WorldWideScience

Sample records for stable chromosome rearrangements

  1. Chromosomal rearrangements occurred repeatedly and ...

    African Journals Online (AJOL)

    Furthermore, molecular and/or chromosomal data indicate that Paroedura is a monophyletic genus, in which chromosome rearrangements occurred repeatedly and independently during the specific diversification. Moreover both P. bastardi and P. gracilis in current definitions are paraphyletic assemblages of several ...

  2. Chromosomal rearrangements in Tourette syndrome

    DEFF Research Database (Denmark)

    Bertelsen, Birgitte; Debes, Nanette Mol; Hjermind, Lena E

    2013-01-01

    Tourette syndrome (TS) is a childhood-onset complex neurobiological disorder characterized by a combination of persistent motor and vocal tics and frequent presence of other neuropsychiatric comorbidities. TS shares the fate of other complex disorders, where the genetic etiology is largely unknown...... been an efficient tool for the cloning of disease genes in several Mendelian disorders and in a number of complex disorders. Through cytogenetic investigation of 205 TS patients, we identified three possibly disease-associated chromosome rearrangements rendering this approach relevant in chasing TS...

  3. ISCN rules for listing chromosomal rearrangements.

    Science.gov (United States)

    2001-05-01

    It contains the standard system for numbering human chromosomes and constitutional rearrangements and the banding pattern for normal chromosomes at 400-, 550-, and 850-band levels of resolution. ISCN 1995 also contains guidelines for cancer cytogenetics and for in situ hybridization. The complete ISCN 1995 also contains nomenclature for human meiotic chromosomes (not included here). The guidelines presented herein are recommended for use when reporting karyotypes, designating chromosome rearrangements and aberrations, and indicating regions of the genome where DNA sequences are located. It contains the standard system for numbering human chromosomes and constitutional rearrangements and the banding pattern for.

  4. P chromosomes involved in intergenomic rearrangements of ...

    Indian Academy of Sciences (India)

    2014-04-08

    Apr 8, 2014 ... Total genomic DNA were extracted from young leaves of. Pseudoroegneria spicata (2n = 2x ... ments of Y chromosomes for GISH (a); pAs1 repetitive DNA probe signal is green,. pHvG39 repetitive DNA probe ... 2010). Compared to the other P chromosomes, it is easier to exchange and rearrange for the.

  5. Divergence of gene regulation through chromosomal rearrangements

    Directory of Open Access Journals (Sweden)

    Messing Joachim

    2010-11-01

    Full Text Available Abstract Background The molecular mechanisms that modify genome structures to give birth and death to alleles are still not well understood. To investigate the causative chromosomal rearrangements, we took advantage of the allelic diversity of the duplicated p1 and p2 genes in maize. Both genes encode a transcription factor involved in maysin synthesis, which confers resistance to corn earworm. However, p1 also controls accumulation of reddish pigments in floral tissues and has therefore acquired a new function after gene duplication. p1 alleles vary in their tissue-specific expression, which is indicated in their allele designation: the first suffix refers to red or white pericarp pigmentation and the second to red or white glume pigmentation. Results Comparing chromosomal regions comprising p1-ww[4Co63], P1-rw1077 and P1-rr4B2 alleles with that of the reference genome, P1-wr[B73], enabled us to reconstruct additive events of transposition, chromosome breaks and repairs, and recombination that resulted in phenotypic variation and chimeric regulatory signals. The p1-ww[4Co63] null allele is probably derived from P1-wr[B73] by unequal crossover between large flanking sequences. A transposon insertion in a P1-wr-like allele and NHEJ (non-homologous end-joining could have resulted in the formation of the P1-rw1077 allele. A second NHEJ event, followed by unequal crossover, probably led to the duplication of an enhancer region, creating the P1-rr4B2 allele. Moreover, a rather dynamic picture emerged in the use of polyadenylation signals by different p1 alleles. Interestingly, p1 alleles can be placed on both sides of a large retrotransposon cluster through recombination, while functional p2 alleles have only been found proximal to the cluster. Conclusions Allelic diversity of the p locus exemplifies how gene duplications promote phenotypic variability through composite regulatory signals. Transposition events increase the level of genomic complexity

  6. New type of cells with multiple chromosome rearrangements

    International Nuclear Information System (INIS)

    Aseeva, E.A.; Domracheva, E.V.; Neverova, A.L; Bogomazova, A.N.; Snigiryova, G.P.; Novitskaya, N.N.; Khazins, E.D.

    2008-01-01

    Full text: A comparative analysis of the distribution and the frequency of multiaberrant cells (MAC) among lymphocytes in different categories of low dose (up to 0.5 Gy) irradiated people was carried out. MAC were found in most of the examined groups and they were absent in the control population. A highest MAC frequency was observed in people exposed to alpha radiation (Pu, Ra). This fact allows MAC to be considered as an indicator of a high-energy local exposure. A new type of cells with multiple chromosome rearrangements was discovered in the course of analysis of stable aberrations by the FISH method. The biological consequences of MAC formation and possibility of revealing the whole diversity of cells with multiple aberrations by means of modern molecular-cytogenetic methods is discussed

  7. Interspecific chromosomal rearrangements in monosomic addition lines of Allium.

    Science.gov (United States)

    Barthes, L; Ricroch, A

    2001-10-01

    Monosomic alien addition lines (MAALs) are useful for assigning linkage groups to chromosomes. We examined whether the chromosomal rearrangements following the introduction of a single onion (Allium cepa) chromosome into the Allium fistulosum genome were produced by homeologous crossing over or by a nonreciprocal conversion event. Among the monosomic lines available, 17 were studied by fluorescent genomic in situ hybridisation, using total A. cepa genomic DNA as the probe and total A. fistulosum genomic DNA as the competitor. In this way, rearrangements such as chromosomal translocations between A. cepa and A. fistulosum were identified as terminal regions consisting of tandem DNA repeats. Homeologous crossing over between the two closely related genomes occurred in 4 of the 17 lines, suggesting that such events are not rare. On the basis of a detailed molecular cytogenetic characterisation, we identified true monosomic alien addition lines for A. cepa chromosomes 3, 4, 5, 7, and 8 that can reliably be used in genetic studies.

  8. Genomic regulatory landscapes and chromosomal rearrangements

    DEFF Research Database (Denmark)

    Ladegaard, Elisabete L Engenheiro

    2008-01-01

    and mental retardation-AUTS2), where the breakpoints in all cases mutated the known disease-causing protein-coding genes. In two rearrangements with breakpoints within putative regulatory landscapes of genes where human phenotypes are unknown (HMX2/HMX3 and FOXP1), the functional characterization of CNEs...

  9. P chromosomes involved in intergenomic rearrangements of ...

    Indian Academy of Sciences (India)

    2014-04-08

    Apr 8, 2014 ... Beijing, People's Republic of China. 2Institute of Special Wild Economic Animals ... altitude in nine populations of Kengyilia thoroldiana (Wang et al. 2012). To investigate the effects of ... Identification of rearrangements among St, P, and Y genomes in population. Z2538. Red colour indicates fragments of P ...

  10. Chromosomal instability can be induced by the formation of breakage-prone chromosome rearrangement junctions

    International Nuclear Information System (INIS)

    Allen, R.N.; Ritter, L.; Moore, S.R.; Grosovsky, A.J.

    2003-01-01

    Full text: Studies in our lab have led to the hypothesis that chromosomal rearrangements can generate novel breakage-prone sites, resulting in chromosomal instability acting predominantly in cis. For example, specific breakage of large blocks of centromeric region heterochromatin on chromosome 16q by treatment with 2,6-diaminopurine (DAP) is associated with repeated rearrangement of chromosome 16q during outgrowth of DAP-treated clones, thereby establishing a link between the initial site of damage and the occurrence of persistent chromosomal instability. Similarly, karyotypic analysis of gamma ray induced instability demonstrated that chromosomal rearrangements in sub-clones were significantly clustered near the site of previously identified chromosomal rearrangement junctions in unstable parental clones. This study investigates the hypothesis that integration of transfected sequences into host chromosomes could create breakage-prone junction regions and persistent genomic instability without exposure to DNA-damage agents. These junctions may mimic the unstable chromosomal rearrangements induced by DAP or radiation, and thus provide a test of the broader hypothesis that instability can to some extent be attributed to the formation of novel chromosomal breakage hot spots. These experiments were performed using human-hamster hybrid AL cells containing a single human chromosome 11, which was used to monitor instability in a chromosomal painting assay. AL cells were transfected with a 2.5 Kb fragment containing multiple copies of the 180 bp human alpha heterochromatic repeat, which resulted in chromosomal instability in 41% of the transfected clones. Parallel exposure to gamma-radiation resulted in a similar level of chromosomal instability, although control transfections with plasmid alone did not lead to karyotypic instability. Chromosomal instability induced by integration of alpha heterochromatic repeats was also frequently associated with delayed reproductive

  11. Discontinuous gradient centrifugation (DGC) decreases the proportion of chromosomally unbalanced spermatozoa in chromosomal rearrangement carriers.

    Science.gov (United States)

    Rouen, Alexandre; Balet, Richard; Dorna, Maud; Hyon, Capucine; Pollet-Villard, Xavier; Chantot-Bastaraud, Sandra; Joyé, Nicole; Portnoï, Marie-France; Cassuto, Nino Guy; Siffroi, Jean-Pierre

    2013-07-01

    Can the proportion of unbalanced spermatozoa in chromosomal rearrangement carriers be decreased through the use of discontinuous gradient centrifugation (DGC)? DGC significantly decreases the proportion of genetically unbalanced spermatozoa in chromosomal rearrangement carriers. Chromosomal rearrangement carriers present with a certain proportion of unbalanced gametes, which can lead to miscarriages or malformations in the offspring. There is presently no known way to select the balanced spermatozoa and use them for IVF. The proportion of unbalanced spermatozoa after DGC was compared with that before DGC in 21 patients with a chromosomal rearrangement. At least 500 spermatozoa were analysed per observation. Twenty-one male patients with a chromosomal rearrangement were included in this prospective study. They initially consulted for infertility, recurrent miscarriages or a history of abnormal pregnancy. The samples were split into two, with one part undergoing DGC and the other being immediately fixed. Fluorescence in situ hybridization was performed to establish the chromosome segregation pattern of each spermatozoon. DGC significantly decreased the proportion of unbalanced spermatozoa in all but 1 of the 21 chromosomal rearrangement carriers (P < 0.05). Although DGC reduces the proportion of unbalanced spermatozoa in ejaculates from patients with chromosome rearrangements this elimination is only partial and some abnormal spermatozoa remain. Means to exclude these spermatozoa to ensure that only balanced ones are used in IVF remain to be discovered. The motility and morphology of the sperm before and after DGC were not measured. Used in IVF or intrauterine insemination, DGC could decrease the chance that a man carrying a chromosomal rearrangement will father an abnormal fetus.

  12. Classic theory for chromosome rearrangements with spatially restricted volume for broken ends interaction

    International Nuclear Information System (INIS)

    Omel'yanchuk, L.V.

    1997-01-01

    D. Lea classic theory for chromosomal rearrangements formation was modified to account for local interaction of broken chromosome ends. This assumption makes it possible to drastically improve coincidence of the theory and experiment in the case of complex rearrangements

  13. Unique mosaicism of structural chromosomal rearrangement: is chromosome 18 preferentially involved?

    NARCIS (Netherlands)

    Pater, J.M. de; Smeets, D.F.C.M.; Scheres, J.M.J.C.

    2003-01-01

    The mentally normal mother of a 4-year-old boy with del(18)(q21.3) syndrome was tested cytogenetically to study the possibility of an inherited structural rearrangement of chromosome 18. She was found to carry an unusual mosaicism involving chromosomes 18 and 21. Two unbalanced cell lines were seen

  14. Chromosomal rearrangement interferes with meiotic X chromosome inactivation

    Czech Academy of Sciences Publication Activity Database

    Homolka, David; Ivánek, Robert; Čapková, Jana; Jansa, Petr; Forejt, Jiří

    2007-01-01

    Roč. 17, č. 10 (2007), s. 1431-1437 ISSN 1088-9051 R&D Projects: GA MŠk(CZ) 1M0520; GA ČR GA301/06/1334; GA ČR GA301/07/1383 Grant - others:Howard Hughes Medical Institute(US) HHMI 55000306 Institutional research plan: CEZ:AV0Z50520514 Keywords : chromosomal translocations * meiotic X chromosome inactivation * spermatogenesis Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 11.224, year: 2007

  15. Multiple forms of atypical rearrangements generating supernumerary derivative chromosome 15

    Directory of Open Access Journals (Sweden)

    Sigman Marian

    2008-01-01

    Full Text Available Abstract Background Maternally-derived duplications that include the imprinted region on the proximal long arm of chromosome 15 underlie a complex neurobehavioral disorder characterized by cognitive impairment, seizures and a substantial risk for autism spectrum disorders1. The duplications most often take the form of a supernumerary pseudodicentric derivative chromosome 15 [der(15] that has been called inverted duplication 15 or isodicentric 15 [idic(15], although interstitial rearrangements also occur. Similar to the deletions found in most cases of Angelman and Prader Willi syndrome, the duplications appear to be mediated by unequal homologous recombination involving low copy repeats (LCR that are found clustered in the region. Five recurrent breakpoints have been described in most cases of segmental aneuploidy of chromosome 15q11-q13 and previous studies have shown that most idic(15 chromosomes arise through BP3:BP3 or BP4:BP5 recombination events. Results Here we describe four duplication chromosomes that show evidence of atypical recombination events that involve regions outside the common breakpoints. Additionally, in one patient with a mosaic complex der(15, we examined homologous pairing of chromosome 15q11-q13 alleles by FISH in a region of frontal cortex, which identified mosaicism in this tissue and also demonstrated pairing of the signals from the der(15 and the normal homologues. Conclusion Involvement of atypical BP in the generation of idic(15 chromosomes can lead to considerable structural heterogeneity.

  16. Large Clinically Consequential Imbalances Detected at the Breakpoints of Apparently Balanced and Inherited Chromosome Rearrangements

    OpenAIRE

    South, Sarah T.; Rector, Lyndsey; Aston, Emily; Rowe, Leslie; Yang, Samuel P.

    2010-01-01

    When a chromosome abnormality is identified in a child with a developmental delay and/or multiple congenital anomalies and the chromosome rearrangement appears balanced, follow-up studies often examine both parents for this rearrangement. If either clinically unaffected parent has a chromosome abnormality with a banding pattern identical to the affected child's study, then it is assumed that the chromosome rearrangement is balanced and directly inherited from the normal carrier parent. It is ...

  17. Delineating Rearrangements in Single Yeast Artificial Chromosomes by Quantitative DNA Fiber Mapping

    Energy Technology Data Exchange (ETDEWEB)

    Weier, Heinz-Ulrich G.; Greulich-Bode, Karin M.; Wu, Jenny; Duell, Thomas

    2009-09-18

    Cloning of large chunks of human genomic DNA in recombinant systems such as yeast or bacterial artificial chromosomes has greatly facilitated the construction of physical maps, the positional cloning of disease genes or the preparation of patient-specific DNA probes for diagnostic purposes. For this process to work efficiently, the DNA cloning process and subsequent clone propagation need to maintain stable inserts that are neither deleted nor otherwise rearranged. Some regions of the human genome; however, appear to have a higher propensity than others to rearrange in any host system. Thus, techniques to detect and accurately characterize such rearrangements need to be developed. We developed a technique termed 'Quantitative DNA Fiber Mapping (QDFM)' that allows accurate tagging of sequence elements of interest with near kilobase accuracy and optimized it for delineation of rearrangements in recombinant DNA clones. This paper demonstrates the power of this microscopic approach by investigating YAC rearrangements. In our examples, high-resolution physical maps for regions within the immunoglobulin lambda variant gene cluster were constructed for three different YAC clones carrying deletions of 95 kb and more. Rearrangements within YACs could be demonstrated unambiguously by pairwise mapping of cosmids along YAC DNA molecules. When coverage by YAC clones was not available, distances between cosmid clones were estimated by hybridization of cosmids onto DNA fibers prepared from human genomic DNA. In addition, the QDFM technology provides essential information about clone stability facilitating closure of the maps of the human genome as well as those of model organisms.

  18. Chromosome-specific staining to detect genetic rearrangements

    Energy Technology Data Exchange (ETDEWEB)

    Gray, Joe W.; Pinkel, Daniel; Tkachuk, Douglas; Westbrook, Carol

    2013-04-09

    Methods and compositions for staining based upon nucleic acid sequence that employ nucleic acid probes are provided. Said methods produce staining patterns that can be tailored for specific cytogenetic analyzes. Said probes are appropriate for in situ hybridization and stain both interphase and metaphase chromosomal material with reliable signals. The nucleic acid probes are typically of a complexity greater than 50 kb, the complexity depending upon the cytogenetic application. Methods and reagents are provided for the detection of genetic rearrangements. Probes and test kits are provided for use in detecting genetic rearrangements, particularly for use in tumor cytogenetics, in the detection of disease related loci, specifically cancer, such as chronic myelogenous leukemia (CML) and for biological dosimetry. Methods and reagents are described for cytogenetic research, for the differentiation of cytogenetically similar but genetically different diseases, and for many prognostic and diagnostic applications.

  19. A system for the detection of chromosomal rearrangements using Sordaria macrospora

    International Nuclear Information System (INIS)

    Arnaise, S.; Leblon, G.; Lares, L.

    1984-01-01

    A system is described for the detection and diagnosis of induced chromosomal rearrangement using Sordaria macrospora. The system uses the property of the rearrangement to produce defective white ascospores as meiotic progeny from heterozygous crosses. Two reconstruction experiments have shown that this system is able to give reliable quantitative measures of rearrangement frequencies. Evidence for a photoreactivation process was obtained, suggesting that pyrimidine dimers may well be an important lesion in UV-induced chromosomal rearrangement. No evidence of induction of chromosomal rearrangement was obtained in experiments with the powerful chemical mutagen N-methyl-N'-nitro-N-nitrosoguanidine. (orig.)

  20. Chromosomal rearrangements and karyotype evolution in carnivores revealed by chromosome painting

    Science.gov (United States)

    Nie, W; Wang, J; Su, W; Wang, D; Tanomtong, A; Perelman, P L; Graphodatsky, A S; Yang, F

    2012-01-01

    Chromosomal evolution in carnivores has been revisited extensively using cross-species chromosome painting. Painting probes derived from flow-sorted chromosomes of the domestic dog, which has one of the most rearranged karyotypes in mammals and the highest dipoid number (2n=78) in carnivores, are a powerful tool in detecting both evolutionary intra- and inter-chromosomal rearrangements. However, only a few comparative maps have been established between dog and other non-Canidae species. Here, we extended cross-species painting with dog probes to seven more species representing six carnivore families: Eurasian lynx (Lynx lynx), the stone marten (Martes foina), the small Indian civet (Viverricula indica), the Asian palm civet (Paradoxurus hermaphrodites), Javan mongoose (Hepestes javanicas), the raccoon (Procyon lotor) and the giant panda (Ailuropoda melanoleuca). The numbers and positions of intra-chromosomal rearrangements were found to differ among these carnivore species. A comparative map between human and stone marten, and a map among the Yangtze finless porpoise (Neophocaena phocaenoides asiaeorientalis), stone marten and human were also established to facilitate outgroup comparison and to integrate comparative maps between stone marten and other carnivores with such maps between human and other species. These comparative maps give further insight into genome evolution and karyotype phylogenetic relationships among carnivores, and will facilitate the transfer of gene mapping data from human, domestic dog and cat to other species. PMID:22086079

  1. Marsupials as models for understanding the role of chromosome rearrangements in evolution and disease.

    Science.gov (United States)

    Deakin, Janine E; Kruger-Andrzejewska, Maya

    2016-09-01

    Chromosome rearrangements have been implicated in diseases, such as cancer, and speciation, but it remains unclear whether rearrangements are causal or merely a consequence of these processes. Two marsupial families with very different rates of karyotype evolution provide excellent models in which to study the role of chromosome rearrangements in a disease and evolutionary context. The speciose family Dasyuridae displays remarkable karyotypic conservation, with all species examined to date possessing nearly identical karyotypes. Despite the seemingly high degree of chromosome stability within this family, they appear prone to developing tumours, including transmissible devil facial tumours. In contrast, chromosome rearrangements have been frequent in the evolution of the species-rich family Macropodidae, which displays a high level of karyotypic diversity. In particular, the genus Petrogale (rock-wallabies) displays an extraordinary level of chromosome rearrangement among species. For six parapatric Petrogale species, it appears that speciation has essentially been caught in the act, providing an opportunity to determine whether chromosomal rearrangements are a cause or consequence of speciation in this system. This review highlights the reasons that these two marsupial families are excellent models for testing hypotheses for hotspots of chromosome rearrangement and deciphering the role of chromosome rearrangements in disease and speciation.

  2. Chromosomal rearrangement segregating with adrenoleukodystrophy: A molecular analysis

    Energy Technology Data Exchange (ETDEWEB)

    Sack, G.H. Jr.; Morrell, J.C.; Chen, G.; Chen, W.; Moser, H.W. (Johns Hopkins Univ. School of Medicine, Baltimore, MD (United States)); Alpern, M. (Univ. of Michigan, Ann Arbor, MI (United States)); Webster, T.; Caskey, C.T. (Howard Hughes Medical Institute, Houston, TX (United States) Baylore College of Medicine, Houston, TX (United States)); Feil, R.P. (Institut National de la Sante et de la Recherche Medicale Unite Associatee, Strasbourg (France))

    1993-10-15

    The relationship between X chromosome-linked adrenoleukodystrophy and the red/green color pigment gene cluster on Xq28 was investigated in a large kindred. The DNA in a hemizygous male showed altered restriction fragment sizes compatible with at least a deletion extending from the 5[prime] end of the color pigment genes. Segregation analysis using a DNA probe within the color pigment gene cluster showed significant linkage with adrenoleukodystrophy (logarithm of odds score of 3.19 at [theta] = 0.0). These data demonstrate linkage, rather than association, between a unique molecular rearrangement in the color pigment gene cluster and adrenoleukodystrophy. The DNA changes in this region are thus likely to be helpful for determining the location and identity of the responsible gene. 33 refs., 4 figs.

  3. Complex chromosome 17p rearrangements associated with low-copy repeats in two patients with congenital anomalies.

    NARCIS (Netherlands)

    Vissers, L.E.L.M.; Stankiewicz, P.; Yatsenko, S.A.; Crawford, E.; Creswick, H.; Proud, V.K.; Vries, B. de; Pfundt, R.; Marcelis, C.L.M.; Zackowski, J.; Bi, W.; Geurts van Kessel, A.H.M.; Lupski, J.R.; Veltman, J.A.

    2007-01-01

    Recent molecular cytogenetic data have shown that the constitution of complex chromosome rearrangements (CCRs) may be more complicated than previously thought. The complicated nature of these rearrangements challenges the accurate delineation of the chromosomal breakpoints and mechanisms involved.

  4. Deciphering the Code of the Cancer Genome: Mechanisms of Chromosome Rearrangement

    OpenAIRE

    Willis, Nicholas A.; Rass, Emilie; Scully, Ralph

    2015-01-01

    Chromosome rearrangement plays a causal role in tumorigenesis by contributing to the inactivation of tumor suppressor genes, the dysregulated expression or amplification of oncogenes and the generation of novel gene fusions. Chromosome breaks are important intermediates in this process. How, when and where these breaks arise and the specific mechanisms engaged in their repair strongly influence the resulting patterns of chromosome rearrangement. Here, we review recent progress in understandin...

  5. Analysis of chromosome rearrangements on the basis of synaptonemal complexes in the offspring of mice exposed to γ-rays

    International Nuclear Information System (INIS)

    Kalikinskaya, E.I.; Bogdanov, Yu.F.; Kolomiets, O.L.; Shevchenko, V.A.

    1986-01-01

    Electron-microscopic analysis of synaptonemic complexes (SC), spread on the hypophase surface, was conducted to investigate chromosome rearrangements in sterile and semisterile F 1 malemause offsprings, exposed to 5 Gy γ-rays Paralelly Chromosome rearrangement account in diakinesis-metaphase 1 was conducted using light microscope, in the same animals. During SC analysis in pachytene chromosome rearrangements were found in 63% of spermatocytes. Under chromosome analysis in diakinesis-metaphase 1 in the same animals chromosome rearrangements were found only in 32% of cells. SC analysis allows one to reveal chromosome rearrangements, which can not be revealed in diakinesis-metaphase 1

  6. Identifying Mazama gouazoubira (Artiodactyla; Cervidae) chromosomes involved in rearrangements induced by doxorubicin

    OpenAIRE

    Tomazella, Iara Maluf; Abril, Vanessa Veltrini; Duarte, José Maurício Barbanti

    2017-01-01

    Abstract The process of karyotype evolution in Cervidae from a common ancestor (2n = 70, FN = 70) has been marked by complex chromosomal rearrangements. This ancestral karyotype has been retained by the current species Mazama gouazoubira (Fischer 1814), for which a chromosomal polymorphism (Robertsonian translocations and the presence of B chromosomes) has been described, presumably caused by a chromosome fragility. Thus, this study has identified doxorubicin-induced chromosome aberrations an...

  7. Structural rearrangements of chromosomes in the domestic chicken: experimental production by X-irradiation of spermatozoa

    International Nuclear Information System (INIS)

    Wooster, W.E.; Fechheimer, N.S.; Jaap, R.G.

    1977-01-01

    In order to produce chicks heterozygous for structural aberrations of chromosomes, 67 hens were inseminated with semen that had been exposed to 1200 R of X-rays. A sample of 204 chicks was hatched and survived. Among these, 18 (8.9%) contained rearrangements comprising 19 translocations and one pericentric inversion. All 10 males and eight females heterozygous for rearrangements were fertile and transmitted these rearrangements to approximately half their hatched progeny. Each of the major chromosomes of the chicken karyotype, except number 6, was involved in one or more of the translocations. The pericentric inversion was of a segment of chromosome number 2. (author)

  8. Identifying Mazama gouazoubira (Artiodactyla; Cervidae) chromosomes involved in rearrangements induced by doxorubicin.

    Science.gov (United States)

    Tomazella, Iara Maluf; Abril, Vanessa Veltrini; Duarte, José Maurício Barbanti

    2017-01-01

    The process of karyotype evolution in Cervidae from a common ancestor (2n = 70, FN = 70) has been marked by complex chromosomal rearrangements. This ancestral karyotype has been retained by the current species Mazama gouazoubira (Fischer 1814), for which a chromosomal polymorphism (Robertsonian translocations and the presence of B chromosomes) has been described, presumably caused by a chromosome fragility. Thus, this study has identified doxorubicin-induced chromosome aberrations and mapped the regions involved in breaks, which may be related to the chromosome evolution process. G-banding pattern showed that 21 pairs of chromosomes presented chromosomal aberrations, 60% of the total chromosome number of the species M. gouazoubira. Among chromosomes that carry aberrations, the region where they were most frequently concentrated was distal relative to the centromere. These data suggest that certain chromosomal regions may be more susceptible to chromosome fragility and consequently could be involved in karyotype differentiation in species of the family Cervidae.

  9. Identifying Mazama gouazoubira (Artiodactyla; Cervidae chromosomes involved in rearrangements induced by doxorubicin

    Directory of Open Access Journals (Sweden)

    Iara Maluf Tomazella

    2017-06-01

    Full Text Available Abstract The process of karyotype evolution in Cervidae from a common ancestor (2n = 70, FN = 70 has been marked by complex chromosomal rearrangements. This ancestral karyotype has been retained by the current species Mazama gouazoubira (Fischer 1814, for which a chromosomal polymorphism (Robertsonian translocations and the presence of B chromosomes has been described, presumably caused by a chromosome fragility. Thus, this study has identified doxorubicin-induced chromosome aberrations and mapped the regions involved in breaks, which may be related to the chromosome evolution process. G-banding pattern showed that 21 pairs of chromosomes presented chromosomal aberrations, 60% of the total chromosome number of the species M. gouazoubira. Among chromosomes that carry aberrations, the region where they were most frequently concentrated was distal relative to the centromere. These data suggest that certain chromosomal regions may be more susceptible to chromosome fragility and consequently could be involved in karyotype differentiation in species of the family Cervidae.

  10. Chromosome-specific staining to detect genetic rearrangements associated with chromosome 3 and/or chromosome 17

    Energy Technology Data Exchange (ETDEWEB)

    Gray, Joe W [San Francisco, CA; Pinkel, Daniel [Lafayette, CA; Kallioniemi, Olli-Pekka [Turku, FI; Kallioniemi, Anne [Tampere, FI; Sakamoto, Masaru [Tokyo, JP

    2009-10-06

    Methods and compositions for staining based upon nucleic acid sequence that employ .[.nudeic.]. .Iadd.nucleic .Iaddend.acid probes are provided. Said methods produce staining patterns that can be tailored for specific cytogenetic analyses. Said probes are appropriate for in situ hybridization and stain both interphase and metaphase chromosomal material with reliable signals. The nucleic acid probes are typically of a complexity greater than 50 kb, the complexity depending upon the cytogenetic application. Methods and reagents are provided for the detection of genetic rearrangements. Probes and test kits are provided for use in detecting genetic rearrangements, particularly for use in tumor cytogenetics, in the detection of disease related loci, specifically cancer, such as chronic myelogenous leukemia (CML), retinoblastoma, ovarian and uterine cancers, and for biological dosimetry. Methods and reagents are described for cytogenetic research, for the differentiation of cytogenetically similar but genetically different diseases, and for many prognostic and diagnostic applications.

  11. The effects of chromosome rearrangements on the expression of heterochromatic genes in chromosome 2L of Drosophila melanogaster

    International Nuclear Information System (INIS)

    Wakimoto, B.T.; Hearn, M.G.

    1990-01-01

    The light (lt) gene of Drosophila melanogaster is located at the base of the left arm of chromosome 2, within or very near centromeric heterochromatin (2Lh). Chromosome rearrangements that move the lt + gene from its normal proximal position and place the gene in distal euchromatin result in mosaic or variegated expression of the gene. The cytogenetic and genetic properties of 17 lt-variegated rearrangements induced by X radiation are described in this report. The authors show that five of the heterochromatic genes adjacent to lt are subject to inactivation by these rearrangements and that the euchromatic loci in proximal 2L are not detectably affected. The properties of the rearrangements suggest that proximity to heterochromatin is an important regulatory requirement for at least six 2Lh genes. They discuss how the properties of the position effects on heterochromatic genes relate to other proximity-dependent phenomena such as transvection

  12. Marfan syndrome with a complex chromosomal rearrangement including deletion of the FBN1 gene

    Directory of Open Access Journals (Sweden)

    Colovati Mileny ES

    2012-01-01

    Full Text Available Abstract Background The majority of Marfan syndrome (MFS cases is caused by mutations in the fibrillin-1 gene (FBN1, mapped to chromosome 15q21.1. Only few reports on deletions including the whole FBN1 gene, detected by molecular cytogenetic techniques, were found in literature. Results We report here on a female patient with clinical symptoms of the MFS spectrum plus craniostenosis, hypothyroidism and intellectual deficiency who presents a 1.9 Mb deletion, including the FBN1 gene and a complex rearrangement with eight breakpoints involving chromosomes 6, 12 and 15. Discussion This is the first report of MFS with a complex chromosome rearrangement involving a deletion of FBN1 and contiguous genes. In addition to the typical clinical findings of the Marfan syndrome due to FBN1 gene haploinsufficiency, the patient presents features which may be due to the other gene deletions and possibly to the complex chromosome rearrangement.

  13. Cryptic Rearrangements of Human Chromosomes Associated with Autism Spectrum Disorders

    OpenAIRE

    Křivánková, Anna

    2016-01-01

    Autism spectrum disorders (ASD) are heterogeneous group of neurodevelopmental disabilities characterized by antisociality and atypical behavioral patterns. Its etiology is very complex, autism is usually formed by combining many factors. One of the causes may be genetic (gene mutation). It is known about 450 candidate genes for ASD so far. Minority of these genes occur in loci which are affected by cryptic rearrangements. These rearrangements significantly contribute to manifestation of this ...

  14. Chromosomal rearrangements between serotype A and D strains in Cryptococcus neoformans.

    Directory of Open Access Journals (Sweden)

    Sheng Sun

    Full Text Available Cryptococcus neoformans is a major human pathogenic fungus that can cause meningoencephalitis in immunocompromised hosts. It contains two divergent varieties, var. grubii (serotype A and var. neoformans (serotype D, as well as hybrids (serotype AD between these two varieties. In this study, we investigated the extent of chromosomal rearrangements between the two varieties, estimated the effects of chromosomal rearrangements on recombination frequencies, and surveyed the potential polymorphisms of the rearrangements among natural strains of the three serotypes. Through the analyses of two sequenced genomes from strains H99 (representing var. grubii and JEC21 (representing var. neoformans, we revealed a total of 32 unambiguous chromosome rearrangements, including five translocations, nine simple inversions, and 18 complex rearrangements. Our analyses identified that overall, rearranged regions had recombination frequencies about half of those around syntenic regions. Using a direct PCR screening strategy, we examined the potential polymorphisms of 11 rearrangements among 64 natural C. neoformans strains from five countries. We found no polymorphism within var. neoformans and very limited polymorphism within var. grubii. However, strains of serotype AD showed significant polymorphism, consistent with their hybrid origins coupled with differential loss of heterozygosity. We discuss the implications of these results on the genome structure, ecology, and evolution of C. neoformans.

  15. Radiation-induced genomic instability driven by de novo chromosomal rearrangement hot spots

    International Nuclear Information System (INIS)

    Grosovsky, A.J.; Allen, R.N.; Moore, S.R.

    2003-01-01

    Genomic instability has become generally recognized as a critical contributor to tumor progression by generating the necessary number of genetic alterations required for expression of a clinically significant malignancy. Our study of chromosomal instability investigates the hypothesis that chromosomal rearrangements can generate novel breakage-prone sites, resulting in instability acting predominantly in cis. Here we present an analysis of the karyotypic distribution of instability associated chromosomal rearrangements in TK6 and derivative human lymphoblasts. Karyotypic analysis performed on a total of 455 independent clones included 183 rearrangements distributed among 100 separate unstable clones. The results demonstrate that the breakpoints of chromosomal rearrangements in unstable clones are non-randomly distributed throughout the genome. This pattern is statistically significant, and incompatible with expectations for random breakage associated with loss or alteration of a trans-acting factor. Furthermore, specific chromosomal breakage hot spots associated with instability have been identified; these occur in several independent unstable clones and are often repeatedly broken and rejoined during the outgrowth of an individual clone. In complimentary studies, genomic instability was generated without any exposure to a DNA-damaging agent, but rather by transfection with alpha heterochromatin DNA. In a prospective analysis, human-hamster hybrid AL cells containing a single human chromosome 11 were transfected with heterochromatic alpha DNA repeats and clones were analyzed by chromosome 11 painting. Transfection with alpha DNA was associated with karyotypic heterogeneity in 40% of clones examined; control transfections with plasmid alone did not lead to karyotypic heterogeneity

  16. Characterization of apparently balanced chromosomal rearrangements from the developmental genome anatomy project.

    Science.gov (United States)

    Higgins, Anne W; Alkuraya, Fowzan S; Bosco, Amy F; Brown, Kerry K; Bruns, Gail A P; Donovan, Diana J; Eisenman, Robert; Fan, Yanli; Farra, Chantal G; Ferguson, Heather L; Gusella, James F; Harris, David J; Herrick, Steven R; Kelly, Chantal; Kim, Hyung-Goo; Kishikawa, Shotaro; Korf, Bruce R; Kulkarni, Shashikant; Lally, Eric; Leach, Natalia T; Lemyre, Emma; Lewis, Janine; Ligon, Azra H; Lu, Weining; Maas, Richard L; MacDonald, Marcy E; Moore, Steven D P; Peters, Roxanna E; Quade, Bradley J; Quintero-Rivera, Fabiola; Saadi, Irfan; Shen, Yiping; Shendure, Jay; Williamson, Robin E; Morton, Cynthia C

    2008-03-01

    Apparently balanced chromosomal rearrangements in individuals with major congenital anomalies represent natural experiments of gene disruption and dysregulation. These individuals can be studied to identify novel genes critical in human development and to annotate further the function of known genes. Identification and characterization of these genes is the goal of the Developmental Genome Anatomy Project (DGAP). DGAP is a multidisciplinary effort that leverages the recent advances resulting from the Human Genome Project to increase our understanding of birth defects and the process of human development. Clinically significant phenotypes of individuals enrolled in DGAP are varied and, in most cases, involve multiple organ systems. Study of these individuals' chromosomal rearrangements has resulted in the mapping of 77 breakpoints from 40 chromosomal rearrangements by FISH with BACs and fosmids, array CGH, Southern-blot hybridization, MLPA, RT-PCR, and suppression PCR. Eighteen chromosomal breakpoints have been cloned and sequenced. Unsuspected genomic imbalances and cryptic rearrangements were detected, but less frequently than has been reported previously. Chromosomal rearrangements, both balanced and unbalanced, in individuals with multiple congenital anomalies continue to be a valuable resource for gene discovery and annotation.

  17. A Rare De novo Complex Chromosomal Rearrangement (CCR) Involving Four Chromosomes in An Oligo-asthenosperm Infertile Man.

    Science.gov (United States)

    Asia, Saba; Vaziri Nasab, Hamed; Sabbaghian, Marjan; Kalantari, Hamid; Zari Moradi, Shabnam; Gourabi, Hamid; Mohseni Meybodi, Anahita

    2014-01-01

    Complex chromosomal rearrangements (CCRs) are rare events involving more than two chromosomes and over two breakpoints. They are usually associated with infertility or sub fertility in male carriers. Here we report a novel case of a CCR in a 30-year-old oligoasthenosperm man with a history of varicocelectomy, normal testes size and normal endocrinology profile referred for chromosome analysis to the Genetics unit of Royan Reproductive Biomedicine Research Center. Chromosomal analysis was performed using peripheral blood lymphocyte cultures and analyzed by GTG banding. Additional tests such as C-banding and multicolor fluorescence in situ hybridization (FISH) procedure for each of the involved chromosomes were performed to determine the patterns of the segregations. Y chromosome microdeletions in the azoospermia factor (AZF) region were analyzed with multiplex polymerase chain reaction. To identify the history and origin of this CCR, all the family members were analyzed. No micro deletion in Y chromosome was detected. The same de novo reciprocal exchange was also found in his monozygous twin brother. The other siblings and parents were normal. CCRs are associated with male infertility as a result of spermatogenic disruption due to complex meiotic configurations and the production of chromosomally abnormal sperms. These chromosomal rearrangements might have an influence on decreasing the number of sperms.

  18. Cytological evidence of chromosomal rearrangement in the second meiotic division after exposure to X-rays

    International Nuclear Information System (INIS)

    Szemere, G.

    1982-01-01

    Metaphase II cells with unequal dyad-arms and obvious X/autosomal rearrangements were found after an exposure to X-rays (2 Gy) of male mice at different stages of meiosis (pachytene, diplotene and diakinesis) with a frequency of 0.2, 1.26 and 0.6%, respectively, giving a direct cytological evidence of structural chromosomal rearrangements in metaphase II cells, partly with autosomal and partly with X/autosomal partners. (author)

  19. Rearrangement of a common cellular DNA domain on chromosome 4 in human primary liver tumors

    International Nuclear Information System (INIS)

    Pasquinelli, C.; Garreau, F.; Bougueleret, L.; Cariani, E.; Thiers, V.; Croissant, O.; Hadchouel, M.; Tiollais, P.; Brechot, C.; Grzeschik, K.H.

    1988-01-01

    Hepatitis B virus (HBV) DNA integration has been shown to occur frequently in human hepatocellular carcinomas. The authors have investigated whether common cellular DNA domains might be rearranged, possibly by HBV integration, in human primary liver tumors. Unique cellular DNA sequences adjacent to an HBV integration site were isolated from a patient with hepatitis B surface antigen-positive hepatocellular carcinoma. These probes detected rearrangement of this cellular region of chromosomal DNA in 3 of 50 additional primary liver tumors studied. Of these three tumor samples, two contained HBV DNA, without an apparent link between the viral DNA and the rearranged allele; HBV DNA sequences were not detected in the third tumor sample. By use of a panel of somatic cell hybrids, these unique cellular DNA sequences were shown to be located on chromosome 4. Therefore, this region of chromosomal DNA might be implicated in the formation of different tumors at one step of liver cell transformation, possible related to HBV integration

  20. Chromosomal Rainbows detect Oncogenic Rearrangements of Signaling Molecules in Thyroid Tumors

    Energy Technology Data Exchange (ETDEWEB)

    O' Brien, Benjamin; Jossart, Gregg H.; Ito, Yuko; Greulich-Bode, Karin M.; Weier, Jingly F.; Munne, Santiago; Clark, Orlo H.; Weier, Heinz-Ulrich G.

    2010-08-19

    Altered signal transduction can be considered a hallmark of many solid tumors. In thyroid cancers the receptor tyrosine kinase (rtk) genes NTRK1 (Online Mendelian Inheritance in Man = OMIM *191315, also known as 'TRKA'), RET ('Rearranged during Transfection protooncogene', OMIM *164761) and MET (OMIM *164860) have been reported as activated, rearranged or overexpressed. In many cases, a combination of cytogenetic and molecular techniques allows elucidation of cellular changes that initiate tumor development and progression. While the mechanisms leading to overexpression of the rtk MET gene remain largely unknown, a variety of chromosomal rearrangements of the RET or NTKR1 gene could be demonstrated in thyroid cancer. Abnormal expressions in these tumors seem to follow a similar pattern: the rearrangement translocates the 3'-end of the rtk gene including the entire catalytic domain to an expressed gene leading to a chimeric RNA and protein with kinase activity. Our research was prompted by an increasing number of reports describing translocations involving ret and previously unknown translocation partners. We developed a high resolution technique based on fluorescence in situ hybridization (FISH) to allow rapid screening for cytogenetic rearrangements which complements conventional chromosome banding analysis. Our technique applies simultaneous hybridization of numerous probes labeled with different reporter molecules which are distributed along the target chromosome allowing the detection of cytogenetic changes at near megabase-pair (Mbp) resolution. Here, we report our results using a probe set specific for human chromosome 10, which is altered in a significant portion of human thyroid cancers (TC's). While rendering accurate information about the cytogenetic location of rearranged elements, our multi-locus, multi-color analysis was developed primarily to overcome limitations of whole chromosome painting (WCP) and chromosome banding

  1. Partial 2p deletion in a girl with a complex chromosome rearrangement involving chromosomes 2, 6, 11, and 21.

    OpenAIRE

    Young, R S; Medrano, M A; Hansen, K L

    1985-01-01

    We describe the clinical and cytogenetic findings of a 9 1/2 month old girl with a complex chromosome rearrangement resulting in a probable deletion of band 2p14. She does not resemble other reported cases of del(2p).

  2. Possible role of repetitious DNA in recombinatory joining during chromosome rearrangement in Drosophila melanogaster

    International Nuclear Information System (INIS)

    Lee, C.S.

    1975-01-01

    It is postulated that certain repetitious DNA components play a role in the recombination processes during chromosome rearrangements. When the distribution of silver grain densities after the in situ hybridization of repetitious DNA and the distribution of chromosome breaks due to x-irradiation are compared, a strong correlation is found for the euchromatic portion of the D. melanogaster salivary X chromosome. These observations justify the postulate above that certain repetitious DNA provides homologous regions in the DNA of broken chromosome ends necessary for proper recombinatory joining. (U.S.)

  3. Genome instability and chromosomal rearrangements in a heterothallic wine yeast.

    Science.gov (United States)

    Miklos, I; Varga, T; Nagy, A; Sipiczki, M

    1997-01-01

    Wine strains of Saccharomyces cerevisiae are usually homothallic diploids and show chromosome length polymorphism. We describe the analysis of a heterothallic strain heterozygous for the mating types a and alpha. Surveying cultures of the strain, we found a remarkable degree of heterogeneity in ploidy and in electrophoretic karyotype. The CHEF analysis of tetrads and dyads revealed an enormous variability of band patterns hampering the analysis of chromosome segregation. We propose that the instability of ploidy and chromosome polymorphism might be due to heterothallism that precludes the process "genome renewal" (MORTIMER et al. 1994) by selfdiploidization of spore clones.

  4. Persistence of X-ray-induced chromosomal rearrangements in long-term cultures of human diploid fibroblasts

    International Nuclear Information System (INIS)

    Kano, Y.; Little, J.B.

    1984-01-01

    As part of a long-term study of mechanisms of human cell neoplastic transformation, the authors have examined the change in the frequencies of X-ray-induced chromosome rearrangements in density-inhibited human foreskin fibroblasts as a function of subculture time. In nonproliferating cells, the frequency of chromosomal aberrations declined within 24 to 48 hr but still remained at a relatively high level up to 43 days after irradiation. Aberrations disappeared rapidly, however, when the cells were allowed to proliferate, indicating that these lesions are lethal to dividing cells. The frequency of induced translocations, as determined by analysis of G-banded karyotypes, was dose dependent and remained stable up to 20 mean population doublings after irradiation. When subculture of density-inhibited cultures was delayed for 4 hr after irradiation (confluent holding), the frequency of chromosomal aberrations in the first mitosis declined, whereas the translocation frequencies at later passage were elevated as compared with cells subcultured immediately. This correlates with the reported increase in the frequency of transformation under similar conditions. These findings support the hypothesis that chromosomal rearrangements induced by DNA damage may be involved in the initiation of cancer

  5. Non-random distribution of instability-associated chromosomal rearrangement breakpoints in human lymphoblastoid cells

    International Nuclear Information System (INIS)

    Moore, Stephen R.; Papworth, David; Grosovsky, Andrew J.

    2006-01-01

    Genomic instability is observed in tumors and in a large fraction of the progeny surviving irradiation. One of the best-characterized phenotypic manifestations of genomic instability is delayed chromosome aberrations. Our working hypothesis for the current study was that if genomic instability is in part attributable to cis mechanisms, we should observe a non-random distribution of chromosomes or sites involved in instability-associated rearrangements, regardless of radiation quality, dose, or trans factor expression. We report here the karyotypic examination of 296 instability-associated chromosomal rearrangement breaksites (IACRB) from 118 unstable TK6 human B lymphoblast, and isogenic derivative, clones. When we tested whether IACRB were distributed across the chromosomes based on target size, a significant non-random distribution was evident (p < 0.00001), and three IACRB hotspots (chromosomes 11, 12, and 22) and one IACRB coldspot (chromosome 2) were identified. Statistical analysis at the chromosomal band-level identified four IACRB hotspots accounting for 20% of all instability-associated breaks, two of which account for over 14% of all IACRB. Further, analysis of independent clones provided evidence within 14 individual clones of IACRB clustering at the chromosomal band level, suggesting a predisposition for further breaks after an initial break at some chromosomal bands. All of these events, independently, or when taken together, were highly unlikely to have occurred by chance (p < 0.000001). These IACRB band-level cluster hotspots were observed independent of radiation quality, dose, or cellular p53 status. The non-random distribution of instability-associated chromosomal rearrangements described here significantly differs from the distribution that was observed in a first-division post-irradiation metaphase analysis (p = 0.0004). Taken together, these results suggest that genomic instability may be in part driven by chromosomal cis mechanisms

  6. Chromosome-specific staining to detect genetic rearrangements associated with chromosome 3 and/or chromosome 17

    Energy Technology Data Exchange (ETDEWEB)

    Gray, Joe W.; Pinkel, Daniel; Kallioniemi, Olli-Pekka; Kallioniemi, Anne; Sakamoto, Masaru

    2009-10-06

    Methods and compositions for staining based upon nucleic acid sequence that employ nudeic nucleic acid probes are provided. Said methods produce staining patterns that can be tailored for specific cytogenetic analyses. Said probes are appropriate for in situ hybridization and stain both interphase and metaphase chromosomal material with reliable signals. The nucleic acid probes are typically of a complexity greater than 50 kb, the complexity depending upon the cytogenetic application. Methods and reagents are provided for the detection of genetic rearrangements. Probes and test kits are provided for use in detecting genetic rearrangements, particularly for use in tumor cytogenetics, in the detection of disease related loci, specifically cancer, such as chronic myelogenous leukemia (CML), retinoblastoma, ovarian and uterine cancers, and for biological dosimetry. Methods and reagents are described for cytogenetic research, for the differentiation of cytogenetically similar but genetically different diseases, and for many prognostic and diagnostic applications.

  7. Reciprocality of Recombination Events That Rearrange the Chromosome

    OpenAIRE

    Mahan, M. J.; Roth, J. R.

    1988-01-01

    We describe a genetic system for studying the reciprocality of chromosomal recombination; all substrates and recombination functions involved are provided exclusively by the bacterial chromosome. The genetic system allows the recovery of both recombinant products from a single recombination event. The system was used to demonstrate the full reciprocality of three different types of recombination events: (1) intrachromosomal recombination between direct repeats, causing deletions; (2) intrachr...

  8. Genome-wide detection of chromosomal rearrangements, indels, and mutations in circular chromosomes by short read sequencing

    DEFF Research Database (Denmark)

    Skovgaard, Ole; Bak, Mads; Løbner-Olesen, Anders

    2011-01-01

    a combination of WGS and genome copy number analysis, for the identification of mutations that suppress the growth deficiency imposed by excessive initiations from the Escherichia coli origin of replication, oriC. The E. coli chromosome, like the majority of bacterial chromosomes, is circular, and DNA...... replication is initiated by assembling two replication complexes at the origin, oriC. These complexes then replicate the chromosome bidirectionally toward the terminus, ter. In a population of growing cells, this results in a copy number gradient, so that origin-proximal sequences are more frequent than...... origin-distal sequences. Major rearrangements in the chromosome are, therefore, readily identified by changes in copy number, i.e., certain sequences become over- or under-represented. Of the eight mutations analyzed in detail here, six were found to affect a single gene only, one was a large chromosomal...

  9. Mapping of 5q35 chromosomal rearrangements within a genomically unstable region

    DEFF Research Database (Denmark)

    Buysse, Karen; Crepel, An; Menten, Björn

    2008-01-01

    BACKGROUND: Recent molecular studies of breakpoints of recurrent chromosome rearrangements revealed the role of genomic architecture in their formation. In particular, segmental duplications representing blocks of >1 kb with >90% sequence homology were shown to mediate non-allelic homologous reco...

  10. Molecular Mechanisms and Diagnosis of Chromosome 22q11.2 Rearrangements

    Science.gov (United States)

    Emanuel, Beverly S.

    2008-01-01

    Several recurrent, constitutional genomic disorders are present on chromosome 22q. These include the translocations and deletions associated with DiGeorge and velocardiofacial syndrome and the translocations that give rise to the recurrent t(11;22) supernumerary der(22) syndrome (Emanuel syndrome). The rearrangement breakpoints on 22q cluster…

  11. Identification of a structural chromosomal rearrangement in the karyotype of a root vole from Chernobyl

    International Nuclear Information System (INIS)

    Nadzhafova, R.S.; Bulatova, N.Sh.; Kozlovskii, A.I.; Ryabov, I.N.

    1994-01-01

    Karyological studies of rodents within a 30-km radius of the Chernobyl nuclear power plant revealed one female root vole (Microtus oeconomus) with an abnormal karyotype. The use of C, G, and AgNOR banding methods allowed determination that morphological changes in two nonhomologous autosomes, which were accompanied by rearrangements in distribution of G bands, heterochromatin, and NOR, are the result of a reciprocal translocation. Chromosomal aberrations were probably inherited or appeared in embryogenesis, since none of the analyzed cells of the studied vole had a normal karyotype. It is important to note that this rearrangement was detected five years after the meltdown. Both breaks and reunions of the chromosomes that participate in this rearrangement are probably located in regions that are not important for functioning of these chromosomes. Thus, it can be supposed that the detected rearrangement did not influence the viability of the vole. This karyotype was compared to a standard karyotype of a root vole from another area of the species range. The heteromorphism of the first pair of chromosomes in both voles, which was detected for the first time, is probably normal for the karyotype of M. oeconomus and is not linked with any radiation-induced intrachromosomal aberrations

  12. FASEB Summer Research Conference. Genetic Recombination and Chromosome Rearrangements

    Energy Technology Data Exchange (ETDEWEB)

    Jinks-Robertson, Sue

    2002-02-01

    The 2001 meeting entitled ''Genetic Recombination and Genome Rearrangements'' was held July 21-26 in Snowmass, Colorado. The goal of the meeting was to bring together scientists using diverse approaches to study all aspects of genetic recombination. This goal was achieved by integrating talks covering the genetics, biochemistry and structural biology of homologous recombination, site-specific recombination, and nonhomologous recombination. The format of the meeting consisted of a keynote address on the opening evening, two formal plenary sessions on each of the four full meeting days, a single afternoon workshop consisting of short talks chosen from among submitted abstracts, and afternoon poster sessions on each of the four full meeting days. The eight plenary session were entitled: (1) Recombination Mechanisms, (2) Prokaryotic Recombination, (3) Repair and Recombination, (4) Site-specific Recombination and Transposition, (5) Eukaryotic Recombination I, (6) Genome Rearrangements, (7) Meiosis, and (8) Eukaryotic Recombination II. Each session included a mix of genetic, biochemical and structural talks; talks were limited to 20 minutes, followed by 10 minutes of very lively, general discussion. Much of the data presented in the plenary sessions was unpublished, thus providing attendees with the most up-to-date knowledge of this rapidly-moving field.

  13. The formation and recovery of two-break chromosome rearrangements from irradiated spermatozoa of Drosophila melanogaster

    International Nuclear Information System (INIS)

    Leigh, B.

    1978-01-01

    Chromosome and chromatid-type rearrangements can be induced by exposure of spermatozoa of Drosophila to ionising radiation. A model, proposed to explain the formation and recovery of compound autosomes, has been extended to account for the induction of centric fragments capped by a duplication of paternal chromosome material. Three basic assumptions have been used; (1) that the sperm nucleus contains a haploid set of unreplicated chromosomes, (2) that the broken chromosome ends can be joined together before or after replication, and (3) that one of the first two cleavage nuclei may be lost and an adult organism derived from the other. The present paper reports a theoretical application of this combination of aasumptions to the general case of the formation and recovery of two-break rearrangements. This has led to an elucidation of the relation between repeats, compounds, fragments, and deficiencies on the one hand and inversions and translocations on the other hand. Dicentric chromosomes and segmental aneuploidy can be simply explained. A selective screen is formed by the segregation of chromatid rearrangements and the aneuploidy tolerance levels of the early cleavage nuclei. Thus there is an alternative way of explaining observations which might indicate preferential breakage or joining

  14. Mapping autism risk loci using genetic linkage and chromosomal rearrangements

    Science.gov (United States)

    Szatmari, Peter; Paterson, Andrew; Zwaigenbaum, Lonnie; Roberts, Wendy; Brian, Jessica; Liu, Xiao-Qing; Vincent, John; Skaug, Jennifer; Thompson, Ann; Senman, Lili; Feuk, Lars; Qian, Cheng; Bryson, Susan; Jones, Marshall; Marshall, Christian; Scherer, Stephen; Vieland, Veronica; Bartlett, Christopher; Mangin, La Vonne; Goedken, Rhinda; Segre, Alberto; Pericak-Vance, Margaret; Cuccaro, Michael; Gilbert, John; Wright, Harry; Abramson, Ruth; Betancur, Catalina; Bourgeron, Thomas; Gillberg, Christopher; Leboyer, Marion; Buxbaum, Joseph; Davis, Kenneth; Hollander, Eric; Silverman, Jeremy; Hallmayer, Joachim; Lotspeich, Linda; Sutcliffe, James; Haines, Jonathan; Folstein, Susan; Piven, Joseph; Wassink, Thomas; Sheffield, Val; Geschwind, Daniel; Bucan, Maja; Brown, Ted; Cantor, Rita; Constantino, John; Gilliam, Conrad; Herbert, Martha; Lajonchere, Clara; Ledbetter, David; Lese-Martin, Christa; Miller, Janet; Nelson, Stan; Samango-Sprouse, Carol; Spence, Sarah; State, Matthew; Tanzi, Rudolph; Coon, Hilary; Dawson, Geraldine; Devlin, Bernie; Estes, Annette; Flodman, Pamela; Klei, Lambertus; Mcmahon, William; Minshew, Nancy; Munson, Jeff; Korvatska, Elena; Rodier, Patricia; Schellenberg, Gerard; Smith, Moyra; Spence, Anne; Stodgell, Chris; Tepper, Ping Guo; Wijsman, Ellen; Yu, Chang-En; Rogé, Bernadette; Mantoulan, Carine; Wittemeyer, Kerstin; Poustka, Annemarie; Felder, Bärbel; Klauck, Sabine; Schuster, Claudia; Poustka, Fritz; Bölte, Sven; Feineis-Matthews, Sabine; Herbrecht, Evelyn; Schmötzer, Gabi; Tsiantis, John; Papanikolaou, Katerina; Maestrini, Elena; Bacchelli, Elena; Blasi, Francesca; Carone, Simona; Toma, Claudio; Van Engeland, Herman; De Jonge, Maretha; Kemner, Chantal; Koop, Frederieke; Langemeijer, Marjolein; Hijmans, Channa; Staal, Wouter; Baird, Gillian; Bolton, Patrick; Rutter, Michael; Weisblatt, Emma; Green, Jonathan; Aldred, Catherine; Wilkinson, Julie-Anne; Pickles, Andrew; Le Couteur, Ann; Berney, Tom; Mcconachie, Helen; Bailey, Anthony; Francis, Kostas; Honeyman, Gemma; Hutchinson, Aislinn; Parr, Jeremy; Wallace, Simon; Monaco, Anthony; Barnby, Gabrielle; Kobayashi, Kazuhiro; Lamb, Janine; Sousa, Ines; Sykes, Nuala; Cook, Edwin; Guter, Stephen; Leventhal, Bennett; Salt, Jeff; Lord, Catherine; Corsello, Christina; Hus, Vanessa; Weeks, Daniel; Volkmar, Fred; Tauber, Maïté; Fombonne, Eric; Shih, Andy; Meyer, Kacie

    2007-01-01

    Autism spectrum disorders (ASD) are common, heritable neurodevelopmental conditions. The genetic architecture of ASD is complex, requiring large samples to overcome heterogeneity. Here we broaden coverage and sample size relative to other studies of ASD by using Affymetrix 10K single nucleotide polymorphism (SNP) arrays and 1168 families with ≥ 2 affected individuals to perform the largest linkage scan to date, while also analyzing copy number variation (CNV) in these families. Linkage and CNV analyses implicate chromosome 11p12-p13 and neurexins, respectively, amongst other candidate loci. Neurexins team with previously-implicated neuroligins for glutamatergic synaptogenesis, highlighting glutamate-related genes as promising candidates for ASD. PMID:17322880

  15. Chromosomal rearrangement segregating with adrenoleukodystrophy: Associated changes in color vision

    Energy Technology Data Exchange (ETDEWEB)

    Alpern, M.; Zhang, H. (Univ. of Michigan, Ann Arbor, MI (United States)); Sack, G.H. Jr.; Moser, H.W. (Johns Hopkins Univ. School of Medicine, Baltimore, MD (United States)); Krantz, D.H. (Columbia Univ., New York, NY (United States))

    1993-10-15

    A patient from a large kindred with adrenoleukodystrophy showed profound disturbance of color ordering, color matching, increment thresholds, and luminosity. Except for color matching, his performance was similar to blue-cone [open quotes]monochromacy,[close quotes] an X chromosome-linked recessive retinal dystrophy in which color vision is dichromatic, mediated by the visual pigments of rods and short-wave-sensitive cones. Color matching, however, indicated that an abnormal rudimentary visual pigment was also present. This may reflect the presence of a recombinant visual pigment protein or altered regulation of residual pigment genes, due to DNA changes - deletion of the long-wave pigment gene and reorganized sequence 5[prime] to the pigment gene cluster - that segregate with the metabolic defect in this kindred. 25 refs., 4 figs., 1 tab.

  16. High-throughput analysis of subtelomeric chromosome rearrangements by use of array-based comparative genomic hybridization.

    NARCIS (Netherlands)

    Veltman, J.; Schoenmakers, E.F.P.M.; Eussen, B.H.; Janssen, I.M.; Merkx, G.F.M.; Cleef, B. van; Ravenswaaij-Arts, C.M.A. van; Brunner, H.G.; Smeets, D.F.C.M.; Geurts van Kessel, A.H.M.

    2002-01-01

    Telomeric chromosome rearrangements may cause mental retardation, congenital anomalies, and miscarriages. Automated detection of subtle deletions or duplications involving telomeres is essential for high-throughput diagnosis, but impossible when conventional cytogenetic methods are used. Array-based

  17. Appearance and evolution of the specific chromosomal rearrangements associated with malignant transformation of mouse m5S cells

    International Nuclear Information System (INIS)

    Kodama, S.; Okumura, Y.; Komatsu, K.; Sasaki, M.S.

    1991-01-01

    Chromosomal alterations were studied during the acquisition of malignant phenotypes in two karyotypically distinct cells isolated from transformed foci induced by x-irradiation in mouse m5S cells. Because the transformants, despite foci origin, showed low ability to grow in agar, they were cultured in vitro with serial transfer schedules to allow further cell generations and assayed for anchorage independence (AI) at each passage level. The AI frequency increased with the cell doubling numbers. Chromosome analysis showed that a focus was one cell origin, but the transformants showed karyotypic instability during cell proliferation, giving rise to the rearrangements clustered in the distal region of the specific chromosomes. These rearrangements appeared to be directed toward the acquisition of malignant phenotypes. Analysis of the types and sites of rearrangements indicated that a mechanism exists that induces frequent rearrangements of the specific region of a chromosome during the process of transformation into the malignant state

  18. Microsatellites mapping for non-model species with chromosomal rearrangement: a case study in the frog Quasipaa boulengeri (Anura: Dicroglossidae).

    Science.gov (United States)

    Yuan, Xiuyun; Yuan, Siqi; Liu, Ya; Xia, Yun; Zeng, Xiaomao

    2017-08-01

    Gene mapping is an important resource for understanding the evolution of genes and cytogenetics. Model species with a known genetic map or genome sequence allow for the selection of genetic markers on a desired chromosome, while it is hard to locate these markers on chromosomes of non-model species without such references. A frog species, Quasipaa boulengeri, shows chromosomal rearrangement polymorphisms, making itself a fascinating model for chromosomal speciation mediated by suppressed recombination. However, no markers have been located on its rearranged chromosomes. We present a complete protocol to map microsatellites based on mechanical microdissection and chromosome amplification techniques. Following this protocol, we mapped 71 microsatellites of Q. boulengeri at the chromosome level. In total, eight loci were assigned to rearranged chromosomes, and the other 63 loci might attach to other chromosomes. These microsatellites could be used to compare the gene flow and verify the chromosomal suppressed recombination hypothesis in Q. boulengeri. This integrated protocol could be effectively used to map genes to chromosomes for non-model species.

  19. Nested Inversion Polymorphisms Predispose Chromosome 22q11.2 to Meiotic Rearrangements.

    Science.gov (United States)

    Demaerel, Wolfram; Hestand, Matthew S; Vergaelen, Elfi; Swillen, Ann; López-Sánchez, Marcos; Pérez-Jurado, Luis A; McDonald-McGinn, Donna M; Zackai, Elaine; Emanuel, Beverly S; Morrow, Bernice E; Breckpot, Jeroen; Devriendt, Koenraad; Vermeesch, Joris R

    2017-10-05

    Inversion polymorphisms between low-copy repeats (LCRs) might predispose chromosomes to meiotic non-allelic homologous recombination (NAHR) events and thus lead to genomic disorders. However, for the 22q11.2 deletion syndrome (22q11.2DS), the most common genomic disorder, no such inversions have been uncovered as of yet. Using fiber-FISH, we demonstrate that parents transmitting the de novo 3 Mb LCR22A-D 22q11.2 deletion, the reciprocal duplication, and the smaller 1.5 Mb LCR22A-B 22q11.2 deletion carry inversions of LCR22B-D or LCR22C-D. Hence, the inversions predispose chromosome 22q11.2 to meiotic rearrangements and increase the individual risk for transmitting rearrangements. Interestingly, the inversions are nested or flanking rather than coinciding with the deletion or duplication sizes. This finding raises the possibility that inversions are a prerequisite not only for 22q11.2 rearrangements but also for all NAHR-mediated genomic disorders. Copyright © 2017. Published by Elsevier Inc.

  20. Chromosomal rearrangements caused by gamma-irradiation in winter wheat cells

    Directory of Open Access Journals (Sweden)

    M. M. Nazarenko

    2017-02-01

    Full Text Available In this article we report the results of our investigation into several cytogenetic parameters of variability in mutation induction of modern winter wheat varieties and some connections between the means of cytogenetic indices and different doses of gamma-rays. Analysis of chromosomal aberrations following the action of any kind of mutagen by the anaphases method is one of the most widely investigated and most precise methods which can be used to determine the fact of mutagenic action on plants and identify the nature of the mutagen. We combined in our investigation the sensitivity of genotype to mutagen using cytological analysis of mutagen treated wheat populations with the corresponding different varieties by breeding methods to reveal its connections and differences, specific sensitivity to mutagens action on the cell level. Dry seeds of 8 varieties of winter wheat were subjected to 100, 150, 200, 250 Gy gamma irradiation, which are trivial for winter wheat mutation breeding. We investigated rates and spectra of chromosomal aberrations in the cells of winter wheat primary roots tips. The coefficients of correlations amid the rate of chromosomal aberrations and the dose of gamma-rays were on the level 0.8–0.9. The fragments/bridges ratio is a clear and sufficient index for determining the nature of the mutagen agent. We distinguished the following types of chromosomal rearrangements: chromatid and chromosome bridges, single and double fragments, micronuclei, and delayed chromosomes. The ratio of chromosomal aberrations changes with the change in mutagen; note that bridge-types are characteristic of irradiation. Radiomutants are more resistant to gamma rays. This is apparent in the lower rate of chromosomal aberrations. Varieties obtained by chemical mutagenesis (varieties Sonechko, Kalinova are more sensitive to gamma-irradiation than others. We propose these varieties as objects for a mutation breeding programme and radiation of mutants

  1. The impact of complex chromosomal rearrangements on the detection of radiosensitivity in cancer patients

    International Nuclear Information System (INIS)

    Neubauer, Susann; Dunst, Juergen; Gebhart, Erich

    1997-01-01

    Background and purpose: Lymphocytes of a small fraction of cancer patients responded to in vitro irradiation with an extreme chromosomal reaction. A large portion of the observed chromosome aberrations were complex chromosomal rearrangements (CCR). The present study is an attempt to define the impact of CCR on the predictive detection of an intrinsic clinical radiosensitivity in cancer patients in more detail. Materials and methods: A three-colour 'FISH-painting' technique (chromosome in situ suppression (CISS) hybridization) was used for the detection of chromosomal rearrangements, induced by in vitro irradiation, in 81 samples of peripheral blood lymphocytes from 66 cancer patients. Thirty-three of those were assigned for radiation therapy, the others having just undergone radiation therapy. Seven healthy individuals served as controls. Results: CCRs are a very rare event in non-irradiated cells. Lymphocytes of patients who had just undergone therapeutic irradiation, however, not only exhibited high basic frequencies of CCR but also responded to in vitro irradiation with a more drastic increase of CCR than did the lymphocytes of non-exposed patients. A high inter-individual variability of the reaction to in vitro irradiation could be generally stated. The lymphocytes of patients with clinical signs of an outstanding radiosensitivity responded with an unusually high frequency of CCR. The total number of CCRs detected by CISS was found to be dependent on the interval from a previous radiation therapy and was slightly influenced by previous cytostatic therapy. Irrespective of these influences, patients with clinically defined radiation hypersensitivity were those with the highest radiosensitivity also in cytogenetic terms (including CCR). Conclusion: The successful use of FISH-painting for the detection of CCR, in addition to the general breakage frequency, highlights its suitability in the identification of individual hypersensitivity to ionizing radiation. The

  2. Reconstruction of chromosome rearrangements between the two most ancestral duckweed species Spirodela polyrhiza and S. intermedia.

    Science.gov (United States)

    Hoang, Phuong T N; Schubert, Ingo

    2017-12-01

    The monophyletic duckweeds comprising five genera within the monocot order Alismatales are neotenic, free-floating, aquatic organisms with fast vegetative propagation. Some species are considered for efficient biomass production, for life stock feeding, and for (simultaneous) wastewater phytoremediation. The ancestral genus Spirodela consists of only two species, Spirodela polyrhiza and Spirodela intermedia, both with a similar small genome (~160 Mbp/1C). Reference genome drafts and a physical map of 96 BACs on the 20 chromosome pairs of S. polyrhiza strain 7498 are available and provide useful tools for further evolutionary studies within and between duckweed genera. Here we applied sequential comparative multicolor fluorescence in situ hybridization (mcFISH) to address homeologous chromosomes in S. intermedia (2n = 36), to detect chromosome rearrangements between both species and to elucidate the mechanisms which may have led to the chromosome number alteration after their evolutionary separation. Ten chromosome pairs proved to be conserved between S. polyrhiza and S. intermedia, the remaining ones experienced, depending on the assumed direction of evolution, translocations, inversion, and fissions, respectively. These results represent a first step to unravel karyotype evolution among duckweeds and are anchor points for future genome assembly of S. intermedia.

  3. Femoral facial syndrome associated with a de novo complex chromosome 2q37 rearrangement.

    Science.gov (United States)

    Spielmann, Malte; Marx, Sylvie; Barbi, Gotthold; Flöttmann, Ricarda; Kehrer-Sawatzki, Hildegard; König, Rainer; Horn, Denise; Mundlos, Stefan; Nader, Sean; Borck, Guntram

    2016-05-01

    The femoral facial syndrome (FFS) is a rare congenital anomaly syndrome characterized by bilateral femoral hypoplasia and facial dysmorphism. The etiology of FFS is currently unknown but maternal/gestational diabetes has been proposed as a strong risk factor for syndromic femoral hypoplasia. In affected children born to non-diabetic mothers, a genetic contribution to FFS is suspected; however, no chromosomal anomalies or gene mutations have been identified so far. Here, we report on a girl with FFS and a de novo complex chromosome rearrangement of terminal chromosome 2q37.2. Radiographs of the pelvis and lower limbs showed bilateral shortening and bowing of the femur and radiographs of hands and feet revealed a brachydactyly type E (BDE). Using high resolution array-CGH, qPCR, and FISH, we detected a ~1.9 Mb duplication in the chromosomal region 2q37.2 and a ~5.4 Mb deletion on chromosome 2q37.3 that were absent in the parents. The duplication contains six genes and the deletion encompasses 68 genes; the latter has previously been shown to cause BDE (through haploinsufficiency for HDAC4) but not femoral hypoplasia. Therefore, we propose that the duplication 2q37.2 could be causative for the femur phenotype. To the best of our knowledge, our report is the first to propose a genetic cause in a case of FFS. © 2016 Wiley Periodicals, Inc.

  4. Chromosomal Rearrangements in Post-Chernobyl Papillary Thyroid Carcinomas: Evaluation by Spectral Karyotyping and Automated Interphase FISH

    Directory of Open Access Journals (Sweden)

    Ludwig Hieber

    2011-01-01

    Full Text Available Structural genomic rearrangements are frequent findings in human cancers. Therefore, papillary thyroid carcinomas (PTCs were investigated for chromosomal aberrations and rearrangements of the RET proto-oncogene. For this purpose, primary cultures from 23 PTC have been established and metaphase preparations were analysed by spectral karyotyping (SKY. In addition, interphase cell preparations of the same cases were investigated by fluorescence in situ hybridisation (FISH for the presence of RET/PTC rearrangements using RET-specific DNA probes. SKY analysis of PTC revealed structural aberrations of chromosome 11 and several numerical aberrations with frequent loss of chromosomes 20, 21, and 22. FISH analysis for RET/PTC rearrangements showed prevalence of this rearrangement in 72% (16 out of 22 of cases. However, only subpopulations of tumour cells exhibited this rearrangement indicating genetic heterogeneity. The comparison of visual and automated scoring of FISH signals revealed concordant results in 19 out of 22 cases (87% indicating reliable scoring results using the optimised scoring parameter for RET/PTC with the automated Metafer4 system. It can be concluded from this study that genomic rearrangements are frequent in PTC and therefore important events in thyroid carcinogenesis.

  5. Context-based FISH localization of genomic rearrangements within chromosome 15q11.2q13 duplicons

    Directory of Open Access Journals (Sweden)

    Knoll Joan HM

    2011-08-01

    Full Text Available Abstract Background Segmental duplicons (SDs predispose to an increased frequency of chromosomal rearrangements. These rearrangements can cause a diverse range of phenotypes due to haploinsufficiency, in cis positional effects or gene interruption. Genomic microarray analysis has revealed gene dosage changes adjacent to duplicons, but the high degree of similarity between duplicon sequences has confounded unequivocal assignment of chromosome breakpoints within these intervals. In this study, we localize rearrangements within duplicon-enriched regions of Angelman/Prader-Willi (AS/PWS syndrome chromosomal deletions with fluorescence in situ hybridization (FISH. Results Breakage intervals in AS deletions were localized recursively with short, coordinate-defined, single copy (SC and low copy (LC genomic FISH probes. These probes were initially coincident with duplicons and regions of previously reported breakage in AS/PWS. Subsequently, probes developed from adjacent genomic intervals more precisely delineated deletion breakage intervals involving genes, pseudogenes and duplicons in 15q11.2q13. The observed variability in the deletion boundaries within previously described Class I and Class II deletion AS samples is related to the local genomic architecture in this chromosomal region. Conclusions Chromosome 15 abnormalities associated with SDs were precisely delineated at a resolution equivalent to genomic Southern analysis. This context-dependent approach can define the boundaries of chromosome rearrangements for other genomic disorders associated with SDs.

  6. De novo complex intra chromosomal rearrangement after ICSI: characterisation by BACs micro array-CGH

    Directory of Open Access Journals (Sweden)

    Quimsiyeh Mazin

    2008-12-01

    Full Text Available Abstract Background In routine Assisted Reproductive Technology (ART men with severe oligozoospermia or azoospermia should be informed about the risk of de novo congenital or chromosomal abnormalities in ICSI program. Also the benefits of preimplantation or prenatal genetic diagnosis practice need to be explained to the couple. Methods From a routine ICSI attempt, using ejaculated sperm from male with severe oligozoospermia and having normal karyotype, a 30 years old pregnant woman was referred to prenatal diagnosis in the 17th week for bichorionic biamniotic twin gestation. Amniocentesis was performed because of the detection of an increased foetal nuchal translucency for one of the fetus by the sonographic examination during the 12th week of gestation (WG. Chromosome and DNA studies of the fetus were realized on cultured amniocytes Results Conventional, molecular cytogenetic and microarray CGH experiments allowed us to conclude that the fetus had a de novo pericentromeric inversion associated with a duplication of the 9p22.1-p24 chromosomal region, 46,XY,invdup(9(p22.1p24 [arrCGH 9p22.1p24 (RP11-130C19 → RP11-87O1x3]. As containing the critical 9p22 region, our case is in coincidence with the general phenotype features of the partial trisomy 9p syndrome with major growth retardation, microcephaly and microretrognathia. Conclusion This de novo complex chromosome rearrangement illustrates the possible risk of chromosome or gene defects in ICSI program and the contribution of array-CGH for mapping rapidly de novo chromosomal imbalance.

  7. High level of chromosomal instability in circulating tumor cells of ROS1-rearranged non-small-cell lung cancer

    OpenAIRE

    Pailler, E.; Auger, N.; Lindsay, C. R.; Vielh, P.; Islas-Morris-Hernandez, A.; Borget, I.; Ngo-Camus, M.; Planchard, D.; Soria, J.-C.; Besse, B.; Farace, F.

    2015-01-01

    Background Genetic aberrations affecting the c-ros oncogene 1 (ROS1) tyrosine kinase gene have been reported in a small subset of patients with non-small-cell lung cancer (NSCLC). We evaluated whether ROS1-chromosomal rearrangements could be detected in circulating tumor cells (CTCs) and examined tumor heterogeneity of CTCs and tumor biopsies in ROS1-rearranged NSCLC patients. Patients and methods Using isolation by size of epithelial tumor cells (ISET) filtration and filter-adapted-fluoresce...

  8. Chromosomal rearrangements formed by rrn recombination do not improve replichore balance in host-specific Salmonella enterica serovars.

    Directory of Open Access Journals (Sweden)

    T David Matthews

    2010-10-01

    Full Text Available Most of the ∼2,600 serovars of Salmonella enterica have a broad host range as well as a conserved gene order. In contrast, some Salmonella serovars are host-specific and frequently exhibit large chromosomal rearrangements from recombination between rrn operons. One hypothesis explaining these rearrangements suggests that replichore imbalance introduced from horizontal transfer of pathogenicity islands and prophages drives chromosomal rearrangements in an attempt to improve balance.This hypothesis was directly tested by comparing the naturally-occurring chromosomal arrangement types to the theoretically possible arrangement types, and estimating their replichore balance using a calculator. In addition to previously characterized strains belonging to host-specific serovars, the arrangement types of 22 serovar Gallinarum strains was also determined. Only 48 out of 1,440 possible arrangement types were identified in 212 host-specific strains. While the replichores of most naturally-occurring arrangement types were well-balanced, most theoretical arrangement types had imbalanced replichores. Furthermore, the most common types of rearrangements did not change replichore balance.The results did not support the hypothesis that replichore imbalance causes these rearrangements, and suggest that the rearrangements could be explained by aspects of a host-specific lifestyle.

  9. Kinase Expression and Chromosomal Rearrangements in Papillary Thyroid Cancer Tissues: Investigations at the Molecular and Microscopic Levels

    Energy Technology Data Exchange (ETDEWEB)

    Weier, Heinz-Ulrich; Kwan, Johnson; Lu, Chun-Mei; Ito, Yuko; Wang, Mei; Baumgartner, Adolf; Hayward, Simon W.; Weier, Jingly F.; Zitzelsberger, Horst F.

    2009-07-07

    Structural chromosome aberrations are known hallmarks of many solid tumors. In the papillary form of thyroid cancer (PTC), for example, activation of the receptor tyrosine kinase (RTK) genes, ret or the neurotrophic tyrosine kinase receptor type I (NTRK1) by intra- or interchromosomal rearrangements have been suggested as a cause of the disease. The 1986 accident at the nuclear power plant in Chernobyl, USSR, led to the uncontrolled release of high levels of radioisotopes. Ten years later, the incidence of childhood papillary thyroid cancer (chPTC) near Chernobyl had risen by two orders of magnitude. Tumors removed from some of these patients showed aberrant expression of the ret RTK gene due to a ret/PTC1 or ret/PTC3 rearrangement involving chromosome 10. However, many cultured chPTC cells show a normal G-banded karyotype and no ret rearrangement. We hypothesize that the 'ret-negative' tumors inappropriately express a different oncogene or have lost function of a tumor suppressor as a result of chromosomal rearrangements, and decided to apply molecular and cytogenetic methods to search for potentially oncogenic chromosomal rearrangements in Chernobyl chPTC cases. Knowledge of the kind of genetic alterations may facilitate the early detection and staging of chPTC as well as provide guidance for therapeutic intervention.

  10. Kinase Expression and Chromosomal Rearrangements in Papillary Thyroid Cancer Tissues: Investigations at the Molecular and Microscopic Levels

    International Nuclear Information System (INIS)

    Weier, Heinz-Ulrich; Kwan, Johnson; Lu, Chun-Mei; Ito, Yuko; Wang, Mei; Baumgartner, Adolf; Hayward, Simon W.; Weier, Jingly F.; Zitzelsberger, Horst F.

    2009-01-01

    Structural chromosome aberrations are known hallmarks of many solid tumors. In the papillary form of thyroid cancer (PTC), for example, activation of the receptor tyrosine kinase (RTK) genes, ret or the neurotrophic tyrosine kinase receptor type I (NTRK1) by intra- or interchromosomal rearrangements have been suggested as a cause of the disease. The 1986 accident at the nuclear power plant in Chernobyl, USSR, led to the uncontrolled release of high levels of radioisotopes. Ten years later, the incidence of childhood papillary thyroid cancer (chPTC) near Chernobyl had risen by two orders of magnitude. Tumors removed from some of these patients showed aberrant expression of the ret RTK gene due to a ret/PTC1 or ret/PTC3 rearrangement involving chromosome 10. However, many cultured chPTC cells show a normal G-banded karyotype and no ret rearrangement. We hypothesize that the 'ret-negative' tumors inappropriately express a different oncogene or have lost function of a tumor suppressor as a result of chromosomal rearrangements, and decided to apply molecular and cytogenetic methods to search for potentially oncogenic chromosomal rearrangements in Chernobyl chPTC cases. Knowledge of the kind of genetic alterations may facilitate the early detection and staging of chPTC as well as provide guidance for therapeutic intervention.

  11. Most ultraviolet irradiation induced mutations in the nematode Caenorhabditis elegans are chromosomal rearrangements

    International Nuclear Information System (INIS)

    Stewart, H.I.; Rosenbluth, R.E.; Baillie, D.L.

    1991-01-01

    In this study the utility of 254-nm ultraviolet light (UV) as a magnetic tool in C.elegans is determined. It is demonstrated that irradiation of adult hermaphrodites provides a simple method for the induction of heritable chromosomal rearrangements. A screening protocol was employed that identifies either recessive lethal mutations in the 40 map unit region balanced by the translocation eT1(III;V), or unc-36(III) duplications. Mutations were recovered in 3% of the chromosomes screened after a dose of 120 J/m 2 . This rate resembles that for 1500 R γ-ray-induced mutations selected in a similar manner. The mutations were classified either as lethals [mapping to Linkage Group (LG)III or LGV] or as putative unc-36 duplications. In contrast to the majority of UV-induced mutations analysed in micro-organisms, a large fraction of the C.elegans UV-induced mutations were found to be not simple intragenic lesions, but deficiencies for more than one adjacent gene or more complex events. Preliminary evidence for this conclusion came from the high frequency of mutations that had a dominant effect causing reduced numbers of adult progeny. Subsequently 6 out of 9 analysed LGV mutations were found to be deficiencies. Other specific rearrangements also identified were: one translocation, sT5(II;III), and two unc-36 duplications, sDp8 and sDp9. It was concluded that UV irradiation can easily be used as an additional tool for the analysis of C.elegans chromosomes, and that C.elegans should prove to be a useful organism in which to study the mechanisms whereby UV acts as a mutagen in cells of complex eukaryotes. (author). 46 refs.; 5 figs.; 4 tabs

  12. Ph1 chromosomes and bcr gene rearrangements in chronic myelocytic leukemia patients developed from atomic bomb survivors

    International Nuclear Information System (INIS)

    Tanaka, Kimio; Takechi, Miho; Shigeta, Chiharu; Sakatani, Keiko; Oguma, Nobuo; Kamada, Nanao; Takimoto, Yasuo; Kuramoto, Atsushi

    1989-01-01

    This study compared findings of chronic myelocytic leukemia (CML) in A-bomb survivors (n=8) developing CML within 10 years after the bombing and in non-exposed CML patients (n=14). Both Ph 1 chromosomes and bcr rearrangement were observed in all patients in both exposed and non-exposed groups. There was no significant difference in distribution sites of bcr rearrangement between the groups. These results suggest that bcr-abl chimera mRNA and chimera protein associated with Ph 1 chromosomes have an important role in the development of CML among A-bomb survivors, as well as among non-exposed patients. (N.K.)

  13. Evolutionary dynamics of autosomal-heterosomal rearrangements in a multiple-X chromosome system of tiger beetles (Cicindelidae

    Directory of Open Access Journals (Sweden)

    Vogler Alfried P

    2007-09-01

    Full Text Available Abstract Background Genetic systems involving multiple X chromosomes have arisen repeatedly in sexually reproducing animals. Tiger beetles (Cicindelidae exhibit a phylogenetically ancient multiple-X system typically consisting of 2–4 X chromosomes and a single Y. Because recombination rates are suppressed in sex chromosomes, changes in their numbers and movement of genes between sex chromosomes and autosomes, could have important consequences for gene evolution and rates of speciation induced by these rearrangements. However, it remains unclear how frequent these rearrangements are and which genes are affected. Results Karyotype analyses were performed for a total of 26 North American species in the highly diverse genus Cicindela, tallying the number of X chromosomes and autosomes during mitosis and meiosis. The chromosomal location of the ribosomal rRNA gene cluster (rDNA was used as an easily scored marker for genic turnover between sex chromosomes or autosomes. The findings were assessed in the light of a recent phylogenetic analysis of the group. While autosome numbers remained constant throughout the lineage, sex chromosome numbers varied. The predominant karyotype was n = 9+X1X2X3Y which was also inferred to be the ancestral state, with several changes to X1X2Y and X1X2X3X4Y confined to phylogenetically isolated species. The total (haploid numbers of rDNA clusters varied between two, three, and six (in one exceptional case, and clusters were localized either on the autosomes, the sex chromosomes, or both. Transitions in rDNA localization and in numbers of rDNA clusters varied independently of each other, and also independently of changes in sex chromosome numbers. Conclusion Changes of X chromosome numbers and transposition of the rDNA locus (and presumably other genes between autosomes and sex chromosomes in Cicindela occur frequently, and are likely to be the result of fusions or fissions between X chromosomes, rather than between sex

  14. No evidence for a paternal interchromosomal effect from analysis of the origin of nondisjunction in Down syndrome patients with concomitant familial chromosome rearrangements.

    OpenAIRE

    Schinzel, A A; Adelsberger, P A; Binkert, F; Basaran, S; Antonarakis, S E

    1992-01-01

    The parental origin of the extra chromosome 21 was determined with DNA polymorphisms in seven families in whom the proband and one of the parents carried an additional chromosome rearrangement (balanced translocation or pericentric inversion) not involving chromosome 21. The balanced rearrangement was inherited from the mother in two families and from the father in five families, whereas the additional chromosome 21 was derived from the mother in all seven families. These findings are not in ...

  15. Atypical lipomatous tumor with structural rearrangements involving chromosomes 3 and 8.

    Science.gov (United States)

    Nishio, Jun; Iwasaki, Hiroshi; Nabeshima, Kazuki; Kamachi, Yuki; Naito, Masatoshi

    2014-06-01

    Atypical lipomatous tumor (ALT) is an intermediate (locally aggressive) mesenchymal neoplasm with the potential to dedifferentiate to higher grades over time. It is cytogenetically characterized by the presence of one or more supernumerary ring and giant marker chromosomes. These abnormal chromosomes invariably contain amplified sequences derived from the 12q14-15 region. We describe a unique cytogenetic finding of ALT arising in the right lower back of a 42-year-old man. Magnetic resonance imaging demonstrated a predominantly fatty mass with irregularly thickened, linear, swirled, and nodular septa. Contrast-enhanced fat-suppressed T1-weighted images showed significant enhancement of the non-adipose areas. A sub-extensive resection was performed. Histologically, the tumor consisted predominantly of mature fat cells with atypical stromal cells and multivacuolated lipoblasts. Immunohistochemically, the tumor cells were positive for p16 (diffuse and strong signal) and cyclin-dependent kinase-4 (focal and weak signal) but negative for murine double-minute 2. Cytogenetic analysis displayed a t(3;8)(q28;q13) translocation as the sole anomaly or concomitant with a few other numerical and structural alterations. There has been no evidence of local recurrence two months after surgery. To the best of our knowledge, this is the first case of ALT with structural aberrations involving chromosomes 3 and 8, associated with an absence of 12q rearrangements. Copyright© 2014 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  16. Human ETS2 gene on chromosome 21 is not rearranged in Alzheimer disease

    Energy Technology Data Exchange (ETDEWEB)

    Sacchi, N.; Nalbantoglu, J.; Sergovich, F.R.; Papas, T.S. (National Cancer Institute, Frederick, MD (USA))

    1988-10-01

    The human ETS2 gene, a member of the ETS gene family, with sequence homology with the retroviral ets sequence of the avian erythroblastosis retrovirus E26 is located on chromosome 21. Molecular genetic analysis of Down syndrome (DS) patients with partial trisomy 21 allowed us to reinforce the supposition that ETS2 may be a gene of the minimal DS genetic region. It was originally proposed that a duplication of a portion of the DS region represents the genetic basis of Alzheimer disease, a condition associated also with DS. No evidence of either rearrangements or duplications of ETS2 could be detected in DNA from fibroblasts and brain tissue of Alzheimer disease patients with either the sporadic or the familiar form of the disease. Thus, an altered ETS2 gene dosage does not seem to be a genetic cause or component of Alzheimer disease.

  17. Suppression of gross chromosomal rearrangements by a new alternative replication factor C complex

    International Nuclear Information System (INIS)

    Banerjee, Soma; Sikdar, Nilabja; Myung, Kyungjae

    2007-01-01

    Defects in DNA replication fidelity lead to genomic instability. Gross chromosomal rearrangement (GCR), a type of genomic instability, is highly enhanced by various initial mutations affecting DNA replication. Frequent observations of GCRs in many cancers strongly argue the importance of maintaining high fidelity of DNA replication to suppress carcinogenesis. Recent genome wide screens in Saccharomyces cerevisiae identified a new GCR suppressor gene, ELG1, enhanced level of genome instability gene 1. Its physical interaction with proliferating cell nuclear antigen (PCNA) and complex formation with Rfc2-5p proteins suggest that Elg1 functions to load/unload PCNA onto DNA during a certain DNA metabolism. High level of DNA damage accumulation and enhanced phenotypes with mutations in genes involved in cell cycle checkpoints, homologous recombination (HR), or chromatin assembly in the elg1 strain suggest that Elg1p-Rfc2-5p functions in a fundamental DNA metabolism to suppress genomic instability

  18. Human ETS2 gene on chromosome 21 is not rearranged in Alzheimer disease

    International Nuclear Information System (INIS)

    Sacchi, N.; Nalbantoglu, J.; Sergovich, F.R.; Papas, T.S.

    1988-01-01

    The human ETS2 gene, a member of the ETS gene family, with sequence homology with the retroviral ets sequence of the avian erythroblastosis retrovirus E26 is located on chromosome 21. Molecular genetic analysis of Down syndrome (DS) patients with partial trisomy 21 allowed us to reinforce the supposition that ETS2 may be a gene of the minimal DS genetic region. It was originally proposed that a duplication of a portion of the DS region represents the genetic basis of Alzheimer disease, a condition associated also with DS. No evidence of either rearrangements or duplications of ETS2 could be detected in DNA from fibroblasts and brain tissue of Alzheimer disease patients with either the sporadic or the familiar form of the disease. Thus, an altered ETS2 gene dosage does not seem to be a genetic cause or component of Alzheimer disease

  19. Effects of chromosomal rearrangements on the zeste-white interaction in Drosophila melanogaster

    International Nuclear Information System (INIS)

    Smolik-Utlaut, S.M.; Gelbart, W.M.

    1987-01-01

    Three gene systems have been shown to exhibit proximity-dependent phenotypes in Drosophila melanogaster; bithorax (BX-C), decapentaplegic (DPP-C) and white (w). In structurally homozygous genotypes, specific allelic combinations at these loci exhibit one phenotype, while in certain rearrangement heterozygotes the same allelic combinations exhibit dramatically different phenotypes. The genetic properties of the proximity-dependent allelic complementation (termed transvection effects) at the BX-C and DPP-C, are quite similar. As determined by cytogenetic analysis of transvection-disrupting rearrangements, the critical regions for the BX-C and DDP-C transvection effects extend proximally from these loci for several hundred polytene chromosome bands. The interaction between the zeste and white loci appears to depend upon the proximity of the two w + alleles. By use of insertional duplications, displacement of w + homologues has been shown to interfere with the zeste-white interaction. In this report, the authors investigate the basis for the difference in the size of the BX-C and DPP-C critical regions from that of white using a 137 Cs-mutagenesis procedure. The authors test and eliminate the possibility that the difference is due to evidence strongly suggests that the zeste-white interaction is, at the phenotypic level, much less sensitive to displacement of the homologous genes than is transvection at either the BX-C or DPP-C. Given these results, they suggest that the zeste-white interaction and transvection are two different proximity-dependent phenomena

  20. Extensive Pericentric Rearrangements in the Bread Wheat (Triticum aestivum L.) Genotype "Chinese Spring" Revealed from Chromosome Shotgun Sequence Data

    Czech Academy of Sciences Publication Activity Database

    Ma, J.; Stiller, J.; Wei, Y.M.; Zheng, Y.L.; Devos, K. M.; Doležel, Jaroslav; Liu, C.L.

    2014-01-01

    Roč. 6, č. 11 (2014), s. 3039-3048 ISSN 1759-6653 R&D Projects: GA ČR GBP501/12/G090 Institutional support: RVO:61389030 Keywords : chromosomal rearrangement * comparative genomics * pericentric inversion Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.229, year: 2014

  1. 3Disease Browser: A Web server for integrating 3D genome and disease-associated chromosome rearrangement data.

    Science.gov (United States)

    Li, Ruifeng; Liu, Yifang; Li, Tingting; Li, Cheng

    2016-10-13

    Chromosomal rearrangement (CR) events have been implicated in many tumor and non-tumor human diseases. CR events lead to their associated diseases by disrupting gene and protein structures. Also, they can lead to diseases through changes in chromosomal 3D structure and gene expression. In this study, we search for CR-associated diseases potentially caused by chromosomal 3D structure alteration by integrating Hi-C and ChIP-seq data. Our algorithm rediscovers experimentally verified disease-associated CRs (polydactyly diseases) that alter gene expression by disrupting chromosome 3D structure. Interestingly, we find that intellectual disability may be a candidate disease caused by 3D chromosome structure alteration. We also develop a Web server (3Disease Browser, http://3dgb.cbi.pku.edu.cn/disease/) for integrating and visualizing disease-associated CR events and chromosomal 3D structure.

  2. Structural rearrangements of chromosome 15 satellites resulting in Prader-Willi syndrome suggest a complex mechanism for uniparental disomy

    Energy Technology Data Exchange (ETDEWEB)

    Toth-Fijel, S.; Gunter, K.; Olson, S. [Oregon Health Sciences Univ., Portland, OR (United States)] [and others

    1994-09-01

    We report two cases of PWS in which there was abnormal meiosis I segregation of chromosome 15 following a rare translocation event between the heteromorphic satellite regions of chromosomes 14 and 15 and an apparent meiotic recombination in the unstable region of 15q11.2. PWS and normal appearing chromosomes in case one prompted a chromosome 15 origin analysis. PCR analysis indicated maternal isodisomy for the long arm of chromosome. However, only one chromosome 15 had short arm heteromorphisms consistent with either paternal or maternal inheritance. VNTR DNA analysis and heteromorphism data suggest that a maternal de novo translocation between chromosome 14 and 15 occurred prior to meiosis I. This was followed by recombination between D15Z1 and D15S11 and subsequent meiosis I nondisjunction. Proband and maternal karyotype display a distamycin A-DAPI positive region on the chromosome 14 homolog involved in the translocation. Fluorescent in situ hybridization (FISH) analyses of ONCOR probes D15S11, SNRPN, D15S11 and GABRB 3 were normal, consistent with the molecular data. Case two received a Robertsonian translocation t(14;15)(p13;p13) of maternal origin. Chromosome analysis revealed a meiosis I error producing UPD. FISH analysis of the proband and parents showed normal hybridization of ONCOR probes D15Z1, D15S11, SNRPN, D15S10 and GABRB3. In both cases the PWS probands received a structurally altered chromosome 15 that had rearranged with chromosome 14 prior to meiosis. If proper meiotic segregation is dependent on the resolution of chiasmata and/or the binding to chromosome-specific spindle fibers, then it may be possible that rearrangements of pericentric or unstable regions of the genome disrupt normal disjunction and lead to uniparental disomy.

  3. Alteration of terminal heterochromatin and chromosome rearrangements in derivatives of wheat-rye hybrids.

    Science.gov (United States)

    Fu, Shulan; Lv, Zhenling; Guo, Xiang; Zhang, Xiangqi; Han, Fangpu

    2013-08-20

    Wheat-rye addition and substitution lines and their self progenies revealed variations in telomeric heterochromatin and centromeres. Furthermore, a mitotically unstable dicentric chromosome and stable multicentric chromosomes were observed in the progeny of a Chinese Spring-Imperial rye 3R addition line. An unstable multicentric chromosome was found in the progeny of a 6R/6D substitution line. Drastic variation of terminal heterochromatin including movement and disappearance of terminal heterochromatin occurred in the progeny of wheat-rye addition line 3R, and the 5RS ditelosomic addition line. Highly stable minichromosomes were observed in the progeny of a monosomic 4R addition line, a ditelosomic 5RS addition line and a 6R/6D substitution line. Minichromosomes, with and without the FISH signals for telomeric DNA (TTTAGGG)n, derived from a monosomic 4R addition line are stable and transmissible to the next generation. The results indicated that centromeres and terminal heterochromatin can be profoundly altered in wheat-rye hybrid derivatives. Copyright © 2013. Published by Elsevier Ltd.

  4. Extensive synteny conservation of holocentric chromosomes in Lepidoptera despite high rates of local genome rearrangements.

    Science.gov (United States)

    d'Alençon, E; Sezutsu, H; Legeai, F; Permal, E; Bernard-Samain, S; Gimenez, S; Gagneur, C; Cousserans, F; Shimomura, M; Brun-Barale, A; Flutre, T; Couloux, A; East, P; Gordon, K; Mita, K; Quesneville, H; Fournier, P; Feyereisen, R

    2010-04-27

    The recent assembly of the silkworm Bombyx mori genome with 432 Mb on 28 holocentric chromosomes has become a reference in the genomic analysis of the very diverse Order of Lepidoptera. We sequenced BACs from two major pests, the noctuid moths Helicoverpa armigera and Spodoptera frugiperda, corresponding to 15 regions distributed on 11 B. mori chromosomes, each BAC/region being anchored by known orthologous gene(s) to analyze syntenic relationships and genome rearrangements among the three species. Nearly 300 genes and numerous transposable elements were identified, with long interspersed nuclear elements and terminal inverted repeats the most abundant transposable element classes. There was a high degree of synteny conservation between B. mori and the two noctuid species. Conserved syntenic blocks of identified genes were very small, however, approximately 1.3 genes per block between B. mori and the two noctuid species and 2.0 genes per block between S. frugiperda and H. armigera. This corresponds to approximately two chromosome breaks per Mb DNA per My. This is a much higher evolution rate than among species of the Drosophila genus and may be related to the holocentric nature of the lepidopteran genomes. We report a large cluster of eight members of the aminopeptidase N gene family that we estimate to have been present since the Jurassic. In contrast, several clusters of cytochrome P450 genes showed multiple lineage-specific duplication events, in particular in the lepidopteran CYP9A subfamily. Our study highlights the value of the silkworm genome as a reference in lepidopteran comparative genomics.

  5. Simple and Rapid In Vivo Generation of Chromosomal Rearrangements using CRISPR/Cas9 Technology

    Directory of Open Access Journals (Sweden)

    Rafael B. Blasco

    2014-11-01

    Full Text Available Generation of genetically engineered mouse models (GEMMs for chromosomal translocations in the endogenous loci by a knockin strategy is lengthy and costly. The CRISPR/Cas9 system provides an innovative and flexible approach for genome engineering of genomic loci in vitro and in vivo. Here, we report the use of the CRISPR/Cas9 system for engineering a specific chromosomal translocation in adult mice in vivo. We designed CRISPR/Cas9 lentiviral vectors to induce cleavage of the murine endogenous Eml4 and Alk loci in order to generate the Eml4-Alk gene rearrangement recurrently found in non-small-cell lung cancers (NSCLCs. Intratracheal or intrapulmonary inoculation of lentiviruses induced Eml4-Alk gene rearrangement in lung cells in vivo. Genomic and mRNA sequencing confirmed the genome editing and the production of the Eml4-Alk fusion transcript. All mice developed Eml4-Alk-rearranged lung tumors 2 months after the inoculation, demonstrating that the CRISPR/Cas9 system is a feasible and simple method for the generation of chromosomal rearrangements in vivo.

  6. Chromosome painting in biological dosimetry: Semi-automatic system to score stable chromosome aberrations

    International Nuclear Information System (INIS)

    Garcia-Sagredo, J.M.; Vallcorba, I.; Sanchez-Hombre, M.C.; Ferro, M.T.; San Roman Cos-Gayon, C.; Santos, A.; Malpica, N.; Ortiz, C.

    1997-01-01

    From the beginning of the description of the procedure of chromosome painting by fluorescence in situ hybridization (FISH), it was thought its possible application to score induced chromosomal aberrations in radiation exposition. With chromosome painting it is possible to detect changes between chromosomes that has been validated in radiation exposition. Translocation scoring by FISH, contrarily to the unstable dicentrics, mainly detect stable chromosome aberrations that do not disappear, it allows the capability of quantify delayed acute expositions or chronic cumulative expositions. The large number of cells that have to be analyzed for high accuracy, specially when dealing with low radiation doses, makes it almost imperative to use an automatic analysis system. After validate translocation scoring by FISH in our, we have evaluated the ability and sensitivity to detect chromosomal aberrations by chromosome using different paint probes used, showing that any combination of paint probes can be used to score induced chromosomal aberrations. Our group has developed a FISH analysis that is currently being adapted for translocation scoring analysis. It includes systematic error correction and internal control probes. The performance tests carried out show that 9,000 cells can be analyzed in 10 hr. using a Sparc 4/370. Although with a faster computer, a higher throughput is expected, for large population screening or very low radiation doses, this performance still has to be improved. (author)

  7. DETECTION OF SPECIFIC CHROMOSOMAL REARRANGEMENT IN LEUKEMIA PATIENTS BY mDx HEMAVISION KIT

    Directory of Open Access Journals (Sweden)

    Tadej Pajič

    2004-12-01

    Full Text Available Background. The mDx HemaVision kit is a qualitative multiplex and nested Reverse Transcription-Polymerase Chain Reaction (RT-PCR test designed to detect 28 different translocations or chromosomal rearrangement, found to be specific for particular subtypes of leukemia. The presence or absence of the specific mRNA transcripts or cDNA segments after the reverse transcription of the fusion or abnormal genes, appeared after chromosomal rearrangements, could be determined by the kit.Patients and methods. The usefulness of the kit was tested on the 26 RNA samples of patients with acute leukemia and seven patients with chronic mieloproliferative diseases and by comparison of the results between mDx HemaVision kit and standardized RT-PCR protocol for the specific mRNA transcripts of the t(9;22(q34;q11, t(8;21(q22;q22, t(15;17(q21;q21 and t(4;11(q21;q23. The RNA samples were isolated from mononuclear cells of the bone marrow after Ficoll-Paque density gradient centrifugation and with a High Pure RNA isolation kit. The cDNA synthesis and Polymerase Chain Reaction were performed as described in mDx HemaVisoin’s or standardized RT-PCR’s protocols. The PCR products were analyzed by agarose gel electrophoresis, by staining with etidium bromide and by visualization under UV light.Results. We obtained 100% concordance of the results by both methods. Specific BCR-ABL mRNA transcripts were found in four chronic myeloid leukemia patients, one in B acute lymphoblastic leukemia (B-ALL and one with bifenotipic leukemia (BAL patient. AML1-ETO mRNA transcript of the t(8;21(q22;q22 was identified in two patients with acute myeloid leukemia (AML. The CBF β /MYH11 mRNA transcript specific for inv16(p13;q22 was obtained in AML patient with abnormal eozinofiles in bone marrow. MLL/AF4 mRNA transcript of the t(4;11(q21;q23 was found in the girl with B-ALL and in patient with B-ALL after treatment. In patients with B-ALL we found MLL/AF10 cDNA segment specific for t(10

  8. Gene mutations and genomic rearrangements in the mouse as a result of transposon mobilization from chromosomal concatemers.

    Directory of Open Access Journals (Sweden)

    Aron M Geurts

    2006-09-01

    Full Text Available Previous studies of the Sleeping Beauty (SB transposon system, as an insertional mutagen in the germline of mice, have used reverse genetic approaches. These studies have led to its proposed use for regional saturation mutagenesis by taking a forward-genetic approach. Thus, we used the SB system to mutate a region of mouse Chromosome 11 in a forward-genetic screen for recessive lethal and viable phenotypes. This work represents the first reported use of an insertional mutagen in a phenotype-driven approach. The phenotype-driven approach was successful in both recovering visible and behavioral mutants, including dominant limb and recessive behavioral phenotypes, and allowing for the rapid identification of candidate gene disruptions. In addition, a high frequency of recessive lethal mutations arose as a result of genomic rearrangements near the site of transposition, resulting from transposon mobilization. The results suggest that the SB system could be used in a forward-genetic approach to recover interesting phenotypes, but that local chromosomal rearrangements should be anticipated in conjunction with single-copy, local transposon insertions in chromosomes. Additionally, these mice may serve as a model for chromosome rearrangements caused by transposable elements during the evolution of vertebrate genomes.

  9. Chromosomal distribution patterns of the (AC)10microsatellite and other repetitive sequences, and their use in chromosome rearrangement analysis of species of the genus Avena.

    Science.gov (United States)

    Fominaya, Araceli; Loarce, Yolanda; Montes, Alexander; Ferrer, Esther

    2017-03-01

    Fluorescence in situ hybridization (FISH) was used to determine the physical location of the (AC) 10 microsatellite in metaphase chromosomes of six diploid species (AA or CC genomes), two tetraploid species (AACC genome), and five cultivars of two hexaploid species (AACCDD genome) of the genus Avena, a genus in which genomic relationships remain obscure. A preferential distribution of the (AC) 10 microsatellite in the pericentromeric and interstitial regions was seen in both the A- and D-genome chromosomes, while in C-genome chromosomes the majority of signals were located in the pericentromeric heterochromatic regions. New large chromosome rearrangements were detected in two polyploid species: an intergenomic translocation involving chromosomes 17AL and 21DS in Avena sativa 'Araceli' and another involving chromosomes 4CL and 21DS in the analyzed cultivars of Avena byzantina. The latter 4CL-21DS intergenomic translocation differentiates clearly between A. sativa and A. byzantina. Searches for common hybridization patterns on the chromosomes of different species revealed chromosome 10A of Avena magna and 21D of hexaploid oats to be very similar in terms of the distribution of 45S and Am1 sequences. This suggests a common origin for these chromosomes and supports a CCDD rather than an AACC genomic designation for this species.

  10. Ploidy influences cellular responses to gross chromosomal rearrangements in saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Lemoine Sophie

    2011-06-01

    Full Text Available Abstract Background Gross chromosomal rearrangements (GCRs such as aneuploidy are key factors in genome evolution as well as being common features of human cancer. Their role in tumour initiation and progression has not yet been completely elucidated and the effects of additional chromosomes in cancer cells are still unknown. Most previous studies in which Saccharomyces cerevisiae has been used as a model for cancer cells have been carried out in the haploid context. To obtain new insights on the role of ploidy, the cellular effects of GCRs were compared between the haploid and diploid contexts. Results A total number of 21 haploid and diploid S. cerevisiae strains carrying various types of GCRs (aneuploidies, nonreciprocal translocations, segmental duplications and deletions were studied with a view to determining the effects of ploidy on the cellular responses. Differences in colony and cell morphology as well as in the growth rates were observed between mutant and parental strains. These results suggest that cells are impaired physiologically in both contexts. We also investigated the variation in genomic expression in all the mutants. We observed that gene expression was significantly altered. The data obtained here clearly show that genes involved in energy metabolism, especially in the tricarboxylic acid cycle, are up-regulated in all these mutants. However, the genes involved in the composition of the ribosome or in RNA processing are down-regulated in diploids but up-regulated in haploids. Over-expression of genes involved in the regulation of the proteasome was found to occur only in haploid mutants. Conclusion The present comparisons between the cellular responses of strains carrying GCRs in different ploidy contexts bring to light two main findings. First, GCRs induce a general stress response in all studied mutants, regardless of their ploidy. Secondly, the ploidy context plays a crucial role in maintaining the stoichiometric balance

  11. Ionizing radiation sensitivity and the rate of gross chromosomal rearrangement in yeast

    International Nuclear Information System (INIS)

    Brown, J.A.; Brown, M.

    2003-01-01

    Full text: Many of the genes conferring resistance to DNA damage in the yeast Saccharomyces cerevisiae have been identified. The systematic deletion of every open reading frame presents the opportunity to make great strides in determining the physiological role of many genes whose function has remained elusive. The ability to discriminate among all of the strains carrying unique non-essential gene deletions in a pool has allowed us to screen for novel genes required for survival to ionizing radiation. Many of these genes have not yet been characterized. A possible role for these genes could be in the initial sensing of the double strand break introduced by ionizing radiation, the cell cycle arrest permitting the cell time for the repair process, or directly in the repair. A consequence of a failure of any of these functions could result in an increase in mutation rate as well the more detrimental gross chromosomal rearrangement (GCR). We tested the hypothesis that any gene which when deleted caused an increase in ionizing radiation sensitivity would also demonstrate an increase in mutation rate and GCR. This turned out not to be the case with many having no significant increase and one in particular which caused a significant decrease in GCR. Data on several of the more intriguing genes will be presented

  12. Formation of Nup98-containing nuclear bodies in HeLa sublines is linked to genomic rearrangements affecting chromosome 11.

    Science.gov (United States)

    Romana, Serge; Radford-Weiss, Isabelle; Lapierre, Jean-Michel; Doye, Valérie; Geoffroy, Marie-Claude

    2016-09-01

    Nup98 is an important component of the nuclear pore complex (NPC) and also a rare but recurrent target for chromosomal translocation in leukaemogenesis. Nup98 contains multiple cohesive Gly-Leu-Phe-Gly (GLFG) repeats that are critical notably for the formation of intranuclear GLFG bodies. Previous studies have reported the existence of GLFG bodies in cells overexpressing exogenous Nup98 or in a HeLa subline (HeLa-C) expressing an unusual elevated amount of endogenous Nup98. Here, we have analysed the presence of Nup98-containing bodies in several human cell lines. We found that HEp-2, another HeLa subline, contains GLFG bodies that are distinct from those identified in HeLa-C. Rapid amplification of cDNA ends (RACE) revealed that HEp-2 cells express additional truncated forms of Nup98 fused to a non-coding region of chromosome 11q22.1. Cytogenetic analyses using FISH and array-CGH further revealed chromosomal rearrangements that were distinct from those observed in leukaemic cells. Indeed, HEp-2 cells feature a massive amplification of juxtaposed NUP98 and 11q22.1 loci on a chromosome marker derived from chromosome 3. Unexpectedly, minor co-amplifications of NUP98 and 11q22.1 loci were also observed in other HeLa sublines, but on rearranged chromosomes 11. Altogether, this study reveals that distinct genomic rearrangements affecting NUP98 are associated with the formation of GLFG bodies in specific HeLa sublines.

  13. Multiplex fluorescence in situ hybridization identifies novel rearrangements of chromosomes 6, 15, and 18 in primary uveal melanoma.

    Science.gov (United States)

    Sisley, Karen; Tattersall, Nicola; Dyson, Michael; Smith, Kath; Mudhar, Hardeep S; Rennie, Ian G

    2006-09-01

    Uveal melanomas are the commonest ocular tumour of adults and are characterized by reproducible alterations of chromosomes 1, 3, 6 and 8. These alterations are of prognostic relevance and have also be shown to correlate to high risk and low risk metastatic categories of uveal melanoma as defined by micro-array analysis. It is, however, possible that a catalogue of relevant genetic alterations, involving gene rearrangement rather than amplification, have as yet eluded identification. To address this point we examined 14 primary uveal melanomas, using 24 colour multiplex fluorescence in situ hybridization (M-FISH). All tumours were karyotyped following G-Banding, and M-FISH was performed to confirm and clarify the identity of abnormal chromosomes. M-FISH data were obtained from all tumours and was able to establish the nature of most abnormalities not fully characterized by cytogenetics. Abnormalities of chromosome 6 were far more frequent than previously indicated, in approximately 70% of cases, indicating they have been substantially underrepresented in past studies of uveal melanoma. Spindle melanomas were found to have novel rearrangements affecting in particular chromosomes 6, 15 and 18, suggesting that juxtaposition of genes through translocational events may play a role in the development of some uveal melanomas. In conclusion, this study is the largest of primary uveal melanoma analysed by M-FISH and indicates that alterations of chromosome 6 have previously been underestimated. Furthermore spindle melanomas are prone to rearrangements affecting chromosomes 6, 15 and 18, which may relate to early changes in uveal melanoma development or associate with those melanomas of a more differentiated status.

  14. Polymorphisms, Chromosomal Rearrangements, and Mutator Phenotype Development during Experimental Evolution of Lactobacillus rhamnosus GG

    Science.gov (United States)

    Douillard, François P.; Ribbera, Angela; Xiao, Kun; Ritari, Jarmo; Rasinkangas, Pia; Paulin, Lars; Palva, Airi; Hao, Yanling

    2016-01-01

    ABSTRACT Lactobacillus rhamnosus GG is a lactic acid bacterium widely marketed by the food industry. Its genomic analysis led to the identification of a gene cluster encoding mucus-binding SpaCBA pili, which is located in a genomic island enriched in insertion sequence (IS) elements. In the present study, we analyzed by genome-wide resequencing the genomic integrity of L. rhamnosus GG in four distinct evolutionary experiments conducted for approximately 1,000 generations under conditions of no stress or salt, bile, and repetitive-shearing stress. Under both stress-free and salt-induced stress conditions, the GG population (excluding the mutator lineage in the stress-free series [see below]) accumulated only a few single nucleotide polymorphisms (SNPs) and no frequent chromosomal rearrangements. In contrast, in the presence of bile salts or repetitive shearing stress, some IS elements were found to be activated, resulting in the deletion of large chromosomal segments that include the spaCBA-srtC1 pilus gene cluster. Remarkably, a high number of SNPs were found in three strains obtained after 900 generations of stress-free growth. Detailed analysis showed that these three strains derived from a founder mutant with an altered DNA polymerase subunit that resulted in a mutator phenotype. The present work confirms the stability of the pilus production phenotype in L. rhamnosus GG under stress-free conditions, highlights the possible evolutionary scenarios that may occur when this probiotic strain is extensively cultured, and identifies external factors that affect the chromosomal integrity of GG. The results provide mechanistic insights into the stability of GG in regard to its extensive use in probiotic and other functional food products. IMPORTANCE Lactobacillus rhamnosus GG is a widely marketed probiotic strain that has been used in numerous clinical studies to assess its health-promoting properties. Hence, the stability of the probiotic functions of L. rhamnosus GG

  15. Polymorphisms, Chromosomal Rearrangements, and Mutator Phenotype Development during Experimental Evolution of Lactobacillus rhamnosus GG.

    Science.gov (United States)

    Douillard, François P; Ribbera, Angela; Xiao, Kun; Ritari, Jarmo; Rasinkangas, Pia; Paulin, Lars; Palva, Airi; Hao, Yanling; de Vos, Willem M

    2016-07-01

    Lactobacillus rhamnosus GG is a lactic acid bacterium widely marketed by the food industry. Its genomic analysis led to the identification of a gene cluster encoding mucus-binding SpaCBA pili, which is located in a genomic island enriched in insertion sequence (IS) elements. In the present study, we analyzed by genome-wide resequencing the genomic integrity of L. rhamnosus GG in four distinct evolutionary experiments conducted for approximately 1,000 generations under conditions of no stress or salt, bile, and repetitive-shearing stress. Under both stress-free and salt-induced stress conditions, the GG population (excluding the mutator lineage in the stress-free series [see below]) accumulated only a few single nucleotide polymorphisms (SNPs) and no frequent chromosomal rearrangements. In contrast, in the presence of bile salts or repetitive shearing stress, some IS elements were found to be activated, resulting in the deletion of large chromosomal segments that include the spaCBA-srtC1 pilus gene cluster. Remarkably, a high number of SNPs were found in three strains obtained after 900 generations of stress-free growth. Detailed analysis showed that these three strains derived from a founder mutant with an altered DNA polymerase subunit that resulted in a mutator phenotype. The present work confirms the stability of the pilus production phenotype in L. rhamnosus GG under stress-free conditions, highlights the possible evolutionary scenarios that may occur when this probiotic strain is extensively cultured, and identifies external factors that affect the chromosomal integrity of GG. The results provide mechanistic insights into the stability of GG in regard to its extensive use in probiotic and other functional food products. Lactobacillus rhamnosus GG is a widely marketed probiotic strain that has been used in numerous clinical studies to assess its health-promoting properties. Hence, the stability of the probiotic functions of L. rhamnosus GG is of importance, and

  16. Localization of preferential sites of rearrangement within the BCR gene in Philadelphia chromosome-positive acute lymphoblastic leukemia

    International Nuclear Information System (INIS)

    Denny, C.T.; Shah, N.P.; Ogden, S.; Willman, C.; McConnell, T.; Crist, W.; Carroll, A.; Witte, O.N.

    1989-01-01

    The Philadelphia chromosome associated with acute lymphoblastic leukemia (ALL) has been linked to a hybrid BCR/ABL protein product that differs from that found in chronic myelogenous leukemia. This implies that the molecular structures of the two chromosomal translocations also differ. Localization of translocation breakpoints in Philadelphia chromosome-positive ALL has been impeded due to the only partial characterization of the BCR locus. The authors have isolated the entire 130-kilobase BCR genomic locus from a human cosmid library. They have demonstrated that these breakpoints are all located at the 3' end of the intron around an unusual restriction fragment length polymorphism caused by deletion of a 1-kilobase fragment containing Alu family reiterated sequences. This clustering is unexpected in light of previous theories of rearrangement in Philadelphia chromosome-positive chronic myelogenous leukemia that would have predicted a random dispersion of breakpoints in the first intron in Philadelphia chromosome-positive ALL. The proximity of the translocation breakpoints to this constitutive deletion may indicate shared mechanisms of rearrangement or that such polymorphisms mark areas of the genome prone to recombination

  17. The genomic distribution of intraspecific and interspecific sequence divergence of human segmental duplications relative to human/chimpanzee chromosomal rearrangements

    Directory of Open Access Journals (Sweden)

    Eichler Evan E

    2008-08-01

    Full Text Available Abstract Background It has been suggested that chromosomal rearrangements harbor the molecular footprint of the biological phenomena which they induce, in the form, for instance, of changes in the sequence divergence rates of linked genes. So far, all the studies of these potential associations have focused on the relationship between structural changes and the rates of evolution of single-copy DNA and have tried to exclude segmental duplications (SDs. This is paradoxical, since SDs are one of the primary forces driving the evolution of structure and function in our genomes and have been linked not only with novel genes acquiring new functions, but also with overall higher DNA sequence divergence and major chromosomal rearrangements. Results Here we take the opposite view and focus on SDs. We analyze several of the features of SDs, including the rates of intraspecific divergence between paralogous copies of human SDs and of interspecific divergence between human SDs and chimpanzee DNA. We study how divergence measures relate to chromosomal rearrangements, while considering other factors that affect evolutionary rates in single copy DNA. Conclusion We find that interspecific SD divergence behaves similarly to divergence of single-copy DNA. In contrast, old and recent paralogous copies of SDs do present different patterns of intraspecific divergence. Also, we show that some relatively recent SDs accumulate in regions that carry inversions in sister lineages.

  18. Diagnosis of Familial Wolf-Hirschhorn Syndrome due to a Paternal Cryptic Chromosomal Rearrangement by Conventional and Molecular Cytogenetic Techniques

    Directory of Open Access Journals (Sweden)

    Carlos A. Venegas-Vega

    2013-01-01

    Full Text Available The use of conventional cytogenetic techniques in combination with fluorescent in situ hybridization (FISH and single-nucleotide polymorphism (SNP microarrays is necessary for the identification of cryptic rearrangements in the diagnosis of chromosomal syndromes. We report two siblings, a boy of 9 years and 9 months of age and his 7-years- and 5-month-old sister, with the classic Wolf-Hirschhorn syndrome (WHS phenotype. Using high-resolution GTG- and NOR-banding karyotypes, as well as FISH analysis, we characterized a pure 4p deletion in both sibs and a balanced rearrangement in their father, consisting in an insertion of 4p material within a nucleolar organizing region of chromosome 15. Copy number variant (CNV analysis using SNP arrays showed that both siblings have a similar size of 4p deletion (~6.5 Mb. Our results strongly support the need for conventional cytogenetic and FISH analysis, as well as high-density microarray mapping for the optimal characterization of the genetic imbalance in patients with WHS; parents must always be studied for recognizing cryptic balanced chromosomal rearrangements for an adequate genetic counseling.

  19. Intrachromosomal rearrangements in two representatives of the genus Saltator (Thraupidae, Passeriformes) and the occurrence of heteromorphic Z chromosomes.

    Science.gov (United States)

    dos Santos, Michelly da Silva; Kretschmer, Rafael; Silva, Fabio Augusto Oliveira; Ledesma, Mario Angel; O'Brien, Patricia C M; Ferguson-Smith, Malcolm A; Del Valle Garnero, Analía; de Oliveira, Edivaldo Herculano Corrêa; Gunski, Ricardo José

    2015-10-01

    Saltator is a genus within family Thraupidae, the second largest family of Passeriformes, with more than 370 species found exclusively in the New World. Despite this, only a few species have had their karyotypes analyzed, most of them only with conventional staining. The diploid number is close to 80, and chromosome morphology is similar to the usual avian karyotype. Recent studies using cross-species chromosome painting have shown that, although the chromosomal morphology and number are similar to many species of birds, Passeriformes exhibit a complex pattern of paracentric and pericentric inversions in the chromosome homologous to GGA1q in two different suborders, Oscines and Suboscines. Hence, considering the importance and species richness of Thraupidae, this study aims to analyze two species of genus Saltator, the golden-billed saltator (S. aurantiirostris) and the green-winged saltator (S. similis) by means of classical cytogenetics and cross-species chromosome painting using Gallus gallus and Leucopternis albicollis probes, and also 5S and 18S rDNA and telomeric sequences. The results show that the karyotypes of these species are similar to other species of Passeriformes. Interestingly, the Z chromosome appears heteromorphic in S. similis, varying in morphology from acrocentric to metacentric. 5S and 18S probes hybridize to one pair of microchromosomes each, and telomeric sequences produce signals only in the terminal regions of chromosomes. FISH results are very similar to the Passeriformes already analyzed by means of molecular cytogenetics (Turdus species and Elaenia spectabilis). However, the paracentric and pericentric inversions observed in Saltator are different from those detected in these species, an observation that helps to explain the probable sequence of rearrangements. As these rearrangements are found in both suborders of Passeriformes (Oscines and Suboscines), we propose that the fission of GGA1 and inversions in GGA1q have occurred very

  20. An unusual cytogenetic rearrangement originating from two different abnormalities in chromosome 6 in a child with acute promyelocytic leukemia.

    Science.gov (United States)

    Matos, R R C; Mkrtchyan, H; Amaral, B A S; Liehr, T; de Souza, M T; Ney-Garcia, D R; Santos, N; Marques-Salles, T J; Ribeiro, R C; Figueiredo, A F; Silva, M L M

    2013-01-01

    Acute promyelocytic leukemia (APL) is usually associated with a favorable outcome, but about 10% of patients tend to relapse. The genetic hallmark of APL is a balanced translocation involving chromosomes 15 and 17, and the PML-RARa gene fusion is found in more than 90% of these cases. Other chromosomal abnormalities are commonly found in APL, but their clinical significance has yet to be determined. Here we report a case of childhood APL that was studied by conventional cytogenetics along with molecular cytogenetic techniques. The patient showed a complex karyotype with an unusual cytogenetic rearrangement originating from two different abnormalities in a single chromosome 6. Our case is an exceptional example of a cryptic cytogenetic anomaly in APL and underscores the importance of detailed genetic characterization. Copyright © 2013 S. Karger AG, Basel.

  1. A paternally transmitted complex chromosomal rearrangement (CCR) involving chromosomes 2, 6, and 18 includes eight breakpoints and five insertional translocations (ITs) through three generations.

    Science.gov (United States)

    Gruchy, Nicolas; Barreau, Morgane; Kessler, Ketty; Gourdier, Dominique; Leporrier, Nathalie

    2010-01-01

    Complex chromosomal rearrangements (CCRs) are uncommon and mainly occur de novo. We report here on a familial CCR involving chromosomes 2, 6, and 18. The propositus is a boy first referred because of growth delays, hypotonia, and facial anomalies, suggestive of deletion 18q syndrome. However, a cytogenetic family study disclosed a balanced CCR in three generations, which was detailed by FISH using BAC clones, and consisted of eight breakpoints with five insertional translocations (ITs). The propositus had a cryptic 18q deletion and a 6p duplication. Paternal transmission of this CCR was observed through three generations without meiotic recombination. Our investigation allowed us to provide porosities counseling and management of prenatal diagnosis for propositus cousin who carries this particular CCR.

  2. BAC-FISH assays delineate complex chromosomal rearrangements in a case of post-Chernobyl childhood thyroid cancer.

    Directory of Open Access Journals (Sweden)

    Horst F Zitzelsberger

    2009-12-01

    Full Text Available Structural chromosome aberrations are known hallmarks of many solid tumors. In the papillary form of thyroid cancer (PTC, for example, activation of the receptor tyrosine kinase (RTK genes, RET and neurotrophic tyrosine kinase receptor type I (NTRK1 by intra- and interchromosomal rearrangements has been suggested as a cause of the disease. However, many phenotypically similar tumors do not carry an activated RET or NTRK-1 gene or express abnormal ret or NTRK-1 transcripts. Thus, we hypothesize that other cellular RTK-type genes are aberrantly expressed in these tumors. Using fluorescence in situ hybridization-based methods, we are studying karyotype changes in a relatively rare subgroup of PTCs, i.e., tumors that arose in children following the 1986 nuclear accident in Chernobyl, Ukraine. Here, we report our technical developments and progress in deciphering complex chromosome aberrations in case S48TK, an aggressively growing PTC cell line, which shows an unusual high number of unbalanced translocations.

  3. BAC-FISH assays delineate complex chromosomal rearrangements in a case of post-Chernobyl childhood thyroid cancer

    Energy Technology Data Exchange (ETDEWEB)

    Kwan, Johnson; Baumgartner, Adolf; Lu, Chun-Mei; Wang, Mei; Weier, Jingly F.; Zitzelsberger, Horst F.; Weier, Heinz-Ulrich G.

    2009-03-09

    Structural chromosome aberrations are known hallmarks of many solid tumors. In the papillary form of thyroid cancer (PTC), for example, activation of the receptor tyrosine kinase (RTK) genes, RET and neurotrophic tyrosine kinase receptor type I (NTRK1) by intra- and interchromosomal rearrangements has been suggested as a cause of the disease. However, many phenotypically similar tumors do not carry an activated RET or NTRK-1 gene or express abnormal ret or NTRK-1 transcripts. Thus, we hypothesize that other cellular RTK-type genes are aberrantly expressed in these tumors. Using fluorescence in situ hybridization-based methods, we are studying karyotype changes in a relatively rare subgroup of PTCs, i.e., tumors that arose in children following the 1986 nuclear accident in Chernobyl, Ukraine. Here, we report our technical developments and progress in deciphering complex chromosome aberrations in case S48TK, an aggressively growing PTC cell line, which shows an unusual high number of unbalanced translocations.

  4. Dynamic chromosomal rearrangements in Hodgkin's lymphoma are due to ongoing three-dimensional nuclear remodeling and breakage-bridge-fusion cycles.

    Science.gov (United States)

    Guffei, Amanda; Sarkar, Rahul; Klewes, Ludger; Righolt, Christiaan; Knecht, Hans; Mai, Sabine

    2010-12-01

    Hodgkin's lymphoma is characterized by the presence of mono-nucleated Hodgkin cells and bi- to multi-nucleated Reed-Sternberg cells. We have recently shown telomere dysfunction and aberrant synchronous/asynchronous cell divisions during the transition of Hodgkin cells to Reed-Sternberg cells.1 To determine whether overall changes in nuclear architecture affect genomic instability during the transition of Hodgkin cells to Reed-Sternberg cells, we investigated the nuclear organization of chromosomes in these cells. Three-dimensional fluorescent in situ hybridization revealed irregular nuclear positioning of individual chromosomes in Hodgkin cells and, more so, in Reed-Sternberg cells. We characterized an increasingly unequal distribution of chromosomes as mono-nucleated cells became multi-nucleated cells, some of which also contained chromosome-poor 'ghost' cell nuclei. Measurements of nuclear chromosome positions suggested chromosome overlaps in both types of cells. Spectral karyotyping then revealed both aneuploidy and complex chromosomal rearrangements: multiple breakage-bridge-fusion cycles were at the origin of the multiple rearranged chromosomes. This conclusion was challenged by super resolution three-dimensional structured illumination imaging of Hodgkin and Reed-Sternberg nuclei. Three-dimensional super resolution microscopy data documented inter-nuclear DNA bridges in multi-nucleated cells but not in mono-nucleated cells. These bridges consisted of chromatids and chromosomes shared by two Reed-Sternberg nuclei. The complexity of chromosomal rearrangements increased as Hodgkin cells developed into multi-nucleated cells, thus indicating tumor progression and evolution in Hodgkin's lymphoma, with Reed-Sternberg cells representing the highest complexity in chromosomal rearrangements in this disease. This is the first study to demonstrate nuclear remodeling and associated genomic instability leading to the generation of Reed-Sternberg cells of Hodgkin's lymphoma

  5. Impediment of Replication Forks by Long Non-coding RNA Provokes Chromosomal Rearrangements by Error-Prone Restart

    Directory of Open Access Journals (Sweden)

    Takaaki Watanabe

    2017-11-01

    Full Text Available Naturally stalled replication forks are considered to cause structurally abnormal chromosomes in tumor cells. However, underlying mechanisms remain speculative, as capturing naturally stalled forks has been a challenge. Here, we captured naturally stalled forks in tumor cells and delineated molecular processes underlying the structural evolution of circular mini-chromosomes (double-minute chromosomes; DMs. Replication forks stalled on the DM by the co-directional collision with the transcription machinery for long non-coding RNA. RPA, BRCA2, and DNA polymerase eta (Polη were recruited to the stalled forks. The recruitment of Polη was critical for replication to continue, as Polη knockdown resulted in DM loss. Rescued stalled forks were error-prone and switched replication templates repeatedly to create complex fusions of multiple short genomic segments. In mice, such complex fusions circularized the genomic region surrounding MYC to create a DM during tumorigenesis. Our results define a molecular path that guides stalled replication forks to complex chromosomal rearrangements.

  6. A familial Cri-du-Chat/5p deletion syndrome resulted from rare maternal complex chromosomal rearrangements (CCRs and/or possible chromosome 5p chromothripsis.

    Directory of Open Access Journals (Sweden)

    Heng Gu

    Full Text Available Cri-du-Chat syndrome (MIM 123450 is a chromosomal syndrome characterized by the characteristic features, including cat-like cry and chromosome 5p deletions. We report a family with five individuals showing chromosomal rearrangements involving 5p, resulting from rare maternal complex chromosomal rearrangements (CCRs, diagnosed post- and pre-natally by comprehensive molecular and cytogenetic analyses. Two probands, including a 4½-year-old brother and his 2½-year- old sister, showed no diagnostic cat cry during infancy, but presented with developmental delay, dysmorphic and autistic features. Both patients had an interstitial deletion del(5(p13.3p15.33 spanning ≈ 26.22 Mb. The phenotypically normal mother had de novo CCRs involving 11 breakpoints and three chromosomes: ins(11;5 (q23;p14.1p15.31,ins(21;5(q21;p13.3p14.1,ins(21;5(q21;p15.31p15.33,inv(7(p22q32dn. In addition to these two children, she had three first-trimester miscarriages, two terminations due to the identification of the 5p deletion and one delivery of a phenotypically normal daughter. The unaffected daughter had the maternal ins(11;5 identified prenatally and an identical maternal allele haplotype of 5p. Array CGH did not detect any copy number changes in the mother, and revealed three interstitial deletions within 5p15.33-p13.3, in the unaffected daughter, likely products of the maternal insertions ins(21;5. Chromothripsis has been recently reported as a mechanism drives germline CCRs in pediatric patients with congenital defects. We postulate that the unique CCRs in the phenotypically normal mother could resulted from chromosome 5p chromothripsis, that further resulted in the interstitial 5p deletions in the unaffected daughter. Further high resolution sequencing based analysis is needed to determine whether chromothripsis is also present as a germline structural variation in phenotypically normal individuals in this family.

  7. The diverse effects of complex chromosome rearrangements and chromothripsis in cancer development

    NARCIS (Netherlands)

    De Pagter, Mirjam S.; Kloosterman, Wigard P.

    2015-01-01

    In recent years, enormous progress has been made with respect to the identification of somatic mutations that contribute to cancer development. Mutation types range from small substitutions to large structural genomic rearrangements, including complex reshuffling of the genome. Sets of mutations in

  8. Complex rearrangement of chromosomes 6 and 11 as the sole anomaly in atypical teratoid/rhabdoid tumors of the central nervous system.

    Science.gov (United States)

    Lopez-Gines, C; Cerda-Nicolas, M; Kepes, J; Donat, J; Gil-Benso, R; Llombart-Bosch, A

    2000-10-15

    Atypical teratoid/rhabdoid tumor of the central nervous system is a rare childhood tumor with a distinct histologic appearance and an aggressive clinical course. Few tumors have been analyzed cytogenetically. The only consistent chromosomal abnormality identified in some of these tumors has been monosomy or deletions of chromosome 22; in others, a normal chromosome 22 was present. The authors report an atypical teratoid/rhabdoid neoplasm of the central nervous system with a novel complex rearrangement affecting chromosomes 6 and 11 as the sole anomaly. The involvement of region 11p15 could be important in the pathogenesis of this entity.

  9. Complex chromosome rearrangements related 15q14 microdeletion plays a relevant role in phenotype expression and delineates a novel recurrent syndrome

    Directory of Open Access Journals (Sweden)

    Tomaiuolo Anna

    2011-04-01

    Full Text Available Abstract Complex chromosome rearrangements are constitutional structural rearrangements involving three or more chromosomes or having more than two breakpoints. These are rarely seen in the general population but their frequency should be much higher due to balanced states with no phenotypic presentation. These abnormalities preferentially occur de novo during spermatogenesis and are transmitted in families through oogenesis. Here, we report a de novo complex chromosome rearrangement that interests eight chromosomes in eighteen-year-old boy with an abnormal phenotype consisting in moderate developmental delay, cleft palate, and facial dysmorphisms. Standard G-banding revealed four apparently balanced traslocations involving the chromosomes 1;13, 3;19, 9;15 and 14;18 that appeared to be reciprocal. Array-based comparative genomic hybridization analysis showed no imbalances at all the breakpoints observed except for an interstitial microdeletion on chromosome 15. This deletion is 1.6 Mb in size and is located at chromosome band 15q14, distal to the Prader-Willi/Angelman region. Comparing the features of our patient with published reports of patients with 15q14 deletion this finding corresponds to the smallest genomic region of overlap. The deleted segment at 15q14 was investigated for gene content.

  10. Application of molecular cytogenetic techniques to clarify apparently balanced complex chromosomal rearrangements in two patients with an abnormal phenotype: case report

    Directory of Open Access Journals (Sweden)

    Rongen Michel A

    2009-07-01

    Full Text Available Abstract Background Complex chromosomal rearrangements (CCR are rare cytogenetic findings that are difficult to karyotype by conventional cytogenetic analysis partially because of the relative low resolution of this technique. High resolution genotyping is necessary in order to identify cryptic imbalances, for instance near the multiple breakpoints, to explain the abnormal phenotype in these patients. We applied several molecular techniques to elucidate the complexity of the CCRs of two adult patients with abnormal phenotypes. Results Multicolour fluorescence in situ hybridization (M-FISH showed that in patient 1 the chromosomes 1, 10, 15 and 18 were involved in the rearrangement whereas for patient 2 the chromosomes 5, 9, 11 and 13 were involved. A 250 k Nsp1 SNP-array analysis uncovered a deletion in chromosome region 10p13 for patient 1, harbouring 17 genes, while patient 2 showed no pathogenic gains or losses. Additional FISH analysis with locus specific BAC-probes was performed, leading to the identification of cryptic interstitial structural rearrangements in both patients. Conclusion Application of M-FISH and SNP-array analysis to apparently balanced CCRs is useful to delineate the complex chromosomal rearrangement in detail. However, it does not always identify cryptic imbalances as an explanation for the abnormal phenotype in patients with a CCR.

  11. Systematic characterisation of disease associated balanced chromosome rearrangements by FISH: cytogenetically and genetically anchored YACs identify microdeletions and candidate regions for mental retardation genes

    DEFF Research Database (Denmark)

    Wirth, J; Nothwang, H G; van der Maarel, S

    1999-01-01

    Disease associated balanced chromosome rearrangements (DBCRs) have been instrumental in the isolation of many disease genes. To facilitate the molecular cytogenetic characterisation of DBCRs, we have generated a set of >1200 non-chimeric, cytogenetically and genetically anchored CEPH YACs...... the Mendelian Cytogenetics Network (MCN), a collaborative effort of, at present, 270 cytogenetic laboratories throughout the world. In this pilot study, we have characterised 10 different MR associated chromosome regions delineating candidate regions for MR. Five of these regions are narrowed to breakpoint...

  12. Chromosome painting shows that skunks (Mephitidae, Carnivora) have highly rearranged karyotypes.

    Science.gov (United States)

    Perelman, P L; Graphodatsky, A S; Dragoo, J W; Serdyukova, N A; Stone, G; Cavagna, P; Menotti, A; Nie, W; O'Brien, P C M; Wang, J; Burkett, S; Yuki, K; Roelke, M E; O'Brien, S J; Yang, F; Stanyon, R

    2008-01-01

    The karyotypic relationships of skunks (Mephitidae) with other major clades of carnivores are not yet established. Here, multi-directional chromosome painting was used to reveal the karyological relationships among skunks and between Mephitidae (skunks) and Procyonidae (raccoons). Representative species from three genera of Mephitidae (Mephitis mephitis, 2n = 50; Mephitis macroura, 2n = 50; Conepatus leuconotus, 2n = 46; Spilogale gracilis, 2n = 60) and one species of Procyonidae (Procyon lotor, 2n = 38) were studied. Chromosomal homology was mapped by hybridization of five sets of whole-chromosome paints derived from stone marten (Martes foina, 2n = 38), cat, skunks (M. mephitis; M. macroura) and human. The karyotype of the raccoon is highly conserved and identical to the hypothetical ancestral musteloid karyotype, suggesting that procyonids have a particular importance for establishing the karyological evolution within the caniforms. Ten fission events and five fusion events are necessary to generate the ancestral skunk karyotype from the ancestral carnivore karyotype. Our results show that Mephitidae joins Canidae and Ursidae as the third family of carnivores that are characterized by a high rate of karyotype evolution. Shared derived chromosomal fusion of stone marten chromosomes 6 and 14 phylogenetically links the American hog-nosed skunk and eastern spotted skunk.

  13. RET/PTC and PAX8/PPARγ chromosomal rearrangements in post-Chernobyl thyroid cancer and their association with I-131 radiation dose and other characteristics

    Science.gov (United States)

    Leeman-Neill, Rebecca J.; Brenner, Alina V.; Little, Mark P.; Bogdanova, Tetiana I.; Hatch, Maureen; Zurnadzy, Liudmyla Y.; Mabuchi, Kiyohiko; Tronko, Mykola D.; Nikiforov, Yuri E.

    2012-01-01

    Background Childhood exposure to I-131 from the 1986 Chernobyl accident led to a sharp increase in papillary thyroid carcinoma (PTC) incidence in regions surrounding the reactor. Data concerning the association between genetic mutations in PTCs and individual radiation doses are limited. Methods We performed mutational analysis of 62 PTCs diagnosed in a Ukrainian cohort of patients who were Chernobyl tumors and show different associations for point mutations and chromosomal rearrangements with I-131 dose and other factors. These data support the relationship between chromosomal rearrangements, but not point mutations, and I-131 exposure and point to a possible role of iodine deficiency in generation of RET/PTC rearrangements in these patients. PMID:23436219

  14. Nested Inversion Polymorphisms Predispose Chromosome 22q11.2 to Meiotic Rearrangements

    NARCIS (Netherlands)

    Demaerel, Wolfram; Hestand, Matthew S.; Vergaelen, Elfi; Swillen, Ann; López-Sánchez, Marcos; Pérez-Jurado, Luis A.; McDonald-Mcginn, Donna M.; Zackai, Elaine; Emanuel, Beverly S.; Morrow, Bernice E.; Breckpot, Jeroen; Devriendt, Koenraad; Vermeesch, Joris R.; Antshel, Kevin M.; Arango, Celso; Armando, Marco; Bassett, Anne S.; Bearden, Carrie E.; Boot, Erik; Bravo-Sanchez, Marta; Breetvelt, Elemi; Busa, Tiffany; Butcher, Nancy J.; Campbell, Linda E.; Carmel, Miri; Chow, Eva W C; Crowley, T. Blaine; Cubells, Joseph; Cutler, David; Demaerel, Wolfram; Digilio, Maria Cristina; Duijff, Sasja; Eliez, Stephan; Emanuel, Beverly S.; Epstein, Michael P.; Evers, Rens; Fernandez Garcia-Moya, Luis; Fiksinski, Ania; Fraguas, David; Fremont, Wanda; Fritsch, Rosemarie; Garcia-Minaur, Sixto; Golden, Aaron; Gothelf, Doron; Guo, Tingwei; Gur, Ruben C.; Gur, Raquel E.; Heine-Suner, Damian; Hestand, Matthew; Hooper, Stephen R.; Kates, Wendy R.; Kushan, Leila; Laorden-Nieto, Alejandra; Maeder, Johanna; Marino, Bruno; Marshall, Christian R.; McCabe, Kathryn; McDonald-Mcginn, Donna M.; Michaelovosky, Elena; Morrow, Bernice E.; Moss, Edward; Mulle, Jennifer; Murphy, Declan; Murphy, Kieran C.; Murphy, Clodagh M.; Niarchou, Maria; Ornstein, Claudia; Owen, Michael J; Philip, Nicole; Repetto, Gabriela M.; Schneider, Maude; Shashi, Vandana; Simon, Tony J.; Swillen, Ann; Tassone, Flora; Unolt, Marta; Van Amelsvoort, Therese; van den Bree, Marianne B M; Van Duin, Esther; Vergaelen, Elfi; Vermeesch, Joris R.; Vicari, Stefano; Vingerhoets, Claudia; Vorstman, Jacob; Warren, Steve; Weinberger, Ronnie; Weisman, Omri; Weizman, Abraham; Zackai, Elaine; Zhang, Zhengdong; Zwick, Michael

    2017-01-01

    Inversion polymorphisms between low-copy repeats (LCRs) might predispose chromosomes to meiotic non-allelic homologous recombination (NAHR) events and thus lead to genomic disorders. However, for the 22q11.2 deletion syndrome (22q11.2DS), the most common genomic disorder, no such inversions have

  15. Epilepsy and chromosomal rearrangements in Smith-Magenis Syndrome [del(17)(p11.2p11.2)].

    Science.gov (United States)

    Goldman, Alica M; Potocki, Lorraine; Walz, Katherina; Lynch, Jennifer K; Glaze, Daniel G; Lupski, James R; Noebels, Jeffrey L

    2006-02-01

    Smith-Magenis syndrome is a multiple congenital anomalies/mental retardation syndrome associated with a heterozygous deletion of chromosome 17p11.2. Seizures have not been formally studied in this population. Our objectives were to estimate the prevalence of seizures and electroencephalographic (EEG) epileptiform abnormalities in patients with Smith-Magenis syndrome with defined chromosomal rearrangements and to describe the spectrum of abnormal EEG patterns. Prolonged video-EEGs were obtained in 60 patients. Eighteen percent of patients reported a seizure history; however, abnormal EEGs were identified in 31 of the 60 subjects and 27 of 31 were epileptiform. Generalized epileptiform patterns were the most common (73%). Most patients with either small or large deletions had an abnormal EEG (83%; 75%) in contrast to those with a common deletion (49%). Our results indicate that epileptiform EEG abnormalities are frequent in patients with Smith-Magenis syndrome. Considering that close to one third of individuals with Smith-Magenis syndrome with epileptiform abnormalities also had a history of clinical seizures, cortical hyperexcitability and epilepsy should be considered an important component of the Smith-Magenis syndrome clinical phenotype.

  16. Chromosomal rearrangements and protein globularity changes in Mycobacterium tuberculosis isolates from cerebrospinal fluid

    Directory of Open Access Journals (Sweden)

    Seow Hoon Saw

    2016-09-01

    Full Text Available Background Meningitis is a major cause of mortality in tuberculosis (TB. It is not clear what factors promote central nervous system invasion and pathology but it has been reported that certain strains of Mycobacterium tuberculosis (Mtb might have genetic traits associated with neurotropism. Methods In this study, we generated whole genome sequences of eight clinical strains of Mtb that were isolated from the cerebrospinal fluid (CSF of patients presenting with tuberculous meningitis (TBM in Malaysia, and compared them to the genomes of H37Rv and other respiratory Mtb genomes either downloaded from public databases or extracted from local sputum isolates. We aimed to find genomic features that might be distinctly different between CSF-derived and respiratory Mtb. Results Genome-wide comparisons revealed rearrangements (translocations, inversions, insertions and deletions and non-synonymous SNPs in our CSF-derived strains that were not observed in the respiratory Mtb genomes used for comparison. These rearranged segments were rich in genes for PE (proline-glutamate/PPE (proline-proline-glutamate, transcriptional and membrane proteins. Similarly, most of the ns SNPs common in CSF strains were noted in genes encoding PE/PPE proteins. Protein globularity differences were observed among mycobacteria from CSF and respiratory sources and in proteins previously reported to be associated with TB meningitis. Transcription factors and other transcription regulators featured prominently in these proteins. Homologs of proteins associated with Streptococcus pneumoniae meningitis and Neisseria meningitidis virulence were identified in neuropathogenic as well as respiratory mycobacterial spp. examined in this study. Discussion The occurrence of in silico genetic differences in CSF-derived but not respiratory Mtb suggests their possible involvement in the pathogenesis of TBM. However, overall findings in this comparative analysis support the postulation that TB

  17. Lack of satellite DNA species-specific homogenization and relationship to chromosomal rearrangements in monitor lizards (Varanidae, Squamata).

    Science.gov (United States)

    Prakhongcheep, Ornjira; Thapana, Watcharaporn; Suntronpong, Aorarat; Singchat, Worapong; Pattanatanang, Khampee; Phatcharakullawarawat, Rattanin; Muangmai, Narongrit; Peyachoknagul, Surin; Matsubara, Kazumi; Ezaz, Tariq; Srikulnath, Kornsorn

    2017-08-16

    Satellite DNAs (stDNAs) are highly repeated sequences that constitute large portions of any genome. The evolutionary dynamics of stDNA (e.g. copy number, nucleotide sequence, location) can, therefore, provide an insight into genome organization and evolution. We investigated the evolutionary origin of VSAREP stDNA in 17 monitor lizards (seven Asian, five Australian, and five African) at molecular and cytogenetic level. Results revealed that VSAREP is conserved in the genome of Asian and Australian varanids, but not in African varanids, suggesting that these sequences are either differentiated or lost in the African varanids. Phylogenetic and arrangement network analyses revealed the existence of at least four VSAREP subfamilies. The similarity of each sequence unit within the same VSAREP subfamily from different species was higher than those of other VSAREP subfamilies belonging to the same species. Additionally, all VSAREP subfamilies isolated from the three Australian species (Varanus rosenbergi, V. gouldii, and V. acanthurus) were co-localized near the centromeric or pericentromeric regions of the macrochromosomes, except for chromosomes 3 and 4 in each Australian varanid. However, their chromosomal arrangements were different among species. The VSAREP stDNA family lack homogenized species-specific nucleotide positions in varanid lineage. Most VSAREP sequences were shared among varanids within the four VSAREP subfamilies. This suggests that nucleotide substitutions in each varanid species accumulated more slowly than homogenization rates in each VSAREP subfamily, resulting in non-species-specific evolution of stDNA profiles. Moreover, changes in location of VSAREP stDNA in each Australian varanid suggests a correlation with chromosomal rearrangements, leading to karyotypic differences among these species.

  18. Chromosomal rearrangements in interspecific hybrids between Nicotiana gossei Domin and N. tabacum L., obtained by crossing with pollen exposed to helium ion beams or gamma-rays

    Energy Technology Data Exchange (ETDEWEB)

    Kitamura, S. E-mail: kitamura@taka.jaeri.go.jp; Inoue, M.; Ohmido, N.; Fukui, K.; Tanaka, A

    2003-05-01

    It is very difficult to obtain interspecific hybrids between Nicotiana tabacum L. (2n=48) and N. gossei Domin (2n=36), because of strong cross incompatibility. We had already obtained interspecific hybrids between these two species, crossing N. gossei flower with N. tabacum pollen exposed to He ions or gamma-rays. Here, we analyze chromosome constitution of these hybrids by genomic in situ hybridization. In root tip cells of the two hybrids obtained with He ion exposure, most mitotic cells contained 18 chromosomes of N. gossei and 24 chromosomes of N. tabacum. However, in some cells, translocations and insertions between parental genomes were observed. On the other hand, in a hybrid obtained by gamma-ray irradiation, intergenomic rearrangements were not observed, although mitotic cells showed 19 hybridization signals with N. gossei DNA in 41 chromosomes. Such chromosomal changes in structure or constitution may be related to overcoming cross incompatibility between these two species.

  19. Chromosomal rearrangements in interspecific hybrids between Nicotiana gossei Domin and N. tabacum L., obtained by crossing with pollen exposed to helium ion beams or gamma-rays

    International Nuclear Information System (INIS)

    Kitamura, S.; Inoue, M.; Ohmido, N.; Fukui, K.; Tanaka, A.

    2003-01-01

    It is very difficult to obtain interspecific hybrids between Nicotiana tabacum L. (2n=48) and N. gossei Domin (2n=36), because of strong cross incompatibility. We had already obtained interspecific hybrids between these two species, crossing N. gossei flower with N. tabacum pollen exposed to He ions or gamma-rays. Here, we analyze chromosome constitution of these hybrids by genomic in situ hybridization. In root tip cells of the two hybrids obtained with He ion exposure, most mitotic cells contained 18 chromosomes of N. gossei and 24 chromosomes of N. tabacum. However, in some cells, translocations and insertions between parental genomes were observed. On the other hand, in a hybrid obtained by gamma-ray irradiation, intergenomic rearrangements were not observed, although mitotic cells showed 19 hybridization signals with N. gossei DNA in 41 chromosomes. Such chromosomal changes in structure or constitution may be related to overcoming cross incompatibility between these two species

  20. Chromosome Rearrangements in Cornelia de Lange Syndrome (CdLS): Report of a der(3)t(3;12)(p25.3;p13.3) in Two Half Sibs With Features of CdLS and Review of Reported CdLS Cases With Chromosome Rearrangements

    Science.gov (United States)

    DeScipio, Cheryl; Kaur, Maninder; Yaeger, Dinah; Innis, Jeffrey W.; Spinner, Nancy B.; Jackson, Laird G.; Krantz, Ian D.

    2016-01-01

    Cornelia de Lange syndrome (CdLS; OMIM 122470) is a dominantly inherited disorder characterized by multisystem involvement, cognitive delay, limb defects, and characteristic facial features. Recently, mutations in NIPBL have been found in ~50% of individuals with CdLS. Numerous chromosomal rearrangements have been reported in individuals with CdLS. These rearrangements may be causative of a CdLS phenotype, result in a phenocopy, or be unrelated to the observed phenotype. We describe two half siblings with a der(3)t(3;12)(p25.3;p13.3) chromosomal rearrangement, clinical features resembling CdLS, and phenotypic overlap with the del(3)(p25) phenotype. Region-specific BAC probes were used to fine-map the breakpoint region by fluorescence in situ hybridization (FISH). FISH analysis places the chromosome 3 breakpoint distal to RP11-115G3 on 3p25.3; the chromosome 12 breakpoint is distal to BAC RP11-88D16 on 12p13.3. A review of published cases of terminal 3p deletions and terminal 12p duplications indicates that the findings in these siblings are consistent with the del(3)(p25) phenotype. Given the phenotypic overlap with CdLS, we have reviewed the reported cases of chromosomal rearrangements involved in CdLS to better elucidate other potential loci that could harbor additional CdLS genes. Additionally, to identify chromosome rearrangements, genome-wide array comparative genomic hybridization (CGH) was performed on eight individuals with typical CdLS and without identifiable deletion or mutation of NIPBL. No pathologic rearrangements were identified. PMID:16075459

  1. Interclonal variations in the molecular karyotype of Trypanosoma cruzi: chromosome rearrangements in a single cell-derived clone of the G strain.

    Science.gov (United States)

    Lima, Fabio Mitsuo; Souza, Renata Torres; Santori, Fábio Rinaldo; Santos, Michele Fernandes; Cortez, Danielle Rodrigues; Barros, Roberto Moraes; Cano, Maria Isabel; Valadares, Helder Magno Silva; Macedo, Andréa Mara; Mortara, Renato Arruda; da Silveira, José Franco

    2013-01-01

    Trypanosoma cruzi comprises a pool of populations which are genetically diverse in terms of DNA content, growth and infectivity. Inter- and intra-strain karyotype heterogeneities have been reported, suggesting that chromosomal rearrangements occurred during the evolution of this parasite. Clone D11 is a single-cell-derived clone of the T. cruzi G strain selected by the minimal dilution method and by infecting Vero cells with metacyclic trypomastigotes. Here we report that the karyotype of clone D11 differs from that of the G strain in both number and size of chromosomal bands. Large chromosomal rearrangement was observed in the chromosomes carrying the tubulin loci. However, most of the chromosome length polymorphisms were of small amplitude, and the absence of one band in clone D11 in relation to its reference position in the G strain could be correlated to the presence of a novel band migrating above or below this position. Despite the presence of chromosomal polymorphism, large syntenic groups were conserved between the isolates. The appearance of new chromosomal bands in clone D11 could be explained by chromosome fusion followed by a chromosome break or interchromosomal exchange of large DNA segments. Our results also suggest that telomeric regions are involved in this process. The variant represented by clone D11 could have been induced by the stress of the cloning procedure or could, as has been suggested for Leishmania infantum, have emerged from a multiclonal, mosaic parasite population submitted to frequent DNA amplification/deletion events, leading to a 'mosaic' structure with different individuals having differently sized versions of the same chromosomes. If this is the case, the variant represented by clone D11 would be better adapted to survive the stress induced by cloning, which includes intracellular development in the mammalian cell. Karyotype polymorphism could be part of the T. cruzi arsenal for responding to environmental pressure.

  2. Multiple chromosomal rearrangements structured the ancestral vertebrate Hox-bearing protochromosomes.

    Directory of Open Access Journals (Sweden)

    Vincent J Lynch

    2009-01-01

    Full Text Available While the proposal that large-scale genome expansions occurred early in vertebrate evolution is widely accepted, the exact mechanisms of the expansion--such as a single or multiple rounds of whole genome duplication, bloc chromosome duplications, large-scale individual gene duplications, or some combination of these--is unclear. Gene families with a single invertebrate member but four vertebrate members, such as the Hox clusters, provided early support for Ohno's hypothesis that two rounds of genome duplication (the 2R-model occurred in the stem lineage of extant vertebrates. However, despite extensive study, the duplication history of the Hox clusters has remained unclear, calling into question its usefulness in resolving the role of large-scale gene or genome duplications in early vertebrates. Here, we present a phylogenetic analysis of the vertebrate Hox clusters and several linked genes (the Hox "paralogon" and show that different phylogenies are obtained for Dlx and Col genes than for Hox and ErbB genes. We show that these results are robust to errors in phylogenetic inference and suggest that these competing phylogenies can be resolved if two chromosomal crossover events occurred in the ancestral vertebrate. These results resolve conflicting data on the order of Hox gene duplications and the role of genome duplication in vertebrate evolution and suggest that a period of genome reorganization occurred after genome duplications in early vertebrates.

  3. Chromosome Evolution in the Free-Living Flatworms: First Evidence of Intrachromosomal Rearrangements in Karyotype Evolution of Macrostomum lignano (Platyhelminthes, Macrostomida).

    Science.gov (United States)

    Zadesenets, Kira S; Ershov, Nikita I; Berezikov, Eugene; Rubtsov, Nikolay B

    2017-10-30

    The free-living flatworm Macrostomum lignano is a hidden tetraploid. Its genome was formed by a recent whole genome duplication followed by chromosome fusions. Its karyotype (2n = 8) consists of a pair of large chromosomes (MLI1), which contain regions of all other chromosomes, and three pairs of small metacentric chromosomes. Comparison of MLI1 with metacentrics was performed by painting with microdissected DNA probes and fluorescent in situ hybridization of unique DNA fragments. Regions of MLI1 homologous to small metacentrics appeared to be contiguous. Besides the loss of DNA repeat clusters (pericentromeric and telomeric repeats and the 5S rDNA cluster) from MLI1, the difference between small metacentrics MLI2 and MLI4 and regions homologous to them in MLI1 were revealed. Abnormal karyotypes found in the inbred DV1/10 subline were analyzed, and structurally rearranged chromosomes were described with the painting technique, suggesting the mechanism of their origin. The revealed chromosomal rearrangements generate additional diversity, opening the way toward massive loss of duplicated genes from a duplicated genome. Our findings suggest that the karyotype of M. lignano is in the early stage of genome diploidization after whole genome duplication, and further studies on M. lignano and closely related species can address many questions about karyotype evolution in animals.

  4. Chromosome Evolution in the Free-Living Flatworms: First Evidence of Intrachromosomal Rearrangements in Karyotype Evolution of Macrostomum lignano (Platyhelminthes, Macrostomida

    Directory of Open Access Journals (Sweden)

    Kira S. Zadesenets

    2017-10-01

    Full Text Available The free-living flatworm Macrostomum lignano is a hidden tetraploid. Its genome was formed by a recent whole genome duplication followed by chromosome fusions. Its karyotype (2n = 8 consists of a pair of large chromosomes (MLI1, which contain regions of all other chromosomes, and three pairs of small metacentric chromosomes. Comparison of MLI1 with metacentrics was performed by painting with microdissected DNA probes and fluorescent in situ hybridization of unique DNA fragments. Regions of MLI1 homologous to small metacentrics appeared to be contiguous. Besides the loss of DNA repeat clusters (pericentromeric and telomeric repeats and the 5S rDNA cluster from MLI1, the difference between small metacentrics MLI2 and MLI4 and regions homologous to them in MLI1 were revealed. Abnormal karyotypes found in the inbred DV1/10 subline were analyzed, and structurally rearranged chromosomes were described with the painting technique, suggesting the mechanism of their origin. The revealed chromosomal rearrangements generate additional diversity, opening the way toward massive loss of duplicated genes from a duplicated genome. Our findings suggest that the karyotype of M. lignano is in the early stage of genome diploidization after whole genome duplication, and further studies on M. lignano and closely related species can address many questions about karyotype evolution in animals.

  5. Chromosome rearrangements, recombination suppression, and limited segregation distortion in hybrids between Yellowstone cutthroat trout (Oncorhynchus clarkii bouvieri) and rainbow trout (O. mykiss).

    Science.gov (United States)

    Ostberg, Carl O; Hauser, Lorenz; Pritchard, Victoria L; Garza, John C; Naish, Kerry A

    2013-08-22

    Introgressive hybridization is an important evolutionary process that can lead to the creation of novel genome structures and thus potentially new genetic variation for selection to act upon. On the other hand, hybridization with introduced species can threaten native species, such as cutthroat trout (Oncorhynchus clarkii) following the introduction of rainbow trout (O. mykiss). Neither the evolutionary consequences nor conservation implications of rainbow trout introgression in cutthroat trout is well understood. Therefore, we generated a genetic linkage map for rainbow-Yellowstone cutthroat trout (O. clarkii bouvieri) hybrids to evaluate genome processes that may help explain how introgression affects hybrid genome evolution. The hybrid map closely aligned with the rainbow trout map (a cutthroat trout map does not exist), sharing all but one linkage group. This linkage group (RYHyb20) represented a fusion between an acrocentric (Omy28) and a metacentric chromosome (Omy20) in rainbow trout. Additional mapping in Yellowstone cutthroat trout indicated the two rainbow trout homologues were fused in the Yellowstone genome. Variation in the number of hybrid linkage groups (28 or 29) likely depended on a Robertsonian rearrangement polymorphism within the rainbow trout stock. Comparison between the female-merged F₁ map and a female consensus rainbow trout map revealed that introgression suppressed recombination across large genomic regions in 5 hybrid linkage groups. Two of these linkage groups (RYHyb20 and RYHyb25_29) contained confirmed chromosome rearrangements between rainbow and Yellowstone cutthroat trout indicating that rearrangements may suppress recombination. The frequency of allelic and genotypic segregation distortion varied among parents and families, suggesting few incompatibilities exist between rainbow and Yellowstone cutthroat trout genomes. Chromosome rearrangements suppressed recombination in the hybrids. This result supports several previous

  6. Chromosome rearrangements, recombination suppression, and limited segregation distortion in hybrids between Yellowstone cutthroat trout (Oncorhynchus clarkii bouvieri) and rainbow trout (O. mykiss)

    Science.gov (United States)

    2013-01-01

    Background Introgressive hybridization is an important evolutionary process that can lead to the creation of novel genome structures and thus potentially new genetic variation for selection to act upon. On the other hand, hybridization with introduced species can threaten native species, such as cutthroat trout (Oncorhynchus clarkii) following the introduction of rainbow trout (O. mykiss). Neither the evolutionary consequences nor conservation implications of rainbow trout introgression in cutthroat trout is well understood. Therefore, we generated a genetic linkage map for rainbow-Yellowstone cutthroat trout (O. clarkii bouvieri) hybrids to evaluate genome processes that may help explain how introgression affects hybrid genome evolution. Results The hybrid map closely aligned with the rainbow trout map (a cutthroat trout map does not exist), sharing all but one linkage group. This linkage group (RYHyb20) represented a fusion between an acrocentric (Omy28) and a metacentric chromosome (Omy20) in rainbow trout. Additional mapping in Yellowstone cutthroat trout indicated the two rainbow trout homologues were fused in the Yellowstone genome. Variation in the number of hybrid linkage groups (28 or 29) likely depended on a Robertsonian rearrangement polymorphism within the rainbow trout stock. Comparison between the female-merged F1 map and a female consensus rainbow trout map revealed that introgression suppressed recombination across large genomic regions in 5 hybrid linkage groups. Two of these linkage groups (RYHyb20 and RYHyb25_29) contained confirmed chromosome rearrangements between rainbow and Yellowstone cutthroat trout indicating that rearrangements may suppress recombination. The frequency of allelic and genotypic segregation distortion varied among parents and families, suggesting few incompatibilities exist between rainbow and Yellowstone cutthroat trout genomes. Conclusions Chromosome rearrangements suppressed recombination in the hybrids. This result

  7. Transmission of chromosomal and instability via a chromosome irradiated with ionizing radiation

    International Nuclear Information System (INIS)

    Kodama, Seiji; Tanabe, Masateru; Shiraishi, Kazunori; Oshimura, Mitsuo

    2010-01-01

    We examined the stability of the transferred chromosome in 5 and 12 microcell hybrids including unirradiated human chromosomes 6 and 8, respectively, and 6 and 19 microcell hybrids including 4 Gy-irradiated human chromosomes 6 and 8, respectively. The transferred chromosome was structurally stable in most microcell hybrids transferred with the unirradiated chromosomes 6 and 8. In contrast, the 4 Gy-irradiated human chromosomes were unstable in 3 out of 6 hybrids (50%) with chromosome 6 and 3 out of 19 hybrids (16%) with chromosome 8, showing multiple aberrations in high frequencies (35∼98%). To know the cause of delayed chromosomal instability, intrachromosomal rearrangements of the human chromosome is investigated by subtelomere FISH in 17 microcell hybrids transferred with chromosomes 6 and 8. We found frequent intrachromosomal in 7 microcell hybrids (41%). However, no clear correlation was observed between the intrachromosomal rearrangements and the induction of delayed chromosomal instability by ionizing radiation

  8. Mapping Breakpoints of Complex Chromosome Rearrangements Involving a Partial Trisomy 15q23.1-q26.2 Revealed by Next Generation Sequencing and Conventional Techniques.

    Directory of Open Access Journals (Sweden)

    Qiong Pan

    Full Text Available Complex chromosome rearrangements (CCRs, which are rather rare in the whole population, may be associated with aberrant phenotypes. Next-generation sequencing (NGS and conventional techniques, could be used to reveal specific CCRs for better genetic counseling. We report the CCRs of a girl and her mother, which were identified using a combination of NGS and conventional techniques including G-banding, fluorescence in situ hybridization (FISH and PCR. The girl demonstrated CCRs involving chromosomes 3 and 8, while the CCRs of her mother involved chromosomes 3, 5, 8, 11 and 15. HumanCytoSNP-12 Chip analysis identified a 35.4 Mb duplication on chromosome 15q21.3-q26.2 in the proband and a 1.6 Mb microdeletion at chromosome 15q21.3 in her mother. The proband inherited the rearranged chromosomes 3 and 8 from her mother, and the duplicated region on chromosome 15 of the proband was inherited from the mother. Approximately one hundred genes were identified in the 15q21.3-q26.2 duplicated region of the proband. In particular, TPM1, SMAD6, SMAD3, and HCN4 may be associated with her heart defects, and HEXA, KIF7, and IDH2 are responsible for her developmental and mental retardation. In addition, we suggest that a microdeletion on the 15q21.3 region of the mother, which involved TCF2, TCF12, ADMA10 and AQP9, might be associated with mental retardation. We delineate the precise structures of the derivative chromosomes, chromosome duplication origin and possible molecular mechanisms for aberrant phenotypes by combining NGS data with conventional techniques.

  9. NONO ubiquitination is mediated by FBW7 and GSK3 β via a degron lost upon chromosomal rearrangement in cancer.

    Science.gov (United States)

    Alfano, Luigi; Caporaso, Antonella; Altieri, Angela; Costa, Caterina; Forte, Iris M; Iannuzzi, Carmelina A; Barone, Daniela; Esposito, Luca; Giordano, Antonio; Pentimalli, Francesca

    2018-05-01

    NONO is an RNA-binding protein involved in transcription, mRNA splicing, DNA repair, and checkpoint activation in response to UV radiation. NONO expression has been found altered in several tumor types, including prostate, colon, breast, melanoma, and in papillary renal carcinoma, in which an X chromosome inversion generates a NONO-TFE3 fusion protein. Upon such rearrangement, NONO loses its C-terminal domain. Through bioinformatics analysis, we identified a putative degron motif, known to be recognized by the Skp1-Cul1-F-box-protein (SCF) complex. Here, we evaluated how this domain could affect NONO protein biology. We showed that NONO interacts with the nuclear FBW7α isoform and its ubiquitination is regulated following modulation of the GSK3β kinase. Mutation of T428A/T432A within the degron impaired polyubiquitination upon FBW7α and GSK3β overexpression. Overall, our data suggest that NONO is likely subjected to proteasome-mediated degradation and add NONO to the list of proteins targeted by FBW7, which is itself often deregulated in cancer. © 2017 Wiley Periodicals, Inc.

  10. Rearrangement of c-myc, pim-1 and Mlvi-1 and trisomy of chromosome 15 in MCF- and Moloney-MuLV-induced murine T-cell leukemias.

    Science.gov (United States)

    Wirschubsky, Z; Tsichlis, P; Klein, G; Sumegi, J

    1986-11-15

    Provirus insertion near the c-myc, pim-1 or Mlvi-1 genes occurred in 7 out of 59 virally induced T-cell leukemias. C-myc was exclusively rearranged in approximately 10% of MCF247-induced tumors while Mlvi-1 was rearranged to a similar frequency in Moloney-virus-induced lymphomas. Out of 25 karyotyped tumors, 9 (36%) showed trisomy of chromosome 15. Provirus insertion near c-myc, pim-1 or Mlvi-1 occurred both in diploid lymphomas and in tumors with trisomy 15. These results suggest that the molecular and cytogenetic changes observed in murine T-cell leukemias are independent tumor-associated events and that trisomy of chromosome 15 is a common tumor-progression-related event.

  11. Rapid detection of chromosome rearrangement in medical diagnostic X-ray workers by using fluorescence in situ hybridization and study on dose estimation

    International Nuclear Information System (INIS)

    Wang Zhiquan; Sun Yuanming; Li Jin

    1998-01-01

    Objective: Biological doses were estimated for medical diagnostic X-ray workers. Methods: Chromosome rearrangements in X-ray workers were analysed by fluorescence in situ hybridization (FISH) with composite whole chromosome paintings number 4 and number 7. Results: The frequency of translocation in medical diagnostic X-ray workers was much higher than that in control group (P<0.01). The biological doses to individual X-ray workers were calculated by their translocation frequency. The translocation frequencies of both FISH and G-banding were in good agreement. Conclusion: The biological doses to X-ray workers are estimated by FISH first when their dosimetry records are not documented

  12. A stable gold(i)-enyne species obtained by alkyne carboauration in a complex rearrangement.

    Science.gov (United States)

    Cámara, Jéssica; Blanco, M Carmen; Laguna, Antonio; Naumov, Panče; Gimeno, M Concepción

    2017-08-15

    An unprecedented tetranuclear gold derivative with unusual gold-enyne moieties is prepared by a mild and neat rearrangement of a dinuclear gold complex with a bridging bis(diphenylphosphino)alkyne and terminal alkynyl ligands. The complex originates as a consequence of an intramolecular addition of the AuC[triple bond, length as m-dash]CTol fragment to the internal diphosphine triple bond Ph 2 PC[triple bond, length as m-dash]CPPh 2 . The crystal structure of the tetranuclear complex shows a dinuclear metallacycle with a very short AuAu bond interaction and bridging phosphino-enyne ligands. This disposition clearly stabilises the elusive vinyl gold species omnipresent as intermediates in gold-catalysed reactions.

  13. Putative interchromosomal rearrangements in the hexaploid wheat (Triticum aestivum L.) genotype 'Chinese Spring' revealed by gene locations on homoeologous chromosomes

    Czech Academy of Sciences Publication Activity Database

    Ma, J.; Stiller, J.; Zheng, Z.; Wei, Y.M.; Zheng, Y.L.; Yan, G.J.; Doležel, Jaroslav; Liu, C.

    2015-01-01

    Roč. 15, MAR 11 2015 (2015) ISSN 1471-2148 Institutional support: RVO:61389030 Keywords : Interchromosomal rearrangements * Wheat genome * Translocation Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.406, year: 2015

  14. The clinical impact of chromosomal rearrangements with breakpoints upstream of the SOX9 gene: two novel de novo balanced translocations associated with acampomelic campomelic dysplasia.

    Science.gov (United States)

    Fonseca, Ana Carolina S; Bonaldi, Adriano; Bertola, Débora R; Kim, Chong A; Otto, Paulo A; Vianna-Morgante, Angela M

    2013-05-07

    The association of balanced rearrangements with breakpoints near SOX9 [SRY (sex determining region Y)-box 9] with skeletal abnormalities has been ascribed to the presumptive altering of SOX9 expression by the direct disruption of regulatory elements, their separation from SOX9 or the effect of juxtaposed sequences. We report on two sporadic apparently balanced translocations, t(7;17)(p13;q24) and t(17;20)(q24.3;q11.2), whose carriers have skeletal abnormalities that led to the diagnosis of acampomelic campomelic dysplasia (ACD; MIM 114290). No pathogenic chromosomal imbalances were detected by a-CGH. The chromosome 17 breakpoints were mapped, respectively, 917-855 kb and 601-585 kb upstream of the SOX9 gene. A distal cluster of balanced rearrangements breakpoints on chromosome 17 associated with SOX9-related skeletal disorders has been mapped to a segment 932-789 kb upstream of SOX9. In this cluster, the breakpoint of the herein described t(17;20) is the most telomeric to SOX9, thus allowing the redefining of the telomeric boundary of the distal breakpoint cluster region related to skeletal disorders to 601-585 kb upstream of SOX9. Although both patients have skeletal abnormalities, the t(7;17) carrier presents with relatively mild clinical features, whereas the t(17;20) was detected in a boy with severe broncheomalacia, depending on mechanical ventilation. Balanced and unbalanced rearrangements associated with disorders of sex determination led to the mapping of a regulatory region of SOX9 function on testicular differentiation to a 517-595 kb interval upstream of SOX9, in addition to TESCO (Testis-specific enhancer of SOX9 core). As the carrier of t(17;20) has an XY sex-chromosome constitution and normal male development for his age, the segment of chromosome 17 distal to the translocation breakpoint should contain the regulatory elements for normal testis development. These two novel translocations illustrate the clinical variability in carriers of balanced

  15. A complex rearrangement on chromosome 22 affecting both homologues; haplo-insufficiency of the Cat eye syndrome region may have no clinical relevance.

    Science.gov (United States)

    Kriek, Marjolein; Szuhai, Karoly; Kant, Sarina G; White, Stefan J; Dauwerse, Hans; Fiegler, Heike; Carter, Nigel P; Knijnenburg, Jeroen; den Dunnen, Johan T; Tanke, Hans J; Breuning, Martijn H; Rosenberg, Carla

    2006-08-01

    The presence of highly homologous sequences, known as low copy repeats, predisposes for unequal recombination within the 22q11 region. This can lead to genomic imbalances associated with several known genetic disorders. We report here a developmentally delayed patient carrying different rearrangements on both chromosome 22 homologues, including a previously unreported rearrangement within the 22q11 region. One homologue carries a deletion of the proximal part of chromosome band 22q11. To our knowledge, a 'pure' deletion of this region has not been described previously. Four copies of this 22q11 region, however, are associated with Cat eye syndrome (CES). While the phenotypic impact of this deletion is unclear, familial investigation revealed five normal relatives carrying this deletion, suggesting that haplo-insufficiency of the CES region has little clinical relevance. The other chromosome 22 homologue carries a duplication of the Velocardiofacial/DiGeorge syndrome (VCFS/DGS) region. In addition, a previously undescribed deletion of 22q12.1, located in a relatively gene-poor region, was identified. As the clinical features of patients suffering from a duplication of the VCFS/DGS region have proven to be extremely variable, it is impossible to postulate as to the contribution of the 22q12.1 deletion to the phenotype of the patient. Additional patients with a deletion within this region are needed to establish the consequences of this copy number alteration. This study highlights the value of using different genomic approaches to unravel chromosomal alterations in order to study their phenotypic impact.

  16. A workflow to increase verification rate of chromosomal structural rearrangements using high-throughput next-generation sequencing.

    Science.gov (United States)

    Quek, Kelly; Nones, Katia; Patch, Ann-Marie; Fink, J Lynn; Newell, Felicity; Cloonan, Nicole; Miller, David; Fadlullah, Muhammad Z H; Kassahn, Karin; Christ, Angelika N; Bruxner, Timothy J C; Manning, Suzanne; Harliwong, Ivon; Idrisoglu, Senel; Nourse, Craig; Nourbakhsh, Ehsan; Wani, Shivangi; Steptoe, Anita; Anderson, Matthew; Holmes, Oliver; Leonard, Conrad; Taylor, Darrin; Wood, Scott; Xu, Qinying; Wilson, Peter; Biankin, Andrew V; Pearson, John V; Waddell, Nic; Grimmond, Sean M

    2014-07-01

    Somatic rearrangements, which are commonly found in human cancer genomes, contribute to the progression and maintenance of cancers. Conventionally, the verification of somatic rearrangements comprises many manual steps and Sanger sequencing. This is labor intensive when verifying a large number of rearrangements in a large cohort. To increase the verification throughput, we devised a high-throughput workflow that utilizes benchtop next-generation sequencing and in-house bioinformatics tools to link the laboratory processes. In the proposed workflow, primers are automatically designed. PCR and an optional gel electrophoresis step to confirm the somatic nature of the rearrangements are performed. PCR products of somatic events are pooled for Ion Torrent PGM and/or Illumina MiSeq sequencing, the resulting sequence reads are assembled into consensus contigs by a consensus assembler, and an automated BLAT is used to resolve the breakpoints to base level. We compared sequences and breakpoints of verified somatic rearrangements between the conventional and high-throughput workflow. The results showed that next-generation sequencing methods are comparable to conventional Sanger sequencing. The identified breakpoints obtained from next-generation sequencing methods were highly accurate and reproducible. Furthermore, the proposed workflow allows hundreds of events to be processed in a shorter time frame compared with the conventional workflow.

  17. Blepharophimosis and mental retardation (BMR) phenotypes caused by chromosomal rearrangements: description in a boy with partial trisomy 10q and monosomy 4q and review of the literature.

    Science.gov (United States)

    Bartholdi, Deborah; Toelle, Sandra P; Steiner, Bernhard; Boltshauser, Eugen; Schinzel, Albert; Riegel, Mariluce

    2008-01-01

    Blepharophimosis is a rare congenital anomaly of the palpebral fissure which is often associated with mental retardation and additional malformations. We report on a boy with blepharophimosis, ptosis and severe mental retardation carrying an unbalanced 4;10 translocation with terminal duplication of 10q [dup(10)(q25.1-->qter)] and monosomy of a small terminal segment of chromosome 4q [del(4)(34.3-->qter)]. Detailed clinical examination and review of the literature showed that the phenotype of the patient was mainly determined by the dup(10q). This paper reviews the chromosomal aberrations associated with BMR (blepharophimosis mental retardation) phenotypes. Searching different databases and reviewing the literature revealed 14 microscopically visible aberrations (among them UPD(14)pat) and two submicroscopic rearrangements causing blepharophimosis and mental retardation (BMR) syndrome. Some of these rearrangements-like the terminal dup(10q) identified in our patient or interstitial del(2q)-are associated with clearly defined phenotypes and can be well distinguished from each other on basis of clinical examination. This paper should assist clinicians and cytogeneticists when evaluating patients with BMR syndrome.

  18. Cascade of chromosomal rearrangements caused by a heterogeneous T-DNA integration supports the double-stranded break repair model for T-DNA integration.

    Science.gov (United States)

    Hu, Yufei; Chen, Zhiyu; Zhuang, Chuxiong; Huang, Jilei

    2017-06-01

    Transferred DNA (T-DNA) from Agrobacterium tumefaciens can be integrated into the plant genome. The double-stranded break repair (DSBR) pathway is a major model for T-DNA integration. From this model, we expect that two ends of a T-DNA molecule would invade into a single DNA double-stranded break (DSB) or independent DSBs in the plant genome. We call the later phenomenon a heterogeneous T-DNA integration, which has never been observed. In this work, we demonstrated it in an Arabidopsis T-DNA insertion mutant seb19. To resolve the chromosomal structural changes caused by T-DNA integration at both the nucleotide and chromosome levels, we performed inverse PCR, genome resequencing, fluorescence in situ hybridization and linkage analysis. We found, in seb19, a single T-DNA connected two different chromosomal loci and caused complex chromosomal rearrangements. The specific break-junction pattern in seb19 is consistent with the result of heterogeneous T-DNA integration but not of recombination between two T-DNA insertions. We demonstrated that, in seb19, heterogeneous T-DNA integration evoked a cascade of incorrect repair of seven DSBs on chromosomes 4 and 5, and then produced translocation, inversion, duplication and deletion. Heterogeneous T-DNA integration supports the DSBR model and suggests that two ends of a T-DNA molecule could be integrated into the plant genome independently. Our results also show a new origin of chromosomal abnormalities. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  19. Reciprocal hybrid joints demonstrate successive V-J rearrangements on the same chromosome in the human TCR gamma locus

    NARCIS (Netherlands)

    Alexandre, D.; Chuchana, P.; Roncarolo, M. G.; Yssel, H.; Spits, H.; Lefranc, G.; Lefranc, M. P.

    1991-01-01

    Novel variable (V)--joining (J) gene rearrangements are described in the human T cell receptor gamma locus, in which, on the one hand, the V3 variable gene is joined to the heptamer--nonamer recombination signals of the J1 segment and, on the other hand, the J1 segment is joined to the V3

  20. Assignment of Chinook Salmon (Oncorhynchus tshawytscha) Linkage Groups to Specific Chromosomes Reveals a Karyotype with Multiple Rearrangements of the Chromosome Arms of Rainbow Trout (Oncorhynchus mykiss)

    Science.gov (United States)

    Phillips, Ruth B.; Park, Linda K.; Naish, Kerry A.

    2013-01-01

    The Chinook salmon genetic linkage groups have been assigned to specific chromosomes using fluorescence in situ hybridization with bacterial artificial chromosome probes containing genetic markers mapped to each linkage group in Chinook salmon and rainbow trout. Comparison of the Chinook salmon chromosome map with that of rainbow trout provides strong evidence for conservation of large syntenic blocks in these species, corresponding to entire chromosome arms in the rainbow trout as expected. In almost every case, the markers were found at approximately the same location on the chromosome arm in each species, suggesting conservation of marker order on the chromosome arms of the two species in most cases. Although theoretically a few centric fissions could convert the karyotype of rainbow trout (2N = 58–64) into that of Chinook salmon (2N = 68) or vice versa, our data suggest that chromosome arms underwent multiple centric fissions and subsequent new centric fusions to form the current karyotypes. The morphology of only approximately one-third of the chromosome pairs have been conserved between the two species. PMID:24170739

  1. Alien DNA introgression and wheat DNA rearrangements in a stable wheat line derived from the early generation of distant hybridization.

    Science.gov (United States)

    Zhang, Lianquan; Liu, Dengcai; Yan, Zehong; Zheng, Youliang

    2005-10-01

    Polyploidy has been found to be common in plants. Bread or common wheat (Triticum aestivum L., 2n=42) is a good example of allopolyploid made up of three diploid genomes A, B and D. In recent years, by the study of mimicking the origination of common wheat, it was found that changes of DNA sequence and gene expression occurred at the early stages of artificial allohexaploid between tetraploid wheat and Aegilops tauschii, which was probably favorable to genetic diploidization of new synthetic hexaploid wheat. Common wheat 99L2 is a new line stable in genetic, which was derived from the early self-pollinated generation of wide hybrids between common wheat and rye. In this study, it was found that at least two rye DNA segments had been introgressed into 99L2. This result suggested that a mechanism of alien DNA introgression may exist, which was different from the traditional mechanism of chromosome pairing and DNA recombination between wheat and alien species. Meanwhile, during the introgression process of alien rye DNA segments, the changes in DNA sequences of wheat itself occurred.

  2. Identification and characterization of marker chromosomes, de novo rearrangements and microdeletions in 100 cases with fluorescence in situ hybridization (FISH)

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, S.M.; Liu, Y.; Papenhausen, P.R. [Roche Biomedical Labs., Research Triangle Park, NC (United States)

    1994-09-01

    Results of molecular cytogenetic analysis are presented for 100 cases in which fluorescence in situ hybridization (FISH) was used as an adjunct to standard cytogenetics. Commercially available centromeric, telomeric, chromosome painting and unique sequence probes were used. Cases were from a 12-month period (June 1993-May 1994) and included examples of sex chromosome abnormalities (8), duplications (5), de novo translocations (6), satellited (12) and non-satellited (7) markers, and microdeletion syndromes (62). Satellited marker chromosomes were evaluated using a combination of DAPI/Distamycin A staining, hybridization with a classical satellite probe for chromosome 15 and hybridization with alpha-satellite probes for chromosomes 13, 14, 21 and 22. Markers positive for the chromosome 15 probe were further evaluated using unique sequence probes for the Prader-Willi/Angelman region. Microdeletion analysis was performed for Prader-Willi/Angelman (49) and DiGeorge/VCF (13) syndromes. Seven cases evaluated for Prader-Willi/Angelman syndrome demonstrated evidence of a deletion within this region. Uniparental disomy analysis was available in cases where a deletion was not detected by FISH, yet follow-up was clinically indicated. Two cases evaluated for DiGeorge/VCF syndrome demonstrated molecular evidence of a deletion. Included in our analysis is an example of familial DiGeorge syndrome.

  3. Isolation and characterization of sex chromosome rearrangements generating male muscle dystrophy and female abnormal oogenesis in the silkworm, Bombyx mori.

    Science.gov (United States)

    Fujii, T; Yokoyama, T; Ninagi, O; Kakehashi, K; Obara, Y; Nenoi, M; Ishikawa, T; Mita, K; Shimada, T; Abe, H

    2007-07-01

    In deletion-mapping of W-specific RAPD (W-RAPD) markers and putative female determinant gene (Fem), we used X-ray irradiation to break the translocation-carrying W chromosome (W( Ze )). We succeeded in obtaining a fragment of the W( Ze ) chromosome designated as Ze (W), having 3 of 12 W-RAPD markers (W-Bonsai, W-Yukemuri-S, W-Yukemuri-L). Inheritance of the Ze (W) fragment by males indicates that it does not include the Fem gene. On the basis of these results, we determined the relative positions of W-Yukemuri-S and W-Yukemuri-L, and we narrowed down the region where Fem gene is located. In addition to the Ze (W) fragment, the Z chromosome was also broken into a large fragment (Z(1)) having the +( sch ) (1-21.5) and a small fragment (Z(2)) having the +( od ) (1-49.6). Moreover, a new chromosomal fragment (Ze (W)Z(2)) was generated by a fusion event between the Ze (W) and the Z(2) fragments. We analyzed the genetic behavior of the Z(1) fragment and the Ze (W)Z(2) fragment during male (Z/Z(1) Ze (W)Z(2)) and female (Z(1) Ze (W)Z(2)/W) meiosis using phenotypic markers. It was observed that the Z(1) fragment and the Z or the W chromosomes separate without fail. On the other hand, non-disjunction between the Ze (W)Z(2) fragment and the Z chromosome and also between the Ze (W)Z(2) fragment and the W chromosome occurred. Furthermore, the females (2A: Z/Ze (W)Z(2)/W) and males (2A: Z/Z(1)) resulting from non-disjunction between the Ze (W)Z(2) fragment and the W chromosome had phenotypic defects: namely, females exhibited abnormal oogenesis and males were flapless due to abnormal indirect flight muscle structure. These results suggest that Z(2) region of the Z chromosome contains dose-sensitive gene(s), which are involved in oogenesis and indirect flight muscle development.

  4. 1;17 translocations and other chromosome 17 rearrangements in human primary neuroblastoma tumors and cell lines

    NARCIS (Netherlands)

    van Roy, N.; Laureys, G.; Cheng, N. C.; Willem, P.; Opdenakker, G.; Versteeg, R.; Speleman, F.

    1994-01-01

    We report on the finding of a t(1;17) in two primary neuroblastomas. Subsequent fluorescence in situ hybridization (FISH) analysis revealed the presence of 1;17 translocations in four out of nine neuroblastoma cell lines. The chromosome 1 short arm breakpoints were determined using region-specific

  5. Modifying effect of 5-fluoro-2-deoxyuridine and thymidine at G1 phase on radiation and chemically induced chromosome rearrangement

    International Nuclear Information System (INIS)

    Azatyan, R.A.; Voskanyan, A.Z.; Avakyan, V.A.; Akif'ev, A.P.

    1978-01-01

    The yield of structural chromosome mutations induced in Crepis capillaris seeds by X-rays and nitrogen mustard was studied as a function of treatment (at G 1 phase) with an inhibitor of unscheduled DNA synthesis, 5-fluoro-2-deoxyuridine (FdU), and its antagonist, thymidine. Air-dry seeds were irradiated at 10 krad and immediately placed in aqueous solutions of FdU, thymidine, or FdU + thymidine. Ionizing radiation induced only chromosome exchanges in the seeds. When EdU was used, the number of chromosome exchanges was the same although the fraction of simple and isolocus deletions was significantly greater than additive. The effect of FdU was manifested only after 10-hour incubation of the cells. Thymidine alone did not appreciably alter the frequency of radiation-induced aberrations. At the same time, the FdU + thymidine combination decreased the mutation yield i.e. was protective. Frequencies of the chromosome aberration in this experiment were the same as in the control

  6. Outcome of treatment in childhood acute lymphoblastic leukaemia with rearrangements of the 11q23 chromosomal region

    NARCIS (Netherlands)

    Pui, CH; Gaynon, PS; Boyett, JM; Chessells, JM; Baruchel, A; Kamps, W; Silverman, LB; Biondi, A; Harms, DO; Vilmer, E; Schrappe, M; Camitta, B

    2002-01-01

    Background The prognosis and optimum treatment of childhood acute lymphoblastic leukaemia (ALL) with abnormalities of chromosomal band 11q23 are controversial. We aimed to identify prognostic factors that might help in planning future therapy, and to assess the effectiveness of haemopoietic

  7. Early embryonic chromosome instability results in stable mosaic pattern in human tissues.

    Directory of Open Access Journals (Sweden)

    Hasmik Mkrtchyan

    Full Text Available The discovery of copy number variations (CNV in the human genome opened new perspectives on the study of the genetic causes of inherited disorders and the aetiology of common diseases. Here, a single-cell-level investigation of CNV in different human tissues led us to uncover the phenomenon of mitotically derived genomic mosaicism, which is stable in different cell types of one individual. The CNV mosaic ratios were different between the 10 individuals studied. However, they were stable in the T lymphocytes, immortalized B lymphoblastoid cells, and skin fibroblasts analyzed in each individual. Because these cell types have a common origin in the connective tissues, we suggest that mitotic changes in CNV regions may happen early during embryonic development and occur only once, after which the stable mosaic ratio is maintained throughout the differentiated tissues. This concept is further supported by a unique study of immortalized B lymphoblastoid cell lines obtained with 20 year difference from two subjects. We provide the first evidence of somatic mosaicism for CNV, with stable variation ratios in different cell types of one individual leading to the hypothesis of early embryonic chromosome instability resulting in stable mosaic pattern in human tissues. This concept has the potential to open new perspectives in personalized genetic diagnostics and can explain genetic phenomena like diminished penetrance in autosomal dominant diseases. We propose that further genomic studies should focus on the single-cell level, to better understand the aetiology of aging and diseases mediated by somatic mutations.

  8. Association of a Chromosomal Rearrangement Event with Mouse Posterior Polymorphous Corneal Dystrophy and Alterations in Csrp2bp, Dzank1, and Ovol2 Gene Expression.

    Directory of Open Access Journals (Sweden)

    Anna L Shen

    Full Text Available We have previously described a mouse model of human posterior polymorphous corneal dystrophy (PPCD and localized the causative mutation to a 6.2 Mbp region of chromosome 2, termed Ppcd1. We now show that the gene rearrangement linked to mouse Ppcd1 is a 3.9 Mbp chromosomal inversion flanked by 81 Kbp and 542 bp deletions. This recombination event leads to deletion of Csrp2bp Exons 8 through 11, Dzank1 Exons 20 and 21, and the pseudogene Znf133. In addition, we identified translocation of novel downstream sequences to positions adjacent to Csrp2bp Exon 7 and Dzank1 Exon 20. Twelve novel fusion transcripts involving Csrp2bp or Dzank1 linked to downstream sequences have been identified. Eight are expressed at detectable levels in PPCD1 but not wildtype eyes. Upregulation of two Csrp2bp fusion transcripts, as well as upregulation of the adjacent gene, Ovol2, was observed. Absence of the PPCD1 phenotype in animals haploinsufficient for Csrp2bp or both Csrp2bp and Dzank1 rules out haploinsufficiency of these genes as a cause of mouse PPCD1. Complementation experiments confirm that PPCD1 embryonic lethality is due to disruption of Csrp2bp expression. The ocular expression pattern of Csrp2bp is consistent with a role for this protein in corneal development and pathogenesis of PPCD1.

  9. Transposable prophage Mu is organized as a stable chromosomal domain of E. coli.

    Directory of Open Access Journals (Sweden)

    Rudra P Saha

    2013-11-01

    Full Text Available The E. coli chromosome is compacted by segregation into 400-500 supercoiled domains by both active and passive mechanisms, for example, transcription and DNA-protein association. We find that prophage Mu is organized as a stable domain bounded by the proximal location of Mu termini L and R, which are 37 kbp apart on the Mu genome. Formation/maintenance of the Mu 'domain' configuration, reported by Cre-loxP recombination and 3C (chromosome conformation capture, is dependent on a strong gyrase site (SGS at the center of Mu, the Mu L end and MuB protein, and the E. coli nucleoid proteins IHF, Fis and HU. The Mu domain was observed at two different chromosomal locations tested. By contrast, prophage λ does not form an independent domain. The establishment/maintenance of the Mu domain was promoted by low-level transcription from two phage promoters, one of which was domain dependent. We propose that the domain confers transposition readiness to Mu by fostering topological requirements of the reaction and the proximity of Mu ends. The potential benefits to the host cell from a subset of proteins expressed by the prophage may in turn help its long-term stability.

  10. Complex rearranged small supernumerary marker chromosomes (sSMC, three new cases; evidence for an underestimated entity?

    Directory of Open Access Journals (Sweden)

    Mkrtchyan Hasmik

    2008-04-01

    Full Text Available Abstract Background Small supernumerary marker chromosomes (sSMC are present ~2.6 × 106 human worldwide. sSMC are a heterogeneous group of derivative chromosomes concerning their clinical consequences as well as their chromosomal origin and shape. Besides the sSMC present in Emanuel syndrome, i.e. der(22t(11;22(q23;q11, only few so-called complex sSMC are reported. Results Here we report three new cases of unique complex sSMC. One was a de novo case with a dic(13 or 21;22 and two were maternally derived: a der(18t(8;18 and a der(13 or 21t(13 or 21;18. Thus, in summary, now 22 cases of unique complex sSMC are available in the literature. However, this special kind of sSMC might be under-diagnosed among sSMC-carriers. Conclusion More comprehensive characterization of sSMC and approaches like reverse fluorescence in situ hybridization (FISH or array based comparative genomic hybridization (array-CGH might identify them to be more frequent than only ~0.9% among all sSMC.

  11. Evaluating changes in stable chromosomal translocation frequency in patients receiving radioimmunotherapy

    International Nuclear Information System (INIS)

    Wong, Jeffrey Y.C.; Wang Jianyi; Liu An; Odom-Maryon, Tamara; Shively, John E.; Raubitschek, Andrew A.; Williams, Lawrence E.

    2000-01-01

    Purpose: The lack of any consistent correlation between radioimmunotherapy (RIT) dose and observed hematologic toxicity has made it difficult to validate RIT radiation dose estimates to marrow. Stable chromosomal translocations (SCT) which result after radiation exposure may be a biologic parameter that more closely correlates with RIT radiation dose. Increases in the frequency of SCT are observed after radiation exposure and are highly correlated with absorbed radiation dose. SCT are cumulative after multiple radiation doses and conserved through an extended number of cell divisions. The purpose of this study was to evaluate whether increases in SCT frequency were detectable in peripheral lymphocytes after RIT and whether the magnitude of these increases correlated with estimated radiation dose to marrow and whole body. Methods and Materials: Patients entered in a Phase I dose escalation therapy trial each received 1-3 intravenous cycles of the radiolabeled anti-carcinoembryonic antigen (CEA) monoclonal antibody, 90 Y-chimeric T84.66. Five mCi of 111 In-chimeric T84.66 was co-administered for imaging and biodistribution purposes. Blood samples were collected immediately prior to the start of therapy and 5-6 weeks after each therapy cycle. Peripheral lymphocytes were harvested after 72 hours of phytohemagglutinin stimulation and metaphase spreads prepared. Spreads were then stained by fluorescence in situ hybridization (FISH) using commercially available chromosome paint probes to chromosomes 3 and 4. Approximately 1000 spreads were evaluated for each chromosome sample. Red marrow radiation doses were estimated using the AAPM algorithm and blood clearance curves. Results: Eighteen patients were studied, each receiving at least one cycle of therapy ranging from 5-22 mCi/m 2 . Three patients received 2 cycles and two patients received 3 cycles of therapy. Cumulative estimated marrow doses ranged from 9.2 to 310 cGy. Increases in SCT frequencies were observed after

  12. Genetic and Epigenetic Changes in Chromosomally Stable and Unstable Progeny of Irradiated Cells

    Energy Technology Data Exchange (ETDEWEB)

    Baulch, Janet E.; Aypar, Umut; Waters, Katrina M.; Yang, Austin; Morgan, William F.

    2014-09-24

    Radiation induced genomic instability is a well-studied phenomenon, the underlying mechanisms of which are poorly understood. Persistent oxidative stress, mitochondrial dysfunction, elevated cytokine levels and epigenetic changes are among the mechanisms invoked in the perpetuation of the phenotype. To determine whether epigenetic aberrations affect genomic instability we measured DNA methylation, mRNA and microRNA (miR) levels in well characterized chromosomally stable and unstable clonally expanded single cell survivors of irradiation. While no changes in DNA methylation were observed for the gene promoters evaluated, increased LINE-1 methylation was observed for two unstable clones (LS12, CS9) and decreased Alu element methylation was observed for the other two unstable clones (115, Fe5.0-8). These relationships also manifested for mRNA and miR expression. mRNA identified for the LS12 and CS9 clones were most similar to each other (261 mRNA), while the 115 and Fe5.0-8 clones were more similar to each other, and surprisingly also similar to the two stable clones, 114 and 118 (286 mRNA among these four clones). Pathway analysis showed enrichment for pathways involved in mitochondrial function and cellular redox, themes routinely invoked in genomic instability. The commonalities between the two subgroups of clones were also observed for miR. The number of miR for which anti-correlated mRNA were identified suggests that these miR exert functional effects in each clone. The results of this study demonstrate significant genetic and epigenetic changes in unstable cells, but similar changes almost equally common in chromosomally stable cells. Possible conclusions might be that the chromosomally stable clones have some other form of instability, or that some of the observed changes represent a sort of radiation signature for and that other changes are related to genomic instability. Irrespective, these findings again suggest that a spectrum of changes both drive genomic

  13. Distribution of X-ray-induced chromosome breakpoints in Down syndrome lymphocytes

    International Nuclear Information System (INIS)

    Shafik, H.M.; Au, W.W.; Whorton, E.B. Jr.; Legator, M.S.

    1990-01-01

    Down syndrome (DS) individuals are known to be predisposed to develop leukemia and their lymphocytes are highly sensitive to the induction of chromosome aberrations by X-rays. A study was conducted to identify the chromosome breakpoints and to evaluate whether site specificity for chromosome breakage and rearrangement may exist which may explain the predisposition phenomenon. DS lymphocytes at the G1 phase of the cell cycle were irradiated with 300, 450, and 600 rad of X-rays. Cells were harvested after 3 days in culture and 193 G-banded karyotypes were analyzed to identify the induced chromosome abnormalities. Out of 273 breakpoints identified, 122 were involved in the formation of stable chromosome rearrangements and 151 in the formation of unstable abnormalities. The Poisson analysis of these breakpoints demonstrated that 16 chromosome bands located in chromosomes 1, 3, 7, 12, 17, 19 and X were preferentially involved in breakage and rearrangement (P less than 0.05). These 16 bands are also found to be locations of cancer breakpoints, oncogenes, or fragile sites. Many abnormal cells were observed to carry stable chromosome rearrangements only. Therefore, these cells are presumed to be compatible with survival and to be initiated in the transformation process. We propose that similar stable and site-specific chromosome rearrangements may exist in proliferating cells in DS individuals after exposure to clastogens and that this abnormality predisposes them to develop leukemia

  14. Analysis of translocations that involve the NUP98 gene in patients with 11p15 chromosomal rearrangements.

    Science.gov (United States)

    Kobzev, Yuri N; Martinez-Climent, Jose; Lee, Sanggyu; Chen, Jianjun; Rowley, Janet D

    2004-12-01

    The NUP98 gene has been reported to be fused with at least 15 partner genes in leukemias with 11p15 translocations. We report the results of screening of cases with cytogenetically documented rearrangements of 11p15 and the subsequent identification of involvement of NUP98 and its partner genes. We identified 49 samples from 46 hematology patients with 11p15 (including a few with 11p14) abnormalities, and using fluorescence in situ hybridization (FISH), we found that NUP98 was disrupted in 7 cases. With the use of gene-specific FISH probes, in 6 cases, we identified the partner genes, which were PRRX1 (PMX1; in 2 cases), HOXD13, RAP1GDS1, HOXC13, and TOP1. In the 3 cases for which RNA was available, RT-PCR was performed, which confirmed the FISH results and identified the location of the breakpoints in patient cDNA. Our data confirm the previous findings that NUP98 is a recurrent target in various types of leukemia. Copyright 2004 Wiley-Liss, Inc.

  15. Comparative mapping of the wild perennial Glycine latifolia and soybean (G. max) reveals extensive chromosome rearrangements in the genus Glycine.

    Science.gov (United States)

    Chang, Sungyul; Thurber, Carrie S; Brown, Patrick J; Hartman, Glen L; Lambert, Kris N; Domier, Leslie L

    2014-01-01

    Soybean (Glycine max L. Mer.), like many cultivated crops, has a relatively narrow genetic base and lacks diversity for some economically important traits. Glycine latifolia (Benth.) Newell & Hymowitz, one of the 26 perennial wild Glycine species related to soybean in the subgenus Glycine Willd., shows high levels of resistance to multiple soybean pathogens and pests including Alfalfa mosaic virus, Heterodera glycines Ichinohe and Sclerotinia sclerotiorum (Lib.) de Bary. However, limited information is available on the genomes of these perennial Glycine species. To generate molecular resources for gene mapping and identification, high-density linkage maps were constructed for G. latifolia using single nucleotide polymorphism (SNP) markers generated by genotyping by sequencing and evaluated in an F2 population and confirmed in an F5 population. In each population, greater than 2,300 SNP markers were selected for analysis and segregated to form 20 large linkage groups. Marker orders were similar in the F2 and F5 populations. The relationships between G. latifolia linkage groups and G. max and common bean (Phaseolus vulgaris L.) chromosomes were examined by aligning SNP-containing sequences from G. latifolia to the genome sequences of G. max and P. vulgaris. Twelve of the 20 G. latifolia linkage groups were nearly collinear with G. max chromosomes. The remaining eight G. latifolia linkage groups appeared to be products of multiple interchromosomal translocations relative to G. max. Large syntenic blocks also were observed between G. latifolia and P. vulgaris. These experiments are the first to compare genome organizations among annual and perennial Glycine species and common bean. The development of molecular resources for species closely related to G. max provides information into the evolution of genomes within the genus Glycine and tools to identify genes within perennial wild relatives of cultivated soybean that could be beneficial to soybean production.

  16. Novel rearrangement of chromosome band 22q11.2 causing 22q11 microdeletion syndrome-like phenotype and rhabdoid tumor of the kidney.

    Science.gov (United States)

    Wieser, R; Fritz, B; Ullmann, R; Müller, I; Galhuber, M; Storlazzi, C T; Ramaswamy, A; Christiansen, H; Shimizu, N; Rehder, H

    2005-08-01

    The 22q11.2 microdeletion syndrome is the most frequent microdeletion syndrome in humans, yet its genetic basis is complex and is still not fully understood. Most patients harbor a 3-Mb deletion (typically deleted region [TDR]), but occasionally patients with atypical deletions, some of which do not overlap with each other and/or the TDR, have been described. Microduplication of the TDR leads to a phenotype similar, albeit not identical, to the deletion of this region. Here we present a child initially suspected of having 22q11 microdeletion syndrome, who in addition developed a fatal malignant rhabdoid tumor of the kidney. Detailed cytogenetic and molecular analyses revealed a complex de novo rearrangement of band q11 of the paternally derived chromosome 22. This aberration exhibited two novel features. First, a microduplication of the 22q11 TDR was associated with an atypical 22q11 microdeletion immediately telomeric of the duplicated region. Second, this deletion was considerably larger than previously reported atypical 22q11 deletions, spanning 2.8 Mb and extending beyond the SMARCB1/SNF5/INI1 tumor suppressor gene, whose second allele harbored a somatic frameshift-causing sequence alteration in the patient's tumor. Two nonallelic homologous recombination events between low-copy repeats (LCRs) could explain the emergence of this novel and complex mutation associated with the phenotype of 22q11 microdeletion syndrome. (c) 2005 Wiley-Liss, Inc.

  17. Stabilization of dicentric translocations through secondary rearrangements mediated by multiple mechanisms in S. cerevisiae.

    Directory of Open Access Journals (Sweden)

    Vincent Pennaneach

    2009-07-01

    Full Text Available The gross chromosomal rearrangements (GCRs observed in S. cerevisiae mutants with increased rates of accumulating GCRs include predicted dicentric GCRs such as translocations, chromosome fusions and isoduplications. These GCRs resemble the genome rearrangements found as mutations underlying inherited diseases as well as in the karyotypes of many cancers exhibiting ongoing genome instabilityThe structures of predicted dicentric GCRs were analyzed using multiple strategies including array-comparative genomic hybridization, pulse field gel electrophoresis, PCR amplification of predicted breakpoints and sequencing. The dicentric GCRs were found to be unstable and to have undergone secondary rearrangements to produce stable monocentric GCRs. The types of secondary rearrangements observed included: non-homologous end joining (NHEJ-dependent intramolecular deletion of centromeres; chromosome breakage followed by NHEJ-mediated circularization or broken-end fusion to another chromosome telomere; and homologous recombination (HR-dependent non-reciprocal translocations apparently mediated by break-induced replication. A number of these GCRs appeared to have undergone multiple bridge-fusion-breakage cycles. We also observed examples of chromosomes with extensive ongoing end decay in mec1 tlc1 mutants, suggesting that Mec1 protects chromosome ends from degradation and contributes to telomere maintenance by HR.HR between repeated sequences resulting in secondary rearrangements was the most prevalent pathway for resolution of dicentric GCRs regardless of the structure of the initial dicentric GCR, although at least three other resolution mechanisms were observed. The resolution of dicentric GCRs to stable rearranged chromosomes could in part account for the complex karyotypes seen in some cancers.

  18. Identification of 13q deletion, trisomy 1q, and IgH rearrangement as the most frequent chromosomal changes found in Korean patients with multiple myeloma.

    Science.gov (United States)

    Bang, Soo-Mee; Kim, Young Ree; Cho, Han Ik; Chi, Hyun Sook; Seo, Eul-Ju; Park, Chan Jeoung; Yoo, Soo Jin; Kim, Hee Chan; Chun, Hong Gu; Min, Hyun Chung; Oh, Bo Ra; Kim, Tae Young; Lee, Jae Hoon; Lee, Dong Soon

    2006-07-15

    The most frequent genetic aberrations in multiple myeloma (MM) are 13q deletions and translocations involving the immunoglobulin heavy chain gene (IGH). There have been no reports on the cytogenetic abnormalities found in Korean patients with MM. We investigated the actual prevalence and prognostic value of cytogenetic changes using fluorescence in situ hybridization (FISH). FISH studies with 12 different specific probes for the regions containing the genes or chromosome regions (13q, 1q, IGH, p53, MLL, p16, CEP 7, CEP 11, and CEP 12) were performed in 128 patients. The most frequent change found was 13q deletion (48%), followed by trisomy 1q (45%), IGH translocation (37%), and trisomy 11 (26%). Among the three different probes used to detect 13q deletion, D13S25 (48/58) was the most sensitive probe compared to RB (43/58) and D13S319 (39/58). Among the patients showing one or more changes by FISH, 75% (82/110) had a 13q deletion, a trisomy 1q, or an IGH translocation. Azotemia, anemia, thrombocytopenia, intramedullary plasmacytosis, and stage were significantly associated with the 13q deletion; serum beta(2)-microglobulin, thrombocytopenia, and intramedullary plasmacytosis were also related to trisomy 1q. The pattern of molecular cytogenetic changes in Korean patients with MM is somewhat different from what has been observed in reported Caucasian populations: 37 versus 50-70% with regard to the IGH translocation. The prevalence of the 13q deletion was similar in Korean and Caucasian populations, 48 versus 30-50%. We suggest that the detection of at least these three genetic changes, 13q- trisomy 1q, and an IGH rearrangement, would be helpful for follow-up of Korean patients with MM.

  19. Stable chromosomal inversion polymorphisms and insecticide resistance in the malaria vector mosquito Anopheles gambiae (Diptera: Culicidae).

    Science.gov (United States)

    Brooke, B D; Hunt, R H; Chandre, F; Carnevale, P; Coetzee, M

    2002-07-01

    Anopheles gambiae Giles has been implicated as a major vector of malaria in Africa. A number of paracentric chromosomal inversions have been observed as polymorphisms in wild and laboratory populations of this species. These polymorphisms have been used to demonstrate the existence of five reproductive units in West African populations that are currently described as incipient species. They have also been correlated with various behavioral characteristics such as adaptation to aridity and feeding preference and have been associated with insecticide resistance. Two paracentric inversions namely 2La and 2Rb are highly ubiquitous in the wild and laboratory populations sampled. Both inversions are easily conserved during laboratory colonization of wild material and one shows significant positive heterosis with respect to Hardy-Weinberg proportions. Inversion 2La has previously been associated with dieldrin resistance and inversion 2Rb shows an association with DDT resistance based on this study. The stability and maintenance of these inversions as polymorphisms provides an explanation for the transmission and continued presence of DDT and dieldrin resistance in a laboratory strain of An. gambiae in the absence of insecticide selection pressure. This effect may also be operational in wild populations. Stable inversion polymorphism also provides a possible mechanism for the continual inheritance of suitable genetic factors that otherwise compromise the fitness of genetically modified malaria vector mosquitoes.

  20. Correlation of chromosomal instability, telomere length and telomere maintenance in microsatellite stable rectal cancer: a molecular subclass of rectal cancer.

    Directory of Open Access Journals (Sweden)

    Lisa A Boardman

    Full Text Available Colorectal cancer (CRC tumor DNA is characterized by chromosomal damage termed chromosomal instability (CIN and excessively shortened telomeres. Up to 80% of CRC is microsatellite stable (MSS and is historically considered to be chromosomally unstable (CIN+. However, tumor phenotyping depicts some MSS CRC with little or no genetic changes, thus being chromosomally stable (CIN-. MSS CIN- tumors have not been assessed for telomere attrition.MSS rectal cancers from patients ≤50 years old with Stage II (B2 or higher or Stage III disease were assessed for CIN, telomere length and telomere maintenance mechanism (telomerase activation [TA]; alternative lengthening of telomeres [ALT]. Relative telomere length was measured by qPCR in somatic epithelial and cancer DNA. TA was measured with the TRAPeze assay, and tumors were evaluated for the presence of C-circles indicative of ALT. p53 mutation status was assessed in all available samples. DNA copy number changes were evaluated with Spectral Genomics aCGH.Tumors were classified as chromosomally stable (CIN- and chromosomally instable (CIN+ by degree of DNA copy number changes. CIN- tumors (35%; n=6 had fewer copy number changes (<17% of their clones with DNA copy number changes than CIN+ tumors (65%; n=13 which had high levels of copy number changes in 20% to 49% of clones. Telomere lengths were longer in CIN- compared to CIN+ tumors (p=0.0066 and in those in which telomerase was not activated (p=0.004. Tumors exhibiting activation of telomerase had shorter tumor telomeres (p=0.0040; and tended to be CIN+ (p=0.0949.MSS rectal cancer appears to represent a heterogeneous group of tumors that may be categorized both on the basis of CIN status and telomere maintenance mechanism. MSS CIN- rectal cancers appear to have longer telomeres than those of MSS CIN+ rectal cancers and to utilize ALT rather than activation of telomerase.

  1. Two new types of chromosomal rearrangements in the swine species induced by semen irradiation; Descricao de dois novos tipos de rearranjos cromossonicos, na especie suina, induzidos pela irradiacao do semen

    Energy Technology Data Exchange (ETDEWEB)

    Franceschini, P.H.; Mikich, A.B.; Garcia, J.M.; Almeida Junior, I.L. [UNESP, Jaboticabal, SP (Brazil). Faculdade de Ciencias Agrarias e Veterinarias; Pinheiro, L.E.L. [Minas Gerais Univ., Belo Horizonte, MG (Brazil). Dept. de Zootecnia

    1991-06-01

    In the present experiment were used one boar and 5 descendent of Landrace and Large White cross-breeding were used, all the animals were healthy concerning to the reproductive aspect and chromosome constitution. Initially semen was collected from the boar through the glove hand method, diluted and submitted to gamma irradiation. The total applied dose was of 800 R, with an exposition period of 3,76 min. The artificial insemination of the females with the treated semen was performed from the time of observation of positive tolerance reflex, with each animal receiving 2 inseminations with a 12 hour interval in between. after birth, the piglets had their blood aseptically collected for karyotype preparation and analysis. From 17 piglets born and cytogenetically analysed, 2 chromosomal rearrangements were detected, namely, a reciprocal translocation or insertion, 8q-; 14p+ in a female a pericentric inversion in chromosome 1 in a male. (author). 18 refs, 2 figs.

  2. No evidence for the use of DIR, D-D fusions, chromosome 15 open reading frames or VH replacement in the peripheral repertoire was found on application of an improved algorithm, JointML, to 6329 human immunoglobulin H rearrangements

    DEFF Research Database (Denmark)

    Ohm-Laursen, Line; Nielsen, Morten; Larsen, Stine R

    2006-01-01

    Antibody diversity is created by imprecise joining of the variability (V), diversity (D) and joining (J) gene segments of the heavy and light chain loci. Analysis of rearrangements is complicated by somatic hypermutations and uncertainty concerning the sources of gene segments and the precise way...... in which they recombine. It has been suggested that D genes with irregular recombination signal sequences (DIR) and chromosome 15 open reading frames (OR15) can replace conventional D genes, that two D genes or inverted D genes may be used and that the repertoire can be further diversified by heavy chain V...

  3. Chromosome Evolution in the Free-Living Flatworms : First Evidence of Intrachromosomal Rearrangements in Karyotype Evolution of Macrostomum lignano (Platyhelminthes, Macrostomida)

    NARCIS (Netherlands)

    Zadesenets, Kira S.; Ershov, Nikita I.; Berezikov, Eugene; Rubtsov, Nikolay B.

    2017-01-01

    The free-living flatworm Macrostomum lignano is a hidden tetraploid. Its genome was formed by a recent whole genome duplication followed by chromosome fusions. Its karyotype (2n = 8) consists of a pair of large chromosomes (MLI1), which contain regions of all other chromosomes, and three pairs of

  4. Immunoglobulin kappa deleting element rearrangements in precursor-B acute lymphoblastic leukemia are stable targets for detection of minimal residual disease by real-time quantitative PCR

    NARCIS (Netherlands)

    van der Velden, V. H. J.; Willemse, M. J.; van der Schoot, C. E.; Hählen, K.; van Wering, E. R.; van Dongen, J. J. M.

    2002-01-01

    Immunoglobulin gene rearrangements are used as PCR targets for detection of minimal residual disease (MRD) in acute lymphoblastic leukemia (ALL). We Investigated the occurrence of monoclonal immunoglobulin kappa-deleting element (IGK-Kde) rearrangements by Southern blotting and PCR/heteroduplex

  5. Benzylic rearrangement stable isotope labeling for quantitation of guanidino and ureido compounds in thyroid tissues by liquid chromatography-electrospray ionization mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Ruo-Jing [State Key Laboratory of Organmetallic Chemistry and National Center for Organic Mass Spectrometry in Shanghai, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032 (China); Guan, Qing [Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032 (China); Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 (China); Zhang, Fang, E-mail: fzhang@sioc.ac.cn [State Key Laboratory of Organmetallic Chemistry and National Center for Organic Mass Spectrometry in Shanghai, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032 (China); Leng, Jia-Peng [State Key Laboratory of Organmetallic Chemistry and National Center for Organic Mass Spectrometry in Shanghai, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032 (China); Sun, Tuan-Qi, E-mail: tuanqisun@163.com [Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032 (China); Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 (China); Guo, Yin-Long, E-mail: ylguo@sioc.ac.cn [State Key Laboratory of Organmetallic Chemistry and National Center for Organic Mass Spectrometry in Shanghai, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032 (China)

    2016-02-18

    Benzylic rearrangement stable isotope labeling (BRSIL) was explored to quantify the guanidino and ureido compounds (GCs and UCs). This method employed a common reagent, benzil, to label the guanidino and ureido groups through nucleophilic attacking then benzylic migrating. The use of BRSIL was investigated in the analysis of five GCs (creatine, L-arginine, homoarginine, 4-guanidinobutyric acid, and methylguanidine) and two UCs (urea and citrulline). The labeling was found simple and specific. The introduction of bi-phenyl group and the generation of nitrogen heterocyclic ring in the benzil-d0/d5 labeled GCs and UCs improved the retention behaviors in liquid chromatography (LC) and increased the sensitivity of electrospray ionization mass spectrometry (ESI MS) detection. The fragment ion pairs of m/z 182/187 and m/z 210/215 from the benzil-d0/d5 tags facilitated the discovery of potential GCs and UCs candidates residing in biological matrices. The use of BRSIL combined with LC-ESI MS was applied for simultaneously quantitation of GCs and UCs in thyroid tissues. It was demonstrated that nine GCs and UCs were detected, six of which were further quantified based on corresponding standards. It was concluded that five GCs and UCs (L-arginine, homoarginine, 4-guanidinobutyric acid, methylguanidine, and citrulline) were statistically significantly different (p < 0.05) between the para-carcinoma and carcinoma thyroid tissue samples. - Highlights: • A common reagent, benzil-d0/d5 was employed to label the GCs and UCs through BRSIL. • The benzil-d0/d5 labeling improved the retention behavior in RPLC and increased the sensitivity by ESI MS detection. • BRSIL coupled with LC-ESI MS was applied to the qualitation and quantitation of GCs and UCs in thyroid tissues.

  6. Chromosomal rearrangements do not seem to affect the gene flow in hybrid zones between karyotypic races of the common shrew (Sorex araneus)

    Czech Academy of Sciences Publication Activity Database

    Horn, A.; Basset, P.; Yannic, G.; Banaszek, A.; Borodin, P. M.; Bulatova, N. S.; Jadwiszczak, K.; Jones, R. M.; Polyakov, A. V.; Ratkiewicz, M.; Searle, J. B.; Shchipanov, N. A.; Zima, Jan; Hausser, J.

    2012-01-01

    Roč. 66, č. 3 (2012), s. 882-889 ISSN 0014-3820 Institutional research plan: CEZ:AV0Z60930519 Keywords : genetic structure * microsatellites * Robertsonian rearrangements * Sorex araneus * speciation Subject RIV: EG - Zoology Impact factor: 4.864, year: 2012

  7. Balanced into array : genome-wide array analysis in 54 patients with an apparently balanced de novo chromosome rearrangement and a meta-analysis

    NARCIS (Netherlands)

    Feenstra, Ilse; Hanemaaijer, Nicolien; Sikkema-Raddatz, Birgit; Yntema, Helger; Dijkhuizen, Trijnie; Lugtenberg, Dorien; Verheij, Joke; Green, Andrew; Hordijk, Roel; Reardon, William; de Vries, Bert; Brunner, Han; Bongers, Ernie; de Leeuw, Nicole; van Ravenswaaij-Arts, Conny

    2011-01-01

    High-resolution genome-wide array analysis enables detailed screening for cryptic and submicroscopic imbalances of microscopically balanced de novo rearrangements in patients with developmental delay and/or congenital abnormalities. In this report, we added the results of genome-wide array analysis

  8. Development of stable reporter system cloning luxCDABE genes into chromosome of Salmonella enterica serotypes using Tn7 transposon

    Directory of Open Access Journals (Sweden)

    Lawrence Mark L

    2010-07-01

    Full Text Available Abstract Background Salmonellosis may be a food safety problem when raw food products are mishandled and not fully cooked. In previous work, we developed bioluminescent Salmonella enterica serotypes using a plasmid-based reporting system that can be used for real-time monitoring of the pathogen's growth on food products in short term studies. In this study, we report the use of a Tn7-based transposon system for subcloning of luxCDABE genes into the chromosome of eleven Salmonella enterica serotypes isolated from the broiler production continuum. Results We found that the lux operon is constitutively expressed from the chromosome post-transposition and the lux cassette is stable without external pressure, i.e. antibiotic selection, for all Salmonella enterica serotypes used. Bioluminescence expression is based on an active electron transport chain and is directly related with metabolic activity. This relationship was quantified by measuring bioluminescence against a temperature gradient in aqueous solution using a luminometer. In addition, bioluminescent monitoring of two serotypes confirmed that our chicken skin model has the potential to be used to evaluate pathogen mitigation strategies. Conclusions This study demonstrated that our new stable reporting system eliminates bioluminescence variation due to plasmid instability and provides a reliable real-time experimental system to study application of preventive measures for Salmonella on food products in real-time for both short and long term studies.

  9. t(8;14) chromosome translocation of the Burkitt lymphoma cell line Daudi occurred during immunoglobulin gene rearrangement and involved the heavy chain diversity region

    International Nuclear Information System (INIS)

    Haluska, F.G.; Tsujimoto, Y.; Croce, C.M.

    1987-01-01

    Recent molecular analyses of Burkitt lymphomas carrying the t(8;14) chromosome translocation have indicated that a dichotomy exists regarding the molecular mechanisms by which the translocations occur. Most sporadic Burkitt tumors carry translocations that apparently arise due to mistakes in the immunoglobulin isotype-switching process. In contrast, there is evidence that the translocations of most endemic Burkitt lymphomas occur as a consequence of aberrant V-D-J recombination of variable, diversity, and joining gene segments, catalyzed by the recombinase enzymes. This phenomenon was first noted in follicular lymphomas and chronic lymphocytic leukemias of the B-cell lineage and has been described in T-cell malignancies as well. In each of these cases, analysis of the nucleotide sequence at chromosome breakpoints demonstrated the involvement of immunoglobulin heavy chain J/sub H/ or T-cell-receptor α-chain Jα gene segments in the translocation. The authors now have cloned and sequenced both the 8q- and 14q+ translocation breakpoints deriving from the t(8;14) translocation of the endemic Burkitt lymphoma line Daudi. The data show that the translocation resulted from a reciprocal exchange between the D/sub H/ region on chromosome 14 and sequences far 5' of the MYC protooncogene on chromosome 8. Features of the nucleotide sequences surrounding the breakpoint further implicate the V-D-J joining machinery in the genesis of chromosome translocation in endemic Burkitt lymphomas and, more generally, in other lymphoid malignancies as well

  10. The effect of X-irradiation on the fertility and the induction of meiotic chromosome rearrangements in mice and their first generation

    International Nuclear Information System (INIS)

    Savkovic, N.; Pecevski, J.; Maric, N.; Radivojevic, D.

    1978-01-01

    The effect of whole-body and local irradiation with a dose of 600 X-rays on the induction of chromosomal translocations in Diakinesis-Metaphase I of meiosis in treated and F 1 males and their fertility have been examined. Our results showed the high percentage of mortality in whole-body irradiated mice. The percentage of fertility was 25% in whole-body, and 93,7% in locally irradiated males. The testis weight was also reduced. The percentage of chromosomal translocations in Diakinesis-Metaphase I of meiosis was greater after whole-body than after local irradiation. In F 1 males both types of irradiation induced chromosomal translocations. (orig.) [de

  11. A rearrangement of the Z chromosome topology influences the sex-linked gene display in the European corn borer, Ostrinia nubilalis

    Science.gov (United States)

    The sex determination system of Lepidoptera is comprised of heterogametic females (ZW) and homogametic males (ZZ), where voltinism (Volt) and the male pheromone response traits (Resp) are controlled by genes housed on the Z-chromosome. Volt and Resp determine traits that lead to ecotype differentia...

  12. Claisen thermally rearranged (CTR) polymers

    Science.gov (United States)

    Tena, Alberto; Rangou, Sofia; Shishatskiy, Sergey; Filiz, Volkan; Abetz, Volker

    2016-01-01

    Thermally rearranged (TR) polymers, which are considered the next-generation of membrane materials because of their excellent transport properties and high thermal and chemical stability, are proven to have significant drawbacks because of the high temperature required for the rearrangement and low degree of conversion during this process. We demonstrate that using a [3,3]-sigmatropic rearrangement, the temperature required for the rearrangement of a solid glassy polymer was reduced by 200°C. Conversions of functionalized polyimide to polybenzoxazole of more than 97% were achieved. These highly mechanically stable polymers were almost five times more permeable and had more than two times higher degrees of conversion than the reference polymer treated under the same conditions. Properties of these second-generation TR polymers provide the possibility of preparing efficient polymer membranes in a form of, for example, thin-film composite membranes for various gas and liquid membrane separation applications. PMID:27482538

  13. Random chromosome elimination in synthetic Triticum-Aegilops amphiploids leads to development of a stable partial amphiploid with high grain micro- and macronutrient content and powdery mildew resistance.

    Science.gov (United States)

    Tiwari, Vijay K; Rawat, Nidhi; Neelam, Kumari; Kumar, Sundip; Randhawa, Gursharn S; Dhaliwal, Harcharan S

    2010-12-01

    Synthetic amphiploids are the immortal sources for studies on crop evolution, genome dissection, and introgression of useful variability from related species. Cytological analysis of synthetic decaploid wheat (Triticum aestivum L.) - Aegilops kotschyi Boiss. amphiploids (AABBDDUkUkSkSk) showed some univalents from the C1 generation onward followed by chromosome elimination. Most of the univalents came to metaphase I plate after the reductional division of paired chromosomes and underwent equational division leading to their elimination through laggards and micronuclei. Substantial variation in the chromosome number of pollen mother cells from different tillers, spikelets, and anthers of some plants also indicated somatic chromosome elimination. Genomic in situ hybridization, fluorescence in situ hybridization, and simple sequence repeat markers analysis of two amphiploids with reduced chromosomes indicated random chromosome elimination of various genomes with higher sensitivity of D followed by the Sk and Uk genomes to elimination, whereas 1D chromosome was preferentially eliminated in both the amphiploids investigated. One of the partial amphiploids, C4 T. aestivum 'Chinese Spring' - Ae. kotschyi 396 (2n = 58), with 34 T. aestivum, 14 Uk, and 10 Sk had stable meiosis and high fertility. The partial amphiploids with white glumes, bold seeds, and tough rachis with high grain macro- and micronutrients and resistance to powdery mildew could be used for T. aestivum biofortification and transfer of powdery mildew resistance.

  14. Analysis of plant meiotic chromosomes by chromosome painting.

    Science.gov (United States)

    Lysak, Martin A; Mandáková, Terezie

    2013-01-01

    Chromosome painting (CP) refers to visualization of large chromosome regions, entire chromosome arms, or entire chromosomes via fluorescence in situ hybridization (FISH). For CP in plants, contigs of chromosome-specific bacterial artificial chromosomes (BAC) from the target species or from a closely related species (comparative chromosome painting, CCP) are typically applied as painting probes. Extended pachytene chromosomes provide the highest resolution of CP in plants. CP enables identification and tracing of particular chromosome regions and/or entire chromosomes throughout all meiotic stages as well as corresponding chromosome territories in premeiotic interphase nuclei. Meiotic pairing and structural chromosome rearrangements (typically inversions and translocations) can be identified by CP. Here, we describe step-by-step protocols of CP and CCP in plant species including chromosome preparation, BAC DNA labeling, and multicolor FISH.

  15. Sex determination in Madagascar geckos of the genus Paroedura (Squamata: Gekkonidae): are differentiated sex chromosomes indeed so evolutionary stable?

    Science.gov (United States)

    Koubová, Martina; Johnson Pokorná, Martina; Rovatsos, Michail; Farkačová, Klára; Altmanová, Marie; Kratochvíl, Lukáš

    2014-12-01

    Among amniote vertebrates, geckos represent a clade with exceptional variability in sex determination; however, only a minority of species of this highly diverse group has been studied in this respect. Here, we describe for the first time a female heterogamety in the genus Paroedura, the group radiated in Madagascar and adjacent islands. We identified homomorphic ZZ/ZW sex chromosomes with a highly heterochromatic W chromosome in Paroedura masobe, Paroedura oviceps, Paroedura karstophila, Paroedura stumpffi, and Paroedura lohatsara. Comparative genomic hybridization (CGH) revealed that female-specific sequences are greatly amplified in the W chromosome of P. lohatsara and that P. gracilis seems to possess a derived system of multiple sex chromosomes. Contrastingly, neither CGH nor heterochromatin visualization revealed differentiated sex chromosomes in the members of the Paroedura picta-Paroedura bastardi-Paroedura ibityensis clade, which is phylogenetically nested within lineages with a heterochromatic W chromosome. As a sex ratio consistent with genotypic sex determination has been reported in P. picta, it appears that the members of the P. picta-P. bastardi-P. ibityensis clade possess homomorphic, poorly differentiated sex chromosomes and may represent a rare example of evolutionary loss of highly differentiated sex chromosomes. Fluorescent in situ hybridization (FISH) with a telomeric probe revealed a telomere-typical pattern in all species and an accumulation of telomeric sequences in the centromeric region of autosomes in P. stumpffi and P. bastardi. Our study adds important information for the greater understanding of the variability and evolution of sex determination in geckos and demonstrates how the geckos of the genus Paroedura provide an interesting model for studying the evolution of the sex chromosomes.

  16. Three new cases of chromosome 3 rearrangement in bands q21 and q26 with abnormal thrombopoiesis bring further evidence to the existence of a 3q21q26 syndrome.

    Science.gov (United States)

    Jotterand Bellomo, M; Parlier, V; Mühlematter, D; Grob, J P; Beris, P

    1992-04-01

    Defects of 3q in bands q21 and q26 have been reported in more than 70 cases of acute nonlymphocytic leukemia (ANLL), myelodysplastic syndrome (MDS), and myeloproliferative disorder (MPD) in blast crisis. In this paper three additional patients are described: patient 1 with refractory anemia with excess of blasts in transformation (RAEB-T) and inv(3)(q21q26), patient 2 with RAEB-T and t(3;3)(q21;q26), and patient 3 with myelofibrosis with myeloid metaplasia (MMM) in blast crisis and inv(3)(q21q26). In addition to 3q rearrangements, monosomy 7 and del(7)(q22q36) were observed in patients 1 and 2, respectively. In the three patients, the most characteristic clinical features were elevated platelet counts, marked hyperplasia with dysplasia of the megakaryocytes, and poor prognosis. Although disturbance of thrombopoiesis was not systematically observed in all patients with t(3;3)(q21;q26), inv(3)(q21q26), and ins or dup(3)(q21----q26), study of the 77 cases reported and of the three cases presented here brings further evidence to the existence of a cytogenetic syndrome involving bands q21 and q26 simultaneously, which represents a subtype of ANLL, MDS, and MPD, characterized by normal or elevated platelet counts, hyperplasia with dysplasia of megakaryocytes, multilineage involvement, young median age of patients with MDS, preferential involvement of women in t(3;3), high incidence of chromosome 7 defects in MDS and ANLL, short duration of the MDS phase, no response to chemotherapy, short survival, and por prognosis.

  17. Targets for, and consequences of, radiation-induced chromosomal instability

    Science.gov (United States)

    Kaplan, Mark Isaac

    Chromosomal instability has been demonstrated in a human- hamster hybrid cell line, GM10115, after exposure to x- rays. Chromosomal instability in these cells is characterized by the appearance of novel chromosomal rearrangements multiple generations after exposure to ionizing radiation. To identify the cellular target(s) for radiation-induced chromosomal instability, cells were treated with 125I-labeled compounds. Labeling cells with 125I-iododeoxyuridine, which caused radiation damage to the DNA and associated nuclear structures, did induce chromosomal instability. While cell killing and first-division chromosomal rearrangements increased with increasing numbers of 125I decays, the frequency of chromosomal instability was independent of dose. Incorporation of an 125I-labeled protein, 125I-succinyl- concanavalin A, into either the plasma membrane or the cytoplasm, failed to elicit chromosomal instability. These results show that radiation damage to the nucleus, and not to extranuclear regions, contributes to the induction of chromosomal instability. To determine the role of DNA strand breaks as a molecular lesion responsible for initiating chromosomal instability, cells were treated with a variety of DNA strand breaking agents. Agents capable of producing complex DNA double strand breaks, including X-rays, Neocarzinostatin and bleomycin, were able to induce chromosomal instability. In contrast, double strand breaks produced by restriction endonucleases as well as DNA strand breaks produced by hydrogen peroxide failed to induce chromosomal instability. This demonstrates that the type of DNA breakage is important in the eventual manifestation of chromosomal instability. In order to understand the relationship between chromosomal instability and other end points of genomic instability, chromosomally stable and unstable clones were analyzed for sister chromatid exchange, delayed reproductive cell death, delayed mutation, mismatch repair and delayed gene amplification

  18. Analysis gives alterations stable chromosomic induced by the radiation in vitro the sanguine samples to well-known dose. Preliminary results obtained by means of chromosomic painting

    International Nuclear Information System (INIS)

    Prieto, M.J.; Moreno, M.; Gomez-Espi, M.; Olivares, P.; Herranz, R.

    1998-01-01

    In the University General Hospital Gregorio Marannon, once standardized the technique in situ hybridization with fluorescence by means of painting chromosomic the couples 1 and 2 you this carrying out the irradiation gives sanguine samples to well-known dose The objective these irradiations it is the elaboration in vitro a calibration chart dose effect for gamma ray. This new curve will allow to estimate dose in individuals with suspicion overexposure to ionizing radiations, solving some gives the limitations that it presents the technique classic cytogenetics

  19. Sex determination in Madagascar geckos of the genus Paroedura (Squamata: Gekkonidae): are differentiated sex chromosomes indeed so evolutionary stable?

    Czech Academy of Sciences Publication Activity Database

    Koubová, M.; Johnson Pokorná, Martina; Rovatsos, M.; Farkačová, K.; Altmanová, M.; Kratochvíl, L.

    2014-01-01

    Roč. 22, č. 4 (2014), s. 441-452 ISSN 0967-3849 R&D Projects: GA ČR GAP506/10/0718 Institutional support: RVO:67985904 Keywords : sex chromosomes * heterochromatin * reptiles * sex determination * FISH * ITSs Subject RIV: EG - Zoology Impact factor: 2.478, year: 2014

  20. Frequent Chromatin Rearrangements in Myelodysplastic Syndromes - What Stands Behind?

    Czech Academy of Sciences Publication Activity Database

    Pagáčová, Eva; Falk, Martin; Falková, Iva; Lukášová, Emilie; Michalová, K.; Oltová, A.; Raška, I.; Kozubek, Stanislav

    2014-01-01

    Roč. 60, č. 2014 (2014), s. 1-7 ISSN 0015-5500 R&D Projects: GA ČR(CZ) GBP302/12/G157; GA MŠk(CZ) EE2.3.30.0030 Institutional support: RVO:68081707 Keywords : myelodysplastic syndromes * chromosomal rearrangements * chromosome 5 deletions Subject RIV: BO - Biophysics Impact factor: 1.000, year: 2014

  1. MYC Immunohistochemistry Predicts MYC Rearrangements by FISH.

    Science.gov (United States)

    Nwanze, Julum; Siddiqui, Momin T; Stevens, Keith A; Saxe, Debra; Cohen, Cynthia

    2017-01-01

    MYC is the proto-oncogene classically associated with Burkitt lymphoma (BL) located at chromosomal locus 8q24. Rearrangements of MYC are seen in nearly 100% of BL but have been reported in 3-16% of diffuse large B-cell lymphomas (DLBCLs). Rearrangements of MYC are tested for by flourescence in situ hybridization (FISH). In this study, we compared immunohistochemistry (IHC) using a monoclonal antibody directed against the human Myc protein to the current method, FISH. 31 cases were identified that had been tested for MYC rearrangements by FISH over 27 months with heterogeneity in the diagnoses: 5 BL; 10 DLBCL; 3 B-cell lymphoma unclassifiable between DLBCL and BL; 5 B-cell lymphoma not otherwise specified; 1 EBV-related B-cell lymphoma; 1 composite CLL/SLL-large cell lymphoma; and 6 designated as high-grade or aggressive B-cell lymphoma. Analysis by FISH was performed as part of the clinical workup, where a MYC rearrangement is defined as a split fusion signal in at least 5.7% of cells. Myc-IHC was interpreted as a qualitative positive (overexpressed) or negative (not overexpressed) result. 12 cases (39%) were positive for MYC rearrangements by FISH. Overall, 13 cases (42%) showed Myc overexpression by IHC, 11 of which harbored a MYC rearrangement by FISH. There were two false positives and one false negative. Thus, Myc-IHC predicted a MYC rearrangement by FISH with 92% sensitivity and 89% specificity. We can thus conclude that Myc-IHC should be a potentially useful screening tool for identifying lymphomas that may harbor a MYC rearrangement.

  2. Chromosomal instability in near-diploid colorectal cancer: a link between numbers and structure.

    Directory of Open Access Journals (Sweden)

    Martine Muleris

    Full Text Available Chromosomal instability (CIN plays a crucial role in tumor development and occurs mainly as the consequence of either missegregation of normal chromosomes (MSG or structural rearrangement (SR. However, little is known about the respective chromosomal targets of MSG and SR and the way these processes combined within tumors to generate CIN. To address these questions, we karyotyped a consecutive series of 96 near-diploid colorectal cancers (CRCs and distinguished chromosomal changes generated by either MSG or SR in tumor cells. Eighty-three tumors (86% presented with chromosomal abnormalities that contained both MSGs and SRs to varying degrees whereas all 13 others (14% showed normal karyotype. Using a maximum likelihood statistical method, chromosomes affected by MSG or SR and likely to represent changes that are selected for during tumor progression were found to be different and mostly mutually exclusive. MSGs and SRs were not randomly associated within tumors, delineating two major pathways of chromosome alterations that consisted of either chromosome gains by MSG or chromosomal losses by both MSG and SR. CRCs showing microsatellite instability (MSI presented with either normal karyotype or chromosome gains whereas MSS (microsatellite stable CRCs exhibited a combination of the two pathways. Taken together, these data provide new insights into the respective involvement of MSG and SR in near-diploid colorectal cancers, showing how these processes target distinct portions of the genome and result in specific patterns of chromosomal changes according to MSI status.

  3. Label Free Chromosome Translocation Detection with Silicon nanowires

    DEFF Research Database (Denmark)

    Kwasny, Dorota; Andersen, Karsten Brandt; Frøhling, Kasper Bayer

    HROMOSOME translocation, which is a rearrangement of arms between two chromosomes, is a major group of chromosome abnormalities leading to cancer. As a result, two derivative chromosomes with sequences coming from both chromosomes are formed. The current translocation detection method is a Fluore......HROMOSOME translocation, which is a rearrangement of arms between two chromosomes, is a major group of chromosome abnormalities leading to cancer. As a result, two derivative chromosomes with sequences coming from both chromosomes are formed. The current translocation detection method...

  4. Dynamics of genome rearrangement in bacterial populations.

    Directory of Open Access Journals (Sweden)

    Aaron E Darling

    2008-07-01

    Full Text Available Genome structure variation has profound impacts on phenotype in organisms ranging from microbes to humans, yet little is known about how natural selection acts on genome arrangement. Pathogenic bacteria such as Yersinia pestis, which causes bubonic and pneumonic plague, often exhibit a high degree of genomic rearrangement. The recent availability of several Yersinia genomes offers an unprecedented opportunity to study the evolution of genome structure and arrangement. We introduce a set of statistical methods to study patterns of rearrangement in circular chromosomes and apply them to the Yersinia. We constructed a multiple alignment of eight Yersinia genomes using Mauve software to identify 78 conserved segments that are internally free from genome rearrangement. Based on the alignment, we applied Bayesian statistical methods to infer the phylogenetic inversion history of Yersinia. The sampling of genome arrangement reconstructions contains seven parsimonious tree topologies, each having different histories of 79 inversions. Topologies with a greater number of inversions also exist, but were sampled less frequently. The inversion phylogenies agree with results suggested by SNP patterns. We then analyzed reconstructed inversion histories to identify patterns of rearrangement. We confirm an over-representation of "symmetric inversions"-inversions with endpoints that are equally distant from the origin of chromosomal replication. Ancestral genome arrangements demonstrate moderate preference for replichore balance in Yersinia. We found that all inversions are shorter than expected under a neutral model, whereas inversions acting within a single replichore are much shorter than expected. We also found evidence for a canonical configuration of the origin and terminus of replication. Finally, breakpoint reuse analysis reveals that inversions with endpoints proximal to the origin of DNA replication are nearly three times more frequent. Our findings

  5. Degradations and Rearrangement Reactions

    Science.gov (United States)

    Zhang, Jianbo

    This section deals with recent reports concerning degradation and rearrangement reactions of free sugars as well as some glycosides. The transformations are classified in chemical and enzymatic ways. In addition, the Maillard reaction will be discussed as an example of degradation and rearrangement transformation and its application in current research in the fields of chemistry and biology.

  6. Chromosomes A07 and A05 associated with stable and major QTLs for pod weight and size in cultivated peanut (Arachis hypogaea L.).

    Science.gov (United States)

    Luo, Huaiyong; Guo, Jianbin; Ren, Xiaoping; Chen, Weigang; Huang, Li; Zhou, Xiaojing; Chen, Yuning; Liu, Nian; Xiong, Fei; Lei, Yong; Liao, Boshou; Jiang, Huifang

    2018-02-01

    Co-localized intervals and candidate genes were identified for major and stable QTLs controlling pod weight and size on chromosomes A07 and A05 in an RIL population across four environments. Cultivated peanut (Arachis hypogaea L.) is an important legume crops grown in > 100 countries. Hundred-pod weight (HPW) is an important yield trait in peanut, but its underlying genetic mechanism was not well studied. In this study, a mapping population (Xuhua 13 × Zhonghua 6) with 187 recombinant inbred lines (RILs) was developed to map quantitative trait loci (QTLs) for HPW together with pod length (PL) and pod width (PW) by both unconditional and conditional QTL analyses. A genetic map covering 1756.48 cM was constructed with 817 markers. Additive effects, epistatic interactions, and genotype-by-environment interactions were analyzed using the phenotyping data generated across four environments. Twelve additive QTLs were identified on chromosomes A05, A07, and A08 by unconditional analysis, and five of them (qPLA07, qPLA05.1, qPWA07, qHPWA07.1, and qHPWA05.2) showed major and stable expressions in all environments. Conditional QTL mapping found that PL had stronger influences on HPW than PW. Notably, qHPWA07.1, qPLA07, and qPWA07 that explained 17.93-43.63% of the phenotypic variations of the three traits were co-localized in a 5 cM interval (1.48 Mb in physical map) on chromosome A07 with 147 candidate genes related to catalytic activity and metabolic process. In addition, qHPWA05.2 and qPLA05.1 were co-localized with minor QTL qPWA05.2 to a 1.3 cM genetic interval (280 kb in physical map) on chromosome A05 with 12 candidate genes. This study provides a comprehensive characterization of the genetic components controlling pod weight and size as well as candidate QTLs and genes for improving pod yield in future peanut breeding.

  7. Construction and characterization of stable, constitutively expressed, chromosomal green and red fluorescent transcriptional fusions in the select agents, Bacillus anthracis, Yersinia pestis, Burkholderia mallei, and Burkholderia pseudomallei.

    Science.gov (United States)

    Su, Shengchang; Bangar, Hansraj; Saldanha, Roland; Pemberton, Adin; Aronow, Bruce; Dean, Gary E; Lamkin, Thomas J; Hassett, Daniel J

    2014-10-01

    Here, we constructed stable, chromosomal, constitutively expressed, green and red fluorescent protein (GFP and RFP) as reporters in the select agents, Bacillus anthracis, Yersinia pestis, Burkholderia mallei, and Burkholderia pseudomallei. Using bioinformatic approaches and other experimental analyses, we identified P0253 and P1 as potent promoters that drive the optimal expression of fluorescent reporters in single copy in B. anthracis and Burkholderia spp. as well as their surrogate strains, respectively. In comparison, Y. pestis and its surrogate strain need two chromosomal copies of cysZK promoter (P2cysZK) for optimal fluorescence. The P0253-, P2cysZK-, and P1-driven GFP and RFP fusions were first cloned into the vectors pRP1028, pUC18R6KT-mini-Tn7T-Km, pmini-Tn7-gat, or their derivatives. The resultant constructs were delivered into the respective surrogates and subsequently into the select agent strains. The chromosomal GFP- and RFP-tagged strains exhibited bright fluorescence at an exposure time of less than 200 msec and displayed the same virulence traits as their wild-type parental strains. The utility of the tagged strains was proven by the macrophage infection assays and lactate dehydrogenase release analysis. Such strains will be extremely useful in high-throughput screens for novel compounds that could either kill these organisms, or interfere with critical virulence processes in these important bioweapon agents and during infection of alveolar macrophages. © 2014 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  8. Transposon-mediated chromosomal integration of transgenes in the parasitic nematode Strongyloides ratti and establishment of stable transgenic lines.

    Directory of Open Access Journals (Sweden)

    Hongguang Shao

    Full Text Available Genetic transformation is a potential tool for analyzing gene function and thereby identifying new drug and vaccine targets in parasitic nematodes, which adversely affect more than one billion people. We have previously developed a robust system for transgenesis in Strongyloides spp. using gonadal microinjection for gene transfer. In this system, transgenes are expressed in promoter-regulated fashion in the F1 but are silenced in subsequent generations, presumably because of their location in repetitive episomal arrays. To counteract this silencing, we explored transposon-mediated chromosomal integration of transgenes in S. ratti. To this end, we constructed a donor vector encoding green fluorescent protein (GFP under the control of the Ss-act-2 promoter with flanking inverted tandem repeats specific for the piggyBac transposon. In three experiments, free-living Strongyloides ratti females were transformed with this donor vector and a helper plasmid encoding the piggyBac transposase. A mean of 7.9% of F1 larvae were GFP-positive. We inoculated rats with GFP-positive F1 infective larvae, and 0.5% of 6014 F2 individuals resulting from this host passage were GFP-positive. We cultured GFP-positive F2 individuals to produce GFP-positive F3 L3i for additional rounds of host and culture passage. Mean GFP expression frequencies in subsequent generations were 15.6% in the F3, 99.0% in the F4, 82.4% in the F5 and 98.7% in the F6. The resulting transgenic lines now have virtually uniform GFP expression among all progeny after at least 10 generations of passage. Chromosomal integration of the reporter transgenes was confirmed by Southern blotting and splinkerette PCR, which revealed the transgene flanked by S. ratti genomic sequences corresponding to five discrete integration sites. BLAST searches of flanking sequences against the S. ratti genome revealed integrations in five contigs. This result provides the basis for two powerful functional genomic tools

  9. Transposon-mediated chromosomal integration of transgenes in the parasitic nematode Strongyloides ratti and establishment of stable transgenic lines.

    Science.gov (United States)

    Shao, Hongguang; Li, Xinshe; Nolan, Thomas J; Massey, Holman C; Pearce, Edward J; Lok, James B

    2012-01-01

    Genetic transformation is a potential tool for analyzing gene function and thereby identifying new drug and vaccine targets in parasitic nematodes, which adversely affect more than one billion people. We have previously developed a robust system for transgenesis in Strongyloides spp. using gonadal microinjection for gene transfer. In this system, transgenes are expressed in promoter-regulated fashion in the F1 but are silenced in subsequent generations, presumably because of their location in repetitive episomal arrays. To counteract this silencing, we explored transposon-mediated chromosomal integration of transgenes in S. ratti. To this end, we constructed a donor vector encoding green fluorescent protein (GFP) under the control of the Ss-act-2 promoter with flanking inverted tandem repeats specific for the piggyBac transposon. In three experiments, free-living Strongyloides ratti females were transformed with this donor vector and a helper plasmid encoding the piggyBac transposase. A mean of 7.9% of F1 larvae were GFP-positive. We inoculated rats with GFP-positive F1 infective larvae, and 0.5% of 6014 F2 individuals resulting from this host passage were GFP-positive. We cultured GFP-positive F2 individuals to produce GFP-positive F3 L3i for additional rounds of host and culture passage. Mean GFP expression frequencies in subsequent generations were 15.6% in the F3, 99.0% in the F4, 82.4% in the F5 and 98.7% in the F6. The resulting transgenic lines now have virtually uniform GFP expression among all progeny after at least 10 generations of passage. Chromosomal integration of the reporter transgenes was confirmed by Southern blotting and splinkerette PCR, which revealed the transgene flanked by S. ratti genomic sequences corresponding to five discrete integration sites. BLAST searches of flanking sequences against the S. ratti genome revealed integrations in five contigs. This result provides the basis for two powerful functional genomic tools in S. ratti

  10. Imperceptible effect of radiation based on stable type chromosome aberrations accumulated in the lymphocytes of residents in the high background radiation area in China

    International Nuclear Information System (INIS)

    Zhang Wei; Wang Chunyan; Chen Deqing; Wei Luxin; Morishima, Hiroshige; Yuan Yongling; Sugahara, Tsutomu

    2003-01-01

    Cytogenetic investigation of stable type aberrations (translocations) was performed with our improved methods in 6 children and 15 elderly persons in a high background radiation area (HBRA) in China, and in 8 children and 11 elderly persons in a control area. The total numbers of cells analyzed in elderly persons were 68,297 in HBRA and 35,378 in controls and in children were 45,535 in HBRA and 56,198 in controls. On average 5138 cells per subject were analyzed. The variation in the frequencies of translocations per 1000 cells was small in children while it was large in elderly persons. No significant difference was found in the frequencies between HBRA and control (P>0.05, Mann-Whitney U test). On the other hand, correlation between age and translocation frequencies was significant at the 1% level (r s =0.658 with 37DF, Spearman rank correlation test). The contribution of an elevated level of natural radiation in HBRA in China to the induction of stable type chromosome aberrations does not have a significant effect compared with the contribution of chemical mutagens and/or metabolic factors. The present study suggests that the probability of the risk of causing malignant and/or congenital diseases by the increased amount of radiation is imperceptible in HBRA where the level of natural radiation is 3 to 5 times higher than that in the control area. (author)

  11. Complex chromosome rearrangement in a child with microcephaly, dysmorphic facial features and mosaicism for a terminal deletion del(18(q21.32-qter investigated by FISH and array-CGH: Case report

    Directory of Open Access Journals (Sweden)

    Kokotas Haris

    2008-11-01

    Full Text Available Abstract We report on a 7 years and 4 months old Greek boy with mild microcephaly and dysmorphic facial features. He was a sociable child with maxillary hypoplasia, epicanthal folds, upslanting palpebral fissures with long eyelashes, and hypertelorism. His ears were prominent and dysmorphic, he had a long philtrum and a high arched palate. His weight was 17 kg (25th percentile and his height 120 cm (50th percentile. High resolution chromosome analysis identified in 50% of the cells a normal male karyotype, and in 50% of the cells one chromosome 18 showed a terminal deletion from 18q21.32. Molecular cytogenetic investigation confirmed a del(18(q21.32-qter in the one chromosome 18, but furthermore revealed the presence of a duplication in q21.2 in the other chromosome 18. The case is discussed concerning comparable previously reported cases and the possible mechanisms of formation.

  12. Multiple opposing constraints govern chromosome interactions during meiosis.

    Directory of Open Access Journals (Sweden)

    Doris Y Lui

    Full Text Available Homolog pairing and crossing over during meiosis I prophase is required for accurate chromosome segregation to form euploid gametes. The repair of Spo11-induced double-strand breaks (DSB using a homologous chromosome template is a major driver of pairing in many species, including fungi, plants, and mammals. Inappropriate pairing and crossing over at ectopic loci can lead to chromosome rearrangements and aneuploidy. How (or if inappropriate ectopic interactions are disrupted in favor of allelic interactions is not clear. Here we used an in vivo "collision" assay in budding yeast to test the contributions of cohesion and the organization and motion of chromosomes in the nucleus on promoting or antagonizing interactions between allelic and ectopic loci at interstitial chromosome sites. We found that deletion of the cohesin subunit Rec8, but not other chromosome axis proteins (e.g. Red1, Hop1, or Mek1, caused an increase in homolog-nonspecific chromosome interaction, even in the absence of Spo11. This effect was partially suppressed by expression of the mitotic cohesin paralog Scc1/Mdc1, implicating Rec8's role in cohesion rather than axis integrity in preventing nonspecific chromosome interactions. Disruption of telomere-led motion by treating cells with the actin polymerization inhibitor Latrunculin B (Lat B elevated nonspecific collisions in rec8Δ spo11Δ. Next, using a visual homolog-pairing assay, we found that the delay in homolog pairing in mutants defective for telomere-led chromosome motion (ndj1Δ or csm4Δ is enhanced in Lat B-treated cells, implicating actin in more than one process promoting homolog juxtaposition. We suggest that multiple, independent contributions of actin, cohesin, and telomere function are integrated to promote stable homolog-specific interactions and to destabilize weak nonspecific interactions by modulating the elastic spring-like properties of chromosomes.

  13. Chromosomes in the genesis and progression of ependymomas

    DEFF Research Database (Denmark)

    Rogatto, S R; Casartelli, C; Rainho, C A

    1993-01-01

    chromosomes in three cases. Structural rearrangements of chromosome 2 were a finding for all cases and involved loss of material at 2q32-34. Other structural chromosome abnormalities detected involved chromosomes 4, 6, 10, 11, 12, and X. We also reviewed data on 22 cases previously reported....

  14. Molecular characterization of complex chromosomal rearrangement: first report of novel t(7;12) (q11;q22) as part of a complex karyotype in de novo AML-M2 case.

    Science.gov (United States)

    Ahmad, Firoz; Dalvi, Rupa; Mandava, Swarna; Das, Bibhu R

    2014-12-01

    The strong association of diagnostic karyotype with clinical outcome has made cytogenetics one of the most valuable diagnostic and prognostic tools for acute myeloid leukemia (AML) till today. Complex chromosomal findings are reported to be seen in nearly 10-15% of adult AMLs and are generally associated with poor outcome. In the current report, we present the results of hematologic, immunophenotypic, cytogenetic, chromosomal microarray and molecular analyses of a 60-year-old female patient diagnosed with AML-M2. Cytogenetic analysis revealed complex chromosomal findings involving seven different chromosomes. However, cytogenetic analyses were not able to precisely unveil all karyotypic changes, hence chromosomal microarray was used for further characterization. The most interesting observation was identification of a t(7;12) (q11;q22) as part of this complex karyotype. To the best of our knowledge, this is the first report of identification of novel t(7;12) (q11;q22) as part of a complex karyotype in de novo AML-M2. Copyright © 2014 Elsevier GmbH. All rights reserved.

  15. Genome Sequencing of Pediatric Medulloblastoma Links Catastrophic DNA Rearrangements with TP53 Mutations

    NARCIS (Netherlands)

    Rausch, Tobias; Jones, David T. W.; Zapatka, Marc; Stütz, Adrian M.; Zichner, Thomas; Weischenfeldt, Joachim; Jäger, Natalie; Remke, Marc; Shih, David; Northcott, Paul A.; Pfaff, Elke; Tica, Jelena; Wang, Qi; Massimi, Luca; Witt, Hendrik; Bender, Sebastian; Pleier, Sabrina; Cin, Huriye; Hawkins, Cynthia; Beck, Christian; von Deimling, Andreas; Hans, Volkmar; Brors, Benedikt; Eils, Roland; Scheurlen, Wolfram; Blake, Jonathon; Benes, Vladimir; Kulozik, Andreas E.; Witt, Olaf; Martin, Dianna; Zhang, Cindy; Porat, Rinnat; Merino, Diana M.; Wasserman, Jonathan; Jabado, Nada; Fontebasso, Adam; Bullinger, Lars; Rücker, Frank G.; Döhner, Konstanze; Döhner, Hartmut; Koster, Jan; Molenaar, Jan J.; Versteeg, Rogier; Kool, Marcel; Tabori, Uri; Malkin, David; Korshunov, Andrey; Taylor, Michael D.; Lichter, Peter; Pfister, Stefan M.; Korbel, Jan O.

    2012-01-01

    Genomic rearrangements are thought to occur progressively during tumor development. Recent findings, however, suggest an alternative mechanism, involving massive chromosome rearrangements in a one-step catastrophic event termed chromothripsis. We report the whole-genome sequencing-based analysis of

  16. Electochemical detection of chromosome translocation

    DEFF Research Database (Denmark)

    Kwasny, Dorota; Dimaki, Maria; Silahtaroglu, Asli

    2014-01-01

    impedance spectroscopy was selected as the sensing method on a microfabricated chip with array of 12 electrode sets. Two independent chips (Chip1 and Chip2) were used for targeting the chromosomal fragments involved in the translocation. Each chip was differentially functionalized with DNA probes matching......Cytogenetics is a study of the cell structure with a main focus on chromosomes content and their structure. Chromosome abnormalities, such as translocations may cause various genetic disorders and heametological malignancies. Chromosome translocations are structural rearrangements of two...... chromosomes that results in formation of derivative chromosomes with a mixed DNA sequence. The method currently used for their detection is Fluorescent In Situ Hybridization, which requires a use of expensive, fluorescently labeled probes that target the derivative chromosomes. We present here a double...

  17. Delayed chromosomal instability induced by DNA damage

    International Nuclear Information System (INIS)

    Morgan, W.F.; Marder, B.A.; Day, J.P.

    1994-01-01

    Cellular exposure to DNA damaging agents rapidly results in a dose dependent increase in chromosomal breakage and gross structural chromosomal rearrangements. Over recent years, evidence has been accumulating indicating genomic instability can manifest multiple generations after cellular exposure to physical and chemical DNA damaging agents. Genomic instability manifests in the progeny of surviving cells, and has been implicated in mutation, gene application, cellular transformation, and cell killing. To investigate chromosome instability following DNA damage, we have used fluorescence in situ hybridization to detect chromosomal rearrangements in a human/hamster somatic hybrid cell line following exposure to ionizing radiation. Delayed chromosomal instability was detected when multiple populations of uniquely arranged metaphases were observed in clonal isolates raised from single cells surviving X-irradiation many generations after exposure. At higher radiation doses, chromosomal instability was observed in a relatively high frequency of surviving clones and, in general, those clones showed delayed chromosome instability also showed reduced survival as measured by colony forming ability

  18. X Chromosome Evolution in Cetartiodactyla.

    Science.gov (United States)

    Proskuryakova, Anastasia A; Kulemzina, Anastasia I; Perelman, Polina L; Makunin, Alexey I; Larkin, Denis M; Farré, Marta; Kukekova, Anna V; Lynn Johnson, Jennifer; Lemskaya, Natalya A; Beklemisheva, Violetta R; Roelke-Parker, Melody E; Bellizzi, June; Ryder, Oliver A; O'Brien, Stephen J; Graphodatsky, Alexander S

    2017-08-31

    The phenomenon of a remarkable conservation of the X chromosome in eutherian mammals has been first described by Susumu Ohno in 1964. A notable exception is the cetartiodactyl X chromosome, which varies widely in morphology and G-banding pattern between species. It is hypothesized that this sex chromosome has undergone multiple rearrangements that changed the centromere position and the order of syntenic segments over the last 80 million years of Cetartiodactyla speciation. To investigate its evolution we have selected 26 evolutionarily conserved bacterial artificial chromosome (BAC) clones from the cattle CHORI-240 library evenly distributed along the cattle X chromosome. High-resolution BAC maps of the X chromosome on a representative range of cetartiodactyl species from different branches: pig (Suidae), alpaca (Camelidae), gray whale (Cetacea), hippopotamus (Hippopotamidae), Java mouse-deer (Tragulidae), pronghorn (Antilocapridae), Siberian musk deer (Moschidae), and giraffe (Giraffidae) were obtained by fluorescent in situ hybridization. To trace the X chromosome evolution during fast radiation in specious families, we performed mapping in several cervids (moose, Siberian roe deer, fallow deer, and Pere David's deer) and bovid (muskox, goat, sheep, sable antelope, and cattle) species. We have identified three major conserved synteny blocks and rearrangements in different cetartiodactyl lineages and found that the recently described phenomenon of the evolutionary new centromere emergence has taken place in the X chromosome evolution of Cetartiodactyla at least five times. We propose the structure of the putative ancestral cetartiodactyl X chromosome by reconstructing the order of syntenic segments and centromere position for key groups.

  19. DNA rearrangements from γ-irradiated normal human fibroblasts preferentially occur in transcribed regions of the genome

    International Nuclear Information System (INIS)

    Forrester, H.B.; Radford, I.R.

    2003-01-01

    Full text: DNA rearrangement events leading to chromosomal aberrations are central to ionizing radiation-induced cell death. Although DNA double-strand breaks are probably the lesion that initiates formation of chromosomal aberrations, little is understood about the molecular mechanisms that generate and modulate DNA rearrangement. Examination of the sequences that flank sites of DNA rearrangement may provide information regarding the processes and enzymes involved in rearrangement events. Accordingly, we developed a method using inverse PCR that allows the detection and sequencing of putative radiation-induced DNA rearrangements in defined regions of the human genome. The method can detect single copies of a rearrangement event that has occurred in a particular region of the genome and, therefore, DNA rearrangement detection does not require survival and continued multiplication of the affected cell. Ionizing radiation-induced DNA rearrangements were detected in several different regions of the genome of human fibroblast cells that were exposed to 30 Gy of γ-irradiation and then incubated for 24 hours at 37 deg C. There was a 3- to 5-fold increase in the number of products amplified from irradiated as compared with control cells in the target regions 5' to the C-MYC, CDKN1A, RB1, and FGFR2 genes. Sequences were examined from 121 DNA rearrangements. Approximately half of the PCR products were derived from possible inter-chromosomal rearrangements and the remainder were from intra-chromosomal events. A high proportion of the sequences that rearranged with target regions were located in genes, suggesting that rearrangements may occur preferentially in transcribed regions. Eighty-four percent of the sequences examined by reverse transcriptase PCR were from transcribed sequences in IMR-90 cells. The distribution of DNA rearrangements within the target regions is non-random and homology occurs between the sequences involved in rearrangements in some cases but is not

  20. Rearrangements in ground and excited states

    CERN Document Server

    de Mayo, Paul

    1980-01-01

    Rearrangements in Ground and Excited States, Volume 3 presents essays on the chemical generation of excited states; the cis-trans isomerization of olefins; and the photochemical rearrangements in trienes. The book also includes essays on the zimmerman rearrangements; the photochemical rearrangements of enones; the photochemical rearrangements of conjugated cyclic dienones; and the rearrangements of the benzene ring. Essays on the photo rearrangements via biradicals of simple carbonyl compounds; the photochemical rearrangements involving three-membered rings or five-membered ring heterocycles;

  1. Rearrangements in ground and excited states

    CERN Document Server

    de Mayo, Paul

    1980-01-01

    Rearrangements in Ground and Excited States, Volume 2 covers essays on the theoretical approach of rearrangements; the rearrangements involving boron; and the molecular rearrangements of organosilicon compounds. The book also includes essays on the polytopal rearrangement at phosphorus; the rearrangement in coordination complexes; and the reversible thermal intramolecular rearrangements of metal carbonyls. Chemists and people involved in the study of rearrangements will find the book invaluable.

  2. Role of Chromosome Changes in Evolution and Diversity

    Directory of Open Access Journals (Sweden)

    Kornsorn Srikulnath

    2015-12-01

    Full Text Available The karyotypes of most species of crocodilians were studied using conventional and molecular cytogenetics. These provided an important contribution of chromosomal rearrangements for the evolutionary processes of Crocodylia and Sauropsida (birds and reptiles. The karyotypic features of crocodilians contain small diploid chromosome numbers (30~42, with little interspecific variation of the chromosome arm number (fundamental number among crocodiles (56~60. This suggested that centric fusion and/or fission events occurred in the lineage, leading to crocodilian evolution and diversity. The chromosome numbers of Alligator, Caiman, Melanosuchus, Paleosuchus, Gavialis, Tomistoma, Mecistops, and Osteolaemus were stable within each genus, whereas those of Crocodylus (crocodylians varied within the taxa. This agreed with molecular phylogeny that suggested a highly recent radiation of Crocodylus species. Karyotype analysis also suggests the direction of molecular phylogenetic placement among Crocodylus species and their migration from the Indo-Pacific to Africa and The New World. Crocodylus species originated from an ancestor in the Indo-Pacific around 9~16 million years ago (MYA in the mid-Miocene, with a rapid radiation and dispersion into Africa 8~12 MYA. This was followed by a trans-Atlantic dispersion to the New World between 4~8 MYA in the Pliocene. The chromosomes provided a better understanding of crocodilian evolution and diversity, which will be useful for further study of the genome evolution in Crocodylia.

  3. Recurrent DNA inversion rearrangements in the human genome

    DEFF Research Database (Denmark)

    Flores, Margarita; Morales, Lucía; Gonzaga-Jauregui, Claudia

    2007-01-01

    Several lines of evidence suggest that reiterated sequences in the human genome are targets for nonallelic homologous recombination (NAHR), which facilitates genomic rearrangements. We have used a PCR-based approach to identify breakpoint regions of rearranged structures in the human genome...... to human genomic variation is discussed........ In particular, we have identified intrachromosomal identical repeats that are located in reverse orientation, which may lead to chromosomal inversions. A bioinformatic workflow pathway to select appropriate regions for analysis was developed. Three such regions overlapping with known human genes, located...

  4. Molecular mechanism in the formation of a human ring chromosome 21

    International Nuclear Information System (INIS)

    Wong, C.; Kazazian, H.H. Jr.; Stetten, G.; Earnshaw, W.C.; Antonarakis, S.E.; Van Keuren, M.L.

    1989-01-01

    The authors have characterized the structural rearrangements of a chromosome 21 that led to the de novo formation of a human ring chromosome 21 [r(21)]. Molecular cloning and chromosomal localization of the DNA regions flanking the ring junction provide evidence for a long arm to long arm fusion in formation of the r(21). In addition, the centromere and proximal long arm region of a maternal chromosome 21 are duplicated in the r(21). Therefore, the mechanism in formation of the r(21) was complex involving two sequential chromosomal rearrangements. (i) Duplication of the centromere and long arm of one maternal chromosome 21 occurred forming a rearranged intermediate. (ii) Chromosomal breaks in both the proximal and telomeric long arm regions on opposite arms of this rearranged chromosome occurred with subsequent reunion producing the r(21)

  5. Meiotic pairing of B chromosomes, multiple sexual system, and Robertsonian fusion in the red brocket deer Mazama americana (Mammalia, Cervidae)

    OpenAIRE

    Aquino, C. I. [UNESP; Abril, V. V. [UNESP; Duarte, J. M B [UNESP

    2013-01-01

    Deer species of the genus Mazama show significant inter and intraspecific chromosomal variation due to the occurrence of rearrangements and B chromosomes. Given that carriers of aneuploidies and structural rearrangements often show anomalous chromosome pairings, we here performed a synaptonemal complex analysis to study chromosome pairing behavior in a red brocket deer (Mazama americana) individual that is heterozygous for a Robertsonian translocation, is a B chromosome carrier, and has a mul...

  6. Telomere dysfunction and chromosome instability

    Energy Technology Data Exchange (ETDEWEB)

    Murnane, John P., E-mail: jmurnane@radonc.ucsf.edu [Department of Radiation Oncology, University of California San Francisco, 2340 Sutter Street, San Francisco, CA 94143-1331 (United States)

    2012-02-01

    The ends of chromosomes are composed of a short repeat sequence and associated proteins that together form a cap, called a telomere, that keeps the ends from appearing as double-strand breaks (DSBs) and prevents chromosome fusion. The loss of telomeric repeat sequences or deficiencies in telomeric proteins can result in chromosome fusion and lead to chromosome instability. The similarity between chromosome rearrangements resulting from telomere loss and those found in cancer cells implicates telomere loss as an important mechanism for the chromosome instability contributing to human cancer. Telomere loss in cancer cells can occur through gradual shortening due to insufficient telomerase, the protein that maintains telomeres. However, cancer cells often have a high rate of spontaneous telomere loss despite the expression of telomerase, which has been proposed to result from a combination of oncogene-mediated replication stress and a deficiency in DSB repair in telomeric regions. Chromosome fusion in mammalian cells primarily involves nonhomologous end joining (NHEJ), which is the major form of DSB repair. Chromosome fusion initiates chromosome instability involving breakage-fusion-bridge (B/F/B) cycles, in which dicentric chromosomes form bridges and break as the cell attempts to divide, repeating the process in subsequent cell cycles. Fusion between sister chromatids results in large inverted repeats on the end of the chromosome, which amplify further following additional B/F/B cycles. B/F/B cycles continue until the chromosome acquires a new telomere, most often by translocation of the end of another chromosome. The instability is not confined to a chromosome that loses its telomere, because the instability is transferred to the chromosome donating a translocation. Moreover, the amplified regions are unstable and form extrachromosomal DNA that can reintegrate at new locations. Knowledge concerning the factors promoting telomere loss and its consequences is

  7. t(X;17) as the sole karyotypic anomaly in a case of M(3r) subtype of acute promyelocytic leukemia without RARalpha rearrangement.

    Science.gov (United States)

    Wang, Huan-Ping; Xu, Huan; Chen, Zhi-Mei; Tong, Xiang-Min; Qian, Wen-Bin; Jin, Jie

    2010-02-01

    We describe here a unique chromosomal abnormality found in a patient with M(3r) subtype of APL. Neither t(15;17) nor rearrangement of RARalpha was detected by routine R-banded chromosome as well as fluorescence in situ hybridization (FISH) analysis using PML/RARalpha dual-color dual-fusion translocation probe and RARalpha dual-color break apart rearrangement probe. Instead of the typical rearrangement between chromosomes 15 and 17, all cells analyzed had a translocation between X and 17 as the sole karyotypic anomaly. The translocation was conformed by whole chromosome painting (WCP) with painting probes of chromosomes X and 17. To our knowledge, this is the first documented APL with a novel translocation involving chromosomes X and 17 without RARalpha gene rearrangement. Copyright 2009. Published by Elsevier Ltd.

  8. Stable X chromosome inactivation involves the PRC1 Polycomb complex and requires histone MACROH2A1 and the CULLIN3/SPOP ubiquitin E3 ligase

    DEFF Research Database (Denmark)

    Hernández-Muñoz, Inmaculada; Lund, Anders H; van der Stoop, Petra

    2005-01-01

    protein BMI1 and the variant histone MACROH2A. We find that in addition to MACROH2A, PRC1 is recruited to the inactivated X chromosome in somatic cells in a highly dynamic, cell cycle-regulated manner. Importantly, RNAi-mediated knock-down of CULLIN3 or SPOP results in loss of MACROH2A1 from...... the inactivated X chromosome (Xi), leading to reactivation of the Xi in the presence of inhibitors of DNA methylation and histone deacetylation. Likewise, Xi reactivation is also seen on MacroH2A1 RNAi under these conditions. Hence, we propose that the PRC1 complex is involved in the maintenance of X chromosome...

  9. Polytene chromosome map and inversion polymorphism in Drosophila mediopunctata

    Directory of Open Access Journals (Sweden)

    Galina Ananina

    2002-07-01

    Full Text Available Drosophila mediopunctata belongs to the tripunctata group, and is one of the commonest Drosophila species collected in some places in Brazil, especially in the winter. A standard map of the polytene chromosomes is presented. The breakpoints of the naturally occurring chromosomal rearrangements are marked on the map. The distribution of breaking points through the chromosomes of D. mediopunctata is apparently non-random. Chromosomes X, II and IV show inversion polymorphisms. Chromosome II is the most polymorphic, with 17 inversions, 8 inversions in the distal region and 9 in the proximal region. Chromosome X has four different gene arrangements, while chromosome IV has only two.

  10. Meiotic pairing of B chromosomes, multiple sexual system, and Robertsonian fusion in the red brocket deer Mazama americana (Mammalia, Cervidae).

    Science.gov (United States)

    Aquino, C I; Abril, V V; Duarte, J M B

    2013-09-13

    Deer species of the genus Mazama show significant inter- and intraspecific chromosomal variation due to the occurrence of rearrangements and B chromosomes. Given that carriers of aneuploidies and structural rearrangements often show anomalous chromosome pairings, we here performed a synaptonemal complex analysis to study chromosome pairing behavior in a red brocket deer (Mazama americana) individual that is heterozygous for a Robertsonian translocation, is a B chromosome carrier, and has a multiple sex chromosome system (XY₁Y₂). The synaptonemal complex in spermatocytes showed normal chromosome pairings for all chromosomes, including the autosomal and sex trivalents. The electromicrographs showed homology among B chromosomes since they formed bivalents, but they also appeared as univalents, indicating their anomalous behavior and non-Mendelian segregation. Thus, synaptonemal complex analysis is a useful tool to evaluate the role of B chromosomes and rearrangements during meiosis on the intraspecific chromosomal variation that is observed in the majority of Mazama species.

  11. Detection of genomic rearrangements in cucumber using genomecmp software

    Science.gov (United States)

    Kulawik, Maciej; Pawełkowicz, Magdalena Ewa; Wojcieszek, Michał; PlÄ der, Wojciech; Nowak, Robert M.

    2017-08-01

    Comparative genomic by increasing information about the genomes sequences available in the databases is a rapidly evolving science. A simple comparison of the general features of genomes such as genome size, number of genes, and chromosome number presents an entry point into comparative genomic analysis. Here we present the utility of the new tool genomecmp for finding rearrangements across the compared sequences and applications in plant comparative genomics.

  12. Chromosomal Replication Complexity: A Novel DNA Metrics and Genome Instability Factor.

    Directory of Open Access Journals (Sweden)

    Andrei Kuzminov

    2016-10-01

    Full Text Available As the ratio of the copy number of the most replicated to the unreplicated regions in the same chromosome, the definition of chromosomal replication complexity (CRC appears to leave little room for variation, being either two during S-phase or one otherwise. However, bacteria dividing faster than they replicate their chromosome spike CRC to four and even eight. A recent experimental inquiry about the limits of CRC in Escherichia coli revealed two major reasons to avoid elevating it further: (i increased chromosomal fragmentation and (ii complications with subsequent double-strand break repair. Remarkably, examples of stable elevated CRC in eukaryotic chromosomes are well known under various terms like "differential replication," "underreplication," "DNA puffs," "onion-skin replication," or "re-replication" and highlight the phenomenon of static replication fork (sRF. To accurately describe the resulting "amplification by overinitiation," I propose a new term: "replification" (subchromosomal overreplication. In both prokaryotes and eukaryotes, replification, via sRF processing, causes double-strand DNA breaks and, with their repair elevating chromosomal rearrangements, represents a novel genome instability factor. I suggest how static replication bubbles could be stabilized and speculate that some tandem duplications represent such persistent static bubbles. Moreover, I propose how static replication bubbles could be transformed into tandem duplications, double minutes, or inverted triplications. Possible experimental tests of these models are discussed.

  13. Genomic rearrangements and diseases

    OpenAIRE

    Loviglio, M. N.

    2016-01-01

    Copy number variations (CNVs) are major contributors of genomic imbalances disorders. On the short arm of chromosome 16, CNVs of the distal 220 kb BP2-BP3 region show mirror effect on BMI and head size, and association with autism and schizophrenia, as previously reported for the proximal 600 kb BP4-BP5 deletion and duplication. These two CNVs-prone regions at 16p11.2 are also reciprocally engaged in complex chromatin looping, successfully confirmed by 4C-seq, FISH, Hi-C and concomitant...

  14. Telomere disruption results in non-random formation of de novo dicentric chromosomes involving acrocentric human chromosomes.

    Directory of Open Access Journals (Sweden)

    Kaitlin M Stimpson

    2010-08-01

    Full Text Available Genome rearrangement often produces chromosomes with two centromeres (dicentrics that are inherently unstable because of bridge formation and breakage during cell division. However, mammalian dicentrics, and particularly those in humans, can be quite stable, usually because one centromere is functionally silenced. Molecular mechanisms of centromere inactivation are poorly understood since there are few systems to experimentally create dicentric human chromosomes. Here, we describe a human cell culture model that enriches for de novo dicentrics. We demonstrate that transient disruption of human telomere structure non-randomly produces dicentric fusions involving acrocentric chromosomes. The induced dicentrics vary in structure near fusion breakpoints and like naturally-occurring dicentrics, exhibit various inter-centromeric distances. Many functional dicentrics persist for months after formation. Even those with distantly spaced centromeres remain functionally dicentric for 20 cell generations. Other dicentrics within the population reflect centromere inactivation. In some cases, centromere inactivation occurs by an apparently epigenetic mechanism. In other dicentrics, the size of the alpha-satellite DNA array associated with CENP-A is reduced compared to the same array before dicentric formation. Extra-chromosomal fragments that contained CENP-A often appear in the same cells as dicentrics. Some of these fragments are derived from the same alpha-satellite DNA array as inactivated centromeres. Our results indicate that dicentric human chromosomes undergo alternative fates after formation. Many retain two active centromeres and are stable through multiple cell divisions. Others undergo centromere inactivation. This event occurs within a broad temporal window and can involve deletion of chromatin that marks the locus as a site for CENP-A maintenance/replenishment.

  15. Chromosomal Speciation Revisited: Modes of Diversification in Australian Morabine Grasshoppers (Vandiemenella, viatica Species Group

    Directory of Open Access Journals (Sweden)

    Steven J. B. Cooper

    2011-03-01

    Full Text Available Chromosomal rearrangements can alter the rate and patterns of gene flow within or between species through a reduction in the fitness of chromosomal hybrids or by reducing recombination rates in rearranged areas of the genome. This concept, together with the observation that many species have structural variation in chromosomes, has led to the theory that the rearrangements may play a direct role in promoting speciation. Australian morabine grasshoppers (genus Vandiemenella, viatica species group are an excellent model for studying the role of chromosomal rearrangement in speciation because they show extensive chromosomal variation, parapatric distribution patterns, and narrow hybrid zones at their boundaries. This species group stimulated development of one of the classic chromosomal speciation models, the stasipatric speciation model proposed by White in 1968. Our population genetic and phylogeographic analyses revealed extensive non-monophyly of chromosomal races along with historical and on-going gene introgression between them. These findings suggest that geographical isolation leading to the fixation of chromosomal variants in different geographic regions, followed by secondary contact, resulted in the present day parapatric distributions of chromosomal races. The significance of chromosomal rearrangements in the diversification of the viatica species group can be explored by comparing patterns of genetic differentiation between rearranged and co-linear parts of the genome.

  16. Genome Organization Drives Chromosome Fragility.

    Science.gov (United States)

    Canela, Andres; Maman, Yaakov; Jung, Seolkyoung; Wong, Nancy; Callen, Elsa; Day, Amanda; Kieffer-Kwon, Kyong-Rim; Pekowska, Aleksandra; Zhang, Hongliang; Rao, Suhas S P; Huang, Su-Chen; Mckinnon, Peter J; Aplan, Peter D; Pommier, Yves; Aiden, Erez Lieberman; Casellas, Rafael; Nussenzweig, André

    2017-07-27

    In this study, we show that evolutionarily conserved chromosome loop anchors bound by CCCTC-binding factor (CTCF) and cohesin are vulnerable to DNA double strand breaks (DSBs) mediated by topoisomerase 2B (TOP2B). Polymorphisms in the genome that redistribute CTCF/cohesin occupancy rewire DNA cleavage sites to novel loop anchors. While transcription- and replication-coupled genomic rearrangements have been well documented, we demonstrate that DSBs formed at loop anchors are largely transcription-, replication-, and cell-type-independent. DSBs are continuously formed throughout interphase, are enriched on both sides of strong topological domain borders, and frequently occur at breakpoint clusters commonly translocated in cancer. Thus, loop anchors serve as fragile sites that generate DSBs and chromosomal rearrangements. VIDEO ABSTRACT. Published by Elsevier Inc.

  17. Telomerase activation by genomic rearrangements in high-risk neuroblastoma

    Science.gov (United States)

    Peifer, Martin; Hertwig, Falk; Roels, Frederik; Dreidax, Daniel; Gartlgruber, Moritz; Menon, Roopika; Krämer, Andrea; Roncaioli, Justin L.; Sand, Frederik; Heuckmann, Johannes M.; Ikram, Fakhera; Schmidt, Rene; Ackermann, Sandra; Engesser, Anne; Kahlert, Yvonne; Vogel, Wenzel; Altmüller, Janine; Nürnberg, Peter; Thierry-Mieg, Jean; Thierry-Mieg, Danielle; Mariappan, Aruljothi; Heynck, Stefanie; Mariotti, Erika; Henrich, Kai-Oliver; Glöckner, Christian; Bosco, Graziella; Leuschner, Ivo; Schweiger, Michal R.; Savelyeva, Larissa; Watkins, Simon C.; Shao, Chunxuan; Bell, Emma; Höfer, Thomas; Achter, Viktor; Lang, Ulrich; Theissen, Jessica; Volland, Ruth; Saadati, Maral; Eggert, Angelika; de Wilde, Bram; Berthold, Frank; Peng, Zhiyu; Zhao, Chen; Shi, Leming; Ortmann, Monika; Büttner, Reinhard; Perner, Sven; Hero, Barbara; Schramm, Alexander; Schulte, Johannes H.; Herrmann, Carl; O’Sullivan, Roderick J.; Westermann, Frank; Thomas, Roman K.; Fischer, Matthias

    2016-01-01

    Neuroblastoma is a malignant paediatric tumour of the sympathetic nervous system1. Roughly half of these tumours regress spontaneously or are cured by limited therapy. By contrast, high-risk neuroblastomas have an unfavourable clinical course despite intensive multimodal treatment, and their molecular basis has remained largely elusive2–4. Here we have performed whole-genome sequencing of 56 neuroblastomas (high-risk, n = 39; low-risk, n = 17) and discovered recurrent genomic rearrangements affecting a chromosomal region at 5p15.33 proximal of the telomerase reverse transcriptase gene (TERT). These rearrangements occurred only in high-risk neuroblastomas (12/39, 31%) in a mutually exclusive fashion with MYCN amplifications and ATRX mutations, which are known genetic events in this tumour type1,2,5. In an extended case series (n = 217), TERT rearrangements defined a subgroup of high-risk tumours with particularly poor outcome. Despite a large structural diversity of these rearrangements, they all induced massive transcriptional upregulation of TERT. In the remaining high-risk tumours, TERT expression was also elevated in MYCN-amplified tumours, whereas alternative lengthening of telomeres was present in neuroblastomas without TERT or MYCN alterations, suggesting that telomere lengthening represents a central mechanism defining this subtype. The 5p15.33 rearrangements juxtapose the TERT coding sequence to strong enhancer elements, resulting in massive chromatin remodelling and DNA methylation of the affected region. Supporting a functional role of TERT, neuroblastoma cell lines bearing rearrangements or amplified MYCN exhibited both upregulated TERT expression and enzymatic telomerase activity. In summary, our findings show that remodelling of the genomic context abrogates transcriptional silencing of TERT in high-risk neuroblastoma and places telomerase activation in the centre of transformation in a large fraction of these tumours. PMID:26466568

  18. Cytogenetic characterization of cat eye syndrome marker chromosome.

    Science.gov (United States)

    Wenger, S L; Surti, U; Nwokoro, N A; Steele, M W

    1994-01-01

    Cat eye syndrome is associated with a partial tetrasomy 22q and can be inherited. The authors have evaluated the marker chromosome in a proband and his mother by cytogenetic banding techniques to verify the dicentric chromosomal rearrangement and by fluorescence in situ hybridization to confirm the involvement of 22. The mother also had an affected offspring with an unrelated aneuploidy, trisomy 21.

  19. Screening for subtle chromosomal rearrangements in an Egyptian ...

    African Journals Online (AJOL)

    Full history taking, thorough clinical examination, IQ, visual, and audiological assessment, brain CT scan, plasma aminogram, pelvi-abdominal ultrasonography, echocardiography, and cytogenetic evaluation using routine conventional karyotyping, high resolution banding (HRB), and fluorescent in situ hybridization (FISH) ...

  20. Screening for subtle chromosomal rearrangements in an Egyptian ...

    African Journals Online (AJOL)

    Rabah M. Shawky

    Visual and Auditory Responses and or audiometry), brain CT scan, plasma aminogram (to exclude aminoacidopathies), and pelvi-abdominal sonar and echocardiography for detection of any concomitant congenital malformations were carried out for all studied patients. Cytogenetic evaluation of enrolled cases included ...

  1. mFISH analysis of chromosome aberrations in workers occupationally exposed to mixed radiation

    Energy Technology Data Exchange (ETDEWEB)

    Sotnik, Natalia V.; Osovets, Sergey V.; Azizova, Tamara V. [Southern Urals Biophysics Institute (SUBI), Ozyorsk, Chelyabinsk Region (Russian Federation); Scherthan, Harry [Bundeswehr Institute of Radiobiology Affiliated to the University of Ulm, Munich (Germany)

    2014-05-15

    We performed a study on the presence of chromosome aberrations in a cohort of plutonium workers of the Mayak production association (PA) with a mean age of 73.3 ± 7.2 years to see whether by multi-color fluorescence in situ hybridization (mFISH) translocation analysis can discriminate individuals who underwent occupational exposure with internal and/or external exposure to ionizing radiation 40 years ago. All Mayak PA workers were occupationally exposed to chronic internal alpha-radiation due to incorporated plutonium-239 and/or to external gamma-rays. First, we obtained the translocation yield in control individuals by mFISH to chromosome spreads of age-matched individuals and obtained background values that are similar to previously published values of an international study (Sigurdson et al. in Mutat Res 652:112-121, 2008). Workers who had absorbed a total dose of >0.5 Gy external gamma-rays to the red bone marrow (RBM) displayed a significantly higher frequency of stable chromosome aberrations relative to a group of workers exposed to <0.5 Gy gamma-rays total absorbed RBM dose. Thus, the translocation frequency may be considered to be a biological marker of external radiation exposure even years after the exposure. In a group of workers who were internally exposed and had incorporated plutonium-239 at a body burden >1.48 kBq, mFISH revealed a considerable number of cells with complex chromosomal rearrangements. Linear associations were observed for translocation yield with the absorbed RBM dose from external gamma-rays as well as for complex chromosomal rearrangements with the plutonium-239 body burden. (orig.)

  2. Evolution of the Banana Genome (Musa acuminata) Is Impacted by Large Chromosomal Translocations.

    Science.gov (United States)

    Martin, Guillaume; Carreel, Françoise; Coriton, Olivier; Hervouet, Catherine; Cardi, Céline; Derouault, Paco; Roques, Danièle; Salmon, Frédéric; Rouard, Mathieu; Sardos, Julie; Labadie, Karine; Baurens, Franc-Christophe; D'Hont, Angélique

    2017-09-01

    Most banana cultivars are triploid seedless parthenocarpic clones derived from hybridization between Musa acuminata subspecies and sometimes M. balbisiana. M. acuminata subspecies were suggested to differ by a few large chromosomal rearrangements based on chromosome pairing configurations in intersubspecies hybrids. We searched for large chromosomal rearrangements in a seedy M. acuminata ssp. malaccensis banana accession through mate-pair sequencing, BAC-FISH, targeted PCR and marker (DArTseq) segregation in its progeny. We identified a heterozygous reciprocal translocation involving two distal 3 and 10 Mb segments from chromosomes 01 and 04, respectively, and showed that it generated high segregation distortion, reduced recombination and linkage between chromosomes 01 and 04 in its progeny. The two chromosome structures were found to be mutually exclusive in gametes and the rearranged structure was preferentially transmitted to the progeny. The rearranged chromosome structure was frequently found in triploid cultivars but present only in wild malaccensis ssp. accessions, thus suggesting that this rearrangement occurred in M. acuminata ssp. malaccensis. We propose a mechanism for the spread of this rearrangement in Musa diversity and suggest that this rearrangement could have played a role in the emergence of triploid cultivars. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  3. A high-resolution physical map integrating an anchored chromosome with the BAC physical maps of wheat chromosome 6B

    Czech Academy of Sciences Publication Activity Database

    Kobayashi, F.; Wu, J.Z.; Kanamori, H.; Tanaka, T.; Katagiri, S.; Karasawa, W.; Kaneko, S.; Watanabe, S.; Sakaguchi, T.; Šafář, Jan; Šimková, Hana; Mukai, Y.; Hamada, M.; Saito, M.; Hayakawa, K.; Doležel, Jaroslav; Nasuda, S.; Matsumoto, T.; Handa, H.

    2015-01-01

    Roč. 16, AUG 12 (2015), s. 595 ISSN 1471-2164 R&D Projects: GA ČR GBP501/12/G090; GA MŠk(CZ) LO1204 Institutional support: RVO:61389030 Keywords : Centromere * Chromosomal rearrangement * Chromosome 6B Subject RIV: EB - Gene tics ; Molecular Biology Impact factor: 3.867, year: 2015

  4. Subtelomeric study of 132 patients with mental retardation reveals 9 chromosomal anomalies and contributes to the delineation of submicroscopic deletions of 1pter, 2qter, 4pter, 5qter and 9qter

    DEFF Research Database (Denmark)

    Sogaard, Marie; Tümer, Zeynep; Hjalgrim, Helle

    2005-01-01

    BACKGROUND: Cryptic chromosome imbalances are increasingly acknowledged as a cause for mental retardation and learning disability. New phenotypes associated with specific rearrangements are also being recognized. Techniques for screening for subtelomeric rearrangements are commercially available,...

  5. Low rate of interchromosomal rearrangements during old radiation of gekkotan lizards (Squamata: Gekkota).

    Science.gov (United States)

    Johnson Pokorná, Martina; Trifonov, Vladimir A; Rens, Willem; Ferguson-Smith, Malcolm A; Kratochvíl, Lukáš

    2015-06-01

    Gekkotan lizards are a highly specious (∼1600 described species) clade of squamate lizards with nearly cosmopolitan distribution in warmer areas. The clade is primarily nocturnal and forms an ecologically dominant part of the world nocturnal herpetofauna. However, molecular cytogenetic methods to study the evolution of karyotypes have not been widely applied in geckos. Our aim here was to uncover the extent of chromosomal rearrangements across the whole group Gekkota and to search for putative synapomorphies supporting the newly proposed phylogenetic relationships within this clade. We applied cross-species chromosome painting with the recently derived whole-chromosomal probes from the gekkonid species Gekko japonicus to members of the major gekkotan lineages. We included members of the families Diplodactylidae, Carphodactylidae, Pygopodidae, Eublepharidae, Phyllodactylidae and Gekkonidae. Our study demonstrates relatively high chromosome conservatism across the ancient group of gekkotan lizards. We documented that many changes in chromosomal shape across geckos can be attributed to intrachromosomal rearrangements. The documented rearrangements are not totally in agreement with the recently newly erected family Phyllodactylidae. The results also pointed to homoplasy, particularly in the reuse of chromosome breakpoints, in the evolution of gecko karyotypes.

  6. Using Pulsed-Field Gel Electrophoresis to AnalyzeSchizosaccharomyces pombeChromosomes and Chromosomal Elements.

    Science.gov (United States)

    Pai, Chen-Chun; Walker, Carol; Humphrey, Timothy C

    2018-04-02

    Pulsed field gel electrophoresis (PFGE) uses alternatively oriented pulsed electrical fields to separate large DNA molecules. Here, we describe PFGE protocols and conditions for separating and visualizing chromosomes between 0.5 and 6 Mb (optimal for analyzing the endogenous fission yeast chromosomes of 5.7, 4.6, and 3.5 Mb), and for shorter chromosomal elements of between 50 and 600 kb, such as the 530 kb Ch 16 minichromosome. In addition to determining chromosome size, this technique has a wide range of applications, including determining whether DNA replication or repair is complete, defining the molecular karyotype of cells, analyzing chromosomal rearrangements, assigning genes or constructs to particular chromosomes, and isolating DNA from specific chromosomes. © 2018 Cold Spring Harbor Laboratory Press.

  7. REARRANGEMENT IN THE B-GENOME FROM DIPLOID PROGENITOR TO WHEAT ALLOPOLYPOLID

    Directory of Open Access Journals (Sweden)

    Salina E.A.

    2012-08-01

    Full Text Available Three key periods that were accompanied by considerable rearrangements in the B genome of wheat and its progenitor can be considered. The first period covers the period from the divergence of diploid Triticum and Aegilops species from their common progenitor (2.5–6 million years ago to formation of the tetraploid T. diccocoides (about 500 thousand years ago. Significant genomic rearrangements in the diploid progenitor of the B genome, Ae. speltoides (SS genome, involved a considerable amplification of repeated DNA sequences, which led to an increase in the number of heterochromatin blocks on chromosomes relative to other diploid Aegilops and Triticum species. Our analysis has demonstrated that during this period the Spelt1 repeats intensively amplified as well as several mobile elements proliferated, in particular, the genome-specific gypsy LTR-retrotransposon Fatima and CACTA DNA-transposon Caspar. The second period in the B-genome evolution was associated with the emergence of tetraploid (BBAA genome and its subsequent evolution. The third most important event leading to the next rearrangement of the B genome took place relatively recently, 7000–9500 years ago, being associated with the emergence of hexaploid wheat with the genomic formula BBAADD. The evolution of the B/S genome involved intergenomic and intragenomic translocations and chromosome inversions. So far, five rearrangements in the B-genome chromosomes of polyploid wheats has been observed and described; the majority of them took place during the formation and evolution of tetraploid species. The mapping of the S-genome chromosomes and comparison with the B-genome chromosome maps have demonstrated that individual rearrangements pre-existed in Ae. speltoides; moreover, Ae. speltoides is polymorphic for these rearrangements.Chromosome 5B is nearly 870 Mbp (5BL = 580 Mbp and 5BS = 290 Mbp and is known to carry important genes controlling the key aspects of wheat biology, in

  8. Aniridia-associated cytogenetic rearrangements suggest that a position effect may cause the mutant phenotype

    NARCIS (Netherlands)

    Fantes, J.; Redeker, B.; Breen, M.; Boyle, S.; Brown, J.; Fletcher, J.; Jones, S.; Bickmore, W.; Fukushima, Y.; Mannens, M.

    1995-01-01

    Current evidence suggests that aniridia (absence of iris) is caused by loss of function of one copy of the PAX6 gene, which maps to 11p13. We present the further characterisation of two aniridia pedigrees in which the disease segregates with chromosomal rearrangements which involve 11p13 but do not

  9. A single oncogenic enhancer rearrangement causes concomitant EVI1 and GATA2 deregulation in leukemia

    NARCIS (Netherlands)

    Gröschel, Stefan; Sanders, Mathijs A; Hoogenboezem, Remco; de Wit, Elzo; Bouwman, Britta A M; Erpelinck, Claudia; van der Velden, Vincent H J; Havermans, Marije; Avellino, Roberto; van Lom, Kirsten; Rombouts, Elwin J; van Duin, Mark; Döhner, Konstanze; Beverloo, H Berna; Bradner, James E; Döhner, Hartmut; Löwenberg, Bob; Valk, Peter J M; Bindels, Eric M J; de Laat, Wouter; Delwel, Ruud

    2014-01-01

    Chromosomal rearrangements without gene fusions have been implicated in leukemogenesis by causing deregulation of proto-oncogenes via relocation of cryptic regulatory DNA elements. AML with inv(3)/t(3;3) is associated with aberrant expression of the stem-cell regulator EVI1. Applying functional

  10. A 45 X male patient with 7q distal deletion and rearrangement with SRY gene translocation: a case report.

    Science.gov (United States)

    Bilen, S; Okten, A; Karaguzel, G; Ikbal, M; Aslan, Y

    2013-01-01

    Here we present a male newborn with multiple congenital anomalies who also has an extremely rare form of testicular disorder of sex development (DSD). His karyotype was 45X, without any mosaicism. SRY gene was positive by polymerase chain reaction (PCR), and rearranged on distal part of the 7th chromosome by fluorescence in situ hybridization (FISH) analysis. SRY, normally located on the Y chromosome, is the most important gene that plays a role in the development of male sex. SRY gen may be translocated onto another chromosome, mostly X chromosome in the XX testicular DSD. On the other hand very few cases of 45 X testicular DSD were published to date. Other clinical manifestations of our patient were compatible with distal 7 q deletion syndrome. To the best of our knowledge this is the first case of 45 X testicular DSD with SRY gene rearranged on the 7th autosomal chromosome.

  11. Generation of a Stable Transgenic Swine Model Expressing a Porcine Histone 2B-eGFP Fusion Protein for Cell Tracking and Chromosome Dynamics Studies.

    Science.gov (United States)

    Sper, Renan B; Koh, Sehwon; Zhang, Xia; Simpson, Sean; Collins, Bruce; Sommer, Jeff; Petters, Robert M; Caballero, Ignacio; Platt, Jeff L; Piedrahita, Jorge A

    2017-01-01

    Transgenic pigs have become an attractive research model in the field of translational research, regenerative medicine, and stem cell therapy due to their anatomic, genetic and physiological similarities with humans. The development of fluorescent proteins as molecular tags has allowed investigators to track cell migration and engraftment levels after transplantation. Here we describe the development of two transgenic pig models via SCNT expressing a fusion protein composed of eGFP and porcine Histone 2B (pH2B). This fusion protein is targeted to the nucleosomes resulting a nuclear/chromatin eGFP signal. The first model (I) was generated via random insertion of pH2B-eGFP driven by the CAG promoter (chicken beta actin promoter and rabbit Globin poly A; pCAG-pH2B-eGFP) and protected by human interferon-β matrix attachment regions (MARs). Despite the consistent, high, and ubiquitous expression of the fusion protein pH2B-eGFP in all tissues analyzed, two independently generated Model I transgenic lines developed neurodegenerative symptoms including Wallerian degeneration between 3-5 months of age, requiring euthanasia. A second transgenic model (II) was developed via CRISPR-Cas9 mediated homology-directed repair (HDR) of IRES-pH2B-eGFP into the endogenous β-actin (ACTB) locus. Model II transgenic animals showed ubiquitous expression of pH2B-eGFP on all tissues analyzed. Unlike the pCAG-pH2B-eGFP/MAR line, all Model II animals were healthy and multiple pregnancies have been established with progeny showing the expected Mendelian ratio for the transmission of the pH2B-eGFP. Expression of pH2B-eGFP was used to examine the timing of the maternal to zygotic transition after IVF, and to examine chromosome segregation of SCNT embryos. To our knowledge this is the first viable transgenic pig model with chromatin-associated eGFP allowing both cell tracking and the study of chromatin dynamics in a large animal model.

  12. Diagnostic radiation and chromosome aberrations

    International Nuclear Information System (INIS)

    Patil, S.R.; Hecht, F.; Lubs, H.A.; Kimberling, W.; Brown, J.; Gerald, P.S.; Summitt, R.L.

    1977-01-01

    Some evidence is presented suggesting that diagnostic X-rays may be important in the origin of a new chromosomal abnormality other than Down syndrome. Chromosome analyses have been carried out on 4342 children, seven or eight years old. Maternal diagnostic irradiation in the year before conception and up to third lunar month of the index pregnancy was recorded, before the chromosome study began, together with a large amount of family and clinical data. Information on X-ray exposure was supplied by the mothers, s o radiation dosage could not be estimated. 21 children (including a pair of twins and a pair of siblings) born to 19 mothers had chromosomal aberrations. The mothers of six children with inherited translocations, rearrangements and XYY karyotypes were excluded, and 3 (23%) of the remaining 13 mothers had received abdominal and pelvic X-ray exposures. In the whole sample, however, only 6% of the mothers had diagnostic irradiation. Two of these mothers, aged sixteen and twenty, gave birth to a child each with de-novo autosomal translocations, and the third mother, aged thirty-two, had a child with a complex mosaicism involving one X chromosome. Although the sample size of the mothers with chromosomally abnormal children is small, the results are significant. (U.K.)

  13. RET rearrangement: toward a molecular genetic definition of tumor-inducing radiation effects in the thyroid gland after Chernobyl

    Energy Technology Data Exchange (ETDEWEB)

    Rabes, H.M.; Klugbauer, S. [Muenchen Univ. (Germany). Inst. of Pathology

    1996-12-31

    Molecular genetic analyses of thyroid carcinomas in children exposed to radioactive fallout after Chernobyl revealed a complete lack of mutational activation of H-, K- or N-RAS or of a mutational inactivation of P53. However, a high prevalence of RET rearrangements was found. ELE/RET rearrangements of the RET/PTC3 type were preferentially observed suggesting that this paracentric inversion at chromosome 10 represents a typical form of genetic lesion in thyroid tumors of children after Chernobyl. (orig.)

  14. An algorithm for automatic detection of chromosome aberrations induced by radiation using features of gray level profile across the main axis of chromosome image

    International Nuclear Information System (INIS)

    Kawashima, Hironao; Imai, Katsuhiro; Fukuoka, Hideya; Yamamoto, Mikio; Hayata, Isamu.

    1990-01-01

    A simple algorithm for detecting chromosome aberrations induced by radiation is developed. Microscopic images of conventional Giemsa stained chromosomes of rearranged chromosomes (abnormal chromosomes) including dicentric chromosomes, ordinary acentric fragments, small acentric fragments, and acentric rings are used as samples. Variation of width along the main axis and gray level profile across the main axis of the chromosome image are used as features for classification. In 7 microscopic images which include 257 single chromosomes, 90.0% (231 chromosomes) are correctly classified into 6 categories and 23 of 26 abnormal chromosomes are correctly identified. As a result of discrimination between a normal and an abnormal chromosome, 95.3% of abnormal chromosomes are detected. (author)

  15. Ultrafast infrared studies of complex ligand rearrangements in solution

    Energy Technology Data Exchange (ETDEWEB)

    Payne, Christine K. [Univ. of California, Berkeley, CA (United States)

    2003-01-01

    The complete description of a chemical reaction in solution depends upon an understanding of the reactive molecule as well as its interactions with the surrounding solvent molecules. Using ultrafast infrared spectroscopy it is possible to observe both the solute-solvent interactions and the rearrangement steps which determine the overall course of a chemical reaction. The topics addressed in these studies focus on reaction mechanisms which require the rearrangement of complex ligands and the spectroscopic techniques necessary for the determination of these mechanisms. Ligand rearrangement is studied by considering two different reaction mechanisms for which the rearrangement of a complex ligand constitutes the most important step of the reaction. The first system concerns the rearrangement of a cyclopentadienyl ring as the response of an organometallic complex to a loss of electron density. This mechanism, commonly referred to as ''ring slip'', is frequently cited to explain reaction mechanisms. However, the ring slipped intermediate is too short-lived to be observed using conventional methods. Using a combination of ultrafast infrared spectroscopy and electronic structure calculations it has been shown that the intermediate exists, but does not form an eighteen-electron intermediate as suggested by traditional molecular orbital models. The second example examines the initial steps of alkyne polymerization. Group 6 (Cr, Mo, W) pentacarbonyl species are generated photolytically and used to catalyze the polymerization of unsaturated hydrocarbons through a series of coordination and rearrangement steps. Observing this reaction on the femto- to millisecond timescale indicates that the initial coordination of an alkyne solvent molecule to the metal center results in a stable intermediate that does not rearrange to form the polymer precursor. This suggests that polymerization requires the dissociation of additional carbonyl ligands before

  16. Human heavy-chain variable region gene family nonrandomly rearranged in familial chronic lymphocytic leukemia

    International Nuclear Information System (INIS)

    Shen, A.; Humphries, C.; Tucker, P.; Blattner, F.

    1987-01-01

    The authors have identified a family of human immunoglobulin heavy-chain variable-region (V/sub H/) genes, one member of which is rearranged in two affected members of a family in which the father and four of five siblings developed chronic lymphocytic leukemia. Cloning and sequencing of the rearranged V/sub H/ genes from leukemic lymphocytes of three affected siblings showed that two siblings had rearranged V/sub H/ genes (V/sub H/TS1 and V/sub H/WS1) that were 90% homologous. The corresponding germ-line gene, V/sub H/251, was found to part of a small (four gene) V/sub H/ gene family, which they term V/sub H/V. The DNA sequence homology to V/sub H/WS1 (95%) and V/sub H/TS1 (88%) and identical restriction sites on the 5' side of V/sub H/ confirm that rearrangement of V/sub H/251 followed by somatic mutation produced the identical V/sub H/ gene rearrangements in the two siblings. V/sub H/TS1 is not a functional V/sub H/ gene; a functional V/sub H/ rearrangement was found on the other chromosome of this patient. The other two siblings had different V/sub H/ gene rearrangements. All used different diversity genes. Mechanisms proposed for nonrandom selection of a single V/sub H/ gene include developmental regulation of this V/sub H/ gene rearrangement or selection of a subpopulation of B cells in which this V/sub H/ has been rearranged

  17. Highly variable rates of genome rearrangements between hemiascomycetous yeast lineages.

    Directory of Open Access Journals (Sweden)

    2006-03-01

    Full Text Available Hemiascomycete yeasts cover an evolutionary span comparable to that of the entire phylum of chordates. Since this group currently contains the largest number of complete genome sequences it presents unique opportunities to understand the evolution of genome organization in eukaryotes. We inferred rates of genome instability on all branches of a phylogenetic tree for 11 species and calculated species-specific rates of genome rearrangements. We characterized all inversion events that occurred within synteny blocks between six representatives of the different lineages. We show that the rates of macro- and microrearrangements of gene order are correlated within individual lineages but are highly variable across different lineages. The most unstable genomes correspond to the pathogenic yeasts Candida albicans and Candida glabrata. Chromosomal maps have been intensively shuffled by numerous interchromosomal rearrangements, even between species that have retained a very high physical fraction of their genomes within small synteny blocks. Despite this intensive reshuffling of gene positions, essential genes, which cluster in low recombination regions in the genome of Saccharomyces cerevisiae, tend to remain syntenic during evolution. This work reveals that the high plasticity of eukaryotic genomes results from rearrangement rates that vary between lineages but also at different evolutionary times of a given lineage.

  18. Intergenomic rearrangements after polyploidization of Kengyilia thoroldiana (Poaceae: Triticeae affected by environmental factors.

    Directory of Open Access Journals (Sweden)

    Qiuxia Wang

    Full Text Available Polyploidization is a major evolutionary process. Approximately 70-75% species of Triticeae (Poaceae are polyploids, involving 23 genomes. To investigate intergenomic rearrangements after polyploidization of Triticeae species and to determine the effects of environmental factors on them, nine populations of a typical polyploid Triticeae species, Kengyilia thoroldiana (Keng J.L.Yang et al. (2n = 6x = 42, StStPPYY, collected from different environments, were studied using genome in situ hybridization (GISH. We found that intergenomic rearrangements occurred between the relatively large P genome and the small genomes, St (8.15% and Y (22.22%, in polyploid species via various types of translocations compared to their diploid progenitors. However, no translocation was found between the relatively small St and Y chromosomes. Environmental factors may affect rearrangements among the three genomes. Chromosome translocations were significantly more frequent in populations from cold alpine and grassland environments than in populations from valley and lake-basin habitats (P<0.05. The relationship between types of chromosome translocations and altitude was significant (r = 0.809, P<0.01. Intergenomic rearrangements associated with environmental factors and genetic differentiation of a single basic genome should be considered as equally important genetic processes during species' ecotype evolution.

  19. Deletion of 1p36 as a primary chromosomal aberration in intestinal tumorigenesis

    DEFF Research Database (Denmark)

    Bardi, G; Pandis, N; Fenger, C

    1993-01-01

    rearrangements were found that led to loss of genetic material from 1p. In three of the cases, the deletion was restricted to the 1p36 band; the rest had lost larger 1p segments. The rearrangement of chromosome 1 was the sole karyotypic anomaly in three adenomas, all with mild or moderate dysplasia...

  20. Gamma induced chromosomal aberrations in meristem cells of cotton hybrids and their parental forms

    International Nuclear Information System (INIS)

    Kraevoj, S.Ya.; Akhmedova, M.M.; Amirkulov, D.

    1977-01-01

    The effect of gamma quanta on the first mitoses in the small roots of cotton hybrids and their parents results in different frequency of chromosome rearrangements in them. It has been proved that the frequency of chromosome aberrations is different in hybrids and different varieties of cotton. With increase in irradiation doses (from 10 to 30 kR) the frequency of chromosome aberrations goes up in all varieties and hybrids studies. The type of chromosome rearrangements in hybrids and their parents depends on the irradiation dose

  1. 8q24/MYC rearrangement is a recurrent cytogenetic abnormality in blastic plasmacytoid dendritic cell neoplasms.

    Science.gov (United States)

    Boddu, Prajwal C; Wang, Sa A; Pemmaraju, Naveen; Tang, Zhenya; Hu, Shimin; Li, Shaoying; Xu, Jie; Medeiros, L Jeffrey; Tang, Guilin

    2018-03-01

    8q24/MYC rearrangements resulting in MYC overexpression occur most frequently in lymphoid neoplasms. MYC rearrangements rarely have been described in blastic plasmacytoid dendritic cell neoplasm (BPDCN). Over an 8-year period in our hospital, 5 of 41 (12%) patients with BPDCN were shown 8q24/MYC rearrangements, including 2 with t(6;8)(p21;q24), 1 with t(8;14)(q24;q32), 1 with t(X;8)(q24;q24), and 1 with t(3;8)(p25;q24). 8q24/MYC rearrangement was present in the stemline in 4 patients and in the sideline in one; the latter was a patient with primary myelofibrosis who then developed BPDCN. MYC overexpression by immunohistochemistry was variable, but largely correlated with the percentage of blasts. Four patients were treated with acute lymphoblastic leukemia-type chemotherapy regimens and 3 had a good response; 1 patient was treated with acute myeloid leukemia-type regimens and was refractory to therapy. By the end of the follow-up, 3 patients died and 2 were alive in complete remission. We conclude that 8q24/MYC rearrangements occur in 10-15% of BPDCN, often partnered with non-immunoglobulin chromosomal loci, and may play a role in BPDCN pathogenesis. In this small patient sample, patients with BPDCN and MYC rearrangement often responded to therapy with acute lymphoblastic leukemia-type chemotherapy regimens. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Programmed Rearrangement in Ciliates: Paramecium.

    Science.gov (United States)

    Betermier, Mireille; Duharcourt, Sandra

    2014-12-01

    Programmed genome rearrangements in the ciliate Paramecium provide a nice illustration of the impact of transposons on genome evolution and plasticity. During the sexual cycle, development of the somatic macronucleus involves elimination of ∼30% of the germline genome, including repeated DNA (e.g., transposons) and ∼45,000 single-copy internal eliminated sequences (IES). IES excision is a precise cut-and-close process, in which double-stranded DNA cleavage at IES ends depends on PiggyMac, a domesticated piggyBac transposase. Genome-wide analysis has revealed that at least a fraction of IESs originate from Tc/mariner transposons unrelated to piggyBac. Moreover, genomic sequences with no transposon origin, such as gene promoters, can be excised reproducibly as IESs, indicating that genome rearrangements contribute to the control of gene expression. How the system has evolved to allow elimination of DNA sequences with no recognizable conserved motif has been the subject of extensive research during the past two decades. Increasing evidence has accumulated for the participation of noncoding RNAs in epigenetic control of elimination for a subset of IESs, and in trans-generational inheritance of alternative rearrangement patterns. This chapter summarizes our current knowledge of the structure of the germline and somatic genomes for the model species Paramecium tetraurelia, and describes the DNA cleavage and repair factors that constitute the IES excision machinery. We present an overview of the role of specialized RNA interference machineries and their associated noncoding RNAs in the control of DNA elimination. Finally, we discuss how RNA-dependent modification and/or remodeling of chromatin may guide PiggyMac to its cognate cleavage sites.

  3. Deletions at chromosome regions 7q11.23 and 7q36 in a patient with Williams syndrome

    NARCIS (Netherlands)

    Wouters, C. H.; Meijers-Heijboer, H. J.; Eussen, B. J.; van der Heide, A. A.; van Luijk, R. B.; van Drunen, E.; Beverloo, B. B.; Visscher, F.; van Hemel, J. O.

    2001-01-01

    We report on a patient with Williams syndrome and a complex de novo chromosome rearrangement, including microdeletions at 7q11.23 and 7q36 and additional chromosomal material at 7q36. The nature of this additional material was elucidated by spectral karyotyping and first assigned to chromosome 22.

  4. Structural changes in chromosomes of peripheral blood lymphocytes in monkeys subjected to long-term daily irradiation

    International Nuclear Information System (INIS)

    Kosichenko, L.P.

    1976-01-01

    During the period that lasted from 4 to 11 years after the cessation of the long-term daily gamma-irradiation the frequency of chromosome rearrangements in peripheral blood lymphocytes of monkeys exceeded the control level. The number of rearrangements did not change significantly with different total irradiation doses (from 826 to 3677r). The main type of structural chromosome rearrangements were symmetrical chromosome exchanges. Abnormal cell clones in peripheral lymphocytes in monkeys irradiated with low doses exhibited no selective advantages during the periods of investigation

  5. Chromosomal painting and ZW sex chromosomes differentiation in Characidium (Characiformes, Crenuchidae

    Directory of Open Access Journals (Sweden)

    Artoni Roberto F

    2011-07-01

    Full Text Available Abstract Background The Characidium (a Neotropical fish group have a conserved diploid number (2n = 50, but show remarkable differences among species and populations in relation to sex chromosome systems and location of nucleolus organizer regions (NOR. In this study, we isolated a W-specific probe for the Characidium and characterized six Characidium species/populations using cytogenetic procedures. We analyzed the origin and differentiation of sex and NOR-bearing chromosomes by chromosome painting in populations of Characidium to reveal their evolution, phylogeny, and biogeography. Results A W-specific probe for efficient chromosome painting was isolated by microdissection and degenerate oligonucleotide primed-polymerase chain reaction (DOP-PCR amplification of W chromosomes from C. gomesi. The W probe generated weak signals dispersed on the proto sex chromosomes in C. zebra, dispersed signals in both W and Z chromosomes in C. lauroi and, in C. gomesi populations revealed a proximal site on the long arms of the Z chromosome and the entire W chromosome. All populations showed small terminal W probe sites in some autosomes. The 18S rDNA revealed distinctive patterns for each analyzed species/population with regard to proto sex chromosome, sex chromosome pair, and autosome location. Conclusions The results from dual-color fluorescence in situ hybridization (dual-color FISH using W and 18S rDNA probes allowed us to infer the putative evolutionary pathways for the differentiation of sex chromosomes and NORs, from structural rearrangements in a sex proto-chromosome, followed by gene erosion and heterochromatin amplification, morphological differentiation of the sex chromosomal pair, and NOR transposition, giving rise to the distinctive patterns observed among species/populations of Characidium. Biogeographic isolation and differentiation of sex chromosomes seem to have played a major role in the speciation process in this group of fish.

  6. Synthesis of a tricyclic lactam via Beckmann rearrangement and ring-rearrangement metathesis as key steps

    Directory of Open Access Journals (Sweden)

    Sambasivarao Kotha

    2015-08-01

    Full Text Available A tricyclic lactam is reported in a four step synthesis sequence via Beckmann rearrangement and ring-rearrangement metathesis as key steps. Here, we used a simple starting material such as dicyclopentadiene.

  7. Analysis of the Ceratitis capitata y chromosome using in situ hybridization to mitotic chromosomes

    International Nuclear Information System (INIS)

    Willhoeft, U.; Franz, G.

    1998-01-01

    In Ceratitis capitata the Y chromosome is responsible for sex-determination. We used fluorescence in situ hybridization (FISH) for cytogenetic analysis of mitotic chromosomes. FISH with the wild-type strain EgyptII and two repetitive DNA probes enabled us to differentiate between the short and the long arm of the Y chromosome and gives a much better resolution than C-banding of mitotic chromosomes. We identified the Y-chromosomal breakpoints in Y-autosome translocations using FISH. Even more complex rearrangements i.e. deletions and insertions in some translocation strains were detected by this method. A strategy for mapping the primary sex determination factor in Ceratitis capitata by FISH is presented. (author)

  8. Chromosomal aberration

    International Nuclear Information System (INIS)

    Ishii, Yutaka

    1988-01-01

    Chromosomal aberrations are classified into two types, chromosome-type and chromatid-type. Chromosom-type aberrations include terminal deletion, dicentric, ring and interstitial deletion, and chromatid-type aberrations include achromatic lesion, chromatid deletion, isochromatid deletion and chromatid exchange. Clastogens which induce chromosomal aberration are divided into ''S-dependent'' agents and ''S-independent''. It might mean whether they can induce double strand breaks independent of the S phase or not. Double strand breaks may be the ultimate lesions to induce chromosomal aberrations. Caffeine added even in the G 2 phase appeared to modify the frequency of chromatid aberrations induced by X-rays and mitomycin C. Those might suggest that the G 2 phase involves in the chromatid aberration formation. The double strand breaks might be repaired by ''G 2 repair system'', the error of which might yield breakage types of chromatid aberrations and the by-pass of which might yield chromatid exchanges. Chromosome-type aberrations might be formed in the G 1 phase. (author)

  9. Radiation-induced chromosome aberrations in bone marrow cells leading to acute myeloid leukemia in mouse

    International Nuclear Information System (INIS)

    Nobuhiko Ban; Tomoko Kusama

    1996-01-01

    It is well known that radiation-induced acute myeloid leukemia (RI-AML) in mice is charaterized by deletion and/or rearrangement of chromosome 2. While chromosome 2 has been suspected to be a target of RI-AML, radiation-sensitive site of the chromosome might be implicated in the leukemogenesis. There were few cytogenetical studies, however, focusing on chromosomal rearrangements shortly after irradiation, and little was known about the frequency and pattern of chromosome 2 aberrations during the early period. In this study, metaphase samples were prepared from whole-body irradiated mice 24 hours after irradiation, most of the cells considered to be in the first mitotic stage. Distribution of chromosomal breakpoints on the metaphase samples were analyzed to study the relationship between chromosome aberrations and RI-AML. (author)

  10. Rapid detection of radiation-induced chromosomal aberrations in lymphocytes and hematopoietic progenitor cells by mFISH

    Energy Technology Data Exchange (ETDEWEB)

    Greulich, K.M.; Rhein, A.P.; Brueckner, M.; Molls, M. [Department of Radiation Oncology, Technical University of Munich, Ismaninger Strasse 22, D-81675 Munich (Germany); Kreja, L. [Institute for Occupational, Social and Environmental Medicine, University of Ulm, Ulm (Germany); Heinze, B. [Department of Medical Genetics, University of Ulm, Ulm (Germany); Weier, H.-U.G. [Life Sciences Division, E.O. Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Fuchs, P. [Vysis GmbH, Bergisch-Gladbach (Germany)

    2000-07-20

    Structural chromosome aberrations (SCAs) are sensitive indicators of a preceding exposure of the hematopoietic system to ionizing radiation. Cytogenetic investigations have therefore become routine tools for an assessment of absorbed radiation doses and their biological effects after occupational exposure or radiation accidents. Due to its speed and ease of use, fluorescence in situ hybridization (FISH) with whole chromosome painting (WCP) probes has become a method of choice to visualize SCAs. Until recently, this technique was limited to a rather small number of chromosomes, which could be tested simultaneously. As a result, only a fraction of the structural aberrations present in a sample could be detected and the overall dose effect had to be calculated by extrapolation. The recent introduction of two genome-wide screening techniques in tumor research, i.e., Spectral Karyotyping (SKY) and multicolor FISH (mFISH) now allows the detection of translocations involving any two non-homologous chromosomes. The present study was prompted by our desire to bring the power of mFISH to bear for the rapid identification of radiation-induced SCAs. We chose two model systems to investigate the utility of mFISH: lymphocytes that were exposed in vitro to 3 Gy photons and single hematopoietic progenitor cell colonies isolated from a Chernobyl victim 9 years after in vivo exposure to 5.4 Sv. In lymphocytes, we found up to 15 different chromosomes involved in rearrangements indicating complex radiation effects. Stable aberrations detected in hematopoietic cell colonies, on the other hand, showed involvement of up to three different chromosomes. These results demonstrated that mFISH is a rapid and powerful approach to detect and characterize radiation-induced SCAs in the hemopoietic system. The application of mFISH is expected to result in a more detailed and, thus, more informative picture of radiation effects. Eventually, this technique will allow researchers to rapidly delineate

  11. Detection of the gene rearrangement in chronic myelogenous leukemia with biotinylated gene probes

    International Nuclear Information System (INIS)

    Tilzer, L.L.; Concepcion, E.G.

    1989-01-01

    The breakpoint cluster region gene rearrangement associated with chronic myelogenous leukemia is becoming important in the diagnosis and management of the disease. At this time, the ability to demonstrate the gene rearrangement is limited to a few research laboratories. The problem results partially from unfamiliarity of medical laboratory personnel with DNA technology, but more because of the restricted use of radiolabeled phosphorus in hospital laboratories. With the introduction of biotinylated deoxynucleotides, nucleic acid hybridization procedures can now be performed without the use of radioisotopically labeled gene probes. This article describes the use of biotin-labeled gene probes to detect the gene rearrangement of the breakpoint cluster region of chromosome 22 in chronic myelogenous leukemia. The techniques are reproducible, sensitive, and safe. With the procedures described in this article, the assay can become more available to medical laboratories interested in offering this diagnostic and decision-making tool

  12. Chromosomal phylogeny of Lagothrix, Brachyteles, and Cacajao.

    Science.gov (United States)

    Viegas Péquignot, E; Koiffmann, C P; Dutrillaux, B

    1985-01-01

    Based on a comparison of the karyotypes of two Plathyrrhini species, Cacajao melanocephalus (Pitheciinae) and Brachyteles arachnoides (Atelinae), with those of two previously studied species, Lagothrix lagothrica (Atelinae) and C calvus rubicundus (Pitheciinae), it appears that the two Cacajao species have undergone the same number of chromosome rearrangements since they diverged from their common ancestor and that the karyotype of Brachyteles is ancestral to that of Lagothrix. The chromosomal phylogeny of these four species is proposed. A Y-autosome translocation is present in the karyotypes of the two Cacajao species.

  13. Kinesthetic compensation for sensorimotor rearrangements.

    Science.gov (United States)

    Ellis, Stephen R; Adelstein, Bernard D

    2009-11-01

    The authors report a new sensorimotor phenomenon in which participants use hand-sensed kinesthetic information to compensate for rotational sensorimotor rearrangements. This compensation benefits from conscious awareness and is related to hand posture. The technique can reduce control inefficiency with some misalignments by as much as 64%. The results support Y. Guiard's (1987) suggestion that in bimanual tasks one hand provides an operational frame of reference for the other hand as in a closed kinematic chain. Results with right-handed participants show that the right and left hands are equally effective at providing such a cue. A constant-angular-targeting-error model, similar to that used for hand movements by H. Cunningham and I. Vardi (1990) and for walking by S. K. Rushton, J. M. Harris, M. R. Lloyd, and J. P. Wann (1998), is used to model the trajectories of targeting hand movements demonstrating the phenomenon. The model provides a natural parameter of the error.

  14. Detection of 11q13 rearrangements in hematologic neoplasias by double-color fluorescence in situ hybridization

    NARCIS (Netherlands)

    Coignet, L J; Schuuring, E; Kibbelaar, R E; Raap, T; Kleiverda, K K; Bertheas, M F; Wiegant, J; Beverstock, G; Kluin, P M

    1996-01-01

    Rearrangements within the chromosome 11q13 region are frequent in hematologic malignancies. 50% of 75% of mantle cell lymphomas (MCLs) carry a translocation t(11;14) (q13;q32). Using Southern blot analysis, a BCL1 breakpoint can be detected in approximately 50% of MCLs. It is not known whether other

  15. The strength of combined cytogenetic and mate-pair sequencing techniques illustrated by a germline chromothripsis rearrangement involving FOXP2

    DEFF Research Database (Denmark)

    Nazaryan, Lusine; Stefanou, Eunice G; Hansen, Claus

    2014-01-01

    with many CCRs, none of the reported mate-pair sequenced complex rearrangements have been simultaneously studied with state-of-the art molecular cytogenetic techniques. Here, we studied chromothripsis-associated CCR involving chromosomes 2, 5 and 7, associated with global developmental and psychomotor delay...

  16. Stereochemistry and rearrangement reactions of hydroxylignanolactones.

    Science.gov (United States)

    Raffaelli, Barbara; Pohjoispää, Monika; Hase, Tapio; Cardin, Christine J; Gan, Yu; Wähälä, Kristiina

    2008-07-21

    Various conflicting data on the rearrangement and absolute stereochemistry of hydroxylignano-9,7'-lactones are resolved using 18O labeled compounds, also confirmed by an X-ray analysis of a pure lignano-9,7'-lactone enantiomer, obtained for the first time. Under NaH/DMF rearrangement conditions a silyl protected hydroxylignano-9,9'-lactone underwent an unexpected silyl migration.

  17. Mechanisms of telomere loss and their consequences for chromosome instability

    International Nuclear Information System (INIS)

    Muraki, Keiko; Nyhan, Kristine; Han, Limei; Murnane, John P.

    2012-01-01

    The ends of chromosomes in mammals, called telomeres, are composed of a 6-bp repeat sequence, TTAGGG, which is added on by the enzyme telomerase. In combination with a protein complex called shelterin, these telomeric repeat sequences form a cap that protects the ends of chromosomes. Due to insufficient telomerase expression, telomeres shorten gradually with each cell division in human somatic cells, which limits the number of times they can divide. The extensive cell division involved in cancer cell progression therefore requires that cancer cells must acquire the ability to maintain telomeres, either through expression of telomerase, or through an alternative mechanism involving recombination. It is commonly thought that the source of many chromosome rearrangements in cancer cells is a result of the extensive telomere shortening that occurs prior to the expression of telomerase. However, despite the expression of telomerase, tumor cells can continue to show chromosome instability due to telomere loss. Dysfunctional telomeres in cancer cells can result from oncogene-induced replication stress, which results in double-strand breaks (DSBs) at fragile sites, including telomeres. DSBs near telomeres are especially prone to chromosome rearrangements, because telomeric regions are deficient in DSB repair. The deficiency in DSB repair near telomeres is also an important mechanism for ionizing radiation-induced replicative senescence in normal human cells. In addition, DSBs near telomeres can result in chromosome instability in mouse embryonic stem cells, suggesting that telomere loss can contribute to heritable chromosome rearrangements. Consistent with this possibility, telomeric regions in humans are highly heterogeneous, and chromosome rearrangements near telomeres are commonly involved in human genetic disease. Understanding the mechanisms of telomere loss will therefore provide important insights into both human cancer and genetic disease.

  18. Mechanisms of telomere loss and their consequences for chromosome instability

    Directory of Open Access Journals (Sweden)

    Keiko eMuraki

    2012-10-01

    Full Text Available The ends of chromosomes in mammals, called telomeres, are composed of a 6 base pair repeat sequence, TTAGGG, which is added on by the enzyme telomerase. In combination with a protein complex called shelterin, these telomeric repeat sequences form a cap that protects the ends of chromosomes. Due to insufficient telomerase expression, telomeres shorten gradually with each cell division in human somatic cells, which limits the number of times they can divide. The extensive cell division involved in cancer cell progression therefore requires that cancer cells must acquire the ability to maintain telomeres, either through expression of telomerase, or through an alternative mechanism involving recombination. It is commonly thought that the source of many chromosome rearrangements in cancer cells is a result of the extensive telomere shortening that occurs prior to the expression of telomerase. However, despite the expression of telomerase, tumor cells can continue to show chromosome instability due to telomere loss. Dysfunctional telomeres in cancer cells can result from oncogene-induced replication stress, which results in double-strand breaks (DSBs at fragile sites, including telomeres. DSBs near telomeres are especially prone to chromosome rearrangements, because telomeric regions are deficient in DSB repair. The deficiency in DSB repair near telomeres is also an important mechanism for ionizing radiation-induced replicative senescence in normal human cells. In addition, DSBs near telomeres can result in chromosome instability in mouse embryonic stem cells, suggesting that telomere loss can contribute to heritable chromosome rearrangements. Consistent with this possibility, telomeric regions in humans are highly heterogeneous, and chromosome rearrangements near telomeres are commonly involved in human genetic disease. Understanding the mechanisms of telomere loss will therefore provide important insights into both human cancer and genetic disease.

  19. Karyotype Evolution in Birds: from Conventional Staining to Chromosome Painting

    OpenAIRE

    Ferguson-Smith, Malcolm

    2018-01-01

    In this work we performed comparative chromosome painting using probes from Gallus gallus (GGA) Linnaeus, 1758 and Leucopternis albicollis (LAL) Latham, 1790 in Synallaxis frontalis Pelzeln, 1859 (Passeriformes, Furnariidae), an exclusively Neotropical species, in order to analyze whether the complex pattern of intrachromosomal rearrangements (paracentric and pericentric inversions) proposed for Oscines and Suboscines is shared with more basal species. S. frontalis has 82 chromosomes, similar...

  20. Comparative mapping identifies the fusion point of an ancient mammalian X-autosomal rearrangement

    Energy Technology Data Exchange (ETDEWEB)

    Wilcox, S.A.; Watson, J.M.; Spencer, J.A. [La Trobe Univ., Victoria (Australia)] [and others

    1996-07-01

    Previous comparisons of gene location in the three major groups of mammals (eutherians, marsupials, and monotremes) have suggested that the long arm of the human X represents the ancestral mammalian X chromosome, whereas the short arm represents an autosomal region(s) recently added to the eutherian X chromosome. To identify the fusion point of this ancient X-autosome rearrangement, we have mapped four genes, three of which map near the centromere of the human Xp, in marsupials and in a monotreme. We found that ARAF1, and GATA1 are located on the X chromosome in marsupials, and ALA2 and GATA1 are also located on the X in the platypus. This implies that the proximal short arm of the human X chromosome, including the centromere, was part of the ancestral mammalian X chromosome. The fusion point between the conserved region and the recently added regions therefore maps to human Xp11.23, although gene order on the human X indicates that there has been some rearrangement of this region. 26 refs., 3 figs., 1 tab.

  1. [Intergenomic chromosome substitutions in wheat interspecific hybrids and their use in the development of a genetic nomenclature of Triticum timopheevii chromosomes].

    Science.gov (United States)

    Badaeva, E D; Budashkina, E B; Bilinskaia, E N; Pukhal'skiĭ, V A

    2010-07-01

    The results of analysis of the genome formation in interspecific hybrids of Triticum aestivum with T. timopheevii are reviewed. The spectra of substitutions and rearrangements are shown to depend on the genotypes of the parental forms and on the direction of selection. The frequencies of substitutions of individual T. timopheevii chromosomes significantly vary and reflect the level of their divergence relative to the common wheat chromosomes. Some aspects of classification of the A(t)- and G-genome chromosomes are discussed.

  2. Dysregulation of the DNA Damage Response and KMT2A Rearrangement in Fetal Liver Hematopoietic Cells.

    Directory of Open Access Journals (Sweden)

    Mai Nanya

    Full Text Available Etoposide, a topoisomerase 2 (TOP2 inhibitor, is associated with the development of KMT2A (MLL-rearranged infant leukemia. An epidemiological study suggested that in utero exposure to TOP2 inhibitors may be involved in generation of KMT2A (MLL rearrangement. The present study examined the mechanism underlying the development of KMT2A (MLL-rearranged infant leukemia in response to in utero exposure to etoposide in a mouse model. Fetal liver hematopoietic stem cells were more susceptible to etoposide than maternal bone marrow mononuclear cells. Etoposide-induced Kmt2a breakage was detected in fetal liver hematopoietic stem cells using a newly developed chromatin immunoprecipitation (ChIP assay. Assessment of etoposide-induced chromosomal translocation by next-generation RNA sequencing (RNA-seq identified several chimeric fusion messenger RNAs that were generated by etoposide treatment. However, Kmt2a (Mll-rearranged fusion mRNA was detected in Atm-knockout mice, which are defective in the DNA damage response, but not in wild-type mice. The present findings suggest that in utero exposure to TOP2 inhibitors induces Kmt2a rearrangement when the DNA damage response is defective.

  3. Diverse, Biologically Relevant, and Targetable Gene Rearrangements in Triple-Negative Breast Cancer and Other Malignancies.

    Science.gov (United States)

    Shaver, Timothy M; Lehmann, Brian D; Beeler, J Scott; Li, Chung-I; Li, Zhu; Jin, Hailing; Stricker, Thomas P; Shyr, Yu; Pietenpol, Jennifer A

    2016-08-15

    Triple-negative breast cancer (TNBC) and other molecularly heterogeneous malignancies present a significant clinical challenge due to a lack of high-frequency "driver" alterations amenable to therapeutic intervention. These cancers often exhibit genomic instability, resulting in chromosomal rearrangements that affect the structure and expression of protein-coding genes. However, identification of these rearrangements remains technically challenging. Using a newly developed approach that quantitatively predicts gene rearrangements in tumor-derived genetic material, we identified and characterized a novel oncogenic fusion involving the MER proto-oncogene tyrosine kinase (MERTK) and discovered a clinical occurrence and cell line model of the targetable FGFR3-TACC3 fusion in TNBC. Expanding our analysis to other malignancies, we identified a diverse array of novel and known hybrid transcripts, including rearrangements between noncoding regions and clinically relevant genes such as ALK, CSF1R, and CD274/PD-L1 The over 1,000 genetic alterations we identified highlight the importance of considering noncoding gene rearrangement partners, and the targetable gene fusions identified in TNBC demonstrate the need to advance gene fusion detection for molecularly heterogeneous cancers. Cancer Res; 76(16); 4850-60. ©2016 AACR. ©2016 American Association for Cancer Research.

  4. Complementary activities of DOT1L and Menin inhibitors in MLL-rearranged leukemia.

    Science.gov (United States)

    Dafflon, C; Craig, V J; Méreau, H; Gräsel, J; Schacher Engstler, B; Hoffman, G; Nigsch, F; Gaulis, S; Barys, L; Ito, M; Aguadé-Gorgorió, J; Bornhauser, B; Bourquin, J-P; Proske, A; Stork-Fux, C; Murakami, M; Sellers, W R; Hofmann, F; Schwaller, J; Tiedt, R

    2017-06-01

    Chromosomal rearrangements of the mixed lineage leukemia (MLL/KMT2A) gene leading to oncogenic MLL-fusion proteins occur in ~10% of acute leukemias and are associated with poor clinical outcomes, emphasizing the need for new treatment modalities. Inhibition of the DOT1-like histone H3K79 methyltransferase (DOT1L) is a specific therapeutic approach for such leukemias that is currently being tested in clinical trials. However, in most MLL-rearranged leukemia models responses to DOT1L inhibitors are limited. Here, we performed deep-coverage short hairpin RNA sensitizer screens in DOT1L inhibitor-treated MLL-rearranged leukemia cell lines and discovered that targeting additional nodes of MLL complexes concomitantly with DOT1L inhibition bears great potential for superior therapeutic results. Most notably, combination of a DOT1L inhibitor with an inhibitor of the MLL-Menin interaction markedly enhanced induction of differentiation and cell killing in various MLL disease models including primary leukemia cells, while sparing normal hematopoiesis and leukemias without MLL rearrangements. Gene expression analysis on human and murine leukemic cells revealed that target genes of MLL-fusion proteins and MYC were suppressed more profoundly upon combination treatment. Our findings provide a strong rationale for a novel targeted combination therapy that is expected to improve therapeutic outcomes in patients with MLL-rearranged leukemia.

  5. Transmission of clonal chromosomal abnormalities in human hematopoietic stem and progenitor cells surviving radiation exposure

    Energy Technology Data Exchange (ETDEWEB)

    Kraft, Daniela, E-mail: d.kraft@gsi.de [GSI Helmholtz Center for Heavy Ion Research, Department of Biophysics, Planckstr. 1, 64291 Darmstadt (Germany); Institute for Transfusion Medicine und Immunohematology, DRK-Blutspendedienst Baden-Wuerttemberg—Hessen, Johann Wolfgang Goethe-University Hospital, Sandhofstrasse 1, 60528 Frankfurt (Germany); Ritter, Sylvia, E-mail: s.ritter@gsi.de [GSI Helmholtz Center for Heavy Ion Research, Department of Biophysics, Planckstr. 1, 64291 Darmstadt (Germany); Durante, Marco, E-mail: m.durante@gsi.de [GSI Helmholtz Center for Heavy Ion Research, Department of Biophysics, Planckstr. 1, 64291 Darmstadt (Germany); Institute for Condensed Matter Physics, Physics Department, Technical University Darmstadt, Hochschulstraße 6-8, 64289 Darmstadt (Germany); Seifried, Erhard, E-mail: e.seifried@blutspende.de [Institute for Transfusion Medicine und Immunohematology, DRK-Blutspendedienst Baden-Wuerttemberg—Hessen, Johann Wolfgang Goethe-University Hospital, Sandhofstrasse 1, 60528 Frankfurt (Germany); Fournier, Claudia, E-mail: c.fournier@gsi.de [GSI Helmholtz Center for Heavy Ion Research, Department of Biophysics, Planckstr. 1, 64291 Darmstadt (Germany); Tonn, Torsten, E-mail: t.tonn@blutspende.de [Institute for Transfusion Medicine und Immunohematology, DRK-Blutspendedienst Baden-Wuerttemberg—Hessen, Johann Wolfgang Goethe-University Hospital, Sandhofstrasse 1, 60528 Frankfurt (Germany); Technische Universität Dresden, Med. Fakultät Carl Gustav Carus, Institute for Transfusion Medicine Dresden, German Red Cross Blood Donation Service North-East, Blasewitzer Straße 68/70, 01307 Dresden (Germany)

    2015-07-15

    Highlights: • Radiation induced formation and transmission of chromosomal aberrations were assessed. • Cytogenetic analysis was performed in human CD34+ HSPC by mFISH. • We report transmission of stable aberrations in irradiated, clonally expanded HSPC. • Unstable aberrations in clonally expanded HSPC occur independently of irradiation. • Carbon ions and X-rays bear a similar risk for propagation of cytogenetic changes. - Abstract: In radiation-induced acute myeloid leukemia (rAML), clonal chromosomal abnormalities are often observed in bone marrow cells of patients, suggesting that their formation is crucial in the development of the disease. Since rAML is considered to originate from hematopoietic stem and progenitor cells (HSPC), we investigated the frequency and spectrum of radiation-induced chromosomal abnormalities in human CD34{sup +} cells. We then measured stable chromosomal abnormalities, a possible biomarker of leukemia risk, in clonally expanded cell populations which were grown for 14 days in a 3D-matrix (CFU-assay). We compared two radiation qualities used in radiotherapy, sparsely ionizing X-rays and densely ionizing carbon ions (29 and 60–85 keV/μm, doses between 0.5 and 4 Gy). Only a negligible number of de novo arising, unstable aberrations (≤0.05 aberrations/cell, 97% breaks) were measured in the descendants of irradiated HSPC. However, stable aberrations were detected in colonies formed by irradiated HSPC. All cells of the affected colonies exhibited one or more identical aberrations, indicating their clonal origin. The majority of the clonal rearrangements (92%) were simple exchanges such as translocations (77%) and pericentric inversions (15%), which are known to contribute to the development of rAML. Carbon ions were more efficient in inducing cell killing (maximum of ∼30–35% apoptotic cells for 2 Gy carbon ions compared to ∼25% for X-rays) and chromosomal aberrations in the first cell-cycle after exposure (∼70% and

  6. Genetic modification of mammalian genome at chromosome level

    Directory of Open Access Journals (Sweden)

    OLEG L. SEROV

    2000-09-01

    Full Text Available The review is concerned with a progress in genetic modification of a mammalian genome in vitro and in vivo at chromosomal level. Recently three new approaches for the chromosome biotechnology have been developed: Using Cre/loxP-system a researcher is able to produce targeted rearrangements of whole chromosomes or their segments or particular genes within the genome, and therefore to modify the set, position and copy number of the endogenous elements of the genome. Mammalian artificial chromosomes (MACs provide a possibility to introduce into genome relatively large segments of alien chromosome material, either artificially constructed or derived from the genome of different species. Using ES-somatic cell hybrids allows to transfer whole chromosomes or their fragments between different genomes within and between species. Advantages and limitations of these approaches are discussed.

  7. Transposon domestication versus mutualism in ciliate genome rearrangements.

    Directory of Open Access Journals (Sweden)

    Alexander Vogt

    Full Text Available Ciliated protists rearrange their genomes dramatically during nuclear development via chromosome fragmentation and DNA deletion to produce a trimmer and highly reorganized somatic genome. The deleted portion of the genome includes potentially active transposons or transposon-like sequences that reside in the germline. Three independent studies recently showed that transposase proteins of the DDE/DDD superfamily are indispensible for DNA processing in three distantly related ciliates. In the spirotrich Oxytricha trifallax, high copy-number germline-limited transposons mediate their own excision from the somatic genome but also contribute to programmed genome rearrangement through a remarkable transposon mutualism with the host. By contrast, the genomes of two oligohymenophorean ciliates, Tetrahymena thermophila and Paramecium tetraurelia, encode homologous PiggyBac-like transposases as single-copy genes in both their germline and somatic genomes. These domesticated transposases are essential for deletion of thousands of different internal sequences in these species. This review contrasts the events underlying somatic genome reduction in three different ciliates and considers their evolutionary origins and the relationships among their distinct mechanisms for genome remodeling.

  8. Chromosome differentiation patterns during cichlid fish evolution

    Directory of Open Access Journals (Sweden)

    Nirchio Mauro

    2010-06-01

    Full Text Available Abstract Background Cichlid fishes have been the subject of increasing scientific interest because of their rapid adaptive radiation which has led to an extensive ecological diversity and their enormous importance to tropical and subtropical aquaculture. To increase our understanding of chromosome evolution among cichlid species, karyotypes of one Asian, 22 African, and 30 South American cichlid species were investigated, and chromosomal data of the family was reviewed. Results Although there is extensive variation in the karyotypes of cichlid fishes (from 2n = 32 to 2n = 60 chromosomes, the modal chromosome number for South American species was 2n = 48 and the modal number for the African ones was 2n = 44. The only Asian species analyzed, Etroplus maculatus, was observed to have 46 chromosomes. The presence of one or two macro B chromosomes was detected in two African species. The cytogenetic mapping of 18S ribosomal RNA (18S rRNA gene revealed a variable number of clusters among species varying from two to six. Conclusions The karyotype diversification of cichlids seems to have occurred through several chromosomal rearrangements involving fissions, fusions and inversions. It was possible to identify karyotype markers for the subfamilies Pseudocrenilabrinae (African and Cichlinae (American. The karyotype analyses did not clarify the phylogenetic relationship among the Cichlinae tribes. On the other hand, the two major groups of Pseudocrenilabrinae (tilapiine and haplochromine were clearly discriminated based on the characteristics of their karyotypes. The cytogenetic mapping of 18S ribosomal RNA (18S rRNA gene did not follow the chromosome diversification in the family. The dynamic evolution of the repeated units of rRNA genes generates patterns of chromosomal distribution that do not help follows the phylogenetic relationships among taxa. The presence of B chromosomes in cichlids is of particular interest because they may not be represented in

  9. Chromosome painting analysis of X-ray-induced aberrations in human lymphocytes in vitro

    International Nuclear Information System (INIS)

    Matsuoka, A.; Hayashi, M.; Yamazaki, N.; Sofuni, T.

    1994-01-01

    Chromosomal rearrangements in human lymphocytes induced by X-rays (0, 0.5, 1.0 and 2.0 Gray) were analyzed using chromosome painting. DNA probes for human chromosomes 1, 3 or 4 alone, and a combination of 1 and 4, were used for analysis. The frequency of cells with rearrangements, i.e. reciprocal translocations, dicentrics, insertions, tricentrics and fragments, involving chromosome 4 increased with dose in both 48 and 72 h cultures. The number of translocations per cell also increased with dose at 48 and 72 h. Dicentrics increased with dose in 48 h but not in 72 h cultures. The estimated genomic frequency of aberrations per cell was comparable with results in banded cells. No difference was shown on the detection efficiency of chromosome rearrangements among the various DNA probes used. Since this technique does not necessarily require well-spread metaphases for analysis, it is possible to increase the number of analyzable metaphases compared with the banding technique. Chromosome painting is a simpler, more objective and practical method for detecting chromosome rearrangements than conventional banding analyses. (Author)

  10. Chromosomal abnormalities in a psychiatric population

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, K.E.; Lubetsky, M.J.; Wenger, S.L.; Steele, M.W. [Univ. of Pittsburgh Medical Center, PA (United States)

    1995-02-27

    Over a 3.5 year period of time, 345 patients hospitalized for psychiatric problems were evaluated cytogenetically. The patient population included 76% males and 94% children with a mean age of 12 years. The criteria for testing was an undiagnosed etiology for mental retardation and/or autism. Cytogenetic studies identified 11, or 3%, with abnormal karyotypes, including 4 fragile X positive individuals (2 males, 2 females), and 8 with chromosomal aneuploidy, rearrangements, or deletions. While individuals with chromosomal abnormalities do not demonstrate specific behavioral, psychiatric, or developmental problems relative to other psychiatric patients, our results demonstrate the need for an increased awareness to order chromosomal analysis and fragile X testing in those individuals who have combinations of behavioral/psychiatric, learning, communication, or cognitive disturbance. 5 refs., 1 fig., 2 tabs.

  11. SNP array and FISH analysis of a proband with a 22q13.2- 22qter duplication shed light on the molecular origin of the rearrangement.

    Science.gov (United States)

    Magri, Chiara; Marchina, Eleonora; Bertini, Valeria; Traversa, Michele; Savio, Giulia; Pilotta, Alba; Piovani, Giovanna

    2015-07-07

    In about one third of healthy subjects, the microscopic analysis of chromosomes reveals heteromorphisms with no clinical implications: for example changes in size of the short arm of acrocentric chromosomes. In patients with a pathological phenotype, however, a large acrocentric short arm can mask a genomic imbalance and should be investigated in more detail. We report the first case of a chromosome 22 with a large acrocentric short arm masking a partial trisomy of the distal long arm, characterized by SNP array. We suggest a possible molecular mechanism underlying the rearrangement. We report the case of a 15-year-old dysmorphic girl with low grade psychomotor retardation characterized by a karyotype with a large acrocentric short arm of one chromosome 22. Cytogenetic analysis revealed a normal karyotype with a very intense Q-fluorescent and large satellite on the chromosome 22 short arm. Fluorescence in situ hybridisation analysis showed a de novo partial trisomy of the 22q13.2-qter chromosome region attached to the short arm of chromosome 22. SNP-array analysis showed that the duplication was 8.5 Mb long and originated from the paternal chromosome. Haplotype analysis revealed that the two paternal copies of the distal part of chromosome 22 have the same haplotype and, therefore, both originated from the same paternal chromosome 22. A possible molecular mechanism that could explain this scenario is a break-induced replication (BIR) which is involved in non-reciprocal translocation events. The combined use of FISH and SNP arrays was crucial for a better understanding of the molecular mechanism underlying this rearrangement. This strategy could be applied for a better understanding of the molecular mechanisms underlying cryptic chromosomal rearrangements.

  12. Use of M-FISH analysis of α-particle-induced chromosome aberrations for the assessment of chromosomal breakpoint distribution and complex aberration formation

    International Nuclear Information System (INIS)

    Anderson, R.M.; Sumption, N.D.; Papworth, D.G.; Goodhead, D.T.

    2003-01-01

    Double strand breaks (dsb) of varying complexity are an important class of damage induced after exposure to ionising radiation and are considered to be the critical lesion for the formation of radiation-induced chromosome aberrations. Assuming the basic principles of the 'Breakage and Reunion' theory, dsb represent 'breakage' and aberrations are produced from the illegitimate repair (reunion) of the resulting dsb free-'ends'. Numerous questions relate to this process, in particular, (1) do chromosomal breakpoint 'hot-spots' that represent sensitive sites for breakage and/or regions of preferential repair/mis-repair, exist? (2) Considering that individual chromosomes and chromosome regions occupy discrete territories in the interphase nucleus, could rearrangements between specific chromosomes reflect domain organisation at the time of damage? (3) Assuming the topological constraints imposed on chromatin are not dramatically influenced by the presence of dsb, then how do multiple 'ends' from different chromosomes proximally associate for mis-repair as complex chromosome aberrations? To address these questions, we have analysed the chromosome aberrations induced in peripheral blood lymphocytes after exposure to 0.5 Gy α -particles (mean of 1 α -particle/cell) using the technique of M-FISH. This technique 'paints' all the human chromosomes (excluding homologues) uniquely, allowing chromosomal mis-repair to be visualised as differential colour-junctions and in addition, enhanced DAPI banding enables gross breakpoint assignation of these colour junctions. To test for non-randomness, we are comparing the frequency of occurrence of breakpoints obtained up to now with the F98 glioma model our knowledbased on chromosome length. Similarly, the involvement of each chromosome relative to other chromosomes within individual rearrangements can be determined by assuming the volume of chromosome domains is also proportional to their length. The current data to be presented will

  13. Differential rates of genic and chromosomal evolution in bats of the family Rhinolophidae.

    Science.gov (United States)

    Qumsiyeh, M B; Owen, R D; Chesser, R K

    1988-06-01

    Data for nondifferentially stained chromosomes from 10 species of Rhinolophus (Chiroptera: Rhinolophidae) suggest a conserved chromosomal evolution. G-banded chromosomes for three well differentiated species (Rhinolophus hipposideros, Rhinolophus blasii, and Rhinolophus acuminatus) corroborate a low level of gross chromosomal rearrangements. Additionally, a comparison between G-banded chromosomes of Rhinolophus (Rhinolophidae) and Hipposideros (Hipposideridae) suggests extreme conservatism in chromosomal arms between these two distantly related groups. On the other hand, we report extensive genic divergence as assayed by starch gel electrophoresis among these 10 species, and between Rhinolophus and two hipposiderid genera (Hipposideros and Aselliscus). The present chromosomal data are not sufficient for phylogenetic analysis. Phylogenies based on electrophoretic data are in many aspects discordant with those based on the classical morphological criteria. Different (and as yet not clearly understood) evolutionary forces affecting chromosomal, morphologic, and electrophoretic variation may be the reason for the apparent lack of concordance in these independent data sets.

  14. Three-dimensional genome architecture influences partner selection for chromosomal translocations in human disease.

    Directory of Open Access Journals (Sweden)

    Jesse M Engreitz

    Full Text Available Chromosomal translocations are frequent features of cancer genomes that contribute to disease progression. These rearrangements result from formation and illegitimate repair of DNA double-strand breaks (DSBs, a process that requires spatial colocalization of chromosomal breakpoints. The "contact first" hypothesis suggests that translocation partners colocalize in the nuclei of normal cells, prior to rearrangement. It is unclear, however, the extent to which spatial interactions based on three-dimensional genome architecture contribute to chromosomal rearrangements in human disease. Here we intersect Hi-C maps of three-dimensional chromosome conformation with collections of 1,533 chromosomal translocations from cancer and germline genomes. We show that many translocation-prone pairs of regions genome-wide, including the cancer translocation partners BCR-ABL and MYC-IGH, display elevated Hi-C contact frequencies in normal human cells. Considering tissue specificity, we find that translocation breakpoints reported in human hematologic malignancies have higher Hi-C contact frequencies in lymphoid cells than those reported in sarcomas and epithelial tumors. However, translocations from multiple tissue types show significant correlation with Hi-C contact frequencies, suggesting that both tissue-specific and universal features of chromatin structure contribute to chromosomal alterations. Our results demonstrate that three-dimensional genome architecture shapes the landscape of rearrangements directly observed in human disease and establish Hi-C as a key method for dissecting these effects.

  15. Vietnam, a Hotspot for Chromosomal Diversity and Cryptic Species in Black Flies (Diptera: Simuliidae).

    Science.gov (United States)

    Adler, Peter H; Takaoka, Hiroyuki; Sofian-Azirun, Mohd; Low, Van Lun; Ya'cob, Zubaidah; Chen, Chee Dhang; Lau, Koon Weng; Pham, Xuan Da

    2016-01-01

    The increasing attention on Vietnam as a biodiversity hotspot prompted an investigation of the potential for cryptic diversity in black flies, a group well known elsewhere for its high frequency of isomorphic species. We analyzed the banding structure of the larval polytene chromosomes in the Simulium tuberosum species group to probe for diversity beyond the morphological level. Among 272 larvae, 88 different chromosomal rearrangements, primarily paracentric inversions, were discovered in addition to 25 already known in the basic sequences of the group in Asia. Chromosomal diversity in Vietnam far exceeds that known for the group in Thailand, with only about 5% of the rearrangements shared between the two countries. Fifteen cytoforms and nine morphoforms were revealed among six nominal species in Vietnam. Chromosomal evidence, combined with available molecular and morphological evidence, conservatively suggests that at least five of the cytoforms are valid species, two of which require formal names. The total chromosomal rearrangements and species (15) now known from the group in Vietnam far exceed those of any other area of comparable size in the world, supporting the country's status as a biodiversity hotspot. Phylogenetic inference based on uniquely shared, derived chromosomal rearrangements supports the clustering of cytoforms into two primary lineages, the Simulium tani complex and the Southeast Asian Simulium tuberosum subgroup. Some of these taxa could be threatened by habitat destruction, given their restricted geographical distributions and the expanding human population of Vietnam.

  16. Vietnam, a Hotspot for Chromosomal Diversity and Cryptic Species in Black Flies (Diptera: Simuliidae)

    Science.gov (United States)

    Takaoka, Hiroyuki; Sofian-Azirun, Mohd; Low, Van Lun; Ya’cob, Zubaidah; Chen, Chee Dhang; Lau, Koon Weng; Pham, Xuan Da

    2016-01-01

    The increasing attention on Vietnam as a biodiversity hotspot prompted an investigation of the potential for cryptic diversity in black flies, a group well known elsewhere for its high frequency of isomorphic species. We analyzed the banding structure of the larval polytene chromosomes in the Simulium tuberosum species group to probe for diversity beyond the morphological level. Among 272 larvae, 88 different chromosomal rearrangements, primarily paracentric inversions, were discovered in addition to 25 already known in the basic sequences of the group in Asia. Chromosomal diversity in Vietnam far exceeds that known for the group in Thailand, with only about 5% of the rearrangements shared between the two countries. Fifteen cytoforms and nine morphoforms were revealed among six nominal species in Vietnam. Chromosomal evidence, combined with available molecular and morphological evidence, conservatively suggests that at least five of the cytoforms are valid species, two of which require formal names. The total chromosomal rearrangements and species (15) now known from the group in Vietnam far exceed those of any other area of comparable size in the world, supporting the country’s status as a biodiversity hotspot. Phylogenetic inference based on uniquely shared, derived chromosomal rearrangements supports the clustering of cytoforms into two primary lineages, the Simulium tani complex and the Southeast Asian Simulium tuberosum subgroup. Some of these taxa could be threatened by habitat destruction, given their restricted geographical distributions and the expanding human population of Vietnam. PMID:27695048

  17. Alternative Lengthening of Telomeres: Recurrent Cytogenetic Aberrations and Chromosome Stability under Extreme Telomere Dysfunction

    Directory of Open Access Journals (Sweden)

    Despoina Sakellariou

    2013-11-01

    Full Text Available Human tumors using the alternative lengthening of telomeres (ALT exert high rates of telomere dysfunction. Numerical chromosomal aberrations are very frequent, and structural rearrangements are widely scattered among the genome. This challenging context allows the study of telomere dysfunction-driven chromosomal instability in neoplasia (CIN in a massive scale. We used molecular cytogenetics to achieve detailed karyotyping in 10 human ALT neoplastic cell lines.We identified 518 clonal recombinant chromosomes affected by 649 structural rearrangements. While all human chromosomes were involved in random or clonal, terminal, or pericentromeric rearrangements and were capable to undergo telomere healing at broken ends, a differential recombinatorial propensity of specific genomic regions was noted.We show that ALT cells undergo epigenetic modifications rendering polycentric chromosomes functionally monocentric, and because of increased terminal recombinogenicity, they generate clonal recombinant chromosomes with interstitial telomeric repeats. Losses of chromosomes 13, X, and 22, gains of 2, 3, 5, and 20, and translocation/deletion events involving several common chromosomal fragile sites (CFSs were recurrent. Long-term reconstitution of telomerase activity in ALT cells reduced significantly the rates of random ongoing telomeric and pericentromeric CIN. However, the contribution of CFS in overall CIN remained unaffected, suggesting that in ALT cells whole-genome replication stress is not suppressed by telomerase activation. Our results provide novel insights into ALT-driven CIN, unveiling in parallel specific genomic sites that may harbor genes critical for ALT cancerous cell growth.

  18. Detection of {open_quotes}cryptic{close_quotes}karyotypic rearrangements in closely related primate species by fluorescence in situ hybridization (FISH) using human subtelomeric DNA probes

    Energy Technology Data Exchange (ETDEWEB)

    Youngblom, J.J. [California State University-Stanislaus, Turlock, CA (United States); Trask, B.J.; Friedman, C. [Univ. of Washington, Seattle, WA (United States)] [and others

    1994-09-01

    Specific human subtelomeric DNA probes were used to reveal cryptic chromosomal rearrangements that cannot be detected by conventional high resolution cytogenetic techniques, or by chromosomal in situ suppression hybridization using whole chromosome paint analysis. Two cosmids containing different subtelomeric DNA sequences were derived from human chromosome 19 and designated as 7501 and 16432. Cosmid 7501 was hybridized to chromosomes from humans, chimpanzee, gorilla and orangutan. In humans, 7501 consistently labeled chromosomes 3q, 15q, and 19p. Additional chromosomes were labeled in different individuals, indicating a polymorphic distribution of this sequence in the human genome. In contrast, 7501 consistently and strongly labeled only the q arm terminus of chromosome 3 in both chimp and gorilla. The identification of the chromosome was made by two-color FISH analysis using human chromosome 4-specific paint and homologous to human chromosome 4. None of the human subjects showed labeling of chromosome 4 with 7501. This finding suggests that in the course of human evolution, subsequent to the divergence of humans and African apes, a cryptic translocation occurred between the ancestral human chromosome 4 and one or more of the other human chromosomes that now contain this DNA segment. In orangutan, 7501 labeled a single acrocentric chromosome pair, a distinctly different chromosome than that labeled in chimp and gorilla. Comparison of chromosome sites labeled with cosmid 16432 showed the distribution of signals on chromosome 1q arm is the same for humans and chimp, but different in the gorilla. Humans and chimps show distinct labeling on sites 1q terminus and 1q41-42. In gorilla, there is instead a large cluster of intense signal near the terminus of 1q that clearly does not extend all the way to the terminus. A paracentric inversion or an unequal cross-over event may account for the observed difference between these species.

  19. Chromosomal evolution in the plant family Solanaceae.

    Science.gov (United States)

    Wu, Feinan; Tanksley, Steven D

    2010-03-17

    Over the past decades, extensive comparative mapping research has been performed in the plant family Solanaceae. The recent identification of a large set of single-copy conserved orthologous (COSII) markers has greatly accelerated comparative mapping studies among major solanaceous species including tomato, potato, eggplant, pepper and diploid Nicotiana species (as well as tetraploid tobacco). The large amount of comparative data now available for these species provides the opportunity to describe the overall patterns of chromosomal evolution in this important plant family. The results of this investigation are described herein. We combined data from multiple COSII studies, and other comparative mapping studies performed in tomato, potato, eggplant, pepper and diploid Nicotiana species, to deduce the features and outcomes of chromosomal evolution in the Solanaceae over the past 30 million years. This includes estimating the rates and timing of chromosomal changes (inversions and translocations) as well as deducing the age of ancestral progenitor species and predicting their genome configurations. The Solanaceae has experienced chromosomal changes at a modest rate compared with other families and the rates are likely conserved across different lineages of the family. Chromosomal inversions occur at a consistently higher rate than do translocations. Further, we find evidences for non-random positioning of the chromosomal rearrangement breakpoints. This finding is consistent with the similar finding in mammals, where hot spots for chromosomal breakages have apparently played a significant role in shaping genome evolution. Finally, by utilizing multiple genome comparisons we were able to reconstruct the most likely genome configuration for a number of now-extinct progenitor species that gave rise to the extant solanaceous species used in this research. The results from this study provide the first broad overview of chromosomal evolution in the family Solanaceae, and

  20. Regioselective 1-N-Alkylation and Rearrangement of Adenosine Derivatives.

    Science.gov (United States)

    Oslovsky, Vladimir E; Drenichev, Mikhail S; Mikhailov, Sergey N

    2015-01-01

    Several methods for the preparation of some N(6)-substituted adenosines based on selective 1-N-alkylation with subsequent Dimroth rearrangement were developed. The proposed methods seem to be effective for the preparation of natural N(6)-isopentenyl- and N(6)-benzyladenosines, which are known to possess pronounced biological activities. Direct 1-N-alkylation of 2',3',5'-tri-O-acetyladenosine and 3',5'-di-O-acetyl-2'-deoxyadenosine with alkyl halides in N,N-dimethylformamide (DMF) in the presence of BaCO3 and KI gave 1-N-substituted derivatives with quantitative yields, whereas 1-N-alkylation of adenosine was accompanied by significant O-alkylation. Moreover, the reaction of trimethylsilyl derivatives of N(6)-acetyl-2',3',5'-tri-O-acetyladenosine and N(6)-acetyl-3',5'-di-O-acetyl-2'-deoxyadenosine with alkyl halides leads to the formation of the stable 1-N-substituted adenosines. Dimroth rearrangement of 1-N-substituted adenosines in aqueous ammonia yields pure N(6)-substituted adenosines.

  1. Robertsonian translocation between chromosomes (no.21/14) in relation to the history of spontaneous abortion in a family.

    Science.gov (United States)

    Hasanzadeh-NazarAbadi, Mohammad; Baghbani, Fatemeh; Namazi, Iman; Mirzaee, Salmeh

    2014-08-01

    Approximately 205 million pregnancies occur each year in the worldwide. On the other hand, Spontaneous abortion has been reported in 15-20% of all diagnosed pregnancies. The most common cause of spontaneous abortion is chromosomal abnormalities of the embryo. Robertsonian translocation carriers specially 21-14 are the most common balanced rearrangement among the carrier couples with the history of spontaneous abortion. In order to search for balanced chromosomal rearrangement and cytogenetic disorders, 10 members of related family with consanguinity marriage with the history of recurrent miscarriage were assessed. Cytogenetic evaluation on the basis G-banding technique at high resolution was performed in 3 couples and their related family with the history of idiopathic RSA in order to postulate any balanced chromosomal rearrangement. six members of them appeared with robertsonian balanced translocation between chromosome No.21 to No. 14 with the karyotype of 45, XX, t (14, 21) and 45, XY, t (14, 21), which this results are in agreement with several similar works which claimed that the risk of spontaneous abortion in couples with balanced chromosomal rearrangements is higher compared with general population. Considering to results of present study, it seems as if the cytogenetic analysis of couples with the history of recurrent abortions should be suggested compulsory to estimate the probable presence of any chromosomal rearrangement. This offer wills valuable information for genetic consulting.

  2. NUP98 is rearranged in 3.8% of pediatric AML forming a clinical and molecular homogenous group with a poor prognosis.

    Science.gov (United States)

    Struski, S; Lagarde, S; Bories, P; Puiseux, C; Prade, N; Cuccuini, W; Pages, M-P; Bidet, A; Gervais, C; Lafage-Pochitaloff, M; Roche-Lestienne, C; Barin, C; Penther, D; Nadal, N; Radford-Weiss, I; Collonge-Rame, M-A; Gaillard, B; Mugneret, F; Lefebvre, C; Bart-Delabesse, E; Petit, A; Leverger, G; Broccardo, C; Luquet, I; Pasquet, M; Delabesse, E

    2017-03-01

    Pediatric acute myeloid leukemia (AML) is a rare disease whose prognosis is highly variable according to factors such as chromosomal abnormalities. Recurrent genomic rearrangements are detected in half of pediatric AML by karyotype. NUcleoPorin 98 (NUP98) gene is rearranged with 31 different fusion partner genes. These rearrangements are frequently undetected by conventional cytogenetics, as the NUP98 gene is located at the end of the chromosome 11 short arm (11p15). By screening a series of 574 pediatric AML, we detected a NUP98 rearrangement in 22 cases (3.8%), a frequency similar to CBFB-MYH11 fusion gene (4.0%). The most frequent NUP98 fusion gene partner is NSD1. These cases are homogeneous regarding their biological and clinical characteristics, and associated with bad prognosis only improved by bone marrow transplantation. We detailed the biological characteristics of these AML by exome sequencing which demonstrated few recurrent mutations (FLT3 ITD, WT1, CEBPA, NBPF14, BCR and ODF1). The analysis of the clonal structure in these cases suggests that the mutation order in the NUP98-rearranged pediatric AML begins with the NUP98 rearrangement leading to epigenetic dysregulations then followed by mutations of critical hematopoietic transcription factors and finally, activation of the FLT3 signaling pathway.

  3. Chromosomal differences between European and North American Atlantic salmon discovered by linkage mapping and supported by fluorescence in situ hybridization analysis

    OpenAIRE

    Brenna-Hansen Silje; Li Jieying; Kent Matthew P; Boulding Elizabeth G; Dominik Sonja; Davidson William S; Lien Sigbjørn

    2012-01-01

    Abstract Background Geographical isolation has generated a distinct difference between Atlantic salmon of European and North American Atlantic origin. The European Atlantic salmon generally has 29 pairs of chromosomes and 74 chromosome arms whereas it has been reported that the North American Atlantic salmon has 27 chromosome pairs and an NF of 72. In order to predict the major chromosomal rearrangements causing these differences, we constructed a dense linkage map for Atlantic salmon of Nort...

  4. Computer aided analysis of additional chromosome aberrations in Philadelphia chromosome positive acute lymphoblastic leukaemia using a simplified computer readable cytogenetic notation

    Directory of Open Access Journals (Sweden)

    Mohr Brigitte

    2003-01-01

    Full Text Available Abstract Background The analysis of complex cytogenetic databases of distinct leukaemia entities may help to detect rare recurring chromosome aberrations, minimal common regions of gains and losses, and also hot spots of genomic rearrangements. The patterns of the karyotype alterations may provide insights into the genetic pathways of disease progression. Results We developed a simplified computer readable cytogenetic notation (SCCN by which chromosome findings are normalised at a resolution of 400 bands. Lost or gained chromosomes or chromosome segments are specified in detail, and ranges of chromosome breakpoint assignments are recorded. Software modules were written to summarise the recorded chromosome changes with regard to the respective chromosome involvement. To assess the degree of karyotype alterations the ploidy levels and numbers of numerical and structural changes were recorded separately, and summarised in a complex karyotype aberration score (CKAS. The SCCN and CKAS were used to analyse the extend and the spectrum of additional chromosome aberrations in 94 patients with Philadelphia chromosome positive (Ph-positive acute lymphoblastic leukemia (ALL and secondary chromosome anomalies. Dosage changes of chromosomal material represented 92.1% of all additional events. Recurring regions of chromosome losses were identified. Structural rearrangements affecting (pericentromeric chromosome regions were recorded in 24.6% of the cases. Conclusions SCCN and CKAS provide unifying elements between karyotypes and computer processable data formats. They proved to be useful in the investigation of additional chromosome aberrations in Ph-positive ALL, and may represent a step towards full automation of the analysis of large and complex karyotype databases.

  5. Recent Developments in the Reformatsky-Claisen Rearrangement

    Directory of Open Access Journals (Sweden)

    Susumi Hatakeyama

    2012-11-01

    Full Text Available The rearrangement of allyl a-bromoacetates with Zn dust is known as the Reformatsky-Claisen rearrangement. Whereas the Ireland-Claisen rearrangement has been widely used in the synthesis of a diverse range of natural products, the Zn-mediated Reformatsky-Claisen rearrangement has not been utilized so often. In this article, we will provide an overview of recent advances in the Reformatsky-Claisen rearrangement field, including the In-mediated Reformatsky-Claisen rearrangement we have recently developed.

  6. Chromosome abnormalities in colorectal adenomas: two cytogenetic subgroups characterized by deletion of 1p and numerical aberrations

    DEFF Research Database (Denmark)

    Bomme, L; Bardi, G; Pandis, N

    1996-01-01

    and numerical chromosomal aberrations was found in three polyps. The most common numerical change was gain of chromosome 7, found either as the sole anomaly (five polyps), together with other numerical changes (six polyps), or together with structural rearrangements (two polyps). Other recurrent numerical......Cytogenetic analysis of short-term cultures from 34 benign colorectal polyps, all histologically verified as adenomas, revealed clonal chromosome aberrations in 21 of them. Eight polyps had structural rearrangements, whereas only numerical changes were found in 13. A combination of structural...... changes were +20, +13, and monosomy 18, found in six, five, and two adenomas, respectively. Rearrangement of chromosome 1 was the most common structural change. Abnormalities involving 1p were seen in six adenomas, leading to visible loss of material in three. One adenoma had one clone with a large...

  7. Dynamic chromosome reorganization in the osprey ( Pandion haliaetus , Pandionidae, Falconiformes): relationship between chromosome size and the chromosomal distribution of centromeric repetitive DNA sequences.

    Science.gov (United States)

    Nishida, C; Ishishita, S; Yamada, K; Griffin, D K; Matsuda, Y

    2014-01-01

    The osprey (Pandion haliaetus) has a diploid number of 74 chromosomes, consisting of a large number of medium-sized macrochromosomes and relatively few microchromosomes; this differs greatly from the typical avian karyotype. Chromosome painting with chicken DNA probes revealed that the karyotype of P. haliaetus differs from the chicken karyotype by at least 14 fission events involving macrochromosomes (chicken chromosomes 1-9 and Z) and at most 15 fusions of microchromosomes, suggesting that considerable karyotype reorganization occurred in P. haliaetus in a similar manner previously reported for Accipitridae. A distinct difference was observed, however, between Accipitridae and Pandionidae with respect to the pattern of chromosome rearrangements that occurred after fissions of macrochromosomes. Metacentric or submetacentric chromosomes 1-5 in P. haliaetus appear to have been formed by centric fusion of chromosome segments derived from macrochromosomal fissions. By contrast, many pairs of bi-armed chromosomes in Accipitridae species seem to result from pericentric inversions that occurred in the fission-derived chromosomes. Two families of repetitive sequences were isolated; the 173-bp PHA-HaeIII sequence occurred on all chromosomes, whereas intense signals from the 742-bp PHA-NsiI sequence were localized to all acrocentric chromosomes, with weak signals on most of the bi-armed chromosomes. Two repetitive sequences cohybridized in the centromeric heterochromatin; however, the sequences differed in unit size, nucleotide sequence and GC content. The results suggest that the 2 sequence families originated from different ancestral sequences and were homogenized independently in centromeres, and that a chromosome size-dependent compartmentalization may have been lost in P. haliaetus. © 2014 S. Karger AG, Basel.

  8. Fishing for radiation quality: chromosome aberrations and the role of radiation track structure

    International Nuclear Information System (INIS)

    Hill, M.A.

    2015-01-01

    The yield of chromosome aberrations is not only dependent on dose but also on radiation quality, with high linear energy transfer (LET) typically having a greater biological effectiveness per unit dose than those of low-LET radiation. Differences in radiation track structure and cell morphology can also lead to quantitative differences in the spectra of the resulting chromosomal rearrangements, especially at low doses associated with typical human exposures. The development of combinatorial fluorescent labelling techniques (such as mFISH and mBAND) has helped to reveal the complexity of rearrangements, showing increasing complexity of observed rearrangements with increasing LET but has a resolution limited to ∼10 MBp. High-LET particles have not only been shown to produce clustered sites of DNA damage but also produce multiple correlated breaks along its path resulting in DNA fragments smaller than the resolution of these techniques. Additionally, studies have shown that the vast majority of radiation-induced HPRT mutations were also not detectable using fluorescent in situ hybridisation (FISH) techniques, with correlation of breaks along the track being reflected in the complexity of mutations, with intra- and inter-chromosomal insertions, and inversions occurring at the sites of some of the deletions. Therefore, the analysis of visible chromosomal rearrangements observed using current FISH techniques is likely to represent just the tip of the iceberg, considerably underestimating the extent and complexity of radiation induced rearrangements. (author)

  9. Fusion gene transcripts and Ig/TCR gene rearrangements are complementary but infrequent targets for PCR-based detection of minimal residual disease in acute myeloid leukemia

    NARCIS (Netherlands)

    Boeckx, N.; M.J. Willemse; T. Szczepanski (Tomasz); V.H.J. van der Velden (Vincent); A.W. Langerak (Anton); P. Vandekerckhove (Philippe); J.J.M. van Dongen (Jacques)

    2002-01-01

    textabstractPCR-based monitoring of minimal residual disease (MRD) in acute leukemias can be achieved via detection of fusion gene transcripts of chromosome aberrations or detection of immunoglobulin (lg) and T cell receptor (TCR) gene rearrangements. We wished to assess whether both PCR targets are

  10. Genome-wide sequencing for the identification of rearrangements associated with Tourette syndrome and obsessive-compulsive disorder

    Directory of Open Access Journals (Sweden)

    Hooper Sean D

    2012-12-01

    Full Text Available Abstract Background Tourette Syndrome (TS is a neuropsychiatric disorder in children characterized by motor and verbal tics. Although several genes have been suggested in the etiology of TS, the genetic mechanisms remain poorly understood. Methods Using cytogenetics and FISH analysis, we identified an apparently balanced t(6,22(q16.2;p13 in a male patient with TS and obsessive-compulsive disorder (OCD. In order to map the breakpoints and to identify additional submicroscopic rearrangements, we performed whole genome mate-pair sequencing and CGH-array analysis on DNA from the proband. Results Sequence and CGH array analysis revealed a 400 kb deletion located 1.3 Mb telomeric of the chromosome 6q breakpoint, which has not been reported in controls. The deletion affects three genes (GPR63, NDUFA4 and KLHL32 and overlaps a region previously found deleted in a girl with autistic features and speech delay. The proband’s mother, also a carrier of the translocation, was diagnosed with OCD and shares the deletion. We also describe a further potentially related rearrangement which, while unmapped in Homo sapiens, was consistent with the chimpanzee genome. Conclusions We conclude that genome-wide sequencing at relatively low resolution can be used for the identification of submicroscopic rearrangements. We also show that large rearrangements may escape detection using standard analysis of whole genome sequencing data. Our findings further provide a candidate region for TS and OCD on chromosome 6q16.

  11. Generalization of the quark rearrangement model

    International Nuclear Information System (INIS)

    Fields, T.; Chen, C.K.

    1976-01-01

    An extension and generalization of the quark rearrangement model of baryon annihilation is described which can be applied to all annihilation reactions and which incorporates some of the features of the highly successful quark parton model. Some p anti-p interactions are discussed

  12. Assessment of DNA damage and Chromosome aberration in human lymphocyte exposed to low dose radiation detected by FISH(Fluorescence In Situ Hybridization) and SCGE(Single Cell Gel Electrophoresis)

    International Nuclear Information System (INIS)

    Chung, Hai Won; Kim, Su Young; Kim, Byung Mo; Kim, Sun Jin; Ha, Sung Whan; Kim, Tae Hwan; Cho, Chul Koo

    2000-01-01

    Comparative study was performed for the assessment of DNA damage and Chromosomal aberration in human lymphocyte exposed to low dose radiation using Fluorescence In Situ Hybridization(FISH) and Single Cell Gel Electrophoresis(SCGE). Chromosomal aberrations in human lymphocyte exposed to radiation at doses of 5, 10, 30 and 50cGy were analysed with whole chromosome-specific probes by human chromosome 1, 2 and 4 according to PAINT system. FISH with chromosome-specific probe has been used to be a valid and rapid method for detection of chromosome rearrangements induced by low dose radiation. The frequencies of stable translocation per cell equivalents were 0.0116, 0.0375, 0.0407, 0.0727 and 0.0814 for 0, 5, 10, 30 and 50cGy, respectively, and those of dicentric were 0.00, 0.0125, 0.174, 0.0291 and 0.0407 respectively. Radiation induced DNA damage in human lymphocyte in a dose-dependent manner at low doses from 5cGy to 50cGy, which were analysed by single Cell Gel Electrophoresis(SCGE). From above results, FISH seemed to be useful for radiation biodosimetry by which the frequencies of stable aberrations in human lymphocyte can be observed more easily than by conventional method and SCGE also seemed to be sensitive method for detecting DNA damage by low dose radiation exposure, so that those methods will improve our technique to perform meaningful biodosimetry for radiation at low doses

  13. Rearrangement moves on rooted phylogenetic networks

    Science.gov (United States)

    Gambette, Philippe; van Iersel, Leo; Jones, Mark; Scornavacca, Celine

    2017-01-01

    Phylogenetic tree reconstruction is usually done by local search heuristics that explore the space of the possible tree topologies via simple rearrangements of their structure. Tree rearrangement heuristics have been used in combination with practically all optimization criteria in use, from maximum likelihood and parsimony to distance-based principles, and in a Bayesian context. Their basic components are rearrangement moves that specify all possible ways of generating alternative phylogenies from a given one, and whose fundamental property is to be able to transform, by repeated application, any phylogeny into any other phylogeny. Despite their long tradition in tree-based phylogenetics, very little research has gone into studying similar rearrangement operations for phylogenetic network—that is, phylogenies explicitly representing scenarios that include reticulate events such as hybridization, horizontal gene transfer, population admixture, and recombination. To fill this gap, we propose “horizontal” moves that ensure that every network of a certain complexity can be reached from any other network of the same complexity, and “vertical” moves that ensure reachability between networks of different complexities. When applied to phylogenetic trees, our horizontal moves—named rNNI and rSPR—reduce to the best-known moves on rooted phylogenetic trees, nearest-neighbor interchange and rooted subtree pruning and regrafting. Besides a number of reachability results—separating the contributions of horizontal and vertical moves—we prove that rNNI moves are local versions of rSPR moves, and provide bounds on the sizes of the rNNI neighborhoods. The paper focuses on the most biologically meaningful versions of phylogenetic networks, where edges are oriented and reticulation events clearly identified. Moreover, our rearrangement moves are robust to the fact that networks with higher complexity usually allow a better fit with the data. Our goal is to provide a

  14. Rearrangement moves on rooted phylogenetic networks.

    Science.gov (United States)

    Gambette, Philippe; van Iersel, Leo; Jones, Mark; Lafond, Manuel; Pardi, Fabio; Scornavacca, Celine

    2017-08-01

    Phylogenetic tree reconstruction is usually done by local search heuristics that explore the space of the possible tree topologies via simple rearrangements of their structure. Tree rearrangement heuristics have been used in combination with practically all optimization criteria in use, from maximum likelihood and parsimony to distance-based principles, and in a Bayesian context. Their basic components are rearrangement moves that specify all possible ways of generating alternative phylogenies from a given one, and whose fundamental property is to be able to transform, by repeated application, any phylogeny into any other phylogeny. Despite their long tradition in tree-based phylogenetics, very little research has gone into studying similar rearrangement operations for phylogenetic network-that is, phylogenies explicitly representing scenarios that include reticulate events such as hybridization, horizontal gene transfer, population admixture, and recombination. To fill this gap, we propose "horizontal" moves that ensure that every network of a certain complexity can be reached from any other network of the same complexity, and "vertical" moves that ensure reachability between networks of different complexities. When applied to phylogenetic trees, our horizontal moves-named rNNI and rSPR-reduce to the best-known moves on rooted phylogenetic trees, nearest-neighbor interchange and rooted subtree pruning and regrafting. Besides a number of reachability results-separating the contributions of horizontal and vertical moves-we prove that rNNI moves are local versions of rSPR moves, and provide bounds on the sizes of the rNNI neighborhoods. The paper focuses on the most biologically meaningful versions of phylogenetic networks, where edges are oriented and reticulation events clearly identified. Moreover, our rearrangement moves are robust to the fact that networks with higher complexity usually allow a better fit with the data. Our goal is to provide a solid basis for

  15. Rearrangement moves on rooted phylogenetic networks.

    Directory of Open Access Journals (Sweden)

    Philippe Gambette

    2017-08-01

    Full Text Available Phylogenetic tree reconstruction is usually done by local search heuristics that explore the space of the possible tree topologies via simple rearrangements of their structure. Tree rearrangement heuristics have been used in combination with practically all optimization criteria in use, from maximum likelihood and parsimony to distance-based principles, and in a Bayesian context. Their basic components are rearrangement moves that specify all possible ways of generating alternative phylogenies from a given one, and whose fundamental property is to be able to transform, by repeated application, any phylogeny into any other phylogeny. Despite their long tradition in tree-based phylogenetics, very little research has gone into studying similar rearrangement operations for phylogenetic network-that is, phylogenies explicitly representing scenarios that include reticulate events such as hybridization, horizontal gene transfer, population admixture, and recombination. To fill this gap, we propose "horizontal" moves that ensure that every network of a certain complexity can be reached from any other network of the same complexity, and "vertical" moves that ensure reachability between networks of different complexities. When applied to phylogenetic trees, our horizontal moves-named rNNI and rSPR-reduce to the best-known moves on rooted phylogenetic trees, nearest-neighbor interchange and rooted subtree pruning and regrafting. Besides a number of reachability results-separating the contributions of horizontal and vertical moves-we prove that rNNI moves are local versions of rSPR moves, and provide bounds on the sizes of the rNNI neighborhoods. The paper focuses on the most biologically meaningful versions of phylogenetic networks, where edges are oriented and reticulation events clearly identified. Moreover, our rearrangement moves are robust to the fact that networks with higher complexity usually allow a better fit with the data. Our goal is to provide

  16. A rare case of chronic myeloid leukemia with secondary chromosomal changes including partial trisomy 17q21 to 17qter and partial monosomy of 16p13.3.

    Science.gov (United States)

    Al Achkar, Walid; Wafa, Abdulsamad; Mkrtchyan, Hasmik; Moassass, Faten; Liehr, Thomas

    2010-03-16

    The so-called Philadelphia (Ph) chromosome is present in almost all cases with chronic myeloid leukemia (CML). Around 5-10% of these patients show complex translocations involving other chromosomes in addition to and/or besides chromosomes 9 and 22. As nowadays most CML cases are treated with Imatinib, variant rearrangements have in general no specific prognostic significance, though events of therapy resistance remain to be studied. Here we report a Ph chromosome positive patient with hematological typical chronic phase CML. Untypically, an unbalanced complex rearrangement involving chromosomes 16 and 17 leading to a deletion of 16pter and partial trisomy of 17q21 to 17qter, was identified besides a trisomy 8 and an additional Ph chromosome in a part of malignant cells. Here a novel and cytogenetically unique case of a Ph chromosome positive CML clinically in chronic phase is reported, having complex secondary chromosomal aberrations. Thus, CML patients with complex chromosomal changes are nonetheless treatable by Imatinib.

  17. RET/PTC rearrangements preferentially occurred in papillary thyroid cancer among atomic bomb survivors exposed to high radiation dose.

    Science.gov (United States)

    Hamatani, Kiyohiro; Eguchi, Hidetaka; Ito, Reiko; Mukai, Mayumi; Takahashi, Keiko; Taga, Masataka; Imai, Kazue; Cologne, John; Soda, Midori; Arihiro, Koji; Fujihara, Megumu; Abe, Kuniko; Hayashi, Tomayoshi; Nakashima, Masahiro; Sekine, Ichiro; Yasui, Wataru; Hayashi, Yuzo; Nakachi, Kei

    2008-09-01

    A major early event in papillary thyroid carcinogenesis is constitutive activation of the mitogen-activated protein kinase signaling pathway caused by alterations of a single gene, typically rearrangements of the RET and NTRK1 genes or point mutations in the BRAF and RAS genes. In childhood papillary thyroid cancer, regardless of history of radiation exposure, RET/PTC rearrangements are a major event. Conversely, in adult-onset papillary thyroid cancer among the general population, the most common molecular event is BRAF(V600E) point mutation, not RET/PTC rearrangements. To clarify which gene alteration, chromosome aberration, or point mutation preferentially occurs in radiation-associated adult-onset papillary thyroid cancer, we have performed molecular analyses on RET/PTC rearrangements and BRAF(V600E) mutation in 71 papillary thyroid cancer cases among atomic bomb survivors (including 21 cases not exposed to atomic bomb radiation), in relation to radiation dose as well as time elapsed since atomic bomb radiation exposure. RET/PTC rearrangements showed significantly increased frequency with increased radiation dose (P(trend) = 0.002). In contrast, BRAF(V600E) mutation was less frequent in cases exposed to higher radiation dose (P(trend) < 0.001). Papillary thyroid cancer subjects harboring RET/PTC rearrangements developed this cancer earlier than did cases with BRAF(V600E) mutation (P = 0.03). These findings were confirmed by multivariate logistic regression analysis. These results suggest that RET/PTC rearrangements play an important role in radiation-associated thyroid carcinogenesis.

  18. Stable isotopes

    International Nuclear Information System (INIS)

    Evans, D.K.

    1986-01-01

    Seventy-five percent of the world's stable isotope supply comes from one producer, Oak Ridge Nuclear Laboratory (ORNL) in the US. Canadian concern is that foreign needs will be met only after domestic needs, thus creating a shortage of stable isotopes in Canada. This article describes the present situation in Canada (availability and cost) of stable isotopes, the isotope enrichment techniques, and related research programs at Chalk River Nuclear Laboratories (CRNL)

  19. Tandem electrophilic cyclization-[3+2] cycloaddition-rearrangement reactions of 2-alkynylbenzaldoxime, DMAD, and Br2.

    Science.gov (United States)

    Ding, Qiuping; Wang, Zhiyong; Wu, Jie

    2009-01-16

    Tandem electrophilic cyclization-[3+2] cycloaddition-rearrangement reactions of 2-alkynylbenzaldoximes, DMAD, and bromine are described, which afford the unexpected isoquinoline-based azomethine ylides in good to excellent yields. The products could be further elaborated via palladium-catalyzed cross-coupling reactions to generate highly functionalized isoquinoline-based stable azomethine ylides.

  20. Chromosomal aberrations as etiological factors of intrauterine growth retardation

    Directory of Open Access Journals (Sweden)

    Petrović Bojana

    2008-01-01

    Full Text Available Background/Aim. Intrauterine growth retardation (IUGR is a pathological condition of pregnancy characterised by birth weight below the 10th centile. A number of fetal, placental and maternal causes can lead to IUGR; although, in most cases no specific causes can be identified. The aim of this study was to determine the part of chromosomal abnormalities in IUGR etiology. Methods. Fetal blood karyotype taken by cordocentesis from 168 fetuses with diagnosed IUGR was analyzed. Results. Chromosomal rearrangements both numerical and structural were detected in 14 cases (12.2%. Two cases were triploid. Patau syndrome, Edwards syndrome and Down syndrome were found in two cases each. There was one case of trisomy 7 (47, XY, +7 and one case of trisomy 16 (47, XX, +16; one translocation, 46, XY, t (2; 14(q23; q32 and a deletion 46, XYdel (12 (p12 as well as two cases of sex chromosomes abnormalities, 45, X (Turner syndrome and 47, XYY. Conclusion. These findings suggest that a consistent number of symmetrical IUGR cases (about 12% can be associated with chromosomal rearrangements. Chromosomal aberrations that cause IUGR are heterogeneous, aberration of autosomes, mostly autosomal trisomies, being the most common.

  1. Etude quantitative des variations structurelles des chromosomes chez Saccharomyces cerevisiae

    OpenAIRE

    Gillet-Markowska , Alexandre

    2015-01-01

    The accumulation of chromosomal rearrangements also called Structural Variations (SV) is a major contributor to the transformation of tumoral cells and to the constitution of intratumoral heterogeneity. We have developed a bio-informatic tool that can now provide a sharp image of SV that occur in the human genome. We have demonstrated the existence of SV present in low proportions in different supposedly clonal cell populations showing that the rates of SV formation could be greatly underesti...

  2. Centromere Destiny in Dicentric Chromosomes: New Insights from the Evolution of Human Chromosome 2 Ancestral Centromeric Region.

    Science.gov (United States)

    Chiatante, Giorgia; Giannuzzi, Giuliana; Calabrese, Francesco Maria; Eichler, Evan E; Ventura, Mario

    2017-07-01

    Dicentric chromosomes are products of genomic rearrangements that place two centromeres on the same chromosome. Due to the presence of two primary constrictions, they are inherently unstable and overcome their instability by epigenetically inactivating and/or deleting one of the two centromeres, thus resulting in functionally monocentric chromosomes that segregate normally during cell division. Our understanding to date of dicentric chromosome formation, behavior and fate has been largely inferred from observational studies in plants and humans as well as artificially produced de novo dicentrics in yeast and in human cells. We investigate the most recent product of a chromosome fusion event fixed in the human lineage, human chromosome 2, whose stability was acquired by the suppression of one centromere, resulting in a unique difference in chromosome number between humans (46 chromosomes) and our most closely related ape relatives (48 chromosomes). Using molecular cytogenetics, sequencing, and comparative sequence data, we deeply characterize the relicts of the chromosome 2q ancestral centromere and its flanking regions, gaining insight into the ancestral organization that can be easily broadened to all acrocentric chromosome centromeres. Moreover, our analyses offered the opportunity to trace the evolutionary history of rDNA and satellite III sequences among great apes, thus suggesting a new hypothesis for the preferential inactivation of some human centromeres, including IIq. Our results suggest two possible centromere inactivation models to explain the evolutionarily stabilization of human chromosome 2 over the last 5-6 million years. Our results strongly favor centromere excision through a one-step process. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  3. Chromosomal abnormalities in patients with sperm disorders

    Directory of Open Access Journals (Sweden)

    L. Y. Pylyp

    2013-02-01

    Full Text Available Chromosomal abnormalities are among the most common genetic causes of spermatogenic disruptions. Carriers of chromosomal abnormalities are at increased risk of infertility, miscarriage or birth of a child with unbalanced karyotype due to the production of unbalanced gametes. The natural selection against chromosomally abnormal sperm usually prevents fertilization with sperm barring in cases of serious chromosomal abnormalities. However, assisted reproductive technologies in general and intracytoplasmic sperm injection in particular, enable the transmission of chromosomal abnormalities to the progeny. Therefore, cytogenetic studies are important in patients with male factor infertility before assisted reproduction treatment. The purpose of the current study was to investigate the types and frequencies of chromosomal abnormalities in 724 patients with infertility and to estimate the risk of chromosomal abnormalities detection in subgroups of patients depending on the severity of spermatogenic disruption, aiming at identifying groups of patients in need of cytogenetic studies. Karyotype analysis was performed in 724 blood samples of men attending infertility clinic. Chromosomal preparation was performed by standard techniques. At least 20 GTG-banded metaphase plates with the resolution from 450 to 750 bands per haploid set were analysed in each case. When chromosomal mosaicism was suspected, this number was increased to 50. Abnormal karyotypes were observed in 48 (6.6% patients, including 67% of autosomal abnormalities and 33% of gonosomal abnormalities. Autosomal abnormalities were represented by structural rearrangements. Reciprocal translocations were the most common type of structural chromosomal abnormalities in the studied group, detected with the frequency of 2.6% (n = 19, followed by Robertsonian translocation, observed with the frequency of 1.2% (n = 9. The frequency of inversions was 0.6% (n = 4. Gonosomal abnormalities included 14 cases

  4. Screening of ROS1 rearrangements in lung adenocarcinoma by immunohistochemistry and comparison with ALK rearrangements.

    Directory of Open Access Journals (Sweden)

    Yoon Jin Cha

    Full Text Available ROS1 rearrangement is a predictive biomarker for response to the tyrosine kinase inhibitor, crizotinib. We investigated the usefulness of ROS1 immunohistochemistry (IHC for the detection of patients who harbor ROS1 rearrangements in two separate cohorts. We also compared ROS1 IHC with ALK IHC in terms of diagnostic performance to predict each gene rearrangement. In a retrospective cohort, IHC was performed in 219 cases of lung adenocarcinoma with already known genetic alterations. In a prospective cohort, we performed IHC for 111 consecutive cases of lung adenocarcinoma and confirmed the results by subsequent FISH. In the retrospective cohort, all 8 ROS1-rearranged tumors were immunoreactive, and 14 of 211 ROS1-wild cases were immunoreactive (sensitivity 100% and specificity 93.4%. In the prospective cohort, all IHC-negative cases were FISH-negative, and 5 of 34 ROS1 immunoreactive cases were ROS1-rearranged (sensitivity 100% and specificity 72.6%. In ROS1-wild tumors, ROS1 protein was more expressed in the tumors of ever-smokers than in those of never-smokers (p = 0.003. ALK IHC showed 100% sensitivity and 98.1 to 100% specificity in both patient cohorts. In conclusion, ROS1 IHC is highly sensitive, but less specific compared with ALK IHC for detection of the corresponding rearrangement. ROS1 IHC-reactive tumors, especially when the tumor is stained with moderate to strong intensity or a diffuse pattern, are recommended to undergo FISH to confirm the gene rearrangement.

  5. Rearrangement of micelle structures during polymerization

    International Nuclear Information System (INIS)

    Chatjaroenporn, K.; Baker, R.; FitzGerald, P.; Warr, G.

    2009-01-01

    Full text: Using small angle neutron scattering (SANS), we studied the shape transition of micelles of 11(methacryloyloxy)undecyltrimethylammonium bromide (MUTAB) as this tail-polymerisable cationic surfactant polymerized. Previous studies of such systems have suggested kinetic 'locking' of the micelle structure during polymerization. However, we found a transition from spheres (unpolymerised) to rods (at intermediate conversions) back to spheres (fully polymerized), see Figure 1. By comparing these results to the micelle shapes formed by the mixtures of 100% polymerized and unpolymerised MUTAB, we show that the shape transitions observed during polymerization are due to equilibrium structures that undergo rearrangement as the composition changes. In addition, atomic force microscopy (AFM) reveals that besides the monolayer of unpolymerised MUTAB, the rearranged structures of this surfmer in bulk, when polymerization proceeded, retained their shapes after adsorbing at mica/solution interface, providing potential for the manipulating of thin film structures. This understanding assists design of templating or encapsulating nanostructured materials.

  6. Enantioselective catalytic fluorinative aza-semipinacol rearrangement.

    Science.gov (United States)

    Romanov-Michailidis, Fedor; Pupier, Marion; Besnard, Céline; Bürgi, Thomas; Alexakis, Alexandre

    2014-10-03

    An efficient and highly stereoselective fluorinative aza-semipinacol rearrangement is described. The catalytic reaction requires use of Selectfluor in combination with the chiral, enantiopure phosphate anion derived from acid L3. Under optimized conditions, cyclopropylamines A were transformed into β-fluoro cyclobutylimines B in good yields and high levels of diastereo- and enantiocontrol. Furthermore, the optically active cyclobutylimines were reduced diastereoselectively with L-Selectride in the corresponding fluorinated amines C, compounds of significant interest in the pharmacological industry.

  7. Chromosome polymorphism in the Brazilian dwarf brocket deer, Mazama nana (Mammalia, Cervidae)

    OpenAIRE

    Abril,Vanessa Veltrini; Duarte,José Maurício Barbanti

    2008-01-01

    The Brazilian dwarf brocket deer (Mazama nana) is the smallest deer species in Brazil and is considered threatened due to the reduction and alteration of its habitat, the Atlantic Rainforest. Moreover, previous work suggested the presence of intraspecific chromosome polymorphisms which may contribute to further population instability because of the reduced fertility arising from the deleterious effects of chromosome rearrangements during meiosis. We used G- and C-banding, and nucleolus organi...

  8. Molecular pathogenesis of a malformation syndrome associated with a pericentric chromosome 2 inversion

    OpenAIRE

    Cardoso, Manuela

    2017-01-01

    Tese de mestrado em Biologia Humana e do Ambiente, apresentada à Faculdade de Ciências da Universidade de Lisboa, 2017. Orientador Dezso David - Departamento de Genética Humana do Instituto Nacional de Saúde Congenital malformation syndromes can be caused by genomic and/or chromosome rearrangements. It is difficult to establish the underlying causes of malformations because of their high level of complexity. Although balanced chromosome inversions are in most cases subclinical, those di...

  9. Molecular diagnostic of the philadelphia chromosome

    International Nuclear Information System (INIS)

    Campos Rudin, M.; Cuenca Berger, P.; Gutierrez Espeleta, G.; Jimenez Cruz, G.; Montero Umana, C.; Vazquez Castillo, L.; Ramon Ortiz, M.

    1998-01-01

    The importance that has to confirm the presence or absence of the chromosome Philadelphia in the diagnostic and follow up of the patient affected with chronic myeloid leukemia and other leukemia. It is considered necessary to implement the molecular diagnostic in Costa Rica. They studied 32 patient affected by Chronic Myeloid Leukemia, 7 by other Myeloproliferative Chronic Disorders and 2 by Myelodysplastic Syndrome. It utilized the sound Trans probe-1 (Oncogene Science, Inc), which was marked with radioactivity ( 32 P) or chemiluminescence (digoxigenin). Of the 32 cases affected by L mc, in 28 it was possible to carry out the molecular analysis detecting the characteristic translocation of the chromosome Philadelphia among the Mbcr/c-ABL genes in 21 (75%) of the patients, in 7 (25%) the rearrangement was not found. In seven of the nine affected by other sufferings it was possible to obtain results, 3 that turned out to be positive for the rearrangement among Mbcr/c-ABL and 4 normal. In all the cases, they obtained results marking the sound with radioactivity. However, they tested the marks with digoxigenin in seven of the patients, as an methodological alternative for the laboratories that lacks the requirements to work with radiation. The results obtained were identical. (S. Grainger) [es

  10. The Precarious Prokaryotic Chromosome

    Science.gov (United States)

    2014-01-01

    Evolutionary selection for optimal genome preservation, replication, and expression should yield similar chromosome organizations in any type of cells. And yet, the chromosome organization is surprisingly different between eukaryotes and prokaryotes. The nuclear versus cytoplasmic accommodation of genetic material accounts for the distinct eukaryotic and prokaryotic modes of genome evolution, but it falls short of explaining the differences in the chromosome organization. I propose that the two distinct ways to organize chromosomes are driven by the differences between the global-consecutive chromosome cycle of eukaryotes and the local-concurrent chromosome cycle of prokaryotes. Specifically, progressive chromosome segregation in prokaryotes demands a single duplicon per chromosome, while other “precarious” features of the prokaryotic chromosomes can be viewed as compensations for this severe restriction. PMID:24633873

  11. Chromosomal phylogeny of Vampyressine bats (Chiroptera, Phyllostomidae) with description of two new sex chromosome systems.

    Science.gov (United States)

    Gomes, Anderson José Baia; Nagamachi, Cleusa Yoshiko; Rodrigues, Luis Reginaldo Ribeiro; Benathar, Thayse Cristine Melo; Ribas, Talita Fernanda Augusto; O'Brien, Patricia Caroline Mary; Yang, Fengtang; Ferguson-Smith, Malcolm Andrew; Pieczarka, Julio Cesar

    2016-06-04

    The subtribe Vampyressina (sensu Baker et al. 2003) encompasses approximately 43 species and seven genera and is a recent and diversified group of New World leaf-nosed bats specialized in fruit eating. The systematics of this group continues to be debated mainly because of the lack of congruence between topologies generated by molecular and morphological data. We analyzed seven species of all genera of vampyressine bats by multidirectional chromosome painting, using whole-chromosome-painting probes from Carollia brevicauda and Phyllostomus hastatus. Phylogenetic analyses were performed using shared discrete chromosomal segments as characters and the Phylogenetic Analysis Using Parsimony (PAUP) software package, using Desmodontinae as outgroup. We also used the Tree Analysis Using New Technology (TNT) software. The result showed a well-supported phylogeny congruent with molecular topologies regarding the sister taxa relationship of Vampyressa and Mesophylla genera, as well as the close relationship between the genus Chiroderma and Vampyriscus. Our results supported the hypothesis that all genera of this subtribe have compound sex chromosome systems that originated from an X-autosome translocation, an ancestral condition observed in the Stenodermatinae. Additional rearrangements occurred independently in the genus Vampyressa and Mesophylla yielding the X1X1X2X2/X1X2Y sex chromosome system. This work presents additional data supporting the hypothesis based on molecular studies regarding the polyphyly of the genus Vampyressa and its sister relationship to Mesophylla.

  12. Dissecting the structure and mechanism of a complex duplication-triplication rearrangement in the DMD gene.

    Science.gov (United States)

    Ishmukhametova, Aliya; Chen, Jian-Min; Bernard, Rafaëlle; de Massy, Bernard; Baudat, Frédéric; Boyer, Amandine; Méchin, Déborah; Thorel, Delphine; Chabrol, Brigitte; Vincent, Marie-Claire; Khau Van Kien, Philippe; Claustres, Mireille; Tuffery-Giraud, Sylvie

    2013-08-01

    Pathogenic complex genomic rearrangements are being increasingly characterized at the nucleotide level, providing unprecedented opportunities to evaluate the complexities of mutational mechanisms. Here, we report the molecular characterization of a complex duplication-triplication rearrangement involving exons 45-60 of the DMD gene. Inverted repeats facilitated this complex rearrangement, which shares common genomic organization with the recently described duplication-inverted triplication-duplication (DUP-TRP/INV-DUP) events; specifically, a 690-kb region comprising DMD exons from 45 to 60 was duplicated in tandem, and another 46-kb segment containing exon 51 was inserted inversely in between them. Taking into consideration (1) the presence of a predicted PRDM9 binding site in the near vicinity of the junction involving two inverted L1 elements and (2) the inherent properties of X-Y chromosome recombination during male meiosis, we proposed an alternative two-step model for the generation of this X-linked DMD DUP-TRP/INV-DUP event. © 2013 WILEY PERIODICALS, INC.

  13. First case of B ALL with KMT2A-MAML2 rearrangement: a case report.

    Science.gov (United States)

    Menu, Estelle; Beaufils, Nathalie; Usseglio, Fabrice; Balducci, Estelle; Lafage Pochitaloff, Marina; Costello, Regis; Gabert, Jean

    2017-05-23

    A large number of chromosomal translocations of the human KMT2A gene, better known as the MLL gene, have so far been characterized. Genetic rearrangements involving KMT2A gene are frequently involved in lymphoid, myeloid and mixed lineage leukemia. One of its rare fusion partners, the mastermind like 2 (MAML2) gene has been reported in four cases of myeloid neoplasms after chemotherapy so far: two acute myeloid leukemias (AML) and two myelodysplasic syndrome (MDS), and two cases of secondary T-cell acute lymphoblastic leukemia (T-ALL). Here we report the case of a KMT2A - MAML2 fusion discovered by Next-Generation Sequencing (NGS) analysis in front of an inv11 (q21q23) present in a 47-year-old female previously treated for a sarcoma in 2014, who had a B acute lymphoid leukemia (B ALL). It is, to our knowledge, the first case of B acute lymphoblastic leukemia with this fusion gene. At the molecular level, two rearrangements were detected using RNA sequencing juxtaposing exon 7 to exon 2 and exon 9 to intron 1-2 of the KMT2A and MAML2 genes respectively, and one rearrangement using Sanger sequencing juxtaposing exon 8 and exon 2.

  14. MLL-Rearranged Leukemias-An Update on Science and Clinical Approaches.

    Science.gov (United States)

    Winters, Amanda C; Bernt, Kathrin M

    2017-01-01

    The mixed-lineage leukemia 1 (MLL1) gene (now renamed Lysine [K]-specific MethylTransferase 2A or KMT2A ) on chromosome 11q23 is disrupted in a unique group of acute leukemias. More than 80 different partner genes in these fusions have been described, although the majority of leukemias result from MLL1 fusions with one of about six common partner genes. Approximately 10% of all leukemias harbor MLL1 translocations. Of these, two patient populations comprise the majority of cases: patients younger than 1 year of age at diagnosis (primarily acute lymphoblastic leukemias) and young- to-middle-aged adults (primarily acute myeloid leukemias). A much rarer subgroup of patients with MLL1 rearrangements develop leukemia that is attributable to prior treatment with certain chemotherapeutic agents-so-called therapy-related leukemias. In general, outcomes for all of these patients remain poor when compared to patients with non- MLL1 rearranged leukemias. In this review, we will discuss the normal biological roles of MLL1 and its fusion partners, how these roles are hypothesized to be dysregulated in the context of MLL1 rearrangements, and the clinical manifestations of this group of leukemias. We will go on to discuss the progress in clinical management and promising new avenues of research, which may lead to more effective targeted therapies for affected patients.

  15. MLL-Rearranged Leukemias—An Update on Science and Clinical Approaches

    Science.gov (United States)

    Winters, Amanda C.; Bernt, Kathrin M.

    2017-01-01

    The mixed-lineage leukemia 1 (MLL1) gene (now renamed Lysine [K]-specific MethylTransferase 2A or KMT2A) on chromosome 11q23 is disrupted in a unique group of acute leukemias. More than 80 different partner genes in these fusions have been described, although the majority of leukemias result from MLL1 fusions with one of about six common partner genes. Approximately 10% of all leukemias harbor MLL1 translocations. Of these, two patient populations comprise the majority of cases: patients younger than 1 year of age at diagnosis (primarily acute lymphoblastic leukemias) and young- to-middle-aged adults (primarily acute myeloid leukemias). A much rarer subgroup of patients with MLL1 rearrangements develop leukemia that is attributable to prior treatment with certain chemotherapeutic agents—so-called therapy-related leukemias. In general, outcomes for all of these patients remain poor when compared to patients with non-MLL1 rearranged leukemias. In this review, we will discuss the normal biological roles of MLL1 and its fusion partners, how these roles are hypothesized to be dysregulated in the context of MLL1 rearrangements, and the clinical manifestations of this group of leukemias. We will go on to discuss the progress in clinical management and promising new avenues of research, which may lead to more effective targeted therapies for affected patients. PMID:28232907

  16. Whole chromosome gain does not in itself confer cancer-like chromosomal instability.

    Science.gov (United States)

    Valind, Anders; Jin, Yuesheng; Baldetorp, Bo; Gisselsson, David

    2013-12-24

    Constitutional aneuploidy is typically caused by a single-event meiotic or early mitotic error. In contrast, somatic aneuploidy, found mainly in neoplastic tissue, is attributed to continuous chromosomal instability. More debated as a cause of aneuploidy is aneuploidy itself; that is, whether aneuploidy per se causes chromosomal instability, for example, in patients with inborn aneuploidy. We have addressed this issue by quantifying the level of somatic mosaicism, a proxy marker of chromosomal instability, in patients with constitutional aneuploidy by precise background-filtered dual-color FISH. In contrast to previous studies that used less precise methods, we find that constitutional trisomy, even for large chromosomes that are often trisomic in cancer, does not confer a significantly elevated rate of somatic chromosomal mosaicism in individual cases. Constitutional triploidy was associated with an increased level of somatic mosaicism, but this consisted mostly of reversion from trisomy to disomy and did not correspond to a proportionally elevated level of chromosome mis-segregation in triploids, indicating that the observed mosaicism resulted from a specific accumulation of cells with a hypotriploid chromosome number. In no case did the rate of somatic mosaicism in constitutional aneuploidy exceed that of "chromosomally stable" cancer cells. Our findings show that even though constitutional aneuploidy was in some cases associated with low-level somatic mosaicism, it was insufficient to generate the cancer-like levels expected if aneuploidy single-handedly triggered cancer-like chromosomal instability.

  17. Heterogeneity of genomic fusion of BCR and ABL in Philadelphia chromosome-positive acute lymphoblastic leukemia

    International Nuclear Information System (INIS)

    Rubin, C.M.; Carrino, J.J.; Dickler, M.N.; Leibowitz, D.; Smith, S.D.; Westbrook, C.A.

    1988-01-01

    Philadelphia chromosome-positive acute lymphoblastic leukemia occurs in two molecular forms, those with and those without rearrangement of the breakpoint cluster region on chromosome 22. The molecular abnormality in the former group is similar to that found in chronic myelogenous leukemia. To characterize the abnormality in the breakpoint cluster region-unrearranged form, the authors have mapped a 9; 22 translocation from the Philadelphia chromosome-positive acute lymphoblastic leukemia cell line SUP-B13 by using pulsed-field gel electrophoresis and have cloned the DNA at the translocation junctions. They demonstrate a BCR-ABL fusion gene on the Philadelphia chromosome. The exons from ABL are the same. Analysis of leukemic cells from four other patients with breakpoint cluster region-unrearranged Philadelphia chromosome-positive acute lymphoblastic leukemia revealed a rearrangement on chromosome 22 close to the breakpoint in SUP-B13 in only one patient. These data indicate that breakpoints do not cluster tightly in this region but are scattered, possibly in a large intron. Given the large size of BCR and the heterogeneity in breakpoint location, detection of BCR rearrangement by standard Southern blot analysis is difficult. Pulsed-field gel electrophoresis should allow detection at the DNA level in every patient and thus will permit clinical correlation of the breakpoint location with prognosis

  18. Automatic aberration scoring using whole chromosome F.I.S.H

    International Nuclear Information System (INIS)

    Piper, J.; Bayley, R.; Boyle, S.; Fantes, J.A.; Green, D.K.; Gordon, J.; Hill, W.; Ji, L.; Malloy, P.; Perry, P.; Rutovitz, D.; Stark, M.; Whale, D.

    1993-01-01

    A radiation-induced rearrangement involving a painted and a non-painted chromosome will usually result in two partly-painted chromosomes, typically either a dicentric chromosome and associated fragment, or a reciprocal translocation pair. A consequence of such a rearrangement is that the number of painted image regions in the metaphase is increased by one, and their size distribution is altered. More complex rearrangements are uncommon, particularly at low doses. A high proportion of damaged cells can therefore be registered simply by detecting when the distribution of painted components differs from the expected number and size. A system has been constructed to pre-screen for damaged cells. It comprises automatic fluorescence metaphase finding followed by relocation and digitization of probe and counterstain channels at high resolution. Fully automatic segmentation in counterstain discriminates chromosomes from interphase nuclei and determines whether a metaphase is approximately diploid. The painted regions are segmented and their relative sizes estimated. Rules are applied which reduce the false positives due to artifacts such as overlapped painted chromosomes. More than 70% of cells with radiation damage involving painted and unpainted chromosomes were detected in a preliminary experiment using a small data set, with a low false positive rate. Results from a larger experiment in progress are presented

  19. Amplification and rearrangement of c-myc in radiation-induced murine osteosarcomas

    International Nuclear Information System (INIS)

    Sturm, S.A.; Strauss, P.G.; Adolph, S.; Hameister, H.; Erfle, V.

    1990-01-01

    Fifty-one radiation-induced murine osteosarcomas were investigated for alterations in c-myc gene structure and c-myc expression. Amplification of c-myc was found in 30% of BALB/c tumors and 13% of NMRI tumors. A region of common proviral integration, Mlvi-1, localized on the same region on chromosome 15, was amplified concomitantly. Multiple copies of both loci were localized on double minutes. Three of the tumors with c-myc amplification also showed rearrangements of the c-myc gene region. One of these rearrangements included the 5' and 3'-flanking sequences and the noncoding part of the third exon. Repetitive sequences were found in the 5' region of the c-myc gene, and the 3' flanking region was substituted by sequences normally present in a more distant part of chromosome 15. Increased levels of c-myc transcripts of apparently normal size were found in tumors carrying amplified c-myc sequences. Abnormally high expression of c-myc in some tumors was correlated with an early stage of osteogenic differentiation, suggesting the involvement of the c-myc gene in the control of the osteogenic differentiation of transformed cells

  20. Sex-specific chromosome instability in early human development.

    Science.gov (United States)

    Kovaleva, Natalia V

    2005-08-01

    The predominance of females segregating chromosome aberrations to their offspring has been explained mostly by selection disadvantage of unbalanced products of spermatogenesis. However, analysis of data from the literature supports the idea that somatic cells of early female embryos are similar to female germ cells in that they are prone to malsegregation. The goal of this study was to compare the sex ratio (male to female ratio) of carriers of presumably mitotic-occurring chromosome abnormalities to identify any sex biases. In examining the literature, we found a female prevalence in cases of mosaicism associated with uniparental disomy (UPD) (26 male individuals/conceptions and 45 female individuals/conceptions, sex ratio is 0.58, significantly different from 1.06 in newborn population, P = 0.0292). This predominance was highest at gestational age X mosaics over 46,XY/45,X mosaics in prenatally diagnosed cases, which also suggests a gender-specific postzygotic chromosome loss. The male prevalence in Prader-Willi syndrome with maternal UPD of chromosome 15 also can be explained by sex-specific trisomy correction, with predominant loss of a maternal chromosome causing biparental inheritance and therefore, complete correction of trisomy in females (without UPD). Finally, there is a female predominance in carriers of chromosome rearrangement with pericentromere break (mosaicism for Robertsonian translocation/isochromosome, centric fission, nonacrocentric isochromosome, and whole arm rearrangement), in both prenatal (21 males and 36 females, sex ratio is 0.58, P < 0.0184) and postnatal ill-defined cases (14 males and 35 females, sex ratio is 0.40, P = 0.001). Thus, the findings presented in this paper suggest that, in addition to reduction in male fertility, and to probable selection against abnormal cell line(s), there are two mechanisms that contribute to female preponderance among carriers of mosaicism: sex-specific chromosome loss and sex-specific centromere

  1. Karyotypic Determinants of Chromosome Instability in Aneuploid Budding Yeast

    Science.gov (United States)

    Bradford, William D.; Li, Rong

    2012-01-01

    Recent studies in cancer cells and budding yeast demonstrated that aneuploidy, the state of having abnormal chromosome numbers, correlates with elevated chromosome instability (CIN), i.e. the propensity of gaining and losing chromosomes at a high frequency. Here we have investigated ploidy- and chromosome-specific determinants underlying aneuploidy-induced CIN by observing karyotype dynamics in fully isogenic aneuploid yeast strains with ploidies between 1N and 2N obtained through a random meiotic process. The aneuploid strains exhibited various levels of whole-chromosome instability (i.e. chromosome gains and losses). CIN correlates with cellular ploidy in an unexpected way: cells with a chromosomal content close to the haploid state are significantly more stable than cells displaying an apparent ploidy between 1.5 and 2N. We propose that the capacity for accurate chromosome segregation by the mitotic system does not scale continuously with an increasing number of chromosomes, but may occur via discrete steps each time a full set of chromosomes is added to the genome. On top of such general ploidy-related effect, CIN is also associated with the presence of specific aneuploid chromosomes as well as dosage imbalance between specific chromosome pairs. Our findings potentially help reconcile the divide between gene-centric versus genome-centric theories in cancer evolution. PMID:22615582

  2. Cloning of the chromosome translocation breakpoint junction of the t(14;19) in chronic lymphocytic leukemia

    International Nuclear Information System (INIS)

    McKeithan, T.W.; Rowley, J.D.; Shows, T.B.; Diaz, M.O.

    1987-01-01

    The authors' laboratory has reported that t(14;19)(q32;q13.1) is a recurring translocation in the neoplastic cells of patients with chronic lymphocytic leukemia. In the present study, they have analyzed the leukemic cells from one such patient with probes from the immunoglobulin heavy-chain locus, which is present on band q32 of chromosome 14. Using a probe for the α constant-region gene segments, they detected a rearranged band by Southern blot analysis. This rearranged band was cloned and mapped. A subclone free of repetitive sequences was shown to be from chromosome 19 by analysis of human-mouse somatic cell hybrids, confirming that the rearranged band contains the translocation breakpoint junction. This probe may be used to identify a gene on chromosome 19 adjacent to the breakpoint that can contribute to the malignant development of B lymphocytes

  3. Rearranged anaplastic lymphoma kinase (ALK) gene found for the first time in adult-onset papillary thyroid cancer cases among atomic bomb survivors

    Energy Technology Data Exchange (ETDEWEB)

    Hamatani, K.; Mukai, M.; Takahashi, K.; Nakachi, K.; Kusunoki, Y. [Radiobiology/Molecular Epidemiology, Radiation Effects Research Foundation, Hiroshima (Japan); Hayashi, Y. [Geriatric Health Service Facility Hidamari, Hiroshima (Japan)

    2012-07-01

    Full text of the publication follows: Thyroid cancer is one of the malignancies most strongly associated with ionizing radiation in humans. Epidemiology studies of atomic bomb (A-bomb) survivors have indicated that excess relative risk of papillary thyroid cancer per Gy was remarkably high in the survivors. We therefore aim to clarify mechanisms linking A-bomb radiation exposure and development of papillary thyroid cancer. Toward this end, we intend to clarify characteristics of gene alterations occurring in radiation-associated adult-onset papillary thyroid cancer from the Life Span Study cohort of A-bomb survivors. We have thus far found that with increased radiation dose, papillary thyroid cancer cases with chromosomal rearrangements (mainly RET/PTC rearrangements) significantly increased and papillary thyroid cancer cases with point mutations (mainly BRAF-V600E) significantly decreased. Papillary thyroid cancer cases with non-detected gene alterations that carried no mutations in RET, NTRK1, BRAF or RAS genes tended to increase with increased radiation dose. In addition, we found that relative frequency of these papillary thyroid cancer cases significantly decreased with time elapsed since exposure. Through analysis of papillary thyroid cancer cases with non-detected gene alterations, we recently discovered a new type of rearrangement for the first time in papillary thyroid cancer, i.e., rearranged anaplastic lymphoma kinase (ALK) gene, although identification of any partner gene(s) is needed. Specifically, rearrangement of ALK was found in 10 of 19 exposed papillary thyroid cancer cases with non-detected gene alterations but not in any of the six non-exposed papillary thyroid cancer cases. Furthermore, papillary thyroid cancer with ALK rearrangement was frequently found in the cases with high radiation dose or with short time elapsed since A-bomb exposure. These results suggest that chromosomal rearrangement, typically of RET and ALK, may play an important

  4. Rearranged anaplastic lymphoma kinase (ALK) gene found for the first time in adult-onset papillary thyroid cancer cases among atomic bomb survivors

    International Nuclear Information System (INIS)

    Hamatani, K.; Mukai, M.; Takahashi, K.; Nakachi, K.; Kusunoki, Y.; Hayashi, Y.

    2012-01-01

    Full text of the publication follows: Thyroid cancer is one of the malignancies most strongly associated with ionizing radiation in humans. Epidemiology studies of atomic bomb (A-bomb) survivors have indicated that excess relative risk of papillary thyroid cancer per Gy was remarkably high in the survivors. We therefore aim to clarify mechanisms linking A-bomb radiation exposure and development of papillary thyroid cancer. Toward this end, we intend to clarify characteristics of gene alterations occurring in radiation-associated adult-onset papillary thyroid cancer from the Life Span Study cohort of A-bomb survivors. We have thus far found that with increased radiation dose, papillary thyroid cancer cases with chromosomal rearrangements (mainly RET/PTC rearrangements) significantly increased and papillary thyroid cancer cases with point mutations (mainly BRAF-V600E) significantly decreased. Papillary thyroid cancer cases with non-detected gene alterations that carried no mutations in RET, NTRK1, BRAF or RAS genes tended to increase with increased radiation dose. In addition, we found that relative frequency of these papillary thyroid cancer cases significantly decreased with time elapsed since exposure. Through analysis of papillary thyroid cancer cases with non-detected gene alterations, we recently discovered a new type of rearrangement for the first time in papillary thyroid cancer, i.e., rearranged anaplastic lymphoma kinase (ALK) gene, although identification of any partner gene(s) is needed. Specifically, rearrangement of ALK was found in 10 of 19 exposed papillary thyroid cancer cases with non-detected gene alterations but not in any of the six non-exposed papillary thyroid cancer cases. Furthermore, papillary thyroid cancer with ALK rearrangement was frequently found in the cases with high radiation dose or with short time elapsed since A-bomb exposure. These results suggest that chromosomal rearrangement, typically of RET and ALK, may play an important

  5. A saturated SSR/DArT linkage map of Musa acuminata addressing genome rearrangements among bananas

    Directory of Open Access Journals (Sweden)

    Matsumoto Takashi

    2010-04-01

    Full Text Available Abstract Background The genus Musa is a large species complex which includes cultivars at diploid and triploid levels. These sterile and vegetatively propagated cultivars are based on the A genome from Musa acuminata, exclusively for sweet bananas such as Cavendish, or associated with the B genome (Musa balbisiana in cooking bananas such as Plantain varieties. In M. acuminata cultivars, structural heterozygosity is thought to be one of the main causes of sterility, which is essential for obtaining seedless fruits but hampers breeding. Only partial genetic maps are presently available due to chromosomal rearrangements within the parents of the mapping populations. This causes large segregation distortions inducing pseudo-linkages and difficulties in ordering markers in the linkage groups. The present study aims at producing a saturated linkage map of M. acuminata, taking into account hypotheses on the structural heterozygosity of the parents. Results An F1 progeny of 180 individuals was obtained from a cross between two genetically distant accessions of M. acuminata, 'Borneo' and 'Pisang Lilin' (P. Lilin. Based on the gametic recombination of each parent, two parental maps composed of SSR and DArT markers were established. A significant proportion of the markers (21.7% deviated (p Conclusions We propose a synthetic map with 11 linkage groups containing 489 markers (167 SSRs and 322 DArTs covering 1197 cM. This first saturated map is proposed as a "reference Musa map" for further analyses. We also propose two complete parental maps with interpretations of structural rearrangements localized on the linkage groups. The structural heterozygosity in P. Lilin is hypothesized to result from a duplication likely accompanied by an inversion on another chromosome. This paper also illustrates a methodological approach, transferable to other species, to investigate the mapping of structural rearrangements and determine their consequences on marker

  6. Genome rearrangements detected by SNP microarrays in individuals with intellectual disability referred with possible Williams syndrome.

    Directory of Open Access Journals (Sweden)

    Ariel M Pani

    2010-08-01

    Full Text Available Intellectual disability (ID affects 2-3% of the population and may occur with or without multiple congenital anomalies (MCA or other medical conditions. Established genetic syndromes and visible chromosome abnormalities account for a substantial percentage of ID diagnoses, although for approximately 50% the molecular etiology is unknown. Individuals with features suggestive of various syndromes but lacking their associated genetic anomalies pose a formidable clinical challenge. With the advent of microarray techniques, submicroscopic genome alterations not associated with known syndromes are emerging as a significant cause of ID and MCA.High-density SNP microarrays were used to determine genome wide copy number in 42 individuals: 7 with confirmed alterations in the WS region but atypical clinical phenotypes, 31 with ID and/or MCA, and 4 controls. One individual from the first group had the most telomeric gene in the WS critical region deleted along with 2 Mb of flanking sequence. A second person had the classic WS deletion and a rearrangement on chromosome 5p within the Cri du Chat syndrome (OMIM:123450 region. Six individuals from the ID/MCA group had large rearrangements (3 deletions, 3 duplications, one of whom had a large inversion associated with a deletion that was not detected by the SNP arrays.Combining SNP microarray analyses and qPCR allowed us to clone and sequence 21 deletion breakpoints in individuals with atypical deletions in the WS region and/or ID or MCA. Comparison of these breakpoints to databases of genomic variation revealed that 52% occurred in regions harboring structural variants in the general population. For two probands the genomic alterations were flanked by segmental duplications, which frequently mediate recurrent genome rearrangements; these may represent new genomic disorders. While SNP arrays and related technologies can identify potentially pathogenic deletions and duplications, obtaining sequence information

  7. A saturated SSR/DArT linkage map of Musa acuminata addressing genome rearrangements among bananas.

    Science.gov (United States)

    Hippolyte, Isabelle; Bakry, Frederic; Seguin, Marc; Gardes, Laetitia; Rivallan, Ronan; Risterucci, Ange-Marie; Jenny, Christophe; Perrier, Xavier; Carreel, Françoise; Argout, Xavier; Piffanelli, Pietro; Khan, Imtiaz A; Miller, Robert N G; Pappas, Georgios J; Mbéguié-A-Mbéguié, Didier; Matsumoto, Takashi; De Bernardinis, Veronique; Huttner, Eric; Kilian, Andrzej; Baurens, Franc-Christophe; D'Hont, Angélique; Cote, François; Courtois, Brigitte; Glaszmann, Jean-Christophe

    2010-04-13

    The genus Musa is a large species complex which includes cultivars at diploid and triploid levels. These sterile and vegetatively propagated cultivars are based on the A genome from Musa acuminata, exclusively for sweet bananas such as Cavendish, or associated with the B genome (Musa balbisiana) in cooking bananas such as Plantain varieties. In M. acuminata cultivars, structural heterozygosity is thought to be one of the main causes of sterility, which is essential for obtaining seedless fruits but hampers breeding. Only partial genetic maps are presently available due to chromosomal rearrangements within the parents of the mapping populations. This causes large segregation distortions inducing pseudo-linkages and difficulties in ordering markers in the linkage groups. The present study aims at producing a saturated linkage map of M. acuminata, taking into account hypotheses on the structural heterozygosity of the parents. An F1 progeny of 180 individuals was obtained from a cross between two genetically distant accessions of M. acuminata, 'Borneo' and 'Pisang Lilin' (P. Lilin). Based on the gametic recombination of each parent, two parental maps composed of SSR and DArT markers were established. A significant proportion of the markers (21.7%) deviated (p Musa map" for further analyses. We also propose two complete parental maps with interpretations of structural rearrangements localized on the linkage groups. The structural heterozygosity in P. Lilin is hypothesized to result from a duplication likely accompanied by an inversion on another chromosome. This paper also illustrates a methodological approach, transferable to other species, to investigate the mapping of structural rearrangements and determine their consequences on marker segregation.

  8. A saturated SSR/DArT linkage map of Musa acuminata addressing genome rearrangements among bananas

    Science.gov (United States)

    2010-01-01

    Background The genus Musa is a large species complex which includes cultivars at diploid and triploid levels. These sterile and vegetatively propagated cultivars are based on the A genome from Musa acuminata, exclusively for sweet bananas such as Cavendish, or associated with the B genome (Musa balbisiana) in cooking bananas such as Plantain varieties. In M. acuminata cultivars, structural heterozygosity is thought to be one of the main causes of sterility, which is essential for obtaining seedless fruits but hampers breeding. Only partial genetic maps are presently available due to chromosomal rearrangements within the parents of the mapping populations. This causes large segregation distortions inducing pseudo-linkages and difficulties in ordering markers in the linkage groups. The present study aims at producing a saturated linkage map of M. acuminata, taking into account hypotheses on the structural heterozygosity of the parents. Results An F1 progeny of 180 individuals was obtained from a cross between two genetically distant accessions of M. acuminata, 'Borneo' and 'Pisang Lilin' (P. Lilin). Based on the gametic recombination of each parent, two parental maps composed of SSR and DArT markers were established. A significant proportion of the markers (21.7%) deviated (p Musa map" for further analyses. We also propose two complete parental maps with interpretations of structural rearrangements localized on the linkage groups. The structural heterozygosity in P. Lilin is hypothesized to result from a duplication likely accompanied by an inversion on another chromosome. This paper also illustrates a methodological approach, transferable to other species, to investigate the mapping of structural rearrangements and determine their consequences on marker segregation. PMID:20388207

  9. Chromosome 10q tetrasomy: First reported case

    Energy Technology Data Exchange (ETDEWEB)

    Blackston, R.D.; May, K.M.; Jones, F.D. [Emory Univ., Atlanta, GA (United States)] [and others

    1994-09-01

    While there are several reports of trisomy 10q (at least 35), we are not aware of previous cases of 10q tetrasomy. We present what we believe to be the initial report of such a case. R.J. is a 6 1/2 year old white male who presented with multiple dysmorphic features, marked articulation problems, hyperactivity, and developmental delays. He is the product of a term uncomplicated pregnancy. There was a normal spontaneous vaginal delivery with a birth weight of 6 lbs. 4oz. and length was 19 1/2 inch. Dysmorphic features include small size, an asymmetrically small head, low set ears with overfolded helixes, bilateral ptosis, downslanting eyes, right eye esotropia, prominent nose, asymmetric facies, high palate, mild pectus excavatum deformity of chest, and hyperextensible elbow joints. The patient is in special needs classes for mildly mentally handicapped students. Chromosome analysis at a resolution of 800 bands revealed a complex rearrangement of chromosomes 10 and 11. The segment 10q25.3 to q16.3 appears to be inverted and duplicated within the long arm of chromosome 10 at band q25.3 and the same segment of chromosome 10 is present on the terminal end of the short arm of chromosome 11. There is no visible loss of material from chromosome 11. Fluorescence in situ hybridization was performed with a chromosome 10 specific {open_quotes}paint{close_quotes} to confirm that all of the material on the abnormal 10 and the material on the terminal short arm of 11 was from chromosome 10. Thus, it appears that the segment 10q25.3 to q26.3 is present in four copies. Parental chromosome studies are normal. We compared findings which differ in that the case of 10q tetrasomy did not have prenatal growth deficiency, microphthalmia, cleft palate, digital anomalies, heart, or renal defects. Whereas most cases of 10q trisomy are said to have severe mental deficiency, our case of 10q tetrasomy was only mildly delayed. We report this first apparent cited case of 10q tetrasomy.

  10. Recent radiation in West African Taterillus (Rodentia, Gerbillinae): the concerted role of chromosome and climatic changes.

    Science.gov (United States)

    Dobigny, G; Aniskin, V; Granjon, L; Cornette, R; Volobouev, V

    2005-11-01

    West African gerbils of the genus Taterillus constitute a complex of seven sibling species distributed from sudano-guinean to saharo-sahelian regions. They display radically rearranged karyotypes despite low genic divergence and a very recent differentiation, that is, within the last 0.4 Myr for the six most derived species. We here provide a comparison of the seven specific karyotypes and perform a cladistic analysis using chromosomal rearrangements character states. When a posteriori polarized mutations were mapped onto the phylogenetic tree, 38 rearrangements were identified as fixed during the evolution of these rodents. This makes Taterillus one of the most striking examples of accelerated chromosomal evolution within placental mammals. Taking into account the types of chromosomal changes involved, divergence times between lineages, genetic distances, as well as reassessed geographic distributions, we suggest that (1) speciation in West African Taterillus was driven by chromosomal changes, and (2) the paleoclimatic oscillations of the Sahara desert have played a major role in their evolution. In particular, elevated plasticity of the Taterillus genome, as suggested by the patterns observed for some repetitive elements, would have led to a higher probability of mutation. We hypothesize that the process underpinning cladogenesis most probably involved highly underdominant genomic rearrangements that were fixed following pronounced populational bottlenecks resulting from drastic climatic and subsequent environmental changes. Major African rivers formed significant barriers to dispersal, limiting expansion during the more moist and so favorable periods. This scenario would explain the current parapatric species distributions and their relationship to the West African hydrographic features.

  11. Intrapopulation Chromosomal Polymorphism in Mazama gouazoubira (Cetartiodactyla; Cervidae): The Emergence of a New Species?

    Science.gov (United States)

    Valeri, Mirela P; Tomazella, Iara M; Duarte, José M B

    2018-04-14

    Mazama gouazoubira is a small deer species widely distributed in South America. Previous studies have shown that this species presents intraspecific chromosomal polymorphisms, which could affect fertility due to the effects of chromosomal rearrangements on gamete formation. Important aspects regarding the karyotype evolution of this species and the genus remain undefined due to the lack of information concerning the causes of this chromosomal variation. Nineteen individuals belonging to the Mazama gouazoubira population located in the Pantanal were cytogenetically evaluated. Among the individuals analyzed, 9 had B chromosomes and 5 carried a heterozygous centric fusion (2n = 69 and FN = 70). In 3 individuals, the fusion occurred between chromosomes X and 16, in 1 individual between chromosomes 7 and 21, and in another individual between chromosomes 4 and 16. These striking polymorphisms could be explained by several hypotheses. One is that the chromosome rearrangements in this species are recent and not fixed in the population yet, and another hypothesis is that they represent a balanced polymorphism and that heterozygotes have an adaptive advantage. On the other hand, these polymorphisms may negatively influence fertility and raise questions about sustainability or reproductive isolation of the population. © 2018 S. Karger AG, Basel.

  12. Molecular cytogenetic analysis and clinical manifestations of a case with de novo mosaic ring chromosome 7

    Directory of Open Access Journals (Sweden)

    Fang Jye-Siung

    2011-02-01

    Full Text Available Abstract Aim Clinical and molecular cytogenetic investigations of a newborn girl exhibiting facial dysmorphism with developmental delay. Methods Phenotypic evaluation was first applied to examine the proband's developmental status. Computed tomography and colour transcranial Doppler were used then to investigate her brain structure and function. Subsequently, chromosomal abnormalities were examined by karyotyping and fluorescent in situ hybridization was performed to investigate size of fragments lost at the two distal ends of the ring chromosome 7. In addition, multicolour banding was applied to rule out structural rearrangement occurs in between the ring chromosome 7. Results The proband was born with mosaic supernumerary ring chromosome 7, without a normal karyotype detected in the peripheral blood lymphocytes. The distal arm of chromosome 7p (at least 255 kb from the telomere was part of an extra ring chromosome 7. In addition, the distal arm of 7q, at least 8 kb from the telomere, was missing. There was no other chromosomal rearrangement detected by multicolour banding. Interpretation This is the 19th reported case of complete ring chromosome 7 mosaicism and the first survived case with mosaic supernumerary ring 7 without a normal karyotype detected in the peripheral lymphocytes.

  13. A rare case of chronic myeloid leukemia with secondary chromosomal changes including partial trisomy 17q21 to 17qter and partial monosomy of 16p13.3

    OpenAIRE

    Al Achkar, Walid; Wafa, Abdulsamad; Mkrtchyan, Hasmik; Moassass, Faten; Liehr, Thomas

    2010-01-01

    Abstract Background The so-called Philadelphia (Ph) chromosome is present in almost all cases with chronic myeloid leukemia (CML). Around 5-10% of these patients show complex translocations involving other chromosomes in addition to and/or besides chromosomes 9 and 22. As nowadays most CML cases are treated with Imatinib, variant rearrangements have in general no specific prognostic significance, though events of therapy resistance remain to be studied. Results Here we report a Ph chromosome ...

  14. Chromosome Structural Alteration an Unusual Abnormality Characterizing Human Neoplasia

    Directory of Open Access Journals (Sweden)

    Abolfazl Movafagh

    2016-04-01

    Full Text Available Background and Aim: Ring chromosomes are rare cytogenetic abnormalities that occur in less than 10% of hematopoietic malignancies. They are rare in blood disorder. The present review has focused on the ring chromosome associated with oncology malignancies. Materials and Methods: By reviewing the web-based search for all English scientific peer review articles published, was initiated using Medline/PubMed, Mitelman database (http://cgap.nci.nih.gov/Chromosomes/Mitelman, and other pertinent references on websites about ring chromosomes in Oncology. The software program as End Note was used to handle the proper references for instruction to author. Karyotype descriptions were cited according to ISCN.Conclusion: Ring chromosomes are rare chromosomal aberrations, almost many times are of de novo origin, presenting a different phenotype regarding the loss of genetic material. The karyotype represents the main analysis for detection of ring chromosomes, but other molecular technics are necessary for complete characterization. The information of this review article adds to the spectrum of both morphology and genetic rearrangements in the field of oncology malignancies.

  15. Screening for NUP98 rearrangements in hematopoietic malignancies by fluorescence in situ hybridization.

    Science.gov (United States)

    Nebral, Karin; König, Margit; Schmidt, Helmut H; Lutz, Dieter; Sperr, Wolfgang R; Kalwak, Krzysztof; Brugger, Stefan; Dworzak, Michael N; Haas, Oskar A; Strehl, Sabine

    2005-06-01

    The aim of this study was to determine the incidence of rearrangements of NUP98 (the gene coding for nucleoporin 98kDa protein) in childhood acute myeloid leukemia (AML) and selected patients with 11p13-15 rearrangements. This aim was achieved using a fluorescence in situ hybridization (FISH) assay that allows the detection of NUP98 aberrations independently of the partner gene involved. Screening of 59 consecutive patients enrolled in the Austrian AML-BFM93 clinical trial was performed by dual-color FISH. In addition, 14 selected cases with various hematologic malignancies and 11p13-15 aberrations were analyzed. NUP98-positive cases were further investigated by fusion gene-specific FISH and reverse transcription polymerase chain reaction assays. Among the 59 AML patients, one NUP98-NSD1 positive case (1.7%) was detected. Among the 14 selected patients, five new NUP98 positive cases were determined. Two cases showed an inv(11)(p15q22)/NUP98-DDX10 fusion, one each displayed a t(5;11)(q35;p15)/NUP98-NSD1 and a t(11;20)(p15;q12)/NUP98-TOP1 fusion, and one case with a putative new fusion partner gene at 3p24 was identified. The observed frequency of 1.7% confirmed the low incidence of NUP98 rearrangements in childhood AML. The low occurrence of NUP98 rearrangements in selected samples with 11p13-15 alterations suggests the existence of variable chromosomal breakpoints and affected genes in this region. The identification of a new NUP98 fusion partner region confirms the evident promiscuity of NUP98. Thus, analysis of NUP98 aberrations by FISH seems to be the method of choice for determining the presence of these genetic lesions in unselected patients, and to confirm the involvement of NUP98 in cases with 11p15 aberrations.

  16. Cinteny: flexible analysis and visualization of synteny and genome rearrangements in multiple organisms

    Directory of Open Access Journals (Sweden)

    Meller Jaroslaw

    2007-03-01

    Full Text Available Abstract Background Identifying syntenic regions, i.e., blocks of genes or other markers with evolutionary conserved order, and quantifying evolutionary relatedness between genomes in terms of chromosomal rearrangements is one of the central goals in comparative genomics. However, the analysis of synteny and the resulting assessment of genome rearrangements are sensitive to the choice of a number of arbitrary parameters that affect the detection of synteny blocks. In particular, the choice of a set of markers and the effect of different aggregation strategies, which enable coarse graining of synteny blocks and exclusion of micro-rearrangements, need to be assessed. Therefore, existing tools and resources that facilitate identification, visualization and analysis of synteny need to be further improved to provide a flexible platform for such analysis, especially in the context of multiple genomes. Results We present a new tool, Cinteny, for fast identification and analysis of synteny with different sets of markers and various levels of coarse graining of syntenic blocks. Using Hannenhalli-Pevzner approach and its extensions, Cinteny also enables interactive determination of evolutionary relationships between genomes in terms of the number of rearrangements (the reversal distance. In particular, Cinteny provides: i integration of synteny browsing with assessment of evolutionary distances for multiple genomes; ii flexibility to adjust the parameters and re-compute the results on-the-fly; iii ability to work with user provided data, such as orthologous genes, sequence tags or other conserved markers. In addition, Cinteny provides many annotated mammalian, invertebrate and fungal genomes that are pre-loaded and available for analysis at http://cinteny.cchmc.org. Conclusion Cinteny allows one to automatically compare multiple genomes and perform sensitivity analysis for synteny block detection and for the subsequent computation of reversal distances

  17. Adiabatic Rearrangement of Hollow PV Towers

    Directory of Open Access Journals (Sweden)

    Eric A Hendricks

    2010-10-01

    Full Text Available Diabatic heating from deep moist convection in the hurricane eyewall produces a towering annular structure of elevated potential vorticity (PV. This structure has been referred to as a hollow PV tower. The sign reversal of the radial gradient of PV satisfies the Charney-Stern necessary condition for combined barotropic-baroclinic instability. For thin enough annular structures, small perturbations grow exponentially, extract energy from the mean flow, and lead to hollow tower breakdown, with significant vortex structural and intensity change. The three-dimensional adiabatic rearrangements of two prototypical hurricane-like hollow PV towers (one thick and one thin are examined in an idealized framework. For both hollow towers, dynamic instability causes air parcels with high PV to be mixed into the eye preferentially at lower levels, where unstable PV wave growth rates are the largest. Little or no mixing is found to occur at upper levels. The mixing at lower and middle levels is most rapid for the breakdown of the thin hollow tower, consistent with previous barotropic results. For both hollow towers, this advective rearrangement of PV affects the tropical cyclone structure and intensity in a number of ways. First, the minimum central pressure and maximum azimuthal mean velocity simultaneously decrease, consistent with previous barotropic results. Secondly, isosurfaces of absolute angular momentum preferentially shift inward at low levels, implying an adiabatic mechanism by which hurricane eyewall tilt can form. Thirdly, a PV bridge, similar to that previously found in full-physics hurricane simulations, develops as a result of mixing at the isentropic levels where unstable PV waves grow most rapidly. Finally, the balanced mass field resulting from the PV rearrangement is warmer in the eye between 900 and 700 hPa. The location of this warming is consistent with observed warm anomalies in the eye, indicating that in certain instances the hurricane

  18. Know Your Chromosomes

    Indian Academy of Sciences (India)

    other human chromosomes. The presence of abnormal chromosomal number described in general as aneuploidy, here trisomy, is observed in certain other syndromes too. Trisomies of chromosome 18, 13,22,8,9 and X are known. Children with these 'numerical' anomalies have severe and complex malformations. Mental ...

  19. Chromosome painting in plants.

    NARCIS (Netherlands)

    Schubert, I.; Fransz, P.F.; Fuchs, J.; Jong, de J.H.

    2001-01-01

    The current 'state-of-art' as to chromosome painting in plants is reviewed. We define different situations described as painting so far: i) Genomic in situ hybridisation (GISH) with total genomic DNA to distinguish alien chromosomes on the basis of divergent dispersed repeats, ii) 'Chromosomal in

  20. ZEBRAFISH CHROMOSOME-BANDING

    NARCIS (Netherlands)

    PIJNACKER, LP; FERWERDA, MA

    1995-01-01

    Banding techniques were carried out on metaphase chromosomes of zebrafish (Danio rerio) embryos. The karyotypes with the longest chromosomes consist of 12 metacentrics, 26 submetacentrics, and 12 subtelocentrics (2n = 50). All centromeres are C-band positive. Eight chromosomes have a pericentric

  1. Gene activation by induced DNA rearrangements

    International Nuclear Information System (INIS)

    Schnipper, L.E.; Chan, V.; Sedivy, J.; Jat, P.; Sharp, P.A.

    1989-01-01

    A murine cell line (EN/NIH) containing the retroviral vector ZIPNeoSV(x)1 that was modified by deletion of the enhancer elements in the viral long terminal repeats has been used as an assay system to detect induced DNA rearrangements that result in activation of a transcriptionally silent reporter gene encoded by the viral genome. The spontaneous frequency of G418 resistance is less than 10(-7), whereas exposure to the tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA) or the combination of UV irradiation plus TPA resulted in the emergence of drug resistant cell lines at a frequency of 5 per 10(6) and 67 per 10(6) cells, respectively. In several of the cell lines that were analyzed a low level of amplification of one of the two parental retroviral integrants was observed, whereas in others no alteration in the region of the viral genome was detected. To determine the effect of the SV40 large T antigen on induced DNA rearrangements, EN/NIH cells were transfected with a temperature sensitive (ts) mutant of SV40 T. Transfectants were maintained at the permissive temperature (33 degrees C) for varying periods of time (1-5 days) in order to vary SV40 T antigen exposure, after which they were shifted to 39.5 degrees C for selection in G418. The frequency of emergence of drug resistant cell clones increased with duration of exposure to large T antigen (9-52 per 10(6) cells over 1-5 days, respectively), and all cell lines analyzed demonstrated DNA rearrangements in the region of the neo gene. A novel 18-kilobase pair XbaI fragment was cloned from one cell line which revealed the presence of a 2.0-kilobase pair EcoRI segment containing an inverted duplication which hybridized to neo sequences. It is likely that the observed rearrangement was initiated by the specific binding of large T antigen to the SV40 origin of replication encoded within the viral genome

  2. The Stereochemical Course of the α-Hydroxyphosphonate–Phosphate Rearrangement

    Science.gov (United States)

    Pallitsch, Katharina; Roller, Alexander; Hammerschmidt, Friedrich

    2015-01-01

    The phosphonate–phosphate rearrangement is an isomerisation of α-hydroxyphosphonates bearing electron-withdrawing substituents at the α-carbon atom. We studied the stereochemical course of this rearrangement with respect to phosphorus. A set of four diastereomeric α-hydroxyphosphonates was prepared by a Pudovik reaction from two diastereomeric cyclic phosphites. The hydroxyphosphonates were separated and rearranged with Et3N as base. In analogy to trichlorphon, which was the first reported compound undergoing this rearrangement. All four hydroxyphosphonates could be rearranged to 2,2-dichlorovinyl phosphates. Single-crystal X-ray structure analyses of the α-hydroxyphosphonates and the corresponding phosphates allowed us to show that the rearrangement proceeds with retention of configuration on the phosphorus atom. PMID:26059025

  3. The Stereochemical Course of the ?-Hydroxyphosphonate?Phosphate Rearrangement

    OpenAIRE

    Pallitsch, Katharina; Roller, Alexander; Hammerschmidt, Friedrich

    2015-01-01

    The phosphonate?phosphate rearrangement is an isomerisation of ?-hydroxyphosphonates bearing electron-withdrawing substituents at the ?-carbon atom. We studied the stereochemical course of this rearrangement with respect to phosphorus. A set of four diastereomeric ?-hydroxyphosphonates was prepared by a Pudovik reaction from two diastereomeric cyclic phosphites. The hydroxyphosphonates were separated and rearranged with Et3N as base. In analogy to trichlorphon, which was the first reported co...

  4. Flexibility and symmetry of prokaryotic genome rearrangement reveal lineage-associated core-gene-defined genome organizational frameworks.

    Science.gov (United States)

    Kang, Yu; Gu, Chaohao; Yuan, Lina; Wang, Yue; Zhu, Yanmin; Li, Xinna; Luo, Qibin; Xiao, Jingfa; Jiang, Daquan; Qian, Minping; Ahmed Khan, Aftab; Chen, Fei; Zhang, Zhang; Yu, Jun

    2014-11-25

    The prokaryotic pangenome partitions genes into core and dispensable genes. The order of core genes, albeit assumed to be stable under selection in general, is frequently interrupted by horizontal gene transfer and rearrangement, but how a core-gene-defined genome maintains its stability or flexibility remains to be investigated. Based on data from 30 species, including 425 genomes from six phyla, we grouped core genes into syntenic blocks in the context of a pangenome according to their stability across multiple isolates. A subset of the core genes, often species specific and lineage associated, formed a core-gene-defined genome organizational framework (cGOF). Such cGOFs are either single segmental (one-third of the species analyzed) or multisegmental (the rest). Multisegment cGOFs were further classified into symmetric or asymmetric according to segment orientations toward the origin-terminus axis. The cGOFs in Gram-positive species are exclusively symmetric and often reversible in orientation, as opposed to those of the Gram-negative bacteria, which are all asymmetric and irreversible. Meanwhile, all species showing strong strand-biased gene distribution contain symmetric cGOFs and often specific DnaE (α subunit of DNA polymerase III) isoforms. Furthermore, functional evaluations revealed that cGOF genes are hub associated with regard to cellular activities, and the stability of cGOF provides efficient indexes for scaffold orientation as demonstrated by assembling virtual and empirical genome drafts. cGOFs show species specificity, and the symmetry of multisegmental cGOFs is conserved among taxa and constrained by DNA polymerase-centric strand-biased gene distribution. The definition of species-specific cGOFs provides powerful guidance for genome assembly and other structure-based analysis. Prokaryotic genomes are frequently interrupted by horizontal gene transfer (HGT) and rearrangement. To know whether there is a set of genes not only conserved in position

  5. Chromosomal geometry in the interface from the frequency of the radiation induced chromosome aberrations

    International Nuclear Information System (INIS)

    Nasazzi, N.; Otero, D.; Di Giorgio, M.

    1996-01-01

    Ionizing radiation induces DNA double-strand breaks (DSBs) and their interaction and illegitimate recombination produces chromosomal aberrations. Stable chromosomal aberrations comprise inter-chromosomal events (translocations) and intra-chromosomal events (inversions). When DSBs induction and interaction is done at random, and the proximity effects are neglected, the expected relation between translocations and inversions is F=86, based on chromosome arm length. The number of translocations and inversions is analyzed by using G-banding in 16 lymphocytes cultures from blood samples acutely irradiated with γ-rays (dose range: 0,5 Gy - 3 Gy). The result obtained was: F=13,5, significantly smaller than F=86. Literature data show similar small F values, but strongly spread. The excess of inversions could be explained by a 'proximity effect', it means that more proximate DSBs have more interaction probability. Therefore, it is possible to postulate a special chromosome arrangement during irradiation and the subsequent interval. We propose a model where individual chromosomes show spherical confinement with some degree of overlapping and DSBs induction proportional to cross section. A DSBs interaction probability function with cut-off length= 1μ is assumed. According to our results, the confinement volume is ≅ 6.4% of the nuclear volume. Nevertheless, we presume that large spread in F data could be due to temporal variation in overlapping and spatial chromosomal confinement. (authors). 14 refs

  6. DNA-damage response during mitosis induces whole-chromosome missegregation.

    Science.gov (United States)

    Bakhoum, Samuel F; Kabeche, Lilian; Murnane, John P; Zaki, Bassem I; Compton, Duane A

    2014-11-01

    Many cancers display both structural (s-CIN) and numerical (w-CIN) chromosomal instabilities. Defective chromosome segregation during mitosis has been shown to cause DNA damage that induces structural rearrangements of chromosomes (s-CIN). In contrast, whether DNA damage can disrupt mitotic processes to generate whole chromosomal instability (w-CIN) is unknown. Here, we show that activation of the DNA-damage response (DDR) during mitosis selectively stabilizes kinetochore-microtubule (k-MT) attachments to chromosomes through Aurora-A and PLK1 kinases, thereby increasing the frequency of lagging chromosomes during anaphase. Inhibition of DDR proteins, ATM or CHK2, abolishes the effect of DNA damage on k-MTs and chromosome segregation, whereas activation of the DDR in the absence of DNA damage is sufficient to induce chromosome segregation errors. Finally, inhibiting the DDR during mitosis in cancer cells with persistent DNA damage suppresses inherent chromosome segregation defects. Thus, the DDR during mitosis inappropriately stabilizes k-MTs, creating a link between s-CIN and w-CIN. The genome-protective role of the DDR depends on its ability to delay cell division until damaged DNA can be fully repaired. Here, we show that when DNA damage is induced during mitosis, the DDR unexpectedly induces errors in the segregation of entire chromosomes, thus linking structural and numerical chromosomal instabilities. ©2014 American Association for Cancer Research.

  7. Genetic counseling for a prenatal diagnosis of structural chromosomal abnormality with high-resolution analysis using a single nucleotide polymorphism microarray

    Directory of Open Access Journals (Sweden)

    Akiko Takashima

    2016-08-01

    Full Text Available A 41-year old pregnant woman underwent amniocentesis to conduct a conventional karyotyping analysis; the analysis reported an abnormal karyotype: 46,XY,add(9(p24. Chromosomal microarray analysis (CMA is utilized in prenatal diagnoses. A single nucleotide polymorphism microarray revealed a male fetus with balanced chromosomal translocations on 9p and balanced chromosomal rearrangements, but another chromosomal abnormality was detected. The fetus had microduplication. The child was born as a phenotypically normal male. CMA is a simple and informative procedure for prenatal genetic diagnosis. CMA is the detection of chromosomal variants of unknown clinical significance; therefore, genetic counseling is important during prenatal genetic testing.

  8. The gene order on Human Chromosome 15 and Chicken Chromosome 10 reveal multiple inter- and intrachromosomal rearrangements

    NARCIS (Netherlands)

    Crooijmans, R.P.M.A.; Dijkhof, R.J.M.; Veenendaal, T.; Poel, van der J.J.; Groenen, M.A.M.

    2001-01-01

    Comparative mapping between the human and chicken genomes has revealed a striking conservation of synteny between the genomes of these two species, but the results have been based on low-resolution comparative maps. To address this conserved synteny in much more detail, a high-resolution

  9. Fetal chromosome analysis: screening for chromosome disease?

    DEFF Research Database (Denmark)

    Philip, J; Tabor, Ann; Bang, J

    1983-01-01

    with women without elevated risk. Spontaneous abortion rate and prematurity rate did not differ from rates expected without amniocentesis. It is concluded that current indications may be characterized as a mixture of evident high risk factors and factors with only a minor influence on risk. Indications......The aim of the study was to investigate the rationale of the current indications for fetal chromosome analysis. 5372 women had 5423 amniocentesis performed, this group constituting a consecutive sample at the chromosome laboratory, Rigshospitalet, Copenhagen from March 1973 to September 1980 (Group...... A + B). Pregnant women 35 years of age, women who previously had a chromosomally abnormal child, families with translocation carriers or other heritable chromosomal disease, families where the father was 50 years or more and women in families with a history of Down's syndrome (group A), were compared...

  10. Sterile DJH rearrangements reveal that distance between gene segments on the human Ig H chain locus influences their ability to rearrange

    DEFF Research Database (Denmark)

    Hansen, Tina Østergaard; Lange, Anders Blaabjerg; Barington, Torben

    2015-01-01

    Rearrangement of the Ig locus occurs in two steps. First, a JH gene is rearranged to a D gene followed by a VH gene rearranging to the DJH rearrangement. By next generation sequencing, we analyzed 9969 unique DJH rearrangements and 5919 unique VHDJH rearrangements obtained from peripheral blood B...... cells from 110 healthy adult donors. We found that DJH rearrangements and nonproductive VHDJH rearrangements share many features but differ significantly in their use of D genes and propensity for somatic hypermutation. In D to JH gene rearrangements, the D genes proximal to the JH locus are used more...... frequently than JH locus distal D genes, whereas VH locus proximal D genes were observed more frequently in nonproductive VHDJH rearrangements. We further demonstrate that the distance between VH, D, and JH gene segments influence their ability to rearrange within the human Ig locus....

  11. Nonrandom distribuion of chromosome breaks in cultured lymphocytes of normal subjects

    Energy Technology Data Exchange (ETDEWEB)

    Ayme, S.; Mattei, J.F.; Mattei, M.G.; Aurran, Y.; Giraud, F.

    1976-02-29

    Breakpoint distribution was studied from cultured lymphocytes on 7653 metaphases from 524 subjects whose karyotypes were normal. The mean break rate was 5% in both sexes. The frequency increased significantly after 40 years and varied during the year. The location of the breaks was very different from the expected random distribution. The break frequency for each chromosome was different according to the type of break (chromatid, simple chromosomal and chromosomal involving rearrangements). The location of the breaks was also studied according to the type of band and with respect to the centromere. A comparison between spontaneous breaks, x-ray induced breaks, breaks in Fanconi's anemia and in congenital rearrangements, show very significant differences.

  12. Formation of radiation induced chromosome aberrations: involvement of telomeric sequences and telomerase

    Energy Technology Data Exchange (ETDEWEB)

    Pirzio, L.

    2004-07-15

    As telomeres are crucial for chromosome integrity; we investigated the role played by telomeric sequences in the formation and in the transmission of radio-induced chromosome rearrangements in human cells. Starting from interstitial telomeric sequences (ITS) as putative region of breakage, we showed that the radiation sensitivity is not equally distributed along chromosomes and. is not affected by ITS. On the contrary, plasmid integration sites are prone to radio-induced breaks, suggesting a possible integration at sites already characterized by fragility. However plasmids do not preferentially insert at radio-induced breaks in human cells immortalized by telomerase. These cells showed remarkable karyotype stability even after irradiation, suggesting a role of telomerase in the genome maintenance despite functional telomeres. Finally, we showed that the presence of more breaks in a cell favors the repair, leading to an increase of transmissible rearrangements. (author)

  13. Cytological localization of adenosine kinase, nucleoside phosphorylase-1, and esterase-10 genes on mouse chromosome 14

    International Nuclear Information System (INIS)

    Samuelson, L.C.; Farber, R.A.

    1985-01-01

    The authors have determined the regional locations on mouse chromosome 14 of the genes for mouse adenosine kinase (ADK), nucleoside phosphorylase- 1 (NP-1), and esterase-10 (ES-10) by analysis of rearranged mouse chromosomes in gamma-irradiated Chinese hamster X mouse hybrid cell lines. Irradiated clones were screened for expression of the murine forms of these enzymes; segregant clones that expressed only one or two of the three markers were karyotyped. The patterns of enzyme expression in these segregants were correlated with the presence of rearranged chromosomes. The Adk gene was localized to bands A2 to B, Np-1 to bands B to C1, and Es-10 to bands D2 to E2

  14. Formation of radiation induced chromosome aberrations: involvement of telomeric sequences and telomerase

    International Nuclear Information System (INIS)

    Pirzio, L.

    2004-07-01

    As telomeres are crucial for chromosome integrity; we investigated the role played by telomeric sequences in the formation and in the transmission of radio-induced chromosome rearrangements in human cells. Starting from interstitial telomeric sequences (ITS) as putative region of breakage, we showed that the radiation sensitivity is not equally distributed along chromosomes and. is not affected by ITS. On the contrary, plasmid integration sites are prone to radio-induced breaks, suggesting a possible integration at sites already characterized by fragility. However plasmids do not preferentially insert at radio-induced breaks in human cells immortalized by telomerase. These cells showed remarkable karyotype stability even after irradiation, suggesting a role of telomerase in the genome maintenance despite functional telomeres. Finally, we showed that the presence of more breaks in a cell favors the repair, leading to an increase of transmissible rearrangements. (author)

  15. Bootstrapping phylogenies inferred from rearrangement data

    Directory of Open Access Journals (Sweden)

    Lin Yu

    2012-08-01

    Full Text Available Abstract Background Large-scale sequencing of genomes has enabled the inference of phylogenies based on the evolution of genomic architecture, under such events as rearrangements, duplications, and losses. Many evolutionary models and associated algorithms have been designed over the last few years and have found use in comparative genomics and phylogenetic inference. However, the assessment of phylogenies built from such data has not been properly addressed to date. The standard method used in sequence-based phylogenetic inference is the bootstrap, but it relies on a large number of homologous characters that can be resampled; yet in the case of rearrangements, the entire genome is a single character. Alternatives such as the jackknife suffer from the same problem, while likelihood tests cannot be applied in the absence of well established probabilistic models. Results We present a new approach to the assessment of distance-based phylogenetic inference from whole-genome data; our approach combines features of the jackknife and the bootstrap and remains nonparametric. For each feature of our method, we give an equivalent feature in the sequence-based framework; we also present the results of extensive experimental testing, in both sequence-based and genome-based frameworks. Through the feature-by-feature comparison and the experimental results, we show that our bootstrapping approach is on par with the classic phylogenetic bootstrap used in sequence-based reconstruction, and we establish the clear superiority of the classic bootstrap for sequence data and of our corresponding new approach for rearrangement data over proposed variants. Finally, we test our approach on a small dataset of mammalian genomes, verifying that the support values match current thinking about the respective branches. Conclusions Our method is the first to provide a standard of assessment to match that of the classic phylogenetic bootstrap for aligned sequences. Its

  16. Bootstrapping phylogenies inferred from rearrangement data.

    Science.gov (United States)

    Lin, Yu; Rajan, Vaibhav; Moret, Bernard Me

    2012-08-29

    Large-scale sequencing of genomes has enabled the inference of phylogenies based on the evolution of genomic architecture, under such events as rearrangements, duplications, and losses. Many evolutionary models and associated algorithms have been designed over the last few years and have found use in comparative genomics and phylogenetic inference. However, the assessment of phylogenies built from such data has not been properly addressed to date. The standard method used in sequence-based phylogenetic inference is the bootstrap, but it relies on a large number of homologous characters that can be resampled; yet in the case of rearrangements, the entire genome is a single character. Alternatives such as the jackknife suffer from the same problem, while likelihood tests cannot be applied in the absence of well established probabilistic models. We present a new approach to the assessment of distance-based phylogenetic inference from whole-genome data; our approach combines features of the jackknife and the bootstrap and remains nonparametric. For each feature of our method, we give an equivalent feature in the sequence-based framework; we also present the results of extensive experimental testing, in both sequence-based and genome-based frameworks. Through the feature-by-feature comparison and the experimental results, we show that our bootstrapping approach is on par with the classic phylogenetic bootstrap used in sequence-based reconstruction, and we establish the clear superiority of the classic bootstrap for sequence data and of our corresponding new approach for rearrangement data over proposed variants. Finally, we test our approach on a small dataset of mammalian genomes, verifying that the support values match current thinking about the respective branches. Our method is the first to provide a standard of assessment to match that of the classic phylogenetic bootstrap for aligned sequences. Its support values follow a similar scale and its receiver

  17. Rapid chromosome evolution in recently formed polyploids in Tragopogon (Asteraceae.

    Directory of Open Access Journals (Sweden)

    K Yoong Lim

    Full Text Available Polyploidy, frequently termed "whole genome duplication", is a major force in the evolution of many eukaryotes. Indeed, most angiosperm species have undergone at least one round of polyploidy in their evolutionary history. Despite enormous progress in our understanding of many aspects of polyploidy, we essentially have no information about the role of chromosome divergence in the establishment of young polyploid populations. Here we investigate synthetic lines and natural populations of two recently and recurrently formed allotetraploids Tragopogon mirus and T. miscellus (formed within the past 80 years to assess the role of aberrant meiosis in generating chromosomal/genomic diversity. That diversity is likely important in the formation, establishment and survival of polyploid populations and species.Applications of fluorescence in situ hybridisation (FISH to natural populations of T. mirus and T. miscellus suggest that chromosomal rearrangements and other chromosomal changes are common in both allotetraploids. We detected extensive chromosomal polymorphism between individuals and populations, including (i plants monosomic and trisomic for particular chromosomes (perhaps indicating compensatory trisomy, (ii intergenomic translocations and (iii variable sizes and expression patterns of individual ribosomal DNA (rDNA loci. We even observed karyotypic variation among sibling plants. Significantly, translocations, chromosome loss, and meiotic irregularities, including quadrivalent formation, were observed in synthetic (S(0 and S(1 generations polyploid lines. Our results not only provide a mechanism for chromosomal variation in natural populations, but also indicate that chromosomal changes occur rapidly following polyploidisation.These data shed new light on previous analyses of genome and transcriptome structures in de novo and establishing polyploid species. Crucially our results highlight the necessity of studying karyotypes in young (<150 years

  18. Chromosomal evolution in tortricid moths: conserved karyotypes with diverged features.

    Directory of Open Access Journals (Sweden)

    Jindra Síchová

    Full Text Available Moths of the family Tortricidae constitute one of the major microlepidopteran groups in terms of species richness and economic importance. Yet, despite their overall significance, our knowledge of their genome organization is very limited. In order to understand karyotype evolution in the family Tortricidae, we performed detailed cytogenetic analysis of Grapholita molesta, G. funebrana, Lobesia botrana, and Eupoecilia ambiguella, representatives of two main tortricid subfamilies, Olethreutinae and Tortricinae. Besides standard cytogenetic methods, we used fluorescence in situ hybridization for mapping of major rRNA and histone gene clusters and comparative genomic hybridization to determine the level of molecular differentiation of the W and Z sex chromosomes. Our results in combination with available data in the codling moth, Cydia pomonella, and other tortricids allow us a comprehensive reconstruction of chromosomal evolution across the family Tortricidae. The emerging picture is that the karyotype of a common ancestor of Tortricinae and Olethreutinae differentiated from the ancestral lepidopteran chromosome print of n = 31 by a sex chromosome-autosome fusion. This rearrangement resulted in a large neo-sex chromosome pair and a karyotype with n = 30 conserved in most Tortricinae species, which was further reduced to n = 28 observed in Olethreutinae. Comparison of the tortricid neo-W chromosomes showed differences in their structure and composition presumably reflecting stochasticity of molecular degeneration of the autosomal part of the neo-W chromosome. Our analysis also revealed conservative pattern of the histone distribution, which is in contrast with high rDNA mobility. Despite the dynamic evolution of rDNA, we can infer a single NOR-chromosome pair as an ancestral state not only in tortricids but probably in all Lepidoptera. The results greatly expand our knowledge of the genome architecture in tortricids, but also contribute

  19. Stable particles

    International Nuclear Information System (INIS)

    Samios, N.P.

    1994-01-01

    I have been asked to review the subject of stable particles, essentially the particles that eventually comprised the meson and baryon octets, with a few more additions - with an emphasis on the contributions made by experiments utilizing the bubble chamber technique. In this activity, much work had been done by the photographic emulsion technique and cloud chambers - exposed to cosmic rays as well as accelerator based beams. In fact, many if not most of the stable particles were found by these latter two techniques, however, the foree of the bubble chamber (coupled with the newer and more powerful accelerators) was to verify, and reinforce with large statistics, the existence of these states, to find some of the more difficult ones, mainly neutrals and further to elucidate their properties, i.e., spin, parity, lifetimes, decay parameters, etc. (orig.)

  20. Stable particles

    International Nuclear Information System (INIS)

    Samios, N.P.

    1993-01-01

    I have been asked to review the subject of stable particles, essentially the particles that eventually comprised the meson and baryon octets. with a few more additions -- with an emphasis on the contributions made by experiments utilizing the bubble chamber technique. In this activity, much work had been done by the photographic emulsion technique and cloud chambers-exposed to cosmic rays as well as accelerator based beams. In fact, many if not most of the stable particles were found by these latter two techniques, however, the forte of the bubble chamber (coupled with the newer and more powerful accelerators) was to verify, and reinforce with large statistics, the existence of these states, to find some of the more difficult ones, mainly neutrals and further to elucidate their properties, i.e., spin, parity, lifetimes, decay parameters, etc

  1. Gestalt Theory Rearranged: Back to Wertheimer.

    Science.gov (United States)

    Guberman, Shelia

    2017-01-01

    Wertheimer's seminal paper of 1923 was of gerat influence in psychology and other sciences. Wertheimer also emphasized the weaknesses of the newborn Gestalt theory: too many basic laws, and the ambiguity of definitions. At the same time, the paper contained potential solutions to these problems, in the form of a number of very important ideas, some of which were presented implicitly: perception through imitation, communicative nature of linear drawings and writings, transfer from the visual domain to motor domain, linguistic interpretation of the Gestalt. In this paper it will be shown that based on these ideas the Gestalt theory can be rearranged so that the main notions can be well defined, and the general principle of Gestalt perception, which overarches all known laws and unifies different Gestalt phenomena (the imitation principle) can be introduced. The presented model of Gestalt perception is supported by fundamental neurophysiological data-the mirror neurons phenomenon and simulation theory.

  2. Gestalt Theory Rearranged: Back to Wertheimer

    Directory of Open Access Journals (Sweden)

    Shelia Guberman

    2017-10-01

    Full Text Available Wertheimer's seminal paper of 1923 was of gerat influence in psychology and other sciences. Wertheimer also emphasized the weaknesses of the newborn Gestalt theory: too many basic laws, and the ambiguity of definitions. At the same time, the paper contained potential solutions to these problems, in the form of a number of very important ideas, some of which were presented implicitly: perception through imitation, communicative nature of linear drawings and writings, transfer from the visual domain to motor domain, linguistic interpretation of the Gestalt. In this paper it will be shown that based on these ideas the Gestalt theory can be rearranged so that the main notions can be well defined, and the general principle of Gestalt perception, which overarches all known laws and unifies different Gestalt phenomena (the imitation principle can be introduced. The presented model of Gestalt perception is supported by fundamental neurophysiological data—the mirror neurons phenomenon and simulation theory.

  3. Example of an irreversible Smiles rearrangement

    International Nuclear Information System (INIS)

    Zbarskii, V.L.; Goncharuk, A.P.; Orlova, E.Yu.

    1987-01-01

    The authors have found that N-(2,4,6-trinitrophenyl)-N'-nitroethylenediamine is formed during the nitration of N-(2,4,6-trinitrophenyl)ethylenediamine with a sulfuric-nitric acid mixture. Since a primary aliphatic amino group is not usually nitrated under these conditions, the authors assumed that the N-(2,4,6-trinitrophenyl)-N-nitroethylenediamine formed as a result of the reaction undergoes a Smiles rearrangement. In order to obtain evidence for the formation of the intermediate the authors dissolved the reagent in a mixture deuterosulfuric acid and nitrogen pentoxide and recorded the PMR spectrum of this solutions. The signal for the aromatic protons has a chemical shift typical of N,2,4,6-tetranitro-N-methylaniline

  4. Defects and Rearrangements in Disordered Solids

    Science.gov (United States)

    Wijtmans, Sven

    In this thesis, I will investigate the properties of disordered materials under strain. Disordered materials encompass a large variety of materials, including glasses, polymers, granular matter, dense colloids, and gels. There is currently no constitutive equation based on microscopic observables that describes these materials. Given the prevalence and usefulness of these materials, we derive tools to aid our understanding of them. We develop a new method to isolate localized defects from extended vibrational modes in disordered solids. This method augments particle interactions with an artificial potential that acts as a high-pass filter: it preserves small-scale structures while pushing extended vibrational modes to higher frequencies. The low-frequency modes that remain are ``bare" defects; they are exponentially localized without the quadrupolar tails associated with elastic interactions. We demonstrate that these localized excitations are excellent predictors of plastic rearrangements in the solid. We characterize several of the properties of these defects that appear in mesoscopic theories of plasticity, including their distribution of energy barriers, number density, and size, which is a first step in testing and revising continuum models for plasticity in disordered solids. We additionally study the properties of rearrangement types in 2D disordered packings of particles with a harmonic potential at a range of packing fractions above jamming. We develop a generalizable procedure that classifies events by stress drop, energy drop, and reversibility under two protocols. Somewhat surprisingly, we find a large population of contact change events that have no associated stress drop. Reversible events become more common at high pressures above a packing fraction of phi=0.865, at which point line reversible events are more common than loop reversible events. At low pressures, irreversible events are associated with spatially extended events, while at high

  5. Árni Magnússon's rearrangement of paper manuscripts

    DEFF Research Database (Denmark)

    Stegmann, Beeke

    Árni Magnússon’s rearrangement of paper manuscripts draws attention to the early history of Árni Magnússon’s (1663-1730) manuscript collection. The thesis examines Árni’s extensive rearrangement of paper manuscripts, showing that he repeatedly altered the physical composition of codices in his...

  6. Constituent rearrangement model and large transverse momentum reactions

    International Nuclear Information System (INIS)

    Igarashi, Yuji; Imachi, Masahiro; Matsuoka, Takeo; Otsuki, Shoichiro; Sawada, Shoji.

    1978-01-01

    In this chapter, two models based on the constituent rearrangement picture for large p sub( t) phenomena are summarized. One is the quark-junction model, and the other is the correlating quark rearrangement model. Counting rules of the models apply to both two-body reactions and hadron productions. (author)

  7. New Y chromosomes and early stages of sex chromosome ...

    Indian Academy of Sciences (India)

    2010-09-06

    Sep 6, 2010 ... [Traut W. 2010 New Y chromosomes and early stages of sex chromosome differentiation: sex determination in Megaselia. J. Genet. 89,. 307–313]. Introduction. Sex-chromosome ..... age group III-Y chromosomes were successful while in well- aerated population cages, linkage group I-Y chromosomes.

  8. Sex Chromosome Drive

    OpenAIRE

    Helleu, Quentin; Gérard, Pierre R.; Montchamp-Moreau, Catherine

    2015-01-01

    Sex chromosome drivers are selfish elements that subvert Mendel's first law of segregation and therefore are overrepresented among the products of meiosis. The sex-biased progeny produced then fuels an extended genetic conflict between the driver and the rest of the genome. Many examples of sex chromosome drive are known, but the occurrence of this phenomenon is probably largely underestimated because of the difficulty to detect it. Remarkably, nearly all sex chromosome drivers are found in t...

  9. A comparison of the chromosome G-banding pattern in two Sorex species, S. satunini and S. araneus (Mammalia, Insectivora

    Directory of Open Access Journals (Sweden)

    Yuri Borisov

    2012-08-01

    Full Text Available The G-banded karyotype of S. satunini was compared with the karyotype of Sorex araneus. Extensive homology was revealed. The major chromosomal rearrangements involved in the evolutionary divergence of these species have been identified as centric fusions and centromeric shifts. From the known palaeontological age of S. satunini it is obvious that the vast chromosomal polymorphism of the S. araneus group originated during the middle Pleistocene.

  10. Chromosomal evolution in the Drosophila cardini group (Diptera: Drosophilidae): photomaps and inversion analysis.

    Science.gov (United States)

    Cordeiro, Juliana; De Toni, Daniela Cristina; da Silva, Gisele de Souza; Valente, Vera Lucia da Silva

    2014-10-01

    Detailed chromosome photomaps are the first step to develop further chromosomal analysis to study the evolution of the genetic architecture in any set of species, considering that chromosomal rearrangements, such as inversions, are common features of genome evolution. In this report, we analyzed inversion polymorphisms in 25 different populations belonging to six neotropical species in the cardini group: Drosophila cardini, D. cardinoides, D. neocardini, D. neomorpha, D. parthenogenetica and D. polymorpha. Furthermore, we present the first reference photomaps for the Neotropical D. cardini and D. parthenogenetica and improved photomaps for D. cardinoides, D. neocardini and D. polymorpha. We found 19 new inversions for these species. An exhaustive pairwise comparison of the polytene chromosomes was conducted for the six species in order to understand evolutionary patterns of their chromosomes.

  11. New binary polymorphisms reshape and increase resolution of the human Y chromosomal haplogroup tree.

    Science.gov (United States)

    Karafet, Tatiana M; Mendez, Fernando L; Meilerman, Monica B; Underhill, Peter A; Zegura, Stephen L; Hammer, Michael F

    2008-05-01

    Markers on the non-recombining portion of the human Y chromosome continue to have applications in many fields including evolutionary biology, forensics, medical genetics, and genealogical reconstruction. In 2002, the Y Chromosome Consortium published a single parsimony tree showing the relationships among 153 haplogroups based on 243 binary markers and devised a standardized nomenclature system to name lineages nested within this tree. Here we present an extensively revised Y chromosome tree containing 311 distinct haplogroups, including two new major haplogroups (S and T), and incorporating approximately 600 binary markers. We describe major changes in the topology of the parsimony tree and provide names for new and rearranged lineages within the tree following the rules presented by the Y Chromosome Consortium in 2002. Several changes in the tree topology have important implications for studies of human ancestry. We also present demography-independent age estimates for 11 of the major clades in the new Y chromosome tree.

  12. Chromosomal Evolution in Chiroptera.

    Science.gov (United States)

    Sotero-Caio, Cibele G; Baker, Robert J; Volleth, Marianne

    2017-10-13

    Chiroptera is the second largest order among mammals, with over 1300 species in 21 extant families. The group is extremely diverse in several aspects of its natural history, including dietary strategies, ecology, behavior and morphology. Bat genomes show ample chromosome diversity (from 2n = 14 to 62). As with other mammalian orders, Chiroptera is characterized by clades with low, moderate and extreme chromosomal change. In this article, we will discuss trends of karyotypic evolution within distinct bat lineages (especially Phyllostomidae, Hipposideridae and Rhinolophidae), focusing on two perspectives: evolution of genome architecture, modes of chromosomal evolution, and the use of chromosome data to resolve taxonomic problems.

  13. Chromosomal Evolution in Chiroptera

    Directory of Open Access Journals (Sweden)

    Cibele G. Sotero-Caio

    2017-10-01

    Full Text Available Chiroptera is the second largest order among mammals, with over 1300 species in 21 extant families. The group is extremely diverse in several aspects of its natural history, including dietary strategies, ecology, behavior and morphology. Bat genomes show ample chromosome diversity (from 2n = 14 to 62. As with other mammalian orders, Chiroptera is characterized by clades with low, moderate and extreme chromosomal change. In this article, we will discuss trends of karyotypic evolution within distinct bat lineages (especially Phyllostomidae, Hipposideridae and Rhinolophidae, focusing on two perspectives: evolution of genome architecture, modes of chromosomal evolution, and the use of chromosome data to resolve taxonomic problems.

  14. Ring chromosome 13

    DEFF Research Database (Denmark)

    Brandt, C A; Hertz, Jens Michael; Petersen, M B

    1992-01-01

    A stillborn male child with anencephaly and multiple malformations was found to have the karyotype 46,XY,r(13) (p11q21.1). The breakpoint at 13q21.1, determined by high resolution banding, is the most proximal breakpoint ever reported in patients with ring chromosome 13. In situ hybridisation...... with the probe L1.26 confirmed the derivation from chromosome 13 and DNA polymorphism analysis showed maternal origin of the ring chromosome. Our results, together with a review of previous reports of cases with ring chromosome 13 with identified breakpoints, could neither support the theory of distinct clinical...

  15. Toward Singlet-Triplet Bistable Nonalternant Kekulé Hydrocarbons: Azulene-to-Naphthalene Rearrangement.

    Science.gov (United States)

    Das, Soumyajit; Wu, Jishan

    2015-12-04

    Recent developments of open-shell singlet diradicaloids motivated the search for stable singlet-triplet bistable nonalternant polycyclic hydrocarbons. During the synthesis of this type of molecule, such as the dibenzo-cyclohepta[def]fluorene 3, an unexpected azulene-to-naphthalene rearrangement was observed at room temperature, which resulted in new nonalternant hydrocarbons 8a/8b with a closed-shell singlet ground state. These studies provided insight into the unique chemistry of azulene and challenges for the synthesis of singlet-triplet bistable polycyclic hydrocarbons.

  16. Y-chromosome loss as the sole karyotypic anomaly with 3'RARalpha submicroscopic deletion in a case of M3r subtype of acute promyelocytic leukemia.

    Science.gov (United States)

    Han, Yongsheng; Xue, Yongquan; Zhang, Jun; Pan, Jinlan; Wu, Yafang; Bai, Shuxiao

    2009-10-01

    Acute promyelocytic leukemia (APL) is characterized by the presence of a chromosomal rearrangement involving retinoic acid receptor alpha (RARalpha) gene generating the X-RARalpha fusion. We describe here a unique RARalpha gene rearrangement in a patient with M3r subtype of APL. Conventional cytogenetic analysis revealed Y-chromosome loss as the sole karyotypic anomaly. No X-RARalpha fusion was detected by fluorescence in situ hybridization (FISH) using PML/RARalpha dual-color dual-fusion translocation probe set, or RARalpha dual-color break apart rearrangement probe or reverse-transcription polymerase chain reaction (RT-PCR). However, FISH using RARalpha dual-color break apart rearrangement probe showed a deletion of the entire 3'-end of one allele of RARalpha gene. To our knowledge, this is the first documented APL with 3'RARalpha submicroscopic deletion which is not associated with X-RARalpha fusion. The molecular consequences of this anomaly remain to be elucidated.

  17. Method of detecting genetic deletions identified with chromosomal abnormalities

    Energy Technology Data Exchange (ETDEWEB)

    Gray, Joe W; Pinkel, Daniel; Tkachuk, Douglas

    2013-11-26

    Methods and compositions for staining based upon nucleic acid sequence that employ nucleic acid probes are provided. Said methods produce staining patterns that can be tailored for specific cytogenetic analyzes. Said probes are appropriate for in situ hybridization and stain both interphase and metaphase chromosomal material with reliable signals. The nucleic acids probes are typically of a complexity greater tha 50 kb, the complexity depending upon the cytogenetic application. Methods and reagents are provided for the detection of genetic rearrangements. Probes and test kits are provided for use in detecting genetic rearrangements, particlularly for use in tumor cytogenetics, in the detection of disease related loci, specifically cancer, such as chronic myelogenous leukemia (CML) and for biological dosimetry. Methods and reagents are described for cytogenetic research, for the differentiation of cytogenetically similar ut genetically different diseases, and for many prognostic and diagnostic applications.

  18. Recurrent rearrangements of chromosome 1q21.1 and variable pediatric phenotypes

    NARCIS (Netherlands)

    Mefford, Heather C.; Sharp, Andrew J.; Baker, Carl; Itsara, Andy; Jiang, Zhaoshi; Buysse, Karen; Huang, Shuwen; Maloney, Viv K.; Crolla, John A.; Baralle, Diana; Collins, Amanda; Mercer, Catherine; Norga, Koen; de Ravel, Thomy; Devriendt, Koen; Bongers, Ernie M. H. F.; de Leeuw, Nicole; Reardon, William; Gimelli, Stefania; Bena, Frederique; Hennekam, Raoul C.; Male, Alison; Gaunt, Lorraine; Clayton-Smith, Jill; Simonic, Ingrid; Park, Soo Mi; Mehta, Sarju G.; Nik-Zainal, Serena; Woods, C. Geoffrey; Firth, Helen V.; Parkin, Georgina; Fichera, Marco; Reitano, Santina; Lo Giudice, Mariangela; Li, Kelly E.; Casuga, Iris; Broomer, Adam; Conrad, Bernard; Schwerzmann, Markus; Raber, Lorenz; Gallati, Sabina; Striano, Pasquale; Coppola, Antonietta; Tolmie, John L.; Tobias, Edward S.; Lilley, Chris; Armengol, Lluis; Spysschaert, Yves; Verloo, Patrick; de Coene, Anja; Goossens, Linde; Mortier, Geert; Speleman, Frank; van Binsbergen, Ellen; Nelen, Marcel R.; Hochstenbach, Ron; Poot, Martin; Gallagher, Louise; Gill, Michael; McClellan, Jon; King, Mary-Claire; Regan, Regina; Skinner, Cindy; Stevenson, Roger E.; Antonarakis, Stylianos E.; Chen, Caifu; Estivill, Xavier; Menten, Bjorn; Gimelli, Giorgio; Gribble, Susan; Schwartz, Stuart; Sutcliffe, James S.; Walsh, Tom; Knight, Samantha J. L.; Sebat, Jonathan; Romano, Corrado; Schwartz, Charles E.; Veltman, Joris A.; de Vries, Bert B. A.; Vermeesch, Joris R.; Barber, John C. K.; Willatt, Lionel; Tassabehji, May; Eichler, Evan E.

    2008-01-01

    Background: Duplications and deletions in the human genome can cause disease or predispose persons to disease. Advances in technologies to detect these changes allow for the routine identification of submicroscopic imbalances in large numbers of patients. Methods: We tested for the presence of

  19. Y autosome translocation and complex chromosome rearrangement in cri du chat syndrome.

    Science.gov (United States)

    Mattei, J F; Mattei, M G; Coignet, J; Giraud, F

    1978-01-01

    An unbalanced Y autosome translocation t(5;Y) and an apparently balanced translocation t(2;13) are identified with the Q and R banding in a 7-year-old boy with severe encephalopathy and a multiple malformation syndrome. At birth, the clinical diagnosis of 'cri du chat' syndrome based on the characteristic crying was not confirmed after karyotyping, using conventional staining techniques. Images PMID:641952

  20. Origins of chromosomal rearrangement hotspots in the human genome: evidence from the AZFadeletion hotspots

    OpenAIRE

    Hurles, Matthew E; Willey, David; Matthews, Lucy; Hussain, Syed Sufyan

    2004-01-01

    RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are. Abstract Backgrou...

  1. Polymorphisms, chromosomal rearrangements, and mutator phenotype development during experimental evolution of Lactobacillus rhamnosus GG

    NARCIS (Netherlands)

    Douillard, François P.; Ribbera, Angela; Xiao, Kun; Ritari, Jarmo; Rasinkangas, Pia; Paulin, Lars; Palva, Airi; Hao, Yanling; Vos, de Willem M.

    2016-01-01

    Lactobacillus rhamnosus GG is a lactic acid bacterium widely marketed by the food industry. Its genomic analysis led to the identification of a gene cluster encoding mucus-binding SpaCBA pili, which is located in a genomic island enriched in insertion sequence (IS) elements. In the present study,

  2. The physical map of wheat chromosome 5DS revealed gene duplications and small rearrangements

    Czech Academy of Sciences Publication Activity Database

    Akpinar, B.A.; Magni, F.; Yuce, M.; Lucas, S. J.; Šimková, Hana; Šafář, Jan; Vautrin, S.; Berges, H.; Cattonaro, F.; Doležel, Jaroslav; Budak, H.

    2015-01-01

    Roč. 16, JUN 13 (2015) ISSN 1471-2164 R&D Projects: GA ČR GBP501/12/G090; GA MŠk(CZ) LO1204 Institutional support: RVO:61389030 Keywords : Triticum aestivum * 5DS * Hexaploid wheat Subject RIV: EB - Gene tics ; Molecular Biology Impact factor: 3.867, year: 2015

  3. High-Throughput Analysis of DNA Break-Induced Chromosome Rearrangements by Amplicon Sequencing.

    Science.gov (United States)

    Brown, Alexander J; Al-Soodani, Aneesa T; Saul, Miles; Her, Stephanie; Garcia, Juan C; Ramsden, Dale A; Her, Chengtao; Roberts, Steven A

    2018-01-01

    The mechanistic understanding of how DNA double-strand breaks (DSB) are repaired is rapidly advancing in part due to the advent of inducible site-specific break model systems as well as the employment of next-generation sequencing (NGS) technologies to sequence repair junctions at high depth. Unfortunately, the sheer volume of data produced by these methods makes it difficult to analyze the structure of repair junctions manually or with other general-purpose software. Here, we describe methods to produce amplicon libraries of DSB repair junctions for sequencing, to map the sequencing reads, and then to use a robust, custom python script, Hi-FiBR, to analyze the sequence structure of mapped reads. The Hi-FiBR analysis processes large data sets quickly and provides information such as number and type of repair events, size of deletion, size of insertion and inserted sequence, microhomology usage, and whether mismatches are due to sequencing error or biological effect. The analysis also corrects for common alignment errors generated by sequencing read mapping tools, allowing high-throughput analysis of DSB break repair fidelity to be accurately conducted regardless of which suite of NGS analysis software is available. © 2018 Elsevier Inc. All rights reserved.

  4. Very short DNA segments can be detected and handled by the repair machinery during germline chromothriptic chromosome reassembly.

    Science.gov (United States)

    Slamova, Zuzana; Nazaryan-Petersen, Lusine; Mehrjouy, Mana M; Drabova, Jana; Hancarova, Miroslava; Marikova, Tatana; Novotna, Drahuse; Vlckova, Marketa; Vlckova, Zdenka; Bak, Mads; Zemanova, Zuzana; Tommerup, Niels; Sedlacek, Zdenek

    2018-02-06

    Analyses at nucleotide resolution reveal unexpected complexity of seemingly simple and balanced chromosomal rearrangements. Chromothripsis is a rare complex aberration involving local shattering of one or more chromosomes and reassembly of the resulting DNA segments. This can influence gene expression and cause abnormal phenotypes. We studied the structure and mechanism of a seemingly balanced de novo complex rearrangement of four chromosomes in a boy with developmental and growth delay. Microarray analysis revealed two paternal de novo deletions of 0.7 and 2.5 Mb at two of the breakpoints in 1q24.3 and 6q24.1-q24.2, respectively, which could explain most symptoms of the patient. Subsequent whole-genome mate-pair sequencing confirmed the chromothriptic nature of the rearrangement. The four participating chromosomes were broken into 29 segments longer than 1 kb. Sanger sequencing of all breakpoint junctions revealed additional complexity compatible with the involvement of different repair pathways. We observed translocation of a 33 bp long DNA fragment, which may have implications for the definition of the lower size limit of structural variants. Our observations and literature review indicate that even very small fragments from shattered chromosomes can be detected and handled by the repair machinery during germline chromothriptic chromosome reassembly. © 2018 Wiley Periodicals, Inc.

  5. Chromosomal assignment of canine THADA gene to CFA 10q25

    Directory of Open Access Journals (Sweden)

    Dolf Gaudenz

    2008-06-01

    Full Text Available Abstract Background Chromosomal translocations affecting the chromosome 2p21 cluster in a 450 kb breakpoint region are frequently observed in human benign thyroid adenomas. THADA (thyroid adenoma associated was identified as the affected gene within this breakpoint region. In contrast to man tumours of the thyroid gland of dogs (Canis lupus familiaris constitute mainly as follicular cell carcinomas, with malignant thyroid tumours being more frequent than benign thyroid adenomas. In order to elucidate if the THADA gene is also a target of chromosomal rearrangements in thyroid adenomas of the dog we have physically mapped the canine THADA gene to canine chromosome 10. A PCR was established to screen a canine genome library for a BAC clone containing the gene sequence of canine THADA. Further PCR reactions were done using the identified BAC clone as a template in order to verify the corresponding PCR product by sequencing. Canine whole blood was incubated with colcemid in order to arrest the cultured cells in metaphases. The verified BAC DNA was digoxigenin labeled and used as a probe in fluorescence in situ hybridization (FISH. Ten well spread metaphases were examined indicating a signal on canine chromosome 10 on both chromatids. A detailed fine mapping was performed indicating the canine THADA gene locus on the q-arm of chromosome 10. Results The canine THADA gene locus was mapped on chromosome 10q25. Our mapping results obtained in this study following the previously described nomenclature for the canine karyotype. Conclusion We analysed whether the THADA gene locus is a hotspot of canine chromosomal rearrangements in canine neoplastic lesions of the thyroid and in addition might play a role as a candidate gene for a possible malignant transformation of canine thyroid adenomas. Although the available cytogenetic data of canine thyroid adenomas are still insufficient the chromosomal region to which the canine THADA has been mapped seems to be no

  6. Stable beams

    CERN Multimedia

    2015-01-01

    Stable beams: two simple words that carry so much meaning at CERN. When LHC page one switched from "squeeze" to "stable beams" at 10.40 a.m. on Wednesday, 3 June, it triggered scenes of jubilation in control rooms around the CERN sites, as the LHC experiments started to record physics data for the first time in 27 months. This is what CERN is here for, and it’s great to be back in business after such a long period of preparation for the next stage in the LHC adventure.   I’ve said it before, but I’ll say it again. This was a great achievement, and testimony to the hard and dedicated work of so many people in the global CERN community. I could start to list the teams that have contributed, but that would be a mistake. Instead, I’d simply like to say that an achievement as impressive as running the LHC – a machine of superlatives in every respect – takes the combined effort and enthusiasm of everyone ...

  7. Novel Insights into Chromosome Evolution in Birds, Archosaurs, and Reptiles.

    Science.gov (United States)

    Farré, Marta; Narayan, Jitendra; Slavov, Gancho T; Damas, Joana; Auvil, Loretta; Li, Cai; Jarvis, Erich D; Burt, David W; Griffin, Darren K; Larkin, Denis M

    2016-08-25

    Homologous synteny blocks (HSBs) and evolutionary breakpoint regions (EBRs) in mammalian chromosomes are enriched for distinct DNA features, contributing to distinct phenotypes. To reveal HSB and EBR roles in avian evolution, we performed a sequence-based comparison of 21 avian and 5 outgroup species using recently sequenced genomes across the avian family tree and a newly-developed algorithm. We identified EBRs and HSBs in ancestral bird, archosaurian (bird, crocodile, and dinosaur), and reptile chromosomes. Genes involved in the regulation of gene expression and biosynthetic processes were preferably located in HSBs, including for example, avian-specific HSBs enriched for genes involved in limb development. Within birds, some lineage-specific EBRs rearranged genes were related to distinct phenotypes, such as forebrain development in parrots. Our findings provide novel evolutionary insights into genome evolution in birds, particularly on how chromosome rearrangements likely contributed to the formation of novel phenotypes. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  8. Stable propagation of 'selfish'genetic elements

    Indian Academy of Sciences (India)

    Unknown

    viruses such as the Epstein-Barr virus (Harris et al 1985;. Kanda et al 2001) and bovine papilloma virus (Lehman and Botchan 1998; Ilves et al 1999), which exist pre- dominantly as extrachromosomal episomes, have been shown to utilize chromosome tethering as a means for stable segregation. The tethering mechanism ...

  9. Molecular Analysis of Gene Rearrangements and Mutations in Acute Leukemias and Myeloid Neoplasms.

    Science.gov (United States)

    Sholl, Lynette M; Longtine, Janina; Kuo, Frank C

    2017-01-11

    A subset of acute leukemias and other myeloid neoplasms contains specific genetic alterations, many of which are associated with unique clinical and pathologic features. These alterations include chromosomal rearrangements leading to oncogenic fusion proteins or alteration of gene expression by juxtaposing oncogenes to enhancer elements, as well as mutations leading to aberrant activation of a variety of proteins critical to hematopoietic progenitor cell proliferation and differentiation. Molecular analysis is central to diagnosis and clinical management of leukemias, permitting genetic confirmation of a clinical and histologic impression, providing prognostic and predictive information, and facilitating detection of minimal residual disease. This unit will outline approaches to the molecular diagnosis of the most frequent and clinically relevant genetic alterations in acute leukemias and myeloid neoplasms. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.

  10. Detailed comparison between the wheat chromosome group 7 short arms and the rice chromosome arms 6S and 8L with special reference to genes involved in starch biosynthesis

    DEFF Research Database (Denmark)

    Li, Zhongyi; Huang, Bingyan; Rampling, Lynette

    2004-01-01

    .4%) and a high level of chromosome rearrangements (68.6%). The non-syntenous loci were of two classes: wheat and rice genes found at different locations in the genome (32.6%), and ESTs in wheat not present in rice (36.0%). Four starch synthetic genes, GBSSI, SSI, SSIIa and DBEI, were located at similar positions...

  11. Molecular studies of translocations and trisomy involving chromosome 13

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, W.P.; Bernasconi, F.; Dutly, F.; Schinzel, A.A. [Univ. of British Columbia, Vancouver (Canada)] [and others

    1996-01-11

    Twenty-four cases of trisomy 13 and one case with disomy 13, but a de novo dic(13,13)(p12p12) chromosome, were examined with molecular markers to determine the origin of the extra (or rearranged) chromosome. Twenty-one of 23 informative patients were consistent with a maternal origin of the extra chromosome. Lack of a third allele at any locus in both paternal origin cases indicate a somatic duplication of the paternal chromosome occurred. Five cases had translocation trisomy. The patient with a paternal rob(13q14q) had a maternal meiotic origin of the trisomy; thus, the paternal inheritance of the translocation chromosome was purely coincidental. Since there is not a significantly increased risk for unbalanced offspring of a t(13q14q) carrier and most trisomies are maternal in origin, this result should not be surprising; however, it illustrates that one cannot infer the origin of translocation trisomy based on parental origin of the translocation. Lack of a third allele at any locus in one of the three t(13q13q) cases indicates that it was most likely an isochromosome of postmeiotic origin, whereas the other two cases showed evidence of recombination. One balanced (nontrisomic) case with a nonmosaic 45, -13, -13, +t(13;13) karyotype was also investigated and was determined to be a somatic Robertsonian translocation between the maternal and paternal homologues, as has been found for all balanced homologous Robertsonian translocations so far investigated. Thus, it is also incorrect to assume in de novo translocation cases that the two involved chromosomes are even from the same parent. Despite a maternal origin of the trisomy, we cannot therefore infer anything about the parental origin of the chromosomes 13 and 14 involved in the translocation in the de novo t(13q14q) case nor for the two t(13;13) chromosomes showing a meiotic origin of the trisomy. 30 refs., 1 fig., 2 tabs.

  12. Know Your Chromosomes

    Indian Academy of Sciences (India)

    In each of our cells there is about 6 feet long DNA packed. Into 46 units called chromosomes. Chromosome: is a long thread of DNA wrapped around proteins. ... application of. Mendel's 'gene' concept to a human trait was' by the physician A. Garrod. He described the genetic disease alkaptonuria as an alteration In specific.

  13. Know Your Chromosomes

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 1; Issue 6. Know Your Chromosomes Hybrid Cells and Human Chromosomes. Vani Brahmachari. Series Article Volume 1 Issue 6 June 1996 pp 41-49. Fulltext. Click here to view fulltext PDF. Permanent link:

  14. Know Your Chromosomes

    Indian Academy of Sciences (India)

    These pieces of DNA which are clusters of several genes are called linkages groups or chromosomes. Therefore chromosomes are nothing but long. Cen. DNA. A,denin~ .... and as precursors for other biomolecules like hormones, purines and pyrimidines. ... in the history of science, Garrod's contributions to human genet-.

  15. Requirement for CDK6 in MLL-rearranged acute myeloid leukemia.

    Science.gov (United States)

    Placke, Theresa; Faber, Katrin; Nonami, Atsushi; Putwain, Sarah L; Salih, Helmut R; Heidel, Florian H; Krämer, Alwin; Root, David E; Barbie, David A; Krivtsov, Andrei V; Armstrong, Scott A; Hahn, William C; Huntly, Brian J; Sykes, Stephen M; Milsom, Michael D; Scholl, Claudia; Fröhling, Stefan

    2014-07-03

    Chromosomal rearrangements involving the H3K4 methyltransferase mixed-lineage leukemia (MLL) trigger aberrant gene expression in hematopoietic progenitors and give rise to an aggressive subtype of acute myeloid leukemia (AML). Insights into MLL fusion-mediated leukemogenesis have not yet translated into better therapies because MLL is difficult to target directly, and the identity of the genes downstream of MLL whose altered transcription mediates leukemic transformation are poorly annotated. We used a functional genetic approach to uncover that AML cells driven by MLL-AF9 are exceptionally reliant on the cell-cycle regulator CDK6, but not its functional homolog CDK4, and that the preferential growth inhibition induced by CDK6 depletion is mediated through enhanced myeloid differentiation. CDK6 essentiality is also evident in AML cells harboring alternate MLL fusions and a mouse model of MLL-AF9-driven leukemia and can be ascribed to transcriptional activation of CDK6 by mutant MLL. Importantly, the context-dependent effects of lowering CDK6 expression are closely phenocopied by a small-molecule CDK6 inhibitor currently in clinical development. These data identify CDK6 as critical effector of MLL fusions in leukemogenesis that might be targeted to overcome the differentiation block associated with MLL-rearranged AML, and underscore that cell-cycle regulators may have distinct, noncanonical, and nonredundant functions in different contexts. © 2014 by The American Society of Hematology.

  16. Impact of various parameters in detecting chromosomal aberrations by FISH to describe radiosensitivity

    International Nuclear Information System (INIS)

    Keller, U.; Mueller, E.; Grabenbauer, G.; Sauer, R.; Distel, L.; Kuechler, A.; Liehr, T.

    2004-01-01

    Background and purpose: analysis of radiation-induced chromosomal aberrations is regarded as the ''gold standard'' for classifying individual radiosensitivity. A variety of different parameters can be used. The crucial question, however, is to explore which parameter is suited best to describe the differences between patients with increased radiosensitivity and healthy individuals. Patients and methods: in this study, five patients with severe radiation-induced late effects of at least grade 3, classified according to the Radiation Therapy Oncology Group (RTOG), and eleven healthy individuals were examined retrospectively. Peripheral blood lymphocytes were irradiated in vitro with 0.7 Gy and 2.0 Gy prior to cultivation and stained by means of three-color fluorescence in situ hybridization (FISH). The detailed analysis was focused on the number of breaks per metaphase, on breaks from complex chromosomal rearrangements per metaphase, as well as on the percentage of translocations, dicentric chromosomes, breaks, and excess acentric fragments - each in comparison with the total number of mitoses analyzed. Results: using the number of breaks from complex chromosomal rearrangements after 2.0 Gy, radiosensitive patients as endpoint were clearly to be distinguished (p = 0.001) from healthy individuals. Translocations (p = 0.001) as well as breaks per metaphase (p = 0.002) were also suitable indicators for detecting differences between patients and healthy individuals. The parameters ''percentage of dicentric chromosomes'', ''breaks'', and ''excess acentric fragments'' in comparison to the total number of mitoses analyzed could neither serve as meaningful nor as significant criteria, since they showed a strong interindividual variability. Conclusion: to detect a difference in chromosomal aberrations between healthy and radiosensitive individuals, the parameters ''frequency of breaks per metaphase'', ''complex chromosomal rearrangements'', and ''translocations'' are most

  17. Discrimination of chromosome by autoradiography

    International Nuclear Information System (INIS)

    Masubuchi, Masanori

    1975-01-01

    This paper describes discrimination of chromosome by autoradiography. In this method, the difference in DNA synthetic phase between each chromosome was used as a standard, and the used chromosome was in metaphase, as morphological characteristics were markedly in this phase. Cell cycle and autoradiography with 3 H-thymidine were also examined. In order to discriminate chromosome by autoradiography, it was effective to utilize the labelled pattern in late DNA synthetic phase, where asynchronous replication of chromosome appeared most obviously. DNA synthesis in chromosome was examined in each DNA synthetic phase by culturing the chromosome after the treatment with 3 H-thymidine and altering the time to prepare chromosome specimen. Discrimination of chromosome in plants and animals by autoradiography was also mentioned. It was noticed as a structural and functional discrimination of chromosome to observe amino acid uptake into chromosome protein and to utilize the difference in labelled pattern between the sites of chromosome. (K. Serizawa)

  18. Comparative sequence analysis of primate subtelomeres originating from a chromosome fission event

    Science.gov (United States)

    Rudd, M. Katharine; Endicott, RaeLynn M.; Friedman, Cynthia; Walker, Megan; Young, Janet M.; Osoegawa, Kazutoyo; de Jong, Pieter J.; Green, Eric D.; Trask, Barbara J.

    2009-01-01

    Subtelomeres are concentrations of interchromosomal segmental duplications capped by telomeric repeats at the ends of chromosomes. The nature of the segments shared by different sets of human subtelomeres reflects their high rate of recent interchromosomal exchange. Here, we characterize the rearrangements incurred by the 15q subtelomere after it arose from a chromosome fission event in the common ancestor of great apes. We used FISH, sequencing of genomic clones, and PCR to map the breakpoint of this fission and track the fate of flanking sequence in human, chimpanzee, gorilla, orangutan, and macaque genomes. The ancestral locus, a cluster of olfactory receptor (OR) genes, lies internally on macaque chromosome 7. Sequence originating from this fission site is split between the terminus of 15q and the pericentromere of 14q in the great apes. Numerous structural rearrangements, including interstitial deletions and transfers of material to or from other subtelomeres, occurred subsequent to the fission, such that each species has a unique 15q structure and unique collection of ORs derived from the fission locus. The most striking rearrangement involved transfer of at least 200 kb from the fission-site region to the end of chromosome 4q, where much still resides in chimpanzee and gorilla, but not in human. This gross structural difference places the subtelomeric defect underlying facioscapulohumeral muscular dystrophy (FSHD) much closer to the telomere in human 4q than in the hybrid 4q–15q subtelomere of chimpanzee. PMID:18952852

  19. Allelic loss of the short arm of chromosome 4 in neuroblastoma suggests a novel tumour suppressor gene locus

    NARCIS (Netherlands)

    Caron, H.; van Sluis, P.; Buschman, R.; Pereira do Tanque, R.; Maes, P.; Beks, L.; de Kraker, J.; Voûte, P. A.; Vergnaud, G.; Westerveld, A.; Slater, R.; Versteeg, R.

    1996-01-01

    Neuroblastoma is a childhood neural crest tumour, genetically characterized by frequent deletions of the short arm of chromosome 1 and amplification of N-myc. Here we report the first evidence for a neuroblastoma tumour suppressor locus on 4pter. Cytogenetically we demonstrated rearrangements of 4p

  20. Linkage disequilibrium network analysis (LDna) gives a global view of chromosomal inversions, local adaptation and geographic structure

    Czech Academy of Sciences Publication Activity Database

    Kemppainen, Petri; Knight, C. G.; Sarma, D. K.; Hlaing, T.; Prakash, A.; Maung, Y. N. M.; Somboon, P.; Mahanta, J.; Walton, C.

    2015-01-01

    Roč. 15, č. 5 (2015), s. 1031-1045 ISSN 1755-098X R&D Projects: GA MŠk EE2.3.20.0303 Institutional support: RVO:68081766 Keywords : Anopheles dirus * Anopheles gambiae * chromosomal rearrangement * graph theory * landscape genomics * R package Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 5.298, year: 2015

  1. DNA rearrangement in human follicular lymphoma can involve the 5' or the 3' region of the bcl-2 gene

    International Nuclear Information System (INIS)

    Tsujimoto, Y.; Bashir, M.M.; Givol, I.; Cossman, J.; Jaffe, E.; Croce, C.M.

    1987-01-01

    In most human lymphomas, the chromosome translocation t(14;18) occurs within two breakpoint clustering regions on chromosome 18, the major one at the 3' untranslated region of the bcl-2 gene and the minor one at 3' of the gene. Analysis of a panel of follicular lymphoma DNAs using probes for the first exon of the bcl-2 gene indicates that DNA rearrangements may also occur 5' to the involved bcl-2 gene. In this case the IgH locus and the bcl-2 gene are found in an order suggesting that an inversion also occurred during the translocation process. The coding region of the bcl-2 gene, however, are left intact in all cases of follicular lymphoma studied to date

  2. The human Y chromosome: a masculine chromosome

    NARCIS (Netherlands)

    Noordam, Michiel J.; Repping, Sjoerd

    2006-01-01

    Once considered to be a genetic wasteland of no scientific interest beyond sex determination, the human Y chromosome has made a significant comeback in the past few decades and is currently implicated in multiple diseases, including spermatogenic failure - absent or very low levels of sperm

  3. A molecular deletion of distal chromosome 4p in two families with a satellited chromosome 4 lacking the Wolf-Hirschhorn syndrome phenotype.

    Science.gov (United States)

    Estabrooks, L L; Lamb, A N; Kirkman, H N; Callanan, N P; Rao, K W

    1992-11-01

    We report two families with a satellited chromosome 4 short arm (4ps). Satellites and stalks normally occur on the short arms of acrocentric chromosomes; however, the literature cites several reports of satellited nonacrocentric chromosomes, which presumably result from a translocation with an acrocentric chromosome. This is the first report of 4ps chromosomes. Our families are remarkable in that both unaffected and affected individuals carry the 4ps chromosome. The phenotypes observed in affected individuals, although dissimilar, were sufficient to encourage a search for a deletion of chromosome 4p. By Southern blot analysis and fluorescence in situ hybridization, a deletion of material mapping approximately 150 kb from chromosome 4pter was discovered. This deletion is notable because it does not result in the Wolf-Hirschhorn syndrome and can result in an apparently normal phenotype. We speculate that homology between subterminal repeat sequences on 4p and sequences on the acrocentric short arms may explain the origin of the rearrangement and that position effect may play a role in the expression of the abnormal phenotype.

  4. DNA damage response during mitosis induces whole chromosome mis-segregation

    Science.gov (United States)

    Bakhoum, Samuel F.; Kabeche, Lilian; Murnane, John P.; Zaki, Bassem I.; Compton, Duane A.

    2014-01-01

    Many cancers display both structural (s-CIN) and numerical (w-CIN) chromosomal instabilities. Defective chromosome segregation during mitosis has been shown to cause DNA damage that induces structural rearrangements of chromosomes (s-CIN). In contrast, whether DNA damage can disrupt mitotic processes to generate whole chromosomal instability (w-CIN) is unknown. Here we show that activation of the DNA damage response (DDR) during mitosis selectively stabilizes kinetochore-microtubule (k-MT) attachments to chromosomes through Aurora-A and Plk1 kinases, thereby increasing the frequency of lagging chromosomes during anaphase. Inhibition of DDR proteins, ATM or Chk2, abolishes the effect of DNA damage on k-MTs and chromosome segregation, whereas activation of the DDR in the absence of DNA damage is sufficient to induce chromosome segregation errors. Finally, inhibiting the DDR during mitosis in cancer cells with persistent DNA damage suppresses inherent chromosome segregation defects. Thus, DDR during mitosis inappropriately stabilizes k-MTs creating a link between s-CIN and w-CIN. PMID:25107667

  5. Chloroplast DNA rearrangements in Campanulaceae: phylogenetic utility of highly rearranged genomes

    Directory of Open Access Journals (Sweden)

    Jansen Robert K

    2004-08-01

    Full Text Available Abstract Background The Campanulaceae (the "hare bell" or "bellflower" family is a derived angiosperm family comprised of about 600 species treated in 35 to 55 genera. Taxonomic treatments vary widely and little phylogenetic work has been done in the family. Gene order in the chloroplast genome usually varies little among vascular plants. However, chloroplast genomes of Campanulaceae represent an exception and phylogenetic analyses solely based on chloroplast rearrangement characters support a reasonably well-resolved tree. Results Chloroplast DNA physical maps were constructed for eighteen representatives of the family. So many gene order changes have occurred among the genomes that characterizing individual mutational events was not always possible. Therefore, we examined different, novel scoring methods to prepare data matrices for cladistic analysis. These approaches yielded largely congruent results but varied in amounts of resolution and homoplasy. The strongly supported nodes were common to all gene order analyses as well as to parallel analyses based on ITS and rbcL sequence data. The results suggest some interesting and unexpected intrafamilial relationships. For example fifteen of the taxa form a derived clade; whereas the remaining three taxa – Platycodon, Codonopsis, and Cyananthus – form the basal clade. This major subdivision of the family corresponds to the distribution of pollen morphology characteristics but is not compatible with previous taxonomic treatments. Conclusions Our use of gene order data in the Campanulaceae provides the most highly resolved phylogeny as yet developed for a plant family using only cpDNA rearrangements. The gene order data showed markedly less homoplasy than sequence data for the same taxa but did not resolve quite as many nodes. The rearrangement characters, though relatively few in number, support robust and meaningful phylogenetic hypotheses and provide new insights into evolutionary

  6. Chromosome numbers in antlions (Myrmeleontidae) and owlflies (Ascalaphidae) (Insecta, Neuroptera)

    Science.gov (United States)

    Kuznetsova, Valentina G.; Khabiev, Gadzhimurad N.; Krivokhatsky, Victor A.

    2015-01-01

    Abstract A short review of main cytogenetic features of insects belonging to the sister neuropteran families Myrmeleontidae (antlions) and Ascalaphidae (owlflies) is presented, with a particular focus on their chromosome numbers and sex chromosome systems. Diploid male chromosome numbers are listed for 37 species, 21 genera from 9 subfamilies of the antlions as well as for seven species and five genera of the owlfly subfamily Ascalaphinae. The list includes data on five species whose karyotypes were studied in the present work. It is shown here that antlions and owlflies share a simple sex chromosome system XY/XX; a similar range of chromosome numbers, 2n = 14-26 and 2n = 18-22 respectively; and a peculiar distant pairing of sex chromosomes in male meiosis. Usually the karyotype is particularly stable within a genus but there are some exceptions in both families (in the genera Palpares and Libelloides respectively). The Myrmeleontidae and Ascalaphidae differ in their modal chromosome numbers. Most antlions exhibit 2n = 14 and 16, and Palparinae are the only subfamily characterized by higher numbers, 2n = 22, 24, and 26. The higher numbers, 2n = 20 and 22, are also found in owlflies. Since the Palparinae represent a basal phylogenetic lineage of the Myrmeleontidae, it is hypothesized that higher chromosome numbers are ancestral for antlions and were inherited from the common ancestor of Myrmeleontidae + Ascalaphidae. They were preserved in the Palparinae (Myrmeleontidae), but changed via chromosomal fusions toward lower numbers in other subfamilies. PMID:26807036

  7. The heterogeneity of pediatric MLL-rearranged acute myeloid leukemia.

    Science.gov (United States)

    Balgobind, B V; Zwaan, C M; Pieters, R; Van den Heuvel-Eibrink, M M

    2011-08-01

    Translocations involving the mixed-lineage leukemia (MLL) gene, localized at 11q23, comprise 15 to 20% of all pediatric acute myeloid leukemia (AML) cases. This review summarizes current knowledge about the etiology, biology, clinical characteristics and differences in outcome in MLL-rearranged pediatric AML. Furthermore, we discuss the role of cooperating events in MLL-rearranged pediatric AML, and future therapeutic strategies to improve outcome. We conclude that MLL-rearranged pediatric AML is a heterogeneous disease, and prognosis depends on various factors, for example, translocation partner, age, WBC and additional cytogenetic aberrations. The relationship of outcome with specific translocation partners requires that they be searched for in the diagnostic work-up of AML. To achieve further improvements in outcome, unraveling the biology of MLL-rearranged pediatric AML is warranted.

  8. Ceritinib (LDK378): a potent alternative to crizotinib for ALK-rearranged non-small-cell lung cancer.

    Science.gov (United States)

    Li, Sen; Qi, Xiaolong; Huang, Yufeng; Liu, Dingfeng; Zhou, Fangyu; Zhou, Caicun

    2015-03-01

    The success in identifying the chromosomal rearrangements involving the anaplastic lymphoma kinase (ALK) as an oncogenic driver has thoroughly changed the treatment of non-small-cell lung cancer. In the past decade, targeted drugs have emerged as an efficient personalized strategy for ALK-rearranged non-small-cell lung cancer. The accelerated approval of potent ALK inhibitors, such as crizotinib and more recently ceritinib (LDK378), based on the well designed phase I/II trials has been a landmark success in clinical cancer research and contributes a new era of oncogenic targeted therapy characterized by elegant clinical trial design. In this review, we aim to present the current knowledge on acquired resistance of crizotinib known as a first-in-class ALK inhibitor and potential solutions to improve the cost-effectiveness, and to review the difference between ceritinib and crizotinib; preclinical data and results of the elegant early clinical trial of ceritinib which promoted its accelerated approval, pharmacokinetics, safety profile, and tolerability, the updated results (eg, efficacy on brain metastases), and robust design of ongoing phase II/III trials, and future directions of ceritinib to be a potent alternative to crizotinib for ALK-rearranged non-small-cell lung cancer are also presented. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Combinatorial aspects of genome rearrangements and haplotype networks

    OpenAIRE

    Labarre , Anthony

    2008-01-01

    The dissertation covers two problems motivated by computational biology: genome rearrangements, and haplotype networks. Genome rearrangement problems are a particular case of edit distance problems, where one seeks to transform two given objects into one another using as few operations as possible, with the additional constraint that the set of allowed operations is fixed beforehand; we are also interested in computing the corresponding distances between those objects, i.e. merely computing t...

  10. Stable transformation of the cyanobacterium Synechocystis sp. PCC 6803 induced by UV irradiation

    International Nuclear Information System (INIS)

    Dzelzkalns, V.A.; Bogorad, L.

    1986-01-01

    Irradiation of the photoheterotrophic cyanobacterium Synechocystis sp. PCC 6803 with low levels of UV light allows for stable, integrative transformation of these cells by heterologous DNA. In this system, transformation does not rely on an autonomously replicating plasmid and is independent of homologous recombination. Cells treated with UV light in the absence of DNA and cells given DNA but not exposed to UV do not yield antibiotic-resistant colonies in platings of up to 2 x 10 8 cells. Optimal conditions for this UV-induced transformation are described. Analysis of the transformants indicates that (i) only a segment of the introduced plasmid is found in the DNA of the transformed cells; (ii) in independently isolated clones, DNA insertion apparently occurs at different sites in the chromosome; and (iii) hybridization data suggest that insertion in one of the transformants may have occurred into a region of the chromosome that is repeated or that integration of plasmid DNA may have been accompanied by a rearrangement or duplication of DNA sequences near the insertion site. DNA isolated from the primary transformants as well as a cloned fragment containing the UV- inserted plasmid sequence and flanking cyanobacterial DNA transform wild-type cells at a high frequency (5.0 x 10 -4 and 1.5 x 10 -5 , respectively). Possible mechanisms of this transformation system are discussed, as are the potential uses of this system as an integrative cloning-complementation vector and as a mutagenic agent in which the genetic lesion is already tagged with a selectable marker

  11. Synthesis of rearranged unsaturated drimane derivatives

    Directory of Open Access Journals (Sweden)

    Miranda Domingos S. de

    2001-01-01

    Full Text Available A full account to the preparation and application of three appropriately substituted vinylcyclohexenes (2,2-dimethyl-3-vinylcyclohex-3-en-1-ol, 2,2-dimethyl-3-vinylcyclohex-3-en-1-one and 3,3-dimethyl-2-vinylcyclohexene in thermal Diels-Alder reactions with alpha,beta-unsaturated esters (methyl tiglate and methyl angelate is given. This approach delivered the racemic synthesis of ten octalin derivatives bearing a rearranged drimane skeleton (4 diastereomers of 1-methoxycarbonyl-6-hydroxy-1,2,5,5-tetramethyl-1,2,3,5,6,7, 8,8a-octahydronaphthalene; 1-methoxycarbonyl-6-oxo-1,2,5,5-tetramethyl-1,2,3,4,5,6,7,8-octahydronaphthalene; 2-methoxycarbonyl-6-oxo-1,2,5,5-tetramethyl-1,2,3,5,6,7,8,8a-octahydronaphthalene; 3 diastereomers of 1-methoxycarbonyl-1,2,5,5-tetramethyl-1,2,3,5,6,7,8,8a-octahydronaphthalene and 2-methoxycarbonyl-1,2,5,5-tetramethyl-1,2,3,5,6,7,8,8a-octahydronaphthalene . Central synthetic features included preparation of enoltriflates by Stang's protocol and the successful palladium-catalyzed cross-coupling reaction (Stille reaction of the triflate with the tri-n-butylvinylstannane. The octalins relative stereochemistry was unequivocally ascertained by spectroscopic methods and/or X-ray crystallography and these data now stand as useful tools to support the correct assignment of related natural products usually isolated in minute amounts.

  12. The Stereochemical Course of the α-Hydroxyphosphonate-Phosphate Rearrangement.

    Science.gov (United States)

    Pallitsch, Katharina; Roller, Alexander; Hammerschmidt, Friedrich

    2015-07-06

    The phosphonate-phosphate rearrangement is an isomerisation of α-hydroxyphosphonates bearing electron-withdrawing substituents at the α-carbon atom. We studied the stereochemical course of this rearrangement with respect to phosphorus. A set of four diastereomeric α-hydroxyphosphonates was prepared by a Pudovik reaction from two diastereomeric cyclic phosphites. The hydroxyphosphonates were separated and rearranged with Et3 N as base. In analogy to trichlorphon, which was the first reported compound undergoing this rearrangement. All four hydroxyphosphonates could be rearranged to 2,2-dichlorovinyl phosphates. Single-crystal X-ray structure analyses of the α-hydroxyphosphonates and the corresponding phosphates allowed us to show that the rearrangement proceeds with retention of configuration on the phosphorus atom. © 2015 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

  13. A High-Density Genetic Map of Wild Emmer Wheat from the Karaca Dağ Region Provides New Evidence on the Structure and Evolution of Wheat Chromosomes

    Directory of Open Access Journals (Sweden)

    Chad Jorgensen

    2017-10-01

    Full Text Available Wild emmer (Triticum turgidum ssp. dicoccoides is a progenitor of all cultivated wheat grown today. It has been hypothesized that emmer was domesticated in the Karaca Dağ region in southeastern Turkey. A total of 445 recombinant inbred lines of T. turgidum ssp. durum cv. ‘Langdon’ x wild emmer accession PI 428082 from this region was developed and genotyped with the Illumina 90K single nucleotide polymorphism Infinium assay. A genetic map comprising 2,650 segregating markers was constructed. The order of the segregating markers and an additional 8,264 co-segregating markers in the Aegilops tauschii reference genome sequence was used to compare synteny of the tetraploid wheat with the Brachypodium distachyon, rice, and sorghum. These comparisons revealed the presence of 15 structural chromosome rearrangements, in addition to the already known 4A-5A-7B rearrangements. The most common type was an intra-chromosomal translocation in which the translocated segment was short and was translocated only a short distance along the chromosome. A large reciprocal translocation, one small non-reciprocal translocation, and three large and one small paracentric inversions were also discovered. The use of inversions for a phylogeny reconstruction in the Triticum–Aegilops alliance was illustrated. The genetic map was inconsistent with the current model of evolution of the rearranged chromosomes 4A-5A-7B. Genetic diversity in the rearranged chromosome 4A showed that the rearrangements might have been contemporary with wild emmer speciation. A selective sweep was found in the centromeric region of chromosome 4A in Karaca Dağ wild emmer but not in 4A of T. aestivum. The absence of diversity from a large portion of chromosome 4A of wild emmer, believed to be ancestral to all domesticated wheat, is puzzling.

  14. Chromoanasynthetic Genomic Rearrangement Identified in a N-Ethyl-N-Nitrosourea (ENU) Mutagenesis Screen in Caenorhabditis elegans.

    Science.gov (United States)

    Itani, Omar A; Flibotte, Stephane; Dumas, Kathleen J; Moerman, Donald G; Hu, Patrick J

    2015-12-01

    Chromoanasynthesis is a recently discovered phenomenon in humans with congenital diseases that is characterized by complex genomic rearrangements (CGRs) resulting from aberrant repair of catastrophic chromosomal damage. How these CGRs are induced is not known. Here, we describe the structure and function of dpDp667, a causative CGR that emerged from a Caenorhabditis elegans dauer suppressor screen in which animals were treated with the point mutagen N-ethyl-N-nitrosourea (ENU). dpDp667 comprises nearly 3 Mb of sequence on the right arm of the X chromosome, contains three duplications and one triplication, and is devoid of deletions. Sequences from three out of the four breakpoint junctions in dpDp667 reveal microhomologies that are hallmarks of chromoanasynthetic CGRs. Our findings suggest that environmental insults and physiological processes that cause point mutations may give rise to chromoanasynthetic rearrangements associated with congenital disease. The relatively subtle phenotype of animals harboring dpDp667 suggests that the prevalence of CGRs in the genomes of mutant and/or phenotypically unremarkable animals may be grossly underestimated. Copyright © 2016 Itani et al.

  15. Chromoanasynthetic Genomic Rearrangement Identified in a N-Ethyl-N-Nitrosourea (ENU Mutagenesis Screen in Caenorhabditis elegans

    Directory of Open Access Journals (Sweden)

    Omar A. Itani

    2016-02-01

    Full Text Available Chromoanasynthesis is a recently discovered phenomenon in humans with congenital diseases that is characterized by complex genomic rearrangements (CGRs resulting from aberrant repair of catastrophic chromosomal damage. How these CGRs are induced is not known. Here, we describe the structure and function of dpDp667, a causative CGR that emerged from a Caenorhabditis elegans dauer suppressor screen in which animals were treated with the point mutagen N-ethyl-N-nitrosourea (ENU. dpDp667 comprises nearly 3 Mb of sequence on the right arm of the X chromosome, contains three duplications and one triplication, and is devoid of deletions. Sequences from three out of the four breakpoint junctions in dpDp667 reveal microhomologies that are hallmarks of chromoanasynthetic CGRs. Our findings suggest that environmental insults and physiological processes that cause point mutations may give rise to chromoanasynthetic rearrangements associated with congenital disease. The relatively subtle phenotype of animals harboring dpDp667 suggests that the prevalence of CGRs in the genomes of mutant and/or phenotypically unremarkable animals may be grossly underestimated.

  16. Chromoanasynthetic Genomic Rearrangement Identified in a N-Ethyl-N-Nitrosourea (ENU) Mutagenesis Screen in Caenorhabditis elegans

    Science.gov (United States)

    Itani, Omar A.; Flibotte, Stephane; Dumas, Kathleen J.; Moerman, Donald G.; Hu, Patrick J.

    2015-01-01

    Chromoanasynthesis is a recently discovered phenomenon in humans with congenital diseases that is characterized by complex genomic rearrangements (CGRs) resulting from aberrant repair of catastrophic chromosomal damage. How these CGRs are induced is not known. Here, we describe the structure and function of dpDp667, a causative CGR that emerged from a Caenorhabditis elegans dauer suppressor screen in which animals were treated with the point mutagen N-ethyl-N-nitrosourea (ENU). dpDp667 comprises nearly 3 Mb of sequence on the right arm of the X chromosome, contains three duplications and one triplication, and is devoid of deletions. Sequences from three out of the four breakpoint junctions in dpDp667 reveal microhomologies that are hallmarks of chromoanasynthetic CGRs. Our findings suggest that environmental insults and physiological processes that cause point mutations may give rise to chromoanasynthetic rearrangements associated with congenital disease. The relatively subtle phenotype of animals harboring dpDp667 suggests that the prevalence of CGRs in the genomes of mutant and/or phenotypically unremarkable animals may be grossly underestimated. PMID:26628482

  17. Chromosome condensation and segmentation

    International Nuclear Information System (INIS)

    Viegas-Pequignot, E.M.

    1981-01-01

    Some aspects of chromosome condensation in mammalians -humans especially- were studied by means of cytogenetic techniques of chromosome banding. Two further approaches were adopted: a study of normal condensation as early as prophase, and an analysis of chromosome segmentation induced by physical (temperature and γ-rays) or chemical agents (base analogues, antibiotics, ...) in order to show out the factors liable to affect condensation. Here 'segmentation' means an abnormal chromosome condensation appearing systematically and being reproducible. The study of normal condensation was made possible by the development of a technique based on cell synchronization by thymidine and giving prophasic and prometaphasic cells. Besides, the possibility of inducing R-banding segmentations on these cells by BrdU (5-bromodeoxyuridine) allowed a much finer analysis of karyotypes. Another technique was developed using 5-ACR (5-azacytidine), it allowed to induce a segmentation similar to the one obtained using BrdU and identify heterochromatic areas rich in G-C bases pairs [fr

  18. Chromosomal abnormalities and autism

    Directory of Open Access Journals (Sweden)

    Farida El-Baz

    2016-01-01

    Conclusion: Chromosomal abnormalities were not detected in the studied autistic children, and so the relation between the genetics and autism still needs further work up with different study methods and techniques.

  19. Chromosomal Abnormalties with Epilepsy

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2005-02-01

    Full Text Available The correlation between specific chromosome abnormalties and various epilepsies was investigated by a study of 76 patients’ records obtained by questionnaires distributed to members of Kyoto Multi-institutional Study Group of Pediatric Neurology.

  20. Fetal chromosome analysis: screening for chromosome disease?

    DEFF Research Database (Denmark)

    Philip, J; Tabor, Ann; Bang, J

    1983-01-01

    with women without elevated risk. Spontaneous abortion rate and prematurity rate did not differ from rates expected without amniocentesis. It is concluded that current indications may be characterized as a mixture of evident high risk factors and factors with only a minor influence on risk. Indications...... who want it, is discussed. Screening for chromosome disease in all pregnancies is not without problems, but may be reasonable in some localities....

  1. Chromosome numbers in Bromeliaceae

    OpenAIRE

    Cotias-de-Oliveira,Ana Lúcia Pires; Assis,José Geraldo Aquino de; Bellintani,Moema Cortizo; Andrade,Jorge Clarêncio Souza; Guedes,Maria Lenise Silva

    2000-01-01

    The present study reports chromosome numbers of 17 species of Bromeliaceae, belonging to the genera Encholirium, Bromelia, Orthophytum, Hohenbergia, Billbergia, Neoglaziovia, Aechmea, Cryptanthus and Ananas. Most species present 2n = 50, however, Bromelia laciniosa, Orthophytum burle-marxii and O. maracasense are polyploids with 2n = 150, 2n = 100 and 2n = 150, respectively, while for Cryptanthus bahianus, 2n = 34 + 1-4B. B chromosomes were observed in Bromelia plumieri and Hohenbergia aff. u...

  2. Chromosomal Evolution in Chiroptera

    OpenAIRE

    Sotero-Caio, Cibele G.; Baker, Robert J.; Volleth, Marianne

    2017-01-01

    Chiroptera is the second largest order among mammals, with over 1300 species in 21 extant families. The group is extremely diverse in several aspects of its natural history, including dietary strategies, ecology, behavior and morphology. Bat genomes show ample chromosome diversity (from 2n = 14 to 62). As with other mammalian orders, Chiroptera is characterized by clades with low, moderate and extreme chromosomal change. In this article, we will discuss trends of karyotypic evolution within d...

  3. Activation of X Chromosome Inactivation

    NARCIS (Netherlands)

    C.M. Maduro (Cheryl)

    2016-01-01

    markdownabstractIn mammals, males are the heterogametic sex having an X chromosome and a Y chromosome whereas females have two X chromosomes. Despite originating from an ancient homologous autosomal pair, the X and Y chromosome now differ greatly in size and gene content after ~180 MY of evolution.

  4. Chromosomal Diversity and Karyotype Evolution in South American Macaws (Psittaciformes, Psittacidae)

    Science.gov (United States)

    de Oliveira Furo, Ivanete; Kretschmer, Rafael; O’Brien, Patrícia C.; Ferguson-Smith, Malcolm A.; de Oliveira, Edivaldo Herculano Corrêa

    2015-01-01

    Most species of macaws, which represent the largest species of Neotropical Psittacidae, characterized by their long tails and exuberant colours, are endangered, mainly because of hunting, illegal trade and habitat destruction. Long tailed species seem to represent a monophyletic group within Psittacidae, supported by cytogenetic data. Hence, these species show karyotypes with predominance of biarmed macrochromosomes, in contrast to short tailed species, with a predominance of acro/telocentric macrochromosomes. Because of their similar karyotypes, it has been proposed that inversions and translocations may be the main types of rearrangements occurring during the evolution of this group. However, only one species of macaw, Ara macao, that has had its genome sequenced was analyzed by means of molecular cytogenetics. Hence, in order to verify the rearrangements, we analyzed the karyotype of two species of macaws, Ara chloropterus and Anodorhynchus hyacinthinus, using cross-species chromosome painting with two different sets of probes from chicken and white hawk. Both intra- and interchromosomal rearrangements were observed. Chicken probes revealed the occurrence of fusions, fissions and inversions in both species, while the probes from white hawk determined the correct breakpoints or chromosome segments involved in the rearrangements. Some of these rearrangements were common for both species of macaws (fission of GGA1 and fusions of GGA1p/GGA4q, GGA6/GGA7 and GGA8/GGA9), while the fissions of GGA 2 and 4p were found only in A. chloropterus. These results confirm that despite apparent chromosomal similarity, macaws have very diverse karyotypes, which differ from each other not only by inversions and translocations as postulated before, but also by fissions and fusions. PMID:26087053

  5. Chromosomal Diversity and Karyotype Evolution in South American Macaws (Psittaciformes, Psittacidae).

    Science.gov (United States)

    de Oliveira Furo, Ivanete; Kretschmer, Rafael; O'Brien, Patrícia C; Ferguson-Smith, Malcolm A; de Oliveira, Edivaldo Herculano Corrêa

    2015-01-01

    Most species of macaws, which represent the largest species of Neotropical Psittacidae, characterized by their long tails and exuberant colours, are endangered, mainly because of hunting, illegal trade and habitat destruction. Long tailed species seem to represent a monophyletic group within Psittacidae, supported by cytogenetic data. Hence, these species show karyotypes with predominance of biarmed macrochromosomes, in contrast to short tailed species, with a predominance of acro/telocentric macrochromosomes. Because of their similar karyotypes, it has been proposed that inversions and translocations may be the main types of rearrangements occurring during the evolution of this group. However, only one species of macaw, Ara macao, that has had its genome sequenced was analyzed by means of molecular cytogenetics. Hence, in order to verify the rearrangements, we analyzed the karyotype of two species of macaws, Ara chloropterus and Anodorhynchus hyacinthinus, using cross-species chromosome painting with two different sets of probes from chicken and white hawk. Both intra- and interchromosomal rearrangements were observed. Chicken probes revealed the occurrence of fusions, fissions and inversions in both species, while the probes from white hawk determined the correct breakpoints or chromosome segments involved in the rearrangements. Some of these rearrangements were common for both species of macaws (fission of GGA1 and fusions of GGA1p/GGA4q, GGA6/GGA7 and GGA8/GGA9), while the fissions of GGA 2 and 4p were found only in A. chloropterus. These results confirm that despite apparent chromosomal similarity, macaws have very diverse karyotypes, which differ from each other not only by inversions and translocations as postulated before, but also by fissions and fusions.

  6. Chromosomal Diversity and Karyotype Evolution in South American Macaws (Psittaciformes, Psittacidae.

    Directory of Open Access Journals (Sweden)

    Ivanete de Oliveira Furo

    Full Text Available Most species of macaws, which represent the largest species of Neotropical Psittacidae, characterized by their long tails and exuberant colours, are endangered, mainly because of hunting, illegal trade and habitat destruction. Long tailed species seem to represent a monophyletic group within Psittacidae, supported by cytogenetic data. Hence, these species show karyotypes with predominance of biarmed macrochromosomes, in contrast to short tailed species, with a predominance of acro/telocentric macrochromosomes. Because of their similar karyotypes, it has been proposed that inversions and translocations may be the main types of rearrangements occurring during the evolution of this group. However, only one species of macaw, Ara macao, that has had its genome sequenced was analyzed by means of molecular cytogenetics. Hence, in order to verify the rearrangements, we analyzed the karyotype of two species of macaws, Ara chloropterus and Anodorhynchus hyacinthinus, using cross-species chromosome painting with two different sets of probes from chicken and white hawk. Both intra- and interchromosomal rearrangements were observed. Chicken probes revealed the occurrence of fusions, fissions and inversions in both species, while the probes from white hawk determined the correct breakpoints or chromosome segments involved in the rearrangements. Some of these rearrangements were common for both species of macaws (fission of GGA1 and fusions of GGA1p/GGA4q, GGA6/GGA7 and GGA8/GGA9, while the fissions of GGA 2 and 4p were found only in A. chloropterus. These results confirm that despite apparent chromosomal similarity, macaws have very diverse karyotypes, which differ from each other not only by inversions and translocations as postulated before, but also by fissions and fusions.

  7. Gain of chromosome 4qter and loss of 5pter: an unusual case with features of cri du chat syndrome.

    Science.gov (United States)

    Sheth, Frenny; Gohel, Naresh; Liehr, Thomas; Akinde, Olakanmi; Desai, Manisha; Adeteye, Olawaleye; Sheth, Jayesh

    2012-01-01

    Here, we present a case with an unusual chromosomal rearrangement in a child with a predominant phenotype of high-pitched crying showing deletion encompassing CTNND2 due to an unbalanced translocation of chromosomes 4 and 5. This rearrangement led to a duplication of ~35 Mb in 4qter which replaced 18 Mb genetic materials in 5pter. Even though, in this patient, there was no clinically obvious modification to the classical phenotypes of CdCS, and the influence of the 4q-duplication cannot be completely excluded in this case. However, the region 4q34.1-34.3 was previously reported as a region not leading to phenotypic changes if present in three copies, an observation which could possibly be supported by this case. Conclusion. This study showed that in a patient with an unbalanced translocation resulting in 5p deletion, the presence of partial trisomy of chromosome 4q could be clinically insignificant.

  8. Biparental inheritance of chromosome 21 polymorphic markers indicates that some Robertsonian translocations t(21;21) occur postzygotically

    Energy Technology Data Exchange (ETDEWEB)

    Blouin, J.L.; Antonarakis, S.E. [Johns Hopkins Univ. School of Medicine, Baltimore, MD (United States); Binkert, F. [Univ. of Zurich Medical School, Zurich (Switzerland)

    1994-02-01

    Robertsonian translocations between acrocentric chromosomes are the most common structural chromosomal rearrangements in humans and many other organisms, and several mechanisms for their formation have been proposed. The authors have analyzed highly informative DNA polymorphisms in a family with a nonmosaic de novo Robertsonian translocation 21q;21q, to determine the parental origin of the two 21q arms of the rearranged chromosome. The genotypes indicated a biparental origin, i.e. one 21q was paternal and the other maternal. These results imply that in some cases the formation of the rob (21q;21q) occurs in the zygote or in the first few postzygotic mitotic divisions. 33 refs., 1 fig., 1 tab.

  9. Differential gene flow of mitochondrial and nuclear DNA markers among chromosomal races of Australian morabine grasshoppers (Vandiemenella, viatica species group).

    Science.gov (United States)

    Kawakami, T; Butlin, R K; Adams, M; Saint, K M; Paull, D J; Cooper, S J B

    2007-12-01

    Recent theoretical developments have led to a renewed interest in the potential role of chromosomal rearrangements in speciation. Australian morabine grasshoppers (genus Vandiemenella, viatica species group) provide an excellent study system to test this potential role of chromosomal rearrangements because they show extensive chromosomal variation and formed the basis of a classic chromosomal speciation model. There are three chromosomal races, viatica19, viatica17, and P24(XY), on Kangaroo Island, South Australia, forming five parapatric populations with four putative contact zones among them. We investigate the extent to which chromosomal variation among these populations may be associated with barriers to gene flow. Population genetic and phylogeographical analyses using 15 variable allozyme loci and the elongation factor-1alpha (EF-1alpha) gene indicate that the three races represent genetically distinct taxa. In contrast, analyses of the mitochondrial cytochrome c oxidase subunit I (COI) gene show the presence of three distinctive and geographically localized groups that do not correspond with the distribution of the chromosomal races. These discordant population genetic patterns are likely to result from introgressive hybridization between the chromosomal races and range expansions/contractions. Overall, these results suggest that reduction of nuclear gene flow may be associated with chromosomal variation, or underlying genetic variation linked with chromosomal variation, whereas mitochondrial gene flow appears to be independent of this variation in these morabine grasshoppers. The identification of an intact contact zone between P24(XY) and viatica17 offers considerable potential for further investigation of molecular mechanisms that maintain distinct nuclear genomes among the chromosomal races.

  10. Distribution of segmental duplications in the context of higher order chromatin organisation of human chromosome 7

    DEFF Research Database (Denmark)

    Ebert, Grit; Steininger, Anne; Weißmann, Robert

    2014-01-01

    chromosome 7, either by promoting regional SD insertion or by contributing to the establishment of higher order chromatin organisation themselves. The latter could compensate for the high risk of structural rearrangements and thus may have contributed to their evolutionary fixation in the human genome.......BACKGROUND: Segmental duplications (SDs) are not evenly distributed along chromosomes. The reasons for this biased susceptibility to SD insertion are poorly understood. Accumulation of SDs is associated with increased genomic instability, which can lead to structural variants and genomic disorders...... such as the Williams-Beuren syndrome. Despite these adverse effects, SDs have become fixed in the human genome. Focusing on chromosome 7, which is particularly rich in interstitial SDs, we have investigated the distribution of SDs in the context of evolution and the three dimensional organisation of the chromosome...

  11. Postnatal diagnosis of constitutive ring chromosome 13 using both conventional and molecular cytogenetic approaches.

    Science.gov (United States)

    Minasi, L B; Pinto, I P; de Almeida, J G; de Melo, A V; Cunha, D M C; Ribeiro, C L; Silva, G P; Brasil, M G; Silva, D M; da Silva, C C; da Cruz, A D

    2015-03-06

    We describe the first postnatal diagnosis of a child from Central Brazil with de novo cytogenetic alterations in 13q showing malformations of the brain, eyes, distal limbs, and genitourinary tract, and severe intellectual disability. The karyotype was a constitutive 46,XX,r(13)[77]/45,XX,-13[17]/46,XX,idic r(13)[6]. Interphase and metaphase fluorescence in situ hybridization analyses also showed the absence of 13qter and the presence of 13q14.3 in the cells with r(13), and chromosome microarray analysis detected a 15.39 Mb deletion in chromosome region 13q32.3-q34. This study is intended as the registry of a rare case of chromosomal rearrangement involving chromosome 13 in Central Brazil. Further studies are needed to define whether genetic haploinsufficiency is associated with each major 13q deletion anomaly.

  12. Alterations of chromosome 11q13 in cervical carcinoma cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Popescu, N.C.; Zimonjic, D.B. [National Institutes of Health, Bethesda, MD (United States)

    1996-02-01

    In cervical cancer, evidence for the existence of a tumor-suppressor gene on chromosome 11 has been generated from studies with somatic cell hybrids, chromosome microcell transfer, or deletion analysis of DNA markers. As suggested by somatic cell hybrids analysis, chromosome 11 harbors at least three distinctive tumor-suppressor genes, two on the short arm and one on the long arm. Loss of heterozygosity (LOH) analysis using 16 markers, 10 of which were microsatellite-based, placed the region of a putative tumor-suppressor gene to 11q22-24. Recently, 11q13 was assigned as another possible site on the basis of molecular rearrangements, deletions, and translocations, nonrandomly involving this region in four of eight cervical carcinoma cell lines. Abnormal chromosomes 11 were found in HeLa, SiHa, and Caski lines and in C33A, a human papilloma virus-negative cell line. 18 refs.

  13. Diversity of breakpoints of variant Philadelphia chromosomes in chronic myeloid leukemia in Brazilian patients

    Directory of Open Access Journals (Sweden)

    Maria de Lourdes Lopes Ferrari Chauffaille

    2015-02-01

    Full Text Available Background: Chronic myeloid leukemia is a myeloproliferative disorder characterized by the Philadelphia chromosome or t(9;22(q34.1;q11.2, resulting in the break-point cluster regionAbelson tyrosine kinase fusion gene, which encodes a constitutively active tyrosine kinase protein. The Philadelphia chromosome is detected by karyotyping in around 90% of chronic myeloid leukemia patients, but 5-10% may have variant types. Variant Philadelphia chromosomes are characterized by the involvement of another chromosome in addition to chromosome 9 or 22. It can be a simple type of variant when one other chromosome is involved, or complex, in which two or more chromosomes take part in the translocation. Few studies have reported the incidence of variant Philadelphia chromosomes or the breakpoints involved among Brazilian chronic myeloid leukemia patients. Objective: The aim of this report is to describe the diversity of the variant Philadelphia chromosomes found and highlight some interesting breakpoint candidates for further studies. Methods: the Cytogenetics Section Database was searched for all cases with diagnoses of chronic myeloid leukemia during a 12-year period and all the variant Philadelphia chromosomes were listed. Results: Fifty (5.17% cases out of 1071 Philadelphia-positive chronic myeloid leukemia were variants. The most frequently involved chromosome was 17, followed by chromosomes: 1, 20, 6, 11, 2, 10, 12 and 15. Conclusion: Among all the breakpoints seen in this survey, six had previously been described: 11p15, 14q32, 15q11.2, 16p13.1, 17p13 and 17q21. The fact that some regions get more fre- quently involved in such rare rearrangements calls attention to possible predisposition that should be further studied. Nevertheless, the pathological implication of these variants remains unclear.

  14. Chromosomal localization of ribosomal and telomeric DNA provides new insights on the evolution of gomphocerinae grasshoppers.

    Science.gov (United States)

    Jetybayev, I E; Bugrov, A G; Karamysheva, T V; Camacho, J P M; Rubtsov, N B

    2012-01-01

    Chromosome location of ribosomal DNA (rDNA) and telomeric repeats was analysed in mitotic chromosomes of 15 species of Gomphocerinae grasshoppers belonging to the tribes Arcypterini, Gomphocerini, Stenobothrini, and Chrysochraontini. Two types of rDNA distribution were found in the Gomphocerini tribe. Type 1, found in 9 species, was characterized by the presence of rDNA in the short arm of the long biarmed chromosomes 2 and 3 and, in some species, also in the X chromosome. Type 2 was found only in Aeropus sibiricus and Stauroderus scalaris and consisted in the presence of pericentromeric rDNA blocks in all chromosomes. A comparison of rDNA distribution in Gomphocerini species with 2n ♂ = 23, 2n ♂ = 21, and 2n ♂ = 17 suggested the possible involvement of chromosome 6 in the ancestral karyotype (2n ♂ = 23) in 1 of the 3 centric fusions that decreased the chromosome number in these species. In the tribe Stenobothrini, Stenobothrus eurasius carried a single rDNA cluster in the X chromosome, likewise 2 Spanish species previously analysed, but Omocestus viridulus unusually showed a single rDNA cluster in the longest autosome. Telomeric repeats were located primarily on the ends of chromosome arms. In 2 species, however, we observed the presence of interstitial clusters outside telomeric regions. The first one, Aeropus sibiricus, exhibited a polymorphic interstitial site of telomeric repeats in chromosome 6 as a consequence of a paracentric inversion. Most remarkably, Chorthippus jacobsoni showed the presence of telomeric repeats in the pericentric regions of the 3 biarmed chromosome pairs originated by centric fusion, thus suggesting that these rearrangements were not of the Robertsonian type but true centric fusion with a probable generation of dicentric chromosomes. Copyright © 2012 S. Karger AG, Basel.

  15. Reconstruction of the putative cervidae ancestral karyotype by chromosome painting of Siberian roe deer (Capreolus pygargus) with dromedary probes.

    Science.gov (United States)

    Dementyeva, P V; Trifonov, V A; Kulemzina, A I; Graphodatsky, A S

    2010-06-01

    The Siberian roe deer (Capreolus pygargus) is one of a few deer species presumably preserving the ancestral cervid karyotype. The comparative genomic data of the Siberian roe deer are critical for our understanding of the karyotypic relationships within artiodactyls. We have established chromosomal homologies between the Siberian roe deer and the dromedary (Camelus dromedarius) by cross-species chromosome painting with dromedary chromosome-specific painting probes. Dromedary chromosome paints detected 53 autosomal homologies in the genome of the Siberian roe deer. The identification of chromosomal homologies between the Siberian roe deer and cattle resulted from previously detected cattle-dromedary homologies. We have found 8 chromosomal rearrangements (6 fissions in the Siberian roe deer, 1 fission in the cattle and 1 inversion on the CPY11) that have separated the karyotypes of the cattle and the Siberian roe deer. The inversion on CPY11 might be an apomorphic trait of cervids, since we detected its presence in the gray brocket deer (Mazama gouazoubira). Thus our data further prove the scenario of chromosomal rearrangements that was previously proposed and add some new data. 2010 S. Karger AG, Basel.

  16. Next Generation Sequencing of Chromosome-Specific Libraries Sheds Light on Genome Evolution in Paleotetraploid Sterlet (Acipenser ruthenus).

    Science.gov (United States)

    Andreyushkova, Daria A; Makunin, Alexey I; Beklemisheva, Violetta R; Romanenko, Svetlana A; Druzhkova, Anna S; Biltueva, Larisa B; Serdyukova, Natalya A; Graphodatsky, Alexander S; Trifonov, Vladimir A

    2017-11-10

    Several whole genome duplication (WGD) events followed by rediploidization took place in the evolutionary history of vertebrates. Acipenserids represent a convenient model group for investigation of the consequences of WGD as their representatives underwent additional WGD events in different lineages resulting in ploidy level variation between species, and these processes are still ongoing. Earlier, we obtained a set of sterlet (Acipenser ruthenus) chromosome-specific libraries by microdissection and revealed that they painted two or four pairs of whole sterlet chromosomes, as well as additional chromosomal regions, depending on rediploidization status and chromosomal rearrangements after genome duplication. In this study, we employed next generation sequencing to estimate the content of libraries derived from different paralogous chromosomes of sterlet. For this purpose, we aligned the obtained reads to the spotted gar (Lepisosteus oculatus) reference genome to reveal syntenic regions between these two species having diverged 360 Mya. We also showed that the approach is effective for synteny prediction at various evolutionary distances and allows one to clearly distinguish paralogous chromosomes in polyploid genomes. We postulated that after the acipenserid-specific WGD sterlet karyotype underwent multiple interchromosomal rearrangements, but different chromosomes were involved in this process unequally.

  17. Cytogenetic evaluation of human glial tumors: correlation of overexpression of epidermal growth factor receptor (EGFB) with abnormalities of chromosome 7

    International Nuclear Information System (INIS)

    Bell, C.W.

    1987-01-01

    Chromosome banding analysis of human glial tumors were performed using G- and Q-banding techniques in an attempt to establish recurring sites of chromosome change. Results revealed a nonrandom karyotypic profile including aneuploidy and considerable variation in chromosome number (range 40 → 200). All tumors examined displayed numerical abnormalities, with the most common numeric change being a gain of chromosome 7. An attempt was then made to correlate the observed chromosome 7 changes with activation of the cellular proto-oncogene c-erb-B, whose produce is the epidermal growth factor receptor (EGFR). Six human glial tumors were analyzed for 125 I-EGF binding, EGFR gene copy number, EGFR gene rearrangement, mRNA expression, and karyotypic profile. Saturation analysis at 4 0 C revealed significant numbers of EGFR's in all 6 tumors. Southern blotting analysis utilizing cDNA probes for the EGFR failed to demonstrate significant amplification or structural rearrangement of the EFGR gene. The results suggest that overexpression of the EGFR may be related to an alternative mechanism, other than gene amplification and elevated mRNA levels, such as the regulation of receptor biosynthesis and degradation. In summary, findings indicate that alterations of chromosome 7 are the most prevalent chromosomal change in human glial tumors, and that these alterations may lead to overexpression of the protooncogene c-erb-B

  18. Conventional and fluorescence in situ hybridization analysis of three-way complex BCR-ABL rearrangement in a chronic myeloid leukemia patient

    Directory of Open Access Journals (Sweden)

    Ganguly Bani

    2007-01-01

    Full Text Available Chromosomal analysis was carried out in bone marrow sample of an 11-year-old girl suspected of myeloproliferative disorder. Conventional G-banding study detected a complex three-way translocation involving 7, 9 and 22, which has resulted in the formation of a variant Philadelphia chromosome causing rearrangement of abl and bcr genes in 87% cells. Fluorescence in situ hybridization (FISH confirmed the fusion of bcr-abl oncogene. Thus the bone marrow karyotype was observed as 46,XX (13% / 46,XX,t(7;9;22(q11;q34;q11 (87%. Hyperdiploidy was present in two cells. In this study, both conventional cytogenetic and FISH diagnosis proved to be significant to identify the variant nature of the Philadelphia chromosome and hyperdiploid condition for introduction of a suitable treatment regimen and estimation of life expectancy of the young girl.

  19. How did the platypus get its sex chromosome chain? A comparison of meiotic multiples and sex chromosomes in plants and animals.

    Science.gov (United States)

    Gruetzner, Frank; Ashley, Terry; Rowell, David M; Marshall Graves, Jennifer A

    2006-04-01

    The duck-billed platypus is an extraordinary mammal. Its chromosome complement is no less extraordinary, for it includes a system in which ten sex chromosomes form an extensive meiotic chain in males. Such meiotic multiples are unprecedented in vertebrates but occur sporadically in plant and invertebrate species. In this paper, we review the evolution and formation of meiotic multiples in plants and invertebrates to try to gain insights into the origin of the platypus meiotic multiple. We describe the meiotic hurdles that translocated mammalian chromosomes face, which make longer chains disadvantageous in mammals, and we discuss how sex chromosomes and dosage compensation might have affected the evolution of sex-linked meiotic multiples. We conclude that the evolutionary conservation of the chain in monotremes, the structural properties of the translocated chromosomes and the highly accurate segregation at meiosis make the platypus system remarkably different from meiotic multiples in other species. We discuss alternative evolutionary models, which fall broadly into two categories: either the chain is the result of a sequence of translocation events from an ancestral pair of sex chromosomes (Model I) or the entire chain came into being at once by hybridization of two populations with different chromosomal rearrangements sharing monobrachial homology (Model II).

  20. Contrasting origin of B chromosomes in two cervids (Siberian roe deer and grey brocket deer) unravelled by chromosome-specific DNA sequencing.

    Science.gov (United States)

    Makunin, Alexey I; Kichigin, Ilya G; Larkin, Denis M; O'Brien, Patricia C M; Ferguson-Smith, Malcolm A; Yang, Fengtang; Proskuryakova, Anastasiya A; Vorobieva, Nadezhda V; Chernyaeva, Ekaterina N; O'Brien, Stephen J; Graphodatsky, Alexander S; Trifonov, Vladimir A

    2016-08-11

    : probably nascent and similar to autosomal copies in brocket deer, highly derived in roe deer. Based on the presence of the same orthologous protooncogenes in canids and brocket deer Bs we argue that genomic regions involved in B chromosome formation are not random. In addition, our approach is also applicable to the characterization of other evolutionary and clinical rearrangements.

  1. Somatic pairing, endomitosis and chromosome aberrations in snakes (Viperidae and Colubridae

    Directory of Open Access Journals (Sweden)

    Beçak Maria Luiza

    2003-01-01

    Full Text Available The positioning of macrochromosomes of Bothrops jararaca and Bothrops insularis (Viperidae was studied in undistorted radial metaphases of uncultured cells (spermatogonia and oogonia not subjected to spindle inhibitors. Colchicinized metaphases from uncultured (spleen and intestine and cultured tissues (blood were also analyzed. We report two antagonic non-random chromosome arrangements in untreated premeiotic cells: the parallel configuration with homologue chromosomes associated side by side in the metaphase plate and the antiparallel configuration having homologue chromosomes with antipolar distribution in the metaphase ring. The antiparallel aspect also appeared in colchicinized cells. The spatial chromosome arrangement in both configurations is groupal size-dependent and maintained through meiosis. We also describe, in untreated gonia cells, endomitosis followed by reductional mitosis which restores the diploid number. In B. jararaca males we observed that some gonad regions present changes in the meiotic mechanism. In this case, endoreduplicated cells segregate the diplochromosomes to opposite poles forming directly endoreduplicated second metaphases of meiosis with the suppression of first meiosis. By a successive division, these cells form nuclei with one set of chromosomes. Chromosome doubling in oogonia is known in hybrid species and in parthenogenetic salamanders and lizards. This species also presented chromosome rearrangements leading to aneuploidies in mitosis and meiosis. It is suggested that somatic pairing, endomitosis, meiotic alterations, and chromosomal aberrations can be correlated processes. Similar aspects of nuclei configurations, endomitosis and reductional mitosis were found in other Viperidae and Colubridae species.

  2. Heterogeneity of chromosome 22 breakpoint in Philadelphia-positive (Ph+) acute lymphocytic leukemia

    International Nuclear Information System (INIS)

    Erikson, J.; Griffin, C.A.; Ar-Rushdi, A.

    1986-01-01

    In chronic myelogenous leukemias (CML) with the t(9;22)(q34;q11) chromosome translocation the breakpoints on chromosome 22 occur within a 5.8-kilobase segment of DNA referred to as breakpoint cluster region (bcr). The same cytogenetically indinstinguishable translocation occurs in approximately 10% of patients with acute lymphocytic leukemias (ALL). In this study the authors have investigated the chromosome breakpoints in several cases of ALL carrying the t(9;22) translocation. In three of five cases of ALL they found that the bcr region was not involved in the chromosome rearrangement and that the 22q11 chromosome breakpoints were proximal (5') to the bcr region at band 22q11. In addition, they observed normal size bcr and c-alb transcripts in an ALL cell line carrying the t(9;22) translocation. They conclude, therefore, that if c-alb is inappropriately expressed in ALL cells without bcr rearrangements, the genetic mechanism of activation must be different from that reported for CML

  3. Epigenetic characteristics of the mitotic chromosome in 1D and 3D.

    Science.gov (United States)

    Oomen, Marlies E; Dekker, Job

    2017-04-01

    While chromatin characteristics in interphase are widely studied, characteristics of mitotic chromatin and their inheritance through mitosis are still poorly understood. During mitosis, chromatin undergoes dramatic changes: transcription stalls, chromatin-binding factors leave the chromatin, histone modifications change and chromatin becomes highly condensed. Many key insights into mitotic chromosome state and conformation have come from extensive microscopy studies over the last century. Over the last decade, the development of 3C-based techniques has enabled the study of higher order chromosome organization during mitosis in a genome-wide manner. During mitosis, chromosomes lose their cell type-specific and locus-dependent chromatin organization that characterizes interphase chromatin and fold into randomly positioned loop arrays. Upon exit of mitosis, cells are capable of quickly rearranging the chromosome conformation to form the cell type-specific interphase organization again. The information that enables this rearrangement after mitotic exit is thought to be encoded at least in part in mitotic bookmarks, e.g. histone modifications and variants, histone remodelers, chromatin factors, and non-coding RNA. Here we give an overview of the chromosomal organization and epigenetic characteristics of interphase and mitotic chromatin in vertebrates. Second, we describe different ways in which mitotic bookmarking enables epigenetic memory of the features of interphase chromatin through mitosis. And third, we explore the role of epigenetic modifications and mitotic bookmarking in cell differentiation.

  4. Characterization of novel non-clonal intrachromosomal rearrangements between the H4 and PTEN genes (H4/PTEN) in human thyroid cell lines and papillary thyroid cancer specimens

    International Nuclear Information System (INIS)

    Puxeddu, Efisio; Zhao Guisheng; Stringer, James R.; Medvedovic, Mario; Moretti, Sonia; Fagin, James A.

    2005-01-01

    The two main forms of RET rearrangement in papillary thyroid carcinomas (PTC) arise from intrachromosomal inversions fusing the tyrosine kinase domain of RET with either the H4 (RET/PTC1) or the ELE1/RFG genes (RET/PTC3). PTEN codes for a dual-specificity phosphatase and maps to chromosome 10q22-23. Germline mutations confer susceptibility to Cowden syndrome whereas somatic mutations or deletions are common in several sporadic human tumors. Decreased PTEN expression has been implicated in thyroid cancer development. We report the characterization of a new chromosome 10 rearrangement involving H4 and PTEN. The initial H4/PTEN rearrangement was discovered as a non-specific product of RT-PCR for RET/PTC1 in irradiated thyroid cell lines. Sequencing revealed a transcript consisting of exon 1 and 2 of H4 fused with exons 3-6 of PTEN. Nested RT-PCR with specific primers bracketing the breakpoints confirmed the H4/PTEN rearrangements in irradiated KAT-1 and KAT-50 cells. Additional H4/PTEN variants, generated by recombination of either exon 1 or exon 2 of H4 with exon 6 of PTEN, were found in non-irradiated KAK-1, KAT-50, ARO and NPA cells. Their origin through chromosomal recombination was confirmed by detection of the reciprocal PTEN/H4 product. H4/PTEN recombination was not a clonal event in any of the cell lines, as Southern blots with appropriate probes failed to demonstrate aberrant bands, and multicolor FISH of KAK1 cells with BAC probes for H4 and PTEN did not show a signal overlap in all cells. Based on PCR of serially diluted samples, the minimal frequency of spontaneous recombination between these loci was estimated to be approximately 1/10 6 cells. H4/PTEN products were found by nested RT-PCR in 4/14 normal thyroid tissues (28%) and 14/18 PTC (78%) (P < 0.01). H4/PTEN is another example of recombination involving the H4 locus, and points to the high susceptibility of thyroid cells to intrachromosomal gene rearrangements. As this also represents a plausible

  5. Radiation induced chromosome aberrations and interphase DNA geometry

    International Nuclear Information System (INIS)

    Nasazzi, N.; Di Giorgio, M.; Otero, D.

    1995-01-01

    Ionizing radiation induces DNA double strand breaks (DSBs) and their interaction and illegitimate recombination produces chromosome aberrations. Stable chromosome aberrations comprise inter-chromosomal events (translocations) and intra-chromosomal events (inversions). Assuming DSBs induction and interaction is completely random and neglecting proximity effects, the expected ratio of translocations to inversions is F=86, based on chromosome arm lengths. We analyzed the number of translocations and inversions using G-banding, in 16 lymphocyte cultures from blood samples acutely irradiated with γ-rays (dose range: 0.5Gy-3Gy). Our results give F=13.5, significantly smaller than F=86. Literature data show similar small F values but strongly spread. The excess of inversions could be explained by a 'proximity effect', it means that more proximate DSBs have an extra probability of interaction. Therefore, it is possible to postulate a special chromosome arrangement during irradiation and the subsequent interval. We propose a model where individual chromosomes show spherical confinement with some degree of overlapping and DSBs induction proportional to cross section. We assume a DSBs interaction probability function with cut-off length = 1 μ. We propose that large spread in F data could be due to temporal variation in overlapping and spatial chromosome confinement. (author). 14 refs

  6. Investigate Global Chromosomal Interaction by Hi-C in Human Naive CD4 T Cells.

    Science.gov (United States)

    Meng, Xiangzhi; Riley, Nicole; Thompson, Ryan; Sharma, Siddhartha

    2018-01-01

    Hi-C is a methodology developed to reveal chromosomal interactions from a genome-wide perspective. Here, we described a protocol for generating Hi-C sequencing libraries in resting and activated human naive CD4 T cells to investigate activation-induced chromatin structure re-arrangement in T cell activation followed by a section reviewing the general concepts of Hi-C data analysis.

  7. Transcription-based model for the induction of chromosomal exchange events by ionising radiation

    International Nuclear Information System (INIS)

    Radford, I.A.

    2003-01-01

    The mechanistic basis for chromosomal aberration formation, following exposure of mammalian cells to ionising radiation, has long been debated. Although chromosomal aberrations are probably initiated by DNA double-strand breaks (DSB), little is understood about the mechanisms that generate and modulate DNA rearrangement. Based on results from our laboratory and data from the literature, a novel model of chromosomal aberration formation has been suggested (Radford 2002). The basic postulates of this model are that: (1) DSB, primarily those involving multiple individual damage sites (i.e. complex DSB), are the critical initiating lesion; (2) only those DSB occurring in transcription units that are associated with transcription 'factories' (complexes containing multiple transcription units) induce chromosomal exchange events; (3) such DSB are brought into contact with a DNA topoisomerase I molecule through RNA polymerase II catalysed transcription and give rise to trapped DNA-topo I cleavage complexes; and (4) trapped complexes interact with another topo I molecule on a temporarily inactive transcription unit at the same transcription factory leading to DNA cleavage and subsequent strand exchange between the cleavage complexes. We have developed a method using inverse PCR that allows the detection and sequencing of putative ionising radiation-induced DNA rearrangements involving different regions of the human genome (Forrester and Radford 1998). The sequences detected by inverse PCR can provide a test of the prediction of the transcription-based model that ionising radiation-induced DNA rearrangements occur between sequences in active transcription units. Accordingly, reverse transcriptase PCR was used to determine if sequences involved in rearrangements were transcribed in the test cells. Consistent with the transcription-based model, nearly all of the sequences examined gave a positive result to reverse transcriptase PCR (Forrester and Radford unpublished)

  8. New types of wheat chromosomal structural variations in derivatives of wheat-rye hybrids.

    Science.gov (United States)

    Tang, Zongxiang; Li, Meng; Chen, Lei; Wang, Yangyang; Ren, Zhenglong; Fu, Shulan

    2014-01-01

    Chromosomal rearrangements induced by wheat-rye hybridization is a very well investigated research topic. However, the structural alterations of wheat chromosomes in wheat-rye hybrids are seldom reported. Octoploid triticale lines were derived from common wheat Triticum. aestivum L. 'Mianyang11'×rye Secale cereale L. 'Kustro'. Some progeny were obtained by the controlled backcrossing of triticale with 'Mianyang11' and common wheat T. aestivum L. 'Chuannong27' followed by self-fertilization. Fluorescence in situ hybridization (FISH) and genomic in situ hybridization (GISH) using Oligo-pSc119.2-1, Oligo-pTa535-1 and rye genomic DNA as probes were used to analyze the mitotic chromosomes of these progeny. Alterations of wheat chromosomes including 5A, 6A, 1B, 2B, 6B, 7B, 1D, 3D and 7D were observed. 5AL arm carrying intercalary Oligo-pSc119.2-1, Oligo-pTa535-1 or both Oligo-pSc119.2-1 and Oligo-pTa535-1 signals, 6AS, 1BS and 1DL arms containing terminal Oligo-pSc119.2-1 signal, 6BS and 3DS arms without terminal Oligo-pSc119.2-1 signal, 7BS without subtelomeric Oligo-pSc119.2-1 signal and 7DL with intercalary Oligo-pSc119.2-1 signal have been observed. However, these changed wheat chromosomes have not been detected in 'Mianyang11' and Chuannong 27. The altered 5A, 6A, 7B and 7D chromosomes in this study have not been reported and represent several new karyotype structures of common wheat chromosomes. These rearranged wheat chromosomes in the present study afford some new genetic variations for wheat breeding program and are valuable materials for studying the biological function of tandem repetitive DNA sequences.

  9. Genomic rearrangements of PTEN in prostate cancer

    Directory of Open Access Journals (Sweden)

    Sopheap ePhin

    2013-09-01

    Full Text Available The phosphatase and tensin homolog gene on chromosome 10q23.3 (PTEN is a negative regulator of the PIK3/Akt survival pathway and is the most frequently deleted tumor suppressor gene in prostate cancer. Monoallelic loss of PTEN is present in up to 60% of localized prostate cancers and complete loss of PTEN in prostate cancer is linked to metastasis and androgen independent progression. Studies on the genomic status of PTEN in prostate cancer initially used a two-color fluorescence in-situ hybridization (FISH assay for PTEN copy number detection in formalin fixed paraffin embedded tissue preparations. More recently, a four-color FISH assay containing two additional control probes flanking the PTEN locus with a lower false-positive rate was reported. Combined with the detection of other critical genomic biomarkers for prostate cancer such as ERG, AR, and MYC, the evaluation of PTEN genomic status has proven to be invaluable for patient stratification and management. Although less frequent than allelic deletions, point mutations in the gene and epigenetic silencing are also known to contribute to loss of PTEN function, and ultimately to prostate cancer initiation. Overall, it is clear that PTEN is a powerful biomarker for prostate cancer. Used as a companion diagnostic for emerging therapeutic drugs, FISH analysis of PTEN is promisingly moving human prostate cancer closer to more effective cancer management and therapies.

  10. Sequencing and characterisation of rearrangements in three S. pastorianus strains reveals the presence of chimeric genes and gives evidence of breakpoint reuse.

    Directory of Open Access Journals (Sweden)

    Sarah K Hewitt

    Full Text Available Gross chromosomal rearrangements have the potential to be evolutionarily advantageous to an adapting organism. The generation of a hybrid species increases opportunity for recombination by bringing together two homologous genomes. We sought to define the location of genomic rearrangements in three strains of Saccharomyces pastorianus, a natural lager-brewing yeast hybrid of Saccharomyces cerevisiae and Saccharomyces eubayanus, using whole genome shotgun sequencing. Each strain of S. pastorianus has lost species-specific portions of its genome and has undergone extensive recombination, producing chimeric chromosomes. We predicted 30 breakpoints that we confirmed at the single nucleotide level by designing species-specific primers that flank each breakpoint, and then sequencing the PCR product. These rearrangements are the result of recombination between areas of homology between the two subgenomes, rather than repetitive elements such as transposons or tRNAs. Interestingly, 28/30 S. cerevisiae-S. eubayanus recombination breakpoints are located within genic regions, generating chimeric genes. Furthermore we show evidence for the reuse of two breakpoints, located in HSP82 and KEM1, in strains of proposed independent origin.

  11. Are ribosomal DNA clusters rearrangement hotspots? A case study in the genus Mus (Rodentia, Muridae

    Directory of Open Access Journals (Sweden)

    Douzery Emmanuel JP

    2011-05-01

    Full Text Available Abstract Background Recent advances in comparative genomics have considerably improved our knowledge of the evolution of mammalian karyotype architecture. One of the breakthroughs was the preferential localization of evolutionary breakpoints in regions enriched in repetitive sequences (segmental duplications, telomeres and centromeres. In this context, we investigated the contribution of ribosomal genes to genome reshuffling since they are generally located in pericentromeric or subtelomeric regions, and form repeat clusters on different chromosomes. The target model was the genus Mus which exhibits a high rate of karyotypic change, a large fraction of which involves centromeres. Results The chromosomal distribution of rDNA clusters was determined by in situ hybridization of mouse probes in 19 species. Using a molecular-based reference tree, the phylogenetic distribution of clusters within the genus was reconstructed, and the temporal association between rDNA clusters, breakpoints and centromeres was tested by maximum likelihood analyses. Our results highlighted the following features of rDNA cluster dynamics in the genus Mus: i rDNA clusters showed extensive diversity in number between species and an almost exclusive pericentromeric location, ii a strong association between rDNA sites and centromeres was retrieved which may be related to their shared constraint of concerted evolution, iii 24% of the observed breakpoints mapped near an rDNA cluster, and iv a substantial rate of rDNA cluster change (insertion, deletion also occurred in the absence of chromosomal rearrangements. Conclusions This study on the dynamics of rDNA clusters within the genus Mus has revealed a strong evolutionary relationship between rDNA clusters and centromeres. Both of these genomic structures coincide with breakpoints in the genus Mus, suggesting that the accumulation of a large number of repeats in the centromeric region may contribute to the high level of chromosome

  12. Intra- and interchromosomal rearrangements between cowpea [Vigna unguiculata (L.) Walp.] and common bean (Phaseolus vulgaris L.) revealed by BAC-FISH.

    Science.gov (United States)

    Vasconcelos, Emanuelle Varão; de Andrade Fonsêca, Artur Fellipe; Pedrosa-Harand, Andrea; de Andrade Bortoleti, Kyria Cilene; Benko-Iseppon, Ana Maria; da Costa, Antônio Félix; Brasileiro-Vidal, Ana Christina

    2015-06-01

    Cowpea (Vigna unguiculata) is an annual legume grown in tropical and subtropical regions, which is economically relevant due to high protein content in dried beans, green pods, and leaves. In this work, a comparative cytogenetic study between V. unguiculata and Phaseolus vulgaris (common bean) was conducted using BAC-FISH. Sequences previously mapped in P. vulgaris chromosomes (Pv) were used as probes in V. unguiculata chromosomes (Vu), contributing to the analysis of macrosynteny between both legumes. Thirty-seven clones from P. vulgaris 'BAT93' BAC library, corresponding to its 11 linkage groups, were hybridized in situ. Several chromosomal rearrangements were identified, such as translocations (between BACs from Pv1 and Pv8; Pv2 and Pv3; as well as Pv2 and Pv11), duplications (BAC from Pv3), as well as paracentric and pericentric inversions (BACs from Pv3, and Pv4, respectively). Two BACs (from Pv2 and Pv7), which hybridized at terminal regions in almost all P. vulgaris chromosomes, showed single-copy signal in Vu. Additionally, 17 BACs showed no signal in V. unguiculata chromosomes. The present results demonstrate the feasibility of using BAC libraries in comparative chromosomal mapping and karyotype evolution studies between Phaseolus and Vigna species, and revealed several macrosynteny and collinearity breaks among both legumes.

  13. Chromosome polymorphism in the Brazilian dwarf brocket deer, Mazama nana (Mammalia, Cervidae

    Directory of Open Access Journals (Sweden)

    Vanessa Veltrini Abril

    2008-01-01

    Full Text Available The Brazilian dwarf brocket deer (Mazama nana is the smallest deer species in Brazil and is considered threatened due to the reduction and alteration of its habitat, the Atlantic Rainforest. Moreover, previous work suggested the presence of intraspecific chromosome polymorphisms which may contribute to further population instability because of the reduced fertility arising from the deleterious effects of chromosome rearrangements during meiosis. We used G- and C-banding, and nucleolus organizer regions localization by silver-nitrate staining (Ag-NOR to investigate the causes of this variation. Mazama nana exhibited eight different karyotypes (2n = 36 through 39 and FN = 58 resulting from centric fusions and from inter and intraindividual variation in the number of B chromosomes (one to six. Most of the animals were heterozygous for a single fusion, suggesting one or several of the following: a genetic instability in a species that has not reached its optimal karyotypic evolutionary state yet; b negative selective pressure acting on accumulated rearrangements; and c probable positive selection pressure for heterozygous individuals which maintains the polymorphism in the population (in contrast with the negative selection for many rearrangements within a single individual.

  14. Human Y chromosome copy number variation in the next generation sequencing era and beyond.

    Science.gov (United States)

    Massaia, Andrea; Xue, Yali

    2017-05-01

    The human Y chromosome provides a fertile ground for structural rearrangements owing to its haploidy and high content of repeated sequences. The methodologies used for copy number variation (CNV) studies have developed over the years. Low-throughput techniques based on direct observation of rearrangements were developed early on, and are still used, often to complement array-based or sequencing approaches which have limited power in regions with high repeat content and specifically in the presence of long, identical repeats, such as those found in human sex chromosomes. Some specific rearrangements have been investigated for decades; because of their effects on fertility, or their outstanding evolutionary features, the interest in these has not diminished. However, following the flourishing of large-scale genomics, several studies have investigated CNVs across the whole chromosome. These studies sometimes employ data generated within large genomic projects such as the DDD study or the 1000 Genomes Project, and often survey large samples of healthy individuals without any prior selection. Novel technologies based on sequencing long molecules and combinations of technologies, promise to stimulate the study of Y-CNVs in the immediate future.

  15. Cytogenetic and molecular studies on a recombinant human X chromosome: implications for the spreading of X chromosome inactivation

    Energy Technology Data Exchange (ETDEWEB)

    Mohandas, T.; Geller, R.L.; Yen, P.H.; Rosendorff, J.; Bernstein, R.; Yoshida, A.; Shapiro, L.J.

    1987-07-01

    A pericentric inversion of human X chromosome and a recombinant X chromosome (rec(X)) derived from crossing-over within the inversion was identified in a family. The rec(X) had a duplication of the segment Xq26.3 ..-->.. Xqter and a deletion of Xp22.3 ..-->.. Xpter and was interpreted to be Xqter ..-->.. Xq26.3::Xp22.3 ..-->.. Xqter. To characterize the rec(X) chromosome, dosage blots were done on genomic DNA from carriers of this rearranged X chromosome using a number of X chromosome probes. Results showed that anonymous sequences from the distal end of the long arm to which probes 4D8, Hx120A, DX13, and St14 bind as well as the locus for glucose-6-phosphate dehydrogenase (G6PD) wee duplicated on the rec(X). Mouse-human cell hybrids were constructed that retained the rec(X) in the active or inactive state. Analyses of these hybrid clones for markers from the distal short arm of the X chromosome showed that the rec(X) retained the loci for steroid sulfatase (STS) and the cell surface antigen 12E7 (MIC2); but not the pseudoautosomal sequence 113D. These molecular studies confirm that the rec(X) is a duplication-deficiency chromosome as expected. In the inactive state in cell hybrids, STS and MIC2 (which usually escape X chromosome inactivation) were expressed from the rec(X), whereas G6PD was not. Therefore, in the rec(X) X chromosome inactivation has spread through STS and MIC2 leaving these loci unaffected and has inactivated G6PD in the absence of an inactivation center in the q26.3 ..-->.. qter region of the human X chromosome. The mechanism of spreading of inactivation appears to operate in a sequence-specific fashion. Alternatively, STS and MIC2 may have undergone inactivation initially but could not be maintained in an inactive state.

  16. Cytogenetic and molecular studies on a recombinant human X chromosome: implications for the spreading of X chromosome inactivation

    International Nuclear Information System (INIS)

    Mohandas, T.; Geller, R.L.; Yen, P.H.; Rosendorff, J.; Bernstein, R.; Yoshida, A.; Shapiro, L.J.

    1987-01-01

    A pericentric inversion of human X chromosome and a recombinant X chromosome [rec(X)] derived from crossing-over within the inversion was identified in a family. The rec(X) had a duplication of the segment Xq26.3 → Xqter and a deletion of Xp22.3 → Xpter and was interpreted to be Xqter → Xq26.3::Xp22.3 → Xqter. To characterize the rec(X) chromosome, dosage blots were done on genomic DNA from carriers of this rearranged X chromosome using a number of X chromosome probes. Results showed that anonymous sequences from the distal end of the long arm to which probes 4D8, Hx120A, DX13, and St14 bind as well as the locus for glucose-6-phosphate dehydrogenase (G6PD) wee duplicated on the rec(X). Mouse-human cell hybrids were constructed that retained the rec(X) in the active or inactive state. Analyses of these hybrid clones for markers from the distal short arm of the X chromosome showed that the rec(X) retained the loci for steroid sulfatase (STS) and the cell surface antigen 12E7 (MIC2); but not the pseudoautosomal sequence 113D. These molecular studies confirm that the rec(X) is a duplication-deficiency chromosome as expected. In the inactive state in cell hybrids, STS and MIC2 (which usually escape X chromosome inactivation) were expressed from the rec(X), whereas G6PD was not. Therefore, in the rec(X) X chromosome inactivation has spread through STS and MIC2 leaving these loci unaffected and has inactivated G6PD in the absence of an inactivation center in the q26.3 → qter region of the human X chromosome. The mechanism of spreading of inactivation appears to operate in a sequence-specific fashion. Alternatively, STS and MIC2 may have undergone inactivation initially but could not be maintained in an inactive state

  17. Integration of molecular cytogenetics, dated molecular phylogeny, and model-based predictions to understand the extreme chromosome reorganization in the Neotropical genus Tonatia (Chiroptera: Phyllostomidae).

    Science.gov (United States)

    Sotero-Caio, Cibele G; Volleth, Marianne; Hoffmann, Federico G; Scott, LuAnn; Wichman, Holly A; Yang, Fengtang; Baker, Robert J

    2015-10-06

    Defining factors that contributed to the fixation of a high number of underdominant chromosomal rearrangements is a complex task because not only molecular mechanisms must be considered, but also the uniqueness of natural history attributes of each taxon. Ideally, detailed investigation of the chromosome architecture of an organism and related groups, placed within a phylogenetic context, is required. We used multiple approaches to investigate the dynamics of chromosomal evolution in lineages of bats with considerable karyotypic variation, focusing on the different facets contributing to fixation of the exceptional chromosomal changes in Tonatia saurophila. Integration of empirical data with proposed models of chromosome evolution was performed to understand the probable conditions for Tonatia's karyotypic evolution. The trajectory of reorganization of chromosome blocks since the common ancestor of Glossophaginae and Phyllostominae subfamilies suggests that multiple tandem fusions, as well as disruption and fusions of conserved phyllostomid chromosomes were major drivers of karyotypic reshuffling in Tonatia. Considerable variation in the rates of chromosomal evolution between phyllostomid lineages was observed. Thirty-nine unique fusions and fission events reached fixation in Tonatia over a short period of time, followed by ~12 million years of chromosomal stasis. Physical mapping of repetitive DNA revealed an unusual accumulation of LINE-1 sequences on centromeric regions, probably associated with the chromosomal dynamics of this genus. Multiple rearrangements have reached fixation in a wave-like fashion in phyllostomid bats. Different biological features of Tonatia support distinct models of rearrangement fixation, and it is unlikely that the fixations were a result of solely stochastic processes in small ancient populations. Increased recombination rates were probably facilitated by expansion of repetitive DNA, reinforced by aspects of taxon reproduction and

  18. Chromosome numbers in Bromeliaceae

    Directory of Open Access Journals (Sweden)

    Cotias-de-Oliveira Ana Lúcia Pires

    2000-01-01

    Full Text Available The present study reports chromosome numbers of 17 species of Bromeliaceae, belonging to the genera Encholirium, Bromelia, Orthophytum, Hohenbergia, Billbergia, Neoglaziovia, Aechmea, Cryptanthus and Ananas. Most species present 2n = 50, however, Bromelia laciniosa, Orthophytum burle-marxii and O. maracasense are polyploids with 2n = 150, 2n = 100 and 2n = 150, respectively, while for Cryptanthus bahianus, 2n = 34 + 1-4B. B chromosomes were observed in Bromelia plumieri and Hohenbergia aff. utriculosa. The chromosome number of all species was determined for the first time, except for Billbergia chlorosticta and Cryptanthus bahianus. Our data supports the hypothesis of a basic number of x = 25 for the Bromeliaceae family and decreasing aneuploidy in the genus Cryptanthus.

  19. Stress induced by premature chromatin condensation triggers chromosome shattering and chromothripsis at DNA sites still replicating in micronuclei or multinucleate cells when primary nuclei enter mitosis.

    Science.gov (United States)

    Terzoudi, Georgia I; Karakosta, Maria; Pantelias, Antonio; Hatzi, Vasiliki I; Karachristou, Ioanna; Pantelias, Gabriel

    2015-11-01

    Combination of next-generation DNA sequencing, single nucleotide polymorphism array analyses and bioinformatics has revealed the striking phenomenon of chromothripsis, described as complex genomic rearrangements acquired in a single catastrophic event affecting one or a few chromosomes. Via an unproven mechanism, it is postulated that mechanical stress causes chromosome shattering into small lengths of DNA, which are then randomly reassembled by DNA repair machinery. Chromothripsis is currently examined as an alternative mechanism of oncogenesis, in contrast to the present paradigm that considers a stepwise development of cancer. While evidence for the mechanism(s) underlying chromosome shattering during cancer development remains elusive, a number of hypotheses have been proposed to explain chromothripsis, including ionizing radiation, DNA replication stress, breakage-fusion-bridge cycles, micronuclei formation and premature chromosome compaction. In the present work, we provide experimental evidence on the mechanistic basis of chromothripsis and on how chromosomes can get locally shattered in a single catastrophic event. Considering the dynamic nature of chromatin nucleoprotein complex, capable of rapid unfolding, disassembling, assembling and refolding, we first show that chromatin condensation at repairing or replicating DNA sites induces the mechanical stress needed for chromosome shattering to ensue. Premature chromosome condensation is then used to visualize the dynamic nature of interphase chromatin and demonstrate that such mechanical stress and chromosome shattering can also occur in chromosomes within micronuclei or asynchronous multinucleate cells when primary nuclei enter mitosis. Following an aberrant mitosis, chromosomes could find themselves in the wrong place at the wrong time so that they may undergo massive DNA breakage and rearrangement in a single catastrophic event. Specifically, our results support the hypothesis that premature chromosome

  20. Cell Division Drives Epithelial Cell Rearrangements during Gastrulation in Chick.

    Science.gov (United States)

    Firmino, Joao; Rocancourt, Didier; Saadaoui, Mehdi; Moreau, Chloe; Gros, Jerome

    2016-02-08

    During early embryonic development, cells are organized as cohesive epithelial sheets that are continuously growing and remodeled without losing their integrity, giving rise to a wide array of tissue shapes. Here, using live imaging in chick embryo, we investigate how epithelial cells rearrange during gastrulation. We find that cell division is a major rearrangement driver that powers dramatic epithelial cell intercalation events. We show that these cell division-mediated intercalations, which represent the majority of epithelial rearrangements within the early embryo, are absolutely necessary for the spatial patterning of gastrulation movements. Furthermore, we demonstrate that these intercalation events result from overall low cortical actomyosin accumulation within the epithelial cells of the embryo, which enables dividing cells to remodel junctions in their vicinity. These findings uncover a role for cell division as coordinator of epithelial growth and remodeling that might underlie various developmental, homeostatic, or pathological processes in amniotes. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. The role of fusion in ant chromosome evolution: insights from cytogenetic analysis using a molecular phylogenetic approach in the genus mycetophylax.

    Science.gov (United States)

    Cardoso, Danon Clemes; das Graças Pompolo, Silvia; Cristiano, Maykon Passos; Tavares, Mara Garcia

    2014-01-01

    Among insect taxa, ants exhibit one of the most variable chromosome numbers ranging from n = 1 to n = 60. This high karyotype diversity is suggested to be correlated to ants diversification. The karyotype evolution of ants is usually understood in terms of Robertsonian rearrangements towards an increase in chromosome numbers. The ant genus Mycetophylax is a small monogynous basal Attini ant (Formicidae: Myrmicinae), endemic to sand dunes along the Brazilian coastlines. A recent taxonomic revision validates three species, Mycetophylax morschi, M. conformis and M. simplex. In this paper, we cytogenetically characterized all species that belongs to the genus and analyzed the karyotypic evolution of Mycetophylax in the context of a molecular phylogeny and ancestral character state reconstruction. M. morschi showed a polymorphic number of chromosomes, with colonies showing 2n = 26 and 2n = 30 chromosomes. M. conformis presented a diploid chromosome number of 30 chromosomes, while M. simplex showed 36 chromosomes. The probabilistic models suggest that the ancestral haploid chromosome number of Mycetophylax was 17 (Likelihood framework) or 18 (Bayesian framework). The analysis also suggested that fusions were responsible for the evolutionary reduction in chromosome numbers of M. conformis and M. morschi karyotypes whereas fission may determines the M. simplex karyotype. These results obtained show the importance of fusions in chromosome changes towards a chromosome number reduction in Formicidae and how a phylogenetic background can be used to reconstruct hypotheses about chromosomes evolution.

  2. Less-toxic rearrangement products of NX-toxins are formed during storage and food processing.

    Science.gov (United States)

    Varga, Elisabeth; Wiesenberger, Gerlinde; Woelflingseder, Lydia; Twaruschek, Krisztian; Hametner, Christian; Vaclaviková, Marta; Malachová, Alexandra; Marko, Doris; Berthiller, Franz; Adam, Gerhard

    2018-03-01

    A new type A trichothecene mycotoxin, NX-2, was previously reported to be produced by North American isolates of the cereal pathogen Fusarium graminearum. Here we describe the isolation and structural characterization of a rearrangement product, called NX2-M1, and related compounds with different acetylation patterns (NX3-M1 and NX4-M1). In the NX-M1 derivatives, the epoxide ring is opened, and a covalent bridge between C-10 and C-12 of the trichothecene backbone is formed. In vitro translation assays showed that NX3-M1 is less toxic for eukaryotic ribosomes than NX-3. NX3-M1 also has a greatly reduced cytotoxic potential on two tested human colon cell lines. Formation of NX3-M1 can therefore be regarded as a detoxification reaction. The related F. graminearum mycotoxin deoxynivalenol (DON), which is frequently occurring worldwide, is very stable during food processing. Testing NX-3 at different pH-values and temperature conditions, as well as under conditions that simulate the storage of infected grains and bread-making process, revealed a strongly reduced stability of NX-3 and concurrent formation of NX3-M1. Although the NX-3 formed in planta is as toxic as DON, the extensive formation of the non-toxic rearrangement product should be taken into account for risk assessment of this emerging food contaminant. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  3. The role of mitochondrial DNA rearrangements in aging and human diseases.

    Science.gov (United States)

    Osiewacz, H D; Hermanns, J

    1992-12-01

    Instabilities and point mutations of the high molecular weight mitochondrial DNA (mtDNA) were shown to be correlated with various degenerative processes in both lower eukaryotes as well as in mammals. In filamentous fungi, circular and linear plasmids were demonstrated to be involved in mtDNA rearrangements and in the genetic control of senescence. In addition, in these eukaryotic microorganisms, which have proved to be ideal model systems in experimental gerontology, a number of nuclear genes were identified controlling the stability of the mitochondrial genome. Although the mitochondrial genome of mammals, including humans, appears to be quite stable in comparison to other species, mtDNA instabilities of the type described in fungi were observed in mitochondria of patients with different mitochondrial degenerative disorders (CPEO, KSS, Pearson syndrome, LHON, MERRF, MELAS). It was later demonstrated that such mtDNA rearrangements appear to accumulate progressively during aging in human subjects. These data suggest that instabilities of the mitochondrial genome may play an important role in the control of life span not only in lower eukaryotes, but also in humans.

  4. Co-segregation of sex chromosomes in the male black widow spider Latrodectus mactans (Araneae, Theridiidae).

    Science.gov (United States)

    Ault, Jeffrey G; Felt, Kristen D; Doan, Ryan N; Nedo, Alexander O; Ellison, Cassondra A; Paliulis, Leocadia V

    2017-10-01

    During meiosis I, homologous chromosomes join together to form bivalents. Through trial and error, bivalents achieve stable bipolar orientations (attachments) on the spindle that eventually allow the segregation of homologous chromosomes to opposite poles. Bipolar orientations are stable through tension generated by poleward forces to opposite poles. Unipolar orientations lack tension and are stereotypically not stable. The behavior of sex chromosomes during meiosis I in the male black widow spider Latrodectus mactans (Araneae, Theridiidae) challenges the principles governing such a scenario. We found that male L. mactans has two distinct X chromosomes, X 1 and X 2 . The X chromosomes join together to form a connection that is present in prometaphase I but is lost during metaphase I, before the autosomes disjoin at anaphase I. We found that both X chromosomes form stable unipolar orientations to the same pole that assure their co-segregation at anaphase I. Using micromanipulation, immunofluorescence microscopy, and electron microscopy, we studied this unusual chromosome behavior to explain how it may fit the current dogma of chromosome distribution during cell division.

  5. Trans-chromosomal recombination within the Ig heavy chain switch region in B lymphocytes

    Science.gov (United States)

    Kingzette, Mae; Spieker-Polet, Helga; Yam, Pi-Chen; Zhai, Shi-Kang; Knight, Katherine L.

    1998-01-01

    Somatic DNA rearrangements in B lymphocytes, including V(D)J gene rearrangements and isotype switching, generally occur in cis, i. e., intrachromosomally. We showed previously, however, that 3 to 7% of IgA heavy chains have the VH and Cα regions encoded in trans. To determine whether the trans-association of VH and Cα occurred by trans-chromosomal recombination, by trans-splicing, or by trans-chromosomal gene conversion, we generated and analyzed eight IgA-secreting rabbit hybridomas with trans-associated VH and Cα heavy chains. By ELISA and by nucleotide sequence analysis we found that the VH and Cα regions were encoded by genes that were in trans in the germline. We cloned the rearranged VDJ-Cα gene from a fosmid library of one hybridoma and found that the expressed VH and Cα genes were juxtaposed. Moreover, the juxtaposed VH and Cα genes originated from different IgH alleles. From the same hybridoma, we also identified a fosmid clone with the other expected product of a trans-chromosomal recombination. The recombination breakpoint occurred within the Sμ/Sα region, indicating that the trans-association of VH and Cα genes occurred by trans-chromosomal recombination during isotype switching. We conclude that trans-chromosomal recombination occurs at an unexpectedly high frequency (7%) within the IgH locus of B lymphocytes in normal animals, which may explain the high incidence of B-cell tumors that arise from oncogene translocation into the IgH locus. PMID:9751752

  6. Epigenetic aspects of lymphocyte antigen receptor gene rearrangement or ‘when stochasticity completes randomness’

    Science.gov (United States)

    Jaeger, Sébastien; Fernandez, Bastien; Ferrier, Pierre

    2013-01-01

    To perform their specific functional role, B and T lymphocytes, cells of the adaptive immune system of jawed vertebrates, need to express one (and, preferably, only one) form of antigen receptor, i.e. the immunoglobulin or T-cell receptor (TCR), respectively. This end goal depends initially on a series of DNA cis-rearrangement events between randomly chosen units from separate clusters of V, D (at some immunoglobulin and TCR loci) and J gene segments, a biomolecular process collectively referred to as V(D)J recombination. V(D)J recombination takes place in immature T and B cells and relies on the so-called RAG nuclease, a site-specific DNA cleavage apparatus that corresponds to the lymphoid-specific moiety of the VDJ recombinase. At the genome level, this recombinase's mission presents substantial biochemical challenges. These relate to the huge distance between (some of) the gene segments that it eventually rearranges and the need to achieve cell-lineage-restricted and developmentally ordered routines with at times, mono-allelic versus bi-allelic discrimination. The entire process must be completed without any recombination errors, instigators of chromosome instability, translocation and, potentially, tumorigenesis. As expected, such a precisely choreographed and yet potentially risky process demands sophisticated controls; epigenetics demonstrates what is possible when calling upon its many facets. In this vignette, we will recall the evidence that almost from the start appeared to link the two topics, V(D)J recombination and epigenetics, before reviewing the latest advances in our knowledge of this joint venture. PMID:23278765

  7. Novel tumorigenic rearrangement, {delta}rfp/ret, in a papillary thyroid carcinoma from externally irradiated patient

    Energy Technology Data Exchange (ETDEWEB)

    Saenko, Vladimir; Rogounovitch, Tatiana; Shimizu-Yoshida, Yuki; Abrosimov, Aleksandr; Lushnikov, Eugeny; Roumiantsev, Pavel; Matsumoto, Naomichi; Nakashima, Masahiro; Meirmanov, Serik; Ohtsuru, Akira; Namba, Hiroyuki; Tsyb, Anatoly; Yamashita, Shunichi

    2003-06-19

    Molecular analysis of cDNA derived from a papillary thyroid carcinoma (PTC) (follicular variant of papillary thyroid carcinoma on histology) which developed in an externally irradiated patient 4 years after exposure identified a portion of the 5' region, exons 1-3, of the rfp gene juxtaposed upstream of the fragment encoding the tyrosine kinase (TK) domain of the ret gene. The fusion gene, termed {delta}rfp/ret, was the result of a balanced chromosomal translocation t(6;10) (p21.3;q11.2) confirmed by interphase FISH painting, with breakpoints occurring in introns 3 and 11 of the rfp and ret genes, respectively. Both {delta}rfp/ret and reciprocal ret/rfp chimeric introns had small deletions around breakpoints consistent with presumed misrepair of a radiation-induced double-strand DNA break underlying the rearrangement. No extensive sequence homology was found between the fragments flanking the breakpoints. The fusion protein retained the propensity to form oligomers likely to be mediated by a coiled-coil of the RFP polypeptide as assessed by a yeast two-hybrid system. NIH 3T3 fibroblasts stably transfected with a mammalian expression vector encoding full-length {delta}RFP/RET readily gave rise to the tumors in athymic mice suggestive of high transforming potential of the fusion protein. Thus, the {delta}rfp/ret rearrangement may be causatively involved in cancerogenesis and provides additional evidence of the role of activated ret oncogene in the development of a subset of papillary thyroid carcinoma.

  8. Assessment of RET/PTC1 and RET/PTC3 rearrangements in fine-needle aspiration biopsy specimens collected from patients with Hashimoto's thyroiditis

    Directory of Open Access Journals (Sweden)

    Cyniak-Magierska Anna

    2011-01-01

    Full Text Available Abstract Background RET/PTC rearrangements are the most frequent molecular changes in papillary thyroid carcinoma (PTC. So far, 15 main RET/PTC rearrangements have been described, among which RET/PTC1 and RET/PTC3 are the most common in PTC - especially in radiation-induced tumours. RET/PTC1 and RET/PTC3 are the result of intrachromosomal paracentric inversions in chromosome 10, where RET and the activating genes (H4 and ELE1, respectively are located. Recently, RET/PTC rearrangements have been shown not only in PTC but also in benign thyroid lesions, including Hashimoto's thyroiditis (HT. The aim of study was an assessment of RET/PTC1 and RET/PTC3 rearrangements in patients with Hashimoto's thyroiditis. Materials and methods Thyroid aspirates, eligible for the study, were obtained from 26 patients with Hashimoto's thyroiditis by fine-needle aspiration biopsy (FNAB. Each aspirate was smeared for conventional cytology, while its remaining part was immediately washed out of the needle. The cells, obtained from the needle, were used in further investigation. Total RNA from FNAB was extracted by use of an RNeasy Micro Kit, based on modified Chomczynski and Sacchi's method and reverse transcription (RT-PCR was done. Quantitative evaluation of RET/PTC1 and RET/PTC3 rearrangements by real-time PCR was performed by an ABI PRISM® 7500 Sequence Detection System. In the study, PTC tissues with known RET/PTC1 and RET/PTC3 rearrangements served as a reference standard (calibrator, while β-actin gene was used as endogenous control. Results Amplification reactions were done in triplicate for each examined sample. No RET/PTC1 and RET/PTC3 rearrangements were found in the examined samples. Conclusions Our results indicate that RET/PTC1 and RET/PTC3 rearrangements in Hashimoto's thyroiditis, if any, are rather rare events and further investigations should be conducted in order to determine molecular changes, connecting Hashimoto's thyroiditis with PTC.

  9. TCRgamma gene rearrangement analysis in skin samples and peripheral blood of mycosis fungoides patients.

    Science.gov (United States)

    Kandolf Sekulović, L; Cikota, B; Stojadinović, O; Basanović, J; Skiljević, D; Medenica, Lj; Pavlović, M; Magić, Z

    2007-12-01

    Diagnosing mycosis fungoides (MF) can be challenging in the early stage of the disease because histopathological features may simulate a variety of benign inflammatory skin diseases. Assessment of T-cell clonality was found to be useful in diagnosis and follow-up of patients. In this study, PCR-based TCRgamma gene rearrangement analysis was performed in skin and peripheral blood samples of patients with MF treated at the two largest referral centers in Serbia, and the results obtained were correlated with clinical and follow-up data. Skin and peripheral blood samples were obtained with informed consent from 37 patients treated at the Department of Dermatology of the Military Medical Academy and the Medical Center of Serbia from 2001 to 2006. The median time of follow-up was 4 years. Multiplex PCR was used for TCRgamma gene rearrangement analysis in skin and peripheral blood samples. Clonality results were correlated with the clinical data and disease course data. Monoclonality was detected in skin samples of 30/37 patients (81%), in 2/5 patients with large-plaque parapsoriasis (LPP), in 28/32 (88%) patients with histologically proven MF, and in 1/16 (6%) patients with benign inflammatory dermatoses. A monoclonal pattern in both skin and peripheral blood was detected in 7/16 (44%) patients in the late stage of the disease, and in 1/7 (14%) patients in the early stage of the disease. A dominant clone was found in both skin and peripheral blood in 1/4 patients in remission, 2/5 with a stable disease, and 4/9 (44%) with disease progression. TCR-gamma gene rearrangement analysis can be regarded as a useful adjunct to diagnosis of epidermotropic lymphoproliferative disorders. The presence of a dominant clone in both the skin and peripheral blood was more frequently detected in late stages and in patients with disease progression, confirming the usefulness of clonality detection by TCR-gamma gene rearrangement analysis in follow-up of patients with primary cutaneous T

  10. Detailed phenotype-genotype study in five patients with chromosome 6q16 deletion : narrowing the critical region for Prader-Willi-like phenotype

    NARCIS (Netherlands)

    Bonaglia, Maria Clara; Ciccone, Roberto; Gimelli, Giorgio; Gimelli, Stefania; Marelli, Susan; Verheij, Joke; Giorda, Roberto; Grasso, Rita; Borgatti, Renato; Pagone, Filomena; Rodriguez, Laura; Martinez-Frias, Maria-Luisa; van Ravenswaaij, Conny; Zuffardi, Orsetta

    2008-01-01

    Most patients with an interstitial deletion of 6q16 have Prader-Willi-like phenotype, featuring obesity, hypotonia, short hands and feet, and developmental delay. In all reported studies, the chromosome rearrangement was detected by karyotype analysis, which provides an overview of the entire genome

  11. Correlation of chromosome patterns in human leukemic cells with exposure to chemicals and/or radiation. Progress report, January 1-December 31, 1984

    International Nuclear Information System (INIS)

    Rowley, J.D.

    1984-08-01

    Oncogenes associated with human neoplasms are genetically mapped to the human genome. In addition, chromosomal deletions and rearrangements presumably induced by radiotherapy and/or chemotherapy for other maladys are correlated with malignant lymphomas. 27 refs., 6 figs., 2 tabs. (DT)

  12. Stage-specific damage to synaptonemal complexes and metaphase chromosomes induced by X rays in male mouse germ cells

    International Nuclear Information System (INIS)

    Backer, L.C.; Sontag, M.R.; Allen, J.W.

    1991-01-01

    Synaptonemal complexes (SCs) reveal mutagen-induced effects in germ cell meiotic chromosomes. The study was aimed at characterizing relationships between SC and metaphase I chromosome damage following radiation exposure at various stages of spermatogenesis. Male mice were irradiated with doses of 0, 2, or 4 Gy, and spermatocytes were harvested at times consistent with earlier exposures as spermatogonial stem cells, preleptotene cells (premeiotic DNA synthesis), or meiotic prophase cells. After stem-cell exposure, twice as many rearrangements were observed in SCs as in metaphase I chromosomes. Irradiation during premeiotic DNA synthesis resulted in dose-related increases in SC breakage and rearrangements (including novel forms) and in metaphase chromosomal aberrations. Following prophase exposure, various types and levels of SC and metaphase damage were observed. Irradiation of zygotene cells led to high frequencies of chromosome multivalents in metaphase I without a correspondingly high level of damage in preceding prophase SCs. Thus, irradiation of premeiotic and meiotic cells results in variable relationships between SC and metaphase chromosome damage

  13. Molecular cytogenetic and phenotypic characterization of ring chromosome 13 in three unrelated patients

    Science.gov (United States)

    Abdallah-Bouhjar, Inesse B.; Mougou-Zerelli, Soumaya; Hannachi, Hanene; Gmidène, Abir; Labalme, Audrey; Soyah, Najla; Sanlaville, Damien; Saad, Ali; Elghezal, Hatem

    2013-01-01

    We report on the cytogenetic and molecular investigations of constitutional de-novo ring chromosome 13s in three unrelated patients for better understanding and delineation of the phenotypic variability characterizing this genomic rearrangement. The patient’s karyotypes were as follows: 46,XY,r(13)(p11q34) dn for patients 1 and 2 and 46,XY,r(13)(p11q14) dn for patient 3, as a result of the deletion in the telomeric regions of chromosome 13. The patients were, therefore, monosomic for the segment 13q34 → 13qter; in addition, for patient 3, the deletion was larger, encompassing the segment 13q14 → 13qter. Fluorescence in situ hybridization confirmed these rearrangement and array CGH technique showed the loss of at least 2.9 Mb on the short arm and 4.7 Mb on the long arm of the chromosome 13 in patient 2. Ring chromosome 13 (r(13)) is associated with several phenotypic features like intellectual disability, marked short stature, brain and heart defects, microcephaly and genital malformations in males, including undescended testes and hypospadias. However, the hearing loss and speech delay that were found in our three patients have rarely been reported with ring chromosome 13. Although little is known about its etiology, there is interesting evidence for a genetic cause for the ring chromosome 13. We thus performed a genotype-phenotype correlation analysis to ascertain the contribution of ring chromosome 13 to the clinical features of our three cases. PMID:27625853

  14. Are boat transition states likely to occur in Cope rearrangements? A DFT study of the biogenesis of germacranes

    Directory of Open Access Journals (Sweden)

    José Enrique Barquera-Lozada

    2017-09-01

    Full Text Available It has been proposed that elemanes are biogenetically formed from germacranes by Cope sigmatropic rearrangements. Normally, this reaction proceeds through a transition state with a chair conformation. However, the transformation of schkuhriolide (germacrane into elemanschkuhriolide (elemane may occur through a boat transition state due to the final configuration of the elemanschkuhriolide, but this transition state is questionable due to its high energy. The possible mechanisms of this transformation were studied in the density functional theory frame. The mechanistic differences between the transformation of (Z,E-germacranes and (E,E-germacranes were also studied. We found that (Z,E-germacranolides are significantly more stable than (E,E-germacranolides and elemanolides. In the specific case of schkuhriolide, even when the boat transition state is not energetically favored, a previous hemiacetalization lowers enough the energetic barrier to allow the formation of a very stable elemanolide that is even more stable than its (Z,E-germacrane.

  15. The Y Chromosome

    Science.gov (United States)

    Offner, Susan

    2010-01-01

    The Y chromosome is of great interest to students and can be used to teach about many important biological concepts in addition to sex determination. This paper discusses mutation, recombination, mammalian sex determination, sex determination in general, and the evolution of sex determination in mammals. It includes a student activity that…

  16. Know Your Chromosomes

    Indian Academy of Sciences (India)

    ... of Science Education; Volume 1; Issue 3. Know Your Chromosomes The Strong Holds of Family Trees. Vani Brahmachari. Series Article Volume 1 Issue 3 March 1996 pp 30-38 ... Author Affiliations. Vani Brahmachari1. Developmental Biology and Genetics Laboratory, Indian Institute of Science, Bangalore 560 012, India.

  17. Chromosomes, cancer and radiosensitivity

    International Nuclear Information System (INIS)

    Samouhos, E.

    1983-01-01

    Some specific chromosomal abnormalities are associated with certain cancers. The earliest description of such a specific association is the one of the Philadelphia chromosome and myelogenous leukemia (1960). Other congenital karyotype abnormalities are associated with specific cancers. Examples of these are Down's syndrome with leukemia and Klinefelter's syndrome with male breast cancer. Genetic diseases of increased chromosome breakage, or of defective chromosome repair, are associated with greatly increased cancer incidence. Three such diseases have been recognized: 1) Fanconi's anemia, associated with leukemias and lymphomas, 2) Bloom's syndrome, associated with acute leukemias and lymphosarcoma, and 3) ataxia telangiectasia, associated with Hodgkin's disease, leukemia, and lymphosarcomas. Ten percent of individuals with ataxia telangiectasia will develop one of these neoplasms. Individuals with certain of these syndromes display an unusually high radiosensitivity. Radiation therapy for cancers has been fatal in patients who received as low as 3000 rad. This remarkable radiosensitivity has been quantitated in cell cultures from such cases. Evidence suggests that the apparent sensitivity may reflect subnormal ability to repair radiation damage. The rapid proliferation of information in this field stems from the interdigitation of many disciplines and specialties, including cytogenetics, cell biology, molecular biology, epidemiology, radiobiology, and several others. This paper is intended for clinicians; it presents a structured analytic scheme for correlating and classifying this multidisciplinary information as it becomes available

  18. Chromosomal abnormalities and autism

    African Journals Online (AJOL)

    Farida El-Baz

    2015-06-19

    Jun 19, 2015 ... ORIGINAL ARTICLE. Chromosomal abnormalities and autism. Farida El-Baz a. , Mohamed Saad Zaghloul a. , Ezzat El Sobky a. ,. Reham M Elhossiny a,. *, Heba Salah a. , Neveen Ezy Abdelaziz b a Pediatric Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt b Children with Special ...

  19. Know Your Chromosomes

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 1; Issue 3. Know Your Chromosomes The Strong Holds of Family Trees. Vani Brahmachari. Series Article Volume 1 Issue 3 March 1996 pp 30-38. Fulltext. Click here to view fulltext PDF. Permanent link:

  20. Destabilized SMC5/6 complex leads to chromosome breakage syndrome with severe lung disease

    Science.gov (United States)

    van der Crabben, Saskia N.; Hennus, Marije P.; McGregor, Grant A.; Ritter, Deborah I.; Nagamani, Sandesh C.S.; Wells, Owen S.; Harakalova, Magdalena; Chinn, Ivan K.; Alt, Aaron; Vondrova, Lucie; Hochstenbach, Ron; van Montfrans, Joris M.; Terheggen-Lagro, Suzanne W.; van Lieshout, Stef; van Roosmalen, Markus J.; Renkens, Ivo; Duran, Karen; Nijman, Isaac J.; Kloosterman, Wigard P.; Hennekam, Eric; van Hasselt, Peter M.; Wheeler, David A.; Palecek, Jan J.; Lehmann, Alan R.; Oliver, Antony W.; Pearl, Laurence H.; Plon, Sharon E.; Murray, Johanne M.

    2016-01-01

    The structural maintenance of chromosomes (SMC) family of proteins supports mitotic proliferation, meiosis, and DNA repair to control genomic stability. Impairments in chromosome maintenance are linked to rare chromosome breakage disorders. Here, we have identified a chromosome breakage syndrome associated with severe lung disease in early childhood. Four children from two unrelated kindreds died of severe pulmonary disease during infancy following viral pneumonia with evidence of combined T and B cell immunodeficiency. Whole exome sequencing revealed biallelic missense mutations in the NSMCE3 (also known as NDNL2) gene, which encodes a subunit of the SMC5/6 complex that is essential for DNA damage response and chromosome segregation. The NSMCE3 mutations disrupted interactions within the SMC5/6 complex, leading to destabilization of the complex. Patient cells showed chromosome rearrangements, micronuclei, sensitivity to replication stress and DNA damage, and defective homologous recombination. This work associates missense mutations in NSMCE3 with an autosomal recessive chromosome breakage syndrome that leads to defective T and B cell function and acute respiratory distress syndrome in early childhood. PMID:27427983

  1. Structural Chromosomal Alterations Induced by Dietary Bioflavonoids in Fanconi Anemia Lymphocytes

    Directory of Open Access Journals (Sweden)

    Gonzalo Guevara

    2007-06-01

    Full Text Available IntroductionFanconi anemia is an autosomal recessive diseasecharacterized by a variety of congenital abnormalities,progressive bone marrow failure,increased chromosomal instability and higherrisk to acute myeloid leukemia, solid tumors. Thisentity can be considered an appropriate biologicalmodel to analyze natural substances with possiblegenotoxic effect. The aims of this study wereto describe and quantify structural chromosomalaberrations induced by 5 flavones, 2 isoflavonesand a topoisomerase II chemotherapeutic inhibitorin Fanconi anemia lymphocytes in order todetermine chromosomal numbers changes and/or type of chromosomal damage.Materials and methodsChromosomes stimulated by phytohaemagglutininM, from Fanconi anemia lymphocytes,were analysed by conventional cytogenetic culture.For each chemical substance and controls,one hundred metaphases were evaluated. Chromosomalalterations were documented by photographyand imaging analyzer. To statisticalanalysis was used chi square test to identify significantdifferences between frequencies of chromosomaldamage of basal and exposed cellcultured a P value less than 0.05.ResultsThere were 431 chromosomal alterations in1000 metaphases analysed; genistein was themore genotoxic bioflavonoid, followed in descendentorder by genistin, fisetin, kaempferol,quercetin, baicalein and miricetin. Chromosomalaberrations observed were: chromatidbreaks, chromosomal breaks, cromatid andchromosomal gaps, quadriratials exchanges,dicentrics chromosome and complex rearrangements.ConclusionBioflavonoids as genistein, genistin and fisetin,which are commonly present in the human diet,showed statistical significance in the number ofchromosomal aberrations in Fanconi anemialymphocytes, regarding the basal damage.

  2. In situ hybridization of bat chromosomes with human (TTAGGGn probe, after previous digestion with Alu I

    Directory of Open Access Journals (Sweden)

    Karina de Cassia Faria

    2002-01-01

    Full Text Available The purpose of this work was to verify the ability of the enzyme Alu I to cleave and/or remove satellite DNA sequences from heterochromatic regions in chromosomes of bats, by identifying the occurrence of modifications in the pattern of fluorescence in situ hybridization with telomeric DNA. The localization and fluorescence intensity of the telomeric DNA sites of the Alu-digested and undigested chromosomes of species Eumops glaucinus, Carollia perspicillata, and Platyrrhinus lineatus were analyzed. Telomeric sequences were detected at the termini of chromosomes of all three species, although, in C. perspicillata, the signals were very faint or absent in most chromosomes. This finding was interpreted as being due to a reduced number of copies of the telomeric repeat, resulting from extensive telomeric association and/or rearrangements undergone by the chromosomes of Carollia. Fluorescent signals were also observed in centromeric and pericentromeric regions in several two-arm chromosomes of E. glaucinus and C. perspicillata. In E. glaucinus and P. lineatus, some interstitial and terminal telomeric sites were observed to be in association with regions of constitutive heterochromatin and ribosomal DNA (NORs. After digestion, these telomeric sites showed a significant decrease in signal intensity, indicating that enzyme Alu I cleaves and/or removes part of the satellite DNA present in these regions. These results suggest that the telomeric sequence is a component of the heterochromatin, and that the C-band- positive regions of bat chromosomes have a different DNA composition.

  3. Chromosome anomalies in bone marrow as primary cause of aplastic or hypoplastic conditions and peripheral cytopenia: disorders due to secondary impairment of RUNX1 and MPL genes

    Directory of Open Access Journals (Sweden)

    Marletta Cristina

    2012-10-01

    Full Text Available Abstract Background Chromosome changes in the bone marrow (BM of patients with persistent cytopenia are often considered diagnostic for a myelodysplastic syndrome (MDS. Comprehensive cytogenetic evaluations may give evidence of the real pathogenetic role of these changes in cases with cytopenia without morphological signs of MDS. Results Chromosome anomalies were found in the BM of three patients, without any morphological evidence of MDS: 1 an acquired complex rearrangement of chromosome 21 in a boy with severe aplastic anaemia (SAA; the rearrangement caused the loss of exons 2–8 of the RUNX1 gene with subsequent hypoexpression. 2 a constitutional complex rearrangement of chromosome 21 in a girl with congenital thrombocytopenia; the rearrangement led to RUNX1 disruption and hypoexpression. 3 an acquired paracentric inversion of chromosome 1, in which two regions at the breakpoints were shown to be lost, in a boy with aplastic anaemia; the MPL gene, localized in chromosome 1 short arms was not mutated neither disrupted, but its expression was severely reduced: we postulate that the aplastic anaemia was due to position effects acting both in cis and in trans, and causing Congenital Amegakaryocytic Thrombocytopenia (CAMT. Conclusions A clonal anomaly in BM does not imply per se a diagnosis of MDS: a subgroup of BM hypoplastic disorders is directly due to chromosome structural anomalies with effects on specific genes, as was the case of RUNX1 and MPL in the patients here reported with diagnosis of SAA, thrombocytopenia, and CAMT. The anomaly may be either acquired or constitutional, and it may act by deletion/disruption of the gene, or by position effects. Full cytogenetic investigations, including a-CGH, should always be part of the diagnostic evaluation of patients with BM aplasia/hypoplasia and peripheral cytopenias.

  4. Stable Isotope Data

    <