Voltage-Driven Conformational Switching with Distinct Raman Signature in a Single-Molecule Junction.
Bi, Hai; Palma, Carlos-Andres; Gong, Yuxiang; Hasch, Peter; Elbing, Mark; Mayor, Marcel; Reichert, Joachim; Barth, Johannes V
2018-04-11
Precisely controlling well-defined, stable single-molecule junctions represents a pillar of single-molecule electronics. Early attempts to establish computing with molecular switching arrays were partly challenged by limitations in the direct chemical characterization of metal-molecule-metal junctions. While cryogenic scanning probe studies have advanced the mechanistic understanding of current- and voltage-induced conformational switching, metal-molecule-metal conformations are still largely inferred from indirect evidence. Hence, the development of robust, chemically sensitive techniques is instrumental for advancement in the field. Here we probe the conformation of a two-state molecular switch with vibrational spectroscopy, while simultaneously operating it by means of the applied voltage. Our study emphasizes measurements of single-molecule Raman spectra in a room-temperature stable single-molecule switch presenting a signal modulation of nearly 2 orders of magnitude.
Programmed Switching of Single Polymer Conformation on DNA Origami
DEFF Research Database (Denmark)
Krissanaprasit, Abhichart; Madsen, Mikael; Knudsen, Jakob Bach
2016-01-01
-molecule conjugated polymer. The polymer is functionalized with short single-stranded (ss) DNA strands that extend from the backbone of the polymer and serve as handles. The DNA polymer conjugate can be aligned on DNA origami in three well-defined geometries (straight line, left-turned, and right-turned pattern......) by DNA hybridization directed by single-stranded guiding strands and ssDNA tracks extending from the origami surface and polymer handle. We demonstrate switching of a conjugated organic polymer conformation between left- and right-turned conformations of the polymer on DNA origami based on toehold...
Equilibrious Strand Exchange Promoted by DNA Conformational Switching
Wu, Zhiguo; Xie, Xiao; Li, Puzhen; Zhao, Jiayi; Huang, Lili; Zhou, Xiang
2013-01-01
Most of DNA strand exchange reactions in vitro are based on toehold strategy which is generally nonequilibrium, and intracellular strand exchange mediated by proteins shows little sequence specificity. Herein, a new strand exchange promoted by equilibrious DNA conformational switching is verified. Duplexes containing c-myc sequence which is potentially converted into G-quadruplex are designed in this strategy. The dynamic equilibrium between duplex and G4-DNA is response to the specific exchange of homologous single-stranded DNA (ssDNA). The SER is enzyme free and sequence specific. No ATP is needed and the displaced ssDNAs are identical to the homologous ssDNAs. The SER products and exchange kenetics are analyzed by PAGE and the RecA mediated SER is performed as the contrast. This SER is a new feature of G4-DNAs and a novel strategy to utilize the dynamic equilibrium of DNA conformations.
Directory of Open Access Journals (Sweden)
Barry J Grant
2009-03-01
Full Text Available Ras mediates signaling pathways controlling cell proliferation and development by cycling between GTP- and GDP-bound active and inactive conformational states. Understanding the complete reaction path of this conformational change and its intermediary structures is critical to understanding Ras signaling. We characterize nucleotide-dependent conformational transition using multiple-barrier-crossing accelerated molecular dynamics (aMD simulations. These transitions, achieved for the first time for wild-type Ras, are impossible to observe with classical molecular dynamics (cMD simulations due to the large energetic barrier between end states. Mapping the reaction path onto a conformer plot describing the distribution of the crystallographic structures enabled identification of highly populated intermediate structures. These structures have unique switch orientations (residues 25-40 and 57-75 intermediate between GTP and GDP states, or distinct loop3 (46-49, loop7 (105-110, and alpha5 C-terminus (159-166 conformations distal from the nucleotide-binding site. In addition, these barrier-crossing trajectories predict novel nucleotide-dependent correlated motions, including correlations of alpha2 (residues 66-74 with alpha3-loop7 (93-110, loop2 (26-37 with loop10 (145-151, and loop3 (46-49 with alpha5 (152-167. The interconversion between newly identified Ras conformations revealed by this study advances our mechanistic understanding of Ras function. In addition, the pattern of correlated motions provides new evidence for a dynamic linkage between the nucleotide-binding site and the membrane interacting C-terminus critical for the signaling function of Ras. Furthermore, normal mode analysis indicates that the dominant collective motion that occurs during nucleotide-dependent conformational exchange, and captured in aMD (but absent in cMD simulations, is a low-frequency motion intrinsic to the structure.
DEFF Research Database (Denmark)
Nuermaimaiti, Ajiguli
2013-01-01
structures formed by the conformational switches and statistical analysis of conformational states, a detailed study of dynamic processes is performed by acquiring time-resolved STM data. Furthermore, one of the possible applications of conformational switches towards inducing chirality in surface assemblies...
Multimodal switching of conformation and solubility in homocysteine derived polypeptides
Kramer, JR; Deming, TJ
2014-01-01
We report the design and synthesis of poly(S-alkyl-l-homocysteine)s, which were found to be a new class of readily prepared, multiresponsive polymers that possess the unprecedented ability to respond in different ways to different stimuli, either through a change in chain conformation or in water solubility. The responsive properties of these materials are also effected under mild conditions and are completely reversible for all pathways. The key components of these polymers are the incorpora...
Stable Amplification and High Current Drop Bistable Switching in Supercritical GaAs Tills
DEFF Research Database (Denmark)
Izadpanah, S.H; Jeppsson, B; Jeppesen, Palle
1974-01-01
Bistable switching with current drops of 40% and switching times of 100 ps are obtained in pulsed operation of 10Â¿m supercritically doped n+ nn+ GaAs Transferred Electron Devices (TEDs). When CW-operated the same devices exhibit a 5-17 GHz bandwidth for the stable negative resistance.......Bistable switching with current drops of 40% and switching times of 100 ps are obtained in pulsed operation of 10Â¿m supercritically doped n+ nn+ GaAs Transferred Electron Devices (TEDs). When CW-operated the same devices exhibit a 5-17 GHz bandwidth for the stable negative resistance....
Functional Architecture of the Outer Arm Dynein Conformational Switch*
King, Stephen M.; Patel-King, Ramila S.
2012-01-01
Dynein light chain 1 (LC1/DNAL1) is one of the most highly conserved components of ciliary axonemal outer arm dyneins, and it associates with both a heavy chain motor unit and tubulin located within the A-tubule of the axonemal outer doublet microtubules. In a variety of model systems, lack of LC1 or expression of mutant forms leads to profound defects in ciliary motility, including the failure of the hydrodynamic coupling needed for ciliary metachronal synchrony, random stalling during the power/recovery stroke transition, an aberrant response to imposed viscous load, and in some cases partial failure of motor assembly. These phenotypes have led to the proposal that LC1 acts as part of a mechanical switch to control motor function in response to alterations in axonemal curvature. Here we have used NMR chemical shift mapping to define the regions perturbed by a series of mutations in the C-terminal domain that yield a range of phenotypic effects on motility. In addition, we have identified the subdomain of LC1 involved in binding microtubules and characterized the consequences of an Asn → Ser alteration within the terminal leucine-rich repeat that in humans causes primary ciliary dyskinesia. Together, these data define a series of functional subdomains within LC1 and allow us to propose a structural model for the organization of the dynein heavy chain-LC1-microtubule ternary complex that is required for the coordinated activity of dynein motors in cilia. PMID:22157010
Snoberger, Aaron; Brettrager, Evan J; Smith, David M
2018-06-18
Protein degradation in all domains of life requires ATPases that unfold and inject proteins into compartmentalized proteolytic chambers. Proteasomal ATPases in eukaryotes and archaea contain poorly understood N-terminally conserved coiled-coil domains. In this study, we engineer disulfide crosslinks in the coiled-coils of the archaeal proteasomal ATPase (PAN) and report that its three identical coiled-coil domains can adopt three different conformations: (1) in-register and zipped, (2) in-register and partially unzipped, and (3) out-of-register. This conformational heterogeneity conflicts with PAN's symmetrical OB-coiled-coil crystal structure but resembles the conformational heterogeneity of the 26S proteasomal ATPases' coiled-coils. Furthermore, we find that one coiled-coil can be conformationally constrained even while unfolding substrates, and conformational changes in two of the coiled-coils regulate PAN switching between resting and active states. This switching functionally mimics similar states proposed for the 26S proteasome from cryo-EM. These findings thus build a mechanistic framework to understand regulation of proteasome activity.
Switch region for pathogenic structural change in conformational disease and its prediction.
Directory of Open Access Journals (Sweden)
Xin Liu
2010-01-01
Full Text Available Many diseases are believed to be related to abnormal protein folding. In the first step of such pathogenic structural changes, misfolding occurs in regions important for the stability of the native structure. This destabilizes the normal protein conformation, while exposing the previously hidden aggregation-prone regions, leading to subsequent errors in the folding pathway. Sites involved in this first stage can be deemed switch regions of the protein, and can represent perfect binding targets for drugs to block the abnormal folding pathway and prevent pathogenic conformational changes. In this study, a prediction algorithm for the switch regions responsible for the start of pathogenic structural changes is introduced. With an accuracy of 94%, this algorithm can successfully find short segments covering sites significant in triggering conformational diseases (CDs and is the first that can predict switch regions for various CDs. To illustrate its effectiveness in dealing with urgent public health problems, the reason of the increased pathogenicity of H5N1 influenza virus is analyzed; the mechanisms of the pandemic swine-origin 2009 A(H1N1 influenza virus in overcoming species barriers and in infecting large number of potential patients are also suggested. It is shown that the algorithm is a potential tool useful in the study of the pathology of CDs because: (1 it can identify the origin of pathogenic structural conversion with high sensitivity and specificity, and (2 it provides an ideal target for clinical treatment.
Switching behavior and novel stable states of magnetic hexagonal nanorings
Energy Technology Data Exchange (ETDEWEB)
Yasir Rafique, M., E-mail: myasir.rafique@ciitlahore.edu.pk [Department of Physics, COMSATS Institute of Information Technology, Lahore 54000 (Pakistan); Pan, Liqing; Guo, Zhengang [College of Science and Research Institute for New Energy, China Three Gorges University, Yichang 443002 (China)
2017-06-15
Micromagnetic simulations for Cobalt hexagonal shape nanorings show onion (O) and vortex state (V) along with new state named “tri-domain state”. The tri-domain state is observed in sufficiently large width of ring. The magnetic reversible mechanism and transition of states are explained with help of vector field display. The transitions from one state to other occur by propagation of domain wall. The vertical parts of hexagonal rings play important role in developing the new “tri-domain” state. The behaviors of switching fields from onion to tri-domain (HO-Tr), tri-domain to vortex state (HTr-V) and vortex to onion state and “states size” are discussed in term of geometrical parameter of ring.
DEFF Research Database (Denmark)
Nuermaimaiti, Ajiguli; Bombis, Christian; Knudsen, Martin Markvard
2014-01-01
Molecular-level insights into chiral adsorption phenomena are highly relevant within the fields of asymmetric heterogeneous catalysis or chiral separation and may contribute to understand the origins of homochirality in nature. Here, we investigate chiral induction by the "sergeants and soldiers......" mechanism for an oligo(phenylene ethynylene) based chiral conformational switch by coadsorbing it with an intrinsically chiral seed on Au(111). Through statistical analysis of scanning tunneling microscopy (STM) data we demonstrate successful chiral induction with a very low concentration of seeding...... molecules down to 3%. The microscopic mechanism for the observed chiral induction is suggested to involve nucleation of the intrinsically chiral seeds, allowing for effective transfer and amplification of chirality to large numbers of soldier target molecules....
A Slow Conformational Switch in the BMAL1 Transactivation Domain Modulates Circadian Rhythms.
Gustafson, Chelsea L; Parsley, Nicole C; Asimgil, Hande; Lee, Hsiau-Wei; Ahlbach, Christopher; Michael, Alicia K; Xu, Haiyan; Williams, Owen L; Davis, Tara L; Liu, Andrew C; Partch, Carrie L
2017-05-18
The C-terminal transactivation domain (TAD) of BMAL1 (brain and muscle ARNT-like 1) is a regulatory hub for transcriptional coactivators and repressors that compete for binding and, consequently, contributes to period determination of the mammalian circadian clock. Here, we report the discovery of two distinct conformational states that slowly exchange within the dynamic TAD to control timing. This binary switch results from cis/trans isomerization about a highly conserved Trp-Pro imide bond in a region of the TAD that is required for normal circadian timekeeping. Both cis and trans isomers interact with transcriptional regulators, suggesting that isomerization could serve a role in assembling regulatory complexes in vivo. Toward this end, we show that locking the switch into the trans isomer leads to shortened circadian periods. Furthermore, isomerization is regulated by the cyclophilin family of peptidyl-prolyl isomerases, highlighting the potential for regulation of BMAL1 protein dynamics in period determination. Copyright © 2017 Elsevier Inc. All rights reserved.
A lipid-mediated conformational switch modulates the thermosensing activity of DesK.
Inda, María Eugenia; Vandenbranden, Michel; Fernández, Ariel; de Mendoza, Diego; Ruysschaert, Jean-Marie; Cybulski, Larisa Estefanía
2014-03-04
The thermosensor DesK is a multipass transmembrane histidine-kinase that allows the bacterium Bacillus subtilis to adjust the levels of unsaturated fatty acids required to optimize membrane lipid fluidity. The cytoplasmic catalytic domain of DesK behaves like a kinase at low temperature and like a phosphatase at high temperature. Temperature sensing involves a built-in instability caused by a group of hydrophilic residues located near the N terminus of the first transmembrane (TM) segment. These residues are buried in the lipid phase at low temperature and partially "buoy" to the aqueous phase at higher temperature with the thinning of the membrane, promoting the required conformational change. Nevertheless, the core question remains poorly understood: How is the information sensed by the transmembrane region converted into a rearrangement in the cytoplasmic catalytic domain to control DesK activity? Here, we identify a "linker region" (KSRKERERLEEK) that connects the TM sensor domain with the cytoplasmic catalytic domain involved in signal transmission. The linker adopts two conformational states in response to temperature-dependent membrane thickness changes: (i) random coiled and bound to the phospholipid head groups at the water-membrane interface, promoting the phosphatase state or (ii) unbound and forming a continuous helix spanning a region from the membrane to the cytoplasm, promoting the kinase state. Our results uphold the view that the linker is endowed with a helix/random coil conformational duality that enables it to behave like a transmission switch, with helix disruption decreasing the kinase/phosphatase activity ratio, as required to modulate the DesK output response.
Directory of Open Access Journals (Sweden)
Burcu Aykaç Fas
Full Text Available Escherichia coli cyclic AMP Receptor Protein (CRP undergoes conformational changes with cAMP binding and allosterically promotes CRP to bind specifically to the DNA. In that, the structural and dynamic properties of apo CRP prior to cAMP binding are of interest for the comprehension of the activation mechanism. Here, the dynamics of apo CRP monomer/dimer and holo CRP dimer were studied by Molecular Dynamics (MD simulations and Gaussian Network Model (GNM. The interplay of the inter-domain hinge with the cAMP and DNA binding domains are pre-disposed in the apo state as a conformational switch in the CRP's allosteric communication mechanism. The hinge at L134-D138 displaying intra- and inter-subunit coupled fluctuations with the cAMP and DNA binding domains leads to the emergence of stronger coupled fluctuations between the two domains and describes an on state. The flexible regions at K52-E58, P154/D155 and I175 maintain the dynamic coupling of the two domains. With a shift in the inter-domain hinge position towards the N terminus, nevertheless, the latter correlations between the domains loosen and become disordered; L134-D138 dynamically interacts only with the cAMP and DNA binding domains of its own subunit, and an off state is assumed. We present a mechanistic view on how the structural dynamic units are hierarchically built for the allosteric functional mechanism; from apo CRP monomer to apo-to-holo CRP dimers.
Wang, Yongxiang; Li, Jishan; Wang, Hao; Jin, Jianyu; Liu, Jinhua; Wang, Kemin; Tan, Weihong; Yang, Ronghua
2010-08-01
Conformationally constraint nucleic acid probes were usually designed by forming an intramolecular duplex based on Watson-Crick hydrogen bonds. The disadvantages of these approaches are the inflexibility and instability in complex environment of the Watson-Crick-based duplex. We report that this hydrogen bonding pattern can be replaced by metal-ligation between specific metal ions and the natural bases. To demonstrate the feasibility of this principle, two linear oligonucleotides and silver ions were examined as models for DNA hybridization assay and adenosine triphosphate detection. The both nucleic acids contain target binding sequences in the middle and cytosine (C)-rich sequences at the lateral portions. The strong interaction between Ag(+) ions and cytosines forms stable C-Ag(+)-C structures, which promises the oligonucleotides to form conformationally constraint formations. In the presence of its target, interaction between the loop sequences and the target unfolds the C-Ag(+)-C structures, and the corresponding probes unfolding can be detected by a change in their fluorescence emission. We discuss the thermodynamic and kinetic opportunities that are provided by using Ag(+) ion complexes instead of traditional Watson-Crick-based duplex. In particular, the intrinsic feature of the metal-ligation motif facilitates the design of functional nucleic acids probes by independently varying the concentration of Ag(+) ions in the medium.
International Nuclear Information System (INIS)
Wang Yue; Wang Jian-Guo; Chen Zai-Gao
2015-01-01
Based on conformal construction of physical model in a three-dimensional Cartesian grid, an integral-based conformal convolutional perfectly matched layer (CPML) is given for solving the truncation problem of the open port when the enlarged cell technique conformal finite-difference time-domain (ECT-CFDTD) method is used to simulate the wave propagation inside a perfect electric conductor (PEC) waveguide. The algorithm has the same numerical stability as the ECT-CFDTD method. For the long-time propagation problems of an evanescent wave in a waveguide, several numerical simulations are performed to analyze the reflection error by sweeping the constitutive parameters of the integral-based conformal CPML. Our numerical results show that the integral-based conformal CPML can be used to efficiently truncate the open port of the waveguide. (paper)
Directory of Open Access Journals (Sweden)
MacKerell Alexander D
2007-03-01
Full Text Available Abstract Background The N-terminal SH2 domain (N-SH2 of the non-receptor tyrosine phosphatase SHP-2 is involved both in localization of SHP-2 by recognition of phosphotyrosine (pY peptides and self-inhibition of SHP-2 phosphatase activity through the formation of a protein – protein interface with the phosphatase domain. Mutations that disrupt this interface break the coupling between pY-peptide binding cleft conformation and self-inhibition, thereby increasing both SHP-2 phosphatase activity and pY-peptide binding affinity, and are associated with the congenital condition Noonan syndrome and various pediatric leukemias. To better characterize the molecular process involved in N-SH2 pY-dependent binding, we have applied explicit-solvent molecular dynamics simulations to study the closed-to-open transition of the N-SH2 pY-peptide binding cleft. Results The existence of stable conformations in the left-handed helical and the extended regions of Tyr66 φ/ψ space prevent rapid interconversion of the backbone and create a conformational switch such that Tyr66 in a left-handed helical backbone conformation results in an open cleft and in an extended backbone conformation results in a closed cleft. The stable conformations arise from deep, well-localized free-energy minima in the left-handed helical and extended regions of the Tyr66 φ/ψ map. Changing the Tyr66 backbone conformation from extended to left-handed helical induces a closed-to-open transition in the cleft, and the reverse change in backbone conformation induces the reverse, open-to-closed transition. In the open-cleft state, weak solvent-exposed interactions involving the sidechains of Tyr66, Asp40, Lys55, and Gln57 serve to anchor the Tyr66 sidechain to the surface of the protein and away from the binding cleft entrance, thereby facilitating pY-peptide access to the binding cleft. Conclusion The simulations point to a regulatory role for Tyr66 and surrounding residues in SHP-2 function
International Nuclear Information System (INIS)
Eibl, Clarissa; Hessenberger, Manuel; Wenger, Julia; Brandstetter, Hans
2014-01-01
Pyrin domains (PYDs) recruit downstream effector molecules in NLR signalling. A specific charge-relay system suggests a the formation of a signalling complex involving a PYD dimer. The cytosolic tripartite NLR receptors serve as important signalling platforms in innate immunity. While the C-terminal domains act as sensor and activation modules, the N-terminal death-like domain, e.g. the CARD or pyrin domain, is thought to recruit downstream effector molecules by homotypic interactions. Such homotypic complexes have been determined for all members of the death-domain superfamily except for pyrin domains. Here, crystal structures of human NLRP14 pyrin-domain variants are reported. The wild-type protein as well as the clinical D86V mutant reveal an unexpected rearrangement of the C-terminal helix α6, resulting in an extended α5/6 stem-helix. This reordering mediates a novel symmetric pyrin-domain dimerization mode. The conformational switching is controlled by a charge-relay system with a drastic impact on protein stability. How the identified charge relay allows classification of NLRP receptors with respect to distinct recruitment mechanisms is discussed
Fujii, Akira; Hirota, Shun; Matsuo, Takashi
2013-07-17
Adenylate kinase shows a conformational transition (OPEN and CLOSED forms) during substrate binding and product release to mediate the phosphoryl transfer between ADP and ATP/AMP. The protein motional characteristics will be useful to construct switching systems of fluorophore properties caused by the catalytic cycle of the enzyme. This paper demonstrates in situ reversible switching of a fluorophore property driven by the conformational transition of the enzyme. The pyrene-conjugated mutant adenylate kinase is able to switch the monomer/excimer emission property of pyrene on addition of ADP or P(1)P(5)-di(adenosine-5')pentaphosphate (Ap5A, a transition state analog). The observation under the dilute condition (~0.1 μM) indicates that the emission spectral change was caused by the motion of a protein molecule and not led by protein-protein interactions through π-π stacking of pyrene rings. The switching can be reversibly conducted by using hexokinase-coupling reaction. The fashion of the changes in emission intensities at various ligand concentrations is different between ADP, Mg(2+)-bound ADP, and Mg(2+)-bound Ap5A. The emission property switching is repeatable by a sequential addition of a substrate in a one-pot process. It is proposed that the property of a synthetic molecule on the enzyme surface is switchable in response to the catalytic cycle of adenylate kinase.
Economic Outcomes of First-Line Regimen Switching Among Stable Patients with HIV.
Rosenblatt, Lisa; Buikema, Ami R; Seare, Jerry; Bengtson, Lindsay G S; Johnson, Jonathan; Cao, Feng; Villasis-Keever, Angelina
2017-07-01
Although switching of antiretroviral therapy (ART) is a valid approach for addressing treatment failure in patients with human immunodeficiency virus (HIV), ART changes among those who are well maintained on their current regimens may lead to the development of new side effects or resistance. To examine the effect of first-line regimen switching on subsequent health care utilization and cost among stable HIV patients. This was a retrospective claims data study of adult patients with HIV who initiated ART between 2007 and 2013 and had been treated with their initial regimens for at least 6 continuous months. Those with evidence of pregnancy or HIV-2 were excluded. Patients who underwent an ART change were assigned to a switcher cohort; a nonswitcher cohort was then generated by matching up to 20 nonswitchers for each switcher, with replacement. The index date was the date of the first ART change for switchers and was the claim date closest to the corresponding switcher's switch date for nonswitchers. Patient characteristics at baseline and post-index annualized health care utilization and costs were analyzed descriptively and with multivariable models. Analyses were performed in the full population and among patients designated as virologically stable (had undetectable viral ribonucleic acid [RNA] for 90 days pre-index) and virologically and clinically stable (had undetectable viral RNA and no apparent clinical reason for switching ART). The study population consisted of 6,983 individuals, which included 927 switchers (168 virologically stable; 55 virologically+clinically stable), who were matched with replacement with 18,511 nonswitcher comparators. The switcher cohort was 88.8% male (mean age 43.8 years). Mean preindex and follow-up treatment durations for switchers and nonswitchers were 1.8 years and 1.5 years, respectively; demographic characteristics, pre-index treatment duration, and follow-up duration were similar between cohorts. Significantly more
Protein Conformational Plasticity: the 'off-on' Switching Movement in Cdk5
International Nuclear Information System (INIS)
Cavalli, Andrea; Recanatini, Maurizio; Berteotti, Anna; Branduardi, Davide; Gervasio, Francesco L.; Parrinello, Michele
2007-01-01
Cyclin-dependent kinases (CDKs) are mostly known for their role in the cell cycle regulation. The activation mechanism of all CDKs involves the association with a regulatory protein, generally a cyclin, that binds to the kinase unit and stabilizes a catalytically active conformation. Active and inactive conformations of CDKs are characterized by the different spatial localization of two typical elements, namely the activation loop and an □-helix, whose amino-acid composition varies throughout the family
Hritz, J.; Oostenbrink, C.
2009-01-01
Compounds with high intramolecular energy barriers represent challenging targets for free energy calculations because of the difficulty to obtain sufficient conformational sampling. Existing approaches are therefore computationally very demanding, thus preventing practical applications for such
Real-time observation of conformational switching in single conjugated polymer chains.
Tenopala-Carmona, Francisco; Fronk, Stephanie; Bazan, Guillermo C; Samuel, Ifor D W; Penedo, J Carlos
2018-02-01
Conjugated polymers (CPs) are an important class of organic semiconductors that combine novel optoelectronic properties with simple processing from organic solvents. It is important to study CP conformation in solution to understand the physics of these materials and because it affects the properties of solution-processed films. Single-molecule techniques are unique in their ability to extract information on a chain-to-chain basis; however, in the context of CPs, technical challenges have limited their general application to host matrices or semiliquid environments that constrain the conformational dynamics of the polymer. We introduce a conceptually different methodology that enables measurements in organic solvents using the single-end anchoring of polymer chains to avoid diffusion while preserving polymer flexibility. We explore the effect of organic solvents and show that, in addition to chain-to-chain conformational heterogeneity, collapsed and extended polymer segments can coexist within the same chain. The technique enables real-time solvent-exchange measurements, which show that anchored CP chains respond to sudden changes in solvent conditions on a subsecond time scale. Our results give an unprecedented glimpse into the mechanism of solvent-induced reorganization of CPs and can be expected to lead to a new range of techniques to investigate and conformationally manipulate CPs.
Directory of Open Access Journals (Sweden)
Diana Campelo
2017-10-01
Full Text Available NADPH-cytochrome P450 reductase (CPR is a redox partner of microsomal cytochromes P450 and is a prototype of the diflavin reductase family. CPR contains 3 distinct functional domains: a FMN-binding domain (acceptor reduction, a linker (hinge, and a connecting/FAD domain (NADPH oxidation. It has been demonstrated that the mechanism of CPR exhibits an important step in which it switches from a compact, closed conformation (locked state to an ensemble of open conformations (unlocked state, the latter enabling electron transfer to redox partners. The conformational equilibrium between the locked and unlocked states has been shown to be highly dependent on ionic strength, reinforcing the hypothesis of the presence of critical salt interactions at the interface between the FMN and connecting FAD domains. Here we show that specific residues of the hinge segment are important in the control of the conformational equilibrium of CPR. We constructed six single mutants and two double mutants of the human CPR, targeting residues G240, S243, I245 and R246 of the hinge segment, with the aim of modifying the flexibility or the potential ionic interactions of the hinge segment. We measured the reduction of cytochrome c at various salt concentrations of these 8 mutants, either in the soluble or membrane-bound form of human CPR. All mutants were found capable of reducing cytochrome c yet with different efficiency and their maximal rates of cytochrome c reduction were shifted to lower salt concentration. In particular, residue R246 seems to play a key role in a salt bridge network present at the interface of the hinge and the connecting domain. Interestingly, the effects of mutations, although similar, demonstrated specific differences when present in the soluble or membrane-bound context. Our results demonstrate that the electrostatic and flexibility properties of the hinge segment are critical for electron transfer from CPR to its redox partners.
TRIP13 is a protein-remodeling AAA+ ATPase that catalyzes MAD2 conformation switching.
Ye, Qiaozhen; Rosenberg, Scott C; Moeller, Arne; Speir, Jeffrey A; Su, Tiffany Y; Corbett, Kevin D
2015-04-28
The AAA+ family ATPase TRIP13 is a key regulator of meiotic recombination and the spindle assembly checkpoint, acting on signaling proteins of the conserved HORMA domain family. Here we present the structure of the Caenorhabditis elegans TRIP13 ortholog PCH-2, revealing a new family of AAA+ ATPase protein remodelers. PCH-2 possesses a substrate-recognition domain related to those of the protein remodelers NSF and p97, while its overall hexameric architecture and likely structural mechanism bear close similarities to the bacterial protein unfoldase ClpX. We find that TRIP13, aided by the adapter protein p31(comet), converts the HORMA-family spindle checkpoint protein MAD2 from a signaling-active 'closed' conformer to an inactive 'open' conformer. We propose that TRIP13 and p31(comet) collaborate to inactivate the spindle assembly checkpoint through MAD2 conformational conversion and disassembly of mitotic checkpoint complexes. A parallel HORMA protein disassembly activity likely underlies TRIP13's critical regulatory functions in meiotic chromosome structure and recombination.
TRIP13 is a protein-remodeling AAA+ ATPase that catalyzes MAD2 conformation switching
Energy Technology Data Exchange (ETDEWEB)
Ye, Qiaozhen [Ludwig Institute for Cancer Research, San Diego Branch, La Jolla, United States; Rosenberg, Scott C. [Ludwig Institute for Cancer Research, San Diego Branch, La Jolla, United States; Moeller, Arne [National Resource for Automated Molecular Microscopy, Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, United States; Speir, Jeffrey A. [National Resource for Automated Molecular Microscopy, Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, United States; Su, Tiffany Y. [Ludwig Institute for Cancer Research, San Diego Branch, La Jolla, United States; Corbett, Kevin D. [Ludwig Institute for Cancer Research, San Diego Branch, La Jolla, United States; Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, United States
2015-04-28
The AAA+ family ATPase TRIP13 is a key regulator of meiotic recombination and the spindle assembly checkpoint, acting on signaling proteins of the conserved HORMA domain family. Here we present the structure of the Caenorhabditis elegans TRIP13 ortholog PCH-2, revealing a new family of AAA+ ATPase protein remodelers. PCH-2 possesses a substrate-recognition domain related to those of the protein remodelers NSF and p97, while its overall hexameric architecture and likely structural mechanism bear close similarities to the bacterial protein unfoldase ClpX. We find that TRIP13, aided by the adapter protein p31(comet), converts the HORMA-family spindle checkpoint protein MAD2 from a signaling-active ‘closed’ conformer to an inactive ‘open’ conformer. We propose that TRIP13 and p31(comet) collaborate to inactivate the spindle assembly checkpoint through MAD2 conformational conversion and disassembly of mitotic checkpoint complexes. A parallel HORMA protein disassembly activity likely underlies TRIP13's critical regulatory functions in meiotic chromosome structure and recombination.
Directory of Open Access Journals (Sweden)
Alexey S. Ladokhin
2013-08-01
Full Text Available The translocation (T-domain plays a key role in the action of diphtheria toxin and is responsible for transferring the catalytic domain across the endosomal membrane into the cytosol in response to acidification. Deciphering the molecular mechanism of pH-dependent refolding and membrane insertion of the T-domain, which is considered to be a paradigm for cell entry of other bacterial toxins, reveals general physicochemical principles underlying membrane protein assembly and signaling on membrane interfaces. Structure-function studies along the T-domain insertion pathway have been affected by the presence of multiple conformations at the same time, which hinders the application of high-resolution structural techniques. Here, we review recent progress in structural, functional and thermodynamic studies of the T-domain archived using a combination of site-selective fluorescence labeling with an array of spectroscopic techniques and computer simulations. We also discuss the principles of conformational switching along the insertion pathway revealed by studies of a series of T-domain mutants with substitutions of histidine residues.
Electron induced conformational changes of an imine-based molecular switch on a Au(111) surface
Energy Technology Data Exchange (ETDEWEB)
Lotze, Christian; Henningsen, Nils; Franke, Katharina; Schulze, Gunnar; Pascual, Jose Ignacio [Inst. f. Experimentalphysik, Freie Universitaet Berlin (Germany); Luo, Ying; Haag, Rainer [Inst. f. Organische Chemie, Freie Universitaet Berlin (Germany)
2009-07-01
Azobenzene-based molecules exhibit a cis-trans configurational photoisomerisation in solution. Recently, the adsorption properties of azobenzene derivatives have been investigated on different metal surfaces in order to explore the possible changes in the film properties induced by external stimuli. In azobenzene, the diazo-bridge is a key group for the isomerization process. Its interaction with a metal surface is dominated through the N lone-pair electrons, which reduces the efficiency of the conformational change. In order to reduce the molecule-surface interaction, we explore an alternative molecular architecture by substituting the diazo-bridge (-N=N-) of azobenzene by an imine-group (-N=CH-). We have investigated the imine-based compound para-carboxyl-di-benzene-imine (PCI) adsorbed on a Au(111) surface. The carboxylic terminations mediates the formation of strongly bonded molecular dimers, which align in ordered rows preferentially following the fcc regions of the Au(111) herringbone reconstruction. Low temperature scanning tunneling microscopy was used to induce conformational changes between trans and cis state of individual molecules in a molecular monolayer.
Stable switching of resistive random access memory on the nanotip array electrodes
Tsai, Kun-Tong; Ho, Chih-Hsiang; Chang, Wen-Yuan; Ke, Jr-Jian; Mungan, Elif Selin; Wang, Yuh-Lin; He, Jr-Hau
2016-01-01
] and external environments [3,4]. Therefore, controlling repetitive formation/rupture of CF as well as the spatial uniformity of formed CF are fundamentally important for improving the resistive switching (RS) performance. In this context, we have shown
Friedrich, Lucas
2017-12-29
This work presents an entropy stable discontinuous Galerkin (DG) spectral element approximation for systems of non-linear conservation laws with general geometric (h) and polynomial order (p) non-conforming rectangular meshes. The crux of the proofs presented is that the nodal DG method is constructed with the collocated Legendre-Gauss-Lobatto nodes. This choice ensures that the derivative/mass matrix pair is a summation-by-parts (SBP) operator such that entropy stability proofs from the continuous analysis are discretely mimicked. Special attention is given to the coupling between nonconforming elements as we demonstrate that the standard mortar approach for DG methods does not guarantee entropy stability for non-linear problems, which can lead to instabilities. As such, we describe a precise procedure and modify the mortar method to guarantee entropy stability for general non-linear hyperbolic systems on h/p non-conforming meshes. We verify the high-order accuracy and the entropy conservation/stability of fully non-conforming approximation with numerical examples.
Stable switching of resistive random access memory on the nanotip array electrodes
Tsai, Kun-Tong
2016-09-13
The formation/rupture of conducting filaments (CFs) in resistive random access memory (ReRAM) materials tune the electrical conductivities non-volatilely and are largely affected by its material composition [1], internal configurations [2] and external environments [3,4]. Therefore, controlling repetitive formation/rupture of CF as well as the spatial uniformity of formed CF are fundamentally important for improving the resistive switching (RS) performance. In this context, we have shown that by adding a field initiator, typically a textured electrode, both performance and switching uniformity of ReRAMs can be improved dramatically [5]. In addition, despite its promising characteristics, the scalable fabrication and structural homogeneity of such nanostructured electrodes are still lacking or unattainable, making miniaturization of ReRAM devices an exceeding challenge. Here, we employ nanostructured electrode (nanotip arrays, extremely uniform) formed spontaneously via a self-organized process to improve the ZnO ReRAM switching characteristics.
Conformational switching of ethano-bridged Cu,H2-bis-porphyrin induced by aromatic amines.
Bettini, Simona; Maglie, Emanuela; Pagano, Rosanna; Borovkov, Victor; Inoue, Yoshihisa; Valli, Ludovico; Giancane, Gabriele
2015-01-01
Cu,H2-bis-porphyrin (Cu,H2-Por2), in which copper porphyrin and free-base porphyrin are linked together by an ethano-bridge, was dissolved in chloroform and spread at the air/liquid subphase interface of a Langmuir trough. The bis-porphyrin derivative, floating film was characterized by reflection spectroscopy and the surface pressure of the floating film was studied as a function of the mean area per molecule. When aromatic amines are dissolved in the subphase, an evident interaction between the bis-porphyrin host and the aromatic amine guest is observed. A clear-cut variation of the profile of surface pressure vs area per molecule curve is observed. Reflection spectroscopy highlights that the aromatic amines dissolved in the subphase are able to induce the syn-to-anti conformational switching in the bis-porphyrin derivative. The Langmuir-Schaefer technique has been used to transfer the floating bis-porphyrin film (when using pure water as a subphase) to a surface plasmon resonance (SPR) substrate and the resulting device was able to detect the presence of aniline at concentrations as low as 1 nM in aqueous solution. The high selectivity of the SPR sensing device has been verified by checking the spectral response of the active layer towards other analytes dissolved in the aqueous solutions.
Conformational switching of ethano-bridged Cu,H2-bis-porphyrin induced by aromatic amines
Directory of Open Access Journals (Sweden)
Simona Bettini
2015-11-01
Full Text Available Cu,H2-bis-porphyrin (Cu,H2-Por2, in which copper porphyrin and free-base porphyrin are linked together by an ethano-bridge, was dissolved in chloroform and spread at the air/liquid subphase interface of a Langmuir trough. The bis-porphyrin derivative, floating film was characterized by reflection spectroscopy and the surface pressure of the floating film was studied as a function of the mean area per molecule. When aromatic amines are dissolved in the subphase, an evident interaction between the bis-porphyrin host and the aromatic amine guest is observed. A clear-cut variation of the profile of surface pressure vs area per molecule curve is observed. Reflection spectroscopy highlights that the aromatic amines dissolved in the subphase are able to induce the syn-to-anti conformational switching in the bis-porphyrin derivative. The Langmuir–Schaefer technique has been used to transfer the floating bis-porphyrin film (when using pure water as a subphase to a surface plasmon resonance (SPR substrate and the resulting device was able to detect the presence of aniline at concentrations as low as 1 nM in aqueous solution. The high selectivity of the SPR sensing device has been verified by checking the spectral response of the active layer towards other analytes dissolved in the aqueous solutions.
Paleskava, Alena; Konevega, Andrey L; Rodnina, Marina V
2012-08-10
SelB is a specialized translation factor that binds GTP and GDP and delivers selenocysteyl-tRNA (Sec-tRNA(Sec)) to the ribosome. By analogy to elongation factor Tu (EF-Tu), SelB is expected to control the delivery and release of Sec-tRNA(Sec) to the ribosome by the structural switch between GTP- and GDP-bound conformations. However, crystal structures of SelB suggested a similar domain arrangement in the apo form and GDP- and GTP-bound forms of the factor, raising the question of how SelB can fulfill its delivery function. Here, we studied the thermodynamics of guanine nucleotide binding to SelB by isothermal titration calorimetry in the temperature range between 10 and 25 °C using GTP, GDP, and two nonhydrolyzable GTP analogs, guanosine 5'-O-(γ-thio)triphosphate (GTPγS) and guanosine 5'-(β,γ-imido)-triphosphate (GDPNP). The binding of SelB to either guanine nucleotide is characterized by a large heat capacity change (-621, -467, -235, and -275 cal × mol(-1) × K(-1), with GTP, GTPγS, GDPNP, and GDP, respectively), associated with compensatory changes in binding entropy and enthalpy. Changes in heat capacity indicate a large decrease of the solvent-accessible surface area in SelB, amounting to 43 or 32 amino acids buried upon binding of GTP or GTPγS, respectively, and 15-19 amino acids upon binding GDP or GDPNP. The similarity of the GTP and GDP forms in the crystal structures can be attributed to the use of GDPNP, which appears to induce a structure of SelB that is more similar to the GDP than to the GTP-bound form.
Prezel, Elea; Elie, Auréliane; Delaroche, Julie; Stoppin-Mellet, Virginie; Bosc, Christophe; Serre, Laurence; Fourest-Lieuvin, Anne; Andrieux, Annie; Vantard, Marylin; Arnal, Isabelle
2018-01-15
In neurons, microtubule networks alternate between single filaments and bundled arrays under the influence of effectors controlling their dynamics and organization. Tau is a microtubule bundler that stabilizes microtubules by stimulating growth and inhibiting shrinkage. The mechanisms by which tau organizes microtubule networks remain poorly understood. Here, we studied the self-organization of microtubules growing in the presence of tau isoforms and mutants. The results show that tau's ability to induce stable microtubule bundles requires two hexapeptides located in its microtubule-binding domain and is modulated by its projection domain. Site-specific pseudophosphorylation of tau promotes distinct microtubule organizations: stable single microtubules, stable bundles, or dynamic bundles. Disease-related tau mutations increase the formation of highly dynamic bundles. Finally, cryo-electron microscopy experiments indicate that tau and its variants similarly change the microtubule lattice structure by increasing both the protofilament number and lattice defects. Overall, our results uncover novel phosphodependent mechanisms governing tau's ability to trigger microtubule organization and reveal that disease-related modifications of tau promote specific microtubule organizations that may have a deleterious impact during neurodegeneration. © 2018 Prezel, Elie, et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
HHM motif at the CuH-site of peptidylglycine monooxygenase is a pH-dependent conformational switch.
Kline, Chelsey D; Mayfield, Mary; Blackburn, Ninian J
2013-04-16
utility for the HHM motif as a copper- and pH-dependent conformational switch.
Rapid protein production from stable CHO cell pools using plasmid vector and the cumate gene-switch.
Poulain, Adeline; Perret, Sylvie; Malenfant, Félix; Mullick, Alaka; Massie, Bernard; Durocher, Yves
2017-08-10
To rapidly produce large amounts of recombinant proteins, the generation of stable Chinese Hamster Ovary (CHO) cell pools represents a useful alternative to large-scale transient gene expression (TGE). We have developed a cell line (CHO BRI/rcTA ) allowing the inducible expression of recombinant proteins, based on the cumate gene switch. After the identification of optimal plasmid DNA topology (supercoiled vs linearized plasmid) for PEIpro™ mediated transfection and of optimal conditions for methionine sulfoximine (MSX) selection, we were able to generate CHO BRI/rcTA pools producing high levels of recombinant proteins. Volumetric productivities of up to 900mg/L were reproducibly achieved for a Fc fusion protein and up to 350mg/L for an antibody after 14days post-induction in non-optimized fed-batch cultures. In addition, we show that CHO pool volumetric productivities are not affected by a freeze-thaw cycle or following maintenance in culture for over one month in the presence of MSX. Finally, we demonstrate that volumetric protein production with the CR5 cumate-inducible promoter is three- to four-fold higher than with the human CMV or hybrid EF1α-HTLV constitutive promoters. These results suggest that the cumate-inducible CHO BRI/rcTA stable pool platform is a powerful and robust system for the rapid production of gram amounts of recombinant proteins. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.
Safaei, R.; Amiri, I. S.; Rezayi, M.; Ahmad, H.
2018-01-01
A compact fiber laser utilizing platinum nanoparticles doped on carbon (Pt/C) embedded in photonic crystal fiber capable of generating a stable Q-switch dual-wavelength is designed and verified. Stable Q-switch pulses, with a repetition rate of 73.6 kHz, pulse width of 1.45 µs and power of 3.8 nJ in two separated wavelengths of 1557.39 nm and 1558.86 nm at a pump power of 350 mW, have been obtained. This is a novel method for generating Q-switch dual-wavelength pulses using a well-protected component that introduces both a saturable absorber and Mach-Zehnder interferometer effects simultaneously in the laser cavity. Furthermore, to best of our knowledge, this is the first time that Pt/C nanoparticles have been used in a saturable absorber for optical pulse generation.
Energy Technology Data Exchange (ETDEWEB)
Gao, Zhong Feng; Chen, Dong Mei [Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China); Lei, Jing Lei [School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044 (China); Luo, Hong Qun, E-mail: luohq@swu.edu.cn [Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China); Li, Nian Bing, E-mail: linb@swu.edu.cn [Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China)
2015-10-15
Improving the reproducibility of electrochemical signal remains a great challenge over the past decades. In this work, i-motif oligonucleotide probe-based electrochemical DNA (E-DNA) sensor is introduced for the first time as a regenerated sensing platform, which enhances the reproducibility of electrochemical signal, for label-free detection of glucose and urea. The addition of glucose or urea is able to activate glucose oxidase-catalyzed or urease-catalyzed reaction, inducing or destroying the formation of i-motif oligonucleotide probe. The conformational switch of oligonucleotide probe can be recorded by electrochemical impedance spectroscopy. Thus, the difference of electron transfer resistance is utilized for the quantitative determination of glucose and urea. We further demonstrate that the E-DNA sensor exhibits high selectivity, excellent stability, and remarkable regenerated ability. The human serum analysis indicates that this simple and regenerated strategy holds promising potential in future biosensing applications. - Highlights: • Conformational switch of i-motif is used for the detection of glucose and urea. • The sensor can be regenerated. • The proposed method is successfully applied in real sample assay. • Our method is label-free and inexpensive.
Directory of Open Access Journals (Sweden)
Matthew Brecher
2017-05-01
Full Text Available The flavivirus genome encodes a single polyprotein precursor requiring multiple cleavages by host and viral proteases in order to produce the individual proteins that constitute an infectious virion. Previous studies have revealed that the NS2B cofactor of the viral NS2B-NS3 heterocomplex protease displays a conformational dynamic between active and inactive states. Here, we developed a conformational switch assay based on split luciferase complementation (SLC to monitor the conformational change of NS2B and to characterize candidate allosteric inhibitors. Binding of an active-site inhibitor to the protease resulted in a conformational change of NS2B and led to significant SLC enhancement. Mutagenesis of key residues at an allosteric site abolished this induced conformational change and SLC enhancement. We also performed a virtual screen of NCI library compounds to identify allosteric inhibitors, followed by in vitro biochemical screening of the resultant candidates. Only three of these compounds, NSC135618, 260594, and 146771, significantly inhibited the protease of Dengue virus 2 (DENV2 in vitro, with IC50 values of 1.8 μM, 11.4 μM, and 4.8 μM, respectively. Among the three compounds, only NSC135618 significantly suppressed the SLC enhancement triggered by binding of active-site inhibitor in a dose-dependent manner, indicating that it inhibits the conformational change of NS2B. Results from virus titer reduction assays revealed that NSC135618 is a broad spectrum flavivirus protease inhibitor, and can significantly reduce titers of DENV2, Zika virus (ZIKV, West Nile virus (WNV, and Yellow fever virus (YFV on A549 cells in vivo, with EC50 values in low micromolar range. In contrast, the cytotoxicity of NSC135618 is only moderate with CC50 of 48.8 μM on A549 cells. Moreover, NSC135618 inhibited ZIKV in human placental and neural progenitor cells relevant to ZIKV pathogenesis. Results from binding, kinetics, Western blot, mass spectrometry and
Jouta, Jeltje; Dietz, Maurine W.; Reneerkens, Jeroen; Piersma, Theunis; Rakhimberdiev, Eldar; Hallgrímsson, Gunnar T.; Pen, Ido
2017-01-01
Animals adjust to seasonal challenges in physical, behavioural and spatial ways. Such adjustments are commonly associated with diet changes that often can be characterised isotopically. We introduce the 'double diet switch model', with which the occurrence and timing of two subsequent diet switches
Ubink, J.; Enache, M.; Stöhr, M.
2018-05-01
Using the tip of a scanning tunneling microscope, an electric field-induced reversible phase transition between two planar porous structures ("chickenwire" and "flower") of trimesic acid was accomplished at the nonanoic acid/highly oriented pyrolytic graphite interface. The chickenwire structure was exclusively observed for negative sample bias, while for positive sample bias only the more densely packed flower structure was found. We suggest that the slightly negatively charged carboxyl groups of the trimesic acid molecule are the determining factor for this observation: their adsorption behavior varies with the sample bias and is thus responsible for the switching behavior.
Khattab, Muhammad; Wang, Feng; Clayton, Andrew H A
2017-11-24
Tyrosine kinase inhibitors (TKIs) are a major class of drug utilised in the clinic. During transit to their cognate kinases, TKIs will encounter different pH environments that could have a major influence on TKI structure. To address this, we report UV-Vis spectroscopic and computational studies of the TKI, AG1478, as a function of pH. The electronic absorption spectrum of AG1478 shifted by 10 nm (from 342 nm to 332 nm) from acid to neutral pH and split into two peaks (at 334 nm and 345 nm) in highly alkaline conditions. From these transitions, the pKa value was calculated as 5.58 ± 0.01. To compute structures and spectra, time-dependent density functional theory (TD-DFT) calculations were performed along with conductor-like polarizable continuum model (CPCM) to account for implicit solvent effect. On the basis of the theoretical spectra, we could assign the AG1478 experimental spectrum at acidic pH to a mixture of two twisted conformers (71% AG1478 protonated at quinazolyl nitrogen N(1) and 29% AG1478 protonated at quinazolyl nitrogen N(3)) and at neutral pH to the neutral planar conformer. The AG1478 absorption spectrum (pH 13.3) was fitted to a mixture of neutral (70%) and NH-deprotonated species (30%). These studies reveal a pH-induced conformational transition in a TKI.
Zhang, Xu; Wu, Jiaxi; Du, Fenghe; Xu, Hui; Sun, Lijun; Chen, Zhe; Brautigam, Chad A; Zhang, Xuewu; Chen, Zhijian J
2014-02-13
The presence of DNA in the cytoplasm is a danger signal that triggers immune and inflammatory responses. Cytosolic DNA binds to and activates cyclic GMP-AMP (cGAMP) synthase (cGAS), which produces the second messenger cGAMP. cGAMP binds to the adaptor protein STING and activates a signaling cascade that leads to the production of type I interferons and other cytokines. Here, we report the crystal structures of human cGAS in its apo form, representing its autoinhibited conformation as well as in its cGAMP- and sulfate-bound forms. These structures reveal switch-like conformational changes of an activation loop that result in the rearrangement of the catalytic site. The structure of DNA-bound cGAS reveals a complex composed of dimeric cGAS bound to two molecules of DNA. Functional analyses of cGAS mutants demonstrate that both the protein-protein interface and the two DNA binding surfaces are critical for cGAS activation. These results provide insights into the mechanism of DNA sensing by cGAS. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.
Directory of Open Access Journals (Sweden)
Xu Zhang
2014-02-01
Full Text Available The presence of DNA in the cytoplasm is a danger signal that triggers immune and inflammatory responses. Cytosolic DNA binds to and activates cyclic GMP-AMP (cGAMP synthase (cGAS, which produces the second messenger cGAMP. cGAMP binds to the adaptor protein STING and activates a signaling cascade that leads to the production of type I interferons and other cytokines. Here, we report the crystal structures of human cGAS in its apo form, representing its autoinhibited conformation as well as in its cGAMP- and sulfate-bound forms. These structures reveal switch-like conformational changes of an activation loop that result in the rearrangement of the catalytic site. The structure of DNA-bound cGAS reveals a complex composed of dimeric cGAS bound to two molecules of DNA. Functional analyses of cGAS mutants demonstrate that both the protein-protein interface and the two DNA binding surfaces are critical for cGAS activation. These results provide insights into the mechanism of DNA sensing by cGAS.
Arjunan, V; Rani, T; Santhanam, R; Mohan, S
2012-10-01
The FT-IR and FT-Raman spectra of H bond inner conformer of 2,3-epoxypropanol have been recorded in the regions 3700-400 and 3700-100 cm(-1), respectively. The spectra were interpreted in terms of fundamentals modes, combination and overtone bands. The normal coordinate analysis was carried out to confirm the precision of the assignments. The structure of the conformers H bond inner and H bond outer1 were optimised and the structural characteristics were determined by density functional theory (DFT) using B3LYP and MP2 methods with 6-31G** and 6-311++G** basis sets. The vibrational frequencies were calculated in all these methods and were compared with the experimental frequencies which yield good agreement between observed and calculated frequencies. The electronic properties HOMO and LUMO energies were measured by time-dependent TD-DFT approach. Copyright © 2012 Elsevier B.V. All rights reserved.
Granovsky, A E; Artemyev, N O
2001-11-06
In response to light, a photoreceptor G protein, transducin, activates cGMP-phosphodiesterase (PDE6) by displacing the inhibitory gamma-subunits (Pgamma) from the enzyme's catalytic sites. Evidence suggests that the activation of PDE6 involves a conformational change of the key inhibitory C-terminal domain of Pgamma. In this study, the C-terminal region of Pgamma, Pgamma-73-85, has been targeted for Ala-scanning mutagenesis to identify the point-to-point interactions between Pgamma and the PDE6 catalytic subunits and to probe the nature of the conformational change. Pgamma mutants were tested for their ability to inhibit PDE6 and a chimeric PDE5-conePDE6 enzyme containing the Pgamma C-terminus-binding site of cone PDE. This analysis has revealed that in addition to previously characterized Ile86 and Ile87, important inhibitory contact residues of Pgamma include Asn74, His75, and Leu78. The patterns of mutant PDE5-conePDE6 enzyme inhibition suggest the interaction between the PgammaAsn74/His75 sequence and Met758 of the cone PDE6alpha' catalytic subunit. This interaction, and the interaction between the PgammaIle86/Ile87 and PDE6alpha'Phe777/Phe781 residues, is most consistent with an alpha-helical structure of the Pgamma C-terminus. The analysis of activation of PDE6 enzymes containing Pgamma mutants with Ala-substituted transducin-contact residues demonstrated the critical role of PgammaLeu76. Accordingly, we hypothesize that the initial step in PDE6 activation involves an interaction of transducin-alpha with PgammaLeu76. This interaction introduces a bend into the alpha-helical structure of the Pgamma C-terminus, allowing transducin-alpha to further twist the C-terminus thereby uncovering the catalytic pocket of PDE6.
Energy Technology Data Exchange (ETDEWEB)
Guo, Peijun; Weimer, Matthew S. [Department; Emery, Jonathan D.; Diroll, Benjamin T.; Chen, Xinqi; Hock, Adam S. [Department; Chang, Robert P. H.; Martinson, Alex B. F.; Schaller, Richard D.
2016-12-19
Actively tunable optical transmission through artificial metamaterials holds great promise for next-generation nanophotonic devices and metasurfaces. Plasmonic nanostructures and phase change materials have been extensively studied to this end due to their respective strong interactions with light and tunable dielectric constants under external stimuli. Seamlessly integrating plasmonic components with phase change materials, as demonstrated in the present work, can facilitate phase change by plasmonically enabled light confinement and meanwhile make use of the high sensitivity of plasmon resonances to the variation of dielectric constant associated with the phase change. The hybrid platform here is composed of plasmonic indium tin-oxide nanorod arrays (ITO-NRAs) conformally coated with an ultrathin layer of a prototypical phase change material, vanadium dioxide (VO2), which enables all-optical modulation of the infrared as well as the visible spectral ranges. The interplay between the intrinsic plasmonic nonlinearity of ITO-NRAs and the phase transition induced permittivity change of VO2 gives rise to spectral and temporal responses that cannot be achieved with individual material components alone.
Guo, Peijun; Weimer, Matthew S; Emery, Jonathan D; Diroll, Benjamin T; Chen, Xinqi; Hock, Adam S; Chang, Robert P H; Martinson, Alex B F; Schaller, Richard D
2017-01-24
Actively tunable optical transmission through artificial metamaterials holds great promise for next-generation nanophotonic devices and metasurfaces. Plasmonic nanostructures and phase change materials have been extensively studied to this end due to their respective strong interactions with light and tunable dielectric constants under external stimuli. Seamlessly integrating plasmonic components with phase change materials, as demonstrated in the present work, can facilitate phase change by plasmonically enabled light confinement and meanwhile make use of the high sensitivity of plasmon resonances to the variation of dielectric constant associated with the phase change. The hybrid platform here is composed of plasmonic indium-tin-oxide nanorod arrays (ITO-NRAs) conformally coated with an ultrathin layer of a prototypical phase change material, vanadium dioxide (VO 2 ), which enables all-optical modulation of the infrared as well as the visible spectral ranges. The interplay between the intrinsic plasmonic nonlinearity of ITO-NRAs and the phase transition induced permittivity change of VO 2 gives rise to spectral and temporal responses that cannot be achieved with individual material components alone.
Jouta, J.; Dietz, M.W.; Reneerkens, J.; Piersma, T.; Rakhimberdiev, E.; Hallgrimsson, G.T.; Pen, I.
2017-01-01
1.Animals adjust to seasonal challenges in physical, behavioural and spatial ways. Such adjustments are commonly associated with diet changes that often can be characterised isotopically.2.We introduce the ‘double diet switch model’, with which the occurrence and timing of two subsequent diet
Tang, Xian; Wang, Yong-Sheng; Xue, Jin-Hua; Zhou, Bin; Cao, Jin-Xiu; Chen, Si-Han; Li, Ming-Hui; Wang, Xiao-Feng; Zhu, Yu-Feng; Huang, Yan-Qin
2015-03-25
A novel strategy for dual-channel detection of metallothioneins (MTs) and Hg(2+) has been proposed. In the absence of Hg(2+), the functional chimera aptamer (FCA) designed can form an intact G-quadruplex with flexibility, which was demonstrated to have peroxidase-like activities upon hemin binding. In the presence of Hg(2+), the formation of T-Hg(2+)-T complex results in the conformational switching of FCA, which lost the peroxidase-like activities and cannot catalyze the oxidation of ABTS by H2O2. Upon addition of MTs in this solution, MTs could interact with Hg(2+) to form a MTs-Hg(2+) complex, leading to the recovery of the G-quadruplex DNAzyme. The color and absorbance of the sensing system were also changed accordingly. In the optimizing condition, ΔA was directly proportional to the concentration ranging from 8.84 nM to 1.0 μM for Hg(2+), and 7.82 nM to 0.462 μM for MTs with the detection limits of 2.65 nM and 2.34 nM, respectively. The proposed dual-channel method avoids the label steps in common methods, and allows direct analysis of the samples without costly instruments, and is reliable, inexpensive and sensitive. Copyright © 2015 Elsevier B.V. All rights reserved.
Agrawal, Shikha; Silakari, Sanjay; Agrawal, Jitendra
2015-11-01
A novel parameter automation strategy for Particle Swarm Optimization called APSO (Adaptive PSO) is proposed. The algorithm is designed to efficiently control the local search and convergence to the global optimum solution. Parameters c1 controls the impact of the cognitive component on the particle trajectory and c2 controls the impact of the social component. Instead of fixing the value of c1 and c2 , this paper updates the value of these acceleration coefficients by considering time variation of evaluation function along with varying inertia weight factor in PSO. Here the maximum and minimum value of evaluation function is use to gradually decrease and increase the value of c1 and c2 respectively. Molecular energy minimization is one of the most challenging unsolved problems and it can be formulated as a global optimization problem. The aim of the present paper is to investigate the effect of newly developed APSO on the highly complex molecular potential energy function and to check the efficiency of the proposed algorithm to find the global minimum of the function under consideration. The proposed algorithm APSO is therefore applied in two cases: Firstly, for the minimization of a potential energy of small molecules with up to 100 degrees of freedom and finally for finding the global minimum energy conformation of 1,2,3-trichloro-1-flouro-propane molecule based on a realistic potential energy function. The computational results of all the cases show that the proposed method performs significantly better than the other algorithms. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
EDITORIAL: Molecular switches at surfaces Molecular switches at surfaces
Weinelt, Martin; von Oppen, Felix
2012-10-01
In nature, molecules exploit interaction with their environment to realize complex functionalities on the nanometer length scale. Physical, chemical and/or biological specificity is frequently achieved by the switching of molecules between microscopically different states. Paradigmatic examples are the energy production in proton pumps of bacteria or the signal conversion in human vision, which rely on switching molecules between different configurations or conformations by external stimuli. The remarkable reproducibility and unparalleled fatigue resistance of these natural processes makes it highly desirable to emulate nature and develop artificial systems with molecular functionalities. A promising avenue towards this goal is to anchor the molecular switches at surfaces, offering new pathways to control their functional properties, to apply electrical contacts, or to integrate switches into larger systems. Anchoring at surfaces allows one to access the full range from individual molecular switches to self-assembled monolayers of well-defined geometry and to customize the coupling between molecules and substrate or between adsorbed molecules. Progress in this field requires both synthesis and preparation of appropriate molecular systems and control over suitable external stimuli, such as light, heat, or electrical currents. To optimize switching and generate function, it is essential to unravel the geometric structure, the electronic properties and the dynamic interactions of the molecular switches on surfaces. This special section, Molecular Switches at Surfaces, collects 17 contributions describing different aspects of this research field. They analyze elementary processes, both in single molecules and in ensembles of molecules, which involve molecular switching and concomitant changes of optical, electronic, or magnetic properties. Two topical reviews summarize the current status, including both challenges and achievements in the field of molecular switches on
Cerezo, Javier; Aranda, Daniel; Avila Ferrer, Francisco J; Prampolini, Giacomo; Mazzeo, Giuseppe; Longhi, Giovanna; Abbate, Sergio; Santoro, Fabrizio
2018-06-01
We extend a recently proposed mixed quantum/classical method for computing the vibronic electronic circular dichroism (ECD) spectrum of molecules with different conformers, to cases where more than one hindered rotation is present. The method generalizes the standard procedure, based on the simple Boltzmann average of the vibronic spectra of the stable conformers, and includes the contribution of structures that sample all the accessible conformational space. It is applied to the simulation of the ECD spectrum of (S)-2,2,2-trifluoroanthrylethanol, a molecule with easily interconvertible conformers, whose spectrum exhibits a pattern of alternating positive and negative vibronic peaks. Results are in very good agreement with experiment and show that spectra averaged over all the sampled conformational space can deviate significantly from the simple average of the contributions of the stable conformers. The present mixed quantum/classical method is able to capture the effect of the nonlinear dependence of the rotatory strength on the molecular structure and of the anharmonic couplings among the modes responsible for molecular flexibility. Despite its computational cost, the procedure is still affordable and promises to be useful in all cases where the ECD shape arises from a subtle balance between vibronic effects and conformational variety. © 2018 Wiley Periodicals, Inc.
Mondal, Pritam; Rath, Sankar Prasad
2017-07-18
An adaptable cyclic porphyrin dimer with highly flexible linkers has been used as an artificial molecular container that can efficiently encapsulate various aromatic guests (TCNQ/C 60 /C 70 ) through strong π-π interactions by adjusting its cavity size and conformation. The planar aromatic guest (TCNQ) can be easily and selectively exchanged with larger aromatic guests (C 60 /C 70 ). During the guest-exchange process, the two porphyrin rings switch their relative orientation according to the size and shape of the guests. This behavior of the cyclic container has been thoroughly investigated by using UV/Vis spectroscopy, NMR spectroscopy, and X-ray crystal structure determination of the host-guest assemblies. The electrochemical and photophysical studies demonstrated the occurrence of photoinduced electron transfer from bisporphyrin to TCNQ/C 60 /C 70 in the respective host-guest assemblies. The cyclic host can form complexes with C 60 and C 70 with association constants of (2.8±0.2)×10 5 and (1.9±0.3)×10 8 m -1 , respectively; the latter value represents the highest binding affinity for C 70 reported so far for zinc(II) bisporphyrinic receptors. This high selectivity for the binding of C 70 versus C 60 allows the easy extraction and efficient isolation of C 70 from a C 60 /C 70 fullerene mixture. Experimental evidence was substantiated by DFT calculations. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
International Nuclear Information System (INIS)
Wang, Y; Gong, M; Yan, P; Huang, L; Li, D
2009-01-01
A monolithic Nd:YAG microchip laser with [110] cut Cr 4+ :YAG is presented. The output beam is linearly polarized with polarization ratio higher than 100:1. The polarization direction is stable, independent of pump power, crystal temperature, LD temperature. In single longitudinal mode operation, stable 259 ps pulses at 2.5 kHz with 82 kW peak power and diffraction limited beam mode are output. With a simple and compact one-pass Nd:YVO 4 amplifier, 144 kW peak power is achieved. Single longitudinal and fundamental transverse mode is kept after passing through the amplifier stage. The microchip laser can be operated in two longitudinal modes with two sets of output pulses by increasing the pump power
DEFF Research Database (Denmark)
Ning, Yanxiao; Cramer, Jacob Roland; Nuermaimaiti, Ajiguli
2015-01-01
). The conformations result from binary positions of n = 3 naphtalene units on a linear oligo(naphthylene-ethynylene) backbone. On Au(111), inter-molecular interactions involving carboxyl and bulky tert-butyl-phenyl functional groups induce the molecules to form two ordered phases with brick-wall and lamella structure...... conformational states. Together these observations imply selection and adaptation of conformational states upon molecular self-assembly. From DFT modeling and statistical analysis of the molecular conformations, the observed selection of conformational states is attributed to steric interaction between...
Stable narrow spacing dual-wavelength Q-switched graphene oxide embedded in a photonic crystal fiber
International Nuclear Information System (INIS)
Ahmad, H; Soltanian, M R K; Alimadad, M; Harun, S W
2014-01-01
An ultra-stable dual-wavelength saturable absorber based on a cladding-embedded commercial graphene oxide (GO) solution by capillary action in a solid core photonic crystal fiber (PCF) is demonstrated for the first time. The saturation absorption property is achieved through evanescent coupling between the guided light and the cladding-filled graphene layers. Stable spacing dual-wavelength fiber lasing is attained by controlling the polarization state of a simple 0.9 m long ring of highly doped Leikki Er80-8/125 erbium-doped fiber as the primary gain medium with PCF, polarization controller and tunable bandpass filter. Embedded GO is used to generate the desired pulsed output, and the laser is capable of generating pulses having a repetition rate of 24 kHz with an average output power and pulse energy of 0.167 mW and 8.98 nJ, respectively, at the maximum pump power of 220 mW. (paper)
Ab initio investigation of the switching behavior of the dithiole-benzene nano-molecular wire
International Nuclear Information System (INIS)
Darvish Ganji, M.; Rungger, I.
2008-01-01
We report a first-principle study of electrical transport and switching behavior in a single molecular conductor consisting of a dithiole-benzene sandwiched between two Au( 100) electrodes. Ab initio total energy calculations reveal dithiole-benzene molecules on a gold surface, contacted by a monoatomic gold scanning tunneling microscope tip to have two classes of low energy conformations with differing symmetries. Lateral motion of the tip or excitation of the molecule cause it 10 change from one conformation class to the other and to switch between a strongly and a weakly conducting state. Thus, surprisingly. despite their apparent simplicity, these Au-dithiole-benzene -Au nano wires are shown to be electrically bi-stable switches, the smallest two-terminal molecular switches to date. The projected density of states and transmission coefficients are analyzed, and it suggests that the variation of the coupling between the molecule and the electrodes with external bias leads to switching behavior
International Nuclear Information System (INIS)
Xue, Long-Xin; Duan, Zhi-Ming; Jia, Jia; Wang, Ke-Zhi; Haga, Masa-aki
2014-01-01
Graphical abstract: > Solvent-casting Ru(II) complex modified electrode. > Positive shifting of half-wave potentials of Ru(III)/Ru(II) by pH decreases. > Greatly enhanced cathodic photocurrents by pH decreases. - Highlights: • Solvent-casting Ru(II) complex modified electrode. • Positive shifting of half-wave potentials of Ru(III)/Ru(II) by pH decreases. • Greatly enhanced cathodic photocurrents by pH decreases. - Abstract: A new dinuclear Ru(II) complex of [(H 2 L 1 )Ru(H 2 L 2 )Ru(H 2 L 1 )](ClO 4 ) 4 {H 2 L 1 = 2,6-bis(2-benzimidazolyl)pyridine; H 2 L 2 = 2,6-bis(4-([2,2′:6′,2″-terpyridin]-4′-yl)phenyl)-1,5- dihydrobenzo[1,2-d:4,5-d’]diimidazole} is synthesized and characterized. The Ru(II) complex modified indium-tin oxide electrode prepared using a drop-casting method, exhibited a couple of stable surface-confined Ru(III)/Ru(II)-based redox waves centered at +0.65 V vs saturated calomel electrode that were almost unchanged after 50 consecutive cyclic voltammetry scanning. The modified electrode showed pH-dependent redox behaviors with the formal potential being decreased by 430 mV due to the occurrance of the proton-coupled redox reactions. The cathodic photocurrent generation of the modified electrode was also found to be highly pH-dependent, switching from an “off” state at pH ∼11.0 to an “on” state at pH = 2.20 with an enhancement factor of 18. The modified electrode was shown to have promising applications as photoelectrochemical pH sensing and switching devices
Src kinase conformational activation: thermodynamics, pathways, and mechanisms.
Directory of Open Access Journals (Sweden)
Sichun Yang
2008-03-01
Full Text Available Tyrosine kinases of the Src-family are large allosteric enzymes that play a key role in cellular signaling. Conversion of the kinase from an inactive to an active state is accompanied by substantial structural changes. Here, we construct a coarse-grained model of the catalytic domain incorporating experimental structures for the two stable states, and simulate the dynamics of conformational transitions in kinase activation. We explore the transition energy landscapes by constructing a structural network among clusters of conformations from the simulations. From the structural network, two major ensembles of pathways for the activation are identified. In the first transition pathway, we find a coordinated switching mechanism of interactions among the alphaC helix, the activation-loop, and the beta strands in the N-lobe of the catalytic domain. In a second pathway, the conformational change is coupled to a partial unfolding of the N-lobe region of the catalytic domain. We also characterize the switching mechanism for the alphaC helix and the activation-loop in detail. Finally, we test the performance of a Markov model and its ability to account for the structural kinetics in the context of Src conformational changes. Taken together, these results provide a broad framework for understanding the main features of the conformational transition taking place upon Src activation.
Directory of Open Access Journals (Sweden)
Jonathan C Fuller
Full Text Available The design of novel α-helix mimetic inhibitors of protein-protein interactions is of interest to pharmaceuticals and chemical genetics researchers as these inhibitors provide a chemical scaffold presenting side chains in the same geometry as an α-helix. This conformational arrangement allows the design of high affinity inhibitors mimicking known peptide sequences binding specific protein substrates. We show that GAFF and AutoDock potentials do not properly capture the conformational preferences of α-helix mimetics based on arylamide oligomers and identify alternate parameters matching solution NMR data and suitable for molecular dynamics simulation of arylamide compounds. Results from both docking and molecular dynamics simulations are consistent with the arylamides binding in the p53 peptide binding pocket. Simulations of arylamides in the p53 binding pocket of hDM2 are consistent with binding, exhibiting similar structural dynamics in the pocket as simulations of known hDM2 binders Nutlin-2 and a benzodiazepinedione compound. Arylamide conformations converge towards the same region of the binding pocket on the 20 ns time scale, and most, though not all dihedrals in the binding pocket are well sampled on this timescale. We show that there are two putative classes of binding modes for arylamide compounds supported equally by the modeling evidence. In the first, the arylamide compound lies parallel to the observed p53 helix. In the second class, not previously identified or proposed, the arylamide compound lies anti-parallel to the p53 helix.
Directory of Open Access Journals (Sweden)
Valeria Zanichelli
2018-05-01
Full Text Available Catenanes with desymmetrized ring components can undergo co-conformational rearrangements upon external stimulation and can form the basis for the development of molecular rotary motors. We describe the design, synthesis and properties of a [2]catenane consisting of a macrocycle—the ‘track’ ring—endowed with two distinct recognition sites (a bipyridinium and an ammonium for a calix[6]arene—the ‘shuttle’ ring. By exploiting the ability of the calixarene to thread appropriate non-symmetric axles with directional selectivity, we assembled an oriented pseudorotaxane and converted it into the corresponding oriented catenane by intramolecular ring closing metathesis. Cyclic voltammetric experiments indicate that the calixarene wheel initially surrounds the bipyridinium site, moves away from it when it is reduced, and returns in the original position upon reoxidation. A comparison with appropriate model compounds shows that the presence of the ammonium station is necessary for the calixarene to leave the reduced bipyridinium site.
Rushton, Gregory T.; Burns, William G.; Lavin, Judi M.; Chong, Yong S.; Pellechia, Perry; Shimizu, Ken D.
2007-01-01
An experiment to determine the rotational barrier about a C[subscript aryl]-N[subscript imide] single bond that is suitable for first-semester organic chemistry students is presented. The investigation begins with the one-step synthesis of a N,N'-diaryl naphthalene diimide, which exists as two room temperature-stable atropisomers (syn and anti).…
Directory of Open Access Journals (Sweden)
Joseph F Georges
Full Text Available Improved tools for providing specific intraoperative diagnoses could improve patient care. In neurosurgery, intraoperatively differentiating non-operative lesions such as CNS B-cell lymphoma from operative lesions can be challenging, often necessitating immunohistochemical (IHC procedures which require up to 24-48 hours. Here, we evaluate the feasibility of generating rapid ex vivo specific labeling using a novel lymphoma-specific fluorescent switchable aptamer. Our B-cell lymphoma-specific switchable aptamer produced only low-level fluorescence in its unbound conformation and generated an 8-fold increase in fluorescence once bound to its target on CD20-positive lymphoma cells. The aptamer demonstrated strong binding to B-cell lymphoma cells within 15 minutes of incubation as observed by flow cytometry. We applied the switchable aptamer to ex vivo xenograft tissue harboring B-cell lymphoma and astrocytoma, and within one hour specific visual identification of lymphoma was routinely possible. In this proof-of-concept study in human cell culture and orthotopic xenografts, we conclude that a fluorescent switchable aptamer can provide rapid and specific labeling of B-cell lymphoma, and that developing aptamer-based labeling approaches could simplify tissue staining and drastically reduce time to histopathological diagnoses compared with IHC-based methods. We propose that switchable aptamers could enhance expeditious, accurate intraoperative decision-making.
Georges, Joseph F; Liu, Xiaowei; Eschbacher, Jennifer; Nichols, Joshua; Mooney, Michael A; Joy, Anna; Spetzler, Robert F; Feuerstein, Burt G; Preul, Mark C; Anderson, Trent; Yan, Hao; Nakaji, Peter
2015-01-01
Improved tools for providing specific intraoperative diagnoses could improve patient care. In neurosurgery, intraoperatively differentiating non-operative lesions such as CNS B-cell lymphoma from operative lesions can be challenging, often necessitating immunohistochemical (IHC) procedures which require up to 24-48 hours. Here, we evaluate the feasibility of generating rapid ex vivo specific labeling using a novel lymphoma-specific fluorescent switchable aptamer. Our B-cell lymphoma-specific switchable aptamer produced only low-level fluorescence in its unbound conformation and generated an 8-fold increase in fluorescence once bound to its target on CD20-positive lymphoma cells. The aptamer demonstrated strong binding to B-cell lymphoma cells within 15 minutes of incubation as observed by flow cytometry. We applied the switchable aptamer to ex vivo xenograft tissue harboring B-cell lymphoma and astrocytoma, and within one hour specific visual identification of lymphoma was routinely possible. In this proof-of-concept study in human cell culture and orthotopic xenografts, we conclude that a fluorescent switchable aptamer can provide rapid and specific labeling of B-cell lymphoma, and that developing aptamer-based labeling approaches could simplify tissue staining and drastically reduce time to histopathological diagnoses compared with IHC-based methods. We propose that switchable aptamers could enhance expeditious, accurate intraoperative decision-making.
Georges, Joseph F.; Liu, Xiaowei; Eschbacher, Jennifer; Nichols, Joshua; Mooney, Michael A.; Joy, Anna; Spetzler, Robert F.; Feuerstein, Burt G.; Anderson, Trent; Preul, Mark C.; Yan, Hao; Nakaji, Peter
2018-02-01
Improved tools for providing specific intraoperative diagnoses could improve patient care. In neurosurgery, intraoperatively differentiating non-operative lesions can be challenging, often necessitating immunohistochemical (IHC) procedures which require up to 24-48 hours. Here, we evaluate the feasibility of generating rapid ex vivo specific labeling using a novel lymphoma-specific fluorescent switchable aptamer. Our B-cell lymphoma-specific switchable aptamer produced only low-level fluorescence in its unbound conformation and generated an 8-fold increase in fluorescence once bound to its target on CD20-positive lymphoma cells. The aptamer demonstrated strong binding to B-cell lymphoma cells within 10 minutes of incubation. We applied the switchable aptamer to ex vivo xenograft tissue harboring B-cell lymphoma and astrocytoma, and within one hour specific visual identification of lymphoma was routinely possible. In this proof-of-concept study in human cell culture and orthotopic xenografts, we conclude that a fluorescent switchable aptamer can provide rapid and specific labeling of B-cell lymphoma, and that developing aptamer-based labeling approaches could simplify tissue staining and drastically reduce time to histopathological diagnoses compared with IHC-based methods. We propose that switchable aptamers could enhance expeditious, accurate intraoperative decision-making.
Conformal Nets II: Conformal Blocks
Bartels, Arthur; Douglas, Christopher L.; Henriques, André
2017-08-01
Conformal nets provide a mathematical formalism for conformal field theory. Associated to a conformal net with finite index, we give a construction of the `bundle of conformal blocks', a representation of the mapping class groupoid of closed topological surfaces into the category of finite-dimensional projective Hilbert spaces. We also construct infinite-dimensional spaces of conformal blocks for topological surfaces with smooth boundary. We prove that the conformal blocks satisfy a factorization formula for gluing surfaces along circles, and an analogous formula for gluing surfaces along intervals. We use this interval factorization property to give a new proof of the modularity of the category of representations of a conformal net.
DEFF Research Database (Denmark)
Ryttov, Thomas Aaby; Sannino, Francesco
2010-01-01
fixed point. As a consistency check we recover the previously investigated bounds of the conformal windows when restricting to a single matter representation. The earlier conformal windows can be imagined to be part now of the new conformal house. We predict the nonperturbative anomalous dimensions...... at the infrared fixed points. We further investigate the effects of adding mass terms to the condensates on the conformal house chiral dynamics and construct the simplest instanton induced effective Lagrangian terms...
Zorgani, Mohamed Amine; Patron, Kevin; Desvaux, Mickaël
2014-07-01
Proteins from halophilic archaea, which live in extreme saline conditions, have evolved to remain folded, active and stable at very high ionic strengths. Understanding the mechanism of haloadaptation is the first step toward engineering of halostable biomolecules. Amylases are one of the main enzymes used in industry. Yet, no three-dimensional structure has been experimentally resolved for α-amylases from halophilic archaea. In this study, homology structure modeling of α-amylases from the halophilic archaea Haloarcula marismortui, Haloarcula hispanica, and Halalkalicoccus jeotgali were performed. The resulting models were subjected to energy minimization, evaluation, and structural analysis. Calculations of the amino acid composition, salt bridges and hydrophobic interactions were also performed and compared to a set of non-halophilic counterparts. It clearly appeared that haloarchaeal α-amylases exhibited lower propensities for helix formation and higher propensities for coil-forming regions. Furthermore, they could maintain a folded and stable conformation in high salt concentration through highly negative charged surface with over representation of acidic residues, especially Asp, and low hydrophobicity with increase of salt bridges and decrease in hydrophobic interactions on the protein surface. This study sheds some light on the stability of α-amylases from halophilic archaea and provides strong basis not only to understand haloadaptation mechanisms of proteins in microorganisms from hypersalines environments but also for biotechnological applications.
This section provides information on: current laws, regulations and guidance, policy and technical guidance, project-level conformity, general information, contacts and training, adequacy review of SIP submissions
Dey, Soumyajit; Rath, Sankar Prasad
2014-02-07
The syn-anti conformational switching has been demonstrated in the ethane-bridged dicobalt(II)bisporphyrin which is present in the syn-form only. The addition of either perylene or axial ligands to Co(II)(bisporphyrin) completely transforms the syn form into the anti because of strong π-π interaction and axial coordination, respectively. The complex undergoes four 1e-oxidations in CH2Cl2 which are indicative of strong through space interactions between the two cofacial Co-porphyrins at 295 K. The first oxidation is a metal centered one and occurs at a potential much lower than that of the monomeric analog. However, the second oxidation, which is again metal centered, was at a significantly higher potential. The large difference between the first two oxidations, as observed here, is due to much stronger inter-porphyrin interactions. The step-wise oxidations have been performed both chemically and electro-chemically while the progress of the reactions was monitored by UV-visible and (1)H NMR spectroscopy. After 1e-oxidation, a very broad (1)H NMR signal results with increased difference between two meso resonances, which indicates that the two macrocycles are in the syn-form with lesser interplanar separation as also observed by DFT. However, 2e-oxidation results in the stabilization of the anti form. The addition of axial ligands to Co(II)(bisporphyrin) also completely transforms the syn form into the anti form. While additions of THF and I2/I(-) both result in the formation of five-coordinate complexes, Co(II) is oxidized to Co(III) in the case of the latter. However, additions of 1-methylimidazole, pyridine and pyrazine as axial ligands result in the formation of a six-coordinate complex in which Co(II) is spontaneously oxidized to Co(III) in air.
Directory of Open Access Journals (Sweden)
Nikolay Ivantchev
2013-10-01
Full Text Available Conformism was studied among 46 workers with different kinds of occupations by means of two modified scales measuring conformity by Santor, Messervey, and Kusumakar (2000 – scale for perceived peer pressure and scale for conformism in antisocial situations. The hypothesis of the study that workers’ conformism is expressed in a medium degree was confirmed partly. More than a half of the workers conform in a medium degree for taking risk, and for the use of alcohol and drugs, and for sexual relationships. More than a half of the respondents conform in a small degree for anti-social activities (like a theft. The workers were more inclined to conform for risk taking (10.9%, then – for the use of alcohol, drugs and for sexual relationships (8.7%, and in the lowest degree – for anti-social activities (6.5%. The workers who were inclined for the use of alcohol and drugs tended also to conform for anti-social activities.
Stable self-compliance resistive switching in AlOδ/Ta2O5−x/TaOy triple layer devices
International Nuclear Information System (INIS)
Wu, Huaqiang; Li, Xinyi; Huang, Feiyang; Yu, Zhiping; Qian, He; Chen, An
2015-01-01
Stable self-compliance property was observed in the AlO δ /Ta 2 O 5−x /TaO y triple-layer resistive random access memory structure. The impact of AlO δ barrier layer was studied with different thicknesses. Endurance of more than 10 10 cycles and data retention for more than 3 h at 125 °C were demonstrated. All the measurements were carried out without external current compliance and no hard breakdown was observed. Systematic analysis reveals the self-compliance property is due to the built-in series resistance of the thin AlO δ barrier layer. A model is proposed to explain this self-compliance property. (paper)
Directory of Open Access Journals (Sweden)
Frauendiener Jörg
2000-08-01
Full Text Available The notion of conformal infinity has a long history within the research in Einstein's theory of gravity. Today, ``conformal infinity'' is related with almost all other branches of research in general relativity, from quantisation procedures to abstract mathematical issues to numerical applications. This review article attempts to show how this concept gradually and inevitably evolved out of physical issues, namely the need to understand gravitational radiation and isolated systems within the theory of gravitation and how it lends itself very naturally to solve radiation problems in numerical relativity. The fundamental concept of null-infinity is introduced. Friedrich's regular conformal field equations are presented and various initial value problems for them are discussed. Finally, it is shown that the conformal field equations provide a very powerful method within numerical relativity to study global problems such as gravitational wave propagation and detection.
Frauendiener, Jörg
2004-01-01
The notion of conformal infinity has a long history within the research in Einstein's theory of gravity. Today, "conformal infinity" is related to almost all other branches of research in general relativity, from quantisation procedures to abstract mathematical issues to numerical applications. This review article attempts to show how this concept gradually and inevitably evolved from physical issues, namely the need to understand gravitational radiation and isolated systems within the theory of gravitation, and how it lends itself very naturally to the solution of radiation problems in numerical relativity. The fundamental concept of null-infinity is introduced. Friedrich's regular conformal field equations are presented and various initial value problems for them are discussed. Finally, it is shown that the conformal field equations provide a very powerful method within numerical relativity to study global problems such as gravitational wave propagation and detection.
Directory of Open Access Journals (Sweden)
Frauendiener Jörg
2004-01-01
Full Text Available The notion of conformal infinity has a long history within the research in Einstein's theory of gravity. Today, 'conformal infinity' is related to almost all other branches of research in general relativity, from quantisation procedures to abstract mathematical issues to numerical applications. This review article attempts to show how this concept gradually and inevitably evolved from physical issues, namely the need to understand gravitational radiation and isolated systems within the theory of gravitation, and how it lends itself very naturally to the solution of radiation problems in numerical relativity. The fundamental concept of null-infinity is introduced. Friedrich's regular conformal field equations are presented and various initial value problems for them are discussed. Finally, it is shown that the conformal field equations provide a very powerful method within numerical relativity to study global problems such as gravitational wave propagation and detection.
The General Conformity requirements ensure that the actions taken by federal agencies in nonattainment and maintenance areas do not interfere with a state’s plans to meet national standards for air quality.
Frauendiener, J?rg
2000-01-01
The notion of conformal infinity has a long history within the research in Einstein's theory of gravity. Today, 'conformal infinity' is related to almost all other branches of research in general relativity, from quantisation procedures to abstract mathematical issues to numerical applications. This review article attempts to show how this concept gradually and inevitably evolved from physical issues, namely the need to understand gravitational radiation and isolated systems within the theory...
2015-01-01
Stable beams: two simple words that carry so much meaning at CERN. When LHC page one switched from "squeeze" to "stable beams" at 10.40 a.m. on Wednesday, 3 June, it triggered scenes of jubilation in control rooms around the CERN sites, as the LHC experiments started to record physics data for the first time in 27 months. This is what CERN is here for, and it’s great to be back in business after such a long period of preparation for the next stage in the LHC adventure. I’ve said it before, but I’ll say it again. This was a great achievement, and testimony to the hard and dedicated work of so many people in the global CERN community. I could start to list the teams that have contributed, but that would be a mistake. Instead, I’d simply like to say that an achievement as impressive as running the LHC – a machine of superlatives in every respect – takes the combined effort and enthusiasm of everyone ...
Conformation radiotherapy and conformal radiotherapy
International Nuclear Information System (INIS)
Morita, Kozo
1999-01-01
In order to coincide the high dose region to the target volume, the 'Conformation Radiotherapy Technique' using the multileaf collimator and the device for 'hollow-out technique' was developed by Prof. S. Takahashi in 1960. This technique can be classified a type of 2D-dynamic conformal RT techniques. By the clinical application of this technique, the late complications of the lens, the intestine and the urinary bladder after radiotherapy for the maxillary cancer and the cervical cancer decreased. Since 1980's the exact position and shape of the tumor and the surrounding normal tissues can be easily obtained by the tremendous development of the CT/MRI imaging technique. As a result, various kinds of new conformal techniques such as the 3D-CRT, the dose intensity modulation, the tomotherapy have been developed since the beginning of 1990'. Several 'dose escalation study with 2D-/3D conformal RT' is now under way to improve the treatment results. (author)
Action of Molecular Switches in GPCRs - Theoretical and Experimental Studies
Trzaskowski, B; Latek, D; Yuan, S; Ghoshdastider, U; Debinski, A; Filipek, S
2012-01-01
G protein coupled receptors (GPCRs), also called 7TM receptors, form a huge superfamily of membrane proteins that, upon activation by extracellular agonists, pass the signal to the cell interior. Ligands can bind either to extracellular N-terminus and loops (e.g. glutamate receptors) or to the binding site within transmembrane helices (Rhodopsin-like family). They are all activated by agonists although a spontaneous auto-activation of an empty receptor can also be observed. Biochemical and crystallographic methods together with molecular dynamics simulations and other theoretical techniques provided models of the receptor activation based on the action of so-called “molecular switches” buried in the receptor structure. They are changed by agonists but also by inverse agonists evoking an ensemble of activation states leading toward different activation pathways. Switches discovered so far include the ionic lock switch, the 3-7 lock switch, the tyrosine toggle switch linked with the nPxxy motif in TM7, and the transmission switch. The latter one was proposed instead of the tryptophan rotamer toggle switch because no change of the rotamer was observed in structures of activated receptors. The global toggle switch suggested earlier consisting of a vertical rigid motion of TM6, seems also to be implausible based on the recent crystal structures of GPCRs with agonists. Theoretical and experimental methods (crystallography, NMR, specific spectroscopic methods like FRET/BRET but also single-molecule-force-spectroscopy) are currently used to study the effect of ligands on the receptor structure, location of stable structural segments/domains of GPCRs, and to answer the still open question on how ligands are binding: either via ensemble of conformational receptor states or rather via induced fit mechanisms. On the other hand the structural investigations of homo- and heterodimers and higher oligomers revealed the mechanism of allosteric signal transmission and receptor
Mcpeak, W. L.
1975-01-01
A new exciter switch assembly has been installed at the three DSN 64-m deep space stations. This assembly provides for switching Block III and Block IV exciters to either the high-power or 20-kW transmitters in either dual-carrier or single-carrier mode. In the dual-carrier mode, it provides for balancing the two drive signals from a single control panel located in the transmitter local control and remote control consoles. In addition to the improved switching capabilities, extensive monitoring of both the exciter switch assembly and Transmitter Subsystem is provided by the exciter switch monitor and display assemblies.
International Nuclear Information System (INIS)
Hooft, G.
2012-01-01
The dynamical degree of freedom for the gravitational force is the metric tensor, having 10 locally independent degrees of freedom (of which 4 can be used to fix the coordinate choice). In conformal gravity, we split this field into an overall scalar factor and a nine-component remainder. All unrenormalizable infinities are in this remainder, while the scalar component can be handled like any other scalar field such as the Higgs field. In this formalism, conformal symmetry is spontaneously broken. An imperative demand on any healthy quantum gravity theory is that black holes should be described as quantum systems with micro-states as dictated by the Hawking-Bekenstein theory. This requires conformal symmetry that may be broken spontaneously but not explicitly, and this means that all conformal anomalies must cancel out. Cancellation of conformal anomalies yields constraints on the matter sector as described by some universal field theory. Thus black hole physics may eventually be of help in the construction of unified field theories. (author)
International Nuclear Information System (INIS)
Billault, P.; Riege, H.; Gulik, M. van; Boggasch, E.; Frank, K.
1987-01-01
The pseudospark discharge is bound to a geometrical structure which is particularly well suited for switching high currents and voltages at high power levels. This type of discharge offers the potential for improvement in essentially all areas of switching operation: peak current and current density, current rise, stand-off voltage, reverse current capability, cathode life, and forward drop. The first pseudospark switch was built at CERN at 1981. Since then, the basic switching characteristics of pseudospark chambers have been studied in detail. The main feature of a pseudospark switch is the confinement of the discharge plasma to the device axis. The current transition to the hollow electrodes is spread over a rather large surface area. Another essential feature is the easy and precise triggering of the pseudospark switch from the interior of the hollow electrodes, relatively far from the main discharge gap. Nanosecond delay and jitter values can be achieved with trigger energies of less than 0.1 mJ, although cathode heating is not required. Pseudospark gaps may cover a wide range of high-voltage, high-current, and high-pulse-power switching at repetition rates of many kilohertz. This report reviews the basic researh on pseudospark switches which has been going on at CERN. So far, applications have been developed in the range of thyratron-like medium-power switches at typically 20 to 40 kV and 0.5 to 10 kA. High-current pseudospark switches have been built for a high-power 20 kJ pulse generator which is being used for long-term tests of plasma lenses developed for the future CERN Antiproton Collector (ACOL). The high-current switches have operated for several hundred thousand shots, with 20 to 50 ns jitter at 16 kV charging voltage and more than 100 kA peak current amplitude. (orig.)
High temperature stable RF MEMS microwave switches
Klein, Stefan
2010-01-01
Im Rahmen dieser Arbeit wurden elektrostatisch angesteuerte RF-MEMS Schalter mit kapazitiver Kopplung entwickelt, die Prozesstemperaturen von 400°C und darüber hinaus ohne Verlust der Funktionstüchtigkeit überstehen. Als Funktionsmaterial wird einerseits eine AlSiCu und andererseits eine WTi Legierung verwendet. Das Schalterprinzip beruht auf dem Wanderkeileffekt, der einen gekrümmten Biegebalken nutzt. Diese Verbiegung weg von der Substratoberfläche, die durch einen wohldefinierten intri...
DEFF Research Database (Denmark)
Mojaza, Matin; Pica, Claudio; Sannino, Francesco
2010-01-01
of flavors. Surprisingly this number, if computed to the order g^2, agrees with previous predictions for the lower boundary of the conformal window for nonsupersymmetric gauge theories. The higher order results tend to predict a higher number of critical flavors. These are universal properties, i......We compute the nonzero temperature free energy up to the order g^6 \\ln(1/g) in the coupling constant for vector like SU(N) gauge theories featuring matter transforming according to different representations of the underlying gauge group. The number of matter fields, i.e. flavors, is arranged...... in such a way that the theory develops a perturbative stable infrared fixed point at zero temperature. Due to large distance conformality we trade the coupling constant with its fixed point value and define a reduced free energy which depends only on the number of flavors, colors and matter representation. We...
International Nuclear Information System (INIS)
Kaplan, David B.; Lee, Jong-Wan; Son, Dam T.; Stephanov, Mikhail A.
2009-01-01
We consider zero-temperature transitions from conformal to nonconformal phases in quantum theories. We argue that there are three generic mechanisms for the loss of conformality in any number of dimensions: (i) fixed point goes to zero coupling, (ii) fixed point runs off to infinite coupling, or (iii) an IR fixed point annihilates with a UV fixed point and they both disappear into the complex plane. We give both relativistic and nonrelativistic examples of the last case in various dimensions and show that the critical behavior of the mass gap behaves similarly to the correlation length in the finite temperature Berezinskii-Kosterlitz-Thouless (BKT) phase transition in two dimensions, ξ∼exp(c/|T-T c | 1/2 ). We speculate that the chiral phase transition in QCD at large number of fermion flavors belongs to this universality class, and attempt to identify the UV fixed point that annihilates with the Banks-Zaks fixed point at the lower end of the conformal window.
Switching dynamics of TaOx-based threshold switching devices
Goodwill, Jonathan M.; Gala, Darshil K.; Bain, James A.; Skowronski, Marek
2018-03-01
Bi-stable volatile switching devices are being used as access devices in solid-state memory arrays and as the active part of compact oscillators. Such structures exhibit two stable states of resistance and switch between them at a critical value of voltage or current. A typical resistance transient under a constant amplitude voltage pulse starts with a slow decrease followed by a rapid drop and leveling off at a low steady state value. This behavior prompted the interpretation of initial delay and fast transition as due to two different processes. Here, we show that the entire transient including incubation time, transition time, and the final resistance values in TaOx-based switching can be explained by one process, namely, Joule heating with the rapid transition due to the thermal runaway. The time, which is required for the device in the conducting state to relax back to the stable high resistance one, is also consistent with the proposed mechanism.
Chromatic interocular-switch rivalry.
Christiansen, Jens H; D'Antona, Anthony D; Shevell, Steven K
2017-05-01
Interocular-switch rivalry (also known as stimulus rivalry) is a kind of binocular rivalry in which two rivalrous images are swapped between the eyes several times a second. The result is stable periods of one image and then the other, with stable intervals that span many eye swaps (Logothetis, Leopold, & Sheinberg, 1996). Previous work used this close kin of binocular rivalry with rivalrous forms. Experiments here test whether chromatic interocular-switch rivalry, in which the swapped stimuli differ in only chromaticity, results in slow alternation between two colors. Swapping equiluminant rivalrous chromaticities at 3.75 Hz resulted in slow perceptual color alternation, with one or the other color often continuously visible for two seconds or longer (during which there were 15+ eye swaps). A well-known theory for sustained percepts from interocular-switch rivalry with form is inhibitory competition between binocular neurons driven by monocular neurons with matched orientation tuning in each eye; such binocular neurons would produce a stable response when a given orientation is swapped between the eyes. A similar model can account for the percepts here from chromatic interocular-switch rivalry and is underpinned by the neurophysiological finding that color-preferring binocular neurons are driven by monocular neurons from each eye with well-matched chromatic selectivity (Peirce, Solomon, Forte, & Lennie, 2008). In contrast to chromatic interocular-switch rivalry, luminance interocular-switch rivalry with swapped stimuli that differ in only luminance did not result in slowly alternating percepts of different brightnesses.
Tomaschitz, R
2000-01-01
We study tachyons conformally coupled to the background geometry of a Milne universe. The causality of superluminal signal transfer is scrutinized in this context. The cosmic time of the comoving frame determines a distinguished time order for events connected by superluminal signals. An observer can relate his rest frame to the galaxy frame, and compare so the time order of events in his proper time to the cosmic time order. All observers can in this way arrive at identical conclusions on the causality of events connected by superluminal signals. An unambiguous energy concept for tachyonic rays is defined by means of the cosmic time of the comoving reference frame, without resorting to an antiparticle interpretation. On that basis we give an explicit proof that no signals can be sent into the past of observers. Causality violating signals are energetically forbidden, as they would have negative energy in the rest frame of the emitting observer. If an observer emits a superluminal signal, the tachyonic respon...
De Caterina, Raffaele; Brüggenjürgen, Bernd; Darius, Harald; Köhler, Sabine; Lucerna, Markus; Pecen, Ladislav; Renda, Giulia; Schilling, Richard John; Schliephacke, Tessa; Zamorano, José Luis; Le Heuzey, Jean-Yves; Kirchhof, Paulus
2018-02-01
Non-vitamin K antagonist oral anticoagulants (NOACs) are being introduced for stroke prevention in non-valvular Atrial Fibrillation (AF), and promise to be accepted better than Vitamin K Antagonists (VKAs) by patients, improving their Quality of Life (QoL). To assess to what extent patient-related factors influence decisions to switch from a VKA to a NOAC. The PREFER in AF Registry collected data at baseline in 2012 - at the beginning of NOAC prescriptions - and at 1-year follow-up, in 6412 patients in seven Western European countries. QoL and patient satisfaction questionnaires (EQ-5D-5L and/or PACT-Q2) were completed in 3777 patients at both visits. Data were compared across categories of patients on stable treatment with a VKA (i.e. continuously over the previous 12 months) (n=2102) or recently switched (within 12 months) from a VKA to a NOAC (n=213) during a 1-year follow-up, allowing a snapshot of factors influencing the switch at a time when NOACs were being introduced into the market. Compared to patients on stable treatment with a VKA, switched patients were similar in terms of age, sex, body mass index and other risk factors, but had lower prevalences of hypertension and heart valve dysfunction, and a lower rate of use of concomitant treatment with antiplatelet/anti-inflammatory agents; they also had a lower CHA 2 DS 2 -VASc score. Among 25 features investigated, switched patients more often reported bruising or bleeding, complained about bruising, were dissatisfied with the anticoagulant treatment, and reported mobility problems and anxiety/depressive traits. At the beginning of NOAC prescriptions, European doctors tended to switch from VKAs to NOACs those patients at lower risk than "non-switchers". Complaints about bruising or bleeding, dissatisfaction with treatment, mobility problems and anxiety/depression traits appear to be related to - and may have influenced - the choice to switch from a VKA to a NOAC. Copyright © 2017 Elsevier Masson SAS
Stanley, H. E.; Buldyrev, S. V.; Franzese, G.; Havlin, S.; Mallamace, F.; Mazza, M. G.; Kumar, P.; Plerou, V.; Preis, T.; Stokely, K.; Xu, L.
One challenge of biology, medicine, and economics is that the systems treated by these serious scientific disciplines can suddenly "switch" from one behavior to another, even though they possess no perfect metronome in time. As if by magic, out of nothing but randomness one finds remarkably fine-tuned processes in time. The past century has, philosophically, been concerned with placing aside the human tendency to see the universe as a fine-tuned machine. Here we will address the challenge of uncovering how, through randomness (albeit, as we shall see, strongly correlated randomness), one can arrive at some of the many temporal patterns in physics, economics, and medicine and even begin to characterize the switching phenomena that enable a system to pass from one state to another. We discuss some applications of correlated randomness to understanding switching phenomena in various fields. Specifically, we present evidence from experiments and from computer simulations supporting the hypothesis that water's anomalies are related to a switching point (which is not unlike the "tipping point" immortalized by Malcolm Gladwell), and that the bubbles in economic phenomena that occur on all scales are not "outliers" (another Gladwell immortalization).
Design of convergent switched systems
Berg, van den R.A.; Pogromsky, A.Y.; Leonov, G.A.; Rooda, J.E.; Pettersen, K.Y.; Gravdahl, J.T.; Nijmeijer, H.
2006-01-01
In this paper we deal with the problem of rendering hybrid/nonlinear systems into convergent closed-loop systems by means of a feedback law or switching rules. We illustrate our approach to this problem by means of two examples: the anti-windup design for a marginally stable system with input
Conformal field theory in conformal space
International Nuclear Information System (INIS)
Preitschopf, C.R.; Vasiliev, M.A.
1999-01-01
We present a new framework for a Lagrangian description of conformal field theories in various dimensions based on a local version of d + 2-dimensional conformal space. The results include a true gauge theory of conformal gravity in d = (1, 3) and any standard matter coupled to it. An important feature is the automatic derivation of the conformal gravity constraints, which are necessary for the analysis of the matter systems
Menezes, Prema; Mollan, Katie; Hoffman, Erin; Xie, Zimeng; Wills, Jennifer; Marcus, Cheryl; Rublein, John; Hudgens, Michael; Eron, Joseph J
2018-05-02
Benefits of switching to a single-tablet regimen (STR) of emtricitabine/rilpivirine/tenofovir (FTC/RPV/TDF) in virologically suppressed antiretroviral treatment (ART) experienced HIV-positive women include pregnancy category B rating and lack of clinically significant drug interactions between RPV and oral contraceptives. Unfortunately, studies involving switching to FTC/RPV/TDF enrolled fewer than 25% women. We undertook this 48-week study to assess the ability of virologically suppressed HIV-positive women switching to RPV STR to remain virologically suppressed and comply with the caloric intake requirement. HIV-positive women on ART with viral load phone calls on randomly chosen dates. For each 3-day food diary, the daily median caloric intake and median value for each macronutrient consumed concurrent with FTC/RPV/TDF were computed. Medication adherence was measured using a visual analog scale. We enrolled 33 women, 73% of whom were African American. At week 48, virologic suppression (HIV RNA phone call. Median kcal intake (food diary) did not change significantly from baseline (684 kcal) to week 48 (820 kcal); median change 102 kcal, p = .15. Women who reported noncompliance with a ≥400 kcal meal did not experience virologic failure. Significant concordance between caloric adherence and virologic suppression was not detected. Our study demonstrated that HIV-positive women who switched to STR FTC/RPV/TDF continued to experience virologic suppression and were readily able to comply with the recommended caloric intake requirement.
Exploring the relationship between the conformation and pK_{a}
DEFF Research Database (Denmark)
Olsen, Jacob Ingemar; Sauer, Stephan P. A.; Pedersen, Christian Marcus
2015-01-01
Four substituted cis and trans-4,5-dihydroxyhexahydropyridazines that were expected to undergo pH induced conformational switching were synthesized and carefully investigated by NMR analyses and calculations. For two of the compounds a large difference in pKa existed between the two possible chair...... conformers and for one compound this resulted in conformational switching as a result of pH change. For the first time it is shown that the pKa directly reflects the conformational equilibrium of conformers....
Belov, Aleksandr S.; Khokhlov, Daniil V.; Glebov, Ilya O.; Poddubnyy, Vladimir V.; Eremin, Vadim V.
2017-06-01
Single-molecule spectroscopic experiments on several light-harvesting complexes revealed the existence of a set of metastable conformational states with different spectroscopic properties and lifetimes spanning from milliseconds to tens of seconds. In the absence of explicit structural data, a number of probable structural changes underlying the observed spectroscopic shifts were proposed. We examine the donor-acceptor interaction between the magnesium atom and the acetyl group of the adjacent bacteriochlorophylls a as a possible origin of metastable conformational states in the LH2 light-harvesting complex of Rbl. acidophilus bacteria. The results of QM/MM and molecular dynamics simulations show that such ligation can occur at room temperature and leads to one metastable coordination bond per pair of bacteriochlorophylls in the B850 ring. According to the results of Poisson-TrESP modeling, such coordination lowers the energies of the excited states of the complex by up to 163 cm-1 which causes red spectral shift of the B850 band.
Instability in time-delayed switched systems induced by fast and random switching
Guo, Yao; Lin, Wei; Chen, Yuming; Wu, Jianhong
2017-07-01
In this paper, we consider a switched system comprising finitely or infinitely many subsystems described by linear time-delayed differential equations and a rule that orchestrates the system switching randomly among these subsystems, where the switching times are also randomly chosen. We first construct a counterintuitive example where even though all the time-delayed subsystems are exponentially stable, the behaviors of the randomly switched system change from stable dynamics to unstable dynamics with a decrease of the dwell time. Then by using the theories of stochastic processes and delay differential equations, we present a general result on when this fast and random switching induced instability should occur and we extend this to the case of nonlinear time-delayed switched systems as well.
Reversible switching of ultrastrong light-molecule coupling
DEFF Research Database (Denmark)
Schwartz, T; Hutchison, J A; Genet, C
2011-01-01
We demonstrate that photochromic molecules enable switching from the weak- to ultrastrong-coupling regime reversibly, by using all-optical control. This switch is achieved by photochemically inducing conformational changes in the molecule. Remarkably, a Rabi splitting of 700 meV is measured at room...
International Nuclear Information System (INIS)
Evans, D.K.
1986-01-01
Seventy-five percent of the world's stable isotope supply comes from one producer, Oak Ridge Nuclear Laboratory (ORNL) in the US. Canadian concern is that foreign needs will be met only after domestic needs, thus creating a shortage of stable isotopes in Canada. This article describes the present situation in Canada (availability and cost) of stable isotopes, the isotope enrichment techniques, and related research programs at Chalk River Nuclear Laboratories (CRNL)
DNA and RNA-controlled switching of protein kinase activity
Röglin, L.; Altenbrunn, F.; Seitz, O.
2009-01-01
Protein switches use the binding energy gained upon recognition of ligands to modulate the conformation and binding properties of protein segments. We explored whether the programmable nucleic acid mediated recognition might be used to design or mimic constraints that limit the conformational
Conformation sensitive charge transport in conjugated polymers
International Nuclear Information System (INIS)
Mattias Andersson, L.; Hedström, Svante; Persson, Petter
2013-01-01
Temperature dependent charge carrier mobility measurements using field effect transistors and density functional theory calculations are combined to show how the conformation dependent frontier orbital delocalization influences the hole- and electron mobilities in a donor-acceptor based polymer. A conformationally sensitive lowest unoccupied molecular orbital results in an electron mobility that decreases with increasing temperature above room temperature, while a conformationally stable highest occupied molecular orbital is consistent with a conventional hole mobility behavior and also proposed to be one of the reasons for why the material works well as a hole transporter in amorphous bulk heterojunction solar cells
Epigenetic dominance of prion conformers.
Directory of Open Access Journals (Sweden)
Eri Saijo
2013-10-01
Full Text Available Although they share certain biological properties with nucleic acid based infectious agents, prions, the causative agents of invariably fatal, transmissible neurodegenerative disorders such as bovine spongiform encephalopathy, sheep scrapie, and human Creutzfeldt Jakob disease, propagate by conformational templating of host encoded proteins. Once thought to be unique to these diseases, this mechanism is now recognized as a ubiquitous means of information transfer in biological systems, including other protein misfolding disorders such as those causing Alzheimer's and Parkinson's diseases. To address the poorly understood mechanism by which host prion protein (PrP primary structures interact with distinct prion conformations to influence pathogenesis, we produced transgenic (Tg mice expressing different sheep scrapie susceptibility alleles, varying only at a single amino acid at PrP residue 136. Tg mice expressing ovine PrP with alanine (A at (OvPrP-A136 infected with SSBP/1 scrapie prions propagated a relatively stable (S prion conformation, which accumulated as punctate aggregates in the brain, and produced prolonged incubation times. In contrast, Tg mice expressing OvPrP with valine (V at 136 (OvPrP-V136 infected with the same prions developed disease rapidly, and the converted prion was comprised of an unstable (U, diffusely distributed conformer. Infected Tg mice co-expressing both alleles manifested properties consistent with the U conformer, suggesting a dominant effect resulting from exclusive conversion of OvPrP-V136 but not OvPrP-A136. Surprisingly, however, studies with monoclonal antibody (mAb PRC5, which discriminates OvPrP-A136 from OvPrP-V136, revealed substantial conversion of OvPrP-A136. Moreover, the resulting OvPrP-A136 prion acquired the characteristics of the U conformer. These results, substantiated by in vitro analyses, indicated that co-expression of OvPrP-V136 altered the conversion potential of OvPrP-A136 from the S to
Viscous conformal gauge theories
DEFF Research Database (Denmark)
Toniato, Arianna; Sannino, Francesco; Rischke, Dirk H.
2017-01-01
We present the conformal behavior of the shear viscosity-to-entropy density ratio and the fermion-number diffusion coefficient within the perturbative regime of the conformal window for gauge-fermion theories.......We present the conformal behavior of the shear viscosity-to-entropy density ratio and the fermion-number diffusion coefficient within the perturbative regime of the conformal window for gauge-fermion theories....
International Nuclear Information System (INIS)
Kozameh, C.N.; Newman, E.T.; Tod, K.P.
1985-01-01
Conformal transformations in four-dimensional. In particular, a new set of two necessary and sufficient conditions for a space to be conformal to an Einstein space is presented. The first condition defines the class of spaces conformal to C spaces, whereas the last one (the vanishing of the Bach tensor) gives the particular subclass of C spaces which are conformally related to Einstein spaces. (author)
Superspace conformal field theory
Energy Technology Data Exchange (ETDEWEB)
Quella, Thomas [Koeln Univ. (Germany). Inst. fuer Theoretische Physik; Schomerus, Volker [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)
2013-07-15
Conformal sigma models and WZW models on coset superspaces provide important examples of logarithmic conformal field theories. They possess many applications to problems in string and condensed matter theory. We review recent results and developments, including the general construction of WZW models on type I supergroups, the classification of conformal sigma models and their embedding into string theory.
Superspace conformal field theory
International Nuclear Information System (INIS)
Quella, Thomas
2013-07-01
Conformal sigma models and WZW models on coset superspaces provide important examples of logarithmic conformal field theories. They possess many applications to problems in string and condensed matter theory. We review recent results and developments, including the general construction of WZW models on type I supergroups, the classification of conformal sigma models and their embedding into string theory.
Exciplex and excimer molecular probes: detection of conformational flip in a myo-inositol chair.
Kadirvel, Manikandan; Arsic, Biljana; Freeman, Sally; Bichenkova, Elena V
2008-06-07
2-O-tert-Butyldimethylsilyl-4,6-bis-O-pyrenoyl-myo-inositol-1,3,5-orthoformate (6) and 2-O-tert-butyldimethylsilyl-4-O-[4-(dimethylamino)benzoyl]-6-O-pyrenoyl-myo-inositol-1,3,5-orthoacetate (10) adopt conformationally restricted unstable chairs with five axial substituents. In the symmetrical diester 6, the two pi-stacked pyrenoyl groups are electron acceptor-donor partners, giving a strong intramolecular excimer emission. In the mixed ester 10, the pyrenoyl group is the electron acceptor and the 4-(dimethylamino)benzoyl ester is the electron donor, giving a strong intramolecular exciplex emission. The conformation of the mixed ester 10 was assessed using 1H NMR spectroscopy (1H-NOESY) and computational studies. which showed the minimum inter-centroid distance between the two aromatic systems to be approximately 3.9 A. Upon addition of acid, the orthoformate/orthoacetate trigger in 6 and 10 was cleaved, which caused a switch of the conformation of the myo-inositol ring to the more stable penta-equatorial chair, leading to separation of the aromatic ester groups and loss of excimer and exciplex fluorescence, respectively. This study provides proof of principle for the development of novel fluorescent molecular probes.
2008-01-01
Like a star arriving on stage, impatiently followed by each member of CERN personnel and by millions of eyes around the world, the first beam of protons has circulated in the LHC. After years in the making and months of increasing anticipation, today the work of hundreds of people has borne fruit. WELL DONE to all! Successfully steered around the 27 kilometres of the world’s most powerful particle accelerator at 10:28 this morning, this first beam of protons circulating in the ring marks a key moment in the transition from over two decades of preparation to a new era of scientific discovery. "It’s a fantastic moment," said the LHC project leader Lyn Evans, "we can now look forward to a new era of understanding about the origins and evolution of the universe". Starting up a major new particle accelerator takes much more than flipping a switch. Thousands of individual elements have to work in harmony, timings have to be synchronize...
Electroforming-free resistive switching memory effect in transparent p-type tin monoxide
Hota, M. K.; Caraveo-Frescas, J. A.; McLachlan, M. A.; Alshareef, Husam N.
2014-01-01
We report reproducible low bias bipolar resistive switching behavior in p-type SnO thin film devices without extra electroforming steps. The experimental results show a stable resistance ratio of more than 100 times, switching cycling performance up
Non-conformable, partial and conformable transposition
DEFF Research Database (Denmark)
König, Thomas; Mäder, Lars Kai
2013-01-01
and the Commission regarding a directive’s outcome, play a much more strategic role than has to date acknowledged in the transposition literature. Whereas disagreement of a member state delays conformable transposition, it speeds up non-conformable transposition. Disagreement of the Commission only prolongs...... the transposition process. We therefore conclude that a stronger focus on an effective sanctioning mechanism is warranted for safeguarding compliance with directives....
DEFF Research Database (Denmark)
Failla, Virgilio; Melillo, Francesca; Reichstein, Toke
2014-01-01
Is entrepreneurship a more stable career choice for high employment turnover individuals? We find that a transition to entrepreneurship induces a shift towards stayer behavior and identify job matching, job satisfaction and lock-in effects as main drivers. These findings have major implications...
Pan, Min; Plummer, Andrew
2018-06-01
This paper reviews recent developments in digital switched hydraulics particularly the switched inertance hydraulic systems (SIHSs). The performance of SIHSs is presented in brief with a discussion of several possible configurations and control strategies. The soft switching technology and high-speed switching valve design techniques are discussed. Challenges and recommendations are given based on the current research achievements.
Kamachi, Takashi; Yoshizawa, Kazunari
2016-02-22
A conformational search program for finding low-energy conformations of large noncovalent complexes has been developed. A quantitatively reliable semiempirical quantum mechanical PM6-DH+ method, which is able to accurately describe noncovalent interactions at a low computational cost, was employed in contrast to conventional conformational search programs in which molecular mechanical methods are usually adopted. Our approach is based on the low-mode method whereby an initial structure is perturbed along one of its low-mode eigenvectors to generate new conformations. This method was applied to determine the most stable conformation of transition state for enantioselective alkylation by the Maruoka and cinchona alkaloid catalysts and Hantzsch ester hydrogenation of imines by chiral phosphoric acid. Besides successfully reproducing the previously reported most stable DFT conformations, the conformational search with the semiempirical quantum mechanical calculations newly discovered a more stable conformation at a low computational cost.
Conformational kinetics of aliphatic tails
Ferrarini, Alberta; Moro, Giorgio; Nordio, Pier Luigi
The master equation describing the random walk between sites identified with the stable conformers of a chain molecule, represents the extension to the time domain of the Rotational Isomeric State model. The asymptotic analysis of the multidimensional diffusion equation in the continuous torsional variables subjected to the configurational potential, provides a rigorous justification for the discrete models, and it supplies, without resorting to phenomenological parameters, molecular definitions of the kinetic rates for the conformational transitions occurring at each segment of the chain. The coupling between the torsional variables is fully taken into account, giving rise to cooperative effects. A complete calculation of the specific correlation functions which describe the time evolution of the angular functions probed by N.M.R. and dielectric relaxation measurements, has been performed for alkyl chains attached to a massive core. The resulting behaviour has been compared with the decay of trans and gauche populations of specific bonds, expressed in terms of suitable correlation functions whose time integrals lead quite naturally to the definition of effective kinetic constants for the conformational transitions.
International Nuclear Information System (INIS)
Samios, N.P.
1993-01-01
I have been asked to review the subject of stable particles, essentially the particles that eventually comprised the meson and baryon octets. with a few more additions -- with an emphasis on the contributions made by experiments utilizing the bubble chamber technique. In this activity, much work had been done by the photographic emulsion technique and cloud chambers-exposed to cosmic rays as well as accelerator based beams. In fact, many if not most of the stable particles were found by these latter two techniques, however, the forte of the bubble chamber (coupled with the newer and more powerful accelerators) was to verify, and reinforce with large statistics, the existence of these states, to find some of the more difficult ones, mainly neutrals and further to elucidate their properties, i.e., spin, parity, lifetimes, decay parameters, etc
The allosteric switching mechanism in bacteriophage MS2
Energy Technology Data Exchange (ETDEWEB)
Perkett, Matthew R.; Mirijanian, Dina T.; Hagan, Michael F., E-mail: hagan@brandeis.edu [Martin Fisher School of Physics, Brandeis University, Waltham, Massachusetts 02474 (United States)
2016-07-21
We use all-atom simulations to elucidate the mechanisms underlying conformational switching and allostery within the coat protein of the bacteriophage MS2. Assembly of most icosahedral virus capsids requires that the capsid protein adopts different conformations at precise locations within the capsid. It has been shown that a 19 nucleotide stem loop (TR) from the MS2 genome acts as an allosteric effector, guiding conformational switching of the coat protein during capsid assembly. Since the principal conformational changes occur far from the TR binding site, it is important to understand the molecular mechanism underlying this allosteric communication. To this end, we use all-atom simulations with explicit water combined with a path sampling technique to sample the MS2 coat protein conformational transition, in the presence and absence of TR-binding. The calculations find that TR binding strongly alters the transition free energy profile, leading to a switch in the favored conformation. We discuss changes in molecular interactions responsible for this shift. We then identify networks of amino acids with correlated motions to reveal the mechanism by which effects of TR binding span the protein. We find that TR binding strongly affects residues located at the 5-fold and quasi-sixfold interfaces in the assembled capsid, suggesting a mechanism by which the TR binding could direct formation of the native capsid geometry. The analysis predicts amino acids whose substitution by mutagenesis could alter populations of the conformational substates or their transition rates.
Mechanics of responsive polymers via conformationally switchable molecules
Brighenti, Roberto; Artoni, Federico; Vernerey, Franck; Torelli, Martina; Pedrini, Alessandro; Domenichelli, Ilaria; Dalcanale, Enrico
2018-04-01
Active materials are those capable of giving some physical reaction under external stimuli coming from the environment such as temperature, pH, light, mechanical stress, etc. Reactive polymeric materials can be obtained through the introduction of switchable molecules in their network, i.e. molecules having two distinct stable conformations: if properly linked to the hosting polymer chains, the switching from one state to the other can promote a mechanical reaction of the material, detectable at the macroscale, and thus enables us to tune the response according to a desired functionality. In the present paper, the main aspects of the mechanical behavior of polymeric materials with embedded switchable molecules-properly linked to the polymer's chains-are presented and discussed. Starting from the micro mechanisms occurring in such active material, a continuum model is developed, providing a straightforward implementation in computational approaches. Finally, some experimental outcomes related to a switchable molecules (known as quinoxaline cavitands) added to an elastomeric PDMS under chemical stimuli, are presented and quantitatively discussed through the use of the developed mechanical framework.
International Nuclear Information System (INIS)
Brazier, J.L.; Guinamant, J.L.
1995-01-01
According to the progress which has been realised in the technology of separating and measuring isotopes, the stable isotopes are used as preferable 'labelling elements' for big number of applications. The isotopic composition of natural products shows significant variations as a result of different reasons like the climate, the seasons, or their geographic origins. So, it was proved that the same product has a different isotopic composition of alimentary and agriculture products. It is also important in detecting the pharmacological and medical chemicals. This review article deals with the technology, like chromatography and spectrophotometry, adapted to this aim, and some important applications. 17 refs. 6 figs
Energy Technology Data Exchange (ETDEWEB)
Quigg, Chris [Fermilab
2018-04-13
For very heavy quarks, relations derived from heavy-quark symmetry imply novel narrow doubly heavy tetraquark states containing two heavy quarks and two light antiquarks. We predict that double-beauty states will be stable against strong decays, whereas the double-charm states and mixed beauty+charm states will dissociate into pairs of heavy-light mesons. Observing a new double-beauty state through its weak decays would establish the existence of tetraquarks and illuminate the role of heavy color-antitriplet diquarks as hadron constituents.
Spherical conformal models for compact stars
Energy Technology Data Exchange (ETDEWEB)
Takisa, P.M.; Maharaj, S.D.; Manjonjo, A.M.; Moopanar, S. [University of KwaZulu-Natal, Astrophysics and Cosmology Research Unit, School of Mathematics, Statistics and Computer Science, Durban (South Africa)
2017-10-15
We consider spherical exact models for compact stars with anisotropic pressures and a conformal symmetry. The conformal symmetry condition generates an integral relationship between the gravitational potentials. We solve this condition to find a new anisotropic solution to the Einstein field equations. We demonstrate that the exact solution produces a relativistic model of a compact star. The model generates stellar radii and masses consistent with PSR J1614-2230, Vela X1, PSR J1903+327 and Cen X-3. A detailed physical examination shows that the model is regular, well behaved and stable. The mass-radius limit and the surface red shift are consistent with observational constraints. (orig.)
Garcia, Ernest J; Polosky, Marc A
2013-05-21
An optical switch reliably maintains its on or off state even when subjected to environments where the switch is bumped or otherwise moved. In addition, the optical switch maintains its on or off state indefinitely without requiring external power. External power is used only to transition the switch from one state to the other. The optical switch is configured with a fixed optical fiber and a movable optical fiber. The movable optical fiber is guided by various actuators in conjunction with a latching mechanism that configure the switch in one position that corresponds to the on state and in another position that corresponds to the off state.
Induced quantum conformal gravity
International Nuclear Information System (INIS)
Novozhilov, Y.V.; Vassilevich, D.V.
1988-11-01
Quantum gravity is considered as induced by matter degrees of freedom and related to the symmetry breakdown in the low energy region of a non-Abelian gauge theory of fundamental fields. An effective action for quantum conformal gravity is derived where both the gravitational constant and conformal kinetic term are positive. Relation with induced classical gravity is established. (author). 15 refs
Thickenings and conformal gravity
Lebrun, Claude
1991-07-01
A twistor correspondence is given for complex conformal space-times with vanishing Bach and Eastwood-Dighton tensors; when the Weyl curvature is algebraically general, these equations are precisely the conformal version of Einstein's vacuum equations with cosmological constant. This gives a fully curved version of the linearized correspondence of Baston and Mason [B-M].
Thickenings and conformal gravity
Energy Technology Data Exchange (ETDEWEB)
LeBrun, C. (State Univ. of New York, Stony Brook, NY (USA). Dept. of Mathematics)
1991-07-01
A twistor correspondence is given for complex conformal space-times with vanishing Bach and Eastwood-Dighton tensors; when the Weyl curvature is algebraically general, these equations are precisely the conformal version of Einstein's vacuum equations with cosmological constant. This gives a fully curved version of the linearized correspondence of Baston and Mason (B-M). (orig.).
Thickenings and conformal gravity
International Nuclear Information System (INIS)
LeBrun, C.
1991-01-01
A twistor correspondence is given for complex conformal space-times with vanishing Bach and Eastwood-Dighton tensors; when the Weyl curvature is algebraically general, these equations are precisely the conformal version of Einstein's vacuum equations with cosmological constant. This gives a fully curved version of the linearized correspondence of Baston and Mason [B-M]. (orig.)
Conformal transformations in superspace
International Nuclear Information System (INIS)
Dao Vong Duc
1977-01-01
The spinor extension of the conformal algebra is investigated. The transformation law of superfields under the conformal coordinate inversion R defined in the superspace is derived. Using R-technique, the superconformally covariant two-point and three-point correlation functions are found
Conformational stability of calreticulin
DEFF Research Database (Denmark)
Jørgensen, C.S.; Trandum, C.; Larsen, N.
2005-01-01
The conformational stability of calreticulin was investigated. Apparent unfolding temperatures (T-m) increased from 31 degrees C at pH 5 to 51 degrees C at pH 9, but electrophoretic analysis revealed that calreticulin oligomerized instead of unfolding. Structural analyses showed that the single C......-terminal a-helix was of major importance to the conformational stability of calreticulin....
Graphene Q-switched Yb:KYW planar waveguide laser
Kim, Jun Wan; Choi, Sun Young; Aravazhi, S.; Pollnau, Markus; Griebner, Uwe; Petrov, Valentin; Bae, Sukang; Ahn, Kwang Jun; Yeom, Dong-Il; Rotermund, Fabian
A diode-pumped Yb:KYW planar waveguide laser, single-mode Q-switched by evanescent-field interaction with graphene, is demonstrated for the first time. Few-layer graphene grown by chemical vapor deposition is transferred onto the top of a guiding layer, which initiates stable Q-switched operation in
Stereoelectronic Effect-Induced Conductance Switching in Aromatic Chain Single-Molecule Junctions.
Xin, Na; Wang, Jinying; Jia, Chuancheng; Liu, Zitong; Zhang, Xisha; Yu, Chenmin; Li, Mingliang; Wang, Shuopei; Gong, Yao; Sun, Hantao; Zhang, Guanxin; Liu, Zhirong; Zhang, Guangyu; Liao, Jianhui; Zhang, Deqing; Guo, Xuefeng
2017-02-08
Biphenyl, as the elementary unit of organic functional materials, has been widely used in electronic and optoelectronic devices. However, over decades little has been fundamentally understood regarding how the intramolecular conformation of biphenyl dynamically affects its transport properties at the single-molecule level. Here, we establish the stereoelectronic effect of biphenyl on its electrical conductance based on the platform of graphene-molecule single-molecule junctions, where a specifically designed hexaphenyl aromatic chain molecule is covalently sandwiched between nanogapped graphene point contacts to create stable single-molecule junctions. Both theoretical and temperature-dependent experimental results consistently demonstrate that phenyl twisting in the aromatic chain molecule produces different microstates with different degrees of conjugation, thus leading to stochastic switching between high- and low-conductance states. These investigations offer new molecular design insights into building functional single-molecule electrical devices.
International Nuclear Information System (INIS)
Feuvret, Loic; Noel, Georges; Mazeron, Jean-Jacques; Bey, Pierre
2006-01-01
We present a critical analysis of the conformity indices described in the literature and an evaluation of their field of application. Three-dimensional conformal radiotherapy, with or without intensity modulation, is based on medical imaging techniques, three-dimensional dosimetry software, compression accessories, and verification procedures. It consists of delineating target volumes and critical healthy tissues to select the best combination of beams. This approach allows better adaptation of the isodose to the tumor volume, while limiting irradiation of healthy tissues. Tools must be developed to evaluate the quality of proposed treatment plans. Dosimetry software provides the dose distribution in each CT section and dose-volume histograms without really indicating the degree of conformity. The conformity index is a complementary tool that attributes a score to a treatment plan or that can compare several treatment plans for the same patient. The future of conformal index in everyday practice therefore remains unclear
Conformal invariance in supergravity
International Nuclear Information System (INIS)
Bergshoeff, E.A.
1983-01-01
In this thesis the author explains the role of conformal invariance in supergravity. He presents the complete structure of extended conformal supergravity for N <= 4. The outline of this work is as follows. In chapter 2 he briefly summarizes the essential properties of supersymmetry and supergravity and indicates the use of conformal invariance in supergravity. The idea that the introduction of additional symmetry transformations can make clear the structure of a field theory is not reserved to supergravity only. By means of some simple examples it is shown in chapter 3 how one can always introduce additional gauge transformations in a theory of massive vector fields. Moreover it is shown how the gauge invariant formulation sometimes explains the quantum mechanical properties of the theory. In chapter 4 the author defines the conformal transformations and summarizes their main properties. He explains how these conformal transformations can be used to analyse the structure of gravity. The supersymmetric extension of these results is discussed in chapter 5. Here he describes as an example how N=1 supergravity can be reformulated in a conformally-invariant way. He also shows that beyond N=1 the gauge fields of the superconformal symmetries do not constitute an off-shell field representation of extended conformal supergravity. Therefore, in chapter 6, a systematic method to construct the off-shell formulation of all extended conformal supergravity theories with N <= 4 is developed. As an example he uses this method to construct N=1 conformal supergravity. Finally, in chapter 7 N=4 conformal supergravity is discussed. (Auth.)
Effect of supercoiling on the λ switch
DEFF Research Database (Denmark)
Norregaard, Kamilla; Andersson, Magnus; Sneppen, Kim
2014-01-01
The lysogenic state of the λ switch is exceptionally stable, still, it is capable of responding to DNA-damage and rapidly enter the lytic state. We invented an assay where PNA mediated tethering of a plasmid allowed for single molecule investigations of the effect of supercoiling on the efficiency...
Resistance switching memory in perovskite oxides
International Nuclear Information System (INIS)
Yan, Z.B.; Liu, J.-M.
2015-01-01
The resistance switching behavior has recently attracted great attentions for its application as resistive random access memories (RRAMs) due to a variety of advantages such as simple structure, high-density, high-speed and low-power. As a leading storage media, the transition metal perovskite oxide owns the strong correlation of electrons and the stable crystal structure, which brings out multifunctionality such as ferroelectric, multiferroic, superconductor, and colossal magnetoresistance/electroresistance effect, etc. The existence of rich electronic phases, metal–insulator transition and the nonstoichiometric oxygen in perovskite oxide provides good platforms to insight into the resistive switching mechanisms. In this review, we first introduce the general characteristics of the resistance switching effects, the operation methods and the storage media. Then, the experimental evidences of conductive filaments, the transport and switching mechanisms, and the memory performances and enhancing methods of perovskite oxide based filamentary RRAM cells have been summarized and discussed. Subsequently, the switching mechanisms and the performances of the uniform RRAM cells associating with the carrier trapping/detrapping and the ferroelectric polarization switching have been discussed. Finally, the advices and outlook for further investigating the resistance switching and enhancing the memory performances are given
Conformal expansions and renormalons
Energy Technology Data Exchange (ETDEWEB)
Rathsman, J.
2000-02-07
The coefficients in perturbative expansions in gauge theories are factorially increasing, predominantly due to renormalons. This type of factorial increase is not expected in conformal theories. In QCD conformal relations between observables can be defined in the presence of a perturbative infrared fixed-point. Using the Banks-Zaks expansion the authors study the effect of the large-order behavior of the perturbative series on the conformal coefficients. The authors find that in general these coefficients become factorially increasing. However, when the factorial behavior genuinely originates in a renormalon integral, as implied by a postulated skeleton expansion, it does not affect the conformal coefficients. As a consequence, the conformal coefficients will indeed be free of renormalon divergence, in accordance with previous observations concerning the smallness of these coefficients for specific observables. The authors further show that the correspondence of the BLM method with the skeleton expansion implies a unique scale-setting procedure. The BLM coefficients can be interpreted as the conformal coefficients in the series relating the fixed-point value of the observable with that of the skeleton effective charge. Through the skeleton expansion the relevance of renormalon-free conformal coefficients extends to real-world QCD.
Conformal sequestering simplified
International Nuclear Information System (INIS)
Schmaltz, Martin; Sundrum, Raman
2006-01-01
Sequestering is important for obtaining flavor-universal soft masses in models where supersymmetry breaking is mediated at high scales. We construct a simple and robust class of hidden sector models which sequester themselves from the visible sector due to strong and conformally invariant hidden dynamics. Masses for hidden matter eventually break the conformal symmetry and lead to supersymmetry breaking by the mechanism recently discovered by Intriligator, Seiberg and Shih. We give a unified treatment of subtleties due to global symmetries of the CFT. There is enough review for the paper to constitute a self-contained account of conformal sequestering
Conformally connected universes
International Nuclear Information System (INIS)
Cantor, M.; Piran, T.
1983-01-01
A well-known difficulty associated with the conformal method for the solution of the general relativistic Hamiltonian constraint is the appearance of an aphysical ''bag of gold'' singularity at the nodal surface of the conformal factor. This happens whenever the background Ricci scalar is too large. Using a simple model, it is demonstrated that some of these singular solutions do have a physical meaning, and that these can be considered as initial data for Universe containing black holes, which are connected, in a conformally nonsingular way with each other. The relation between the ADM mass and the horizon area in this solution supports the cosmic censorship conjecture. (author)
Liu, Xin; Zheng, Yu; Samoshina, Nataliya M; Franz, Andreas H; Guo, Xin; Samoshin, Vyacheslav V
2012-12-01
A new type of pH-sensitive liposomes (fliposomes) was designed based on the amphiphiles that are able to perform a pH-triggered conformational flip (flipids). This flip disrupts the liposome membrane and causes rapid release of the liposome cargo, specifically in response to lowered pH. The flipids (1) and (2) are equipped with a trans-2-aminocyclohexanol conformational switch. pH-sensitive fliposomes containing one or both of these flipids, as well as POPC and PEG ceramide, were constructed and characterized. These compositions were stable at 4°C and pH 7.4 for several months. Fliposomes loaded with ANTS/DPX performed an unusually quick content release within a few seconds at pH below 8.5 (in case of 2) and 6.0 (in case of 1). This difference in pH sensitivity demonstrates a potential for the custom design of flipids by variation of the amino group to target areas with specific pH values. The pH titration curves for the fliposome leakage parallel the curves for the acid-induced conformational flip of 1 and 2 studied by ¹H NMR. A plausible mechanism of pH sensitivity starts with an acid-triggered conformational flip of 1 or 2, which changes the molecular size and shape, shortens the lipid tails, and perturbs the liposome membrane, resulting in the content leakage.
Conformable variational iteration method
Directory of Open Access Journals (Sweden)
Omer Acan
2017-02-01
Full Text Available In this study, we introduce the conformable variational iteration method based on new defined fractional derivative called conformable fractional derivative. This new method is applied two fractional order ordinary differential equations. To see how the solutions of this method, linear homogeneous and non-linear non-homogeneous fractional ordinary differential equations are selected. Obtained results are compared the exact solutions and their graphics are plotted to demonstrate efficiency and accuracy of the method.
Delineating the conformal window
DEFF Research Database (Denmark)
Frandsen, Mads Toudal; Pickup, Thomas; Teper, Michael
2011-01-01
We identify and characterise the conformal window in gauge theories relevant for beyond the standard model building, e.g. Technicolour, using the criteria of metric confinement and causal analytic couplings, which are known to be consistent with the phase diagram of supersymmetric QCD from Seiberg...... duality. Using these criteria we find perturbation theory to be consistent throughout the predicted conformal window for several of these gauge theories and we discuss recent lattice results in the light of our findings....
DEFF Research Database (Denmark)
Kreft, Stefanie K.; Petersen, Michael Åxman; Nielsen, Mogens Brøndsted
2015-01-01
We study the effects of the proximity of the orthogonal dipole-switching moiety dihydroazulene/vinylheptafulvene (DHA/VHF) to carbon nanotubes (CNTs). The switches are introduced into a micelle surrounding the CNTs, thereby achieving very close proximity between the molecules and the CNTs...... of the CNTs and the resulting reversible redshift of the nanotubes' emission by the change of the molecules' conformation....
Conformity and statistical tolerancing
Leblond, Laurent; Pillet, Maurice
2018-02-01
Statistical tolerancing was first proposed by Shewhart (Economic Control of Quality of Manufactured Product, (1931) reprinted 1980 by ASQC), in spite of this long history, its use remains moderate. One of the probable reasons for this low utilization is undoubtedly the difficulty for designers to anticipate the risks of this approach. The arithmetic tolerance (worst case) allows a simple interpretation: conformity is defined by the presence of the characteristic in an interval. Statistical tolerancing is more complex in its definition. An interval is not sufficient to define the conformance. To justify the statistical tolerancing formula used by designers, a tolerance interval should be interpreted as the interval where most of the parts produced should probably be located. This tolerance is justified by considering a conformity criterion of the parts guaranteeing low offsets on the latter characteristics. Unlike traditional arithmetic tolerancing, statistical tolerancing requires a sustained exchange of information between design and manufacture to be used safely. This paper proposes a formal definition of the conformity, which we apply successively to the quadratic and arithmetic tolerancing. We introduce a concept of concavity, which helps us to demonstrate the link between tolerancing approach and conformity. We use this concept to demonstrate the various acceptable propositions of statistical tolerancing (in the space decentring, dispersion).
Axiomatic conformal field theory
International Nuclear Information System (INIS)
Gaberdiel, M.R.; Goddard, P.
2000-01-01
A new rigourous approach to conformal field theory is presented. The basic objects are families of complex-valued amplitudes, which define a meromorphic conformal field theory (or chiral algebra) and which lead naturally to the definition of topological vector spaces, between which vertex operators act as continuous operators. In fact, in order to develop the theory, Moebius invariance rather than full conformal invariance is required but it is shown that every Moebius theory can be extended to a conformal theory by the construction of a Virasoro field. In this approach, a representation of a conformal field theory is naturally defined in terms of a family of amplitudes with appropriate analytic properties. It is shown that these amplitudes can also be derived from a suitable collection of states in the meromorphic theory. Zhu's algebra then appears naturally as the algebra of conditions which states defining highest weight representations must satisfy. The relationship of the representations of Zhu's algebra to the classification of highest weight representations is explained. (orig.)
The Murid Herpesvirus-4 gL regulates an entry-associated conformation change in gH.
Directory of Open Access Journals (Sweden)
Laurent Gillet
2008-07-01
Full Text Available The glycoprotein H (gH/gL heterodimer is crucial for herpesvirus membrane fusion. Yet how it functions is not well understood. The Murid Herpesvirus-4 gH, like that of other herpesviruses, adopts its normal virion conformation by associating with gL. However, gH switched back to a gL-independent conformation after virion endocytosis. This switch coincided with a conformation switch in gB and with capsid release. Virions lacking gL constitutively expressed the down-stream form of gH, prematurely switched gB to its down-stream form, and showed premature capsid release with poor infectivity. These data argue that gL plays a key role in regulating a gH and gB functional switch from cell binding to membrane fusion.
Optical packet switched networks
DEFF Research Database (Denmark)
Hansen, Peter Bukhave
1999-01-01
Optical packet switched networks are investigated with emphasis on the performance of the packet switch blocks. Initially, the network context of the optical packet switched network is described showing that a packet network will provide transparency, flexibility and bridge the granularity gap...... in interferometric wavelength converters is investigated showing that a 10 Gbit/s 19 4x4 swich blocks can be cascaded at a BER of 10-14. An analytical traffic model enables the calculation of the traffice performance of a WDM packet network. Hereby the importance of WDM and wavelegth conversion in the switch blocks...... is established as a flexible means to reduce the optical buffer, e.g., the number of fibre delay lines for a 16x16 switch block is reduced from 23 to 6 by going from 2 to 8 wavelength channels pr. inlet. Additionally, a component count analysis is carried out to illustrate the trade-offs in the switch block...
Benzaouia, Abdellah
2012-01-01
Saturated Switching Systems treats the problem of actuator saturation, inherent in all dynamical systems by using two approaches: positive invariance in which the controller is designed to work within a region of non-saturating linear behaviour; and saturation technique which allows saturation but guarantees asymptotic stability. The results obtained are extended from the linear systems in which they were first developed to switching systems with uncertainties, 2D switching systems, switching systems with Markovian jumping and switching systems of the Takagi-Sugeno type. The text represents a thoroughly referenced distillation of results obtained in this field during the last decade. The selected tool for analysis and design of stabilizing controllers is based on multiple Lyapunov functions and linear matrix inequalities. All the results are illustrated with numerical examples and figures many of them being modelled using MATLAB®. Saturated Switching Systems will be of interest to academic researchers in con...
Effective switching frequency multiplier inverter
Su, Gui-Jia [Oak Ridge, TN; Peng, Fang Z [Okemos, MI
2007-08-07
A switching frequency multiplier inverter for low inductance machines that uses parallel connection of switches and each switch is independently controlled according to a pulse width modulation scheme. The effective switching frequency is multiplied by the number of switches connected in parallel while each individual switch operates within its limit of switching frequency. This technique can also be used for other power converters such as DC/DC, AC/DC converters.
Minessale, Anthony
2012-01-01
This is a problem-solution approach to take your FreeSWITCH skills to the next level, where everything is explained in a practical way. If you are a system administrator, hobbyist, or someone who uses FreeSWITCH on a regular basis, this book is for you. Whether you are a FreeSWITCH expert or just getting started, this book will take your skills to the next level.
Elements of magnetic switching
International Nuclear Information System (INIS)
Aaland, K.
1983-01-01
This chapter describes magnetic switching as a method of connecting a capacitor bank (source) to a load; reviews several successful applications of magnetic switching, and discusses switching transformers, limitations and future possibilities. Some of the inflexibility and especially the high cost of magnetic materials may be overcome with the availability of the new splash cooled ribbons (Metglas). Experience has shown that magnetics works despite shock, radiation or noise interferences
Pemodelan Markov Switching Autoregressive
Ariyani, Fiqria Devi; Warsito, Budi; Yasin, Hasbi
2014-01-01
Transition from depreciation to appreciation of exchange rate is one of regime switching that ignored by classic time series model, such as ARIMA, ARCH, or GARCH. Therefore, economic variables are modeled by Markov Switching Autoregressive (MSAR) which consider the regime switching. MLE is not applicable to parameters estimation because regime is an unobservable variable. So that filtering and smoothing process are applied to see the regime probabilities of observation. Using this model, tran...
Molecular dynamics studies of the conformation of sorbitol
Lerbret, A.; Mason, P.E.; Venable, R.M.; Cesàro, A.; Saboungi, M.-L.; Pastor, R.W.; Brady, J.W.
2009-01-01
Molecular dynamics simulations of a 3 m aqueous solution of D-sorbitol (also called D-glucitol) have been performed at 300 K, as well as at two elevated temperatures to promote conformational transitions. In principle, sorbitol is more flexible than glucose since it does not contain a constraining ring. However, a conformational analysis revealed that the sorbitol chain remains extended in solution, in contrast to the bent conformation found experimentally in the crystalline form. While there are 243 staggered conformations of the backbone possible for this open-chain polyol, only a very limited number were found to be stable in the simulations. Although many conformers were briefly sampled, only eight were significantly populated in the simulation. The carbon backbones of all but two of these eight conformers were completely extended, unlike the bent crystal conformation. These extended conformers were stabilized by a quite persistent intramolecular hydrogen bond between the hydroxyl groups of carbon C-2 and C-4. The conformational populations were found to be in good agreement with the limited available NMR data except for the C-2–C-3 torsion (spanned by the O-2–O-4 hydrogen bond), where the NMR data supports a more bent structure. PMID:19744646
International Nuclear Information System (INIS)
Goddard, Peter
1990-01-01
The algebra of the group of conformal transformations in two dimensions consists of two commuting copies of the Virasoro algebra. In many mathematical and physical contexts, the representations of ν which are relevant satisfy two conditions: they are unitary and they have the ''positive energy'' property that L o is bounded below. In an irreducible unitary representation the central element c takes a fixed real value. In physical contexts, the value of c is a characteristic of a theory. If c < 1, it turns out that the conformal algebra is sufficient to ''solve'' the theory, in the sense of relating the calculation of the infinite set of physically interesting quantities to a finite subset which can be handled in principle. For c ≥ 1, this is no longer the case for the algebra alone and one needs some sort of extended conformal algebra, such as the superconformal algebra. It is these algebras that this paper aims at addressing. (author)
Algebraic conformal field theory
International Nuclear Information System (INIS)
Fuchs, J.; Nationaal Inst. voor Kernfysica en Hoge-Energiefysica
1991-11-01
Many conformal field theory features are special versions of structures which are present in arbitrary 2-dimensional quantum field theories. So it makes sense to describe 2-dimensional conformal field theories in context of algebraic theory of superselection sectors. While most of the results of the algebraic theory are rather abstract, conformal field theories offer the possibility to work out many formulae explicitly. In particular, one can construct the full algebra A-bar of global observables and the endomorphisms of A-bar which represent the superselection sectors. Some explicit results are presented for the level 1 so(N) WZW theories; the algebra A-bar is found to be the enveloping algebra of a Lie algebra L-bar which is an extension of the chiral symmetry algebra of the WZW theory. (author). 21 refs., 6 figs
Killing tensors and conformal Killing tensors from conformal Killing vectors
International Nuclear Information System (INIS)
Rani, Raffaele; Edgar, S Brian; Barnes, Alan
2003-01-01
Koutras has proposed some methods to construct reducible proper conformal Killing tensors and Killing tensors (which are, in general, irreducible) when a pair of orthogonal conformal Killing vectors exist in a given space. We give the completely general result demonstrating that this severe restriction of orthogonality is unnecessary. In addition, we correct and extend some results concerning Killing tensors constructed from a single conformal Killing vector. A number of examples demonstrate that it is possible to construct a much larger class of reducible proper conformal Killing tensors and Killing tensors than permitted by the Koutras algorithms. In particular, by showing that all conformal Killing tensors are reducible in conformally flat spaces, we have a method of constructing all conformal Killing tensors, and hence all the Killing tensors (which will in general be irreducible) of conformally flat spaces using their conformal Killing vectors
Quantum-chemical study on the bioactive conformation of epothilones.
Jiménez, Verónica A
2010-12-27
Herein, I report a DFT study on the bioactive conformation of epothilone A based on the analysis of 92 stable conformations of free and bound epothilone to a reduced model of tubulin receptor. The equilibrium structures and relative energies were studied using B3LYP and X3LYP functionals and the 6-31G(d) standard basis set, which was considered appropriate for the size of the systems under study. Calculated relative energies of free and bound epothilones led me to propose a new model for the bioactive conformation of epothilone A, which accounts for several structure-activity data.
Transient-Switch-Signal Suppressor
Bozeman, Richard J., Jr.
1995-01-01
Circuit delays transmission of switch-opening or switch-closing signal until after preset suppression time. Used to prevent transmission of undesired momentary switch signal. Basic mode of operation simple. Beginning of switch signal initiates timing sequence. If switch signal persists after preset suppression time, circuit transmits switch signal to external circuitry. If switch signal no longer present after suppression time, switch signal deemed transient, and circuit does not pass signal on to external circuitry, as though no transient switch signal. Suppression time preset at value large enough to allow for damping of underlying pressure wave or other mechanical transient.
Optimal switching using coherent control
DEFF Research Database (Denmark)
Kristensen, Philip Trøst; Heuck, Mikkel; Mørk, Jesper
2013-01-01
that the switching time, in general, is not limited by the cavity lifetime. Therefore, the total energy required for switching is a more relevant figure of merit than the switching speed, and for a particular two-pulse switching scheme we use calculus of variations to optimize the switching in terms of input energy....
International Nuclear Information System (INIS)
Faria, F. F.
2014-01-01
We construct a massive theory of gravity that is invariant under conformal transformations. The massive action of the theory depends on the metric tensor and a scalar field, which are considered the only field variables. We find the vacuum field equations of the theory and analyze its weak-field approximation and Newtonian limit.
International Nuclear Information System (INIS)
Moore, G.; Seiberg, N.
1989-01-01
All known rational conformal field theories may be obtained from (2+1)-dimensional Chern-Simons gauge theories by appropriate choice of gauge group. We conjecture that all rational field theories are classified by groups via (2+1)-dimensional Chern-Simons gauge theories. (orig.)
International Nuclear Information System (INIS)
Maia, M.D.
2006-01-01
It is shown that the information loss/recovery theorem based on the ADS/CFT correspondence is not consistent with the stability of the Schwarzschild or Reissner-Nordstrom black holes. Nonetheless, the conformal invariance of Yang-Mills theory points to new relativity principle compatible with quantum unitarity near those black holes
Animal culture: chimpanzee conformity?
van Schaik, Carel P
2012-05-22
Culture-like phenomena in wild animals have received much attention, but how good is the evidence and how similar are they to human culture? New data on chimpanzees suggest their culture may even have an element of conformity. Copyright © 2012 Elsevier Ltd. All rights reserved.
Parafermionic conformal field theory
International Nuclear Information System (INIS)
Kurak, V.
1989-09-01
Conformal parafermionic field theories are reviewed with emphasis on the computation of their OPE estructure constants. It is presented a simple computational of these for the Z(N) parafermions, unveilling their Lie algebra content. (A.C.A.S.) [pt
Quantifying polypeptide conformational space: sensitivity to conformation and ensemble definition.
Sullivan, David C; Lim, Carmay
2006-08-24
Quantifying the density of conformations over phase space (the conformational distribution) is needed to model important macromolecular processes such as protein folding. In this work, we quantify the conformational distribution for a simple polypeptide (N-mer polyalanine) using the cumulative distribution function (CDF), which gives the probability that two randomly selected conformations are separated by less than a "conformational" distance and whose inverse gives conformation counts as a function of conformational radius. An important finding is that the conformation counts obtained by the CDF inverse depend critically on the assignment of a conformation's distance span and the ensemble (e.g., unfolded state model): varying ensemble and conformation definition (1 --> 2 A) varies the CDF-based conformation counts for Ala(50) from 10(11) to 10(69). In particular, relatively short molecular dynamics (MD) relaxation of Ala(50)'s random-walk ensemble reduces the number of conformers from 10(55) to 10(14) (using a 1 A root-mean-square-deviation radius conformation definition) pointing to potential disconnections in comparing the results from simplified models of unfolded proteins with those from all-atom MD simulations. Explicit waters are found to roughen the landscape considerably. Under some common conformation definitions, the results herein provide (i) an upper limit to the number of accessible conformations that compose unfolded states of proteins, (ii) the optimal clustering radius/conformation radius for counting conformations for a given energy and solvent model, (iii) a means of comparing various studies, and (iv) an assessment of the applicability of random search in protein folding.
Switched reluctance motor drives
Indian Academy of Sciences (India)
Davis RM, Ray WF, Blake RJ 1981 Inverter drive for switched reluctance: circuits and component ratings. Inst. Elec. Eng. Proc. B128: 126-136. Ehsani M. 1991 Position Sensor elimination technique for the switched reluctance motor drive. US Patent No. 5,072,166. Ehsani M, Ramani K R 1993 Direct control strategies based ...
Manually operated coded switch
International Nuclear Information System (INIS)
Barnette, J.H.
1978-01-01
The disclosure related to a manually operated recodable coded switch in which a code may be inserted, tried and used to actuate a lever controlling an external device. After attempting a code, the switch's code wheels must be returned to their zero positions before another try is made
Switch on, switch off: stiction in nanoelectromechanical switches
Wagner, Till J W
2013-06-13
We present a theoretical investigation of stiction in nanoscale electromechanical contact switches. We develop a mathematical model to describe the deflection of a cantilever beam in response to both electrostatic and van der Waals forces. Particular focus is given to the question of whether adhesive van der Waals forces cause the cantilever to remain in the \\'ON\\' state even when the electrostatic forces are removed. In contrast to previous studies, our theory accounts for deflections with large slopes (i.e. geometrically nonlinear). We solve the resulting equations numerically to study how a cantilever beam adheres to a rigid electrode: transitions between \\'free\\', \\'pinned\\' and \\'clamped\\' states are shown to be discontinuous and to exhibit significant hysteresis. Our findings are compared to previous results from linearized models and the implications for nanoelectromechanical cantilever switch design are discussed. © 2013 IOP Publishing Ltd.
Avalanche photoconductive switching
Pocha, M. D.; Druce, R. L.; Wilson, M. J.; Hofer, W. W.
This paper describes work being done at Lawrence Livermore National Laboratory on the avalanche mode of operation of laser triggered photoconductive switches. We have been able to generate pulses with amplitudes of 2 kV to 35 kV and rise times of 300 to 500 ps, and with a switching gain (energy of output electrical pulse vs energy of trigger optical pulse) of 10(exp 3) to over 10(exp 5). Switches with two very different physical configurations and with two different illumination wavelengths (1.06 micrometer, 890 nm) exhibit very similar behavior. The avalanche switching behavior, therefore, appears to be related to the material parameters rather than the optical wavelength or switch geometry. Considerable further work needs to be done to fully characterize and understand this mode of operation.
Avalanche photoconductive switching
Energy Technology Data Exchange (ETDEWEB)
Pocha, M.D.; Druce, R.L.; Wilson, M.J.; Hofer, W.W.
1989-01-01
This paper describes work being done at Lawrence Livermore National Laboratory on the avalanche mode of operation of laser triggered photoconductive switches. We have been able to generate pulses with amplitudes of 2 kV--35 kV and rise times of 300--500 ps, and with a switching gain (energy of output electrical pulse vs energy of trigger optical pulse) of 10{sup 3} to over 10{sup 5}. Switches with two very different physical configurations and with two different illumination wavelengths (1.06 {mu}m, 890 nm) exhibit very similar behavior. The avalanche switching behavior, therefore, appears to be related to the material parameters rather than the optical wavelength or switch geometry. Considerable further work needs to be done to fully characterize and understand this mode of operation. 3 refs., 6 figs.
Covariant Conformal Decomposition of Einstein Equations
Gourgoulhon, E.; Novak, J.
It has been shown1,2 that the usual 3+1 form of Einstein's equations may be ill-posed. This result has been previously observed in numerical simulations3,4. We present a 3+1 type formalism inspired by these works to decompose Einstein's equations. This decomposition is motivated by the aim of stable numerical implementation and resolution of the equations. We introduce the conformal 3-``metric'' (scaled by the determinant of the usual 3-metric) which is a tensor density of weight -2/3. The Einstein equations are then derived in terms of this ``metric'', of the conformal extrinsic curvature and in terms of the associated derivative. We also introduce a flat 3-metric (the asymptotic metric for isolated systems) and the associated derivative. Finally, the generalized Dirac gauge (introduced by Smarr and York5) is used in this formalism and some examples of formulation of Einstein's equations are shown.
International Nuclear Information System (INIS)
Martin, T.H.; Seamen, J.F.; Jobe, D.O.
1993-01-01
The authors experiments show energy losses between 2 and 10 times that of the resistive time predictions. The experiments used hydrogen, helium, air, nitrogen, SF 6 polyethylene, and water for the switching dielectric. Previously underestimated switch losses have caused over predicting the accelerator outputs. Accurate estimation of these losses is now necessary for new high-efficiency pulsed power devices where the switching losses constitute the major portion of the total energy loss. They found that the switch energy losses scale as (V peak I peak ) 1.1846 . When using this scaling, the energy losses in any of the tested dielectrics are almost the same. This relationship is valid for several orders of magnitude and suggested a theoretical basis for these results. Currents up to .65 MA, with voltages to 3 MV were applied to various gaps during these experiments. The authors data and the developed theory indicates that the switch power loss continues for a much longer time than the resistive time, with peak power loss generally occurring at peak current in a ranging discharge instead of the early current time. All of the experiments were circuit code modeled after developing a new switch loss version based on the theory. The circuit code predicts switch energy loss and peak currents as a function of time. During analysis of the data they noticed slight constant offsets between the theory and data that depended on the dielectric. They modified the plasma conductivity for each tested dielectric to lessen this offset
Transportation Conformity Training and Presentations
EPA's OTAQ has provided multiple conformity training sessions in the past to assist state and local governments in implementing conformity requirements. As training information is prepared for other venues, it will be posted on this page.
Conformation-dependent DNA attraction
Li, Weifeng; Nordenskiöld, Lars; Zhou, Ruhong; Mu, Yuguang
2014-05-01
Understanding how DNA molecules interact with other biomolecules is related to how they utilize their functions and is therefore critical for understanding their structure-function relationships. For a long time, the existence of Z-form DNA (a left-handed double helical version of DNA, instead of the common right-handed B-form) has puzzled the scientists, and the definitive biological significance of Z-DNA has not yet been clarified. In this study, the effects of DNA conformation in DNA-DNA interactions are explored by molecular dynamics simulations. Using umbrella sampling, we find that for both B- and Z-form DNA, surrounding Mg2+ ions always exert themselves to screen the Coulomb repulsion between DNA phosphates, resulting in very weak attractive force. On the contrary, a tight and stable bound state is discovered for Z-DNA in the presence of Mg2+ or Na+, benefiting from their hydrophobic nature. Based on the contact surface and a dewetting process analysis, a two-stage binding process of Z-DNA is outlined: two Z-DNA first attract each other through charge screening and Mg2+ bridges to phosphate groups in the same way as that of B-DNA, after which hydrophobic contacts of the deoxyribose groups are formed via a dewetting effect, resulting in stable attraction between two Z-DNA molecules. The highlighted hydrophobic nature of Z-DNA interaction from the current study may help to understand the biological functions of Z-DNA in gene transcription.Understanding how DNA molecules interact with other biomolecules is related to how they utilize their functions and is therefore critical for understanding their structure-function relationships. For a long time, the existence of Z-form DNA (a left-handed double helical version of DNA, instead of the common right-handed B-form) has puzzled the scientists, and the definitive biological significance of Z-DNA has not yet been clarified. In this study, the effects of DNA conformation in DNA-DNA interactions are explored by
Conformational flexibility of aspartame.
Toniolo, Claudio; Temussi, Pierandrea
2016-05-01
L-Aspartyl-L-phenylalanine methyl ester, better known as aspartame, is not only one of the most used artificial sweeteners, but also a very interesting molecule with respect to the correlation between molecular structure and taste. The extreme conformational flexibility of this dipeptide posed a huge difficulty when researchers tried to use it as a lead compound to design new sweeteners. In particular, it was difficult to take advantage of its molecular model as a mold to infer the shape of the, then unknown, active site of the sweet taste receptor. Here, we follow the story of the 3D structural aspects of aspartame from early conformational studies to recent docking into homology models of the receptor. © 2016 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 106: 376-384, 2016. © 2016 Wiley Periodicals, Inc.
Conformal description of spinning particles
International Nuclear Information System (INIS)
Todorov, I.T.
1986-01-01
This book is an introduction to the application of the conformal group to quantum field theory of particles with spin. After an introduction to the twistor representations of the conformal group of a conformally flat space-time and twistor flag manifolds with Su(2,2) orbits the classical phase space of conformal spinning particles is described. Thereafter the twistor description of classical zero mass fields is considered together with the quantization. (HSI)
Conformal boundaries of warped products
DEFF Research Database (Denmark)
Kokkendorff, Simon Lyngby
2006-01-01
In this note we prove a result on how to determine the conformal boundary of a type of warped product of two length spaces in terms of the individual conformal boundaries. In the situation, that we treat, the warping and conformal distortion functions are functions of distance to a base point....... The result is applied to produce examples of CAT(0)-spaces, where the conformal and ideal boundaries differ in interesting ways....
Conformal radiotherapy: a glossary
International Nuclear Information System (INIS)
Dubray, B.; Giraud, P.; Beaudre, A.
1999-01-01
Most of the concepts and terms related to conformal radiotherapy were produced by English-speaking authors and eventually validated by international groups of experts, whose working language was also English. Therefore, a significant part of this literature is poorly accessible to the French-speaking radiation oncology community. The present paper gathers the 'official' definitions already published in French, along with propositions for the remaining terms which should be submitted to a more formal and representative validation process. (author)
Electromechanical magnetization switching
Energy Technology Data Exchange (ETDEWEB)
Chudnovsky, Eugene M. [Department of Physics and Astronomy, Lehman College and Graduate School, The City University of New York, 250 Bedford Park Boulevard West, Bronx, New York 10468-1589 (United States); Jaafar, Reem [Department of Mathematics, Engineering and Computer Science, LaGuardia Community College, The City University of New York, 31-10 Thomson Avenue, Long Island City, New York 11101 (United States)
2015-03-14
We show that the magnetization of a torsional oscillator that, in addition to the magnetic moment also possesses an electrical polarization, can be switched by the electric field that ignites mechanical oscillations at the frequency comparable to the frequency of the ferromagnetic resonance. The 180° switching arises from the spin-rotation coupling and is not prohibited by the different symmetry of the magnetic moment and the electric field as in the case of a stationary magnet. Analytical equations describing the system have been derived and investigated numerically. Phase diagrams showing the range of parameters required for the switching have been obtained.
Electromechanical magnetization switching
International Nuclear Information System (INIS)
Chudnovsky, Eugene M.; Jaafar, Reem
2015-01-01
We show that the magnetization of a torsional oscillator that, in addition to the magnetic moment also possesses an electrical polarization, can be switched by the electric field that ignites mechanical oscillations at the frequency comparable to the frequency of the ferromagnetic resonance. The 180° switching arises from the spin-rotation coupling and is not prohibited by the different symmetry of the magnetic moment and the electric field as in the case of a stationary magnet. Analytical equations describing the system have been derived and investigated numerically. Phase diagrams showing the range of parameters required for the switching have been obtained
Reynolds, Harry
2009-01-01
JUNOS Enterprise Switching is the only detailed technical book on Juniper Networks' new Ethernet-switching EX product platform. With this book, you'll learn all about the hardware and ASIC design prowess of the EX platform, as well as the JUNOS Software that powers it. Not only is this extremely practical book a useful, hands-on manual to the EX platform, it also makes an excellent study guide for certification exams in the JNTCP enterprise tracks. The authors have based JUNOS Enterprise Switching on their own Juniper training practices and programs, as well as the configuration, maintenanc
International Nuclear Information System (INIS)
Kim, Hui Jun
1993-06-01
This book concentrates on switch mode power supply. It has four parts, which are introduction of switch mode power supply with DC-DC converter such as Buck converter boost converter, Buck-boost converter and PWM control circuit, explanation for SMPS with DC-DC converter modeling and power mode control, resonance converter like resonance switch, converter, multi resonance converter and series resonance and parallel resonance converters, basic test of SMPS with PWM control circuit, Buck converter, Boost converter, flyback converter, forward converter and IC for control circuit.
Conformation-dependent DNA attraction.
Li, Weifeng; Nordenskiöld, Lars; Zhou, Ruhong; Mu, Yuguang
2014-06-21
Understanding how DNA molecules interact with other biomolecules is related to how they utilize their functions and is therefore critical for understanding their structure-function relationships. For a long time, the existence of Z-form DNA (a left-handed double helical version of DNA, instead of the common right-handed B-form) has puzzled the scientists, and the definitive biological significance of Z-DNA has not yet been clarified. In this study, the effects of DNA conformation in DNA-DNA interactions are explored by molecular dynamics simulations. Using umbrella sampling, we find that for both B- and Z-form DNA, surrounding Mg(2+) ions always exert themselves to screen the Coulomb repulsion between DNA phosphates, resulting in very weak attractive force. On the contrary, a tight and stable bound state is discovered for Z-DNA in the presence of Mg(2+) or Na(+), benefiting from their hydrophobic nature. Based on the contact surface and a dewetting process analysis, a two-stage binding process of Z-DNA is outlined: two Z-DNA first attract each other through charge screening and Mg(2+) bridges to phosphate groups in the same way as that of B-DNA, after which hydrophobic contacts of the deoxyribose groups are formed via a dewetting effect, resulting in stable attraction between two Z-DNA molecules. The highlighted hydrophobic nature of Z-DNA interaction from the current study may help to understand the biological functions of Z-DNA in gene transcription.
National Oceanic and Atmospheric Administration, Department of Commerce — Tissue samples (skin, bone, blood, muscle) are analyzed for stable carbon, stable nitrogen, and stable sulfur analysis. Many samples are used in their entirety for...
Torsional Arming of Thiomannosyl Donors & Conformational Control of Hexahydropyridazines via pH
DEFF Research Database (Denmark)
Olsen, Jacob Ingemar
The overall objective of the research presented in this PhD thesis was to investigate torsional arming of thiogalacto- and thiomannosyl donors (part 1) and to investigate the possible synthesis and attachment of a pH regulated conformational switch to an α-cyclodextrin (part 2). Part 1: It is well...... demonstrated their ability to change conformation under different conditions. These conformational changes are connected to various intramolecular interactions and can to some extent, be controlled by pH (Chapter 3). Fusing these conformationally labile compounds to the rim of a cyclodextrin would create...... compounds that could release molecules at a specified change in pH conditions. To investigate this, four hexahydropyridazines were synthesized and investigated for their pH induced conformational change (Chapter 4). Out of the four compounds, one revealed to flip between two conformations depending on pH...
Conformal Phase Diagram of Complete Asymptotically Free Theories
DEFF Research Database (Denmark)
Pica, Claudio; Ryttov, Thomas A.; Sannino, Francesco
2017-01-01
function. We provide the general conditions that the beta function coefficients must abide for the theory to be completely asymptotically free while simultaneously possessing an infrared stable fixed point. We also uncover special trajectories in coupling space along which some couplings are both...... asymptotically safe and infrared conformal....
3,3-Dimethylacylthioureas: "S", "-S", "U" or "W" Conformation?
Directory of Open Access Journals (Sweden)
M. Piris
2000-03-01
Full Text Available We report a study of 3,3-dimethyl substituted acylthioureas. X ray data and quantum mechanical calculations demonstrated that the "S" conformation is the most stable both for the acylthioureas and the corresponding anions. The high regioselectivity towards S-alkylation is explained on the basis of the localization of the HOMO mainly over the sulfur atom.
Multi-Stable Morphing Cellular Structures
2015-05-14
stiffness on critical buckling load and arch stres - ses. It should be noted that although the arches in these studies snapped-through, they did not...switch roles in moving the VMT back from the second to the first stable equilibrium state. A prototype is designed and fabricated and the transition...pulling forward on the insert on the right blade and assisting its deployment. During this process the cable 3-4-1 goes slack and plays no role , but if
Conformational Control of Energy Transfer: A Mechanism for Biocompatible Nanocrystal-Based Sensors
Kay, Euan R.; Lee, Jungmin; Nocera, Daniel; Bawendi, Moungi G.
2012-01-01
Fold-up fluorophore: A new paradigm for designing self-referencing fluorescent nanosensors is demonstrated by interfacing a pH-triggered molecular conformational switch with quantum dots. Analytedependent, large-amplitude conformational motion controls the distance between the nanocrystal energy donor and an organic FRET acceptor. The result is a fluorescence signal capable of reporting pH values from individual endosomes in living cells.
Conformational analysis by intersection: CONAN.
Smellie, Andrew; Stanton, Robert; Henne, Randy; Teig, Steve
2003-01-15
As high throughput techniques in chemical synthesis and screening improve, more demands are placed on computer assisted design and virtual screening. Many of these computational methods require one or more three-dimensional conformations for molecules, creating a demand for a conformational analysis tool that can rapidly and robustly cover the low-energy conformational spaces of small molecules. A new algorithm of intersection is presented here, which quickly generates (on average heuristics are applied after intersection to generate a small representative collection of conformations that span the conformational space. In a study of approximately 97,000 randomly selected molecules from the MDDR, results are presented that explore these conformations and their ability to cover low-energy conformational space. Copyright 2002 Wiley Periodicals, Inc. J Comput Chem 24: 10-20, 2003
Conformal superalgebras via tractor calculus
Lischewski, Andree
2015-01-01
We use the manifestly conformally invariant description of a Lorentzian conformal structure in terms of a parabolic Cartan geometry in order to introduce a superalgebra structure on the space of twistor spinors and normal conformal vector fields formulated in purely algebraic terms on parallel sections in tractor bundles. Via a fixed metric in the conformal class, one reproduces a conformal superalgebra structure that has been considered in the literature before. The tractor approach, however, makes clear that the failure of this object to be a Lie superalgebra in certain cases is due to purely algebraic identities on the spinor module and to special properties of the conformal holonomy representation. Moreover, it naturally generalizes to higher signatures. This yields new formulas for constructing new twistor spinors and higher order normal conformal Killing forms out of existing ones, generalizing the well-known spinorial Lie derivative. Moreover, we derive restrictions on the possible dimension of the space of twistor spinors in any metric signature.
Optical switching systems using nanostructures
DEFF Research Database (Denmark)
Stubkjær, Kristian
2004-01-01
High capacity multiservice optical networks require compact and efficient switches. The potential benefits of optical switch elements based on nanostructured material are reviewed considering various material systems.......High capacity multiservice optical networks require compact and efficient switches. The potential benefits of optical switch elements based on nanostructured material are reviewed considering various material systems....
Crystal structures and conformers of CyMe4-BTBP
Directory of Open Access Journals (Sweden)
Lyczko Krzysztof
2015-12-01
Full Text Available The crystal structure of new conformation of the CyMe4-BTBP ligand (ttc has been presented. The ttt conformer of this compound in a form of THF solvate has been also crystallized. The geometries of six possible conformations (ttt, ttc, tct, tcc, ctc and ccc of the CyMe4-BTBP ligand have been modeled in the gas phase and in solutions (MeOH and H2O by DFT calculations using B3LYP/6-31G(d,p method. According to the calculations, in the three different media the conformers with trans orientation of the N atoms in the bipyridyl moiety are the most stable.
Classical extended conformal symmetries
International Nuclear Information System (INIS)
Viswanathan, R.
1990-02-01
Extensions of the Virasoro algebra are constructed as Poisson brackets of higher spin fields which appear as coefficient fields in certain covariant derivative operators of order N. These differential operators are constructed so as to be covariant under reparametrizations on fields of definite conformal dimension. Factorization of such an N-th order operator in terms of first order operators, together with the inclusion of a spin one U(1) current, is shown to lead to a two-parameter W-algebra. One of these parameters plays the role of interpolating between W-algebras based on different Lie algebras of the same rank. (author). 11 refs
Photonic Switching Devices Using Light Bullets
Goorjian, Peter M. (Inventor)
1999-01-01
A unique ultra-fast, all-optical switching device or switch is made with readily available, relatively inexpensive, highly nonlinear optical materials. which includes highly nonlinear optical glasses, semiconductor crystals and/or multiple quantum well semiconductor materials. At the specified wavelengths. these optical materials have a sufficiently negative group velocity dispersion and high nonlinear index of refraction to support stable light bullets. The light bullets counter-propagate through, and interact within the waveguide to selectively change each others' directions of propagation into predetermined channels. In one embodiment, the switch utilizes a rectangularly planar slab waveguide. and further includes two central channels and a plurality of lateral channels for guiding the light bullets into and out of the waveguide. An advantage of the present all-optical switching device lies in its practical use of light bullets, thus preventing the degeneration of the pulses due to dispersion and diffraction at the front and back of the pulses. Another advantage of the switching device is the relative insensitivity of the collision process to the time difference in which the counter-propagating pulses enter the waveguide. since. contrary to conventional co-propagating spatial solitons, the relative phase of the colliding pulses does not affect the interaction of these pulses. Yet another feature of the present all-optical switching device is the selection of the light pulse parameters which enables the generation of light bullets in nonlinear optical materials. including highly nonlinear optical glasses and semiconductor materials such as semiconductor crystals and/or multiple quantum well semiconductor materials.
Stable convergence and stable limit theorems
Häusler, Erich
2015-01-01
The authors present a concise but complete exposition of the mathematical theory of stable convergence and give various applications in different areas of probability theory and mathematical statistics to illustrate the usefulness of this concept. Stable convergence holds in many limit theorems of probability theory and statistics – such as the classical central limit theorem – which are usually formulated in terms of convergence in distribution. Originated by Alfred Rényi, the notion of stable convergence is stronger than the classical weak convergence of probability measures. A variety of methods is described which can be used to establish this stronger stable convergence in many limit theorems which were originally formulated only in terms of weak convergence. Naturally, these stronger limit theorems have new and stronger consequences which should not be missed by neglecting the notion of stable convergence. The presentation will be accessible to researchers and advanced students at the master's level...
Conformally symmetric traversable wormholes
International Nuclear Information System (INIS)
Boehmer, Christian G.; Harko, Tiberiu; Lobo, Francisco S. N.
2007-01-01
Exact solutions of traversable wormholes are found under the assumption of spherical symmetry and the existence of a nonstatic conformal symmetry, which presents a more systematic approach in searching for exact wormhole solutions. In this work, a wide variety of solutions are deduced by considering choices for the form function, a specific linear equation of state relating the energy density and the pressure anisotropy, and various phantom wormhole geometries are explored. A large class of solutions impose that the spatial distribution of the exotic matter is restricted to the throat neighborhood, with a cutoff of the stress-energy tensor at a finite junction interface, although asymptotically flat exact solutions are also found. Using the 'volume integral quantifier', it is found that the conformally symmetric phantom wormhole geometries may, in principle, be constructed by infinitesimally small amounts of averaged null energy condition violating matter. Considering the tidal acceleration traversability conditions for the phantom wormhole geometry, specific wormhole dimensions and the traversal velocity are also deduced
Supergravitational conformal Galileons
Deen, Rehan; Ovrut, Burt
2017-08-01
The worldvolume actions of 3+1 dimensional bosonic branes embedded in a five-dimensional bulk space can lead to important effective field theories, such as the DBI conformal Galileons, and may, when the Null Energy Condition is violated, play an essential role in cosmological theories of the early universe. These include Galileon Genesis and "bouncing" cosmology, where a pre-Big Bang contracting phase bounces smoothly to the presently observed expanding universe. Perhaps the most natural arena for such branes to arise is within the context of superstring and M -theory vacua. Here, not only are branes required for the consistency of the theory, but, in many cases, the exact spectrum of particle physics occurs at low energy. However, such theories have the additional constraint that they must be N = 1 supersymmetric. This motivates us to compute the worldvolume actions of N = 1 supersymmetric three-branes, first in flat superspace and then to generalize them to N = 1 supergravitation. In this paper, for simplicity, we begin the process, not within the context of a superstring vacuum but, rather, for the conformal Galileons arising on a co-dimension one brane embedded in a maximally symmetric AdS 5 bulk space. We proceed to N = 1 supersymmetrize the associated worldvolume theory and then generalize the results to N = 1 supergravity, opening the door to possible new cosmological scenarios
Borba, Ana; Gómez-Zavaglia, Andrea; Fausto, Rui
2006-08-01
Dimethyl sulfite has three conformers of low energy, GG, GT and GG', which have significant populations in the gas phase at room temperature. According to theoretical predictions, the GT and GG' conformers are higher in energy than the GG conformer by 0.83 and 1.18 kJ mol -1, respectively, while the barriers associated with the GG'→GT and GT→GG isomerizations are 1.90 and 9.64 kJ mol -1, respectively. Experimental data obtained for the compound isolated in solid argon, krypton and xenon demonstrated that the GG'→GT energy barrier is low enough to allow an extensive conversion of the GG' form into the GT conformer during deposition of the matrices, the extent of the conversion increasing along the series Ar
Energy reversible switching from amorphous metal based nanoelectromechanical switch
Mayet, Abdulilah M.; Smith, Casey; Hussain, Muhammad Mustafa
2013-01-01
We report observation of energy reversible switching from amorphous metal based nanoelectromechanical (NEM) switch. For ultra-low power electronics, NEM switches can be used as a complementary switching element in many nanoelectronic system applications. Its inherent zero power consumption because of mechanical detachment is an attractive feature. However, its operating voltage needs to be in the realm of 1 volt or lower. Appropriate design and lower Young's modulus can contribute achieving lower operating voltage. Therefore, we have developed amorphous metal with low Young's modulus and in this paper reporting the energy reversible switching from a laterally actuated double electrode NEM switch. © 2013 IEEE.
Energy reversible switching from amorphous metal based nanoelectromechanical switch
Mayet, Abdulilah M.
2013-08-01
We report observation of energy reversible switching from amorphous metal based nanoelectromechanical (NEM) switch. For ultra-low power electronics, NEM switches can be used as a complementary switching element in many nanoelectronic system applications. Its inherent zero power consumption because of mechanical detachment is an attractive feature. However, its operating voltage needs to be in the realm of 1 volt or lower. Appropriate design and lower Young\\'s modulus can contribute achieving lower operating voltage. Therefore, we have developed amorphous metal with low Young\\'s modulus and in this paper reporting the energy reversible switching from a laterally actuated double electrode NEM switch. © 2013 IEEE.
EBV Latency Types Adopt Alternative Chromatin Conformations
Tempera, Italo; Klichinsky, Michael; Lieberman, Paul M.
2011-01-01
Epstein-Barr Virus (EBV) can establish latent infections with distinct gene expression patterns referred to as latency types. These different latency types are epigenetically stable and correspond to different promoter utilization. Here we explore the three-dimensional conformations of the EBV genome in different latency types. We employed Chromosome Conformation Capture (3C) assay to investigate chromatin loop formation between the OriP enhancer and the promoters that determine type I (Qp) or type III (Cp) gene expression. We show that OriP is in close physical proximity to Qp in type I latency, and to Cp in type III latency. The cellular chromatin insulator and boundary factor CTCF was implicated in EBV chromatin loop formation. Combining 3C and ChIP assays we found that CTCF is physically associated with OriP-Qp loop formation in type I and OriP-Cp loop formation in type III latency. Mutations in the CTCF binding site located at Qp disrupt loop formation between Qp and OriP, and lead to the activation of Cp transcription. Mutation of the CTCF binding site at Cp, as well as siRNA depletion of CTCF eliminates both OriP-associated loops, indicating that CTCF plays an integral role in loop formation. These data indicate that epigenetically stable EBV latency types adopt distinct chromatin architectures that depend on CTCF and mediate alternative promoter targeting by the OriP enhancer. PMID:21829357
EBV latency types adopt alternative chromatin conformations.
Directory of Open Access Journals (Sweden)
Italo Tempera
2011-07-01
Full Text Available Epstein-Barr Virus (EBV can establish latent infections with distinct gene expression patterns referred to as latency types. These different latency types are epigenetically stable and correspond to different promoter utilization. Here we explore the three-dimensional conformations of the EBV genome in different latency types. We employed Chromosome Conformation Capture (3C assay to investigate chromatin loop formation between the OriP enhancer and the promoters that determine type I (Qp or type III (Cp gene expression. We show that OriP is in close physical proximity to Qp in type I latency, and to Cp in type III latency. The cellular chromatin insulator and boundary factor CTCF was implicated in EBV chromatin loop formation. Combining 3C and ChIP assays we found that CTCF is physically associated with OriP-Qp loop formation in type I and OriP-Cp loop formation in type III latency. Mutations in the CTCF binding site located at Qp disrupt loop formation between Qp and OriP, and lead to the activation of Cp transcription. Mutation of the CTCF binding site at Cp, as well as siRNA depletion of CTCF eliminates both OriP-associated loops, indicating that CTCF plays an integral role in loop formation. These data indicate that epigenetically stable EBV latency types adopt distinct chromatin architectures that depend on CTCF and mediate alternative promoter targeting by the OriP enhancer.
Optical computer switching network
Clymer, B.; Collins, S. A., Jr.
1985-01-01
The design for an optical switching system for minicomputers that uses an optical spatial light modulator such as a Hughes liquid crystal light valve is presented. The switching system is designed to connect 80 minicomputers coupled to the switching system by optical fibers. The system has two major parts: the connection system that connects the data lines by which the computers communicate via a two-dimensional optical matrix array and the control system that controls which computers are connected. The basic system, the matrix-based connecting system, and some of the optical components to be used are described. Finally, the details of the control system are given and illustrated with a discussion of timing.
Conformational elasticity can facilitate TALE-DNA recognition.
Lei, Hongxing; Sun, Jiya; Baldwin, Enoch P; Segal, David J; Duan, Yong
2014-01-01
Sequence-programmable transcription activator-like effector (TALE) proteins have emerged as a highly efficient tool for genome engineering. Recent crystal structures depict a transition between an open unbound solenoid and more compact DNA-bound solenoid formed by the 34 amino acid repeats. How TALEs switch conformation between these two forms without substantial energetic compensation, and how the repeat-variable di-residues (RVDs) discriminate between the cognate base and other bases still remain unclear. Computational analysis on these two aspects of TALE-DNA interaction mechanism has been conducted in order to achieve a better understanding of the energetics. High elasticity was observed in the molecular dynamics simulations of DNA-free TALE structure that started from the bound conformation where it sampled a wide range of conformations including the experimentally determined apo and bound conformations. This elastic feature was also observed in the simulations starting from the apo form which suggests low free energy barrier between the two conformations and small compensation required upon binding. To analyze binding specificity, we performed free energy calculations of various combinations of RVDs and bases using Poisson-Boltzmann surface area (PBSA) and other approaches. The PBSA calculations indicated that the native RVD-base structures had lower binding free energy than mismatched structures for most of the RVDs examined. Our theoretical analyses provided new insight on the dynamics and energetics of TALE-DNA binding mechanism. © 2014 Elsevier Inc. All rights reserved.
Ward identities for conformal models
International Nuclear Information System (INIS)
Lazzarini, S.; Stora, R.
1988-01-01
Ward identities which express the symmetry of conformal models are treated. Diffeomorphism invariance or locally holomorphic coordinate transformations are used. Diffeomorphism invariance is then understood in terms of Riemannian geometry. Two different sets of Ward identities expressing diffeomorphism invariance in a conformally invariant way are found for the free bosonic string. Using a geometrical argument, the correct invariance for a large class of conformal models is given
Conformational analysis of lignin models
International Nuclear Information System (INIS)
Santos, Helio F. dos
2001-01-01
The conformational equilibrium for two 5,5' biphenyl lignin models have been analyzed using a quantum mechanical semiempirical method. The gas phase and solution structures are discussed based on the NMR and X-ray experimental data. The results obtained showed that the observed conformations are solvent-dependent, being the geometries and the thermodynamic properties correlated with the experimental information. This study shows how a systematic theoretical conformational analysis can help to understand chemical processes at a molecular level. (author)
On the linear conformal gravitation
International Nuclear Information System (INIS)
Pal'chik, M.Ya.; Fradkin, E.S.
1984-01-01
Conformal gravitation is analyzed under the assumption that its solution possesses the property of conformal symmetry. This assumption has sense in the case of small distances and only for definite types of matter fields, namely: at special choice of matter fields and their interactions, providing a lack of conformal anomalies; or at definite magnitudes of binding constants, coinciding with the zeroes of the Gell-Mann-Low function. The field equations, of the group-theoretical natura are obtained
Fermion-scalar conformal blocks
Energy Technology Data Exchange (ETDEWEB)
Iliesiu, Luca [Joseph Henry Laboratories, Princeton University,Washington Road, Princeton, NJ 08544 (United States); Kos, Filip [Department of Physics, Yale University,217 Prospect Street, New Haven, CT 06520 (United States); Poland, David [Department of Physics, Yale University,217 Prospect Street, New Haven, CT 06520 (United States); School of Natural Sciences, Institute for Advanced Study,1 Einstein Dr, Princeton, New Jersey 08540 (United States); Pufu, Silviu S. [Joseph Henry Laboratories, Princeton University,Washington Road, Princeton, NJ 08544 (United States); Simmons-Duffin, David [School of Natural Sciences, Institute for Advanced Study,1 Einstein Dr, Princeton, New Jersey 08540 (United States); Yacoby, Ran [Joseph Henry Laboratories, Princeton University,Washington Road, Princeton, NJ 08544 (United States)
2016-04-13
We compute the conformal blocks associated with scalar-scalar-fermion-fermion 4-point functions in 3D CFTs. Together with the known scalar conformal blocks, our result completes the task of determining the so-called ‘seed blocks’ in three dimensions. Conformal blocks associated with 4-point functions of operators with arbitrary spins can now be determined from these seed blocks by using known differential operators.
DEFF Research Database (Denmark)
Simonsen, Maria
This thesis treats stochastic systems with switching dynamics. Models with these characteristics are studied from several perspectives. Initially in a simple framework given in the form of stochastic differential equations and, later, in an extended form which fits into the framework of sliding...... mode control. It is investigated how to understand and interpret solutions to models of switched systems, which are exposed to discontinuous dynamics and uncertainties (primarily) in the form of white noise. The goal is to gain knowledge about the performance of the system by interpreting the solution...
Conditions for Model Matching of Switched Asynchronous Sequential Machines with Output Feedback
Jung–Min Yang
2016-01-01
Solvability of the model matching problem for input/output switched asynchronous sequential machines is discussed in this paper. The control objective is to determine the existence condition and design algorithm for a corrective controller that can match the stable-state behavior of the closed-loop system to that of a reference model. Switching operations and correction procedures are incorporated using output feedback so that the controlled switched machine can show the ...
Instantons in conformal gravity
International Nuclear Information System (INIS)
Strominger, A.; Horowitz, G.T.; Perry, M.J.
1984-01-01
Fe study extrema of the general conformally invariant action: Ssub(c)=∫1/sub(α) 2 Csup(abcd)Csub(abcd)+γRsup(abcd*)Rsup(*)sub(abcd)+iTHETARsup(abcd)*Rsub(abcd). We find the first examples in four dimensions of asymptotically euclidean gravitational instantons. These have arbitrary Euler number and Hirzebruch signature. Some of these instantons represent tunneling between zero-curvature vacua that are not related by small gauge transformations. Others represent tunneling between flat space and topologically non-trivial zero-energy initial data. A general formula for the one-loop determinant is derived in terms of the renormalization group invariant masses, the volume of space-time, the Euler number and the Hirzebruch signature. (orig.)
DEFF Research Database (Denmark)
Gjerdrum Pedersen, Esben Rahbek; Neergaard, Peter; Thusgaard Pedersen, Janni
2013-01-01
This paper analyses how large Danish companies are responding to new governmental regulation which requires them to report on corporate social responsibility (CSR). The paper is based on an analysis of 142 company annual reports required by the new Danish regulation regarding CSR reporting, plus 10...... interviews with first-time reporting companies and six interviews with companies that failed to comply with the new law. It is concluded that coercive pressures from government have an impact on CSR reporting practices. Further, the analysis finds traces of mimetic isomorphism which inspires a homogenisation...... in CSR reporting practices. Finally, it is argued that non-conformance with the new regulatory requirements is not solely about conscious resistance but may also be caused by, for example, lack of awareness, resource limitations, misinterpretations, and practical difficulties....
Reflections on Conformal Spectra
CERN. Geneva
2015-01-01
We use modular invariance and crossing symmetry of conformal field theory to reveal approximate reflection symmetries in the spectral decompositions of the partition function in two dimensions in the limit of large central charge and of the four-point function in any dimension in the limit of large scaling dimensions Δ0 of external operators. We use these symmetries to motivate universal upper bounds on the spectrum and the operator product expansion coefficients, which we then derive by independent techniques. Some of the bounds for four-point functions are valid for finite Δ0 as well as for large Δ0. We discuss a similar symmetry in a large spacetime dimension limit. Finally, we comment on the analogue of the Cardy formula and sparse light spectrum condition for the four-point function. (based on 1510.08772 with Kim & Ooguri). This seminar will be given via videolink
Conformal boundary loop models
International Nuclear Information System (INIS)
Jacobsen, Jesper Lykke; Saleur, Hubert
2008-01-01
We study a model of densely packed self-avoiding loops on the annulus, related to the Temperley-Lieb algebra with an extra idempotent boundary generator. Four different weights are given to the loops, depending on their homotopy class and whether they touch the outer rim of the annulus. When the weight of a contractible bulk loop x≡q+q -1 element of (-2,2], this model is conformally invariant for any real weight of the remaining three parameters. We classify the conformal boundary conditions and give exact expressions for the corresponding boundary scaling dimensions. The amplitudes with which the sectors with any prescribed number and types of non-contractible loops appear in the full partition function Z are computed rigorously. Based on this, we write a number of identities involving Z which hold true for any finite size. When the weight of a contractible boundary loop y takes certain discrete values, y r ≡([r+1] q )/([r] q ) with r integer, other identities involving the standard characters K r,s of the Virasoro algebra are established. The connection with Dirichlet and Neumann boundary conditions in the O(n) model is discussed in detail, and new scaling dimensions are derived. When q is a root of unity and y=y r , exact connections with the A m type RSOS model are made. These involve precise relations between the spectra of the loop and RSOS model transfer matrices, valid in finite size. Finally, the results where y=y r are related to the theory of Temperley-Lieb cabling
Energy Technology Data Exchange (ETDEWEB)
Brodsky, S
2003-11-19
Theoretical and phenomenological evidence is now accumulating that the QCD coupling becomes constant at small virtuality; i.e., {alpha}{sub s}(Q{sup 2}) develops an infrared fixed point in contradiction to the usual assumption of singular growth in the infrared. For example, the hadronic decays of the {tau} lepton can be used to determine the effective charge {alpha}{sub {tau}}(m{sub {tau}{prime}}{sup 2}) for a hypothetical {tau}-lepton with mass in the range 0 < m{sub {tau}{prime}} < m{sub {tau}}. The {tau} decay data at low mass scales indicates that the effective charge freezes at a value of s = m{sub {tau}{prime}}{sup 2} of order 1 GeV{sup 2} with a magnitude {alpha}{sub {tau}} {approx} 0.9 {+-} 0.1. The near-constant behavior of effective couplings suggests that QCD can be approximated as a conformal theory even at relatively small momentum transfer and why there are no significant running coupling corrections to quark counting rules for exclusive processes. The AdS/CFT correspondence of large N{sub c} supergravity theory in higher-dimensional anti-de Sitter space with supersymmetric QCD in 4-dimensional space-time also has interesting implications for hadron phenomenology in the conformal limit, including an all-orders demonstration of counting rules for exclusive processes and light-front wavefunctions. The utility of light-front quantization and light-front Fock wavefunctions for analyzing nonperturbative QCD and representing the dynamics of QCD bound states is also discussed.
Energy Technology Data Exchange (ETDEWEB)
Lu, Jia; Harrison, Rane A.; Li, Lianbo; Zeng, Mei; Gondi, Sudershan; Scott, David; Gray, Nathanael S.; Engen, John R.; Westover, Kenneth D. (NEU); (DFCI); (UTSMC); (Harvard-Med)
2017-09-01
KRAS G12C, the most common RAS mutation found in non-small-cell lung cancer, has been the subject of multiple recent covalent small-molecule inhibitor campaigns including efforts directed at the guanine nucleotide pocket and separate work focused on an inducible pocket adjacent to the switch motifs. Multiple conformations of switch II have been observed, suggesting that switch II pocket (SIIP) binders may be capable of engaging a range of KRAS conformations. Here we report the use of hydrogen/deuterium-exchange mass spectrometry (HDX MS) to discriminate between conformations of switch II induced by two chemical classes of SIIP binders. We investigated the structural basis for differences in HDX MS using X-ray crystallography and discovered a new SIIP configuration in response to binding of a quinazoline chemotype. These results have implications for structure-guided drug design targeting the RAS SIIP.
Research on IGBT solid state switch
International Nuclear Information System (INIS)
Gan Kongyin; Tang Baoyin; Wang Xiaofeng; Wang Langping; Wang Songyan; Wu Hongchen
2002-01-01
The experiments on the IGBT solid state switch for induction accelerator was carried out with two series 1.2 kV, 75 A IGBT (GA75TS120U). The static and dynamic balancing modules were carried out with metal oxide varistors, capacities and diodes in order to suppress the over-voltage during IGBT on and off. Experimental results show that IGBT solid state switch works very stable under the different conditions. It can output peak voltage 1.8 kV, rise time 300 ns, fall time 1.64 μs waveforms on the loads. The simulation data using OrCAD are in accord with experimental results except the rise time
Research on IGBT solid state switch
Gan Kong Yin; Wang Xiao Feng; Wang Lang Ping; Wang Song Yan; Chu, P K; Wu Hong Chen
2002-01-01
The experiments on the IGBT solid state switch for induction accelerator was carried out with two series 1.2 kV, 75 A IGBT (GA75TS120U). The static and dynamic balancing modules were carried out with metal oxide varistors, capacities and diodes in order to suppress the over-voltage during IGBT on and off. Experimental results show that IGBT solid state switch works very stable under the different conditions. It can output peak voltage 1.8 kV, rise time 300 ns, fall time 1.64 mu s waveforms on the loads. The simulation data using OrCAD are in accord with experimental results except the rise time
Logarithmic conformal field theory through nilpotent conformal dimensions
International Nuclear Information System (INIS)
Moghimi-Araghi, S.; Rouhani, S.; Saadat, M.
2001-01-01
We study logarithmic conformal field theories (LCFTs) through the introduction of nilpotent conformal weights. Using this device, we derive the properties of LCFTs such as the transformation laws, singular vectors and the structure of correlation functions. We discuss the emergence of an extra energy momentum tensor, which is the logarithmic partner of the energy momentum tensor
Very high plasma switches. Basic plasma physics and switch technology
International Nuclear Information System (INIS)
Doucet, H.J.; Roche, M.; Buzzi, J.M.
1988-01-01
A review of some high power switches recently developed for very high power technology is made with a special attention to the aspects of plasma physics involved in the mechanisms, which determine the limits of the possible switching parameters
Multichannel all–optical switch based on a thin slab of resonant two–level emitters
Directory of Open Access Journals (Sweden)
Malikov Ramil
2017-01-01
Full Text Available We discuss the possibility of using a thin layer of inhomogeneously broadened resonant emitters as a multichannel all–optical switch. Switching time from the lower stable branch of the system's bistable characteristics to the upper one and vice versa, which determines the speed of operation of a bistable device, is studied.
National Aeronautics and Space Administration — The code in the stableGP package implements Gaussian process calculations using efficient and numerically stable algorithms. Description of the algorithms is in the...
Angina Pectoris (Stable Angina)
... Peripheral Artery Disease Venous Thromboembolism Aortic Aneurysm More Angina Pectoris (Stable Angina) Updated:Aug 21,2017 You may have heard the term “angina pectoris” or “stable angina” in your doctor’s office, ...
Replacement between conformity and counter-conformity in consumption decisions.
Chou, Ting-Jui; Chang, En-Chung; Dai, Qi; Wong, Veronica
2013-02-01
This study assessed, in a Chinese context, how self-esteem interacts with perceived similarity and uniqueness to yield cognitive dissonance, and whether the dissonance leads to self-reported conformity or counter-conformity behavior. Participants were 408 respondents from 4 major Chinese cities (M age = 33.0 yr., SD = 4.3; 48% men). Self-perceptions of uniqueness, similarity, cognitive dissonance, self-esteem and need to behave in conformity or counter-conformity were measured. A theoretical model was assessed in four situations, relating the ratings of self-esteem and perceived similarity/uniqueness to the way other people at a wedding were dressed, and the resultant cognitive dissonance and conformity/ counter-conformity behavior. Regardless of high or low self-esteem, all participants reported cognitive dissonance when they were told that they were dressed extremely similarly to or extremely differently from the other people attending the wedding. However, the conforming/counter-conforming strategies used by participants to resolve the cognitive dissonance differed. When encountering dissonance induced by the perceived extreme uniqueness of dress, participants with low self-esteem tended to say they would dress next time so as to conform with the way others were dressed, while those with high self-esteem indicated they would continue their counter-conformity in attire. When encountering dissonance induced by the perceived extreme similarity to others, both those with high and low self-esteem tended to say they would dress in an unorthodox manner to surprise other people in the future.
On Associative Conformal Algebras of Linear Growth
Retakh, Alexander
2000-01-01
Lie conformal algebras appear in the theory of vertex algebras. Their relation is similar to that of Lie algebras and their universal enveloping algebras. Associative conformal algebras play a role in conformal representation theory. We introduce the notions of conformal identity and unital associative conformal algebras and classify finitely generated simple unital associative conformal algebras of linear growth. These are precisely the complete algebras of conformal endomorphisms of finite ...
Theoretical conformational analysis of the bovine adrenal medulla 12 residue peptide molecule
Akhmedov, N. A.; Tagiyev, Z. H.; Hasanov, E. M.; Akverdieva, G. A.
2003-02-01
The spatial structure and conformational properties of the bovine adrenal medulla 12 residue peptide Tyr1-Gly2-Gly3-Phe4-Met5-Arg6-Arg7-Val8-Gly9-Arg10-Pro11-Glu12 (BAM-12P) molecule were studied by theoretical conformational analysis. It is revealed that this molecule can exist in several stable states. The energy and geometrical parameters for the low-energy conformations are obtained. The conformationally rigid and labile segments of this molecule were revealed.
Ultrafast gas switching experiments
International Nuclear Information System (INIS)
Frost, C.A.; Martin, T.H.; Patterson, P.E.; Rinehart, L.F.; Rohwein, G.J.; Roose, L.D.; Aurand, J.F.; Buttram, M.T.
1993-01-01
We describe recent experiments which studied the physics of ultrafast gas breakdown under the extreme overvoltages which occur when a high pressure gas switch is pulse charged to hundreds of kV in 1 ns or less. The highly overvolted peaking gaps produce powerful electromagnetic pulses with risetimes Khz at > 100 kV/m E field
Bonin, E. L.
1969-01-01
Multi-chip integrated circuit switch consists of a GaAs photon-emitting diode in close proximity with S1 phototransistor. A high current gain is obtained when the transistor has a high forward common-emitter current gain.
Havinga, Paul J.M.
2000-01-01
This chapter1 discusses the interconnection architecture of the Mobile Digital Companion. The approach to build a low-power handheld multimedia computer presented here is to have autonomous, reconfigurable modules such as network, video and audio devices, interconnected by a switch rather than by a
International Nuclear Information System (INIS)
Van Devender, J.P.; Martin, T.H.
Recent experiments indicate that synchronous untriggered multichannel switching in water will permit the development of relatively simple, ultra-low impedance, short pulse, relativistic electron beam (REB) accelerators. These experiments resulted in the delivery of a 1.5 MV, 0.75 MA, 15 ns pulse into a two-ohm line with a current risetime of 2 x 10 14 A/sec. The apparatus consisted of a 3 MV Marx generator and a series of three 112 cm wide strip water lines separated by two edge-plane water-gap switches. The Marx generator charged the first line in less than 400 ns. The first switch then formed five or more channels. The second line was charged in 60 ns and broke down with 10 to 25 channels at a mean field of 1.6 MV/cm. The closure time of each spark channel along both switches was measured with a streak camera and showed low jitter. The resulting fast pulse line construction is simpler and should provide considerable costs savings from previous designs. Multiples of these low impedance lines in parallel can be employed to obtain power levels in the 10 14 W range for REB fusion studies. (U.S.)
Stability of generic thin shells in conformally flat spacetimes
Energy Technology Data Exchange (ETDEWEB)
Amirabi, Z. [Eastern Mediterranean Univ., Gazimagusa (Turkey). Dept. of Physics
2017-07-15
Some important spacetimes are conformally flat; examples are the Robertson-Walker cosmological metric, the Einstein-de Sitter spacetime, and the Levi-Civita-Bertotti-Robinson and Mannheim metrics. In this paper we construct generic thin shells in conformally flat spacetime supported by a perfect fluid with a linear equation of state, i.e., p = ωσ. It is shown that, for the physical domain of ω, i.e., 0 < ω ≤ 1, such thin shells are not dynamically stable. The stability of the timelike thin shells with the Mannheim spacetime as the outer region is also investigated. (orig.)
International Nuclear Information System (INIS)
Huang He; Qu Yuzhong; Li Hanxiong
2005-01-01
With the development of intelligent control, switched systems have been widely studied. Here we try to introduce some ideas of the switched systems into the field of neural networks. In this Letter, a class of switched Hopfield neural networks with time-varying delay is investigated. The parametric uncertainty is considered and assumed to be norm bounded. Firstly, the mathematical model of the switched Hopfield neural networks is established in which a set of Hopfield neural networks are used as the individual subsystems and an arbitrary switching rule is assumed; Secondly, robust stability analysis for such switched Hopfield neural networks is addressed based on the Lyapunov-Krasovskii approach. Some criteria are given to guarantee the switched Hopfield neural networks to be globally exponentially stable for all admissible parametric uncertainties. These conditions are expressed in terms of some strict linear matrix inequalities (LMIs). Finally, a numerical example is provided to illustrate our results
Recent advancements in conformal gravity
International Nuclear Information System (INIS)
O’Brien, James G.; Chaykov, Spasen S.; Moss, Robert J.; Dentico, Jeremy; Stulge, Modestas; Stefanski, Brian
2017-01-01
In recent years, due to the lack of direct observed evidence of cold dark matter, coupled with the shrinking parameter space to search for new dark matter particles, there has been increased interest in Alternative Gravitational theories. This paper, addresses three recent advances in conformal gravity, a fourth order renormalizable metric theory of gravitation originally formulated by Weyl, and later advanced by Mannheim and Kazanas. The first section of the paper applies conformal gravity to the rotation curves of the LITTLE THINGS survey, extending the total number of rotation curves successfully fit by conformal gravity to well over 200 individual data sets without the need for additional dark matter. Further, in this rotation curve study, we show how MOND and conformal gravity compare for each galaxy in the sample. Second, we look at the original Zwicky problem of applying the virial theorem to the Coma cluster in order to get an estimate for the cluster mass. However, instead of using the standard Newtonian potential, here we use the weak field approximation of conformal gravity. We show that in the conformal case we can get a much smaller mass estimate and thus there is no apparent need to include dark matter. We then show that this calculation is in agreement with the observational data from other well studied clusters. Last, we explore the calculation of the deflection of starlight through conformal gravity, as a first step towards applying conformal gravity to gravitaitonal lensing. (paper)
Conformal invariance in harmonic superspace
International Nuclear Information System (INIS)
Galperin, A.; Ivanov, E.; Ogievetsky, V.; Sokatchev, E.
1985-01-01
N=2 conformal supersymmetry is realized in harmonic superspace, its peculiarities are analyzed. The coordinate group and analytical prepotentials for N=2 conformal supergravity are found. A new version of the N=2 Einstein supergravity with infinite number of auxiliary fields is suggested. A hypermultiplet without central charges and constraints is used as a compensator
Counselor Identity: Conformity or Distinction?
McLaughlin, Jerry E.; Boettcher, Kathryn
2009-01-01
The authors explore 3 debates in other disciplines similar to counseling's identity debate in order to learn about common themes and outcomes. Conformity, distinction, and cohesion emerged as common themes. They conclude that counselors should retain their distinctive, humanistic approach rather than conforming to the dominant, medical approach.
Design of adaptive switching control for hypersonic aircraft
Directory of Open Access Journals (Sweden)
Xin Jiao
2015-10-01
Full Text Available This article proposes a novel adaptive switching control of hypersonic aircraft based on type-2 Takagi–Sugeno–Kang fuzzy sliding mode control and focuses on the problem of stability and smoothness in the switching process. This method uses full-state feedback to linearize the nonlinear model of hypersonic aircraft. Combining the interval type-2 Takagi–Sugeno–Kang fuzzy approach with sliding mode control keeps the adaptive switching process stable and smooth. For rapid stabilization of the system, the adaptive laws use a direct constructive Lyapunov analysis together with an established type-2 Takagi–Sugeno–Kang fuzzy logic system. Simulation results indicate that the proposed control scheme can maintain the stability and smoothness of switching process for the hypersonic aircraft.
An SIS model for cultural trait transmission with conformity bias.
Walters, Caroline E; Kendal, Jeremy R
2013-12-01
Epidemiological models have been applied to human health-related behaviors that are affected by social interaction. Typically these models have not considered conformity bias, that is, the exaggerated propensity to adopt commonly observed behaviors or opinions, or content biases, where the content of the learned trait affects the probability of adoption. Here we consider an interaction of these two effects, presenting an SIS-type model for the spread and persistence of a behavior which is transmitted via social learning. Uptake is controlled by a nonlinear dependence on the proportion of individuals demonstrating the behavior in a population. Three equilibrium solutions are found, their linear stability is analyzed and the results are compared with a model for unbiased social learning. Our analysis focuses on the effects of the strength of conformity bias and the effects of content biases which alter a conformity threshold frequency of the behavior, above which there is an exaggerated propensity for adoption. The strength of the conformity bias is found to qualitatively alter the predictions regarding whether the trait becomes endemic within the population and the proportion of individuals who display the trait when it is endemic. As the conformity strength increases, the number of feasible equilibrium solutions increases from two to three, leading to a situation where the stable equilibrium attained is dependent upon the initial state. Varying the conformity threshold frequency directionally alters the behavior invasion threshold. Finally we discuss the possible application of this model to binge drinking behavior. Copyright © 2013 Elsevier Inc. All rights reserved.
Conformational changes in hemoglobin triggered by changing the iron charge
International Nuclear Information System (INIS)
Croci, S.; Achterhold, K.; Ortalli, I.; Parak, F. G.
2008-01-01
In this work the hemoglobin conformational changes induced by changing the iron charge have been studied and compared with Myoglobin. Moessbauer spectroscopy was used to follow the change of the iron conformation. In order to compare the conformational relaxation of hemoglobin and myoglobin, and to study a possible influence of the quaternary structure, an intermediate metastable state of hemoglobin has been created by low temperature X-ray irradiation of methemoglobin. The irradiation reduces the Fe(III) of the heme groups to Fe(II) Low Spin, where the water is still bound on the sixth coordination. Heating cycles performed at temperatures from 140 K to 200 K allow the molecules to overcome an activation energy barrier and to relax into a stable conformation such as deoxy-hemoglobin or carboxy-hemoglobin, if CO is present. Slightly different structures (conformational substates) reveal themselves as a distribution of energy barriers (ΔG). The distribution of the activation energy, for the decay of the Fe(II) Low Spin intermediate, has been fitted with a Gaussian. For comparison, published myoglobin data were re-analysed in the same way. The average energy value at characteristic temperature is very similar in case of myoglobin and hemoglobin. The larger Gaussian energy distribution for myoglobin with respect to hemoglobin shows that more conformational substates are available. This may be caused by a larger area exposed to water. In hemoglobin, part of the surface of the chains is not water accessible due to the quaternary structure.
Control synthesis of switched systems
Zhao, Xudong; Niu, Ben; Wu, Tingting
2017-01-01
This book offers its readers a detailed overview of the synthesis of switched systems, with a focus on switching stabilization and intelligent control. The problems investigated are not only previously unsolved theoretically but also of practical importance in many applications: voltage conversion, naval piloting and navigation and robotics, for example. The book considers general switched-system models and provides more efficient design methods to bring together theory and application more closely than was possible using classical methods. It also discusses several different classes of switched systems. For general switched linear systems and switched nonlinear systems comprising unstable subsystems, it introduces novel ideas such as invariant subspace theory and the time-scheduled Lyapunov function method of designing switching signals to stabilize the underlying systems. For some typical switched nonlinear systems affected by various complex dynamics, the book proposes novel design approaches based on inte...
Recursion Relations for Conformal Blocks
Penedones, João; Yamazaki, Masahito
2016-09-12
In the context of conformal field theories in general space-time dimension, we find all the possible singularities of the conformal blocks as functions of the scaling dimension $\\Delta$ of the exchanged operator. In particular, we argue, using representation theory of parabolic Verma modules, that in odd spacetime dimension the singularities are only simple poles. We discuss how to use this information to write recursion relations that determine the conformal blocks. We first recover the recursion relation introduced in 1307.6856 for conformal blocks of external scalar operators. We then generalize this recursion relation for the conformal blocks associated to the four point function of three scalar and one vector operator. Finally we specialize to the case in which the vector operator is a conserved current.
Conformal algebra of Riemann surfaces
International Nuclear Information System (INIS)
Vafa, C.
1988-01-01
It has become clear over the last few years that 2-dimensional conformal field theories are a crucial ingredient of string theory. Conformal field theories correspond to vacuum solutions of strings; or more precisely we know how to compute string spectrum and scattering amplitudes by starting from a formal theory (with a proper value of central charge of the Virasoro algebra). Certain non-linear sigma models do give rise to conformal theories. A lot of progress has been made in the understanding of conformal theories. The author discusses a different view of conformal theories which was motivated by the development of operator formalism on Riemann surfaces. The author discusses an interesting recent work from this point of view
The logarithmic conformal field theories
International Nuclear Information System (INIS)
Rahimi Tabar, M.R.; Aghamohammadi, A.; Khorrami, M.
1997-01-01
We study the correlation functions of logarithmic conformal field theories. First, assuming conformal invariance, we explicitly calculate two- and three-point functions. This calculation is done for the general case of more than one logarithmic field in a block, and more than one set of logarithmic fields. Then we show that one can regard the logarithmic field as a formal derivative of the ordinary field with respect to its conformal weight. This enables one to calculate any n-point function containing the logarithmic field in terms of ordinary n-point functions. Finally, we calculate the operator product expansion (OPE) coefficients of a logarithmic conformal field theory, and show that these can be obtained from the corresponding coefficients of ordinary conformal theory by a simple derivation. (orig.)
Wireless Chalcogenide Nanoionic-Based Radio-Frequency Switch
Nessel, James; Miranda, Felix
2013-01-01
A new nonvolatile nanoionic switch is powered and controlled through wireless radio-frequency (RF) transmission. A thin layer of chalcogenide glass doped with a metal ion, such as silver, comprises the operational portion of the switch. For the switch to function, an oxidizable electrode is made positive (anode) with respect to an opposing electrode (cathode) when sufficient bias, typically on the order of a few tenths of a volt or more, is applied. This action causes the metal ions to flow toward the cathode through a coordinated hopping mechanism. At the cathode, a reduction reaction occurs to form a metal deposit. This metal deposit creates a conductive path that bridges the gap between electrodes to turn the switch on. Once this conductive path is formed, no further power is required to maintain it. To reverse this process, the metal deposit is made positive with respect to the original oxidizable electrode, causing the dissolution of the metal bridge thereby turning the switch off. Once the metal deposit has been completely dissolved, the process self-terminates. This switching process features the following attributes. It requires very little to change states (i.e., on and off). Furthermore, no power is required to maintain the states; hence, the state of the switch is nonvolatile. Because of these attributes the integration of a rectenna to provide the necessary power and control is unique to this embodiment. A rectenna, or rectifying antenna, generates DC power from an incident RF signal. The low voltages and power required for the nanoionic switch control are easily generated from this system and provide the switch with a novel capability to be operated and powered from an external wireless device. In one realization, an RF signal of a specific frequency can be used to set the switch into an off state, while another frequency can be used to set the switch to an on state. The wireless, miniaturized, and nomoving- part features of this switch make it
Conformal solids and holography
Esposito, A.; Garcia-Saenz, S.; Nicolis, A.; Penco, R.
2017-12-01
We argue that a SO( d) magnetic monopole in an asymptotically AdS space-time is dual to a d-dimensional strongly coupled system in a solid state. In light of this, it would be remiss of us not to dub such a field configuration solidon. In the presence of mixed boundary conditions, a solidon spontaneously breaks translations (among many other symmetries) and gives rise to Goldstone excitations on the boundary — the phonons of the solid. We derive the quadratic action for the boundary phonons in the probe limit and show that, when the mixed boundary conditions preserve conformal symmetry, the longitudinal and transverse sound speeds are related to each other as expected from effective field theory arguments. We then include backreaction and calculate the free energy of the solidon for a particular choice of mixed boundary conditions, corresponding to a relevant multi-trace deformation of the boundary theory. We find such free energy to be lower than that of thermal AdS. This suggests that our solidon undergoes a solid-to-liquid first order phase transition by melting into a Schwarzschild-AdS black hole as the temperature is raised.
Intensity modulated conformal radiotherapy
International Nuclear Information System (INIS)
Noel, Georges; Moty-Monnereau, Celine; Meyer, Aurelia; David, Pauline; Pages, Frederique; Muller, Felix; Lee-Robin, Sun Hae; David, Denis Jean
2006-12-01
This publication reports the assessment of intensity-modulated conformal radiotherapy (IMCR). This assessment is based on a literature survey which focussed on indications, efficiency and safety on the short term, on the risk of radio-induced cancer on the long term, on the role in the therapeutic strategy, on the conditions of execution, on the impact on morbidity-mortality and life quality, on the impact on the health system and on public health policies and program. This assessment is also based on the opinion of a group of experts regarding the technical benefit of IMCR, its indications depending on the cancer type, safety in terms of radio-induced cancers, and conditions of execution. Before this assessment, the report thus indicates indications for which the use of IMCR can be considered as sufficient or not determined. It also proposes a technical description of IMCR and helical tomo-therapy, discusses the use of this technique for various pathologies or tumours, analyses the present situation of care in France, and comments the identification of this technique in foreign classifications
International Nuclear Information System (INIS)
Zotto, Michele Del; Heckman, Jonathan J.; Tomasiello, Alessandro; Vafa, Cumrun
2015-01-01
A single M5-brane probing G, an ADE-type singularity, leads to a system which has G×G global symmetry and can be viewed as “bifundamental” (G,G) matter. For the A N series, this leads to the usual notion of bifundamental matter. For the other cases it corresponds to a strongly interacting (1,0) superconformal system in six dimensions. Similarly, an ADE singularity intersecting the Hořava-Witten wall leads to a superconformal matter system with E 8 ×G global symmetry. Using the F-theory realization of these theories, we elucidate the Coulomb/tensor branch of (G,G ′ ) conformal matter. This leads to the notion of fractionalization of an M5-brane on an ADE singularity as well as fractionalization of the intersection point of the ADE singularity with the Hořava-Witten wall. Partial Higgsing of these theories leads to new 6d SCFTs in the infrared, which we also characterize. This generalizes the class of (1,0) theories which can be perturbatively realized by suspended branes in IIA string theory. By reducing on a circle, we arrive at novel duals for 5d affine quiver theories. Introducing many M5-branes leads to large N gravity duals.
Endoh, Tamaki; Sugimoto, Naoki
2015-08-04
Conformational transitions of biomolecules in response to specific stimuli control many biological processes. In natural functional RNA switches, often called riboswitches, a particular RNA structure that has a suppressive or facilitative effect on gene expression transitions to an alternative structure with the opposite effect upon binding of a specific metabolite to the aptamer region. Stability of RNA secondary structure (-ΔG°) can be predicted based on thermodynamic parameters and is easily tuned by changes in nucleobases. We envisioned that tuning of a functional RNA switch that causes an allosteric interaction between an RNA and a peptide would be possible based on a predicted switching energy (ΔΔG°) that corresponds to the energy difference between the RNA secondary structure before (-ΔG°before) and after (-ΔG°after) the RNA conformational transition. We first selected functional RNA switches responsive to neomycin with predicted ΔΔG° values ranging from 5.6 to 12.2 kcal mol(-1). We then demonstrated a simple strategy to rationally convert the functional RNA switch to switches responsive to natural metabolites thiamine pyrophosphate, S-adenosyl methionine, and adenine based on the predicted ΔΔG° values. The ΔΔG° values of the designed RNA switches proportionally correlated with interaction energy (ΔG°interaction) between the RNA and peptide, and we were able to tune the sensitivity of the RNA switches for the trigger molecule. The strategy demonstrated here will be generally applicable for construction of functional RNA switches and biosensors in which mechanisms are based on conformational transition of nucleic acids.
Synchronization Between Two Different Switched Chaotic Systems By Switching Control
Directory of Open Access Journals (Sweden)
Du Li Ming
2016-01-01
Full Text Available This paper is concerned with the synchronization problem of two different switched chaotic systems, considering the general case that the master-slave switched chaotic systems have uncertainties. Two basic problems are considered: one is projective synchronization of switched chaotic systems under arbitrary switching; the other is projective synchronization of switched chaotic systems by design of switching when synchronization cannot achieved by using any subsystems alone. For the two problems, common Lyapunov function method and multiple Lyapunov function method are used respectively, an adaptive control scheme has been presented, some sufficient synchronization conditions are attainted, and the switching signal is designed. Finally, the numerical simulation is provide to show the effectiveness of our method.
Towards conformal loop quantum gravity
International Nuclear Information System (INIS)
Wang, Charles H-T
2006-01-01
A discussion is given of recent developments in canonical gravity that assimilates the conformal analysis of gravitational degrees of freedom. The work is motivated by the problem of time in quantum gravity and is carried out at the metric and the triad levels. At the metric level, it is shown that by extending the Arnowitt-Deser-Misner (ADM) phase space of general relativity (GR), a conformal form of geometrodynamics can be constructed. In addition to the Hamiltonian and Diffeomorphism constraints, an extra first class constraint is introduced to generate conformal transformations. This phase space consists of York's mean extrinsic curvature time, conformal three-metric and their momenta. At the triad level, the phase space of GR is further enlarged by incorporating spin-gauge as well as conformal symmetries. This leads to a canonical formulation of GR using a new set of real spin connection variables. The resulting gravitational constraints are first class, consisting of the Hamiltonian constraint and the canonical generators for spin-gauge and conformorphism transformations. The formulation has a remarkable feature of being parameter-free. Indeed, it is shown that a conformal parameter of the Barbero-Immirzi type can be absorbed by the conformal symmetry of the extended phase space. This gives rise to an alternative approach to loop quantum gravity that addresses both the conceptual problem of time and the technical problem of functional calculus in quantum gravity
Benchmarking Commercial Conformer Ensemble Generators.
Friedrich, Nils-Ole; de Bruyn Kops, Christina; Flachsenberg, Florian; Sommer, Kai; Rarey, Matthias; Kirchmair, Johannes
2017-11-27
We assess and compare the performance of eight commercial conformer ensemble generators (ConfGen, ConfGenX, cxcalc, iCon, MOE LowModeMD, MOE Stochastic, MOE Conformation Import, and OMEGA) and one leading free algorithm, the distance geometry algorithm implemented in RDKit. The comparative study is based on a new version of the Platinum Diverse Dataset, a high-quality benchmarking dataset of 2859 protein-bound ligand conformations extracted from the PDB. Differences in the performance of commercial algorithms are much smaller than those observed for free algorithms in our previous study (J. Chem. Inf. 2017, 57, 529-539). For commercial algorithms, the median minimum root-mean-square deviations measured between protein-bound ligand conformations and ensembles of a maximum of 250 conformers are between 0.46 and 0.61 Å. Commercial conformer ensemble generators are characterized by their high robustness, with at least 99% of all input molecules successfully processed and few or even no substantial geometrical errors detectable in their output conformations. The RDKit distance geometry algorithm (with minimization enabled) appears to be a good free alternative since its performance is comparable to that of the midranked commercial algorithms. Based on a statistical analysis, we elaborate on which algorithms to use and how to parametrize them for best performance in different application scenarios.
Laser activated superconducting switch
International Nuclear Information System (INIS)
Wolf, A.A.
1976-01-01
A superconducting switch or bistable device is described consisting of a superconductor in a cryogen maintaining a temperature just below the transition temperature, having a window of the proper optical frequency band for passing a laser beam which may impinge on the superconductor when desired. The frequency of the laser is equal to or greater than the optical absorption frequency of the superconducting material and is consistent with the ratio of the gap energy of the switch material to Planck's constant, to cause depairing of electrons, and thereby normalize the superconductor. Some embodiments comprise first and second superconducting metals. Other embodiments feature the two superconducting metals separated by a thin film insulator through which the superconducting electrons tunnel during superconductivity
Early, James W.; Lester, Charles S.
2002-01-01
Optical fiber switches operated by electrical activation of at least one laser light modulator through which laser light is directed into at least one polarizer are used for the sequential transport of laser light from a single laser into a plurality of optical fibers. In one embodiment of the invention, laser light from a single excitation laser is sequentially transported to a plurality of optical fibers which in turn transport the laser light to separate individual remotely located laser fuel ignitors. The invention can be operated electro-optically with no need for any mechanical or moving parts, or, alternatively, can be operated electro-mechanically. The invention can be used to switch either pulsed or continuous wave laser light.
Coulomb Blockade Plasmonic Switch.
Xiang, Dao; Wu, Jian; Gordon, Reuven
2017-04-12
Tunnel resistance can be modulated with bias via the Coulomb blockade effect, which gives a highly nonlinear response current. Here we investigate the optical response of a metal-insulator-nanoparticle-insulator-metal structure and show switching of a plasmonic gap from insulator to conductor via Coulomb blockade. By introducing a sufficiently large charging energy in the tunnelling gap, the Coulomb blockade allows for a conductor (tunneling) to insulator (capacitor) transition. The tunnelling electrons can be delocalized over the nanocapacitor again when a high energy penalty is added with bias. We demonstrate that this has a huge impact on the plasmonic resonance of a 0.51 nm tunneling gap with ∼70% change in normalized optical loss. Because this structure has a tiny capacitance, there is potential to harness the effect for high-speed switching.
Cryogenic switched MOSFET characterization
1981-01-01
Both p channel and n channel enhancement mode MOSFETs can be readily switched on and off at temperatures as low as 2.8 K so that switch sampled readout of a VLWIR Ge:Ga focal plane is electronically possible. Noise levels as low as 100 rms electrons per sample (independent of sample rate) can be achieved using existing p channel MOSFETs, at overall rates up to 30,000 samples/second per multiplexed channel (e.g., 32 detectors at a rate of almost 1,000 frames/second). Run of the mill devices, including very low power dissipation n channel FETs would still permit noise levels of the order of 500 electrons/sample.
Practical switching power supply design
Brown, Martin C
1990-01-01
Take the ""black magic"" out of switching power supplies with Practical Switching Power Supply Design! This is a comprehensive ""hands-on"" guide to the theory behind, and design of, PWM and resonant switching supplies. You'll find information on switching supply operation and selecting an appropriate topology for your application. There's extensive coverage of buck, boost, flyback, push-pull, half bridge, and full bridge regulator circuits. Special attention is given to semiconductors used in switching supplies. RFI/EMI reduction, grounding, testing, and safety standards are also deta
Javadi, Hamid (Inventor)
2002-01-01
A device to protect electronic circuitry from high voltage transients is constructed from a relatively thin piece of conductive composite sandwiched between two conductors so that conduction is through the thickness of the composite piece. The device is based on the discovery that conduction through conductive composite materials in this configuration switches to a high resistance mode when exposed to voltages above a threshold voltage.
Rippel, Wally E.
1990-01-01
Metal-oxide/semiconductor-controlled thyristor (MCT) and metal-oxide/semiconductor field-effect transistor (MOSFET) connected in switching circuit to obtain better performance. Offers high utilization of silicon, low forward voltage drop during "on" period of operating cycle, fast turnon and turnoff, and large turnoff safe operating area. Includes ability to operate at high temperatures, high static blocking voltage, and ease of drive.
Directory of Open Access Journals (Sweden)
2008-06-01
Full Text Available The Python programming language does not have a built in switch/case control structure as found in many other high level programming languages. It is thought by some that this is a deficiency in the language, and the control structure should be added. This paper demonstrates that not only is the control structure not needed, but that the methods available in Python are more expressive than built in case statements in other high level languages.
Dynamics of the conformal factor in 4D gravity
International Nuclear Information System (INIS)
Antoniadis, I.
1993-01-01
We argue that 4D gravity is drastically modified at distances larger than the horizon scale, due to the large infrared quantum fluctuations of the conformal part of the metric. The infrared dynamics of the conformal factor is generated by an effective action, induced by the trace anomaly of matter in curved space, analogous to the Polyakov action in two dimensions. The resulting effective scalar theory is renormalizable, and possesses a non-trivial, infrared stable fixed point, characterized by an anomalous scaling dimension of the conformal factor. We argue that this theory describes a large distance scale invariant phase of 4D gravity and provides a framework for a dynamical solution of the cosmological constant problem (author). 12 refs
Variable-temperature NMR and conformational analysis of Oenothein B
International Nuclear Information System (INIS)
Santos, Suzana C.; Carvalho, Ariadne G.; Fortes, Gilmara A.C.; Ferri, Pedro H.; Oliveira, Anselmo E. de
2014-01-01
Oenothein B is a dimeric hydrolyzable tannin with a wide range of biological activities, such as antitumour, anti-inflammatory and antiviral. Its nuclear magnetic resonance (NMR) at room temperature show duplications and broadening of signals. Experiments of 1D and 2D NMR at lower temperatures were useful for the complete NMR assignments of all hydrogens and carbons. The 3D structure of the most stable conformer was determined for the first time by nuclear Overhauser effect spectroscopy (NOESY) experiment (-20 deg C) and density functional theory (DFT)(B3LYP/6-31G)/ polarizable continuum model (PCM) quantum chemical calculations. The favoured conformation showed a highly compacted geometry and a lack of symmetry, in which the two valoneoyl groups showed distinct conformational parameters and stabilities. (author)
Variable-temperature NMR and conformational analysis of Oenothein B
Energy Technology Data Exchange (ETDEWEB)
Santos, Suzana C.; Carvalho, Ariadne G.; Fortes, Gilmara A.C.; Ferri, Pedro H.; Oliveira, Anselmo E. de, [Universidade Federal de Goias (UFGO), Goiania, GO (Brazil). Instituto de Quimica
2014-02-15
Oenothein B is a dimeric hydrolyzable tannin with a wide range of biological activities, such as antitumour, anti-inflammatory and antiviral. Its nuclear magnetic resonance (NMR) at room temperature show duplications and broadening of signals. Experiments of 1D and 2D NMR at lower temperatures were useful for the complete NMR assignments of all hydrogens and carbons. The 3D structure of the most stable conformer was determined for the first time by nuclear Overhauser effect spectroscopy (NOESY) experiment (-20 deg C) and density functional theory (DFT)(B3LYP/6-31G)/ polarizable continuum model (PCM) quantum chemical calculations. The favoured conformation showed a highly compacted geometry and a lack of symmetry, in which the two valoneoyl groups showed distinct conformational parameters and stabilities. (author)
Ferroelectric switching of elastin
Liu, Yuanming; Cai, Hong-Ling; Zelisko, Matthew; Wang, Yunjie; Sun, Jinglan; Yan, Fei; Ma, Feiyue; Wang, Peiqi; Chen, Qian Nataly; Zheng, Hairong; Meng, Xiangjian; Sharma, Pradeep; Zhang, Yanhang; Li, Jiangyu
2014-01-01
Ferroelectricity has long been speculated to have important biological functions, although its very existence in biology has never been firmly established. Here, we present compelling evidence that elastin, the key ECM protein found in connective tissues, is ferroelectric, and we elucidate the molecular mechanism of its switching. Nanoscale piezoresponse force microscopy and macroscopic pyroelectric measurements both show that elastin retains ferroelectricity at 473 K, with polarization on the order of 1 μC/cm2, whereas coarse-grained molecular dynamics simulations predict similar polarization with a Curie temperature of 580 K, which is higher than most synthetic molecular ferroelectrics. The polarization of elastin is found to be intrinsic in tropoelastin at the monomer level, analogous to the unit cell level polarization in classical perovskite ferroelectrics, and it switches via thermally activated cooperative rotation of dipoles. Our study sheds light onto a long-standing question on ferroelectric switching in biology and establishes ferroelectricity as an important biophysical property of proteins. This is a critical first step toward resolving its physiological significance and pathological implications. PMID:24958890
Conformal invariance in harmonic superspace
International Nuclear Information System (INIS)
Galperin, A.; Ivanov, E.; Ogievetsky, V.; Sokatchev, E.
1987-01-01
In the present paper we show how the N = 2 superconformal group is realised in harmonic superspace and examine conformal invariance of N = 2 off-shell theories. We believe that the example of N = O self-dual Yang-Mills equations can serve as an instructive introduction to the subject of harmonic superspace and this is examined. The rigid N = 2 conformal supersymmetry and its local version, i.e. N = 2 conformal supergravity is also discussed. The paper is a contribution to the book commemorating the sixtieth birthday of E.S. Fradkin. (author)
Two dimensional infinite conformal symmetry
International Nuclear Information System (INIS)
Mohanta, N.N.; Tripathy, K.C.
1993-01-01
The invariant discontinuous (discrete) conformal transformation groups, namely the Kleinian and Fuchsian groups Gamma (with an arbitrary signature) of H (the Poincare upper half-plane l) and the unit disc Delta are explicitly constructed from the fundamental domain D. The Riemann surface with signatures of Gamma and conformally invariant automorphic forms (functions) with Peterson scalar product are discussed. The functor, where the category of complex Hilbert spaces spanned by the space of cusp forms constitutes the two dimensional conformal field theory. (Author) 7 refs
Harmony of spinning conformal blocks
Energy Technology Data Exchange (ETDEWEB)
Schomerus, Volker [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany). Theory Group; Sobko, Evgeny [Stockholm Univ. (Sweden); Nordita, Stockholm (Sweden); Isachenkov, Mikhail [Weizmann Institute of Science, Rehovoth (Israel). Dept. of Particle Physics and Astrophysics
2016-12-07
Conformal blocks for correlation functions of tensor operators play an increasingly important role for the conformal bootstrap programme. We develop a universal approach to such spinning blocks through the harmonic analysis of certain bundles over a coset of the conformal group. The resulting Casimir equations are given by a matrix version of the Calogero-Sutherland Hamiltonian that describes the scattering of interacting spinning particles in a 1-dimensional external potential. The approach is illustrated in several examples including fermionic seed blocks in 3D CFT where they take a very simple form.
Harmony of spinning conformal blocks
Energy Technology Data Exchange (ETDEWEB)
Schomerus, Volker [DESY Hamburg, Theory Group,Notkestraße 85, 22607 Hamburg (Germany); Sobko, Evgeny [Nordita and Stockholm University,Roslagstullsbacken 23, SE-106 91 Stockholm (Sweden); Isachenkov, Mikhail [Department of Particle Physics and Astrophysics, Weizmann Institute of Science,Rehovot 7610001 (Israel)
2017-03-15
Conformal blocks for correlation functions of tensor operators play an increasingly important role for the conformal bootstrap programme. We develop a universal approach to such spinning blocks through the harmonic analysis of certain bundles over a coset of the conformal group. The resulting Casimir equations are given by a matrix version of the Calogero-Sutherland Hamiltonian that describes the scattering of interacting spinning particles in a 1-dimensional external potential. The approach is illustrated in several examples including fermionic seed blocks in 3D CFT where they take a very simple form.
Mass generation within conformal invariant theories
International Nuclear Information System (INIS)
Flato, M.; Guenin, M.
1981-01-01
The massless Yang-Mills theory is strongly conformally invariant and renormalizable; however, when masses are introduced the theory becomes nonrenormalizable and weakly conformally invariant. Conditions which recover strong conformal invariance are discussed in the letter. (author)
Speed control of an induction motor by 6-switched 3-level inverter
Directory of Open Access Journals (Sweden)
Saygin Ali
2017-12-01
Full Text Available This paper presents speed control analysis of an induction motor by a 6-switched 3-level inverter. In the analysis of topology, the study used the field oriented control technique which is widely used in the literature, easy and stable for operating systems. The field weaking technique was used for speeds exceeding nominal speed to reduce magnetic saturation and thermal losses. At the end of the process, it was observed to increase motor torque and inverter efficiency. Instead of using 12 switches in conventional 3-level inverters, 6 switches are used in this topology. Reduced number of switches is the greatest contribution of this study.
Speed control of an induction motor by 6-switched 3-level inverter
Saygin, Ali; Kerem, Alper
2017-12-01
This paper presents speed control analysis of an induction motor by a 6-switched 3-level inverter. In the analysis of topology, the study used the field oriented control technique which is widely used in the literature, easy and stable for operating systems. The field weaking technique was used for speeds exceeding nominal speed to reduce magnetic saturation and thermal losses. At the end of the process, it was observed to increase motor torque and inverter efficiency. Instead of using 12 switches in conventional 3-level inverters, 6 switches are used in this topology. Reduced number of switches is the greatest contribution of this study.
Theoretical Insights into the Biophysics of Protein Bi-stability and Evolutionary Switches.
Directory of Open Access Journals (Sweden)
Tobias Sikosek
2016-06-01
Full Text Available Deciphering the effects of nonsynonymous mutations on protein structure is central to many areas of biomedical research and is of fundamental importance to the study of molecular evolution. Much of the investigation of protein evolution has focused on mutations that leave a protein's folded structure essentially unchanged. However, to evolve novel folds of proteins, mutations that lead to large conformational modifications have to be involved. Unraveling the basic biophysics of such mutations is a challenge to theory, especially when only one or two amino acid substitutions cause a large-scale conformational switch. Among the few such mutational switches identified experimentally, the one between the GA all-α and GB α+β folds is extensively characterized; but all-atom simulations using fully transferrable potentials have not been able to account for this striking switching behavior. Here we introduce an explicit-chain model that combines structure-based native biases for multiple alternative structures with a general physical atomic force field, and apply this construct to twelve mutants spanning the sequence variation between GA and GB. In agreement with experiment, we observe conformational switching from GA to GB upon a single L45Y substitution in the GA98 mutant. In line with the latent evolutionary potential concept, our model shows a gradual sequence-dependent change in fold preference in the mutants before this switch. Our analysis also indicates that a sharp GA/GB switch may arise from the orientation dependence of aromatic π-interactions. These findings provide physical insights toward rationalizing, predicting and designing evolutionary conformational switches.
Steeneveld, G.J.
2012-01-01
Understanding and prediction of the stable atmospheric boundary layer is a challenging task. Many physical processes are relevant in the stable boundary layer, i.e. turbulence, radiation, land surface coupling, orographic turbulent and gravity wave drag, and land surface heterogeneity. The development of robust stable boundary layer parameterizations for use in NWP and climate models is hampered by the multiplicity of processes and their unknown interactions. As a result, these models suffer ...
Directory of Open Access Journals (Sweden)
Huang Tingwen
2009-01-01
Full Text Available This paper studies the exponential stability of a class of periodically time-switched nonlinear systems. Three cases of such systems which are composed, respectively, of a pair of unstable subsystems, of both stable and unstable subsystems, and of a pair of stable systems, are considered. For the first case, the proposed result shows that there exists periodically switching rule guaranteeing the exponential stability of the whole system with (sufficient small switching period if there is a Hurwitz linear convex combination of two uncertain linear systems derived from two subsystems by certain linearization. For the second case, we present two general switching criteria by means of multiple and single Lyapunov function, respectively. We also investigate the stability issue of the third case, and the switching criteria of exponential stability are proposed. The present results for the second case are further applied to the periodically intermittent control. Several numerical examples are also given to show the effectiveness of theoretical results.
Wavelength switching in an optical klystron
International Nuclear Information System (INIS)
Berryman, K.W.; Smith, T.I.
1995-01-01
A symmetric optical klystron consists of two identical undulator sections separated a dispersive section. For a device of a given length, an optical klystron is capable of producing much more bunching, and therefore more gain, than a traditional undulator. Another consequence of introducing dispersion between two undulator sections is that the overall spontaneous radiation pattern results from the interference between the two undulator sections, and as such resembles a standard undulator radiation pattern modulated by a sinusoidal interference term. The presence of several wavelength peaks in the spontaneous lineshape implies an equal number of peaks in the gain spectrum. If the strength of the dispersion section is adjusted to provide nearly equal gain on the two largest of these peaks, then they will compete, and the FEL may switch wavelengths based on noise, cavity length, or other perturbations. We provide the first observations of this behavior, using the FIREFLY system at the Stanford Picosecond FEL Center. In FIREFLY, relative wavelength switching by more than 3%--more than twice the laser linewidth-has been observed by varying dispersion section strength, while at intermediate points stable switching has also been observed as a function of cavity length
Directory of Open Access Journals (Sweden)
Aziz Aboulmouhajir
2017-01-01
Full Text Available The 2,3-dimethyl hexane conformational isomerism has been investigated in detail, based on HF, Post-HF and DFT calculations at different basis set. The effect of size of basis, ZPE, thermal contributions, electronic correlation and optimization methods on the conformational stability was discussed. The rotational barriers from the most stable conformer to the lowest energy secondary conformers and their correspondent inversion barriers at both HF and MP2 methods using 6-31G* basis set have also been approached. A normal mode calculation of the most and less-stable conformers using a scaled ab initio force field in terms of non-redundant local symmetry coordinates have been made to elucidate the conformational dependence of the vibrational spectra.
A theoretical and spectroscopic study of conformational structures of piroxicam
Souza, Kely Ferreira de; Martins, José A.; Pessine, Francisco B. T.; Custodio, Rogério
2010-02-01
Piroxicam (PRX) has been widely studied in an attempt to elucidate the causes and mechanisms of its side effects, mainly the photo-toxicity. In this paper fluorescence spectra in non-protic solvents and different polarities were carried out along with theoretical calculations. Preliminary potential surfaces of the keto and enol forms were obtained at AM1 level of theory providing the most stable conformers, which had their structure re-optimized through the B3LYP/CEP-31G(d,p) method. From the optimized structures, the electronic spectra were calculated using the TD-DFT method in vacuum and including the solvent effect through the PCM method and a single water molecule near PRX. A new potential surface was constructed to the enol tautomer at DFT level and the most stable conformers were submitted to the QST2 calculations. The experimental data showed that in apolar media, the solution fluorescence is raised. Based on conformational analysis for the two tautomers, keto and enol, the results indicated that the PRX-enol is the main tautomer related to the drug fluorescence, which is reinforced by the spectra results, as well as the interconvertion barrier obtained from the QST2 calculations. The results suggest that the PRX one of the enol conformers presents great possibility of involvement in the photo-toxicity mechanisms.
Logarithmic conformal field theory
Gainutdinov, Azat; Ridout, David; Runkel, Ingo
2013-12-01
Conformal field theory (CFT) has proven to be one of the richest and deepest subjects of modern theoretical and mathematical physics research, especially as regards statistical mechanics and string theory. It has also stimulated an enormous amount of activity in mathematics, shaping and building bridges between seemingly disparate fields through the study of vertex operator algebras, a (partial) axiomatisation of a chiral CFT. One can add to this that the successes of CFT, particularly when applied to statistical lattice models, have also served as an inspiration for mathematicians to develop entirely new fields: the Schramm-Loewner evolution and Smirnov's discrete complex analysis being notable examples. When the energy operator fails to be diagonalisable on the quantum state space, the CFT is said to be logarithmic. Consequently, a logarithmic CFT is one whose quantum space of states is constructed from a collection of representations which includes reducible but indecomposable ones. This qualifier arises because of the consequence that certain correlation functions will possess logarithmic singularities, something that contrasts with the familiar case of power law singularities. While such logarithmic singularities and reducible representations were noted by Rozansky and Saleur in their study of the U (1|1) Wess-Zumino-Witten model in 1992, the link between the non-diagonalisability of the energy operator and logarithmic singularities in correlators is usually ascribed to Gurarie's 1993 article (his paper also contains the first usage of the term 'logarithmic conformal field theory'). The class of CFTs that were under control at this time was quite small. In particular, an enormous amount of work from the statistical mechanics and string theory communities had produced a fairly detailed understanding of the (so-called) rational CFTs. However, physicists from both camps were well aware that applications from many diverse fields required significantly more
Higher-derivative generalization of conformal mechanics
Baranovsky, Oleg
2017-08-01
Higher-derivative analogs of multidimensional conformal particle and many-body conformal mechanics are constructed. Their Newton-Hooke counterparts are derived by applying appropriate coordinate transformations.
Naturality in conformal field theory
International Nuclear Information System (INIS)
Moore, G.; Seiberg, N.
1989-01-01
We discuss constraints on the operator product coefficients in diagonal and nondiagonal rational conformal field theories. Nondiagonal modular invariants always arise from automorphisms of the fusion rule algebra or from extensions of the chiral algebra. Moreover, when the chiral algebra has been maximally extended a strong form of the naturality principle of field theory can be proven for rational conformal field theory: operator product coefficients vanish if and only if the corresponding fusion rules vanish; that is, if and only if the vanishing can be understood in terms of a symmetry. We illustrate these ideas with several examples. We also generalize our ideas about rational conformal field theories to a larger class of theories: 'quasi-rational conformal field theories' and we explore some of their properties. (orig.)
Steady states in conformal theories
CERN. Geneva
2015-01-01
A novel conjecture regarding the steady state behavior of conformal field theories placed between two heat baths will be presented. Some verification of the conjecture will be provided in the context of fluid dynamics and holography.
National Automated Conformity Inspection Process -
Department of Transportation — The National Automated Conformity Inspection Process (NACIP) Application is intended to expedite the workflow process as it pertains to the FAA Form 81 0-10 Request...
Aspect of the conformal invariance
International Nuclear Information System (INIS)
Bauer, M.
1990-11-01
This thesis is about the study of several physical and mathematical aspects of critical phenomena at two dimensions. These phenomena have remarkable symmetry properties in the coordonnates changes keeping the angles. They are named conformal theories
Some Progress in Conformal Geometry
Directory of Open Access Journals (Sweden)
Sun-Yung A. Chang
2007-12-01
Full Text Available This is a survey paper of our current research on the theory of partial differential equations in conformal geometry. Our intention is to describe some of our current works in a rather brief and expository fashion. We are not giving a comprehensive survey on the subject and references cited here are not intended to be complete. We introduce a bubble tree structure to study the degeneration of a class of Yamabe metrics on Bach flat manifolds satisfying some global conformal bounds on compact manifolds of dimension 4. As applications, we establish a gap theorem, a finiteness theorem for diffeomorphism type for this class, and diameter bound of the $sigma_2$-metrics in a class of conformal 4-manifolds. For conformally compact Einstein metrics we introduce an eigenfunction compactification. As a consequence we obtain some topological constraints in terms of renormalized volumes.
Conformity Adequacy Review: Region 5
Resources are for air quality and transportation government and community leaders. Information on the conformity SIP adequacy/inadequacy of state implementation plans (SIPs) in EPA Region 5 (IL, IN, MI, OH, WI) is provided here.
Inverse bootstrapping conformal field theories
Li, Wenliang
2018-01-01
We propose a novel approach to study conformal field theories (CFTs) in general dimensions. In the conformal bootstrap program, one usually searches for consistent CFT data that satisfy crossing symmetry. In the new method, we reverse the logic and interpret manifestly crossing-symmetric functions as generating functions of conformal data. Physical CFTs can be obtained by scanning the space of crossing-symmetric functions. By truncating the fusion rules, we are able to concentrate on the low-lying operators and derive some approximate relations for their conformal data. It turns out that the free scalar theory, the 2d minimal model CFTs, the ϕ 4 Wilson-Fisher CFT, the Lee-Yang CFTs and the Ising CFTs are consistent with the universal relations from the minimal fusion rule ϕ 1 × ϕ 1 = I + ϕ 2 + T , where ϕ 1 , ϕ 2 are scalar operators, I is the identity operator and T is the stress tensor.
Smoldering and Flame Resistant Textiles via Conformal Barrier Formation
Zammarano, Mauro; Cazzetta, Valeria; Nazaré, Shonali; Shields, J. Randy; Kim, Yeon Seok; Hoffman, Kathleen M.; Maffezzoli, Alfonso; Davis, Rick
2016-01-01
A durable and flexible silicone-based backcoating (halogen free) is applied to the backside of an otherwise smoldering-prone and flammable fabric. When exposed to fire, cyclic siloxanes (produced by thermal decomposition of the backcoating) diffuse through the fabric in the gas phase. The following oxidation of the cyclic siloxanes forms a highly conformal and thermally stable coating that fully embeds all individual fibers and shields them from heat and oxidation. As a result, the combustion...
Conformal radiotherapy: principles and classification
International Nuclear Information System (INIS)
Rosenwald, J.C.; Gaboriaud, G.; Pontvert, D.
1999-01-01
'Conformal radiotherapy' is the name fixed by usage and given to a new form of radiotherapy resulting from the technological improvements observed during the last ten years. While this terminology is now widely used, no precise definition can be found in the literature. Conformal radiotherapy refers to an approach in which the dose distribution is more closely 'conformed' or adapted to the actual shape of the target volume. However, the achievement of a consensus on a more specific definition is hampered by various difficulties, namely in characterizing the degree of 'conformality'. We have therefore suggested a classification scheme be established on the basis of the tools and the procedures actually used for all steps of the process, i.e., from prescription to treatment completion. Our classification consists of four levels: schematically, at level 0, there is no conformation (rectangular fields); at level 1, a simple conformation takes place, on the basis of conventional 2D imaging; at level 2, a 3D reconstruction of the structures is used for a more accurate conformation; and level 3 includes research and advanced dynamic techniques. We have used our personal experience, contacts with colleagues and data from the literature to analyze all the steps of the planning process, and to define the tools and procedures relevant to a given level. The corresponding tables have been discussed and approved at the European level within the Dynarad concerted action. It is proposed that the term 'conformal radiotherapy' be restricted to procedures where all steps are at least at level 2. (author)
Conformal Cosmology and Supernova Data
Behnke, Danilo; Blaschke, David; Pervushin, Victor; Proskurin, Denis
2000-01-01
We define the cosmological parameters $H_{c,0}$, $\\Omega_{m,c}$ and $\\Omega_{\\Lambda, c}$ within the Conformal Cosmology as obtained by the homogeneous approximation to the conformal-invariant generalization of Einstein's General Relativity theory. We present the definitions of the age of the universe and of the luminosity distance in the context of this approach. A possible explanation of the recent data from distant supernovae Ia without a cosmological constant is presented.
Scalar perturbations and conformal transformation
International Nuclear Information System (INIS)
Fabris, J.C.; Tossa, J.
1995-11-01
The non-minimal coupling of gravity to a scalar field can be transformed into a minimal coupling through a conformal transformation. We show how to connect the results of a perturbation calculation, performed around a Friedman-Robertson-Walker background solution, before and after the conformal transformation. We work in the synchronous gauge, but we discuss the implications of employing other frames. (author). 16 refs
Cortes, Adriano Mauricio; Dalcin, Lisandro; Sarmiento, Adel; Collier, N.; Calo, Victor M.
2016-01-01
The recently introduced divergence-conforming B-spline discretizations allow the construction of smooth discrete velocity-pressure pairs for viscous incompressible flows that are at the same time inf−supinf−sup stable and pointwise divergence
Stable isotopes labelled compounds
International Nuclear Information System (INIS)
1982-09-01
The catalogue on stable isotopes labelled compounds offers deuterium, nitrogen-15, and multiply labelled compounds. It includes: (1) conditions of sale and delivery, (2) the application of stable isotopes, (3) technical information, (4) product specifications, and (5) the complete delivery programme
Indian Academy of Sciences (India)
Home; Journals; Resonance – Journal of Science Education; Volume 21; Issue 9. Evolutionary Stable Strategy: Application of Nash Equilibrium in Biology. General Article Volume 21 Issue 9 September 2016 pp 803- ... Keywords. Evolutionary game theory, evolutionary stable state, conflict, cooperation, biological games.
Steeneveld, G.J.
2012-01-01
Understanding and prediction of the stable atmospheric boundary layer is a challenging task. Many physical processes are relevant in the stable boundary layer, i.e. turbulence, radiation, land surface coupling, orographic turbulent and gravity wave drag, and land surface heterogeneity. The
Multi-Valued Spin Switch in a Semiconductor Microcavity
Paraïso, T. K.; Wouters, M.; Léger, Y.; Morier-Genoud, F.; Deveaudhyphen; Plédran, B.
2011-12-01
In this work, we report on the first realization of multi-valued spin switching in the solid-state. We investigate the physics of spinor bistability with microcavity polaritons in a trap. Spinor interactions lead to special bistability regimes with decoupled thresholds for spin-up and spin-down polaritons. This allows us to establish state-of-the-art spin switching operations. We evidence polarization hysteresis and determine appropriate conditions to achieve spin multistability. For a given excitation condition, three stable spin states coexist for the system. These results open new pathways for the development of innovative spin-based logic gates and memory devices.
Synchronization in slowly switching networks of coupled oscillators
Zhou, Jie; Zou, Yong; Guan, Shuguang; Liu, Zonghua; Boccaletti, S.
2016-01-01
Networks whose structure of connections evolves in time constitute a big challenge in the study of synchronization, in particular when the time scales for the evolution of the graph topology are comparable with (or even longer than) those pertinent to the units’ dynamics. We here focus on networks with a slow-switching structure, and show that the necessary conditions for synchronization, i.e. the conditions for which synchronization is locally stable, are determined by the time average of the largest Lyapunov exponents of transverse modes of the switching topologies. Comparison between fast- and slow-switching networks allows elucidating that slow-switching processes prompt synchronization in the cases where the Master Stability Function is concave, whereas fast-switching schemes facilitate synchronization for convex curves. Moreover, the condition of slow-switching enables the introduction of a control strategy for inducing synchronization in networks with arbitrary structure and coupling strength, which is of evident relevance for broad applications in real world systems. PMID:27779253
Quantum Conformal Algebras and Closed Conformal Field Theory
Anselmi, D
1999-01-01
We investigate the quantum conformal algebras of N=2 and N=1 supersymmetric gauge theories. Phenomena occurring at strong coupling are analysed using the Nachtmann theorem and very general, model-independent, arguments. The results lead us to introduce a novel class of conformal field theories, identified by a closed quantum conformal algebra. We conjecture that they are the exact solution to the strongly coupled large-N_c limit of the open conformal field theories. We study the basic properties of closed conformal field theory and work out the operator product expansion of the conserved current multiplet T. The OPE structure is uniquely determined by two central charges, c and a. The multiplet T does not contain just the stress-tensor, but also R-currents and finite mass operators. For this reason, the ratio c/a is different from 1. On the other hand, an open algebra contains an infinite tower of non-conserved currents, organized in pairs and singlets with respect to renormalization mixing. T mixes with a se...
Duan, Zhao-Wen; Li, Wei; Xie, Ping; Dou, Shuo-Xing; Wang, Peng-Ye
2010-04-01
Using Brownian dynamics simulation, we studied the effect of histone modifications on conformations of an array of nucleosomes in a segment of chromatin. The simulation demonstrated that the segment of chromatin shows the dynamic behaviour that its conformation can switch between a state with nearly all of the histones being wrapped by DNA and a state with nearly all of the histones being unwrapped by DNA, thus involving the “cross-talking" interactions among the histones. Each state can stay for a sufficiently long time. These conformational states are essential for gene expression or gene silence. The simulation also shows that these conformational states can be inherited by the daughter DNAs during DNA replication, giving a theoretical explanation of the epigenetic phenomenon.
International Nuclear Information System (INIS)
Zhao-Wen, Duan; Wei, Li; Ping, Xie; Shuo-Xing, Dou; Peng-Ye, Wang
2010-01-01
Using Brownian dynamics simulation, we studied the effect of histone modifications on conformations of an array of nucleosomes in a segment of chromatin. The simulation demonstrated that the segment of chromatin shows the dynamic behaviour that its conformation can switch between a state with nearly all of the histones being wrapped by DNA and a state with nearly all of the histones being unwrapped by DNA, thus involving the “cross-talking” interactions among the histones. Each state can stay for a sufficiently long time. These conformational states are essential for gene expression or gene silence. The simulation also shows that these conformational states can be inherited by the daughter DNAs during DNA replication, giving a theoretical explanation of the epigenetic phenomenon. (cross-disciplinary physics and related areas of science and technology)
MENGAPA PERUSAHAAN MELAKUKAN AUDITOR SWITCH?
Directory of Open Access Journals (Sweden)
Kadek Sumadi
2011-01-01
Full Text Available The existence of a large number of accounting firms allowsprovides companies choices whether to stay with current firm or switchto another accounting firm. Decision of Minister of FinanceNo.423/KMK.06/2002 states that a company must switch auditor afterfive years of consecutive assignment. This is mandatory. The questionrises when a company voluntarily switches its auditor. Why does thishappen?One of the reasons is that management does not satisfy withauditor opinion, except for unqualified opinion. New management teamwould directly or indirectly encourage auditor switch to align accountingand reporting policies. Moreover an expanding company expects positivereaction when it does auditor switch. Profitability is also one reason fora company to switch auditor, for example, when a company earns moreprofit it tends to hire more credible auditor. On the other hand, when thecompany faces a financial distress, it probably would switch auditor aswell.
Low-Crosstalk Composite Optical Crosspoint Switches
Pan, Jing-Jong; Liang, Frank
1993-01-01
Composite optical switch includes two elementary optical switches in tandem, plus optical absorbers. Like elementary optical switches, composite optical switches assembled into switch matrix. Performance enhanced by increasing number of elementary switches. Advantage of concept: crosstalk reduced to acceptably low level at moderate cost of doubling number of elementary switches rather than at greater cost of tightening manufacturing tolerances and exerting more-precise control over operating conditions.
Compound semiconductor optical waveguide switch
Spahn, Olga B.; Sullivan, Charles T.; Garcia, Ernest J.
2003-06-10
An optical waveguide switch is disclosed which is formed from III-V compound semiconductors and which has a moveable optical waveguide with a cantilevered portion that can be bent laterally by an integral electrostatic actuator to route an optical signal (i.e. light) between the moveable optical waveguide and one of a plurality of fixed optical waveguides. A plurality of optical waveguide switches can be formed on a common substrate and interconnected to form an optical switching network.
Tetrazole acetic acid: Tautomers, conformers, and isomerization
Energy Technology Data Exchange (ETDEWEB)
Araujo-Andrade, C. [Unidad Académica de Física de la Universidad Autónoma de Zacatecas, Zacatecas (Mexico); Department of Chemistry, University of Coimbra, 3004-535 Coimbra (Portugal); Reva, I., E-mail: reva@qui.uc.pt; Fausto, R. [Department of Chemistry, University of Coimbra, 3004-535 Coimbra (Portugal)
2014-02-14
Monomers of (tetrazol-5-yl)-acetic acid (TAA) were obtained by sublimation of the crystalline compound and the resulting vapors were isolated in cryogenic nitrogen matrices at 13 K. The conformational and tautomeric composition of TAA in the matrix was characterized by infrared spectroscopy and vibrational calculations carried out at the B3LYP/6-311++G(d,p) level. TAA may adopt two tautomeric modifications, 1H- and 2H-, depending on the position of the annular hydrogen atom. Two-dimensional potential energy surfaces (PESs) of TAA were theoretically calculated at the MP2/6-311++G(d,p) level, for each tautomer. Four and six symmetry-unique minima were located on these PESs, for 1H- and 2H-TAA, respectively. The energetics of the detected minima was subsequently refined by calculations at the QCISD level. Two 1H- and three 2H-conformers fall within the 0–8 kJ mol{sup −1} energy range and should be appreciably populated at the sublimation temperature (∼330 K). Observation of only one conformer for each tautomer (1ccc and 2pcc) is explained in terms of calculated barriers to conformational rearrangements. All conformers with the cis O=COH moiety are separated by low barriers (less than 10 kJ mol{sup −1}) and collapse to the most stable 1ccc (1H-) and 2pcc (2H-) forms during deposition of the matrix. On the trans O=COH surfaces, the relative energies are very high (between 12 and 27 kJ mol{sup −1}). The trans forms are not thermally populated at the sublimation conditions and were not detected in matrices. One high-energy form in each tautomer, 1cct (1H-) and 2pct (2H-), was found to differ from the most stable form only by rotation of the OH group and separated from other forms by high barriers. This opened a perspective for their stabilization in a matrix. 1cct and 2pct were generated in the matrices selectively by means of narrow-band near-infrared (NIR) irradiations of the samples at 6920 and 6937 cm{sup −1}, where the first OH stretching overtone
Neuromorphic atomic switch networks.
Directory of Open Access Journals (Sweden)
Audrius V Avizienis
Full Text Available Efforts to emulate the formidable information processing capabilities of the brain through neuromorphic engineering have been bolstered by recent progress in the fabrication of nonlinear, nanoscale circuit elements that exhibit synapse-like operational characteristics. However, conventional fabrication techniques are unable to efficiently generate structures with the highly complex interconnectivity found in biological neuronal networks. Here we demonstrate the physical realization of a self-assembled neuromorphic device which implements basic concepts of systems neuroscience through a hardware-based platform comprised of over a billion interconnected atomic-switch inorganic synapses embedded in a complex network of silver nanowires. Observations of network activation and passive harmonic generation demonstrate a collective response to input stimulus in agreement with recent theoretical predictions. Further, emergent behaviors unique to the complex network of atomic switches and akin to brain function are observed, namely spatially distributed memory, recurrent dynamics and the activation of feedforward subnetworks. These devices display the functional characteristics required for implementing unconventional, biologically and neurally inspired computational methodologies in a synthetic experimental system.
Recent developments in switching theory
Mukhopadhyay, Amar
2013-01-01
Electrical Science Series: Recent Developments in Switching Theory covers the progress in the study of the switching theory. The book discusses the simplified proof of Post's theorem on completeness of logic primitives; the role of feedback in combinational switching circuits; and the systematic procedure for the design of Lupanov decoding networks. The text also describes the classical results on counting theorems and their application to the classification of switching functions under different notions of equivalence, including linear and affine equivalences. The development of abstract har
Software Switching for Data Acquisition
CERN. Geneva; Malone, David
2016-01-01
In this talk we discuss the feasibility of replacing telecom-class routers with a topology of commodity servers acting as software switches in data acquisition. We extend the popular software switch, Open vSwitch, with a dedicated, throughput-oriented buffering mechanism. We compare the performance under heavy many-to-one congestion to typical Ethernet switches and evaluate the scalability when building larger topologies, exploiting the integration with software-defined networking technologies. Please note that David Malone will speak on behalf of Grzegorz Jereczek.
Ishiuchi, Shun-ichi; Mitsuda, Haruhiko; Asakawa, Toshiro; Miyazaki, Mitsuhiko; Fujii, Masaaki
2011-05-07
The conformational reduction in catecholamine neurotransmitters was studied by resonance enhanced multi photon ionization (REMPI), ultraviolet-ultraviolet (UV-UV) hole burning and infrared (IR) dip spectroscopy with applying a laser desorption supersonic jet technique to DOPA, which is one of the catecholamine neurotransmitters and has one more phenolic OH group than tyrosine. It is concluded that DOPA has a single observable conformer in the gas phase at low temperature. Quantum chemical calculations at several levels with or without the dispersion correction were also carried out to study stable conformations. From the comparison between the computational IR spectra and the experimental ones, the most stable structure was determined. It is strongly suggested that the conformational reduction is caused by electrostatic interactions, such as a dipole-dipole interaction, between the chain and OH groups. This journal is © the Owner Societies 2011
Formation of stable radicals during perfluoroalkane radiolysis
International Nuclear Information System (INIS)
Allayarov, S.R.; Demidov, S.V.; Kiryukhin, D.P.; Mikhajlov, A.I.; Barkalov, I.M.
1984-01-01
Accumulation and stabilization kinetics of perfluoroalkyls during α-radiolysis ( 60 Co) of perfluoralkanes (PFA) in a wide temperature range for different PFA fractions differing in the average molecular weight, is investigated. It is noted that low temperature (PFA) radiolysis (77 K) is of a linear nature of accumulation of stabilized radicals up to doses of approximately 700 KGy. In the case of PFA radiolysis at 300 K radiation yields of stable radicals are somewhat lower than at 47 K and at doses of 200-300 KGy, their accumulation ceases. It is shown that kinetics of formation and accumulation of stable radicals does not depend on molecular mass and PFA fraction viscosity. Perfluoroalkyl stability is explained by intra molecular conformation spheric insulation of the free valency. Perfluoroalkyl stability in different PFA fractions in a wide time range in different media is investigated
Gauge fixing problem in the conformal QED
International Nuclear Information System (INIS)
Ichinose, Shoichi
1986-01-01
The gauge fixing problem in the conformal (spinor and scalar) QED is examined. For the analysis, we generalize Dirac's manifestly conformal-covariant formalism. It is shown that the (vector and matter) fields must obey a certain mixed (conformal and gauge) type of transformation law in order to fix the local gauge symmetry preserving the conformal invariance in the Lagrangian. (orig.)
40 CFR 93.154 - Conformity analysis.
2010-07-01
... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Conformity analysis. 93.154 Section 93...) DETERMINING CONFORMITY OF FEDERAL ACTIONS TO STATE OR FEDERAL IMPLEMENTATION PLANS Determining Conformity of General Federal Actions to State or Federal Implementation Plans § 93.154 Conformity analysis. Any Federal...
Normal modified stable processes
DEFF Research Database (Denmark)
Barndorff-Nielsen, Ole Eiler; Shephard, N.
2002-01-01
Gaussian (NGIG) laws. The wider framework thus established provides, in particular, for added flexibility in the modelling of the dynamics of financial time series, of importance especially as regards OU based stochastic volatility models for equities. In the special case of the tempered stable OU process......This paper discusses two classes of distributions, and stochastic processes derived from them: modified stable (MS) laws and normal modified stable (NMS) laws. This extends corresponding results for the generalised inverse Gaussian (GIG) and generalised hyperbolic (GH) or normal generalised inverse...
Applications of stable isotopes
International Nuclear Information System (INIS)
Letolle, R.; Mariotti, A.; Bariac, T.
1991-06-01
This report reviews the historical background and the properties of stable isotopes, the methods used for their measurement (mass spectrometry and others), the present technics for isotope enrichment and separation, and at last the various present and foreseeable application (in nuclear energy, physical and chemical research, materials industry and research; tracing in industrial, medical and agronomical tests; the use of natural isotope variations for environmental studies, agronomy, natural resources appraising: water, minerals, energy). Some new possibilities in the use of stable isotope are offered. A last chapter gives the present state and forecast development of stable isotope uses in France and Europe
Conformational Clusters of Phosphorylated Tyrosine.
Abdelrasoul, Maha; Ponniah, Komala; Mao, Alice; Warden, Meghan S; Elhefnawy, Wessam; Li, Yaohang; Pascal, Steven M
2017-12-06
Tyrosine phosphorylation plays an important role in many cellular and intercellular processes including signal transduction, subcellular localization, and regulation of enzymatic activity. In 1999, Blom et al., using the limited number of protein data bank (PDB) structures available at that time, reported that the side chain structures of phosphorylated tyrosine (pY) are partitioned into two conserved conformational clusters ( Blom, N.; Gammeltoft, S.; Brunak, S. J. Mol. Biol. 1999 , 294 , 1351 - 1362 ). We have used the spectral clustering algorithm to cluster the increasingly growing number of protein structures with pY sites, and have found that the pY residues cluster into three distinct side chain conformations. Two of these pY conformational clusters associate strongly with a narrow range of tyrosine backbone conformation. The novel cluster also highly correlates with the identity of the n + 1 residue, and is strongly associated with a sequential pYpY conformation which places two adjacent pY side chains in a specific relative orientation. Further analysis shows that the three pY clusters are associated with distinct distributions of cognate protein kinases.
Conformational Fluctuations in G-Protein-Coupled Receptors
Brown, Michael F.
2014-03-01
G-protein-coupled receptors (GPCRs) comprise almost 50% of pharmaceutical drug targets, where rhodopsin is an important prototype and occurs naturally in a lipid membrane. Rhodopsin photoactivation entails 11-cis to all-trans isomerization of the retinal cofactor, yielding an equilibrium between inactive Meta-I and active Meta-II states. Two important questions are: (1) Is rhodopsin is a simple two-state switch? Or (2) does isomerization of retinal unlock an activated conformational ensemble? For an ensemble-based activation mechanism (EAM) a role for conformational fluctuations is clearly indicated. Solid-state NMR data together with theoretical molecular dynamics (MD) simulations detect increased local mobility of retinal after light activation. Resultant changes in local dynamics of the cofactor initiate large-scale fluctuations of transmembrane helices that expose recognition sites for the signal-transducing G-protein. Time-resolved FTIR studies and electronic spectroscopy further show the conformational ensemble is strongly biased by the membrane lipid composition, as well as pH and osmotic pressure. A new flexible surface model (FSM) describes how the curvature stress field of the membrane governs the energetics of active rhodopsin, due to the spontaneous monolayer curvature of the lipids. Furthermore, influences of osmotic pressure dictate that a large number of bulk water molecules are implicated in rhodopsin activation. Around 60 bulk water molecules activate rhodopsin, which is much larger than the number of structural waters seen in X-ray crystallography, or inferred from studies of bulk hydrostatic pressure. Conformational selection and promoting vibrational motions of rhodopsin lead to activation of the G-protein (transducin). Our biophysical data give a paradigm shift in understanding GPCR activation. The new view is: dynamics and conformational fluctuations involve an ensemble of substates that activate the cognate G-protein in the amplified visual
Evidence of native α-synuclein conformers in the human brain.
Gould, Neal; Mor, Danielle E; Lightfoot, Richard; Malkus, Kristen; Giasson, Benoit; Ischiropoulos, Harry
2014-03-14
α-Synuclein aggregation is central to the pathogenesis of several brain disorders. However, the native conformations and functions of this protein in the human brain are not precisely known. The native state of α-synuclein was probed by gel filtration coupled with native gradient gel separation, an array of antibodies with non-overlapping epitopes, and mass spectrometry. The existence of metastable conformers and stable monomer was revealed in the human brain.
National Research Council Canada - National Science Library
Adler, Robert
1997-01-01
We describe how to take a stable, ARMA, time series through the various stages of model identification, parameter estimation, and diagnostic checking, and accompany the discussion with a goodly number...
Renyi entropy and conformal defects
Energy Technology Data Exchange (ETDEWEB)
Bianchi, Lorenzo [Humboldt-Univ. Berlin (Germany). Inst. fuer Physik; Hamburg Univ. (Germany). II. Inst. fuer Theoretische Physik; Meineri, Marco [Scuola Normale Superiore, Pisa (Italy); Perimeter Institute for Theoretical Physics, Waterloo, ON (Canada); Istituto Nazionale di Fisica Nucleare, Pisa (Italy); Myers, Robert C. [Perimeter Institute for Theoretical Physics, Waterloo, ON (Canada); Smolkin, Michael [California Univ., Berkely, CA (United States). Center for Theoretical Physics and Department of Physics
2016-04-18
We propose a field theoretic framework for calculating the dependence of Renyi entropies on the shape of the entangling surface in a conformal field theory. Our approach rests on regarding the corresponding twist operator as a conformal defect and in particular, we define the displacement operator which implements small local deformations of the entangling surface. We identify a simple constraint between the coefficient defining the two-point function of the displacement operator and the conformal weight of the twist operator, which consolidates a number of distinct conjectures on the shape dependence of the Renyi entropy. As an example, using this approach, we examine a conjecture regarding the universal coefficient associated with a conical singularity in the entangling surface for CFTs in any number of spacetime dimensions. We also provide a general formula for the second order variation of the Renyi entropy arising from small deformations of a spherical entangling surface, extending Mezei's results for the entanglement entropy.
Conformal dimension theory and application
Mackay, John M
2010-01-01
Conformal dimension measures the extent to which the Hausdorff dimension of a metric space can be lowered by quasisymmetric deformations. Introduced by Pansu in 1989, this concept has proved extremely fruitful in a diverse range of areas, including geometric function theory, conformal dynamics, and geometric group theory. This survey leads the reader from the definitions and basic theory through to active research applications in geometric function theory, Gromov hyperbolic geometry, and the dynamics of rational maps, amongst other areas. It reviews the theory of dimension in metric spaces and of deformations of metric spaces. It summarizes the basic tools for estimating conformal dimension and illustrates their application to concrete problems of independent interest. Numerous examples and proofs are provided. Working from basic definitions through to current research areas, this book can be used as a guide for graduate students interested in this field, or as a helpful survey for experts. Background needed ...
Elementary introduction to conformal invariance
International Nuclear Information System (INIS)
Grandati, Y.
1992-01-01
These notes constitute an elementary introduction to the concept of conformal invariance and its applications to the study of bidimensional critical phenomena. The aim is to give an access as pedestrian as possible to this vast subject. After a brief account of the general properties of conformal transformation in D dimensions, we study more specifically the case D = 2. The center of the discussion is then the consequences of the action of this symmetry group on bidimensional field theories, and in particular the links between the representations of the Virasoro algebra and the structure of the correlation functions of conformal field theories. Finally after showing how the Ising model reduces to a Majorana fermionic field theory, we see how the general formalism previously discussed can be applied to the Ising case at the critical point. (orig.)
Conformal geometry and quasiregular mappings
Vuorinen, Matti
1988-01-01
This book is an introduction to the theory of spatial quasiregular mappings intended for the uninitiated reader. At the same time the book also addresses specialists in classical analysis and, in particular, geometric function theory. The text leads the reader to the frontier of current research and covers some most recent developments in the subject, previously scatterd through the literature. A major role in this monograph is played by certain conformal invariants which are solutions of extremal problems related to extremal lengths of curve families. These invariants are then applied to prove sharp distortion theorems for quasiregular mappings. One of these extremal problems of conformal geometry generalizes a classical two-dimensional problem of O. Teichmüller. The novel feature of the exposition is the way in which conformal invariants are applied and the sharp results obtained should be of considerable interest even in the two-dimensional particular case. This book combines the features of a textbook an...
Renyi entropy and conformal defects
International Nuclear Information System (INIS)
Bianchi, Lorenzo; Myers, Robert C.; Smolkin, Michael
2016-01-01
We propose a field theoretic framework for calculating the dependence of Renyi entropies on the shape of the entangling surface in a conformal field theory. Our approach rests on regarding the corresponding twist operator as a conformal defect and in particular, we define the displacement operator which implements small local deformations of the entangling surface. We identify a simple constraint between the coefficient defining the two-point function of the displacement operator and the conformal weight of the twist operator, which consolidates a number of distinct conjectures on the shape dependence of the Renyi entropy. As an example, using this approach, we examine a conjecture regarding the universal coefficient associated with a conical singularity in the entangling surface for CFTs in any number of spacetime dimensions. We also provide a general formula for the second order variation of the Renyi entropy arising from small deformations of a spherical entangling surface, extending Mezei's results for the entanglement entropy.
Hybrid switch for resonant power converters
Lai, Jih-Sheng; Yu, Wensong
2014-09-09
A hybrid switch comprising two semiconductor switches connected in parallel but having different voltage drop characteristics as a function of current facilitates attainment of zero voltage switching and reduces conduction losses to complement reduction of switching losses achieved through zero voltage switching in power converters such as high-current inverters.
LCT protective dump-switch tests
International Nuclear Information System (INIS)
Parsons, W.M.
1981-01-01
Each of the six coils in the Large Coil Task (LCT) has a separate power supply, dump resistor, and switching circuit. Each switching circuit contains five switches, two of which are redundant. The three remaining switches perform separate duties in an emergency dump situation. These three switches were tested to determine their ability to meet the LCT conditions
A graphene integrated highly transparent resistive switching memory device
Dugu, Sita; Pavunny, Shojan P.; Limbu, Tej B.; Weiner, Brad R.; Morell, Gerardo; Katiyar, Ram S.
2018-05-01
We demonstrate the hybrid fabrication process of a graphene integrated highly transparent resistive random-access memory (TRRAM) device. The indium tin oxide (ITO)/Al2O3/graphene nonvolatile memory device possesses a high transmittance of >82% in the visible region (370-700 nm) and exhibits stable and non-symmetrical bipolar switching characteristics with considerably low set and reset voltages (ITO/Al2O3/Pt device and studied its switching characteristics for comparison and a better understanding of the ITO/Al2O3/graphene device characteristics. The conduction mechanisms in high and low resistance states were analyzed, and the observed polarity dependent resistive switching is explained based on electro-migration of oxygen ions.
Bipolar resistive switching behaviors of ITO nanowire networks
Directory of Open Access Journals (Sweden)
Qiang Li
2016-02-01
Full Text Available We have fabricated indium tin oxide (ITO nanowire (NW networks on aluminum electrodes using electron beam evaporation. The Ag/ITO-NW networks/Al capacitor exhibits bipolar resistive switching behavior. The resistive switching characteristics of ITO-NW networks are related to the morphology of NWs. The x-ray photoelectron spectroscopy was used to obtain the chemical nature from the NWs surface, investigating the oxygen vacancy state. A stable switching voltages and a clear memory window were observed in needle-shaped NWs. The ITO-NW networks can be used as a new two-dimensional metal oxide material for the fabrication of high-density memory devices.
Sustained selective attention predicts flexible switching in preschoolers.
Benitez, Viridiana L; Vales, Catarina; Hanania, Rima; Smith, Linda B
2017-04-01
Stability and flexibility are fundamental to an intelligent cognitive system. Here, we examined the relationship between stability in selective attention and explicit control of flexible attention. Preschoolers were tested on the Dimension Preference (DP) task, which measures the stability of selective attention to an implicitly primed dimension, and the Dimension Change Card Sort (DCCS) task, which measures flexible attention switching between dimensions. Children who successfully switched on the DCCS task were more likely than those who perseverated to sustain attention to the primed dimension on the DP task across trials. We propose that perseverators have less stable attention and distribute their attention between dimensions, whereas switchers can successfully stabilize attention to individual dimensions and, thus, show more enduring priming effects. Flexible attention may emerge, in part, from implicit processes that stabilize attention even in tasks not requiring switching. Copyright © 2016 Elsevier Inc. All rights reserved.
Trickle-Down Preferences: Preferential Conformity to High Status Peers in Fashion Choices
Galak, Jeff; Gray, Kurt; Elbert, Igor; Strohminger, Nina
2016-01-01
How much do our choices represent stable inner preferences versus social conformity? We examine conformity and consistency in sartorial choices surrounding a common life event of new norm exposure: relocation. A large-scale dataset of individual purchases of women’s shoes (16,236 transactions) across five years and 2,007 women reveals a balance of conformity and consistency, moderated by changes in location socioeconomic status. Women conform to new local norms (i.e., average heel size) when moving to relatively higher status locations, but mostly ignore new local norms when moving to relatively lower status locations. In short, at periods of transition, it is the fashion norms of the rich that trickle down to consumers. These analyses provide the first naturalistic large-scale demonstration of the tension between psychological conformity and consistency, with real decisions in a highly visible context. PMID:27144595
Trickle-Down Preferences: Preferential Conformity to High Status Peers in Fashion Choices.
Directory of Open Access Journals (Sweden)
Jeff Galak
Full Text Available How much do our choices represent stable inner preferences versus social conformity? We examine conformity and consistency in sartorial choices surrounding a common life event of new norm exposure: relocation. A large-scale dataset of individual purchases of women's shoes (16,236 transactions across five years and 2,007 women reveals a balance of conformity and consistency, moderated by changes in location socioeconomic status. Women conform to new local norms (i.e., average heel size when moving to relatively higher status locations, but mostly ignore new local norms when moving to relatively lower status locations. In short, at periods of transition, it is the fashion norms of the rich that trickle down to consumers. These analyses provide the first naturalistic large-scale demonstration of the tension between psychological conformity and consistency, with real decisions in a highly visible context.
Abo-Riziq, Ali; Grace, Louis; Crews, Bridgit; Callahan, Michael P,; van Mourik, Tanja; de Vries, Mattanjah S,
2011-01-01
We investigated the variation in conformation for the amino acid tyrosine (Y), alone and in the small peptides tyrosine-glycine (YC) and tyrosine-glycine-glycine (YGG), in the gas phase by using UV-UV and IR-UV double resonance spectroscopy and density functional theory calculations. For tyrosine we found seven different conformations, for YG we found four different conformations, and for YGG we found three different conformations. As the peptides get larger, we observe fewer stable conformers, despite the increasing complexity and number of degrees of freedom. We find structural trends similar to those in phenylalanine-glycine glycine (FGG) and tryptophan-glycine-glycine (WGG)j however) the effect of dispersive forces in FGG for stabilizing a folded structure is replaced by that of hydrogen bonding in YGG.
Trickle-Down Preferences: Preferential Conformity to High Status Peers in Fashion Choices.
Galak, Jeff; Gray, Kurt; Elbert, Igor; Strohminger, Nina
2016-01-01
How much do our choices represent stable inner preferences versus social conformity? We examine conformity and consistency in sartorial choices surrounding a common life event of new norm exposure: relocation. A large-scale dataset of individual purchases of women's shoes (16,236 transactions) across five years and 2,007 women reveals a balance of conformity and consistency, moderated by changes in location socioeconomic status. Women conform to new local norms (i.e., average heel size) when moving to relatively higher status locations, but mostly ignore new local norms when moving to relatively lower status locations. In short, at periods of transition, it is the fashion norms of the rich that trickle down to consumers. These analyses provide the first naturalistic large-scale demonstration of the tension between psychological conformity and consistency, with real decisions in a highly visible context.
SUSY Unparticle and Conformal Sequestering
Energy Technology Data Exchange (ETDEWEB)
Nakayama, Yu; Nakayama, Yu
2007-07-17
We investigate unparticle physics with supersymmetry (SUSY). The SUSY breaking effects due to the gravity mediation induce soft masses for the SUSY unparticles and hence break the conformal invariance. The unparticle physics observable in near future experiments is only consistent if the SUSY breakingeffects from the hidden sector to the standard model sector are dominated by the gauge mediation, or if the SUSY breaking effects to the unparticle sector are sufficiently sequestered. We argue that the natural realization of the latter possibility is the conformal sequestering scenario.
Topics in conformal field theory
International Nuclear Information System (INIS)
Kiritsis, E.B.
1988-01-01
In this work two major topics in Conformal Field Theory are discussed. First a detailed investigation of N = 2 Superconformal theories is presented. The structure of the representations of the N = 2 superconformal algebras is investigated and the character formulae are calculated. The general structure of N = 2 superconformal theories is elucidated and the operator algebra of the minimal models is derived. The first minimal system is discussed in more detail. Second, applications of the conformal techniques are studied in the Ashkin-Teller model. The c = 1 as well as the c = 1/2 critical lines are discussed in detail
Passive synchronized Q-switching between a quasi-three-level and a four-level laser
DEFF Research Database (Denmark)
Cheng, Haynes Pak Hay; Tidemand-Lichtenberg, Peter; Jensen, Ole Bjarlin
2011-01-01
Synchronized Q-switching between quasi-three-level and four-level lasers is interesting for sum-frequency generation into the blue and ultraviolet. We report, for the first time, stable synchronized Q-switching between a quasi-three-level laser at 946 nm and a four-level laser at 1064 nm in an all...
Circuit switched optical networks
DEFF Research Database (Denmark)
Kloch, Allan
2003-01-01
Some of the most important components required for enabling optical networking are investigated through both experiments and modelling. These all-optical components are the wavelength converter, the regenerator and the space switch. When these devices become "off-the-shelf" products, optical cross......, it is expected that the optical solution will offer an economical benefit for hight bit rate networks. This thesis begins with a discussion of the expected impact on communications systems from the rapidly growing IP traffic, which is expected to become the dominant source for traffic. IP traffic has some...... characteristics, which are best supported by an optical network. The interest for such an optical network is exemplified by the formation of the ACTS OPEN project which aim was to investigate the feasibility of an optical network covering Europe. Part of the work presented in this thesis is carried out within...
Energy Technology Data Exchange (ETDEWEB)
Masaki, Yuichi
1987-10-31
Photo-input MOS transistor (Photo-switching element) cannot give enough ON/OFF ratio but requires an auxiliary condenser for a certain type of application. In addition, PN junction of amorphous silicon is not practical because it gives high leak current resulting in low electromotive force. In this invention, a solar cell was constructed with a lower electrode consisting of a transparent electro-conducting film, a photosensitive part consisting of an amorphous Si layer of p-i-n layer construction, and an upper metal electrode consisting of Cr or Nichrome, and a thin film transistor was placed on the solar cell, and further the upper metal electrode was co-used as a gate electrode of the thin film transistor; this set-up of this invention enabled to attain an efficient photo-electric conversion of the incident light, high electromotive force of the solar cell, and the transistor with high ON/OFF ratio. (3 figs)
Battery switch for downhole tools
Boling, Brian E.
2010-02-23
An electrical circuit for a downhole tool may include a battery, a load electrically connected to the battery, and at least one switch electrically connected in series with the battery and to the load. The at least one switch may be configured to close when a tool temperature exceeds a selected temperature.
Improved switch-resistor packaging
Redmerski, R. E.
1980-01-01
Packaging approach makes resistors more accessible and easily identified with specific switches. Failures are repaired more quickly because of improved accessibility. Typical board includes one resistor that acts as circuit breaker, and others are positioned so that their values can be easily measured when switch is operated. Approach saves weight by using less wire and saves valuable panel space.
Hybrid colored noise process with space-dependent switching rates
Bressloff, Paul C.; Lawley, Sean D.
2017-07-01
A fundamental issue in the theory of continuous stochastic process is the interpretation of multiplicative white noise, which is often referred to as the Itô-Stratonovich dilemma. From a physical perspective, this reflects the need to introduce additional constraints in order to specify the nature of the noise, whereas from a mathematical perspective it reflects an ambiguity in the formulation of stochastic differential equations (SDEs). Recently, we have identified a mechanism for obtaining an Itô SDE based on a form of temporal disorder. Motivated by switching processes in molecular biology, we considered a Brownian particle that randomly switches between two distinct conformational states with different diffusivities. In each state, the particle undergoes normal diffusion (additive noise) so there is no ambiguity in the interpretation of the noise. However, if the switching rates depend on position, then in the fast switching limit one obtains Brownian motion with a space-dependent diffusivity of the Itô form. In this paper, we extend our theory to include colored additive noise. We show that the nature of the effective multiplicative noise process obtained by taking both the white-noise limit (κ →0 ) and fast switching limit (ɛ →0 ) depends on the order the two limits are taken. If the white-noise limit is taken first, then we obtain Itô, and if the fast switching limit is taken first, then we obtain Stratonovich. Moreover, the form of the effective diffusion coefficient differs in the two cases. The latter result holds even in the case of space-independent transition rates, where one obtains additive noise processes with different diffusion coefficients. Finally, we show that yet another form of multiplicative noise is obtained in the simultaneous limit ɛ ,κ →0 with ɛ /κ2 fixed.
Additional conformer observed in the microwave spectrum of methyl vinyl ketone
Wilcox, David S.; Shirar, Amanda J.; Williams, Owen L.; Dian, Brian C.
2011-05-01
A chirped-pulse Fourier transform microwave spectrometer was used to record the rotational spectrum of methyl vinyl ketone (MVK, 3-butene-2-one). Two stable conformations were identified: the previously documented antiperiplanar (ap) conformer and synperiplanar (sp), which is reported for the first time in this microwave study. Methyl torsional analysis resulted in V3 barrier heights of 433.8(1) and 376.6(2) cm-1 for ap- and sp-MVK, respectively. Heavy atom isotopic species of both conformers were detected in natural abundance allowing bond lengths and angles of the molecular frames to be calculated through Kraitchman analysis. A comparison with ab initio calculations is included.
Conformational analysis and vibrational studies of ethylenediamine-d4, using DFT method
International Nuclear Information System (INIS)
Catikkas, B.
2010-01-01
In this work, conformational analysis and quantum chemical calculations of ethylenediamine-d4 were carried out. The geometry optimization and the geometric parameters (bond length, bond angle and tortion angle) were calculated. The Infrared and Raman frequencies of fundamental modes of the most stable conformer were determined. Calculations were carried out by using the MPW1PW91/6-311+G(d,p) method and Gaussian03 and GaussView3.0 programs. Populations of the conformers was calculated. Vibrational assignments of the title molecule were calculated by using Scaled Quantum Mechanical (SQM) analysis. Calculated values were compared with the experimental ones.
Superconductivity, energy storage and switching
International Nuclear Information System (INIS)
Laquer, H.L.
1974-01-01
The phenomenon of superconductivity can contribute to the technology of energy storage and switching in two distinct ways. On one hand the zero resistivity of the superconductor can produce essentially infinite time constants so that an inductive storage system can be charged from very low power sources. On the other hand, the recovery of finite resistivity in a normal-going superconducting switch can take place in extremely short times, so that a system can be made to deliver energy at a very high power level. Topics reviewed include: physics of superconductivity, limits to switching speed of superconductors, physical and engineering properties of superconducting materials and assemblies, switching methods, load impedance considerations, refrigeration economics, limitations imposed by present day and near term technology, performance of existing and planned energy storage systems, and a comparison with some alternative methods of storing and switching energy. (U.S.)
Amorphous metal based nanoelectromechanical switch
Mayet, Abdulilah M.; Smith, Casey; Hussain, Muhammad Mustafa
2013-01-01
Nanoelectromechanical (NEM) switch is an interesting ultra-low power option which can operate in the harsh environment and can be a complementary element in complex digital circuitry. Although significant advancement is happening in this field, report on ultra-low voltage (pull-in) switch which offers high switching speed and area efficiency is yet to be made. One key challenge to achieve such characteristics is to fabricate nano-scale switches with amorphous metal so the shape and dimensional integrity are maintained to achieve the desired performance. Therefore, we report a tungsten alloy based amorphous metal with fabrication process development of laterally actuated dual gated NEM switches with 100 nm width and 200 nm air-gap to result in <5 volts of actuation voltage (Vpull-in). © 2013 IEEE.
Amorphous metal based nanoelectromechanical switch
Mayet, Abdulilah M.
2013-04-01
Nanoelectromechanical (NEM) switch is an interesting ultra-low power option which can operate in the harsh environment and can be a complementary element in complex digital circuitry. Although significant advancement is happening in this field, report on ultra-low voltage (pull-in) switch which offers high switching speed and area efficiency is yet to be made. One key challenge to achieve such characteristics is to fabricate nano-scale switches with amorphous metal so the shape and dimensional integrity are maintained to achieve the desired performance. Therefore, we report a tungsten alloy based amorphous metal with fabrication process development of laterally actuated dual gated NEM switches with 100 nm width and 200 nm air-gap to result in <5 volts of actuation voltage (Vpull-in). © 2013 IEEE.
On the asymptotic stability of nonlinear mechanical switched systems
Platonov, A. V.
2018-05-01
Some classes of switched mechanical systems with dissipative and potential forces are considered. The case, where either dissipative or potential forces are essentially nonlinear, is studied. It is assumed that the zero equilibrium position of the system is asymptotically stable at least for one operating mode. We will look for sufficient conditions which guarantee the preservation of asymptotic stability of the equilibrium position under the switching of modes. The Lyapunov direct method is used. A Lyapunov function for considered system is constructed, which satisfies the differential inequality of special form for every operating mode. This inequality is nonlinear for the chosen mode with asymptotically stable equilibrium position, and it is linear for the rest modes. The correlations between the intervals of activity of the pointed mode and the intervals of activity of the rest modes are obtained which guarantee the required properties.
Effects of conformism on the cultural evolution of social behaviour.
Directory of Open Access Journals (Sweden)
Lucas Molleman
Full Text Available Models of cultural evolution study how the distribution of cultural traits changes over time. The dynamics of cultural evolution strongly depends on the way these traits are transmitted between individuals by social learning. Two prominent forms of social learning are payoff-based learning (imitating others that have higher payoffs and conformist learning (imitating locally common behaviours. How payoff-based and conformist learning affect the cultural evolution of cooperation is currently a matter of lively debate, but few studies systematically analyse the interplay of these forms of social learning. Here we perform such a study by investigating how the interaction of payoff-based and conformist learning affects the outcome of cultural evolution in three social contexts. First, we develop a simple argument that provides insights into how the outcome of cultural evolution will change when more and more conformist learning is added to payoff-based learning. In a social dilemma (e.g. a Prisoner's Dilemma, conformism can turn cooperation into a stable equilibrium; in an evasion game (e.g. a Hawk-Dove game or a Snowdrift game conformism tends to destabilize the polymorphic equilibrium; and in a coordination game (e.g. a Stag Hunt game, conformism changes the basin of attraction of the two equilibria. Second, we analyse a stochastic event-based model, revealing that conformism increases the speed of cultural evolution towards pure equilibria. Individual-based simulations as well as the analysis of the diffusion approximation of the stochastic model by and large confirm our findings. Third, we investigate the effect of an increasing degree of conformism on cultural group selection in a group-structured population. We conclude that, in contrast to statements in the literature, conformism hinders rather than promotes the evolution of cooperation.
Effects of conformism on the cultural evolution of social behaviour.
Molleman, Lucas; Pen, Ido; Weissing, Franz J
2013-01-01
Models of cultural evolution study how the distribution of cultural traits changes over time. The dynamics of cultural evolution strongly depends on the way these traits are transmitted between individuals by social learning. Two prominent forms of social learning are payoff-based learning (imitating others that have higher payoffs) and conformist learning (imitating locally common behaviours). How payoff-based and conformist learning affect the cultural evolution of cooperation is currently a matter of lively debate, but few studies systematically analyse the interplay of these forms of social learning. Here we perform such a study by investigating how the interaction of payoff-based and conformist learning affects the outcome of cultural evolution in three social contexts. First, we develop a simple argument that provides insights into how the outcome of cultural evolution will change when more and more conformist learning is added to payoff-based learning. In a social dilemma (e.g. a Prisoner's Dilemma), conformism can turn cooperation into a stable equilibrium; in an evasion game (e.g. a Hawk-Dove game or a Snowdrift game) conformism tends to destabilize the polymorphic equilibrium; and in a coordination game (e.g. a Stag Hunt game), conformism changes the basin of attraction of the two equilibria. Second, we analyse a stochastic event-based model, revealing that conformism increases the speed of cultural evolution towards pure equilibria. Individual-based simulations as well as the analysis of the diffusion approximation of the stochastic model by and large confirm our findings. Third, we investigate the effect of an increasing degree of conformism on cultural group selection in a group-structured population. We conclude that, in contrast to statements in the literature, conformism hinders rather than promotes the evolution of cooperation.
Conformal displays: human factor analysis of innovative landing aids
Schmerwitz, Sven; Lueken, Thomas; Doehler, Hans-Ullrich; Peinecke, Niklas; Ernst, Johannes M.; da Silva Rosa, David L.
2017-05-01
In the past couple of years, research on display content for helicopter operations headed in a new direction. The already reached goals could evolve into a paradigm change for information visualization. Technology advancements allow implementing three-dimensional and conformal content on a helmet-mounted see-through device. This superimposed imagery inherits the same optical flow as the environment. It is supposed to ease switching between display information and environmental cues. The concept is neither pathbreaking nor new, but it has not been successfully established in aviation yet. Nevertheless, there are certainly some advantages to expect-at least from perspective of a human-centered system design. Within the following pages, the next generation displays will be presented and discussed with a focus on human factors. Beginning with recalling some human factor related research facts, an experiment comparing the former two-dimensional research displays will be presented. Before introducing the DLR conformal symbol set and the three experiments about an innovative drift, indication related research activities toward conformal symbol sets will be addressed.
Gómez-Zavaglia, Andrea; Fausto, R.
2003-01-01
Sarcosine (N-methylglycine) has been studied by matrix-isolation FT-IR spectroscopy and molecular orbital calculations undertaken at the DFT/B3LYP and MP2 levels of theory with the 6-311++G(d, p) and 6-31++G(d, p) basis set, respectively. Eleven different conformers were located in the potential energy surface (PES) of sarcosine, with the ASC conformer being the ground conformational state. This form is analogous to the glycine most stable conformer and is characterized by a NH...O= intramole...
Switching Phenomena in a System with No Switches
Preis, Tobias; Stanley, H. Eugene
2010-02-01
It is widely believed that switching phenomena require switches, but this is actually not true. For an intriguing variety of switching phenomena in nature, the underlying complex system abruptly changes from one state to another in a highly discontinuous fashion. For example, financial market fluctuations are characterized by many abrupt switchings creating increasing trends ("bubble formation") and decreasing trends ("financial collapse"). Such switching occurs on time scales ranging from macroscopic bubbles persisting for hundreds of days to microscopic bubbles persisting only for a few seconds. We analyze a database containing 13,991,275 German DAX Future transactions recorded with a time resolution of 10 msec. For comparison, a database providing 2,592,531 of all S&P500 daily closing prices is used. We ask whether these ubiquitous switching phenomena have quantifiable features independent of the time horizon studied. We find striking scale-free behavior of the volatility after each switching occurs. We interpret our findings as being consistent with time-dependent collective behavior of financial market participants. We test the possible universality of our result by performing a parallel analysis of fluctuations in transaction volume and time intervals between trades. We show that these financial market switching processes have properties similar to those of phase transitions. We suggest that the well-known catastrophic bubbles that occur on large time scales—such as the most recent financial crisis—are no outliers but single dramatic representatives caused by the switching between upward and downward trends on time scales varying over nine orders of magnitude from very large (≈102 days) down to very small (≈10 ms).
International Nuclear Information System (INIS)
Axente, Damian
1998-01-01
The most important fields of stable isotope use with examples are presented. These are: 1. Isotope dilution analysis: trace analysis, measurements of volumes and masses; 2. Stable isotopes as tracers: transport phenomena, environmental studies, agricultural research, authentication of products and objects, archaeometry, studies of reaction mechanisms, structure and function determination of complex biological entities, studies of metabolism, breath test for diagnostic; 3. Isotope equilibrium effects: measurement of equilibrium effects, investigation of equilibrium conditions, mechanism of drug action, study of natural processes, water cycle, temperature measurements; 4. Stable isotope for advanced nuclear reactors: uranium nitride with 15 N as nuclear fuel, 157 Gd for reactor control. In spite of some difficulties of stable isotope use, particularly related to the analytical techniques, which are slow and expensive, the number of papers reporting on this subject is steadily growing as well as the number of scientific meetings organized by International Isotope Section and IAEA, Gordon Conferences, and regional meeting in Germany, France, etc. Stable isotope application development on large scale is determined by improving their production technologies as well as those of labeled compound and the analytical techniques. (author)
Spin-4 extended conformal algebras
International Nuclear Information System (INIS)
Kakas, A.C.
1988-01-01
We construct spin-4 extended conformal algebras using the second hamiltonian structure of the KdV hierarchy. In the presence of a U(1) current a family of spin-4 algebras exists but the additional requirement that the spin-1 and spin-4 currents commute fixes the algebra uniquely. (orig.)
Defects in conformal field theory
International Nuclear Information System (INIS)
Billò, Marco; Gonçalves, Vasco; Lauria, Edoardo; Meineri, Marco
2016-01-01
We discuss consequences of the breaking of conformal symmetry by a flat or spherical extended operator. We adapt the embedding formalism to the study of correlation functions of symmetric traceless tensors in the presence of the defect. Two-point functions of a bulk and a defect primary are fixed by conformal invariance up to a set of OPE coefficients, and we identify the allowed tensor structures. A correlator of two bulk primaries depends on two cross-ratios, and we study its conformal block decomposition in the case of external scalars. The Casimir equation in the defect channel reduces to a hypergeometric equation, while the bulk channel blocks are recursively determined in the light-cone limit. In the special case of a defect of codimension two, we map the Casimir equation in the bulk channel to the one of a four-point function without defect. Finally, we analyze the contact terms of the stress-tensor with the extended operator, and we deduce constraints on the CFT data. In two dimensions, we relate the displacement operator, which appears among the contact terms, to the reflection coefficient of a conformal interface, and we find unitarity bounds for the latter.
Conformal symmetry and holographic cosmology
Bzowski, A.W.
2013-01-01
This thesis presents a novel approach to cosmology using gauge/gravity duality. Analysis of the implications of conformal invariance in field theories leads to quantitative cosmological predictions which are in agreement with current data. Furthermore, holographic cosmology extends the theory of
Checking behavioral conformance of artifacts
Fahland, D.; Leoni, de M.; Dongen, van B.F.; Aalst, van der W.M.P.
2011-01-01
The usefulness of process models (e.g., for analysis, improvement, or execution) strongly depends on their ability to describe reality. Conformance checking is a technique to validate how good a given process model describes recorded executions of the actual process. Recently, artifacts have been
Conformation analysis of oligomeric flavanoids
Jan P. Steynberg; E. Vincent Brandt; Daneel Ferreira; Carin A. Helfer; Wayne L. Mattice; Dominika Gornik; Richard W. Hemingway
1995-01-01
The profisetinidins are the most important polyflavanoids of commerce, making up the major constituents of wattle and quebracho tannins. Within the dimeric profisetinidins, substantial complexity exists because of stereo-, regio, rotational and conformational isomers. Definition of the stereochemistry of the upper and lower flavan units, the location of the...
Conformational analysis of oligomeric flavanoids
Jan P. Steynberg; E. Vincent Brandt; Daneel Ferreira; Carin A. Helfer; Wayne L. Mattice; Dominika Gornik; Richard W. Hemingway
1995-01-01
The profisetinidins are the most important polyflavanoids of commerce, making up the major constituents of wattle and quebracho tannins. Even within the dimeric profisetinidins, substantial complexity exists because of stereo-, regio-, rotational and conformational isomers. Definition of the stereochemistry of the upper and lower flavan units, the location of the...
Inversion theory and conformal mapping
Blair, David E
2000-01-01
It is rarely taught in an undergraduate or even graduate curriculum that the only conformal maps in Euclidean space of dimension greater than two are those generated by similarities and inversions in spheres. This is in stark contrast to the wealth of conformal maps in the plane. The principal aim of this text is to give a treatment of this paucity of conformal maps in higher dimensions. The exposition includes both an analytic proof in general dimension and a differential-geometric proof in dimension three. For completeness, enough complex analysis is developed to prove the abundance of conformal maps in the plane. In addition, the book develops inversion theory as a subject, along with the auxiliary theme of circle-preserving maps. A particular feature is the inclusion of a paper by Carath�odory with the remarkable result that any circle-preserving transformation is necessarily a M�bius transformation, not even the continuity of the transformation is assumed. The text is at the level of advanced undergr...
Defects in conformal field theory
Energy Technology Data Exchange (ETDEWEB)
Billò, Marco [Dipartimento di Fisica, Università di Torino, and Istituto Nazionale di Fisica Nucleare - sezione di Torino,Via P. Giuria 1 I-10125 Torino (Italy); Gonçalves, Vasco [Centro de Física do Porto,Departamento de Física e Astronomia Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto (Portugal); ICTP South American Institute for Fundamental Research Instituto de Física Teórica,UNESP - University Estadual Paulista,Rua Dr. Bento T. Ferraz 271, 01140-070, São Paulo, SP (Brazil); Lauria, Edoardo [Institute for Theoretical Physics, KU Leuven, Celestijnenlaan 200D, B-3001 Leuven (Belgium); Meineri, Marco [Perimeter Institute for Theoretical Physics,Waterloo, Ontario, N2L 2Y5 (Canada); Scuola Normale Superiore, and Istituto Nazionale di Fisica Nucleare - sezione di Pisa,Piazza dei Cavalieri 7 I-56126 Pisa (Italy)
2016-04-15
We discuss consequences of the breaking of conformal symmetry by a flat or spherical extended operator. We adapt the embedding formalism to the study of correlation functions of symmetric traceless tensors in the presence of the defect. Two-point functions of a bulk and a defect primary are fixed by conformal invariance up to a set of OPE coefficients, and we identify the allowed tensor structures. A correlator of two bulk primaries depends on two cross-ratios, and we study its conformal block decomposition in the case of external scalars. The Casimir equation in the defect channel reduces to a hypergeometric equation, while the bulk channel blocks are recursively determined in the light-cone limit. In the special case of a defect of codimension two, we map the Casimir equation in the bulk channel to the one of a four-point function without defect. Finally, we analyze the contact terms of the stress-tensor with the extended operator, and we deduce constraints on the CFT data. In two dimensions, we relate the displacement operator, which appears among the contact terms, to the reflection coefficient of a conformal interface, and we find unitarity bounds for the latter.
Supertwistor connection and conformal supergravity
International Nuclear Information System (INIS)
Merkulov, S.A.
1985-01-01
Supersymmetry expansion of the geometry of local twistors is suggested. Definition of the space of local supertwistors is given and its differential geometry is formulated. Variational principles are discussed, and it is shown that corresponding Euler-Lagrange equations also coincide and result in superzero equations of N=1 conformal supergravitation, which generalize Bach equations
Conformal symmetry and string theories
International Nuclear Information System (INIS)
Kumar, A.
1987-01-01
This thesis is devoted to the study of various aspects of the 2-dimensional conformal field theory and its applications to strings. We make a short review of the conformal field theory and its supersymmetric extension, called superconformal field theory. We present an elegant superspace formulation of these theories and solve the condition for the closure of the superconformal algebra. The we go on to classify the superconformal field theories according to these solutions. We prove that N ≥ 5 superconformal algebra, with N being the number of supersymmetries, does not have central charge. We find the primary representations of all the interesting superconformal algebra. We study the quantization of the superconformal theories and derive the constraints on the central charge of the algebra that has to be satisfied for a consistent quantum theory. This quantization process also determines the ground state energy of the system and the spectrum of the model. We study the global aspects of the conformal symmetry and its role in the construction of consistent heterotic string theories. We prove the uniqueness of heterotic superstring theories in 10 dimensions in the fermionic constructions. We show how the vertex operators are closely associated with the primary field representation of the conformal algebra. We utilize these vertex operator constructions to obtain tree amplitudes in the 10-dimensional heterotic string theory. We show by explicit calculation at the 3-point level that the scattering amplitudes derived from the heterotic superstring are same as the ones obtained from 10-dimensional supergravity theories
Exceptional and Spinorial Conformal Windows
DEFF Research Database (Denmark)
Mojaza, Matin; Pica, Claudio; Ryttov, Thomas
2012-01-01
We study the conformal window of gauge theories containing fermionic matter fields, where the gauge group is any of the exceptional groups with the fermions transforming according to the fundamental and adjoint representations and the orthogonal groups where the fermions transform according...
Anomalous Dimensions of Conformal Baryons
DEFF Research Database (Denmark)
Pica, Claudio; Sannino, Francesco
2016-01-01
We determine the anomalous dimensions of baryon operators for the three color theory as function of the number of massless flavours within the conformal window to the maximum known order in perturbation theory. We show that the anomalous dimension of the baryon is controllably small, within...
Calcium stable isotope geochemistry
Energy Technology Data Exchange (ETDEWEB)
Gausonne, Nikolaus [Muenster Univ. (Germany). Inst. fuer Mineralogie; Schmitt, Anne-Desiree [Strasbourg Univ. (France). LHyGeS/EOST; Heuser, Alexander [Bonn Univ. (Germany). Steinmann-Inst. fuer Geologie, Mineralogie und Palaeontologie; Wombacher, Frank [Koeln Univ. (Germany). Inst. fuer Geologie und Mineralogie; Dietzel, Martin [Technische Univ. Graz (Austria). Inst. fuer Angewandte Geowissenschaften; Tipper, Edward [Cambridge Univ. (United Kingdom). Dept. of Earth Sciences; Schiller, Martin [Copenhagen Univ. (Denmark). Natural History Museum of Denmark
2016-08-01
This book provides an overview of the fundamentals and reference values for Ca stable isotope research, as well as current analytical methodologies including detailed instructions for sample preparation and isotope analysis. As such, it introduces readers to the different fields of application, including low-temperature mineral precipitation and biomineralisation, Earth surface processes and global cycling, high-temperature processes and cosmochemistry, and lastly human studies and biomedical applications. The current state of the art in these major areas is discussed, and open questions and possible future directions are identified. In terms of its depth and coverage, the current work extends and complements the previous reviews of Ca stable isotope geochemistry, addressing the needs of graduate students and advanced researchers who want to familiarize themselves with Ca stable isotope research.
Calcium stable isotope geochemistry
International Nuclear Information System (INIS)
Gausonne, Nikolaus; Schmitt, Anne-Desiree; Heuser, Alexander; Wombacher, Frank; Dietzel, Martin; Tipper, Edward; Schiller, Martin
2016-01-01
This book provides an overview of the fundamentals and reference values for Ca stable isotope research, as well as current analytical methodologies including detailed instructions for sample preparation and isotope analysis. As such, it introduces readers to the different fields of application, including low-temperature mineral precipitation and biomineralisation, Earth surface processes and global cycling, high-temperature processes and cosmochemistry, and lastly human studies and biomedical applications. The current state of the art in these major areas is discussed, and open questions and possible future directions are identified. In terms of its depth and coverage, the current work extends and complements the previous reviews of Ca stable isotope geochemistry, addressing the needs of graduate students and advanced researchers who want to familiarize themselves with Ca stable isotope research.
Regime switching model for financial data: Empirical risk analysis
Salhi, Khaled; Deaconu, Madalina; Lejay, Antoine; Champagnat, Nicolas; Navet, Nicolas
2016-11-01
This paper constructs a regime switching model for the univariate Value-at-Risk estimation. Extreme value theory (EVT) and hidden Markov models (HMM) are combined to estimate a hybrid model that takes volatility clustering into account. In the first stage, HMM is used to classify data in crisis and steady periods, while in the second stage, EVT is applied to the previously classified data to rub out the delay between regime switching and their detection. This new model is applied to prices of numerous stocks exchanged on NYSE Euronext Paris over the period 2001-2011. We focus on daily returns for which calibration has to be done on a small dataset. The relative performance of the regime switching model is benchmarked against other well-known modeling techniques, such as stable, power laws and GARCH models. The empirical results show that the regime switching model increases predictive performance of financial forecasting according to the number of violations and tail-loss tests. This suggests that the regime switching model is a robust forecasting variant of power laws model while remaining practical to implement the VaR measurement.
Overnight switching from oxcarbazepine to eslicarbazepine acetate: an observational study.
Schmid, E; Kuchukhidze, G; Kirschner, M; Leitinger, M; Höfler, J; Rohracher, A; Kalss, G; Wendling, A-S; Steinhoff, B J; Trinka, E
2017-04-01
There are clinical situations where it might be appropriate to switch patients from immediate-release oxcarbazepine (OXC) to eslicarbazepine acetate (ESL). We investigated the effects of transitioning patients overnight from OXC to ESL. A retrospective, single-center study was conducted in which patients with drug-resistant focal epilepsy on a stable dose of immediate-release OXC for at least 4 weeks were switched overnight to ESL. Patients were switched because they experienced persistent seizures with OXC but were unable to tolerate increased OXC dosing due to adverse events. Tolerability was assessed using the Adverse Events Profile (AEP), quality of life was assessed using the Quality of Life in Epilepsy Inventory 10 (QOLIE-10), and alertness was assessed as reaction time using a subtest of the Test Battery for Attention Performance version 2.3. Assessments were performed immediately prior to and 5 days after switching from OXC to ESL (days 0 and 5, respectively). The analysis included 21 patients (12 women, 9 men; mean age 36 years). After switching from OXC to ESL, there were significant improvements in mean scores for AEP (Peffects, quality of life, and alertness. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Multistable decision switches for flexible control of epigenetic differentiation.
Directory of Open Access Journals (Sweden)
Raúl Guantes
2008-11-01
Full Text Available It is now recognized that molecular circuits with positive feedback can induce two different gene expression states (bistability under the very same cellular conditions. Whether, and how, cells make use of the coexistence of a larger number of stable states (multistability is however largely unknown. Here, we first examine how autoregulation, a common attribute of genetic master regulators, facilitates multistability in two-component circuits. A systematic exploration of these modules' parameter space reveals two classes of molecular switches, involving transitions in bistable (progression switches or multistable (decision switches regimes. We demonstrate the potential of decision switches for multifaceted stimulus processing, including strength, duration, and flexible discrimination. These tasks enhance response specificity, help to store short-term memories of recent signaling events, stabilize transient gene expression, and enable stochastic fate commitment. The relevance of these circuits is further supported by biological data, because we find them in numerous developmental scenarios. Indeed, many of the presented information-processing features of decision switches could ultimately demonstrate a more flexible control of epigenetic differentiation.
Is the standard model saved asymptotically by conformal symmetry?
Gorsky, A.; Mironov, A.; Morozov, A.; Tomaras, T. N.
2015-03-01
It is pointed out that the top-quark and Higgs masses and the Higgs VEV with great accuracy satisfy the relations 4 m {/H 2} = 2 m {/T 2} = v 2, which are very special and reminiscent of analogous ones at Argyres-Douglas points with enhanced conformal symmetry. Furthermore, the RG evolution of the corresponding Higgs self-interaction and Yukawa couplings λ(0) = 1/8 and y(0) = 1 leads to the free-field stable point in the pure scalar sector at the Planck scale, also suggesting enhanced conformal symmetry. Thus, it is conceivable that the Standard Model is the low-energy limit of a distinct special theory with (super?) conformal symmetry at the Planck scale. In the context of such a "scenario," one may further speculate that the Higgs particle is the Goldstone boson of (partly) spontaneously broken conformal symmetry. This would simultaneously resolve the hierarchy and Landau pole problems in the scalar sector and would provide a nearly flat potential with two almost degenerate minima at the electroweak and Planck scales.
Atomic cranks and levers control sugar ring conformations
International Nuclear Information System (INIS)
Zhang Qingmin; Lee, Gwangrog; Marszalek, Piotr E
2005-01-01
In this paper we review the conformational analysis of sugar rings placed under tension during mechanical manipulations of single polysaccharide molecules with the atomic force microscope and during steered molecular dynamics simulations. We examine the role of various chemical bonds and linkages between sugar rings in inhibiting or promoting their conformational transitions by means of external forces. Small differences in the orientation of one chemical bond on the sugar ring can produce significantly different mechanical properties at the polymer level as exemplified by two polysaccharides: cellulose, composed of β-1→4-linked D-glucose, and amylose, composed of α-1→4-linked D-glucose. In contrast to β-glucose rings, which are mechanically stable and produce simple entropic elasticity of the chain, α-glucose rings flip under tension from their chair to a boat-like structure and these transitions produce deviations of amylose elasticity from the freely jointed chain model. We also examine the deformation of two mechanically complementary 1→6-linked polysaccharides: pustulan, a β-1→6-linked glucan, and dextran, a α-1→6-linked glucan. Forced rotations about the C 5 -C 6 bonds govern the elasticity of pustulan, and complex conformational transitions that involve simultaneous C 5 -C 6 rotations and chair-boat transitions govern the elasticity of dextran. Finally, we discuss the likelihood of various conformational transitions in sugar rings in biological settings and speculate on their significance
Multi-polar resistance switching and memory effect in copper phthalocyanine junctions
International Nuclear Information System (INIS)
Qiao Shi-Zhu; Kang Shi-Shou; Li Qiang; Zhong Hai; Kang Yun; Yu Shu-Yun; Han Guang-Bing; Yan Shi-Shen; Mei Liang-Mo; Qin Yu-Feng
2014-01-01
Copper phthalocyanine junctions, fabricated by magnetron sputtering and evaporating methods, show multi-polar (unipolar and bipolar) resistance switching and the memory effect. The multi-polar resistance switching has not been observed simultaneously in one organic material before. With both electrodes being cobalt, the unipolar resistance switching is universal. The high resistance state is switched to the low resistance state when the bias reaches the set voltage. Generally, the set voltage increases with the thickness of copper phthalocyanine and decreases with increasing dwell time of bias. Moreover, the low resistance state could be switched to the high resistance state by absorbing the phonon energy. The stability of the low resistance state could be tuned by different electrodes. In Au/copper phthalocyanine/Co system, the low resistance state is far more stable, and the bipolar resistance switching is found. Temperature dependence of electrical transport measurements demonstrates that there are no obvious differences in the electrical transport mechanism before and after the resistance switching. They fit quite well with Mott variable range hopping theory. The effect of Al 2 O 3 on the resistance switching is excluded by control experiments. The holes trapping and detrapping in copper phthalocyanine layer are responsible for the resistance switching, and the interfacial effect between electrodes and copper phthalocyanine layer affects the memory effect. (interdisciplinary physics and related areas of science and technology)
DETERMINANT OF DOWNWARD AUDITOR SWITCHING
Directory of Open Access Journals (Sweden)
Totok Budisantoso
2017-12-01
Full Text Available Abstract: Determinant of Downward Auditor Switching. This study examines the factors that influence downward auditor switching in five ASEAN countries. Fixed effect logistic regression was used as analytical method. This study found that opinion shopping occurred in ASEAN, especially in distress companies. Companies with complex businesses will retain the Big Four auditors to reduce complexity and audit costs. Audit and public committees serve as guardians of auditor quality. On the other hand, shareholders failed to maintain audit quality. It indicates that there is entrenchment effect in auditor switching.
Electrically switched ion exchange
Energy Technology Data Exchange (ETDEWEB)
Lilga, M.A. [Pacific Northwest National Lab., Richland, WA (United States); Schwartz, D.T.; Genders, D.
1997-10-01
A variety of waste types containing radioactive {sup 137}Cs are found throughout the DOE complex. These waste types include water in reactor cooling basins, radioactive high-level waste (HLW) in underground storage tanks, and groundwater. Safety and regulatory requirements and economics require the removal of radiocesium before these wastes can be permanently disposed of. Electrically Switched Ion Exchange (ESIX) is an approach for radioactive cesium separation that combines IX and electrochemistry to provide a selective, reversible, and economic separation method that also produces little or no secondary waste. In the ESIX process, an electroactive IX film is deposited electrochemically onto a high-surface area electrode, and ion uptake and elution are controlled directly by modulating the potential of the film. For cesium, the electroactive films under investigation are ferrocyanides, which are well known to have high selectivities for cesium in concentrated sodium solutions. When a cathode potential is applied to the film, Fe{sup +3} is reduced to the Fe{sup +2} state, and a cation must be intercalated into the film to maintain charge neutrality (i.e., Cs{sup +} is loaded). Conversely, if an anodic potential is applied, a cation must be released from the film (i.e., Cs{sup +} is unloaded). Therefore, to load the film with cesium, the film is simply reduced; to unload cesium, the film is oxidized.
International Nuclear Information System (INIS)
Ishida, T.
1992-01-01
The research has been in four general areas: (1) correlation of isotope effects with molecular forces and molecular structures, (2) correlation of zero-point energy and its isotope effects with molecular structure and molecular forces, (3) vapor pressure isotope effects, and (4) fractionation of stable isotopes. 73 refs, 38 figs, 29 tabs
Interactive Stable Ray Tracing
DEFF Research Database (Denmark)
Dal Corso, Alessandro; Salvi, Marco; Kolb, Craig
2017-01-01
Interactive ray tracing applications running on commodity hardware can suffer from objectionable temporal artifacts due to a low sample count. We introduce stable ray tracing, a technique that improves temporal stability without the over-blurring and ghosting artifacts typical of temporal post-pr...
Kearney, M. Kate
2013-01-01
The concordance genus of a knot is the least genus of any knot in its concordance class. Although difficult to compute, it is a useful invariant that highlights the distinction between the three-genus and four-genus. In this paper we define and discuss the stable concordance genus of a knot, which describes the behavior of the concordance genus under connected sum.
Stable radiographic scanning agents
International Nuclear Information System (INIS)
1976-01-01
Stable compositions which are useful in the preparation of Technetium-99m-based scintigraphic agents are discussed. They are comprised of ascorbic acid or a pharmaceutically acceptable salt or ester thereof in combination with a pertechnetate reducing agent or dissolved in oxidized pertechnetate-99m (sup(99m)TcO 4 - ) solution
Some stable hydromagnetic equilibria
Energy Technology Data Exchange (ETDEWEB)
Johnson, J L; Oberman, C R; Kulsrud, R M; Frieman, E A [Project Matterhorn, Princeton University, Princeton, NJ (United States)
1958-07-01
We have been able to find and investigate the properties of equilibria which are hydromagnetically stable. These equilibria can be obtained, for example, by wrapping conductors helically around the stellarator tube. Systems with I = 3 or 4 are indicated to be optimum for stability purposes. In some cases an admixture of I = 2 fields can be advantageous for achieving equilibrium. (author)
Conformational preferences of γ-aminobutyric acid in the gas phase and in water
Song, Il Keun; Kang, Young Kee
2012-09-01
The conformational study of γ-aminobutyric acid (GABA) has been carried out at the M06-2X/cc-pVTZ level of theory in the gas phase and the SMD M06-2X/cc-pVTZ level of theory in water. In the gas phase, the folded conformation gG1 with gauche- and gauche+ conformations for the Cβsbnd Cα and Cγsbnd Cβ bonds, respectively, is found to be lowest in energy and enthalpy, which can be ascribed to the favored hyperconjugative n → π* interaction between the lone electron pair of the amine nitrogen atom and the Cdbnd O bond of the carboxylic group and the favored antiparallel dipole-dipole interaction between the Nsbnd H bond and the Cdbnd O bond. In addition, the intramolecular hydrogen bonds between the carboxylic group and the amine Nsbnd H group have contributed to stabilize some low-energy conformers. However, the most preferred conformation is found to be tG1 and more stable by 0.4 kcal/mol in ΔG than the conformer gG1, in which the favored entropic term due to the conformational flexibility and the other favored n → σ*, σ → σ*, and π → σ* interactions seem to play a role. The conformational preferences of the neutral GABA calculated by ΔG's are reasonably consistent with the populations deduced from FT microwave spectroscopy in supersonic jets combined with laser ablation. In water, the two folded conformers Gg and gG of the zwitterionic GABA are dominantly populated, each of which has the population of 47%, and the hydrogen bond between the ammonium Nsbnd H group and the lone electron pair of the Csbnd O- group seems to be crucial in stabilizing these conformers. Our calculated result that the folded conformers preferentially exist in water is consistent with the 1H NMR experiments in D2O.
Conformation regulation of the X chromosome inactivation center: a model.
Directory of Open Access Journals (Sweden)
Antonio Scialdone
2011-10-01
Full Text Available X-Chromosome Inactivation (XCI is the process whereby one, randomly chosen X becomes transcriptionally silenced in female cells. XCI is governed by the Xic, a locus on the X encompassing an array of genes which interact with each other and with key molecular factors. The mechanism, though, establishing the fate of the X's, and the corresponding alternative modifications of the Xic architecture, is still mysterious. In this study, by use of computer simulations, we explore the scenario where chromatin conformations emerge from its interaction with diffusing molecular factors. Our aim is to understand the physical mechanisms whereby stable, non-random conformations are established on the Xic's, how complex architectural changes are reliably regulated, and how they lead to opposite structures on the two alleles. In particular, comparison against current experimental data indicates that a few key cis-regulatory regions orchestrate the organization of the Xic, and that two major molecular regulators are involved.
Conformational flexibility of avidin: the influence of biotin binding
International Nuclear Information System (INIS)
Soledad Celej, M.; Montich, Guillermo G.; Fidelio, Gerardo D.
2004-01-01
Ligand binding to proteins is a key process in cell biochemistry. The interaction usually induces modifications in the unfolding thermodynamic parameters of the macromolecule due to the coupling of unfolding and binding equilibria. In addition, these modifications can be attended by changes in protein structure and/or conformational flexibility induced by ligand binding. In this work, we have explored the effect of biotin binding on conformation and dynamic properties of avidin by using infrared spectroscopy including kinetics of hydrogen/deuterium exchange. Our results, along with previously thermodynamic published data, indicate a clear correlation between thermostability and protein compactness. In addition, our results also help to interpret the thermodynamic binding parameters of the exceptionally stable biotin:AVD complex
Conformal and Nearly Conformal Theories at Large N
Tarnoplskiy, Grigory M.
In this thesis we present new results in conformal and nearly conformal field theories in various dimensions. In chapter two, we study different properties of the conformal Quantum Electrodynamics (QED) in continuous dimension d. At first we study conformal QED using large Nf methods, where Nf is the number of massless fermions. We compute its sphere free energy as a function of d, ignoring the terms of order 1/Nf and higher. For finite Nf we use the epsilon-expansion. Next we use a large Nf diagrammatic approach to calculate the leading corrections to CT, the coefficient of the two-point function of the stress-energy tensor, and CJ, the coefficient of the two-point function of the global symmetry current. We present explicit formulae as a function of d and check them versus the expectations in 2 and 4 - epsilon dimensions. In chapter three, we discuss vacuum stability in 1 + 1 dimensional conformal field theories with external background fields. We show that the vacuum decay rate is given by a non-local two-form. This two-form is a boundary term that must be added to the effective in/out Lagrangian. The two-form is expressed in terms of a Riemann-Hilbert decomposition for background gauge fields, and is given by its novel "functional'' version in the gravitational case. In chapter four, we explore Tensor models. Such models possess the large N limit dominated by the melon diagrams. The quantum mechanics of a real anti-commuting rank-3 tensor has a large N limit similar to the Sachdev-Ye-Kitaev (SYK) model. We also discuss the quantum mechanics of a complex 3-index anti-commuting tensor and argue that it is equivalent in the large N limit to a version of SYK model with complex fermions. Finally, we discuss models of a commuting tensor in dimension d. We study the spectrum of the large N quantum field theory of bosonic rank-3 tensors using the Schwinger-Dyson equations. We compare some of these results with the 4 - epsilon expansion, finding perfect agreement. We
Conformal invariance in the quantum field theory
International Nuclear Information System (INIS)
Kurak, V.
1975-09-01
Basic features concerning the present knowledge of conformal symmetry are illustrated in a simple model. Composite field dimensions of this model are computed and related to the conformal group. (author) [pt
The Conformational Behaviour of Glucosamine
Peña, Isabel; Kolesniková, Lucie; Cabezas, Carlos; Bermúdez, Celina; Berdakin, Matías; Simao, Alcides; Alonso, José L.
2014-06-01
A laser ablation method has been successfully used to vaporize the bioactive amino monosaccharide D-glucosamine. Three cyclic α-4C1 pyranose forms have been identified using a combination of CP-FTMW and LA-MB-FTMW spectroscopy. Stereoelectronic hyperconjugative factors, like those associated with anomeric or gauche effects, as well as the cooperative OH\\cdotsO, OH\\cdotsN and NH\\cdotsO chains, extended along the entire molecule, are the main factors driving the conformational behavior. All observed conformers exhibit a counter-clockwise arrangement (cc) of the network of intramolecular hydrogen bonds. The results are compared with those recently obtained for D-glucose. J. L. Alonso, M. A. Lozoya, I. Peña, J. C. López, C. Cabezas, S. Mata, S. Blanco, Chem. Sci. 2014, 5, 515.
Conformal invariance from nonconformal gravity
International Nuclear Information System (INIS)
Meissner, Krzysztof A.; Nicolai, Hermann
2009-01-01
We discuss the conditions under which classically conformally invariant models in four dimensions can arise out of nonconformal (Einstein) gravity. As an 'existence proof' that this is indeed possible we show how to derive N=4 super Yang-Mills theory with any compact gauge group G from nonconformal gauged N=4 supergravity as a special flat space limit. We stress the role that the anticipated UV finiteness of the (so far unknown) underlying theory of quantum gravity would have to play in such a scheme, as well as the fact that the masses of elementary particles would have to arise via quantum gravitational effects which mimic the conformal anomalies of standard (flat space) UV divergent quantum field theory.
Conformal methods in general relativity
Valiente Kroon, Juan A
2016-01-01
This book offers a systematic exposition of conformal methods and how they can be used to study the global properties of solutions to the equations of Einstein's theory of gravity. It shows that combining these ideas with differential geometry can elucidate the existence and stability of the basic solutions of the theory. Introducing the differential geometric, spinorial and PDE background required to gain a deep understanding of conformal methods, this text provides an accessible account of key results in mathematical relativity over the last thirty years, including the stability of de Sitter and Minkowski spacetimes. For graduate students and researchers, this self-contained account includes useful visual models to help the reader grasp abstract concepts and a list of further reading, making this the perfect reference companion on the topic.
Gel dosimetry for conformal radiotherapy
Energy Technology Data Exchange (ETDEWEB)
Gambarini, G [Department of Physics of the University and INFN, Milan (Italy)
2005-07-01
With the continuum development of conformal radio therapies, aimed at delivering high dose to tumor tissue and low dose to the healthy tissue around, the necessities has appeared of suitable improvement of dosimetry techniques giving the possibility of obtaining dose images to be compared with diagnostic images. Also if wide software has been developed for calculating dose distributions in the fields of various radiotherapy units, experimental verifications are necessary, in particular in the case of complex geometries in conformal radiotherapy. Gel dosimetry is a promising method for imaging the absorbed dose in tissue-equivalent phantoms, with the possibility of 3D reconstruction of the spatial dose distribution, with milli metric resolution. Optical imaging of gel dosimeters, based on visible light absorbance analysis, has shown to be a reliable technique for achieving dose distributions. (Author)
Conformal FDTD modeling wake fields
Energy Technology Data Exchange (ETDEWEB)
Jurgens, T.; Harfoush, F.
1991-05-01
Many computer codes have been written to model wake fields. Here we describe the use of the Conformal Finite Difference Time Domain (CFDTD) method to model the wake fields generated by a rigid beam traveling through various accelerating structures. The non- cylindrical symmetry of some of the problems considered here requires the use of a three dimensional code. In traditional FDTD codes, curved surfaces are approximated by rectangular steps. The errors introduced in wake field calculations by such an approximation can be reduced by increasing the mesh size, therefore increasing the cost of computing. Another approach, validated here, deforms Ampere and Faraday contours near a media interface so as to conform to the interface. These improvements of the FDTD method result in better accuracy of the fields at asymptotically no computational cost. This method is also capable of modeling thin wires as found in beam profile monitors, and slots and cracks as found in resistive wall motions. 4 refs., 5 figs.
Conformal manifolds: ODEs from OPEs
Behan, Connor
2018-03-01
The existence of an exactly marginal deformation in a conformal field theory is very special, but it is not well understood how this is reflected in the allowed dimensions and OPE coefficients of local operators. To shed light on this question, we compute perturbative corrections to several observables in an abstract CFT, starting with the beta function. This yields a sum rule that the theory must obey in order to be part of a conformal manifold. The set of constraints relating CFT data at different values of the coupling can in principle be written as a dynamical system that allows one to flow arbitrarily far. We begin the analysis of it by finding a simple form for the differential equations when the spacetime and theory space are both one-dimensional. A useful feature we can immediately observe is that our system makes it very difficult for level crossing to occur.
High current vacuum closing switch
International Nuclear Information System (INIS)
Dolgachev, G.I.; Maslennikov, D.D.; Romanov, A.S.; Ushakov, A.G.
2005-01-01
The paper proposes a powerful pulsed closing vacuum switch for high current commutation consisting of series of the vacuum diodes with near 1 mm gaps having closing time determined by the gaps shortening with the near-electrode plasmas [ru
Wide Bandgap Extrinsic Photoconductive Switches
Energy Technology Data Exchange (ETDEWEB)
Sullivan, James S. [State Univ. of New York (SUNY), Plattsburgh, NY (United States); Univ. of California, Davis, CA (United States)
2012-01-20
Photoconductive semiconductor switches (PCSS) have been investigated since the late 1970s. Some devices have been developed that withstand tens of kilovolts and others that switch hundreds of amperes. However, no single device has been developed that can reliably withstand both high voltage and switch high current. Yet, photoconductive switches still hold the promise of reliable high voltage and high current operation with subnanosecond risetimes. Particularly since good quality, bulk, single crystal, wide bandgap semiconductor materials have recently become available. In this chapter we will review the basic operation of PCSS devices, status of PCSS devices and properties of the wide bandgap semiconductors 4H-SiC, 6H-SiC and 2H-GaN.
Switching of chirality by light
Feringa, B.L.; Schoevaars, A.M; Jager, W.F.; de Lange, B.; Huck, N.P.M.
1996-01-01
Optically active photoresponsive molecules are described by which control of chirality is achieved by light. These chiroptical molecular switches are based on inherently dissymmetric overcrowded alkenes and the synthesis, resolution and dynamic stereochemical properties are discussed. Introduction
Aurora oil switch upgrade program
International Nuclear Information System (INIS)
Warren, T.
1989-03-01
This report describes the short pulse synchronization requirements, the original Aurora trigger scheme, and the PI/SNLA approach to improving the synchronization. It also describes the oil switching design study undertaken as the first phase of the program. A discussion of oil-switch closure analysis and the conceptual design motivated by this analysis are presented. This paper also describes the oil-switch trigger pulser tests required to validate the concept. This includes the design of the testing facility, a description of the test goals, and a discussion of the results. This paper finally describes oil-switch trigger pulser testing on one of the four Aurora Blumlein modules, which includes the hardware design and operation, the testing goals, hardware installation, and test results. 9 refs., 26 figs
Solid state bistable power switch
Bartko, J.; Shulman, H.
1970-01-01
Tin and copper provide high current and switching time capabilities for high-current resettable fuses. They show the best performance for trip current and degree of reliability, and have low coefficients of thermal expansion.
Intrinsic nanofilamentation in resistive switching
Wu, Xing; Cha, Dong Kyu; Bosman, Michel; Raghavan, Nagarajan; Migas, Dmitri B.; Borisenko, Victor E.; Zhang, Xixiang; Li, Kun; Pey, Kin-Leong
2013-01-01
-chip circuitry and non-volatile memory storage. Here, we provide insight into the mechanisms that govern highly reproducible controlled resistive switching via a nanofilament by using an asymmetric metal-insulator-semiconductor structure. In-situ transmission
Electron collisions in gas switches
International Nuclear Information System (INIS)
Christophorou, L.G.
1989-01-01
Many technologies rely on the conduction/insulation properties of gaseous matter for their successful operation. Many others (e.g., pulsed power technologies) rely on the rapid change (switching or modulation) of the properties of gaseous matter from an insulator to a conductor and vice versa. Studies of electron collision processes in gases aided the development of pulsed power gas switches, and in this paper we shall briefly illustrate the kind of knowledge on electron collision processes which is needed to optimize the performance of such switching devices. To this end, we shall refer to three types of gas switches: spark gap closing, self-sustained diffuse discharge closing, and externally-sustained diffuse discharge opening. 24 refs., 15 figs., 2 tabs
Conformal field theories and critical phenomena
International Nuclear Information System (INIS)
Xu, Bowei
1993-01-01
In this article we present a brief review of the conformal symmetry and the two dimensional conformal quantum field theories. As concrete applications of the conformal theories to the critical phenomena in statistical systems, we calculate the value of central charge and the anomalous scale dimensions of the Z 2 symmetric quantum chain with boundary condition. The results are compatible with the prediction of the conformal field theories
Conformal group actions and Segal's cosmology
International Nuclear Information System (INIS)
Werth, J.-E.
1984-01-01
A mathematical description of Segal's cosmological model in the framework of conformal group actions is presented. The relation between conformal and causal group actions on time-orientable Lorentzian manifolds is analysed and several examples are discussed. A criterion for the conformality of a map between Lorentzian manifolds is given. The results are applied to Segal's 'conformal compactification' of Minkowski space. Furthermore, the 'unitary formulation' of Segal's cosmology is regarded. (Author) [pt
Electroforming-free resistive switching memory effect in transparent p-type tin monoxide
Hota, M. K.
2014-04-14
We report reproducible low bias bipolar resistive switching behavior in p-type SnO thin film devices without extra electroforming steps. The experimental results show a stable resistance ratio of more than 100 times, switching cycling performance up to 180 cycles, and data retention of more than 103 s. The conduction mechanism varied depending on the applied voltage range and resistance state of the device. The memristive switching is shown to originate from a redox phenomenon at the Al/SnO interface, and subsequent formation/rupture of conducting filaments in the bulk of the SnO layer, likely involving oxygen vacancies and Sn interstitials.
Generative Models of Conformational Dynamics
Langmead, Christopher James
2014-01-01
Atomistic simulations of the conformational dynamics of proteins can be performed using either Molecular Dynamics or Monte Carlo procedures. The ensembles of three-dimensional structures produced during simulation can be analyzed in a number of ways to elucidate the thermodynamic and kinetic properties of the system. The goal of this chapter is to review both traditional and emerging methods for learning generative models from atomistic simulation data. Here, the term ‘generative’ refers to a...
Holographic multiverse and conformal invariance
Energy Technology Data Exchange (ETDEWEB)
Garriga, Jaume [Departament de Física Fonamental i Institut de Ciències del Cosmos, Universitat de Barcelona, Martí i Franquès 1, 08193 Barcelona (Spain); Vilenkin, Alexander, E-mail: jaume.garriga@ub.edu, E-mail: vilenkin@cosmos.phy.tufts.edu [Institute of Cosmology, Department of Physics and Astronomy, Tufts University, 212 College Ave., Medford, MA 02155 (United States)
2009-11-01
We consider a holographic description of the inflationary multiverse, according to which the wave function of the universe is interpreted as the generating functional for a lower dimensional Euclidean theory. We analyze a simple model where transitions between inflationary vacua occur through bubble nucleation, and the inflating part of spacetime consists of de Sitter regions separated by thin bubble walls. In this model, we present some evidence that the dual theory is conformally invariant in the UV.
Holographic multiverse and conformal invariance
International Nuclear Information System (INIS)
Garriga, Jaume; Vilenkin, Alexander
2009-01-01
We consider a holographic description of the inflationary multiverse, according to which the wave function of the universe is interpreted as the generating functional for a lower dimensional Euclidean theory. We analyze a simple model where transitions between inflationary vacua occur through bubble nucleation, and the inflating part of spacetime consists of de Sitter regions separated by thin bubble walls. In this model, we present some evidence that the dual theory is conformally invariant in the UV
Integrability of conformal fishnet theory
Gromov, Nikolay; Kazakov, Vladimir; Korchemsky, Gregory; Negro, Stefano; Sizov, Grigory
2018-01-01
We study integrability of fishnet-type Feynman graphs arising in planar four-dimensional bi-scalar chiral theory recently proposed in arXiv:1512.06704 as a special double scaling limit of gamma-deformed N = 4 SYM theory. We show that the transfer matrix "building" the fishnet graphs emerges from the R-matrix of non-compact conformal SU(2 , 2) Heisenberg spin chain with spins belonging to principal series representations of the four-dimensional conformal group. We demonstrate explicitly a relationship between this integrable spin chain and the Quantum Spectral Curve (QSC) of N = 4 SYM. Using QSC and spin chain methods, we construct Baxter equation for Q-functions of the conformal spin chain needed for computation of the anomalous dimensions of operators of the type tr( ϕ 1 J ) where ϕ 1 is one of the two scalars of the theory. For J = 3 we derive from QSC a quantization condition that fixes the relevant solution of Baxter equation. The scaling dimensions of the operators only receive contributions from wheel-like graphs. We develop integrability techniques to compute the divergent part of these graphs and use it to present the weak coupling expansion of dimensions to very high orders. Then we apply our exact equations to calculate the anomalous dimensions with J = 3 to practically unlimited precision at any coupling. These equations also describe an infinite tower of local conformal operators all carrying the same charge J = 3. The method should be applicable for any J and, in principle, to any local operators of bi-scalar theory. We show that at strong coupling the scaling dimensions can be derived from semiclassical quantization of finite gap solutions describing an integrable system of noncompact SU(2 , 2) spins. This bears similarities with the classical strings arising in the strongly coupled limit of N = 4 SYM.
A Piezoelectric Cryogenic Heat Switch
Jahromi, Amir E.; Sullivan, Dan F.
2014-01-01
We have measured the thermal conductance of a mechanical heat switch actuated by a piezoelectric positioner, the PZHS (PieZo electric Heat Switch), at cryogenic temperatures. The thermal conductance of the PZHS was measured between 4 K and 10 K, and on/off conductance ratios greater than 100 were achieved when the positioner applied its maximum force of 8 N. We discuss the advantages of using this system in cryogenic applications, and estimate the ultimate performance of an optimized PZHS.
Moran, Stuart L.; Hutcherson, R. Kenneth
1990-03-27
A triggerable, high voltage, high current, spark gap switch for use in pu power systems. The device comprises a pair of electrodes in a high pressure hydrogen environment that is triggered by introducing an arc between one electrode and a trigger pin. Unusually high repetition rates may be obtained by undervolting the switch, i.e., operating the trigger at voltages much below the self-breakdown voltage of the device.
Objective interpretation as conforming interpretation
Directory of Open Access Journals (Sweden)
Lidka Rodak
2011-12-01
Full Text Available The practical discourse willingly uses the formula of “objective interpretation”, with no regards to its controversial nature that has been discussed in literature.The main aim of the article is to investigate what “objective interpretation” could mean and how it could be understood in the practical discourse, focusing on the understanding offered by judicature.The thesis of the article is that objective interpretation, as identified with textualists’ position, is not possible to uphold, and should be rather linked with conforming interpretation. And what this actually implies is that it is not the virtue of certainty and predictability – which are usually associated with objectivity- but coherence that makes the foundation of applicability of objectivity in law.What could be observed from the analyses, is that both the phenomenon of conforming interpretation and objective interpretation play the role of arguments in the interpretive discourse, arguments that provide justification that interpretation is not arbitrary or subjective. With regards to the important part of the ideology of legal application which is the conviction that decisions should be taken on the basis of law in order to exclude arbitrariness, objective interpretation could be read as a question “what kind of authority “supports” certain interpretation”? that is almost never free of judicial creativity and judicial activism.One can say that, objective and conforming interpretation are just another arguments used in legal discourse.
Anomalies, conformal manifolds, and spheres
Energy Technology Data Exchange (ETDEWEB)
Gomis, Jaume [Perimeter Institute for Theoretical Physics,Waterloo, Ontario, N2L 2Y5 (Canada); Hsin, Po-Shen [Department of Physics, Princeton University,Princeton, NJ 08544 (United States); Komargodski, Zohar; Schwimmer, Adam [Weizmann Institute of Science,Rehovot 76100 (Israel); Seiberg, Nathan [School of Natural Sciences, Institute for Advanced Study,Princeton, NJ 08540 (United States); Theisen, Stefan [Max-Planck-Institut für Gravitationsphysik, Albert-Einstein-Institut,14476 Golm (Germany)
2016-03-04
The two-point function of exactly marginal operators leads to a universal contribution to the trace anomaly in even dimensions. We study aspects of this trace anomaly, emphasizing its interpretation as a sigma model, whose target space M is the space of conformal field theories (a.k.a. the conformal manifold). When the underlying quantum field theory is supersymmetric, this sigma model has to be appropriately supersymmetrized. As examples, we consider in some detail N=(2,2) and N=(0,2) supersymmetric theories in d=2 and N=2 supersymmetric theories in d=4. This reasoning leads to new information about the conformal manifolds of these theories, for example, we show that the manifold is Kähler-Hodge and we further argue that it has vanishing Kähler class. For N=(2,2) theories in d=2 and N=2 theories in d=4 we also show that the relation between the sphere partition function and the Kähler potential of M follows immediately from the appropriate sigma models that we construct. Along the way we find several examples of potential trace anomalies that obey the Wess-Zumino consistency conditions, but can be ruled out by a more detailed analysis.
Electrophysiological precursors of social conformity
Rieskamp, Jörg; Tugin, Sergey; Ossadtchi, Alexey; Krutitskaya, Janina; Klucharev, Vasily
2013-01-01
Humans often change their beliefs or behavior due to the behavior or opinions of others. This study explored, with the use of human event-related potentials (ERPs), whether social conformity is based on a general performance-monitoring mechanism. We tested the hypothesis that conflicts with a normative group opinion evoke a feedback-related negativity (FRN) often associated with performance monitoring and subsequent adjustment of behavior. The experimental results show that individual judgments of facial attractiveness were adjusted in line with a normative group opinion. A mismatch between individual and group opinions triggered a frontocentral negative deflection with the maximum at 200 ms, similar to FRN. Overall, a conflict with a normative group opinion triggered a cascade of neuronal responses: from an earlier FRN response reflecting a conflict with the normative opinion to a later ERP component (peaking at 380 ms) reflecting a conforming behavioral adjustment. These results add to the growing literature on neuronal mechanisms of social influence by disentangling the conflict-monitoring signal in response to the perceived violation of social norms and the neural signal of a conforming behavioral adjustment. PMID:22683703
CONFORMITY IN CHRIST 1. THE TRANSFORMATION PROCESS
African Journals Online (AJOL)
This essay investigates the notion of conformity in Christ as it is part of a compre- hensive, multilayered process of transformation. In the first part it focuses on the process of transformation in creation, re-creation, conformity, love and glory. In the second part it discusses transformation in Christ by looking at conformation and ...
40 CFR 52.938 - General conformity.
2010-07-01
... 40 Protection of Environment 3 2010-07-01 2010-07-01 false General conformity. 52.938 Section 52...) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS Kentucky § 52.938 General conformity. The General Conformity regulations were submitted on November 10, 1995, and adopted into the Kentucky State...
40 CFR 51.854 - Conformity analysis.
2010-07-01
... 40 Protection of Environment 2 2010-07-01 2010-07-01 false Conformity analysis. 51.854 Section 51... FOR PREPARATION, ADOPTION, AND SUBMITTAL OF IMPLEMENTATION PLANS Determining Conformity of General Federal Actions to State or Federal Implementation Plans § 51.854 Conformity analysis. Link to an...
40 CFR 52.2133 - General conformity.
2010-07-01
... 40 Protection of Environment 4 2010-07-01 2010-07-01 false General conformity. 52.2133 Section 52...) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS (CONTINUED) South Carolina § 52.2133 General conformity. The General Conformity regulations adopted into the South Carolina State Implementation Plan which...
Conformity in Christ | Waaijman | Acta Theologica
African Journals Online (AJOL)
This essay investigates the notion of conformity in Christ as it is part of a comprehensive, multilayered process of transformation. In the first part it focuses on the process of transformation in creation, re-creation, conformity, love and glory. In the second part it discusses transformation in Christ by looking at conformation and ...
Calcium-Responsive Liposomes via a Synthetic Lipid Switch.
Lou, Jinchao; Carr, Adam J; Watson, Alexa J; Mattern-Schain, Samuel I; Best, Michael D
2018-03-07
Liposomal drug delivery would benefit from enhanced control over content release. Here, we report a novel avenue for triggering release driven by chemical composition using liposomes sensitized to calcium-a target chosen due to its key roles in biology and disease. To demonstrate this principle, we synthesized calcium-responsive lipid switch 1, designed to undergo conformational changes upon calcium binding. The conformational change perturbs membrane integrity, thereby promoting cargo release. This was shown through fluorescence-based release assays via dose-dependent response depending on the percentage of 1 in liposomes, with minimal background leakage in controls. DLS experiments indicated dramatic changes in particle size upon treatment of liposomes containing 1 with calcium. In a comparison of ten naturally occurring metal cations, calcium provided the greatest release. Finally, STEM images showed significant changes in liposome morphology upon treatment of liposomes containing 1 with calcium. These results showcase lipid switches driven by molecular recognition principles as an exciting avenue for controlling membrane properties. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
CONTROL OF BOUNCING IN RF MEMS SWITCHES USING DOUBLE ELECTRODE
Abdul Rahim, Farhan
2014-01-01
MEMS based mechanical switches are seen to be the likely replacements for CMOS based switches due to the several advantages that these mechanical switches have over CMOS switches. Mechanical switches can be used in systems under extreme conditions
Kishimoto, Naoki; Waizumi, Hiroki
2017-10-01
Stable conformers of L-cysteine and L,L-cystine were explored using an automated and efficient conformational searching method. The Gibbs energies of the stable conformers of L-cysteine and L,L-cystine were calculated with G4 and MP2 methods, respectively, at 450, 298.15, and 150 K. By assuming thermodynamic equilibrium and the barrier energies for the conformational isomerization pathways, the estimated ratios of the stable conformers of L-cysteine were compared with those determined by microwave spectroscopy in a previous study. Equilibrium structures of 1:1 and 2:1 cystine-Fe complexes were also calculated, and the energy of insertion of Fe into the disulfide bond was obtained.
Cui, Nan; Ren, Hang; Tang, Qingxin; Zhao, Xiaoli; Tong, Yanhong; Hu, Wenping; Liu, Yichun
2018-02-22
A fully transparent conformal organic thin-film field-effect transistor array is demonstrated based on a photolithography-compatible ultrathin metallic grid gate electrode and a solution-processed C 8 -BTBT film. The resulting organic field-effect transistor array exhibits a high optical transparency of >80% over the visible spectrum, mobility up to 2 cm 2 V -1 s -1 , on/off ratio of 10 5 -10 6 , switching current of >0.1 mA, and excellent light stability. The transparent conformal transistor array is demonstrated to adhere well to flat and curved LEDs as front driving. These results present promising applications of the solution-processed wide-bandgap organic semiconductor thin films in future large-scale transparent conformal active-matrix displays.
International Nuclear Information System (INIS)
Capim, Saulo L.; Santana, Sidney R.; Oliveira, Boaz G. de; Rocha, Gerd B.; Vasconcellos, Mario L.A.A
2010-01-01
In this paper we report a theoretical study aiming to revisit the origin of the preferential π-π stacking conformation of the (+)-8-phenylmenthyl acrylate (2). For this, we have applied several DFT and ab initio methods to calculate local minimum geometries, vibrational frequencies, thermochemical properties and 1 H NMR chemical shifts for 2 and the model compound 3-phenylpropyl acrylate (3). We have observed that the MPW1B95 functional was the most suitable method to explain 1 H NMR experimental data which show the stacking conformation of 2 (2S) is more stable that trans conformation (2T) and the stacking conformation of 3 (3S) is less stable that trans conformation (3T). After that, geometrical and energetic features of the intermolecular complex benzene...methylacrylate (4) have also been studied using MPW1B95 method. From our results, we have noticed that both steric and dispersion effects play a key role in the conformational equilibrium of 2. (author)
Islands of conformational stability for filopodia.
Directory of Open Access Journals (Sweden)
D Robert Daniels
Full Text Available Filopodia are long, thin protrusions formed when bundles of fibers grow outwardly from a cell surface while remaining closed in a membrane tube. We study the subtle issue of the mechanical stability of such filopodia and how this depends on the deformation of the membrane that arises when the fiber bundle adopts a helical configuration. We calculate the ground state conformation of such filopodia, taking into account the steric interaction between the membrane and the enclosed semiflexible fiber bundle. For typical filopodia we find that a minimum number of fibers is required for filopodium stability. Our calculation elucidates how experimentally observed filopodia can obviate the classical Euler buckling condition and remain stable up to several tens of μm. We briefly discuss how experimental observation of the results obtained in this work for the helical-like deformations of enclosing membrane tubes in filopodia could possibly be observed in the acrosomal reactions of the sea cucumber Thyone, and the horseshoe crab Limulus. Any realistic future theories for filopodium stability are likely to rely on an accurate treatment of such steric effects, as analysed in this work.
International Nuclear Information System (INIS)
Tibari, Elghali; Taous, Fouad; Marah, Hamid
2014-01-01
This report presents results related to stable isotopes analysis carried out at the CNESTEN DASTE in Rabat (Morocco), on behalf of Senegal. These analyzes cover 127 samples. These results demonstrate that Oxygen-18 and Deuterium in water analysis were performed by infrared Laser spectroscopy using a LGR / DLT-100 with Autosampler. Also, the results are expressed in δ values (‰) relative to V-SMOW to ± 0.3 ‰ for oxygen-18 and ± 1 ‰ for deuterium.
Forensic Stable Isotope Biogeochemistry
Cerling, Thure E.; Barnette, Janet E.; Bowen, Gabriel J.; Chesson, Lesley A.; Ehleringer, James R.; Remien, Christopher H.; Shea, Patrick; Tipple, Brett J.; West, Jason B.
2016-06-01
Stable isotopes are being used for forensic science studies, with applications to both natural and manufactured products. In this review we discuss how scientific evidence can be used in the legal context and where the scientific progress of hypothesis revisions can be in tension with the legal expectations of widely used methods for measurements. Although this review is written in the context of US law, many of the considerations of scientific reproducibility and acceptance of relevant scientific data span other legal systems that might apply different legal principles and therefore reach different conclusions. Stable isotopes are used in legal situations for comparing samples for authenticity or evidentiary considerations, in understanding trade patterns of illegal materials, and in understanding the origins of unknown decedents. Isotope evidence is particularly useful when considered in the broad framework of physiochemical processes and in recognizing regional to global patterns found in many materials, including foods and food products, drugs, and humans. Stable isotopes considered in the larger spatial context add an important dimension to forensic science.
Smoldering and Flame Resistant Textiles via Conformal Barrier Formation.
Zammarano, Mauro; Cazzetta, Valeria; Nazaré, Shonali; Shields, J Randy; Kim, Yeon Seok; Hoffman, Kathleen M; Maffezzoli, Alfonso; Davis, Rick
2016-12-07
A durable and flexible silicone-based backcoating (halogen free) is applied to the backside of an otherwise smoldering-prone and flammable fabric. When exposed to fire, cyclic siloxanes (produced by thermal decomposition of the backcoating) diffuse through the fabric in the gas phase. The following oxidation of the cyclic siloxanes forms a highly conformal and thermally stable coating that fully embeds all individual fibers and shields them from heat and oxidation. As a result, the combustion of the fabric is prevented. This is a novel fire retardant mechanism that discloses a powerful approach towards textiles and multifunctional flexible materials with combined smoldering/flaming ignition resistance and fire-barrier properties.
Conformal symmetry inheritance in null fluid spacetimes
International Nuclear Information System (INIS)
Tupper, B O J; Keane, A J; Hall, G S; Coley, A A; Carot, J
2003-01-01
We define inheriting conformal Killing vectors for null fluid spacetimes and find the maximum dimension of the associated inheriting Lie algebra. We show that for non-conformally flat null fluid spacetimes, the maximum dimension of the inheriting algebra is seven and for conformally flat null fluid spacetimes the maximum dimension is eight. In addition, it is shown that there are two distinct classes of non-conformally flat generalized plane wave spacetimes which possess the maximum dimension, and one class in the conformally flat case
Stochastic switching in biology: from genotype to phenotype
International Nuclear Information System (INIS)
Bressloff, Paul C
2017-01-01
There has been a resurgence of interest in non-equilibrium stochastic processes in recent years, driven in part by the observation that the number of molecules (genes, mRNA, proteins) involved in gene expression are often of order 1–1000. This means that deterministic mass-action kinetics tends to break down, and one needs to take into account the discrete, stochastic nature of biochemical reactions. One of the major consequences of molecular noise is the occurrence of stochastic biological switching at both the genotypic and phenotypic levels. For example, individual gene regulatory networks can switch between graded and binary responses, exhibit translational/transcriptional bursting, and support metastability (noise-induced switching between states that are stable in the deterministic limit). If random switching persists at the phenotypic level then this can confer certain advantages to cell populations growing in a changing environment, as exemplified by bacterial persistence in response to antibiotics. Gene expression at the single-cell level can also be regulated by changes in cell density at the population level, a process known as quorum sensing. In contrast to noise-driven phenotypic switching, the switching mechanism in quorum sensing is stimulus-driven and thus noise tends to have a detrimental effect. A common approach to modeling stochastic gene expression is to assume a large but finite system and to approximate the discrete processes by continuous processes using a system-size expansion. However, there is a growing need to have some familiarity with the theory of stochastic processes that goes beyond the standard topics of chemical master equations, the system-size expansion, Langevin equations and the Fokker–Planck equation. Examples include stochastic hybrid systems (piecewise deterministic Markov processes), large deviations and the Wentzel–Kramers–Brillouin (WKB) method, adiabatic reductions, and queuing/renewal theory. The major aim of
Multi-Stable Conductance States in Metallic Double-Walled Carbon Nanotubes
Directory of Open Access Journals (Sweden)
Ci Lijie
2009-01-01
Full Text Available Abstract Electrical transport properties of individual metallic double-walled carbon nanotubes (DWCNTs were measured down to liquid helium temperature, and multi-stable conductance states were found in DWCNTs. At a certain temperature, DWCNTs can switch continuously between two or more electronic states, but below certain temperature, DWCNTs are stable only at one of them. The temperature for switching is always different from tube to tube, and even different from thermal cycle to cycle for the same tube. In addition to thermal activation, gate voltage scanning can also realize such switching among different electronic states. The multi-stable conductance states in metallic DWCNTs can be attributed to different Fermi level or occasional scattering centers induced by different configurations between their inner and outer tubes.
DEFF Research Database (Denmark)
Larsen, Dennis Øland; Vinter, Martin; Jørgensen, Ivan Harald Holger
A switched capacitor dc-dc converter with frequency-planned control is presented. By splitting the output stage switches in eight segments the output voltage can be regulated with a combination of switching frequency and switch conductance. This allows for switching at predetermined frequencies, 31...
A Switch Is Not a Switch: Syntactically-Driven Bilingual Language Control
Gollan, Tamar H.; Goldrick, Matthew
2018-01-01
The current study investigated the possibility that language switches could be relatively automatically triggered by context. "Single-word switches," in which bilinguals switched languages on a single word in midsentence and then immediately switched back, were contrasted with more complete "whole-language switches," in which…
Backreaction from non-conformal quantum fields in de Sitter spacetime
Energy Technology Data Exchange (ETDEWEB)
Perez-Nadal, Guillem; Verdaguer, Enric [Departament de Fisica Fonamental and Institut de Ciencies del Cosmos, Universitat de Barcelona, Av Diagonal 647, 08028 Barcelona (Spain); Roura, Albert [Theoretical Division, T-8, Los Alamos National Laboratory, M.S. B285, Los Alamos, NM 87545 (United States)
2008-08-07
We study the backreaction on the mean field geometry due to a non-conformal quantum field in a Robertson-Walker background. In the regime of small mass and small deviation from conformal coupling, we compute perturbatively the expectation value of the stress tensor of the field for a variety of vacuum states, and use it to obtain explicitly the semiclassical gravity solutions for isotropic perturbations around de Sitter spacetime, which is found to be stable. Our results clearly show the crucial role of the non-local terms that appear in the effective action: they cancel the contribution from local terms proportional to the logarithm of the scale factor which would otherwise become dominant at late times and prevent the existence of a stable self-consistent de Sitter solution. Finally, the opposite regime of a strongly non-conformal field with a large mass is also considered.
Principles of broadband switching and networking
Liew, Soung C
2010-01-01
An authoritative introduction to the roles of switching and transmission in broadband integrated services networks Principles of Broadband Switching and Networking explains the design and analysis of switch architectures suitable for broadband integrated services networks, emphasizing packet-switched interconnection networks with distributed routing algorithms. The text examines the mathematical properties of these networks, rather than specific implementation technologies. Although the pedagogical explanations in this book are in the context of switches, many of the fundamenta
Katre, Uma V; Mazumder, Suman; Prusti, Rabi K; Mohanty, Smita
2009-11-13
In moths, pheromone-binding proteins (PBPs) are responsible for the transport of the hydrophobic pheromones to the membrane-bound receptors across the aqueous sensillar lymph. We report here that recombinant Antheraea polyphemus PBP1 (ApolPBP1) picks up hydrophobic molecule(s) endogenous to the Escherichia coli expression host that keeps the protein in the "open" (bound) conformation at high pH but switches to the "closed" (free) conformation at low pH. This finding has bearing on the solution structures of undelipidated lepidopteran moth PBPs determined thus far. Picking up a hydrophobic molecule from the host expression system could be a common feature for lipid-binding proteins. Thus, delipidation is critical for bacterially expressed lipid-binding proteins. We have shown for the first time that the delipidated ApolPBP1 exists primarily in the closed form at all pH levels. Thus, current views on the pH-induced conformational switch of PBPs hold true only for the ligand-bound open conformation of the protein. Binding of various ligands to delipidated ApolPBP1 studied by solution NMR revealed that the protein in the closed conformation switches to the open conformation only at or above pH 6.0 with a protein to ligand stoichiometry of approximately 1:1. Mutation of His(70) and His(95) to alanine drives the equilibrium toward the open conformation even at low pH for the ligand-bound protein by eliminating the histidine-dependent pH-induced conformational switch. Thus, the delipidated double mutant can bind ligand even at low pH in contrast to the wild type protein as revealed by fluorescence competitive displacement assay using 1-aminoanthracene and solution NMR.
Families and degenerations of conformal field theories
Energy Technology Data Exchange (ETDEWEB)
Roggenkamp, D.
2004-09-01
In this work, moduli spaces of conformal field theories are investigated. In the first part, moduli spaces corresponding to current-current deformation of conformal field theories are constructed explicitly. For WZW models, they are described in detail, and sigma model realizations of the deformed WZW models are presented. The second part is devoted to the study of boundaries of moduli spaces of conformal field theories. For this purpose a notion of convergence of families of conformal field theories is introduced, which admits certain degenerated conformal field theories to occur as limits. To such a degeneration of conformal field theories, a degeneration of metric spaces together with additional geometric structures can be associated, which give rise to a geometric interpretation. Boundaries of moduli spaces of toroidal conformal field theories, orbifolds thereof and WZW models are analyzed. Furthermore, also the limit of the discrete family of Virasoro minimal models is investigated. (orig.)
Mozaffari Majd, M.; Dabbagh, H. A.; Farrokhpour, H.; Najafi Chermahini, A.
2017-11-01
The adsorption energies (Eads) and relative stabilities of selected conformers of the most stable tautomer of L-ascorbic acid (vitamin C) on the dehydroxylated γ-alumina (100) surface were calculated in both gas phase and solvent (water) using the density functional theory (DFT) method. The selected conformers were related to the different rotational angles of OH groups of L-ascorbic acid. The conformational analysis of bare tautomer in both gas and water showed that the conformer No.20 (conf. 20) and 13 (conf. 13) with the dihedral angles of H15sbnd O10sbnd C11sbnd C9 (-73°) and H20sbnd O19sbnd C9sbnd C11 (-135°) were the most stable and unstable conformers, respectively. The performed calculations in the presence of surface showed that the interaction of the conformers with the surface changes their relative stabilities and structures in both gas phase and water. The Ead of each conformer was calculated and it was determined that conf. 8 and conf. 16 have the highest value of Ead in the gas phase (-62.56 kcal/mol) and water (-54.44 kcal/mol), respectively. The optimized structure of each conformer on the surface and the number of hydrogen bonds between it and surface along with their bond lengths were determined.
Influence of conformity on the wear of total knee replacement: An experimental study.
Brockett, Claire L; Carbone, Silvia; Fisher, John; Jennings, Louise M
2018-02-01
Wear of total knee replacement continues to be a significant factor influencing the clinical longevity of implants. Historically, failure due to delamination and fatigue directed design towards more conforming inserts to reduce contact stress. As new generations of more oxidatively stable polyethylene have been developed, more flexibility in bearing design has been introduced. The aim of this study was to investigate the effect of insert conformity on the wear performance of a fixed bearing total knee replacement through experimental simulation. Two geometries of insert were studied under standard gait conditions. There was a significant reduction in wear with reducing implant conformity. This study has demonstrated that bearing conformity has a significant impact on the wear performance of a fixed bearing total knee replacement, providing opportunities to improve clinical performance through enhanced material and design selection.
Directory of Open Access Journals (Sweden)
Dávid Farkas
Full Text Available Multi-stability refers to the phenomenon of perception stochastically switching between possible interpretations of an unchanging stimulus. Despite considerable variability, individuals show stable idiosyncratic patterns of switching between alternative perceptions in the auditory streaming paradigm. We explored correlates of the individual switching patterns with executive functions, personality traits, and creativity. The main dimensions on which individual switching patterns differed from each other were identified using multidimensional scaling. Individuals with high scores on the dimension explaining the largest portion of the inter-individual variance switched more often between the alternative perceptions than those with low scores. They also perceived the most unusual interpretation more often, and experienced all perceptual alternatives with a shorter delay from stimulus onset. The ego-resiliency personality trait, which reflects a tendency for adaptive flexibility and experience seeking, was significantly positively related to this dimension. Taking these results together we suggest that this dimension may reflect the individual's tendency for exploring the auditory environment. Executive functions were significantly related to some of the variables describing global properties of the switching patterns, such as the average number of switches. Thus individual patterns of perceptual switching in the auditory streaming paradigm are related to some personality traits and executive functions.
The Biological Bases of Conformity
Morgan, T. J. H.; Laland, K. N.
2012-01-01
Humans are characterized by an extreme dependence on culturally transmitted information and recent formal theory predicts that natural selection should favor adaptive learning strategies that facilitate effective copying and decision making. One strategy that has attracted particular attention is conformist transmission, defined as the disproportionately likely adoption of the most common variant. Conformity has historically been emphasized as significant in the social psychology literature, and recently there have also been reports of conformist behavior in non-human animals. However, mathematical analyses differ in how important and widespread they expect conformity to be, and relevant experimental work is scarce, and generates findings that are both mutually contradictory and inconsistent with the predictions of the models. We review the relevant literature considering the causation, function, history, and ontogeny of conformity, and describe a computer-based experiment on human subjects that we carried out in order to resolve ambiguities. We found that only when many demonstrators were available and subjects were uncertain was subject behavior conformist. A further analysis found that the underlying response to social information alone was generally conformist. Thus, our data are consistent with a conformist use of social information, but as subjects’ behavior is the result of both social and asocial influences, the resultant behavior may not be conformist. We end by relating these findings to an embryonic cognitive neuroscience literature that has recently begun to explore the neural bases of social learning. Here conformist transmission may be a particularly useful case study, not only because there are well-defined and tractable opportunities to characterize the biological underpinnings of this form of social learning, but also because early findings imply that humans may possess specific cognitive adaptations for effective social learning. PMID:22712006
Conformance Testing: Measurement Decision Rules
Mimbs, Scott M.
2010-01-01
The goal of a Quality Management System (QMS) as specified in ISO 9001 and AS9100 is to provide assurance to the customer that end products meet specifications. Measuring devices, often called measuring and test equipment (MTE), are used to provide the evidence of product conformity to specified requirements. Unfortunately, processes that employ MTE can become a weak link to the overall QMS if proper attention is not given to the measurement process design, capability, and implementation. Documented "decision rules" establish the requirements to ensure measurement processes provide the measurement data that supports the needs of the QMS. Measurement data are used to make the decisions that impact all areas of technology. Whether measurements support research, design, production, or maintenance, ensuring the data supports the decision is crucial. Measurement data quality can be critical to the resulting consequences of measurement-based decisions. Historically, most industries required simplistic, one-size-fits-all decision rules for measurements. One-size-fits-all rules in some cases are not rigorous enough to provide adequate measurement results, while in other cases are overly conservative and too costly to implement. Ideally, decision rules should be rigorous enough to match the criticality of the parameter being measured, while being flexible enough to be cost effective. The goal of a decision rule is to ensure that measurement processes provide data with a sufficient level of quality to support the decisions being made - no more, no less. This paper discusses the basic concepts of providing measurement-based evidence that end products meet specifications. Although relevant to all measurement-based conformance tests, the target audience is the MTE end-user, which is anyone using MTE other than calibration service providers. Topics include measurement fundamentals, the associated decision risks, verifying conformance to specifications, and basic measurement
The Biological Bases of Conformity
Directory of Open Access Journals (Sweden)
Thomas Joshau Henry Morgan
2012-06-01
Full Text Available Humans are characterized by an extreme dependence on culturally transmitted information and recent formal theory predicts that natural selection should favour adaptive learning strategies that facilitate effective use of social information in decision making. One strategy that has attracted particular attention is conformist transmission, defined as the disproportionately likely adoption of the most common variant. Conformity has historically been emphasized as significant in the social psychology literature, and recently there have also been reports of conformist behaviour in nonhuman animals. However, mathematical analyses differ in how important and widespread they expect conformity to be, and relevant experimental work is scarce, and generates findings that are both mutually contradictory and inconsistent with the predictions of the models. We review the relevant literature considering the causation, function, history and ontogeny of conformity and describe a computer-based experiment on human subjects that we carried out in order to resolve ambiguities. We found that only when many demonstrators were available and subjects were uncertain was subject behaviour conformist. A further analysis found that the underlying response to social information alone was generally conformist. Thus, our data are consistent with a conformist use of social information, but as subject’s behaviour is the result of both social and asocial influences, the resultant behaviour may not be conformist. We end by relating these findings to an embryonic cognitive neuroscience literature that has recently begun to explore the neural bases of social learning. Here conformist transmission may be a particularly useful case study, not only because there are well-defined and tractable opportunities to characterize the biological underpinnings of this form of social learning, but also because early findings imply that humans may possess specific cognitive adaptations for
Reply to ''Comment on 'Quantum massive conformal gravity' by F. F. Faria''
Energy Technology Data Exchange (ETDEWEB)
Faria, F.F. [Universidade Estadual do Piaui, Centro de Ciencias da Natureza, Teresina, PI (Brazil)
2017-01-15
Recently in (Eur Phys J C 76:341, 2016), Myung has suggested that the renormalizability of massive conformal gravity is meaningless unless the massive ghost states of the theory are stable. Here we show that massive conformal gravity can be renormalizable having unstable ghost states. (orig.)
Conformal covariance of general relativity
International Nuclear Information System (INIS)
Ionescu-Pallas, N.; Gottlieb, I.
1980-01-01
The Einstein's equations of General Relativity are written in a conformal metric, resulting as a consequence of geometrizing the pressure forces. Accordingly, the trajectory of a test body pursues a geodetic line even inside the source of gravitational field. Moreover, the pressure, entering the perfect fluid scheme, may be replaced by a certain scalar interaction. This new manner of interpreting General Relativity is then applied to Cosmology, in order to build up a model of Universe whose static limit should coincide with that of Einstein. At the same time, the cosmological constant is connected to the scalar interaction acquiring a plausible explanation. (author)
International Nuclear Information System (INIS)
Appelquist, T.; Fleming, G. T.; Neil, E. T.; Avakian, A.; Babich, R.; Brower, R. C.; Cohen, S. D.; Rebbi, C.; Schaich, D.; Cheng, M.; Vranas, P.; Clark, M. A.; Kiskis, J.; Osborn, J. C.
2010-01-01
We study the chiral properties of an SU(3) gauge theory with N f massless Dirac fermions in the fundamental representation when N f is increased from 2 to 6. For N f =2, our lattice simulations lead to a value of /F 3 , where F is the Nambu-Goldstone-boson decay constant and is the chiral condensate, which agrees with the measured QCD value. For N f =6, this ratio shows significant enhancement, presaging an even larger enhancement anticipated as N f increases further, toward the critical value for transition from confinement to infrared conformality.
Introduction to twisted conformal fields
International Nuclear Information System (INIS)
Kazama, Y.
1988-01-01
A pedagogical account is given of the recent developments in the theory of twisted conformal fields. Among other things, the main part of the lecture concerns the construction of the twist-emission vertex operator, which is a generalization of the fermion emission vertex in the superstring theory. Several different forms of the vertex are derived and their mutural relationships are clarified. In this paper, the authors include a brief survey of the history of the fermion emission vertex, as it offers a good perspective in which to appreciate the logical development
An Element of Determinism in a Stochastic Flagellar Motor Switch.
Xie, Li; Altindal, Tuba; Wu, Xiao-Lun
2015-01-01
Marine bacterium Vibrio alginolyticus uses a single polar flagellum to navigate in an aqueous environment. Similar to Escherichia coli cells, the polar flagellar motor has two states; when the motor is counter-clockwise, the cell swims forward and when the motor is clockwise, the cell swims backward. V. alginolyticus also incorporates a direction randomization step at the start of the forward swimming interval by flicking its flagellum. To gain an understanding on how the polar flagellar motor switch is regulated, distributions of the forward Δf and backward Δb intervals are investigated herein. We found that the steady-state probability density functions, P(Δf) and P(Δb), of freely swimming bacteria are strongly peaked at a finite time, suggesting that the motor switch is not Poissonian. The short-time inhibition is sufficiently strong and long lasting, i.e., several hundred milliseconds for both intervals, which is readily observed and characterized. Treating motor reversal dynamics as a first-passage problem, which results from conformation fluctuations of the motor switch, we calculated P(Δf) and P(Δb) and found good agreement with the measurements.
International Nuclear Information System (INIS)
Chatroux, D.; Maury, J.; Hennevin, B.
1993-01-01
A Copper Vapour Laser Power Supply has been designed using a solid state switch consisting in eighteen Isolated Gate Bipolar Transistors (IGBT), -1200 volts, 400 Amps, each-in parallel. This paper presents the Isolated Gate Bipolar Transistor (IGBTs) replaced in the Power Electronic components evolution, and describes the IGBT conduction mechanism, presents the parallel association of IGBTs, and studies the application of these components to a Copper Vapour Laser Power Supply. The storage capacitor voltage is 820 volts, the peak current of the solid state switch is 17.000 Amps. The switch is connected on the primary of a step-up transformer, followed by a magnetic modulator. The reset of the magnetic modulator is provided by part of the laser reflected energy with a patented circuit. The charging circuit is a resonant circuit with a charge controlled by an IGBT switch. When the switch is open, the inductance energy is free-wheeled by an additional winding and does not extend the charging phase of the storage capacitor. The design allows the storage capacitor voltage to be very well regulated. This circuit is also patented. The electric pulse in the laser has 30.000 Volt peak voltage, 2000 Amp peak current, and is 200 nanoseconds long, for a 200 Watt optical power Copper Vapour Laser
Mapping the conformational free energy of aspartic acid in the gas phase and in aqueous solution.
Comitani, Federico; Rossi, Kevin; Ceriotti, Michele; Sanz, M Eugenia; Molteni, Carla
2017-04-14
The conformational free energy landscape of aspartic acid, a proteogenic amino acid involved in a wide variety of biological functions, was investigated as an example of the complexity that multiple rotatable bonds produce even in relatively simple molecules. To efficiently explore such a landscape, this molecule was studied in the neutral and zwitterionic forms, in the gas phase and in water solution, by means of molecular dynamics and the enhanced sampling method metadynamics with classical force-fields. Multi-dimensional free energy landscapes were reduced to bi-dimensional maps through the non-linear dimensionality reduction algorithm sketch-map to identify the energetically stable conformers and their interconnection paths. Quantum chemical calculations were then performed on the minimum free energy structures. Our procedure returned the low energy conformations observed experimentally in the gas phase with rotational spectroscopy [M. E. Sanz et al., Phys. Chem. Chem. Phys. 12, 3573 (2010)]. Moreover, it provided information on higher energy conformers not accessible to experiments and on the conformers in water. The comparison between different force-fields and quantum chemical data highlighted the importance of the underlying potential energy surface to accurately capture energy rankings. The combination of force-field based metadynamics, sketch-map analysis, and quantum chemical calculations was able to produce an exhaustive conformational exploration in a range of significant free energies that complements the experimental data. Similar protocols can be applied to larger peptides with complex conformational landscapes and would greatly benefit from the next generation of accurate force-fields.
Mapping the conformational free energy of aspartic acid in the gas phase and in aqueous solution
Comitani, Federico; Rossi, Kevin; Ceriotti, Michele; Sanz, M. Eugenia; Molteni, Carla
2017-04-01
The conformational free energy landscape of aspartic acid, a proteogenic amino acid involved in a wide variety of biological functions, was investigated as an example of the complexity that multiple rotatable bonds produce even in relatively simple molecules. To efficiently explore such a landscape, this molecule was studied in the neutral and zwitterionic forms, in the gas phase and in water solution, by means of molecular dynamics and the enhanced sampling method metadynamics with classical force-fields. Multi-dimensional free energy landscapes were reduced to bi-dimensional maps through the non-linear dimensionality reduction algorithm sketch-map to identify the energetically stable conformers and their interconnection paths. Quantum chemical calculations were then performed on the minimum free energy structures. Our procedure returned the low energy conformations observed experimentally in the gas phase with rotational spectroscopy [M. E. Sanz et al., Phys. Chem. Chem. Phys. 12, 3573 (2010)]. Moreover, it provided information on higher energy conformers not accessible to experiments and on the conformers in water. The comparison between different force-fields and quantum chemical data highlighted the importance of the underlying potential energy surface to accurately capture energy rankings. The combination of force-field based metadynamics, sketch-map analysis, and quantum chemical calculations was able to produce an exhaustive conformational exploration in a range of significant free energies that complements the experimental data. Similar protocols can be applied to larger peptides with complex conformational landscapes and would greatly benefit from the next generation of accurate force-fields.
Orbit Correction for the Newly Developed Polarization-Switching Undulator
Obina, Takashi; Honda, Tohru; Shioya, Tatsuro; Kobayashi, Yukinori; Tsuchiya, Kimichika; Yamamoto, Shigeru
2007-01-01
A new scheme of undulator magnet arrangements has been proposed and developed as a polarization-switching radiation source, and its test-stand was installed in the 2.5-GeV Photon Factory storage ring (PF ring) in order to investigate the effects on the beam orbit. The closed orbit distortion (COD) over 200 μm was produced in a vertical direction when we switched the polarization of the radiation from the test-stand. In a horizontal direction, the COD was less than 50μm. The results agreed well with the predictions from the magnetic-field measurement on the bench. In order to suppress the CODs and realize a stable operation of the ring with the polarization-switching, we developed an orbit correction system which consists of an encoder to detect motion of magnets, a pair of beam position monitors (BPMs), signal processing parts, and a pair of steering magnets. We succeeded in suppressing the CODs to the level below 3μm using the system even when we switch the polarization at a maximum frequency of 0.8 Hz.
An electronic channel switching-based aptasensor for ultrasensitive protein detection
Energy Technology Data Exchange (ETDEWEB)
Li Hongbo; Wang Cui [State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 (China); Wu Zaisheng, E-mail: wuzaisheng@163.com [State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 (China); Lu Limin; Qiu Liping; Zhou Hui; Shen Guoli [State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 (China); Yu Ruqin, E-mail: rqyu@hnu.edu.cn [State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 (China)
2013-01-03
Highlights: Black-Right-Pointing-Pointer Target IgE is successfully designed to serve as a barrier to separate enzyme from its substrate. Black-Right-Pointing-Pointer This sensing platform of electronic channel switching-based aptasensor can be simply manipulated. Black-Right-Pointing-Pointer The stable hairpin structure of anti-IgE aptamer is utilized to detect target IgE. Black-Right-Pointing-Pointer The sensor is ultrasensitive sensitivity, excellent selectivity and small volume of sample. Black-Right-Pointing-Pointer It is a powerful platform to be further expanded to detect more kinds of proteins and even cells. - Abstract: Due to the ubiquity and essential of the proteins in all living organisms, the identification and quantification of disease-specific proteins are particularly important. Because the conformational change of aptamer upon its target or probe/target/probe sandwich often is the primary prerequisite for the design of an electrochemical aptameric assay system, it is extremely difficult to construct the electrochemical aptasensor for protein assay because the corresponding aptamers cannot often meet the requirement. To circumvent the obstacles mentioned, an electronic channel switching-based (ECS) aptasensor for ultrasensitive protein detection is developed. The essential achievement made is that an innovative sensing concept is proposed: the hairpin structure of aptamer is designed to pull electroactive species toward electrode surface and makes the surface-immobilized IgE serve as a barrier that separates enzyme from its substrate. It seemingly ensures that the ECS aptasensor exhibits most excellent assay features, such as, a detection limit of 4.44 Multiplication-Sign 10{sup -6} {mu}g mL{sup -1} (22.7 fM, 220 zmol in 10-{mu}L sample) (demonstrating a 5 orders of magnitude improvement in detection sensitivity compared with classical electronic aptasensors) and dynamic response range from 4.44 Multiplication-Sign 10{sup -6} to 4.44 Multiplication
Generative Models of Conformational Dynamics
Langmead, Christopher James
2014-01-01
Atomistic simulations of the conformational dynamics of proteins can be performed using either Molecular Dynamics or Monte Carlo procedures. The ensembles of three-dimensional structures produced during simulation can be analyzed in a number of ways to elucidate the thermodynamic and kinetic properties of the system. The goal of this chapter is to review both traditional and emerging methods for learning generative models from atomistic simulation data. Here, the term ‘generative’ refers to a model of the joint probability distribution over the behaviors of the constituent atoms. In the context of molecular modeling, generative models reveal the correlation structure between the atoms, and may be used to predict how the system will respond to structural perturbations. We begin by discussing traditional methods, which produce multivariate Gaussian models. We then discuss GAMELAN (GrAphical Models of Energy LANdscapes), which produces generative models of complex, non-Gaussian conformational dynamics (e.g., allostery, binding, folding, etc) from long timescale simulation data. PMID:24446358
On bidimensional Lagrangian conformal models
International Nuclear Information System (INIS)
Lazzarini, S.
1990-04-01
The main topic of this thesis is the study of Conformal Field Theories defined on an arbitrary compact Riemann surface without boundary. The Beltrami parametrization of complexe structures endowing such a surface provides a local bidimensional diffeomorphism invariance of the theory and the holomorphic factorization. The perturbative quantization a la Feynman is then constrained by local factorized Ward identities. The renormalization is analysed in the Esptein-Glaser scheme. A first part deals with the simplest free field models where one checks the interesting conjecture that renormalized perturbative expansions could be resumed by a Polyakov's formula which is a Wess-Zumino action for the diffeomorphism anomaly. For a higher genus surface, only a differential version is proposed. The second part of this thesis is devoted to the characterization of some observables of the free bosonic string in the corresponding gauge theory with the aid of the nilpotent Slavnov s-operator. It is conjectured that part of the observables of this theory is labelled by the local cohomology of s modulo d and corresponds to the vertex operators, as it is verified for the tachyon vertex in the conformal gauge [fr
Focused conformational sampling in proteins
Bacci, Marco; Langini, Cassiano; Vymětal, Jiří; Caflisch, Amedeo; Vitalis, Andreas
2017-11-01
A detailed understanding of the conformational dynamics of biological molecules is difficult to obtain by experimental techniques due to resolution limitations in both time and space. Computer simulations avoid these in theory but are often too short to sample rare events reliably. Here we show that the progress index-guided sampling (PIGS) protocol can be used to enhance the sampling of rare events in selected parts of biomolecules without perturbing the remainder of the system. The method is very easy to use as it only requires as essential input a set of several features representing the parts of interest sufficiently. In this feature space, new states are discovered by spontaneous fluctuations alone and in unsupervised fashion. Because there are no energetic biases acting on phase space variables or projections thereof, the trajectories PIGS generates can be analyzed directly in the framework of transition networks. We demonstrate the possibility and usefulness of such focused explorations of biomolecules with two loops that are part of the binding sites of bromodomains, a family of epigenetic "reader" modules. This real-life application uncovers states that are structurally and kinetically far away from the initial crystallographic structures and are also metastable. Representative conformations are intended to be used in future high-throughput virtual screening campaigns.
Mativetsky, Jeffrey M; Pace, Giuseppina; Elbing, Mark; Rampi, Maria A; Mayor, Marcel; Samorì, Paolo
2008-07-23
Conductance switching associated with the photoisomerization of azobenzene-based (Azo) molecules was observed in nanoscopic metal-molecule-metal junctions. The junctions were formed by using a conducting atomic force microscope (C-AFM) approach, where a metallic AFM tip was used to electrically contact a gold-supported Azo self-assembled monolayer. The measured 30-fold increase in conductance is consistent with the expected decrease in tunneling barrier length resulting from the conformational change of the Azo molecule.
Sex differences in confidence influence patterns of conformity.
Cross, Catharine P; Brown, Gillian R; Morgan, Thomas J H; Laland, Kevin N
2017-11-01
Lack of confidence in one's own ability can increase the likelihood of relying on social information. Sex differences in confidence have been extensively investigated in cognitive tasks, but implications for conformity have not been directly tested. Here, we tested the hypothesis that, in a task that shows sex differences in confidence, an indirect effect of sex on social information use will also be evident. Participants (N = 168) were administered a mental rotation (MR) task or a letter transformation (LT) task. After providing an answer, participants reported their confidence before seeing the responses of demonstrators and being allowed to change their initial answer. In the MR, but not the LT, task, women showed lower levels of confidence than men, and confidence mediated an indirect effect of sex on the likelihood of switching answers. These results provide novel, experimental evidence that confidence is a general explanatory mechanism underpinning susceptibility to social influences. Our results have implications for the interpretation of the wider literature on sex differences in conformity. © 2016 The British Psychological Society.
The Role of Conserved Waters in Conformational Transitions of Q61H K-ras
Prakash, Priyanka; Sayyed-Ahmad, Abdallah; Gorfe, Alemayehu A.
2012-01-01
To investigate the stability and functional role of long-residence water molecules in the Q61H variant of the signaling protein K-ras, we analyzed all available Ras crystal structures and conformers derived from a series of independent explicit solvent molecular dynamics (MD) simulations totaling 1.76 µs. We show that the protein samples a different region of phase space in the presence and absence of several crystallographically conserved and buried water molecules. The dynamics of these waters is coupled with the local as well as the global motions of the protein, in contrast to less buried waters whose exchange with bulk is only loosely coupled with the motion of loops in their vicinity. Aided by two novel reaction coordinates involving the distance (d) between the Cα atoms of G60 at switch 2 and G10 at the P-loop and the N-Cα-C-O dihedral (ξ) of G60, we further show that three water molecules located in lobe1, at the interface between the lobes and at lobe2, are involved in the relative motion of residues at the two lobes of Q61H K-ras. Moreover, a d/ξ plot classifies the available Ras x-ray structures and MD-derived K-ras conformers into active GTP-, intermediate GTP-, inactive GDP-bound, and nucleotide-free conformational states. The population of these states and the transition between them is modulated by water-mediated correlated motions involving the functionally critical switch 2, P-loop and helix 3. These results suggest that water molecules act as allosteric ligands to induce a population shift among distinct switch 2 conformations that differ in effector recognition. PMID:22359497
CMOS integrated switching power converters
Villar-Pique, Gerard
2011-01-01
This book describes the structured design and optimization of efficient, energy processing integrated circuits. The approach is multidisciplinary, covering the monolithic integration of IC design techniques, power electronics and control theory. In particular, this book enables readers to conceive, synthesize, design and implement integrated circuits with high-density high-efficiency on-chip switching power regulators. Topics covered encompass the structured design of the on-chip power supply, efficiency optimization, IC-compatible power inductors and capacitors, power MOSFET switches and effi
Knape, Harald; Margulis, Walter
2007-03-01
We report an all-fiber polarization switch made out of silica-based microstructured fiber suitable for Q-switching all-fiber lasers. Nanosecond high-voltage pulses are used to heat and expand an internal electrode to cause λ/2-polarization rotation in less than 10 ns for 1.5 μm light. The 10 cm long component has an experimentally measured optical insertion loss of 0.2 dB and a 0-10 kHz repetition frequency capacity and has been durability tested for more than 109 pulses.
DEFF Research Database (Denmark)
Andersen, Jonas; Heimdal, J.; Larsen, René Wugt
2015-01-01
⋯HO hydrogen bond acceptor in the two most stable conformations. In the most stable conformation, the water subunit forces the ethanol molecule into its less stable gauche configuration upon dimerization owing to a cooperative secondary weak O⋯HC hydrogen bondinteraction evidenced by a significantly blue......-shift of the low-frequency in-plane donor OH librational band origin. The strong correlation between the low-frequency in-plane donor OH librational motion and the secondary intermolecular O⋯HC hydrogen bond is demonstrated by electronic structure calculations. The experimental findings are further supported...... by CCSD(T)-F12/aug-cc-pVQZ calculations of the conformationalenergy differences together with second-order vibrational perturbation theory calculations of the large-amplitude donor OH librational band origins....
A level switch with a sound tube
赤池, 誠規
2017-01-01
Level switches are sensor with an electrical contact output at a specific liquid, powder or bulk level. Most of traditional level switches are not suitable for harsh environments. The level switch in this study connects a loudspeaker on top end of the sound tube. When liquid, powder or bulk closes bottom end of the sound tube, the level switch turns on. The level switch is suitable for harsh environments and easy to install. The aim of this study is to propose a level switch with a sound tube...
International Nuclear Information System (INIS)
Flood, Amar H.; Wong, Eric W.; Stoddart, J. Fraser
2006-01-01
The processes by which charge transfer can occur play a foundational role in molecular electronics. Here we consider simplified models of the transfer processes that could be present in bistable molecular switch tunnel junction (MSTJ) devices during one complete cycle of the device from its low- to high- and back to low-conductance state. The bistable molecular switches, which are composed of a monolayer of either switchable catenanes or rotaxanes, exist in either a ground-state co-conformation or a metastable one in which the conduction properties of the two co-conformations, when measured at small biases (+0.1 V), are significantly different irrespective of whether transport is dominated by tunneling or hopping. The voltage-driven generation (±2 V) of molecule-based redox states, which are sufficiently long-lived to allow the relative mechanical movements necessary to switch between the two co-conformations, rely upon unequal charge transfer rates on to and/or off of the molecules. Surface-enhanced Raman spectroscopy has been used to image the ground state of the bistable rotaxane in MSTJ-like devices. Consideration of these models provide new ways of looking at molecular electronic devices that rely, not only on nanoscale charge-transport, but also upon the bustling world of molecular motion in mechanically interlocked bistable molecules
Defining the conformational features of anchorless, poorly neuroinvasive prions.
Directory of Open Access Journals (Sweden)
Cyrus Bett
Full Text Available Infectious prions cause diverse clinical signs and form an extraordinary range of structures, from amorphous aggregates to fibrils. How the conformation of a prion dictates the disease phenotype remains unclear. Mice expressing GPI-anchorless or GPI-anchored prion protein exposed to the same infectious prion develop fibrillar or nonfibrillar aggregates, respectively, and show a striking divergence in the disease pathogenesis. To better understand how a prion's physical properties govern the pathogenesis, infectious anchorless prions were passaged in mice expressing anchorless prion protein and the resulting prions were biochemically characterized. Serial passage of anchorless prions led to a significant decrease in the incubation period to terminal disease and altered the biochemical properties, consistent with a transmission barrier effect. After an intraperitoneal exposure, anchorless prions were only weakly neuroinvasive, as prion plaques rarely occurred in the brain yet were abundant in extracerebral sites such as heart and adipose tissue. Anchorless prions consistently showed very high stability in chaotropes or when heated in SDS, and were highly resistant to enzyme digestion. Consistent with the results in mice, anchorless prions from a human patient were also highly stable in chaotropes. These findings reveal that anchorless prions consist of fibrillar and highly stable conformers. The additional finding from our group and others that both anchorless and anchored prion fibrils are poorly neuroinvasive strengthens the hypothesis that a fibrillar prion structure impedes efficient CNS invasion.
International Nuclear Information System (INIS)
Jizo, Y.; Furuta, Y.; Nakashima, H.
1986-01-01
Japanese National Railways is now developing a superconducting magnetically-levitated train system. A persistent current switch is incorporated in the super-conducting magnet used in the magnetically-levitated train. In recent years, the switch has been required to have higher electrical resistance during its off-state in order to realize the high speed energization/de-energization system of the superconducting magnets. The system aims to decrease evaporation volume of liquid helium during the energization/de-energization of the magnet, by means of energizing the superconducting magnet with high current increasing/decreasing rate. Consequently, it would be possible to decrease the dependence of the on-board magnet system upon the ground cooling system. Through the development of a stable superconductive wire material and a coil structure for the persistent current switch using many small model switches which were produced in order to improve their current carrying capacities, the authors have succeeded in manufacturing the high electrical resistance persistent current switch whose electrical resistance was 5 ohms. The switch, of cylindrical shape, has a diameter of about 100mm, a length of about 100mm. These 5 ohm PCSs are now functioning in stable conditions being incorporated in the superconducting magnets of No.2 vehicle of MLU001 at the JNR's Miyazaki test track. Further, the authors are now developing the PCS of still higher resistance values, such as 50 ohms, through studies for stabilization in structural aspects of the winding and obtaining results therefrom
International Nuclear Information System (INIS)
Pfeuty, Benjamin; Kaneko, Kunihiko
2009-01-01
A wide range of cellular processes require molecular regulatory pathways to convert a graded signal into a discrete response. One prevalent switching mechanism relies on the coexistence of two stable states (bistability) caused by positive feedback regulations. Intriguingly, positive feedback is often supplemented with negative feedback, raising the question of whether and how these two types of feedback can cooperate to control discrete cellular responses. To address this issue, we formulate a canonical model of a protein–protein interaction network and analyze the dynamics of a prototypical two-component circuit. The appropriate combination of negative and positive feedback loops can bring a bistable circuit close to the oscillatory regime. Notably, sharply activated negative feedback can give rise to a bistable regime wherein two stable fixed points coexist and may collide pairwise with two saddle points. This specific type of bistability is found to allow for separate and flexible control of switch-on and switch-off events, for example (i) to combine fast and reversible transitions, (ii) to enable transient switching responses and (iii) to display tunable noise-induced transition rates. Finally, we discuss the relevance of such bistable switching behavior, and the circuit topologies considered, to specific biological processes such as adaptive metabolic responses, stochastic fate decisions and cell-cycle transitions. Taken together, our results suggest an efficient mechanism by which positive and negative feedback loops cooperate to drive the flexible and multifaceted switching behaviors arising in biological systems
Stabilization of switched nonlinear systems with unstable modes
Yang, Hao; Cocquempot, Vincent
2014-01-01
This book provides its reader with a good understanding of the stabilization of switched nonlinear systems (SNS), systems that are of practical use in diverse situations: design of fault-tolerant systems in space- and aircraft; traffic control; and heat propagation control of semiconductor power chips. The practical background is emphasized throughout the book; interesting practical examples frequently illustrate the theoretical results with aircraft and spacecraft given particular prominence. Stabilization of Switched Nonlinear Systems with Unstable Modes treats several different subclasses of SNS according to the characteristics of the individual system (time-varying and distributed parameters, for example), the state composition of individual modes and the degree and distribution of instability in its various modes. Achievement and maintenance of stability across the system as a whole is bolstered by trading off between individual modes which may be either stable or unstable, or by exploiting areas of part...
Photo-switch of pulsed Nd:YAG laser
International Nuclear Information System (INIS)
Ketta, W.W.J.
1989-01-01
In this work passive Q-switching and its effect on the output laser beam from a pulsed Nd:YAG laser was studied. This was achieved using the photochemically stable (BDNI) dye after dissolving it in dichloroethane. The absorption spectra of the dye solution and how suitable to use with Nd:YAG laser was also dealt with. Cooling unit for the laser system, a detector to detect the output pulse, and an electronic counter to measure the pulse duration were constructed. In the free-running regime, the divergence angle was measured. The form of the output, its energy, and how it is affected by the pumping energy were also studied. In the Q-switching regime, the relation between output and pumping energies was studied and compared to the same relation under the free-running regime. 5 tabs.; 33 figs.; 57 refs
Conformal symmetries of FRW accelerating cosmologies
International Nuclear Information System (INIS)
Kehagias, A.; Riotto, A.
2014-01-01
We show that any accelerating Friedmann–Robertson–Walker (FRW) cosmology with equation of state w<−1/3 (and therefore not only a de Sitter stage with w=−1) exhibits three-dimensional conformal symmetry on future constant-time hypersurfaces if the bulk theory is invariant under bulk conformal Killing vectors. We also offer an alternative derivation of this result in terms of conformal Killing vectors and show that long wavelength comoving curvature perturbations of the perturbed FRW metric are just conformal Killing motions of the FRW background. We then extend the boundary conformal symmetry to the bulk for accelerating cosmologies. Our findings indicate that one can easily generate perturbations of scalar fields which are not only scale invariant, but also fully conformally invariant on super-Hubble scales. Measuring a scale-invariant power spectrum for the cosmological perturbation does not automatically imply that the universe went through a de Sitter stage
Maxwell equations in conformal invariant electrodynamics
International Nuclear Information System (INIS)
Fradkin, E.S.; AN SSSR, Novosibirsk. Inst. Avtomatiki i Ehlektrometrii); Kozhevnikov, A.A.; Palchik, M.Ya.; Pomeransky, A.A.
1983-01-01
We consider a conformal invariant formulation of quantum electrodynamics. Conformal invariance is achieved with a specific mathematical construction based on the indecomposable representations of the conformal group associated with the electromagnetic potential and current. As a corolary of this construction modified expressions for the 3-point Green functions are obtained which both contain transverse parts. They make it possible to formulate a conformal invariant skeleton perturbation theory. It is also shown that the Euclidean Maxwell equations in conformal electrodynamics are manifestations of its kinematical structure: in the case of the 3-point Green functions these equations follow (up to constants) from the conformal invariance while in the case of higher Green functions they are equivalent to the equality of the kernels of the partial wave expansions. This is the manifestation of the mathematical fast of a (partial) equivalence of the representations associated with the potential, current and the field tensor. (orig.)
Operator algebras and conformal field theory
International Nuclear Information System (INIS)
Gabbiani, F.; Froehlich, J.
1993-01-01
We define and study two-dimensional, chiral conformal field theory by the methods of algebraic field theory. We start by characterizing the vacuum sectors of such theories and show that, under very general hypotheses, their algebras of local observables are isomorphic to the unique hyperfinite type III 1 factor. The conformal net determined by the algebras of local observables is proven to satisfy Haag duality. The representation of the Moebius group (and presumably of the entire Virasoro algebra) on the vacuum sector of a conformal field theory is uniquely determined by the Tomita-Takesaki modular operators associated with its vacuum state and its conformal net. We then develop the theory of Mebius covariant representations of a conformal net, using methods of Doplicher, Haag and Roberts. We apply our results to the representation theory of loop groups. Our analysis is motivated by the desire to find a 'background-independent' formulation of conformal field theories. (orig.)
Measuring the mechanical properties of molecular conformers
Jarvis, S. P.; Taylor, S.; Baran, J. D.; Champness, N. R.; Larsson, J. A.; Moriarty, P.
2015-09-01
Scanning probe-actuated single molecule manipulation has proven to be an exceptionally powerful tool for the systematic atomic-scale interrogation of molecular adsorbates. To date, however, the extent to which molecular conformation affects the force required to push or pull a single molecule has not been explored. Here we probe the mechanochemical response of two tetra(4-bromophenyl)porphyrin conformers using non-contact atomic force microscopy where we find a large difference between the lateral forces required for manipulation. Remarkably, despite sharing very similar adsorption characteristics, variations in the potential energy surface are capable of prohibiting probe-induced positioning of one conformer, while simultaneously permitting manipulation of the alternative conformational form. Our results are interpreted in the context of dispersion-corrected density functional theory calculations which reveal significant differences in the diffusion barriers for each conformer. These results demonstrate that conformational variation significantly modifies the mechanical response of even simple porpyhrins, potentially affecting many other flexible molecules.
Directory of Open Access Journals (Sweden)
Pantelić Svetlana
2014-01-01
Full Text Available The Swedish Royal Academy awarded the 2012 Nobel Prize in Economics to Lloyd Shapley and Alvin Roth, for the theory of stable allocations and the practice of market design. These two American researchers worked independently from each other, combining basic theory and empirical investigations. Through their experiments and practical design they generated a flourishing field of research and improved the performance of many markets. Born in 1923 in Cambridge, Massachusetts, Shapley defended his doctoral thesis at Princeton University in 1953. For many years he worked at RAND, and for more than thirty years he was a professor at UCLA University. He published numerous scientific papers, either by himself or in cooperation with other economists.
Li, Wen Tao; Hei, Yong Qiang; Shi, Xiao Wei
2018-04-01
By virtue of the excellent aerodynamic performances, conformal phased arrays have been attracting considerable attention. However, for the synthesis of patterns with low/ultra-low sidelobes of the conventional conformal arrays, the obtained dynamic range ratios of amplitude excitations could be quite high, which results in stringent requirements on various error tolerances for practical implementation. Time-modulated array (TMA) has the advantages of low sidelobe and reduced dynamic range ratio requirement of amplitude excitations. This paper takes full advantages of conformal antenna arrays and time-modulated arrays. The active-element-pattern, including element mutual coupling and platform effects, is employed in the whole design process. To optimize the pulse durations and the switch-on instants of the time-modulated elements, multiobjective invasive weed optimization (MOIWO) algorithm based on the nondominated sorting of the solutions is proposed. A S-band 8-element cylindrical conformal array is designed and a S-band 16-element cylindrical-parabolic conformal array is constructed and tested at two different steering angles.
3D Pattern Synthesis of Time-Modulated Conformal Arrays with a Multiobjective Optimization Approach
Directory of Open Access Journals (Sweden)
Wentao Li
2014-01-01
Full Text Available This paper addresses the synthesis of the three-dimensional (3D radiation patterns of the time-modulated conformal arrays. Due to the nature of periodic time modulation, harmonic radiation patterns are generated at the multiples of the modulation frequency in time-modulated arrays. Thus, the optimization goal of the time-modulated conformal array includes the optimization of the sidelobe level at the operating frequency and the sideband levels (SBLs at the harmonic frequency, and the design can be regarded as a multiobjective problem. The multiobjective particle swarm optimization (MOPSO is applied to optimize the switch-on instants and pulse durations of the time-modulated conformal array. To significantly reduce the optimization variables, the modified Bernstein polynomial is employed in the synthesis process. Furthermore, dual polarized patch antenna is designed as radiator to achieve low cross-polarization level during the beam scanning. A 12 × 13 (156-element conical conformal microstrip array is simulated to demonstrate the proposed synthesis mechanism, and good results reveal the promising ability of the proposed algorithm in solving the synthesis of the time-modulated conformal arrays problem.
Lattice models and conformal field theories
International Nuclear Information System (INIS)
Saleur, H.
1988-01-01
Theoretical studies concerning the connection between critical physical systems and the conformal theories are reviewed. The conformal theory associated to a critical (integrable) lattice model is derived. The obtention of the central charge, critical exponents and torus partition function, using renormalization group arguments, is shown. The quantum group structure, in the integrable lattice models, and the theory of Visaro algebra representations are discussed. The relations between off-critical integrable models and conformal theories, in finite geometries, are studied
Multichannel conformal blocks for scattering amplitudes
Belitsky, A. V.
2018-05-01
By performing resummation of small fermion-antifermion pairs within the pentagon form factor program to scattering amplitudes in planar N = 4 superYang-Mills theory, we construct multichannel conformal blocks within the flux-tube picture for N-sided NMHV polygons. This procedure is equivalent to summation of descendants of conformal primaries in the OPE framework. The resulting conformal partial waves are determined by multivariable hypergeometric series of Lauricella-Saran type.
Conformal hyperbolicity of Lorentzian warped products
International Nuclear Information System (INIS)
Markowitz, M.J.
1982-01-01
A space-time M is said to be conformally hyperbolic if the intrinsic conformal Lorentz pseudodistance dsub(M) is a true distance. In this paper criteria are derived which insure the conformal hyperbolicity of certain space-times which are generalizations of the Robertson-Walker spaces. Then dsub(M) is determined explicitly for Einstein-de Sitter space, and important cosmological model. (author)
Conformal hyperbolicity of Lorentzian warped products
Energy Technology Data Exchange (ETDEWEB)
Markowitz, M.J. (Chicago Univ., IL (USA). Dept. of Mathematics)
1982-12-01
A space-time M is said to be conformally hyperbolic if the intrinsic conformal Lorentz pseudodistance dsub(M) is a true distance. In this paper criteria are derived which insure the conformal hyperbolicity of certain space-times which are generalizations of the Robertson-Walker spaces. Then dsub(M) is determined explicitly for Einstein-de Sitter space, and important cosmological model.
Conformational changes in glycine tri- and hexapeptide
DEFF Research Database (Denmark)
Yakubovich, Alexander V.; Solov'yov, Ilia; Solov'yov, Andrey V.
2006-01-01
conformations and calculated the energy barriers for transitions between them. Using a thermodynamic approach, we have estimated the times of the characteristic transitions between these conformations. The results of our calculations have been compared with those obtained by other theoretical methods...... also investigated the influence of the secondary structure of polypeptide chains on the formation of the potential energy landscape. This analysis has been performed for the sheet and the helix conformations of chains of six amino acids....
Holdener, Fred R.; Boyd, Robert D.
2000-01-01
The present invention is a bi-stable optical actuator device that is depowered in both stable positions. A bearing is used to transfer motion and smoothly transition from one state to another. The optical actuator device may be maintained in a stable position either by gravity or a restraining device.
Lofgren, Michael; Koutmos, Markos; Banerjee, Ruma
2013-10-25
MeaB is an accessory GTPase protein involved in the assembly, protection, and reactivation of 5'-deoxyadenosyl cobalamin-dependent methylmalonyl-CoA mutase (MCM). Mutations in the human ortholog of MeaB result in methylmalonic aciduria, an inborn error of metabolism. G-proteins typically utilize conserved switch I and II motifs for signaling to effector proteins via conformational changes elicited by nucleotide binding and hydrolysis. Our recent discovery that MeaB utilizes an unusual switch III region for bidirectional signaling with MCM raised questions about the roles of the switch I and II motifs in MeaB. In this study, we addressed the functions of conserved switch II residues by performing alanine-scanning mutagenesis. Our results demonstrate that the GTPase activity of MeaB is autoinhibited by switch II and that this loop is important for coupling nucleotide-sensitive conformational changes in switch III to elicit the multiple chaperone functions of MeaB. Furthermore, we report the structure of MeaB·GDP crystallized in the presence of AlFx(-) to form the putative transition state analog, GDP·AlF4(-). The resulting crystal structure and its comparison with related G-proteins support the conclusion that the catalytic site of MeaB is incomplete in the absence of the GTPase-activating protein MCM and therefore unable to stabilize the transition state analog. Favoring an inactive conformation in the absence of the client MCM protein might represent a strategy for suppressing the intrinsic GTPase activity of MeaB in which the switch II loop plays an important role.
Energy Technology Data Exchange (ETDEWEB)
Volkov, Oleg A.; Kinch, Lisa; Ariagno, Carson; Deng, Xiaoyi; Zhong, Shihua; Grishin, Nick; Tomchick, Diana R.; Chen, Zhe; Phillips, Margaret A.
2016-12-15
Catalytically inactive enzyme paralogs occur in many genomes. Some regulate their active counterparts but the structural principles of this regulation remain largely unknown. We report X-ray structures of
Geometrical formulation of the conformal Ward identity
International Nuclear Information System (INIS)
Kachkachi, M.
2002-08-01
In this paper we use deep ideas in complex geometry that proved to be very powerful in unveiling the Polyakov measure on the moduli space of Riemann surfaces and lead to obtain the partition function of perturbative string theory for 2, 3, 4 loops. Indeed, a geometrical interpretation of the conformal Ward identity in two dimensional conformal field theory is proposed: the conformal anomaly is interpreted as a deformation of the complex structure of the basic Riemann surface. This point of view is in line with the modern trend of geometric quantizations that are based on deformations of classical structures. Then, we solve the conformal Ward identity by using this geometrical formalism. (author)
Fabrication challenges associated with conformal optics
Schaefer, John; Eichholtz, Richard A.; Sulzbach, Frank C.
2001-09-01
A conformal optic is typically an optical window that conforms smoothly to the external shape of a system platform to improve aerodynamics. Conformal optics can be on-axis, such as an ogive missile dome, or off-axis, such as in a free form airplane wing. A common example of conformal optics is the automotive head light window that conforms to the body of the car aerodynamics and aesthetics. The unusual shape of conformal optics creates tremendous challenges for design, manufacturing, and testing. This paper will discuss fabrication methods that have been successfully demonstrated to produce conformal missile domes and associated wavefront corrector elements. It will identify challenges foreseen with more complex free-form configurations. Work presented in this paper was directed by the Precision Conformal Optics Consortium (PCOT). PCOT is comprised of both industrial and academic members who teamed to develop and demonstrate conformal optical systems suitable for insertion into future military programs. The consortium was funded under DARPA agreement number MDA972-96-9-08000.
Gluon amplitudes as 2 d conformal correlators
Pasterski, Sabrina; Shao, Shu-Heng; Strominger, Andrew
2017-10-01
Recently, spin-one wave functions in four dimensions that are conformal primaries of the Lorentz group S L (2 ,C ) were constructed. We compute low-point, tree-level gluon scattering amplitudes in the space of these conformal primary wave functions. The answers have the same conformal covariance as correlators of spin-one primaries in a 2 d CFT. The Britto-Cachazo-Feng-Witten (BCFW) recursion relation between three- and four-point gluon amplitudes is recast into this conformal basis.
Noncommutative geometry and twisted conformal symmetry
International Nuclear Information System (INIS)
Matlock, Peter
2005-01-01
The twist-deformed conformal algebra is constructed as a Hopf algebra with twisted coproduct. This allows for the definition of conformal symmetry in a noncommutative background geometry. The twisted coproduct is reviewed for the Poincare algebra and the construction is then extended to the full conformal algebra. The case of Moyal-type noncommutativity of the coordinates is considered. It is demonstrated that conformal invariance need not be viewed as incompatible with noncommutative geometry; the noncommutativity of the coordinates appears as a consequence of the twisting, as has been shown in the literature in the case of the twisted Poincare algebra
Unconstrained multiplet in N=2 conformal supergravity
International Nuclear Information System (INIS)
Hayashi, Masahito; Uehara, Shozo.
1985-02-01
An unconstrained (general) multiplet was studied in N = 2 conformal supergravity. Transformation law, embedding formula and multiplication rule are explicitly presented at the linearized level. (author)
Superintegrability of d-dimensional conformal blocks
International Nuclear Information System (INIS)
Isachenkov, Mikhail
2016-02-01
We observe that conformal blocks of scalar 4-point functions in a d-dimensional conformal field theory can mapped to eigenfunctions of a 2-particle hyperbolic Calogero-Sutherland Hamiltonian. The latter describes two coupled Poeschl-Teller particles. Their interaction, whose strength depends smoothly on the dimension d, is known to be superintegrable. Our observation enables us to exploit the rich mathematical literature on Calogero-Sutherland models in deriving various results for conformal field theory. These include an explicit construction of conformal blocks in terms of Heckman-Opdam hypergeometric functions and a remarkable duality that relates the blocks of theories in different dimensions.
Superintegrability of d-dimensional conformal blocks
Energy Technology Data Exchange (ETDEWEB)
Isachenkov, Mikhail [Weizmann Institute of Science, Rehovot (Israel). Dept. of Particle Physics and Astronomy; Schomerus, Volker [DESY Theory Group, Hamburg (Germany)
2016-02-15
We observe that conformal blocks of scalar 4-point functions in a d-dimensional conformal field theory can mapped to eigenfunctions of a 2-particle hyperbolic Calogero-Sutherland Hamiltonian. The latter describes two coupled Poeschl-Teller particles. Their interaction, whose strength depends smoothly on the dimension d, is known to be superintegrable. Our observation enables us to exploit the rich mathematical literature on Calogero-Sutherland models in deriving various results for conformal field theory. These include an explicit construction of conformal blocks in terms of Heckman-Opdam hypergeometric functions and a remarkable duality that relates the blocks of theories in different dimensions.
Riemann monodromy problem and conformal field theories
International Nuclear Information System (INIS)
Blok, B.
1989-01-01
A systematic analysis of the use of the Riemann monodromy problem for determining correlators (conformal blocks) on the sphere is presented. The monodromy data is constructed in terms of the braid matrices and gives a constraint on the noninteger part of the conformal dimensions of the primary fields. To determine the conformal blocks we need to know the order of singularities. We establish a criterion which tells us when the knowledge of the conformal dimensions of primary fields suffice to determine the blocks. When zero modes of the extended algebra are present the analysis is more difficult. In this case we give a conjecture that works for the SU(2) WZW case. (orig.)
Rotational Spectroscopy Unveils Eleven Conformers of Adrenaline
Cabezas, C.; Cortijo, V.; Mata, S.; Lopez, J. C.; Alonso, J. L.
2013-06-01
Recent improvements in our LA-MB-FTMW instrumentation have allowed the characterization of eleven and eight conformers for the neurotransmitters adrenaline and noradrenaline respectively. The observation of this rich conformational behavior is in accordance with the recent observation of seven conformers for dopamine and in sharp contrast with the conformational reduction proposed for catecholamines. C. Cabezas, I. Peña, J. C. López, J. L. Alonso J. Phys. Chem. Lett. 2013, 4, 486. H. Mitsuda, M. Miyazaki, I. B. Nielsen, P. Carcabal,C. Dedonder, C. Jouvet, S. Ishiuchi, M. Fujii J. Phys. Chem. Lett. 2010, 1, 1130.
Conformal Dimensions via Large Charge Expansion.
Banerjee, Debasish; Chandrasekharan, Shailesh; Orlando, Domenico
2018-02-09
We construct an efficient Monte Carlo algorithm that overcomes the severe signal-to-noise ratio problems and helps us to accurately compute the conformal dimensions of large-Q fields at the Wilson-Fisher fixed point in the O(2) universality class. Using it, we verify a recent proposal that conformal dimensions of strongly coupled conformal field theories with a global U(1) charge can be obtained via a series expansion in the inverse charge 1/Q. We find that the conformal dimensions of the lowest operator with a fixed charge Q are almost entirely determined by the first few terms in the series.
Conformal maps between pseudo-Finsler spaces
Voicu, Nicoleta
The paper aims to initiate a systematic study of conformal mappings between Finsler spacetimes and, more generally, between pseudo-Finsler spaces. This is done by extending several results in pseudo-Riemannian geometry which are necessary for field-theoretical applications and by proposing a technique that reduces some problems involving pseudo-Finslerian conformal vector fields to their pseudo-Riemannian counterparts. Also, we point out, by constructing classes of examples, that conformal groups of flat (locally Minkowskian) pseudo-Finsler spaces can be much richer than both flat Finslerian and pseudo-Euclidean conformal groups.
Ab initio theory for current-induced molecular switching: Melamine on Cu(001)
Ohto, Tatsuhiko
2013-05-28
Melamine on Cu(001) is mechanically unstable under the current of a scanning tunneling microscope tip and can switch among configurations. However, these are not equally accessible, and the switching critical current depends on the bias polarity. In order to explain such rich phenomenology, we have developed a scheme to evaluate the evolution of the reaction paths and activation barriers as a function of bias, which is rooted in the nonequilibrium Green\\'s function method implemented within density functional theory. This, combined with the calculation of the inelastic electron tunneling spectroscopy signal, allows us to identify the vibrational modes promoting the observed molecular conformational changes. Finally, once our ab initio results are used within a resonance model, we are able to explain the details of the switching behavior, such as its dependence on the bias polarity, and the noninteger power relation between the reaction rate constants and both the bias voltage and the electric current. © 2013 American Physical Society.
Complete achromatic and robustness electro-optic switch between two integrated optical waveguides
Huang, Wei; Kyoseva, Elica
2018-01-01
In this paper, we present a novel design of electro-optic modulator and optical switching device, based on current integrated optics technique. The advantages of our optical switching device are broadband of input light wavelength, robustness against varying device length and operation voltages, with reference to previous design. Conforming to our results of previous paper [Huang et al, phys. lett. a, 90, 053837], the coupling of the waveguides has a hyperbolic-secant shape. while detuning has a sign flip at maximum coupling, we called it as with a sign flip of phase mismatch model. The a sign flip of phase mismatch model can produce complete robust population transfer. In this paper, we enhance this device to switch light intensity controllable, by tuning external electric field based on electro-optic effect.
Ab initio theory for current-induced molecular switching: Melamine on Cu(001)
Ohto, Tatsuhiko; Rungger, Ivan; Yamashita, Koichi; Nakamura, Hisao; Sanvito, Stefano
2013-01-01
Melamine on Cu(001) is mechanically unstable under the current of a scanning tunneling microscope tip and can switch among configurations. However, these are not equally accessible, and the switching critical current depends on the bias polarity. In order to explain such rich phenomenology, we have developed a scheme to evaluate the evolution of the reaction paths and activation barriers as a function of bias, which is rooted in the nonequilibrium Green's function method implemented within density functional theory. This, combined with the calculation of the inelastic electron tunneling spectroscopy signal, allows us to identify the vibrational modes promoting the observed molecular conformational changes. Finally, once our ab initio results are used within a resonance model, we are able to explain the details of the switching behavior, such as its dependence on the bias polarity, and the noninteger power relation between the reaction rate constants and both the bias voltage and the electric current. © 2013 American Physical Society.
Roucou, Anthony; Fontanari, Daniele; Dhont, Guillaume; Jabri, Atef; Bray, Cédric; Hindle, Francis; Mouret, Gaël; Bocquet, Robin; Cuisset, Arnaud
2018-03-30
Room temperature millimeter-wave rotational spectroscopy supported by high level of theory calculations have been employed to fully characterise the conformational landscape of 3-Methoxyphenol, a semi-volatile polar oxygenated aromatic compound precursor of secondary organic aerosols in the atmosphere arising from biomass combustion. While previous rotationally-resolved spectroscopic studies in the microwave and in the UV domains failed to observe the complete conformational landscape, the 70 - 330 GHz rotational spectrum measured in this study reveals the ground state rotational signatures of the four stable conformations theoretically predicted. Moreover, rotational transitions in the lowest energy vibrationally excited states were assigned for two conformers. While the inertial defect of methoxyphenol does not signicantly change between conformers and isomers, the excitation of the methoxy out-of-plane bending is the main contribution to the non-planarity of the molecule. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Industry switching in developing countries
DEFF Research Database (Denmark)
Newman, Carol; Rand, John; Tarp, Finn
2013-01-01
Firm turnover (i.e., firm entry and exit) is a well-recognized source of sector-level productivity growth. In contrast, the role and importance of firms that switch activities from one sector to another is not well understood. Firm switchers are likely to be unique, differing from both newly esta...
Nanoscale organic ferroelectric resistive switches
Khikhlovskyi, V.; Wang, R.; Breemen, A.J.J.M. van; Gelinck, G.H.; Janssen, R.A.J.; Kemerink, M.
2014-01-01
Organic ferroelectric resistive switches function by grace of nanoscale phase separation in a blend of a semiconducting and a ferroelectric polymer that is sandwiched between metallic electrodes. In this work, various scanning probe techniques are combined with numerical modeling to unravel their
Incorrect predictions reduce switch costs.
Kleinsorge, Thomas; Scheil, Juliane
2015-07-01
In three experiments, we combined two sources of conflict within a modified task-switching procedure. The first source of conflict was the one inherent in any task switching situation, namely the conflict between a task set activated by the recent performance of another task and the task set needed to perform the actually relevant task. The second source of conflict was induced by requiring participants to guess aspects of the upcoming task (Exps. 1 & 2: task identity; Exp. 3: position of task precue). In case of an incorrect guess, a conflict accrues between the representation of the guessed task and the actually relevant task. In Experiments 1 and 2, incorrect guesses led to an overall increase of reaction times and error rates, but they reduced task switch costs compared to conditions in which participants predicted the correct task. In Experiment 3, incorrect guesses resulted in faster performance overall and to a selective decrease of reaction times in task switch trials when the cue-target interval was long. We interpret these findings in terms of an enhanced level of controlled processing induced by a combination of two sources of conflict converging upon the same target of cognitive control. Copyright © 2015 Elsevier B.V. All rights reserved.
Multiuser switched diversity scheduling schemes
Shaqfeh, Mohammad; Alnuweiri, Hussein M.; Alouini, Mohamed-Slim
2012-01-01
Multiuser switched-diversity scheduling schemes were recently proposed in order to overcome the heavy feedback requirements of conventional opportunistic scheduling schemes by applying a threshold-based, distributed, and ordered scheduling mechanism. The main idea behind these schemes is that slight reduction in the prospected multiuser diversity gains is an acceptable trade-off for great savings in terms of required channel-state-information feedback messages. In this work, we characterize the achievable rate region of multiuser switched diversity systems and compare it with the rate region of full feedback multiuser diversity systems. We propose also a novel proportional fair multiuser switched-based scheduling scheme and we demonstrate that it can be optimized using a practical and distributed method to obtain the feedback thresholds. We finally demonstrate by numerical examples that switched-diversity scheduling schemes operate within 0.3 bits/sec/Hz from the ultimate network capacity of full feedback systems in Rayleigh fading conditions. © 2012 IEEE.
Stability of Randomly Switched Diffusions
DEFF Research Database (Denmark)
Schiøler, Henrik; Leth, John-Josef; Gholami, Mehdi
2012-01-01
This paper provides a sufficient criterion for ε-moment stability (boundedness) and ergodicity for a class of systems comprising a finite set of diffusions among which switching is governed by a continuous time Markov chain. Stability/instability properties for each separate subsystem are assumed...
Industry Switching in Developing Countries
DEFF Research Database (Denmark)
Newman, Carol; Rand, John; Tarp, Finn
Firm turnover (i.e. firm entry and exit) is a well-recognized source of sectorlevel productivity growth across developing and developed countries. In contrast, the role and importance of firms switching activities from one sector to another is little understood. Firm switchers are likely...
Charge transport through molecular switches
International Nuclear Information System (INIS)
Jan van der Molen, Sense; Liljeroth, Peter
2010-01-01
We review the fascinating research on charge transport through switchable molecules. In the past decade, detailed investigations have been performed on a great variety of molecular switches, including mechanically interlocked switches (rotaxanes and catenanes), redox-active molecules and photochromic switches (e.g. azobenzenes and diarylethenes). To probe these molecules, both individually and in self-assembled monolayers (SAMs), a broad set of methods have been developed. These range from low temperature scanning tunneling microscopy (STM) via two-terminal break junctions to larger scale SAM-based devices. It is generally found that the electronic coupling between molecules and electrodes has a profound influence on the properties of such molecular junctions. For example, an intrinsically switchable molecule may lose its functionality after it is contacted. Vice versa, switchable two-terminal devices may be created using passive molecules ('extrinsic switching'). Developing a detailed understanding of the relation between coupling and switchability will be of key importance for both future research and technology. (topical review)
Charge transport through molecular switches
Energy Technology Data Exchange (ETDEWEB)
Jan van der Molen, Sense [Kamerlingh Onnes Laboratorium, Leiden University, Niels Bohrweg 2, 2333 CA Leiden (Netherlands); Liljeroth, Peter, E-mail: molen@physics.leidenuniv.n [Condensed Matter and Interfaces, Debye Institute for Nanomaterials Science, University of Utrecht, PO Box 80000, 3508 TA Utrecht (Netherlands)
2010-04-07
We review the fascinating research on charge transport through switchable molecules. In the past decade, detailed investigations have been performed on a great variety of molecular switches, including mechanically interlocked switches (rotaxanes and catenanes), redox-active molecules and photochromic switches (e.g. azobenzenes and diarylethenes). To probe these molecules, both individually and in self-assembled monolayers (SAMs), a broad set of methods have been developed. These range from low temperature scanning tunneling microscopy (STM) via two-terminal break junctions to larger scale SAM-based devices. It is generally found that the electronic coupling between molecules and electrodes has a profound influence on the properties of such molecular junctions. For example, an intrinsically switchable molecule may lose its functionality after it is contacted. Vice versa, switchable two-terminal devices may be created using passive molecules ('extrinsic switching'). Developing a detailed understanding of the relation between coupling and switchability will be of key importance for both future research and technology. (topical review)
Wide Bandgap Extrinsic Photoconductive Switches
Energy Technology Data Exchange (ETDEWEB)
Sullivan, James S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
2013-07-03
Semi-insulating Gallium Nitride, 4H and 6H Silicon Carbide are attractive materials for compact, high voltage, extrinsic, photoconductive switches due to their wide bandgap, high dark resistance, high critical electric field strength and high electron saturation velocity. These wide bandgap semiconductors are made semi-insulating by the addition of vanadium (4H and 6HSiC) and iron (2H-GaN) impurities that form deep acceptors. These deep acceptors trap electrons donated from shallow donor impurities. The electrons can be optically excited from these deep acceptor levels into the conduction band to transition the wide bandgap semiconductor materials from a semi-insulating to a conducting state. Extrinsic photoconductive switches with opposing electrodes have been constructed using vanadium compensated 6H-SiC and iron compensated 2H-GaN. These extrinsic photoconductive switches were tested at high voltage and high power to determine if they could be successfully used as the closing switch in compact medical accelerators.