Tyr) was identified from Pteria penguin and its effect on melanin synthesis was deliberated by RNA interference (RNAi). The cDNA of PpTyr was 1728 bp long, containing a 5'untranslated region (UTR) of 11 bp, a 3'UTR of 295 bp, and an open reading fragment of 1422 bp encoding 473 amino acids. Amino acid alignment showed PpTyr had the highest (50%) identity to tyrosinase-like protein 1 from Pinctada fucata. Phylogenetic tree analysis classified PpTyr into α-subclass of type-3 copper protein. Tissue expression analysis indicated that PpTyr was highly expressed in mantle, a nacre formation related tissue. After PpTyr RNA interference, PpTyr mRNA was significantly inhibited by 71.0% (P PDCA (pyrrole-2, 3-dicarboxylic acid) and PTCA (pyrrole-2,3,5-tricarboxylic acid), as main markers for eumelanin, was sharply decreased by 66.6% after PpTyr RNAi (P PDCA was also obviously decreased from 20.1% to 13.9%. This indicated that tyrosinase played a key role in melanin synthesis and color formation of P. penguin. Copyright © 2017. Published by Elsevier B.V.

  11. Use of Mushroom Tyrosinase to Introduce Michaelis-Menten Enzyme Kinetics to Biochemistry Students

    Science.gov (United States)

    Flurkey, William H.; Inlow, Jennifer K.

    2017-01-01

    An inexpensive enzyme kinetics laboratory exercise for undergraduate biochemistry students is described utilizing tyrosinase from white button mushrooms. The exercise can be completed in one or two three-hour lab sessions. The optimal amounts of enzyme, substrate (catechol), and inhibitor (kojic acid) are first determined, and then kinetic data is…

  12. Substrate-Dependent Kinetics in Tyrosinase-based Biosensing: Amperometry vs. Spectrophotometry

    NARCIS (Netherlands)

    Rassaei, Liza; Cui, Jin; Goluch, E.D.; Lemay, Serge Joseph Guy

    2012-01-01

    Despite the broad use of enzymes in electroanalytical biosensors, the influence of enzyme kinetics on the function of prototype sensors is often overlooked or neglected. In the present study, we employ amperometry as an alternative or complementary method to study the kinetics of tyrosinase, whose

  13. T Cell Receptors that Recognize the Tyrosinase Tumor Antigen | NCI Technology Transfer Center | TTC

    Science.gov (United States)

    The National Cancer Institute, Surgery Branch, Tumor Immunology Section, is seeking statements of capability or interest from parties interested in collaborative research to further develop, evaluate, or commercialize T Cells Attacking Cancer: T Cell Receptors that Recognize the Tyrosinase Tumor Antigen

  14. Tyrosinase-catalyzed melanin as a contrast agent for photoacoustic tomography

    Science.gov (United States)

    Krumholz, Arie; Chavez, Sarah; Yao, Junjie; Fleming, Timothy; Gillanders, William E.; Wang, Lihong V.

    2011-03-01

    It is difficult to distinguish between tumor cells and surrounding cells without staining as is done in histology. We developed tyrosinase-catalyzed melanin as a reporter gene for photoacoustic tomography. Tyrosinase is the primary enzyme responsible for the production of melanin and alone is sufficient to produce melanin in non-melanogenic cells. Two cell lines were created: a stably transfected HeLa line and a transiently transfected 293 line. A phantom experiment was performed with the 293 transfected cells 48 hours post transfection and the results compared with oxygenated whole blood, B16 melanoma and 293 control cells. An in vivo experiment was performed using the transfected HeLa cells xenografted into a nude mouse ear, and then imaged. The results show strong contrast for tyrosinase-catalyzed melanin in both the 293 cells in the tube phantom as well as the in vivo result showing melanin in a nude mouse ear. Transfection increased expression in 293 cells 159 fold and image contrast compared to blood by as much as 50 fold. Due to the strong signal obtained at longer wavelengths and the decrease of blood signal at the same wavelengths, tyrosinase catalyzed melanin is a good candidate as a molecular imaging contrast agent for photoacoustic tomography.

  15. The influence of catechol structure on the suicide-inactivation of tyrosinase.

    Science.gov (United States)

    Ramsden, Christopher A; Stratford, Michael R L; Riley, Patrick A

    2009-09-07

    3,6-Difluorocatechol, which cannot act as a monooxygenase tyrosinase substrate, is an oxidase substrate, and, in contrast to other catechols, oxidation does not lead to suicide-inactivation, providing experimental evidence for an inactivation mechanism involving reductive elimination of Cu(0) from the active site.

  16. Albinism in the american mink (Neovison vison) is associated with a tyrosinase nonsense mutation

    DEFF Research Database (Denmark)

    Anistoroaei, Razvan Marian; Fredholm, Merete; Christensen, Knud

    2008-01-01

    Albino phenotypes are documented in various species including the American mink. In other species the albino phenotypes are associated with tyrosinase (TYR) gene mutations; therefore TYR was considered the candidate gene for albinism in mink. Four microsatellite markers were chosen in the prodicted...

  17. Design and synthesis of chalcone derivatives as potent tyrosinase inhibitors and their structural activity relationship

    Science.gov (United States)

    Akhtar, Muhammad Nadeem; Sakeh, Nurshafika M.; Zareen, Seema; Gul, Sana; Lo, Kong Mun; Ul-Haq, Zaheer; Shah, Syed Adnan Ali; Ahmad, Syahida

    2015-04-01

    Browning of fruits and vegetables is a serious issue in the food industry, as it damages the organoleptic properties of the final products. Overproduction of melanin causes aesthetic problems such as melisma, freckles and lentigo. In this study, a series of chalcones (1-10) have been synthesized and examined for their tryrosinase inhibitory activity. The results showed that flavokawain B (1), flavokawain A (2) and compound 3 were found to be potential tyrosinase inhibitors, indicating IC50 14.20-14.38 μM values. This demonstrates that 4-substituted phenolic compound especially at ring A exhibited significant tyrosinase inhibition. Additionally, molecular docking results showed a strong binding affinity for compounds 1-3 through chelation between copper metal and ligands. The detailed molecular docking and SARs studies correlate well with the tyrosinase inhibition studies in vitro. The structures of these compounds were elucidated by the 1D and 2D NMR spectroscopy, mass spectrometry and single X-ray crystallographic techniques. These findings could lead to design and discover of new tyrosinase inhibitors to control the melanine overproduction and overcome the economic loss of food industry.

  18. Microbial Tyrosinases: Promising Enzymes for Pharmaceutical, Food Bioprocessing, and Environmental Industry

    Directory of Open Access Journals (Sweden)

    Kamal Uddin Zaidi

    2014-01-01

    Full Text Available Tyrosinase is a natural enzyme and is often purified to only a low degree and it is involved in a variety of functions which mainly catalyse the o-hydroxylation of monophenols into their corresponding o-diphenols and the oxidation of o-diphenols to o-quinones using molecular oxygen, which then polymerizes to form brown or black pigments. The synthesis of o-diphenols is a potentially valuable catalytic ability and thus tyrosinase has attracted a lot of attention with respect to industrial applications. In environmental technology it is used for the detoxification of phenol-containing wastewaters and contaminated soils, as biosensors for phenol monitoring, and for the production of L-DOPA in pharmaceutical industries, and is also used in cosmetic and food industries as important catalytic enzyme. Melanin pigment synthesized by tyrosinase has found applications for protection against radiation cation exchangers, drug carriers, antioxidants, antiviral agents, or immunogen. The recombinant V. spinosum tryosinase protein can be used to produce tailor-made melanin and other polyphenolic materials using various phenols and catechols as starting materials. This review compiles the recent data on biochemical and molecular properties of microbial tyrosinases, underlining their importance in the industrial use of these enzymes. After that, their most promising applications in pharmaceutical, food processing, and environmental fields are presented.

  19. Investigation of binding-site homology between mushroom and bacterial tyrosinases by using aurones as effectors.

    Science.gov (United States)

    Haudecoeur, Romain; Gouron, Aurélie; Dubois, Carole; Jamet, Hélène; Lightbody, Mark; Hardré, Renaud; Milet, Anne; Bergantino, Elisabetta; Bubacco, Luigi; Belle, Catherine; Réglier, Marius; Boumendjel, Ahcène

    2014-06-16

    Tyrosinase is a copper-containing enzyme found in plants and bacteria, as well as in humans, where it is involved in the biosynthesis of melanin-type pigments. Tyrosinase inhibitors have attracted remarkable research interest as whitening agents in cosmetology, antibrowning agents in food chemistry, and as therapeutics. In this context, commercially available tyrosinase from mushroom (TyM) is frequently used for the identification of inhibitors. This and bacterial tyrosinase (TyB) have been the subjects of intense biochemical and structural studies, including X-ray diffraction analysis, and this has led to the identification of structural homology and divergence among enzymes from different sources. To better understand the behavior of potential inhibitors of TyM and TyB, we selected the aurone family-previously identified as potential inhibitors of melanin biosynthesis in human melanocytes. In this study, a series of 24 aurones with different hydroxylation patterns at the A- and B-rings were evaluated on TyM and TyB. The results show that, depending on the hydroxylation pattern of A- and B-rings, aurones can behave as inhibitors, substrates, and activators of both enzymes. Computational analysis was performed to identify residues surrounding the aurones in the active sites of both enzymes and to rationalize the interactions. Our results highlight similarities and divergence in the behavior of TyM and TyB toward the same set of molecules. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Prognostic Value of RT-PCR Tyrosinase Detection in Peripheral Blood of Melanoma Patients

    Science.gov (United States)

    Carrillo, Esmeralda; Prados, José; Marchal, Juan Antonio; Boulaiz, Houria; Martínez, Antonio; Rodríguez-Serrano, Fernando; Caba, Octavio; Serrano, Salvio; Aránega, Antonia

    2006-01-01

    Malignant melanoma (MM) prognosis has been related to tumour thickness and clinical stage and metastasis risk has been associated with presence of tumour cells in peripheral blood. The aim of this study was to determine the relationship between presence of tyrosinase in peripheral blood of MM patients and their clinical prognosis. Blood samples from 58 MM patients (stage I–IV) were analysed, using RT-PCR assay to detect tyrosinase mRNA. The results showed that positive RT-PCR assay for tyrosinase were significantly associated with clinical status and tumour thickness. After a median follow-up of 24 months, RT-PCR results were found to be significant correlated with recurrence (p < 0.05) and clinical stage III (p < 0.05). Separate analysis of stage III tumours to determine the prognostic value of tyrosinase presence in peripheral blood showed an overall 24-month survival rate of 70% in the RT-PCR negative group versus 10% in the positive group (p < 0.02). These results suggest that detection of circulating melanoma cells may be especially relevant in stage III patients, in whom RT-PCR positivity defines a subpopulation at high risk of recurrence. PMID:16788251

  1. Reverse Phase Compatible TLC-Bioautography for Detection of Tyrosinase Inhibitors.

    Science.gov (United States)

    García, Paula; Ramallo, I Ayelen; Furlan, Ricardo L E

    2017-03-01

    Reverse phase chromatography and bioautographic assays are key tools for natural product bioguided isolation; however, their direct coupling has not been fully achieved. To develop a bioautographic assay to detect tyrosinase inhibitors present in complex matrices sorbed on reverse phase (RP) TLC-plates that can be used for bioguided isolation of bioactive compounds. Enzyme gel entrapment with an amphiphilic copolymer was used for assay development. The gel turns into a brown "skin like" colour due to tyrosinase catalysed oxidation of l-tyrosine. The inhibitors are visualised as clear spots against a brown coloured background. The assay was able to localise cinnamaldehyde in Cinnamomum cassia essential oil, as its main constituent with known tyrosinase inhibition properties. The assay allowed the detection of 0.03% (w/w) of kojic acid co-spotted with a methanolic extract of Sphaeralcea bonariensis and chromatographed on RP-TLC. The developed assay is able to detect, with high sensitivity, tyrosinase inhibitors present in complex matrices that were chromatographed in RP-TLC. Results can be easily read by colour change, inhibitors appear as clear spots in a darker background. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  2. Characterization of a New Flavone and Tyrosinase Inhibition Constituents from the Twigs of Morus alba L.

    Directory of Open Access Journals (Sweden)

    Long Zhang

    2016-09-01

    Full Text Available The twigs of Morus alba L. were found to show strong tyrosinase inhibition activity, and the responsible active components in the extract were further investigated in this study. A flavone, named morusone (1, and sixteen known compounds 2–17 were isolated from M. alba twigs and their structures were identified by interpretation of the corresponding ESI-MS and NMR spectral data. In the tyrosinase inhibitory test, the compounds steppogenin (IC50 0.98 ± 0.01 µM, 2,4,2′,4′-tetrahydroxychalcone (IC50 0.07 ± 0.02 µM, morachalcone A (IC50 0.08 ± 0.02 µM, oxyresveratrol (IC50 0.10 ± 0.01 µM, and moracin M (8.00 ± 0.22 µM exhibited significant tyrosinase inhibition activities, much stronger than that of the positive control kojic acid. These results suggest that M. alba twig extract should served as a good source of natural tyrosinase inhibitors for use in foods as antibrowning agents or in cosmetics as skin-whitening agents.

  3. IMPROVED SELECTIVE ELECTROCATALYTIC OXIDATION OF PHENOLS BY TYROSINASE-BASED CARBON PASTE ELECTRODE BIOSENSOR

    Science.gov (United States)

    Tyrosinase-based carbon paste electrodes are evaluated with respect to the viscosity and polarity of the binder liquids. The electrodes constructed using a lower viscosity mineral oil yielded a greater response to phenol and catechol than those using a higher viscosity oil of s...

  4. Recent developments in the use of tyrosinase and laccase in environmental applications.

    Science.gov (United States)

    Ba, Sidy; Vinoth Kumar, Vaidyanathan

    2017-11-01

    Our current global environmental challenges include the reduction of harmful chemicals and their derivatives. Bioremediation has been a key strategy to control the massive presence of chemicals in the environment. Enzymes including the phenoloxidases, laccases and tyrosinases, are increasingly being investigated as "green products" in the removal of many chemical contaminants in waters and soils. Both phenoloxidases are widespread in nature and attractive biocatalysts due to their ability to use readily available molecular oxygen as sole cofactor for their catalytic elimination of a large number of chemicals. Taking advantage of their catalytic potentials, remarkable advances have been made in the engineering of laccases to produce suitable biocatalysts in environmental applications. Studies about novel strategies of laccase immobilization and insolubilization for the treatment of chemical contaminants were provided. Likewise, tyrosinases are gaining increasing interest in environmental applications due to their catalytic similarities with laccases although they remain far less investigated to date. This disparity was addressed in this review along with the molecular features and catalytic mechanism of tyrosinases relevant in environmental applications. A perspective on the future use of laccases and tyrosinases in bioremediation was discussed.

  5. A three-dimensional model of mammalian tyrosinase active site accounting for loss of function mutations.

    Science.gov (United States)

    Schweikardt, Thorsten; Olivares, Concepción; Solano, Francisco; Jaenicke, Elmar; García-Borrón, José Carlos; Decker, Heinz

    2007-10-01

    Tyrosinases are the first and rate-limiting enzymes in the synthesis of melanin pigments responsible for colouring hair, skin and eyes. Mutation of tyrosinases often decreases melanin production resulting in albinism, but the effects are not always understood at the molecular level. Homology modelling of mouse tyrosinase based on recently published crystal structures of non-mammalian tyrosinases provides an active site model accounting for loss-of-function mutations. According to the model, the copper-binding histidines are located in a helix bundle comprising four densely packed helices. A loop containing residues M374, S375 and V377 connects the CuA and CuB centres, with the peptide oxygens of M374 and V377 serving as hydrogen acceptors for the NH-groups of the imidazole rings of the copper-binding His367 and His180. Therefore, this loop is essential for the stability of the active site architecture. A double substitution (374)MS(375) --> (374)GG(375) or a single M374G mutation lead to a local perturbation of the protein matrix at the active site affecting the orientation of the H367 side chain, that may be unable to bind CuB reliably, resulting in loss of activity. The model also accounts for loss of function in two naturally occurring albino mutations, S380P and V393F. The hydroxyl group in S380 contributes to the correct orientation of M374, and the substitution of V393 for a bulkier phenylalanine sterically impedes correct side chain packing at the active site. Therefore, our model explains the mechanistic necessity for conservation of not only active site histidines but also adjacent amino acids in tyrosinase.

  6. Tyrosinase degradation is prevented when EDEM1 lacks the intrinsically disordered region.

    Directory of Open Access Journals (Sweden)

    Marioara B Marin

    Full Text Available EDEM1 is a mannosidase-like protein that recruits misfolded glycoproteins from the calnexin/calreticulin folding cycle to downstream endoplasmic reticulum associated degradation (ERAD pathway. Here, we investigate the role of EDEM1 in the processing of tyrosinase, a tumour antigen overexpressed in melanoma cells. First, we analyzed and modeled EDEM1 major domains. The homology model raised on the crystal structures of human and Saccharomyces cerevisiae ER class I α1,2-mannosidases reveals that the major mannosidase domain located between aminoacids 121-598 fits with high accuracy. We have further identified an N-terminal region located between aminoacids 40-119, predicted to be intrinsically disordered (ID and susceptible to adopt multiple conformations, hence facilitating protein-protein interactions. To investigate these two domains we have constructed an EDEM1 deletion mutant lacking the ID region and a triple mutant disrupting the glycan-binding domain and analyzed their association with tyrosinase. Tyrosinase is a glycoprotein partly degraded endogenously by ERAD and the ubiquitin proteasomal system. We found that the degradation of wild type and misfolded tyrosinase was enhanced when EDEM1 was overexpressed. Glycosylated and non-glycosylated mutants co-immunoprecipitated with EDEM1 even in the absence of its intact mannosidase-like domain, but not when the ID region was deleted. In contrast, calnexin and SEL 1L associated with the deletion mutant. Our data suggest that the ID region identified in the N-terminal end of EDEM1 is involved in the binding of glycosylated and non-glycosylated misfolded proteins. Accelerating tyrosinase degradation by EDEM1 overexpression may lead to an efficient antigen presentation and enhanced elimination of melanoma cells.

  7. Analysis of initial melanogenesis including tyrosinase transfer and melanosome differentiation through interrupted melanization by glutathione.

    Science.gov (United States)

    Imokawa, G

    1989-07-01

    Because glycosylation-dependent melanization inhibition induced in cultured B-16 melanoma cells by glucosamine is reversible, producing synchronized initiation of melanogenesis after its removal, we have analyzed the possible dynamics of initial melanogenesis through their interruption by glutathione. The addition of glutathione at 0.2% concentration to the theophylline-stimulated recovery process completely interrupts the initiation of melanization for at least 72 h. At the electron microscopic level, theophylline-treated cells have many vacuolar melanosomes with distinct pigmentation which contain some vesicles (64% of total premelanosomes) or amorphous, filamentous, or granular materials within the interior which are suggestive of pheomelanotic melanosomes. The addition of glutathione induces a complete absence of melanization in the premelanosomes, within which a filamentous interior with periodicity is generally re-formed with almost complete disappearance of internal vesicles, providing dramatic changes to the size and shape characteristic of eumelanotic melanosome. Electron microscopic dopa reaction of glutathione-treated cells shows a predominant localization of tyrosinase activity in the Golgi-associated endoplasmic reticulum-lysosome and coated vesicles, but not in premelanosomes, in contrast to their dispersed distribution in all melanogenic organelles in the theophylline-treated control, suggesting a lack of tyrosinase translocation. Sodium dodecyl sulfate polyacrylamide gel electrophoresis of tyrosinase in the large granule fraction shows that in analogy with electron microscopic observations, glutathione blocks the reappearance of membrane-bound T3 tyrosinase which occurs in the theophylline-treated control during the recovery process, whereas the dynamics of T1 tyrosinase is almost the same as that of the control. These findings suggest that glutathione provides a new situation of interrupted melanogenesis in which melanization cannot proceed despite

  8. Albinism-causing mutations in recombinant human tyrosinase alter intrinsic enzymatic activity.

    Directory of Open Access Journals (Sweden)

    Monika B Dolinska

    Full Text Available Tyrosinase (TYR catalyzes the rate-limiting, first step in melanin production and its gene (TYR is mutated in many cases of oculocutaneous albinism (OCA1, an autosomal recessive cause of childhood blindness. Patients with reduced TYR activity are classified as OCA1B; some OCA1B mutations are temperature-sensitive. Therapeutic research for OCA1 has been hampered, in part, by the absence of purified, active, recombinant wild-type and mutant human enzymes.The intra-melanosomal domain of human tyrosinase (residues 19-469 and two OCA1B related temperature-sensitive mutants, R422Q and R422W were expressed in insect cells and produced in T. ni larvae. The short trans-membrane fragment was deleted to avoid potential protein insolubility, while preserving all other functional features of the enzymes. Purified tyrosinase was obtained with a yield of >1 mg per 10 g of larval biomass. The protein was a monomeric glycoenzyme with maximum enzyme activity at 37°C and neutral pH. The two purified mutants when compared to the wild-type protein were less active and temperature sensitive. These differences are associated with conformational perturbations in secondary structure.The intramelanosomal domains of recombinant wild-type and mutant human tyrosinases are soluble monomeric glycoproteins with activities which mirror their in vivo function. This advance allows for the structure - function analyses of different mutant TYR proteins and correlation with their corresponding human phenotypes; it also provides an important tool to discover drugs that may improve tyrosinase activity and treat OCA1.

  9. Albinism-Causing Mutations in Recombinant Human Tyrosinase Alter Intrinsic Enzymatic Activity

    Science.gov (United States)

    Dolinska, Monika B.; Kovaleva, Elena; Backlund, Peter; Wingfield, Paul T.; Brooks, Brian P.; Sergeev, Yuri V.

    2014-01-01

    Background Tyrosinase (TYR) catalyzes the rate-limiting, first step in melanin production and its gene (TYR) is mutated in many cases of oculocutaneous albinism (OCA1), an autosomal recessive cause of childhood blindness. Patients with reduced TYR activity are classified as OCA1B; some OCA1B mutations are temperature-sensitive. Therapeutic research for OCA1 has been hampered, in part, by the absence of purified, active, recombinant wild-type and mutant human enzymes. Methodology/Principal Findings The intra-melanosomal domain of human tyrosinase (residues 19–469) and two OCA1B related temperature-sensitive mutants, R422Q and R422W were expressed in insect cells and produced in T. ni larvae. The short trans-membrane fragment was deleted to avoid potential protein insolubility, while preserving all other functional features of the enzymes. Purified tyrosinase was obtained with a yield of >1 mg per 10 g of larval biomass. The protein was a monomeric glycoenzyme with maximum enzyme activity at 37°C and neutral pH. The two purified mutants when compared to the wild-type protein were less active and temperature sensitive. These differences are associated with conformational perturbations in secondary structure. Conclusions/Significance The intramelanosomal domains of recombinant wild-type and mutant human tyrosinases are soluble monomeric glycoproteins with activities which mirror their in vivo function. This advance allows for the structure – function analyses of different mutant TYR proteins and correlation with their corresponding human phenotypes; it also provides an important tool to discover drugs that may improve tyrosinase activity and treat OCA1. PMID:24392141

  10. Albinism-causing mutations in recombinant human tyrosinase alter intrinsic enzymatic activity.

    Science.gov (United States)

    Dolinska, Monika B; Kovaleva, Elena; Backlund, Peter; Wingfield, Paul T; Brooks, Brian P; Sergeev, Yuri V

    2014-01-01

    Tyrosinase (TYR) catalyzes the rate-limiting, first step in melanin production and its gene (TYR) is mutated in many cases of oculocutaneous albinism (OCA1), an autosomal recessive cause of childhood blindness. Patients with reduced TYR activity are classified as OCA1B; some OCA1B mutations are temperature-sensitive. Therapeutic research for OCA1 has been hampered, in part, by the absence of purified, active, recombinant wild-type and mutant human enzymes. The intra-melanosomal domain of human tyrosinase (residues 19-469) and two OCA1B related temperature-sensitive mutants, R422Q and R422W were expressed in insect cells and produced in T. ni larvae. The short trans-membrane fragment was deleted to avoid potential protein insolubility, while preserving all other functional features of the enzymes. Purified tyrosinase was obtained with a yield of >1 mg per 10 g of larval biomass. The protein was a monomeric glycoenzyme with maximum enzyme activity at 37°C and neutral pH. The two purified mutants when compared to the wild-type protein were less active and temperature sensitive. These differences are associated with conformational perturbations in secondary structure. The intramelanosomal domains of recombinant wild-type and mutant human tyrosinases are soluble monomeric glycoproteins with activities which mirror their in vivo function. This advance allows for the structure - function analyses of different mutant TYR proteins and correlation with their corresponding human phenotypes; it also provides an important tool to discover drugs that may improve tyrosinase activity and treat OCA1.

  11. Stable particles

    International Nuclear Information System (INIS)

    Samios, N.P.

    1994-01-01

    I have been asked to review the subject of stable particles, essentially the particles that eventually comprised the meson and baryon octets, with a few more additions - with an emphasis on the contributions made by experiments utilizing the bubble chamber technique. In this activity, much work had been done by the photographic emulsion technique and cloud chambers - exposed to cosmic rays as well as accelerator based beams. In fact, many if not most of the stable particles were found by these latter two techniques, however, the foree of the bubble chamber (coupled with the newer and more powerful accelerators) was to verify, and reinforce with large statistics, the existence of these states, to find some of the more difficult ones, mainly neutrals and further to elucidate their properties, i.e., spin, parity, lifetimes, decay parameters, etc. (orig.)

  12. Stable particles

    International Nuclear Information System (INIS)

    Samios, N.P.

    1993-01-01

    I have been asked to review the subject of stable particles, essentially the particles that eventually comprised the meson and baryon octets. with a few more additions -- with an emphasis on the contributions made by experiments utilizing the bubble chamber technique. In this activity, much work had been done by the photographic emulsion technique and cloud chambers-exposed to cosmic rays as well as accelerator based beams. In fact, many if not most of the stable particles were found by these latter two techniques, however, the forte of the bubble chamber (coupled with the newer and more powerful accelerators) was to verify, and reinforce with large statistics, the existence of these states, to find some of the more difficult ones, mainly neutrals and further to elucidate their properties, i.e., spin, parity, lifetimes, decay parameters, etc

  13. Aqueous humor tyrosinase activity is indicative of iris melanocyte toxicity.

    Science.gov (United States)

    Mahanty, Sarmistha; Kawali, Ankush A; Dakappa, Shruthi Shirur; Mahendradas, Padmamalini; Kurian, Mathew; Kharbanda, Varun; Shetty, Rohit; Setty, Subba Rao Gangi

    2017-09-01

    Antibiotics such as fluoroquinolones (FQLs) are commonly used to treat ocular infections but are also known to cause dermal melanocyte toxicity. The release of dispersed pigments from the iris into the aqueous humor has been considered a possible ocular side effect of the systemic administration of FQLs such as Moxifloxacin, and this condition is known as bilateral acute iris transillumination (BAIT). Bilateral acute depigmentation of iris (BADI) is a similar condition, with iris pigment released into the aqueous, but it has not been reported as a side effect of FQL. Iris pigments are synthesized by the melanogenic enzyme tyrosinase (TYR) and can be detected but not quantified by using slit-lamp biomicroscopy. The correlation between dispersed pigments in the aqueous and the extent of melanocyte toxicity due to topical antibiotics in vivo is not well studied. Here, we aimed to study the effect of topical FQLs on iris tissue, the pigment release in the aqueous humor and the development of clinically evident iris atrophic changes. We evaluated this process by measuring the activity of TYR in the aqueous humor of 82 healthy eyes undergoing cataract surgery following topical application of FQLs such as Moxifloxacin (27 eyes, preservative-free) or Ciprofloxacin (29 eyes, with preservative) or the application of non-FQL Tobramycin (26 eyes, with preservative) as a control. In addition, the patients were questioned and examined for ocular side effects in pre- and post-operative periods. Our data showed a significantly higher mean TYR activity in the aqueous humor of Ciprofloxacin-treated eyes compared to Moxifloxacin- (preservative free, p humor from both Ciprofloxacin- and Moxifloxacin-treated eyes showed the presence of soluble TYR enzyme, thus reflecting its toxicity to iris melanocytes and corresponding to its activity in the aqueous humor. Intriguingly, none of these patients developed any clinically appreciable ocular side effects characteristic of BAIT or BADI

  14. Tendon functional extracellular matrix.

    Science.gov (United States)

    Screen, Hazel R C; Berk, David E; Kadler, Karl E; Ramirez, Francesco; Young, Marian F

    2015-06-01

    This article is one of a series, summarizing views expressed at the Orthopaedic Research Society New Frontiers in Tendon Research Conference. This particular article reviews the three workshops held under the "Functional Extracellular Matrix" stream. The workshops focused on the roles of the tendon extracellular matrix, such as performing the mechanical functions of tendon, creating the local cell environment, and providing cellular cues. Tendon is a complex network of matrix and cells, and its biological functions are influenced by widely varying extrinsic and intrinsic factors such as age, nutrition, exercise levels, and biomechanics. Consequently, tendon adapts dynamically during development, aging, and injury. The workshop discussions identified research directions associated with understanding cell-matrix interactions to be of prime importance for developing novel strategies to target tendon healing or repair. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  15. The natural yeast extract isolated by ethanol precipitation inhibits melanin synthesis by modulating tyrosinase activity and downregulating melanosome transfer.

    Science.gov (United States)

    Lee, Woo Jin; Rhee, Do Young; Bang, Seung Hyun; Kim, Su Yeon; Won, Chong Hyun; Lee, Mi Woo; Choi, Jee Ho; Chang, Sung Eun

    2015-01-01

    This study was conducted to examine the effects of EP-2, a natural yeast extract isolated by ethanol precipitation from Saccharomyces cerevisiae, on melanogenesis and to determine its underlying mechanism of action. Our results show that although EP-2 is not a direct tyrosinase inhibitor, when EP-2 was added to the culture media of B16F10 melanoma cells, intracellular tyrosinase activity was decreased. However, EP-2 had no effect on the expression of microphthalmia-associated transcription factor or tyrosinase. EP-2 was found to inhibit melanogenesis and melanosome transfer when it was added to melanocytes and keratinocytes in coculture. In addition, protease-activated receptor 2, a key protein associated with melanosome transfer from melanocytes to keratinocytes, was downregulated in the presence of EP-2. In conclusion, EP-2 is a potent inhibitor of melanogenesis and its hypomelanogenic effect is related to the inhibition of tyrosinase activity and transfer of melanosomes.

  16. Design, Synthesis and Biological Evaluation of Oxindole-Based Chalcones as Small-Molecule Inhibitors of Melanogenic Tyrosinase.

    Science.gov (United States)

    Suthar, Sharad Kumar; Bansal, Sumit; Narkhede, Niteen; Guleria, Manju; Alex, Angel Treasa; Joseph, Alex

    2017-01-01

    The enzyme tyrosinase regulates melanogenesis and skin hyperpigmentation by converting L-3,4-dihydroxyphenylalanine (L-DOPA) into dopaquinone, a key step in the melanin biosynthesis. The present work deals with design and synthesis of various oxindole-based chalcones as monophenolase and diphenolase activity inhibitors of tyrosinase. Among the screened compounds, 4-hydroxy-3-methoxybenzylidene moiety bearing chalcone (7) prepared by one pot reaction of oxindole and vanillin displayed the highest activity against tyrosinase with IC 50 s of 63.37 and 59.71 µM in monophenolase and diphenolase activity assays, respectively. In molecular docking studies, chalcone 7 also showed the highest binding affinity towards the enzyme tyrosinase while exhibiting the lowest estimated free energy of binding, among all the ligands docked.

  17. Stable beams

    CERN Multimedia

    2015-01-01

    Stable beams: two simple words that carry so much meaning at CERN. When LHC page one switched from "squeeze" to "stable beams" at 10.40 a.m. on Wednesday, 3 June, it triggered scenes of jubilation in control rooms around the CERN sites, as the LHC experiments started to record physics data for the first time in 27 months. This is what CERN is here for, and it’s great to be back in business after such a long period of preparation for the next stage in the LHC adventure.   I’ve said it before, but I’ll say it again. This was a great achievement, and testimony to the hard and dedicated work of so many people in the global CERN community. I could start to list the teams that have contributed, but that would be a mistake. Instead, I’d simply like to say that an achievement as impressive as running the LHC – a machine of superlatives in every respect – takes the combined effort and enthusiasm of everyone ...

  18. New Whitening Constituents from Taiwan-Native Pyracantha koidzumii: Structures and Tyrosinase Inhibitory Analysis in Human Epidermal Melanocytes

    Directory of Open Access Journals (Sweden)

    Rong-Dih Lin

    2015-12-01

    Full Text Available Nontoxic natural products useful in skin care cosmetics are of considerable interest. Tyrosinase is a rate-limiting enzyme for which its inhibitor is useful in developing whitening cosmetics. Pyracantha koidzumii (Hayata Rehder is an endemic species in Taiwan that exhibits tyrosinase-inhibitory activity. To find new active natural compounds from P. koidzumii, we performed bioguided isolation and studied the related activity in human epidermal melanocytes. In total, 13 compounds were identified from P. koidzumii in the present study, including two new compounds, 3,6-dihydroxy-2,4-dimethoxy-dibenzofuran (9 and 3,4-dihydroxy-5-methoxybiphenyl-2ʹ-O-β-d-glucopyranoside (13, as well as 11 known compounds. The new compound 13 exhibited maximum potency in inhibiting cellular tyrosinase activity, the protein expression of cellular tyrosinase and tyrosinase-related protein-2, as well as the mRNA expression of Paired box 3 and microphthalmia-associated transcription factor in a concentration-dependent manner. In the enzyme kinetic assay, the new compound 13 acted as an uncompetitive mixed-type inhibitor against the substrate l-3,4-dihydroxyphenylalanine and had a Km value against this substrate of 0.262 mM, as calculated using the Lineweaver–Burk plots. Taken together, our findings show compound 13 exhibits tyrosinase inhibition in human melanocytes and compound 13 may be a potential candidate for use in cosmetics.

  19. A fluorometric biosensor based on functional Au/Ag nanoclusters for real-time monitoring of tyrosinase activity.

    Science.gov (United States)

    Ao, Hang; Qian, Zhaosheng; Zhu, Yuyu; Zhao, Meizhi; Tang, Cong; Huang, Yuanyuan; Feng, Hui; Wang, Aijun

    2016-12-15

    Due to the vital role of tyrosinase in melanin biosynthesis and its function as an important biomarker for melanoma cancer, highly sensitive detection of its activity using biocompatible materials is in urgent demand. Herein we report a convenient and highly sensitive fluorometric biosensor for tyrosinase activity detection based on biocompatible dopamine-functionalized Au/Ag nanoclusters (Dopa-Au/Ag NCs). Dopamine with redox property was covalently linked to Au/Ag NCs surface and formed a Dopa-Au/Ag NCs bioconjugate with strong blue fluorescence. Dopamine is readily oxidized by molecular oxygen under the catalysis of tyrosinase. After dopamine is transformed to o-dopaquinone, an intraparticle photoinduced election transfer (PET) process occurs between Au/Ag NCs and o-dopaquinone moiety, leading to the fluorescence quenching of the Dopa-Au/Ag NCs bioconjugate. Thus, this biosensor was utilized for sensitive and selective detection of tyrosinase in terms of the relationship between fluorescence quenching efficiency and tyrosinase activity. This study discovers that Au/Ag NCs and dopaquinone can serve as a good electron acceptor and donor pair which results in an efficient intraparticle photoinduced electron transfer process, and also provides another alternative way for tyrosinase activity monitoring. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Tyrosinase Inhibitory Activity, 3D QSAR, and Molecular Docking Study of 2,5-Disubstituted-1,3,4-Oxadiazoles

    Directory of Open Access Journals (Sweden)

    Ramesh L. Sawant

    2013-01-01

    Full Text Available In continuation with our research program, in search of potent enzyme tyrosinase inhibitor, a series of synthesized 2,5-disubstituted 1,3,4-oxadiazoles have been evaluated for enzyme tyrosinase inhibitory activity. Subsequently, 3D QSAR and docking studies were performed to find optimum structural requirements for potent enzyme tyrosinase inhibitor from this series. The synthesized 20 compounds of 2,5-disubstituted-1,3,4-oxadiazole series were screened for mushroom tyrosinase inhibitory activity at various concentrations by enzyme inhibition assay. The percentage enzyme inhibition was calculated by recording absorbance at 492 nm with microplate reader. 3D QSAR and docking studies were performed using VLife MDS 3.5 software. In the series 2,5-disubstituted-1,3,4-oxadiazoles enzyme tyrosinase inhibitory activity was found to be dose dependent with maximum activity for compounds 4c, 4h, 4m, and 4r. 3D QSAR and docking studies revealed that more electropositive and less bulky substituents if placed on 1,3,4-oxadiazole nucleus may result in better tyrosinase inhibitory activity in the series.

  1. Application of the nanogold-4,4'-bis(methanethiol)biphenyl modified gold electrode to the determination of tyrosinase-catechol reaction kinetics in acetonitrile.

    Science.gov (United States)

    Nakamura, Toshio; Ren, Jujie; Zhu, Kai-mei; Kawara, Shinshi; Jin, Baokang

    2006-09-01

    The reactivity of tyrosinase adsorbed on nanogold bound with 4,4'-bis(methanethiol)biphenyl monolayer self-assembled on a gold disk with catechol in a dipolar aprotic solvent, acetonitrile (AN), was studied by cyclic voltammetric and amperometric methods. Tyrosinase exhibited characteristics of a Michaelis-Menten kinetic mechanism. The tyrosinase attached to the nanogold continued to react with substrates in AN even when the water content was lower than 0.01 w/w%. The apparent Michaelis-Menten constant K(m) of tyrosinase for catechol is 5.5 +/- 0.4 mM (n = 5).

  2. Mechanism and kinetics of tyrosinase inhibition by glycolic acid: a study using conventional spectroscopy methods and hydrogen/deuterium exchange coupling with mass spectrometry.

    Science.gov (United States)

    Ma, Da; Tu, Zong-Cai; Wang, Hui; Zhang, Lu; He, Na; McClements, David Julian

    2017-01-25

    Tyrosinase is an enzyme that promotes enzymatic browning of fruits and vegetables, thereby reducing product quality. A variety of analytical tools were used to characterize the interactions between tyrosinase and a natural tyrosinase inhibitor (glycolic acid). Hydrogen/deuterium exchange coupling with mass spectrometry (HDX-MS) was used to elucidate the interaction mechanism between glycolic acid and tyrosinase. UV-visible, fluorescence and circular dichroism spectroscopy analysis indicated that glycolic acid inhibited tyrosinase activity in a mixed-type manner with an IC 50 of 83 ± 14 μM. The results of these techniques suggested that glycolic acid bound to tyrosinase through hydrophobic attraction, and this interaction led to a pronounced conformational change of the enzyme molecules. HDX-MS analysis showed that the activity of tyrosinase was primarily inhibited by a structural perturbation of its active site (His 263). This study provides a comprehensive understanding of the interaction between glycolic acid and tyrosinase, which could lead to new approaches to control tyrosinase activity in foods and other products.

  3. Monophenolase activity of latent Terfezia claveryi tyrosinase: Characterization and histochemical localization.

    Science.gov (United States)

    Pérez-Gilabert, Manuela; Morte, Asunción; Honrubia, Mario; García-Carmona, Francisco

    2001-10-01

    The monophenolase activity of Terfezia claveryi tyrosinase (EC 1.14.18.1) is described for the first time. This enzyme is fully latent and can only be detected if SDS is present in the reaction medium. Monophenolase activity was localized within the ascocarp using histochemical techniques. A detailed kinetic study of the parameters affecting this activity has been carried out. Both the characteristic lag period and the steady-state rate are affected by pH and the enzyme and substrate concentrations. The presence of catalytic concentrations of o-diphenols affected the lag period but not the steady-state rate. By increasing the concentration of o-diphenols, it was possible to evaluate the enzyme activation constant, Kact, which showed a value of 7.2 &mgr;M. The experimental results are compatible with the mechanism previously described for tyrosinases from other sources.

  4. Sequence analysis of tyrosinase gene in ocular and oculocutaneous albinism patients: introducing three novel mutations.

    Science.gov (United States)

    Khordadpoor-Deilamani, Faravareh; Akbari, Mohammad Taghi; Karimipoor, Morteza; Javadi, Gholamreza

    2015-01-01

    Albinism is a heterogeneous genetic disorder of melanin synthesis that results in hypopigmented eyes (in patients with ocular albinism) or hair, skin, and eyes (in individuals with oculocutaneous albinism). It is associated with decreased visual acuity, nystagmus, strabismus, and photophobia. The tyrosinase gene is known to be involved in both oculocutaneous albinism and autosomal recessive ocular albinism. In this study, we aimed to screen the mutations in the TYR gene in the nonsyndromic OCA and autosomal recessive ocular albinism patients from Iran. The tyrosinase gene was examined in 23 unrelated patients with autosomal recessive ocular albinism or nonsyndromic OCA using DNA sequencing and bioinformatics analysis. TYR gene mutations were identified in 14 (app. 60%) albinism patients. We found 10 mutations, 3 of which were novel. No mutation was found in our ocular albinism patients, but one of them was heterozygous for the p.R402Q polymorphism.

  5. Effects of Fumarprotocetraric Acid, a Depsidone from the Lichen Cladonia verticillaris, on Tyrosinase Activity

    Directory of Open Access Journals (Sweden)

    Luiz Fabrício Gardini Brandão

    2017-10-01

    Full Text Available Lichens are widely distributed around the world. Their phenolic compounds, consisting mainly of depsides and depsidones, have been extensively studied for important biological activities. More recently, these compounds have been evaluated for their inhibitory activity against enzymes such as tyrosinase, a key agent in melanin biosynthesis. In the present investigation, the depsidone fumarprotocetraric acid isolated from the lichen Cladonia verticillaris (Raddi Fr. was evaluated for its inhibitory activity against this critical enzyme. Kinetic study showed that depsidone at 0.6 mM inhibited tyrosinase activity by 39.8%. Lineweaver–Burk plots revealed that fumarprotocetraric acid can act as an uncompetitive or mixed-type inhibitor, depending on concentration. DOI: http://dx.doi.org/10.17807/orbital.v9i4.999 

  6. A diterpenoid sugiol from Metasequoia glyptostroboides with α-glucosidase and tyrosinase inhibitory potential

    Directory of Open Access Journals (Sweden)

    Vivek K. Bajpai

    2014-08-01

    Full Text Available Nowadays use of plant derived natural compounds have become a topic of increasing interest in food and medicine industries due to their multitude of biological and therapeutic properties. In this study, a diterpenoid compound sugiol, isolated from Metasequoia glyptostroboides was evaluated for α–glucosidase and tyrosinase inhibitory efficacy in terms of its potent anti-diabetic and anti-melanogenesis potential, respectively. As a result, sugiol at the concentration range of (100-10,000 µg/mL and (20-500 µg/mL showed potent efficacy on inhibiting α-glucosidase and tyrosinase enzymes in vitro ranging from 12.34-63.47% and 28.22-67.43%, respectively. These findings confirm the therapeutic potential of diterpenoid compound sugiol from M. glyptostroboides as a novel candidate for using in food and medicine industry which may have practical potential to cure skin and diabetes mellitus type-2 related disorders.

  7. Phosphonic analogues of tyrosine and 3,4-dihydroxyphenylalanine (dopa) influence mushroom tyrosinase activity.

    Science.gov (United States)

    Lejczak, B; Kafarski, P; Makowiecka, E

    1987-01-01

    A series of phosphonic analogues of tyrosine and 3,4-dihydroxyphenylalanine (dopa) were synthesized in order to study their interaction with mushroom tyrosinase. 1-Amino-2-(3,4-dihydroxyphenyl)ethylphosphonic acid and 1-amino-2-(3,4-dimethoxyphenyl)ethylphosphonic acid turned out to be substrates for mushroom tyrosinase with Km values of 3.3 mM and 9.3 mM respectively. Shortening of the alkyl chain by one methylene group gave amino-(3,4-dihydroxyphenyl)methylphosphonic acid, one of the most powerful known inhibitors of this enzyme. This compound, racemic as well as in its optically active forms, exerts a mixed type of inhibition with an affinity for the enzyme one order of magnitude greater than that of the natural substrate. PMID:3109385

  8. Sericins exhibit ROS-scavenging, anti-tyrosinase, anti-elastase, and in vitro immunomodulatory activities.

    Science.gov (United States)

    Chlapanidas, Theodora; Faragò, Silvio; Lucconi, Giulia; Perteghella, Sara; Galuzzi, Marta; Mantelli, Melissa; Avanzini, Maria Antonietta; Tosca, Marta Cecilia; Marazzi, Mario; Vigo, Daniele; Torre, Maria Luisa; Faustini, Massimo

    2013-07-01

    Some biological properties of Bombyx mori sericins from twenty strains were investigated, fourteen fed with artificial diet, two with fresh mulberry leaves and four with both diets. Sericin exhibited ROS-scavenging, anti-tyrosinase and anti-elastase properties, the strain significantly influenced these properties, while diet only influenced the anti-tyrosinase activity. Sericins were clustered into 5 groups and one sericin from each group was further studied: sericins showed anti-proliferative activity on in vitro stimulated peripheral blood mononuclear cells; some strains decreased in vitro secretion of IFNγ, while no effects were observed on TNFα and IL10 release. Therefore, a mixture of sericins extracted from the most promising strains may be useful for dermatological and cosmetic use. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Substrate-bound tyrosinase electrode using gold nanoparticles anchored to pyrroloquinoline quinone for a pesticide biosensor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, G.Y.; Kang, M.S.; Shim, J.; Moon, S.H. [Gwangju Inst. of Science and Technology (Korea, Republic of). Dept. of Environmental Science and Engineering

    2008-07-01

    Enzyme electrodes are now being considered for use in the detection of pesticides. However, the electrodes do not have the sensitivity to detect low concentration pesticides, and external substrates are needed to measure changes in enzyme activity. This study discussed a chemical species designed to mimic a substrate in the preparation of a tyrosinase (TYR) electrode for use without substrate standard solutions. Pyrroloquinolone quinone (PQQ) was integrated within the tyrosinase electrode and used as an assimilated substrate for measuring the pesticide. Gold (Au) nanoparticles were also used to detect low concentration pesticides. The TYR was immobilized on the PQQ-anchored Au nanoparticles by a covalent bond. The tethered PQQ was then reduced by obtaining 2-electrons from the electrode. The study showed that the substrate-bound enzyme electrode can be used to detect pesticide without a substrate standard solution through the immobilization of the enzyme and the substrate on the Au nanoparticles.

  10. Conversion of trypsin to a copper enzyme: tyrosinase/catechol oxidase by chemical modification.

    Science.gov (United States)

    Okutucu, Burcu; Zeytunluoglu, Ali; Zihnioglu, Figen

    2010-01-01

    New active sites can be introduced into naturally occurring enzymes by the chemical modification of specific amino acid residues in concert with genetic techniques. Chemical strategies have had a significant impact in the field of enzyme design such as modifying the selectivity and catalytic activity which is very different from those of the corresponding native enzymes. Thus, chemical modification has been exploited for the incorporation of active site binding analogs onto protein templates and for atom replacement in order to generate new functionality such as the conversion of a hydrolase into a peroxidase. The introduction of a coordination complex into a substrate binding pocket of trypsin could probably also be extended to various enzymes of significant therapeutic and biotechnological importance. The aim of this study is the conversion of trypsin into a copper enzyme: tyrosinase by chemical modification. Tyrosinase is a biocatalyst (EC.1.14.18.1) containing two atoms of copper per active site with monooxygenase activity. The active site of trypsin (EC 3.4.21.4), a serine protease was chemically modified by copper (Cu(+2)) introduced p-aminobenzamidine (pABA- Cu(+2): guanidine containing schiff base metal chelate) which exhibits affinity for the carboxylate group in the active site as trypsin-like inhibitor. Trypsin and the resultant semisynthetic enzyme preparation was analysed by means of its trypsin and catechol oxidase/tyrosinase activity. After chemical modification, trypsin-pABA-Cu(+2) preparation lost 63% of its trypsin activity and gained tyrosinase/catechol oxidase activity. The kinetic properties (K(cat), K(m), K(cat)/K(m)), optimum pH and temperature of the trypsin-pABA-Cu(+2) complex was also investigated.

  11. Improved TLC Bioautographic Assay for Qualitative and Quantitative Estimation of Tyrosinase Inhibitors in Natural Products.

    Science.gov (United States)

    Zhou, Jinge; Tang, Qingjiu; Wu, Tao; Cheng, Zhihong

    2017-03-01

    TLC bioautography for tyrosinase inhibitors has made recent progress; however, an assay with a relative low consumption of enzyme and quantitative capability would greatly advance the efficacy of related TLC bioautographic assays. An improved TLC bioautographic assay for detecting tyrosinase inhibitors was developed and validated in this study. L-DOPA (better water-solubility than L-tyrosine) was used as the substrate instead of reported L-tyrosine. The effects of enzyme and substrate concentrations, reaction temperatures and times, and pH values of the reaction system as well as different plate types on the TLC bioautographic assay were optimised. The quantitative analysis was conducted by densitometric scanning of spot areas, and expressed as the relative tyrosinase inhibitory capacity (RTIC) using a positive control (kojic acid) equivalent. The limit of detection (LOD) of this assay was 1.0 ng for kojic acid. This assay has acceptable accuracy (101.73-102.90%), intra- and inter-day, and intra- and inter-plate precisions [relative standard deviation (RSD), less than 7.0%], and ruggedness (RSD, less than 3.5%). The consumption of enzyme (75 U/mL) is relatively low. Two tyrosinase inhibitory compounds including naringenin and 1-O-β-D-glucopyranosyl-4-allylbenzene have been isolated from Rhodiola sacra guided by this TLC bioautographic assay. Our improved assay is a relatively low-cost, sensitive, and quantitative method compared to the reported TLC bioautographic assays. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  12. Antioxidant activity, acetylcholinesterase and tyrosinase inhibitory potential of Pulmonaria officinalis and Centarium umbellatum extracts

    Directory of Open Access Journals (Sweden)

    Elena Neagu

    2018-03-01

    Full Text Available In this study several investigations and tests were performed to determine the antioxidant activity and the acetylcholinesterase and tyrosinase inhibitory potential of Pulmonaria officinalis and Centarium umbellatum aqueous extracts (10% mass and ethanolic extracts (10% mass and 70% ethanol, respectively. Moreover, for each type of the prepared extracts of P. officinalis and of C. umbellatum the content in the biologically active compounds – polyphenols, flavones and proanthocyanidins was determined. The antioxidant activity was assessed using two methods, namely the 2,2-diphenyl-1-picrylhydrazyl (DPPH assay and reducing power assay. The analyzed plant extracts showed a high acetylcholinesterase and tyrosinase inhibitory activity in the range of 72.24–94.24% (at the highest used dose – 3 mg/mL, 66.96% and 94.03% (at 3 mg/mL, respectively correlated with a high DPPH radical inhibition – 70.29–84.9% (at 3 mg/mL. These medicinal plants could provide a potential natural source of bioactive compounds and could be beneficial to the human health, especially in the neurodegenerative disorders and as sources of natural antioxidants in food industry. Keywords: Acetylcholinesterase inhibitory activity, Tyrosinase inhibitory activity, Antioxidant activity, Pulmonaria officinalis and Centarium umbellatum

  13. Detection of toxic compounds in real water samples using a conductometric tyrosinase biosensor

    International Nuclear Information System (INIS)

    Anh, Tuan Mai; Dzyadevych, Sergei V.; Prieur, Nicolas; Duc, Chien Nguyen; Pham, T.D.; Renault, Nicole Jaffrezic; Chovelon, Jean-Marc

    2006-01-01

    A conductometric tyrosinase biosensor for the detection of some toxic compounds including diuron, atrazine, and copper ions was developed. The work of this biosensor is based on the principle of change of conductivity of the enzyme membrane when tyrosinase either interacts with 4-chlorophenol substrate or is inhibited by pollutants. The different samples tested were solutions containing diuron, atrazine, copper, lead and zinc ions, mixtures of copper/atrazine or copper/diuron and real water samples coming from a Vietnamese river. In the last case, classical techniques such as GC-MS or atomic absorption spectrometry were used in order to estimate exact concentration of these species in real water samples. Results have shown that such a biosensor could be used as an early warning system for the detection of these pollutants, as no matrix effect coming from the real sample was observed and no synergetic or antagonist effects were found for the mixture of toxic compounds. In addition, results were coherent with the content of the tyrosinase inhibitors

  14. Detection of toxic compounds in real water samples using a conductometric tyrosinase biosensor

    Energy Technology Data Exchange (ETDEWEB)

    Anh, Tuan Mai [Laboratoire d' Application de la Chimie a l' Environnement, UMR CNRS 5634, Universite Claude Bernard Lyon I, 43 Boulevard du 11 Nov. 1918, 69622 Villeurbanne Cedex (France); International Training Institute for Materials Science (ITIMS), Hanoi University of Technology, 1 Dai Co Viet, Hanoi, Vietnam (Viet Nam); Dzyadevych, Sergei V. [Laboratory of Biomolecular Electronics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 150 Zabolotnogo Str., Kiev 03143 (Ukraine); Prieur, Nicolas [Institute of Natural Products Chemistry, Vietnam National Centre for Science and Technology, Hoang Quoc Viet Str., Hanoi, Vietnam (Viet Nam); Duc, Chien Nguyen [International Training Institute for Materials Science (ITIMS), Hanoi University of Technology, 1 Dai Co Viet, Hanoi, Vietnam (Viet Nam); Pham, T.D. [International Training Institute for Materials Science (ITIMS), Hanoi University of Technology, 1 Dai Co Viet, Hanoi, Vietnam (Viet Nam); Renault, Nicole Jaffrezic [Ecole Centrale de Lyon, CEGELY, UMR CNRS 5005, 36 Avenue Guy de Collongue, 69134 Ecully Cedex (France); Chovelon, Jean-Marc [Laboratoire d' Application de la Chimie a l' Environnement, UMR CNRS 5634, Universite Claude Bernard Lyon I, 43 Boulevard du 11 Nov. 1918, 69622 Villeurbanne Cedex (France)]. E-mail: chovelon@univ-lyon1.fr

    2006-03-15

    A conductometric tyrosinase biosensor for the detection of some toxic compounds including diuron, atrazine, and copper ions was developed. The work of this biosensor is based on the principle of change of conductivity of the enzyme membrane when tyrosinase either interacts with 4-chlorophenol substrate or is inhibited by pollutants. The different samples tested were solutions containing diuron, atrazine, copper, lead and zinc ions, mixtures of copper/atrazine or copper/diuron and real water samples coming from a Vietnamese river. In the last case, classical techniques such as GC-MS or atomic absorption spectrometry were used in order to estimate exact concentration of these species in real water samples. Results have shown that such a biosensor could be used as an early warning system for the detection of these pollutants, as no matrix effect coming from the real sample was observed and no synergetic or antagonist effects were found for the mixture of toxic compounds. In addition, results were coherent with the content of the tyrosinase inhibitors.

  15. A tyrosinase, mTyr-CNK, that is functionally available as a monophenol monooxygenase.

    Science.gov (United States)

    Do, Hyunsu; Kang, Eungsu; Yang, Byeongseon; Cha, Hyung Joon; Choi, Yoo Seong

    2017-12-08

    Tyrosinase efficiently catalyzes the ortho-hydroxylation of monophenols and the oxidation of diphenols without any additional cofactors. Although it is of significant interest for the biosynthesis of catechol derivatives, the rapid catechol oxidase activity and inactivation of tyrosinase have hampered its practical utilization as a monophenol monooxygenase. Here, we prepared a functional tyrosinase that exhibited a distinguished monophenolase/diphenolase activity ratio (V max mono/ V max di = 3.83) and enhanced catalytic efficiency against L -tyrosine (k cat  = 3.33 ± 0.18 s -1 , K m  = 2.12 ± 0.14 mM at 20 °C and pH 6.0). This enzyme was still highly active in ice water (>80%), and its activity was well conserved below 30 °C. In vitro DOPA modification, with a remarkably high yield as a monophenol monooxygenase, was achieved by the enzyme taking advantage of these biocatalytic properties. These results demonstrate the strong potential for this enzyme's use as a monophenol monooxygenase in biomedical and industrial applications.

  16. Effects of Acmella oleracea methanolic extract and fractions on the tyrosinase enzyme

    Directory of Open Access Journals (Sweden)

    Alan F. Barbosa

    Full Text Available Abstract The aim of the current study is to evaluate the effect of Acmella oleracea (L. R.K. Jansen, Asteraceae, methanolic extract, hexane (84.28% spilanthol and dichloromethane (approximately 100% spilanthol fractions on the tyrosinase enzyme. The dehydrated jambu extract was obtained through maceration using methanol. The extract residue was solubilized in MeOH/H2O (8:2 and subjected to liq.–liq. partition in organic solvents. Both the extraction and the partition procedures were conducted with three replicates. The analyses were performed using GC–MS, 1H and 13C NMR. The hexane fraction provided samples containing 84.28, 82.91 and 62.83% spilanthol in repetitions 1, 2 and 3, respectively. The dichloromethane fraction showed 88.55% spilanthol in repetition 1, and approximately 100% spilanthol in repetitions 2 and 3. The jambu extract as well as the hexane fraction (84.28% spilanthol were able to activate the oxidizing activity of the tyrosinase enzyme for L-DOPA. The dichloromethane fraction (approximately 100% spilanthol showed stronger inhibition effect on the tyrosinase enzyme in the first 10 min. The results raise the interest in study in spilanthol formulations for topical use, since it may prevent and/or slow skin hyperpigmentation or depigmentation processes. Furthermore, spilanthol may be used to control the enzymatic browning in fruits and vegetables.

  17. The phenoloxidase activity and antibacterial function of a tyrosinase from scallop Chlamys farreri.

    Science.gov (United States)

    Zhou, Zhi; Ni, Duojiao; Wang, Mengqiang; Wang, Lingling; Wang, Leilei; Shi, Xiaowei; Yue, Feng; Liu, Rui; Song, Linsheng

    2012-08-01

    Tyrosinase (TYR), also known as monophenol monooxygenase, is a ubiquitous binuclear copper-containing enzyme which catalyzes the hydroxylation of phenols to catechols and the oxidation of catechols to quinones. In the present study, the cDNA of a tyrosinase (CfTYR) was identified from scallop Chlamys farreri, which encoded a polypeptide of 486 amino acids. The CfTYR mRNA transcripts were expressed in all the tested tissues, including haemocytes, adductor muscle, kidney, hepatopancreas, gill, gonad and mantle, with the highest level in mantle. The expression level of CfTYR mRNA in haemocytes decreased significantly during 3-6 h after LPS stimulation, and reached the lowest level at 6 h (0.05-fold, P 0.05), and reached the highest level at 24 h (2.91-fold, P tyrosinase in scallop C. farreri with the copper-dependence phenoloxidase activity, and it could be induced after immune stimulation and mediate immune response for the elimination of invasive pathogens in scallop. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Tyrosinase, could it be a missing link in ochronosis in alkaptonuria?

    Science.gov (United States)

    Taylor, Adam M; Kammath, Vishnu; Bleakley, Aaron

    2016-06-01

    The hypothesis that is proposed is that tyrosinase, an enzyme widely found within the human body is implicated in the ochronosis that occurs in alkaptonuria; an autosomal recessive condition first used by Archibald Garrod to describe the theory of "Inborn Errors of Metabolism." The disease results from the absence of a single enzyme in the liver that breaks down homogentisic acid; this molecule becomes systemically elevated in sufferers. The condition is characterised by a clinical triad of symptoms; homogentisic aciduria from birth, ochronosis (darkening) of collagenous tissues (from ∼30years of age) and ochronotic osteoarthropathy in weight bearing joints due to long term ochronosis in them (from ∼40years of age). Tyrosinase, a polyphenol oxidase has been shown in many species to contribute to the darkening of tissues in many organisms; including humans in the production of melanin. Tyrosinase under the right conditions shows alterations in its substrate specificity and may contribute to the darkening seen in AKU where it moves away from polymerising tyrosine but also homogentisic acid, the causative molecule in alkaptonuria, that is present in excess. Copyright © 2016. Published by Elsevier Ltd.

  19. Dual Effects of Alpha-Arbutin on Monophenolase and Diphenolase Activities of Mushroom Tyrosinase

    Science.gov (United States)

    Qin, Liang; Wu, Yang; Liu, Youting; Chen, Yiming; Zhang, Peng

    2014-01-01

    The effects of α-arbutin on the monophenolase and diphenolase activities of mushroom tyrosinase were investigated. The results showed that α-arbutin inhibited monophenolase activity but it activated diphenolase activity. For monophenolase activity, IC50 value was 4.5 mmol·L−1 and 4.18 mmol·L−1 of α-arbutin could extend the lag time from 40.5 s to 167.3 s. Alpha- arbutin is proposed to be regarded as a triphenolic substrate by the enzyme during catalyzation, leading to the suicide inactivation of the active site of tyrosinase. For diphenolase activity, α-arbutin acted as an activator and its activation mechanism was mixed type activation. To reveal such activation, it should be mainly refered to the conformational changes in tyrosinase caused by the interaction of α-arbutin with residues located at the entrance to the active site, and the decrease of the effect of suicide inactivation. PMID:25303458

  20. D-tyrosine negatively regulates melanin synthesis by competitively inhibiting tyrosinase activity.

    Science.gov (United States)

    Park, Jisu; Jung, Hyejung; Kim, Kyuri; Lim, Kyung-Min; Kim, Ji-Young; Jho, Eek-Hoon; Oh, Eok-Soo

    2017-11-09

    Although L-tyrosine is well known for its melanogenic effect, the contribution of D-tyrosine to melanin synthesis was previously unexplored. Here, we reveal that, unlike L-tyrosine, D-tyrosine dose-dependently reduced the melanin contents of human MNT-1 melanoma cells and primary human melanocytes. In addition, 500 μM of D-tyrosine completely inhibited 10 μM L-tyrosine-induced melanogenesis, and both in vitro assays and L-DOPA staining MNT-1 cells showed that tyrosinase activity is reduced by D-tyrosine treatment. Thus, D-tyrosine appears to inhibit L-tyrosine-mediated melanogenesis by competitively inhibiting tyrosinase activity. Furthermore, we found that D-tyrosine inhibited melanogenesis induced by α-MSH treatment or UV irradiation, which are the most common environmental factors responsible for melanin synthesis. Finally, we confirmed that D-tyrosine reduced melanin synthesis in the epidermal basal layer of a 3D human skin model. Taken together, these data suggest that D-tyrosine negatively regulates melanin synthesis by inhibiting tyrosinase activity in melanocyte-derived cells. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. Evaluation of Cinnamomum osmophloeum Kanehira Extracts on Tyrosinase Suppressor, Wound Repair Promoter, and Antioxidant

    Directory of Open Access Journals (Sweden)

    Man-Gang Lee

    2015-01-01

    Full Text Available Cinnamomum osmophloeum Kanehira belongs to the Lauraceae family of Taiwan’s endemic plants. In this study, C. osmophloeum Kanehira extract has shown inhibition of tyrosinase activity on B16-F10 cellular system first. Whether extracts inhibited mushroom tyrosinase activity was tested, and a considerable inhibition of mushroom tyrosinase activity by in vitro assays was presented. Animal experiments of C. osmophloeum Kanehira were carried out by observing animal wound repair, and the extracts had greater wound healing power than the vehicle control group (petroleum jelly with 8% DMSO, w/v. In addition, the antioxidant capacity of C. osmophloeum Kanehira extracts in vitro was evaluated. We measured C. osmophloeum Kanehira extract’s free radical scavenging capability, metal chelating, and reduction power, such as biochemical activity analysis. The results showed that a high concentration of C. osmophloeum Kanehira extract had a significant scavenging capability of free radical, a minor effect of chelating ability, and moderate reducing power. Further exploration of the possible physiological mechanisms and the ingredient components of skincare product for skin-whitening, wound repair, or antioxidative agents are to be done.

  2. Tyrosinase Inhibitory and Antioxidant Activities of Silk Cocoons and Mulberry Leaves

    International Nuclear Information System (INIS)

    Thongphasuk, Jarunee; Thongphasuk, Piyanuch

    2005-10-01

    Silk cocoons and mulberry leaves have been used in the field of medicines, cosmetics, and foods. The objective of this study is to determine the antioxidant activities of silk cocoons and mulberry leaves using 1,1-diphenyl-2-picryl-hydrazyl radical and thin-layer chromatography (TLC), and to determine tyrosinase inhibitory activities using dihydroxyphenylalanine. The water and ethanol extracts from silk cocoons (Nang Noi, U B1, and Lao) and mulberry leaves showed antioxidants and tyrosinase inhibitory activities. However, the extracts from all samples at 1,000 μg/reaction mixture inhibited tyrosinase in the range of 12.28-45.98%, which was much lower than the standard whitening agent kojic acid (IC50 0.45 μg/reaction mixture). The results from TLC showed that the ethanol extracts from the 3 species of cocoons contained flavonoids, but only the extract from Nang Noi contained carotenoid. In addition, the separation destroyed the fraction with high antioxidant activity. Therefore, the disadvantage of the extract separation is increased cost and decreased antioxidant activities

  3. Anthocyanin contents in the seed coat of black soya bean and their anti-human tyrosinase activity and antioxidative activity.

    Science.gov (United States)

    Jhan, J-K; Chung, Y-C; Chen, G-H; Chang, C-H; Lu, Y-C; Hsu, C-K

    2016-06-01

    The seed coat of black soya bean (SCBS) contains high amount of anthocyanins and shows antioxidant and anti-mushroom tyrosinase activities. The objectives of this study were to analyse the anthocyanins in SCBS with different solvents and to find the relationship between anthocyanin profile with anti-human and anti-mushroom tyrosinase activities. SCBS was extracted with hot water, 50 and 80% ethanol, 50 and 80% acetone and 50 and 80% acidified acetone. Total phenol and total flavonoid contents in the extracts were determined. Anthocyanins in the extracts were analysed using HPLC and LC/MS/MS. A genetically engineered human tyrosinase was used to evaluate the anti-tyrosinase potential of the extracts from SCBS. 80% acetone extract from SCBS obtained the highest total phenol, total flavonoid and cyanidin-3-O-glucoside (C3G) contents among all the extracts, whereas the hot water extract showed the lowest antioxidant contents. Three anthocyanin compounds were found in all the extracts from SCBS, and the analysis of HPLC and LC/MS/MS indicated that they were C3G, delphinidin-3-O-glucoside (D3G) and peonidin-3-O-glucoside (P3G). The ratios of C3G (2.84 mg g(-1) ), D3G (0.34 mg g(-1) ) and P3G (0.35 mg g(-1) ) in 80% acidified acetone extract were 76.6, 9.1 and 9.3%, respectively. All the extracts from SCBS possessed anti-human tyrosinase activity. Moreover, a good correlation was found between the anti-human tyrosinase activities and C3G contents in the extracts. Antioxidants in SCBS also possess anti-human and anti-mushroom tyrosinase activities. © 2015 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  4. Extracts of Morus nigra L. Leaves Standardized in Chlorogenic Acid, Rutin and Isoquercitrin: Tyrosinase Inhibition and Cytotoxicity

    Science.gov (United States)

    Fontes, Pedro Ribeiro; Souza, Paula Monteiro; William Fagg, Christopher; Neves Silva Guerra, Eliete; de Medeiros Nóbrega, Yanna Karla; Silveira, Damaris; Fonseca-Bazzo, Yris; Simeoni, Luiz Alberto; Homem-de-Mello, Maurício; Oliveira Magalhães, Pérola

    2016-01-01

    Melanogenesis is a process responsible for melanin production, which is stored in melanocytes containing tyrosinase. Inhibition of this enzyme is a target in the cosmetics industry, since it controls undesirable skin conditions such as hyperpigmentation due to the overproduction of melanin. Species of the Morus genus are known for the beneficial uses offered in different parts of its plants, including tyrosinase inhibition. Thus, this project aimed to study the inhibitory activity of tyrosinase by extracts from Morus nigra leaves as well as the characterization of its chromatographic profile and cytotoxicity in order to become a new therapeutic option from a natural source. M. nigra leaves were collected, pulverized, equally divided into five batches and the standardized extract was obtained by passive maceration. There was no significant difference between batches for total solids content, yield and moisture content, which shows good reproducibility of the extraction process. Tyrosinase enzymatic activity was determined for each batch, providing the percentage of enzyme inhibition and IC50 values obtained by constructing dose-response curves and compared to kojic acid, a well-known tyrosinase inhibitor. High inhibition of tyrosinase activity was observed (above 90% at 15.625 μg/mL). The obtained IC50 values ranged from 5.00 μg/mL ± 0.23 to 8.49 μg/mL ± 0.59 and were compared to kojic acid (3.37 μg/mL ± 0.65). High Performance Liquid Chromatography analysis revealed the presence of chlorogenic acid, rutin and, its major compound, isoquercitrin. The chromatographic method employed was validated according to ICH guidelines and the extract was standardized using these polyphenols as markers. Cytotoxicity, assessed by MTT assay, was not observed on murine melanomas, human keratinocytes and mouse fibroblasts in tyrosinase IC50 values. This study demonstrated the potential of M. nigra leaf extract as a promising whitening agent of natural source against skin

  5. Extracts of Morus nigra L. Leaves Standardized in Chlorogenic Acid, Rutin and Isoquercitrin: Tyrosinase Inhibition and Cytotoxicity.

    Directory of Open Access Journals (Sweden)

    Marcela Medeiros de Freitas

    Full Text Available Melanogenesis is a process responsible for melanin production, which is stored in melanocytes containing tyrosinase. Inhibition of this enzyme is a target in the cosmetics industry, since it controls undesirable skin conditions such as hyperpigmentation due to the overproduction of melanin. Species of the Morus genus are known for the beneficial uses offered in different parts of its plants, including tyrosinase inhibition. Thus, this project aimed to study the inhibitory activity of tyrosinase by extracts from Morus nigra leaves as well as the characterization of its chromatographic profile and cytotoxicity in order to become a new therapeutic option from a natural source. M. nigra leaves were collected, pulverized, equally divided into five batches and the standardized extract was obtained by passive maceration. There was no significant difference between batches for total solids content, yield and moisture content, which shows good reproducibility of the extraction process. Tyrosinase enzymatic activity was determined for each batch, providing the percentage of enzyme inhibition and IC50 values obtained by constructing dose-response curves and compared to kojic acid, a well-known tyrosinase inhibitor. High inhibition of tyrosinase activity was observed (above 90% at 15.625 μg/mL. The obtained IC50 values ranged from 5.00 μg/mL ± 0.23 to 8.49 μg/mL ± 0.59 and were compared to kojic acid (3.37 μg/mL ± 0.65. High Performance Liquid Chromatography analysis revealed the presence of chlorogenic acid, rutin and, its major compound, isoquercitrin. The chromatographic method employed was validated according to ICH guidelines and the extract was standardized using these polyphenols as markers. Cytotoxicity, assessed by MTT assay, was not observed on murine melanomas, human keratinocytes and mouse fibroblasts in tyrosinase IC50 values. This study demonstrated the potential of M. nigra leaf extract as a promising whitening agent of natural source

  6. Hair Dyes Resorcinol and Lawsone Reduce Production of Melanin in Melanoma Cells by Tyrosinase Activity Inhibition and Decreasing Tyrosinase and Microphthalmia-Associated Transcription Factor (MITF Expression

    Directory of Open Access Journals (Sweden)

    Shu-Mei Lee

    2015-01-01

    Full Text Available Hair coloring products are one of the most important cosmetics for modern people; there are three major types of hair dyes, including the temporary, semi-permanent and permanent hair dyes. The selected hair dyes (such as ammonium persulfate, sodium persulfate, resorcinol and lawsone are the important components for hair coloring products. Therefore, we analyzed the effects of these compounds on melanogenesis in B16-F10 melanoma cells. The results proved that hair dyes resorcinol and lawsone can reduce the production of melanin. The results also confirmed that resorcinol and lawsone inhibit mushroom and cellular tyrosinase activities in vitro. Resorcinol and lawsone can also downregulate the protein levels of tyrosinase and microphthalmia-associated transcription factor (MITF in B16-F10 cells. Thus, we suggest that frequent use of hair dyes may have the risk of reducing natural melanin production in hair follicles. Moreover, resorcinol and lawsone may also be used as hypopigmenting agents to food, agricultural and cosmetic industry in the future.

  7. Hair dyes resorcinol and lawsone reduce production of melanin in melanoma cells by tyrosinase activity inhibition and decreasing tyrosinase and microphthalmia-associated transcription factor (MITF) expression.

    Science.gov (United States)

    Lee, Shu-Mei; Chen, Yi-Shyan; Lin, Chih-Chien; Chen, Kuan-Hung

    2015-01-09

    Hair coloring products are one of the most important cosmetics for modern people; there are three major types of hair dyes, including the temporary, semi-permanent and permanent hair dyes. The selected hair dyes (such as ammonium persulfate, sodium persulfate, resorcinol and lawsone) are the important components for hair coloring products. Therefore, we analyzed the effects of these compounds on melanogenesis in B16-F10 melanoma cells. The results proved that hair dyes resorcinol and lawsone can reduce the production of melanin. The results also confirmed that resorcinol and lawsone inhibit mushroom and cellular tyrosinase activities in vitro. Resorcinol and lawsone can also downregulate the protein levels of tyrosinase and microphthalmia-associated transcription factor (MITF) in B16-F10 cells. Thus, we suggest that frequent use of hair dyes may have the risk of reducing natural melanin production in hair follicles. Moreover, resorcinol and lawsone may also be used as hypopigmenting agents to food, agricultural and cosmetic industry in the future.

  8. Experiment study of tyrosinase gene's expression in HEK293 cell by MR

    International Nuclear Information System (INIS)

    Yuan Jianpeng; Liang Biling; Zhong Jinglian; Xie Bangkun; Zhang Weidong; Zhang Lin

    2004-01-01

    Objective: To transfect the tyrosinase gene into HEK293 cell as a reporter gene, and to evaluate the tyrosinase gene's expression by using MRI based on the gene's property of synthesizing large amount of melanin, and to search a way for evaluating the results of gene expression by MR in vitro. Methods: The plasmid of pcDNA3tyr which carried the full-length cDNA of tyrosinase gene was transfected into HEK293 cell by lipofectin, and MR signals of expressed melanin was observed by scanning the transfected cells with MR sequences of T 1 WI, T 1 WI/SPIR, and T 2 WI. Fontana stain and electric microscopy were used to search for melanin granules in transfected cells, and RT-PCR method was used to search for cDNA of tyrosinase gene. Results: (1) Plasmids of pcDNA3tyr could be transfected into HEK293 cells and could synthesize a large amount of melanin in them. The synthetic melanin in 10 6 cells, which had been transfected with 5 μg, 10 μg, and 20 μg plasmids of pcDNA3tyr separately, were all sufficient to be detected by MR and appeared as high signal on MR T 1 WI, T 1 WI/SPIR, and T 2 WI sequences. The more the amounts of transfected plasmids, the higher the signal intensities of MR imaging. On the other hand, 6.25 x 10 4 cells with 20 μg-plasmid of pcDNA3tyr transfection could also be detected by MR; (2) The melanin granules could be found in HEK293 cells in Fontana stain; (3) The melanin granules and their front bodies could be found in intracytoplasm of HEK293 cell by electric microscopy. (4) The cDNA fragment of tyrosinase gene could be detected in transfected HEK293 cells by RT-PCR. Conclusion: The fact that MR could detect the synthetic melanin in HEK293 cells controlled by expression of exogenous gene demonstrated that medical imaging combined with molecular biology technology could evaluate the result of gene expression in vitro, and it also indicated that medical imaging could play an important role in the evaluation of gene therapy following the development

  9. Characterization of a small molecule inhibitor of melanogenesis that inhibits tyrosinase activity and scavenges nitric oxide (NO).

    Science.gov (United States)

    Chung, Ki Wung; Jeong, Hyoung Oh; Jang, Eun Ji; Choi, Yeon Ja; Kim, Dae Hyun; Kim, So Ra; Lee, Kyung Jin; Lee, Hye Jin; Chun, Pusoon; Byun, Youngjoo; Moon, Hyung Ryong; Chung, Hae Young

    2013-10-01

    Excessive melanin production and accumulation are characteristics of a large number of skin diseases, including melasma, and post-inflammatory hyperpigmentation. During our on-going search for new agents with an inhibitory effect on tyrosinase, we synthesized a new type of tyrosinase inhibitor, 4-(thiazolidin-2-yl)benzene-1,2-diol (MHY-794), which directly inhibits mushroom tyrosinase. The inhibitory effect of MHY-794 on tyrosinase activity and nitric oxide (NO) scavenging activity was evaluated in cell free system. Additional experiments were performed using B16F10 melanoma cells to demonstrate the effects of MHY-794 in vitro. HRM2 hairless mice were used to evaluate anti-melanogenic effects of MHY-794 in vivo. MHY-794 effectively inhibited mushroom tyrosinase activity in cell free system. In silico docking simulation also supported the inhibitory effects of MHY-794 on mushroom tyrosinase. MHY-794 also proved to be effective at scavenging nitric oxide (NO), which serves as an important modulator in the melanogenesis signaling pathway. In addition, MHY-794 effectively inhibited SNP (NO donor)-induced melanogenesis by directly inhibiting tyrosinase and diminishing NO-mediated melanogenesis signaling in B16 melanoma cells. The anti-melanogenic effects of MHY-794 were further confirmed in HRM2 hairless mice. Ultraviolet light (UV) significantly up-regulated NO-mediated melanogenesis signaling in HRM2 hairless mice, but MHY-794 effectively inhibited both melanogenesis and diminished UV-induced NO-signaling. Our results indicate that MHY-794 is highly effective at inhibiting NO-mediated melanogenesis in vitro and in vivo by direct NO scavenging and directly inhibiting tyrosinase activity, and suggest that MHY-794 be considered a new developmental candidate for the treatment of hyper-pigmentation disorders. MHY-794, which showed great efficacy on NO-mediated melanogenesis by direct NO scavenging as well as direct inhibition of tyrosinase catalytic activity, might be

  10. Novel coumarin-based tyrosinase inhibitors discovered by OECD principles-validated QSAR approach from an enlarged, balanced database.

    Science.gov (United States)

    Le-Thi-Thu, Huong; Casañola-Martín, Gerardo M; Marrero-Ponce, Yovani; Rescigno, Antonio; Saso, Luciano; Parmar, Virinder S; Torrens, Francisco; Abad, Concepción

    2011-05-01

    The present work is devoted to the development and application of a multi-agent Quantitative Structure-Activity Relationship (QSAR) classification system for tyrosinase inhibitor identification, in which the individual QSAR outputs are the inputs of a fusion approach based on the voting mechanism. The individual models are based on TOMOCOMD-CARDD (TOpological Molecular COMputational Design-Computer Aided Rational Drug Design) atom-based bilinear descriptors and Linear Discriminant Analysis (LDA) on a novel enlarged, balanced database of 1,429 compounds within 701 greatly dissimilar molecules presenting anti-tyrosinase activity. A total of 21 adequate models are obtained taking into account the requirements of the Organization for Economic Cooperation and Development (OECD) principles for QSAR validation and present global accuracies (Q) above 84.50 and 79.27% in the training and test sets, respectively. The resulted fusion system is used for the in silico identification of synthesized coumarin derivatives as novel tyrosinase inhibitors. The 7-hydroxycoumarin (compound C07) shows potent activity for the inhibition of monophenolase activity of mushroom tyrosinase giving a value of inhibition percentage close to 100% in vitro assays, by means of spectrophotometric analysis. The current report could help to shed some clues in the identification of new chemicals that inhibit tyrosinase enzyme, for entering in the pipeline of drug discovery development.

  11. Melanogenesis-Inducing Effect of Cirsimaritin through Increases in Microphthalmia-Associated Transcription Factor and Tyrosinase Expression

    Directory of Open Access Journals (Sweden)

    Hyo Jung Kim

    2015-04-01

    Full Text Available The melanin-inducing properties of cirsimaritin were investigated in murine B16F10 cells. Cirsimaritin is an active flavone with methoxy groups, which is isolated from the branches of Lithocarpus dealbatus. Tyrosinase activity and melanin content in murine B16F10 melanoma cells were increased by cirsimaritin in a dose-dependent manner. Western blot analysis revealed that tyrosinase, tyrosinase-related protein (TRP 1, TRP2 protein levels were enhanced after treatment with cirsimaritin for 48 h. Cirsimaritin also upregulated the expression of microphthalmia-associated transcription factor (MITF after 24 h of treatment. Furthermore, cirsimaritin induced phosphorylation of cyclic adenosine monophosphate (cAMP response element-binding protein (CREB in a dose-dependent manner after treatment for 15 min. The cirsimaritin-mediated increase of tyrosinase activity was significantly attenuated by H89, a cAMP-dependent protein kinase A inhibitor. These findings indicate that cirsimaritin stimulates melanogenesis in B16F10 cells by activation of CREB as well as upregulation of MITF and tyrosinase expression, which was activated by cAMP signaling. Finally, the melanogenic effect of cirsimaritin was confirmed in human epidermal melanocytes. These results support the putative application of cirsimaritin in ultraviolet photoprotection and hair coloration treatments.

  12. The effect of oxaloacetic acid on tyrosinase activity and structure: Integration of inhibition kinetics with docking simulation.

    Science.gov (United States)

    Gou, Lin; Lee, Jinhyuk; Hao, Hao; Park, Yong-Doo; Zhan, Yi; Lü, Zhi-Rong

    2017-08-01

    Oxaloacetic acid (OA) is naturally found in organisms and well known as an intermediate of citric acid cycle producing ATP. We evaluated the effects of OA on tyrosinase activity and structure via integrating methods of enzyme kinetics and computational simulations. OA was found to be a reversible inhibitor of tyrosinase and its induced mechanism was the parabolic non-competitive inhibition type (IC 50 =17.5±0.5mM and K i =6.03±1.36mM). Kinetic measurements by real-time interval assay showed that OA induced multi-phasic inactivation process composing with fast (k 1 ) and slow (k 2 ) phases. Spectrofluorimetry studies showed that OA mainly induced regional changes in the active site of tyrosinase accompanying with hydrophobic disruption at high dose. The computational docking simulations further revealed that OA could interact with several residues near the tyrosinase active site pocket such as HIS61, HIS259, HIS263, and VAL283. Our study provides insight into the mechanism by which energy producing intermediate such as OA inhibit tyrosinase and OA is a potential natural anti-pigmentation agent. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. The effect of alpha-ketoglutaric acid on tyrosinase activity and conformation: Kinetics and molecular dynamics simulation study.

    Science.gov (United States)

    Gou, Lin; Lee, Jinhyuk; Yang, Jun-Mo; Park, Yong-Doo; Zhou, Hai-Meng; Zhan, Yi; Lü, Zhi-Rong

    2017-12-01

    Alpha-ketoglutaric acid (AKG) is naturally found in organisms and is a well-known intermediate in the production of ATP or GTP in the Krebs cycle. We elucidated the effects of AKG on tyrosinase activity and conformation via methods of inhibition kinetics integrated with molecular dynamics (MD) simulations. AKG was found to be a reversible inhibitor of tyrosinase (IC 50 =15±0.5mM) and induced parabolic slope mixed-type inhibition. Based on our newly established equation, the dissociation constant (K islope ) was determined to be 7.93±0.31mM. The spectrofluorimetry studies showed that AKG mainly induced regional changes in the active site of tyrosinase, which reflects the flexibility of the active site. The computational docking and molecular dynamics (MD) simulations further demonstrated that AKG could interact with several residues near the substrate-binding site located in the tyrosinase active site pocket. Our study provides insight into the mechanism by which energy-producing intermediates such as AKG inhibit tyrosinase through its ketone groups. Also, AKG could be a potential natural antipigmentation agent due to its non-toxic property. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Mushroom Tyrosinase: A Model System to Combine Experimental Investigation of Enzyme-Catalyzed Reactions, Data Handling Using R, and Enzyme-Inhibitor Structural Studies

    Science.gov (United States)

    Nairn, Robert; Cresswell, Will; Nairn, Jacqueline

    2015-01-01

    The activity of mushroom tyrosinase can be measured by monitoring the conversion of phenolic compounds into quinone derivatives using spectrophotometry. This article describes a series of experiments which characterize the functional properties of tyrosinase, the analysis of the resulting data using R to determine the kinetic parameters, and the…

  15. Investigating the inhibitory activity and mechanism differences between norartocarpetin and luteolin for tyrosinase: A combinatory kinetic study and computational simulation analysis.

    Science.gov (United States)

    Zhang, Long; Zhao, Xin; Tao, Guan-Jun; Chen, Jie; Zheng, Zong-Ping

    2017-05-15

    Flavonoids are an important type of natural tyrosinase inhibitor, but their inhibitory activity and mechanism against tyrosinase are very different because of their different structures. In this study, the inhibitory activity and mechanism differences between norartocarpetin and luteolin for tyrosinase were investigated by a combination of kinetic studies and computational simulations. The kinetic analysis showed that norartocarpetin reversibly inhibited tyrosinase in a competitive manner, whereas luteolin caused reversible noncompetitive inhibition. Both norartocarpetin and luteolin showed a single type of quenching and a static-type quenching mechanism. A computational simulation indicated that the hydroxyl groups of the B ring of norartocarpetin interacted with tyrosinase residues Asn81 and His85 in the active pocket, while the hydroxyl groups of the B ring of luteolin bound residues Asn81 and Cys83. HPLC and UPLC-MS/MS further confirmed that luteolin acted as a substrate or a suicide inhibitor, yet norartocarpetin acted as an inhibitor. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Extracellular matrix structure.

    Science.gov (United States)

    Theocharis, Achilleas D; Skandalis, Spyros S; Gialeli, Chrysostomi; Karamanos, Nikos K

    2016-02-01

    Extracellular matrix (ECM) is a non-cellular three-dimensional macromolecular network composed of collagens, proteoglycans/glycosaminoglycans, elastin, fibronectin, laminins, and several other glycoproteins. Matrix components bind each other as well as cell adhesion receptors forming a complex network into which cells reside in all tissues and organs. Cell surface receptors transduce signals into cells from ECM, which regulate diverse cellular functions, such as survival, growth, migration, and differentiation, and are vital for maintaining normal homeostasis. ECM is a highly dynamic structural network that continuously undergoes remodeling mediated by several matrix-degrading enzymes during normal and pathological conditions. Deregulation of ECM composition and structure is associated with the development and progression of several pathologic conditions. This article emphasizes in the complex ECM structure as to provide a better understanding of its dynamic structural and functional multipotency. Where relevant, the implication of the various families of ECM macromolecules in health and disease is also presented. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Phage display-mediated discovery of novel tyrosinase-targeting tetrapeptide inhibitors reveals the significance of N-terminal preference of cysteine residues and their functional sulfur atom.

    Science.gov (United States)

    Lee, Yu-Ching; Hsiao, Nai-Wan; Tseng, Tien-Sheng; Chen, Wang-Chuan; Lin, Hui-Hsiung; Leu, Sy-Jye; Yang, Ei-Wen; Tsai, Keng-Chang

    2015-02-01

    Tyrosinase, a key copper-containing enzyme involved in melanin biosynthesis, is closely associated with hyperpigmentation disorders, cancer, and neurodegenerative diseases, and as such, it is an essential target in medicine and cosmetics. Known tyrosinase inhibitors possess adverse side effects, and there are no safety regulations; therefore, it is necessary to develop new inhibitors with fewer side effects and less toxicity. Peptides are exquisitely specific to their in vivo targets, with high potencies and relatively few off-target side effects. Thus, we systematically and comprehensively investigated the tyrosinase-inhibitory abilities of N- and C-terminal cysteine/tyrosine-containing tetrapeptides by constructing a phage-display random tetrapeptide library and conducting computational molecular docking studies on novel tyrosinase tetrapeptide inhibitors. We found that N-terminal cysteine-containing tetrapeptides exhibited the most potent tyrosinase-inhibitory abilities. The positional preference of cysteine residues at the N terminus in the tetrapeptides significantly contributed to their tyrosinase-inhibitory function. The sulfur atom in cysteine moieties of N- and C-terminal cysteine-containing tetrapeptides coordinated with copper ions, which then tightly blocked substrate-binding sites. N- and C-terminal tyrosine-containing tetrapeptides functioned as competitive inhibitors against mushroom tyrosinase by using the phenol ring of tyrosine to stack with the imidazole ring of His263, thus competing for the substrate-binding site. The N-terminal cysteine-containing tetrapeptide CRVI exhibited the strongest tyrosinase-inhibitory potency (with an IC50 of 2.7 ± 0.5 μM), which was superior to those of the known tyrosinase inhibitors (arbutin and kojic acid) and outperformed kojic acid-tripeptides, mimosine-FFY, and short-sequence oligopeptides at inhibiting mushroom tyrosinase. Copyright © 2014 by The American Society for Pharmacology and Experimental

  18. Cloning and identification of a novel tyrosinase and its overexpression in Streptomyces kathirae SC-1 for enhancing melanin production.

    Science.gov (United States)

    Guo, Jing; Rao, Zhiming; Yang, Taowei; Man, Zaiwei; Xu, Meijuan; Zhang, Xian; Yang, Shang-Tian

    2015-04-01

    A 30-kDa novel tyrosinase was purified to homogeneity. The Km for L-Dopa and L-tyrosine were determined as 0.42 and 0.25 mM. The 1231 bp (base pair) melC gene and its 167 bp promoter Pskmel were obtained by thermal asymmetric interlaced polymerase chain reaction based on the amino acids fragment obtained from MS results of the purified enzyme. The protein sequence of tyrosinase shows maximum identity (84%) to tyrosinase from Streptomyces galbus. The melC was introduced into S. kathirae. The melanin production and the transcriptional level of melC in recombinant S. kathirae [pIJPskmelmelC] were about 2.1-fold and 2-fold higher than the wild-type strain, respectively. The melanin concentration was maximized at 28.8 g L(-1). © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. Skin protective effect of guava leaves against UV-induced melanogenesis via inhibition of ORAI1 channel and tyrosinase activity.

    Science.gov (United States)

    Lee, Dong-Ung; Weon, Kwon Yeon; Nam, Da-Yeong; Nam, Joo Hyun; Kim, Woo Kyung

    2016-12-01

    Ultraviolet (UV) irradiation is a major environmental factor affecting photoageing, which is characterized by skin wrinkle formation and hyperpigmentation. Although many factors are involved in the photoageing process, UV irradiation is thought to play a major role in melanogenesis. Tyrosinase is the key enzyme in melanin synthesis; therefore, many whitening agents target tyrosinase through various mechanisms, such as direct interference of tyrosinase catalytic activity or inhibition of tyrosinase mRNA expression. Furthermore, the highly selective calcium channel ORAI1 has been shown to be associated with UV-induced melanogenesis. Thus, ORAI1 antagonists may have applications in the prevention of melanogenesis. Here, we aimed to identify the antimelanogenesis agents from methanolic extract of guava leaves (Psidium guajava) that can inhibit tyrosinase and ORAI1 channel. The n-butanol (47.47%±7.503% inhibition at 10 μg/mL) and hexane (57.88%±7.09% inhibition at 10 μg/mL) fractions were found to inhibit ORAI1 channel activity. In addition, both fractions showed effective tyrosinase inhibitory activity (68.3%±0.50% and 56.9%±1.53% inhibition, respectively). We also confirmed that the hexane fraction decreased the melanin content induced by UVB irradiation and the ET-1-induced melanogenesis in murine B16F10 melanoma cells. These results suggest that the leaves of P. guajava can be used to protect against direct and indirect UV-induced melanogenesis. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. A novel bioactive chalcone of Morus australis inhibits tyrosinase activity and melanin biosynthesis in B16 melanoma cells.

    Science.gov (United States)

    Takahashi, Makoto; Takara, Kensaku; Toyozato, Tomonao; Wada, Koji

    2012-01-01

    The methanol extract of Morus australis (shimaguwa) acts as a whitening agent due to the inhibition of tyrosinase activity. In order to explore the mechanism(s) of the whitening action, constituents of the 95% methanol extract from the dried stems of shimaguwa were isolated and their skin-whitening capacity was examined. Bioassay-guided fractionation of the methanol soluble extract of shimaguwa led to the isolation of 2, 4, 2', 4'-hydroxycalcone (chalcone 1) and three analogues of chalcone 1 with 3'-substituted resorcinol moieties (chalcones 2-4). Chalcone derivative 4 proved to be a novel compound and was fully characterized. Chalcones 1-4 were evaluated for inhibition activity on mushroom tyrosinase using L-tyrosine as the substrate. The parent chalcone 1 was a highly effective inhibitor of tyrosinase activity (IC₅₀ = 0.21 μM) compared to arbutin (IC₅₀ = 164 μM). Compared to chalcone 1, chalcones 2 and 3, which possess 3'-substituted isoprenyl or bulky 2-benzoylbiphenyl, showed significantly decreased tyrosinase activity, while chalcone 4, possessing 3'-substituted 2-hydroxy-1-pentene group, showed slightly increased activity.The effects of chalcones 1-4 on melanin synthesis, without affecting cell growth, were assayed in melanin-producing B16 murine melanoma cells. Chalcone 3 significantly reduced cell viability before reaching the IC₅₀ value for melanin synthesis. In contrast, the inhibitory effects of chalcones 1, 2 and 4 were more than 100-fold greater than that of arbutin, with little or no cytotoxicity. More significantly, chalcone 2, which exhibited less tyrosinase inhibitory activity compared to the parent chalcone 1, showed the highest inhibition of melanin synthesis in B16 cells among the chalcones tested. Accordingly, chalcones 1 and 2, and the novel chalcone 4 might be the active components responsible for the whitening ability of shimaguwa. Moreover, whitening ability was not exclusively due to tyrosinase inhibition.

  1. Highly sensitive measurements of substrates and inhibitors on the basis of tyrosinase sensors and recycling systems

    Science.gov (United States)

    Streffer, Katrin

    2002-12-01

    Today, analytical chemistry does not longer consist of only the big measuring devices and methods which are time consuming and expensive, which can furthermore only be handled by the qualified staff and in addition the results can also only be evaluated by this qualified staff. Usually, this technique, which shall be described in the following as 'classic analytic measuring technique', requires also rooms equipped especially and often a relative big quantity of the test compounds which should be prepared especially. Beside this classic analytic measuring technique, limited on definite substance groups and requests, a new measuring technique has gained acceptance particularly within the last years, which one can often be used by a layman, too. Often the new measuring technique has very little pieces of equipment. The needed sample volumes are also small and a special sample preparation isn't required. In addition, the new measuring instruments are simple to handle. They are cheap both in their production and in the use and they permit even a continuous measurement recording usually. Numerous of this new measuring instruments base on the research in the field of Biosensorik during the last 40 years. Since Clark and Lyon in the year 1962 were able to measure glucose with a simple oxygen electrode, completed by an enzyme the development of the new measuring technique did not have to be held back any longer. Biosensors, special pickups which consists of a combination from a biological component (permits a specific recognition of the analyte also without purification of the sample previously) and a physical pickup (convert the primary physicochemical effect into an electronically measurable signal), conquered the market. In the context of this thesis different tyrosinasesensors were developed which fulfilling the various requests, depending on origin and features of the used tyrosinase. One of the tyrosinasesensors for example was used for quantification of phenolic

  2. Structural and kinetic considerations on the catalysis of deoxyarbutin by tyrosinase.

    Directory of Open Access Journals (Sweden)

    Antonio Garcia-Jimenez

    Full Text Available Deoxyarbutin, a potent inhibitor of tyrosinase, could act as substrate of the enzyme. Oxytyrosinase is able to hydroxylate deoxyarbutin and finishes the catalytic cycle by oxidizing the formed o-diphenol to quinone, while the enzyme becomes deoxytyrosinase, which evolves to oxytyrosinase in the presence of oxygen. This compound is the only one described that does not release o-diphenol after the hydroxylation step. Oxytyrosinase hydroxylates the deoxyarbutin in ortho position of the phenolic hydroxyl group by means of an aromatic electrophilic substitution. As the oxygen orbitals and the copper atoms are not coplanar, but in axial/equatorial position, the concerted oxidation/reduction cannot occur and the release of a copper atom to bind again in coplanar position, enabling the oxidation/reduction or release of the o-diphenol from the active site to the medium. In the case of deoxyarbutin, the o-diphenol formed is repulsed by the water due to its hydrophobicity, and so can bind correctly and be oxidized to a quinone before being released. Deoxyarbutin has been characterized with: [Formula: see text] = 1.95 ± 0.06 s-1 and [Formula: see text] = 33 ± 4 μM. Computational simulations of the interaction of β-arbutin, deoxyarbutin and their o-diphenol products with tyrosinase show how these ligands bind at the copper centre of tyrosinase. The presence of an energy barrier in the release of the o-diphenol product of deoxyarbutin, which is not present in the case of β-arbutin, together with the differences in polarity and, consequently differences in their interaction with water help understand the differences in the kinetic behaviour of both compounds. Therefore, it is proposed that the release of the o-diphenol product of deoxyarbutin from the active site might be slower than in the case of β-arbutin, contributing to its oxidation to a quinone before being released from the protein into the water phase.

  3. Structural and kinetic considerations on the catalysis of deoxyarbutin by tyrosinase

    Science.gov (United States)

    Teruel-Puche, Jose Antonio; Garcia-Ruiz, Pedro Antonio; Saura-Sanmartin, Adrian; Berna, Jose; Rodriguez-Lopez, José Neptuno

    2017-01-01

    Deoxyarbutin, a potent inhibitor of tyrosinase, could act as substrate of the enzyme. Oxytyrosinase is able to hydroxylate deoxyarbutin and finishes the catalytic cycle by oxidizing the formed o-diphenol to quinone, while the enzyme becomes deoxytyrosinase, which evolves to oxytyrosinase in the presence of oxygen. This compound is the only one described that does not release o-diphenol after the hydroxylation step. Oxytyrosinase hydroxylates the deoxyarbutin in ortho position of the phenolic hydroxyl group by means of an aromatic electrophilic substitution. As the oxygen orbitals and the copper atoms are not coplanar, but in axial/equatorial position, the concerted oxidation/reduction cannot occur and the release of a copper atom to bind again in coplanar position, enabling the oxidation/reduction or release of the o-diphenol from the active site to the medium. In the case of deoxyarbutin, the o-diphenol formed is repulsed by the water due to its hydrophobicity, and so can bind correctly and be oxidized to a quinone before being released. Deoxyarbutin has been characterized with: kcatD-Arb = 1.95 ± 0.06 s-1 and KMD-Arb = 33 ± 4 μM. Computational simulations of the interaction of β-arbutin, deoxyarbutin and their o-diphenol products with tyrosinase show how these ligands bind at the copper centre of tyrosinase. The presence of an energy barrier in the release of the o-diphenol product of deoxyarbutin, which is not present in the case of β-arbutin, together with the differences in polarity and, consequently differences in their interaction with water help understand the differences in the kinetic behaviour of both compounds. Therefore, it is proposed that the release of the o-diphenol product of deoxyarbutin from the active site might be slower than in the case of β-arbutin, contributing to its oxidation to a quinone before being released from the protein into the water phase. PMID:29136639

  4. Extracellular vesicles for drug delivery

    NARCIS (Netherlands)

    Vader, Pieter; Mol, Emma A; Pasterkamp, Gerard; Schiffelers, Raymond M

    2016-01-01

    Extracellular vesicles (EVs) are cell-derived membrane vesicles, and represent an endogenous mechanism for intercellular communication. Since the discovery that EVs are capable of functionally transferring biological information, the potential use of EVs as drug delivery vehicles has gained

  5. Antibacterial, antioxidant and tyrosinase-inhibition activities of pomegranate fruit peel methanolic extract

    Science.gov (United States)

    2012-01-01

    Background This study evaluated, using in vitro assays, the antibacterial, antioxidant, and tyrosinase-inhibition activities of methanolic extracts from peels of seven commercially grown pomegranate cultivars. Methods Antibacterial activity was tested on Gram-positive (Bacillus subtilis and Staphylococcus aureus) and Gram-negative bacteria (Escherichia coli and Klebsiella pneumonia) using a microdilution method. Several potential antioxidant activities, including radical-scavenging ability (RSA), ferrous ion chelating (FIC) and ferric ion reducing antioxidant power (FRAP), were evaluated. Tyrosinase enzyme inhibition was investigated against monophenolase (tyrosine) and diphenolase (DOPA), with arbutin and kojic acid as positive controls. Furthermore, phenolic contents including total flavonoid content (TFC), gallotannin content (GTC) and total anthocyanin content (TAC) were determined using colourimetric methods. HPLC-ESI/MSn analysis of phenolic composition of methanolic extracts was also performed. Results Methanolic peel extracts showed strong broad-spectrum activity against Gram-positive and Gram-negative bacteria, with the minimum inhibitory concentrations (MIC) ranging from 0.2 to 0.78 mg/ml. At the highest concentration tested (1000 μg/ml), radical scavenging activities were significantly higher in Arakta (83.54%), Ganesh (83.56%), and Ruby (83.34%) cultivars (P50%) against monophenolase and diphenolase activities at the highest screening concentration. The most active peel extract was the Bhagwa cultivar against monophenolase and the Arakta cultivar against diphenolase with IC50 values of 3.66 μg/ml and 15.88 μg/ml, respectively. High amounts of phenolic compounds were found in peel extracts with the highest and lowest total phenolic contents of 295.5 (Ganesh) and 179.3 mg/g dry extract (Molla de Elche), respectively. Catechin, epicatechin, ellagic acid and gallic acid were found in all cultivars, of which ellagic acid was the most abundant comprising

  6. USAGE OF MUSHROOM AGARICUS BISPORUS TYROSINASE FOR SEPARATION OF PHENOLIC COMPOUNDS MIXTURES

    Directory of Open Access Journals (Sweden)

    I. I. Romanovskaya

    2016-04-01

    Full Text Available The new method of phenolic compounds mixtures separation in solutions was developed, based on the oxidation of one of the mixture component using immobilized in PVC partially purified tyrosinase and the next removal of the oxidation products with a help of potassium alum. The biocatalyst obtained had carried out oxidation of phenol or pyrocatechol (0,5-10 mmol/dm3 with quantitative degree of bioconversion in the presence of resorcinol, hydroquinone or p-nitrophenol, which are not oxidized, with reservation of their initial concentrations (35-65 mmol/dm3 in solution, during 4 cycles in batch reactor

  7. Extracellular vesicles in renal disease.

    Science.gov (United States)

    Karpman, Diana; Ståhl, Anne-Lie; Arvidsson, Ida

    2017-09-01

    Extracellular vesicles, such as exosomes and microvesicles, are host cell-derived packages of information that allow cell-cell communication and enable cells to rid themselves of unwanted substances. The release and uptake of extracellular vesicles has important physiological functions and may also contribute to the development and propagation of inflammatory, vascular, malignant, infectious and neurodegenerative diseases. This Review describes the different types of extracellular vesicles, how they are detected and the mechanisms by which they communicate with cells and transfer information. We also describe their physiological functions in cellular interactions, such as in thrombosis, immune modulation, cell proliferation, tissue regeneration and matrix modulation, with an emphasis on renal processes. We discuss how the detection of extracellular vesicles could be utilized as biomarkers of renal disease and how they might contribute to disease processes in the kidney, such as in acute kidney injury, chronic kidney disease, renal transplantation, thrombotic microangiopathies, vasculitides, IgA nephropathy, nephrotic syndrome, urinary tract infection, cystic kidney disease and tubulopathies. Finally, we consider how the release or uptake of extracellular vesicles can be blocked, as well as the associated benefits and risks, and how extracellular vesicles might be used to treat renal diseases by delivering therapeutics to specific cells.

  8. Tyrosinase inhibition due to interaction of homocyst(e)ine with copper: the mechanism for reversible hypopigmentation in homocystinuria due to cystathionine beta-synthase deficiency.

    Science.gov (United States)

    Reish, O; Townsend, D; Berry, S A; Tsai, M Y; King, R A

    1995-01-01

    Deficiency of cystathionine beta-synthase (CBS) is a genetic disorder of transsulfuration resulting in elevated plasma homocyst(e)ine and methionine and decreased cysteine. Affected patients have multisystem involvement, which may include light skin and hair. Reversible hypopigmentation in treated homocystinuric patients has been infrequently reported, and the mechanism is undefined. Two CBS-deficient homocystinuric patients manifested darkening of their hypopigmented hair following treatment that decreased plasma homocyst(e)ine. We hypothesized that homocyst(e)ine inhibits tyrosinase, the major pigment enzyme. The activity of tyrosinase extracted from pigmented human melanoma cells (MNT-1) that were grown in the presence of homocysteine was reduced in comparison to that extracted from cells grown without homocysteine. Copper sulfate restored homocyst(e)ine-inhibited tyrosinase activity when added to the culture cell media at a proportion of 1.25 mol of copper sulfate per 1 mol of DL-homocysteine. Holo-tyrosinase activity was inhibited by adding DL-homocysteine to the assay reaction mixture, and the addition of copper sulfate to the reaction mixture prevented this inhibition. Other tested compounds, L-cystine and betaine did not affect tyrosinase activity. Our data suggest that reversible hypopigmentation in homocystinuria is the result of tyrosinase inhibition by homocyst(e)ine and that the probable mechanism of this inhibition is the interaction of homocyst(e)ine with copper at the active site of tyrosinase. Images Figure 1 PMID:7611281

  9. Occurrence State and Molecular Structure Analysis of Extracellular Proteins with Implications on the Dewaterability of Waste-Activated Sludge.

    Science.gov (United States)

    Wu, Boran; Ni, Bing-Jie; Horvat, Kristine; Song, Liyan; Chai, Xiaoli; Dai, Xiaohu; Mahajan, Devinder

    2017-08-15

    The occurrence state and molecular structure of extracellular proteins were analyzed to reveal the influencing factors on the water-holding capacities of protein-like substances in waste-activated sludge (WAS). The gelation process of extracellular proteins verified that advanced oxidation processes (AOPs) for WAS dewaterability improvement eliminated the water affinity of extracellular proteins and prevented these macromolecules from forming stable colloidal aggregates. Isobaric tags for relative and absolute quantitation proteomics identified that most of the extracellular proteins were originally derived from the intracellular part and the proteins originally located in the extracellular part were mainly membrane-associated. The main mechanism of extracellular protein transformation during AOPs could be represented by the damage of the membrane or related external encapsulating structure and the release of intracellular substances. For the selected representative extracellular proteins, the strong correlation (R 2 > 0.97, p proteins on the interstitial water removal from WAS.

  10. Stable Isotope Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Tissue samples (skin, bone, blood, muscle) are analyzed for stable carbon, stable nitrogen, and stable sulfur analysis. Many samples are used in their entirety for...

  11. Improved antioxidant and anti-tyrosinase activity of polysaccharide from Sargassum fusiforme by degradation.

    Science.gov (United States)

    Chen, Bing-Jie; Shi, Mei-Jia; Cui, Shuai; Hao, Shu-Xian; Hider, Robert C; Zhou, Tao

    2016-11-01

    An efficient method for the degradation of polysaccharides isolated from Sargassum fusiforme (PSF) was developed by using ascorbic acid in combination with H 2 O 2 . The degradation conditions were optimized using a Box-Behnken response surface design (BBRS). The optimum conditions were established as: concentration of ascorbic acid (V C ) and H 2 O 2 17.26mM, degradation temperature 51°C and degradation time 1.6h. The DPPH radical scavenging rate of the degraded polysaccharides from S. fusiforme (DPSF) obtained under the optimal conditions was determined to be 75.22±0.02%, which was well matched with the value (75.21%) predicted by the BBRS model. In vitro antioxidant activity of the polysaccharides was evaluated by determining their radical (hydroxyl radical, superoxide anion radical and DPPH radical) scavenging abilities, and ferric iron reducing power. The inhibitory activity on tyrosinase of DPSF was also evaluated. The results indicate that the degraded polysaccharide has superior antioxidant activity and anti-tyrosinase effect to those of the original polysaccharide. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Brown oculocutaneous albinism is allelic to tyrosinase-positive oculocutaneous albinism in southern African Negroids

    Energy Technology Data Exchange (ETDEWEB)

    Manga, P.; Ramsay, M.; Kromberg, J.; Jenkins, T. [Univ. of the Witwatersrand, Johannesburg (South Africa)

    1994-09-01

    Brown oculocutaneous albinism (BOCA) is an autosomal recessive disorder involving a decrease in pigment of the skin, hair and eyes as well as decreased visual acuity. Evidence from two families who have co-existent BOCA and tyrosinase-positive oculocutaneous albinism (ty-pos OCA), suggests that the two conditions are allelic. Ty-pos OCA has been mapped to chromosome 15q11-q12 and the gene has been confirmed to be the human homologue (P) of the mouse pink-eyed dilute gene (p). Seven markers known to be linked to the P gene, D15S11, D15S10, MS14, GABA3, GABA5, IR10 and pCMW-1, were used to construct haplotypes in 5 families with BOCA. The haplotype data was subjected to linkage analysis and a maximum lod score of 2.85 ({theta} 0.0) was obtained. It has been reported previously that BOCA, in an Afro-American, was due to the lack of tyrosinase-protein 1 (Trp-1) in melanocytes. Trp-1 has been excluded as the disease-causing locus in the southern African families by linkage analysis with D9S43. A lod score of -2.02 was obtained at {theta} = 0.02.

  13. Two novel tyrosinase (TYR) gene mutations with pathogenic impact on oculocutaneous albinism type 1 (OCA1).

    Science.gov (United States)

    Ghodsinejad Kalahroudi, Vadieh; Kamalidehghan, Behnam; Arasteh Kani, Ahoura; Aryani, Omid; Tondar, Mahdi; Ahmadipour, Fatemeh; Chung, Lip Yong; Houshmand, Massoud

    2014-01-01

    Oculocutaneous albinism (OCA) is a heterogeneous group of autosomal recessive disorders resulting from mutations of the tyrosinase (TYR) gene and presents with either complete or partial absence of pigment in the skin, hair and eyes due to a defect in an enzyme involved in the production of melanin. In this study, mutations in the TYR gene of 30 unrelated Iranian OCA1 patients and 100 healthy individuals were examined using PCR-sequencing. Additionally, in order to predict the possible effects of new mutations on the structure and function of tyrosinase, these mutations were analyzed by SIFT, PolyPhen and I-Mutant 2 software. Here, two new pathogenic p.C89S and p.H180R mutations were detected in two OCA1 patients. Moreover, the R402Q and S192Y variants, which are common non-pathogenic polymorphisms, were detected in 17.5% and 35% of the patients, respectively. The outcome of this study has extended the genotypic spectrum of OCA1 patients, which paves the way for more efficient carrier detection and genetic counseling.

  14. Two novel tyrosinase (TYR gene mutations with pathogenic impact on oculocutaneous albinism type 1 (OCA1.

    Directory of Open Access Journals (Sweden)

    Vadieh Ghodsinejad Kalahroudi

    Full Text Available Oculocutaneous albinism (OCA is a heterogeneous group of autosomal recessive disorders resulting from mutations of the tyrosinase (TYR gene and presents with either complete or partial absence of pigment in the skin, hair and eyes due to a defect in an enzyme involved in the production of melanin. In this study, mutations in the TYR gene of 30 unrelated Iranian OCA1 patients and 100 healthy individuals were examined using PCR-sequencing. Additionally, in order to predict the possible effects of new mutations on the structure and function of tyrosinase, these mutations were analyzed by SIFT, PolyPhen and I-Mutant 2 software. Here, two new pathogenic p.C89S and p.H180R mutations were detected in two OCA1 patients. Moreover, the R402Q and S192Y variants, which are common non-pathogenic polymorphisms, were detected in 17.5% and 35% of the patients, respectively. The outcome of this study has extended the genotypic spectrum of OCA1 patients, which paves the way for more efficient carrier detection and genetic counseling.

  15. Antioxidant, Anti-Tyrosinase and Anti-Inflammatory Activities of Oil Production Residues from Camellia tenuifloria

    Science.gov (United States)

    Chiou, Shu-Yuan; Ha, Choi-Lan; Wu, Pei-Shan; Yeh, Chiu-Ling; Su, Ying-Shan; Li, Man-Po; Wu, Ming-Jiuan

    2015-01-01

    Camellia tenuifloria is an indigenous Camellia species used for the production of camellia oil in Taiwan. This study investigated for the first time the potential antioxidant, anti-tyrosinase and anti-inflammatory activities of oil production byproducts, specifically those of the fruit shell, seed shell, and seed pomace from C. tenuifloria. It was found that the crude ethanol extract of the seed shell had the strongest DPPH scavenging and mushroom tyrosinase inhibitory activities, followed by the fruit shell, while seed pomace was the weakest. The IC50 values of crude extracts and fractions on monophenolase were smaller than diphenolase. The phenolic-rich methanol fraction of seed shell (SM) reduced nitric oxide (NO) production, and inducible nitric oxide synthase (iNOS) expression in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. It also repressed the expression of IL-1β, and secretion of prostaglandin E2 (PGE2) and IL-6 in response to LPS. SM strongly stimulated heme oxygenase 1 (HO-1) expression and addition of zinc protoporphyrin (ZnPP), a HO-1 competitive inhibitor, reversed the inhibition of NO production, indicating the involvement of HO-1 in its anti-inflammatory activity. The effects observed in this study provide evidence for the reuse of residues from C. tenuifloria in the food additive, medicine and cosmetic industries. PMID:26690417

  16. Antioxidant, Anti-Tyrosinase and Anti-Inflammatory Activities of Oil Production Residues from Camellia tenuifloria

    Directory of Open Access Journals (Sweden)

    Shu-Yuan Chiou

    2015-12-01

    Full Text Available Camellia tenuifloria is an indigenous Camellia species used for the production of camellia oil in Taiwan. This study investigated for the first time the potential antioxidant, anti-tyrosinase and anti-inflammatory activities of oil production byproducts, specifically those of the fruit shell, seed shell, and seed pomace from C. tenuifloria. It was found that the crude ethanol extract of the seed shell had the strongest DPPH scavenging and mushroom tyrosinase inhibitory activities, followed by the fruit shell, while seed pomace was the weakest. The IC50 values of crude extracts and fractions on monophenolase were smaller than diphenolase. The phenolic-rich methanol fraction of seed shell (SM reduced nitric oxide (NO production, and inducible nitric oxide synthase (iNOS expression in lipopolysaccharide (LPS-stimulated RAW 264.7 cells. It also repressed the expression of IL-1β, and secretion of prostaglandin E2 (PGE2 and IL-6 in response to LPS. SM strongly stimulated heme oxygenase 1 (HO-1 expression and addition of zinc protoporphyrin (ZnPP, a HO-1 competitive inhibitor, reversed the inhibition of NO production, indicating the involvement of HO-1 in its anti-inflammatory activity. The effects observed in this study provide evidence for the reuse of residues from C. tenuifloria in the food additive, medicine and cosmetic industries.

  17. The inhibitory effect of benzenethiol on the cresolase and catecholase activities of mushroom tyrosinase.

    Science.gov (United States)

    Saboury, A A; Zolghadri, S; Haghbeen, K; Moosavi-Movahedi, A A

    2006-12-01

    The inhibitory effect of benzenethiol on the cresolase and catecholase activities of mushroom tyrosinase (MT) have been investigated at two temperatures of 20 and 30 degrees C in 10 mM phosphate buffer solution, pHs 5.3 and 6.8. The results show that benzenethiol can inhibit both activities of mushroom tyrosinase competitively. The inhibitory effect of benzenethiol on the cresolase activity is more than the catecholase activity of MT. The inhibition constant (K(i)) value at pH 5.3 is smaller than that at pH 6.8 for both enzyme activities. However, the K(i) value increases in cresolase activity and decreases in catecholase activity due to the increase of temperature from 20 to 30 degrees C at both pHs. Moreover, the effect of temperature on K(i) value is more at pH 6.8 for both cresolase and catecholase activities. The type of binding process is different in the two types of MT activities. The binding process for catecholase inhibition is only entropy driven, which means that the predominant interaction in the active site of the enzyme is hydrophobic, meanwhile the electrostatic interaction can be important for cresolase inhibition due to the enthalpy driven binding process. Fluorescence and circular studies also show a minor change in the tertiary structure, without any change in the secondary structure, of the enzyme due to the electrostatic interaction in cresolase inhibition by benzenethiol at acidic pH.

  18. Self-assembly of the oxy-tyrosinase core and the fundamental components of phenolic hydroxylation

    Science.gov (United States)

    Citek, Cooper; Lyons, Christopher T.; Wasinger, Erik C.; Stack, T. Daniel P.

    2012-04-01

    The enzyme tyrosinase contains two CuI centres, trigonally coordinated by imidazole nitrogens of six conserved histidine residues. The enzyme activates O2 to form a µ-η2:η2-peroxo-dicopper(II) core, which hydroxylates tyrosine to a catechol in the first committed step of melanin biosynthesis. Here, we report a family of synthetic peroxo complexes, with spectroscopic and chemical features consistent with those of oxygenated tyrosinase, formed through the self-assembly of monodentate imidazole ligands, CuI and O2 at -125 °C. An extensively studied complex reproduces the enzymatic electrophilic oxidation of exogenous phenolic substrates to catechols in good stoichiometric yields. The self-assembly and subsequent reactivity support the intrinsic stability of the Cu2O2 core with imidazole ligation, in the absence of a polypeptide framework, and the innate capacity to effect hydroxylation of phenolic substrates. These observations suggest that a foundational role of the protein matrix is to facilitate expression of properties native to the core by bearing the entropic costs of assembly and precluding undesired oxidative degradation pathways.

  19. In vivo tyrosinase mini-gene transfer enhances killing effect of BNCT on amelanotic melanoma

    Energy Technology Data Exchange (ETDEWEB)

    Kondoh, H.; Mishima, Y. [Mishima Institute for Dermatological Research, Kobe, Hyogo (Japan); Hiratsuka, J. [Kawasaki Medical School, Dept. of Radiation Oncology, Kurashiki, Okayama (Japan); Iwakura, M. [Kobe Univ. (Japan). School of Medicine

    2000-10-01

    Using accentuated melanogenesis principally occurring within melanoma cells, we have successfully treated human malignant melanoma (Mm) with {sup 10}B-BPA BNCT. Despite this success, there are still remaining issues for poorly melanogenic Mm and further non-pigment cell tumors. We found the selective accumulation of {sup 10}B-BPA to Mm is primarily due to the complex formation of BPA and melanin-monomers activity synthesized within Mm cells. Then, we succeeded in transferring the tyrosinase gene into amelanotic to substantially produce melanin monomers. These cells has demonstrated increased boron accumulation and enhanced killing effect of BNCT. Further, transfection of TRP-2 (DOPAchrome tautomerase) gene into poorly eumelanotic and slightly phenomelanotic Mm cells in culture cell systems also led to increased BPA accumulation. Thereafter, we studied in vivo gene transfer. We transferred the tyrosinase mini-gene by intra-tumor injection into poorly melanotic Mm proliferating subcutaneously in hamster skin, and performed BNCT. Compared to control tumors, gene-transferred tumors showed increased BPA accumulation leading to enhanced killing effect. (author)

  20. A tyrosinase with an abnormally high tyrosine hydroxylase/dopa oxidase ratio.

    Science.gov (United States)

    Hernández-Romero, Diana; Sanchez-Amat, Antonio; Solano, Francisco

    2006-01-01

    The sequencing of the genome of Ralstonia solanacearum[Salanoubat M, Genin S, Artiguenave F, et al. (2002) Nature 415, 497-502] revealed several genes that putatively code for polyphenol oxidases (PPOs). This soil-borne pathogenic bacterium withers a wide range of plants. We detected the expression of two PPO genes (accession numbers NP_518458 and NP_519622) with high similarity to tyrosinases, both containing the six conserved histidines required to bind the pair of type-3 copper ions at the active site. Generation of null mutants in those genes by homologous recombination mutagenesis and protein purification allowed us to correlate each gene with its enzymatic activity. In contrast with all tyrosinases so far studied, the enzyme NP_518458 shows higher monophenolase than o-diphenolase activity and its initial activity does not depend on the presence of l-dopa cofactor. On the other hand, protein NP_519622 is an enzyme with a clear preference to oxidize o-diphenols and only residual monophenolase activity, behaving as a catechol oxidase. These catalytic characteristics are discussed in relation to two other characteristics apart from the six conserved histidines. One is the putative presence of a seventh histidine which interacts with the carboxy group on the substrate and controls the preference for carboxylated and decarboxylated substrates. The second is the size of the residue isosteric with the aromatic F261 reported in sweet potato catechol oxidase which acts as a gate to control accessibility to CuA at the active site.

  1. Inhibition of mushroom tyrosinase by a newly synthesized ligand: inhibition kinetics and computational simulations.

    Science.gov (United States)

    Alijanianzadeh, Mahdi; Saboury, Ali Akbar; Ganjali, Mohammad Reza; Hadi-Alijanvand, Hamid; Moosavi-Movahedi, Ali Akbar

    2012-01-01

    Alterations in the synthesis of melanin contribute to a number of diseases; therefore, the design of new tyrosinase inhibitors is very important. Mushroom tyrosinase (MT) is a metalloenzyme, which plays an important role in melanin biosynthesis. In this study, the inhibitory effect of a novel designed compound, i.e. 2-((1Z)-(2-(2,4-dinitrophenyl)hydrazin-1-ylidene)methyl)phenol, as a specific ligand which can bind to the copper ion of MT, has been assessed. The ligand was found to competitively inhibit both the cresolase and catecholase activities of MT, with small inhibition constants of 2.8 and 2.6 μM, respectively. Intrinsic fluorescence studies were performed to gain more information on the binding constants. Docking results indicated that the ligand binds to copper ions in the active site of MT via the OH group of the ligand. The ligand makes four hydrogen bonds with aspartic acid and one hydrogen bond with the histidine residue in the active site. Molecular dynamics results show that ligand binds to the MT via both electrostatic and hydrophobic interactions with its different parts.

  2. Phenols removal by immobilized tyrosinase reactor in on-line high performance liquid chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Girelli, Anna Maria [Dipartimento di Chimica, Universita degli Studi di Roma ' La Sapienza' , P.le Aldo Moro 5, 00185 Rome (Italy)]. E-mail: annamaria.girelli@uniroma1.it; Mattei, Enrico [Dipartimento di Chimica, Universita degli Studi di Roma ' La Sapienza' , P.le Aldo Moro 5, 00185 Rome (Italy); Messina, Antonella [Dipartimento di Chimica, Universita degli Studi di Roma ' La Sapienza' , P.le Aldo Moro 5, 00185 Rome (Italy)

    2006-11-24

    The development of an immobilized enzyme reactor (IMER) based on tyrosinase immobilized on aminopropyl-controlled pore glass (AP-CPG) for the removal of phenols from model aqueous solutions was reported. To elucidate the influence of the substrate nature, the apparent (V{sup '}{sub max}, K{sup '}{sub m}) and the inherent (V{sub max}, K{sub m}) Michaelis-Menten constants were determined by Lineweaver-Burk method and the external diffusional contributions on measured enzyme activities were removed by a graphical method. The dephenolization process was realized by recycling the phenol solutions through the bioreactor connected to a chitosan trap in order to remove the colored quinone-type products of the tyrosinase reactions. The results indicated that a complete removal of phenol derivatives in the range of 150-300min, with the exception of 60% removal for phenol reached in 400min, was obtained. The observed sequence: cresol>4-methylcathecol>catechol>4-Cl-phenol-bar phenol was in accordance to the V{sup '}{sub max}/K{sup '}{sub m} values.

  3. Deep in vivo photoacoustic imaging of mammalian tissues using a tyrosinase-based genetic reporter

    Science.gov (United States)

    Jathoul, Amit P.; Laufer, Jan; Ogunlade, Olumide; Treeby, Bradley; Cox, Ben; Zhang, Edward; Johnson, Peter; Pizzey, Arnold R.; Philip, Brian; Marafioti, Teresa; Lythgoe, Mark F.; Pedley, R. Barbara; Pule, Martin A.; Beard, Paul

    2015-04-01

    Photoacoustic imaging allows absorption-based high-resolution spectroscopic in vivo imaging at a depth beyond that of optical microscopy. Until recently, photoacoustic imaging has largely been restricted to visualizing the vasculature through endogenous haemoglobin contrast, with most non-vascularized tissues remaining invisible unless exogenous contrast agents are administered. Genetically encodable photoacoustic contrast is attractive as it allows selective labelling of cells, permitting studies of, for example, specific genetic expression, cell growth or more complex biological behaviours in vivo. In this study we report a novel photoacoustic imaging scanner and a tyrosinase-based reporter system that causes human cell lines to synthesize the absorbing pigment eumelanin, thus providing strong photoacoustic contrast. Detailed three-dimensional images of xenografts formed of tyrosinase-expressing cells implanted in mice are obtained in vivo to depths approaching 10 mm with a spatial resolution below 100 μm. This scheme is a powerful tool for studying cellular and genetic processes in deep mammalian tissues.

  4. Activity, Stability, and Structure of Native and Modified by Woodward Reagent K Mushroom Tyrosinase

    Science.gov (United States)

    Emami, S.; Piri, H.; Gheibi, N.

    2018-01-01

    Mushroom tyrosinase (MT) was considered a good model for studying the inhibition, activation, and mutation of tyrosinase as the key enzyme of melanogenesis. In the present study, the activity, structure, reduction, and stability of native and modified enzymes were investigated after the modification of MT carboxylic residues by the Woodward reagent K (WRK). The relative activity of the sole enzyme was reduced from 100 to 77.9, 53.8, 39.4, and 26.4% after its modification by 2.5, 5, 25, and 50 ratios of [WRK]/[MT], respectively. The Tm values were calculated from thermal denaturation curves at 61.2, 60.1, 58.3, 53.9, and 45.5oC for the sole and modified enzymes. The reduction of the Δ {G}_{{H}_2O} values for the modified enzyme in chemical denaturation indicated instability. A structural study by CD and intrinsic fluorescence technique revealed the fluctuation of the secondary and tertiary structures of MT.

  5. A novel tyrosinase biosensor based on hydroxyapatite-chitosan nanocomposite for the detection of phenolic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Lu Limin; Zhang Li [State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 (China); State Key Laboratory of Fine Chemicals, Dalian University of Technology, 158 Zhongshan Road, Dalian 116012 (China); Zhang Xiaobing, E-mail: xbzhang@hnu.cn [State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 (China); State Key Laboratory of Fine Chemicals, Dalian University of Technology, 158 Zhongshan Road, Dalian 116012 (China); Huan Shuangyan; Shen Guoli; Yu Ruqin [State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 (China); State Key Laboratory of Fine Chemicals, Dalian University of Technology, 158 Zhongshan Road, Dalian 116012 (China)

    2010-04-30

    A novel tyrosinase biosensor based on hydroxyapatite nanoparticles (nano-HA)-chitosan nanocomposite has been developed for the detection of phenolic compounds. The uniform and size controlled nano-HA was synthesized by hydrothermal method, and its morphological characterization was examined by transmission electron microscope (TEM). Tyrosinase was then immobilized on a nano-HA-chitosan nanocomposite-modified gold electrode. Electrochemical impedance spectroscopy and cyclic voltammetry were used to characterize the sensing film. The prepared biosensor was applied to determine phenolic compounds by monitoring the reduction signal of the biocatalytically produced quinone species at -0.2 V (vs. saturated calomel electrode). The effects of the pH, temperature and applied potential on the biosensor performance were investigated, and experimental conditions were optimized. The biosensor exhibited a linear response to catechol over a wide concentration range from 10 nM to 7 {mu}M, with a high sensitivity of 2.11 x 10{sup 3} {mu}A mM{sup -1} cm{sup -2}, and a limit of detection down to 5 nM (based on S/N = 3). The apparent Michaelis-Menten constants of the enzyme electrode were estimated to be 3.16, 1.31 and 3.52 {mu}M for catechol, phenol and m-cresol, respectively. Moreover, the stability and reproducibility of this biosensor were evaluated with satisfactory results.

  6. Fatty Acid Composition, Antioxidant, Anticholinesterase and Tyrosinase Inhibitory Activities of Four Serratula Species from Anatolia

    Directory of Open Access Journals (Sweden)

    Gülsen Tel

    2013-03-01

    Full Text Available Serratula L. (Astareceae rich in ecdysteroid, phytoecdysteroids and flavonoids some have various biological activities including antibacterial and antitumor. The fatty acid profiles of four Serratula species were investigated by using GC and GC–MS techniques. Palmitic, oleic, linoleic and linolenic acids were found to be the main fatty acids. The unsaturation percentage was between 27.24-50.47%. The antioxidant activity of the extracts was determined by using four complementary tests; namely, β-carotene-linoleic acid, DPPH• scavenging, CUPRAC and ferrous-ions chelating assays. The methanol extract of S. lasiocephala showed the highest activity in β-carotene-linoleic acid, DPPH• scavenging and CUPRAC assays, while the hexane extract of S. radiata exhibited the best metal chelating activity. In addition, total phenolic and total flavonoid contents in the extracts were determined as pyrocatechol and quercetin equivalents, respectively. The in vitro anticholinesterase activity of extracts were tested against acetylcholinesterase (AChE and butyrylcholinesterase (BChE which are the key enzymes taking place in pathogenesis of Alzheimer’s disease. Besides, the extracts were tested in vitro against tyrosinase enzyme which is associated with melanin hyperpigmentation. Except the hexane extracts of S. radiata and S. lasiocephala, the extracts showed moderate inhibition against AChE and BChE, while the only hexane extract of S. erucifolia and methanol extract of S. radiata exhibited tyrosinase inhibitory activity.

  7. New Bioflavonoids from Solanum nigrum L. by Anticholinesterase and Anti-tyrosinase Activities-guided Fractionation

    Directory of Open Access Journals (Sweden)

    Temine Sabudak

    2017-03-01

    Full Text Available T wo new biflavonoids, (8-hydroxy-3'-β-D-galactosyl-isoflavone-2'-8''-(4'''-hydroxy-flavone-biflavone (2; 2',3',5-trihydroxy-5''-methoxy-3''-O- α-glucosyl-3-4'"-O-biflavone (3 and along with apigenin (1 and quercetin-3-O-β-glucoside (4 were isolated by activity guided fractionation from the whole plant of Solanum nigrum L.. The structures were established on the basis of UV, IR, 1D, 2D NMR and HRESI-MS spectroscopic methods. The anticholinesterase activity was performed against acetylcholinesterase and butyrylcholinesterase – the chief enzymes of Alzheimers’ disease – using the Ellman method. The tyrosinase inhibitory activity was performed according to L -DOPA method. Since the ethyl acetate (IC 50: 90.6±0.3 µg/mL and n-butanol (IC 50: 140.6±1.7 µg/mL extracts exhibited good butyrylcholinesterase inhibitory activity, both were fractionated and the active fractions were used for isolation of the compounds. These both extracts were also exhibited better tyrosinase inhibitory activity (IC 50: 76.0±0.6, and 156.8±1.9 µg/mL, respectively. Tested enzyme inhibitory activities of S. nigrum were presented in this study for the first time.

  8. Tyrosinase inhibitors from Calceolaria integrifolia s.l.: Calceolaria talcana aerial parts.

    Science.gov (United States)

    Muñoz, Evelyn; Avila, Jose G; Alarcón, Julio; Kubo, Isao; Werner, Enrique; Céspedes, Carlos L

    2013-05-08

    As a defense mechanism of the aerial parts of Calceolaria talcana (Calceolariaceae; formerly Scrophulariaceae) against herbivore offenses and insect pest attack, diterpenoids, triterpenoids, phenylethanoids, flavonoids, and iridoids are rapidly accumulated along the aerial parts, resulting in a unique natural biopesticide complex from this plant. In addition to verbascoside a series of known compounds were screened for their inhibitory activity against mushroom tyrosinase and protease enzymes. Ethyl acetate and n-hexane extracts, together with cyclopropyl-7,15-ent-pimaradiene (1), abietatriene (2), ursolic acid (3), α-lupeol (4), β-sitosterol (5), 2-hydroxy-3-(1,1-dimethylallyl)-1,4-naphthoquinone (6), α-dunnione (7), verbascoside (8), martynoside (9), and some known model compounds proved to be inhibitors of oxidation of L-3,4-dihydroxyphenylalanine (L-DOPA) catalyzed by tyrosinase (EC 1.14.18.1) with an IC50 between 10.0 and 200 ppm or μM, respectively, suggesting that phenolic moieties in the molecules assayed are important for the activity.

  9. Isolation and characterization of a novel tyrosinase produced by Sahara soil actinobacteria and immobilization on nylon nanofiber membranes.

    Science.gov (United States)

    Harir, Mohammed; Bellahcene, Miloud; Baratto, Maria Camilla; Pollini, Simona; Rossolini, Gian Maria; Trabalzini, Lorenza; Fatarella, Enrico; Pogni, Rebecca

    2018-01-10

    In the present study different actinomycete strains were collected and isolated from Algerian Sahara soil with the aim to select novel enzymes with promising features for biotechnological applications. The Ms1 strain was selected, amongst the others, for its capability to produce melanin in different solid media. Ms1 chromosomal DNA was sequenced and the strain assigned to Streptomyces cyaneofuscatus sp. A tyrosinase (MW∼30kD) encoding sequence was identified and the corresponding enzyme was isolated and biochemically characterized. The tyrosinase showed the highest activity and stability at neutral and alkaline pH and it was able to oxidize l-DOPA at T=55°C and pH 7. The enzyme showed variable stability in presence of various water-miscible organic solvents, while it was inactivated by reducing agents. The tyrosinase activity was unaffected by NaCl and enhanced by different cations. Furthermore, the enzyme showed a higher specificity for diphenols than monophenols showing a higher diphenolase than monophenolase activity. Finally, tyrosinase was stabilized by immobilization on nylon nanofiber membranes with a payload of 82% when 1% glutaraldeyde was used. Taken all together, these results show that the enzyme displays interesting properties for biotechnological purposes. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. The integration of cyanide hydratase and tyrosinase catalysts enables effective degradation of cyanide and phenol in coking wastewaters

    Czech Academy of Sciences Publication Activity Database

    Martínková, Ludmila; Chmátal, Martin

    2016-01-01

    Roč. 102, October (2016), s. 90-95 ISSN 0043-1354 R&D Projects: GA TA ČR TA01021368; GA TA ČR(CZ) TA04021212; GA MŠk(CZ) LD12049 Institutional support: RVO:61388971 Keywords : Cyanide hydratase * Tyrosinase * Cyanide Subject RIV: CE - Biochemistry Impact factor: 6.942, year: 2016

  11. OCA1 in different ethnic groups of india is primarily due to founder mutations in the tyrosinase gene.

    NARCIS (Netherlands)

    Chaki, M.; Sengupta, M.S.; Mukhopadhyay, A.; Subba Rao, I.; Majumder, P.P.; Das, M.; Samanta, S.; Ray, K.

    2006-01-01

    Oculocutaneous albinism (OCA) is a heterogeneous group of autosomal recessive disorders characterized by an abnormally low amount of melanin in the eyes, skin and hair, and associated with common developmental abnormalities of the eye. Defects in the tyrosinase gene (TYR) cause a common type of OCA,

  12. Oxygen as a morphogenic factor in sponges: expression of a tyrosinase gene in the sponge Suberites domuncula.

    Science.gov (United States)

    Müller, Werner E G; Perović, Sanja; Schröder, Heinz C; Breter, Hans J

    2004-01-01

    Sponges live in a symbiotic relationship with microorganisms, especially bacteria. Here we show, using the demosponge Suberites domuncula as a model, that the sponge expresses the enzyme tyrosinase which synthesizes diphenols from monophenolic compounds. It is assumed that these products serve as carbon source for symbiotic bacteria to grow.

  13. Inhibitory effects of propyl gallate on tyrosinase and its application in controlling pericarp browning of harvested longan fruits.

    Science.gov (United States)

    Lin, Yi-Fen; Hu, Yong-Hua; Lin, He-Tong; Liu, Xuan; Chen, Yi-Hui; Zhang, Shen; Chen, Qing-Xi

    2013-03-20

    Tyrosinase (EC 1.14.18.1), also known as polyphenol oxidase (PPO), is a key enzyme in pigment biosynthesis of organisms. The inhibitory effects of propyl gallate on the activity of mushroom tyrosinase and effects of propyl gallate on pericarp browning of harvested longan fruits in relation to phenolic metabolism were investigated. The results showed that propyl gallate could potently inhibit diphenolase activity of tyrosinase. The inhibitor concentration leading to 50% activity lost (IC50) was determined to be 0.685 mM. Kinetic analyses showed that propyl gallate was a reversible and mixed type inhibitor on this enzyme. The inhibition constants (K(IS) and K(I)) were determined to be 2.135 and 0.661 mM, respectively. Furthermore, the results also showed that propyl gallate treatment inhibited activities of PPO and POD in pericarp of harvested longan fruits, and maintained higher contents of total phenol and flavonoid of longan pericarp. Moreover, propyl gallate treatment also delayed the increases of browning index and browning degree in pericarp of harvested longan fruits. Therefore, application of propyl gallate may be a promising method for inhibiting tyrosinase activity, controlling pericarp browning, and extending shelf life of harvested longan fruits.

  14. The anti-browning agent sulfite inactivates Agaricus bisporus tyrosinase through covalent modification of the copper-B site

    NARCIS (Netherlands)

    Kuijpers, T.F.M.; Gruppen, H.; Sforza, S.; Berkel, van W.J.H.; Vincken, J.P.

    2013-01-01

    Sulfite salts are widely used as antibrowning agents in food processing. Nevertheless, the exact mechanism by which sulfite prevents enzymatic browning has remained unknown. Here, we show that sodium hydrogen sulfite (NaHSO3 ) irreversibly blocks the active site of tyrosinase from the edible

  15. VISCOSITY AND BINDER COMPOSITION EFFECTS ON TYROSINASE-BASED CARBON PASTE ELECTRODE FOR DETECTION OF PHENOL AND CATECHOL

    Science.gov (United States)

    The systematic study of the effect of binder viscosity on the sensitivity of a tyrosinase-based carbon paste electrode (CPE) biosensor for phenol and catechol is reported. Silicon oil binders with similar (polydimethylsiloxane) chemical composition were used to represent a wid...

  16. Interaction between G Protein-Coupled Receptor 143 and Tyrosinase: Implications for Understanding Ocular Albinism Type 1.

    Science.gov (United States)

    De Filippo, Elisabetta; Schiedel, Anke C; Manga, Prashiela

    2017-02-01

    Developmental eye defects in X-linked ocular albinism type 1 are caused by G-protein coupled receptor 143 (GPR143) mutations. Mutations result in dysfunctional melanosome biogenesis and macromelanosome formation in pigment cells, including melanocytes and retinal pigment epithelium. GPR143, primarily expressed in pigment cells, localizes exclusively to endolysosomal and melanosomal membranes unlike most G protein-coupled receptors, which localize to the plasma membrane. There is some debate regarding GPR143 function and elucidating the role of this receptor may be instrumental for understanding neurogenesis during eye development and for devising therapies for ocular albinism type I. Many G protein-coupled receptors require association with other proteins to function. These G protein-coupled receptor-interacting proteins also facilitate fine-tuning of receptor activity and tissue specificity. We therefore investigated potential GPR143 interaction partners, with a focus on the melanogenic enzyme tyrosinase. GPR143 coimmunoprecipitated with tyrosinase, while confocal microscopy demonstrated colocalization of the proteins. Furthermore, tyrosinase localized to the plasma membrane when coexpressed with a GPR143 trafficking mutant. The physical interaction between the proteins was confirmed using fluorescence resonance energy transfer. This interaction may be required in order for GPR143 to function as a monitor of melanosome maturation. Identifying tyrosinase as a potential GPR143 binding protein opens new avenues for investigating the mechanisms that regulate pigmentation and neurogenesis. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  17. Bond-based 2D quadratic fingerprints in QSAR studies: virtual and in vitro tyrosinase inhibitory activity elucidation.

    Science.gov (United States)

    Casañola-Martin, Gerardo M; Marrero-Ponce, Yovani; Khan, Mahmud T H; Khan, Sher B; Torrens, Francisco; Pérez-Jiménez, Facundo; Rescigno, Antonio; Abad, Concepción

    2010-12-01

    In this report, we show the results of quantitative structure-activity relationship (QSAR) studies of tyrosinase inhibitory activity, by using the bond-based quadratic indices as molecular descriptors (MDs) and linear discriminant analysis (LDA), to generate discriminant functions to predict the anti-tyrosinase activity. The best two models [Eqs (6) and (12)] out of the total 12 QSAR models developed here show accuracies of 93.51% and 91.21%, as well as high Matthews correlation coefficients (C) of 0.86 and 0.82, respectively, in the training set. The validation external series depicts values of 90.00% and 89.44% for these best two equations (6) and (12), respectively. Afterwards, a second external prediction data are used to perform a virtual screening of compounds reported in the literature as active (tyrosinase inhibitors). In a final step, a series of lignans is analysed using the in silico-developed models, and in vitro corroboration of the activity is carried out. An issue of great importance to remark here is that all compounds present greater inhibition values than Kojic acid (standard tyrosinase inhibitor: IC₅₀ = 16.67 μm). The current obtained results could be used as a framework to increase the speed, in the biosilico discovery of leads for the treatment of skin disorders. © 2010 John Wiley & Sons A/S.

  18. Singlet oxygen generation during the oxidation of L-tyrosine and L-dopa with mushroom tyrosinase

    Energy Technology Data Exchange (ETDEWEB)

    Miyaji, Akimitsu [Department of Environmental Chemistry and Engineering, Tokyo Institute of Technology, 4259-G1-14, Nagatsuta-cho, Midori-ku, Yokohama 226-8502 (Japan); Kohno, Masahiro [Department of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259-G1-25 Nagatsuta-cho, Midori-ku, Yokohama 226-8502 (Japan); Inoue, Yoshihiro [Showa Pharmaceutical University, 3-3165 Higashi-tamagawagakuen, Machida, Tokyo 194-8543 (Japan); Baba, Toshihide, E-mail: tbaba@chemenv.titech.ac.jp [Department of Environmental Chemistry and Engineering, Tokyo Institute of Technology, 4259-G1-14, Nagatsuta-cho, Midori-ku, Yokohama 226-8502 (Japan)

    2016-03-18

    The generation of singlet oxygen during the oxidation of tyrosine and L-dopa using mushroom tyrosinase in a phosphate buffer (pH 7.4), the model of melanin synthesis in melanocytes, was examined. The reaction was performed in the presence of 2,2,6,6-tetramethyl-4-piperidone (4-oxo-TEMP), an acceptor of singlet oxygen and the electron spin resonance (ESR) of the spin adduct, 4-oxo-2,2,6,6-tetramethyl-1-piperidinyloxy (4-oxo-TEMPO), was measured. An increase in the ESR signal attributable to 4-oxo-TEMPO was observed during the oxidation of tyrosine and L-dopa with tyrosinase, indicating the generation of singlet oxygen. The results suggest that {sup 1}O{sub 2} generation via tyrosinase-catalyzed melanin synthesis occurs in melanocyte. - Highlights: • Generation of singlet oxygen was observed during tyrosinase-catalyzed tyrosine oxidation. • The singlet oxygen generated when tyrosine was converted into dopachrome. • The amount of singlet oxygen is not sufficient for cell toxicity. • It decreased when the hydroxyl radicals and/or superoxide anions were trapped.

  19. Development and application of a tyrosinase-based time-temperature indicator (TTI) for determining the quality of turbot sashimi

    Science.gov (United States)

    Xu, Fengjuan; Ge, Lei; Li, Zhenxing; Lin, Hong; Mao, Xiangzhao

    2017-10-01

    Time-temperature indicators (TTIs) are convenient intuitive devices that are widely used to predict food quality. The aim of this study is to develop a new simple device which can be attached to food packages as a quality indicator for turbot sashimi. In this study, a solid TTI based on the reaction between tyrosinase and tyrosine was developed. The Arrhenius behavior of this enzymatic TTI was studied. The kinetics of the tyrosinase-based TTI was investigated in the form of color change from colorless to dark black induced by the enzymatic reaction. The mathematical formula for the color alterations as a function of time and temperature was established. The longest indication time for the developed TTI was 50 hours at 4°C. The activation energy of the tyrosinase-based TTI was 0.409 kJ mol-1. The suitability of the tyrosinase-based TTI was validated for turbot sashimi using total plate count. The feasibility of using this TTI as a quality indicator for turbot sashimi was assessed based on the activation energy and indication time. Therefore, the tyrosinasebased TTI system developed in this study could be used as an effective tool for monitoring the quality changes of turbot sashimi during the distribution and storage.

  20. TYROSINASE-BASED CARBON PASTE ELECTRODE BIOSENSOR FOR DETECTION OF PHENOLS: BINDER AND PRE-OXIDATION EFFECTS

    Science.gov (United States)

    Tyrosinase-based carbon paste electrodes are evaluated with respect to the viscosity and polarity of the binder liquids. The electrodes constructed using a lower viscosity mineral oil or paraffin wax oil yielded a greater response to phenol and catechol than those using the hi...

  1. Designing Tyrosinase siRNAs by Multiple Prediction Algorithms and Evaluation of Their Anti-Melanogenic Effects.

    Science.gov (United States)

    Kwon, Ok-Seon; Kwon, Soo-Jung; Kim, Jin Sang; Lee, Gunbong; Maeng, Han-Joo; Lee, Jeongmi; Hwang, Gwi Seo; Cha, Hyuk-Jin; Chun, Kwang-Hoon

    2017-12-08

    Melanin is a pigment produced from tyrosine in melanocytes. Although melanin has a protective role against UVB radiation-induced damage, it is also associated with the development of melanoma and darker skin tone. Tyrosinase is a key enzyme in melanin synthesis, which regulates the rate-limiting step during conversion of tyrosine into DOPA and dopaquinone. To develop effective RNA interference therapeutics, we designed a melanin siRNA pool by applying multiple prediction programs to reduce human tyrosinase levels. First, 272 siRNAs passed the target accessibility evaluation using the RNAxs program. Then we selected 34 siRNA sequences with ΔG ≥-34.6 kcal/mol, i -Score value ≥65, and siRNA scales score ≤30. siRNAs were designed as 19-bp RNA duplexes with an asymmetric 3' overhang at the 3' end of the antisense strand. We tested if these siRNAs effectively reduced tyrosinase gene expression using qRT-PCR and found that 17 siRNA sequences were more effective than commercially available siRNA. Three siRNAs further tested showed an effective visual color change in MNT-1 human cells without cytotoxic effects, indicating these sequences are anti-melanogenic. Our study revealed that human tyrosinase siRNAs could be efficiently designed using multiple prediction algorithms.

  2. Discovery of a new tyrosinase-like enzyme family lacking a C-terminally processed domain: production and characterization of an Aspergillus oryzae catechol oxidase.

    Science.gov (United States)

    Gasparetti, Chiara; Faccio, Greta; Arvas, Mikko; Buchert, Johanna; Saloheimo, Markku; Kruus, Kristiina

    2010-03-01

    A homology search against public fungal genome sequences was performed to discover novel secreted tyrosinases. The analyzed proteins could be divided in two groups with different lengths (350-400 and 400-600 residues), suggesting the presence of a new class of secreted enzymes lacking the C-terminal domain. Among them, a sequence from Aspergillus oryzae (408 aa, AoCO4) was selected for production and characterization. AoCO4 was expressed in Trichoderma reesei under the strong cbh1 promoter. Expression of AoCO4 in T. reesei resulted in high yields of extracellular enzyme, corresponding to 1.5 g L(-1) production of the enzyme. AoCO4 was purified with a two-step purification procedure, consisting of cation and anion exchange chromatography. The N-terminal analysis of the protein revealed N-terminal processing taking place in the Kex2/furin-type protease cleavage site and removing the first 51 amino acids from the putative N-terminus. AoCO4 activity was tested on various substrates, and the highest activity was found on 4-tert-butylcatechol. Because no activity was detected on L-tyrosine and on L-dopa, AoCO4 was classified as a catechol oxidase. AoCO4 showed the highest activity within an acidic and neutral pH range, having an optimum at pH 5.6. AoCO4 showed good pH stability within a neutral and alkaline pH range and good thermostability up to 60 degrees C. The UV-visible and circular dichroism spectroscopic analysis suggested that the folding of the protein was correct.

  3. Endothelin receptor B2 (EDNRB2 is responsible for the tyrosinase-independent recessive white (mo(w and mottled (mo plumage phenotypes in the chicken.

    Directory of Open Access Journals (Sweden)

    Keiji Kinoshita

    Full Text Available A mutation that confers white plumage with black eyes was identified in the Minohiki breed of Japanese native chicken (Gallus gallus domesticus. The white plumage, with a few partially pigmented feathers, was not associated with the tyrosinase gene, and displayed an autosomal recessive mode of inheritance against the pigmented phenotype. All F1 offspring derived from crosses with mottled chickens (mo/mo, which show characteristic pigmented feathers with white tips, had plumage with a mottled-like pattern. This result indicates that the white plumage mutation is a novel allele at the mo locus; we propose the gene symbol mo(w for this mutant allele. Furthermore, the F1 hybrid between the mo(w /mo(w chicken and the panda (s/s mutant of Japanese quail (Coturnix japonica, whose causative gene is the endothelin receptor B2 (EDNRB2 gene, showed a mo(w/mo(w chicken-like plumage, suggesting the possibility that the mutations in parental species are alleles of the same gene, EDNRB2. Nucleotide sequencing of the entire coding region of EDNRB2 revealed a non-synonymous G1008T substitution, which causes Cys244Phe amino acid substitution in exon 5 (which is part of the extracellular loop between the putative fourth and fifth transmembrane domains of EDNRB2 in the mutant chicken. This Cys244Phe mutation was also present in individuals of four Japanese breeds with white plumage. We also identified a non-synonymous substitution leading to Arg332His substitution that was responsible for the mottled (mo/mo plumage phenotype. These results suggest that the EDN3 (endothelin 3-EDNRB2 signaling is essential for normal pigmentation in birds, and that the mutations of EDNRB2 may cause defective binding of the protein with endothelins, which interferes with melanocyte differentiation, proliferation, and migration.

  4. Endothelin Receptor B2 (EDNRB2) Is Responsible for the Tyrosinase-Independent Recessive White (mow) and Mottled (mo) Plumage Phenotypes in the Chicken

    Science.gov (United States)

    Kinoshita, Keiji; Akiyama, Toyoko; Mizutani, Makoto; Shinomiya, Ai; Ishikawa, Akira; Younis, Hassan Hassan; Tsudzuki, Masaoki; Namikawa, Takao; Matsuda, Yoichi

    2014-01-01

    A mutation that confers white plumage with black eyes was identified in the Minohiki breed of Japanese native chicken (Gallus gallus domesticus). The white plumage, with a few partially pigmented feathers, was not associated with the tyrosinase gene, and displayed an autosomal recessive mode of inheritance against the pigmented phenotype. All F1 offspring derived from crosses with mottled chickens (mo/mo), which show characteristic pigmented feathers with white tips, had plumage with a mottled-like pattern. This result indicates that the white plumage mutation is a novel allele at the mo locus; we propose the gene symbol mow for this mutant allele. Furthermore, the F1 hybrid between the mow/mow chicken and the panda (s/s) mutant of Japanese quail (Coturnix japonica), whose causative gene is the endothelin receptor B2 (EDNRB2) gene, showed a mow/mow chicken-like plumage, suggesting the possibility that the mutations in parental species are alleles of the same gene, EDNRB2. Nucleotide sequencing of the entire coding region of EDNRB2 revealed a non-synonymous G1008T substitution, which causes Cys244Phe amino acid substitution in exon 5 (which is part of the extracellular loop between the putative fourth and fifth transmembrane domains of EDNRB2) in the mutant chicken. This Cys244Phe mutation was also present in individuals of four Japanese breeds with white plumage. We also identified a non-synonymous substitution leading to Arg332His substitution that was responsible for the mottled (mo/mo) plumage phenotype. These results suggest that the EDN3 (endothelin 3)–EDNRB2 signaling is essential for normal pigmentation in birds, and that the mutations of EDNRB2 may cause defective binding of the protein with endothelins, which interferes with melanocyte differentiation, proliferation, and migration. PMID:24466053

  5. Anti–elastase, anti–tyrosinase and matrix metalloproteinase–1 inhibitory activity of earthworm extracts as potential new anti–aging agent

    Directory of Open Access Journals (Sweden)

    Nurhazirah Azmi

    2014-05-01

    Conclusions: Earthworms extract showed effective inhibition of tyrosinase, elastase and MMP-1 activities. Therefore, this experiment further rationalizes the traditional use of this worm extracts which may be useful as an anti-wrinkle agent.

  6. Stable convergence and stable limit theorems

    CERN Document Server

    Häusler, Erich

    2015-01-01

    The authors present a concise but complete exposition of the mathematical theory of stable convergence and give various applications in different areas of probability theory and mathematical statistics to illustrate the usefulness of this concept. Stable convergence holds in many limit theorems of probability theory and statistics – such as the classical central limit theorem – which are usually formulated in terms of convergence in distribution. Originated by Alfred Rényi, the notion of stable convergence is stronger than the classical weak convergence of probability measures. A variety of methods is described which can be used to establish this stronger stable convergence in many limit theorems which were originally formulated only in terms of weak convergence. Naturally, these stronger limit theorems have new and stronger consequences which should not be missed by neglecting the notion of stable convergence. The presentation will be accessible to researchers and advanced students at the master's level...

  7. Mushroom tyrosinase inhibitory activity and major fatty acid constituents of Amazonian native flora oils

    Directory of Open Access Journals (Sweden)

    Raquel da Silva Teixeira

    2012-09-01

    Full Text Available In order to treat hyperpigmentation-related problems, there has been a global trend in developing cosmetics claiming to have skin-whitening properties, which act by inhibiting melanin biosynthesis. The objective of this work was to evaluate the in vitro mushroom tyrosinase inhibitory activity of five Amazonian native flora oils, and so to verify the possibility of their incorporation into cosmetic products. In addition, the fatty acid composition of the essential oils was determined by gas chromatography-flame ionisation detection in order to determine the main components of these oils. The tyrosinase inhibitory activity of the tested oils was found to be in the following order: açaí (IA50 = 66.08 µg mL-1 > tucumã > patauá > pracaxi > castanha do Brasil. This study suggests that açaí oil has great potential in the treatment of hyperpigmentation and other related disorders, due to its considerable tyrosinase inhibitory activity.Com o intuito de se tratar problemas dermatológicos de hiperpigmentação, há uma tendência mundial no desenvolvimento de cosméticos que possuam propriedades despigmentantes, os quais agem inibindo a biossíntese de melanina. O objetivo deste trabalho foi avaliar in vitro a atividade de inibição da tirosinase de cogumelo de cinco óleos de plantas nativas da Amazônia e, desta forma, verificar a possibilidade de sua incorporação em produtos cosméticos. Ainda, a composição de ácidos graxos dos óleos foi determinada por cromatografia gasosa com detecção por ionização de chama, no intuito de determinar os principais componentes destes óleos. A atividade de inibição da tirosinase dos óleos testados foi encontrada na seguinte ordem: açaí (IA50 = 66,08 µg mL-1 > tucumã > patauá > pracaxi > castanha do Brasil. Este estudo sugere que o óleo de açaí possui grande potencial para o tratamento da hiperpigmentação cutânea e doenças correlatas, devido à sua considerável atividade de inibi

  8. Extracellular matrix and wound healing.

    Science.gov (United States)

    Maquart, F X; Monboisse, J C

    2014-04-01

    Extracellular matrix has been known for a long time as an architectural support for the tissues. Many recent data, however, have shown that extracellular matrix macromolecules (collagens, elastin, glycosaminoglycans, proteoglycans and connective tissue glycoproteins) are able to regulate many important cell functions, such as proliferation, migration, protein synthesis or degradation, apoptosis, etc., making them able to play an important role in the wound repair process. Not only the intact macromolecules but some of their specific domains, that we called "Matrikines", are also able to regulate many cell activities. In this article, we will summarize main findings showing the effects of extracellular matrix macromolecules and matrikines on connective tissue and epithelial cells, particularly in skin, and their potential implication in the wound healing process. These examples show that extracellular matrix macromolecules or some of their specific domains may play a major role in wound healing. Better knowledge of these interactions may suggest new therapeutic targets in wound healing defects. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  9. Extracellular Vesicles in Renal Pathophysiology.

    Science.gov (United States)

    Pomatto, Margherita A C; Gai, Chiara; Bussolati, Benedetta; Camussi, Giovanni

    2017-01-01

    Extracellular vesicles are a heterogeneous population of microparticles released by virtually all living cells which have been recently widely investigated in different biological fields. They are typically composed of two primary types (exosomes and microvesicles) and are recently commanding increasing attention as mediators of cellular signaling. Indeed, these vesicles can affect recipient cells by carrying and delivering complex cargos of biomolecules (including proteins, lipids and nucleic acids), protected from enzymatic degradation in the environment. Their importance has been demonstrated in the pathophysiology of several organs, in particular in kidney, where different cell types secrete extracellular vesicles that mediate their communication with downstream urinary tract cells. Over the past few years, evidence has been shown that vesicles participate in kidney development and normal physiology. Moreover, EVs are widely demonstrated to be implicated in cellular signaling during renal regenerative and pathological processes. Although many EV mechanisms are still poorly understood, in particular in kidney, the discovery of their role could help to shed light on renal biological processes which are so far elusive. Lastly, extracellular vesicles secreted by renal cells gather in urine, thus becoming a great resource for disease or recovery markers and a promising non-invasive diagnostic instrument for renal disease. In the present review, we discuss the most recent findings on the role of extracellular vesicles in renal physiopathology and their potential implication in diagnosis and therapy.

  10. STAP-2 Protein Expression in B16F10 Melanoma Cells Positively Regulates Protein Levels of Tyrosinase, Which Determines Organs to Infiltrate in the Body.

    Science.gov (United States)

    Sekine, Yuichi; Togi, Sumihito; Muromoto, Ryuta; Kon, Shigeyuki; Kitai, Yuichi; Yoshimura, Akihiko; Oritani, Kenji; Matsuda, Tadashi

    2015-07-10

    Melanoma is the most serious type of skin cancer, with a highly metastatic phenotype. In this report, we show that signal transducing adaptor protein 2 (STAP-2) is involved in cell migration, proliferation, and melanogenesis as well as chemokine receptor expression and tumorigenesis in B16F10 melanoma cells. This was evident in mice injected with STAP-2 shRNA (shSTAP-2)-expressing B16F10 cells, which infiltrated organs in a completely different pattern from the original cells, showing massive colonization in the liver, kidney, and neck but not in the lung. The most important finding was that STAP-2 expression determined tyrosinase protein content. STAP-2 colocalized with tyrosinase in lysosomes and protected tyrosinase from protein degradation. It is noteworthy that B16F10 cells with knocked down tyrosinase showed similar cell characteristics as shSTAP-2 cells. These results indicated that tyrosinase contributed to some cellular events beyond melanogenesis. Taken together, one possibility is that STAP-2 positively regulates the protein levels of tyrosinase, which determines tumor invasion via controlling chemokine receptor expression. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Camellia sinensis L. Extract and Its Potential Beneficial Effects in Antioxidant, Anti-Inflammatory, Anti-Hepatotoxic, and Anti-Tyrosinase Activities.

    Science.gov (United States)

    Thitimuta, Surached; Pithayanukul, Pimolpan; Nithitanakool, Saruth; Bavovada, Rapepol; Leanpolchareanchai, Jiraporn; Saparpakorn, Patchreenart

    2017-03-04

    The aims of this study were to investigate the potential benefits of antioxidant, anti-inflammatory, anti-hepatotoxic, and anti-tyrosinase activities of a methanolic extract of fresh tea leaves (FTE) ( Camellia sinensis L.). The antioxidant capacity was investigated using three different methods at different temperatures. The anti-inflammatory activity was studied in vitro by the inhibition of 5-lipoxygenase assay. The anti-hepatotoxic effect was investigated in CCl₄-induced liver injury in rats. The anti-tyrosinase activities of the FTE and its principal phenolic compounds were investigated in l-3,4-dihydroxyphenylalanine (l-DOPA) oxidation by a mushroom tyrosinase. A molecular docking study was conducted to determine how the FTE's principal catechins interact with the tyrosinase. The FTE exhibited the best shelf life at low temperatures and demonstrated concentration-dependent antioxidant, anti-inflammatory, anti-hepatotoxic, and anti-tyrosinase effects compared to positive references. Treatment of rats with the FTE at 2000 mg/kg/day for 28 consecutive days reversed CCl₄-induced oxidative damage in hepatic tissues by lowering the levels of alanine aminotransferase by 69% and malondialdehyde by 90%. Our findings suggest that the FTE has the capacity to scavenge free radicals and can protect against oxidative stress induced by CCl₄ intoxication. The docking results were consistent with our in vitro data, indicating the anti-tyrosinase potency of the principal catechins.

  12. Discovery of Potent Cysteine-Containing Dipeptide Inhibitors against Tyrosinase: A Comprehensive Investigation of 20 × 20 Dipeptides in Inhibiting Dopachrome Formation.

    Science.gov (United States)

    Tseng, Tien-Sheng; Tsai, Keng-Chang; Chen, Wang-Chuan; Wang, Yeng-Tseng; Lee, Yu-Ching; Lu, Chung-Kuang; Don, Ming-Jaw; Chang, Chang-Yu; Lee, Ching-Hsiao; Lin, Hui-Hsiung; Hsu, Hung-Ju; Hsiao, Nai-Wan

    2015-07-15

    Tyrosinase is an essential copper-containing enzyme required for melanin synthesis. The overproduction and abnormal accumulation of melanin cause hyperpigmentation and neurodegenerative diseases. Thus, tyrosinase is promising for use in medicine and cosmetics. Our previous study identified a natural product, A5, resembling the structure of the dipeptide WY and apparently inhibiting tyrosinase. Here, we comprehensively estimated the inhibitory capability of 20 × 20 dipeptides against mushroom tyrosinase. We found that cysteine-containing dipeptides, directly blocking the active site of tyrosinase, are highly potent in inhibition; in particular, N-terminal cysteine-containing dipeptides markedly outperform the C-terminal-containing ones. The cysteine-containing dipeptides, CE, CS, CY, and CW, show comparative bioactivities, and tyrosine-containing dipeptides are substrate-like inhibitors. The dipeptide PD attenuates 16.5% melanin content without any significant cytotoxicity. This study reveals the functional role of cysteine residue positional preference and the selectivity of specific amino acids in cysteine-containing dipeptides against tyrosinase, aiding in developing skin-whitening products.

  13. Camellia sinensis L. Extract and Its Potential Beneficial Effects in Antioxidant, Anti-Inflammatory, Anti-Hepatotoxic, and Anti-Tyrosinase Activities

    Directory of Open Access Journals (Sweden)

    Surached Thitimuta

    2017-03-01

    Full Text Available The aims of this study were to investigate the potential benefits of antioxidant, anti-inflammatory, anti-hepatotoxic, and anti-tyrosinase activities of a methanolic extract of fresh tea leaves (FTE (Camellia sinensis L.. The antioxidant capacity was investigated using three different methods at different temperatures. The anti-inflammatory activity was studied in vitro by the inhibition of 5-lipoxygenase assay. The anti-hepatotoxic effect was investigated in CCl4-induced liver injury in rats. The anti-tyrosinase activities of the FTE and its principal phenolic compounds were investigated in l-3,4-dihydroxyphenylalanine (l-DOPA oxidation by a mushroom tyrosinase. A molecular docking study was conducted to determine how the FTE’s principal catechins interact with the tyrosinase. The FTE exhibited the best shelf life at low temperatures and demonstrated concentration-dependent antioxidant, anti-inflammatory, anti-hepatotoxic, and anti-tyrosinase effects compared to positive references. Treatment of rats with the FTE at 2000 mg/kg/day for 28 consecutive days reversed CCl4-induced oxidative damage in hepatic tissues by lowering the levels of alanine aminotransferase by 69% and malondialdehyde by 90%. Our findings suggest that the FTE has the capacity to scavenge free radicals and can protect against oxidative stress induced by CCl4 intoxication. The docking results were consistent with our in vitro data, indicating the anti-tyrosinase potency of the principal catechins.

  14. Enzymatic Reactions in Near Critical CO2: The Effect of Pressure on Phenol Removal by Tyrosinase

    Science.gov (United States)

    Amaral, Priscilla; Garcia, Daniela; Cardoso, Miguel; Mendes, Marisa; Coelho, Maria Alice; Pessoa, Fernando

    2009-01-01

    The use of enzymes in supercritical CO2 (SCCO2) has received extensive attention in recent years. Biocatalysts have the advantage of substrate specificity and SCCO2 offers several advantages over liquid solvents. This work deals with the utilization of SCCO2 as a medium for the enzymatic removal of phenol from aqueous solutions using tyrosinase. Since the presence of oxygen is crucial for the enzyme-catalyzed oxidation, the substantial solvating power of SCCO2 makes it a promising medium for such reactions. The conversion of phenol was higher at 10 MPa. Under near critical conditions (7 MPa, 35 °C), the addition of air at 5 × 105 Pa of pressure improved phenol removal. PMID:20054468

  15. The tyrosinase-positive oculocutaneous albinism locus maps to chromosome 15q11. 2-q12

    Energy Technology Data Exchange (ETDEWEB)

    Ramsay, M.; Colman, M.A.; Stevens, G.; Zwane, E.; Kromberg, J.; Jenkins, T. (South African Institute for Medical Research, Johannesburg (South Africa)); Garral, M.

    1992-10-01

    Tyrosinase-positive oculocutaneous albinism (ty-pos OCA), an autosomal recessive disorder of the melanin biosynthetic pathway, is the most common type of albinism occurring worldwide. In southern African Bantu-speaking negroids it has an overall prevalence of about 1/3,900. Since the basic biochemical defect is unknown, a linkage study with candidate loci, candidate chromosomal regions, and random loci was undertaken. The ty-pos OCA locus was found to be linked to two arbitrary loci, D15S10 and D15S13, in the Prader-Willi/Angelman chromosomal region on chromosome 15q11.2-q12. The pink-eyed dilute locus, p, on mouse chromosome 7, maps close to a region of homology on human chromosome 15q, and we postulate that the ty-pos OCA and p loci are homologous. 43 refs., 2 figs., 1 tab.

  16. Tyrosinase inhibitor screening in traditional Chinese medicines by electrophoretically mediated microanalysis.

    Science.gov (United States)

    Tang, Lilin; Zhang, Wenpeng; Zhao, Haiyan; Chen, Zilin

    2015-08-01

    A capillary-electrophoresis-based method for the screening of tyrosinase inhibitors in traditional Chinese medicines was developed. The method integrated electrophoretically mediated microanalysis with sandwich mode injection, partial filling, and rapid polarity switching techniques, and carried out on-column enzyme reaction and the separation of substrate and product. The conditions were optimized including the background electrolyte, mixing voltage, and the incubation time. Finally, the screening of nine standard natural compounds of traditional Chinese medicines was carried out. The inhibitors can be directly identified from the reduced peak area of the product compared to that obtained without any inhibitor. Chlorogenic acid (100 μM) showed inhibitory activity with the inhibitory percentage of 19.8%, while the other compounds showed no inhibitory activity. This method has great application potential in drug discovery from traditional Chinese medicines. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Xenogeneic murine tyrosinase DNA vaccine for malignant melanoma of the digit of dogs.

    Science.gov (United States)

    Manley, C A; Leibman, N F; Wolchok, J D; Rivière, I C; Bartido, S; Craft, D M; Bergman, P J

    2011-01-01

    Malignant melanoma of dogs is a highly aggressive neoplasm and is the 2nd most common digit tumor. Metastatic disease is a common sequela for which few effective treatment options exist. Studies show that xenogeneic tyrosinase DNA vaccination yields immune responses and prolongation of survival in dogs with oral malignant melanoma. Describe clinical findings and tumor characteristics of a cohort of dogs with digit malignant melanoma, and evaluate the prognostic utility of a proposed staging system. Determine if a novel xenogeneic DNA vaccine is safe and potentially effective for treatment of dogs with digit melanoma. Fifty-eight dogs with digit malignant melanoma treated at the Animal Medical Center between 2004 and 2007. Retrospective, medical records review of dogs with digit melanoma treated with xenogeneic DNA vaccine. Overall median survival time (MST) for dogs treated with loco-regional control and xenogeneic DNA vaccine was 476 days with a 1-year survival rate of 63%. MST for dogs presenting with metastasis was 105 days versus 533 days for dogs presenting without metastasis (P dogs in the latter group were alive at 2 and 3 years. A proposed staging system proved prognostic with stages I-IV dogs surviving >952, >1,093, 321, and 76 days, respectively. The xenogeneic murine tyrosinase DNA vaccine was safe and appears effective when used in conjunction with local and regional disease control. The proposed staging system was prognostic in this study and future studies might benefit from utilizing this staging system. Copyright © 2010 by the American College of Veterinary Internal Medicine.

  18. Novel synthesis of gold nanoclusters templated with L-tyrosine for selective analyzing tyrosinase

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xiaoming, E-mail: ming4444@swu.edu.cn; Luo, Yawen; Zhuo, Yan; Feng, Yuanjiao; Zhu, Shanshan

    2014-08-20

    Graphical abstract: One-pot and novel synthesized fluorescent gold nanoclusters templated with L-tyrosine (AuNCs@Tyr) were employed for investigating tyrosinase activity on the basis of aggregations of AuNCs@Tyr on its active sites during the catalysis reactions, thus leading to the fluorescence quenching of AuNCs@Tyr. - Highlights: • A novel, one-pot strategy for synthesizing fluorescent AuNCs@Tyr was proposed. • A selective and cost-effective assay for TR activity has been well established. • This AuNCs@Tyr here may broaden avenues for detecting TR in clinical applications. - Abstract: L-Tyrosine (Tyr), playing roles as both a reducing reagent and a protecting ligand, has been first employed for synthesizing fluorescent gold nanoclusters (AuNCs@Tyr) via a novel one-pot strategy. The as-prepared AuNCs@Tyr exhibited a fluorescence emission at 470 nm with a quantum yield of approximately 2.5%. Subsequently, the AuNCs@Tyr described here was applied for detections of tyrosinase (TR) activity, which was based on the mechanism of aggregations of AuNCs@Tyr occurring on the active sites of TR since TR was introduced, thus leading to the fluorescence quenching of AuNCs@Tyr. Accordingly, TR was analyzed in a linear range of 0.5–200 u mL{sup −1} with a detection limit of 0.08 u mL{sup −1} at a signal-to-noise ratio of 3. Significantly, TR has been considered as a critical marker for melanoma owing to its specifically expressing in melanoma cells. Therefore, this analytical method towards investigating TR activity may broaden avenues for meaningfully clinical applications.

  19. Nanostructured progesterone immunosensor using a tyrosinase-colloidal gold-graphite-Teflon biosensor as amperometric transducer

    Energy Technology Data Exchange (ETDEWEB)

    Carralero, Veronica [Department of Analytical Chemistry, Faculty of Chemistry, University Complutense of Madrid, 28040 Madrid (Spain); Gonzalez-Cortes, Araceli [Department of Analytical Chemistry, Faculty of Chemistry, University Complutense of Madrid, 28040 Madrid (Spain); Yanez-Sedeno, Paloma [Department of Analytical Chemistry, Faculty of Chemistry, University Complutense of Madrid, 28040 Madrid (Spain)]. E-mail: yseo@quim.ucm.es; Pingarron, Jose M. [Department of Analytical Chemistry, Faculty of Chemistry, University Complutense of Madrid, 28040 Madrid (Spain)

    2007-07-16

    A novel progesterone immunosensor using a colloidal gold-graphite-Teflon-tyrosinase composite biosensor as amperometric transducer is reported. A sequential competitive configuration between the analyte and progesterone labelled with alkaline phosphatase (AP) was used. Phenyl phosphate was employed as the AP-substrate and the enzyme reaction product, phenol, was oxidized by tyrosinase to o-quinone, which is subsequently reduced at -0.1 V at the biocomposite electrode. Variables such as the concentration of phenyl phosphate, the amount of antibody attached to the electrode surface, immersion time in a 2% BSA solution, working pH and incubation times in progesterone and AP conjugate were optimized. A linear calibration graph for progesterone was obtained between 0 and 40 ng mL{sup -1} with a slope value of -82.3 nA ng{sup -1} mL, and a detection limit of 0.43 ng mL{sup -1}. The time needed to reach the steady-state current from the addition of phenyl phosphate was 30-40 s. These analytical characteristics improve substantially those reported for other progesterone immunosensors. A lifetime of 14 days with no need to apply any regeneration procedure was also achieved. The usefulness of the immunosensor was evaluated by determining progesterone in milk samples spiked with the analyte at 5.0 and 1.5 ng mL{sup -1} concentration levels. Following a very simple procedure, involving only sample dilution, mean recoveries (n = 7) of 98 {+-} 3% and 99 {+-} 3%, respectively, were obtained.

  20. Glomerular extracellular matrix components and integrins

    NARCIS (Netherlands)

    Sterk, L. M.; de Melker, A. A.; Kramer, D.; Kuikman, I.; Chand, A.; Claessen, N.; Weening, J. J.; Sonnenberg, A.

    1998-01-01

    It has become apparent that extracellular matrix components and their cellular receptors, the integrins, are important regulators of glomerular development and function. In this rapidly evolving field we studied the production of extracellular matrix components and integrins by rat glomerular

  1. stableGP

    Data.gov (United States)

    National Aeronautics and Space Administration — The code in the stableGP package implements Gaussian process calculations using efficient and numerically stable algorithms. Description of the algorithms is in the...

  2. Extracellular vesicles in cardiovascular homeostasis and disease.

    Science.gov (United States)

    Hutcheson, Joshua D; Aikawa, Elena

    2018-05-01

    Extracellular vesicles have emerged as one of the most important means through which cells interact with each other and the extracellular environment, but extracellular vesicle research remains challenging due to their small size, limited amount of material required for traditional molecular biology assays and inconsistency in the methods of their isolation. The advent of new technologies and standards in the field, however, have led to increased mechanistic insight into extracellular vesicle function. Herein, the latest studies on the role of extracellular vesicles in cardiovascular physiology and disease are discussed. Extracellular vesicles help control cardiovascular homeostasis and remodelling by mediating communication between cells and directing alterations in the extracellular matrix to respond to changes in the environment. The message carried from the parent cell to extracellular space can be intended for both local (within the same tissue) and distal (downstream of blood flow) targets. Pathological cargo loaded within extracellular vesicles could further result in various diseases. On the contrary, new studies indicate that injection of extracellular vesicles obtained from cultured cells into diseased tissues can promote restoration of normal tissue function. Extracellular vesicles are an integral part of cell and tissue function, and harnessing the properties inherent to extracellular vesicles may provide a therapeutic strategy to promote tissue regeneration.

  3. Extracellular metalloproteinases in Phytomonas serpens.

    Science.gov (United States)

    Vermelho, Alane B; Almeida, Flávia V S; Bronzato, Leandro S; Branquinha, Marta H

    2003-03-01

    The detection of extracellular proteinases in Phytomonas serpens, a trypanosomatid isolated from tomato fruits, is demonstrated in this paper. Maximal production occurred at the end of the logarithmic phase of growth. These enzymes exhibited selective substrate utilization in SDS-PAGE, being more active with gelatin; hemoglobin and bovine serum albumin were not degraded. Three proteinases were detected in SDS-PAGE-gelatin, with apparent molecular masses between 94 and 70 kDa. The proteolytic activity was completely blocked by 1,10-phenanthroline and strongly inhibited by EDTA, whereas a partial inhibition was observed with trans-epoxysuccinyl-L-leucylamido-(4-guanidino) butane (E-64) and soybean trypsin inhibitor; phenylmethylsulfonyl fluoride weakly inhibited the enzymes. This inhibition profile indicated that these extracellular proteinases belong to the metalloproteinase class.

  4. Immunotherapeutic Potential of Extracellular Vesicles

    OpenAIRE

    Zhang, Bin; Yin, Yijun; Lai, Ruenn Chai; Lim, Sai Kiang

    2014-01-01

    Extracellular vesicle or EV is a term that encompasses all classes of secreted lipid membrane vesicles. Despite being scientific novelties, EVs are gaining importance as a mediator of important physiological and pathological intercellular activities possibly through the transfer of their cargo of protein and RNA between cells. In particular, exosomes, the currently best characterized EVs have been notable for their in vitro and in vivo immunomodulatory activities. Exosomes are nanometer-sized...

  5. Extracellular secretion of recombinant proteins

    Science.gov (United States)

    Linger, Jeffrey G.; Darzins, Aldis

    2014-07-22

    Nucleic acids encoding secretion signals, expression vectors containing the nucleic acids, and host cells containing the expression vectors are disclosed. Also disclosed are polypeptides that contain the secretion signals and methods of producing polypeptides, including methods of directing the extracellular secretion of the polypeptides. Exemplary embodiments include cellulase proteins fused to secretion signals, methods to produce and isolate these polypeptides, and methods to degrade lignocellulosic biomass.

  6. Extracellular Vesicles in Lung Disease.

    Science.gov (United States)

    Kubo, Hiroshi

    2018-01-01

    Accumulating evidence suggests that extracellular vesicles (EVs) play a role in the pathogenesis of lung diseases. These vesicles include exosomes, ectosomes (ie, microparticles, extracellular vesicles, microvesicles, and shedding vesicles), and apoptotic bodies. Exosomes are generated by inward budding of the membrane (endocytosis), subsequent forming of multivesicular bodies, and release by exocytosis. Ectosomes are formed by outward blebbing from the plasma membrane and are then released by proteolytic cleavage from the cell surface. Apoptotic bodies are generated on apoptotic cell shrinkage and death. Extracellular vesicles are released when the cells are activated or undergo apoptosis under inflammatory conditions. The number and types of released EVs are different according to the pathophysiological status of the disease. Therefore, EVs can be novel biomarkers for various lung diseases. EVs contain several molecules, including proteins, mRNA, microRNA, and DNA; they transfer these molecules to distant recipient cells. Circulating EVs modify the targeted cells and influence the microenvironment of the lungs. For this unique capability, EVs are expected to be a new drug delivery system and a novel therapeutic target. Copyright © 2017 American College of Chest Physicians. Published by Elsevier Inc. All rights reserved.

  7. 1,1-Diphenyl-2-picrylhydrazyl radical scavenging activity and tyrosinase inhibitory effects of constituents of sugarcane molasses.

    Science.gov (United States)

    Takara, Kensaku; Otsuka, Keiko; Wada, Koji; Iwasaki, Hironori; Yamashita, Masatsugu

    2007-01-01

    In the course of our work into the use of cane by-products, we have studied the isolation and structural determination of bioactive compounds in sugarcane molasses. In this study, three stereo isomers of syringyl glycerol 3'-O-beta-D-glucopyranoside, three stereo isomers of guaiacyl glycerol 3'-O-beta-D-glucopyranoside, a syringyl glycerol 2'-O-beta-D-glucopyranoside, tachioside and a 2,3-dihydro-3,5-dihydroxy-6-methyl-4-(H)-pyran-4-one (DDMP) were isolated from the 25% methanol eluate by Amberlite XAD-2 column chromatography of sugarcane molasses. The structures of these compounds were determined on the basis of spectroscopic evidence. These isolated compounds were examined for their scavenging activity against 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical species, and for their inhibitory activity against mushroom tyrosinase. All of the isolated compounds showed DPPH radical scavenging activity, while DDMP and tachioside showed mushroom tyrosinase inhibitory activity.

  8. In vitro inhibitory potential of methanolic extract of Celosia argentea var. cristata on tyrosinase, acetylcholinesterase and butyrylcholinesterase enzymes

    Directory of Open Access Journals (Sweden)

    Fatima Saqib

    2015-06-01

    Full Text Available In the current study, methanol extract of Celosia argentea var. cristata was tested for its inhibitory potential against tyrosinase, acetylcholinesterase and butyrylcholinesterase enzymes at the concentration of 0.5 mM by ELISA microtiter plate assays. A significant tyrosinase inhibitory activity (63.6%, acetylcholinesterase inhibitory activity (80.3% and butyrylcholinesterse inhibitory activity (68.24% was shown by crude methanolic extract of C. argentea var. cristata with respective IC50 values of 268.5 ± 0.2 µg/mL, 73.6 ± 0.1 µg/mL and 132.8 ± 0.9 µg/mL. The result of this study reveals the use of C. argentea var. cristata in skin hyperpigmentation, Parkinson’s disease and neurodegenerative disorders like Alzheimer’s disease and dementia.

  9. Antioxidant Flavonols and Phenolic Compounds from Atraphaxis frutescens and Their Inhibitory Activities against Insect Phenoloxidase and Mushroom Tyrosinase.

    Science.gov (United States)

    Odonbayar, Batsukh; Murata, Toshihiro; Batkhuu, Javzan; Yasunaga, Kosho; Goto, Rina; Sasaki, Kenroh

    2016-12-23

    Chemical investigation of the aerial parts of Atraphaxis frutescens resulted in the isolation of five 7-methoxyflavonols with pyrogallol B-ring moieties (1-5), a fisetinidol glucoside (13), and a benzyl glycoside (18), together with 26 known compounds including flavonoids, phenylpropanoid amides, anthraquinone glycosides, lignans, and a benzyl derivative. The principal chemical structural feature of the isolated compounds was either a pyrogallol or catechol B-ring moiety, and they showed potent 1,1-diphenyl-2-picrylhydrazyl radical scavenging activities. To assess the effects of these antioxidants on biological enzymes, their inhibitory effects against an insect phenoloxidase and a mushroom tyrosinase were evaluated. This study indicated that insect phenoloxidase was inhibited by phenylpropanoid amides and that mushroom tyrosinase was inhibited by the characteristic 7-methoxyflavonol 3-O-rhamnopyranosides.

  10. Combining molecular docking and QSAR studies for modeling the anti-tyrosinase activity of aromatic heterocycle thiosemicarbazone analogues

    Science.gov (United States)

    Dong, Huanhuan; Liu, Jing; Liu, Xiaoru; Yu, Yanying; Cao, Shuwen

    2018-01-01

    A collection of thirty-six aromatic heterocycle thiosemicarbazone analogues presented a broad span of anti-tyrosinase activities were designed and obtained. A robust and reliable two-dimensional quantitative structure-activity relationship model, as evidenced by the high q2 and r2 values (0.848 and 0.893, respectively), was gained based on the analogues to predict the quantitative chemical-biological relationship and the new modifier direction. Inhibitory activities of the compounds were found to greatly depend on molecular shape and orbital energy. Substituents brought out large ovality and high highest-occupied molecular orbital energy values helped to improve the activity of these analogues. The molecular docking results provided visual evidence for QSAR analysis and inhibition mechanism. Based on these, two novel tyrosinase inhibitors O04 and O05 with predicted IC50 of 0.5384 and 0.8752 nM were designed and suggested for further research.

  11. Determination of Antioxidant, Anticholinesterase, Tyrosinase Inhibitory Activities and Fatty Acid Profiles of 10 Anatolian Klasea Cass. Species

    Directory of Open Access Journals (Sweden)

    Gülsen Tel

    2016-01-01

    Full Text Available In search of new natural fatty acid sources, extract of 10 different Turkish Klasea species were studies. Fatty acids of Klasea species were studied by GC and GC-MSD. Oleic acid (4.8-45.8%, palmitic acid (15.6-51.8%, linoleic acid (0.3-45.5%, palmitoleic acid (0.8-28.4% and linolenic acid (15.6-34.6% were the main fatty acids elucidated. All extracts were also subjected to acetylcholinesterase, butyrylcholinesterase, tyrosinase, β-carotene-linoleic acid, DPPH • scavenging, CUPRAC and ferrous ion-chelating ability activities. Total flavonoid and phenolic contents were determined as quercetin and pyrocatechol equivalents. All extracts showed significant antioxidant activity in all tests, except hexane extracts of K. serratuloides and K. cerinthifolia that showed weak inhibition against BChE and AChE. The hexane extract of K. coriaceae and methanol extract of K. serratuloides exhibited notable tyrosinase inhibitory activity.

  12. Synthesis of chiral pyrazolo[4,3-e][1,2,4]triazine sulfonamides with tyrosinase and urease inhibitory activity.

    Science.gov (United States)

    Mojzych, Mariusz; Tarasiuk, Paweł; Kotwica-Mojzych, Katarzyna; Rafiq, Muhammad; Seo, Sung-Yum; Nicewicz, Michał; Fornal, Emilia

    2017-12-01

    A new series of sulfonamide derivatives of pyrazolo[4,3-e][1,2,4]triazine with chiral amino group has been synthesized and characterized. The compounds were tested for their tyrosinase and urease inhibitory activity. Evaluation of prepared derivatives demonstrated that compounds (8b) and (8j) are most potent mushroom tyrosinase inhibitors whereas all of the obtained compounds showed higher urease inhibitory activity than the standard thiourea. The compounds (8a), (8f) and (8i) exhibited excellent enzyme inhibitory activity with IC 50 0.037, 0.044 and 0.042 μM, respectively, while IC 50 of thiourea is 20.9 μM.

  13. A frequent tyrosinase gene mutation associated with type I-A (tyroinase-negative) oculocutaneous albinism in Puerto Rico

    Energy Technology Data Exchange (ETDEWEB)

    Oetting, W.S.; Witkop, C.J. Jr.; Brown, S.A.; Fryer, J.P.; Bloom, K.E.; King, R.A. (Univ. of Minnesota, Minneapolis (United States)); Colomer, R. (Servicio Medico de Empressa de la ONCE, Canary Islands (Spain))

    1993-01-01

    The authors have determined the mutations in the tyrosinase gene from 12 unrelated Puerto Rican individuals who have type I-A (tyrosinase-negative) oculocutaneous albinism (OCA). All but one individual are of Hispanic descent. Nine individuals were homozygous for a missense mutation (G47D) in exon I at codon 47. Two individuals were heterozygous for the G47D mutation, with one having a missense mutation at codon 373 (T373K) in the homologous allele and the other having an undetermined mutation in the homologous allele. One individual with negroid features was homozygous for a nonsense mutation (W236X). The population migration between Puerto Rico and the Canary Islands is well recognized. Analysis of three individuals with OCA from the Canary Islands showed that one was a compound heterozygote for the G47D mutation and for a novel missense mutation (L216M), one was homozygous for a missense mutation (P81L), and one was heterozygous for the missense mutation P81L. The G47D and P81L missense mutations have been previously described in extended families in the United States. Haplotypes were determined using four polymorphisms linked to the tyrosinase locus. Haplotype analysis showed that the G47D mutation occurred on a single haplotype, consistent with a common founder for all individuals having this mutation. Two different haplotypes were found associated with the P81L mutation, suggesting that this may be either a recurring mutation for the tyrosinase gene or a recombination between haplotypes. 28 refs., 1 fig., 3 tabs.

  14. Exploring the interaction of N/S compounds with a dicopper center: tyrosinase inhibition and model studies.

    Science.gov (United States)

    Buitrago, Elina; Vuillamy, Alexandra; Boumendjel, Ahcène; Yi, Wei; Gellon, Gisèle; Hardré, Renaud; Philouze, Christian; Serratrice, Guy; Jamet, Hélène; Réglier, Marius; Belle, Catherine

    2014-12-15

    Tyrosinase (Ty) is a copper-containing enzyme widely present in plants, bacteria, and humans, where it is involved in biosynthesis of melanin-type pigments. Development of Ty inhibitors is an important approach to control the production and the accumulation of pigments in living systems. In this paper, we focused our interest in phenylthiourea (PTU) and phenylmethylene thiosemicarbazone (PTSC) recognized as inhibitors of tyrosinase by combining enzymatic studies and coordination chemistry methods. Both are efficient inhibitors of mushroom tyrosinase and they can be considered mainly as competitive inhibitors. Computational studies verify that PTSC and PTU inhibitors interact with the metal center of the active site. The KIC value of 0.93 μM confirms that PTSC is a much more efficient inhibitor than PTU, for which a KIC value of 58 μM was determined. The estimation of the binding free energies inhibitors/Ty confirms the high inhibitor efficiency of PTSC. Binding studies of PTSC along with PTU to a dinuclear copper(II) complex ([Cu2(μ-BPMP)(μ-OH)](ClO4)2 (1); H-BPMP = 2,6-bis-[bis(2-pyridylmethyl)aminomethyl]-4-methylphenol) known to be a structural and functional model for the tyrosinase catecholase activity, have been performed. Interactions of the compounds with the dicopper model complex 1 were followed by spectrophotometry and electrospray ionization (ESI). The molecular structure of 1-PTSC and 1-PTU adducts were determined by single-crystal X-ray diffraction analysis showing for both an unusual bridging binding mode on the dicopper center. These results reflect their adaptable binding mode in relation to the geometry and chelate size of the dicopper center.

  15. Extracellular and intracellular polyphenol oxidases cause opposite effects on sensitivity of Streptomyces to phenolics: a case of double-edged sword.

    Directory of Open Access Journals (Sweden)

    Han-Yu Yang

    Full Text Available Many but not all species of Streptomyces species harbour a bicistronic melC operon, in which melC2 encodes an extracellular tyrosinase (a polyphenol oxidase and melC1 encodes a helper protein. On the other hand, a melC-homologous operon (melD is present in all sequenced Streptomyces chromosomes and could be isolated by PCR from six other species tested. Bioinformatic analysis showed that melC and melD have divergently evolved toward different functions. MelD2, unlike tyrosinase (MelC2, is not secreted, and has a narrower substrate spectrum. Deletion of melD caused an increased sensitivity to several phenolics that are substrates of MelD2. Intracellularly, MelD2 presumably oxidizes the phenolics, thus bypassing spontaneous copper-dependent oxidation that generates DNA-damaging reactive oxygen species. Surprisingly, melC(+ strains were more sensitive rather than less sensitive to phenolics than melC(- strains. This appeared to be due to conversion of the phenolics by MelC2 to more hydrophobic and membrane-permeable quinones. We propose that the conserved melD operon is involved in defense against phenolics produced by plants, and the sporadically present melC operon probably plays an aggressive role in converting the phenolics to the more permeable quinones, thus fending off less tolerant competing microbes (lacking melD in the phenolic-rich rhizosphere.

  16. Novel piperonal 1,3,4-thiadiazolium-2-phenylamines mesoionic derivatives: Synthesis, tyrosinase inhibition evaluation and HSA binding study.

    Science.gov (United States)

    Lopes, Natália Drumond; Chaves, Otávio Augusto; de Oliveira, Márcia C C; Sant'Anna, Carlos Mauricio R; Sousa-Pereira, Danilo; Netto-Ferreira, José Carlos; Echevarria, Aurea

    2018-06-01

    A novel series of piperonal mesoionic derivatives (PMI 1-6) was synthesized. Tyrosinase inhibition in the presence of PMI-1, -2, -3, -4, -5 and -6 as well as human serum albumin (HSA) binding studies with PMI-5 and PMI-6 were done by spectroscopic and theoretical methods. The mesoionic compound PMI-5 is the most promising tyrosinase inhibitor with a noncompetitive inhibitory mechanism and an IC 50 =124μmolL -1 . In accordance with the kinetic profile, molecular docking results show that PMI-5 is able to interact favorably with the tyrosinase active site containing the substrate molecule, L-DOPA, interacting with Val-247, Phe-263 and Val-282 residues. The spectroscopic results for the interaction HSA:PMI-5 and HSA:PMI-6 indicated that these mesoionic compounds can associate with HSA in the ground state and energy transfer can occur with high probability. The binding was moderate, spontaneous and can perturb significantly the secondary structure of the albumin. The molecular docking results suggest that PMI-5 and PMI-6 are able to be accommodated inside the Sudlow's site I in HSA, interacting with hydrophobic and hydrophilic amino acid residues. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Synthesis and biological evaluation of kojic acid derivatives containing 1,2,4-triazole as potent tyrosinase inhibitors.

    Science.gov (United States)

    Xie, Wenlin; Zhang, Jingai; Ma, Xiaojing; Yang, Wenqian; Zhou, Ying; Tang, Xufu; Zou, Yan; Li, Hui; He, Jingjing; Xie, Shimin; Zhao, Yunhui; Liu, Fengping

    2015-11-01

    A series of 5-substituted-3-[5-hydroxy-4-pyrone-2-yl-methymercapto]-4-amino-1,2,4-triazole derivatives were synthesized by nucleophilic substitution reaction of 5-hydroxy-2-chloromethyl -4H-pyran-4-one with 5-substituted-3-mercapto-4-amino-1,2,4-triazole, and their inhibitory effects on mushroom tyrosinase were evaluated. The results indicated that most of the synthesized compounds exhibited significant inhibitory activity. Specifically, 5-(4-chlorophenyl)-3-[5-hydroxy-4-pyrone-2-yl-methymercapto]-4-amino-1,2,4-triazole (6j) exhibited the most potent tyrosinase inhibitory activity with IC50 value of 4.50 ± 0.34 μm. The kinetic studies of the compound (6j) demonstrated that the inhibitory effects of the compound on the tyrosinase were belonging to competitive inhibitors. Meanwhile, the structure-activity relationship was also discussed. © 2015 John Wiley & Sons A/S.

  18. Crystallization and preliminary X-ray crystallographic analysis of latent isoform PPO4 mushroom (Agaricus bisporus) tyrosinase

    Energy Technology Data Exchange (ETDEWEB)

    Mauracher, Stephan Gerhard; Molitor, Christian [Universität Wien, Althanstrasse 14, 1090 Wien (Austria); Al-Oweini, Rami; Kortz, Ulrich [Jacobs University, PO Box 750 561, 28759 Bremen (Germany); Rompel, Annette, E-mail: annette.rompel@univie.ac.at [Universität Wien, Althanstrasse 14, 1090 Wien (Austria)

    2014-01-23

    Polyphenol oxidase 4 (PPO4) from the natural source A. bisporus was crystallized in its latent precursor form (pro-tyrosinase; Ser2–Thr565) using the 6-tungstotellurate(VI) salt Na{sub 6}[TeW{sub 6}O{sub 24}]·22H{sub 2}O as a crystallization additive. Tyrosinase exhibits catalytic activity for the ortho-hydroxylation of monophenols to diphenols as well as their subsequent oxidation to quinones. Owing to polymerization of these quinones, brown-coloured high-molecular-weight compounds called melanins are generated. The latent precursor form of polyphenol oxidase 4, one of the six tyrosinase isoforms from Agaricus bisporus, was purified to homogeneity and crystallized. The obtained crystals belonged to space group C121 (two molecules per asymmetric unit) and diffracted to 2.78 Å resolution. The protein only formed crystals under low-salt conditions using the 6-tungstotellurate(VI) salt Na{sub 6}[TeW{sub 6}O{sub 24}]·22H{sub 2}O as a co-crystallization agent.

  19. Extracellular vesicles in cartilage homeostasis and osteoarthritis.

    Science.gov (United States)

    Miyaki, Shigeru; Lotz, Martin K

    2018-01-01

    Extracellular vesicles carry bioactive molecules that can be transferred between cells and tissues. The purpose of this review is to describe how extracellular vesicles regulate functions of cells in cartilage and other joint tissues. The potential application of extracellular vesicles in the treatment of osteoarthritis and as biomarkers will also be discussed. Extracellular vesicles are found in synovial fluid, in articular cartilage and in the supernatants of synoviocytes and chondrocytes. Extracellular vesicles in cartilage have been proposed to be involved in cross talk between cells in joint tissues and to affect extracellular matrix turnover and inflammation. Extracellular vesicles from arthritic joints can promote abnormal gene expression and changes in cartilage extracellular matrix, including abnormal mineralization. Promising results were obtained in the therapeutic application of mesenchymal stem cell-derived extracellular vesicles for cartilage repair and experimental osteoarthritis. Extracellular vesicles have emerged as vehicles for the exchange of bioactive signaling molecules within cartilage and between joint tissues to promote joint homeostasis and arthritis pathogenesis. As the molecular content of extracellular vesicles can be customized, they offer utility in therapeutic applications.

  20. In vivo modification of tyrosine residues in recombinant mussel adhesive protein by tyrosinase co-expression in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Choi Yoo

    2012-10-01

    Full Text Available Abstract Background In nature, mussel adhesive proteins (MAPs show remarkable adhesive properties, biocompatibility, and biodegradability. Thus, they have been considered promising adhesive biomaterials for various biomedical and industrial applications. However, limited production of natural MAPs has hampered their practical applications. Recombinant production in bacterial cells could be one alternative to obtain useable amounts of MAPs, although additional post-translational modification of tyrosine residues into 3,4-dihydroxyphenyl-alanine (Dopa and Dopaquinone is required. The superior properties of MAPs are mainly attributed to the introduction of quinone-derived intermolecular cross-links. To solve this problem, we utilized a co-expression strategy of recombinant MAP and tyrosinase in Escherichia coli to successfully modify tyrosine residues in vivo. Results A recombinant hybrid MAP, fp-151, was used as a target for in vivo modification, and a dual vector system of pET and pACYC-Duet provided co-expression of fp-151 and tyrosinase. As a result, fp-151 was over-expressed and mainly obtained from the soluble fraction in the co-expression system. Without tyrosinase co-expression, fp-151 was over-expressed in an insoluble form in inclusion bodies. The modification of tyrosine residues in the soluble-expressed fp-151 was clearly observed from nitroblue tetrazolium staining and liquid-chromatography-mass/mass spectrometry analyses. The purified, in vivo modified, fp-151 from the co-expression system showed approximately 4-fold higher bulk-scale adhesive strength compared to in vitro tyrosinase-treated fp-151. Conclusion Here, we reported a co-expression system to obtain in vivo modified MAP; additional in vitro tyrosinase modification was not needed to obtain adhesive properties and the in vivo modified MAP showed superior adhesive strength compared to in vitro modified protein. It is expected that this co-expression strategy will accelerate

  1. In vivo modification of tyrosine residues in recombinant mussel adhesive protein by tyrosinase co-expression in Escherichia coli

    Science.gov (United States)

    2012-01-01

    Background In nature, mussel adhesive proteins (MAPs) show remarkable adhesive properties, biocompatibility, and biodegradability. Thus, they have been considered promising adhesive biomaterials for various biomedical and industrial applications. However, limited production of natural MAPs has hampered their practical applications. Recombinant production in bacterial cells could be one alternative to obtain useable amounts of MAPs, although additional post-translational modification of tyrosine residues into 3,4-dihydroxyphenyl-alanine (Dopa) and Dopaquinone is required. The superior properties of MAPs are mainly attributed to the introduction of quinone-derived intermolecular cross-links. To solve this problem, we utilized a co-expression strategy of recombinant MAP and tyrosinase in Escherichia coli to successfully modify tyrosine residues in vivo. Results A recombinant hybrid MAP, fp-151, was used as a target for in vivo modification, and a dual vector system of pET and pACYC-Duet provided co-expression of fp-151 and tyrosinase. As a result, fp-151 was over-expressed and mainly obtained from the soluble fraction in the co-expression system. Without tyrosinase co-expression, fp-151 was over-expressed in an insoluble form in inclusion bodies. The modification of tyrosine residues in the soluble-expressed fp-151 was clearly observed from nitroblue tetrazolium staining and liquid-chromatography-mass/mass spectrometry analyses. The purified, in vivo modified, fp-151 from the co-expression system showed approximately 4-fold higher bulk-scale adhesive strength compared to in vitro tyrosinase-treated fp-151. Conclusion Here, we reported a co-expression system to obtain in vivo modified MAP; additional in vitro tyrosinase modification was not needed to obtain adhesive properties and the in vivo modified MAP showed superior adhesive strength compared to in vitro modified protein. It is expected that this co-expression strategy will accelerate the use of functional MAPs in

  2. Extracellular Vesicles in Hematological Disorders

    Directory of Open Access Journals (Sweden)

    Anat Aharon

    2014-10-01

    Full Text Available Extracellular vesicles (EVs, comprised of exosomes, microparticles, apoptotic bodies, and other microvesicles, are shed from a variety of cells upon cell activation or apoptosis. EVs promote clot formation, mediate pro-inflammatory processes, transfer proteins and miRNA to cells, and induce cell signaling that regulates cell differentiation, proliferation, migration, invasion, and apoptosis. This paper will review the contribution of EVs in hematological disorders, including hemoglobinopathies (sickle cell disease, thalassemia, paroxysmal nocturnal hemoglobinuria, and hematological malignancies (lymphomas, myelomas, and acute and chronic leukemias.

  3. Blood extracellular DNA after irradiation

    International Nuclear Information System (INIS)

    Vladimirov, V.G.; Tishchenko, L.I.; Surkova, E.A.; Vasil'eva, I.N.

    1993-01-01

    It has been shown that blood extracellular DNA of irradiated rats largely consists of the low-molecular DNA and its oligomers. Molecular masses of oligomers are multiple to molecular mass of monomer fragment with nucleosome size. The low-molecular DNA has linear form. The average content of GC-pairs in low-molecular DNA is higher than in total rat's DNA (48.5% against 41.5%). The low-molecular DNA is a part of complex containing RNA, acidic proteins and lipids. It is assumed that the formation of low-molecular DNA is a result of Ca/Mg - dependent nuclear endonuclease action

  4. A novel form of {open_quotes}Tyrosinase-positive{close_quotes} oculocutaneous albinism

    Energy Technology Data Exchange (ETDEWEB)

    Fukai, K.; Lee, S.T.; Bundey, S.; Spritz, R.A. [Univ. of Wisconsin, Madison, WI (United States)]|[Birmingham Maternity Hospital, Birmingham (United Kingdom)

    1994-09-01

    Tyrosinase-positive oculocutaneous albinism (ty-pos OCA) is an autosomal recessive disorder in which the biosynthesis of melanin pigment is greatly reduced in the skin, hair, and eyes. We have shown that typical ty-pos OCA (OCA2) results from mutations of the P gene in chromosome segment 15q11-q13. We have also shown that some patients diagnosed with ty-pos OCA actually have mild forms of type I OCA (OCAI), resulting from mutations at the tyrosinase (TYR) gene at 11q14-q21. However, in about one-third of patients with ty-pos OCA we have failed to identify abnormalities of either the P or TYR genes, suggesting the possible existence of a third ty-pos OCA locus. To test this hypothesis, we investigated a large, complex, inbred Pakistani kindred. Affected individuals exhibit slight skin pigmentation with no tanning, hair that is silver at birth and darkens somewhat over time, brown irides, and reduced visual acuity with nystagmus. SSCP/heteroduplex screening and complete DNA sequence analysis of TYR gene in the proband identified no abnormalities, and analysis of a CA repeat in the TYR gene promoter showed no linkage of ty-pos OCA to this marker in this kindred. SSCP/ heteroduplex screening of the P gene also detected no abnormalities, and the (inbred) proband was heterozygous for numerous intragenic polymorphisms. These data thus exclude TYP and P. We next carried out genetic linkage analyses and homozygisty mapping using various SSLP repeats at the locations of the human homologues of the mouse brown (TYRP, 9p23), slaty (13q32), and silver (12pter-q21) genes, all of which are associated with generalized hypopigmentation in mutant animals. However, we found no evidence of linkage of any of these markers. We are currently carrying out similar analyses using markers near the putative locations of the human homologues of several other mouse hypopigmentation genes in an effort to map this novel human ty-pos OCA locus.

  5. Neurospora crassa glucose - repressible gene -1(Grg-1) promoter controls the expression of neurospora tyrosinase gene in a clock-controlled manner

    International Nuclear Information System (INIS)

    Tarawneh, A. K

    1997-01-01

    In this study sphareroplastes of white Neurospora crassa mutant auxotroph for aromatic am no acids a rom 9 q a-2 inv, was transformed by the pKF-Tyr7-wt DNA construct. This construct contains the promoter of neurospora crassa glucose-repressible gene-1 (G rg-1) usp stream of Neurospora tyrosinase gene. The co transformation of this mutant with pKF-Tyr-7-wt cincture's and the pKAL-1, a plasmid which contains the Neurospora q a-2+ gene transform it to photophor. The transform ant contains the tyrosinase gene which catalyzes the unique step in the synthesis of the black pigment melanin. The activity of the tyrosinase in this transform ant was followed by measuring the absorbance of the dark coloured pigment at 332 nm. The maximum of the tyrosinase activity was shown at 16.36 and 56 hours after the shift of the transformed mycelia from constant light (L L) to constant dark (Dd). The rate of the enzyme activity was changed according to ci radian cycle of 20 hours. This G rg 1/tyrosinase construct provides a good system to study to study the temporal control of gene expression and the interaction between the different environmental c uses that affects gene expression. (author). 20 refs., 4 figs

  6. Extracellular nucleotide signaling in plants

    Energy Technology Data Exchange (ETDEWEB)

    Stacey, Gary [Univ. of Missouri, Columbia, MO (United States)

    2016-09-08

    Over the life of this funded project, our research group identified and characterized two key receptor proteins in plants; one mediating the innate immunity response to chitin and the other elucidating the key receptor for extracellular ATP. In the case of chitin recognition, we recently described the quaternary structure of this receptor, shedding light on how the receptor functions. Perhaps more importantly, we demonstrated that all plants have the ability to recognize both chitin oligomers and lipochitooligosacchardes, fundamentally changing how the community views the evolution of these systems and strategies that might be used, for example, to extend symbiotic nitrogen fixation to non-legumes. Our discovery of DORN1 opens a new chapter in plant physiology documenting conclusively that eATP is an important extracellular signal in plants, as it is in animals. At this point, we cannot predict just how far reaching this discovery may prove to be but we are convinced that eATP signaling is fundamental to plant growth and development and, hence, we believe that the future will be very exciting for the study of DORN1 and its overall function in plants.

  7. Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium semitectum

    International Nuclear Information System (INIS)

    Basavaraja, S.; Balaji, S.D.; Lagashetty, Arunkumar; Rajasab, A.H.; Venkataraman, A.

    2008-01-01

    Development of environmental friendly procedures for the synthesis of metal nanoparticles through biological processes is evolving into an important branch of nanobiotechnology. In this paper, we report on the use of fungus 'Fusarium semitectum' for the extracellular synthesis of silver nanoparticles from silver nitrate solution (i.e. through the reduction of Ag + to Ag 0 ). Highly stable and crystalline silver nanoparticles are produced in solution by treating the filtrate of the fungus F. semitectum with the aqueous silver nitrate solution. The formations of nanoparticles are understood from the UV-vis and X-ray diffraction studies. Transmission electron microscopy of the silver particles indicated that they ranged in size from 10 to 60 nm and are mostly spherical in shape. Interestingly the colloidal suspensions of silver nanoparticles are stable for many weeks. Possible medicinal applications of these silver nanoparticles are envisaged

  8. Stable isotopes labelled compounds

    International Nuclear Information System (INIS)

    1982-09-01

    The catalogue on stable isotopes labelled compounds offers deuterium, nitrogen-15, and multiply labelled compounds. It includes: (1) conditions of sale and delivery, (2) the application of stable isotopes, (3) technical information, (4) product specifications, and (5) the complete delivery programme

  9. Stable Boundary Layer Issues

    NARCIS (Netherlands)

    Steeneveld, G.J.

    2012-01-01

    Understanding and prediction of the stable atmospheric boundary layer is a challenging task. Many physical processes are relevant in the stable boundary layer, i.e. turbulence, radiation, land surface coupling, orographic turbulent and gravity wave drag, and land surface heterogeneity. The

  10. Evolutionary Stable Strategy

    Indian Academy of Sciences (India)

    IAS Admin

    After Maynard-Smith and Price [1] mathematically derived why a given behaviour or strategy was adopted by a certain proportion of the population at a given time, it was shown that a strategy which is currently stable in a population need not be stable in evolutionary time (across generations). Additionally it was sug-.

  11. CRISPR/Cas9-mediated mutation of tyrosinase (Tyr) 3' UTR induce graying in rabbit.

    Science.gov (United States)

    Song, Yuning; Xu, Yuxin; Deng, Jichao; Chen, Mao; Lu, Yi; Wang, Yong; Yao, Haobin; Zhou, Lina; Liu, Zhiquan; Lai, Liangxue; Li, Zhanjun

    2017-05-08

    The 3' untranslated regions (UTRs), located at the end of mRNA molecules, are believed to play a role in RNA replication and/or protein translation. Mutations in the tyrosinase (Tyr) gene are known to cause recessive albinism in humans and other species. In this study, to test whether the CRISPR/Cas9 system works on the mutation of the UTRs regulatory region in rabbit, the 3' UTR of the rabbit Tyr gene was deleted by a dual sgRNA directed CRISPR/Cas9 system. As expected, gray coat color and reduced melanin in hair follicles and irises was found in the mutated rabbit, thus increasing confidence in the association of the mutation of the Tyr 3' UTR with graying in rabbit. The graying phenotype was also found in the F1 generation, suggesting that the mutated allele can be stably inherited by the offspring. Thus, we provide the first evidence that reduced melanin and graying can be caused by deletion of the Tyr 3' UTR in rabbits. Additionally, CRISPR/Cas9-mediated large fragment deletions can facilitate genotype to phenotype studies of UTRs or non-coding RNAs in future.

  12. Albinism in the American mink (Neovison vison) is associated with a tyrosinase nonsense mutation.

    Science.gov (United States)

    Anistoroaei, R; Fredholm, M; Christensen, K; Leeb, T

    2008-12-01

    Albino phenotypes are documented in various species including the American mink. In other species the albino phenotypes are associated with tyrosinase (TYR) gene mutations; therefore TYR was considered the candidate gene for albinism in mink. Four microsatellite markers were chosen in the predicted region of the TYR gene. Genotypes at the markers Mvi6025 and Mvi6034 were found to be associated with the albino phenotype within an extended half-sib family. A BAC clone containing Mvi6034 was mapped to chromosome 7q1.1-q1.3 by fluorescent in situ hybridization. Subsequent analysis of genomic TYR sequences from wild-type and albino mink samples identified a nonsense mutation in exon 1, which converts a TGT codon encoding cysteine to a TGA stop codon (c.138T>A, p.C46X; EU627590). The mutation truncates more than 90% of the normal gene product including the putative catalytic domains. The results indicate that the nonsense mutation is responsible for the albino phenotype in the American mink.

  13. Novel biphenyl ester derivatives as tyrosinase inhibitors: Synthesis, crystallographic, spectral analysis and molecular docking studies.

    Directory of Open Access Journals (Sweden)

    Huey Chong Kwong

    Full Text Available Biphenyl-based compounds are clinically important for the treatments of hypertension and inflammatory, while many more are under development for pharmaceutical uses. In the present study, a series of 2-([1,1'-biphenyl]-4-yl-2-oxoethyl benzoates, 2(a-q, and 2-([1,1'-biphenyl]-4-yl-2-oxoethyl pyridinecarboxylate, 2(r-s were synthesized by reacting 1-([1,1'-biphenyl]-4-yl-2-bromoethan-1-one with various carboxylic acids using potassium carbonate in dimethylformamide at ambient temperature. Single-crystal X-ray diffraction studies revealed a more closely packed crystal structure can be produced by introduction of biphenyl moiety. Five of the compounds among the reported series exhibited significant anti-tyrosinase activities, in which 2p, 2r and 2s displayed good inhibitions which are comparable to standard inhibitor kojic acid at concentrations of 100 and 250 μg/mL. The inhibitory effects of these active compounds were further confirmed by computational molecular docking studies and the results revealed the primary binding site is active-site entrance instead of inner copper binding site which acted as the secondary binding site.

  14. A nonsense mutation in the tyrosinase gene causes albinism in water buffalo

    Directory of Open Access Journals (Sweden)

    Damé Maria Cecília

    2012-07-01

    Full Text Available Abstract Background Oculocutaneous albinism (OCA is an autosomal recessive hereditary pigmentation disorder affecting humans and several other animal species. Oculocutaneous albinism was studied in a herd of Murrah buffalo to determine the clinical presentation and genetic basis of albinism in this species. Results Clinical examinations and pedigree analysis were performed in an affected herd, and wild-type and OCA tyrosinase mRNA sequences were obtained. The main clinical findings were photophobia and a lack of pigmentation of the hair, skin, horns, hooves, mucosa, and iris. The results of segregation analysis suggest that this disease is acquired through recessive inheritance. In the OCA buffalo, a single-base substitution was detected at nucleotide 1,431 (G to A, which leads to the conversion of tryptophan into a stop codon at residue 477. Conclusion This premature stop codon produces an inactive protein, which is responsible for the OCA buffalo phenotype. These findings will be useful for future studies of albinism in buffalo and as a possible model to study diseases caused by a premature stop codon.

  15. Large-Scale Recombinant Expression and Purification of Human Tyrosinase Suitable for Structural Studies.

    Directory of Open Access Journals (Sweden)

    Xuelei Lai

    Full Text Available Human tyrosinase (TYR is a glycoprotein that initiates the first two reactions in the melanin biosynthesis pathway. Mutations in its encoding gene cause Oculocutaneous Albinism type I (OCA1, the most severe form of albinism, which is a group of autosomal recessive disorders characterized by reduced or absent production of melanin in skin, hair and eyes. Despite extensive structural and characterization studies of its homologues in lower eukaryotic organisms, the catalytic mechanism of human TYR and the molecular basis of OCA1 are largely unknown. In this work, we have carried out a large-scale recombinant expression of TYR that has enabled us to obtain high yields of pure and active protein, required for crystallization trials and screening of skin whitening agents, which is highly demanded in the cosmetic industry. Addition of an N-terminal honeybee melittin signal peptide for secretion of the produced protein into the (protein-free medium, as well as a cleavable His-tag at the C-terminus, was crucial for increasing the yield of pure protein. We have successfully crystallized two TYR variants, in both glycosylated and deglycosylated forms, showing preliminary X-ray diffraction patterns at 3.5 Å resolution. Hence, we have established an expression and purification protocol suitable for the crystal structure determination of human TYR, which will give unique atomic insight into the nature and conformation of the residues that shape the substrate binding pocket that will ultimately lead to efficient compound design.

  16. The light subunit of mushroom Agaricus bisporus tyrosinase: Its biological characteristics and implications.

    Science.gov (United States)

    Ismaya, Wangsa T; Tandrasasmita, Olivia M; Sundari, Syaripah; Diana; Lai, Xuelei; Retnoningrum, Debbie S; Dijkstra, Bauke W; Tjandrawinata, Raymond R; Rachmawati, Heni

    2017-09-01

    The light subunit of mushroom Agaricus bisporus tyrosinase (LSMT) is a protein of unknown function that was discovered serendipitously during the elucidation of the crystal structure of the enzyme. The protein is non-immunogenic and can penetrate the intestinal epithelial cell barrier, and thus, similar to its structural homologue HA-33 from Clostridium botulinum, may be potentially absorbable by the intestine. LSMT also shares high structural homology with the ricin-B-like lectin from the mushroom Clitocybe nebularis (CNL), which has been shown to display biological activity against leukemic cancer cells and dendritic cells. Therefore, we evaluated the biological activity of LSMT. An in vitro assay suggested that LSMT presentation to most of the cancer cell lines studied has a negligible effect on their proliferation. However, inhibition of cell growth and a slight stimulation of cell proliferation were observed with breast cancer and macrophage cells, respectively. LSMT appeared to be relatively resistant against proteolysis by trypsin and papain, but not bromelain. Challenges with gastric and intestinal juice suggested that the protein is resistant to gastrointestinal tract conditions. This is the first report on the biological characteristics and implication of LSMT. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Albinism in the domestic cat (Felis catus) is associated with a tyrosinase (TYR) mutation

    Science.gov (United States)

    Imes, DL; Geary, LA; Grahn, RA; Lyons, LA

    2006-01-01

    Summary Albino phenotypes are documented in a variety of species including the domestic cat. As albino phenotypes in other species are associated with tyrosinase (TYR) mutations, TYR was proposed as a candidate gene for albinism in cats. An Oriental and Colourpoint Shorthair cat pedigree segregating for albinism was analysed for association with TYR by linkage and sequence analyses. Microsatellite FCA931, which is closely linked to TYR and TYR sequence variants were tested for segregation with the albinism phenotype. Sequence analysis of genomic DNA from wild-type and albino cats identified a cytosine deletion in TYR at position 975 in exon 2, which causes a frame shift resulting in a premature stop codon nine residues downstream from the mutation. The deletion mutation in TYR and an allele of FCA931 segregated concordantly with the albino phenotype. Taken together, our results suggest that the TYR gene corresponds to the colour locus in cats and its alleles, from dominant to recessive, are as follows: C (full colour) > cb (burmese) ≥ cs (siamese) > c (albino). PMID:16573534

  18. Detection of methyl salicylate using bi-enzyme electrochemical sensor consisting salicylate hydroxylase and tyrosinase.

    Science.gov (United States)

    Fang, Yi; Bullock, Hannah; Lee, Sarah A; Sekar, Narendran; Eiteman, Mark A; Whitman, William B; Ramasamy, Ramaraja P

    2016-11-15

    Volatile organic compounds have been recognized as important marker chemicals to detect plant diseases caused by pathogens. Methyl salicylate has been identified as one of the most important volatile organic compounds released by plants during a biotic stress event such as fungal pathogen infection. Advanced detection of these marker chemicals could help in early identification of plant diseases and has huge significance for agricultural industry. This work describes the development of a novel bi-enzyme based electrochemical biosensor consisting of salicylate hydroxylase and tyrosinase enzymes immobilized on carbon nanotube modified electrodes. The amperometric detection using the bi-enzyme platform was realized through a series of cascade reactions that terminate in an electrochemical reduction reaction. Electrochemical measurements revealed that the sensitivity of the bi-enzyme sensor was 30.6±2.7µAcm(-2)µM(-1) and the limit of detection and limit of quantification were 13nM (1.80ppb) and 39nM (5.39ppb) respectively. Interference studies showed no significant interference from the other common plant volatile compounds. Synthetic analyte studies revealed that the bi-enzyme based biosensor can be used to reliably detect methyl salicylate released by unhealthy plants. Copyright © 2016. Published by Elsevier B.V.

  19. Condensed Tannins from Ficus virens as Tyrosinase Inhibitors: Structure, Inhibitory Activity and Molecular Mechanism

    Science.gov (United States)

    Chai, Wei-Ming; Feng, Hui-Ling; Zhuang, Jiang-Xing; Chen, Qing-Xi

    2014-01-01

    Condensed tannins from Ficus virens leaves, fruit, and stem bark were isolated and their structures characterized by 13C nuclear magnetic resonance spectrometry, high performance liquid chromatography electrospray ionization mass spectrometry, and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. The results showed that the leaves, fruit, and stem bark condensed tannins were complex mixtures of homo- and heteropolymers of B-type procyanidins and prodelphinidins with degrees of polymerization up to hexamer, dodecamer, and pentadecamer, respectively. Antityrosinase activities of the condensed tannins were studied. The results indicated that the condensed tannins were potent tyrosinase inhibitors. The concentrations for the leaves, fruit, and stem bark condensed tannins leading to 50% enzyme activity were determined to be 131.67, 99.89, and 106.22 μg/ml on monophenolase activity, and 128.42, 43.07, and 74.27 μg/ml on diphenolase activity. The inhibition mechanism, type, and constants of the condensed tannins on the diphenolase activity were further investigated. The results indicated that the condensed tannins were reversible and mixed type inhibitors. Fluorescence quenching, copper interacting, and molecular docking techniques were utilized to unravel the molecular mechanisms of the inhibition. The results showed that the hydroxyl group on the B ring of the condensed tannins could chelate the dicopper irons of the enzyme. Moreover, the condensed tannins could reduce the enzyme product o-quinones into colourless compounds. These results would contribute to the development and design of antityrosinase agents. PMID:24637701

  20. Immobilization of Tyrosinase from Avocado Crude Extract in Polypyrrole Films for Inhibitive Detection of Benzoic Acid

    Directory of Open Access Journals (Sweden)

    André Brisolari

    2014-07-01

    Full Text Available Inhibition-based biosensors were developed by immobilizing tyrosinase (Tyr, polyphenol oxidase from the crude extract of avocado fruit on electrochemically prepared polypyrrole (PPy films. The biosensors were prepared during the electropolymerization of pyrrole in a solution containing a fixed volume of the crude extract of avocado. The dependence of the biosensor responses on the volume used from the crude extract, values of pH and temperature was studied, and a substrate, catechol, at different concentrations, was amperometrically detected by these biosensors. Benzoic acid, a competitive inhibitor of Try, was added to the catechol solutions at specific concentrations aimed at obtaining the inhibition constant, K’m, which ranged from 1.7 to 4.6 mmol∙L−1 for 0.0 and 60 µmol∙L−1 of benzoic acid, respectively. Studies on the inhibition caused by benzoic acid by using PPy/Try films, and catechol as a substrate, allowed us propose how to develop, under optimized conditions, simple and low-cost biosensors based on the use of avocado fruit.

  1. Development of Amperometric Biosensors Based on Nanostructured Tyrosinase-Conducting Polymer Composite Electrodes

    Directory of Open Access Journals (Sweden)

    Francisco Javier del Campo

    2013-05-01

    Full Text Available Bio-composite coatings consisting of poly(3,4-ethylenedioxythiophene (PEDOT and tyrosinase (Ty were successfully electrodeposited on conventional size gold (Au disk electrodes and microelectrode arrays using sinusoidal voltages. Electrochemical polymerization of the corresponding monomer was carried out in the presence of various Ty amounts in aqueous buffered solutions. The bio-composite coatings prepared using sinusoidal voltages and potentiostatic electrodeposition methods were compared in terms of morphology, electrochemical properties, and biocatalytic activity towards various analytes. The amperometric biosensors were tested in dopamine (DA and catechol (CT electroanalysis in aqueous buffered solutions. The analytical performance of the developed biosensors was investigated in terms of linear response range, detection limit, sensitivity, and repeatability. A semi-quantitative multi-analyte procedure for simultaneous determination of DA and CT was developed. The amperometric biosensor prepared using sinusoidal voltages showed much better analytical performance. The Au disk biosensor obtained by 50 mV alternating voltage amplitude displayed a linear response for DA concentrations ranging from 10 to 300 μM, with a detection limit of 4.18 μM.

  2. Condensed tannins from Ficus virens as tyrosinase inhibitors: structure, inhibitory activity and molecular mechanism.

    Science.gov (United States)

    Chen, Xiao-Xin; Shi, Yan; Chai, Wei-Ming; Feng, Hui-Ling; Zhuang, Jiang-Xing; Chen, Qing-Xi

    2014-01-01

    Condensed tannins from Ficus virens leaves, fruit, and stem bark were isolated and their structures characterized by 13C nuclear magnetic resonance spectrometry, high performance liquid chromatography electrospray ionization mass spectrometry, and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. The results showed that the leaves, fruit, and stem bark condensed tannins were complex mixtures of homo- and heteropolymers of B-type procyanidins and prodelphinidins with degrees of polymerization up to hexamer, dodecamer, and pentadecamer, respectively. Antityrosinase activities of the condensed tannins were studied. The results indicated that the condensed tannins were potent tyrosinase inhibitors. The concentrations for the leaves, fruit, and stem bark condensed tannins leading to 50% enzyme activity were determined to be 131.67, 99.89, and 106.22 μg/ml on monophenolase activity, and 128.42, 43.07, and 74.27 μg/ml on diphenolase activity. The inhibition mechanism, type, and constants of the condensed tannins on the diphenolase activity were further investigated. The results indicated that the condensed tannins were reversible and mixed type inhibitors. Fluorescence quenching, copper interacting, and molecular docking techniques were utilized to unravel the molecular mechanisms of the inhibition. The results showed that the hydroxyl group on the B ring of the condensed tannins could chelate the dicopper irons of the enzyme. Moreover, the condensed tannins could reduce the enzyme product o-quinones into colourless compounds. These results would contribute to the development and design of antityrosinase agents.

  3. Validating tyrosinase homologue MelA as a photoacoustic reporter gene for imaging Escherichia coli

    Science.gov (United States)

    Paproski, Robert J.; Li, Yan; Barber, Quinn; Lewis, John D.; Campbell, Robert; Zemp, Roger

    2015-03-01

    Antibiotic drug resistance is a major worldwide issue. Development of new therapies against pathogenic bacteria requires appropriate research tools for replicating and characterizing infections. Previously fluorescence and bioluminescence modalities have been used to image infectious burden in animal models but scattering significantly limits imaging depth and resolution. We hypothesize that photoacoustic imaging, which has improved depth-toresolution ratio, could be useful for visualizing MelA-expressing bacteria since MelA is a bacterial tyrosinase homologue involved in melanin production. Using an inducible expression system, E. coli expressing MelA were visibly black in liquid culture. Phosphate buffered saline (PBS), MelA-expressing bacteria (at different dilutions in PBS), and chicken embryo blood were injected in plastic tubes which were imaged using a VisualSonics Vevo LAZR system. Photoacoustic imaging at 6 different wavelengths (680, 700, 750, 800, 850 and 900nm) enabled spectral de-mixing to distinguish melanin signals from blood. The signal to noise ratio of 9x diluted MelA bacteria was 55, suggesting that ~20 bacteria cells could be detected with our system. When MelA bacteria were injected as a 100 μL bolus into a chicken embryo, photoacoustic signals from deoxy- and oxy- hemoglobin as well as MelA-expressing bacteria could be separated and overlaid on an ultrasound image, allowing visualization of the bacterial location. Photoacoustic imaging may be a useful tool for visualizing bacterial infections and further work incorporating photoacoustic reporters into infectious bacterial strains is warranted.

  4. Analysis of extracellular RNA by digital PCR

    Directory of Open Access Journals (Sweden)

    Kenji eTakahashi

    2014-06-01

    Full Text Available The transfer of extracellular RNA is emerging as an important mechanism for intracellular communication. The ability for the transfer of functionally active RNA molecules from one cell to another within vesicles such as exosomes enables a cell to modulate cellular signaling and biological processes within recipient cells. The study of extracellular RNA requires sensitive methods for the detection of these molecules. In this methods article, we will describe protocols for the detection of such extracellular RNA using sensitive detection technologies such as digital PCR. These protocols should be valuable to researchers interested in the role and contribution of extracellular RNA to tumor cell biology.

  5. Circulating Tyrosinase and MART-1 mRNA does not Independently Predict Relapse or Survival in Patients with AJCC Stage I–II Melanoma

    DEFF Research Database (Denmark)

    Schmidt, Henrik; Sørensen, Boe S; Sjoegren, Pia

    2006-01-01

    The detection of melanoma cells in peripheral blood has been proposed to select patients with a high risk of relapse. In this study, tyrosinase and melanoma antigen recognized by T cells 1 (MART-1) mRNA expression was evaluated in serial samples obtained before definitive surgery and during follow...... level, and histological subtype were analyzed together with tyrosinase and MART-1 mRNA treated as updated covariates in a Cox proportional-hazard model. After a median follow-up time of 66 months, 42 out of 236 patients (18%) had relapsed. The following variables were significantly associated...... with relapse-free survival in the univariate analyses: tyrosinase, MART-1, gender, ulceration, thickness, Clark level, and histological subtype. Entering these covariates into a multivariate Cox analysis resulted in thickness as the single independent prognostic factor (P

  6. Purification Protocols for Extracellular Vesicles.

    Science.gov (United States)

    Lane, Rebecca E; Korbie, Darren; Trau, Matt; Hill, Michelle M

    2017-01-01

    This chapter provides a description of some of the standard methods used for the isolation of extracellular vesicles (EVs) from a variety of biological fluids, including cell culture media, urine, plasma and serum. The methods presented include ultracentrifugation, ultrafiltration, proprietary polymer-based reagents, size exclusion chromatography, density gradient separation, and immunoaffinity capture. Ultracentrifugation methods use high speed centrifugation to pellet vesicles, whilst polymer-based reagents are added to the sample to facilitate vesicle precipitation using lower speeds. Ultrafiltration involves the concentration of vesicles from a large volume of biological fluid using a centrifugal filter unit. Size exclusion chromatography and density gradient separation are both designed to allow the separation of vesicles from other nonvesicular debris. Immunoaffinity capture methods use antibody-coated beads to selectively isolate vesicles displaying a surface marker of interest. Ultimately, the choice of purification method for an individual experiment is influenced by time, cost, and equipment considerations, as well as the sample requirements for any downstream analyses.

  7. The International Society for Extracellular Vesicles launches the first massive open online course on extracellular vesicles

    OpenAIRE

    L?sser, Cecilia; Th?ry, Clotilde; Buz?s, Edit I.; Mathivanan, Suresh; Zhao, Weian; Gho, Yong Song; L?tvall, Jan

    2016-01-01

    The International Society for Extracellular Vesicles (ISEV) has organised its first educational online course for students and beginners in the field of extracellular vesicles (EVs). This course, “Basics of Extracellular Vesicles,” uses recorded lectures from experts in the field and will be open for an unlimited number of participants. The course is divided into 5 modules and can be accessed at www.coursera.org/learn/extracellular-vesicles. The first module is an introduction to the field co...

  8. Design, synthesis, kinetic mechanism and molecular docking studies of novel 1-pentanoyl-3-arylthioureas as inhibitors of mushroom tyrosinase and free radical scavengers.

    Science.gov (United States)

    Larik, Fayaz Ali; Saeed, Aamer; Channar, Pervaiz Ali; Muqadar, Urooj; Abbas, Qamar; Hassan, Mubashir; Seo, Sung-Yum; Bolte, Michael

    2017-12-01

    A series of novel 1-pentanoyl-3-arylthioureas was designed as new mushroom tyrosinase inhibitors and free radical scavengers. The title compounds were obtained in excellent yield and characterized by FTIR, 1 H NMR, 13 C NMR and X-ray crystallography in case of compound (4a). The inhibitory effects on mushroom tyrosinase and DPPH were evaluated and it was observed that 1-Pentanoyl-3-(4-methoxyphenyl) thiourea (4f) showed tyrosinase inhibitory activity (IC 50 1.568 ± 0.01 mM) comparable to Kojic acid (IC 50 16.051 ± 1.27 mM). Interestingly compound 4f exhibited higher antioxidant potential compared to other derivatives. The docking studies of synthesized 1-Pentanoyl-3-arylthioureas analogues were also carried out against tyrosinase protein (PDBID 2ZMX) to compare the binding affinities with IC 50 values. The predicted binding affinities are in good agreement with the IC 50 values as compound (4f) showed highest binding affinity (-7.50 kcal/mol) compared to others derivatives. The kinetic mechanism analyzed by Line-weavere Burk plots exhibited that compound (4f) inhibit the enzyme inhibits the tyrosinase non-competitively to form an enzyme inhibitor complex. The inhibition constants Ki calculated from Dixon plots for compound (4f) is 1.10 μM. It was also found from kinetic analysis that derivative 4f irreversible enzyme inhibitor complex. It is proposed on the basis of our investigation that title compound (4f) may serve as lead structure for the design of more potent tyrosinase inhibitors. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  9. Bond-based 2D TOMOCOMD-CARDD approach for drug discovery: aiding decision-making in `in silico' selection of new lead tyrosinase inhibitors

    Science.gov (United States)

    Marrero-Ponce, Yovani; Khan, Mahmud Tareq Hassan; Casañola-Martín, Gerardo M.; Ather, Arjumand; Sultankhodzhaev, Mukhlis N.; García-Domenech, Ramón; Torrens, Francisco; Rotondo, Richard

    2007-04-01

    In this paper, we present a new set of bond-level TOMOCOMD-CARDD molecular descriptors (MDs), the bond-based bilinear indices, based on a bilinear map similar to those defined in linear algebra. These novel MDs are used here in Quantitative Structure-Activity Relationship (QSAR) studies of tyrosinase inhibitors, for finding functions that discriminate between the tyrosinase inhibitor compounds and inactive ones. In total 14 models were obtained and the best two discriminant functions (Eqs. 32 and 33) shown globally good classification of 91.00% and 90.17%, respectively, in the training set. The test set had accuracies of 93.33% and 88.89% for the models 32 and 33, correspondingly. A simulated virtual screening was also carried out to prove the quality of the determined models. In a final step, the fitted models were used in the biosilico identification of new synthesized tetraketones, where a good agreement could be observed between the theoretical and experimental results. Four compounds of the novel bioactive chemicals discovered as tyrosinase inhibitors: TK10 (IC50 = 2.09 μM), TK11 (IC50 = 2.61 μM), TK21 (IC50 = 2.06 μM), TK23 (IC50 = 3.19 μM), showed more potent activity than l-mimose (IC50 = 3.68 μM). Besides, for this study a heterogeneous database of tyrosinase inhibitors was collected, and could be a useful tool for the scientist in the domain of tyrosinase enzyme researches. The current report could help to shed some clues in the identification of new chemicals that inhibits enzyme tyrosinase, for entering in the pipeline of drug discovery development.

  10. Normal modified stable processes

    DEFF Research Database (Denmark)

    Barndorff-Nielsen, Ole Eiler; Shephard, N.

    2002-01-01

    This paper discusses two classes of distributions, and stochastic processes derived from them: modified stable (MS) laws and normal modified stable (NMS) laws. This extends corresponding results for the generalised inverse Gaussian (GIG) and generalised hyperbolic (GH) or normal generalised inverse...... Gaussian (NGIG) laws. The wider framework thus established provides, in particular, for added flexibility in the modelling of the dynamics of financial time series, of importance especially as regards OU based stochastic volatility models for equities. In the special case of the tempered stable OU process...

  11. Applications of stable isotopes

    International Nuclear Information System (INIS)

    Letolle, R.; Mariotti, A.; Bariac, T.

    1991-06-01

    This report reviews the historical background and the properties of stable isotopes, the methods used for their measurement (mass spectrometry and others), the present technics for isotope enrichment and separation, and at last the various present and foreseeable application (in nuclear energy, physical and chemical research, materials industry and research; tracing in industrial, medical and agronomical tests; the use of natural isotope variations for environmental studies, agronomy, natural resources appraising: water, minerals, energy). Some new possibilities in the use of stable isotope are offered. A last chapter gives the present state and forecast development of stable isotope uses in France and Europe

  12. Acetazolamide Inhibits the Level of Tyrosinase and Melanin: An Enzyme Kinetic, In Vitro, In Vivo, and In Silico Studies.

    Science.gov (United States)

    Abbas, Qamar; Raza, Hussain; Hassan, Mubashir; Phull, Abdul Rehman; Kim, Song Ja; Seo, Sung-Yum

    2017-09-01

    Melanin is the major factor that determines skin color and protects from ultraviolet radiation. In present study we evaluated the anti-melanogenesis effect of acetazolamide (ACZ) using four different approaches: enzyme kinetic, in vitro, in vivo and in silico. ACZ demonstrated significant inhibitory activity (IC 50 7.895 ± 0.24 μm) against tyrosinase as compared to the standard drug kojic acid (IC 50 16.84 ± 0.64 μm) and kinetic analyses showed that ACZ is a non-competitive inhibitor without cytotoxic effect. In in vitro experiments, A375 human melanoma cells were treated with 20 or 40 μm of ACZ with or without 50 μm of l-DOPA. Western blot results showed that ACZ significantly (P tyrosinase at 40 μm. Zebrafish embryos were treated with 10, 20 or 40 μm of ACZ and of positive control kojic acid. At 72 h of treatment with ACZ and kojic acid, ACZ significantly (P tyrosinase using PyRx tool. Docking studies suggested that His244, Asn260 and His85 are the major interacting residues in the binding site of the protein. In conclusion, our results suggest that ACZ is a good candidate for the inhibition of melanin and it could be used as a lead for developing the drugs for hyperpigmentary disorders and skin whitening. © 2017 Wiley-VHCA AG, Zurich, Switzerland.

  13. Analysing Stable Time Series

    National Research Council Canada - National Science Library

    Adler, Robert

    1997-01-01

    We describe how to take a stable, ARMA, time series through the various stages of model identification, parameter estimation, and diagnostic checking, and accompany the discussion with a goodly number...

  14. Illuminating the physiology of extracellular vesicles

    OpenAIRE

    Choi, Hongyoon; Lee, Dong Soo

    2016-01-01

    Extracellular vesicles play a crucial role in intercellular communication by transmitting biological materials from donor cells to recipient cells. They have pathophysiologic roles in cancer metastasis, neurodegenerative diseases, and inflammation. Extracellular vesicles also show promise as emerging therapeutics, with understanding of their physiology including targeting, distribution, and clearance therefore becoming an important issue. Here, we review recent advances in methods for trackin...

  15. Detection of extracellular vesicles: size does matter

    NARCIS (Netherlands)

    van der Pol, E.

    2015-01-01

    Cells release small sacks filled with fluid, which are called "extracellular vesicles". The diameter of extracellular vesicles (EV) typically ranges from 30 nm to 1 µm. Because cells release EV into their environment, our body fluids contain numerous EV. Cells release EV to remove waste and to

  16. Extracellular vesicles: new players in cardiovascular diseases.

    Science.gov (United States)

    Gaceb, Abderahim; Martinez, Maria Carmen; Andriantsitohaina, Ramaroson

    2014-05-01

    Extracellular vesicles, particles released by all cell types, represent a new way to convey information between cells such as proteins, second messengers, and genetic information to modify the phenotype and function of the target cells. Recent data suggest that extracellular vesicles play a crucial role in both physiology and pathology, including coagulation, angiogenesis, cell survival, modulation of the immune response, and inflammation. Thus extracellular vesicles participate in the processes of cardiovascular diseases from atherosclerosis, myocardial infarction to heart failure. Consequently, extracellular vesicles can potentially be exploited for therapy, prognosis, and biomarkers for health and disease. This review focuses on the role of extracellular vesicles in the development of cardiovascular diseases, as well as the deleterious and beneficial effects that they may provide in vascular cells and myocardium. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Kinetic, Thermodynamic and Structural Studies of Native and N-Bromosuccinimide-Modified Mushroom Tyrosinase

    Directory of Open Access Journals (Sweden)

    Saeed Emami

    2016-10-01

    Full Text Available Background Mushroom tyrosinase (MT as a metalloenzyme is a good model for mechanistic studies of melanogenesis. To recognize the mechanism of MT action, it is important to investigate its inhibition, activation, mutation, and modification properties. Objectives In this study, the chemical modification of MT tryptophan residues was carried out by using N-bromosuccinimide (NBS and then, the activity, stability, and structure of the native and modified enzymes were compared. Methods Chemical modification of MT tryptophan residues was accomplished by enzyme incubation with different concentrations of NBS. The relative activity of native and modified MT was investigated through catecholase enzyme reaction in presence of dihydroxyphenylalanine (L-Dopa as substrate. Thermodynamic parameters including standard Gibbs free energy change (∆G25°C and Melting temperature (Tm were obtained from thermal denaturation of the native and modified enzymes. The circular dichroism and intrinsic fluorescence techniques were used to study secondary and tertiary structure of MT, respectively. All experiments were conducted in 2015 in biophysical laboratory of Qazvin University of Medical Sciences and Islamic Azad University, Science and Research Branch, Tehran. Results The relative activity reduced from 100% for native enzyme to 10%, 7.9%, and 6.4% for modified MT with different NBS of concentrations 2, 10, and 20 mM, respectively. Thermal instability of modified enzyme was confirmed by decreased Tm and ∆G25°C values after modification. In accordance with kinetic and thermodynamic results, the lower stability of modified MT was observed from the changes occurred on its secondary and tertiary structures. Conclusions Chemical modification of tryptophan residues with NBS reduces the activity and stability of MT simultaneously with its structural change. Thus, this study emphasizes the crucial role of tryptophan residues in the structure-function relationship of MT

  18. Structure-based function prediction of the expanding mollusk tyrosinase family

    Science.gov (United States)

    Huang, Ronglian; Li, Li; Zhang, Guofan

    2017-11-01

    Tyrosinase (Ty) is a common enzyme found in many different animal groups. In our previous study, genome sequencing revealed that the Ty family is expanded in the Pacific oyster ( Crassostrea gigas). Here, we examine the larger number of Ty family members in the Pacific oyster by high-level structure prediction to obtain more information about their function and evolution, especially the unknown role in biomineralization. We verified 12 Ty gene sequences from Crassostrea gigas genome and Pinctada fucata martensii transcriptome. By using phylogenetic analysis of these Tys with functionally known Tys from other molluscan species, eight subgroups were identified (CgTy_s1, CgTy_s2, MolTy_s1, MolTy-s2, MolTy-s3, PinTy-s1, PinTy-s2 and PviTy). Structural data and surface pockets of the dinuclear copper center in the eight subgroups of molluscan Ty were obtained using the latest versions of prediction online servers. Structural comparison with other Ty proteins from the protein databank revealed functionally important residues (HA1, HA2, HA3, HB1, HB2, HB3, Z1-Z9) and their location within these protein structures. The structural and chemical features of these pockets which may related to the substrate binding showed considerable variability among mollusks, which undoubtedly defines Ty substrate binding. Finally, we discuss the potential driving forces of Ty family evolution in mollusks. Based on these observations, we conclude that the Ty family has rapidly evolved as a consequence of substrate adaptation in mollusks.

  19. Type I oculocutaneous albinism (OCA1) associated with a large deletion of the tyrosinase (TYR) gene

    Energy Technology Data Exchange (ETDEWEB)

    Spritz, R.A.; Wick, P.A.; Holmes, S.A.; Schnur, R.E. [Univ. of Wisconsin, Madison, WI (United States)]|[Children`s Hospital of Philadelphia, PA (United States)

    1994-09-01

    OCA1 is an autosomal recessive disorder in which the biosynthesis of melanin is reduced or absent in skin, hair, and eyes, due to deficient enzymatic activity of tyrosinase. TYR consists of 5 exons spanning over 65 kb at 11q14-q21. Analyses of TYR in >400 unrelated patients with OCA1 have identified more than 50 different point mutations; however, no large deletions have been detected. Here we report a large deletion of TYR in a Caucasian boy with OCA1B. Simultaneous SSCP/heteroduplex screening and DNA sequence analysis indicated that the patient was apparently homozygous for a previously described TYR mutation, adjacent to the 3` splice site of IVS2 (-7, t{r_arrow}a). To distinguish between possible gene deletion vs. maternal uniparental isodisomy, we characterized several chromosome 11 polymorphisms. Maternal uniparental isodisomy was excluded by the patient`s heterozygosity for alleles at D11S35 (11q21-122) and HBG2 (11p15.5). In addition, the patient failed to inherit paternal alleles at an MboI RFLP in exon 1 of TYR and at a TaqI RFLP in the promoter region of the gene. To detect a possible submicroscopic deletion, we performed quantitative Southern blot hybridization using a full length TYR cDNA. Compared with controls, both the patient and his father appeared deleted for two or three TYR-derived PstI fragments; the two TYRL-derived fragments appeared normal. These data indicate that the patient and his father have a partial TYR deletion, including at least exons 1, 2, and IVS2. Based on the organization of the gene, this deletion is at least 50 kb in size. The patient is thus hemizygous for the maternally-inherited mutation in IVS2, accounting for his OCA1B phenotype.

  20. Sensitive amperometric biosensor for phenolic compounds based on graphene-silk peptide/tyrosinase composite nanointerface.

    Science.gov (United States)

    Qu, Ying; Ma, Ming; Wang, Zhengguo; Zhan, Guoqing; Li, Buhai; Wang, Xian; Fang, Huaifang; Zhang, Huijuan; Li, Chunya

    2013-06-15

    New graphene-silk peptide (Gr-SP) nanosheets were prepared and successfully fabricated with tyrosinase (Tyr) as a novel biosensor for the determination of phenolic compounds. The Gr-SP nanosheets were fully characterized with transmission electron microscopy, x-ray diffraction, x-ray photoelectron spectroscopy, UV/Vis and FTIR spectra. The developed biosensors were also characterized with scanning electronic microscopy and electrochemical impedance spectroscopy. Using bisphenol A (BPA) as a model substrate in the sensing system, a number of key factors including the volume of Gr-SP-Tyr solution, the applied potential, pH values, temperature, and the Tyr/Gr-SP ratio that influence the analytical performance of the biosensor were investigated. The biosensor gave a linear response on the concentration ranges of 0.001-16.91 μM for catechol with the sensitivity of 7634 mA M(-1)cm(-2), 0.0015-21.12 μM for phenol with the sensitivity of 4082 mA M(-1)cm(-2), and 0.002-5.48 μM for BPA with the sensitivity of 2511 mA M(-1)cm(-2). The low detection limits were estimated to be 0.23, 0.35 and 0.72 nM (S/N=3) for catechol, phenol and BPA, respectively. The biosensors also exhibit good repeatability and long-term stability. The practical application of the biosensor was also demonstrated by the determination of BPA leaching from commercial plastic drinking bottles. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Condensed tannins from Ficus virens as tyrosinase inhibitors: structure, inhibitory activity and molecular mechanism.

    Directory of Open Access Journals (Sweden)

    Xiao-Xin Chen

    Full Text Available Condensed tannins from Ficus virens leaves, fruit, and stem bark were isolated and their structures characterized by 13C nuclear magnetic resonance spectrometry, high performance liquid chromatography electrospray ionization mass spectrometry, and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. The results showed that the leaves, fruit, and stem bark condensed tannins were complex mixtures of homo- and heteropolymers of B-type procyanidins and prodelphinidins with degrees of polymerization up to hexamer, dodecamer, and pentadecamer, respectively. Antityrosinase activities of the condensed tannins were studied. The results indicated that the condensed tannins were potent tyrosinase inhibitors. The concentrations for the leaves, fruit, and stem bark condensed tannins leading to 50% enzyme activity were determined to be 131.67, 99.89, and 106.22 μg/ml on monophenolase activity, and 128.42, 43.07, and 74.27 μg/ml on diphenolase activity. The inhibition mechanism, type, and constants of the condensed tannins on the diphenolase activity were further investigated. The results indicated that the condensed tannins were reversible and mixed type inhibitors. Fluorescence quenching, copper interacting, and molecular docking techniques were utilized to unravel the molecular mechanisms of the inhibition. The results showed that the hydroxyl group on the B ring of the condensed tannins could chelate the dicopper irons of the enzyme. Moreover, the condensed tannins could reduce the enzyme product o-quinones into colourless compounds. These results would contribute to the development and design of antityrosinase agents.

  2. Immunotherapeutic potential of extracellular vesicles

    Directory of Open Access Journals (Sweden)

    Bin eZhang

    2014-10-01

    Full Text Available Extracellular vesicles or EVs is a term that encompasses all classes of secreted lipid membrane vesicles. Despite being scientific novelties, EVs are gaining importance as a mediator of important physiological and pathological intercellular activities possibly through the transfer of their cargo of protein and RNA between cells. In particular, exosomes the currently best characterized EVs have been notable for their in vitro and in vivo immunomodulatory activities. Exosomes are nanometer-sized endosome-derived vesicles secreted by many cell types and their immunomodulatory potential is independent of their cell source. Besides immune cells such as dendritic cells, macrophages and T cells, cancer and stem cells also secrete immunologically active exosomes that could influence both physiological and pathological processes. The immunological activities of exosomes affect both innate and adaptive immunity and include antigen presentation, T cell activation, T cell polarisation to Tregs, immune suppression and anti-inflammation. As such, exosomes carry much immunotherapeutic potential as a therapeutic agent and a therapeutic target.

  3. Extracellular vesicles in parasitic diseases

    Directory of Open Access Journals (Sweden)

    Antonio Marcilla

    2014-12-01

    Full Text Available Parasitic diseases affect billions of people and are considered a major public health issue. Close to 400 species are estimated to parasitize humans, of which around 90 are responsible for great clinical burden and mortality rates. Unfortunately, they are largely neglected as they are mainly endemic to poor regions. Of relevance to this review, there is accumulating evidence of the release of extracellular vesicles (EVs in parasitic diseases, acting both in parasite–parasite inter-communication as well as in parasite–host interactions. EVs participate in the dissemination of the pathogen and play a role in the regulation of the host immune systems. Production of EVs from parasites or parasitized cells has been described for a number of parasitic infections. In this review, we provide the most relevant findings of the involvement of EVs in intercellular communication, modulation of immune responses, involvement in pathology, and their potential as new diagnostic tools and therapeutic agents in some of the major human parasitic pathogens.

  4. Neutrophil extracellular traps go viral

    Directory of Open Access Journals (Sweden)

    Günther Schönrich

    2016-09-01

    Full Text Available Neutrophils are the most numerous immune cells. Their importance as a first line of defense against bacterial and fungal pathogens is well described. In contrast, the role of neutrophils in controlling viral infections is less clear. Bacterial and fungal pathogens can stimulate neutrophils to produce extracellular traps (NETs in a process called NETosis. Although NETosis has previously been described as a special form of programmed cell, there are forms of NET production that do not end with the demise of neutrophils. As an end result of NETosis, genomic DNA complexed with microbicidal proteins is expelled from neutrophils. These structures can kill pathogens or at least prevent their local spread within host tissue. On the other hand disproportionate NET formation can cause local or systemic damage. Only recently was it recognized that viruses can also induce NETosis. In this review, we discuss the mechanisms by which NETs are produced in the context of viral infection and how this may contribute to both antiviral immunity and immunopathology. Finally, we shed light on viral immune evasion mechanisms targeting NETs.

  5. Extracellular vesicles in coronary artery disease.

    Science.gov (United States)

    Boulanger, Chantal M; Loyer, Xavier; Rautou, Pierre-Emmanuel; Amabile, Nicolas

    2017-05-01

    Membrane vesicles released in the extracellular space are composed of a lipid bilayer enclosing soluble cytosolic material and nuclear components. Extracellular vesicles include apoptotic bodies, exosomes, and microvesicles (also known previously as microparticles). Originating from different subcellular compartments, the role of extracellular vesicles as regulators of transfer of biological information, acting locally and remotely, is now acknowledged. Circulating vesicles released from platelets, erythrocytes, leukocytes, and endothelial cells contain potential valuable biological information for biomarker discovery in primary and secondary prevention of coronary artery disease. Extracellular vesicles also accumulate in human atherosclerotic plaques, where they affect major biological pathways, including inflammation, proliferation, thrombosis, calcification, and vasoactive responses. Extracellular vesicles also recapitulate the beneficial effect of stem cells to treat cardiac consequences of acute myocardial infarction, and now emerge as an attractive alternative to cell therapy, opening new avenues to vectorize biological information to target tissues. Although interest in microvesicles in the cardiovascular field emerged about 2 decades ago, that for extracellular vesicles, in particular exosomes, started to unfold a decade ago, opening new research and therapeutic avenues. This Review summarizes current knowledge on the role of extracellular vesicles in coronary artery disease, and their emerging potential as biomarkers and therapeutic agents.

  6. Extracellular DNA metabolism in Haloferax volcanii

    Directory of Open Access Journals (Sweden)

    Scott eChimileski

    2014-02-01

    Full Text Available Extracellular DNA is found in all environments and is a dynamic component of the micro-bial ecosystem. Microbial cells produce and interact with extracellular DNA through many endogenous mechanisms. Extracellular DNA is processed and internalized for use as genetic information and as a major source of macronutrients, and plays several key roles within prokaryotic biofilms. Hypersaline sites contain some of the highest extracellular DNA con-centrations measured in nature–a potential rich source of carbon, nitrogen and phosphorus for halophilic microorganisms. We conducted DNA growth studies for the halophilic archaeon Haloferax volcanii DS2 and show that this model Halobacteriales strain is capable of using exogenous double-stranded DNA as a nutrient. Further experiments with varying medium composition, DNA concentration and DNA types revealed that DNA is utilized primarily as a phosphorus source, that growth on DNA is concentration-dependent and that DNA isolated from different sources is metabolized selectively, with a bias against highly divergent methylated DNA sources. Additionally, fluorescence microscopy experiments showed that labeled DNA colocalized with Haloferax volcanii cells. The gene Hvo_1477 was also identified using a comparative genomic approach as a factor likely to be involved in extracellular DNA processing at the cell surface, and deletion of Hvo_1477 created an H. volcanii strain deficient in its ability to grow on extracellular DNA. Widespread distribution of Hvo_1477 homologs in archaea suggests metabolism of extracellular DNA may be of broad ecological and physiological relevance in this domain of life.

  7. Extracellular vesicles as emerging intercellular communicasomes.

    Science.gov (United States)

    Yoon, Yae Jin; Kim, Oh Youn; Gho, Yong Song

    2014-10-01

    All living cells release extracellular vesicles having pleiotropic functions in intercellular communication. Mammalian extracellular vesicles, also known as exosomes and microvesicles, are spherical bilayered proteolipids composed of various bioactive molecules, including RNAs, DNAs, proteins, and lipids. Extracellular vesicles directly and indirectly control a diverse range of biological processes by transferring membrane proteins, signaling molecules, mRNAs, and miRNAs, and activating receptors of recipient cells. The active interaction of extracellular vesicles with other cells regulates various physiological and pathological conditions, including cancer, infectious diseases, and neurodegenerative disorders. Recent developments in high-throughput proteomics, transcriptomics, and lipidomics tools have provided ample data on the common and specific components of various types of extracellular vesicles. These studies may contribute to the understanding of the molecular mechanism involved in vesicular cargo sorting and the biogenesis of extracellular vesicles, and, further, to the identification of disease-specific biomarkers. This review focuses on the components, functions, and therapeutic and diagnostic potential of extracellular vesicles under various pathophysiological conditions.

  8. Calcium stable isotope geochemistry

    Energy Technology Data Exchange (ETDEWEB)

    Gausonne, Nikolaus [Muenster Univ. (Germany). Inst. fuer Mineralogie; Schmitt, Anne-Desiree [Strasbourg Univ. (France). LHyGeS/EOST; Heuser, Alexander [Bonn Univ. (Germany). Steinmann-Inst. fuer Geologie, Mineralogie und Palaeontologie; Wombacher, Frank [Koeln Univ. (Germany). Inst. fuer Geologie und Mineralogie; Dietzel, Martin [Technische Univ. Graz (Austria). Inst. fuer Angewandte Geowissenschaften; Tipper, Edward [Cambridge Univ. (United Kingdom). Dept. of Earth Sciences; Schiller, Martin [Copenhagen Univ. (Denmark). Natural History Museum of Denmark

    2016-08-01

    This book provides an overview of the fundamentals and reference values for Ca stable isotope research, as well as current analytical methodologies including detailed instructions for sample preparation and isotope analysis. As such, it introduces readers to the different fields of application, including low-temperature mineral precipitation and biomineralisation, Earth surface processes and global cycling, high-temperature processes and cosmochemistry, and lastly human studies and biomedical applications. The current state of the art in these major areas is discussed, and open questions and possible future directions are identified. In terms of its depth and coverage, the current work extends and complements the previous reviews of Ca stable isotope geochemistry, addressing the needs of graduate students and advanced researchers who want to familiarize themselves with Ca stable isotope research.

  9. Preparation of Au and Ag nanoparticles using Artemisia annua and their in vitro antibacterial and tyrosinase inhibitory activities

    Energy Technology Data Exchange (ETDEWEB)

    Basavegowda, Nagaraj; Idhayadhulla, Akber; Lee, Yong Rok, E-mail: yrlee@yu.ac.kr

    2014-10-01

    This work describes a plant-mediated approach to the preparation of metal nanoparticles using leaf extract of Artemisia annua (A. annua), an ethno-medicinal plant widely found in Asia, which was used as reducing and stabilizing agent. A. annua is used in traditional Chinese medicine to alleviate fever. Au and Ag nanoparticles were prepared using a one-step aqueous method at room temperature without any toxic chemicals. The formation of Au and Ag nanoparticles was monitored by UV–vis spectroscopy. Synthesized nanoparticles were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), energy dispersive X-ray analysis (EDX), Fourier transform infrared (FT-IR) spectroscopy, and thermogravimetric analysis (TGA). TEM analysis of Au nanoparticles showed that they had triangular and spherical shapes with sizes ranging from 15 to 40 nm. The silver nanoparticles were predominantly spherical and uniformly sized (30–50 nm). The Au and Ag nanoparticles produced showed significant tyrosinase inhibitory and antibacterial effects. These results suggest that the synthesized nanoparticles provide good alternatives in varied medical and industrial applications. - Highlights: • Au and Ag nanoparticles were synthesized using Artemisia annua leaf aqueous extract. • Nanoparticles were characterized by UV–vis spectroscopy, FT-IR, TEM, EDX, XRD, and TGA. • Au and Ag nanoparticles were of size 25 and 30 nm respectively, in spherical forms. • Nanoparticles showed significant tyrosinase inhibitory and antibacterial activities.

  10. Amperometric Biosensor Based on Zirconium Oxide/Polyethylene Glycol/Tyrosinase Composite Film for the Detection of Phenolic Compounds

    Directory of Open Access Journals (Sweden)

    Nor Monica Ahmad

    2016-06-01

    Full Text Available A phenolic biosensor based on a zirconium oxide/polyethylene glycol/tyrosinase composite film for the detection of phenolic compounds has been explored. The formation of the composite film was expected via electrostatic interaction between hexacetyltrimethylammonium bromide (CTAB, polyethylene glycol (PEG, and zirconium oxide nanoparticles casted on screen printed carbon electrode (SPCE. Herein, the electrode was treated by casting hexacetyltrimethylammonium bromide on SPCE to promote a positively charged surface. Later, zirconium oxide was mixed with polyethylene glycol and the mixture was dropped cast onto the positively charged SPCE/CTAB. Tyrosinase was further immobilized onto the modified SPCE. Characterization of the prepared nanocomposite film and the modified SPCE surface was investigated by scanning electron microscopy (SEM, Electrochemical Impedance Spectroscopy (EIS, and Cyclic voltamogram (CV. The developed biosensor exhibits rapid response for less than 10 s. Two linear calibration curves towards phenol in the concentrations ranges of 0.075–10 µM and 10–55 µM with the detection limit of 0.034 µM were obtained. The biosensor shows high sensitivity and good storage stability for at least 30 days.

  11. Influence of Laccase and Tyrosinase on the Antioxidant Capacity of Selected Phenolic Compounds on Human Cell Lines

    Directory of Open Access Journals (Sweden)

    Matthias Riebel

    2015-09-01

    Full Text Available Polyphenolic compounds affect the color, odor and taste of numerous food products of plant origin. In addition to the visual and gustatory properties, they serve as radical scavengers and have antioxidant effects. Polyphenols, especially resveratrol in red wine, have gained increasing scientific and public interest due to their presumptive beneficial impact on human health. Enzymatic oxidation of phenolic compounds takes place under the influence of polyphenol oxidases (PPO, including tyrosinase and laccase. Several studies have demonstrated the radical scavenger effect of plants, food products and individual polyphenols in vitro, but, apart from resveratrol, such impact has not been proved in physiological test systems. Furthermore, only a few data exist on the antioxidant capacities of the enzymatic oxidation products of phenolic compounds generated by PPO. We report here first results about the antioxidant effects of phenolic substances, before and after oxidation by fungal model tyrosinase and laccase. In general, the common chemical 2,2-diphenyl-1-picrylhydrazyl assay and the biological tests using two different types of cell cultures (monocytes and endothelial cells delivered similar results. The phenols tested showed significant differences with respect to their antioxidant activity in all test systems. Their antioxidant capacities after enzymatic conversion decreased or increased depending on the individual PPO used.

  12. A novel nonsense mutation in the tyrosinase gene is related to the albinism in a capuchin monkey (Sapajus apella).

    Science.gov (United States)

    Galante Rocha de Vasconcelos, Felipe Tadeu; Hauzman, Einat; Dutra Henriques, Leonardo; Kilpp Goulart, Paulo Roney; de Faria Galvão, Olavo; Sano, Ronaldo Yuiti; da Silva Souza, Givago; Lynch Alfaro, Jessica; de Lima Silveira, Luis Carlos; Fix Ventura, Dora; Oliveira Bonci, Daniela Maria

    2017-05-05

    Oculocutaneous Albinism (OCA) is an autosomal recessive inherited condition that affects the pigmentation of eyes, hair and skin. The OCA phenotype may be caused by mutations in the tyrosinase gene (TYR), which expresses the tyrosinase enzyme and has an important role in the synthesis of melanin pigment. The aim of this study was to identify the genetic mutation responsible for the albinism in a captive capuchin monkey, and to describe the TYR gene of normal phenotype individuals. In addition, we identified the subject's species. A homozygous nonsense mutation was identified in exon 1 of the TYR gene, with the substitution of a cytosine for a thymine nucleotide (C64T) at codon 22, leading to a premature stop codon (R22X) in the albino robust capuchin monkey. The albino and five non-albino robust capuchin monkeys were identified as Sapajus apella, based on phylogenetic analyses, pelage pattern and geographic provenance. One individual was identified as S. macrocephalus. We conclude that the point mutation C64T in the TYR gene is responsible for the OCA1 albino phenotype in the capuchin monkey, classified as Sapajus apella.

  13. The unfolded protein response in melanocytes: activation in response to chemical stressors of the endoplasmic reticulum and tyrosinase misfolding.

    Science.gov (United States)

    Manga, Prashiela; Bis, Sabina; Knoll, Kristen; Perez, Beremis; Orlow, Seth J

    2010-10-01

    Accumulation of proteins in the endoplasmic reticulum (ER) triggers the unfolded protein response (UPR), comprising three signaling pathways initiated by Ire1, Perk and Atf6 respectively. Unfolded protein response activation was compared in chemically stressed murine wildtype melanocytes and mutant melanocytes that retain tyrosinase in the ER. Thapsigargin, an ER stressor, activated all pathways in wildtype melanocytes, triggering Caspase 12-mediated apoptosis at toxic doses. Albino melanocytes expressing mutant tyrosinase showed evidence of ER stress with increased Ire1 expression, but the downstream effector, Xbp1, was not activated even following thapsigargin treatment. Attenuation of Ire1 signaling was recapitulated in wildtype melanocytes treated with thapsigargin for 8 days, with diminished Xbp1 activation observed after 4 days. Atf6 was also activated in albino melanocytes, with no response to thapsigargin, while the Perk pathway was not activated and thapsigargin treatment elicited robust expression of the downstream effector CCAAT-enhancer-binding protein homologous protein. Thus, melanocytes adapt to ER stress by attenuating two UPR pathways.

  14. Illuminating the physiology of extracellular vesicles.

    Science.gov (United States)

    Choi, Hongyoon; Lee, Dong Soo

    2016-04-16

    Extracellular vesicles play a crucial role in intercellular communication by transmitting biological materials from donor cells to recipient cells. They have pathophysiologic roles in cancer metastasis, neurodegenerative diseases, and inflammation. Extracellular vesicles also show promise as emerging therapeutics, with understanding of their physiology including targeting, distribution, and clearance therefore becoming an important issue. Here, we review recent advances in methods for tracking and imaging extracellular vesicles in vivo and critically discuss their systemic distribution, targeting, and kinetics based on up-to-date evidence in the literature.

  15. Demonstration of tyrosinase in the vitiligo skin of human beings by a sensitive fluorometric method as well as by 14C(U)-L-tyrosine incorporation into melanin

    Energy Technology Data Exchange (ETDEWEB)

    Husain, I.; Vijayan, E.; Ramaiah, A.; Pasricha, J.S.; Madan, N.C.

    1982-03-01

    Tyrosinase activity (Monophenol, dihydroxyphenylalanine: oxygen oxidoreductase EC 1.14.18.1) in vitiligo and normal epidermal homogenates of skin from human beings was measured by estimating beta 3,4-dihydroxyphenylalanine (dopa) by a highly sensitive fluorometric method described in this paper. The tyrosine activity in the vitiligo skin was about 4 to 37% of corresponding normal skin. The activity of tyrosinase in normal human skin from different individuals and from different regions of the body was in the range of 4 to 140 picomoles of beta 3,4-dihydroxyphenylalanine formed per min/mg protein of epidermal homogenate. The enzyme from vitiligo and normal skin was severely inhibited by substance(s) of low molecular weight. The enzyme exhibits a lag of about 4 hr in the absence of added beta 3,4-dihydroxyphenylalanine and 1 hr in presence of 5 microM dopa. Tyrosinase from the normal and vitiligo skin was inhibited by excess concentration of tyrosine. The homogenates from vitiligo skin could synthesize melanin from C14(U)-L-Tyrosine. The rate of tyrosine incorporation into melanin by the epidermal homogenates is increased by 3,4-dihydroxyphenylalanine (dopa) disproportionate to its effect on tyrosinase activity. Based on the data presented in this paper it is concluded that melanocytes are present in the vitiligo skin. A tentative hypothesis is put forward to explain the lack of melanin synthesis by the vitiligo skin under in vivo conditions, although melanocytes are present.

  16. The Potency of White Rice (Oryza sativa), Black Rice (Oryza sativa L. indica), and Red Rice (Oryza nivara) as Antioxidant and Tyrosinase Inhibitor

    Science.gov (United States)

    Batubara, I.; Maharni, M.; Sadiah, S.

    2017-04-01

    Rice is known to have many beneficial biological activities and is often used as “bedak dingin”, a face powder. The content of vitamins, minerals, fiber, and several types of antioxidants, such as ferulic acid, phytic acid, tocopherol, and oryzanols [1-2] are predicted to be potential as a tyrosinase inhibitor. The purpose of this study is to determine the potency of extracts from there types of rice, namely white, red, and black rice as an antioxidant and tyrosinase inhibitor. The rice was extracted with three different solvents, n-hexane, ethyl acetate, and methanol. The results showed that the highest antioxidant activity using 1,1-diphenyl-2-picrylhydrazyl method was found in the methanol extract of black rice (IC50 290 μg/mL). Meanwhile, ethyl acetate extract of white rice has the highest antioxidant activity withphosphomolybdic acid method (41 mmol α-tocopherol equivalents/g sample). Thus, methanol extract of black rice and ethyl acetate extract of white rice are potential as an antioxidant. For tyrosinase inhibitor, n-hexane extract of red rice (IC50 3156 μg/mL) was the most active extract. The active component for radical scavenging is polar compound and for antioxidant by phosphomolybdate method is less polar compounds in black rice methanol extract based on TLC bioautogram. In conclusion, the black rice is the most potent in antioxidant while red rice is for tyrosinase inhibition.

  17. The effects of tolaasin, the toxin produced by Pseudomonas tolaasii on tyrosinase activities and the induction of browning in Agaricus bisporus fruiting bodies

    NARCIS (Netherlands)

    Soler Rivas, C.; Arpin, N.; Olivier, J.M.; Wichers, H.J.

    1999-01-01

    Infection of Agaricus bisporus with Pseudomonas tolaasii or treatment with a tolaasin containing preparation resulted in the activation of tyrosinase and the development of a brown discolouration of the fruitbody. In order to investigate whether tolaasin is responsible for these reactions, mushrooms

  18. Reproducibility of detection of tyrosinase and MART-1 transcripts in the peripheral blood of melanoma patients: a quality control study using real-time quantitative RT-PCR

    NARCIS (Netherlands)

    de Vries, T. J.; Fourkour, A.; Punt, C. J.; van de Locht, L. T.; Wobbes, T.; van den Bosch, S.; de Rooij, M. J.; Mensink, E. J.; Ruiter, D. J.; van Muijen, G. N.

    1999-01-01

    In recent years, large discrepancies were described in the success rate of the tyrosinase reverse transcription polymerase chain reaction (RT-PCR) for detecting melanoma cells in the peripheral blood of melanoma patients. We present a quality control study in which we analysed the reproducibility of

  19. Discovery of Highly Potent Tyrosinase Inhibitor, T1, with Significant Anti-Melanogenesis Ability by zebrafish in vivo Assay and Computational Molecular Modeling

    Science.gov (United States)

    Chen, Wang-Chuan; Tseng, Tien-Sheng; Hsiao, Nai-Wan; Lin, Yun-Lian; Wen, Zhi-Hong; Tsai, Chin-Chuan; Lee, Yu-Ching; Lin, Hui-Hsiung; Tsai, Keng-Chang

    2015-01-01

    Tyrosinase is involved in melanin biosynthesis and the abnormal accumulation of melanin pigments leading to hyperpigmentation disorders that can be treated with depigmenting agents. A natural product T1, bis(4-hydroxybenzyl)sulfide, isolated from the Chinese herbal plant, Gastrodia elata, is a strong competitive inhibitor against mushroom tyrosinase (IC50 = 0.53 μM, Ki = 58 +/- 6 nM), outperforms than kojic acid. The cell viability and melanin quantification assay demonstrate that 50 μM of T1 apparently attenuates 20% melanin content of human normal melanocytes without significant cell toxicity. Moreover, the zebrafish in vivo assay reveals that T1 effectively reduces melanogenesis with no adverse side effects. The acute oral toxicity study evidently confirms that T1 molecule is free of discernable cytotoxicity in mice. Furthermore, the molecular modeling demonstrates that the sulfur atom of T1 coordinating with the copper ions in the active site of tyrosinase is essential for mushroom tyrosinase inhibition and the ability of diminishing the human melanin synthesis. These results evident that T1 isolated from Gastrodia elata is a promising candidate in developing pharmacological and cosmetic agents of great potency in skin-whitening.

  20. Bacterial binding to extracellular proteins - in vitro adhesion

    DEFF Research Database (Denmark)

    Schou, C.; Fiehn, N.-E.

    1999-01-01

    Viridans streptococci, bacterial adherence, extracellular matrix proteins, surface receptors, endocarditis......Viridans streptococci, bacterial adherence, extracellular matrix proteins, surface receptors, endocarditis...

  1. Evolutionary Stable Strategy

    Indian Academy of Sciences (India)

    2016-08-26

    Aug 26, 2016 ... Home; Journals; Resonance – Journal of Science Education; Volume 21; Issue 9. Evolutionary Stable Strategy: Application of Nash Equilibrium in Biology. General ... Using some examples of classical games, we show how evolutionary game theory can help understand behavioural decisions of animals.

  2. The Stable Concordance Genus

    OpenAIRE

    Kearney, M. Kate

    2013-01-01

    The concordance genus of a knot is the least genus of any knot in its concordance class. Although difficult to compute, it is a useful invariant that highlights the distinction between the three-genus and four-genus. In this paper we define and discuss the stable concordance genus of a knot, which describes the behavior of the concordance genus under connected sum.

  3. Manifolds admitting stable forms

    Czech Academy of Sciences Publication Activity Database

    Le, Hong-Van; Panák, Martin; Vanžura, Jiří

    2008-01-01

    Roč. 49, č. 1 (2008), s. 101-11 ISSN 0010-2628 R&D Projects: GA ČR(CZ) GP201/05/P088 Institutional research plan: CEZ:AV0Z10190503 Keywords : stable forms * automorphism groups Subject RIV: BA - General Mathematics

  4. Stable isotope studies

    International Nuclear Information System (INIS)

    Ishida, T.

    1992-01-01

    The research has been in four general areas: (1) correlation of isotope effects with molecular forces and molecular structures, (2) correlation of zero-point energy and its isotope effects with molecular structure and molecular forces, (3) vapor pressure isotope effects, and (4) fractionation of stable isotopes. 73 refs, 38 figs, 29 tabs

  5. Interactive Stable Ray Tracing

    DEFF Research Database (Denmark)

    Dal Corso, Alessandro; Salvi, Marco; Kolb, Craig

    2017-01-01

    Interactive ray tracing applications running on commodity hardware can suffer from objectionable temporal artifacts due to a low sample count. We introduce stable ray tracing, a technique that improves temporal stability without the over-blurring and ghosting artifacts typical of temporal post-pr...

  6. The stable subgroup graph

    Directory of Open Access Journals (Sweden)

    Behnaz Tolue

    2018-07-01

    Full Text Available In this paper we introduce stable subgroup graph associated to the group $G$. It is a graph with vertex set all subgroups of $G$ and two distinct subgroups $H_1$ and $H_2$ are adjacent if $St_{G}(H_1\\cap H_2\

  7. Detection of extracellular enzymatic activity in microorganisms ...

    African Journals Online (AJOL)

    Detection of extracellular enzymatic activity in microorganisms isolated from waste vegetable oil contaminated soil using plate methodologies. Eugenia G. Ortiz Lechuga, Isela Quintero Zapata, Katiushka Arévalo Niño ...

  8. Extracellular matrix component signaling in cancer

    DEFF Research Database (Denmark)

    Multhaupt, Hinke A. B.; Leitinger, Birgit; Gullberg, Donald

    2016-01-01

    Cell responses to the extracellular matrix depend on specific signaling events. These are important from early development, through differentiation and tissue homeostasis, immune surveillance, and disease pathogenesis. Signaling not only regulates cell adhesion cytoskeletal organization...

  9. Characterization of Extracellular Chitinolytic Activity in Biofilms

    Energy Technology Data Exchange (ETDEWEB)

    Baty, Ace M.; Diwu, Zhenjun; Dunham, Glen C.; Eastburn, Callie; Geesey, Gill G.; Goodman, Amanda; Suci, Peter; Techkarnjanaruk, Somkiet

    2001-05-01

    It is common for bacteria to produce extracellular enzymes having some form of degradative activity. In some cases these enzymes serve to protect cells from antagonistic substances, or to convert a large and/or insoluble biopolymer to an assimilable nutrient source. In some cases the physiological benefit to the bacterium is not entirely evident. Extracellular enzymes may be membrane bound, but in many cases they are released into the surrounding medium. It has been shown that these relatively large molecules become immobilized in the extracellular polymeric matrix in which cells in flocs and biofilms are embedded. Most proteins adsorb irreversibly to substrata having a variety of surface chemistries, and transport by convection is reduced near any solid surface, regardless of the flow regimen in the bulk liquid. Thus, extracellular enzymes have a tendency to become an integral and significant component of the biofilm/substratum microenvironment, influencing cell physiology and biofilm ecology.

  10. Extracellular polysaccharide production by Thraustochytrid protists

    Digital Repository Service at National Institute of Oceanography (India)

    Jain, R.; Raghukumar, S.; Tharanathan, R.; Bhosle, N.B.

    Four strains of marine stramenopilan protists, the thraustochytrids, were studied for their ability to produce extracellular polysaccharides (EPSs). Observations by light and scanning electron microscopy revealed the production of a matrix of EPS...

  11. Neutrophil Extracellular Traps in Ulcerative Colitis

    DEFF Research Database (Denmark)

    Bjerg Bennike, Tue; Carlsen, Thomas Gelsing; Ellingsen, Torkell

    2015-01-01

    microscopy and confocal microscopy. RESULTS: We identified and quantified 5711 different proteins with proteomics. The abundance of the proteins calprotectin and lactotransferrin in the tissue correlated with the degree of tissue inflammation as determined by histology. However, fecal calprotectin did...... not correlate. Forty-six proteins were measured with a statistically significant differences in abundances between the UC colon tissue and controls. Eleven of the proteins with increased abundances in the UC biopsies were associated with neutrophils and neutrophil extracellular traps. The findings were...... validated by microscopy, where an increased abundance of neutrophils and the presence of neutrophil extracellular traps by extracellular DNA present in the UC colon tissue were confirmed. CONCLUSIONS: Neutrophils, induced neutrophil extracellular traps, and several proteins that play a part in innate...

  12. Extracellular Vesicles: Evolving Contributors in Autoimmunity

    OpenAIRE

    Katsiougiannis, Stergios

    2015-01-01

    Extracellular vesicles, including microvesicles, exosomes and apoptotic bodies are recognized as carriers of pathogen-associated molecules with direct involvement in immune signaling and inflammation. Those observations have enforced the way these membranous vesicles are being considered as promising immunotherapeutic targets. In this review, we discuss the emerging roles of extracellular vesicles in autoimmunity and highlights their potential use as disease biomarkers as well as targets for ...

  13. Validating tyrosinase homologue melA as a photoacoustic reporter gene for imaging Escherichia coli

    Science.gov (United States)

    Paproski, Robert J.; Li, Yan; Barber, Quinn; Lewis, John D.; Campbell, Robert E.; Zemp, Roger

    2015-10-01

    To understand the pathogenic processes for infectious bacteria, appropriate research tools are required for replicating and characterizing infections. Fluorescence and bioluminescence imaging have primarily been used to image infections in animal models, but optical scattering in tissue significantly limits imaging depth and resolution. Photoacoustic imaging, which has improved depth-to-resolution ratio compared to conventional optical imaging, could be useful for visualizing melA-expressing bacteria since melA is a bacterial tyrosinase homologue which produces melanin. Escherichia coli-expressing melA was visibly dark in liquid culture. When melA-expressing bacteria in tubes were imaged with a VisualSonics Vevo LAZR system, the signal-to-noise ratio of a 9× dilution sample was 55, suggesting that ˜20 bacteria cells could be detected with our system. Multispectral (680, 700, 750, 800, 850, and 900 nm) analysis of the photoacoustic signal allowed unmixing of melA-expressing bacteria from blood. To compare photoacoustic reporter gene melA (using Vevo system) with luminescent and fluorescent reporter gene Nano-lantern (using Bruker Xtreme In-Vivo system), tubes of bacteria expressing melA or Nano-lantern were submerged 10 mm in 1% Intralipid, spaced between <1 and 20 mm apart from each other, and imaged with the appropriate imaging modality. Photoacoustic imaging could resolve the two tubes of melA-expressing bacteria even when the tubes were less than 1 mm from each other, while bioluminescence and fluorescence imaging could not resolve the two tubes of Nano-lantern-expressing bacteria even when the tubes were spaced 10 mm from each other. After injecting 100-μL of melA-expressing bacteria in the back flank of a chicken embryo, photoacoustic imaging allowed visualization of melA-expressing bacteria up to 10-mm deep into the embryo. Photoacoustic signal from melA could also be separated from deoxy- and oxy-hemoglobin signal observed within the embryo and

  14. Glioblastoma extracellular vesicles: reservoirs of potential biomarkers

    Directory of Open Access Journals (Sweden)

    Redzic JS

    2014-02-01

    Full Text Available Jasmina S Redzic,1 Timothy H Ung,2 Michael W Graner2 1Skaggs School of Pharmacy and Pharmaceutical Sciences, 2Department of Neurosurgery, School of Medicine, University of Colorado Denver, Aurora, CO, USA Abstract: Glioblastoma multiforme (GBM is the most frequent and most devastating of the primary central nervous system tumors, with few patients living beyond 2 years postdiagnosis. The damage caused by the disease and our treatments for the patients often leave them physically and cognitively debilitated. Generally, GBMs appear after very short clinical histories and are discovered by imaging (using magnetic resonance imaging [MRI], and the diagnosis is validated by pathology, following surgical resection. The treatment response and diagnosis of tumor recurrence are also tracked by MRI, but there are numerous problems encountered with these monitoring modalities, such as ambiguous interpretation and forms of pseudoprogression. Diagnostic, prognostic, and predictive biomarkers would be an immense boon in following treatment schemes and in determining recurrence, which often requires an invasive intracranial biopsy to verify imaging data. Extracellular vesicles (EVs are stable, membrane-enclosed, virus-sized particles released from either the cell surface or from endosomal pathways that lead to the systemic release of EVs into accessible biofluids, such as serum/plasma, urine, cerebrospinal fluid, and saliva. EVs carry a wide variety of proteins, nucleic acids, lipids, and other metabolites, with many common features but with enough individuality to be able to identify the cell of origin of the vesicles. These components, if properly interrogated, could allow for the identification of tumor-derived EVs in biofluids, indicating tumor progression, relapse, or treatment failure. That knowledge would allow clinicians to continue with treatment regimens that were actually effective or to change course if the therapies were failing. Here, we review

  15. Stable isotope analysis

    International Nuclear Information System (INIS)

    Tibari, Elghali; Taous, Fouad; Marah, Hamid

    2014-01-01

    This report presents results related to stable isotopes analysis carried out at the CNESTEN DASTE in Rabat (Morocco), on behalf of Senegal. These analyzes cover 127 samples. These results demonstrate that Oxygen-18 and Deuterium in water analysis were performed by infrared Laser spectroscopy using a LGR / DLT-100 with Autosampler. Also, the results are expressed in δ values (‰) relative to V-SMOW to ± 0.3 ‰ for oxygen-18 and ± 1 ‰ for deuterium.

  16. Chilean berry Ugni molinae Turcz. fruit and leaves extracts with interesting antioxidant, antimicrobial and tyrosinase inhibitory properties.

    Science.gov (United States)

    López de Dicastillo, Carol; Bustos, Fernanda; Valenzuela, Ximena; López-Carballo, Gracia; Vilariño, Jose M; Galotto, Maria Jose

    2017-12-01

    The knowledge of the biological properties of fruits and leaves of murta (Ugni molinae Turcz.) has been owned by native Chilean culture. The present study investigated the phenolic content, the antioxidant, antimicrobial and anti-tyrosinase activities of different murta fruit and leaves extracts to approach their uses on future food, pharmaceutical and cosmetic applications. Extractions of murta fruit and leaves were carried out under water, ethanol and ethanol 50%. Phenolic content of these extracts was measured through Folin Ciocalteu test and the antioxidant power by four different antioxidant systems (ORAC, FRAP, DPPH and TEAC assays) owing to elucidate the main mechanism of antioxidant. Some flavonoids, such as rutin, isoquercitrin and quercitrin hydrate were identified and quantified through HPLC analysis. Antimicrobial activity was determined measuring minimum inhibition concentration (MIC) and minimum bactericidal concentration (MBC) values against Escherichia coli and Listeria monocytogenes, and the effect of these extracts on L. monocytogenes was confirmed by flow cytometry. Highest contents of polyphenol compounds were obtained in hydroalcoholic extracts (28±1mggallicacid/g dry fruit, and 128±6mggallicacid/g dry leaves). The same trend was found for the values of biological properties: hydroalcoholic extracts showed the strongest activities. Leaves presented higher antioxidant, antimicrobial and anti-tyrosinase properties than murta fruit. Highest antioxidant activity values according to ORAC, FRAP, TEAC and DPPH were 80±8mgTrolox/g, 70±2mgTrolox/g, 87±8mgTrolox/g and 110±12mgTrolox/g, respectively, for murta fruit samples, and 280±10mgTrolox/g, 192±4mgTrolox/g, 286±13mgTrolox/g and 361±13mgTrolox/g, respectively, for murta leaves. These activities were confirmed by HPLC analysis that revealed highest presence of analyzed compounds on leaves hydroalcoholic extract. Regarding to antimicrobial analysis, hydroalcoholic leaves extract presented the

  17. Forensic Stable Isotope Biogeochemistry

    Science.gov (United States)

    Cerling, Thure E.; Barnette, Janet E.; Bowen, Gabriel J.; Chesson, Lesley A.; Ehleringer, James R.; Remien, Christopher H.; Shea, Patrick; Tipple, Brett J.; West, Jason B.

    2016-06-01

    Stable isotopes are being used for forensic science studies, with applications to both natural and manufactured products. In this review we discuss how scientific evidence can be used in the legal context and where the scientific progress of hypothesis revisions can be in tension with the legal expectations of widely used methods for measurements. Although this review is written in the context of US law, many of the considerations of scientific reproducibility and acceptance of relevant scientific data span other legal systems that might apply different legal principles and therefore reach different conclusions. Stable isotopes are used in legal situations for comparing samples for authenticity or evidentiary considerations, in understanding trade patterns of illegal materials, and in understanding the origins of unknown decedents. Isotope evidence is particularly useful when considered in the broad framework of physiochemical processes and in recognizing regional to global patterns found in many materials, including foods and food products, drugs, and humans. Stable isotopes considered in the larger spatial context add an important dimension to forensic science.

  18. Determination of Patulin Using Amperometric Tyrosinase Biosensors Based on Electrodes Modified with Carbon Nanotubes and Gold Nanoparticles

    Directory of Open Access Journals (Sweden)

    R.M. Varlamova

    2016-06-01

    Full Text Available New amperometric biosensors based on platinum screen printed electrodes modified with multi-walled carbon nanotubes, gold nanoparticles, and immobilized enzyme – tyrosinase have been developed for determination of patulin in the concentrations of 1·10–6 – 8·10–12 mol/L with an error of no more than 0.063. The best conditions for obtaining gold nanoparticles have been chosen. The conditions for immobilization of multi-walled carbon nanotubes and gold nanoparticles on the surface of the planar electrode have been revealed. The conditions for functioning of the proposed biosensors have been identified. The results have been used to control the content of patulin in food products within and lower than the maximum allowable levels.

  19. Extracellular histones in tissue injury and inflammation.

    Science.gov (United States)

    Allam, Ramanjaneyulu; Kumar, Santhosh V R; Darisipudi, Murthy N; Anders, Hans-Joachim

    2014-05-01

    Neutrophil NETosis is an important element of host defense as it catapults chromatin out of the cell to trap bacteria, which then are killed, e.g., by the chromatin's histone component. Also, during sterile inflammation TNF-alpha and other mediators trigger NETosis, which elicits cytotoxic effects on host cells. The same mechanism should apply to other forms of regulated necrosis including pyroptosis, necroptosis, ferroptosis, and cyclophilin D-mediated regulated necrosis. Beyond these toxic effects, extracellular histones also trigger thrombus formation and innate immunity by activating Toll-like receptors and the NLRP3 inflammasome. Thereby, extracellular histones contribute to the microvascular complications of sepsis, major trauma, small vessel vasculitis as well as acute liver, kidney, brain, and lung injury. Finally, histones prevent the degradation of extracellular DNA, which promotes autoimmunization, anti-nuclear antibody formation, and autoimmunity in susceptible individuals. Here, we review the current evidence on the pathogenic role of extracellular histones in disease and discuss how to target extracellular histones to improve disease outcomes.

  20. Assessment of extracellular dehydration using saliva osmolality.

    Science.gov (United States)

    Ely, Brett R; Cheuvront, Samuel N; Kenefick, Robert W; Spitz, Marissa G; Heavens, Kristen R; Walsh, Neil P; Sawka, Michael N

    2014-01-01

    When substantial solute losses accompany body water an isotonic hypovolemia (extracellular dehydration) results. The potential for using blood or urine to assess extracellular dehydration is generally poor, but saliva is not a simple ultra-filtrate of plasma and the autonomic regulation of salivary gland function suggests the possibility that saliva osmolality (Sosm) may afford detection of extracellular dehydration via the influence of volume-mediated factors. This study aimed to evaluate the assessment of extracellular dehydration using Sosm. In addition, two common saliva collection methods and their effects on Sosm were compared. Blood, urine, and saliva samples were collected in 24 healthy volunteers during paired euhydration and dehydration trials. Furosemide administration and 12 h fluid restriction were used to produce extracellular dehydration. Expectoration and salivette collection methods were compared in a separate group of eight euhydrated volunteers. All comparisons were made using paired t-tests. The diagnostic potential of body fluids was additionally evaluated. Dehydration (3.1 ± 0.5% loss of body mass) decreased PV (-0.49 ± 0.12 L; -15.12 ± 3.94% change), but Sosm changes were marginal ( 0.05). Extracelluar dehydration was not detectable using plasma, urine, or saliva measures. Salivette and expectoration sampling methods produced similar, consistent results for Sosm, suggesting no methodological influence on Sosm.

  1. Extracellular vesicles in the hematopoietic microenvironment

    Science.gov (United States)

    Butler, John T.; Abdelhamed, Sherif; Kurre, Peter

    2018-01-01

    Self-renewal and differentiation are defining characteristics of hematopoietic stem and progenitor cells, and their balanced regulation is central to lifelong function of both blood and immune systems. In addition to cell-intrinsic programs, hematopoietic stem and progenitor cell fate decisions are subject to extrinsic cues from within the bone marrow microenvironment and systemically. Yet, many of the paracrine and endocrine mediators that shape hematopoietic function remain to be discovered. Extracellular vesicles serve as evolutionarily conserved, constitutive regulators of cell and tissue homeostasis, with several recent reports supporting a role for extracellular vesicles in the regulation of hematopoiesis. We review the physiological and pathophysiological effects that extracellular vesicles have on bone marrow compartmental function while highlighting progress in understanding vesicle biogenesis, cargo incorporation, differential uptake, and downstream effects of vesicle internalization. This review also touches on the role of extracellular vesicles in hematopoietic stem and progenitor cell fate regulation and recent advances in therapeutic and diagnostic applications of extracellular vesicles in hematologic disorders. PMID:29439185

  2. Endothelial Extracellular Vesicles-Promises and Challenges.

    Science.gov (United States)

    Hromada, Carina; Mühleder, Severin; Grillari, Johannes; Redl, Heinz; Holnthoner, Wolfgang

    2017-01-01

    Extracellular vesicles, including exosomes, microparticles, and apoptotic bodies, are phospholipid bilayer-enclosed vesicles that have once been considered as cell debris lacking biological functions. However, they have recently gained immense interest in the scientific community due to their role in intercellular communication, immunity, tissue regeneration as well as in the onset, and progression of various pathologic conditions. Extracellular vesicles of endothelial origin have been found to play a versatile role in the human body, since they are on the one hand known to contribute to cardiovascular diseases, but on the other hand have also been reported to promote endothelial cell survival. Hence, endothelial extracellular vesicles hold promising therapeutic potential to be used as a new tool to detect as well as treat a great number of diseases. This calls for clinically approved, standardized, and efficient isolation and characterization protocols to harvest and purify endothelial extracellular vesicles. However, such methods and techniques to fulfill stringent requirements for clinical trials have yet to be developed or are not harmonized internationally. In this review, recent advances and challenges in the field of endothelial extracellular vesicle research are discussed and current problems and limitations regarding isolation and characterization are pointed out.

  3. Increased therapeutic efficacy of a newly synthesized tyrosinase inhibitor by solid lipid nanoparticles in the topical treatment of hyperpigmentation

    Directory of Open Access Journals (Sweden)

    Al-Amin M

    2016-12-01

    Full Text Available Md Al-Amin, Jiafu Cao, Muhammad Naeem, Hasanul Banna, Min-Soo Kim, Yunjin Jung, Hae Young Chung, Hyung Ryong Moon, Jin-Wook Yoo College of Pharmacy, Pusan National University, Busan, South Korea Abstract: Hyperpigmentation caused by melanin overproduction is a major skin disorder in humans. Inhibition of tyrosinase, a key regulator of melanin production, has been used as an effective strategy to treat hyperpigmentation. In this study, we investigated the use of solid lipid nanoparticles (SLNs as a highly effective and nontoxic means to deliver a newly synthesized potent tyrosinase inhibitor, MHY498, and to target melanocytes through the skin. MHY498-loaded SLNs (MHY-SLNs were prepared by an oil-in-water emulsion solvent-evaporation method, and their morphological and physicochemical properties were characterized. MHY-SLNs showed a prolonged drug-release profile and higher skin permeation than that of MHY solution. In an in vivo evaluation of antimelanogenic activity, MHY-SLNs showed a prominent inhibitory effect against ultraviolet B-induced melanogenesis, resulting in no change in the skin color of C57BL/6 mouse, compared with that observed in an MHY solution-treated group and an untreated control group. The antimelanogenic effect of MHY-SLNs was further confirmed through Fontana–Masson staining. Importantly, MHY-SLNs did not induce any toxic effects in the L929 cell line. Overall, these data indicate that MHY-SLNs show promise in the topical treatment of hyperpigmentation. Keywords: melanogenesis, hyperpigmentation, MHY498, solid lipid nanoparticles, skin delivery

  4. Quercus infectoria and Terminalia chebula decrease melanin content and tyrosinase activity in B16/F10 cell lines

    Directory of Open Access Journals (Sweden)

    Akram Jamshidzadeh

    2017-10-01

    Full Text Available Context: One of the most complained skin cares in ethnic skin like Asian women is hyperpigmentation, and lightening preparations have been long-standing desired. Due to the side effects of current drugs, medicinal plants have attracted more attentions as a source of novel drugs. Mazo (Quercus infectoria galls and Terminalia chebula fruits have been suggested in Persian Traditional Medicine as a safe treatment for hyperpigmentation. Aims: To evaluate the cytotoxicity and the effect on melanin synthesis in B16/F10 melanoma of Q. infectoria and T. chebula extracts. Methods: After collection and scientific authentication, plants were extracted by maceration method with methanol and were standardized based on total phenolic content. MTT assay and colorimetric method were used for cytotoxicity and determination of melanin content and tyrosinase activity in B16/F10 cells, respectively. Kojic acid was used as a reference compound. Results: Total phenolic content of Q. infectoria and T. chebula was determined as 287.34 ± 4.21 and 172.61 ± 8.67 mg gallic acid equivalent/g dried extract, respectively. Both plants decreased cell viability at 100 µg/mL and significantly reduced intercellular melanin to 66.25% and 71.1%, respectively in comparison to kojic acid (56.63% at 50 µg/mL. In the same concentration, 65.7% and 71.2% tyrosinase activity was inhibited by Q. infectoria and T. chebula, which significantly were different from control (p<0.001. Conclusions: These findings suggest that both plants especially Q. infectoria could inhibit melanogenesis in non-toxic concentrations and would be a good candidate for further studies.

  5. Tyrosinase inhibitory activity, molecular docking studies and antioxidant potential of chemotypes of Lippia origanoides (Verbenaceae) essential oils

    Science.gov (United States)

    Silva, Natália de F.; Andrade, Eloísa Helena A.; Gratieri, Tais; Setzer, William N.; Maia, José Guilherme S.

    2017-01-01

    The essential oils (EOs) of the aerial parts of Lippia origanoides (LiOr), collected in different localities of the Amazon region, were obtained by hydrodistillation and analyzed by GC and CG-MS. Principle component analysis (PCA) based on chemical composition grouped the oils in four chemotypes rich in mono- and sesquiterpenoids. Group I was characterized by 1,8-cineole and α-terpineol (LiOr-1 and LiOr-4) and group II by thymol (LiOr-2). The oil LiOr-3 showed β-caryophyllene, α-phellandrene and β-phellandrene as predominant and LiOr-5 was rich in (E)-nerolidol and β-caryophyllene. All samples were evaluated for antioxidant activity and inhibition of tyrosinase in vitro and in silico. The highest antioxidant activity by the DPPH free radical method was observed in LiOr-2 and LiOr-5 oils (132.1 and 82.7 mg TE∙mL-1, respectively). The tyrosinase inhibition potential was performed using L-tyrosine and L-DOPA as substrates and all samples were more effective in the first step of oxidation. The inhibition by samples LiOr-2 and LiOr-4 were 84.7% and 62.6%, respectively. The samples LiOr-1, LiOr-4 and LiOr-5 displayed an interaction with copper (II) ion with bathochromic shift around 15 nm. In order to elucidate the mechanism of inhibition of the main compounds, a molecular docking study was carried out. All compounds displayed an interaction between an oxygen and Cu or histidine residues with distances less than 4 Å. The best docking energies were observed with thymol and (E)-nerolidol (-79.8 kcal.mol-1), which suggested H-bonding interactions with Met281 and His263 (thymol) and His259, His263 ((E)-nerolidol). PMID:28459864

  6. Tyrosinase inhibitory activity, molecular docking studies and antioxidant potential of chemotypes of Lippia origanoides (Verbenaceae essential oils.

    Directory of Open Access Journals (Sweden)

    Alessandra P da Silva

    Full Text Available The essential oils (EOs of the aerial parts of Lippia origanoides (LiOr, collected in different localities of the Amazon region, were obtained by hydrodistillation and analyzed by GC and CG-MS. Principle component analysis (PCA based on chemical composition grouped the oils in four chemotypes rich in mono- and sesquiterpenoids. Group I was characterized by 1,8-cineole and α-terpineol (LiOr-1 and LiOr-4 and group II by thymol (LiOr-2. The oil LiOr-3 showed β-caryophyllene, α-phellandrene and β-phellandrene as predominant and LiOr-5 was rich in (E-nerolidol and β-caryophyllene. All samples were evaluated for antioxidant activity and inhibition of tyrosinase in vitro and in silico. The highest antioxidant activity by the DPPH free radical method was observed in LiOr-2 and LiOr-5 oils (132.1 and 82.7 mg TE∙mL-1, respectively. The tyrosinase inhibition potential was performed using L-tyrosine and L-DOPA as substrates and all samples were more effective in the first step of oxidation. The inhibition by samples LiOr-2 and LiOr-4 were 84.7% and 62.6%, respectively. The samples LiOr-1, LiOr-4 and LiOr-5 displayed an interaction with copper (II ion with bathochromic shift around 15 nm. In order to elucidate the mechanism of inhibition of the main compounds, a molecular docking study was carried out. All compounds displayed an interaction between an oxygen and Cu or histidine residues with distances less than 4 Å. The best docking energies were observed with thymol and (E-nerolidol (-79.8 kcal.mol-1, which suggested H-bonding interactions with Met281 and His263 (thymol and His259, His263 ((E-nerolidol.

  7. Extracellular polysaccharides produced by marine bacteria.

    Science.gov (United States)

    Manivasagan, Panchanathan; Kim, Se-Kwon

    2014-01-01

    Extracellular polysaccharides (EPSs) produced by microorganisms are a complex mixture of biopolymers primarily consisting of polysaccharides, as well as proteins, nucleic acids, lipids, and humic substances. Microbial polysaccharides are multifunctional and can be divided into intracellular polysaccharides, structural polysaccharides, and extracellular polysaccharides or exopolysaccharides. Recent advances in biological techniques allow high levels of polysaccharides of interest to be produced in vitro. Biotechnology is a powerful tool to obtain polysaccharides from a variety of marine microorganisms, by controlling the growth conditions in a bioreactor while tailoring the production of biologically active compounds. The aim of this chapter is to give an overview of current knowledge on extracellular polysaccharides producing marine bacteria isolated from marine environment. © 2014 Elsevier Inc. All rights reserved.

  8. Extracellular enzyme kinetics scale with resource availability

    Science.gov (United States)

    Sinsabaugh, Robert L.; Belnap, Jayne; Findlay, Stuart G.; Follstad Shah, Jennifer J.; Hill, Brian H.; Kuehn, Kevin A.; Kuske, Cheryl; Litvak, Marcy E.; Martinez, Noelle G.; Moorhead, Daryl L.; Warnock, Daniel D.

    2014-01-01

    Microbial community metabolism relies on external digestion, mediated by extracellular enzymes that break down complex organic matter into molecules small enough for cells to assimilate. We analyzed the kinetics of 40 extracellular enzymes that mediate the degradation and assimilation of carbon, nitrogen and phosphorus by diverse aquatic and terrestrial microbial communities (1160 cases). Regression analyses were conducted by habitat (aquatic and terrestrial), enzyme class (hydrolases and oxidoreductases) and assay methodology (low affinity and high affinity substrates) to relate potential reaction rates to substrate availability. Across enzyme classes and habitats, the scaling relationships between apparent Vmax and apparent Km followed similar power laws with exponents of 0.44 to 0.67. These exponents, called elasticities, were not statistically distinct from a central value of 0.50, which occurs when the Km of an enzyme equals substrate concentration, a condition optimal for maintenance of steady state. We also conducted an ecosystem scale analysis of ten extracellular hydrolase activities in relation to soil and sediment organic carbon (2,000–5,000 cases/enzyme) that yielded elasticities near 1.0 (0.9 ± 0.2, n = 36). At the metabolomic scale, the elasticity of extracellular enzymatic reactions is the proportionality constant that connects the C:N:P stoichiometries of organic matter and ecoenzymatic activities. At the ecosystem scale, the elasticity of extracellular enzymatic reactions shows that organic matter ultimately limits effective enzyme binding sites. Our findings suggest that one mechanism by which microbial communities maintain homeostasis is regulating extracellular enzyme expression to optimize the short-term responsiveness of substrate acquisition. The analyses also show that, like elemental stoichiometry, the fundamental attributes of enzymatic reactions can be extrapolated from biochemical to community and ecosystem scales.

  9. MR imaging of intracellular and extracellular deoxyhemoglobin

    International Nuclear Information System (INIS)

    Janick, P.A.; Grossman, R.I.; Asakura, T.

    1989-01-01

    MR imaging was performed on varying concentrations of intracellular and extracellular deoxyhemoglobin as well as varying proportions of deoxyhemoglobin and oxyhemoglobin in vitro at 1.5T with use of standard spin-echo and gradient-refocused spin sequences. This study indicates that susceptibility-induced T2 shortening occurs over a broad range of intracellular deoxyhemoglobin concentrations (maximal at hematocrits between 20% and 45%), reflecting diffusional effects at the cellular level. T2* gradient-echo imaging enhances the observed hypointensity in images of intracellular deoxyhemoglobin. The characteristic MR appearance of acute hemotomas can be modeled by the behavior of intracellular and extracellular deoxyhemoglobin and oxyhemoglobin

  10. Marginally Stable Nuclear Burning

    Science.gov (United States)

    Strohmayer, Tod E.; Altamirano, D.

    2012-01-01

    Thermonuclear X-ray bursts result from unstable nuclear burning of the material accreted on neutron stars in some low mass X-ray binaries (LMXBs). Theory predicts that close to the boundary of stability oscillatory burning can occur. This marginally stable regime has so far been identified in only a small number of sources. We present Rossi X-ray Timing Explorer (RXTE) observations of the bursting, high- inclination LMXB 4U 1323-619 that reveal for the first time in this source the signature of marginally stable burning. The source was observed during two successive RXTE orbits for approximately 5 ksec beginning at 10:14:01 UTC on March 28, 2011. Significant mHz quasi- periodic oscillations (QPO) at a frequency of 8.1 mHz are detected for approximately 1600 s from the beginning of the observation until the occurrence of a thermonuclear X-ray burst at 10:42:22 UTC. The mHz oscillations are not detected following the X-ray burst. The average fractional rms amplitude of the mHz QPOs is 6.4% (3 - 20 keV), and the amplitude increases to about 8% below 10 keV.This phenomenology is strikingly similar to that seen in the LMXB 4U 1636-53. Indeed, the frequency of the mHz QPOs in 4U 1323-619 prior to the X-ray burst is very similar to the transition frequency between mHz QPO and bursts found in 4U 1636-53 by Altamirano et al. (2008). These results strongly suggest that the observed QPOs in 4U 1323-619 are, like those in 4U 1636-53, due to marginally stable nuclear burning. We also explore the dependence of the energy spectrum on the oscillation phase, and we place the present observations within the context of the spectral evolution of the accretion-powered flux from the source.

  11. Interaction of acetamiprid with extracellular polymeric substances ...

    African Journals Online (AJOL)

    Extracellular polymeric substances (EPS) are important components of activated sludge and it plays an important role in removing pollutants. The interaction between EPS and organic pollutants is still little known. In the present study, the interaction of soluble/bound EPS with acetamiprid, a neonicotinoid insecticide, was ...

  12. Optimization of extracellular catalase production from Aspergillus ...

    African Journals Online (AJOL)

    The studies of the effect of each variable and the establishment of a correlation between the response of enzyme activity and variables revealed that the link is a multiple linear regression form. The optimization was carried out through a simplex algorithm. The amount of extracellular catalase produced by the strain in the ...

  13. Methodological Guidelines to Study Extracellular Vesicles

    NARCIS (Netherlands)

    Coumans, Frank A. W.; Brisson, Alain R.; Buzas, Edit I.; Dignat-George, Françoise; Drees, Esther E. E.; El-Andaloussi, Samir; Emanueli, Costanza; Gasecka, Aleksandra; Hendrix, An; Hill, Andrew F.; Lacroix, Romaric; Lee, Yi; van Leeuwen, Ton G.; Mackman, Nigel; Mäger, Imre; Nolan, John P.; van der Pol, Edwin; Pegtel, D. Michiel; Sahoo, Susmita; Siljander, Pia R. M.; Sturk, Guus; de Wever, Olivier; Nieuwland, Rienk

    2017-01-01

    Owing to the relationship between extracellular vesicles (EVs) and physiological and pathological conditions, the interest in EVs is exponentially growing. EVs hold high hopes for novel diagnostic and translational discoveries. This review provides an expert-based update of recent advances in the

  14. Production of extracellular aspartic protease in submerged ...

    African Journals Online (AJOL)

    Production of extracellular aspartic protease in submerged fermentation with Mucor mucedo DSM 809. ... The preferred method was the inoculation of the culture media with spores at a total load of 6x105 spores per flask. Key words: Milk clotting enzyme, Aspartic protease, Mucor mucedo, Sub-merged fermentation.

  15. Extracellular space diffusion and extrasynaptic transmission

    Czech Academy of Sciences Publication Activity Database

    Vargová, Lýdia; Syková, Eva

    2008-01-01

    Roč. 57, Suppl.3 (2008), S89-S99 ISSN 0862-8408 R&D Projects: GA MŠk 1M0538; GA MŠk(CZ) LC554 Institutional research plan: CEZ:AV0Z50390512 Keywords : Diffusion * Extracellular volume * Tortuosity Subject RIV: FH - Neurology Impact factor: 1.653, year: 2008

  16. Extracellular vesicles: fundamentals and clinical relevance

    Directory of Open Access Journals (Sweden)

    Wael Nassar

    2015-01-01

    Full Text Available All types of cells of eukaryotic organisms produce and release small nanovesicles into their extracellular environment. Early studies have described these vesicles as ′garbage bags′ only to remove obsolete cellular molecules. Valadi and colleagues, in 2007, were the first to discover the capability of circulating extracellular vesicles (EVs to horizontally transfer functioning gene information between cells. These extracellular vesicles express components responsible for angiogenesis promotion, stromal remodeling, chemoresistance, genetic exchange, and signaling pathway activation through growth factor/receptor transfer. EVs represent an important mode of intercellular communication by serving as vehicles for transfer between cells of membrane and cytosolic proteins, lipids, signaling proteins, and RNAs. They contribute to physiology and pathology, and they have a myriad of potential clinical applications in health and disease. Moreover, vesicles can pass the blood-brain barrier and may perhaps even be considered as naturally occurring liposomes. These cell-derived EVs not only represent a central mediator of the disease microenvironment, but their presence in the peripheral circulation may serve as a surrogate for disease biopsies, enabling real-time diagnosis and disease monitoring. In this review, we′ll be addressing the characteristics of different types of extracellular EVs, as well as their clinical relevance and potential as diagnostic markers, and also define therapeutic options.

  17. Optimization of extracellular polysaccharide production in ...

    African Journals Online (AJOL)

    The present study was conducted to optimize the media composition through response surface methodology (RSM) for extracellular polysaccharide (EPS) production in Halobacillus trueperi AJSK strain isolated from the salt pan. Halobacillus trueperi was identified with morphological, biochemical characteristics as well as ...

  18. Heparin affinity purification of extracellular vesicles

    NARCIS (Netherlands)

    Balaj, Leonora; Atai, Nadia A.; Chen, Weilin; Mu, Dakai; Tannous, Bakhos A.; Breakefield, Xandra O.; Skog, Johan; Maguire, Casey A.

    2015-01-01

    Extracellular vesicles (EVs) are lipid membrane vesicles released by cells. They carry active biomolecules including DNA, RNA, and protein which can be transferred to recipient cells. Isolation and purification of EVs from culture cell media and biofluids is still a major challenge. The most widely

  19. Bulk immunoassays for analysis of extracellular vesicles

    NARCIS (Netherlands)

    Coumans, Frank A. W.; Gool, Elmar L.; Nieuwland, Rienk

    2017-01-01

    There is increasing clinical interest in extracellular vesicles (EV) for diagnostic and treatment purposes. This review provides an overview of bulk immunoassays to analyse EV. Western blot and enzyme-linked immunosorbent assay are still the two predominant bulk immunoassays. Recently, new assays

  20. Towards traceable size determination of extracellular vesicles

    NARCIS (Netherlands)

    Varga, Zoltán; Yuana, Yuana; Grootemaat, Anita E.; van der Pol, Edwin; Gollwitzer, Christian; Krumrey, Michael; Nieuwland, Rienk

    2014-01-01

    Extracellular vesicles (EVs) have clinical importance due to their roles in a wide range of biological processes. The detection and characterization of EVs are challenging because of their small size, low refractive index, and heterogeneity. In this manuscript, the size distribution of an

  1. Isolation and sequence of a cDNA clone for human tyrosinase that maps at the mouse c-albino locus.

    Science.gov (United States)

    Kwon, B S; Haq, A K; Pomerantz, S H; Halaban, R

    1987-01-01

    Screening of a lambda gt11 human melanocyte cDNA library with antibodies against hamster tyrosinase (monophenol, L-dopa:oxygen oxidoreductase, EC 1.14.18.1) resulted in the isolation of 16 clones. The cDNA inserts from 13 of the 16 clones cross-hybridized with each other, indicating that they were from related mRNA species. One of the cDNA clones, Pmel34, detected one mRNA species with an approximate length of 2.4 kilobases that was expressed preferentially in normal and malignant melanocytes but not in other cell types. The amino acid sequence deduced from the nucleotide sequence showed that the putative human tyrosinase is composed of 548 amino acids with a molecular weight of 62,610. The deduced protein contains glycosylation sites and histidine-rich sites that could be used for copper binding. Southern blot analysis of DNA derived from newborn mice carrying lethal albino deletion mutations revealed that Pmel34 maps near or at the c-albino locus, the position of the structural gene for tyrosinase. Images PMID:2823263

  2. Circulating tyrosinase and MART-1 mRNA does not independently predict relapse or survival in patients with AJCC stage I-II melanoma

    DEFF Research Database (Denmark)

    Schmidt, Henrik; Sørensen, Boe Sandahl; Sjøgren, Pia

    2006-01-01

    The detection of melanoma cells in peripheral blood has been proposed to       select patients with a high risk of relapse. In this study, tyrosinase and       melanoma antigen recognized by T cells 1 (MART-1) mRNA expression was       evaluated in serial samples obtained before definitive surgery...... tumor site,       ulceration, thickness, Clark level, and histological subtype were analyzed       together with tyrosinase and MART-1 mRNA treated as updated covariates in       a Cox proportional-hazard model. After a median follow-up time of 66       months, 42 out of 236 patients (18%) had relapsed....... The following variables       were significantly associated with relapse-free survival in the univariate       analyses: tyrosinase, MART-1, gender, ulceration, thickness, Clark level,       and histological subtype. Entering these covariates into a multivariate       Cox analysis resulted in thickness...

  3. Inhibitory effects of α-Na8SiW11CoO40 on tyrosinase and its application in controlling browning of fresh-cut apples.

    Science.gov (United States)

    Chen, Bing-Nian; Xing, Rui; Wang, Fang; Zheng, A-Ping; Wang, Li

    2015-12-01

    α-Na8SiW11CoO40 was synthesized and characterized. The inhibitory effects of α-Na8SiW11CoO40 on the activity of mushroom tyrosinase and the effects of α-Na8SiW11CoO40 on the browning of fresh-cut apples were studied. The Native-PAGE result showed that α-Na8SiW11CoO40 had a significant inhibitory effect on tyrosinase. Kinetic analyses showed that α-Na8SiW11CoO40 was an irreversible and competitive inhibitor. The inhibitor concentration leading to a 50% reduction in activity (IC50) was estimated to be 0.239 mM. Additionally, the results also showed that α-Na8SiW11CoO40 treatment could significantly decrease the browning process of apple slices and inhibit the polyphenol oxidase (PPO) activity. Moreover, application of α-Na8SiW11CoO40 resulted in higher peroxidase activity and promoted high amounts of phenolic compounds and ascorbic acid. This study may provide a promising method for the use of polyoxometalates to inhibit tyrosinase activity and control the browning of fresh-cut apples. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Novel Hypomorphic Alleles of the Mouse Tyrosinase Gene Induced by CRISPR-Cas9 Nucleases Cause Non-Albino Pigmentation Phenotypes.

    Science.gov (United States)

    Challa, Anil K; Boitet, Evan R; Turner, Ashley N; Johnson, Larry W; Kennedy, Daniel; Downs, Ethan R; Hymel, Katherine M; Gross, Alecia K; Kesterson, Robert A

    2016-01-01

    Tyrosinase is a key enzyme in melanin biosynthesis. Mutations in the gene encoding tyrosinase (Tyr) cause oculocutaneous albinism (OCA1) in humans. Alleles of the Tyr gene have been useful in studying pigment biology and coat color formation. Over 100 different Tyr alleles have been reported in mice, of which ≈24% are spontaneous mutations, ≈60% are radiation-induced, and the remaining alleles were obtained by chemical mutagenesis and gene targeting. Therefore, most mutations were random and could not be predicted a priori. Using the CRISPR-Cas9 system, we targeted two distinct regions of exon 1 to induce pigmentation changes and used an in vivo visual phenotype along with heteroduplex mobility assays (HMA) as readouts of CRISPR-Cas9 activity. Most of the mutant alleles result in complete loss of tyrosinase activity leading to an albino phenotype. In this study, we describe two novel in-frame deletion alleles of Tyr, dhoosara (Sanskrit for gray) and chandana (Sanskrit for sandalwood). These alleles are hypomorphic and show lighter pigmentation phenotypes of the body and eyes. This study demonstrates the utility of CRISPR-Cas9 system in generating domain-specific in-frame deletions and helps gain further insights into structure-function of Tyr gene.

  5. Novel Hypomorphic Alleles of the Mouse Tyrosinase Gene Induced by CRISPR-Cas9 Nucleases Cause Non-Albino Pigmentation Phenotypes.

    Directory of Open Access Journals (Sweden)

    Anil K Challa

    Full Text Available Tyrosinase is a key enzyme in melanin biosynthesis. Mutations in the gene encoding tyrosinase (Tyr cause oculocutaneous albinism (OCA1 in humans. Alleles of the Tyr gene have been useful in studying pigment biology and coat color formation. Over 100 different Tyr alleles have been reported in mice, of which ≈24% are spontaneous mutations, ≈60% are radiation-induced, and the remaining alleles were obtained by chemical mutagenesis and gene targeting. Therefore, most mutations were random and could not be predicted a priori. Using the CRISPR-Cas9 system, we targeted two distinct regions of exon 1 to induce pigmentation changes and used an in vivo visual phenotype along with heteroduplex mobility assays (HMA as readouts of CRISPR-Cas9 activity. Most of the mutant alleles result in complete loss of tyrosinase activity leading to an albino phenotype. In this study, we describe two novel in-frame deletion alleles of Tyr, dhoosara (Sanskrit for gray and chandana (Sanskrit for sandalwood. These alleles are hypomorphic and show lighter pigmentation phenotypes of the body and eyes. This study demonstrates the utility of CRISPR-Cas9 system in generating domain-specific in-frame deletions and helps gain further insights into structure-function of Tyr gene.

  6. Involvement of extracellular matrix constituents in breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Lochter, Andre; Bissell, Mina J

    1995-06-01

    It has recently been established that the extracellular matrix is required for normal functional differentiation of mammary epithelia not only in culture, but also in vivo. The mechanisms by which extracellular matrix affects differentiation, as well as the nature of extracellular matrix constituents which have major impacts on mammary gland function, have only now begun to be dissected. The intricate variety of extracellular matrix-mediated events and the remarkable degree of plasticity of extracellular matrix structure and composition at virtually all times during ontogeny, make such studies difficult. Similarly, during carcinogenesis, the extracellular matrix undergoes gross alterations, the consequences of which are not yet precisely understood. Nevertheless, an increasing amount of data suggests that the extracellular matrix and extracellular matrix-receptors might participate in the control of most, if not all, of the successive stages of breast tumors, from appearance to progression and metastasis.

  7. Extracellular nucleotide derivatives protect cardiomyctes against hypoxic stress

    DEFF Research Database (Denmark)

    Golan, O; Issan, Y; Isak, A

    2011-01-01

    assures cardioprotection. Treatment with extracellular nucleotides, or with tri/di-phosphate, administered under normoxic conditions or during hypoxic conditions, led to a decrease in reactive oxygen species production. CONCLUSIONS: Extracellular tri/di-phosphates are apparently the molecule responsible...

  8. Optimization of culture media for extracellular expression of ...

    African Journals Online (AJOL)

    Optimization of culture media for extracellular expression of streptokinase in Escherichia coli using response surface methodology in combination with ... Tropical Journal of Pharmaceutical Research ... Keywords: Streptokinase, Response surface methodology, Membrane permeabilization, Extracellular secretion ...

  9. Extracellular Vesicles in Renal Diseases: More than Novel Biomarkers?

    OpenAIRE

    Erdbrügger, Uta; Le, Thu H.

    2015-01-01

    Extracellular vesicles from the urine and circulation have gained significant interest as potential diagnostic biomarkers in renal diseases. Urinary extracellular vesicles contain proteins from all sections of the nephron, whereas most studied circulating extracellular vesicles are derived from platelets, immune cells, and the endothelium. In addition to their diagnostic role as markers of kidney and vascular damage, extracellular vesicles may have functional significance in renal health and ...

  10. Extracellular DNA as matrix component in microbial biofilms

    DEFF Research Database (Denmark)

    Chiang, Wen-Chi; Tolker-Nielsen, Tim

    2010-01-01

    that extracellular DNA is an important component of the extracellular matrix of microbial biofilms. The present chapter is focussed on extracellular DNA as matrix component in biofilms formed by Pseudomonas aeruginosa as an example from the Gram-negative bacteria, and Streptococcus and Staphylococcus as examples...

  11. Chaotic Dynamics Mediate Brain State Transitions, Driven by Changes in Extracellular Ion Concentrations

    DEFF Research Database (Denmark)

    Rasmussen, Rune; Jensen, Mogens H.; Heltberg, Mathias L.

    2017-01-01

    the transition from sleep to wakefulness. We find that sleep is governed by stable, self-sustained oscillations in neuronal firing patterns, whereas the quiet awake state and active awake state are both governed by irregular oscillations and chaotic dynamics; transitions between these separable awake states......Previous studies have suggested that changes in extracellular ion concentrations initiate the transition from an activity state that characterizes sleep in cortical neurons to states that characterize wakeful- ness. However, because neuronal activity and extra- cellular ion concentrations...... are interdependent, isolating their unique roles during sleep-wake transitions is not possible in vivo. Here, we extend the Averaged-Neuron model and demonstrate that, although changes in extracellular ion concentrations occur concurrently, decreasing the conductance of calcium-dependent potassium channels initiates...

  12. Stem cell-extracellular vesicles as drug delivery systems: New frontiers for silk/curcumin nanoparticles.

    Science.gov (United States)

    Perteghella, Sara; Crivelli, Barbara; Catenacci, Laura; Sorrenti, Milena; Bruni, Giovanna; Necchi, Vittorio; Vigani, Barbara; Sorlini, Marzio; Torre, Maria Luisa; Chlapanidas, Theodora

    2017-03-30

    The aim of this work was to develop a novel carrier-in-carrier system based on stem cell-extracellular vesicles loaded of silk/curcumin nanoparticles by endogenous technique. Silk nanoparticles were produced by desolvation method and curcumin has been selected as drug model because of its limited water solubility and poor bioavailability. Nanoparticles were stable, with spherical geometry, 100nm in average diameter and the drug content reached about 30%. Cellular uptake studies, performed on mesenchymal stem cells (MSCs), showed the accumulation of nanoparticles in the cytosol around the nuclear membrane, without cytotoxic effects. Finally, MSCs were able to release extracellular vesicles entrapping silk/curcumin nanoparticles. This combined biological-technological approach represents a novel class of nanosystems, combining beneficial effects of both regenerative cell therapies and pharmaceutical nanomedicine, avoiding the use of viable replicating stem cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Role of extracellular vesicles in rheumatoid arthritis.

    Science.gov (United States)

    Fu, Haitao; Hu, Die; Zhang, Licheng; Tang, Peifu

    2018-01-01

    Cell-derived extracellular vesicles (EVs) are involved in the pathogenesis of rheumatoid arthritis (RA), playing important roles in antigen presentation, inflammation, angiogenesis, cell-cell signal communication, thrombosis, and articular cartilage extracellular matrix degradation. Understanding the pathogenic mechanism of RA is important for developing therapies. The pathogenic indicators of RA, such as submicron-sized EVs, represent promising biomarkers for evaluating RA activity. This review summarizes the recent advances in understanding the pathogenesis of RA, and sheds light on the pathogenic as well as anti-inflammatory or immunosuppressive roles of EVs. We suggest that EVs could be harnessed as tools for drug delivery or targets for RA therapies. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. Managing Brain Extracellular K(+) during Neuronal Activity

    DEFF Research Database (Denmark)

    Larsen, Brian Roland; Stoica, Anca; MacAulay, Nanna

    2016-01-01

    isoform compositions of the Na(+)/K(+)-ATPase remain unresolved. The various cell types in the brain serve a certain temporal contribution in the face of network activity; astrocytes respond directly to the immediate release of K(+) from neurons, whereas the neurons themselves become the primary K......During neuronal activity in the brain, extracellular K(+) rises and is subsequently removed to prevent a widespread depolarization. One of the key players in regulating extracellular K(+) is the Na(+)/K(+)-ATPase, although the relative involvement and physiological impact of the different subunit......(+) absorbers as activity ends. The kinetic characteristics of the catalytic α subunit isoforms of the Na(+)/K(+)-ATPase are, partly, determined by the accessory β subunit with which they combine. The isoform combinations expressed by astrocytes and neurons, respectively, appear to be in line with the kinetic...

  15. Nanomechanics of the Cartilage Extracellular Matrix

    Science.gov (United States)

    Han, Lin; Grodzinsky, Alan J.; Ortiz, Christine

    2011-08-01

    Cartilage is a hydrated biomacromolecular fiber composite located at the ends of long bones that enables proper joint lubrication, articulation, loading, and energy dissipation. Degradation of extracellular matrix molecular components and changes in their nanoscale structure greatly influence the macroscale behavior of the tissue and result in dysfunction with age, injury, and diseases such as osteoarthritis. Here, the application of the field of nanomechanics to cartilage is reviewed. Nanomechanics involves the measurement and prediction of nanoscale forces and displacements, intra- and intermolecular interactions, spatially varying mechanical properties, and other mechanical phenomena existing at small length scales. Experimental nanomechanics and theoretical nanomechanics have been applied to cartilage at varying levels of material complexity, e.g., nanoscale properties of intact tissue, the matrix associated with single cells, biomimetic molecular assemblies, and individual extracellular matrix biomolecules (such as aggrecan, collagen, and hyaluronan). These studies have contributed to establishing a fundamental mechanism-based understanding of native and engineered cartilage tissue function, quality, and pathology.

  16. Apoptotic Bodies: Selective Detection in Extracellular Vesicles.

    Science.gov (United States)

    Hauser, Paul; Wang, Sha; Didenko, Vladimir V

    2017-01-01

    Normal and dying cells release various types of membrane-bound vesicles including microvesicles, exosomes, and apoptotic bodies. These vesicles play important roles in intercellular communication and signal transduction. However, their diverse forms and subtypes fluctuate in size and other properties. In result current purification approaches do not fully discriminate between different categories of extracellular vesicles. Here, we present a fluorescence technique that specifically identifies apoptotic bodies in preparations of microvesicles, exosomes, and other extracellular vesicles.The approach exclusively labels the vesicles that contain DNA with 5'PO 4 blunt-ended DNA breaks, such as those produced by the apoptotic CAD nuclease during apoptotic DNA degradation. The technique can be useful in studies of apoptosis involving microvesicles and exosomes.

  17. Methods to isolate extracellular vesicles for diagnosis

    Science.gov (United States)

    Kang, Hyejin; Kim, Jiyoon; Park, Jaesung

    2017-12-01

    Extracellular vesicles (EVs) are small membrane-bound bodies that are released into extracellular space by diverse cells, and are found in body fluids like blood, urine and saliva. EVs contain RNA, DNA and proteins, which can be biomarkers for diagnosis. EVs can be obtained by minimally-invasive biopsy, so they are useful in disease diagnosis. High yield and purity contribute to precise diagnosis of disease, but damaged EVs and impurities can cause confu sed results. However, EV isolation methods have different yields and purities. Furthermore, the isolation method that is most suitable to maximize EV recovery efficiency depends on the experimental conditions. This review focuses on merits and demerits of several types of EV isolation methods, and provides examples of how to diagnose disease by exploiting information obtained by analysis of EVs.

  18. Liver extracellular vesicles in health and disease

    OpenAIRE

    Royo, Felix; Falcon-Perez, Juan M.

    2012-01-01

    Extracellular vesicles (EVs) play an important role in cell-to-cell communication. Although there are different kinds of vesicles, each with their own secretion and capture biology, all of them carry a cargo of proteins, lipids, metabolites and nucleic acids. They act as vehicles for exchange of biological materials and signals and are involved in the regulation of various physiological processes. Liver is an essential organ containing different cell populations fulfilling various functions, ...

  19. Bacterial Extracellular Polysaccharides Involved in Biofilm Formation

    OpenAIRE

    Elena P. Ivanova; Russell J. Crawford; Barbara Vu; Miao Chen

    2009-01-01

    Extracellular polymeric substances (EPS) produced by microorganisms are a complex mixture of biopolymers primarily consisting of polysaccharides, as well as proteins, nucleic acids, lipids and humic substances. EPS make up the intercellular space of microbial aggregates and form the structure and architecture of the biofilm matrix. The key functions of EPS comprise the mediation of the initial attachment of cells to different substrata and protection against environmental stress and dehydrati...

  20. Towards traceable size determination of extracellular vesicles

    OpenAIRE

    Varga, Zoltán; Yuana, Yuana; Grootemaat, Anita E.; van der Pol, Edwin; Gollwitzer, Christian; Krumrey, Michael; Nieuwland, Rienk

    2014-01-01

    Background: Extracellular vesicles (EVs) have clinical importance due to their roles in a wide range of biological processes. The detection and characterization of EVs are challenging because of their small size, low refractive index, and heterogeneity.Methods: In this manuscript, the size distribution of an erythrocyte-derived EV sample is determined using state-of-the-art techniques such as nanoparticle tracking analysis, resistive pulse sensing, and electron microscopy, and novel technique...

  1. Design of Artificial Modular Extracellular Matrices

    OpenAIRE

    Gräter, Stefan V. W.

    2006-01-01

    Cellular functions such as cell growth, adhesion and differentiation are essentially controlled by the surrounding extracellular matrix (ECM). The mechanical, chemical and structural properties of the ECM are consequently crucial for the selection of cells at interfaces and the formation of tissues. The objective of this thesis was to develop an artificial ECM to determine and control the parameters influencing the crosstalk between cells and their surroundings on a molecular level. Artificia...

  2. Dynamical attraction to stable processes

    OpenAIRE

    Fisher, Albert M.; Talet, Marina

    2012-01-01

    We apply dynamical ideas within probability theory, proving an almost-sure invariance principle in log density for stable processes. The familiar scaling property (self-similarity) of the stable process has a stronger expression, that the scaling flow on Skorokhod path space is a Bernoulli flow. We prove that typical paths of a random walk with i.i.d. increments in the domain of attraction of a stable law can be paired with paths of a stable process so that, after applying a non-random regula...

  3. Autocrine signal transmission with extracellular ligand degradation

    International Nuclear Information System (INIS)

    Muratov, C B; Posta, F; Shvartsman, S Y

    2009-01-01

    Traveling waves of cell signaling in epithelial layers orchestrate a number of important processes in developing and adult tissues. These waves can be mediated by positive feedback autocrine loops, a mode of cell signaling where binding of a diffusible extracellular ligand to a cell surface receptor can lead to further ligand release. We formulate and analyze a biophysical model that accounts for ligand-induced ligand release, extracellular ligand diffusion and ligand–receptor interaction. We focus on the case when the main mode for ligand degradation is extracellular and analyze the problem with the sharp threshold positive feedback nonlinearity. We derive expressions that link the speed of propagation and other characteristics of traveling waves to the parameters of the biophysical processes, such as diffusion rates, receptor expression level, etc. Analyzing the derived expressions we found that traveling waves in such systems can exhibit a number of unusual properties, e.g. non-monotonic dependence of the speed of propagation on ligand diffusivity. Our results for the fully developed traveling fronts can be used to analyze wave initiation from localized perturbations, a scenario that frequently arises in the in vitro models of epithelial wound healing, and guide future modeling studies of cell communication in epithelial layers

  4. EXTRACELLULAR VESICLES: CLASSIFICATION, FUNCTIONS AND CLINICAL RELEVANCE

    Directory of Open Access Journals (Sweden)

    A. V. Oberemko

    2014-12-01

    Full Text Available This review presents a generalized definition of vesicles as bilayer extracellular organelles of all celular forms of life: not only eu-, but also prokaryotic. The structure and composition of extracellular vesicles, history of research, nomenclature, their impact on life processes in health and disease are discussed. Moreover, vesicles may be useful as clinical instruments for biomarkers, and they are promising as biotechnological drug. However, many questions in this area are still unresolved and need to be addressed in the future. The most interesting from the point of view of practical health care represents a direction to study the effect of exosomes and microvesicles in the development and progression of a particular disease, the possibility of adjusting the pathological process by means of extracellular vesicles of a particular type, acting as an active ingredient. Relevant is the further elucidation of the role and importance of exosomes to the surrounding cells, tissues and organs at the molecular level, the prospects for the use of non-cellular vesicles as biomarkers of disease.

  5. Bioinformatics Tools for Extracellular Vesicles Research.

    Science.gov (United States)

    Keerthikumar, Shivakumar; Gangoda, Lahiru; Gho, Yong Song; Mathivanan, Suresh

    2017-01-01

    Extracellular vesicles (EVs) are a class of membranous vesicles that are released by multiple cell types into the extracellular environment. This unique class of extracellular organelles which play pivotal role in intercellular communication are conserved across prokaryotes and eukaryotes. Depending upon the cell origin and the functional state, the molecular cargo including proteins, lipids, and RNA within the EVs are modulated. Owing to this, EVs are considered as a subrepertoire of the host cell and are rich reservoirs of disease biomarkers. In addition, the availability of EVs in multiple bodily fluids including blood has created significant interest in biomarker and signaling research. With the advancement in high-throughput techniques, multiple EV studies have embarked on profiling the molecular cargo. To benefit the scientific community, existing free Web-based resources including ExoCarta, EVpedia, and Vesiclepedia catalog multiple datasets. These resources aid in elucidating molecular mechanism and pathophysiology underlying different disease conditions from which EVs are isolated. Here, the existing bioinformatics tools to perform integrated analysis to identify key functional components in the EV datasets are discussed.

  6. Identification of a mutation in the tyrosinase related protein 1 (TRP1) gene associated with brown oculocutaneous albinism (OCA3)

    Energy Technology Data Exchange (ETDEWEB)

    Wildenberg, S.C.; Oetting, W.S.; Fryer, J.P. [Univ. of Minnesota, Minneapolis, MN (United States)] [and others

    1994-09-01

    The genes responsible for the two most common types of human oculocutaneous albinism (OCA) have been identified. Mutations of the tyrosinase gene (chromosome 11q14-21) produce OCA1, and mutations of the P gene (chromosome 15q11.2-13) produce OCA2. Another type of OCA known as brown OCA or OCA3 is found commonly in the African and African-American population. OCA3 is characterized by light brown skin and hair with the ocular features of albinism and represents the third most frequent type of OCA. We previously identified dizygotic African-American twin boys who were discordant for OCA3. Melanocytes from the affected twin produced brown melanin and contained no detectable TRP1 protein. We have now characterized the TRP1 gene from the affected twin. The human TRP1 gene, homologous to the murine brown locus, contains 8 exons and maps to chromosome 9p23. Using PCR amplification of each exon coupled with SSCP analysis and direct DNA sequencing, we found the affected twin to homozygous for a single bp deletion in exon 6. The deletion removes a G in codon 368 leading to a premature stop at codon 384. We also identified a Tsp509 polymorphism in the 3{prime} UTR. We conclude that mutations of the TRP1 gene are responsible for brown OCA or OCA3, making this the third major OCA gene identified in humans.

  7. Identification of a missense mutation in the tyrosinase gene in a Chinese family with oculocutaneous albinism type 1.

    Science.gov (United States)

    Lu, Qian; Yuan, Lamei; Xu, Hongbo; Huang, Xiangjun; Yang, Zhijian; Yi, Junhui; Ni, Bin; Chen, Yong; Deng, Hao

    2017-03-01

    Oculocutaneous albinism (OCA) is a group of heterogeneous and autosomal recessive disorders characterized by a reduction or complete loss of melanin biosynthesis in melanocytes. OCA type 1 (OCA1) is the most severe and common form of OCA, and is caused by mutations in the tyrosinase gene (TYR). The present study aimed to identify the genetic cause of OCA1 in a four‑generation consanguineous Chinese Han family. Complete physical examinations were performed and blood samples were collected from five members of the family and 100 unrelated healthy controls. Exome sequencing was conducted in the proband, followed by verification in other family members, using Sanger sequencing. Patients in the family presented with typical OCA1 features, including hypopigmentation of the skin and hair, and distinctive ocular changes. A homozygous missense variant, c.896G>A (p.R299H), in the TYR gene was identified in two patients, which co‑segregated with disease in the family. This variant was not present in the 100 healthy controls. These results expand the number of mutations identified to be responsible for OCA1 in the Chinese Han population, and may have implications for genetic counseling and clinical management of the disease.

  8. Biosensor Based on Tyrosinase Immobilized on Graphene-Decorated Gold Nanoparticle/Chitosan for Phenolic Detection in Aqueous

    Directory of Open Access Journals (Sweden)

    Fuzi Mohamed Fartas

    2017-05-01

    Full Text Available In this research work, electrochemical biosensor was fabricated based on immobilization of tyrosinase onto graphene-decorated gold nanoparticle/chitosan (Gr-Au-Chit/Tyr nanocomposite-modified screen-printed carbon electrode (SPCE for the detection of phenolic compounds. The nanocomposite film was constructed via solution casting method. The electrocatalytic activity of the proposed biosensor for phenol detection was studied using differential pulse voltammetry (DPV and cyclic voltammetry (CV. Experimental parameters such as pH buffer, enzyme concentration, ratio of Gr-Au-Chit, accumulation time and potential were optimized. The biosensor shows linearity towards phenol in the concentration range from 0.05 to 15 μM with sensitivity of 0.624 μA/μM and the limit of detection (LOD of 0.016 μM (S/N = 3. The proposed sensor also depicts good reproducibility, selectivity and stability for at least one month. The biosensor was compared with high-performance liquid chromatography (HPLC method for the detection of phenol spiked in real water samples and the result is in good agreement and comparable.

  9. Two new bis-iridoids isolated from Scabiosa stellata and their antibacterial, antioxidant, anti-tyrosinase and cytotoxic activities.

    Science.gov (United States)

    Lehbili, Meryem; Alabdul Magid, Abdulmagid; Hubert, Jane; Kabouche, Ahmed; Voutquenne-Nazabadioko, Laurence; Renault, Jean-Hugues; Nuzillard, Jean-Marc; Morjani, Hamid; Abedini, Amin; Gangloff, Sophie C; Kabouche, Zahia

    2018-03-01

    This study presents the chemical profile investigation of a 70% ethanol extract obtained from Scabiosa stellata, a medicinal herbaceous traditionally used to treat heel cracks. A 13 C NMR-based dereplication methodology was firstly applied on centrifugal partition chromatography-generated fractions in order to quickly identify the major compounds of the extract. The dereplication process was then completed by semi-preparative high-performance liquid chromatography in order to identify unknown or minor compounds. Two new bis-iridoids, namely 7-O-caffeoyl-sylvestroside I (1) and 7-O-(p-coumaroyl)-sylvestroside I (2), together with ten known compounds (3-12) were isolated. Their structures were elucidated by spectroscopic methods including NMR and HR-ESI-MS. The antibacterial, anti-tyrosinase and DPPH radical scavenging activities of the crude extract, fractions, and isolated compounds were evaluated. A significant antibacterial activity was observed for nine isolated compounds, particularly 1 and 2 which yielded MIC values of 31.2μg/mL against Enterococcus faecalis and 62.5μg/mL against Staphylococcus epidermidis. The cytotoxic activity of these new bis-iridoids was evaluated on a fibrosarcoma cell line (HT1080) and only compound 1 exhibited a moderate cytotoxic activity (IC 50 35.9μg/mL). Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Polyphenols Determination in Olive Oil Samples Based on a Thick Film Voltammetric Sensor and a Tyrosinase Biosensor

    Science.gov (United States)

    Capannesi, Cecilia; Palchetti, Ilaria; Mascini, Marco

    2000-12-01

    The aim of the present work was to compare different techniques to evaluate the variation with the storage time and storage conditions in the phenolic content of an extra-virgin olive oil. A disposable screen-printed sensor (SPE) was coupled with differential pulse voltammetry (DPV) to determine the phenolic fractions after extraction with glycine buffer; DPV parameters were chosen in order to study oxidation peak of oleuropein, that was used as reference compound. Moreover a tyrosinase based biosensor operating in organic solvent (hexane) was assembled, using an amperometric oxygen probe as transducer. Calibration curves were realised in flow injection analysis (F.I.A.) using phenol as substrate. Both of these methods are easy to operate, require no extraction (biosensor) or a rapid extraction procedure (SPE), and the analysis time is short (min.). The results obtained with these two innovative procedures were compared with classical spectrophotometric assay using the Folin-Ciocalteau reagent. Other extra-virgin olive oil quality parameters were investigated with classical methods in order to better define the alteration process and results are reported.

  11. Ferrous Ion Chelating, Superoxide Anion Radical Scavenging and Tyrosinase Inhibitory Properties of Pure and Commercial Essential Oils of Anetrhum Graveolens

    Directory of Open Access Journals (Sweden)

    Sh Darvish Alipour Astaneh

    2013-04-01

    Full Text Available Introduction: Despite slight toxicities of essential oils, they are not under strict control in many countries. Anethum graveolens is widely consumed and its essential oils are at public reach. This study was designed to study essential oils of Anethum graveolens. Methods: The biological properties of pure and commercial essential oils of Anethum graveolens were investigated. In fact, Ferrous ion chelating activity, superoxide anion radical scavenging property, tyrosinase inhibition and total flavonoids of the oils were determined. Results: Chelating activity of 7.8 µg of EDTA was equivalent to 2 µg of the pure oil. The oils had superoxide anion radical scavenging activities which may be related to their total phenol and flavonoid contents. IC50 of ferrous ion chelating, antityrosiase and superoxide anion radical scavenging activities of pure and commercial oils were 1.3, 1.4, 1 and (171.6, 589, 132 µg respectively. Antityrosiase activity of 6.4 µg pure oil was equal to 1000 µg of the commercial oil. Conclusion: Anethum possesses antioxidative and free radical scavenging properties. This oil chelates ferrous ions and superoxide radicals. It is effective in formation of reactive toxic products. Anethum has good potentials regarding its applications in food and drug industries.

  12. Self-assembled films containing crude extract of avocado as a source of tyrosinase for monophenol detection.

    Science.gov (United States)

    Vieira, Nirton C S; Ferreira, Reginaldo A; da Cruz Rodrigues, Valquiria; Guimarães, Francisco E G; de Queiroz, Alvaro A A

    2013-10-01

    This paper reports on the use of the crude extract of avocado (CEA) fruit (Persea americana) as a source of tyrosinase enzyme. CEA was immobilized via layer by layer (LbL) technique onto indium tin oxide (ITO) substrates and applied in the detection of monophenol using a potentiometric biosensor. Poly(propylene imine) dendrimer of generation 3 (PPI-G3) was used as a counter ion in the layer by layer process due to its highly porous structure and functional groups suitable for enzyme linkage. After the immobilization of the crude CEA as multilayered films, standard samples of monophenol were detected in the 0.25-4.00 mM linear range with approximately 28 mV mM(-1) of sensitivity. This sensitivity is 14 times higher than the values found in the literature for a similar system. The results show that it is possible to obtain efficient and low-cost biosensors for monophenol detection using potentiometric transducers and alternative sources of enzymes without purification. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Identification of c.483C>T polymorphism in the caprine tyrosinase-related protein 1 (TYRP1 gene

    Directory of Open Access Journals (Sweden)

    Marcel Amills

    2012-01-01

    Full Text Available Tyrosinase-related protein 1 (TYRP1 has been shown to play a fundamental role in pigmentation both in human and mouse. In this work, we aimed to characterize the variability of the caprine TYRP1 gene and investigate its segregation in a wide array of goat breeds. By partially sequencing the coding region of the TYRP1 gene in 18 individuals from eight different breeds, we were able to identify a synonymous nucleotide substitution at exon 3 (c.483C>T. An extensive survey of Iberian and Balearic (N=175, Italian (N=99, Swiss (N=54, Asian (N=14, Canarian (N=92 and North African (N=117 goats with different coat colours was carried out. We found that the C-allele has a different distribution in European vs African breeds, being almost fixed in the latter. Moreover, the C-allele showed an increased frequency in white coated breeds (Girgentana, Grigia Molisana, Blanca de Rasquera and Saanen when compared with those displaying a dark pigmentation (Cilentana Nera, Azpi Gorri and Murciano- Granadina. This could be due to genetic drift, migration and other factors associated with the demographic history of breeds under analysis or to a genetic hitchhiking event (c.483C>T frequencies would be shaped by a neighbouring causal mutation differentially selected in white and black goats. More refined studies will be needed to distinguish between these two alternative explanations.

  14. Self-assembled films containing crude extract of avocado as a source of tyrosinase for monophenol detection

    Energy Technology Data Exchange (ETDEWEB)

    Vieira, Nirton C.S., E-mail: nirtoncristi@gmail.com [Instituto de Física de São Carlos/Universidade de São Paulo, CP 369, 13560-970 São Carlos, SP (Brazil); Ferreira, Reginaldo A. [Centro de Estudos e Inovação em Materiais Biofuncionais Avançados/Universidade Federal de Itajubá, CP 50, 37500-903 Itajubá, MG (Brazil); Cruz Rodrigues, Valquiria da; Guimarães, Francisco E.G. [Instituto de Física de São Carlos/Universidade de São Paulo, CP 369, 13560-970 São Carlos, SP (Brazil); Queiroz, Alvaro A.A. de [Centro de Estudos e Inovação em Materiais Biofuncionais Avançados/Universidade Federal de Itajubá, CP 50, 37500-903 Itajubá, MG (Brazil)

    2013-10-15

    This paper reports on the use of the crude extract of avocado (CEA) fruit (Persea americana) as a source of tyrosinase enzyme. CEA was immobilized via layer by layer (LbL) technique onto indium tin oxide (ITO) substrates and applied in the detection of monophenol using a potentiometric biosensor. Poly(propylene imine) dendrimer of generation 3 (PPI-G3) was used as a counter ion in the layer by layer process due to its highly porous structure and functional groups suitable for enzyme linkage. After the immobilization of the crude CEA as multilayered films, standard samples of monophenol were detected in the 0.25–4.00 mM linear range with approximately 28 mV mM{sup −1} of sensitivity. This sensitivity is 14 times higher than the values found in the literature for a similar system. The results show that it is possible to obtain efficient and low-cost biosensors for monophenol detection using potentiometric transducers and alternative sources of enzymes without purification. - Highlights: • ITO films were functionalized with multilayers of PPI dendrimer and crude extract of avocado. • The films were applied as potentiometric biosensor for the detection of monophenol. • The proposed system presented an excellent sensitivity to monophenol (27 mV mM{sup −1})

  15. Light Regimes Shape Utilization of Extracellular Organic C and N in a Cyanobacterial Biofilm

    Energy Technology Data Exchange (ETDEWEB)

    Stuart, Rhona K.; Mayali, Xavier; Boaro, Amy A.; Zemla, Adam; Everroad, R. Craig; Nilson, Daniel; Weber, Peter K.; Lipton, Mary; Bebout, Brad M.; Pett-Ridge, Jennifer; Thelen, Michael P.

    2016-06-28

    >IMPORTANCECyanobacteria are globally distributed primary producers, and the fate of their fixed C influences microbial biogeochemical cycling. This fate is complicated by cyanobacterial degradation and assimilation of organic matter, but because cyanobacteria are assumed to be poor competitors for organic matter consumption, regulation of this process is not well tested. In mats and biofilms, this is especially relevant because cyanobacteria produce an extensive organic extracellular matrix, providing the community with a rich source of nutrients. Light is a well-known regulator of cyanobacterial metabolism, so we characterized the effects of light availability on the incorporation of organic matter. Using stable isotope tracing at the single-cell level, we quantified photoautotroph assimilation under different metabolic conditions and integrated the results with proteomics to elucidate metabolic status. We found that cyanobacteria effectively compete for organic matter in the light and the dark and that nutrient requirements and community interactions contribute to cycling of extracellular organic matter.

  16. Purification and biochemical characterization of the haloalkaliphilic archaeon Natronococcus occultus extracellular serine protease

    DEFF Research Database (Denmark)

    Studdert, C A; Herrera Seitz, M K; Plasencia, I

    2001-01-01

    other halobacteria nor with commercial proteases except subtilisin. The amino acid sequences of three tryptic peptides obtained from Natronococcus occultus protease did not show significant similarity to other known proteolytic enzymes. This fact, in addition to its high molecular mass suggests......A serine protease was purified from Natronococcus occultus stationary phase culture medium (328-fold, yield 19%) and characterized at the biochemical level. The enzyme has a native molecular mass of 130 kDa, has chymotrypsin-like activity, is stable and active in a broad pH range (5...... that Natronococcus occultus extracellular protease may be a novel enzyme. Udgivelsesdato: 2001-null...

  17. Extracellular Signatures as Indicators of Processing Methods

    Energy Technology Data Exchange (ETDEWEB)

    Wahl, Karen L.

    2012-01-09

    As described in other chapters within this volume, many aspects of microbial cells vary with culture conditions and therefore can potentially be analyzed as forensic signatures of growth conditions. In addition to changes or variations in components of the microbes themselves, extracellular materials indicative of production processes may remain associated with the final bacterial product. It is well recognized that even with considerable effort to make pure products such as fine chemicals or pharmaceuticals, trace impurities from components or synthesis steps associated with production processes can be detected in the final product. These impurities can be used as indicators of production source or methods, such as to help connect drugs of abuse to supply chains. Extracellular residue associated with microbial cells could similarly help to characterize production processes. For successful growth of microorganisms on culture media there must be an available source of carbon, nitrogen, inorganic phosphate and sulfur, trace metals, water and vitamins. The pH, temperature, and a supply of oxygen or other gases must also be appropriate for a given organism for successful culture. The sources of these components and the range in temperature, pH and other variables has adapted over the years with currently a wide range of possible combinations of media components, recipes and parameters to choose from for a given organism. Because of this wide variability in components, mixtures of components, and other parameters, there is the potential for differentiation of cultured organisms based on changes in culture conditions. The challenge remains how to narrow the field of potential combinations and be able to attribute variations in the final bacterial product and extracellular signatures associated with the final product to information about the culture conditions or recipe used in the production of that product.

  18. Role of extracellular vesicles in autoimmune diseases.

    Science.gov (United States)

    Turpin, Delphine; Truchetet, Marie-Elise; Faustin, Benjamin; Augusto, Jean-François; Contin-Bordes, Cécile; Brisson, Alain; Blanco, Patrick; Duffau, Pierre

    2016-02-01

    Extracellular vesicles (EVs) consist of exosomes released upon fusion of multivesicular bodies with the cell plasma membrane and microparticles shed directly from the cell membrane of many cell types. EVs can mediate cell-cell communication and are involved in many processes including inflammation, immune signaling, angiogenesis, stress response, senescence, proliferation, and cell differentiation. Accumulating evidence reveals that EVs act in the establishment, maintenance and modulation of autoimmune processes among several others involved in cancer and cardiovascular complications. EVs could also present biomedical applications, as disease biomarkers and therapeutic targets or agents for drug delivery. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Fragmentation of extracellular matrix by hypochlorous acid

    DEFF Research Database (Denmark)

    Woods, Alan A; Davies, Michael Jonathan

    2003-01-01

    of the MPO-derived oxidant hypochlorous acid (HOCl) with extracellular matrix from vascular smooth muscle cells and healthy pig arteries has been examined. HOCl is rapidly consumed by such matrix samples, with the formation of matrix-derived chloramines or chloramides. The yield of these intermediates....../chloramide decomposition, with copper and iron ions being effective catalysts, and decreased by compounds which scavenge chloramines/chloramides, or species derived from them. The effect of such matrix modifications on cellular behaviour is poorly understood, though it is known that changes in matrix materials can have...

  20. Comparative chemical investigation and evaluation of antioxidant and tyrosinase inhibitory effects of Withania somnifera (L. Dunal and Solanum nigrum (L. berries

    Directory of Open Access Journals (Sweden)

    Hameed Abdul

    2018-03-01

    Full Text Available In the present study, berries of two different species of Solanaceae family, Withania somnifera (WS and Solanum nigrum (SN, were extracted in methanol and then fractionated with solvents, ranging from non-polar to polar, for their phytochemical profiling and investigation of antioxidant and tyrosinase enzyme inhibition capacity. The methanolic extract and n-hexane, ethyl acetate (WSEA, SNEA and aqueous fractions were chemically analyzed and evaluated for biological activity. Total flavonoids and total phenolics were quantified in WSEA (96.91 ± 1.56 μg QE mg-1 sample and 178.45 ± 2.78 μg GAE mg-1 s ample, r esp. and S NEA (89.58 ± 0.98 μg QE mg-1 sample and 120.15 ± 2.33 μg GAE mg-1 sample, resp.. HPLC-DAD analysis of ethyl acetate fractions of WS and SN measured 13.74 and 5.34 μg GAE mg-1 dry fraction and 3.72 and 3.41 μg QE mg-1 dry fraction, resp. WSEA and SNEA fractions showed the highest 2,2-diphenyl-2-picryl hydrazyl (DPPH radical scavenging, total antioxidant capacity and iron reducing power activity. The highest inhibition of tyrosinase enzyme was also exhibited by WSEA and SNEA (59.6 and 58.7 % resp. This investigation justifies the medicinal value of W. somnifera and S. nigrum berry extracts as potential and readily available sources of natural antioxidants. Marked tyrosinase enzyme inhibition activity and antioxidant activity of both plant extracts might be due to polyphenols and flavonoids.

  1. A kinetic study of the suicide inactivation of an enzyme measured through coupling reactions. Application to the suicide inactivation of tyrosinase.

    Science.gov (United States)

    Escribano, J; Tudela, J; Garcia-Carmona, F; Garcia-Canovas, F

    1989-01-01

    A systematic procedure for the kinetic study of reaction mechanisms with enzyme inactivation induced by a suicide substrate in the presence or in the absence of an auxiliary substrate, when the enzyme activity is measured through coupling reactions, enzymically catalysed or not, was developed and analysed by using the transient-phase approach. The methodology is established to determine the parameters and kinetic constants corresponding to the enzyme suicide inactivation and the coupling reactions. This approach is illustrated by a study of the suicide inactivation of tyrosinase by catechol in the presence of L-proline. Treatment of the experimental data was carried out by non-linear regression. PMID:2508631

  2. The Extracellular Matrix of Candida albicans Biofilms Impairs Formation of Neutrophil Extracellular Traps

    Science.gov (United States)

    Cabezas-Olcoz, Jonathan; Wang, Steven X.; Huttenlocher, Anna; Ansari, Hamayail; Nett, Jeniel E.

    2016-01-01

    Neutrophils release extracellular traps (NETs) in response to planktonic C. albicans. These complexes composed of DNA, histones, and proteins inhibit Candida growth and dissemination. Considering the resilience of Candida biofilms to host defenses, we examined the neutrophil response to C. albicans during biofilm growth. In contrast to planktonic C. albicans, biofilms triggered negligible release of NETs. Time lapse imaging confirmed the impairment in NET release and revealed neutrophils adhering to hyphae and migrating on the biofilm. NET inhibition depended on an intact extracellular biofilm matrix as physical or genetic disruption of this component resulted in NET release. Biofilm inhibition of NETosis could not be overcome by protein kinase C activation via phorbol myristate acetate (PMA) and was associated with suppression of neutrophil reactive oxygen species (ROS) production. The degree of impaired NET release correlated with resistance to neutrophil attack. The clinical relevance of the role for extracellular matrix in diminishing NET production was corroborated in vivo using a rat catheter model. The C. albicans pmr1Δ/Δ, defective in production of matrix mannan, appeared to elicit a greater abundance of NETs by scanning electron microscopy imaging, which correlated with a decreased fungal burden. Together, these findings show that C. albicans biofilms impair neutrophil response through an inhibitory pathway induced by the extracellular matrix. PMID:27622514

  3. The International Society for Extracellular Vesicles launches the first massive open online course on extracellular vesicles

    Directory of Open Access Journals (Sweden)

    Cecilia Lässer

    2016-12-01

    Full Text Available The International Society for Extracellular Vesicles (ISEV has organised its first educational online course for students and beginners in the field of extracellular vesicles (EVs. This course, “Basics of Extracellular Vesicles,” uses recorded lectures from experts in the field and will be open for an unlimited number of participants. The course is divided into 5 modules and can be accessed at www.coursera.org/learn/extracellular-vesicles. The first module is an introduction to the field covering the nomenclature and history of EVs. Module 2 focuses on the biogenesis and uptake mechanisms of EVs, as well as their RNA, protein and lipid cargo. Module 3 covers the collection and processing of cell culture media and body fluids such as blood, breast milk, cerebrospinal fluid and urine prior to isolation of EVs. Modules 4 and 5 present different isolation methods and characterisation techniques utilised in the EV field. Here, differential ultracentrifugation, size-exclusion chromatography, density gradient centrifugation, kit-based precipitation, electron microscopy, cryo-electron microscopy, flow cytometry, atomic-force microscopy and nanoparticle-tracking analysis are covered. This first massive open online course (MOOC on EVs was launched on 15 August 2016 at the platform “Coursera” and is free of charge.

  4. Extracellular matrix in canine mammary tumors with special focus on versican, a versatile extracellular proteoglycan

    NARCIS (Netherlands)

    Erdélyi, Ildikó

    2006-01-01

    The extracellular matrix (ECM) research has become fundamental to understand cancer. This thesis focuses on the exploration of ECM composition and organization in canine mammary tumors, with a special interest in the large chondroitin-sulfate proteoglycan (PG), versican. Chapter 1 gives an

  5. A Method for Isolation of Extracellular Vesicles and Characterization of Exosomes from Brain Extracellular Space.

    Science.gov (United States)

    Pérez-González, Rocío; Gauthier, Sebastien A; Kumar, Asok; Saito, Mitsuo; Saito, Mariko; Levy, Efrat

    2017-01-01

    Extracellular vesicles (EV), including exosomes, secreted vesicles of endocytic origin, and microvesicles derived from the plasma membrane, have been widely isolated and characterized from conditioned culture media and bodily fluids. The difficulty in isolating EV from tissues, however, has hindered their study in vivo. Here, we describe a novel method designed to isolate EV and characterize exosomes from the extracellular space of brain tissues. The purification of EV is achieved by gentle dissociation of the tissue to free the brain extracellular space, followed by sequential low-speed centrifugations, filtration, and ultracentrifugations. To further purify EV from other extracellular components, they are separated on a sucrose step gradient. Characterization of the sucrose step gradient fractions by electron microscopy demonstrates that this method yields pure EV preparations free of large vesicles, subcellular organelles, or debris. The level of EV secretion and content are determined by assays for acetylcholinesterase activity and total protein estimation, and exosomal identification and protein content are analyzed by Western blot and immuno-electron microscopy. Additionally, we present here a method to delipidate EV in order to improve the resolution of downstream electrophoretic analysis of EV proteins.

  6. The International Society for Extracellular Vesicles launches the first massive open online course on extracellular vesicles.

    Science.gov (United States)

    Lässer, Cecilia; Théry, Clotilde; Buzás, Edit I; Mathivanan, Suresh; Zhao, Weian; Gho, Yong Song; Lötvall, Jan

    2016-01-01

    The International Society for Extracellular Vesicles (ISEV) has organised its first educational online course for students and beginners in the field of extracellular vesicles (EVs). This course, "Basics of Extracellular Vesicles," uses recorded lectures from experts in the field and will be open for an unlimited number of participants. The course is divided into 5 modules and can be accessed at www.coursera.org/learn/extracellular-vesicles. The first module is an introduction to the field covering the nomenclature and history of EVs. Module 2 focuses on the biogenesis and uptake mechanisms of EVs, as well as their RNA, protein and lipid cargo. Module 3 covers the collection and processing of cell culture media and body fluids such as blood, breast milk, cerebrospinal fluid and urine prior to isolation of EVs. Modules 4 and 5 present different isolation methods and characterisation techniques utilised in the EV field. Here, differential ultracentrifugation, size-exclusion chromatography, density gradient centrifugation, kit-based precipitation, electron microscopy, cryo-electron microscopy, flow cytometry, atomic-force microscopy and nanoparticle-tracking analysis are covered. This first massive open online course (MOOC) on EVs was launched on 15 August 2016 at the platform "Coursera" and is free of charge.

  7. The International Society for Extracellular Vesicles launches the first massive open online course on extracellular vesicles

    Science.gov (United States)

    Lässer, Cecilia; Théry, Clotilde; Buzás, Edit I.; Mathivanan, Suresh; Zhao, Weian; Gho, Yong Song; Lötvall, Jan

    2016-01-01

    The International Society for Extracellular Vesicles (ISEV) has organised its first educational online course for students and beginners in the field of extracellular vesicles (EVs). This course, “Basics of Extracellular Vesicles,” uses recorded lectures from experts in the field and will be open for an unlimited number of participants. The course is divided into 5 modules and can be accessed at www.coursera.org/learn/extracellular-vesicles. The first module is an introduction to the field covering the nomenclature and history of EVs. Module 2 focuses on the biogenesis and uptake mechanisms of EVs, as well as their RNA, protein and lipid cargo. Module 3 covers the collection and processing of cell culture media and body fluids such as blood, breast milk, cerebrospinal fluid and urine prior to isolation of EVs. Modules 4 and 5 present different isolation methods and characterisation techniques utilised in the EV field. Here, differential ultracentrifugation, size-exclusion chromatography, density gradient centrifugation, kit-based precipitation, electron microscopy, cryo-electron microscopy, flow cytometry, atomic-force microscopy and nanoparticle-tracking analysis are covered. This first massive open online course (MOOC) on EVs was launched on 15 August 2016 at the platform “Coursera” and is free of charge. PMID:27989272

  8. Shelf-Stable Food Safety

    Science.gov (United States)

    ... is an MRE? Is an MRE shelf stable? What foods are packaged in retort packages? What is aseptic ... type of package is used for aseptic processing? What foods are packaged in aseptic packages? Can I microwave ...

  9. Secretory proteins of the pulmonary extracellular lining

    International Nuclear Information System (INIS)

    Gupta, R.P.; Patton, S.E.; Eddy, M.; Smits, H.L.; Jetten, A.M.; Nettesheim, P.; Hook, G.E.R.

    1986-01-01

    The objective of this investigation was to identify proteins in the pulmonary extracellular lining (EL) that are secreted by cells of the pulmonary epithelium. Pulmonary lavage effluents from the lungs of rabbits were centrifuged to remove all cells and particulate materials. Serum proteins were removed by repeatedly passing concentrated lavage effluent fluid through an affinity column containing IgG fraction of goat anti-rabbit (whole serum) antiserum bound to Sepharose-4B. Nonserum proteins accounted for 21.3 +/- 10.3% of the total soluble proteins in pulmonary lavage effluents. Serum free lavage effluents (SFL) contained 25 identifiable proteins as determined by using SDS-PAGE under reducing conditions. Of these proteins approximately 73% was accounted for by a single protein with MW of 66 kd. The secretory nature of the proteins present in SFL was investigated by studying the incorporation of 35 S-methionine into proteins released by lung slices and trachea followed by SDS-PAGE and autoradiography. Many, but not all proteins present in SFL were identified as proteins secreted by pulmonary tissues. The major secretory proteins appeared to have MWs of 59, 53, 48, 43, 24, 14, and 6 kd under reducing conditions. These data demonstrate the presence of several proteins in the pulmonary extracellular lining that appear to be secreted by the pulmonary epithelium

  10. Nanostructured gold microelectrodes for extracellular recording

    Energy Technology Data Exchange (ETDEWEB)

    Brueggemann, Dorothea; Wolfrum, Bernhard; Maybeck, Vanessa; Offenhaeusser, Andreas [CNI Center of Nanoelectronic Systems for Information Technology and Institute of Bio- and Nanosystems 2, Forschungszentrum Juelich (Germany)

    2010-07-01

    Electrophysiological activity of electrogenic cells is currently recorded with planar bioelectronic interfaces such as microelectrode arrays (MEAs). In this work, a novel concept of biocompatible nanostructured gold MEAs for extracellular signal recording is presented. MEAs were fabricated using clean room technologies, e.g. photolithography and metallization. Subsequently, they were modified with gold nanopillars of approximately 300 to 400 nm in height and 60 nm width. The nanostructuring process was carried out with a template-assisted approach using nanoporous aluminium oxide. Impedance spectroscopy of the resulting nanostructures showed higher capacitances compared to planar gold. This confirmed the expected increase of the surface area via nanostructuring. We used the nanostructured microelectrodes to record extracellular potentials from heart muscle cells (HL1), which were plated onto the chips. Good coupling between the HL1 cells and the nanostructured electrodes was observed. The resulting signal-to-noise ratio of nanopillar-MEAs was increased by a factor of 2 compared to planar MEAs. In future applications this nanopillar concept can be adopted for distinct interface materials and coupling to cellular and molecular sensing components.

  11. Extracellular histones induce erythrocyte fragility and anemia.

    Science.gov (United States)

    Kordbacheh, Farzaneh; O'Meara, Connor H; Coupland, Lucy A; Lelliott, Patrick M; Parish, Christopher R

    2017-12-28

    Extracellular histones have been shown to play an important pathogenic role in many diseases, primarily through their cytotoxicity toward nucleated cells and their ability to promote platelet activation with resultant thrombosis and thrombocytopenia. In contrast, little is known about the effect of extracellular histones on erythrocyte function. We demonstrate in this study that histones promote erythrocyte aggregation, sedimentation, and using a novel in vitro shear stress model, we show that histones induce erythrocyte fragility and lysis in a concentration-dependent manner. Furthermore, histones impair erythrocyte deformability based on reduced passage of erythrocytes through an artificial spleen. These in vitro results were mirrored in vivo with the injection of histones inducing anemia within minutes of administration, with a concomitant increase in splenic hemoglobin content. Thrombocytopenia and leukopenia were also observed. These findings suggest that histones binding to erythrocytes may contribute to the elevated erythrocyte sedimentation rates observed in inflammatory conditions. Furthermore, histone-induced increases in red blood cell lysis and splenic clearance may be a significant factor in the unexplained anemias seen in critically ill patients. © 2017 by The American Society of Hematology.

  12. Extracellular matrix alterations in the Peyronie's disease.

    Science.gov (United States)

    Watanabe, Marcelo Silva; Theodoro, Thérèse Rachel; Coelho, Natália Lima; Mendes, Aline; Leonel, Monica Luzia Pereira; Mader, Ana Maria; Nader, Helena Bonciani; Glina, Sidney; Pinhal, Maria Aparecida Silva

    2017-07-01

    Peyronie's disease is characterized by fibrous plaque formation of the tunica albuginea, causing penile deformity and fertility problems. The aim of the present study was to investigate alterations in the extracellular matrix in Peyronie's disease. The study used tissues collected by surgical procedure from individuals that presented a well-established disease, while control samples were obtained by biopsies of fresh cadavers. Immunohistochemistry analysis followed by digital quantification was performed to evaluate TGF-β, heparanases and metalloproteinases (MMPs). The profile of sulfated glycosaminoglycans, chondroitin sulfate and dermatan sulfate was determined by agarose gel electrophoresis, while hyaluronic acid quantification was obtained by an ELISA-like assay. The expression of mRNA was investigated for syndecan-1 proteoglycan (Syn-1), interleukine-6 (IL-6), hyaluronic acid synthases, and hyaluronidases. Pathologic features showed decreased apoptosis and blood vessel number in Peyronie's tissues. TGF-β and IL-6 were significantly enhanced in Peyronie's disease. There was an increased expression of heparanases, though no alteration was observed for MMPs. Hyaluronic acid as well as hyaluronic acid synthases, hyaluronidases, and dermatan sulfate were not changed, while the level of chondroitin sulfate was significantly ( P  = 0.008, Mann-Whitney test) increased in Peyronie's samples. Heparanases and sulfated glycosaminoglycans seem to be involved in extracellular matrix alterations in Peyronie's disease.

  13. Solute partitioning and filtration by extracellular matrices

    Science.gov (United States)

    Hofmann, Christina L.; Ferrell, Nicholas; Schnell, Lisa; Dubnisheva, Anna; Zydney, Andrew L.; Yurchenco, Peter D.; Roy, Shuvo

    2009-01-01

    The physiology of glomerular filtration remains mechanistically obscure despite its importance in disease. The correspondence between proteinuria and foot process effacement suggests podocytes as the locus of the filtration barrier. If so, retained macromolecules ought to accumulate at the filtration barrier, an effect called concentration polarization. Literature data indicate macromolecule concentrations decrease from subendothelial to subepithelial glomerular basement membrane (GBM), as would be expected if the GBM were itself the filter. The objective of this study was to obtain insights into the possible role of the GBM in protein retention by performing fundamental experimental and theoretical studies on the properties of three model gels. Solute partitioning and filtration through thin gels of a commercially available laminin-rich extracellular matrix, Matrigel, were measured using a polydisperse polysaccharide tracer molecule, Ficoll 70. Solute partitioning into laminin gels and lens basement membrane (LBM) were measured using Ficoll 70. A novel model of a laminin gel was numerically simulated, as well as a mixed structure-random-fiber model for LBM. Experimental partitioning was predicted by numerical simulations. Sieving coefficients through thin gels of Matrigel were size dependent and strongly flux dependent. The observed flux dependence arose from compression of the gel in response to the applied pressure. Gel compression may alter solute partitioning into extracellular matrix at physiologic pressures present in the glomerular capillary. This suggests a physical mechanism coupling podocyte structure to permeability characteristics of the GBM. PMID:19587146

  14. Modeling tyrosinase and catecholase activity using new m-Xylyl-based ligands with bidentate alkylamine terminal coordination.

    Science.gov (United States)

    Mandal, Sukanta; Mukherjee, Jhumpa; Lloret, Francesc; Mukherjee, Rabindranath

    2012-12-17

    Chemical model systems possessing the reactivity aspects of both tyrosinase and catechol oxidase are presented. Using two m-xylyl-based ligands providing bidentate alkylamine terminal coordination, 1,3-bis[(N,N-dimethylaminoethyl)aminomethyl]benzene (L(H,H)) and 1,3-bis[(N,N,N'-trimethylaminoethyl)aminomethyl]benzene (L(Me,Me)), four new dicopper(I) complexes, [Cu(I)(2)(L(H,H))(MeCN)(4)][ClO(4)](2) (1), [Cu(I)(2)(L(H,H))(PPh(3))(2)(MeCN)(2)][ClO(4)](2) (2), [Cu(I)(2)(L(Me,Me))(MeCN)(2)][ClO(4)](2) (3), and [Cu(I)(2)(L(Me,Me))(PPh(3))(2)][ClO(4)](2) (4), have been synthesized and characterized. Complex 2 has been structurally characterized. Reaction of the dicopper(I) complex 3(2+) with dioxygen at 183 K generates putative bis(μ-oxo)dicopper(III) intermediate (absorption spectroscopy). Oxygenation of 1 and 3 brings about m-xylyl-ring hydroxylation (monooxygenase-like activity), with a noticeable color change from pale-yellow to dark green. The presence of phenoxo- and hydroxo-bridges in the end products [Cu(II)(2)(L(H,H)-O)(OH)(MeCN)(2)][ClO(4)](2) (5) and [Cu(II)(2)(L(Me,Me)-O)(OH)(OClO(3))][ClO(4)]·MeCN(6) has been authenticated by structural characterization. Oxygenation of 3 afforded not only the green complex 6 isolation but also a blue complex [Cu(II)(2)(L(Me,Me))(OH)(2)][ClO(4)](2) (7). Variable temperature magnetic susceptibility measurements on 5 and 6 establish that the Cu(II) centers are strongly antiferromagnetically coupled [singlet-triplet energy gap (J) = -528 cm(-1) (5) and -505 cm(-1) (6)]. The abilities of phenoxo- and hydroxo-bridged dicopper(II) complexes 5 and 6, the previously reported complex [Cu(II)(2)(L(1)-O)(OH)(OClO(3))(2)]·1.5H(2)O (8) (L(1)-OH = 1,3-bis[(2-dimethylaminoethyl)iminomethyl]phenol), and [Cu(II)(2)(L(2)-O)(OH)(OClO(3))()][ClO(4)]() (9) (L(2)-OH = 1,3-[(2-dimethylaminoethyl)iminomethyl][(N,N,N'-trimethyl)aminoethyl]-4-methylphenol) have been examined to catalyze the oxidation of catechol to quinone (catecholase activity of

  15. Pharmaceuticals labelled with stable isotopes

    International Nuclear Information System (INIS)

    Krumbiegel, P.

    1986-11-01

    The relatively new field of pharmaceuticals labelled with stable isotopes is reviewed. Scientific, juridical, and ethical questions are discussed concerning the application of these pharmaceuticals in human medicine. 13 C, 15 N, and 2 H are the stable isotopes mainly utilized in metabolic function tests. Methodical contributions are given to the application of 2 H, 13 C, and 15 N pharmaceuticals showing new aspects and different states of development in the field under discussion. (author)

  16. Stable isotope research pool inventory

    International Nuclear Information System (INIS)

    1984-03-01

    This report contains a listing of electromagnetically separated stable isotopes which are available at the Oak Ridge National Laboratory for distribution for nondestructive research use on a loan basis. This inventory includes all samples of stable isotopes in the Research Materials Collection and does not designate whether a sample is out on loan or is in reprocessing. For some of the high abundance naturally occurring isotopes, larger amounts can be made available; for example, Ca-40 and Fe-56

  17. Developmental phenotypic-genotypic associations of tyrosinase and melanocortin 1 receptor genes with changing profiles in chicken plumage pigmentation.

    Science.gov (United States)

    Liu, W B; Chen, S R; Zheng, J X; Qu, L J; Xu, G Y; Yang, N

    2010-06-01

    The tyrosinase (TYR) and melanocortin 1 receptor (MC1R) genes have been accepted as major genes involved in the plumage pigmentation of chickens. The co-segregation of plumage coloration and sequence polymorphism in TYR and MC1R genes were investigated using an intercross between black and white plumage color types of the Dongxiang blue-shelled chicken. Profiles of plumage color changing and genes expression levels of TYR and MC1R were observed from hatch to 112 d of age using quantitative real-time reverse transcription-PCR. Intercrossed offspring were classified by phenotypes of plumage colors. The phenotypes of black and amber chicks with genotypes of E_C_ exhibited a black feather pattern, whereas white, gray, and buff chicks with genotypes of E_cc and eecc belonged to the white feather pattern. Although TYR in cooperation with MC1R determined the coloration feather patterns, the different phenotypes did not correspond completely with the genotypes. During the period studied, plumage phenotype changed dramatically, and the buff and gray down were gradually replaced by whiteness feathers. Real-time reverse transcription-PCR studies showed that 1) expression levels of TYR declined dramatically with age, and expression at hatch was highest (P<0.01) during the ages studied; 2) expression level of MC1R was higher at 28 d than at younger and older ages; and 3) expression of TYR in chickens carrying E/E and E/e alleles on MC1R loci were higher than those carrying e/e alleles from hatch to 28 d.

  18. A polysaccharide-degrading marine bacterium Flammeovirga sp. MY04 and its extracellular agarase system

    Science.gov (United States)

    Han, Wenjun; Gu, Jingyan; Yan, Qiujie; Li, Jungang; Wu, Zhihong; Gu, Qianqun; Li, Yuezhong

    2012-09-01

    Bacteria of the genus Flammeovirga can digest complex polysaccharides (CPs), but no details have been reported regarding the CP depolymerases of these bacteria. MY04, an agarolytic marine bacterium isolated from coastal sediments, has been identified as a new member of the genus Flammeovirga. The MY04 strain is able to utilize multiple CPs as a sole carbon source and grows well on agarose, mannan, or xylan. This strain produces high concentrations of extracellular proteins (490 mg L-1 ± 18.2 mg L-1 liquid culture) that exhibit efficient and extensive degradation activities on various polysaccharides, especially agarose. These proteins have an activity of 310 U mg-1 ± 9.6 U mg-1 proteins. The extracellular agarase system (EAS) in the crude extracellular enzymes contains at least four agarose depolymerases, which are with molecular masses of approximately 30-70 kDa. The EAS is stable at a wide range of pH values (6.0-11.0), temperatures (0-50°C), and sodium chloride (NaCl) concentrations (0-0.9 mol L-1). Two major degradation products generated from agarose by the EAS are identified to be neoagarotetraose and neoagarohexaose, suggesting that β-agarases are the major constituents of the MY04 EAS. These results suggest that the Flammeovirga strain MY04 and its polysaccharide-degradation system hold great promise in industrial applications.

  19. Microbial extracellular enzymes in biogeochemical cycling of ecosystems.

    Science.gov (United States)

    Luo, Ling; Meng, Han; Gu, Ji-Dong

    2017-07-15

    Extracellular enzymes, primarily produced by microorganisms, affect ecosystem processes because of their essential roles in degradation, transformation and mineralization of organic matter. Extracellular enzymes involved in the cycling of carbon (C), nitrogen (N) and phosphorus (P) have been widely investigated in many different ecosystems, and several enzymes have been recognized as key components in regulating C storage and nutrient cycling. In this review, it was the first time to summarize the specific extracellular enzymes related to C storage and nutrient cycling for better understanding the important role of microbial extracellular enzymes in biogeochemical cycling of ecosystems. Subsequently, ecoenzymatic stoichiometry - the relative ratio of extracellular enzyme, has been reviewed and further provided a new perspective for understanding biogeochemical cycling of ecosystems. Finally, the new insights of using microbial extracellular enzyme in indicating biogeochemical cycling and then protecting ecosystems have been suggested. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Extracellular RNAs: development as biomarkers of human disease

    Directory of Open Access Journals (Sweden)

    Joseph F. Quinn

    2015-08-01

    Full Text Available Ten ongoing studies designed to test the possibility that extracellular RNAs may serve as biomarkers in human disease are described. These studies, funded by the NIH Common Fund Extracellular RNA Communication Program, examine diverse extracellular body fluids, including plasma, serum, urine and cerebrospinal fluid. The disorders studied include hepatic and gastric cancer, cardiovascular disease, chronic kidney disease, neurodegenerative disease, brain tumours, intracranial haemorrhage, multiple sclerosis and placental disorders. Progress to date and the plans for future studies are outlined.