WorldWideScience

Sample records for stable bound state

  1. Spectrum of gluino bound states

    International Nuclear Information System (INIS)

    Chanowitz, M.; Sharpe, S.; California Univ., Berkeley

    1983-01-01

    Using the bag model to first order in αsub(s) we find that if light gluinos exist they will appear as constituents of electrically charged bound states which are stable against strong interaction decay. We review the present experimental constraints and conclude that light, long-lived charged hadrons containing gluinos might exist with lifetimes between 2x10 - 8 and 10 - 14 s. (orig.)

  2. Photon virtual bound state

    International Nuclear Information System (INIS)

    Inoue, J.; Ohtaka, K.

    2004-01-01

    We study virtual bound states in photonics, which are a vectorial extension of electron virtual bound states. The condition for these states is derived. It is found that the Mie resonant state which satisfies the condition that the size parameter is less than the angular momentum should be interpreted as a photon virtual bound state. In order to confirm the validity of the concept, we compare the photonic density of states, the width of which represents the lifetime of the photon virtual bound states, with numerical results

  3. Bound and rebound states

    International Nuclear Information System (INIS)

    Orzalesi, C.A.

    1979-01-01

    In relativistic quantum theory, bound states generate forces in the crossed channel; such forces can affect the binding and self-consistent solutions should be sought for the bound-state problem. The author investigates how self-consistency can be achieved by successive approximations, in a simple scalar model and with successive relativistic eikonal approximations (EAs). Within the generalized ladder approximation, some exact properties of the resulting ''first generation'' bound states are discussed. The binding energies in this approximation are rather small even for rather large values of the primary coupling constant. The coupling of the constituent particles to the first-generation reggeon is determined by a suitable EA and a new generalized ladder amplitude is constructed with rungs given either by the primary gluons or by the first-generation reggeons. The resulting new (second-generation) bound states are found in a reggeized EA. The size of the corrections to the binding energies due to the rebinding effects is surprisingly large. The procedure is then iterated, so as to find - again in an EA - the third-generation bound states. The procedure is found to be self-consistent already at this stage: the third-generation bound states coincide with those of second generation, and no further rebinding takes place in the higher iterations of the approximation method. Features - good and bad - of the model are discussed, as well as the possible relevance of rebinding mechanisms in hadron dynamics. (author)

  4. Reduced conservatism in stability robustness bounds by state transformation

    Science.gov (United States)

    Yedavalli, R. K.; Liang, Z.

    1986-01-01

    This note addresses the issue of 'conservatism' in the time domain stability robustness bounds obtained by the Liapunov approach. A state transformation is employed to improve the upper bounds on the linear time-varying perturbation of an asymptotically stable linear time-invariant system for robust stability. This improvement is due to the variance of the conservatism of the Liapunov approach with respect to the basis of the vector space in which the Liapunov function is constructed. Improved bounds are obtained, using a transformation, on elemental and vector norms of perturbations (i.e., structured perturbations) as well as on a matrix norm of perturbations (i.e., unstructured perturbations). For the case of a diagonal transformation, an algorithm is proposed to find the 'optimal' transformation. Several examples are presented to illustrate the proposed analysis.

  5. Bound states in string nets

    Science.gov (United States)

    Schulz, Marc Daniel; Dusuel, Sébastien; Vidal, Julien

    2016-11-01

    We discuss the emergence of bound states in the low-energy spectrum of the string-net Hamiltonian in the presence of a string tension. In the ladder geometry, we show that a single bound state arises either for a finite tension or in the zero-tension limit depending on the theory considered. In the latter case, we perturbatively compute the binding energy as a function of the total quantum dimension. We also address this issue in the honeycomb lattice where the number of bound states in the topological phase depends on the total quantum dimension. Finally, the internal structure of these bound states is analyzed in the zero-tension limit.

  6. Quasi-bound states in continuum

    International Nuclear Information System (INIS)

    Nakamura, Hiroaki; Hatano, Naomichi; Garmon, Sterling; Petrosky, Tomio

    2007-08-01

    We report the prediction of quasi-bound states (resonant states with very long lifetimes) that occur in the eigenvalue continuum of propagating states for a wide region of parameter space. These quasi-bound states are generated in a quantum wire with two channels and an adatom, when the energy bands of the two channels overlap. A would-be bound state that lays just below the upper energy band is slightly destabilized by the lower energy band and thereby becomes a resonant state with a very long lifetime (a second QBIC lays above the lower energy band). (author)

  7. Bounded excursion stable gravastars and black holes

    Energy Technology Data Exchange (ETDEWEB)

    Rocha, P [Instituto de Fisica, Universidade Federal Fluminense, Avenida Litoranea, s/n, Boa Viagem 24210-340, Niteroi, RJ (Brazil); Miguelote, A Y; Chan, R [Coordenacao de Astronomia e Astrofisica, Observatorio Nacional, Rua General Jose Cristino, 77, Sao Cristovao 20921-400, Rio de Janeiro, RJ (Brazil); Da Silva, M F; Wang, Anzhong [Departamento de Fisica Teorica, Instituto de Fisica, Universidade do Estado do Rio de Janeiro, Rua Sao Francisco Xavier 524, Maracana 20550-900, Rio de Janeiro-RJ (Brazil); Santos, N O, E-mail: pedrosennarocha@gmail.com, E-mail: yasuda@on.br, E-mail: chan@on.br, E-mail: mfasnic@gmail.com, E-mail: N.O.Santos@qmul.ac.uk, E-mail: anzhong_wang@baylor.edu [LERMA/CNRS-FRE 2460, Universite Pierre et Marie Curie, ERGA, Boite 142, 4 Place Jussieu, 75005 Paris Cedex 05 (France)

    2008-06-15

    Dynamical models of prototype gravastars were constructed in order to study their stability. The models are the Visser-Wiltshire three-layer gravastars, in which an infinitely thin spherical shell of stiff fluid divides the whole spacetime into two regions, where the internal region is de Sitter, and the external one is Schwarzschild. It is found that in some cases the models represent the 'bounded excursion' stable gravastars, where the thin shell is oscillating between two finite radii, while in other cases they collapse until the formation of black holes occurs. In the phase space, the region for the 'bounded excursion' gravastars is very small in comparison to that of black holes, but not empty. Therefore, although the possibility of the existence of gravastars cannot be excluded from such dynamical models, our results indicate that, even if gravastars do indeed exist, that does not exclude the possibility of the existence of black holes.

  8. Instanton bound states in ABJM theory

    Energy Technology Data Exchange (ETDEWEB)

    Hatsuda, Yasuyuki [DESY Hamburg (Germany). Theory Group; Tokyo Institute of Technology (Japan). Dept. of Physics; Moriyama, Sanefumi [Nagoya Univ. (Japan). Kobayashi Maskawa Inst. and Graduate School of Mathematics; Okuyama, Kazumi [Shinshu Univ., Matsumoto, Nagano (Japan). Dept. of Physics

    2013-06-15

    The partition function of the ABJM theory receives non-perturbative corrections due to instanton effects. We study these non-perturbative corrections, including bound states of worldsheet instantons and membrane instantons, in the Fermi-gas approach. We require that the total non-perturbative correction should be always finite for arbitrary Chern-Simons level. This finiteness is realized quite non-trivially because each bound state contribution naively diverges at some levels. The poles of each contribution should be canceled out in total. We use this pole cancellation mechanism to find unknown bound state corrections from known ones. We conjecture a general expression of the bound state contribution. Summing up all the bound state contributions, we find that the effect of bound states is simply incorporated into the worldsheet instanton correction by a redefinition of the chemical potential in the Fermi-gas system. Analytic expressions of the 3- and 4-membrane instanton corrections are also proposed.

  9. Binding energies of two deltas bound states

    International Nuclear Information System (INIS)

    Sato, Hiroshi; Saito, Koichi.

    1982-06-01

    Bound states of the two-deltas system are investigated by employing the realistic one boson exchange potential. It is found that there exist many bound states in each isospin channel and also found that the tensor interaction plays important role in producing these bound states. Relationship between these bound states and dibaryon resonances is discussed. (J.P.N.)

  10. Ab initio investigation on the valence and dipole-bound states of CNa - and SiNa -

    Science.gov (United States)

    Kalcher, Josef; Sax, Alexander F.

    2000-08-01

    CNa - and SiNa - have been studied by the CAS-ACPF method. The 3Σ- ground states have binding energies of 5420 and 7517 cm -1, respectively. The 5Σ- excited states are 494 and 1551 cm -1 above the respective ground states. The 1Δ , 3Π , and 1Π valence-excited states for SiNa - should be at least metastable. CNa - and SiNa - possess dipole-bound 5Σ- and 3Σ- states. Binding energies of these states in CNa - are 217 and 236 cm -1, respectively. SiNa - has two stable 5Σ- dipole-bound states, whose binding energies are 246 and 118 cm -1, respectively.

  11. Two-phonon bound states in imperfect crystals

    International Nuclear Information System (INIS)

    Behera, S.N.; Samsur, Sk.

    1980-01-01

    The question of the occurrence of two-phonon bound states in imperfect crystals is investigated. It is shown that the anharmonicity mediated two-phonon bound state which is present in perfect crystals gets modified due to the presence of impurities. Moreover, the possibility of the occurrence of a purely impurity mediated two-phonon bound state is demonstrated. The bound state frequencies are calculated using the simple Einstein oscillator model for the host phonons. The two-phonon density of states for the imperfect crystal thus obtained has peaks at the combination and difference frequencies of two host phonons besides the peaks at the bound state frequencies. For a perfect crystal the theory predicts a single peak at the two-phonon bound state frequency in conformity with experimental observations and other theoretical calculations. Experimental data on the two-phonon infrared absorption and Raman scattering from mixed crystals of Gasub(1-c)Alsub(c)P and Gesub(1-c)Sisub(c) are analysed to provide evidence in support of impurity-mediated two-phonon bound states. The relevance of the zero frequency (difference spectrum) peak to the central peak, observed in structural phase transitions, is conjectured. (author)

  12. Stable rotating dipole solitons in nonlocal media

    DEFF Research Database (Denmark)

    Lopez-Aguayo, Servando; Skupin, Stefan; Desyatnikov, Anton S.

    2006-01-01

    We present the first example of stable rotating two-soliton bound states in nonlinear optical media with nonlocal response. We show that, in contrast to media with local response, nonlocality opens possibilities to generate stable azimuthons.......We present the first example of stable rotating two-soliton bound states in nonlinear optical media with nonlocal response. We show that, in contrast to media with local response, nonlocality opens possibilities to generate stable azimuthons....

  13. Four-quark bound states

    International Nuclear Information System (INIS)

    Zouzou, S.

    1986-01-01

    In the framework of simple non-relativistic potential models, we examine the system consisting of two quarks and two antiquarks with equal or unequal masses. We search for possible bound states below the threshold for the spontaneous dissociation into two mesons. We solve the four body problem by empirical or systematic variational methods and we include the virtual meson-meson components of the wave function. With standard two-body potentials, there is no proliferation of multiquarks. With unequal quark masses, we obtain however exotic (anti Qanti Qqq) bound states with a baryonic antidiquark-quark-quark structure very analogous to the heavy flavoured (Q'qq) baryons. (orig.)

  14. Proximity effect tunneling into virtual bound state alloys

    International Nuclear Information System (INIS)

    Tang, I.M.; Roongkkeadsakoon, S.

    1984-01-01

    The effects of a narrow virtual bound state formed by transition metal impurities dissolved in the normal layer of a superconducting proximity effect sandwich are studied. Using standard renormalization techniques, we obtain the changes in the transition temperatures and the jumps in the specific heat at T/sub c/ as a function of the thickness of the normal layer, of the widths of the virtual bound states, and of the impurity concentrations. It is seen that narrow virtual bound states lead to decrease in the transition temperatures, while broad virtual bound states do not. It if further seen that the narrow virtual bound state causes the reduced specific heat jump at T/sub c/ to deviate from the BCS behavior expected of the pure sandwich

  15. Unexpected strong attraction in the presence of continuum bound state

    International Nuclear Information System (INIS)

    Delfino, A.; Frederico, T.

    1992-06-01

    The result of few-particle ground-state calculation employing a two-particle non-local potential supporting a continuum bound state in addition to a negative-energy bound state has occasionally revealed unexpected large attraction in producing a very strongly bound ground state. In the presence of the continuum bound state the difference of phase shift between zero and infinite energies has an extra jump of φ as in the presence of an additional bound state. The wave function of the continuum bound state is identical with that of a strongly bound negative-energy state, which leads us to postulate a pseudo bound state in the two-particle system in order to explain the unexpected attraction. The role of the Pauli forbidden states is expected to be similar to these pseudo states. (author)

  16. The bound state problem and quark confinement

    International Nuclear Information System (INIS)

    Chaichian, M.; Demichev, A.P.; Nelipa, N.F.

    1980-01-01

    A quantum field-theoretic model in which quark is confined is considered. System of equations for the Green functions of colour singlet and octet bound states is obtained. The method is based on the nonperturbative Schwinger-Dyson equations with the use of Slavnov-Taylor identities. It is shown that in the framework of the model if there exist singlet, then also exist octet bound states of the quark-antiquark system. Thus in general, confinement of free quarks does not mean absence of their coloured bound states. (author)

  17. Entropic Lower Bound for Distinguishability of Quantum States

    Directory of Open Access Journals (Sweden)

    Seungho Yang

    2015-01-01

    Full Text Available For a system randomly prepared in a number of quantum states, we present a lower bound for the distinguishability of the quantum states, that is, the success probability of determining the states in the form of entropy. When the states are all pure, acquiring the entropic lower bound requires only the density operator and the number of the possible states. This entropic bound shows a relation between the von Neumann entropy and the distinguishability.

  18. Can the Σ-nn system be bound?

    International Nuclear Information System (INIS)

    Stadler, A.; Gibson, B.F.

    1994-01-01

    Motivated by the Σ-hypernuclear states reported in (K - ,π ± ) experiments, we have explored the possibility that there exists a particle-stable Σ - nn bound state. For the Juelich A hyperon-nucleon, realistic-force model, our calculations yield little reason to expect a positive-parity bound state or resonance in either the J=1/2 or the J=3/2 channels

  19. Relativistic bound state wave functions

    International Nuclear Information System (INIS)

    Micu, L.

    2005-01-01

    A particular method of writing the bound state wave functions in relativistic form is applied to the solutions of the Dirac equation with confining potentials in order to obtain a relativistic description of a quark antiquark bound system representing a given meson. Concerning the role of the effective constituent in the present approach we first observe that without this additional constituent we couldn't expand the bound state wave function in terms of products of free states. Indeed, we notice that if the wave function depends on the relative coordinates only, all the expansion coefficients would be infinite. Secondly we remark that the effective constituent enabled us to give a Lorentz covariant meaning to the potential energy of the bound system which is now seen as the 4th component of a 4-momentum. On the other side, by relating the effective constituent to the quantum fluctuations of the background field which generate the binding, we provided a justification for the existence of some spatial degrees of freedom accompanying the interaction potential. These ones, which are quite unusual in quantum mechanics, in our model are the natural consequence of the the independence of the quarks and can be seen as the effect of the imperfect cancellation of the vector momenta during the quantum fluctuations. Related with all these we remark that the adequate representation for the relativistic description of a bound system is the momentum representation, because of the transparent and easy way of writing the conservation laws and the transformation properties of the wave functions. The only condition to be fulfilled is to find a suitable way to take into account the potential energy of the bound system. A particular feature of the present approach is that the confining forces are due to a kind of glue where both quarks are embedded. This recalls other bound state models where the wave function is factorized in terms of constituent wave functions and the confinement is

  20. Recent results on fusion and direct reactions with weakly bound stable nuclei

    International Nuclear Information System (INIS)

    Shrivastava, A.

    2011-01-01

    Recent measurements of fusion and direct reactions in case of weakly bound stable nuclei at extreme sub-barrier energies using a sensitive off beam technique are presented. First section deals with deep sub-barrier fusion cross-section measurement for 67 Li + 198 Pt followed by the study of fragment capture reaction of 7 Li + 198 Pt. Deviation in the slope of the fusion excitation function, as observed in case of medium heavy systems, is absent in the present asymmetric systems at these low energies. This study shows the absence of fusion hindrance, suggesting modifications in models that explain deep sub-barrier fusion data to incorporate weakly bound asymmetric systems

  1. Dark-matter bound states from Feynman diagrams

    NARCIS (Netherlands)

    Petraki, K.; Postma, M.; Wiechers, M.

    2015-01-01

    If dark matter couples directly to a light force mediator, then it may form bound states in the early universe and in the non-relativistic environment of haloes today. In this work, we establish a field-theoretic framework for the computation of bound-state formation cross-sections, de-excitation

  2. Bound entangled states violate a nonsymmetric local uncertainty relation

    International Nuclear Information System (INIS)

    Hofmann, Holger F.

    2003-01-01

    As a consequence of having a positive partial transpose, bound entangled states lack many of the properties otherwise associated with entanglement. It is therefore interesting to identify properties that distinguish bound entangled states from separable states. In this paper, it is shown that some bound entangled states violate a nonsymmetric class of local uncertainty relations [H. F. Hofmann and S. Takeuchi, Phys. Rev. A 68, 032103 (2003)]. This result indicates that the asymmetry of nonclassical correlations may be a characteristic feature of bound entanglement

  3. Two-nucleon bound states in quenched lattice QCD

    International Nuclear Information System (INIS)

    Yamazaki, T.; Kuramashi, Y.; Ukawa, A.

    2011-01-01

    We address the issue of bound state in the two-nucleon system in lattice QCD. Our study is made in the quenched approximation at the lattice spacing of a=0.128 fm with a heavy quark mass corresponding to m π =0.8 GeV. To distinguish a bound state from an attractive scattering state, we investigate the volume dependence of the energy difference between the ground state and the free two-nucleon state by changing the spatial extent of the lattice from 3.1 fm to 12.3 fm. A finite energy difference left in the infinite spatial volume limit leads us to the conclusion that the measured ground states for not only spin triplet but also singlet channels are bounded. Furthermore the existence of the bound state is confirmed by investigating the properties of the energy for the first excited state obtained by a 2x2 diagonalization method. The scattering lengths for both channels are evaluated by applying the finite volume formula derived by Luescher to the energy of the first excited states.

  4. Fermionic bound states in Minkowski space. Light-cone singularities and structure

    Energy Technology Data Exchange (ETDEWEB)

    Paula, Wayne de; Frederico, Tobias; Pimentel, Rafael [Instituto Tecnologico de Aeronautica, DCTA, Dept. de Fisica, Sao Jose dos Campos, Sao Paulo (Brazil); Salme, Giovanni [Istituto Nazionale di Fisica Nucleare, Rome (Italy); Viviani, Michele [Istituto Nazionale di Fisica Nucleare, Pisa (Italy)

    2017-11-15

    The Bethe-Salpeter equation for two-body bound system with spin 1/2 constituent is addressed directly in the Minkowski space. In order to accomplish this aim we use the Nakanishi integral representation of the Bethe-Salpeter amplitude and exploit the formal tool represented by the exact projection onto the null-plane. This formal step allows one (i) to deal with end-point singularities one meets and (ii) to find stable results, up to strongly relativistic regimes, which settle in strongly bound systems. We apply this technique to obtain the numerical dependence of the binding energies upon the coupling constants and the light-front amplitudes for a fermion-fermion 0{sup +} state with interaction kernels, in ladder approximation, corresponding to scalar-, pseudoscalar- and vector-boson exchanges, respectively. After completing the numerical survey of the previous cases, we extend our approach to a quark-antiquark system in 0{sup -} state, taking both constituent-fermion and exchanged-boson masses, from lattice calculations. Interestingly, the calculated light-front amplitudes for such a mock pion show peculiar signatures of the spin degrees of freedom. (orig.)

  5. Charged boson bound states in the kerr-newman metric

    International Nuclear Information System (INIS)

    Li Yuanjie; Zhang Duanming

    1986-01-01

    Charged boson bound states in Kerr-Newman metric are discussed. It is found that massless boson cannot be attracted by Kerr-Newman black hole to form bound states. For the massive boson, the condition of the nonbound states when 0 2 - Q 2 and both the condition and wave functions of the bound states when a = √M 2 - Q 2 are obtained. The energy mode of the bound states is single, E = (m√M 2 - Q 2 + eQM)/(2M 2 - Q 2 ). When Q = 0 or e = 0, the conclusion is in agreement with that of Zhang Shiwei and Su Rukeng

  6. Cosmological implications of Dark Matter bound states

    Energy Technology Data Exchange (ETDEWEB)

    Mitridate, Andrea [Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126, Pisa (Italy); Redi, Michele; Smirnov, Juri [INFN, Sezione di Firenze, and Dipartimento di Fisica e Astronomia, Università di Firenze, Via G. Sansone 1, 50019 Sesto Fiorentino (Italy); Strumia, Alessandro, E-mail: andrea.mitridate@gmail.com, E-mail: michele.redi@fi.infn.it, E-mail: juri.smirnov@mpi-hd.mpg.de, E-mail: alessandro.strumia@cern.ch [Dipartimento di Fisica dell' Università di Pisa and INFN, Pisa (Italy)

    2017-05-01

    We present generic formulæ for computing how Sommerfeld corrections together with bound-state formation affects the thermal abundance of Dark Matter with non-abelian gauge interactions. We consider DM as a fermion 3plet (wino) or 5plet under SU(2) {sub L} . In the latter case bound states raise to 11.5 TeV the DM mass required to reproduce the cosmological DM abundance and give indirect detection signals such as (for this mass) a dominant γ-line around 70 GeV. Furthermore, we consider DM co-annihilating with a colored particle, such as a squark or a gluino, finding that bound state effects are especially relevant in the latter case.

  7. Microscopic observation of magnon bound states and their dynamics.

    Science.gov (United States)

    Fukuhara, Takeshi; Schauß, Peter; Endres, Manuel; Hild, Sebastian; Cheneau, Marc; Bloch, Immanuel; Gross, Christian

    2013-10-03

    The existence of bound states of elementary spin waves (magnons) in one-dimensional quantum magnets was predicted almost 80 years ago. Identifying signatures of magnon bound states has so far remained the subject of intense theoretical research, and their detection has proved challenging for experiments. Ultracold atoms offer an ideal setting in which to find such bound states by tracking the spin dynamics with single-spin and single-site resolution following a local excitation. Here we use in situ correlation measurements to observe two-magnon bound states directly in a one-dimensional Heisenberg spin chain comprising ultracold bosonic atoms in an optical lattice. We observe the quantum dynamics of free and bound magnon states through time-resolved measurements of two spin impurities. The increased effective mass of the compound magnon state results in slower spin dynamics as compared to single-magnon excitations. We also determine the decay time of bound magnons, which is probably limited by scattering on thermal fluctuations in the system. Our results provide a new way of studying fundamental properties of quantum magnets and, more generally, properties of interacting impurities in quantum many-body systems.

  8. Yukawa Bound States and Their LHC Phenomenology

    Directory of Open Access Journals (Sweden)

    Enkhbat Tsedenbaljir

    2013-01-01

    Full Text Available We present the current status on the possible bound states of extra generation quarks. These include phenomenology and search strategy at the LHC. If chiral fourth-generation quarks do exist their strong Yukawa couplings, implied by current experimental lower bound on their masses, may lead to formation of bound states. Due to nearly degenerate 4G masses suggested by Precision Electroweak Test one can employ “heavy isospin” symmetry to classify possible spectrum. Among these states, the color-octet isosinglet vector ω 8 is the easiest to be produced at the LHC. The discovery potential and corresponding decay channels are covered in this paper. With possible light Higgs at ~125 GeV two-Higgs doublet version is briefly discussed.

  9. Bound state and localization of excitation in many-body open systems

    Science.gov (United States)

    Cui, H. T.; Shen, H. Z.; Hou, S. C.; Yi, X. X.

    2018-04-01

    We study the exact bound state and time evolution for single excitations in one-dimensional X X Z spin chains within a non-Markovian reservoir. For the bound state, a common feature is the localization of single excitations, which means the spontaneous emission of excitations into the reservoir is prohibited. Exceptionally, the pseudo-bound state can be found, for which the single excitation has a finite probability of emission into the reservoir. In addition, a critical energy scale for bound states is also identified, below which only one bound state exists, and it is also the pseudo-bound state. The effect of quasirandom disorder in the spin chain is also discussed; such disorder induces the single excitation to locate at some spin sites. Furthermore, to display the effect of bound state and disorder on the preservation of quantum information, the time evolution of single excitations in spin chains is studied exactly. An interesting observation is that the excitation can stay at its initial location with high probability only when the bound state and disorder coexist. In contrast, when either one of them is absent, the information of the initial state can be erased completely or becomes mixed. This finding shows that the combination of bound state and disorder can provide an ideal mechanism for quantum memory.

  10. Scattering theory methods for bound state problems

    International Nuclear Information System (INIS)

    Raphael, R.B.; Tobocman, W.

    1978-01-01

    For the analysis of the properties of a bound state system one may use in place of the Schroedinger equation the Lippmann-Schwinger (LS) equation for the wave function or the LS equation for the reactance operator. Use of the LS equation for the reactance operator constrains the solution to have correct asymptotic behaviour, so this approach would appear to be desirable when the bound state wave function is to be used to calculate particle transfer form factors. The Schroedinger equation based N-level analysis of the s-wave bound states of a square well is compared to the ones based on the LS equation. It is found that the LS equation methods work better than the Schroedinger equation method. The method that uses the LS equation for the wave function gives the best results for the wave functions while the method that uses the LS equation for the reactance operator gives the best results for the binding energies. The accuracy of the reactance operator based method is remarkably insensitive to changes in the oscillator constant used for the harmonic oscillator function basis set. It is also remarkably insensitive to the number of nodes in the bound state wave function. (Auth.)

  11. Bound States in the Mirror TBA

    NARCIS (Netherlands)

    Arutyunov, G.E.; Frolov, S.; van Tongeren, S.J.

    2012-01-01

    The spectrum of the light-cone AdS_5 \\times S^5 superstring contains states composed of particles with complex momenta including in particular those which turn into bound states in the decompactification limit. We propose the mirror TBA description for these states. We focus on a three-particle

  12. Robust stabilization of nonlinear systems via stable kernel representations with L2-gain bounded uncertainty

    NARCIS (Netherlands)

    van der Schaft, Arjan

    1995-01-01

    The approach to robust stabilization of linear systems using normalized left coprime factorizations with H∞ bounded uncertainty is generalized to nonlinear systems. A nonlinear perturbation model is derived, based on the concept of a stable kernel representation of nonlinear systems. The robust

  13. A note on BPS vortex bound states

    Directory of Open Access Journals (Sweden)

    A. Alonso-Izquierdo

    2016-02-01

    Full Text Available In this note we investigate bound states, where scalar and vector bosons are trapped by BPS vortices in the Abelian Higgs model with a critical ratio of the couplings. A class of internal modes of fluctuation around cylindrically symmetric BPS vortices is characterized mathematically, analyzing the spectrum of the second-order fluctuation operator when the Higgs and vector boson masses are equal. A few of these bound states with low values of quantized magnetic flux are described fully, and their main properties are discussed.

  14. A note on BPS vortex bound states

    Energy Technology Data Exchange (ETDEWEB)

    Alonso-Izquierdo, A., E-mail: alonsoiz@usal.es [Departamento de Matematica Aplicada, Universidad de Salamanca (Spain); Garcia Fuertes, W., E-mail: wifredo@uniovi.es [Departamento de Fisica, Universidad de Oviedo (Spain); Mateos Guilarte, J., E-mail: guilarte@usal.es [Departamento de Fisica Fundamental, Universidad de Salamanca (Spain)

    2016-02-10

    In this note we investigate bound states, where scalar and vector bosons are trapped by BPS vortices in the Abelian Higgs model with a critical ratio of the couplings. A class of internal modes of fluctuation around cylindrically symmetric BPS vortices is characterized mathematically, analyzing the spectrum of the second-order fluctuation operator when the Higgs and vector boson masses are equal. A few of these bound states with low values of quantized magnetic flux are described fully, and their main properties are discussed.

  15. Volume dependence of N-body bound states

    Science.gov (United States)

    König, Sebastian; Lee, Dean

    2018-04-01

    We derive the finite-volume correction to the binding energy of an N-particle quantum bound state in a cubic periodic volume. Our results are applicable to bound states with arbitrary composition and total angular momentum, and in any number of spatial dimensions. The only assumptions are that the interactions have finite range. The finite-volume correction is a sum of contributions from all possible breakup channels. In the case where the separation is into two bound clusters, our result gives the leading volume dependence up to exponentially small corrections. If the separation is into three or more clusters, there is a power-law factor that is beyond the scope of this work, however our result again determines the leading exponential dependence. We also present two independent methods that use finite-volume data to determine asymptotic normalization coefficients. The coefficients are useful to determine low-energy capture reactions into weakly bound states relevant for nuclear astrophysics. Using the techniques introduced here, one can even extract the infinite-volume energy limit using data from a single-volume calculation. The derived relations are tested using several exactly solvable systems and numerical examples. We anticipate immediate applications to lattice calculations of hadronic, nuclear, and cold atomic systems.

  16. Relativistic bound-state problem of a one-dimensional system

    International Nuclear Information System (INIS)

    Sato, T.; Niwa, T.; Ohtsubo, H.; Tamura, K.

    1991-01-01

    A Poincare-covariant description of the two-body bound-state problem in one-dimensional space is studied by using the relativistic Schrodinger equation. We derive the many-body Hamiltonian, electromagnetic current and generators of the Poincare group in the framework of one-boson exchange. Our theory satisfies Poincare algebra within the one-boson-exchange approximation. We numerically study the relativistic effects on the bound-state wavefunction and the elastic electromagnetic form factor. The Lorentz boost of the bound-state wavefunction and the two-body exchange current are shown to play an important role in guaranteeing the Lorentz invariance of the form factor. (author)

  17. Remote information concentration by a Greenberger-Horne-Zeilinger state and by a bound entangled state

    International Nuclear Information System (INIS)

    Yu, Yafei; Zhan, Mingsheng; Feng, Jian

    2003-01-01

    We compare remote quantum information concentration by a Greenberger-Horne-Zeilinger (GHZ) state with an unlockable bound entangled state. We find that in view of communication security the bound entangled state works better than the GHZ state

  18. Effect of Bound Entanglement on the Convertibility of Pure States

    International Nuclear Information System (INIS)

    Ishizaka, Satoshi

    2004-01-01

    I show that bound entanglement strongly influences the quantum entanglement processing of pure states: If N distant parties share appropriate bound entangled states with positive partial transpose, all N-partite pure entangled states become inter-convertible by stochastic local operations and classical communication (SLOCC) at the single copy level. This implies that the Schmidt rank of a bipartite pure entangled state can be increased, and that two incomparable tripartite entanglement of the GHZ and W type can be inter-converted by the assistance of bound entanglement. Further, I propose the simplest experimental scheme for the demonstration of the corresponding bound-entanglement-assisted SLOCC. This scheme does not need quantum gates and is feasible for the current experimental technology of linear optics

  19. Bound states in weakly disordered spin ladders

    Energy Technology Data Exchange (ETDEWEB)

    Arlego, M. [Departamento de Fisica, Universidad Nacional de La Plata, CC 67 (1900) La Plata (Argentina)]. E-mail: arlego@venus.fisica.unlp.edu.ar; Brenig, W. [Institut fuer Theoretische Physik, Technische Universitaet Braunschweig (Germany); Cabra, D.C. [Laboratoire de Physique Theorique, Universite Louis Pasteur Strasbourg (France); Heidrich-Meisner, F. [Institut fuer Theoretische Physik, Technische Universitaet Braunschweig (Germany); Honecker, A. [Institut fuer Theoretische Physik, Technische Universitaet Braunschweig (Germany); Rossini, G. [Departamento de Fisica, Universidad Nacional de La Plata, CC 67 (1900) La Plata (Argentina)

    2005-04-30

    We study the appearance of bound states in the spin gap of spin-12 ladders induced by weak bond disorder. Starting from the strong-coupling limit, i.e., the limit of weakly coupled dimers, we perform a projection on the single-triplet subspace and derive the position of bound states for the single impurity problem of one modified coupling as well as for small impurity clusters. The case of a finite concentration of impurities is treated with the coherent-potential approximation (CPA) in the strong-coupling limit and compared with numerical results. Further, we analyze the details in the structure of the density of states and relate their origin to the influence of impurity clusters.

  20. Variational energy for Θ+ - 2H bound state

    International Nuclear Information System (INIS)

    Shoeb, Mohammad; Naz, Tabassum; Siddiqah, Mariyah

    2015-01-01

    Pentaquark is considered to be a exotic particle with valency structure of four quarks and antiquark. Diakonov et. al. have made a prediction for the existence of strangeness S= +1 and isospin zero pentaquark Θ + (uudds¯) of mass 1.54 GeV with a narrow width and j p = 1/2 + which is a member of an antidecuplet. Small width is assumed to be a consequence of even parity. We may point out that many experimental searches for the existence of Θ + that have been made in the past have remained inconclusive. Miller has proposed a schematic model where coherent interaction of us¯ and ds¯ pairs leads to very large attractive residual interaction which in turn produces a strongly attractive Θ-nucleon spin-independent local potential, sufficient to produce a bound state of Θ-nuclear matter that is stable against strong decay. In the model under discussion the Θ has been regarded as a collective vibration of nucleon

  1. Bounds on the entanglement attainable from unitary transformed thermal states in liquid-state nuclear magnetic resonance

    International Nuclear Information System (INIS)

    Yu, Terri M.; Brown, Kenneth R.; Chuang, Isaac L.

    2005-01-01

    The role of mixed-state entanglement in liquid-state nuclear magnetic resonance (NMR) quantum computation is not yet well understood. In particular, despite the success of quantum-information processing with NMR, recent work has shown that quantum states used in most of those experiments were not entangled. This is because these states, derived by unitary transforms from the thermal equilibrium state, were too close to the maximally mixed state. We are thus motivated to determine whether a given NMR state is entanglable - that is, does there exist a unitary transform that entangles the state? The boundary between entanglable and nonentanglable thermal states is a function of the spin system size N and its temperature T. We provide bounds on the location of this boundary using analytical and numerical methods; our tightest bound scales as N∼T, giving a lower bound requiring at least N∼22 000 proton spins to realize an entanglable thermal state at typical laboratory NMR magnetic fields. These bounds are tighter than known bounds on the entanglability of effective pure states

  2. Maximum and minimum entropy states yielding local continuity bounds

    Science.gov (United States)

    Hanson, Eric P.; Datta, Nilanjana

    2018-04-01

    Given an arbitrary quantum state (σ), we obtain an explicit construction of a state ρɛ * ( σ ) [respectively, ρ * , ɛ ( σ ) ] which has the maximum (respectively, minimum) entropy among all states which lie in a specified neighborhood (ɛ-ball) of σ. Computing the entropy of these states leads to a local strengthening of the continuity bound of the von Neumann entropy, i.e., the Audenaert-Fannes inequality. Our bound is local in the sense that it depends on the spectrum of σ. The states ρɛ * ( σ ) and ρ * , ɛ (σ) depend only on the geometry of the ɛ-ball and are in fact optimizers for a larger class of entropies. These include the Rényi entropy and the minimum- and maximum-entropies, providing explicit formulas for certain smoothed quantities. This allows us to obtain local continuity bounds for these quantities as well. In obtaining this bound, we first derive a more general result which may be of independent interest, namely, a necessary and sufficient condition under which a state maximizes a concave and Gâteaux-differentiable function in an ɛ-ball around a given state σ. Examples of such a function include the von Neumann entropy and the conditional entropy of bipartite states. Our proofs employ tools from the theory of convex optimization under non-differentiable constraints, in particular Fermat's rule, and majorization theory.

  3. Bound states of 'dressed' particles

    International Nuclear Information System (INIS)

    Shirokov, M.I.

    1994-01-01

    A new approach to the problem of bound states in relativistic quantum field theories is suggested. It uses the creation - destruction operators of 'dresses' particles which have been granted by Faddeev's (1963) 'dressing' formalism. Peculiarities of the proposed approach as compared to the known ones are discussed. 8 refs. (author)

  4. Majorana bound states in a disordered quantum dot chain

    International Nuclear Information System (INIS)

    Zhang, P; Nori, Franco

    2016-01-01

    We study Majorana bound states in a disordered chain of semiconductor quantum dots proximity-coupled to an s -wave superconductor. By calculating its topological quantum number, based on the scattering-matrix method and a tight-binding model, we can identify the topological property of such an inhomogeneous one-dimensional system. We study the robustness of Majorana bound states against disorder in both the spin-independent terms (including the chemical potential and the regular spin-conserving hopping) and the spin-dependent term, i.e., the spin-flip hopping due to the Rashba spin–orbit coupling. We find that the Majorana bound states are not completely immune to the spin-independent disorder, especially when the latter is strong. Meanwhile, the Majorana bound states are relatively robust against spin-dependent disorder, as long as the spin-flip hopping is of uniform sign (i.e., the varying spin-flip hopping term does not change its sign along the chain). Nevertheless, when the disorder induces sign-flip in spin-flip hopping, the topological-nontopological phase transition takes place in the low-chemical-potential region. (paper)

  5. Exchange interaction in scattering on the bound state

    International Nuclear Information System (INIS)

    Arkhipov, A.A.; Savrin, V.I.

    1975-01-01

    In the framework of the one-time formulation of three-body problem in quantum field theory, the problem of scattering on the bound state is considered for the case when one of the incident particles is identical to one of the particles of the target. It is shown that due to the identical nature of these particles the exchange interaction takes place which can be connected with the mechanism of scattering on the bound state with the rearrangement

  6. Effects of QCD bound states on dark matter relic abundance

    Energy Technology Data Exchange (ETDEWEB)

    Liew, Seng Pei [Department of Physics, The University of Tokyo,Bunkyo-ku, Tokyo 113-0033 (Japan); Luo, Feng [Kavli IPMU (WPI), UTIAS, The University of Tokyo,Kashiwa, Chiba 277-8583 (Japan)

    2017-02-17

    We study scenarios where there exists an exotic massive particle charged under QCD in the early Universe. We calculate the formation and dissociation rates of bound states formed by pairs of these particles, and apply the results in dark matter (DM) coannihilation scenarios, including also the Sommerfeld effect. We find that on top of the Sommerfeld enhancement, bound-state effects can further significantly increase the largest possible DM masses which can give the observed DM relic abundance, by ∼30–100% with respect to values obtained by considering the Sommerfeld effect only, for the color triplet or octet exotic particles we consider. In particular, it indicates that the Bino DM mass in the right-handed stop-Bino coannihilation scenario in the Minimal Supersymmetric extension of the Standard Model (MSSM) can reach ∼2.5 TeV, even though the potential between the stop and antistop prior to forming a bound state is repulsive. We also apply the bound-state effects in the calculations of relic abundance of long-lived or metastable massive colored particles, and discuss the implications on the BBN constraints and the abundance of a super-weakly interacting DM. The corrections for the bound-state effect when the exotic massive colored particles also carry electric charges, and the collider bounds are also discussed.

  7. Bound states in curved quantum waveguides

    International Nuclear Information System (INIS)

    Exner, P.; Seba, P.

    1987-01-01

    We study free quantum particle living on a curved planar strip Ω of a fixed width d with Dirichlet boundary conditions. It can serve as a model for electrons in thin films on a cylindrical-type substrate, or in a curved quantum wire. Assuming that the boundary of Ω is infinitely smooth and its curvature decays fast enough at infinity, we prove that a bound state with energy below the first transversal mode exists for all sufficiently small d. A lower bound on the critical width is obtained using the Birman-Schwinger technique. (orig.)

  8. Stable Superstring Relics and Ultrahigh Energy Cosmic Rays

    CERN Document Server

    Coriano, Claudio; Plumacher, Michael; Coriano, Claudio; Faraggi, Alon E.; Plumacher, Michael

    2001-01-01

    One of the most intriguing experimental results of recent years is the observation of Ultrahigh Energy Cosmic Rays (UHECRs) above the GZK cutoff. Plausible candidates for the UHECR primaries are the decay products of a meta--stable matter state with mass of order O(10^{12-15 GeV}), which simultaneously is a good cold dark matter candidate. We study possible meta-stable matter states that arise from Wilson line breaking of GUT symmetries in semi-realistic heterotic string models. In the models that we study the exotic matter states can be classified according to patterns of SO(10) symmetry breaking. We show that cryptons, which are states that carry fractional electric charge $\\pm1/2$, and are confined by a hidden gauge group cannot produce viable dark matter. This is due to the fact that, in addition to the lightest neutral bound state, cryptons give rise to meta-stable charged bound states. However, these states may still account for the UHECR events. We argue that the uniton, which is an exotic Standard Mod...

  9. Relativistic bound state approach to fundamental forces including gravitation

    Directory of Open Access Journals (Sweden)

    Morsch H.P.

    2012-06-01

    Full Text Available To describe the structure of particle bound states of nature, a relativistic bound state formalism is presented, which requires a Lagrangian including scalar coupling of two boson fields. The underlying mechanisms are quite complex and require an interplay of overlapping boson fields and fermion-antifermion production. This gives rise to two potentials, a boson-exchange potential and one identified with the long sought confinement potential in hadrons. With minimal requirements, two elementary massless fermions (quantons - with and without charge - and one gauge boson, hadrons and leptons but also atoms and gravitational systems are described by bound states with electric and magnetic coupling between the charges and spins of quantons. No need is found for colour, Higgs-coupling and supersymmetry.

  10. Majorana bound states in a coupled quantum-dot hybrid-nanowire system

    DEFF Research Database (Denmark)

    Deng, M. T.; Vaitiekenas, S.; Hansen, E. B.

    2016-01-01

    Hybrid nanowires combining semiconductor and superconductor materials appear well suited for the creation, detection, and control of Majorana bound states (MBSs). We demonstrate the emergence of MBSs from coalescing Andreev bound states (ABSs) in a hybrid InAs nanowire with epitaxial Al, using...... with the end-dot bound state, which is in agreement with a numerical model. The ABS/MBS spectra provide parameters that are useful for understanding topological superconductivity in this system....

  11. Relativistic bound states

    International Nuclear Information System (INIS)

    Ritchie, Burke

    2006-01-01

    The Hamiltonian for Dirac's second-order equation depends nonlinearly on the potential V and the energy E. For this reason the magnetic contribution to the Hamiltonian for s-waves, which has a short range, is attractive for a repulsive Coulomb potential (V>0) and repulsive for an attractive Coulomb potential (V 2 . Usually solutions are found in the regime E=mc 2 +ε , where except for high Z, ε 2 . Here it is shown that for V>0 the attractive magnetic term and the linear repulsive term combine to support a bound state near E=0.5mc 2 corresponding to a binding energy E b =-ε =0.5mc 2

  12. Quasi-bound states, resonance tunnelling, and tunnelling times ...

    Indian Academy of Sciences (India)

    analysis of bound states below the threshold energy E = 0 and continuum above the threshold .... p are time reversal states of each other. Similarly, the ... are occurring at above-barrier energies and we do not treat them as QB states. They can ...

  13. Relativistic bound states: a mass formula for vector mesons

    International Nuclear Information System (INIS)

    Richard, J.L.; Sorba, P.

    1975-07-01

    In the framework of a relativistic description of two particles bound states, a mass formula for vector mesons considered as quark-antiquark systems bound by harmonic oscillator like forces is proposed. Results in good agreement with experimental values are obtained [fr

  14. Two-vibron bound states in the β–Fermi–Pasta–Ulam model

    International Nuclear Information System (INIS)

    Hu Xinguang; Tang Yi

    2008-01-01

    This paper studies the two-vibron bound states in the β–Fermi–Pasta–Ulam model by means of the number conserving approximation combined with the number state method. The results indicate that on-site, adjacent-site and mixed two-vibron bound states may exist in the model. Specially, wave number has a significant effect on such bound states, which may be considered as the quantum effects of the localized states in quantum systems. (condensed matter: structure, thermal and mechanical properties)

  15. Bound states embedded into continuous spectrum as 'gathered' (compactified) scattering waves

    International Nuclear Information System (INIS)

    Zakhar'ev, B.N.; Chabanov, V.M.

    1995-01-01

    It is shown that states of continuous spectrum (the half-line case) can be considered as bound states normalized by unity but distributed on the infinite interval with vanishing density. Then the algorithms of shifting the range of primary localization of a chosen bound state in potential well of finite width appear to be applicable to scattering functions. The potential perturbations of the same type (but now on half-axis) concentrate the scattering wave in near vicinity of the origin, which leads to creation of bound state embedded into continuous spectrum. (author). 8 refs., 7 figs

  16. Application of the N-quantum approximation method to bound state problems

    International Nuclear Information System (INIS)

    Raychaudhuri, A.

    1977-01-01

    The N-quantum approximation (NQA) method is examined in the light of its application to bound state problems. Bound state wave functions are obtained as expansion coefficients in a truncated Haag expansion. From the equations of motion for the Heisenberg field and the NQA expansion, an equation satisfied by the wave function is derived. Two different bound state systems are considered. In one case, the bound state problem of two identical scalars by scalar exchange is analyzed using the NQA. An integral equation satisfied by the wave function is derived. In the nonrelativistic limit, the equation is shown to reduce to the Schroedinger equation. The equation is solved numerically, and the results compared with those obtained for this system by other methods. The NQA method is also applied to the bound state of two spin 1/2 particles with electromagnetic interaction. The integral equation for the wave function is shown to agree with the corresponding Bethe Salpeter equation in the nonrelativistic limit. Using the Dirac (4 x 4) matrices the wave function is expanded in terms of structure functions and the equation for the wave function is reduced to two disjoint sets of coupled equation for the structure functions

  17. Usefulness of bound-state approximations in reaction theory

    International Nuclear Information System (INIS)

    Adhikari, S.K.

    1981-01-01

    A bound-state approximation when applied to certain operators, such as the many-body resolvent operator for a two-body fragmentation channel, in many-body scattering equations, reduces such equations to equivalent two-body scattering equations which are supposed to provide a good description of the underlying physical process. In this paper we test several variants of bound-state approximations in the soluble three-boson Amado model and find that such approximations lead to weak and unacceptable kernels for the equivalent two-body scattering equations and hence to a poor description of the underlying many-body process

  18. Improved Rosen's conditions on bound states of Schroedinger operators

    International Nuclear Information System (INIS)

    Exner, P.

    1984-01-01

    We derive a necessary condition on a Schroedinger operator H=-Δ+V on Lsup(2)(Rsup(d)), d>=3 to have a bound state below a given energy epsilon, and a lower bound to the ground-state energy of H. These conditions are expressed in terms of the potential V alone, and generalize the recent results of Rosen to the dimensions d>3 and to the potentials that are not necessarily rapidly decreasing. Some examples are given

  19. Systematic assignment of Feshbach resonances via an asymptotic bound state model

    NARCIS (Netherlands)

    Goosen, M.; Kokkelmans, SJ.J.M.F.

    2008-01-01

    We present an Asymptotic Bound state Model (ABM), which is useful to predict Feshbach resonances. The model utilizes asymptotic properties of the interaction potentials to represent coupled molecular wavefunctions. The bound states of this system give rise to Feshbach resonances, localized at the

  20. Fano effect and Andreev bound states in T-shape double quantum dots

    International Nuclear Information System (INIS)

    Calle, A.M.; Pacheco, M.; Orellana, P.A.

    2013-01-01

    In this Letter, we investigate the transport through a T-shaped double quantum dot coupled to two normal metal leads left and right and a superconducting lead. Analytical expressions of Andreev transmission and local density of states of the system at zero temperature have been obtained. We study the role of the superconducting lead in the quantum interferometric features of the double quantum dot. We report for first time the Fano effect produced by Andreev bound states in a side quantum dot. Our results show that as a consequence of quantum interference and proximity effect, the transmission from normal to normal lead exhibits Fano resonances due to Andreev bound states. We find that this interference effect allows us to study the Andreev bound states in the changes in the conductance between two normal leads. - Highlights: • Transport properties of a double quantum dot coupled in T-shape configuration to conducting and superconducting leads are studied. • We report Fano antiresonances in the normal transmission due to the Andreev reflections in the superconducting lead. • We report for first time the Fano effect produced by Andreev bound states in a side quantum dot. • Fano effect allows us to study the Andreev bound states in the changes in the conductance between two normal leads. • Andreev bound states survives even for strong dot-superconductor coupling

  1. Connection between bound-states of bosons moving in one dimension

    International Nuclear Information System (INIS)

    Coutinho, F.A.B.

    1982-06-01

    It is shown that when a system of two identical bosons moving in one dimension have a bound state of energy ν sub(o), then the N body system will also have a bound state at a specific energy given by equation W(N+1) = 2N/1-N ]W(N)] - N+1/1-N ]W(N-1)]. (Author) [pt

  2. Muonic-hydrogen molecular bound states, quasibound states, and resonances in the Born-Oppenheimer approximation

    International Nuclear Information System (INIS)

    Jackson, J.D.

    1994-01-01

    The Born-Oppenheimer approximation is used as an exploratory tool to study bound states, quasibound states, and scattering resonances in muon (μ)--hydrogen (x)--hydrogen (y) molecular ions. Our purpose is to comment on the existence and nature of the narrow states reported in three-body calculations, for L=0 and 1, at approximately 55 eV above threshold and the family of states in the same partial waves reported about 1.9 keV above threshold. We first discuss the motivation for study of excited states beyond the well-known and well-studied bound states. Then we reproduce the energies and other properties of these well-known states to show that, despite the relatively large muon mass, the Born-Oppenheimer approximation gives a good, semiquantitative description containing all the essential physics. Born-Oppenheimer calculations of the s- and p-wave scattering of d-(dμ), d-(tμ), and t-(tμ) are compared with the accurate three-body results, again with general success. The places of disagreement are understood in terms of the differences in location of slightly bound (or unbound) states in the Born-Oppenheimer approximation compared to the accurate three-body calculations

  3. Quarks as quasiparticles of bound states

    International Nuclear Information System (INIS)

    Tyapkin, A.A.

    1977-01-01

    Interpretation of quarks as strongly bound subsystems of the baryon structure, being in various states with integer the quantum numbers Q and B, is considered. Three original quark states, distinguished by Q, B, and J, are unambiguously determined from the condition that the quarks have the corresponding fractional quantum numbers while the integer quantum numbers for the whole system are known. With this in view the new quantum number ''colour'' is interpreted as a quantity, specifying the appearance of the subsystems in various eigen-states. Basing on the generalized Sakata model, the self-consistency of change of the colour states in the three-quark system is explained

  4. Shooting quasiparticles from Andreev bound states in a superconducting constriction

    Energy Technology Data Exchange (ETDEWEB)

    Riwar, R.-P.; Houzet, M.; Meyer, J. S. [University of Grenoble Alpes, INAC-SPSMS (France); Nazarov, Y. V., E-mail: Y.V.Nazarov@tudelft.nl [Delft University of Technology, Kavli Institute of NanoScience (Netherlands)

    2014-12-15

    A few-channel superconducting constriction provides a set of discrete Andreev bound states that may be populated with quasiparticles. Motivated by recent experimental research, we study the processes in an a.c. driven constriction whereby a quasiparticle is promoted to the delocalized states outside the superconducting gap and flies away. We distinguish two processes of this kind. In the process of ionization, a quasiparticle present in the Andreev bound state is transferred to the delocalized states leaving the constriction. The refill process involves two quasiparticles: one flies away while another one appears in the Andreev bound state. We notice an interesting asymmetry of these processes. The electron-like quasiparticles are predominantly emitted to one side of the constriction while the hole-like ones are emitted to the other side. This produces a charge imbalance of accumulated quasiparticles, that is opposite on opposite sides of the junction. The imbalance may be detected with a tunnel contact to a normal metal lead.

  5. Universal extra dimensions and Kaluza-Klein bound states

    International Nuclear Information System (INIS)

    Carone, Christopher D.; Conroy, Justin M.; Sher, Marc; Turan, Ismail

    2004-01-01

    We study the bound states of the Kaluza-Klein (KK) excitations of quarks in certain models of universal extra dimensions. Such bound states may be detected at future lepton colliders in the cross section for the pair production of KK quarks near threshold. For typical values of model parameters, we find that 'KK quarkonia' have widths in the 10-100 MeV range, and production cross sections of the order of a few picobarns for the lightest resonances. Two body decays of the constituent KK quarks lead to distinctive experimental signatures. We point out that such KK resonances may be discovered before any of the higher KK modes

  6. Threshold energy dependence as a function of potential strength and the nonexistence of bound states

    International Nuclear Information System (INIS)

    Aronson, I.; Kleinman, C.J.; Spruch, L.

    1975-01-01

    The difficulty in attempting to prove that a given set of particles cannot form a bound state is the absence of a margin of error; the possibility of a bound state of arbitrarily small binding energy must be ruled out. At the sacrifice of rigor, one can hope to bypass the difficulty by studying the ground-state energy E(lambda) associated with H(lambda) identical with H/sub true/ + lambda/sub ν/, where H/sub true/ is the true Hamiltonian, ν is an artificial attractive potential, and lambda greater than 0. E(lambda) can be estimated via a Rayleigh-Ritz calculation. If H/sub true/ falls just short of being able to support a bound state, H(lambda) for lambda ''not too small'' will support a bound state of some significant binding. A margin of error is thereby created; the inability to find a bound state for lambda ''not too small'' suggests not only that H(lambda) can support at best a weakly bound state but that H/sub true/ cannot support a bound state at all. To give the argument real substance, one studies E(lambda) in the neighborhood of lambda = lambda 0 , the (unknown) smallest value for lambda for which H(lambda) can support a bound state. A comparison of E(lambda) determined numerically with the form of E(lambda) obtained with the use of a crude bound-state wave function in the Feynman theorem gives a rough self-consistency check. One thereby obtains a believable lower bound on the energy of a possible bound state of H/sub true/ or a believable argument that no such bound state exists. The method is applied to the triplet state of H -

  7. Surface-bound states in nanodiamonds

    Science.gov (United States)

    Han, Peng; Antonov, Denis; Wrachtrup, Jörg; Bester, Gabriel

    2017-05-01

    We show via ab initio calculations and an electrostatic model that the notoriously low, but positive, electron affinity of bulk diamond becomes negative for hydrogen passivated nanodiamonds and argue that this peculiar situation (type-II offset with a vacuum level at nearly midgap) and the three further conditions: (i) a surface dipole with positive charge on the outside layer, (ii) a spherical symmetry, and (iii) a dielectric mismatch at the surface, results in the emergence of a peculiar type of surface state localized just outside the nanodiamond. These states are referred to as "surface-bound states" and have consequently a strong environmental sensitivity. These type of states should exist in any nanostructure with negative electron affinity. We further quantify the band offsets of different type of nanostructures as well as the exciton binding energy and contrast the results with results for "conventional" silicon quantum dots.

  8. Crossover from bound to free states in plasmas

    International Nuclear Information System (INIS)

    Lankin, Alexander V; Norman, Genri E

    2009-01-01

    A self-consistent joint description of free and weakly bound electron states in strongly coupled plasmas is presented. The existence of two problems is emphasized. The first one is a well-known restriction of the number of atomic excited states. Another one is a description of the smooth crossover from bound pair electron-ion excited states to collective excitations of free electrons. The fluctuation approach is developed to study the spectrum domain intermediate between low-lying excited atoms and free electron continuous energy levels. The molecular dynamics method is applied to study the plasma model since the method is able to distinguish all kinds of fluctuations. The electron-ion interaction is described by the temperature-independent cut-off Coulomb potential. The diagnostics of pair electron-ion fluctuations is developed. The concept of pair fluctuations elucidates the smooth vanishing of atomic states near the ionization limit. The approach suggested removes the artificial break of the electron state density at the ionization limit: atomic state density divergent at the negative energy side and free electron state density starting from zero density at the positive energy side

  9. First observation of bound-state β-decay

    International Nuclear Information System (INIS)

    Jung, M.; Bosch, F.; Beckert, K.; Eickhoff, H.; Folger, H.; Franzke, B.; Kienle, P.; Klepper, O.; Koenig, W.; Kozhuharov, C.; Mann, R.; Moshammer, R.; Nolden, F.; Schaaf, U.; Soff, G.; Spaedtke, P.; Steck, M.; Stoehlker, T.; Suemmerer, K.

    1992-06-01

    Bound-state Β - decay was observed for the first time by storing bare 66 163 Dy 66+ ions in a heavy-ion storage ring. From the number of 67 163 Ho 66+ daughter ions, measured as a function of the storage time, a half-life of 47 4 +5 - d was derived. By comparing this result with reported half-lives for electron capture (EC) from the M 1 and M 2 shells of neutral 67 163 Ho, bounds for both the Q EC value of neutral 67 163 Ho and for the electron neutrino mass were set. (orig.)

  10. Bound-state quark and gluon contributions to structure functions in QCD

    International Nuclear Information System (INIS)

    Brodsky, S.J.

    1991-01-01

    One can distinguish two types of contributions to the quark and gluon structure functions of hadrons in quantum chromodynamics: 'intrinsic' contributions, which are due to the direct scattering on the bound-state constituents, and 'extrinsic' contributions, which are derived from particles created in the collision. In this talk, I discuss several aspects of deep inealstic structure functions in which the bound-state structure of the proton plays a crucial role: (1) the properties of the intrinsic gluon distribution associated with the proton bound-state wavefunction; (2) the separation of the quark structure function of the proton into intrinsic 'bound-valence' and extrinsic 'non-valence' components which takes into account the Pauli principle; (3) the properties and identification of intrinsic heavy quark structure functions; and (4) a theory of shadowing and anti-shadowing of nuclear structure functions, directly related to quark-nucleon interactions and the gluon saturation phenomenon. (orig.)

  11. Bound-state quark and gluon contributions to structure functions in QCD

    International Nuclear Information System (INIS)

    Brodsky, S.J.

    1990-08-01

    One can distinguish two types of contributions to the quark and gluon structure functions of hadrons in quantum chromodynamics: ''intrinsic'' contributions, which are due to the direct scattering on the bound-state constituents, and ''extrinsic'' contributions, which are derived from particles created in the collision. In this talk, I discussed several aspects of deep inelastic structure functions in which the bound-state structure of the proton plays a crucial role: the properties of the intrinsic gluon distribution associated with the proton bound-state wavefunction; the separation of the quark structure function of the proton onto intrinsic ''bound-valence'' and extrinsic ''non-valence'' components which takes into account the Pauli principle; the properties and identification of intrinsic heavy quark structure functions; and a theory of shadowing and anti-shadowing of nuclear structure functions, directly related to quark-nucleon interactions and the gluon saturation phenomenon. 49 refs., 5 figs

  12. Tunable hybridization of Majorana bound states at the quantum spin Hall edge

    Science.gov (United States)

    Keidel, Felix; Burset, Pablo; Trauzettel, Björn

    2018-02-01

    Confinement at the helical edge of a topological insulator is possible in the presence of proximity-induced magnetic (F) or superconducting (S) order. The interplay of both phenomena leads to the formation of localized Majorana bound states (MBS) or likewise (under certain resonance conditions) the formation of ordinary Andreev bound states (ABS). We investigate the properties of bound states in junctions composed of alternating regions of F or S barriers. Interestingly, the direction of magnetization in F regions and the relative superconducting phase between S regions can be exploited to hybridize MBS or ABS at will. We show that the local properties of MBS translate into a particular nonlocal superconducting pairing amplitude. Remarkably, the symmetry of the pairing amplitude contains information about the nature of the bound state that it stems from. Hence this symmetry can in principle be used to distinguish MBS from ABS, owing to the strong connection between local density of states and nonlocal pairing in our setup.

  13. Bound states in quantum field theory and coherent states: A fresh look

    International Nuclear Information System (INIS)

    Misra, S.P.

    1986-09-01

    We consider here bound state equations in quantum field theory where the state explicitly includes radiation quanta as constituents with the number of such quanta not fixed. The fully interacting system is dealt with through equal time commutators/anticommutators of field operators. The multiparticle channel for the radiation field is approximated through coherent state representations. (author)

  14. Accidental bound states in the continuum in an open Sinai billiard

    Energy Technology Data Exchange (ETDEWEB)

    Pilipchuk, A.S. [Kirensky Institute of Physics, Federal Research Center KSC SB RAS, 660036 Krasnoyarsk (Russian Federation); Siberian Federal University, 660080 Krasnoyarsk (Russian Federation); Sadreev, A.F., E-mail: almas@tnp.krasn.ru [Kirensky Institute of Physics, Federal Research Center KSC SB RAS, 660036 Krasnoyarsk (Russian Federation)

    2017-02-19

    The fundamental mechanism of the bound states in the continuum is the full destructive interference of two resonances when two eigenlevels of the closed system are crossing. There is, however, a wide class of quantum chaotic systems which display only avoided crossings of eigenlevels. As an example of such a system we consider the Sinai billiard coupled with two semi-infinite waveguides. We show that notwithstanding the absence of degeneracy bound states in the continuum occur due to accidental decoupling of the eigenstates of the billiard from the waveguides. - Highlights: • Bound states in the continuum in open chaotic billiards occur to accidental vanishing of coupling of eigenstate of billiard with waveguides.

  15. Andreev bound states. Some quasiclassical reflections

    International Nuclear Information System (INIS)

    Lin, Y.; Leggett, A. J.

    2014-01-01

    We discuss a very simple and essentially exactly solvable model problem which illustrates some nice features of Andreev bound states, namely, the trapping of a single Bogoliubov quasiparticle in a neutral s-wave BCS superfluid by a wide and shallow Zeeman trap. In the quasiclassical limit, the ground state is a doublet with a splitting which is proportional to the exponentially small amplitude for “normal” reflection by the edges of the trap. We comment briefly on a prima facie paradox concerning the continuity equation and conjecture a resolution to it

  16. Andreev bound states. Some quasiclassical reflections

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Y., E-mail: yiriolin@illinois.edu; Leggett, A. J. [University of Illinois at Urhana-Champaign, Dept. of Physics (United States)

    2014-12-15

    We discuss a very simple and essentially exactly solvable model problem which illustrates some nice features of Andreev bound states, namely, the trapping of a single Bogoliubov quasiparticle in a neutral s-wave BCS superfluid by a wide and shallow Zeeman trap. In the quasiclassical limit, the ground state is a doublet with a splitting which is proportional to the exponentially small amplitude for “normal” reflection by the edges of the trap. We comment briefly on a prima facie paradox concerning the continuity equation and conjecture a resolution to it.

  17. Three-nucleon forces and the trinucleon bound states

    International Nuclear Information System (INIS)

    Friar, J.L.; Frois, B.

    1986-04-01

    A summary of the bound-state working group session of the ''International Symposium on the Three-Body Force in the Three-Nucleon System'' is presented. The experimental evidence for three-nucleon forces has centered on two ground state properties: the tritium binding energy and the trinucleon form factors. Both are discussed

  18. Probing Andreev bound states in one-atom superconducting contacts

    Energy Technology Data Exchange (ETDEWEB)

    Pothier, Hugues; Janvier, Camille; Tosi, Leandro; Girit, Caglar; Goffman, Marcelo; Esteve, Daniel; Urbina, Cristian [Quantronics Group, SPEC, CEA-Saclay (France)

    2015-07-01

    Superconductors are characterized by a dissipationless current. Since the work of Josephson 50 years ago, it is known that a supercurrent can even flow through tunnel junctions between superconductors. This Josephson effect also occurs through any type of ''weak links'' between superconductors: non-superconducting materials, constrictions,.. A unified understanding of the Josephson effect has emerged from a mesoscopic description of weak links. It relies on the existence of doublets of localized states that have energies below the superconducting gap: the Andreev bound states. I will present experiments performed on the simplest conductor possible, a single-atom contact between superconductors, that illustrate these concepts. The most recent work demonstrates time-domain manipulation of quantum superpositions of Andreev bound states.

  19. Bound-state formation for thermal relic dark matter and unitarity

    International Nuclear Information System (INIS)

    Harling, Benedict von; Petraki, Kalliopi

    2014-01-01

    We show that the relic abundance of thermal dark matter annihilating via a long-range interaction, is significantly affected by the formation and decay of dark matter bound states in the early universe, if the dark matter mass is above a few TeV . We determine the coupling required to obtain the observed dark matter density, taking into account both the direct 2-to-2 annihilations and the formation of bound states, and provide an analytical fit. We argue that the unitarity limit on the inelastic cross-section is realized only if dark matter annihilates via a long-range interaction, and we determine the upper bound on the mass of thermal-relic dark matter to be about 197 (139) TeV for (non)-self-conjugate dark matter

  20. Amplification of non-Markovian decay due to bound state absorption into continuum

    International Nuclear Information System (INIS)

    Garmon, S.; Simine, L.; Segal, D.; Petrosky, T.

    2013-01-01

    It is known that quantum systems yield non-exponential (power law) decay on long time scales, associated with continuum threshold effects contributing to the survival probability for a prepared initial state. For an open quantum system consisting of a discrete state coupled to continuum, we study the case in which a discrete bound state of the full Hamiltonian approaches the energy continuum as the system parameters are varied. We find in this case that at least two regions exist yielding qualitatively different power law decay behaviors; we term these the long time 'near zone' and long time 'far zone'. In the near zone the survival probability falls off according to a t -1 power law, and in the far zone i t falls off as t -3 . We show that the timescale T Q separating these two regions is inversely related to the gap between the discrete bound state energy and the continuum threshold. In the case that the bound state is absorbed into the continuum and vanishes, then the time scale T Q diverges and the survival probability follows the t -1 power law even on asymptotic scales. Conversely, one could study the case of an anti-bound state approaching the threshold before being ejected from the continuum to form a bound state. Again the t -1 power law dominates precisely at the point of ejection. (Copyright copyright 2013 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. Deeply bound pionic states and modifications of hadrons

    International Nuclear Information System (INIS)

    Hirenzaki, S.

    2000-01-01

    We have studied the structure and formation of mesic atoms and mesic nuclei theoretically. The latest results on the deeply bound pionic atoms, the kaonic atoms and the sigma states are reported. (author)

  2. Experimental and theoretical study of bound and quasibound states of Ce{sup -}

    Energy Technology Data Exchange (ETDEWEB)

    Walter, C. W.; Gibson, N. D.; Li, Y.-G.; Matyas, D. J.; Alton, R. M.; Lou, S. E.; Field, R. L. III; Hanstorp, D.; Pan, Lin; Beck, Donald R. [Department of Physics and Astronomy, Denison University, Granville, Ohio 43023 (United States); Department of Physics, University of Gothenburg, SE-412 96 Gothenburg (Sweden); Department of Physics, Michigan Technological University, Houghton, Michigan 49931 (United States)

    2011-09-15

    The negative ion of cerium is investigated experimentally with tunable infrared laser photodetachment spectroscopy and theoretically with relativistic configuration interaction in the continuum formalism. The relative cross section for neutral atom production is measured with a crossed ion-beam-laser-beam apparatus over the photon energy range of 0.54-0.75 eV. A rich resonance spectrum is revealed near the threshold with, at least, 12 peaks observed due to transitions from bound states of Ce{sup -} to either bound or quasibound excited states of the negative ion. Theoretical calculations of the photodetachment cross sections enable identification of the transitions responsible for the measured peaks. Two of the peaks are due to electric dipole-allowed bound-bound transitions in Ce{sup -}, making cerium only the second atomic negative ion that has been demonstrated to support multiple bound states of opposite parity. In addition, combining the experimental data with the theoretical analysis determines the electron affinity of cerium to be 0.628(10) eV and the fine structure splitting of the ground state of Ce{sup -} ({sup 4} H{sub 7/2}-{sup 4} H{sub 9/2}) to be 0.097 75(4) eV.

  3. Passage of stable isotope-labeled grass silage fiber and fiber-bound protein through the gastroinstestinal tract of dairy cows

    NARCIS (Netherlands)

    Warner, D.; Dijkstra, J.; Hendriks, W.H.; Pellikaan, W.F.

    2013-01-01

    Fractional passage rates are required to predict nutrient absorption in ruminants but data on nutrient-specific passage kinetics are largely lacking. With the use of the stable isotope ratio (d) as an internal marker, we assessed passage kinetics of fiber and fiber-bound nitrogen (N) of

  4. Resolving the Spatial Structures of Bound Hole States in Black Phosphorus.

    Science.gov (United States)

    Qiu, Zhizhan; Fang, Hanyan; Carvalho, Alexandra; Rodin, A S; Liu, Yanpeng; Tan, Sherman J R; Telychko, Mykola; Lv, Pin; Su, Jie; Wang, Yewu; Castro Neto, A H; Lu, Jiong

    2017-11-08

    Understanding the local electronic properties of individual defects and dopants in black phosphorus (BP) is of great importance for both fundamental research and technological applications. Here, we employ low-temperature scanning tunnelling microscope (LT-STM) to probe the local electronic structures of single acceptors in BP. We demonstrate that the charge state of individual acceptors can be reversibly switched by controlling the tip-induced band bending. In addition, acceptor-related resonance features in the tunnelling spectra can be attributed to the formation of Rydberg-like bound hole states. The spatial mapping of the quantum bound states shows two distinct shapes evolving from an extended ellipse shape for the 1s ground state to a dumbbell shape for the 2p x excited state. The wave functions of bound hole states can be well-described using the hydrogen-like model with anisotropic effective mass, corroborated by our theoretical calculations. Our findings not only provide new insight into the many-body interactions around single dopants in this anisotropic two-dimensional material but also pave the way to the design of novel quantum devices.

  5. Possible Existence of (cc¯)–Nucleus Bound States

    International Nuclear Information System (INIS)

    Yokota, Akira; Oka, Makoto; Hiyama, Emiko

    2014-01-01

    Charmonium (cc¯) bound states in few-nucleon systems, 2 H, 4 He and 8 Be, are studied via Gaussian Expansion Method (GEM). We adopt a Gaussian potential as an effective (cc¯)–nucleon (N) interaction. The relation between two-body (cc¯)–N scattering length a cc¯−N and the binding energies B of (cc¯)–nucleus bound states are given. Recent lattice QCD data of a cc¯−N corresponds to B≃0.5 MeV for (cc¯)− 4 He and 2 MeV for (cc¯)− 8 Be in our results. (author)

  6. Heavy-to-light form factors for non-relativistic bound states

    International Nuclear Information System (INIS)

    Bell, G.; Feldmann, Th.

    2007-01-01

    We investigate transition form factors between non-relativistic QCD bound states at large recoil energy. Assuming the decaying quark to be much heavier than its decay product, the relativistic dynamics can be treated according to the factorization formula for heavy-to-light form factors obtained from the heavy-quark expansion in QCD. The non-relativistic expansion determines the bound-state wave functions to be Coulomb-like. As a consequence, one can explicitly calculate the so-called 'soft-overlap' contribution to the transition form factor

  7. Organizational coordination and costly communication with boundedly rational agents

    DEFF Research Database (Denmark)

    Dietrichson, Jens; Jochem, Torsten

    How does costly communication affect organizational coordination? This paper develops a model of costly communication based on the weakest-link game and boundedly rational agents. Solving for the stochastically stable states, we find that communication increases the possibilities for efficient...... coordination compared to a setting where agents cannot communicate. But as agents face a trade-off between lowering the strategic uncertainty for the group and the costs of communication, the least efficient state is still the unique stochastically stable one for many parameter values. Simulations show...... that this is not just a long run phenomena, the stochastically stable state is the most frequent outcome also in the short run. Making communication mandatory induces efficient coordination, whereas letting a team leader handle communication increases efficiency when the leader expects others to follow and has enough...

  8. Closed form bound-state perturbation theory

    Directory of Open Access Journals (Sweden)

    Ollie J. Rose

    1980-01-01

    Full Text Available The perturbed Schrödinger eigenvalue problem for bound states is cast into integral form using Green's Functions. A systematic algorithm is developed and applied to the resulting equation giving rise to approximate solutions expressed as functions of the given perturbation parameter. As a by-product, convergence radii for the traditional Rayleigh-Schrödinger and Brillouin-Wigner perturbation theories emerge in a natural way.

  9. Tunneling spectroscopy of quasiparticle bound states in a spinful Josephson junction.

    Science.gov (United States)

    Chang, W; Manucharyan, V E; Jespersen, T S; Nygård, J; Marcus, C M

    2013-05-24

    The spectrum of a segment of InAs nanowire, confined between two superconducting leads, was measured as function of gate voltage and superconducting phase difference using a third normal-metal tunnel probe. Subgap resonances for odd electron occupancy-interpreted as bound states involving a confined electron and a quasiparticle from the superconducting leads, reminiscent of Yu-Shiba-Rusinov states-evolve into Kondo-related resonances at higher magnetic fields. An additional zero-bias peak of unknown origin is observed to coexist with the quasiparticle bound states.

  10. Properties of a Bound Polaron under a Perpendicular Magnetic Field

    International Nuclear Information System (INIS)

    Liu Jia; Chen Ziyu; Xiao Jinglin; Huo Shufen

    2007-01-01

    We investigate the influence of a perpendicular magnetic field on a bound polaron near the interface of a polar-polar semiconductor with Rashba effect. The external magnetic field strongly changes the ground state binding energy of the polaron and the Rashba spin-orbit (SO) interaction originating from the inversion asymmetry in the heterostructure splits the ground state binding energy of the bound polaron. In this paper, we have shown how the ground state binding energy will be with the change of the external magnetic field, the location of a single impurity, the wave vector of the electron and the electron areal density, taking into account the SO coupling. Due to the presence of the phonons, whose energy gives negative contribution to the polaron's, the spin-splitting states of the bound polaron are more stable, and we find that in the condition of week magnetic field, the Zeeaman effect can be neglected.

  11. On bound states of photons in noncommutative U(1) gauge theory

    International Nuclear Information System (INIS)

    Fatollahi, A.H.; Jafari, A.

    2006-01-01

    We consider the possibility that photons of noncommutative U(1) gauge theory can make bound states. Using the potential model, developed based on the constituent gluon picture of QCD glue-balls, arguments are presented in favor of the existence of these bound states. The basic ingredient of the potential model is that the self-interacting massless gauge particles may get mass by the inclusion of non-perturbative effects. (orig.)

  12. Do bound color octet states of liberated quarks exist

    International Nuclear Information System (INIS)

    Lipkin, H.J.

    1979-01-01

    In models where quarks are liberated and color can be excited, the three-quark color-octet state is shown to be unbound and unstable against breakup into free quarks and diquarks. The signature for color excitation in deep inelastic processes will not be a bound three-quark state which decays electromagnetically but a final state containing free quarks. (author)

  13. Bound states in the two-dimension massive quantum electrodynamics (Qed2)

    International Nuclear Information System (INIS)

    Alves, V.S.; Gomes, M.

    1994-01-01

    This work studies the fermion-antifermion bound states in the (1+1)D two-dimension massive quantum electrodynamic in the 1/N expansion. The scattering matrices in the non-relativistic approximation have been calculated through TQC, and compared with the cross section in the Born approximation, and therefore the potential responsible by the interactions in the scattering processes have been obtained. Using Schroedinger equation, the existence of possible bound states have been investigated

  14. Hyperon polarizabilities in the bound-state soliton model

    International Nuclear Information System (INIS)

    Gobbi, C.; Scoccola, N.N.

    1996-01-01

    A detailed calculation of electric and magnetic static polarizabilities of octet hyperons is presented in the framework of the bound-state soliton model. Both seagull and dispersive contributions are considered, and the results are compared with different model predictions. (orig.)

  15. K-nuclear bound states in a dynamical model

    Czech Academy of Sciences Publication Activity Database

    Mareš, Jiří; Friedman, E.; Gal, A.

    2006-01-01

    Roč. 770, 1/2 (2006), s. 84-105 ISSN 0375-9474 Institutional research plan: CEZ:AV0Z10480505 Keywords : kaonic atoms * K-nuclear bound states * K-nucleus interaction Subject RIV: BE - Theoretical Physics Impact factor: 2.155, year: 2006

  16. Models for light QCD bound states

    International Nuclear Information System (INIS)

    LaCourse, D.P.

    1992-01-01

    After a brief overview of Regge, tower, and heavy-quark experimental data, this thesis examines two massless wave equations relevant to quark bound states. We establish general conditions on the Lorentz scalar and Lorentz vector potentials which yield arbitrary leading Regge trajectories for the case of circular classical motion. A semi-classical approximation which includes radial motion reproduces remarkably well the exact solutions. Conditions for tower structure are examined, and found to be incompatible with conditions which give a Nambu stringlike Regge slope. The author then proposes a generalization of the usual potential model of quark bound states in which the confining flux tube is a dynamical object carrying both angular momentum and energy. The Q bar Q-string system with spinless quarks is quantized using an implicit operator technique and the resulting relativistic wave equation is solved. For heavy quarks the usual Schroedinger valence-quark model is recovered. The Regge slope with light quarks agree with the classical rotating-string result and is significantly larger and the effects of short-range forces are also considered. A relativistic generalization of the quantized flux tube model predicts the glueball ground state mass to be √3/α' ≅ 1.9 GeV where α' is the normal Regge slope. The groundstate as well as excited levels like considerably above the expectations of previous models and also above various proposed experimental candidates. The glueball Regge slope is only about three-eighths that for valence quark hadrons. A semi-classical calculation of the Regge slope is in good agreement with a numerically exact value

  17. Inefficiency and classical communication bounds for conversion between partially entangled pure bipartite states

    International Nuclear Information System (INIS)

    Fortescue, Ben; Lo, H.-K.

    2005-01-01

    We derive lower limits on the inefficiency and classical communication costs of dilution between two-term bipartite pure states that are partially entangled. We first calculate explicit relations between the allowable error and classical communication costs of entanglement dilution using a previously described protocol, then consider a two-stage dilution from singlets with this protocol followed by some unknown protocol for conversion between partially entangled states. Applying overall lower bounds on classical communication and inefficiency to this two-stage protocol, we derive bounds for the unknown protocol. In addition we derive analogous (but looser) bounds for general pure states

  18. Bound states and scattering in four-body systems

    International Nuclear Information System (INIS)

    Narodetsky, I.M.

    1979-01-01

    It is the purpose of this review to provide the clear and elementary introduction in the integral equation method and to demonstrate explicitely its usefulness for the physical applications. The existing results concerning the application of the integral equation technique for the four-nucleon bound states and scattering are reviewed.The treatment is based on the quasiparticle approach that permits the simple interpretation of the equations in terms of quasiparticle scattering. The mathematical basis for the quasiparticle approach is the Hilbert-Schmidt theorem of the Fredholm integral equation theory. This paper contains the detailed discussion of the Hilbert-Schmidt expansion as applied to the 2-particle amplitudes and to the 3 + 1 and 2 + 2 amplitudes which are the kernels of the four-body equations. The review contains essentially the discussion of the four-body quasiparticle equations and results obtained for bound states and scattering

  19. Fano-type coupling of a bound paramagnetic state with 2D continuum

    International Nuclear Information System (INIS)

    Rozhansky, I. V.; Averkiev, N. S.; Lähderanta, E.

    2013-01-01

    We analyze an effect of a bound impurity state located at a tunnel distance from a quantum well (QW). The study is focused on the resonance case when the bound state energy lies within the continuum of the QW states. Using the developed theory we calculate spin polarization of 2D holes induced by paramagnetic (Mn) delta-layer in the vicinity of the QW and indirect exchange interaction between two impurities located at a tunnel distance from electron gas

  20. Rovibrational bound states of SO2 isotopologues. I: Total angular momentum J = 0-10

    Science.gov (United States)

    Kumar, Praveen; Ellis, Joseph; Poirier, Bill

    2015-04-01

    Isotopic variation of the rovibrational bound states of SO2 for the four stable sulfur isotopes 32-34,36S is investigated in comprehensive detail. In a two-part series, we compute the low-lying energy levels for all values of total angular momentum in the range J = 0-20. All rovibrational levels are computed, to an extremely high level of numerical convergence. The calculations have been carried out using the ScalIT suite of parallel codes. The present study (Paper I) examines the J = 0-10 rovibrational levels, providing unambiguous symmetry and rovibrational label assignments for each computed state. The calculated vibrational energy levels exhibit very good agreement with previously reported experimental and theoretical data. Rovibrational energy levels, calculated without any Coriolis approximations, are reported here for the first time. Among other potential ramifications, this data will facilitate understanding of the origin of mass-independent fractionation of sulfur isotopes in the Archean rock record-of great relevance for understanding the "oxygen revolution".

  1. Generation of bound states of pulses in a SESAM mode-locked Cr:ZnSe laser

    Science.gov (United States)

    Bu, Xiangbao; Shi, Yuhang; Xu, Jia; Li, Huijuan; Wang, Pu

    2018-06-01

    We report on the generation of bound states of pulses in a SESAM mode-locked Cr:ZnSe laser around 2415 nm. A thulium-doped double-clad fiber laser at 1908 nm was used as the pump source. Bound states with various pulse separations at different dispersion regimes were obtained. Especially, in the anomalous dispersion regime, vibrating bound state of solitons exhibiting an evolving phase was obtained.

  2. Dipole-bound states as doorways in (dissociative) electron attachment

    International Nuclear Information System (INIS)

    Sommerfeld, Thomas

    2005-01-01

    This communication starts with a comparison of dissociative recombination and dissociative attachment placing emphasis on the role of resonances as reactive intermediates. The main focus is then the mechanism of electron attachment to polar molecules at very low energies (100 meV). The scheme considered consists of two steps: First, an electron is captured in a diffuse dipole-bound state depositing its energy in the vibrational degrees of freedom, in other words, a vibrational Feshbach resonance is formed. Then, owing to the coupling with a valence state, the electron is transferred into a compact valence orbital, and depending on the electron affinities of the valence state and possible dissociation products, as well as on the details of the intramolecular redistribution of vibrational energy, long-lived anions can be generated or dissociation reactions can be initiated. The key property in this context is the electronic coupling strength between the diffuse dipole-bound and the compact valence states. We describe how the coupling strength can be extracted from ab initio data, and present results for Nitromethane, Uracil and Cyanoacetylene

  3. Signatures of Majorana bound states in one-dimensional topological superconductors

    International Nuclear Information System (INIS)

    Pientka, Falko

    2014-01-01

    Topological states of matter have fascinated condensed matter physicists for the past three decades. Famous examples include the integer and fractional quantum Hall states exhibiting a spectacular conductance quantization as well as topological insulators in two and three dimensions featuring gapless Dirac fermions at the boundary. Very recently, novel topological phases in superconductors have been subject of intense experimental and theoretical investigation. One-dimensional topological superconductors are particularly intriguing as they host exotic Majorana end states. These are zero-energy bound states with nonabelian exchange statistics potentially useful for topologically protected quantum computing. Recent theoretical and experimental advances have put the realization of Majorana states within reach of current measurement techniques. In this thesis we investigate signatures of Majorana bound states in realistic experiments aiming to improve the theoretical understanding of ongoing experimental efforts and to design novel measurement schemes, which exhibit convincing signatures of Majoranas. In particular we account for nonideal experimental conditions which can lead to qualitatively new features. Possible signatures of Majoranas can be accessed in the Josephson current through a weak link between two topological superconductors although the signatures in the dc Josephson effect are typically obscured by inevitable quasiparticle relaxation in the superconductor. Here we propose a measurement scheme in mesoscopic superconducting rings, where Majorana signatures persist even for infinitely fast relaxation. In a separate project we outline an alternative to the standard Josephson experiment in topological superconductors based on quantum wires. We delineate how Majoranas can be detected, when the Josephson current is induced by noncollinear magnetic fields applied to the two banks of the junction instead of a superconducting phase difference. Another important

  4. Some simple conditions of bound states of Schroedinger operators in dimension d >= 3

    International Nuclear Information System (INIS)

    Exner, P.

    1984-01-01

    A necessary condition for existence of bound states below a given energy of a Schroedinger operator H=-Δ+V on L 2 (Rsup(d)), d>=3, together with a lower bound to the ground-state energy of H are derived using the Sobolev inequalities. It generalizes some recent results to the dimensions d>3 and to the potentials that are not necessarily rapidly decreasing. Comparison to other known necessary conditions is given. The examples of the d-dimensional hydrogen-like atom and the d-dimensional harmonic oscillator are discussed. In both of them the bound to the ground-state energy becomes remarkably tight for large values of d

  5. On resonances and bound states of Smilansky Hamiltonian

    Czech Academy of Sciences Publication Activity Database

    Exner, Pavel; Lotoreichik, Vladimir; Tater, Miloš

    2016-01-01

    Roč. 7, č. 5 (2016), s. 789-802 ISSN 2220-8054 R&D Projects: GA ČR(CZ) GA14-06818S Institutional support: RVO:61389005 Keywords : Smilansky Hamiltonian * resonances * resonance free region * weak coupling asymptotics * Riemann surface * bound states Subject RIV: BE - Theoretical Physics

  6. Accurate calculations of bound rovibrational states for argon trimer

    Energy Technology Data Exchange (ETDEWEB)

    Brandon, Drew; Poirier, Bill [Department of Chemistry and Biochemistry, and Department of Physics, Texas Tech University, Box 41061, Lubbock, Texas 79409-1061 (United States)

    2014-07-21

    This work presents a comprehensive quantum dynamics calculation of the bound rovibrational eigenstates of argon trimer (Ar{sub 3}), using the ScalIT suite of parallel codes. The Ar{sub 3} rovibrational energy levels are computed to a very high level of accuracy (10{sup −3} cm{sup −1} or better), and up to the highest rotational and vibrational excitations for which bound states exist. For many of these rovibrational states, wavefunctions are also computed. Rare gas clusters such as Ar{sub 3} are interesting because the interatomic interactions manifest through long-range van der Waals forces, rather than through covalent chemical bonding. As a consequence, they exhibit strong Coriolis coupling between the rotational and vibrational degrees of freedom, as well as highly delocalized states, all of which renders accurate quantum dynamical calculation difficult. Moreover, with its (comparatively) deep potential well and heavy masses, Ar{sub 3} is an especially challenging rare gas trimer case. There are a great many rovibrational eigenstates to compute, and a very high density of states. Consequently, very few previous rovibrational state calculations for Ar{sub 3} may be found in the current literature—and only for the lowest-lying rotational excitations.

  7. Bound states in strongly correlated magnetic and electronic systems

    International Nuclear Information System (INIS)

    Trebst, S.

    2002-02-01

    A novel strong coupling expansion method to calculate two-particle spectra of quantum lattice models is developed. The technique can be used to study bosonic and fermionic models and in principle it can be applied to systems in any dimension. A number of strongly correlated magnetic and electronic systems are examined including the two-leg spin-half Heisenberg ladder, the dimerized Heisenberg chain with a frustrating next-nearest neighbor interaction, coupled Heisenberg ladders, and the one-dimensional Kondo lattice model. In the various models distinct bound states are found below the two-particle continuum. Quantitative calculations of the dispersion, coherence length and binding energy of these bound states are used to describe spectroscopic experiments on (Ca,La) 14 Cu 24 O 41 and NaV 2 O 5 . (orig.)

  8. New approximation to the bound states of Schroedinger operators with coulomb interaction

    International Nuclear Information System (INIS)

    Nunez, M.A.; Izquierdo B., G.

    1994-01-01

    In this work, the authors present a mathematical formulation of the physical fact that the bound states of a quantum system confined into a box Ω (with impenetrable walls) are similar to those of the unconfined system, if the box Ω is sufficiently large, and it is shown how the bound states of atomic and molecular Hamiltonians can be approximated by those of the system confined for a box Ω large enough (Dirichlet eigenproblem in Ω). Thus, a method for computing bound states is obtained which has the advantage of reducing the problem to the case of compact operators. This implies that a broad class of numerical and analytic techniques used for solving the Dirichlet problem, may be applied in full strength to obtain accurate computations of energy levels, wave functions, and other physical properties of interest

  9. Stieltjes electrostatic model interpretation for bound state problems

    Indian Academy of Sciences (India)

    In this paper, it is shown that Stieltjes electrostatic model and quantum Hamilton Jacobi formalism are analogous to each other. This analogy allows the bound state problem to mimic as unit moving imaginary charges i ℏ , which are placed in between the two fixed imaginary charges arising due to the classical turning ...

  10. Nonthreshold D-brane bound states and black holes with nonzero entropy

    International Nuclear Information System (INIS)

    Costa, M.S.; Cvetic, M.

    1997-01-01

    We start with Bogomol close-quote nyi-Prasad-Sommerfield- (BPS) saturated configurations of two (orthogonally) intersecting M-branes and use the electromagnetic duality or dimensional reduction along a boost, in order to obtain new p-brane bound states. In the first case the resulting configurations are interpreted as BPS-saturated nonthreshold bound states of intersecting p-branes, and in the second case as p-branes intersecting at angles and their duals. As a by-product we deduce the enhancement of supersymmetry as the angle approaches zero. We also comment on the D-brane theory describing these new bound states, and a connection between the angle and the world-volume gauge fields of the D-brane system. We use these configurations to find new embeddings of the four- and five-dimensional black holes with nonzero entropy, whose entropy now also depends on the angle and world-volume gauge fields. The corresponding D-brane configuration sheds light on the microscopic entropy of such black holes. copyright 1997 The American Physical Society

  11. Emergent low-energy bound states in the two-orbital Hubbard model

    Science.gov (United States)

    Núñez-Fernández, Y.; Kotliar, G.; Hallberg, K.

    2018-03-01

    A repulsive Coulomb interaction between electrons in different orbitals in correlated materials can give rise to bound quasiparticle states. We study the nonhybridized two-orbital Hubbard model with intra- (inter)orbital interaction U (U12) and different bandwidths using an improved dynamical mean-field theory numerical technique which leads to reliable spectra on the real energy axis directly at zero temperature. We find that a finite density of states at the Fermi energy in one band is correlated with the emergence of well-defined quasiparticle states at excited energies Δ =U -U12 in the other band. These excitations are interband holon-doublon bound states. At the symmetric point U =U12 , the quasiparticle peaks are located at the Fermi energy, leading to a simultaneous and continuous Mott transition settling a long-standing controversy.

  12. Covalently bound molecular states in beryllium and carbon isotopes

    International Nuclear Information System (INIS)

    Wolfram von, Oertzen; Hans-Gerhard, Bohlen; Wolfram von, Oertzen

    2003-01-01

    Nuclear clustering in N=Z nuclei has been studied since many decades. States close to the decay thresholds, as described by the Ikeda diagram, are of particular interest. Recent studies in loosely bound systems, as observed with neutron-rich nuclei has revived the interest in cluster structures in nuclei, with additional valence neutrons, which give rise to pronounced covalent molecular structures. The Beryllium isotopes represent the first example of such unique states in nuclear physics with extreme deformations. In the deformed shell model these are referred to as super- and hyper-deformation. These states can be described explicitly by molecular concepts, with neutrons in covalent binding orbits. Examples of recent experiments performed at the HMI-Berlin demonstrating the molecular structure of the rotational bands in Beryllium isotopes are presented. Further work on chain states (nuclear polymers) in the carbon isotopes is in progress, these are the first examples of deformed structures in nuclei with an axis ratio of 3:1. A threshold diagram with clusters bound via neutrons in covalent molecular configurations can be established, which can serve as a guideline for future work. (authors)

  13. Stable States of Biological Organisms

    Science.gov (United States)

    Yukalov, V. I.; Sornette, D.; Yukalova, E. P.; Henry, J.-Y.; Cobb, J. P.

    2009-04-01

    A novel model of biological organisms is advanced, treating an organism as a self-consistent system subject to a pathogen flux. The principal novelty of the model is that it describes not some parts, but a biological organism as a whole. The organism is modeled by a five-dimensional dynamical system. The organism homeostasis is described by the evolution equations for five interacting components: healthy cells, ill cells, innate immune cells, specific immune cells, and pathogens. The stability analysis demonstrates that, in a wide domain of the parameter space, the system exhibits robust structural stability. There always exist four stable stationary solutions characterizing four qualitatively differing states of the organism: alive state, boundary state, critical state, and dead state.

  14. Σ hypernuclear bound state observed in stopped K- reaction on 4He

    International Nuclear Information System (INIS)

    Hayano, R.S.; Ishikawa, T.; Iwasaki, M.; Outa, H.; Takada, E.; Tamura, H.; Sakaguchi, A.; Aoki, M.; Yamazaki, T.

    1988-12-01

    Results are presented of inclusive measurements of π ± momentum spectra from K - absorption at rest in liquid helium. We found a peak in the π - spectrum. The (K - , π + ) spectrum does not exhibit a clear peak in the Σ - bound region. Comparison of these two spectra suggests that the peak in the π - spectrum is due to the formation of the S = 0, I = 1/2 ground state of Σ-nucleus bound state. (J.P.N.)

  15. Parity lifetime of bound states in a proximitized semiconductor nanowire

    DEFF Research Database (Denmark)

    Higginbotham, Andrew Patrick; Albrecht, Sven Marian; Kirsanskas, Gediminas

    2015-01-01

    Quasiparticle excitations can compromise the performance of superconducting devices, causing high frequency dissipation, decoherence in Josephson qubits, and braiding errors in proposed Majorana-based topological quantum computers. Quasiparticle dynamics have been studied in detail in metallic...... superconductor layer, yielding an isolated, proximitized nanowire segment. We identify Andreev-like bound states in the semiconductor via bias spectroscopy, determine the characteristic temperatures and magnetic fields for quasiparticle excitations, and extract a parity lifetime (poisoning time) of the bound...

  16. The hyperbolic step potential: Anti-bound states, SUSY partners and Wigner time delays

    Energy Technology Data Exchange (ETDEWEB)

    Gadella, M. [Departamento de Física Teórica, Atómica y Óptica and IMUVA, Universidad de Valladolid, E-47011 Valladolid (Spain); Kuru, Ş. [Department of Physics, Faculty of Science, Ankara University, 06100 Ankara (Turkey); Negro, J., E-mail: jnegro@fta.uva.es [Departamento de Física Teórica, Atómica y Óptica and IMUVA, Universidad de Valladolid, E-47011 Valladolid (Spain)

    2017-04-15

    We study the scattering produced by a one dimensional hyperbolic step potential, which is exactly solvable and shows an unusual interest because of its asymmetric character. The analytic continuation of the scattering matrix in the momentum representation has a branch cut and an infinite number of simple poles on the negative imaginary axis which are related with the so called anti-bound states. This model does not show resonances. Using the wave functions of the anti-bound states, we obtain supersymmetric (SUSY) partners which are the series of Rosen–Morse II potentials. We have computed the Wigner reflection and transmission time delays for the hyperbolic step and such SUSY partners. Our results show that the more bound states a partner Hamiltonian has the smaller is the time delay. We also have evaluated time delays for the hyperbolic step potential in the classical case and have obtained striking similitudes with the quantum case. - Highlights: • The scattering matrix of hyperbolic step potential is studied. • The scattering matrix has a branch cut and an infinite number of poles. • The poles are associated to anti-bound states. • Susy partners using antibound states are computed. • Wigner time delays for the hyperbolic step and partner potentials are compared.

  17. New approach to calculate bound state eigenvalues

    International Nuclear Information System (INIS)

    Gerck, E.; Gallas, J.A.C.

    1983-01-01

    A method of solving the radial Schrodinger equation for bound states is discussed. The method is based on a new piecewise representation of the second derivative operator on a set of functions that obey the boundary conditions. This representation is trivially diagonalised and leads to closed form expressions of the type E sub(n)=E(ab+b+c/n+...) for the eigenvalues. Examples are given for the power-law and logarithmic potentials. (Author) [pt

  18. Pair condensation and bound states in fermionic systems

    International Nuclear Information System (INIS)

    Sedrakian, Armen; Clark, John W.

    2006-01-01

    We study the finite temperature-density phase diagram of an attractive fermionic system that supports two-body (dimer) and three-body (trimer) bound states in free space. Using interactions characteristic for nuclear systems, we obtain the critical temperature T c2 for the superfluid phase transition and the limiting temperature T c3 for the extinction of trimers. The phase diagram features a Cooper-pair condensate in the high-density, low-temperature domain which, with decreasing density, crosses over to a Bose condensate of strongly bound dimers. The high-temperature, low-density domain is populated by trimers whose binding energy decreases toward the density-temperature domain occupied by the superfluid and vanishes at a critical temperature T c3 >T c2

  19. Rate Reduction for State-labelled Markov Chains with Upper Time-bounded CSL Requirements

    Directory of Open Access Journals (Sweden)

    Bharath Siva Kumar Tati

    2016-07-01

    Full Text Available This paper presents algorithms for identifying and reducing a dedicated set of controllable transition rates of a state-labelled continuous-time Markov chain model. The purpose of the reduction is to make states to satisfy a given requirement, specified as a CSL upper time-bounded Until formula. We distinguish two different cases, depending on the type of probability bound. A natural partitioning of the state space allows us to develop possible solutions, leading to simple algorithms for both cases.

  20. A study of the bound states for square potential wells with position-dependent mass

    International Nuclear Information System (INIS)

    Ganguly, A.; Kuru, S.; Negro, J.; Nieto, L.M.

    2006-01-01

    A potential well with position-dependent mass is studied for bound states. Applying appropriate matching conditions, a transcendental equation is derived for the energy eigenvalues. Numerical results are presented graphically and the variation of the energy of the bound states are calculated as a function of the well-width and mass

  1. Rovibrational bound states of SO2 isotopologues. II: Total angular momentum J = 11-20

    Science.gov (United States)

    Kumar, Praveen; Poirier, Bill

    2015-11-01

    In a two-part series, the rovibrational bound states of SO2 are investigated in comprehensive detail, for all four stable sulfur isotopes 32-34,36S. All low-lying rovibrational energy levels-both permutation-symmetry-allowed and not allowed-are computed, for all values of total angular momentum in the range J = 0-20. The calculations have carried out using the ScalIT suite of parallel codes. The present study (Paper II) examines the J = 11-20 rovibrational levels, providing symmetry and rovibrational labels for every computed state, relying on a new lambda-doublet splitting technique to make completely unambiguous assignments. Isotope shifts are analyzed, as is the validity of ;J-shifting; as a predictor of rotational fine structure. Among other ramifications, this work will facilitate understanding of mass-independent fractionation of sulfur isotopes (S-MIF) observed in the Archean rock record-particularly as this may have arisen from self shielding. S-MIF, in turn is highly relevant in the broader context of understanding the ;oxygen revolution;.

  2. Magnetic moment of a two-particle bound state in quantum electrodynamics

    International Nuclear Information System (INIS)

    Martynenko, A.P.; Faustov, R.N.

    2002-01-01

    A quasipotential method for calculating relativistic and radiative corrections to the magnetic moment of a two-particle bound state is formulated for particles of arbitrary spin. It is shown that the expression for the g factors of bound particles involve O(α 2 ) terms depending on the particle spin. Numerical values are obtained for the g factors of the electron in the hydrogen atom and in deuterium

  3. Bounds on the entanglement entropy of droplet states in the XXZ spin chain

    Science.gov (United States)

    Beaud, V.; Warzel, S.

    2018-01-01

    We consider a class of one-dimensional quantum spin systems on the finite lattice Λ ⊂Z , related to the XXZ spin chain in its Ising phase. It includes in particular the so-called droplet Hamiltonian. The entanglement entropy of energetically low-lying states over a bipartition Λ = B ∪ Bc is investigated and proven to satisfy a logarithmic bound in terms of min{n, |B|, |Bc|}, where n denotes the maximal number of down spins in the considered state. Upon addition of any (positive) random potential, the bound becomes uniformly constant on average, thereby establishing an area law. The proof is based on spectral methods: a deterministic bound on the local (many-body integrated) density of states is derived from an energetically motivated Combes-Thomas estimate.

  4. Aspects of Majorana Bound States in One-Dimensional Systems with and without Time-Reversal Symmetry

    DEFF Research Database (Denmark)

    Wölms, Konrad Udo Hannes

    In recent years there has been a lot of interest in topological phases of matter. Unlike conventional phases of matter, topological phases are not distinguished by symmetries, but by so-called topological invariants which have more subtle physical implications. It comes therefore as no surprise...... phase the edge excitations are called Majorana bound states and they are interesting in themselves. There has been a lot of eort in detecting Majorana bound states in the lab. One reason is that these excitations provide evidence that a system is indeed in a topological phase. It is therefore required...... to have unambiguous experimental evidence for the presence Majorana bound states, which in turn requires a good theoretical understanding of the physics associated with Majorana bound states. In particular for the most common experimental methods that are used to study them, the signature of Majorana...

  5. Bound states of Θ+ in nuclei

    International Nuclear Information System (INIS)

    Oset, E.; Cabrera, D.; Li, Q.B.; Magas, V.K.; Vicente Vacas, M.J.

    2005-01-01

    We study the binding energy and the width of the Θ + in nuclei, associated to the KN and KπN components. The first one leads to negligible contributions while the second one leads to a sizeable attraction, enough to bind the Θ + in nuclei. Pauli blocking and binding effects on the KN decay reduce considerably the Θ + decay width in nuclei and medium effects associated to the KπN component also lead to a very small width, as a consequence of which one finds separation between the bound levels considerably larger than the width of the states

  6. Relativistic treatment of fermion-antifermion bound states

    International Nuclear Information System (INIS)

    Lucha, W.; Rupprecht, H.; Schoeberl, F.F.

    1990-01-01

    We discuss the relativistic treatment of fermion-antifermion bound states by an effective-Hamiltonian method which imitates their description in terms of nonrelativistic potential models: the effective interaction potential, to be used in a Schroedinger equation which incorporates relativistic kinematics, is derived from the underlying quantum field theory. This approach is equivalent to the instantaneous approximation to the Bethe-Salpeter equation called Salpeter equation but comes closer to physical intuition than the latter one. (Author) 14 refs

  7. Rigorous Statistical Bounds in Uncertainty Quantification for One-Layer Turbulent Geophysical Flows

    Science.gov (United States)

    Qi, Di; Majda, Andrew J.

    2018-04-01

    Statistical bounds controlling the total fluctuations in mean and variance about a basic steady-state solution are developed for the truncated barotropic flow over topography. Statistical ensemble prediction is an important topic in weather and climate research. Here, the evolution of an ensemble of trajectories is considered using statistical instability analysis and is compared and contrasted with the classical deterministic instability for the growth of perturbations in one pointwise trajectory. The maximum growth of the total statistics in fluctuations is derived relying on the statistical conservation principle of the pseudo-energy. The saturation bound of the statistical mean fluctuation and variance in the unstable regimes with non-positive-definite pseudo-energy is achieved by linking with a class of stable reference states and minimizing the stable statistical energy. Two cases with dependence on initial statistical uncertainty and on external forcing and dissipation are compared and unified under a consistent statistical stability framework. The flow structures and statistical stability bounds are illustrated and verified by numerical simulations among a wide range of dynamical regimes, where subtle transient statistical instability exists in general with positive short-time exponential growth in the covariance even when the pseudo-energy is positive-definite. Among the various scenarios in this paper, there exist strong forward and backward energy exchanges between different scales which are estimated by the rigorous statistical bounds.

  8. Stability properties of nonlinear dynamical systems and evolutionary stable states

    Energy Technology Data Exchange (ETDEWEB)

    Gleria, Iram, E-mail: iram@fis.ufal.br [Instituto de Física, Universidade Federal de Alagoas, 57072-970 Maceió-AL (Brazil); Brenig, Leon [Faculté des Sciences, Université Libre de Bruxelles, 1050 Brussels (Belgium); Rocha Filho, Tarcísio M.; Figueiredo, Annibal [Instituto de Física and International Center for Condensed Matter Physics, Universidade de Brasília, 70919-970 Brasília-DF (Brazil)

    2017-03-18

    Highlights: • We address the problem of equilibrium stability in a general class of non-linear systems. • We link Evolutionary Stable States (ESS) to stable fixed points of square quasi-polynomial (QP) systems. • We show that an interior ES point may be related to stable interior fixed points of QP systems. - Abstract: In this paper we address the problem of stability in a general class of non-linear systems. We establish a link between the concepts of asymptotic stable interior fixed points of square Quasi-Polynomial systems and evolutionary stable states, a property of some payoff matrices arising from evolutionary games.

  9. Bound states and scattering coefficients of the -aδ(x)+bδ'(x) potential

    International Nuclear Information System (INIS)

    Gadella, M.; Negro, J.; Nieto, L.M.

    2009-01-01

    We show that a one-dimensional Schroedinger equation in which the potential is a delta well plus a δ ' interaction at the same point has a bound state, and we obtain the energy of this bound state in terms of the parameters. In addition, the expression of the reflection and transmission coefficients is also fully determined

  10. Interaction of solitons and the formation of bound states in the generalized Lugiato-Lefever equation

    Science.gov (United States)

    Parra-Rivas, Pedro; Gomila, Damia; Colet, Pere; Gelens, Lendert

    2017-07-01

    Bound states, also called soliton molecules, can form as a result of the interaction between individual solitons. This interaction is mediated through the tails of each soliton that overlap with one another. When such soliton tails have spatial oscillations, locking or pinning between two solitons can occur at fixed distances related with the wavelength of these oscillations, thus forming a bound state. In this work, we study the formation and stability of various types of bound states in the Lugiato-Lefever equation by computing their interaction potential and by analyzing the properties of the oscillatory tails. Moreover, we study the effect of higher order dispersion and noise in the pump intensity on the dynamics of bound states. In doing so, we reveal that perturbations to the Lugiato-Lefever equation that maintain reversibility, such as fourth order dispersion, lead to bound states that tend to separate from one another in time when noise is added. This separation force is determined by the shape of the envelope of the interaction potential, as well as an additional Brownian ratchet effect. In systems with broken reversibility, such as third order dispersion, this ratchet effect continues to push solitons within a bound state apart. However, the force generated by the envelope of the potential is now such that it pushes the solitons towards each other, leading to a null net drift of the solitons. Contribution to the Topical Issue "Theory and Applications of the Lugiato-Lefever Equation", edited by Yanne K. Chembo, Damia Gomila, Mustapha Tlidi, Curtis R. Menyuk.

  11. Static and dynamic properties of QCD bound states

    International Nuclear Information System (INIS)

    Kubrak, Stanislav

    2015-01-01

    The QCD phenomenology can be faced with the framework of the coupled quark DSE, meson BSE and baryon Faddeev equation, providing non-perturbative, continuum and Poincare invariant scientific approach. The research performed throughout this thesis is twofold. From one perspective we focus on the investigation of mass spectra for mesons with total spin quantum number J=3 and arising Regge-trajectory for natural parity states J PC =1 -- ,2 ++ ,3 -- within rainbow-ladder single gluon exchange model. The other findings are concerning the impact of the pion cloud effect on J>2 meson states, baryon masses, namely on Nucleon and Delta three-body bound states and meson dynamical properties like the pion form factor.

  12. Gate-tunable Andreev bound states in InSb nanowire Josephson junction

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Ning; Li, Sen; Fan, Dingxun; Xu, Hongqi [Key Laboratory for the Physics and Chemistry of Nanodevices, Department of Electronics, Peking University, Beijing 100871 (China); Caroff, Philippe [Division of Solid State Physics, Lund University, P. O. Box 118, S-221 00 Lund (Sweden)

    2016-07-01

    Hybrid InSb nanowire-superconductor devices are promising candidates for investigating Majorana modes in solid-state devices and future technologies of topological quantum manipulation. Here, we report low-temperature transport measurements on an individual InSb nanowire quantum dot coupled to superconducting contacts that exhibit an interplay between the Kondo effects and superconductivity. We observed two types of subgap resonance states within the superconducting gap, which can be attributed to gate-tunable Andreev bound states in Coulomb valleys with different Kondo temperatures. The presence of the gate-tunable 0 and pi junction allow us to investigate the fundamental 0- pi transition. Detailed magnetic field and temperature evolution of level spectroscopy demonstrate different behavior of two types of the Andreev bound states. Our results exhibit that the InSb nanowires can provide a promising platform for exploring phase coherence transport and the effect of spin-orbit coupling in semiconductor nanowire-superconductor hybrid device.

  13. Coexistence of a bound state and scattering at the same energy value: a quantum paradox

    International Nuclear Information System (INIS)

    Chabanov, V.M.; Zakhar'ev, B.N.

    1998-01-01

    The example of a multi-channel system which possesses both bound (not quasi-bound !) and scattering states at the same energy value E is demonstrated. A special interaction has ability to confine waves near the origin and simultaneously admit scattering (even with transparency) at the fixed spectral point. These interaction matrices and wave functions can be continued to the whole axis. As another multi-channel peculiarity having no one-channel analogues was found a class of absolutely transparent interaction matrices without bound states

  14. A narrow quasi-bound state of the DNN system

    International Nuclear Information System (INIS)

    Doté, A.; Bayar, M.; Xiao, C.W.; Hyodo, T.; Oka, M.; Oset, E.

    2013-01-01

    We have investigated a charmed system of DNN (composed of two nucleons and a D meson) by a complementary study with a variational calculation and a Faddeev calculation with fixed-center approximation (Faddeev-FCA). In the present study, we employ a DN potential based on a vector–meson exchange picture in which a resonant Λ c (2595) is dynamically generated as a DN quasi-bound state, similarly to the Λ(1405) as a K ¯ N one in the strange sector. As a result of the study of variational calculation with an effective DN potential and three kinds of NN potentials, the DNN(J π =0 − ,I=1/2) is found to be a narrow quasi-bound state below Λ c (2595)N threshold: total binding energy ∼225 MeV and mesonic decay width ∼25 MeV. On the other hand, the J π =1 − state is considered to be a scattering state of Λ c (2595) and a nucleon. These results are essentially supported by the Faddeev-FCA calculation. By the analysis of the variational wave function, we have found a unique structure in the DNN(J π =0 − ,I=1/2) such that the D meson stays around the center of the total system due to the heaviness of the D meson

  15. A search for bound states of the /eta/-meson in light nuclei

    International Nuclear Information System (INIS)

    Pile, P.H.

    1988-01-01

    This paper describes an experiment designed to search for a new form of nuclear matter--a bound /eta/-nucleus system. The (π + ,p) reaction was used to study the possible formation of an /eta/-mesic nucleus. No narrow /eta/-nuclear bound states were observed using 7 Li, 12 C, 16 O and 27 Al targets. 7 refs., 4 figs., 1 tab

  16. Excitation spectra and wave functions of quasiparticle bound states in bilayer Rashba superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Higashi, Yoichi, E-mail: higashiyoichi@ms.osakafu-u.ac.jp [Department of Mathematical Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai 599-8531 (Japan); Nagai, Yuki [CCSE, Japan Atomic Energy Agency, 178-4-4, Wakashiba, Kashiwa, Chiba 277-0871 (Japan); Yoshida, Tomohiro [Graduate School of Science and Technology, Niigata University, Niigata 950-2181 (Japan); Kato, Masaru [Department of Mathematical Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai 599-8531 (Japan); Yanase, Youichi [Department of Physics, Niigata University, Niigata 950-2181 (Japan)

    2015-11-15

    Highlights: • We focus on the pair-density wave state in bilayer Rashba superconductors. • The zero energy Bogoliubov wave functions are localized at the edge and vortex core. • We investigate the excitation spectra of edge and vortex bound states. - Abstract: We study the excitation spectra and the wave functions of quasiparticle bound states at a vortex and an edge in bilayer Rashba superconductors under a magnetic field. In particular, we focus on the quasiparticle states at the zero energy in the pair-density wave state in a topologically non-trivial phase. We numerically demonstrate that the quasiparticle wave functions with zero energy are localized at both the edge and the vortex core if the magnetic field exceeds the critical value.

  17. Bound and resonant states in Coulomb-like potentials

    International Nuclear Information System (INIS)

    Papp, Z.

    1985-12-01

    The potential separable expansion method was generalized for calculating bound and resonant states in Coulomb-like potentials. The complete set of Coulomb-Sturmian functions was taken as the basis to expand the short-range potential. On this basis the matrix elements of the Coulomb-Green functions were given in closed form as functions of the (complex) energy. The feasibility of the method is demonstrated by a numerical example. (author)

  18. Boson bound states in the β-Fermi–Pasta–Ulam model

    Indian Academy of Sciences (India)

    The bound states of four bosons in the quantum -Fermi–Pasta–Ulam model are investigated and some interesting results are presented using the number conserving approximation combined ... Proceedings of the International Workshop/Conference on Computational Condensed Matter Physics and Materials Science

  19. Fermionic bound states in distinct kinklike backgrounds

    Energy Technology Data Exchange (ETDEWEB)

    Bazeia, D. [Universidade Federal da Paraiba, Departamento de Fisica, Joao Pessoa, Paraiba (Brazil); Mohammadi, A. [Universidade Federal de Campina Grande, Departamento de Fisica, Caixa Postal 10071, Campina Grande, Paraiba (Brazil)

    2017-04-15

    This work deals with fermions in the background of distinct localized structures in the two-dimensional spacetime. Although the structures have a similar topological character, which is responsible for the appearance of fractionally charged excitations, we want to investigate how the geometric deformations that appear in the localized structures contribute to the change in the physical properties of the fermionic bound states. We investigate the two-kink and compact kinklike backgrounds, and we consider two distinct boson-fermion interactions, one motivated by supersymmetry and the other described by the standard Yukawa coupling. (orig.)

  20. Absorption enhancement in type-II coupled quantum rings due to existence of quasi-bound states

    Science.gov (United States)

    Hsieh, Chi-Ti; Lin, Shih-Yen; Chang, Shu-Wei

    2018-02-01

    The absorption of type-II nanostructures is often weaker than type-I counterpart due to spatially separated electrons and holes. We model the bound-to-continuum absorption of type-II quantum rings (QRs) using a multiband source-radiation approach using the retarded Green function in the cylindrical coordinate system. The selection rules due to the circular symmetry for allowed transitions of absorption are utilized. The bound-tocontinuum absorptions of type-II GaSb coupled and uncoupled QRs embedded in GaAs matrix are compared here. The GaSb QRs act as energy barriers for electrons but potential wells for holes. For the coupled QR structure, the region sandwiched between two QRs forms a potential reservoir of quasi-bound electrons. Electrons in these states, though look like bound ones, would ultimately tunnel out of the reservoir through barriers. Multiband perfectly-matched layers are introduced to model the tunneling of quasi-bound states into open space. Resonance peaks are observed on the absorption spectra of type-II coupled QRs due to the formation of quasi-bound states in conduction bands, but no resonance exist in the uncoupled QR. The tunneling time of these metastable states can be extracted from the resonance and is in the order of ten femtoseconds. Absorption of coupled QRs is significantly enhanced as compared to that of uncoupled ones in certain spectral windows of interest. These features may improve the performance of photon detectors and photovoltaic devices based on type-II semiconductor nanostructures.

  1. Symanzik approach in modeling of bound states of Dirac particle in singular background

    Directory of Open Access Journals (Sweden)

    Pismak Yu. M.

    2017-01-01

    Full Text Available In the model of interaction of spinor field with homogeneous isotropic material plane constructed in framework of Symanzik approach, the bound states are studied. For localized near plane Dirac particle the expression for current, charge and density are presented. For bound state with massless dispersion law the current, charge and density are calculated for simplified model with 2 parameter exactly.The model can find application to a wide class of phenomena arising by the interaction of fields of quantum electrodynamics with two-dimensional materials.

  2. Multi-Stable Conductance States in Metallic Double-Walled Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Ci Lijie

    2009-01-01

    Full Text Available Abstract Electrical transport properties of individual metallic double-walled carbon nanotubes (DWCNTs were measured down to liquid helium temperature, and multi-stable conductance states were found in DWCNTs. At a certain temperature, DWCNTs can switch continuously between two or more electronic states, but below certain temperature, DWCNTs are stable only at one of them. The temperature for switching is always different from tube to tube, and even different from thermal cycle to cycle for the same tube. In addition to thermal activation, gate voltage scanning can also realize such switching among different electronic states. The multi-stable conductance states in metallic DWCNTs can be attributed to different Fermi level or occasional scattering centers induced by different configurations between their inner and outer tubes.

  3. Does the Higgs mechanism favour electron-electron bound states in Maxwell-Chern-Simons QED3?

    International Nuclear Information System (INIS)

    Belich, Humberto; Helayeel-Neto, Jose Abdalla; Ferreira Junior, Manoel Messias

    2000-01-01

    Full text follows: We show that low-energy electron-electron bound states appear in the Maxwell-Chern-Simons (MCS) planar QED. In spite of the repulsive interaction mediated by the MCS gauge field, a net attractive interaction stems due to the Higgs mechanism through an Yukawa-type interaction. The spontaneous breaking of a local U(1)-symmetry is realized by a γ 6 -type potential. We conclude, by using the Schroedinger equation associated to the net attractive scattering potential, that electron-electron bound states arise in the model. Therefore, the Higgs mechanism overcomes the difficulties found out by Girotti et al. (Phys. Rev. Lett. 69 (1992) 2623) in searching for bound states in the MCS planar QED. (author)

  4. Lower bounds for ballistic current and noise in non-equilibrium quantum steady states

    Directory of Open Access Journals (Sweden)

    Benjamin Doyon

    2015-03-01

    Full Text Available Let an infinite, homogeneous, many-body quantum system be unitarily evolved for a long time from a state where two halves are independently thermalized. One says that a non-equilibrium steady state emerges if there are nonzero steady currents in the central region. In particular, their presence is a signature of ballistic transport. We analyze the consequences of the current observable being a conserved density; near equilibrium this is known to give rise to linear wave propagation and a nonzero Drude peak. Using the Lieb–Robinson bound, we derive, under a certain regularity condition, a lower bound for the non-equilibrium steady-state current determined by equilibrium averages. This shows and quantifies the presence of ballistic transport far from equilibrium. The inequality suggests the definition of “nonlinear sound velocities”, which specialize to the sound velocity near equilibrium in non-integrable models, and “generalized sound velocities”, which encode generalized Gibbs thermalization in integrable models. These are bounded by the Lieb–Robinson velocity. The inequality also gives rise to a bound on the energy current noise in the case of pure energy transport. We show that the inequality is satisfied in many models where exact results are available, and that it is saturated at one-dimensional criticality.

  5. Ultraheavy Yukawa-bound states of fourth-generation at Large ...

    Indian Academy of Sciences (India)

    2012-10-05

    Oct 5, 2012 ... Abstract. A study of bound states of the fourth-generation quarks in the range of 500–700 GeV is presented, where the binding energies are expected to be mainly of Yukawa origin, with QCD subdominant. Near degeneracy of their masses exhibits a new 'isospin'. The production of a colour- octet, isosinglet ...

  6. Bound-state β decay of a neutron in a strong magnetic field

    International Nuclear Information System (INIS)

    Kouzakov, Konstantin A.; Studenikin, Alexander I.

    2005-01-01

    The β decay of a neutron into a bound (pe - ) state and an antineutrino in the presence of a strong uniform magnetic field (B > or approx. 10 13 G) is considered. The β decay process is treated within the framework of the standard model of weak interactions. A Bethe-Salpeter formalism is employed for description of the bound (pe - ) system in a strong magnetic field. For the field strengths 10 13 18 G the estimate for the ratio of the bound-state decay rate w b and the usual (continuum-state) decay rate w c is derived. It is found that in such strong magnetic fields w b /w c ∼0.1-0.4. This is in contrast to the field-free case, where w b /w c ≅4.2x10 -6 [J. N. Bahcall, Phys. Rev. 124, 495 (1961); L. L. Nemenov, Sov. J. Nucl. Phys. 15, 582 (1972); X. Song, J. Phys. G: Nucl. Phys. 13, 1023 (1987)]. The dependence of the ratio w b /w c on the magnetic field strength B exhibits a logarithmiclike behavior. The obtained results can be important for applications in astrophysics and cosmology

  7. Localized bound states of fermions interacting via massive vector bosons

    International Nuclear Information System (INIS)

    Ionescu, D.C.; Reinhardt, J.; Mueller, B.; Greiner, W.; Soff, G.

    1988-11-01

    A model for composite consisting of fermions with internal degrees of freedom interacting via intermediate vector bosons (IVB) is constructed. We find highly localized, low-mass bound states in the Hartree-Fock approximation. We investigate the dependence of these states as function of the coupling constant and vector boson mass. In the limit of infinite vector boson mass the interaction is described by Fermi-type contact forces. (orig.)

  8. Boson bound states in the β-Fermi–Pasta–Ulam model

    Indian Academy of Sciences (India)

    5. — journal of. November 2013 physics pp. 839–848. Boson bound states in the ... of Basic Sciences, The First Aeronautical Institute of the Air Force, Xinyang 464000, ..... [4] N Boechler, G Theocharis, S Job, P G Kevrekidis, M A Porter and C ...

  9. Topologically protected bound states in one-dimensional Floquet acoustic waveguide systems

    Science.gov (United States)

    Peng, Yu-Gui; Geng, Zhi-Guo; Zhu, Xue-Feng

    2018-03-01

    Topological manipulation of sound has recently been a hot spot in acoustics due to the fascinating property of defect immune transport. To the best of our knowledge, the studies on one-dimensional (1D) topological acoustic systems hitherto mainly focus on the case of the Su-Schrieffer-Heeger model. Here, we show that topologically protected bound states may also exist in 1D periodically modulated acoustic waveguide systems, viz., 1D Floquet topological insulators. The results show that tuning the coupling strength in a waveguide lattice could trigger topological phase transition, which gives rise to topologically protected interface states as we put together two waveguide lattices featured with different topological phases or winding numbers. However, for the combined lattice, input at the waveguides other than the interfacial ones will excite bulk states. We have further verified the robustness of interface bound states against the variation of coupling strengths between the two distinct waveguide lattices. This work extends the scope of topological acoustics and may promote potential applications for acoustic devices with topological functionalities.

  10. Scattering integral equations and four nucleon problem. Four nucleon bound states and scattering

    International Nuclear Information System (INIS)

    Narodetskij, I.M.

    1981-01-01

    Existing results from the application of integral equation technique four-nucleon bound states and scattering are reviewed. The purpose of this review is to provide a clear and elementary introduction in the integral equation method and to demonstrate its usefulness in physical applications. Developments in the actual numerical solutions of Faddeev-Yakubovsky type equations are such that a detailed comparison can be made with experiment. Bound state calculations indicate that a nonrelativistic description with pairwise nuclear forces does not suffice and additional degrees of freedom are noted [ru

  11. In-gap bound states induced by interstitial Fe impurities in iron-based superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Degang, E-mail: degangzhang@yahoo.com

    2015-12-15

    Highlights: • We provide an explanation for the interesting STM observation of the robust zero energy bound state on the interstitial Fe impurities in iron-based superconductors. - Abstract: Based on a two-orbit four-band tight binding model, we investigate the low-lying electronic states around the interstitial excess Fe ions in the iron-based superconductors by using T-matrix approach. It is shown that the local density of states at the interstitial Fe impurity (IFI) possesses a strong resonance inside the gap, which seems to be insensitive to the doping and the pairing symmetry in the Fe–Fe plane, while a single or two resonances appear at the nearest neighboring (NN) Fe sites. The location and height of the resonance peaks only depend on the hopping t and the pairing parameter Δ{sub I} between the IFI and the NN Fe sites. These in-gap resonances are originated in the Andreev’s bound states due to the quasiparticle tunneling through the IFI, leading to the change of the magnitude of the superconducting order parameter. When both t and Δ{sub I} are small, this robust zero-energy bound state near the IFI is consistent with recent scanning tunneling microscopy observations.

  12. Upper bounds on the relative energy difference of pure and mixed Gaussian states with a fixed fidelity

    International Nuclear Information System (INIS)

    Dodonov, V V

    2012-01-01

    Exact and approximate formulas for the upper bound of the relative energy difference of two Gaussian states with a fixed fidelity between them are derived. The reciprocal formulas for the upper bound of the fidelity for the fixed value of the relative energy difference are also obtained. The bounds appear higher for pure states than for mixed ones, and their maximal values correspond to squeezed vacuum states. In particular, to guarantee the relative energy difference less than 10%, for quite arbitrary Gaussian states, the fidelity between them must exceed the level 0.998866. (fast track communication)

  13. Algorithms for polynomial spectral factorization and bounded-real balanced state space representations

    NARCIS (Netherlands)

    Rapisarda, P.; Trentelman, H.L.; Minh, H.B.

    We illustrate an algorithm that starting from the image representation of a strictly bounded-real system computes a minimal balanced state variable, from which a minimal balanced state realization is readily obtained. The algorithm stems from an iterative procedure to compute a storage function,

  14. R-matrix calculations for few-quark bound states

    International Nuclear Information System (INIS)

    Shalchi, M.A.; Hadizadeh, M.R.

    2016-01-01

    The R-matrix method is implemented to study the heavy charm and bottom diquark, triquark, tetraquark, and pentaquarks in configuration space, as the bound states of quark-antiquark, diquark-quark, diquark-antidiquark, and diquark-antitriquark systems, respectively. The mass spectrum and the size of these systems are calculated for different partial wave channels. The calculated masses are compared with recent theoretical results obtained by other methods in momentum and configuration spaces and also by available experimental data. (orig.)

  15. Robustness of Majorana bound states in the short-junction limit

    NARCIS (Netherlands)

    Sticlet, D.C.; Nijholt, B.; Akhmerov, A.R.

    2017-01-01

    We study the effects of strong coupling between a superconductor and a semiconductor nanowire on the creation of the Majorana bound states, when the quasiparticle dwell time in the normal part of the nanowire is much shorter than the inverse superconducting gap. This "short-junction" limit is

  16. Manipulation of Squeezed Two-Phonon Bound States using Femtosecond Laser Pulses

    Directory of Open Access Journals (Sweden)

    Nakamura Kazutaka G.

    2013-03-01

    Full Text Available Two-phonon bound states have been excited exclusively in ZnTe(110 via impulsive stimulated second-order Raman scattering, essentially being squeezed states due to phase coherent excitation of two identical components anticorrelated in the wave vector. By using coherent control technique with a pair of femtosecond laser pulses, the manipulation of squeezed states has been demonstrated in which both the amplitude and lifetime of coherent oscillations of squeezed states are modulated, indicating the feasibility to control the quantum noise and the quantum nature of phonon squeezed states, respectively.

  17. Deeply bound pionic atom

    International Nuclear Information System (INIS)

    Toki, Hiroshi; Yamazaki, Toshimitsu

    1989-01-01

    The standard method of pionic atom formation does not produce deeply bound pionic atoms. A study is made on the properties of deeply bound pionic atom states by using the standard pion-nucleus optical potential. Another study is made to estimate the cross sections of the formation of ls pionic atom states by various methods. The pion-nucleus optical potential is determined by weakly bound pionic atom states and pion nucleus scattering. Although this potential may not be valid for deeply bound pionic atoms, it should provide some hint on binding energies and level widths of deeply bound states. The width of the ls state comes out to be 0.3 MeV and is well separated from the rest. The charge dependence of the ls state is investigated. The binding energies and the widths increase linearly with Z azbove a Z of 30. The report then discusses various methods to populate deeply bound pionic atoms. In particular, 'pion exchange' reactions are proposed. (n, pπ) reaction is discussed first. The cross section is calculated by assuming the in- and out-going nucleons on-shell and the produced pion in (n1) pionic atom states. Then, (n, dπ - ) cross sections are estimated. (p, 2 Heπ - ) reaction would have cross sections similar to the cross section of (n, dπ - ) reaction. In conclusion, it seems best to do (n, p) experiment on heavy nuclei for deeply bound pionic atom. (Nogami, K.)

  18. The stable nonequilibrium state of bicarbonate aqueous systems

    Science.gov (United States)

    Voeikov, V. L.; Vilenskaya, N. D.; Ha, Do Minh; Malyshenko, S. I.; Buravleva, E. V.; Yablonskaya, O. I.; Timofeev, K. N.

    2012-09-01

    Data obtained by electron paramagnetic resonance (EPR) and chemiluminescence analysis indicate that in aqueous solutions of bicarbonates, superoxide radical and other reactive oxygen species (ROS) are constantly produced. The stationary level of the superoxide radical is found to increase when a solution is illuminated. Reactions involving ROS are shown to be accompanied by the generation of electron excitation energy, keeping bicarbonate solutions in a stable nonequilibrium state. The system can emit part of this energy. Variations in emitting activity are found to correlate with variations in the cosmophysical factors. The emitting activity of solutions is found to vary in the presence of low and ultralow concentrations of hydrated fullerenes. It is noted that the phenomenon of spontaneous charge separation in aqueous systems (G. H. Pollack) could play a role in maintaining a stable nonequilibrium state in bicarbonate systems where the reactions with ROS participation are catalyzed by forms of carbonate. It is concluded that the abovementioned properties of bicarbonate aqueous systems most likely keep living matter whose structural basis is formed by these systems in a stable excited state, thereby making it highly sensitive to the action of external factors with low and ultralow intensities.

  19. Nonlinear spectroscopy of the bound exciton states in CdSe single crystals

    International Nuclear Information System (INIS)

    Lisitsa, M.P.; Onishchenko, N.A.; Stolyarenko, A.V.; Ananchenko, V.V.; Polishchuk, S.V.

    1989-01-01

    The study is devoted to the pulsed laser radiation effect on the time-resolved variations of free and bound exciton bands region at the helium temperature. A gradual disappearance of the bound I 2 exciton state is observed with increase of the excitation intensity I in CdSe transmission spectra. This phenomenon is explained by the fact that despite of the shorter life of I 2 excitons as compared to the free ones, the concentration of the centres on which they localize is rather low (≤10 16 cm -3 ) while the evolution of the light-generated electron-hole pairs is such as the most probable recombination through the bound excitons. The transmission spectrum kinetics is studied. The intensity limitation of the laser pulse transmitted through the crystal in the region of the exciton ground state region is shown to be related with two-photon absorption (TPA) in which the exciton state is an intermediate level. The calculation results are in good agreement with the experiment. The estimations show the giant TPA coefficient of ∼10 3 cm/MW. The evolution of photoexcited nonequilibrium electron-hole pairs is studied. The possibility of using CdSe single crystals as spectrum-selective limiters of the laser pulses is shown. (author)

  20. Bag-model analyses of proton-antiproton scattering and atomic bound states

    International Nuclear Information System (INIS)

    Alberg, M.A.; Freedman, R.A.; Henley, E.M.; Hwang, W.P.; Seckel, D.; Wilets, L.

    1983-01-01

    We study proton-antiproton (pp-bar ) scattering using the static real potential of Bryan and Phillips outside a cutoff radius rsub0 and two different shapes for the imaginary potential inside a radius R*. These forms, motivated by bag models, are a one-gluon-annihilation potential and a simple geometric-overlap form. In both cases there are three adjustable parameters: the effective bag radius R*, the effective strong coupling constant αsubssup*, and rsub0. There is also a choice for the form of the real potential inside the cutoff radius rsub0. Analysis of the pp-bar scattering data in the laboratory-momentum region 0.4--0.7 GeV/c yields an effective nucleon bag radius R* in the range 0.6--1.1 fm, with the best fit obtained for R* = 0.86 fm. Arguments are presented that the deduced value of R* is likely to be an upper bound on the isolated nucleon bag radius. The present results are consistent with the range of bag radii in current bag models. We have also used the resultant optical potential to calculate the shifts and widths of the sup3Ssub1 and sup1Ssub0 atomic bound states of the pp-bar system. For both states we find upward (repulsive) shifts and widths of about 1 keV. We find no evidence for narrow, strongly bound pp-bar states in our potential model

  1. Lower bounds for the ground states of He-isoelectronic series

    International Nuclear Information System (INIS)

    Fraga, Serafin

    1981-01-01

    A formulation, based on the concept of null local kinetic energy regions, has been developed for the determination of lower bounds for the ground state of a two-electron atom. Numerical results, obtained from Hartree-Fock functions, are presented for the elements He through Kr of the two-electron series

  2. Interaction of D0-brane bound states and Ramond-Ramond photons

    International Nuclear Information System (INIS)

    Fatollahi, Amir H.

    2002-01-01

    We consider the problem of the interaction between a D0-brane bound state and one-form Ramond-Ramond (RR) photons using the world-line theory. Based on the fact that in the world-line theory the RR gauge fields depend on the matrix coordinates of D0-branes, the gauge fields also appear as matrices in the formulation. At the classical level, we derive the Lorentz-like equations of motion for D0-branes, and it is observed that the center of mass is colorless with respect to the SU(N) sector of the background. Using the path integral method, the perturbation theory for the interaction between the bound state and the RR background is developed. Qualitative considerations show that the possibility of the existence of a map between the world-line theory and the non-Abelian gauge theory is very considerable

  3. What can Andreev bound states tell us about superconductors?

    Science.gov (United States)

    Millo, Oded; Koren, Gad

    2018-08-06

    Zero-energy Andreev bound states, which manifest themselves in the tunnelling spectra as zero-bias conductance peaks (ZBCPs), are abundant at interfaces between superconductors and other materials and on the nodal surface of high-temperature superconductors. In this review, we focus on the information such excitations can provide on the properties of superconductor systems. First, a general introduction to the physics of Andreev bound states in superconductor/normal metal interfaces is given with a particular emphasis on why they appear at zero energy in d -wave superconductors. Then, specific spectroscopic tunnelling studies of thin films, bilayers and junctions are described, focusing on the corresponding ZBCP features. Scanning tunnelling spectroscopy (STS) studies show that the ZBCPs on the c -axis YBa 2 Cu 3 O 7- δ (YBCO) films are correlated with the surface morphology and appear only in proximity to (110) facets. STS on c -axis La 1.88 Sr 0.12 CuO 4 (LSCO) films exhibiting the 1/8 anomaly shows spatially modulated peaks near zero bias associated with the anti-phase ordering of the d -wave order parameter predicted at this doping level. ZBCPs were also found in micrometre-size edge junctions of YBCO/SrRuO 3 /YBCO, where SrRuO 3 is ferromagnetic. Here, the results are consistent with a crossed Andreev reflection effect (CARE) at the narrow domain walls of the SrRuO 3 ZBCPs measured in STS studies of manganite/cuprate bilayers could not be attributed to CARE because the manganite's domain wall is much larger than the coherence length in YBCO, and instead are attributed to proximity-induced triplet-pairing superconductivity with non-conventional symmetry. And finally, ZBCPs found in junctions of non-intentionally doped topological insulator films of Bi 2 Se 3 and the s -wave superconductor NbN are attributed to proximity-induced p x  + ip y triplet order parameter in the topological material.This article is part of the theme issue 'Andreev bound states'.

  4. Relativistic description of quark-antiquark bound states. Spin-independent treatment

    International Nuclear Information System (INIS)

    Gara, A.; Durand, B.; Durand, L.; Nickisch, L.J.

    1989-01-01

    We present the results of a detailed study of light- and heavy-quark--antiquark bound states in the context of the reduced Bethe-Salpeter equation with static vector and scalar interactions. In the present paper, we consider the spin-averaged spectra. Spin effects are considered in a separate paper. We find that this approach, although apparently successful for the heavy-quark b bar b and c bar c states, fails for the s bar s, l bar l, and light-heavy states. The reasons for the failure are intrinsic to the method, as we discuss. Difficulties are already evident for the c bar c states

  5. Quantum Bocce: Magnon–magnon collisions between propagating and bound states in 1D spin chains

    International Nuclear Information System (INIS)

    Longo, Paolo; Greentree, Andrew D.; Busch, Kurt; Cole, Jared H.

    2013-01-01

    The dynamics of two magnons in a Heisenberg spin chain under the influence of a non-uniform magnetic field is investigated by means of a numerical wave-function-based approach using a Holstein–Primakoff transformation. The magnetic field is localized in space such that it supports exactly one single-particle bound state. We study the interaction of this bound mode with an incoming spin wave and the interplay between transmittance, energy and momentum matching. We find analytic criteria for maximizing the interconversion between propagating single-magnon modes and true propagating two-magnon states. The manipulation of bound and propagating magnons is an essential step towards quantum magnonics.

  6. Bound-state perturbation theory and annihilation effects in positronium

    International Nuclear Information System (INIS)

    Abbasabadi, A.; Repko, W.W.

    1987-01-01

    Working in Coulomb gauge and using the lowest-order equation proposed by Barbieri and Remiddi it is calculated, in the one-loop order of perturbation theory, the decay rate and the energy shift of the ground states of parapositronium and orthopositronium, respectively. Our result for the decay rate agrees with that of Harris and Brown. For contribution of one-photon-annihilation channel to the energy shift, it is confirmed the result of Karplus and Klein. These results are derived completely within the bound-state formalism and avoid the necessity of performing on-mass-shell wave function and vertex renormalization subtractions

  7. Another comment on 'relativistic description of quark-antiquark bound states'

    International Nuclear Information System (INIS)

    Lucha, W.; Rupprecht, H.; Schoeberl, F.F.

    1991-04-01

    We point out some ambiguities in the treatment of fermion-antifermion bound states by solving the reduced Salpeter equation in coordinate space. Our observations allow to cast some doubt on the validity of the conclusion of Gara et al. that moving from a nonrelativistic to a relativistic description makes things worse. (authors)

  8. Entanglement negativity bounds for fermionic Gaussian states

    Science.gov (United States)

    Eisert, Jens; Eisler, Viktor; Zimborás, Zoltán

    2018-04-01

    The entanglement negativity is a versatile measure of entanglement that has numerous applications in quantum information and in condensed matter theory. It can not only efficiently be computed in the Hilbert space dimension, but for noninteracting bosonic systems, one can compute the negativity efficiently in the number of modes. However, such an efficient computation does not carry over to the fermionic realm, the ultimate reason for this being that the partial transpose of a fermionic Gaussian state is no longer Gaussian. To provide a remedy for this state of affairs, in this work, we introduce efficiently computable and rigorous upper and lower bounds to the negativity, making use of techniques of semidefinite programming, building upon the Lagrangian formulation of fermionic linear optics, and exploiting suitable products of Gaussian operators. We discuss examples in quantum many-body theory and hint at applications in the study of topological properties at finite temperature.

  9. First direct observation of bound-state beta-decay: Measurements of branching and lifetime of 207Tl81+ fragments

    International Nuclear Information System (INIS)

    Boutin, D.

    2005-08-01

    The first experimental observation of bound-state beta-decay showed, that due solely to the electron stripping, a stable nuclide, e.g. 163 Dy, became unstable. Also a drastic modification of the half-life of bare 187 Re, from 4.12(2) x 10 10 years down to 32.9(20) years, could be observed. It was mainly due to the possibility for the mother nuclide to decay into a previously inaccessible nuclear level of the daughter nuclide. It was proposed to study a nuclide where this decay mode was competing with continuum-state beta-decay, in order to measure their respective branchings. The ratio β b /β c could also be evaluated for the first time. 207 Tl was chosen due to its high atomic number, and Q-value of about 1.4 MeV, small enough to enhance the β b probability and large enough to allow the use of time-resolved Schottky Mass Spectrometry (SMS) to study the evolution of mother and bound-state beta-decay daughter ions. The decay properties of the ground state and isomeric state of 207 Tl 81+ have been investigated at the GSI accelerator facility in two separate experiments. For the first time β-decay where the electron could go either to a bound state (atomic orbitals) and lead to 207 Pb 81+ as a daughter nuclide, or to a continuum state and lead to 207 Pb 82+ , has been observed. The respective branchings of these two processes could be measured as well. The deduced total nuclear half-life of 255(17) s for 207 Tl 81+ , was slightly modified with respect to the half-life of the neutral atom of 286(2) s. It was nevertheless in very good agreement with calculations based on the assumption that the beta-decay was following an allowed type of transition. The branching β b /β c =0.192(20), was also in very good agreement with the same calculations. The application of stochastic precooling allowed to observe in addition the 1348 keV short-lived isomeric state of 207 Tl. The half-life of this isomeric state was measured as 1.47(32) s, which shows a small deviation

  10. Crystal structure of a Na+-bound Na+,K+-ATPase preceding the E1P state.

    Science.gov (United States)

    Kanai, Ryuta; Ogawa, Haruo; Vilsen, Bente; Cornelius, Flemming; Toyoshima, Chikashi

    2013-10-10

    Na(+),K(+)-ATPase pumps three Na(+) ions out of cells in exchange for two K(+) taken up from the extracellular medium per ATP molecule hydrolysed, thereby establishing Na(+) and K(+) gradients across the membrane in all animal cells. These ion gradients are used in many fundamental processes, notably excitation of nerve cells. Here we describe 2.8 Å-resolution crystal structures of this ATPase from pig kidney with bound Na(+), ADP and aluminium fluoride, a stable phosphate analogue, with and without oligomycin that promotes Na(+) occlusion. These crystal structures represent a transition state preceding the phosphorylated intermediate (E1P) in which three Na(+) ions are occluded. Details of the Na(+)-binding sites show how this ATPase functions as a Na(+)-specific pump, rejecting K(+) and Ca(2+), even though its affinity for Na(+) is low (millimolar dissociation constant). A mechanism for sequential, cooperative Na(+) binding can now be formulated in atomic detail.

  11. A nonlinear programming approach to lower bounds for the ground-state energy of helium

    International Nuclear Information System (INIS)

    Porras, I.; Feldmann, D.M.; King, F.W.

    1999-01-01

    Lower-bound estimates for the ground-state energy of the helium atom are determined using nonlinear programming techniques. Optimized lower bounds are determined for single-particle, radially correlated, and general correlated wave functions. The local nature of the method employed makes it a very severe test of the accuracy of the wave function

  12. Vortices and gate-tunable bound states in a topological insulator coupled to superconducting leads

    Science.gov (United States)

    Finck, Aaron; Kurter, C.; Hor, Y. S.; van Harlingen, D. J.

    2014-03-01

    It has been predicted that zero energy Majorana bound states can be found in the core of vortices within topological superconductors. Here, we report on Andreev spectroscopy measurements of the topological insulator Bi2Se3 with a normal metal lead and one or more niobium leads. The niobium induces superconductivity in the Bi2Se3 through the proximity effect, leading to both signatures of Andreev reflection and a prominent re-entrant resistance effect. When a large magnetic field is applied perpendicular to the surface of the Bi2Se3, we observe multiple abrupt changes in the subgap conductance that are accompanied by sharp peaks in the dynamical resistance. These peaks are very sensitive to changes in magnetic field and disappear at temperatures associated with the critical temperature of the induced superconductivity. The appearance of the transitions and peaks can be tuned by a top gate. At high magnetic fields, we also find evidence of gate-tunable states, which can lead to stable zero-bias conductance peaks. We interpret our results in terms of a transition occurring within the proximity effect region of the topological insulator, likely due to the formation of vortices. We acknowledge support from Microsoft Project Q.

  13. Determinable solutions for one-dimensional quantum potentials: scattering, quasi-bound and bound-state problems

    International Nuclear Information System (INIS)

    Lee, Hwasung; Lee, Y J

    2007-01-01

    We derive analytic expressions of the recursive solutions to Schroedinger's equation by means of a cutoff-potential technique for one-dimensional piecewise-constant potentials. These solutions provide a method for accurately determining the transmission probabilities as well as the wavefunction in both classically accessible regions and inaccessible regions for any barrier potentials. It is also shown that the energy eigenvalues and the wavefunctions of bound states can be obtained for potential-well structures by exploiting this method. Calculational results of illustrative examples are shown in order to verify this method for treating barrier and potential-well problems

  14. Bound states and Cooper pairs of molecules in 2D optical lattices bilayer

    Energy Technology Data Exchange (ETDEWEB)

    Camacho-Guardian, A.; Dominguez-Castro, G.A.; Paredes, R. [Instituto de Fisica, Universidad Nacional Autonoma de Mexico (Mexico)

    2016-08-15

    We investigate the formation of Cooper pairs, bound dimers and the dimer-dimer elastic scattering of ultracold dipolar Fermi molecules confined in a 2D optical lattice bilayer configuration. While the energy and their associated bound states are determined in a variational way, the correlated two-molecule pair is addressed as in the original Cooper formulation. We demonstrate that the 2D lattice confinement favors the formation of zero center mass momentum bound states. Regarding the Cooper pairs binding energy, this depends on the molecule populations in each layer. Maximum binding energies occur for non-zero (zero) pair momentum when the Fermi system is polarized (unpolarized). We find an analytic expression for the dimer-dimer effective interaction in the deep BEC regime. The present analysis represents a route for addressing the BCS-BEC crossover in dipolar Fermi gases confined in 2D optical lattices within the current experimental panorama. (copyright 2016 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  15. Bound states in the (2+1)D scalar electrodynamics with Chern-Simons term

    International Nuclear Information System (INIS)

    Gomes, M.O.C.; Malacarne, L.C.

    1994-01-01

    This work studies the existence of bound states for the 3-dimensions scalar electrodynamics, with the Chern-Simons. Quantum field theory is used for calculation of the M fi scattering matrices, in the non-relativistic approximation. The field propagators responsible for the interaction in the scattering processes have been calculated, and scattering matrices have been constructed. After obtaining the scattering matrix, the cross section in the quantum field theory has been compared with the quantum mechanic cross section in the Born approximation, allowing to obtain the form of the potential responsible for the interactions in the scattering processes. The possibility of bound states are analyzed by using the Schroedinger equation

  16. Observation of stable bound soliton with dual-wavelength in a passively mode-locked Er-doped fiber laser

    International Nuclear Information System (INIS)

    Zheng Yu; Tian Jin-Rong; Dong Zi-Kai; Xu Run-Qin; Li Ke-Xuan; Song Yan-Rong

    2017-01-01

    A phase-locked bound state soliton with dual-wavelength is observed experimentally in a passively mode-locked Er-doped fiber (EDF) laser with a fiber loop mirror (FLM). The pulse duration of the soliton is 15 ps and the peak-to-peak separation is 125 ps. The repetition rate of the pulse sequence is 3.47 MHz. The output power is 11.8 mW at the pump power of 128 mW, corresponding to the pulse energy of 1.52 nJ. The FLM with a polarization controller can produce a comb spectrum, which acts as a filter. By adjusting the polarization controller or varying the pump power, the central wavelength of the comb spectrum can be tuned. When it combines with the reflective spectrum of the fiber Bragg grating, the total spectrum of the cavity can be cleaved into two parts, then the bound state soliton with dual-wavelength at 1549.7 nm and 1550.4 nm is obtained. (paper)

  17. Morse potential, symmetric Morse potential and bracketed bound-state energies

    Czech Academy of Sciences Publication Activity Database

    Znojil, Miloslav

    2016-01-01

    Roč. 31, č. 14 (2016), s. 1650088 ISSN 0217-7323 R&D Projects: GA ČR GA16-22945S Institutional support: RVO:61389005 Keywords : quantum bound states * special functions * Morse potential * symmetrized Morse potential * upper and lower energy estimates * computer-assisted symbolic manipulations Subject RIV: BE - Theoretical Physics Impact factor: 1.165, year: 2016

  18. Stable amplitude chimera states in a network of locally coupled Stuart-Landau oscillators

    Science.gov (United States)

    Premalatha, K.; Chandrasekar, V. K.; Senthilvelan, M.; Lakshmanan, M.

    2018-03-01

    We investigate the occurrence of collective dynamical states such as transient amplitude chimera, stable amplitude chimera, and imperfect breathing chimera states in a locally coupled network of Stuart-Landau oscillators. In an imperfect breathing chimera state, the synchronized group of oscillators exhibits oscillations with large amplitudes, while the desynchronized group of oscillators oscillates with small amplitudes, and this behavior of coexistence of synchronized and desynchronized oscillations fluctuates with time. Then, we analyze the stability of the amplitude chimera states under various circumstances, including variations in system parameters and coupling strength, and perturbations in the initial states of the oscillators. For an increase in the value of the system parameter, namely, the nonisochronicity parameter, the transient chimera state becomes a stable chimera state for a sufficiently large value of coupling strength. In addition, we also analyze the stability of these states by perturbing the initial states of the oscillators. We find that while a small perturbation allows one to perturb a large number of oscillators resulting in a stable amplitude chimera state, a large perturbation allows one to perturb a small number of oscillators to get a stable amplitude chimera state. We also find the stability of the transient and stable amplitude chimera states and traveling wave states for an appropriate number of oscillators using Floquet theory. In addition, we also find the stability of the incoherent oscillation death states.

  19. Meson bound states and inclusive hardon scattering in quantum chromodynamics

    International Nuclear Information System (INIS)

    Beavis, D.R.

    1980-01-01

    In the first part we study the charmonium and UPSILON systems with a simple Coulomb plus linear potential. The parameters of the potential are determined by the charmonium states other than 1 S 0 states. We successfully predict that the states X(2830) and x(3450) are not the 1 S 0 partners of J/psi and psi'. The same effective potential also gives a good description of the UPSILON system. The Lorentz nature of the confinement potential is determined to be an equal mixture of vector and scalar. In the second part we extend a method for obtaining bound states and wavefunctions for relativistic confined systems. The important aspect of this treatment is the input of the asymptotic expansion of the two-point functions. We test the bound state approximation for a system defined by an equivalent potential V(r) = lambda 2 tanh 2 (g 2 r/lambda). Excellent results are obtained, even though a threshold is present. Finally, in the third section, we analyze the 100 GeV/c π - p→π 0 X data of Barnes et al. for moderate t, 1.5 less than or equal to -t less than or equal to 4.0 (GeV/c) 2 with the constituent scattering models. We obtain very good agreement in normalization and the x and t behavior of dsigma/dtdx using the FF1 model. The analysis of π - p→etaX gives additional support to this interpretation. The predictions of perturbative QCD and FF1 for π - p→π 0 X are given

  20. Positivity bounds on double parton distributions

    International Nuclear Information System (INIS)

    Diehl, Markus; Kasemets, Tomas

    2013-03-01

    Double hard scattering in proton-proton collisions is described in terms of double parton distributions. We derive bounds on these distributions that follow from their interpretation as probability densities, taking into account all possible spin correlations between two partons in an unpolarized proton. These bounds constrain the size of the polarized distributions and can for instance be used to set upper limits on the effects of spin correlations in double hard scattering. We show that the bounds are stable under leading-order DGLAP evolution to higher scales.

  1. QCD bound states at finite temperature and baryon number

    International Nuclear Information System (INIS)

    Kalinovsky, Yu.L.; Muenchow, L.

    1991-04-01

    Quark-antiquark bound states are described within the Bethe-Salpeter equation for a class of quark models with instantaneous 4-quark interaction at finite temperature. Thereby decompositions of the Bethe-Salpeter vertex and wave functions according to their Lorentz structures and the particles content are used. As an application of general scheme, we determine the mass spectrum of low-lying mesons for a special Nambu-Jona-Lasinio model inspired by QCD for hadrons. (orig.)

  2. Covariant equations for the three-body bound state

    International Nuclear Information System (INIS)

    Stadler, A.; Gross, F.; Frank, M.

    1997-01-01

    The covariant spectator (or Gross) equations for the bound state of three identical spin 1/2 particles, in which two of the three interacting particles are always on shell, are developed and reduced to a form suitable for numerical solution. The equations are first written in operator form and compared to the Bethe-Salpeter equation, then expanded into plane wave momentum states, and finally expanded into partial waves using the three-body helicity formalism first introduced by Wick. In order to solve the equations, the two-body scattering amplitudes must be boosted from the overall three-body rest frame to their individual two-body rest frames, and all effects which arise from these boosts, including Wigner rotations and p-spin decomposition of the shell-particle, are treated exactly. In their final form, the equations reduce to a coupled set of Faddeev-like double integral equations with additional channels arising from the negative p-spin states of the off-shell particle

  3. Hunt for the 11P1 bound state of charmonium

    International Nuclear Information System (INIS)

    Porter, F.C.

    1982-02-01

    Using the Crystal Ball detector at SPEAR, we have looked for evidence of the isospin-violating decay psi' → π 01 P 1 , where 1 P 1 is the predicted spin-singlet p-wave bound state of charmonium. For a 1 P 1 state at the predicted mass (approx. 3520 MeV), we obtain the 95% confidence level limits: BR(psi' → π 01 P 1 ) 01 P 1 )BR( 1 P 1 → γn/sub c/ < 0.14%. These limits are compared with simple theoretical predictions

  4. Deeply quasi-bound state in single- and double-K nuclear clusters

    Energy Technology Data Exchange (ETDEWEB)

    Marri, S.; Kalantari, S.Z. [Isfahan University of Technology, Department of Physics, Isfahan (Iran, Islamic Republic of); Esmaili, J. [Shahrekord University, Department of Physics, Faculty of Basic Sciences, Shahrekord (Iran, Islamic Republic of)

    2016-12-15

    New calculations of the quasi-bound state positions in K{sup -}K{sup -}pp kaonic nuclear cluster are performed using non-relativistic four-body Faddeev-type equations in AGS form. The corresponding separable approximation for the integral kernels in the three- and four-body kaonic clusters is obtained by using the Hilbert-Schmidt expansion procedure. Different phenomenological models of anti KN-πΣ potentials with one- and two-pole structure of Λ(1405) resonance and separable potential models for anti K- anti K and nucleon-nucleon interactions, are used. The dependence of the resulting four-body binding energy on models of anti KN-πΣ interaction is investigated. We obtained the binding energy of the K{sup -}K{sup -}pp quasi-bound state ∝ 80-94 MeV with the phenomenological anti KN potentials. The width is about ∝ 5-8 MeV for the two-pole models of the interaction, while the one-pole potentials give ∝ 24-31 MeV width. (orig.)

  5. Relativistic actions for bound-states and applications in the meson spectroscopy

    International Nuclear Information System (INIS)

    Silva Carvalho, Hendly da.

    1991-08-01

    We study relativistic equations for bound states of two-body systems using Dirac's constraint formalism and supersymmetry. The two-body system can be of spinless particles, one of them spinning and the other one spinless, or both of them spinning. The interaction is described by scalar, timelike four-vector and spacelike four-vector potentials under Lorentz transformations. As an application we use the relativistic wave equation for two scalar particles and calculate the mass spectra of the mesons treating them as spinless quark-antiquark bound states. The interaction potential in this case is a convenient adaptation of the potential employed in non-relativistic calculations. Finally, we compare our results with more recent experimental data and with theoretical results obtained with the same potential used by us but with a non-relativistic wave equation. We also compare our results with results obtained with the relativistic wave equation but with a different interaction potential. (author). 38 refs, 9 figs, 8 tabs

  6. Hybridization thermodynamics of DNA bound to gold nanoparticles

    International Nuclear Information System (INIS)

    Lang, Brian

    2010-01-01

    Isothermal Titration Calorimetry (ITC) was used to study the thermodynamics of hybridization on DNA-functionalized colloidal gold nanoparticles. When compared to the thermodynamics of hybridization of DNA that is free in solution, the differences in the values of the Gibbs free energy of reaction, Δ r G o , the enthalpy, Δ r H o , and entropy, Δ r S o , were small. The change in Δ r G o between the free and bound states was always positive but with statistical significance outside the 95% confidence interval, implying the free DNA is slightly more stable than when in the bound state. Additionally, ITC was also able to reveal information about the binding stoichiometry of the hybridization reactions on the DNA-functionalized gold nanoparticles, and indicates that there is a significant fraction of the DNA on gold nanoparticle surface that is unavailable for DNA hybridization. Furthermore, the fraction of available DNA is dependent on the spacer group on the DNA that is used to span the gold surface from that to the probe DNA.

  7. Analytic continuation of scattering data to the region of negative energies for systems that have one and two bound states

    International Nuclear Information System (INIS)

    Blokhintsev, L. D.; Savin, D. A.

    2016-01-01

    An exactly solvable potential model is used to study the possibility of deducing information about the features of bound states for the system under consideration (binding energies and asymptotic normalization coefficients) on the basis of data on continuum states. The present analysis is based on an analytic approximation and on the subsequent continuation of a partial-wave scattering function from the region of positive energies to the region of negative energies. Cases where the system has one or two bound states are studied. The α+d and α+"1"2C systems are taken as physical examples. In the case of one bound state, the scattering function is a smooth function of energy, and the procedure of its analytic continuation for different polynomial approximations leads to close results, which are nearly coincident with exact values. In the case of two bound states, the scattering function has two poles—one in the region of positive energies and the other in the region of negative energies between the energies corresponding to the two bound states in question. Padéapproximants are used to reproduce these poles. The inclusion of these poles proves to be necessary for correctly describing the properties of the bound states.

  8. The search for deeply bound kaonic states with FOPI

    International Nuclear Information System (INIS)

    Schmid, P.; Buehler, P.; Cargnelli, M.; Marton, J.; Widmann, E.; Zmeskal, J.

    2006-01-01

    Full text: New formation mechanisms for the creation of dense, exotic nuclear systems involving strangeness were recently proposed by Y. Akaishi and T. Yamazaki. Their calculations show that a K - might form deeply bound states in light nuclei - so called kaonic clusters - with central densities of several times the normal nuclear density. In the presentation a short overview of these exotic nuclear systems will be given and a new experiment with FOPI at GSI will be discussed. The aim of this experiment was to search for the simplest cluster - a ppK - state. This state is produced at GSI in the following high energy reaction: p + ''d'' → ppK - + K + + n'' with incident energies of 3.5 GeV. The experimental set-up will be presented in detail. (author)

  9. Hadamard States for the Klein-Gordon Equation on Lorentzian Manifolds of Bounded Geometry

    Science.gov (United States)

    Gérard, Christian; Oulghazi, Omar; Wrochna, Michał

    2017-06-01

    We consider the Klein-Gordon equation on a class of Lorentzian manifolds with Cauchy surface of bounded geometry, which is shown to include examples such as exterior Kerr, Kerr-de Sitter spacetime and the maximal globally hyperbolic extension of the Kerr outer region. In this setup, we give an approximate diagonalization and a microlocal decomposition of the Cauchy evolution using a time-dependent version of the pseudodifferential calculus on Riemannian manifolds of bounded geometry. We apply this result to construct all pure regular Hadamard states (and associated Feynman inverses), where regular refers to the state's two-point function having Cauchy data given by pseudodifferential operators. This allows us to conclude that there is a one-parameter family of elliptic pseudodifferential operators that encodes both the choice of (pure, regular) Hadamard state and the underlying spacetime metric.

  10. Radiative bound-state formation in unbroken perturbative non-Abelian theories and implications for dark matter

    OpenAIRE

    Harz, Julia; Petraki, Kalliopi

    2018-01-01

    We compute the cross-sections for the radiative capture of non-relativistic particles into bound states, in unbroken perturbative non-Abelian theories. We find that the formation of bound states via emission of a gauge boson can be significant for a variety of dark matter models that feature non-Abelian long-range interactions, including multi-TeV scale WIMPs and dark matter co-annihilating with coloured partners. Our results disagree with previous computations, on the relative sign of the Ab...

  11. Improved bounds on the epidemic threshold of exact SIS models on complex networks

    KAUST Repository

    Ruhi, Navid Azizan; Thrampoulidis, Christos; Hassibi, Babak

    2017-01-01

    The SIS (susceptible-infected-susceptible) epidemic model on an arbitrary network, without making approximations, is a 2n-state Markov chain with a unique absorbing state (the all-healthy state). This makes analysis of the SIS model and, in particular, determining the threshold of epidemic spread quite challenging. It has been shown that the exact marginal probabilities of infection can be upper bounded by an n-dimensional linear time-invariant system, a consequence of which is that the Markov chain is “fast-mixing” when the LTI system is stable, i.e. when equation (where β is the infection rate per link, δ is the recovery rate, and λmax(A) is the largest eigenvalue of the network's adjacency matrix). This well-known threshold has been recently shown not to be tight in several cases, such as in a star network. In this paper, we provide tighter upper bounds on the exact marginal probabilities of infection, by also taking pairwise infection probabilities into account. Based on this improved bound, we derive tighter eigenvalue conditions that guarantee fast mixing (i.e., logarithmic mixing time) of the chain. We demonstrate the improvement of the threshold condition by comparing the new bound with the known one on various networks with various epidemic parameters.

  12. Improved bounds on the epidemic threshold of exact SIS models on complex networks

    KAUST Repository

    Ruhi, Navid Azizan

    2017-01-05

    The SIS (susceptible-infected-susceptible) epidemic model on an arbitrary network, without making approximations, is a 2n-state Markov chain with a unique absorbing state (the all-healthy state). This makes analysis of the SIS model and, in particular, determining the threshold of epidemic spread quite challenging. It has been shown that the exact marginal probabilities of infection can be upper bounded by an n-dimensional linear time-invariant system, a consequence of which is that the Markov chain is “fast-mixing” when the LTI system is stable, i.e. when equation (where β is the infection rate per link, δ is the recovery rate, and λmax(A) is the largest eigenvalue of the network\\'s adjacency matrix). This well-known threshold has been recently shown not to be tight in several cases, such as in a star network. In this paper, we provide tighter upper bounds on the exact marginal probabilities of infection, by also taking pairwise infection probabilities into account. Based on this improved bound, we derive tighter eigenvalue conditions that guarantee fast mixing (i.e., logarithmic mixing time) of the chain. We demonstrate the improvement of the threshold condition by comparing the new bound with the known one on various networks with various epidemic parameters.

  13. Diabetes Among United States-Bound Adult Refugees, 2009-2014.

    Science.gov (United States)

    Benoit, Stephen R; Gregg, Edward W; Zhou, Weigong; Painter, John A

    2016-12-01

    We reported diabetes prevalence among all US-bound adult refugees and assessed factors associated with disease. We analyzed overseas medical evaluations of US-bound refugees from 2009 through 2014 by using CDC's Electronic Disease Notification System. We identified refugees with diabetes by searching for diabetes-related keywords and medications in examination forms with text-parsing techniques. Age-adjusted prevalence rates were reported and factors associated with diabetes were assessed by using logistic regression. Of 248,850 refugees aged ≥18 years examined over 5 years, 5767 (2.3 %) had diabetes. Iraqis had the highest crude (5.1 %) and age-adjusted (8.9 %) prevalence of disease. Higher age group and body mass index were associated with diabetes in all regions. Diabetes prevalence varied by refugee nationality. Although the absolute rates were lower than rates in the United States, the prevalence is still concerning given the younger age of the population and their need for health services upon resettlement.

  14. The light bound states of N=1 supersymmetric SU(3) Yang-Mills theory on the lattice

    Science.gov (United States)

    Ali, Sajid; Bergner, Georg; Gerber, Henning; Giudice, Pietro; Montvay, Istvan; Münster, Gernot; Piemonte, Stefano; Scior, Philipp

    2018-03-01

    In this article we summarise our results from numerical simulations of N=1 supersymmetric Yang-Mills theory with gauge group SU(3). We use the formulation of Curci and Veneziano with clover-improved Wilson fermions. The masses of various bound states have been obtained at different values of the gluino mass and gauge coupling. Extrapolations to the limit of vanishing gluino mass indicate that the bound states form mass-degenerate supermultiplets.

  15. Light-Front Hamiltonian Approach to the Bound-State Problem in Quantum Electrodynamics

    Science.gov (United States)

    Jones, Billy D.

    1997-10-01

    Why is the study of the Lamb shift in hydrogen, which at the level of detail found in this paper was largely completed by Bethe in 1947, of any real interest today? While completing such a calculation using new techniques may be very interesting for formal and academic reasons, our primary motivation is to lay groundwork for precision bound-state calculations in QCD. The Lamb shift provides an excellent pedagogical tool for illustrating light-front Hamiltonian techniques, which are not widely known; but more importantly it presents three of the central dynamical and computational problems that we must face to make these techniques useful for solving QCD: How does a constituent picture emerge in a gauge field theory? How do bound-state energy scales emerge non-perturbatively? How does rotational symmetry emerge in a non-perturbative light-front calculation?

  16. Large N Chern-Simons with massive fundamental fermions — A model with no bound states

    International Nuclear Information System (INIS)

    Frishman, Yitzhak; Sonnenschein, Jacob

    2014-01-01

    In a previous paper http://dx.doi.org/10.1007/JHEP12(2013)091, we analyzed the theory of massive fermions in the fundamental representation coupled to a U(N) Chern-Simons gauge theory in three dimensions at level K. It was done in the large N, large K limits where λ=(N/K) was kept fixed. Among other results, we showed there that there are no high mass “quark anti-quark" bound states. Here we show that there are no bound states at all.

  17. Hyperquarks and bosonic preon bound states

    International Nuclear Information System (INIS)

    Schmid, Michael L.; Buchmann, Alfons J.

    2009-01-01

    In a model in which leptons, quarks, and the recently introduced hyperquarks are built up from two fundamental spin-(1/2) preons, the standard model weak gauge bosons emerge as preon bound states. In addition, the model predicts a host of new composite gauge bosons, in particular, those responsible for hyperquark and proton decay. Their presence entails a left-right symmetric extension of the standard model weak interactions and a scheme for a partial and grand unification of nongravitational interactions based on, respectively, the effective gauge groups SU(6) P and SU(9) G . This leads to a prediction of the Weinberg angle at low energies in good agreement with experiment. Furthermore, using evolution equations for the effective coupling strengths, we calculate the partial and grand unification scales, the hyperquark mass scale, as well as the mass and decay rate of the lightest hyperhadron.

  18. NLIE of Dirichlet sine-Gordon model for boundary bound states

    International Nuclear Information System (INIS)

    Ahn, Changrim; Bajnok, Zoltan; Palla, Laszlo; Ravanini, Francesco

    2008-01-01

    We investigate boundary bound states of sine-Gordon model on the finite-size strip with Dirichlet boundary conditions. For the purpose we derive the nonlinear integral equation (NLIE) for the boundary excited states from the Bethe ansatz equation of the inhomogeneous XXZ spin 1/2 chain with boundary imaginary roots discovered by Saleur and Skorik. Taking a large volume (IR) limit we calculate boundary energies, boundary reflection factors and boundary Luescher corrections and compare with the excited boundary states of the Dirichlet sine-Gordon model first considered by Dorey and Mattsson. We also consider the short distance limit and relate the IR scattering data with that of the UV conformal field theory

  19. Universal bounds on current fluctuations.

    Science.gov (United States)

    Pietzonka, Patrick; Barato, Andre C; Seifert, Udo

    2016-05-01

    For current fluctuations in nonequilibrium steady states of Markovian processes, we derive four different universal bounds valid beyond the Gaussian regime. Different variants of these bounds apply to either the entropy change or any individual current, e.g., the rate of substrate consumption in a chemical reaction or the electron current in an electronic device. The bounds vary with respect to their degree of universality and tightness. A universal parabolic bound on the generating function of an arbitrary current depends solely on the average entropy production. A second, stronger bound requires knowledge both of the thermodynamic forces that drive the system and of the topology of the network of states. These two bounds are conjectures based on extensive numerics. An exponential bound that depends only on the average entropy production and the average number of transitions per time is rigorously proved. This bound has no obvious relation to the parabolic bound but it is typically tighter further away from equilibrium. An asymptotic bound that depends on the specific transition rates and becomes tight for large fluctuations is also derived. This bound allows for the prediction of the asymptotic growth of the generating function. Even though our results are restricted to networks with a finite number of states, we show that the parabolic bound is also valid for three paradigmatic examples of driven diffusive systems for which the generating function can be calculated using the additivity principle. Our bounds provide a general class of constraints for nonequilibrium systems.

  20. Bound states in continuum: Quantum dots in a quantum well

    Energy Technology Data Exchange (ETDEWEB)

    Prodanović, Nikola, E-mail: elnpr@leeds.ac.uk [Institute of Microwaves and Photonics, School of Electronic and Electrical Engineering, University of Leeds, Woodhouse Lane, Leeds LS2 9JT (United Kingdom); Milanović, Vitomir [School of Electrical Engineering, University of Belgrade, Bulevar Kralja Aleksandra 73, 11000 Belgrade (Serbia); Ikonić, Zoran; Indjin, Dragan; Harrison, Paul [Institute of Microwaves and Photonics, School of Electronic and Electrical Engineering, University of Leeds, Woodhouse Lane, Leeds LS2 9JT (United Kingdom)

    2013-11-01

    We report on the existence of a bound state in the continuum (BIC) of quantum rods (QR). QRs are novel elongated InGaAs quantum dot nanostructures embedded in the shallower InGaAs quantum well. BIC appears as an excited confined dot state and energetically above the bottom of a well subband continuum. We prove that high height-to-diameter QR aspect ratio and the presence of a quantum well are indispensable conditions for accommodating the BIC. QRs are unique semiconductor nanostructures, exhibiting this mathematical curiosity predicted 83 years ago by Wigner and von Neumann.

  1. On the bound states of Schrodinger operators with -interactions on conical surfaces

    Czech Academy of Sciences Publication Activity Database

    Lotoreichik, Vladimir; Ourmieres-Bonafos, T.

    2016-01-01

    Roč. 41, č. 6 (2016), s. 999-1028 ISSN 0360-5302 Institutional support: RVO:61389005 Keywords : conical and hyperconical surfaces * delta-interaction * existence of bound states * Schrodinger operator * spectral asymptotics Subject RIV: BE - Theoretical Physics Impact factor: 1.608, year: 2016

  2. Numerical Solutions of One Reduced Bethe-Salpeter Equation for the Coulombic Bound States Composed of Virtual Constituents

    Science.gov (United States)

    Chen, Jiao-Kai

    2018-04-01

    We present one reduction of the Bethe-Salpeter equation for the bound states composed of two off-mass-shell constituents. Both the relativistic effects and the virtuality effects can be considered in the obtained spinless virtuality distribution equation. The eigenvalues of the spinless virtuality distribution equation are perturbatively calculated and the bound states e+e-, μ+μ-, τ+τ-, μ+e-, and τ+e- are discussed.

  3. Monopole-fermion and dyon-fermion bound states. Pt. 5

    International Nuclear Information System (INIS)

    Osland, P.; Harvard Univ., Cambridge, MA; Schultz, C.L.; Wu, T.T.

    1985-02-01

    We present explicit, approximate, remarkably precise results for the Kazama-Yang hamiltonian, which describes a Dirac monopole interacting with a spin-1/2 fermion that has an extra magnetic moment. The results are valid for bound states of angular momentum j >= Zvertical strokeegvertical stroke+1/2, where the radial wave functions are determined by four coupled differential equations. These equations have been solved analytically for M - E << M, which is a limit of considerable practical interest. Binding energies and wave functions are given. (orig.)

  4. On the upper bound in the Bohm sheath criterion

    Energy Technology Data Exchange (ETDEWEB)

    Kotelnikov, I. A., E-mail: I.A.Kotelnikov@inp.nsk.su; Skovorodin, D. I., E-mail: D.I.Skovorodin@inp.nsk.su [Russian Academy of Sciences, Budker Institute of Nuclear Physics, Siberian Branch (Russian Federation)

    2016-02-15

    The question is discussed about the existence of an upper bound in the Bohm sheath criterion, according to which the Debye sheath at the interface between plasma and a negatively charged electrode is stable only if the ion flow velocity in plasma exceeds the ion sound velocity. It is stated that, with an exception of some artificial ionization models, the Bohm sheath criterion is satisfied as an equality at the lower bound and the ion flow velocity is equal to the speed of sound. In the one-dimensional theory, a supersonic flow appears in an unrealistic model of a localized ion source the size of which is less than the Debye length; however, supersonic flows seem to be possible in the two- and three-dimensional cases. In the available numerical codes used to simulate charged particle sources with a plasma emitter, the presence of the upper bound in the Bohm sheath criterion is not supposed; however, the correspondence with experimental data is usually achieved if the ion flow velocity in plasma is close to the ion sound velocity.

  5. Bound states for non-symmetric evolution Schroedinger potentials

    Energy Technology Data Exchange (ETDEWEB)

    Corona, Gulmaro Corona [Area de Analisis Matematico y sus Aplicaciones, Universidad Autonoma Metropolitana-Azcapotalco, Atzcapotzalco, DF (Mexico)). E-mail: ccg@correo.azc.uam.mx

    2001-09-14

    We consider the spectral problem associated with the evolution Schroedinger equation, (D{sup 2}+ k{sup 2}){phi}=u{phi}, where u is a matrix-square-valued function, with entries in the Schwartz class defined on the real line. The solution {phi}, called the wavefunction, consists of a function of one real variable, matrix-square-valued with entries in the Schwartz class. This problem has been dealt for symmetric potentials u. We found for the present case that the bound states are localized similarly to the scalar and symmetric cases, but by the zeroes of an analytic matrix-valued function. If we add an extra condition to the potential u, we can determine these states by an analytic scalar function. We do this by generalizing the scalar and symmetric cases but without using the fact that the Wronskian of a pair of wavefunction is constant. (author)

  6. Applications of the infinite momentum method to quantum electrodynamics and bound state problem

    International Nuclear Information System (INIS)

    Brodsky, S.J.

    1973-01-01

    It is shown that the infinite momentum method is a valid and useful calculational alternative to standard perturbation theory methods. The most exciting future applications may be in bound state problems in quantum electrodynamics

  7. Bounds on the number of bound states in the transfer matrix spectrum for some weakly correlated lattice models

    International Nuclear Information System (INIS)

    O’Carroll, Michael

    2012-01-01

    We consider the interaction of particles in weakly correlated lattice quantum field theories. In the imaginary time functional integral formulation of these theories there is a relative coordinate lattice Schroedinger operator H which approximately describes the interaction of these particles. Scalar and vector spin, QCD and Gross-Neveu models are included in these theories. In the weakly correlated regime H=H o +W where H o =−γΔ l , 0 l is the d-dimensional lattice Laplacian: γ=β, the inverse temperature for spin systems and γ=κ 3 where κ is the hopping parameter for QCD. W is a self-adjoint potential operator which may have non-local contributions but obeys the bound ‖W(x, y)‖⩽cexp ( −a(‖x‖+‖y‖)), a large: exp−a=β/β o (1/2) (κ/κ o ) for spin (QCD) models. H o , W, and H act in l 2 (Z d ), d⩾ 1. The spectrum of H below zero is known to be discrete and we obtain bounds on the number of states below zero. This number depends on the short range properties of W, i.e., the long range tail does not increase the number of states.

  8. Split degenerate states and stable p+ip phases from holography

    Energy Technology Data Exchange (ETDEWEB)

    Nie, Zhang-Yu; Zeng, Hui [Kunming University of Science and Technology, Kunming (China); Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing (China); Pan, Qiyuan [Hunan Normal Univ., Key Lab. of Low Dimensional Quantum Structures and Quantum Control of Ministry of Education, and Synergetic Innovation Center for Quantum Effects and Applications, Dept. of Physics, Changsha (China); Zeng, Hua-Bi [Yangzhou University, College of Physics Science and Technology, Yangzhou, Jiangsu (China); National Central University, Department of Physics, Chungli (China)

    2017-02-15

    In this paper, we investigate the p+ip superfluid phases in the complex vector field holographic p-wave model. We find that in the probe limit, the p+ip phase and the p-wave phase are equally stable, hence the p and ip orders can be mixed with an arbitrary ratio to form more general p+λip phases, which are also equally stable with the p-wave and p+ip phases. As a result, the system possesses a degenerate thermal state in the superfluid region. We further study the case on considering the back-reaction on the metric, and we find that the degenerate ground states will be separated into p-wave and p+ip phases, and the p-wave phase is more stable. Finally, due to the different critical temperature of the zeroth order phase transitions from p-wave and p+ip phases to the normal phase, there is a temperature region where the p+ip phase exists but the p-wave phase does not. In this region we find the stable holographic p+ip phase for the first time. (orig.)

  9. Limiting stable states of high-Tc superconductors in the alternating current modes

    International Nuclear Information System (INIS)

    Romanovskii, V.R.; Watanabe, K.; Awaji, S.

    2014-01-01

    The limiting current-carrying capacity of high-T c superconductor and superconducting tape has been studied in the alternating current states. The features that are responsible for their stable formation have been investigated under the conduction-cooled conditions when the operating peak values of the electric field and the current may essentially exceed the corresponding critical values of superconductor. Besides, it has been proved that these peak values are higher than the values of the electric field and the current, which lead to the thermal runaway phenomenon when the current instability onset occurs in the operating modes with direct current. As a result, the stable extremely high heat generation exists in these operating states, which can be called as overloaded states. The limiting stable peak values of charged currents and stability conditions have been determined taking into account the flux creep states of superconductors. The analysis performed has revealed that there exist characteristic times defining the corresponding time windows in the stable development of overloaded states of the alternating current. In order to explain their existence, the basic thermo-electrodynamics mechanisms have been formulated, which have allowed to explain the high stable values of the temperature and the induced electric field before the onset of alternating current instability. In general, it has been shown that the high-T c superconductors may stably operate in the overloaded alternating current states even under the not intensive cooling conditions at a very high level of heat generation, which is not considered in the existing theory of losses. (authors)

  10. Radiative bound-state-formation cross-sections for dark matter interacting via a Yukawa potential

    Energy Technology Data Exchange (ETDEWEB)

    Petraki, Kalliopi [LPTHE, CNRS, UMR 7589,4 Place Jussieu, F-75252, Paris (France); Nikhef,Science Park 105, 1098 XG Amsterdam (Netherlands); Postma, Marieke; Vries, Jordy de [Nikhef,Science Park 105, 1098 XG Amsterdam (Netherlands)

    2017-04-13

    We calculate the cross-sections for the radiative formation of bound states by dark matter whose interactions are described in the non-relativistic regime by a Yukawa potential. These cross-sections are important for cosmological and phenomenological studies of dark matter with long-range interactions, residing in a hidden sector, as well as for TeV-scale WIMP dark matter. We provide the leading-order contributions to the cross-sections for the dominant capture processes occurring via emission of a vector or a scalar boson. We offer a detailed inspection of their features, including their velocity dependence within and outside the Coulomb regime, and their resonance structure. For pairs of annihilating particles, we compare bound-state formation with annihilation.

  11. Method for constructing bound state wave functions of two interacting particles on nullplanes

    International Nuclear Information System (INIS)

    Leidigh, T.J.

    1980-01-01

    Nullplane position and momentum coordinates are defined in terms of the generators of the Poincare group. A transformation to center-of-mass and relative coordinates for a two-particle system is made. Then, another transformation from the original relative coordinates to a new set is made. In terms of the new relative coordinates the formal analogy with nonrelativistic quantum mechanics, already familiar in the nullplane formalism, is greatly enhanced. These coordinates do not appear to have been used previously. The most general form for a two-particle interaction is then partially determined and two methods for solving the remaining constraints are shown to be equivalent. The similarity to nonrelativistic quantum mechanics is used to solve a bound state problem with an interaction resembling a harmonic oscillator. The wave function is then used to model an unstable particle, which has zero spin in the limit in which the particle becomes stable. In the presence of the decay-producing interaction it is shown that the spin spectrum of the parent particle does not remain sharply zero. This is the first relativistic model to unequivocally display this result. The result is interpreted as indicating that real, relativistic, unstable particles may not possess a sharp spin spectrum

  12. Influence of low-energy scattering on loosely bound states

    International Nuclear Information System (INIS)

    Sparenberg, Jean-Marc; Capel, Pierre; Baye, Daniel

    2010-01-01

    Compact algebraic equations are derived that connect the binding energy and the asymptotic normalization constant (ANC) of a subthreshold bound state with the effective-range expansion of the corresponding partial wave. These relations are established for positively charged and neutral particles, using the analytic continuation of the scattering (S) matrix in the complex wave-number plane. Their accuracy is checked on simple local potential models for the 16 O+n, 16 O+p, and 12 C+α nuclear systems, with exotic nuclei and nuclear astrophysics applications in mind.

  13. Electron-electron bound states in parity-preserving QED3

    International Nuclear Information System (INIS)

    Belich, H.; Helayel-Neto, J.A.; Centro Brasileiro de Pesquisas Fisicas; Cima, O.M. del; Ferreira Junior, M.M.; Maranhao Univ., Sao Luis, MA

    2002-04-01

    By considering the Higgs mechanism in the framework of a parity-preserving Planar Quantum Electrodynamics, one shows that an attractive electron-electron interaction may dominate. The e - e - interaction potential emerges as the non-relativistic limit of the Moeller scattering amplitude and it results attractive with a suitable choice of parameters. Numerically values of the e - e - binding energy are obtained by solving the two-dimensional Schroedinger equation. The existence of bound states is a strong indicative that this model may be adopted to address the pairing mechanism of high-T c superconductivity. (author)

  14. Results from (anti-)(hyper-)nuclei production and searches for exotic bound states with ALICE at the LHC

    CERN Document Server

    Sharma, Natasha

    2016-01-01

    The excellent particle identification capabilities of the ALICE detector, using the time projection chamber and the time-of-flight detector, allow the detection of light nuclei and anti-nuclei. Furthermore, the high tracking resolution provided by the inner tracking system enables the separation of primary nuclei from those coming from the decay of heavier systems. This allows for the reconstruction of decays such as the hypertriton mesonic weak decay ($^3_{\\Lambda}$H$\\rightarrow ^3$He + $\\pi^-$), the decay of a hypothetical bound state of a $\\Lambda$n into a deuteron and pion or the H-dibaryon decaying into a $\\Lambda$, a proton and a $\\pi^{-}$. An overview of the production of stable nuclei and anti-nuclei in proton-proton, proton-lead and, in particular, lead-lead collisions is presented. Hypernuclei production rates in Pb--Pb are also shown, together with the upper limits estimated on the production of hypothetical exotica candidates. The results are compared with predictions for the production in thermal...

  15. Bound state solution of the Grassmannian nonlinear sigma model with fermions

    International Nuclear Information System (INIS)

    Abdalla, E.; Lima-Santos, A.

    1987-11-01

    We construct the s matrix for bound state (gauge-invariant) scattering for nonlinear sigma models defined on the manifold SU(N)/S(U(p)x (lower casex)U(n-p)) with fermions. It is not possible to compute gauge non-singlet matrix elements. In the present language they are not submitted to sufficiently many constraints derived from higher conservation laws. (author) [pt

  16. An upper bound on the second order asymptotic expansion for the quantum communication cost of state redistribution

    Energy Technology Data Exchange (ETDEWEB)

    Datta, Nilanjana, E-mail: n.datta@statslab.cam.ac.uk [Statistical Laboratory, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA (United Kingdom); Hsieh, Min-Hsiu, E-mail: Min-Hsiu.Hsieh@uts.edu.au [Centre for Quantum Computation and Intelligent Systems, Faculty of Engineering and Information Technology, University of Technology Sydney, NSW 2007 (Australia); Oppenheim, Jonathan, E-mail: j.oppenheim@ucl.ac.uk [Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom); Department of Computer Science and Centre for Quantum Technologies, National University of Singapore, Singapore 119615 (Singapore)

    2016-05-15

    State redistribution is the protocol in which given an arbitrary tripartite quantum state, with two of the subsystems initially being with Alice and one being with Bob, the goal is for Alice to send one of her subsystems to Bob, possibly with the help of prior shared entanglement. We derive an upper bound on the second order asymptotic expansion for the quantum communication cost of achieving state redistribution with a given finite accuracy. In proving our result, we also obtain an upper bound on the quantum communication cost of this protocol in the one-shot setting, by using the protocol of coherent state merging as a primitive.

  17. Ionization and bound-state relativistic quantum dynamics in laser-driven multiply charged ions

    International Nuclear Information System (INIS)

    Hetzheim, Henrik

    2009-01-01

    The interaction of ultra-strong laser fields with multiply charged hydrogen-like ions can be distinguished in an ionization and a bound dynamics regime. Both are investigated by means of numerically solving the Dirac equation in two dimensions and by a classical relativistic Monte-Carlo simulation. For a better understanding of highly nonlinear physical processes the development of a well characterized ultra-intense relativistic laser field strength has been driven forward, capable of studying e.g. the magnetic field effects of the laser resulting in an additional electron motion in the laser propagation direction. A novel method to sensitively measure these ultra-strong laser intensities is developed and employed from the optical via the UV towards the XUV frequency regime. In the bound dynamics field, the determination of multiphoton transition matrixelements has been investigated between different bound states via Rabi oscillations. (orig.)

  18. Ionization and bound-state relativistic quantum dynamics in laser-driven multiply charged ions

    Energy Technology Data Exchange (ETDEWEB)

    Hetzheim, Henrik

    2009-01-14

    The interaction of ultra-strong laser fields with multiply charged hydrogen-like ions can be distinguished in an ionization and a bound dynamics regime. Both are investigated by means of numerically solving the Dirac equation in two dimensions and by a classical relativistic Monte-Carlo simulation. For a better understanding of highly nonlinear physical processes the development of a well characterized ultra-intense relativistic laser field strength has been driven forward, capable of studying e.g. the magnetic field effects of the laser resulting in an additional electron motion in the laser propagation direction. A novel method to sensitively measure these ultra-strong laser intensities is developed and employed from the optical via the UV towards the XUV frequency regime. In the bound dynamics field, the determination of multiphoton transition matrixelements has been investigated between different bound states via Rabi oscillations. (orig.)

  19. On the locally stable states of the Sherrington-Kirkpatrick model

    International Nuclear Information System (INIS)

    Parga, N.; Parisi, G.

    1985-07-01

    By using a steepest descent algorithm we calculate the attraction basin of locally stable states of the Sherrington-Kirkpatrick model of spin glasses. Looking for correlations among these states we show the existence of clusters of spins and construct a cluster Hamiltonian. (author)

  20. Bounded energy states in homogeneous turbulent shear flow: An alternative view

    Science.gov (United States)

    Bernard, Peter S.; Speziale, Charles G.

    1990-01-01

    The equilibrium structure of homogeneous turbulent shear flow is investigated from a theoretical standpoint. Existing turbulence models, in apparent agreement with physical and numerical experiments, predict an unbounded exponential time growth of the turbulent kinetic energy and dissipation rate; only the anisotropy tensor and turbulent time scale reach a structural equilibrium. It is shown that if vortex stretching is accounted for in the dissipation rate transport equation, then there can exist equilibrium solutions, with bounded energy states, where the turbulence production is balanced by its dissipation. Illustrative calculations are present for a k-epsilon model modified to account for vortex stretching. The calculations indicate an initial exponential time growth of the turbulent kinetic energy and dissipation rate for elapsed times that are as large as those considered in any of the previously conducted physical or numerical experiments on homogeneous shear flow. However, vortex stretching eventually takes over and forces a production-equals-dissipation equilibrium with bounded energy states. The validity of this result is further supported by an independent theoretical argument. It is concluded that the generally accepted structural equilibrium for homogeneous shear flow with unbounded component energies is in need of re-examination.

  1. A lower bound on the relative error of mixed-state cloning and related operations

    International Nuclear Information System (INIS)

    Rastegin, A E

    2003-01-01

    We extend the concept of the relative error to mixed-state cloning and related physical operations, in which the ancilla contains some information a priori about the input state. The lower bound on the relative error is obtained. It is shown that this result provides further support for a stronger no-cloning theorem

  2. Quartified leptonic color, bound states, and future electron–positron collider

    Directory of Open Access Journals (Sweden)

    Corey Kownacki

    2017-06-01

    Full Text Available The [SU(3]4 quartification model of Babu, Ma, and Willenbrock (BMW, proposed in 2003, predicts a confining leptonic color SU(2 gauge symmetry, which becomes strong at the keV scale. It also predicts the existence of three families of half-charged leptons (hemions below the TeV scale. These hemions are confined to form bound states which are not so easy to discover at the Large Hadron Collider (LHC. However, just as J/ψ and ϒ appeared as sharp resonances in e−e+ colliders of the 20th century, the corresponding ‘hemionium’ states are expected at a future e−e+ collider of the 21st century.

  3. Phenomenology and Astrophysics of Gravitationally-Bound Condensates of Axion-Like Particles

    Energy Technology Data Exchange (ETDEWEB)

    Eby, Joshua Armstrong [Univ. of Cincinnati, OH (United States)

    2017-01-01

    Light, spin-0 particles are ubiquitous in theories of physics beyond the Standard Model, and many of these make good candidates for the identity of dark matter. One very well-motivated candidate of this type is the axion. Due to their small mass and adherence to Bose statistics, axions can coalesce into heavy, gravitationally-bound condensates known as boson stars, also known as axion stars (in particular). In this work, we outline our recent progress in attempts to determine the properties of axion stars. We begin with a brief overview of the Standard Model, axions, and bosonic condensates in general. Then, in the context of axion stars, we will present our recent work, which includes: numerical estimates of the macroscopic properties (mass, radius, and particle number) of gravitationally stable axion stars; a calculation of their decay lifetime through number-changing interactions; an analysis of the gravitational collapse process for very heavy states; and an investigation of the implications of axion stars as dark matter. The basic conclusions of our work are that weakly-bound axion stars are only stable up to some calculable maximum mass, whereas states with larger masses collapse to a small radius, but do not form black holes. During collapse, a rapidly increasing binding energy implies a fast rate of decay to relativistic particles, giving rise to a Bosenova. Axion stars that are otherwise stable could be caused to collapse either by accretion of free particles to masses above the maximum, or through astrophysical collisions; in the latter case, we estimate the rate of collisions and the parameter space relevant to induced collapse.

  4. Proof of the insecurity of quantum secret sharing based on the Smolin bound entangled states

    International Nuclear Information System (INIS)

    Ya-Fei, Yu; Zhi-Ming, Zhang

    2009-01-01

    This paper reconsiders carefully the possibility of using the Smolin bound entangled states as the carrier for sharing quantum secret. It finds that the process of quantum secret sharing based on Smolin states has insecurity though the Smolin state was reported to violate maximally the two-setting Bell-inequality. The general proof is given. (general)

  5. Contribution of Bound States to the Harmonic Generation in Hydrogen at Moderate Laser Intensities

    National Research Council Canada - National Science Library

    Davis, Jack

    2002-01-01

    .... The disappearance of bound parabolic states with large electric dipole moments in moderately strong fields leads to the simplification of the expression for the total time-dependent dipole moment of the atom...

  6. Probing the Vibrational Spectroscopy of the Deprotonated Thymine Radical by Photodetachment and State-Selective Autodetachment Photoelectron Spectroscopy via Dipole-Bound States

    Science.gov (United States)

    Huang, Dao-Ling; Zhu, Guo-Zhu; Wang, Lai-Sheng

    2016-06-01

    Deprotonated thymine can exist in two different forms, depending on which of its two N sites is deprotonated: N1[T-H]^- or N3[T-H]^-. Here we report a photodetachment study of the N1[T-H]^- isomer cooled in a cryogenic ion trap and the observation of an excited dipole-bound state. Eighteen vibrational levels of the dipole-bound state are observed, and its vibrational ground state is found to be 238 ± 5 wn below the detachment threshold of N1[T-H]^-. The electron affinity of the deprotonated thymine radical (N1[T-H]^.) is measured accruately to be 26 322 ± 5 wn (3.2635 ± 0.0006 eV). By tuning the detachment laser to the sixteen vibrational levels of the dipole-bound state that are above the detachment threshold, highly non-Franck-Condon resonant-enhanced photoelectron spectra are obtained due to state- and mode-selective vibrational autodetachment. Much richer vibrational information is obtained for the deprotonated thymine radical from the photodetachment and resonant-enhanced photoelectron spectroscopy. Eleven fundamental vibrational frequencies in the low-frequency regime are obtained for the N1[T-H]^. radical, including the two lowest-frequency internal rotational modes of the methyl group at 70 ± 8 wn and 92 ± 5 wn. D. L. Huang, H. T. Liu, C. G. Ning, G. Z. Zhu and L. S. Wang, Chem. Sci., 6, 3129-3138 (2015)

  7. Quasi-bound state resonances of charged massive scalar fields in the near-extremal Reissner-Nordstroem black-hole spacetime

    Energy Technology Data Exchange (ETDEWEB)

    Hod, Shahar [The Ruppin Academic Center, Emeq Hefer (Israel); The Hadassah Academic College, Jerusalem (Israel)

    2017-05-15

    The quasi-bound states of charged massive scalar fields in the near-extremal charged Reissner-Nordstroem black-hole spacetime are studied analytically. These discrete resonant modes of the composed black-hole-field system are characterized by the physically motivated boundary condition of ingoing waves at the black-hole horizon and exponentially decaying (bounded) radial eigenfunctions at spatial infinity. Solving the Klein-Gordon wave equation for the linearized scalar fields in the black-hole spacetime, we derive a remarkably compact analytical formula for the complex frequency spectrum which characterizes the quasi-bound state resonances of the composed Reissner-Nordstroem-black-hole-charged-massive-scalar-field system. (orig.)

  8. Remarks on Bousso's covariant entropy bound

    CERN Document Server

    Mayo, A E

    2002-01-01

    Bousso's covariant entropy bound is put to the test in the context of a non-singular cosmological solution of general relativity found by Bekenstein. Although the model complies with every assumption made in Bousso's original conjecture, the entropy bound is violated due to the occurrence of negative energy density associated with the interaction of some the matter components in the model. We demonstrate how this property allows for the test model to 'elude' a proof of Bousso's conjecture which was given recently by Flanagan, Marolf and Wald. This corroborates the view that the covariant entropy bound should be applied only to stable systems for which every matter component carries positive energy density.

  9. First direct observation of bound-state beta-decay. Measurements of branching and lifetime of {sup 207}Tl{sup 81+} fragments

    Energy Technology Data Exchange (ETDEWEB)

    Boutin, D.

    2005-08-01

    The first experimental observation of bound-state beta-decay showed, that due solely to the electron stripping, a stable nuclide, e.g. {sup 163}Dy, became unstable. Also a drastic modification of the half-life of bare {sup 187}Re, from 4.12(2) x 10{sup 10} years down to 32.9(20) years, could be observed. It was mainly due to the possibility for the mother nuclide to decay into a previously inaccessible nuclear level of the daughter nuclide. It was proposed to study a nuclide where this decay mode was competing with continuum-state beta-decay, in order to measure their respective branchings. The ratio {beta}{sub b}/{beta}{sub c} could also be evaluated for the first time. {sup 207}Tl was chosen due to its high atomic number, and Q-value of about 1.4 MeV, small enough to enhance the {beta}{sub b} probability and large enough to allow the use of time-resolved Schottky Mass Spectrometry (SMS) to study the evolution of mother and bound-state beta-decay daughter ions. The decay properties of the ground state and isomeric state of {sup 207}Tl{sup 81+} have been investigated at the GSI accelerator facility in two separate experiments. For the first time {beta}-decay where the electron could go either to a bound state (atomic orbitals) and lead to {sup 207}Pb{sup 81+} as a daughter nuclide, or to a continuum state and lead to {sup 207}Pb{sup 82+}, has been observed. The respective branchings of these two processes could be measured as well. The deduced total nuclear half-life of 255(17) s for {sup 207}Tl{sup 81+}, was slightly modified with respect to the half-life of the neutral atom of 286(2) s. It was nevertheless in very good agreement with calculations based on the assumption that the beta-decay was following an allowed type of transition. The branching {beta}{sub b}/{beta}{sub c}=0.192(20), was also in very good agreement with the same calculations. The application of stochastic precooling allowed to observe in addition the 1348 keV short-lived isomeric state of {sup

  10. Excited-state dynamics of pentacene derivatives with stable radical substituents.

    Science.gov (United States)

    Ito, Akitaka; Shimizu, Akihiro; Kishida, Noriaki; Kawanaka, Yusuke; Kosumi, Daisuke; Hashimoto, Hideki; Teki, Yoshio

    2014-06-23

    The excited-state dynamics of pentacene derivatives with stable radical substituents were evaluated in detail through transient absorption measurements. The derivatives showed ultrafast formation of triplet excited state(s) in the pentacene moiety from a photoexcited singlet state through the contributions of enhanced intersystem crossing and singlet fission. Detailed kinetic analyses for the transient absorption data were conducted to quantify the excited-state characteristics of the derivatives. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Bound states of quarks calculated with stochastic integration of the Bethe-Salpeter equation

    International Nuclear Information System (INIS)

    Salomon, M.

    1992-07-01

    We have computed the masses, wave functions and sea quark content of mesons in their ground state by integrating the Bethe-Salpeter equation with a stochastic algorithm. This method allows the inclusion of a large set of diagrams. Inspection of the kernel of the equation shows that q-q-bar pairs with similar constituent masses in a singlet spin state exhibit a high bound state which is not present in other pairs. The pion, kaon and eta belongs to this category. 19 refs., 2 figs., 2 tabs

  12. Role of Feshbach resonances in enhancing the production of deeply bound ultracold LiRb molecules with laser pulses

    Science.gov (United States)

    Gacesa, Marko; Ghosal, Subhas; Côté, Robin

    2010-03-01

    We investigate the possibility of forming deeply bound LiRb molecules in a two-color photoassociation experiment. Ultracold ^6Li and ^87Rb atoms colliding in the vicinity of a magnetic Feshbach resonance are photoassociated into an excited electronic state. A wavepacket is then formed by exciting a few vibrational levels of the excited state and allowed to propagate. We calculate the time-dependent overlaps between the wave packet and the lowest vibrational levels of the ground state. After the optimal overlap is obtained we use the second laser pulse to dump the wave packet and efficiently populate the deeply bound ro-vibrational levels of ^6Li^87Rb in the ground state. The resulting combination of Feshbach-optimized photoassociation (FOPA) with the time-dependent pump-dump approach will produce a large number of stable ultracold molecules in the ground state. This technique is general and applicable to other systems.

  13. Gravitationally self-bound quantum states in unstable potentials

    Science.gov (United States)

    Jääskeläinen, Markku

    2018-04-01

    Quantum mechanics at present cannot be unified with the theory of gravity at the deepest level, and to guide research towards the solution of this fundamental problem, we need to look for ways to observe or refute predictions originating from attempts to combine quantum theory with gravity. The influence of the gravitational field created by the material density given by the wave function itself gives rise to nontrivial phenomena. In this study I consider the wave function for the center-of-mass coordinate of a spherical mass distribution under the influence of the self-interaction of Newtonian gravity. I solve numerically for the ground state in the presence of an unstable potential and find that the energy of the free-space bound state can be lowered despite the nontrapping character of the potential. The center-of-mass ground state becomes increasingly localized for the used unstable potentials, although only in a limited parameter regime. The feebleness of the energy shift makes the observation of these effects demanding and requires further developments in the cooling of material particles. In addition, the influence of gravitational perturbations that are present in typical laboratory settings necessitates the use of extremely quiet and controlled environments such as those provided by recently proposed space-borne experiments.

  14. Bound states and molecular structure of systems with hyperons

    International Nuclear Information System (INIS)

    Akaishi, Y.

    1992-01-01

    Microscopic calculations are done for Σ-hypernuclear few-body systems by a method named ATMS. Among two- to five-body systems, only the Σ 4 He(0 + ) and Σ 4 H(0 + ) hypernuclei are expected to be bound: The binding energy and the width of the former are calculated to be 3.7 ∼ 4.6 MeV and 4.5 ∼ 7.9 MeV, respectively. The observation of Σ 4 He at KEK is in good agreement with the above prediction. The nucleus-Σ potential has a strong Lane term and a repulsive bump at short distance. The Lane term makes the system bound and the bump suppresses the ΣN → ΛN conversion. X-ray measurement of level shifts in the 4 He-Σ - , 3 He-Σ - and 3 H-Σ - atoms can provide another information on the Lane term. In 208 Pb, there may exist a peculiar state, Coulomb-assisted (atomnucleus) hybrid state, where Σ - is trapped in the surface region by the strong interaction with the aid of the inner centrifugal repulsion and the outer Coulomb attraction. An analysis is given for new data of Ξ -.12 C atomic or nuclear systems from the emulsion-counter experiment at KEK. The double-Λ hypernucleus formation rate is calculated for a stopped Ξ - on 4 He. A high branching ratio of 37% is obtained for the ΛΛ 4 H formation from a Ξ -.4 He atom. The detection of about 2.3 MeV neutron is proposed to search for lightest double-Λ hypernucleus ΛΛ 4 H. (author)

  15. Experimental evidence and modelling of drought induced alternative stable soil moisture states

    Science.gov (United States)

    Robinson, David; Jones, Scott; Lebron, Inma; Reinsch, Sabine; Dominguez, Maria; Smith, Andrew; Marshal, Miles; Emmett, Bridget

    2017-04-01

    The theory of alternative stable states in ecosystems is well established in ecology; however, evidence from manipulation experiments supporting the theory is limited. Developing the evidence base is important because it has profound implications for ecosystem management. Here we show evidence of the existence of alternative stable soil moisture states induced by drought in an upland wet heath. We used a long-term (15 yrs) climate change manipulation experiment with moderate sustained drought, which reduced the ability of the soil to retain soil moisture by degrading the soil structure, reducing moisture retention. Moreover, natural intense droughts superimposed themselves on the experiment, causing an unexpected additional alternative soil moisture state to develop, both for the drought manipulation and control plots; this impaired the soil from rewetting in winter. Our results show the coexistence of three stable states. Using modelling with the Hydrus 1D software package we are able to show the circumstances under which shifts in soil moisture states are likely to occur. Given the new understanding it presents a challenge of how to incorporate feedbacks, particularly related to soil structure, into soil flow and transport models?

  16. The ordering of low-lyiing bound states of three identical particles

    International Nuclear Information System (INIS)

    Richard, J.M.; Taxil, P.

    1990-01-01

    New results are presented on the ordering of bound states of three identical particles, a problem inspired by baryon spectroscopy. We first study the case of a perturbed harmonic oscillator and relate the splitting pattern to the level spacings in the two-body problem. We also obtain much more general results, valid for almost any symmetric potential, not necessarily pairwise. The proof is given in the framework of the hyperspherical formalism. (orig.)

  17. Solvable light-front model of the electromagnetic form factor of the relativistic two-body bound state in 1+1 dimensions

    International Nuclear Information System (INIS)

    Mankiewicz, L.; Sawicki, M.

    1989-01-01

    Within a relativistically correct yet analytically solvable model of light-front quantum mechanics we construct the electromagnetic form factor of the two-body bound state and we study the validity of the static approximation to the full form factor. Upon comparison of full form factors calculated for different values of binding energy we observe an unexpected effect that for very strongly bound states further increase in binding leads to an increase in the size of the bound system. A similar effect is found for another quantum-mechanical model of relativistic dynamics

  18. Bound states on the lattice with partially twisted boundary conditions

    International Nuclear Information System (INIS)

    Agadjanov, D.; Guo, F.-K.; Ríos, G.; Rusetsky, A.

    2015-01-01

    We propose a method to study the nature of exotic hadrons by determining the wave function renormalization constant Z from lattice simulations. It is shown that, instead of studying the volume-dependence of the spectrum, one may investigate the dependence of the spectrum on the twisting angle, imposing twisted boundary conditions on the fermion fields on the lattice. In certain cases, e.g., the case of the DK bound state which is addressed in detail, it is demonstrated that the partial twisting is equivalent to the full twisting up to exponentially small corrections.

  19. Rubber mixing process and its relationship with bound rubber and crosslink density

    Science.gov (United States)

    Hasan, A.; Rochmadi; Sulistyo, H.; Honggokusumo, S.

    2017-06-01

    This research studied the relationship between bound rubber and crosslink density based on rubber mixing process. Bound rubber was obtained after natural rubber was masticated and mixed with rubber chemicals and filler while crosslink density was collected after rubber compound was vulcanized. Four methods are used and each method refers to four ways of incorporating carbon black during mixing. The first method, after rubber was masticated for 5 minutes, the addition of rubber chemicals and filler was done simultaneously. Rubber was masticated for 1 minute and continued mixing of rubber chemicals and filler where mixing was different from first method. This was the second method. The third method was the same as the second method but the filler used N 660 while in the second method N 330. The last method is not the same as the first and second, the rubber is only masticated for 3 minutes and then mixed with filler and followed by rubber chemicals sequentially. The results showed that bound rubber and crosslink density were influenced by mixing and mastication process. Bound rubber dropped and crosslink density was relatively stable in the first three mixing methods for increasing carbon black at the beginning of the mixing process. Bound rubber and crosslink density stated opposite results in the fourth mixing method. The higher the bound rubber the lower the crosslink density. Without regard to mixing methods, there is a non-linear relationship between bound rubber formation and crosslink density determination

  20. Spectroscopy of the hghest Rb2 bound states with 10 kHz precision

    NARCIS (Netherlands)

    Verhaar, B.J.; Kokkelmans, S.J.J.M.F.; van Kempen, E.G.M.; Freeland, R.S.; Wynar, R.; Comparat, D.; Ryu, C.; Heinzen, D.J.

    2001-01-01

    We have measured the binding energy of four of the highest bound vibrational levels of the ground electronic states of the ^87Rb2 molecule with a precision better than 10 kHz. The measurements were carried out using stimulated Raman photoassociation in an ^87Rb Bose-Einstein condensate. We have

  1. Finite state projection based bounds to compare chemical master equation models using single-cell data

    Energy Technology Data Exchange (ETDEWEB)

    Fox, Zachary [School of Biomedical Engineering, Colorado State University, Fort Collins, Colorado 80523 (United States); Neuert, Gregor [Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232 (United States); Department of Pharmacology, School of Medicine, Vanderbilt University, Nashville, Tennessee 37232 (United States); Department of Biomedical Engineering, Vanderbilt University School of Engineering, Nashville, Tennessee 37232 (United States); Munsky, Brian [School of Biomedical Engineering, Colorado State University, Fort Collins, Colorado 80523 (United States); Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, Colorado 80523 (United States)

    2016-08-21

    Emerging techniques now allow for precise quantification of distributions of biological molecules in single cells. These rapidly advancing experimental methods have created a need for more rigorous and efficient modeling tools. Here, we derive new bounds on the likelihood that observations of single-cell, single-molecule responses come from a discrete stochastic model, posed in the form of the chemical master equation. These strict upper and lower bounds are based on a finite state projection approach, and they converge monotonically to the exact likelihood value. These bounds allow one to discriminate rigorously between models and with a minimum level of computational effort. In practice, these bounds can be incorporated into stochastic model identification and parameter inference routines, which improve the accuracy and efficiency of endeavors to analyze and predict single-cell behavior. We demonstrate the applicability of our approach using simulated data for three example models as well as for experimental measurements of a time-varying stochastic transcriptional response in yeast.

  2. Interband type-II miniband-to-bound state diode lasers for the midinfrared

    International Nuclear Information System (INIS)

    Mermelstein, C.; Schmitz, J.; Kiefer, R.; Walther, M.; Wagner, J.

    2004-01-01

    A design for midinfrared diode lasers based on interband type-II miniband-to-bound state transitions is proposed and has been demonstrated experimentally. Type-II miniband-to-bound state laser structures emitting at 3.25 μm with active regions consisting of 5 and 10 W periods were grown by solid-source molecular-beam epitaxy and processed into ridge waveguide lasers. Substrate-side down mounted devices with a 10 period active region and uncoated facets could be operated in continuous-wave (cw) mode up to 185 K and as high as 260 K in pulsed mode. A high characteristic temperature of 100 K has been achieved for heat-sink temperatures below 140 K, decreasing to 33 K for the 140 to 185 K interval. At 110 K, a 5 period laser structure exhibited a threshold current density of 177 A/cm 2 and a slope efficiency of 61 mW/A. Single-ended output powers of 144 mW in cw mode and exceeding 330 mW in pulsed operation were obtained for a substrate-side down mounted 5 period diode laser with high-reflection/antireflection coated mirror facets, operated at 110 K

  3. STABLE SILICA-GRAFTED POLYMER-BOUND BULKY-PHOSPHITE MODIFIED RHODIUM HYDROFORMYLATION CATALYSTS

    NARCIS (Netherlands)

    JONGSMA, T; VANAERT, H; FOSSEN, M; CHALLA, G; VANLEEUWEN, PWNM

    1993-01-01

    The present study demonstrates that silica-grafted polymer-bound phosphite modified rhodium complexes can be used in continuous flow reactors. The hydroformylation of styrene was carried out at moderate pressure (p(CO/H-2) = 30 bar) and temperature (T = 100-degrees-C), yielding constant conversions

  4. Observation of the Stark effect in υ+ = 0 Rydberg states of NO: a comparison between predissociating and bound states

    International Nuclear Information System (INIS)

    Jones, N J A; Minns, R S; Patel, R; Fielding, H H

    2008-01-01

    The Stark spectra of Rydberg states of NO below the υ + = 0 ionization limit, with principal quantum numbers n = 25-30, have been investigated in the presence of dc electric fields in the range 0-150 V cm -1 . The Stark states were accessed by two-colour, double-resonance excitation via the υ' = 0, N' = 0 rovibrational state of the A 2 Σ + state. The N( 2 D) atoms produced by predissociation were measured by (2 + 1) resonance-enhanced multiphoton ionization, and compared with pulsed-field ionization spectra of the bound Rydberg state population (Patel et al 2007 J. Phys. B: At. Mol. Opt. Phys. 40 1369)

  5. Stable π-Extended p -Quinodimethanes: Synthesis and Tunable Ground States

    KAUST Repository

    Zeng, Zebing

    2014-12-18

    © 2014 The Chemical Society of Japan and Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. p-Quinodimethane (p-QDM) is a highly reactive hydrocarbon showing large biradical character in the ground state. It has been demonstrated that incorporation of the p-QDM moiety into an aromatic hydrocarbon framework could lead to new π-conjugated systems with significant biradical character and unique optical, electronic and magnetic properties. On the other hand, the extension of p-QDM is expected to result in molecules with even larger biradical character and higher reactivity. Therefore, the synthesis of stable π-extended p-QDMs is very challenging. In this Personal Account we will briefly discuss different stabilizing strategies and synthetic methods towards stable π-extended p-QDMs with tunable ground states and physical properties, including two types of polycyclic hydrocarbons: (1) tetrabenzo-Tschitschibabin\\'s hydrocarbons, and (2) tetracyano-rylenequinodimethanes. We will discuss how the aromaticity, substituents and steric hindrance play important roles in determining their ground states and properties. Incorporation of the p-quinodimethane moiety into aromatic hydrocarbon frameworks can lead to new π-conjugated systems with significant biradical character and unique optical, electronic and magnetic properties. Furthermore, the extension of p-QDM is expected to result in molecules with even larger biradical character and higher reactivity. In this Personal Account, different stabilizing strategies and synthetic methods towards stable π-extended p-QDMs with tunable ground states and physical properties are briefly discussed, including the roles of aromaticity, substituents and steric hindrance.

  6. Variational lower bound on the scattering length

    International Nuclear Information System (INIS)

    Rosenberg, L.; Spruch, L.

    1975-01-01

    The scattering length A characterizes the zero-energy scattering of one system by another. It was shown some time ago that a variational upper bound on A could be obtained using methods, of the Rayleigh-Ritz type, which are commonly employed to obtain upper bounds on energy eigenvalues. Here we formulate a method for obtaining a variational lower bound on A. Once again the essential idea is to express the scattering length as a variational estimate plus an error term and then to reduce the problem of bounding the error term to one involving bounds on energy eigenvalues. In particular, the variational lower bound on A is rigorously established provided a certin modified Hamiltonian can be shown to have no discrete states lying below the level of the continuum threshold. It is unfortunately true that necessary conditions for the existence of bound states are not available for multiparticle systems in general. However, in the case of positron-atom scattering the adiabatic approximation can be introduced as an (essentially) solvable comparison problem to rigorously establish the nonexistence of bound states of the modified Hamiltonian. It has recently been shown how the validity of the variational upper bound on A can be maintained when the target ground-state wave function is imprecisely known. Similar methods can be used to maintain the variational lower bound on A. Since the bound is variational, the error in the calculated scattering length will be of second order in the error in the wave function. The use of the adiabatic approximation in the present context places no limitation in principle on the accuracy achievable

  7. Bounded Tamper Resilience

    DEFF Research Database (Denmark)

    Damgård, Ivan Bjerre; Faust, Sebastian; Mukherjee, Pratyay

    2013-01-01

    Related key attacks (RKAs) are powerful cryptanalytic attacks where an adversary can change the secret key and observe the effect of such changes at the output. The state of the art in RKA security protects against an a-priori unbounded number of certain algebraic induced key relations, e.......g., affine functions or polynomials of bounded degree. In this work, we show that it is possible to go beyond the algebraic barrier and achieve security against arbitrary key relations, by restricting the number of tampering queries the adversary is allowed to ask for. The latter restriction is necessary......-protocols (including the Okamoto scheme, for instance) are secure even if the adversary can arbitrarily tamper with the prover’s state a bounded number of times and obtain some bounded amount of leakage. Interestingly, for the Okamoto scheme we can allow also independent tampering with the public parameters. We show...

  8. New rational extensions of solvable potentials with finite bound state spectrum

    International Nuclear Information System (INIS)

    Grandati, Yves

    2012-01-01

    Using the disconjugacy properties of the Schrödinger equation, we develop a new type of generalized SUSY QM partnership which allows generating new solvable rational extensions for translationally shape invariant potentials having a finite bound state spectrum. For this we prolong the dispersion relation relating the energy to the quantum number out of the physical domain until a disconjugacy sector. By Darboux–Bäcklund Transformations built on these prolonged states we obtain new regular isospectral extensions of the initial potential. We give the spectra of these extensions in terms of new orthogonal polynomials and study their shape invariance properties. -- Highlights: ► New solvable quantum potentials. ► SUSY quantum partnership generalized to excited states. ► Based on disconjugacy theorems and asymptotic behaviour. ► Exact spectrum in terms of new orthogonal polynomials. ► Enlarged shape invariance property.

  9. Impurity bound states in mesoscopic topological superconducting loops

    Science.gov (United States)

    Jin, Yan-Yan; Zha, Guo-Qiao; Zhou, Shi-Ping

    2018-06-01

    We study numerically the effect induced by magnetic impurities in topological s-wave superconducting loops with spin-orbit interaction based on spin-generalized Bogoliubov-de Gennes equations. In the case of a single magnetic impurity, it is found that the midgap bound states can cross the Fermi level at an appropriate impurity strength and the circulating spin current jumps at the crossing point. The evolution of the zero-energy mode can be effectively tuned by the located site of a single magnetic impurity. For the effect of many magnetic impurities, two independent midway or edge impurities cannot lead to the overlap of zero modes. The multiple zero-energy modes can be effectively realized by embedding a single Josephson junction with impurity scattering into the system, and the spin current displays oscillatory feature with increasing the layer thickness.

  10. A search for deeply-bound kaonic nuclear states at J-PARC

    Directory of Open Access Journals (Sweden)

    Sakaguchi A.

    2010-04-01

    Full Text Available The J-PARC E15 experiment will be performed to search for the simplest kaonic nuclear bound state, K− pp, by the in-flight 3He(K−,n reaction. The exclusive measurement can be performed by a simultaneous measurement of the missing mass using the primary neutron and the invariant mass via the expected decay, K− pp → Λp → pπ− p. In this report, an overview of the experiment and the preparation status are presented.

  11. Lower Bounds on the Capacity of the Relay Channel with States at the Source

    Directory of Open Access Journals (Sweden)

    Abdellatif Zaidi

    2009-01-01

    Full Text Available We consider a state-dependent three-terminal full-duplex relay channel with the channel states noncausally available at only the source, that is, neither at the relay nor at the destination. This model has application to cooperation over certain wireless channels with asymmetric cognition capabilities and cognitive interference relay channels. We establish lower bounds on the channel capacity for both discrete memoryless (DM and Gaussian cases. For the DM case, the coding scheme for the lower bound uses techniques of rate-splitting at the source, decode-and-forward (DF relaying, and a Gel'fand-Pinsker-like binning scheme. In this coding scheme, the relay decodes only partially the information sent by the source. Due to the rate-splitting, this lower bound is better than the one obtained by assuming that the relay decodes all the information from the source, that is, full-DF. For the Gaussian case, we consider channel models in which each of the relay node and the destination node experiences on its link an additive Gaussian outside interference. We first focus on the case in which the links to the relay and to the destination are corrupted by the same interference; and then we focus on the case of independent interferences. We also discuss a model with correlated interferences. For each of the first two models, we establish a lower bound on the channel capacity. The coding schemes for the lower bounds use techniques of dirty paper coding or carbon copying onto dirty paper, interference reduction at the source and decode-and-forward relaying. The results reveal that, by opposition to carbon copying onto dirty paper and its root Costa's initial dirty paper coding (DPC, it may be beneficial in our setup that the informed source uses a part of its power to partially cancel the effect of the interference so that the uninformed relay benefits from this cancellation, and so the source benefits in turn.

  12. Electron-electron bound states in parity-preserving QED{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Belich, H.; Helayel-Neto, J.A. [Universidade Catolica do Petropolis, RJ (Brazil). Grupo de Fisica Teorica]|[Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil). Coordenacao de Teoria de Campos e Particulas; Cima, O.M. del [Universidade Catolica do Petropolis, RJ (Brazil). Grupo de Fisica Teorica; Ferreira Junior, M.M. [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil). Coordenacao de Teoria de Campos e Particulas]|[Maranhao Univ., Sao Luis, MA (Brazil). Dept. de Fisica

    2002-04-01

    By considering the Higgs mechanism in the framework of a parity-preserving Planar Quantum Electrodynamics, one shows that an attractive electron-electron interaction may dominate. The e{sup -}e{sup -} interaction potential emerges as the non-relativistic limit of the Moeller scattering amplitude and it results attractive with a suitable choice of parameters. Numerically values of the e{sup -}e{sup -} binding energy are obtained by solving the two-dimensional Schroedinger equation. The existence of bound states is a strong indicative that this model may be adopted to address the pairing mechanism of high-T{sub c} superconductivity. (author)

  13. Evaluation of upper and lower bounds to energy eigenvalues in Shoenberg's perturbation-theory ground state by means of partitioning technique

    International Nuclear Information System (INIS)

    Logrado, P.G.; Vianna, J.D.M.

    Upper and lower bounds for the energy eigenvalues is Schoenberg's perturbation-theory ground state are studied. After a review of the characteristic features of the partitioning techniques the perturbative expansion proposed by Schoenberg is generated from an exact operator equation. The upper and lower bounds for the ground state eigenvalue are derived by using reaction and wave operators concepts, the bracketing function and operator inequalities. (Author) [pt

  14. Robust chaos synchronization using input-to-state stable control

    Indian Academy of Sciences (India)

    In this paper, we propose a new input-to-state stable (ISS) synchronization method for a general class of chaotic systems with disturbances. Based on Lyapunov theory and linear matrix inequality (LMI) approach, for the first time, the ISS synchronization controller is presented not only to guarantee the asymptotic ...

  15. Observations of bound and unbound states of Ce−

    International Nuclear Information System (INIS)

    Walter, C W; Li, Y-G; Matyas, D J; Alton, R M; Lou, S E; III, R L Field; Gibson, N D; Hanstorp, D

    2012-01-01

    The negative ion of cerium has been investigated with tunable infrared laser photodetachment spectroscopy over selected photon energy ranges between 0.56 − 0.70 eV. The spectrum reveals several sharp peaks due to negative ion resonances and possible bound-bound transitions in Ce − . The newly observed transitions, together with our previous measurements, provide insight into the rich near-threshold spectrum of this lanthanide negative ion.

  16. Three-photon laser spectroscopy of even-parity bound states of samarium atom

    International Nuclear Information System (INIS)

    Gomonaj, O.Yi.; Kudelich, O.Yi.

    2002-01-01

    The energy spectrum of highly-excited even-parity bound states of a Sm atom, lying in the energy range 34421.1 - 36031.8 cm -1 , is investigated using three-photon resonance-ionization spectroscopy. The energies and total momenta of 48 levels are determined. Eight new levels not observed before are discovered. Thirteen intense two-photon transitions, which can be used in the schemes of Sm atom effective photoionization, are observed

  17. A semigroup approach to the strong ergodic theorem of the multistate stable population process.

    Science.gov (United States)

    Inaba, H

    1988-01-01

    "In this paper we first formulate the dynamics of multistate stable population processes as a partial differential equation. Next, we rewrite this equation as an abstract differential equation in a Banach space, and solve it by using the theory of strongly continuous semigroups of bounded linear operators. Subsequently, we investigate the asymptotic behavior of this semigroup to show the strong ergodic theorem which states that there exists a stable distribution independent of the initial distribution. Finally, we introduce the dual problem in order to obtain a logical definition for the reproductive value and we discuss its applications." (SUMMARY IN FRE) excerpt

  18. Nucleon Viewed as a Borromean Bound-State

    Science.gov (United States)

    Segovia, Jorge; Mezrag, Cédric; Chang, Lei; Roberts, Craig D.

    2018-05-01

    We explain how the emergent phenomenon of dynamical chiral symmetry breaking ensures that Poincaré covariant analyses of the three valence-quark scattering problem in continuum quantum field theory yield a picture of the nucleon as a Borromean bound-state, in which binding arises primarily through the sum of two separate contributions. One involves aspects of the non-Abelian character of Quantum Chromodynamics that are expressed in the strong running coupling and generate tight, dynamical color-antitriplet quark-quark correlations in the scalar-isoscalar and pseudovector-isotriplet channels. This attraction is magnified by quark exchange associated with diquark breakup and reformation, which is required in order to ensure that each valence-quark participates in all diquark correlations to the complete extent allowed by its quantum numbers. Combining these effects, we arrive at a properly antisymmetrised Faddeev wave function for the nucleon and calculate, e.g. the flavor-separated versions of the Dirac and Pauli form factors and the proton's leading-twist parton distribution amplitude. We conclude that available data and planned experiments are capable of validating the proposed picture.

  19. Rovibrational bound states of SO{sub 2} isotopologues. I: Total angular momentum J = 0–10

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Praveen, E-mail: Praveen.Kumar@ttu.edu; Ellis, Joseph; Poirier, Bill, E-mail: Bill.Poirier@ttu.edu

    2015-04-01

    Highlights: • We report calculation of the exact rovibrational energy levels of SO{sub 2} for J = 0–10. • We report sulfur isotope shifts of the SO{sub 2} isotopologues rovibrational frequencies. • Coriolis coupling is treated exactly. • All rovibrational levels are computed to a high level of numerical convergence. • All of the rovibrational data exhibit near-perfect mass-dependent fractionation. - Abstract: Isotopic variation of the rovibrational bound states of SO{sub 2} for the four stable sulfur isotopes {sup 32–34,36}S is investigated in comprehensive detail. In a two-part series, we compute the low-lying energy levels for all values of total angular momentum in the range J = 0–20. All rovibrational levels are computed, to an extremely high level of numerical convergence. The calculations have been carried out using the ScalIT suite of parallel codes. The present study (Paper I) examines the J = 0–10 rovibrational levels, providing unambiguous symmetry and rovibrational label assignments for each computed state. The calculated vibrational energy levels exhibit very good agreement with previously reported experimental and theoretical data. Rovibrational energy levels, calculated without any Coriolis approximations, are reported here for the first time. Among other potential ramifications, this data will facilitate understanding of the origin of mass-independent fractionation of sulfur isotopes in the Archean rock record—of great relevance for understanding the “oxygen revolution”.

  20. Semi-inclusive B->K(K*)X decays with initial bound state effects

    International Nuclear Information System (INIS)

    He, Xiao-Gang; Jin, Changhao; Ma, J. P.

    2001-01-01

    The effects of the initial b quark bound state for the semi-inclusive decays B->K(K * )X are studied using light cone expansion and heavy quark effective theory methods. We find that the initial bound state effects on the branching ratios and CP asymmetries are small. In the light cone expansion approach, the CP-averaged branching ratios are increased by about 2% with respect to the free b-quark decay. For {bar B} 0 ->K - (K *- )X, the CP-averaged branching ratios are sensitive to the phase γ and the CP asymmetry can be as large as 7% (14%), whereas for B - ->{bar K} 0 ({bar K} *0 )X the CP-averaged branching ratios are not sensitive to γ and the CP asymmetries are small ( -4 [(0.25 - 2.0)x10 -4 ] for {bar B} 0 ->K - (K *- )X and (0.77 - 0.84)x10 -4 [(0.67 - 0.74)x10 -4 ] for B - ->{bar K} 0 ({bar K} *0 )X, depending on the value of the CP violating phase γ. In the heavy quark effective theory approach, we find that the branching ratios are decreased by about 10% and the CP asymmetries are not affected. These predictions can be tested in the near future

  1. Bound entanglement and local realism

    International Nuclear Information System (INIS)

    Kaszlikowski, Dagomir; Zukowski, Marek; Gnacinski, Piotr

    2002-01-01

    We show using a numerical approach, which gives necessary and sufficient conditions for the existence of local realism, that the bound entangled state presented in Bennett et al. [Phys. Rev. Lett. 82, 5385 (1999)] admits a local and realistic description. We also find the lowest possible amount of some appropriate entangled state that must be ad-mixed to the bound entangled state so that the resulting density operator has no local and realistic description and as such can be useful in quantum communication and quantum computation

  2. Continuous control of asymmetric forebody vortices in a bi-stable state

    Science.gov (United States)

    Wang, Qi-te; Cheng, Ke-ming; Gu, Yun-song; Li, Zhuo-qi

    2018-02-01

    Aiming at the problem of continuous control of asymmetric forebody vortices at a high angle of attack in a bi-stable regime, a dual synthetic jet actuator embedded in an ogive forebody was designed. Alternating unsteady disturbance with varying degree asymmetrical flow fields near the nozzles is generated by adjusting the duty cycle of the drive signal of the actuator, specifically embodying the asymmetric time-averaged pattern of jet velocity, vorticity, and turbulent kinetic energy. Experimental results show that within the range of relatively high angles of attack, including the angle-of-attack region in a bi-stable state, the lateral force of the ogive forebody is continuously controlled by adjusting the duty cycle of the drive signal; the position of the forebody vortices in space, the vorticity magnitude, the total pressure coefficient near the vortex core, and the vortex breakdown location are continuously changed with the duty cycle increased observed from the time-averaged flow field. Instantaneous flow field results indicate that although the forebody vortices are in an unsteady oscillation state, a continuous change in the forebody vortices' oscillation balance position as the duty cycle increases leads to a continuous change in the model's surface pressure distribution and time-averaged lateral force. Different from the traditional control principle, in this study, other different degree asymmetrical states of the forebody vortices except the bi-stable state are obtained using the dual synthetic jet control technology.

  3. Bound states of water in gelatin discriminated by near-infrared spectroscopy

    Science.gov (United States)

    Otsuka, Yukiko; Shirakashi, Ryo; Hirakawa, Kazuhiko

    2017-11-01

    By near-infrared spectroscopy, we classified water molecules in hydrated gelatin membranes in a drying process. Absorbance spectra in the frequency range of 4500-5500 cm-1 were resolved into three peaks, S0, S1, and S2, that correspond to water molecules with different hydrogen bond states. From the areas of the absorbance peaks as a function of the water content of gelatin, together with the information on the freezing properties of water measured by differential scanning calorimetry, we found that, when the water content is less than 20%, free water disappears and only weakly and strongly bound waters remain. We also found that the weakly bound water consists of S0, S1, and S2 water molecules with a simple composition of \\text{S}0:\\text{S}1:\\text{S}2 ≈ 1:2:0. Using this information, most of the freezable water was determined to be free water. Our classification provides a simple method of estimating the retention and freezing properties of processed foods or drugs by infrared spectroscopy.

  4. Large impedances and Majorana bound states in superconducting circuits

    International Nuclear Information System (INIS)

    Ulrich, Jascha

    2017-01-01

    Superconducting circuits offer the opportunity to study quantum mechanics on mesoscopic scales unimpeded by dissipation. This fact and the nonlinearity of the Josephson inductance make it possible to use superconducting circuits as artificial atoms whose long-lived states can be selectively addressed and studied. A pronounced nonlinearity of the energy spectrum, however, requires quantum fluctuations of the flux across the Josephson junction which are large on the scale of the superconducting flux quantum Φ Q =h/2e. This implies charge fluctuations below the single Cooper-pair limit via flux-charge duality. The localization of charge leads to a strong susceptibility to interactions with charges in the environment which has motivated the search for schemes to decouple charges from their environment. This thesis is concerned with theoretical challenges arising from two complementary approaches to this problem: the realization of large impedances and the fractionalization of electrons by means of Majorana bound states. In recent years, the decoupling of charges from the environment through reactive large impedances, so-called ''superinductances'' L, has attracted much interest. These inductances feature small parasitic capacitance C such that the characteristic impedance √(L/C) is much larger than the superconducting resistance quantum R Q =h/4e 2 . Superinductances have various applications ranging from qubit designs such as the 0-π qubit or the fluxonium to impedance matching, Bloch oscillations and the stabilization of phase slips in superconducting nanowires. Although there exists a well-established formalism for the quantization of superconducting circuits in terms of node fluxes, this formalism is ill-suited for the description of fast flux transport with localized charges in large-impedance environments. In particular, the nonlinear capacitive behavior of phase slip junctions cannot be modeled in a straightforward way using node fluxes

  5. Bounding approaches to system identification

    CERN Document Server

    Norton, John; Piet-Lahanier, Hélène; Walter, Éric

    1996-01-01

    In response to the growing interest in bounding error approaches, the editors of this volume offer the first collection of papers to describe advances in techniques and applications of bounding of the parameters, or state variables, of uncertain dynamical systems. Contributors explore the application of the bounding approach as an alternative to the probabilistic analysis of such systems, relating its importance to robust control-system design.

  6. Looking for chemical reaction networks exhibiting a drift along a manifold of marginally stable states.

    Science.gov (United States)

    Brogioli, Doriano

    2013-02-07

    I recently reported some examples of mass-action equations that have a continuous manifold of marginally stable stationary states [Brogioli, D., 2010. Marginally stable chemical systems as precursors of life. Phys. Rev. Lett. 105, 058102; Brogioli, D., 2011. Marginal stability in chemical systems and its relevance in the origin of life. Phys. Rev. E 84, 031931]. The corresponding chemical reaction networks show nonclassical effects, i.e. a violation of the mass-action equations, under the effect of the concentration fluctuations: the chemical system drifts along the marginally stable states. I proposed that this effect is potentially involved in abiogenesis. In the present paper, I analyze the mathematical properties of mass-action equations of marginally stable chemical reaction networks. The marginal stability implies that the mass-action equations obey some conservation law; I show that the mathematical properties of the conserved quantity characterize the motion along the marginally stable stationary state manifold, i.e. they allow to predict if the fluctuations give rise to a random walk or a drift under the effect of concentration fluctuations. Moreover, I show that the presence of the drift along the manifold of marginally stable stationary-states is a critical property, i.e. at least one of the reaction constants must be fine tuned in order to obtain the drift. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Asymptotic stabilization of nonlinear systems using state feedback

    International Nuclear Information System (INIS)

    D'Attellis, Carlos

    1990-01-01

    This paper studies the design of state-feedback controllers for the stabilization of single-input single-output nonlinear systems x = f(x) + g(x)u, y = h(x). Two approaches for the stabilization problem are given; the asymptotic stability is achieved by means of: a) nonlinear state feedback: two nonlinear feedbacks are used; the first separates the system in a controllable linear part and in the zeros-dynamic part. The second feedback generates an asymptotically stable equilibrium on the manifold where this dynamics evolves; b) nonlinear dynamic feedback: conditions are established under which the system can follow the output of a completely controllable bilinear system which uses bounded controls. This fact enables the system to reach, using bounded controls too, a desired output value in finite time. As this value corresponds to a state that lays in the attraction basin of a stable equilibrium with the same output, the system evolves to that point. The two methods are illustrated by examples. (Author) [es

  8. Orthogonality-condition model for bound states with a separable expansion of the potential

    International Nuclear Information System (INIS)

    Pal, K.F.

    1984-01-01

    A very efficient solution of the equation of Saito's orthogonality-condition model (OCM) is reported for bound states by means of a separable expansion of the potential (PSE method). Some simplifications of the published formulae of the PSE method is derived, which facilitate its application to the OCM and may be useful in solving the Schroedinger equation as well. (author)

  9. Increasing atmospheric CO2 overrides the historical legacy of multiple stable biome states in Africa.

    Science.gov (United States)

    Moncrieff, Glenn R; Scheiter, Simon; Bond, William J; Higgins, Steven I

    2014-02-01

    The dominant vegetation over much of the global land surface is not predetermined by contemporary climate, but also influenced by past environmental conditions. This confounds attempts to predict current and future biome distributions, because even a perfect model would project multiple possible biomes without knowledge of the historical vegetation state. Here we compare the distribution of tree- and grass-dominated biomes across Africa simulated using a dynamic global vegetation model (DGVM). We explicitly evaluate where and under what conditions multiple stable biome states are possible for current and projected future climates. Our simulation results show that multiple stable biomes states are possible for vast areas of tropical and subtropical Africa under current conditions. Widespread loss of the potential for multiple stable biomes states is projected in the 21st Century, driven by increasing atmospheric CO2 . Many sites where currently both tree-dominated and grass-dominated biomes are possible become deterministically tree-dominated. Regions with multiple stable biome states are widespread and require consideration when attempting to predict future vegetation changes. Testing for behaviour characteristic of systems with multiple stable equilibria, such as hysteresis and dependence on historical conditions, and the resulting uncertainty in simulated vegetation, will lead to improved projections of global change impacts. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  10. Quantum localization and bound-state formation in Bose-Einstein condensates

    International Nuclear Information System (INIS)

    Franzosi, Roberto; Giampaolo, Salvatore M.; Illuminati, Fabrizio

    2010-01-01

    We discuss the possibility of exponential quantum localization in systems of ultracold bosonic atoms with repulsive interactions in open optical lattices without disorder. We show that exponential localization occurs in the maximally excited state of the lowest energy band. We establish the conditions under which the presence of the upper energy bands can be neglected, determine the successive stages and the quantum phase boundaries at which localization occurs, and discuss schemes to detect it experimentally by visibility measurements. The discussed mechanism is a particular type of quantum localization that is intuitively understood in terms of the interplay between nonlinearity and a bounded energy spectrum.

  11. Single-molecule folding mechanisms of the apo- and Mg2+-bound states of human neuronal calcium sensor-1

    DEFF Research Database (Denmark)

    Naqvi, Mohsin M; Heiðarsson, Pétur Orri; Otazo, Mariela R

    2015-01-01

    , at least transiently, at resting Ca(2+) conditions. Here, we used optical tweezers to study the folding behavior of individual NCS-1 molecules in the presence of Mg(2+) and in the absence of divalent ions. Under tension, the Mg(2+)-bound state of NCS-1 unfolds and refolds in a three-state process...... in a variety of cellular processes in which it has been linked to a number of disorders such as schizophrenia and autism. Despite extensive studies on the Ca(2+)-activated state of NCS proteins, little is known about the conformational dynamics of the Mg(2+)-bound and apo states, both of which are populated...... by populating one intermediate state consisting of a folded C-domain and an unfolded N-domain. The interconversion at equilibrium between the different molecular states populated by NCS-1 was monitored in real time through constant-force measurements and the energy landscapes underlying the observed transitions...

  12. Simple functional-differential equations for the bound-state wave-function components

    International Nuclear Information System (INIS)

    Kamuntavicius, G.P.

    1986-01-01

    The author presents a new method of a direct derivation of differential equations for the wave-function components of identical-particles systems. The method generates in a simple manner all the possible variants of these equations. In some cases they are the differential equations of Faddeev or Yakubovskii. It is shown that the case of the bound states allows to formulate very simple equations for the components which are equivalent to the Schroedinger equation for the complete wave function. The components with a minimal antisymmetry are defined and the corresponding equations are derived. (Auth.)

  13. STABLE STATIONARY STATES OF NON-LOCAL INTERACTION EQUATIONS

    KAUST Repository

    FELLNER, KLEMENS

    2010-12-01

    In this paper, we are interested in the large-time behaviour of a solution to a non-local interaction equation, where a density of particles/individuals evolves subject to an interaction potential and an external potential. It is known that for regular interaction potentials, stable stationary states of these equations are generically finite sums of Dirac masses. For a finite sum of Dirac masses, we give (i) a condition to be a stationary state, (ii) two necessary conditions of linear stability w.r.t. shifts and reallocations of individual Dirac masses, and (iii) show that these linear stability conditions imply local non-linear stability. Finally, we show that for regular repulsive interaction potential Wε converging to a singular repulsive interaction potential W, the Dirac-type stationary states ρ̄ ε approximate weakly a unique stationary state ρ̄ ∈ L∞. We illustrate our results with numerical examples. © 2010 World Scientific Publishing Company.

  14. Meson-meson bound state in a 2+1 lattice QCD model with two flavors and strong coupling

    International Nuclear Information System (INIS)

    Faria da Veiga, Paulo A.; O'Carroll, Michael; Neto, Antonio Francisco

    2005-01-01

    We consider the existence of bound states of two mesons in an imaginary-time formulation of lattice QCD. We analyze an SU(3) theory with two flavors in 2+1 dimensions and two-dimensional spin matrices. For a small hopping parameter and a sufficiently large glueball mass, as a preliminary, we show the existence of isoscalar and isovector mesonlike particles that have isolated dispersion curves (upper gap up to near the two-particle threshold ∼-4lnκ). The corresponding meson masses are equal up to and including O(κ 3 ) and are asymptotically of order -2lnκ-κ 2 . Considering the zero total isospin sector, we show that there is a meson-meson bound state solution to the Bethe-Salpeter equation in a ladder approximation, below the two-meson threshold, and with binding energy of order bκ 2 ≅0.02359κ 2 . In the context of the strong coupling expansion in κ, we show that there are two sources of meson-meson attraction. One comes from a quark-antiquark exchange. This is not a meson exchange, as the spin indices are not those of the meson particle, and we refer to this as a quasimeson exchange. The other arises from gauge field correlations of four overlapping bonds, two positively oriented and two of opposite orientation. Although the exchange part gives rise to a space range-one attractive potential, the main mechanism for the formation of the bound state comes from the gauge contribution. In our lattice Bethe-Salpeter equation approach, this mechanism is manifested by an attractive distance-zero energy-dependent potential. We recall that no bound state appeared in the one-flavor case, where the repulsive effect of Pauli exclusion is stronger

  15. Possibility of a 4He2 bound state, effective range theory, and very low energy He--He scattering

    International Nuclear Information System (INIS)

    Uang, Y.; Stwalley, W.C.

    1982-01-01

    The best available intermolecular potential for helium by Aziz, Nain, Carley, Taylor, and McConville is shown here for the first time to have a 4 He 2 bound state. Two numerical analyses, namely, eigenvalue solution and effective range theory, are used to support this conclusion. Unlike usual chemically bound species, the binding energy of this very weakly bound level is found to be only 8.3 x 10 -4 K, which is four orders of magnitude smaller than the potential well depth epsilon = 10.8 K. The scattering length for He+He collisions, determined from effective range theory, is used to calculate the elastic cross section in the very low energy limit. The results (1.878 x 10 5 A 2 for 4 He+ 4 He and 6.035 x 10 2 A for 3 He+ 3 He) are consistent with measurements at the lowest velocities yet attained. In terms of the estimated uncertainties of the parameters of the potential of Aziz and co-workers, it is shown that it is very likely that a bound state of the 4 He 2 molecule does in fact exist

  16. Selenolate complexes of CYP101 and the heme-bound hHO-1/H25A proximal cavity mutant.

    Science.gov (United States)

    Jiang, Yongying; Ortiz de Montellano, Paul R

    2008-05-05

    Thiolate and selenolate complexes of CYP101 (P450cam) and the H25A proximal cavity mutant of heme-bound human heme oxygenase-1 (hHO-1) have been examined by UV-vis spectroscopy. Both thiolate and selenolate ligands bound to the heme distal side in CYP101 and gave rise to characteristic hyperporphyrin spectra. Thiolate ligands also bound to the proximal side of the heme in the cavity created by the H25A mutation in hHO-1, giving a Soret absorption similar to that of the H25C hHO-1 mutant. Selenolate ligands also bound to this cavity mutant under anaerobic conditions but reduced the heme iron to the ferrous state, as shown by the formation of a ferrous CO complex. Under aerobic conditions, the selenolate ligand but not the thiolate ligand was rapidly oxidized. These results indicate that selenocysteine-coordinated heme proteins will not be stable species in the absence of a redox potential stabilizing effect.

  17. Gauge-invariant, nonperturbative approach to the infrared-finite bound-state problem in QCD

    International Nuclear Information System (INIS)

    Gogokhia, V.Sh.

    1989-09-01

    Gauge invariant, nonperturbative approach to the bound state problem within the infrared finite Bethe-Salpeter equation is presented. Condition of cancellation of the nonperturbative infrared divergences is derived. Solutions for the quark propagator and corresponding quark gluon vertex function are written down which can be directly applied to the Bethe-Salpeter equation, in particular to the 'generalized ladder' approximation of this equation. (author) 18 refs.; 3 figs

  18. Bio-geomorphic feedback causes alternative stable landscape states: insights from coastal marshes and tidal flats

    Science.gov (United States)

    Temmerman, Stijn; Wang, Chen

    2014-05-01

    Many bio-geomorphic systems, such as hill slopes, river floodplains, tidal floodplains and dune areas, seem to be vulnerable to shifts between alternative bare and vegetated landscape states, and these shifts seem to be driven by bio-geomorphic feedbacks. Here we search for empirical evidence for alternative stable state behavior in intertidal flats and marshes, where bio-geomorphic interactions are known to be intense. Large-scale transitions have been reported worldwide between high-elevation vegetated marshes and low-elevation bare flats in intertidal zones of deltas, estuaries, and coastal embayments. It is of significant importance to understand and predict such transitions, because vegetated marshes provide significant services to coastal societies. Previous modeling studies suggest that the ecological theory of catastrophic shifts between alternative stable ecosystem states potentially explains the transition between bare flats and vegetated marshes. However, up to now only few empirical evidence exists. In our study, the hypothesis is empirically tested that vegetated marshes and bare tidal flats can be considered as alternative stable landscape states with rapid shifts between them. We studied historical records (1930s - 2000s) of intertidal elevation surveys and aerial pictures from the Westerschelde estuary (SW Netherlands). Our results demonstrated the existence of: (1) bimodality in the intertidal elevation distribution, i.e., the presence of two peaks in the elevation frequency distribution corresponding to a completely bare state and a densely vegetated state; (2) the relatively rapid transition in elevation when intertidal flats evolve from bare to vegetated states, with sedimentation rates that are 2 to 8 times faster than during the stable states; (3) a threshold elevation above which the shift from bare to vegetated state has a high chance to occur. Our observations demonstrate the abrupt non-linear shift between low-elevation bare flats and high

  19. Full-potential multiple scattering theory with space-filling cells for bound and continuum states.

    Science.gov (United States)

    Hatada, Keisuke; Hayakawa, Kuniko; Benfatto, Maurizio; Natoli, Calogero R

    2010-05-12

    We present a rigorous derivation of a real-space full-potential multiple scattering theory (FP-MST) that is free from the drawbacks that up to now have impaired its development (in particular the need to expand cell shape functions in spherical harmonics and rectangular matrices), valid both for continuum and bound states, under conditions for space partitioning that are not excessively restrictive and easily implemented. In this connection we give a new scheme to generate local basis functions for the truncated potential cells that is simple, fast, efficient, valid for any shape of the cell and reduces to the minimum the number of spherical harmonics in the expansion of the scattering wavefunction. The method also avoids the need for saturating 'internal sums' due to the re-expansion of the spherical Hankel functions around another point in space (usually another cell center). Thus this approach provides a straightforward extension of MST in the muffin-tin (MT) approximation, with only one truncation parameter given by the classical relation l(max) = kR(b), where k is the electron wavevector (either in the excited or ground state of the system under consideration) and R(b) is the radius of the bounding sphere of the scattering cell. Moreover, the scattering path operator of the theory can be found in terms of an absolutely convergent procedure in the l(max) --> ∞ limit. Consequently, this feature provides a firm ground for the use of FP-MST as a viable method for electronic structure calculations and makes possible the computation of x-ray spectroscopies, notably photo-electron diffraction, absorption and anomalous scattering among others, with the ease and versatility of the corresponding MT theory. Some numerical applications of the theory are presented, both for continuum and bound states.

  20. Multiple-Pulse Operation and Bound States of Solitons in Passive Mode-Locked Fiber Lasers

    Directory of Open Access Journals (Sweden)

    A. Komarov

    2012-01-01

    Full Text Available We present results of our research on a multiple-pulse operation of passive mode-locked fiber lasers. The research has been performed on basis of numerical simulation. Multihysteresis dependence of both an intracavity energy and peak intensities of intracavity ultrashort pulses on pump power is found. It is shown that the change of a number of ultrashort pulses in a laser cavity can be realized by hard as well as soft regimes of an excitation and an annihilation of new solitons. Bound steady states of interacting solitons are studied for various mechanisms of nonlinear losses shaping ultrashort pulses. Possibility of coding of information on basis of soliton trains with various bonds between neighboring pulses is discussed. The role of dispersive wave emitted by solitons because of lumped intracavity elements in a formation of powerful soliton wings is analyzed. It is found that such powerful wings result in large bounding energies of interacting solitons in steady states. Various problems of a soliton interaction in passive mode-locked fiber lasers are discussed.

  1. Many-body scattering theory methods as a means for solving bound-state problems: Applications of arrangement-channel quantum mechanics

    International Nuclear Information System (INIS)

    Levin, F.S.; Krueger, H.

    1977-01-01

    We propose in this article that the non-Hermitian equations typical of some many-body scattering theories be used to help solve many-body bound-state problems. The basic idea is to exploit the channel nature of many-body bound states that must exist because bound states are obvious negative-energy extensions of scattering states. Since atomic, molecular, and nuclear systems all display multichannel effects for E > 0, at least through Pauli-principle effects if not through mass-transfer reactions, this use of positive-energy methods for solving bound-state problems could have wide applicability. The development used here is based on the channel-component-state method of the channel-coupling-array theory, recently described in detail for the E > 0 case, and various aspects of the formalism are discussed. Detailed calculations using simple approximations are discussed for H 2 + , one of the simplest systems displaying channel structure. Comparison with the exact, Born-Oppenheimer results of Wind show that the non-Hermitian-equation, channel-component values of the equilibrium separation and total binding energy are accurate to within 2%, while the dissociation energy is accurate to 10%. The resulting wave function is identical to that arising from the simplest MO calculation, for which these numbers are less accurate than the preceding by at least a factor of 3. We also show that identical particle symmetry for the H 2 + case reduces the pair of coupled (two-channel) equations to a single equation with an exchange term. Similar reductions will occur for larger numbers of identical particles, thus suggesting application of the formalism to atomic structure problems. A detailed analysis of the present numerical results, their general implications, and possible applications is also given

  2. Search for quasi bound η mesons

    International Nuclear Information System (INIS)

    Machner, H

    2015-01-01

    The search for a quasi bound η meson in atomic nuclei is reviewed. This tentative state is studied theoretically as well as experimentally. The theory starts from elastic η nucleon scattering which is derived from production data within some models. From this interaction the η nucleus interaction is derived. Model calculations predict binding energies and widths of the quasi bound state. Another method is to derive the η nucleus interaction from excitation functions of η production experiments. The s wave interaction is extracted from such data via final state interaction (FSI) theorem. We give the derivation of s wave amplitudes in partial wave expansion and in helicity amplitudes and their relation to observables. Different experiments extracting the FSI are discussed as are production experiments. So far only three experiments give evidence for the existence of the quasi bound state: a pion double charge exchange experiment, an effective mass measurement, and a transfer reaction at recoil free kinematics with observation of the decay of the state. (topical review)

  3. Two-dimensional electron states bound to an off-plane donor in a magnetic field

    International Nuclear Information System (INIS)

    Bruno-Alfonso, A; Candido, L; Hai, G-Q

    2010-01-01

    The states of an electron confined in a two-dimensional (2D) plane and bound to an off-plane donor impurity center, in the presence of a magnetic field, are investigated. The energy levels of the ground state and the first three excited states are calculated variationally. The binding energy and the mean orbital radius of these states are obtained as a function of the donor center position and the magnetic field strength. The limiting cases are discussed for an in-plane donor impurity (i.e. a 2D hydrogen atom) as well as for the donor center far away from the 2D plane in strong magnetic fields, which corresponds to a 2D harmonic oscillator.

  4. First observation of bound excited states in the A/Z = 3 nucleus 15B

    International Nuclear Information System (INIS)

    Dobradi, Zs.; Sohler, D.; Azaiez, F.

    2004-01-01

    Complete text of publication follows. Structure of strongly neutron rich nuclei, especially of those lying close to the neutron drip line came into the focus of interest. Among others, the structure of neutron rich Boron isotopes also attracted attention in the last decade. The nuclei 15 B, 17 B and 19 B are particle stable, while the isotopes with even mass number are unstable against neutron emission. Even the neutron rich Boron isotopes with odd mass number have a low neutron binding energy, which is a sign of their weakly bound nature. As a common effect of the weak binding and of the large neutron excess, neutron skin or halo can also develop already in the isotope 15 B with A/Z = 3. Structure of the nucleus 15 B has been investigated by in-beam γ-spectroscopic study of the 9 Be + 36 S fragmentation reaction at GANIL, France. The emerging fragments were identified by use of a standard ΔE-time-of-fight technique with help of the SPEG spectrograph. γ-ray energies, intensities and γγ coincidences have been measured in coincidence with the projectile like fragments by 74 BaF 2 detectors of the Chateau de crystal. On the basis of the γ-spectroscopic information the level scheme presented in Figure 1 was constructed. The level scheme is shown together with the results of di rent model calculations. The common in predictions of these models is that all of them suggest a ground state band with the spin sequence 3/2 - , 5/2 - and 7/2 - , as well as a 1/2 - state, which involves a proton single particle excitation. The shell model calculations (SM) predict similar moments of inertia, strongly different from that of the antisymmetrized molecular dynamics calculations (AMD). The experimentally observed states can be assigned to the members of the rotational band on the basis of their decay properties. The experimental results confirm the predictions of the shell model. (author)

  5. Bound states of the Dirac equation with some physical potentials by the Nikiforov-Uvarov method

    Energy Technology Data Exchange (ETDEWEB)

    Setare, Mohammad R; Haidari, S [Department of Physics, University of Kurdistan, Pasdaran Avenue, Sanandaj (Iran, Islamic Republic of)], E-mail: rezakord@ipm.ir, E-mail: heidary.somayeh@gmail.com

    2010-01-15

    Exact analytical solutions for the s-wave Dirac equation with the reflectionless-type, Rosen-Morse and Manning-Rosen potentials are obtained, under the condition of spin symmetry. We obtained bound state energy eigenvalues and corresponding spinor wave function in the framework of the Nikiforov-Uvarov (NU) method.

  6. Security bound of continuous-variable quantum key distribution with noisy coherent states and channel

    International Nuclear Information System (INIS)

    Shen Yong; Yang Jian; Guo Hong

    2009-01-01

    Security of a continuous-variable quantum key distribution protocol based on noisy coherent states and channel is analysed. Assuming that the noise of coherent states is induced by Fred, a neutral party relative to others, we prove that the prepare-and-measurement scheme (P and M) and entanglement-based scheme (E-B) are equivalent. Then, we show that this protocol is secure against Gaussian collective attacks even if the channel is lossy and noisy, and, further, a lower bound to the secure key rate is derived.

  7. Security bound of continuous-variable quantum key distribution with noisy coherent states and channel

    Energy Technology Data Exchange (ETDEWEB)

    Shen Yong; Yang Jian; Guo Hong, E-mail: hongguo@pku.edu.c [CREAM Group, State Key Laboratory of Advanced Optical Communication Systems and Networks (Peking University) and Institute of Quantum Electronics, School of Electronics Engineering and Computer Science, Peking University, Beijing 100871 (China)

    2009-12-14

    Security of a continuous-variable quantum key distribution protocol based on noisy coherent states and channel is analysed. Assuming that the noise of coherent states is induced by Fred, a neutral party relative to others, we prove that the prepare-and-measurement scheme (P and M) and entanglement-based scheme (E-B) are equivalent. Then, we show that this protocol is secure against Gaussian collective attacks even if the channel is lossy and noisy, and, further, a lower bound to the secure key rate is derived.

  8. Meson-nucleus potentials and the search for meson-nucleus bound states

    Science.gov (United States)

    Metag, V.; Nanova, M.; Paryev, E. Ya.

    2017-11-01

    Recent experiments studying the meson-nucleus interaction to extract meson-nucleus potentials are reviewed. The real part of the potentials quantifies whether the interaction is attractive or repulsive while the imaginary part describes the meson absorption in nuclei. The review is focused on mesons which are sufficiently long-lived to potentially form meson-nucleus quasi-bound states. The presentation is confined to meson production off nuclei in photon-, pion-, proton-, and light-ion induced reactions and heavy-ion collisions at energies near the production threshold. Tools to extract the potential parameters are presented. In most cases, the real part of the potential is determined by comparing measured meson momentum distributions or excitation functions with collision model or transport model calculations. The imaginary part is extracted from transparency ratio measurements. Results on K+ ,K0 ,K- , η ,η‧ , ω, and ϕ mesons are presented and compared with theoretical predictions. The interaction of K+ and K0 mesons with nuclei is found to be weakly repulsive, while the K- , η ,η‧ , ω and ϕ meson-nucleus potentials are attractive, however, with widely different strengths. Because of meson absorption in the nuclear medium the imaginary parts of the meson-nucleus potentials are all negative, again with a large spread. An outlook on planned experiments in the charm sector is given. In view of the determined potential parameters, the criteria and chances for experimentally observing meson-nucleus quasi-bound states are discussed. The most promising candidates appear to be the η and η‧ mesons.

  9. The number of bound states for a discrete Schroedinger operator on ZN, N≥1, lattices

    International Nuclear Information System (INIS)

    Karachalios, N I

    2008-01-01

    We consider the discrete Schroedinger operator -Δ d +U in Z N , N≥1 in the case of a potential with negative part in an appropriate l σ -space (decays with an appropriate rate). We present a discrete analog of the method of Li and Yau (1983 Commun. Math. Phys. 88 309-18), proving an explicit upper estimate on the number of bound states N d (0)={j:μ j ≤0}, which is independent of the dimension of the lattice. This is a major difference with the continuous counterpart estimate, which is not valid when N = 1, 2. As a consequence, a dimension-independent smallness criterion for the existence of bound states is derived in contrast to the continuous case as well as to the discrete case of vanishing potential. A short comment is made on possible applications of the results to the study of the dynamics of some particular spatially discrete nonlinear systems

  10. Complex Kohn variational principle for two-nucleon bound-state and scattering with the tensor potential

    International Nuclear Information System (INIS)

    Araujo Junior, C.F. de; Adhikari, S.K.; Tomio, L.

    1993-10-01

    Complex Kohn variational principle is applied to the numerical solution of the fully off-shell Lippmann-Schwinger equation for nucleon-nucleon scattering for various partial waves including the coupled 3 S 1 - 3 D 1 channel. Analytic expressions are obtained for all the integrals in the method for a suitable choice of expansion functions. Calculations with the partial waves 1 S 0 , 1 P 1 , 1 D 2 , and 3 S 1 - 3 D 1 of the Reid soft core potential show that the method converges faster than other solution schemes not only for the phase shift but also for the off-shell t matrix elements. It is also shown that its is trivial to modify this variational principle in order to make it suitable for bound-stage calculations. The bound-state approach is illustrated for the 3 S 1 - 3 D 1 channel of the Reid soft-core potential for calculating the deuteron binding, wave function and the D state asymptotic parameters. (author)

  11. Probing the Dark Sector with Dark Matter Bound States.

    Science.gov (United States)

    An, Haipeng; Echenard, Bertrand; Pospelov, Maxim; Zhang, Yue

    2016-04-15

    A model of the dark sector where O(few  GeV) mass dark matter particles χ couple to a lighter dark force mediator V, m_{V}≪m_{χ}, is motivated by the recently discovered mismatch between simulated and observed shapes of galactic halos. Such models, in general, provide a challenge for direct detection efforts and collider searches. We show that for a large range of coupling constants and masses, the production and decay of the bound states of χ, such as 0^{-+} and 1^{--} states, η_{D} and ϒ_{D}, is an important search channel. We show that e^{+}e^{-}→η_{D}+V or ϒ_{D}+γ production at B factories for α_{D}>0.1 is sufficiently strong to result in multiple pairs of charged leptons and pions via η_{D}→2V→2(l^{+}l^{-}) and ϒ_{D}→3V→3(l^{+}l^{-}) (l=e,μ,π). The absence of such final states in the existing searches performed at BABAR and Belle sets new constraints on the parameter space of the model. We also show that a search for multiple bremsstrahlung of dark force mediators, e^{+}e^{-}→χχ[over ¯]+nV, resulting in missing energy and multiple leptons, will further improve the sensitivity to self-interacting dark matter.

  12. Computation of Quantum Bound States on a Singly Punctured Two-Torus

    International Nuclear Information System (INIS)

    Kar-Tim Chan; Zainuddin Hishamuddin; Molladavoudi Saeid

    2013-01-01

    We study a quantum mechanical system on a singly punctured two-torus with bound states described by the Maass waveforms which are eigenfunctions of the hyperbolic Laplace—Beltrami operator. Since the discrete eigenvalues of the Maass cusp form are not known analytically, they are solved numerically using an adapted algorithm of Hejhal and Then to compute Maass cusp forms on the punctured two-torus. We report on the computational results of the lower lying eigenvalues for the punctured two-torus and find that they are doubly-degenerate. We also visualize the eigenstates of selected eigenvalues using GridMathematica

  13. Alternative Stable States, Coral Reefs, and Smooth Dynamics with a Kick.

    Science.gov (United States)

    Ippolito, Stephen; Naudot, Vincent; Noonburg, Erik G

    2016-03-01

    We consider a computer simulation, which was found to be faithful to time series data for Caribbean coral reefs, and an analytical model to help understand the dynamics of the simulation. The analytical model is a system of ordinary differential equations (ODE), and the authors claim this model demonstrates the existence of alternative stable states. The existence of an alternative stable state should consider a sudden shift in coral and macroalgae populations, while the grazing rate remains constant. The results of such shifts, however, are often confounded by changes in grazing rate. Although the ODE suggest alternative stable states, the ODE need modification to explicitly account for shifts or discrete events such as hurricanes. The goal of this paper will be to study the simulation dynamics through a simplified analytical representation. We proceed by modifying the original analytical model through incorporating discrete changes into the ODE. We then analyze the resulting dynamics and their bifurcations with respect to changes in grazing rate and hurricane frequency. In particular, a "kick" enabling the ODE to consider impulse events is added. Beyond adding a "kick" we employ the grazing function that is suggested by the simulation. The extended model was fit to the simulation data to support its use and predicts the existence cycles depending nonlinearly on grazing rates and hurricane frequency. These cycles may bring new insights into consideration for reef health, restoration and dynamics.

  14. Andreev bound states probed in three-terminal quantum dots

    Science.gov (United States)

    Gramich, J.; Baumgartner, A.; Schönenberger, C.

    2017-11-01

    Andreev bound states (ABSs) are well-defined many-body quantum states that emerge from the hybridization of individual quantum dot (QD) states with a superconductor and exhibit very rich and fundamental phenomena. We demonstrate several electron transport phenomena mediated by ABSs that form on three-terminal carbon nanotube (CNT) QDs, with one superconducting (S) contact in the center and two adjacent normal-metal (N) contacts. Three-terminal spectroscopy allows us to identify the coupling to the N contacts as the origin of the Andreev resonance (AR) linewidths and to determine the critical coupling strengths to S, for which a ground state (or quantum phase) transition in such S-QD systems can occur. In addition, we ascribe replicas of the lowest-energy ABS resonance to transitions between the ABS and odd-parity excited QD states, a process we call excited state ABS resonances. In the conductance between the two N contacts we find a characteristic pattern of positive and negative differential subgap conductance, which we explain by considering two nonlocal processes, the creation of Cooper pairs in S by electrons from both N terminals, and a transport mechanism we call resonant ABS tunneling, possible only in multiterminal QD devices. In the latter process, electrons are transferred via the ABS without effectively creating Cooper pairs in S. The three-terminal geometry also allows spectroscopy experiments with different boundary conditions, for example by leaving S floating. Surprisingly, we find that, depending on the boundary conditions and the device parameters, the experiments either show single-particle Coulomb blockade resonances, ABS characteristics, or both in the same measurements, seemingly contradicting the notion of ABSs replacing the single-particle states as eigenstates of the QD. We qualitatively explain these results as originating from the finite time scale required for the coherent oscillations between the superposition states after a single

  15. Evidence for a bound on the lifetime of de Sitter space

    International Nuclear Information System (INIS)

    Freivogel, Ben; Lippert, Matthew

    2008-01-01

    Recent work has suggested a surprising new upper bound on the lifetime of de Sitter vacua in string theory. The bound is parametrically longer than the Hubble time but parametrically shorter than the recurrence time. We investigate whether the bound is satisfied in a particular class of de Sitter solutions, the KKLT vacua. Despite the freedom to make the supersymmetry breaking scale exponentially small, which naively would lead to extremely stable vacua, we find that the lifetime is always less than about exp(10 22 ) Hubble times, in agreement with the proposed bound. This result, however, is contingent on several estimates and assumptions; in particular, we rely on a conjectural upper bound on the Euler number of the Calabi-Yau fourfolds used in KKLT compactifications.

  16. Backbone resonance assignments for G protein α(i3) subunit in the GDP-bound state.

    Science.gov (United States)

    Mase, Yoko; Yokogawa, Mariko; Osawa, Masanori; Shimada, Ichio

    2014-10-01

    Guanine-nucleotide binding proteins (G proteins) serve as molecular switches in signaling pathways, by coupling the activation of G protein-coupled receptors (GPCRs) at the cell surface to intracellular responses. In the resting state, G protein forms a heterotrimer, consisting of the G protein α subunit with GDP (Gα·GDP) and the G protein βγ subunit (Gβγ). Ligand binding to GPCRs promotes the GDP-GTP exchange on Gα, leading to the dissociation of the GTP-bound form of Gα (Gα·GTP) and Gβγ. Then, Gα·GTP and Gβγ bind to their downstream effector enzymes or ion channels and regulate their activities, leading to a variety of cellular responses. Finally, Gα hydrolyzes the bound GTP to GDP and returns to the resting state by re-associating with Gβγ. The G proteins are classified with four major families based on the amino acid sequences of Gα: i/o, s, q/11, and 12/13. Here, we established the backbone resonance assignments of human Gαi3, a member of the i/o family with a molecular weight of 41 K, in complex with GDP. The chemical shifts were compared with those of Gα(i3) in complex with a GTP-analogue, GTPγS, which we recently reported, indicating that the residues with significant chemical shift differences are mostly consistent with the regions with the structural differences between the GDP- and GTPγS-bound states, as indicated in the crystal structures. The assignments of Gα(i3)·GDP would be useful for the analyses of the dynamics of Gα(i3) and its interactions with various target molecules.

  17. Minimum-error quantum distinguishability bounds from matrix monotone functions: A comment on 'Two-sided estimates of minimum-error distinguishability of mixed quantum states via generalized Holevo-Curlander bounds' [J. Math. Phys. 50, 032106 (2009)

    International Nuclear Information System (INIS)

    Tyson, Jon

    2009-01-01

    Matrix monotonicity is used to obtain upper bounds on minimum-error distinguishability of arbitrary ensembles of mixed quantum states. This generalizes one direction of a two-sided bound recently obtained by the author [J. Tyson, J. Math. Phys. 50, 032106 (2009)]. It is shown that the previously obtained special case has unique properties.

  18. Ferroelectric nanostructure having switchable multi-stable vortex states

    Science.gov (United States)

    Naumov, Ivan I [Fayetteville, AR; Bellaiche, Laurent M [Fayetteville, AR; Prosandeev, Sergey A [Fayetteville, AR; Ponomareva, Inna V [Fayetteville, AR; Kornev, Igor A [Fayetteville, AR

    2009-09-22

    A ferroelectric nanostructure formed as a low dimensional nano-scale ferroelectric material having at least one vortex ring of polarization generating an ordered toroid moment switchable between multi-stable states. A stress-free ferroelectric nanodot under open-circuit-like electrical boundary conditions maintains such a vortex structure for their local dipoles when subject to a transverse inhomogeneous static electric field controlling the direction of the macroscopic toroidal moment. Stress is also capable of controlling the vortex's chirality, because of the electromechanical coupling that exists in ferroelectric nanodots.

  19. Bounding species distribution models

    Directory of Open Access Journals (Sweden)

    Thomas J. STOHLGREN, Catherine S. JARNEVICH, Wayne E. ESAIAS,Jeffrey T. MORISETTE

    2011-10-01

    Full Text Available Species distribution models are increasing in popularity for mapping suitable habitat for species of management concern. Many investigators now recognize that extrapolations of these models with geographic information systems (GIS might be sensitive to the environmental bounds of the data used in their development, yet there is no recommended best practice for “clamping” model extrapolations. We relied on two commonly used modeling approaches: classification and regression tree (CART and maximum entropy (Maxent models, and we tested a simple alteration of the model extrapolations, bounding extrapolations to the maximum and minimum values of primary environmental predictors, to provide a more realistic map of suitable habitat of hybridized Africanized honey bees in the southwestern United States. Findings suggest that multiple models of bounding, and the most conservative bounding of species distribution models, like those presented here, should probably replace the unbounded or loosely bounded techniques currently used [Current Zoology 57 (5: 642–647, 2011].

  20. Bounding Species Distribution Models

    Science.gov (United States)

    Stohlgren, Thomas J.; Jarnevich, Cahterine S.; Morisette, Jeffrey T.; Esaias, Wayne E.

    2011-01-01

    Species distribution models are increasing in popularity for mapping suitable habitat for species of management concern. Many investigators now recognize that extrapolations of these models with geographic information systems (GIS) might be sensitive to the environmental bounds of the data used in their development, yet there is no recommended best practice for "clamping" model extrapolations. We relied on two commonly used modeling approaches: classification and regression tree (CART) and maximum entropy (Maxent) models, and we tested a simple alteration of the model extrapolations, bounding extrapolations to the maximum and minimum values of primary environmental predictors, to provide a more realistic map of suitable habitat of hybridized Africanized honey bees in the southwestern United States. Findings suggest that multiple models of bounding, and the most conservative bounding of species distribution models, like those presented here, should probably replace the unbounded or loosely bounded techniques currently used [Current Zoology 57 (5): 642-647, 2011].

  1. Mutual friction in superfluid 3He: Effects of bound states in the vortex core

    International Nuclear Information System (INIS)

    Kopnin, N.B.; Salomaa, M.M.

    1991-01-01

    The motion of singular quantized vortex lines in superfluid 3 He is considered for the A and B phases. Mutual friction is calculated within a microscopic quantum-mechanical Green's-function formalism, valid for dynamical processes. This enables us to include all the different physical phenomena in a unified approach. We consider axisymmetric vortices for temperatures considerably lower than T c . In this regime, the main contribution to the force exerted on a moving vortex originates from the localized Fermi excitations occupying quantized energy eigenstates in the vortex core. These 3 He quasiparticle states are similar to the quantized motion of charge in a magnetic field; thus vortex motion in 3 He resembles the Hall phenomenon in metals. The outcome is that the viscous drag cannot simply be expressed through the cross sections for 3 He quasiparticles scattering off the vortex, but is rather due to the mutual interactions between the localized quasiparticles and the normal excitations. Our calculations conform with the experimental values for the mutual-friction parameters. We also discuss vortex oscillations, and predict that strong dissipation should be observed at a resonant frequency of about 10 kHz, owing to transitions between the bound-state energy levels. This effect could be used for detecting and measuring the quantization of the bound-state spectrum for superfluid 3 He in the vortex-core matter

  2. Most energetic passive states.

    Science.gov (United States)

    Perarnau-Llobet, Martí; Hovhannisyan, Karen V; Huber, Marcus; Skrzypczyk, Paul; Tura, Jordi; Acín, Antonio

    2015-10-01

    Passive states are defined as those states that do not allow for work extraction in a cyclic (unitary) process. Within the set of passive states, thermal states are the most stable ones: they maximize the entropy for a given energy, and similarly they minimize the energy for a given entropy. Here we find the passive states lying in the other extreme, i.e., those that maximize the energy for a given entropy, which we show also minimize the entropy when the energy is fixed. These extremal properties make these states useful to obtain fundamental bounds for the thermodynamics of finite-dimensional quantum systems, which we show in several scenarios.

  3. Two-magnon bound state causes ultrafast thermally induced magnetisation switching

    Science.gov (United States)

    Barker, J.; Atxitia, U.; Ostler, T. A.; Hovorka, O.; Chubykalo-Fesenko, O.; Chantrell, R. W.

    2013-01-01

    There has been much interest recently in the discovery of thermally induced magnetisation switching using femtosecond laser excitation, where a ferrimagnetic system can be switched deterministically without an applied magnetic field. Experimental results suggest that the reversal occurs due to intrinsic material properties, but so far the microscopic mechanism responsible for reversal has not been identified. Using computational and analytic methods we show that the switching is caused by the excitation of two-magnon bound states, the properties of which are dependent on material factors. This discovery allows us to accurately predict the onset of switching and the identification of this mechanism will allow new classes of materials to be identified or designed for memory devices in the THz regime. PMID:24253110

  4. Detection of a π-μ coulomb bound states

    International Nuclear Information System (INIS)

    Coombes, R.; Flexer, R.; Hall, A.

    1977-01-01

    The detection of hydrogen-like atoms is reported consisting of a negative (or positive) pion and a positive (or negative) muon in a coulomb bound state. These π-μ atoms are formed when the PI and μ from the decay have sufficiently small relative momentum to bind. Only the evidence related to the detection of these atoms is discussed. The Ksub(L)sup(0) particles which give rise to ''atomic beam'' are produced by 30 GeV proton beam striking a 10 cm beryllium target. From analysis of data 33 events are chosen. For each of these events the parameter α = Psub(π)-Psub(μ)/Psub(π)+Psub(μ) is plotted, where PPI is the pion momentum, and Pμ is the muon momentum. A study of this parameter through an examination of e + e - pairs indicates that the acceptance of apparatus is flat within 30%. The data shows a clear peak at the predicted point containing a total of 21 events with an estimated background of 3 events. The width of the peak is consistent with that expected from measurement errors

  5. Unified description of bound, resonant and scattering states

    International Nuclear Information System (INIS)

    Konya, B.; Levai, G.; Papp, Z.

    2000-01-01

    Recently we have introduced a general method for calculating the discrete Hilbert-space basis representation of the Green's operators of those Hamiltonians which have infinite symmetric tridiagonal matrix forms. The elements of this matrix are used in the calculation of the Green's matrix in terms of a three-term recurrence relation and continued fractions. We specified our general approach to the case of the Coulomb problem and the Coulomb-Sturmian basis associated with it. As a further step, we can combine this new way of calculating the Coulomb-Green's matrix with a technique of solving integral equations in discrete Hilbert-space-basis representations. This provides us with a quantum mechanical approximation method which is rather general in the sense that it is equally applicable to solving bound-, resonant- and scattering-state problems with practically any potential of physical relevance. The method is especially suited to problems where Coulomb-like asymptotics have to be treated, but the formalism also contains the case of the free Green's operator as a special case. (author)

  6. Few-body bound states on a three-dimensional and two-dimensional lattice and continuum limit for one-dimensional many-body system

    International Nuclear Information System (INIS)

    Rudin, S.I.

    1984-01-01

    The three-body bound states of particles moving on a lattice and interacting with two-body point-like potentials are studied in two dimensions (2D) and three dimensions (3D) for spin 1/2 fermions and spin O bosons (with application to magnons). When a three boson bound state forms in 3D, it does so discontinuously implying a finite size of approximately two lattice constants. This phenomenon does not occur in 2D. For three fermions, interactions are effectively absent in the state S = 3/2. In the state S = 1/2, when there is an interaction, the three particles complex is unstable against breakup into a bound pair S = 0 and a free third particle. A finite density of states for 2D lattice makes this result relevant for BCS theory of superconductivity in 3D in confirming the choice of singlet pair (Cooper pair) as the fundamental entity. Results for bosons allows estimation of the limits of validity of spin wave theory as applied to the anisotropic Heisenberg ferromagnet in 3D with J/sub z/ > J/sub x/ = J/sub y/

  7. Bounded energy states in homogeneous turbulent shear flow - An alternative view

    Science.gov (United States)

    Bernard, P. S.; Speziale, C. G.

    1992-01-01

    The equilibrium structure of homogeneous turbulent shear flow is investigated from a theoretical standpoint. Existing turbulence models, in apparent agreement with physical and numerical experiments, predict an unbounded exponential time growth of the turbulent kinetic energy and dissipation rate; only the anisotropy tensor and turbulent time scale reach a structural equilibrium. It is shown that if a residual vortex stretching term is maintained in the dissipation rate transport equation, then there can exist equilibrium solutions, with bounded energy states, where the turbulence production is balanced by its dissipation. Illustrative calculations are presented for a k-epsilon model modified to account for net vortex stretching.

  8. Source tracing of natural organic matter bound mercury in boreal forest runoff with mercury stable isotopes.

    Science.gov (United States)

    Jiskra, Martin; Wiederhold, Jan G; Skyllberg, Ulf; Kronberg, Rose-Marie; Kretzschmar, Ruben

    2017-10-18

    Terrestrial runoff represents a major source of mercury (Hg) to aquatic ecosystems. In boreal forest catchments, such as the one in northern Sweden studied here, mercury bound to natural organic matter (NOM) represents a large fraction of mercury in the runoff. We present a method to measure Hg stable isotope signatures of colloidal Hg, mainly complexed by high molecular weight or colloidal natural organic matter (NOM) in natural waters based on pre-enrichment by ultrafiltration, followed by freeze-drying and combustion. We report that Hg associated with high molecular weight NOM in the boreal forest runoff has very similar Hg isotope signatures as compared to the organic soil horizons of the catchment area. The mass-independent fractionation (MIF) signatures (Δ 199 Hg and Δ 200 Hg) measured in soils and runoff were in agreement with typical values reported for atmospheric gaseous elemental mercury (Hg 0 ) and distinctly different from reported Hg isotope signatures in precipitation. We therefore suggest that most Hg in the boreal terrestrial ecosystem originated from the deposition of Hg 0 through foliar uptake rather than precipitation. Using a mixing model we calculated the contribution of soil horizons to the Hg in the runoff. At moderate to high flow runoff conditions, that prevailed during sampling, the uppermost part of the organic horizon (Oe/He) contributed 50-70% of the Hg in the runoff, while the underlying more humified organic Oa/Ha and the mineral soil horizons displayed a lower mobility of Hg. The good agreement of the Hg isotope results with other source tracing approaches using radiocarbon signatures and Hg : C ratios provides additional support for the strong coupling between Hg and NOM. The exploratory results from this study illustrate the potential of Hg stable isotopes to trace the source of Hg from atmospheric deposition through the terrestrial ecosystem to soil runoff, and provide a basis for more in-depth studies investigating the

  9. The covariant-evolution-operator method in bound-state QED

    International Nuclear Information System (INIS)

    Lindgren, Ingvar; Salomonson, Sten; Aasen, Bjoern

    2004-01-01

    The methods of quantum-electrodynamical (QED) calculations on bound atomic systems are reviewed with emphasis on the newly developed covariant-evolution-operator method. The aim is to compare that method with other available methods and also to point out possibilities to combine that with standard many-body perturbation theory (MBPT) in order to perform accurate numerical QED calculations, including quasi-degeneracy, also for light elements, where the electron correlation is relatively strong. As a background, the time-independent many-body perturbation theory (MBPT) is briefly reviewed, particularly the method with extended model space. Time-dependent perturbation theory is discussed in some detail, introducing the time-evolution operator and the Gell-Mann-Low relation, generalized to an arbitrary model space. Three methods of treating the bound-state QED problem are discussed. The standard S-matrix formulation, which is restricted to a degenerate model space, is discussed only briefly. Two methods applicable also to the quasi-degenerate problem are treated in more detail, the two-times Green's-function and the covariant-evolution-operator techniques. The treatment is concentrated on the latter technique, which has been developed more recently and which has not been discussed in more detail before. A comparison of the two-times Green's-function and the covariant-evolution-operator techniques, which have great similarities, is performed. In the appendix a simple procedure is derived for expressing the evolution-operator diagrams of arbitrary order. The possibilities of merging QED in the covariant evolution-operator formulation with MBPT in a systematic way is indicated. With such a technique it might be feasible to perform accurate QED calculations also on light elements, which is presently not possible with the techniques available

  10. Bounded Rationality and Budgeting

    OpenAIRE

    Ibrahim, Mukdad

    2016-01-01

    This article discusses the theory of bounded rationality which had been introduced by Herbert Simon in the 1950s. Simon introduced the notion of bounded rationality stating that while decision-makers strive for rationality, they are limited by the effect of the environment, their information process capacity and by the constraints on their information storage and retrieval capabilities. Moreover, this article tries to specifically blend this notion into budgeting, using the foundations of inc...

  11. A bridge between hyperspherical and integro-differential approaches to the many-body bound states

    International Nuclear Information System (INIS)

    Fabre de la Ripelle, M.

    1986-01-01

    The solution of the Schroedinger equation can be obtained from the one of a system of coupled differential equations generated from the potential harmonic expansion of the bound-state wave function of a system of identical particles governed by two-body central interactions. It is shown that the system of coupled equations can be transformed into an equivalent integro-differential equation. For three bosons in S states this equation is identical to the Faddeev equation as written by Noyes. The integro-differential equations describing the triton for non-central realistic N-N forces are explicitly given. (Auth.)

  12. The core spline method for solution of quantum-mechanical systems of differential equations for bound states

    International Nuclear Information System (INIS)

    Aleksandrov, L.; Drenska, M.; Karadzhov, D.

    1986-01-01

    A generalization of the core spline method is given in the case of solution of the general bound state problem for a system of M linear differential equations with coefficients depending on the spectral parameter. The recursion scheme for construction of basic splines is described. The wave functions are expressed as linear combinations of basic splines, which are approximate partial solutions of the system. The spectral parameter (the eigenvalue) is determined from the condition for existence of a nontrivial solution of a (MxM) linear algebraic system at the last collocation point. The nontrivial solutions of this system determine (M - 1) coefficients of the linear spans, expressing the wave functions. The last unknown coefficient is determined from a boundary (or normalization) condition for the system. The computational aspects of the method are discussed, in particular, its concrete algorithmic realization used in the RODSOL program. The numerical solution of the Dirac system for the bound states of a hydrogen atom is given is an example

  13. Generalized Hofmann quantum process fidelity bounds for quantum filters

    Science.gov (United States)

    Sedlák, Michal; Fiurášek, Jaromír

    2016-04-01

    We propose and investigate bounds on the quantum process fidelity of quantum filters, i.e., probabilistic quantum operations represented by a single Kraus operator K . These bounds generalize the Hofmann bounds on the quantum process fidelity of unitary operations [H. F. Hofmann, Phys. Rev. Lett. 94, 160504 (2005), 10.1103/PhysRevLett.94.160504] and are based on probing the quantum filter with pure states forming two mutually unbiased bases. Determination of these bounds therefore requires far fewer measurements than full quantum process tomography. We find that it is particularly suitable to construct one of the probe bases from the right eigenstates of K , because in this case the bounds are tight in the sense that if the actual filter coincides with the ideal one, then both the lower and the upper bounds are equal to 1. We theoretically investigate the application of these bounds to a two-qubit optical quantum filter formed by the interference of two photons on a partially polarizing beam splitter. For an experimentally convenient choice of factorized input states and measurements we study the tightness of the bounds. We show that more stringent bounds can be obtained by more sophisticated processing of the data using convex optimization and we compare our methods for different choices of the input probe states.

  14. On The Roman Domination Stable Graphs

    Directory of Open Access Journals (Sweden)

    Hajian Majid

    2017-11-01

    Full Text Available A Roman dominating function (or just RDF on a graph G = (V,E is a function f : V → {0, 1, 2} satisfying the condition that every vertex u for which f(u = 0 is adjacent to at least one vertex v for which f(v = 2. The weight of an RDF f is the value f(V (G = Pu2V (G f(u. The Roman domination number of a graph G, denoted by R(G, is the minimum weight of a Roman dominating function on G. A graph G is Roman domination stable if the Roman domination number of G remains unchanged under removal of any vertex. In this paper we present upper bounds for the Roman domination number in the class of Roman domination stable graphs, improving bounds posed in [V. Samodivkin, Roman domination in graphs: the class RUV R, Discrete Math. Algorithms Appl. 8 (2016 1650049].

  15. Bounds on area and charge for marginally trapped surfaces with a cosmological constant

    International Nuclear Information System (INIS)

    Simon, Walter

    2012-01-01

    We sharpen the known inequalities AΛ ≤ 4π(1 - g) (Hayward et al 1994 Phys. Rev. D 49 5080, Woolgar 1999 Class. Quantum Grav. 16 3005) and A ≤ 4πQ 2 (Dain et al 2012 Class. Quantum Grav. 29 035013) between the area A and the electric charge Q of a stable marginally outer-trapped surface (MOTS) of genus g in the presence of a cosmological constant Λ. In particular, instead of requiring stability we include the principal eigenvalue λ of the stability operator. For Λ* Λ+λ > 0, we obtain a lower and an upper bound for Λ*A in terms of Λ*Q 2 , as well as the upper bound Q≤1/(2√(Λ * )) for the charge, which reduces to Q≤1/(2√(Λ)) in the stable case λ ≥ 0. For Λ* < 0, there only remains a lower bound on A. In the spherically symmetric, static, stable case, one of our area inequalities is saturated iff the surface gravity vanishes. We also discuss implications of our inequalities for 'jumps' and mergers of charged MOTS. (fast track communication)

  16. Upper bounds on the entropy of radiation systems

    Institute of Scientific and Technical Information of China (English)

    汪定雄

    1997-01-01

    The upper bounds on the entropy of a radiation system confined to a spherical box are calculated in six cases by using the equation of state of radiation in flat spacetime and the equation of state of radiation near black-hole horizon,which was derived by Li and Liu (hereafter the Li-Liu equation).It turns out that the Li-Liu equation does have unique advantage in dealing with the entropy bound of critical self-gravitating radiation systems,while the usual equation of state will result in entropy divergence.In the case of non-self-gravitating radiation systems and non-critical self-gravitating radiation systems,there is no difference in the entropy bounds derived by these two equations of state.

  17. Dissecting zero modes and bound states on BPS vortices in Ginzburg-Landau superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Izquierdo, A. Alonso [Departamento de Matematica Aplicada, Universidad de Salamanca,Facultad de Ciencias Agrarias y Ambientales,Av. Filiberto Villalobos 119, E-37008 Salamanca (Spain); Fuertes, W. Garcia [Departamento de Fisica, Universidad de Oviedo, Facultad de Ciencias,Calle Calvo Sotelo s/n, E-33007 Oviedo (Spain); Guilarte, J. Mateos [Departamento de Fisica Fundamental, Universidad de Salamanca, Facultad de Ciencias,Plaza de la Merced, E-37008 Salamanca (Spain)

    2016-05-12

    In this paper the zero modes of fluctuation of cylindrically symmetric self-dual vortices are analyzed and described in full detail. These BPS topological defects arise at the critical point between Type II and Type I superconductors, or, equivalently, when the masses of the Higgs particle and the vector boson in the Abelian Higgs model are equal. In addition, novel bound states of Higss and vector bosons trapped by the self-dual vortices at their core are found and investigated.

  18. Analysis of bound-state spectra near the threshold of neutral particle interaction potentials

    International Nuclear Information System (INIS)

    Ou Fang; Cao Zhuangqi; Chen Jianping; Xu Junjie

    2006-01-01

    It is understood that conventional semiclassical approximations deteriorate towards threshold in a typical neutral particle interaction potential which is important for the study of ultra-cold atoms and molecules. In this Letter we give an example of the Lennard-Jones potential with tuning of the strength parameter on the basis of the analytical transfer matrix (ATM) method. Highly accurate quantum mechanical results, such as number of the bound states, energy level density and the eigenvalues with extremely low energies have been derived

  19. Numerical solution of the Schrodinger equation for stationary bound states using nodel theorem

    International Nuclear Information System (INIS)

    Chen Zhijiang; Kong Fanmei; Din Yibin

    1987-01-01

    An iterative procedure for getting the numerical solution of Schrodinger equation on stationary bound states is introduced. The theoretical foundtion, the practical steps and the method are presented. An example is added at the end. Comparing with other methods, the present one requires less storage, less running time but posesses higher accuracy. It can be run on the personal computer or microcomputer with 256 K memory and 16 bit word length such as IBM/PC, MC68000/83/20, PDP11/23 etc

  20. Gravitational coupling to two-particle bound states and momentum conservation in deep inelastic scattering

    International Nuclear Information System (INIS)

    Batiz, Zoltan; Gross, Franz

    2000-01-01

    The momentum conservation sum rule for deep inelastic scattering (DIS) from composite particles is investigated using the general theory of relativity. For two (1+1)-dimensional examples, it is shown that covariant theories automatically satisy the DIS momentum conservation sum rule provided the bound state is covariantly normalized. Therefore, in these cases the two DIS sum rules for baryon conservation and momentum conservation are equivalent. (c) 2000 The American Physical Society

  1. Fusion, reaction and break-up cross sections of weakly bound projectiles on 64Zn

    International Nuclear Information System (INIS)

    Gomes, P.R.S.; Padron, I.; Rodriguez, M.D.; Marti, G.V.; Anjos, R.M.; Lubian, J.; Veiga, R.; Liguori Neto, R.; Crema, E.; Added, N.; Chamon, L.C.; Fernandez Niello, J.O.; Capurro, O.A.; Pacheco, A.J.; Testoni, J.E.; Abriola, D.; Arazi, A.; Ramirez, M.; Hussein, M.S.

    2004-01-01

    We present new measurements and a general discussion of the behavior of the fusion, break-up and reaction cross sections of different projectiles on the same target 64 Zn, at near and above barrier energies. The projectiles are the tightly bound 16 O, the stable weakly bound 6 Li, 7 Li and 9 Be and the radioactive very weakly bound 6 He nuclei. We also compare the results with the ones for heavier targets

  2. Nonlinear bayesian state filtering with missing measurements and bounded noise and its application to vehicle position estimation

    Czech Academy of Sciences Publication Activity Database

    Pavelková, Lenka

    2011-01-01

    Roč. 47, č. 3 (2011), s. 370-384 ISSN 0023-5954 R&D Projects: GA MŠk 1M0572 Institutional research plan: CEZ:AV0Z10750506 Keywords : non-linear state space model * bounded uncertainty * missing measurements * state filtering * vehicle position estimation Subject RIV: BC - Control Systems Theory Impact factor: 0.454, year: 2011 http://library.utia.cas.cz/separaty/2011/AS/pavelkova-0360239.pdf

  3. Analytical study of bound states in graphene nanoribbons and carbon nanotubes: The variable phase method and the relativistic Levinson theorem

    Energy Technology Data Exchange (ETDEWEB)

    Miserev, D. S., E-mail: d.miserev@student.unsw.edu.au, E-mail: erazorheader@gmail.com [University of New South Wales, School of Physics (Australia)

    2016-06-15

    The problem of localized states in 1D systems with a relativistic spectrum, namely, graphene stripes and carbon nanotubes, is studied analytically. The bound state as a superposition of two chiral states is completely described by their relative phase, which is the foundation of the variable phase method (VPM) developed herein. Based on our VPM, we formulate and prove the relativistic Levinson theorem. The problem of bound states can be reduced to the analysis of closed trajectories of some vector field. Remarkably, the Levinson theorem appears as the Poincaré index theorem for these closed trajectories. The VPM equation is also reduced to the nonrelativistic and semiclassical limits. The limit of a small momentum p{sub y} of transverse quantization is applicable to an arbitrary integrable potential. In this case, a single confined mode is predicted.

  4. Bound-state wave functions at rest in describing deep inelastic scattering

    International Nuclear Information System (INIS)

    Khvedelidze, A.M.; Kvinikhidze, A.N.

    1991-01-01

    The deep inelastic process of the lepton-hadron scattering is studied in the bound-state rest frame. A new version of expanding structure functions in interaction constant powers is proposed, each term in it having spectral properties. This expansion makes it possible to consider contributions of composites in the final state to the cross section. It is shown that, as compared with the system P z →∞, the impulse approximation is insufficient for describing correctly the elastic limit in the composite particle rest frame. The leading asymptotics of structure functions as χ Bj →1 can be obtained by taking into account the interaction of contituents in the final state. It is shown that in contrast to the 'light-cone' formalism the ratio F 2 en (χ)/F 2 ep (χ) as χ Bj →1 depends on the explicit form of the spatial part of the nucleon wave function and, in particular, assuming the relativistic character of internal motion, it may be lower than the well-known prediction (i.e. 3/7). This is due to the correct consideration of spin degrees of freedom of the wave function of the nucleon at rest. (orig.)

  5. Virtual-bound, filamentary and layered states in a box-shaped quantum dot of square potential form the exact numerical solution of the effective mass Schrödinger equation

    Energy Technology Data Exchange (ETDEWEB)

    Luque, A., E-mail: a.luque@upm.es [Instituto de Energía Solar, Universidad Politécnica de Madrid (Spain); Mellor, A.; Tobías, I.; Antolín, E.; Linares, P.G.; Ramiro, I.; Martí, A. [Instituto de Energía Solar, Universidad Politécnica de Madrid (Spain)

    2013-03-15

    The effective mass Schrödinger equation of a QD of parallelepipedic shape with a square potential well is solved by diagonalizing the exact Hamiltonian matrix developed in a basis of separation-of-variables wavefunctions. The expected below bandgap bound states are found not to differ very much from the former approximate calculations. In addition, the presence of bound states within the conduction band is confirmed. Furthermore, filamentary states bounded in two dimensions and extended in one dimension and layered states with only one dimension bounded, all within the conduction band—which are similar to those originated in quantum wires and quantum wells—coexist with the ordinary continuum spectrum of plane waves. All these subtleties are absent in spherically shaped quantum dots, often used for modeling.

  6. Highly excited bound-state resonances of short-range inverse power-law potentials

    Energy Technology Data Exchange (ETDEWEB)

    Hod, Shahar [The Ruppin Academic Center, Emeq Hefer (Israel); The Hadassah Academic College, Jerusalem (Israel)

    2017-11-15

    We study analytically the radial Schroedinger equation with long-range attractive potentials whose asymptotic behaviors are dominated by inverse power-law tails of the form V(r) = -β{sub n}r{sup -n} with n > 2. In particular, assuming that the effective radial potential is characterized by a short-range infinitely repulsive core of radius R, we derive a compact analytical formula for the threshold energy E{sub l}{sup max} = E{sub l}{sup max}(n, β{sub n}, R), which characterizes the most weakly bound-state resonance (the most excited energy level) of the quantum system. (orig.)

  7. Active Fault Tolerant Control of Livestock Stable Ventilation System

    DEFF Research Database (Denmark)

    Gholami, Mehdi

    2011-01-01

    Modern stables and greenhouses are equipped with different components for providing a comfortable climate for animals and plant. A component malfunction may result in loss of production. Therefore, it is desirable to design a control system, which is stable, and is able to provide an acceptable d...... are not included, while due to the physical limitation, the input signal can not have any value. In continuing, a passive fault tolerant controller (PFTC) based on state feedback is proposed to track a reference signal while the control inputs are bounded....... of fault. Designing a fault tolerant control scheme for the climate control system. In the first step, a conceptual multi-zone model for climate control of a live-stock building is derived. The model is a nonlinear hybrid model. Hybrid systems contain both discrete and continuous components. The parameters...... affine (PWA) components such as dead-zones, saturation, etc or contain piecewise nonlinear models which is the case for the climate control systems of the stables. Fault tolerant controller (FTC) is based on a switching scheme between a set of predefined passive fault tolerant controller (PFTC...

  8. Andreev Bound States Formation and Quasiparticle Trapping in Quench Dynamics Revealed by Time-Dependent Counting Statistics.

    Science.gov (United States)

    Souto, R Seoane; Martín-Rodero, A; Yeyati, A Levy

    2016-12-23

    We analyze the quantum quench dynamics in the formation of a phase-biased superconducting nanojunction. We find that in the absence of an external relaxation mechanism and for very general conditions the system gets trapped in a metastable state, corresponding to a nonequilibrium population of the Andreev bound states. The use of the time-dependent full counting statistics analysis allows us to extract information on the asymptotic population of even and odd many-body states, demonstrating that a universal behavior, dependent only on the Andreev state energy, is reached in the quantum point contact limit. These results shed light on recent experimental observations on quasiparticle trapping in superconducting atomic contacts.

  9. Analysis of stable states in global savannas: is the CART pulling the horse?

    Science.gov (United States)

    Hanan, Niall P; Tredennick, Andrew T; Prihodko, Lara; Bucini, Gabriela; Dohn, Justin

    2014-03-01

    Multiple stable states, bifurcations and thresholds are fashionable concepts in the ecological literature, a recognition that complex ecosystems may at times exhibit the interesting dynamic behaviours predicted by relatively simple biomathematical models. Recently, several papers in Global Ecology and Biogeography , Proceedings of the National Academy of Sciences USA, Science and elsewhere have attempted to quantify the prevalence of alternate stable states in the savannas of Africa, Australia and South America, and the tundra-taiga-grassland transitions of the circum-boreal region using satellite-derived woody canopy cover. While we agree with the logic that basins of attraction can be inferred from the relative frequencies of ecosystem states observed in space and time, we caution that the statistical methodologies underlying the satellite product used in these studies may confound our ability to infer the presence of multiple stable states. We demonstrate this point using a uniformly distributed 'pseudo-tree cover' database for Africa that we use to retrace the steps involved in creation of the satellite tree-cover product and subsequent analysis. We show how classification and regression tree (CART)-based products may impose discontinuities in satellite tree-cover estimates even when such discontinuities are not present in reality. As regional and global remote sensing and geospatial data become more easily accessible for ecological studies, we recommend careful consideration of how error distributions in remote sensing products may interact with the data needs and theoretical expectations of the ecological process under study.

  10. Thermal and electrodynamical formation mechanisms of overloaded AC states and charging rate influence on their stable dynamics

    International Nuclear Information System (INIS)

    Romanovskii, V.; Watanabe, K.; Awaji, S.

    2013-01-01

    Highlights: •Overloaded AC states are investigated to understand the mechanisms of there formation. •There exist characteristic time windows defining the existence of stable overloaded AC states. •Limiting values of the electric field, current and temperature are higher than the quench ones. -- Abstract: The macroscopic thermal and electrodynamical phenomena occurring in high-T c superconductors during overloaded AC states are theoretically investigated to understand the basic physical mechanisms, which are characteristic for the stable formation of the operating modes when the peak current exceeds the critical current of a superconductor during AC modes. It is shown that there exist characteristic time windows defining the existence of stable overloaded AC states. They identify the stability boundary of the overloaded AC states. Therefore, there is the maximum allowable value of a peak current of stable overloaded AC regimes at the given charging rate, cooling conditions and properties of a superconductor and a matrix. The results obtained prove that the limiting peak current is higher than the corresponding quench current defining the stability margin of DC states. It monotonically increases with the charging rate. Besides, in the stable overloaded AC states, the peak values of the electric field and temperature may be also noticeably higher than the corresponding quench values. They depend on the peak current and charging rate at the given cooling conditions. As a result, high-T c superconducting tapes can stably work under intensive AC modes without instability onset when the peak of applied currents may significantly exceed not only the critical current but also the corresponding values of DC-quench currents

  11. Search for weakly decaying Λn‾ and ΛΛ exotic bound states in central Pb–Pb collisions at sNN=2.76 TeV

    Directory of Open Access Journals (Sweden)

    J. Adam

    2016-01-01

    Full Text Available We present results of a search for two hypothetical strange dibaryon states, i.e. the H-dibaryon and the possible Λn‾ bound state. The search is performed with the ALICE detector in central (0–10% Pb–Pb collisions at sNN=2.76 TeV, by invariant mass analysis in the decay modes Λn‾→d‾π+ and H-dibaryon →Λpπ−. No evidence for these bound states is observed. Upper limits are determined at 99% confidence level for a wide range of lifetimes and for the full range of branching ratios. The results are compared to thermal, coalescence and hybrid UrQMD model expectations, which describe correctly the production of other loosely bound states, like the deuteron and the hypertriton.

  12. Bound states of Dirac fermions in monolayer gapped graphene in the presence of local perturbations

    International Nuclear Information System (INIS)

    Yarmohammadi, Mohsen; Zareyan, Malek

    2016-01-01

    In graphene, conductance electrons behave as massless relativistic particles and obey an analogue of the Dirac equation in two dimensions with a chiral nature. For this reason, the bounding of electrons in graphene in the form of geometries of quantum dots is impossible. In gapless graphene, due to its unique electronic band structure, there is a minimal conductivity at Dirac points, that is, in the limit of zero doping. This creates a problem for using such a highly motivated new material in electronic devices. One of the ways to overcome this problem is the creation of a band gap in the graphene band structure, which is made by inversion symmetry breaking (symmetry of sublattices). We investigate the confined states of the massless Dirac fermions in an impured graphene by the short-range perturbations for “local chemical potential” and “local gap”. The calculated energy spectrum exhibits quite different features with and without the perturbations. A characteristic equation for bound states (BSs) has been obtained. It is surprisingly found that the relation between the radial functions of sublattices wave functions, i.e., , , and , , can be established by SO (2) group. (paper)

  13. Bound state properties of ABC-stacked trilayer graphene quantum dots

    Science.gov (United States)

    Xiong, Haonan; Jiang, Wentao; Song, Yipu; Duan, Luming

    2017-06-01

    The few-layer graphene quantum dot provides a promising platform for quantum computing with both spin and valley degrees of freedom. Gate-defined quantum dots in particular can avoid noise from edge disorders. In connection with the recent experimental efforts (Song et al 2016 Nano Lett. 16 6245), we investigate the bound state properties of trilayer graphene (TLG) quantum dots (QDs) through numerical simulations. We show that the valley degeneracy can be lifted by breaking the time reversal symmetry through the application of a perpendicular magnetic field. The spectrum under such a potential exhibits a transition from one group of Landau levels to another group, which can be understood analytically through perturbation theory. Our results provide insight into the transport property of TLG QDs, with possible applications to study of spin qubits and valleytronics in TLG QDs.

  14. Circumvention of Parker's bound on galactic magnetic monopoles

    International Nuclear Information System (INIS)

    Dicus, D.A.; Teplitz, V.L.; Maryland Univ., College Park

    1983-01-01

    There is a possibility that a magnetic monopole has been observed. The monopole density implied by the observation appears to violate bounds on the density of such particles derived from the total mass density of the Universe and from the existence of galactic magnetic fields. It is shown that the observation is not inconsistent with these bounds if the monopoles and antimonopoles are bound into positronium like states with principal quantum n high enough so that the Earth's magnetic field will break them apart, but small enough so that the weaker galactic magnetic field will not. A range of values for n are determined and show that lifetimes for such bound states are longer than the current age of the Universe. (author)

  15. Strongest model-independent bound on the lifetime of Dark Matter

    CERN Document Server

    Audren, Benjamin; Mangano, Gianpiero; Serpico, Pasquale Dario; Tram, Thomas

    2014-01-01

    Dark Matter is essential for structure formation in the late Universe so it must be stable on cosmological time scales. But how stable exactly? Only assuming decays into relativistic particles, we report an otherwise model independent bound on the lifetime of Dark Matter using current cosmological data. Since these decays affect only the low-$\\ell$ multipoles of the CMB, the Dark Matter lifetime is expected to correlate with the tensor-to-scalar ratio $r$ as well as curvature $\\Omega_k$. We consider two models, including $r$ and $r+\\Omega_k$ respectively, versus data from Planck, WMAP, WiggleZ and Baryon Acoustic Oscillations, with or without the BICEP2 data (if interpreted in terms of primordial gravitational waves). This results in a lower bound on the lifetime of CDM given by 160Gyr (without BICEP2) or 200Gyr (with BICEP2) at 95% confidence level.

  16. Prediction of new tightly bound-states of H2+(d2+) and ''cold fusion''-experiments

    International Nuclear Information System (INIS)

    Barut, A.O.

    1989-06-01

    It is suggested that in the ''cold-fusion'' experiments of Fleischmann and Pons new tightly-bound molecular states of D 2 + are formed with binding energies predicted to be of the order of 50 keV accounting for the heat released without appreciable fusion. Other tests of the suggested mechanism are proposed and the derivation of the new energy levels is given. (author). 3 refs

  17. Bound states for square well potentials extending to infinity in D ≥ 2

    International Nuclear Information System (INIS)

    Rupertsberger, H.

    1992-01-01

    It is well known that quantum mechanics allows the penetration into classically forbidden regions (tunneling). Less well known seems to be the fact that in some sense the converse is true also. Potentials with classically allowed regions where a particle can move freely to infinity can nevertheless lead to bound states in quantum mechanics due to the stringent requirements of the boundary conditions, thus forbidding an escape to infinity. This effect is demonstrated by using an obvious generalization of the well known one-dimensional (D = 1) square well potential to arbitray space dimensions. (author)

  18. Few-Body Techniques Using Coordinate Space for Bound and Continuum States

    Science.gov (United States)

    Garrido, E.

    2018-05-01

    These notes are a short summary of a set of lectures given within the frame of the "Critical Stability of Quantum Few-Body Systems" International School held in the Max Planck Institute for the Physics of Complex Systems (Dresden). The main goal of the lectures has been to provide the basic ingredients for the description of few-body systems in coordinate space. The hyperspherical harmonic and the adiabatic expansion methods are introduced in detail, and subsequently used to describe bound and continuum states. The expressions for the cross sections and reaction rates for three-body processes are derived. The case of resonant scattering and the complex scaling method as a tool to obtain the resonance energy and width is also introduced.

  19. Relativistic description of quark-antiquark bound states. II. Spin-dependent treatment

    International Nuclear Information System (INIS)

    Gara, A.; Durand, B.; Durand, L.

    1990-01-01

    We present the results of a study of light- and heavy-quark--antiquark bound states in the context of the reduced Bethe-Salpeter equation, including the full spin dependence. We obtain good fits to the observed spin splittings in the b bar b and c bar c systems using a short-distance single-gluon-exchange interaction, and a long-distance scalar confining interaction. However, we cannot obtain satisfactory fits to the centers of gravity of the b bar b and c bar c spin multiplets at the same time, and the splittings calculated for q bar Q mesons containing the lighter quarks are very poor. The difficulty appears to be intrinsic to the reduced Salpeter equation for reasons which we discuss

  20. Bounds on absolutely maximally entangled states from shadow inequalities, and the quantum MacWilliams identity

    Science.gov (United States)

    Huber, Felix; Eltschka, Christopher; Siewert, Jens; Gühne, Otfried

    2018-04-01

    A pure multipartite quantum state is called absolutely maximally entangled (AME), if all reductions obtained by tracing out at least half of its parties are maximally mixed. Maximal entanglement is then present across every bipartition. The existence of such states is in many cases unclear. With the help of the weight enumerator machinery known from quantum error correction and the shadow inequalities, we obtain new bounds on the existence of AME states in dimensions larger than two. To complete the treatment on the weight enumerator machinery, the quantum MacWilliams identity is derived in the Bloch representation. Finally, we consider AME states whose subsystems have different local dimensions, and present an example for a 2×3×3×3 system that shows maximal entanglement across every bipartition.

  1. Andreev reflection properties in a parallel mesoscopic circuit with Majorana bound states

    Energy Technology Data Exchange (ETDEWEB)

    Mu, Jin-Tao; Han, Yu [Physics Department, Liaoning University, Shenyang 110036 (China); Gong, Wei-Jiang, E-mail: gwj@mail.neu.edu.cn [College of Sciences, Northeastern University, Shenyang 110819 (China)

    2017-03-15

    We investigate the Andreev reflection in a parallel mesoscopic circuit with Majorana bound states (MBSs). It is found that in such a structure, the Andreev current can be manipulated in a highly efficient way, by the adjustment of bias voltage, dot levels, inter-MBS coupling, and the applied magnetic flux. Besides, the dot-MBS coupling manner is an important factor to modulate the Andreev current, because it influences the period of the conductance oscillation. By discussing the underlying quantum interference mechanism, the Andreev-reflection property is explained in detail. We believe that all the results can assist to understand the nontrivial role of the MBSs in driving the Andreev reflection.

  2. Neutron scattering from elemental indium, the optical model, and the bound-state potential

    Energy Technology Data Exchange (ETDEWEB)

    Chiba, S. (Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan)); Guenther, P.T.; Lawson, R.D.; Smith, A.B. (Argonne National Lab., IL (USA))

    1990-06-01

    Neutron differential elastic-scattering cross sections of elemental indium are measured from 4.5 to 10 MeV at incident-energy intervals of {approx}500 keV. Seventy or more differential values are obtained at each incident energy, distributed between {approx}18{degree} and 160{degree}. These experimental results are combined with lower-energy values previously obtained at this laboratory, and with 11 and 14 MeV results in the literature, to form a comprehensive elastic-scattering database extending from {approx}1.5 to 14 MeV. These data are interpreted in terms of a conventional spherical optical model. The resulting potential is extrapolated to the bound-state regime. It is shown that in the middle of the 50--82 neutron shell, the potential derived from the scattering results adequately describes the binding energies of article states, but does not do well for hole states. The latter shortcoming is attributed to the holes states having occupational probabilities sufficiently different from unity, so that the exclusion principle become a factor, and to the rearrangement of the neutron core. 68 refs.

  3. Neutron scattering from elemental indium, the optical model, and the bound-state potential

    International Nuclear Information System (INIS)

    Chiba, S.; Guenther, P.T.; Lawson, R.D.; Smith, A.B.

    1990-01-01

    Neutron differential elastic-scattering cross sections of elemental indium are measured from 4.5 to 10 MeV at incident-energy intervals of ∼500 keV. Seventy or more differential values are obtained at each incident energy, distributed between ∼18 degree and 160 degree. These experimental results are combined with lower-energy values previously obtained at this laboratory, and with 11 and 14 MeV results in the literature, to form a comprehensive elastic-scattering database extending from ∼1.5 to 14 MeV. These data are interpreted in terms of a conventional spherical optical model. The resulting potential is extrapolated to the bound-state regime. It is shown that in the middle of the 50--82 neutron shell, the potential derived from the scattering results adequately describes the binding energies of article states, but does not do well for hole states. The latter shortcoming is attributed to the holes states having occupational probabilities sufficiently different from unity, so that the exclusion principle become a factor, and to the rearrangement of the neutron core. 68 refs

  4. Electron-electron bound states in Maxwell-Chern-Simons-Proca QED3

    International Nuclear Information System (INIS)

    Belich, H.; Helayel-Neto, J.A.; Ferreira, M.M. Jr.; Maranhao Univ., Sao Luis, MA

    2002-10-01

    We start from a parity-breaking MCS QED 3 model with spontaneous breaking of the gauge symmetry as a framework for evaluation of the electron-electron interaction potential and for attainment of numerical values for the e - e - - bound state. Three expressions V eff↓↓ , V eff↓↑ , V eff↓↓ ) are obtained according to the polarization state of the scattered electrons. In an energy scale compatible with condensed matter electronic excitations, these potentials become degenerated. The resulting potential is implemented in the Schroedinger equation and the variational method is applied to carry out the electronic binding energy. The resulting binding energies in the scale of 10-100 meV and a correlation length in the scale of 10 - 30 Angstrom are possible indications that the MCS-QED 3 model adopted may be suitable to address an eventual case of e - e - pairing in the presence of parity-symmetry breakdown. The data analyzed here suggest an energy scale of 10-100 meV to fix the breaking of the U(1)-symmetry. (author)

  5. Enhanced stability of bound pairs at nonzero lattice momenta

    International Nuclear Information System (INIS)

    Kornilovitch, Pavel

    2004-01-01

    A two-body problem on the square lattice is analyzed. The interaction potential consists of strong on-site repulsion and nearest-neighbor attraction. The exact pairing conditions are derived for s-, p-, and d-symmetric bound states. The pairing conditions are strong functions of the total pair momentum K. It is found that the stability of pairs increases with K. At weak attraction, the pairs do not form at the Γ point but stabilize at lattice momenta close to the Brillouin zone boundary. The phase boundaries in the momentum space, which separate stable and unstable pairs, are calculated. It is found that the pairs are formed easier along the (π,0) direction than along the (π,π) direction. This might lead to the appearance of 'hot pairing spots' on the K x and K y axes

  6. Lower bound on inconclusive probability of unambiguous discrimination

    International Nuclear Information System (INIS)

    Feng Yuan; Zhang Shengyu; Duan Runyao; Ying Mingsheng

    2002-01-01

    We derive a lower bound on the inconclusive probability of unambiguous discrimination among n linearly independent quantum states by using the constraint of no signaling. It improves the bound presented in the paper of Zhang, Feng, Sun, and Ying [Phys. Rev. A 64, 062103 (2001)], and when the optimal discrimination can be reached, these two bounds coincide with each other. An alternative method of constructing an appropriate measurement to prove the lower bound is also presented

  7. Majorana bound state of a Bogoliubov-de Gennes-Dirac Hamiltonian in arbitrary dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Imura, Ken-Ichiro, E-mail: imura@hiroshima-u.ac.jp [Department of Quantum Matter, AdSM, Hiroshima University, 739-8530 (Japan); Fukui, Takahiro; Fujiwara, Takanori [Department of Physics, Ibaraki University, Mito 310-8512 (Japan)

    2012-01-11

    We study a Majorana zero-energy state bound to a hedgehog-like point defect in a topological superconductor described by a Bogoliubov-de Gennes (BdG)-Dirac type effective Hamiltonian. We first give an explicit wave function of a Majorana state by solving the BdG equation directly, from which an analytical index can be obtained. Next, by calculating the corresponding topological index, we show a precise equivalence between both indices to confirm the index theorem. Finally, we apply this observation to reexamine the role of another topological invariant, i.e., the Chern number associated with the Berry curvature proposed in the study of protected zero modes along the lines of topological classification of insulators and superconductors. We show that the Chern number is equivalent to the topological index, implying that it indeed reflects the number of zero-energy states. Our theoretical model belongs to the BDI class from the viewpoint of symmetry, whereas the spatial dimension d of the system is left arbitrary throughout the paper.

  8. Pentaquark as a NK* bound state with TJP=0(3/2)-

    International Nuclear Information System (INIS)

    Takeuchi, Sachiko; Shimizu, Kiyotaka

    2005-01-01

    We have investigated negative-parity uudds pentaquarks by employing a quark model with the meson exchange and the effective gluon exchange as qq and qq interactions. The system of five quarks is dynamically solved; the qq and qq correlations are taken into account in the wave function. The masses of the pentaquarks are found to be reasonably low. It is found that the lowest-mass state is TJ P =0(1/2) - and the next lowest one is 0(3/2) - . The former is reported to have a large width. We argue that the observed narrow peak corresponds to the latter state. It is still necessary to introduce an extra attraction to reduce the mass further by 140-280 MeV to reproduce the observed Θ + mass. Since their level splitting is less than 80 MeV, the lower level will not become a bound state below the NK threshold even after such an attraction is introduced. It is also found that the relative distance of two quarks with the attractive interaction is found to be by about 1.2-1.3 times closer than that of the repulsive one. The two-body correlation seems important in the pentaquark systems

  9. Baryon-baryon bound states from first principles in 3+1 lattice QCD with two flavors and strong coupling

    International Nuclear Information System (INIS)

    Faria da Veiga, Paulo A.; O'Carroll, Michael

    2006-01-01

    We determine baryon-baryon bound states in (3+1)-dimensional SU(3) lattice QCD with two flavors, 4x4 spin matrices, and in an imaginary time formulation. For small hopping parameter κ>0 and large glueball mass (strong coupling), we show the existence of three-quark isospin 1/2 particles (proton and neutron) and isospin 3/2 baryons (delta particles), with asymptotic masses -3lnκ and isolated dispersion curves. Baryon-baryon bound states of isospin zero are found with binding energy of order κ 2 , using a ladder approximation to a lattice Bethe-Salpeter equation. The dominant baryon-baryon interaction is an energy-independent spatial range-one attractive potential with an O(κ 2 ) strength. There is also attraction arising from gauge field correlations associated with six overlapping bonds, but it is counterbalanced by Pauli repulsion to give a vanishing zero-range potential. The overall range-one potential results from a quark, antiquark exchange with no meson exchange interpretation; the repulsive or attractive nature of the interaction depends on the isospin and spin of the two-baryon state

  10. Recent advances in bound state quantum electrodynamics

    International Nuclear Information System (INIS)

    Brodsky, S.J.; Lepage, G.P.

    1977-06-01

    Recent developments are reviewed in four areas of computational quantum electrodynamics: a new relativistic two-body formalism equal in rigor to the Bethe-Salpeter formalism but with strong calculational advantages is discussed; recent work on the computation of the decay rate of bound systems (positronium in particular) is presented; limits on possible composite structure of leptons are discussed; a new multidimensional integration program ('VEGAS') suitable for higher order calculations is presented

  11. Bound states emerging from below the continuum in a solvable PT-symmetric discrete Schrodinger equation

    Czech Academy of Sciences Publication Activity Database

    Znojil, Miloslav

    2017-01-01

    Roč. 96, č. 1 (2017), č. článku 012127. ISSN 2469-9926 R&D Projects: GA ČR GA16-22945S Institutional support: RVO:61389005 Keywords : non-Hermitian * PT symmetric * bound states Subject RIV: BE - Theoretical Physics OBOR OECD: Atomic, molecular and chemical physics (physics of atoms and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect) Impact factor: 2.925, year: 2016

  12. Information-entropic method for studying the stability bound of nonrelativistic polytropic stars within modified gravity theories

    Science.gov (United States)

    Wibisono, C.; Sulaksono, A.

    We study the stability of nonrelativistic polytropic stars within two modified gravity theories, i.e. beyond Horndeski gravity and Eddington-inspired Born-Infeld theories, using the configuration entropy method. We use the spatially localized bounded function of energy density as solutions from stellar effective equations to construct the corresponding configuration entropy. We use the same argument as the one used by Gleiser and coworkers [M. Gleiser and D. Sowinski, Phys. Lett. B 727 (2013) 272; M. Gleiser and N. Jiang, Phys. Rev. D 92 (2015) 044046] that the stars are stable if there is a peak in configuration entropy as a function of adiabatic index curve. Specifically, the boundary between stable and unstable regions which corresponds to Chandrasekhar stability bound is indicated from the existence of the maximum peak while the most stable polytropic stars are indicated by the minimum peak in the corresponding curve. We have found that the values of critical adiabatic indexes of Chandrasekhar stability bound and the most stable polytropic stars predicted by the nonrelativistic limits of beyond Horndeski gravity and Eddington-inspired Born-Infeld theories are different to those predicted by general relativity where the corresponding differences depend on the free parameters of both theories.

  13. Possible circumvention of Parker's bound on galactic magnetic monopoles

    International Nuclear Information System (INIS)

    Dicus, D.A.; Teplitz, V.L.

    1983-04-01

    There is a possibility that a magnetic monople has observed. The monopole density implied by the observation appears to violate bounds on the density of such particles derived from the total mass density of the universe and from the existence of galactic magnetic fields. We show that the observation is not inconsistent with these bounds if the monopoles and antimonopoles are bound into positronium - like states with principal quantum n high enough so that the earth's magnetic field will break them apart, but small enough so that the weaker galactic mangetic field will not. We determine a range of values for n and show that lifetimes for such bound states are longer than the current age of the universe

  14. A corrected NEGF + DFT approach for calculating electronic transport through molecular devices: Filling bound states and patching the non-equilibrium integration

    International Nuclear Information System (INIS)

    Li Rui; Zhang Jiaxing; Hou Shimin; Qian Zekan; Shen Ziyong; Zhao Xingyu; Xue Zengquan

    2007-01-01

    We discuss two problems in the conventional approach for studying charge transport in molecular electronic devices that is based on the non-equilibrium Green's function formalism and density functional theory, i.e., the bound states and the numerical integration of the non-equilibrium density matrix. A scheme of filling the bound states in the bias window and a method of patching the non-equilibrium integration are proposed, both of which are referred to as the non-equilibrium correction. The discussion is illustrated by means of calculations on a model system consisting of a 4,4 bipyridine molecule connected to two semi-infinite gold monatomic chains

  15. Alternative stable states and alternative endstates of community assembly through intra- and interspecific positive and negative interactions.

    Science.gov (United States)

    Gerla, Daan J; Mooij, Wolf M

    2014-09-01

    Positive and negative interactions within and between species may occur simultaneously, with the net effect depending on population densities. For instance, at low densities plants may ameliorate stress, while competition for resources dominates at higher densities. Here, we propose a simple two-species model in which con- and heterospecifics have a positive effect on per capita growth rate at low densities, while negative interactions dominate at high densities. The model thus includes both Allee effects (intraspecific positive effects) and mutualism (interspecific positive effects), as well as intra- and interspecific competition. Using graphical methods we derive conditions for alternative stable states and species coexistence. We show that mutual non-invasibility (i.e. the inability of each species to invade a population of the other) is more likely when species have a strong positive effect on the own species or a strong negative effect on the other species. Mutual non-invasibility implies alternative stable states, however, there may also be alternative stable states at which species coexist. In the case of species symmetry (i.e. when species are indistinguishable), such alternative coexistence states require that if the positive effect exerted at low densities at the own species is stronger than on the other species, the negative effect at higher densities is also stronger on the own species than on the other species, or, vice versa, if the interspecific positive effects at low densities are stronger than the intraspecific effects, the negative effects at higher densities are also stronger between species than within species. However, the reachability of alternative stable states is restricted by the frequency and density at which species are introduced during community assembly, so that alternative stable states do not always represent alternative endstates of community assembly. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Study of Atomic Quasi-Stable States, Decoherence And Cooling of Mesoscale Particles

    Science.gov (United States)

    Zhong, Changchun

    Quantum mechanics, since its very beginning, has totally changed the way we understand nature. The past hundred years have seen great successes in the application of quantum physics, including atomic spectra, laser technology, condensed matter physics and the remarkable possibility for quantum computing, etc. This thesis is dedicated to a small regime of quantum physics. In the first part of the thesis, I present the studies of atomic quasi-stable states, which refer to those Rydberg states of an atom that are relatively stable in the presence of strong fields. Through spectrally probing the quasi-stable states, series of survival peaks are found. If the quasi-stable electrons were created by ultraviolet (UV) lasers with two different frequencies, the survival peaks could be modulated by continuously changing the phase difference between the UV and the IR laser. The quantum simulation, through directly solving the Schrodinger equation, matches the experimental results performed with microwave fields, and our studies should provide a guidance for future experiments. Despite the huge achievements in the application of quantum theory, there are still some fundamental problems that remain unresolved. One of them is the so-called quantum-to-classical transition, which refers to the expectation that the system behaves in a more classical manner when the system size increases. This basic question was not well answered until decoherence theory was proposed, which states that the coherence of a quantum system tends to be destroyed by environmental interruptions. Thus, if a system is well isolated from its environment, it is in principle possible to observe macroscopic quantum coherence. Quite recently, testing quantum principles in the macroscale has become a hot topic due to rapic technological developments. A very promising platform for testing macroscale quantum physics is a laser levitated nanoparticle, and cooling its mechanical motion to the ground state is the first

  17. Reaching the Quantum Cramér-Rao Bound for Transmission Measurements

    Science.gov (United States)

    Woodworth, Timothy; Chan, Kam Wai Clifford; Marino, Alberto

    2017-04-01

    The quantum Cramér-Rao bound (QCRB) is commonly used to quantify the lower bound for the uncertainty in the estimation of a given parameter. Here, we calculate the QCRB for transmission measurements of an optical system probed by a beam of light. Estimating the transmission of an optical element is important as it is required for the calibration of optimal states for interferometers, characterization of high efficiency photodetectors, or as part of other measurements, such as those in plasmonic sensors or in ellipsometry. We use a beam splitter model for the losses introduced by the optical system to calculate the QCRB for different input states. We compare the bound for a coherent state, a two-mode squeezed-state (TMSS), a single-mode squeezed-state (SMSS), and a Fock state and show that it is possible to obtain an ultimate lower bound, regardless of the state used to probe the system. We prove that the Fock state gives the lowest possible uncertainty in estimating the transmission for any state and demonstrate that the TMSS and SMSS approach this ultimate bound for large levels of squeezing. Finally, we show that a simple measurement strategy for the TMSS, namely an intensity difference measurement, is able to saturate the QCRB. Work supported by the W.M. Keck Foundation.

  18. Robust stability and ℋ ∞ -estimation for uncertain discrete systems with state-delay

    Directory of Open Access Journals (Sweden)

    Mahmoud Magdi S.

    2001-01-01

    Full Text Available In this paper, we investigate the problems of robust stability and ℋ ∞ -estimation for a class of linear discrete-time systems with time-varying norm-bounded parameter uncertainty and unknown state-delay. We provide complete results for robust stability with prescribed performance measure and establish a version of the discrete Bounded Real Lemma. Then, we design a linear estimator such that the estimation error dynamics is robustly stable with a guaranteed ℋ ∞ -performance irrespective of the parameteric uncertainties and unknown state delays. A numerical example is worked out to illustrate the developed theory.

  19. Capacity Bounds for Parallel Optical Wireless Channels

    KAUST Repository

    Chaaban, Anas; Rezki, Zouheir; Alouini, Mohamed-Slim

    2016-01-01

    A system consisting of parallel optical wireless channels with a total average intensity constraint is studied. Capacity upper and lower bounds for this system are derived. Under perfect channel-state information at the transmitter (CSIT), the bounds have to be optimized with respect to the power allocation over the parallel channels. The optimization of the lower bound is non-convex, however, the KKT conditions can be used to find a list of possible solutions one of which is optimal. The optimal solution can then be found by an exhaustive search algorithm, which is computationally expensive. To overcome this, we propose low-complexity power allocation algorithms which are nearly optimal. The optimized capacity lower bound nearly coincides with the capacity at high SNR. Without CSIT, our capacity bounds lead to upper and lower bounds on the outage probability. The outage probability bounds meet at high SNR. The system with average and peak intensity constraints is also discussed.

  20. Dynamic current susceptibility as a probe of Majorana bound states in nanowire-based Josephson junctions

    Science.gov (United States)

    Trif, Mircea; Dmytruk, Olesia; Bouchiat, Hélène; Aguado, Ramón; Simon, Pascal

    2018-02-01

    We theoretically study a Josephson junction based on a semiconducting nanowire subject to a time-dependent flux bias. We establish a general density-matrix approach for the dynamical response of the Majorana junction and calculate the resulting flux-dependent susceptibility using both microscopic and effective low-energy descriptions for the nanowire. We find that the diagonal component of the susceptibility, associated with the dynamics of the Majorana state populations, dominates over the standard Kubo contribution for a wide range of experimentally relevant parameters. The diagonal term, explored, in this Rapid Communication, in the context of Majorana physics, allows probing accurately the presence of Majorana bound states in the junction.

  1. The g-factor of the electron bound in 28Si13+. The most stringent test of bound-state quantum electrodynamics

    International Nuclear Information System (INIS)

    Sturm, Sven

    2012-01-01

    This thesis describes the ultra-precise determination of the g-factor of the electron bound to hydrogenlike 28 Si 13+ . The experiment is based on the simultaneous determination of the cyclotron- and Larmor frequency of a single ion, which is stored in a triple Penning-trap setup. The continuous Stern-Gerlach effect is used to couple the spin of the bound electron to the motional frequencies of the ion via a magnetic bottle, which allows the non-destructive determination of the spin state. To this end, a highly sensitive, cryogenic detection system was developed, which allowed the direct, non-destructive detection of the eigenfrequencies with the required precision. The development of a novel, phase sensitive detection technique finally allowed the determination of the g-factor with a relative accuracy of 4 . 10 -11 , which was previously inconceivable. The comparison of the hereby determined value with the value predicted by quantumelectrodynamics (QED) allows the verification of the validity of this fundamental theory under the extreme conditions of the strong binding potential of a highly charged ion. The exact agreement of theory and experiment is an impressive demonstration of the exactness of QED. The experimental possibilities created in this work will allow in the near future not only further tests of theory, but also the determination of the mass of the electron with a precision that exceeds the current literature value by more than an order of magnitude.

  2. Multiple stable states of a periodically driven electron spin in a quantum dot using circularly polarized light

    Science.gov (United States)

    Korenev, V. L.

    2011-06-01

    The periodical modulation of circularly polarized light with a frequency close to the electron spin resonance frequency induces a sharp change of the single electron spin orientation. Hyperfine interaction provides a feedback, thus fixing the precession frequency of the electron spin in the external and the Overhauser field near the modulation frequency. The nuclear polarization is bidirectional and the electron-nuclear spin system (ENSS) possesses a few stable states. The same physics underlie the frequency-locking effect for two-color and mode-locked excitations. However, the pulsed excitation with mode-locked laser brings about the multitudes of stable states in ENSS in a quantum dot. The resulting precession frequencies of the electron spin differ in these states by the multiple of the modulation frequency. Under such conditions ENSS represents a digital frequency converter with more than 100 stable channels.

  3. Calculations of antiproton nucleus quasi-bound states using the Paris (N)over-barN potential

    Czech Academy of Sciences Publication Activity Database

    Hrtánková, Jaroslava; Mareš, Jiří

    2018-01-01

    Roč. 969, č. 1 (2018), s. 45-59 ISSN 0375-9474 R&D Projects: GA ČR(CZ) GA15-04301S Institutional support: RVO:61389005 Keywords : antiproton-nucleus interaction * Paris (N)over-barN potential * antiproton-nuclear bound states Subject RIV: BE - Theoretical Physics OBOR OECD: Atomic, molecular and chemical physics ( physics of atoms and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect) Impact factor: 1.916, year: 2016

  4. Upper bounds on entangling rates of bipartite Hamiltonians

    International Nuclear Information System (INIS)

    Bravyi, Sergey

    2007-01-01

    We discuss upper bounds on the rate at which unitary evolution governed by a nonlocal Hamiltonian can generate entanglement in a bipartite system. Given a bipartite Hamiltonian H coupling two finite dimensional particles A and B, the entangling rate is shown to be upper bounded by c log(d) parallel H parallel, where d is the smallest dimension of the interacting particles parallel H parallel is the operator norm of H, and c is a constant close to 1. Under certain restrictions on the initial state we prove an analogous upper bound for the ancilla-assisted entangling rate with a constant c that does not depend upon dimensions of local ancillas. The restriction is that the initial state has at most two distinct Schmidt coefficients (each coefficient may have arbitrarily large multiplicity). Our proof is based on analysis of a mixing rate - a functional measuring how fast entropy can be produced if one mixes a time-independent state with a state evolving unitarily

  5. Relativistic bound states in the presence of spherically ring-shaped q-deformed Woods–Saxon potential with arbitrary l-states

    International Nuclear Information System (INIS)

    Ikhdair, S.M.; Hamzavi, M.; Rajabi, A.A.

    2013-01-01

    Approximate bound-state solutions of the Dirac equation with q-deformed Woods–Saxon (WS) plus a new generalized ring-shaped (RS) potential are obtained for any arbitrary l-state. The energy eigenvalue equation and corresponding two-component wave functions are calculated by solving the radial and angular wave equations within a shortcut of the Nikiforov–Uvarov (NU) method. The solutions of the radial and polar angular parts of the wave function are expressed in terms of the Jacobi polynomials. A new approximation being expressed in terms of the potential parameters is carried out to deal with the strong singular centrifugal potential term l(l+1)r -2 . Under some limitations, we can obtain solution for the RS Hulthen potential and the standard usual spherical WS potential (q = 1). (author)

  6. A cluster expansion for bound three-alpha particles as a three-body problem

    International Nuclear Information System (INIS)

    Osman, A.

    1981-08-01

    A three-body model is proposed to study the nuclear bound states. The nucleus is described as a bound state of three clusters. A cluster expansion is introduced for the three cluster bound state problem. The present integral equations are treated by simple approximate solutions, which lead to effective potentials by using the present cluster expansion. The 12 C nucleus is described as a three-alpha particle bound state. The binding energy of 12 C is calculated numerically using the present cluster expansion as bound three-alpha clusters. The present three-body cluster expansion calculations are very near to the exact three-body calculations using separable potentials. The present theoretical calculations are in good agreement with the experimental measurements. (author)

  7. Comments upon a bound state model for a two body system

    International Nuclear Information System (INIS)

    Micu, L.

    2005-01-01

    We show that in classical mechanics, classical and relativistic quantum mechanics it is possible to replace the equation of the relative motion for a two-body bound system at rest by individual dynamical equations with correlated solutions. We compare the representations of a bound system in terms of the relative and individual coordinates and mention some of the observable differences. (author)

  8. Description of a stable scheme for steady-state coupled Monte Carlo–thermal–hydraulic calculations

    International Nuclear Information System (INIS)

    Dufek, Jan; Eduard Hoogenboom, J.

    2014-01-01

    Highlights: • A stable coupling scheme for steady-state MC–TH calculations is described. • The coupling scheme is based on the stochastic approximation method. • The neutron flux (or power) distribution is relaxed using a variable step-size. - Abstract: We provide a detailed description of a numerically stable and efficient coupling scheme for steady-state Monte Carlo neutronic calculations with thermal–hydraulic feedback. While we have previously derived and published the stochastic approximation based method for coupling the Monte Carlo criticality and thermal–hydraulic calculations, its possible implementation has not been described in a step-by-step manner. As the simple description of the coupling scheme was repeatedly requested from us, we have decided to make it available via this note

  9. Algorithm-Dependent Generalization Bounds for Multi-Task Learning.

    Science.gov (United States)

    Liu, Tongliang; Tao, Dacheng; Song, Mingli; Maybank, Stephen J

    2017-02-01

    Often, tasks are collected for multi-task learning (MTL) because they share similar feature structures. Based on this observation, in this paper, we present novel algorithm-dependent generalization bounds for MTL by exploiting the notion of algorithmic stability. We focus on the performance of one particular task and the average performance over multiple tasks by analyzing the generalization ability of a common parameter that is shared in MTL. When focusing on one particular task, with the help of a mild assumption on the feature structures, we interpret the function of the other tasks as a regularizer that produces a specific inductive bias. The algorithm for learning the common parameter, as well as the predictor, is thereby uniformly stable with respect to the domain of the particular task and has a generalization bound with a fast convergence rate of order O(1/n), where n is the sample size of the particular task. When focusing on the average performance over multiple tasks, we prove that a similar inductive bias exists under certain conditions on the feature structures. Thus, the corresponding algorithm for learning the common parameter is also uniformly stable with respect to the domains of the multiple tasks, and its generalization bound is of the order O(1/T), where T is the number of tasks. These theoretical analyses naturally show that the similarity of feature structures in MTL will lead to specific regularizations for predicting, which enables the learning algorithms to generalize fast and correctly from a few examples.

  10. Asymmetric thermal-relic dark matter. Sommerfeld-enhanced freeze-out, annihilation signals and unitarity bounds

    International Nuclear Information System (INIS)

    Baldes, Iason; Petraki, Kalliopi

    2017-03-01

    Dark matter that possesses a particle-antiparticle asymmetry and has thermalised in the early universe, requires a larger annihilation cross-section compared to symmetric dark matter, in order to deplete the dark antiparticles and account for the observed dark matter density. The annihilation cross-section determines the residual symmetric component of dark matter, which may give rise to annihilation signals during CMB and inside haloes today. We consider dark matter with long-range interactions, in particular dark matter coupled to a light vector or scalar force mediator. We compute the couplings required to attain a final antiparticle-to-particle ratio after the thermal freeze-out of the annihilation processes in the early universe, and then estimate the late-time annihilation signals. We show that, due to the Sommerfeld enhancement, highly asymmetric dark matter with long-range interactions can have a significant annihilation rate, potentially larger than symmetric dark matter of the same mass with contact interactions. We discuss caveats in this estimation, relating to the formation of stable bound states. Finally, we consider the non-relativistic partial-wave unitarity bound on the inelastic cross-section, we discuss why it can be realised only by long-range interactions, and showcase the importance of higher partial waves in this regime of large inelasticity. We derive upper bounds on the mass of symmetric and asymmetric thermal-relic dark matter for s-wave and p-wave annihilation, and exhibit how these bounds strengthen as the dark asymmetry increases.

  11. Asymmetric thermal-relic dark matter: Sommerfeld-enhanced freeze-out, annihilation signals and unitarity bounds

    Energy Technology Data Exchange (ETDEWEB)

    Baldes, Iason [DESY, Notkestraße 85, Hamburg, D-22607 Germany (Germany); Petraki, Kalliopi, E-mail: iason.baldes@desy.de, E-mail: kpetraki@lpthe.jussieu.fr [Laboratoire de Physique Théorique et Hautes Energies (LPTHE), UMR 7589 CNRS and UPMC, 4 Place Jussieu, Paris, F-75252 France (France)

    2017-09-01

    Dark matter that possesses a particle-antiparticle asymmetry and has thermalised in the early universe, requires a larger annihilation cross-section compared to symmetric dark matter, in order to deplete the dark antiparticles and account for the observed dark matter density. The annihilation cross-section determines the residual symmetric component of dark matter, which may give rise to annihilation signals during CMB and inside haloes today. We consider dark matter with long-range interactions, in particular dark matter coupled to a light vector or scalar force mediator. We compute the couplings required to attain a final antiparticle-to-particle ratio after the thermal freeze-out of the annihilation processes in the early universe, and then estimate the late-time annihilation signals. We show that, due to the Sommerfeld enhancement, highly asymmetric dark matter with long-range interactions can have a significant annihilation rate, potentially larger than symmetric dark matter of the same mass with contact interactions. We discuss caveats in this estimation, relating to the formation of stable bound states. Finally, we consider the non-relativistic partial-wave unitarity bound on the inelastic cross-section, we discuss why it can be realised only by long-range interactions, and showcase the importance of higher partial waves in this regime of large inelasticity. We derive upper bounds on the mass of symmetric and asymmetric thermal-relic dark matter for s -wave and p -wave annihilation, and exhibit how these bounds strengthen as the dark asymmetry increases.

  12. Asymmetric thermal-relic dark matter. Sommerfeld-enhanced freeze-out, annihilation signals and unitarity bounds

    Energy Technology Data Exchange (ETDEWEB)

    Baldes, Iason [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Petraki, Kalliopi [Nationaal Instuut voor Kernfysica en Hoge-Energiefysica (NIKHEF), Amsterdam (Netherlands); UMR 7589 CNRS et UPMC, Paris (France). Laboratoire de Physique Theorique et Hautes Energies (LPTHE)

    2017-03-15

    Dark matter that possesses a particle-antiparticle asymmetry and has thermalised in the early universe, requires a larger annihilation cross-section compared to symmetric dark matter, in order to deplete the dark antiparticles and account for the observed dark matter density. The annihilation cross-section determines the residual symmetric component of dark matter, which may give rise to annihilation signals during CMB and inside haloes today. We consider dark matter with long-range interactions, in particular dark matter coupled to a light vector or scalar force mediator. We compute the couplings required to attain a final antiparticle-to-particle ratio after the thermal freeze-out of the annihilation processes in the early universe, and then estimate the late-time annihilation signals. We show that, due to the Sommerfeld enhancement, highly asymmetric dark matter with long-range interactions can have a significant annihilation rate, potentially larger than symmetric dark matter of the same mass with contact interactions. We discuss caveats in this estimation, relating to the formation of stable bound states. Finally, we consider the non-relativistic partial-wave unitarity bound on the inelastic cross-section, we discuss why it can be realised only by long-range interactions, and showcase the importance of higher partial waves in this regime of large inelasticity. We derive upper bounds on the mass of symmetric and asymmetric thermal-relic dark matter for s-wave and p-wave annihilation, and exhibit how these bounds strengthen as the dark asymmetry increases.

  13. Asymmetric thermal-relic dark matter: Sommerfeld-enhanced freeze-out, annihilation signals and unitarity bounds

    International Nuclear Information System (INIS)

    Baldes, Iason; Petraki, Kalliopi

    2017-01-01

    Dark matter that possesses a particle-antiparticle asymmetry and has thermalised in the early universe, requires a larger annihilation cross-section compared to symmetric dark matter, in order to deplete the dark antiparticles and account for the observed dark matter density. The annihilation cross-section determines the residual symmetric component of dark matter, which may give rise to annihilation signals during CMB and inside haloes today. We consider dark matter with long-range interactions, in particular dark matter coupled to a light vector or scalar force mediator. We compute the couplings required to attain a final antiparticle-to-particle ratio after the thermal freeze-out of the annihilation processes in the early universe, and then estimate the late-time annihilation signals. We show that, due to the Sommerfeld enhancement, highly asymmetric dark matter with long-range interactions can have a significant annihilation rate, potentially larger than symmetric dark matter of the same mass with contact interactions. We discuss caveats in this estimation, relating to the formation of stable bound states. Finally, we consider the non-relativistic partial-wave unitarity bound on the inelastic cross-section, we discuss why it can be realised only by long-range interactions, and showcase the importance of higher partial waves in this regime of large inelasticity. We derive upper bounds on the mass of symmetric and asymmetric thermal-relic dark matter for s -wave and p -wave annihilation, and exhibit how these bounds strengthen as the dark asymmetry increases.

  14. Experimental evidence for bounds on quantum correlations.

    Science.gov (United States)

    Bovino, F A; Castagnoli, G; Degiovanni, I P; Castelletto, S

    2004-02-13

    We implemented the experiment proposed by Cabello in the preceding Letter to test the bounds of quantum correlation. As expected from the theory we found that, for certain choices of local observables, Tsirelson's bound of the Clauser-Horne-Shimony-Holt inequality (2 x square root of 2) is not reached by any quantum states.

  15. Vegetation engineers marsh morphology through multiple competing stable states

    Science.gov (United States)

    Marani, Marco; Da Lio, Cristina; D’Alpaos, Andrea

    2013-01-01

    Marshes display impressive biogeomorphic features, such as zonation, a mosaic of extensive vegetation patches of rather uniform composition, exhibiting sharp transitions in the presence of extremely small topographic gradients. Although generally associated with the accretion processes necessary for marshes to keep up with relative sea level rise, competing environmental constraints, and ecologic controls, zonation is still poorly understood in terms of the underlying biogeomorphic mechanisms. Here we find, through observations and modeling interpretation, that zonation is the result of coupled geomorphological–biological dynamics and that it stems from the ability of vegetation to actively engineer the landscape by tuning soil elevation within preferential ranges of optimal adaptation. We find multiple peaks in the frequency distribution of observed topographic elevation and identify them as the signature of biologic controls on geomorphodynamics through competing stable states modulated by the interplay of inorganic and organic deposition. Interestingly, the stable biogeomorphic equilibria correspond to suboptimal rates of biomass production, a result coherent with recent observations. The emerging biogeomorphic structures may display varying degrees of robustness to changes in the rate of sea level rise and sediment availability, with implications for the overall resilience of marsh ecosystems to climatic changes. PMID:23401529

  16. Flood effects provide evidence of an alternate stable state from dam management on the Upper Missouri River

    Science.gov (United States)

    Skalak, Katherine; Benthem, Adam J.; Hupp, Cliff R.; Schenk, Edward R.; Galloway, Joel M.; Nustad, Rochelle A.

    2017-01-01

    We examine how historic flooding in 2011 affected the geomorphic adjustments created by dam regulation along the approximately 120 km free flowing reach of the Upper Missouri River bounded upstream by the Garrison Dam (1953) and downstream by Lake Oahe Reservoir (1959) near the City of Bismarck, ND, USA. The largest flood since dam regulation occurred in 2011. Flood releases from the Garrison Dam began in May 2011 and lasted until October, peaking with a flow of more than 4200 m3 s−1. Channel cross-section data and aerial imagery before and after the flood were compared with historic rates of channel change to assess the relative impact of the flood on the river morphology. Results indicate that the 2011 flood maintained trends in island area with the loss of islands in the reach just below the dam and an increase in island area downstream. Channel capacity changes varied along the Garrison Segment as a result of the flood. The thalweg, which has been stable since the mid-1970s, did not migrate. And channel morphology, as defined by a newly developed shoaling metric, which quantifies the degree of channel braiding, indicates significant longitudinal variability in response to the flood. These results show that the 2011 flood exacerbates some geomorphic trends caused by the dam while reversing others. We conclude that the presence of dams has created an alternate geomorphic and related ecological stable state, which does not revert towards pre-dam conditions in response to the flood of record. This suggests that management of sediment transport dynamics as well as flow modification is necessary to restore the Garrison Segment of the Upper Missouri River towards pre-dam conditions and help create or maintain habitat for endangered species. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.

  17. Soluble and stable heptazethrenebis(dicarboximide) with a singlet open-shell ground state

    KAUST Repository

    Sun, Zhe; Huang, Kuo-Wei; Wu, Jishan

    2011-01-01

    A soluble and stable heptazethrene derivative was synthesized and characterized for the first time. This molecule exhibits a singlet biradical character in the ground state, which is the first case among zethrene homologue series. Exceptional stability of this heptazethrenebis(dicarboximide) raises the likelihood of its practical applications in materials science. © 2011 American Chemical Society.

  18. Soluble and stable heptazethrenebis(dicarboximide) with a singlet open-shell ground state

    KAUST Repository

    Sun, Zhe

    2011-08-10

    A soluble and stable heptazethrene derivative was synthesized and characterized for the first time. This molecule exhibits a singlet biradical character in the ground state, which is the first case among zethrene homologue series. Exceptional stability of this heptazethrenebis(dicarboximide) raises the likelihood of its practical applications in materials science. © 2011 American Chemical Society.

  19. Crystal structure of Na+, K(+)-ATPase in the Na(+)-bound state.

    Science.gov (United States)

    Nyblom, Maria; Poulsen, Hanne; Gourdon, Pontus; Reinhard, Linda; Andersson, Magnus; Lindahl, Erik; Fedosova, Natalya; Nissen, Poul

    2013-10-04

    The Na(+), K(+)-adenosine triphosphatase (ATPase) maintains the electrochemical gradients of Na(+) and K(+) across the plasma membrane--a prerequisite for electrical excitability and secondary transport. Hitherto, structural information has been limited to K(+)-bound or ouabain-blocked forms. We present the crystal structure of a Na(+)-bound Na(+), K(+)-ATPase as determined at 4.3 Å resolution. Compared with the K(+)-bound form, large conformational changes are observed in the α subunit whereas the β and γ subunit structures are maintained. The locations of the three Na(+) sites are indicated with the unique site III at the recently suggested IIIb, as further supported by electrophysiological studies on leak currents. Extracellular release of the third Na(+) from IIIb through IIIa, followed by exchange of Na(+) for K(+) at sites I and II, is suggested.

  20. Bounds on the Effect of Progressive Structural Degradation

    DEFF Research Database (Denmark)

    Achtziger, Wolfgang; Bendsøe, Martin P; Taylor, John E.

    1997-01-01

    Problem formulations are presented for the evaluation of upper and lower bounds on the effect of progressive structural degradation. For the purposes of this study, degradation effect is measured by an increase in global structural compliance (flexibility). Thus the stated bounds are given simply...

  1. Thermodynamics and dynamics of the hard-sphere system: From stable to metastable states

    Energy Technology Data Exchange (ETDEWEB)

    Bomont, Jean-Marc, E-mail: jean-marc.bomont@univ-lorraine.fr; Bretonnet, Jean-Louis

    2014-08-17

    Highlights: • Three different scaling laws, devoted to transport properties of hard-sphere system, are investigated over a wide range of packing fractions. • A new semiempirical relation linking the transport properties to the excess pressure is derived. • The present relation allows to better understand the link between the thermodynamic and the dynamic properties of the hard-sphere system. - Abstract: A set of three different scaling laws is investigated, which are devoted to link the transport properties, i.e. diffusion coefficient, shear viscosity, bulk viscosity and thermal conductivity, to the thermodynamic properties for the athermal hard-sphere system, over the wider range of packing fraction covering the stable and metastable regimes. Except for the thermal conductivity, the Rosenfeld (1999) [15] relation is found to be applicable to the stable states while the Adam and Gibbs (1965) [24] relation holds well for the metastable states. In contrast, the modified Cohen and Turnbull (1959) [25] relation proposed here gives sound support for a universal scaling law connecting the dynamic and thermodynamic properties, over the domain of packing fraction including the stable and metastable states. In particular, it is found that the most relevant control parameter is not the excess entropy, but the logarithm derivative of the excess entropy with respect to the packing fraction. In the same context, the Stokes–Einstein relation between the diffusion coefficient and the shear viscosity is also examined. The possible violation of the Stokes–Einstein relation is investigated over a large domain of packing fractions.

  2. Thermodynamics and dynamics of the hard-sphere system: From stable to metastable states

    International Nuclear Information System (INIS)

    Bomont, Jean-Marc; Bretonnet, Jean-Louis

    2014-01-01

    Highlights: • Three different scaling laws, devoted to transport properties of hard-sphere system, are investigated over a wide range of packing fractions. • A new semiempirical relation linking the transport properties to the excess pressure is derived. • The present relation allows to better understand the link between the thermodynamic and the dynamic properties of the hard-sphere system. - Abstract: A set of three different scaling laws is investigated, which are devoted to link the transport properties, i.e. diffusion coefficient, shear viscosity, bulk viscosity and thermal conductivity, to the thermodynamic properties for the athermal hard-sphere system, over the wider range of packing fraction covering the stable and metastable regimes. Except for the thermal conductivity, the Rosenfeld (1999) [15] relation is found to be applicable to the stable states while the Adam and Gibbs (1965) [24] relation holds well for the metastable states. In contrast, the modified Cohen and Turnbull (1959) [25] relation proposed here gives sound support for a universal scaling law connecting the dynamic and thermodynamic properties, over the domain of packing fraction including the stable and metastable states. In particular, it is found that the most relevant control parameter is not the excess entropy, but the logarithm derivative of the excess entropy with respect to the packing fraction. In the same context, the Stokes–Einstein relation between the diffusion coefficient and the shear viscosity is also examined. The possible violation of the Stokes–Einstein relation is investigated over a large domain of packing fractions

  3. Rigorous bounds on the free energy of electron-phonon models

    NARCIS (Netherlands)

    Raedt, Hans De; Michielsen, Kristel

    1997-01-01

    We present a collection of rigorous upper and lower bounds to the free energy of electron-phonon models with linear electron-phonon interaction. These bounds are used to compare different variational approaches. It is shown rigorously that the ground states corresponding to the sharpest bounds do

  4. Toward tailoring Majorana bound states in artificially constructed magnetic atom chains on elemental superconductors

    Science.gov (United States)

    Thorwart, Michael

    2018-01-01

    Realizing Majorana bound states (MBS) in condensed matter systems is a key challenge on the way toward topological quantum computing. As a promising platform, one-dimensional magnetic chains on conventional superconductors were theoretically predicted to host MBS at the chain ends. We demonstrate a novel approach to design of model-type atomic-scale systems for studying MBS using single-atom manipulation techniques. Our artificially constructed atomic Fe chains on a Re surface exhibit spin spiral states and a remarkable enhancement of the local density of states at zero energy being strongly localized at the chain ends. Moreover, the zero-energy modes at the chain ends are shown to emerge and become stabilized with increasing chain length. Tight-binding model calculations based on parameters obtained from ab initio calculations corroborate that the system resides in the topological phase. Our work opens new pathways to design MBS in atomic-scale hybrid structures as a basis for fault-tolerant topological quantum computing. PMID:29756034

  5. The g-factor of the bound electron in hydrogenic ions

    International Nuclear Information System (INIS)

    Quint, Wolfgang

    2001-01-01

    We report on the measurement of the g-factor of the electron bound in an atomic ion. A single hydrogenic ion ( 12 C 5+ ) is stored in a Penning trap. The electronic spin state of the ion is monitored via the continuous Stern-Gerlach effect in a quantum non-demolition measurement. Quantum jumps between the two spin states (spin up and spin down) are induced by a microwave field at the spin precession frequency of the bound electron. The g-factor of the bound electron is obtained by varying the microwave frequency and counting the number of spin flips for a fixed time interval. Applications of the continuous Stern-Gerlach effect include high-accuracy tests of bound-state quantum electrodynamics (QED), the measurement of the atomic mass of the electron, the determination of the fine structure constant α, and the measurement of nuclear g-factors

  6. Search for weakly decaying $\\overline{\\Lambda\\mathrm{n}}$ and $\\Lambda\\Lambda $ exotic bound states in central Pb-Pb collisions at $\\sqrt{s_{\\rm NN}}$ = 2.76 TeV

    CERN Document Server

    Adam, Jaroslav; Aggarwal, Madan Mohan; Aglieri Rinella, Gianluca; Agnello, Michelangelo; Agrawal, Neelima; Ahammed, Zubayer; Ahmed, Ijaz; Ahn, Sang Un; Aimo, Ilaria; Aiola, Salvatore; Ajaz, Muhammad; Akindinov, Alexander; Alam, Sk Noor; Aleksandrov, Dmitry; Alessandro, Bruno; Alexandre, Didier; Alfaro Molina, Jose Ruben; Alici, Andrea; Alkin, Anton; Alme, Johan; Alt, Torsten; Altinpinar, Sedat; Altsybeev, Igor; Alves Garcia Prado, Caio; Andrei, Cristian; Andronic, Anton; Anguelov, Venelin; Anielski, Jonas; Anticic, Tome; Antinori, Federico; Antonioli, Pietro; Aphecetche, Laurent Bernard; Appelshaeuser, Harald; Arcelli, Silvia; Armesto Perez, Nestor; Arnaldi, Roberta; Aronsson, Tomas; Arsene, Ionut Cristian; Arslandok, Mesut; Augustinus, Andre; Averbeck, Ralf Peter; Azmi, Mohd Danish; Bach, Matthias Jakob; Badala, Angela; Baek, Yong Wook; Bagnasco, Stefano; Bailhache, Raphaelle Marie; Bala, Renu; Baldisseri, Alberto; Ball, Markus; Baltasar Dos Santos Pedrosa, Fernando; Baral, Rama Chandra; Barbano, Anastasia Maria; Barbera, Roberto; Barile, Francesco; Barnafoldi, Gergely Gabor; Barnby, Lee Stuart; Ramillien Barret, Valerie; Bartalini, Paolo; Bartke, Jerzy Gustaw; Bartsch, Esther; Basile, Maurizio; Bastid, Nicole; Basu, Sumit; Bathen, Bastian; Batigne, Guillaume; Batista Camejo, Arianna; Batyunya, Boris; Batzing, Paul Christoph; Bearden, Ian Gardner; Beck, Hans; Bedda, Cristina; Behera, Nirbhay Kumar; Belikov, Iouri; Bellini, Francesca; Bello Martinez, Hector; Bellwied, Rene; Belmont Iii, Ronald John; Belmont Moreno, Ernesto; Belyaev, Vladimir; Bencedi, Gyula; Beole, Stefania; Berceanu, Ionela; Bercuci, Alexandru; Berdnikov, Yaroslav; Berenyi, Daniel; Bertens, Redmer Alexander; Berzano, Dario; Betev, Latchezar; Bhasin, Anju; Bhat, Inayat Rasool; Bhati, Ashok Kumar; Bhattacharjee, Buddhadeb; Bhom, Jihyun; Bianchi, Livio; Bianchi, Nicola; Bianchin, Chiara; Bielcik, Jaroslav; Bielcikova, Jana; Bilandzic, Ante; Biswas, Saikat; Bjelogrlic, Sandro; Blanco, Fernando; Blau, Dmitry; Blume, Christoph; Bock, Friederike; Bogdanov, Alexey; Boggild, Hans; Boldizsar, Laszlo; Bombara, Marek; Book, Julian Heinz; Borel, Herve; Borissov, Alexander; Borri, Marcello; Bossu, Francesco; Botje, Michiel; Botta, Elena; Boettger, Stefan; Braun-Munzinger, Peter; Bregant, Marco; Breitner, Timo Gunther; Broker, Theo Alexander; Browning, Tyler Allen; Broz, Michal; Brucken, Erik Jens; Bruna, Elena; Bruno, Giuseppe Eugenio; Budnikov, Dmitry; Buesching, Henner; Bufalino, Stefania; Buncic, Predrag; Busch, Oliver; Buthelezi, Edith Zinhle; Buxton, Jesse Thomas; Caffarri, Davide; Cai, Xu; Caines, Helen Louise; Calero Diaz, Liliet; Caliva, Alberto; Calvo Villar, Ernesto; Camerini, Paolo; Carena, Francesco; Carena, Wisla; Castillo Castellanos, Javier Ernesto; Castro, Andrew John; Casula, Ester Anna Rita; Cavicchioli, Costanza; Ceballos Sanchez, Cesar; Cepila, Jan; Cerello, Piergiorgio; Chang, Beomsu; Chapeland, Sylvain; Chartier, Marielle; Charvet, Jean-Luc Fernand; Chattopadhyay, Subhasis; Chattopadhyay, Sukalyan; Chelnokov, Volodymyr; Cherney, Michael Gerard; Cheshkov, Cvetan Valeriev; Cheynis, Brigitte; Chibante Barroso, Vasco Miguel; Dobrigkeit Chinellato, David; Chochula, Peter; Choi, Kyungeon; Chojnacki, Marek; Choudhury, Subikash; Christakoglou, Panagiotis; Christensen, Christian Holm; Christiansen, Peter; Chujo, Tatsuya; Chung, Suh-Urk; Cicalo, Corrado; Cifarelli, Luisa; Cindolo, Federico; Cleymans, Jean Willy Andre; Colamaria, Fabio Filippo; Colella, Domenico; Collu, Alberto; Colocci, Manuel; Conesa Balbastre, Gustavo; Conesa Del Valle, Zaida; Connors, Megan Elizabeth; Contreras Nuno, Jesus Guillermo; Cormier, Thomas Michael; Corrales Morales, Yasser; Cortes Maldonado, Ismael; Cortese, Pietro; Cosentino, Mauro Rogerio; Costa, Filippo; Crochet, Philippe; Cruz Albino, Rigoberto; Cuautle Flores, Eleazar; Cunqueiro Mendez, Leticia; Dahms, Torsten; Dainese, Andrea; Danu, Andrea; Das, Debasish; Das, Indranil; Das, Supriya; Dash, Ajay Kumar; Dash, Sadhana; De, Sudipan; De Caro, Annalisa; De Cataldo, Giacinto; De Cuveland, Jan; De Falco, Alessandro; De Gruttola, Daniele; De Marco, Nora; De Pasquale, Salvatore; Deisting, Alexander; Deloff, Andrzej; Denes, Ervin Sandor; D'Erasmo, Ginevra; Di Bari, Domenico; Di Mauro, Antonio; Di Nezza, Pasquale; Diaz Corchero, Miguel Angel; Dietel, Thomas; Dillenseger, Pascal; Divia, Roberto; Djuvsland, Oeystein; Dobrin, Alexandru Florin; Dobrowolski, Tadeusz Antoni; Domenicis Gimenez, Diogenes; Donigus, Benjamin; Dordic, Olja; Dubey, Anand Kumar; Dubla, Andrea; Ducroux, Laurent; Dupieux, Pascal; Ehlers Iii, Raymond James; Elia, Domenico; Engel, Heiko; Erazmus, Barbara Ewa; Erhardt, Filip; Eschweiler, Dominic; Espagnon, Bruno; Estienne, Magali Danielle; Esumi, Shinichi; Evans, David; Evdokimov, Sergey; Eyyubova, Gyulnara; Fabbietti, Laura; Fabris, Daniela; Faivre, Julien; Fantoni, Alessandra; Fasel, Markus; Feldkamp, Linus; Felea, Daniel; Feliciello, Alessandro; Feofilov, Grigorii; Ferencei, Jozef; Fernandez Tellez, Arturo; Gonzalez Ferreiro, Elena; Ferretti, Alessandro; Festanti, Andrea; Figiel, Jan; Araujo Silva Figueredo, Marcel; Filchagin, Sergey; Finogeev, Dmitry; Fionda, Fiorella; Fiore, Enrichetta Maria; Fleck, Martin Gabriel; Floris, Michele; Foertsch, Siegfried Valentin; Foka, Panagiota; Fokin, Sergey; Fragiacomo, Enrico; Francescon, Andrea; Frankenfeld, Ulrich Michael; Fuchs, Ulrich; Furget, Christophe; Furs, Artur; Fusco Girard, Mario; Gaardhoeje, Jens Joergen; Gagliardi, Martino; Gago Medina, Alberto Martin; Gallio, Mauro; Gangadharan, Dhevan Raja; Ganoti, Paraskevi; Gao, Chaosong; Garabatos Cuadrado, Jose; Garcia-Solis, Edmundo Javier; Gargiulo, Corrado; Gasik, Piotr Jan; Germain, Marie; Gheata, Andrei George; Gheata, Mihaela; Ghosh, Premomoy; Ghosh, Sanjay Kumar; Gianotti, Paola; Giubellino, Paolo; Giubilato, Piero; Gladysz-Dziadus, Ewa; Glassel, Peter; Gomez Ramirez, Andres; Gonzalez Zamora, Pedro; Gorbunov, Sergey; Gorlich, Lidia Maria; Gotovac, Sven; Grabski, Varlen; Graczykowski, Lukasz Kamil; Grelli, Alessandro; Grigoras, Alina Gabriela; Grigoras, Costin; Grigoryev, Vladislav; Grigoryan, Ara; Grigoryan, Smbat; Grynyov, Borys; Grion, Nevio; Grosse-Oetringhaus, Jan Fiete; Grossiord, Jean-Yves; Grosso, Raffaele; Guber, Fedor; Guernane, Rachid; Guerzoni, Barbara; Gulbrandsen, Kristjan Herlache; Gulkanyan, Hrant; Gunji, Taku; Gupta, Anik; Gupta, Ramni; Haake, Rudiger; Haaland, Oystein Senneset; Hadjidakis, Cynthia Marie; Haiduc, Maria; Hamagaki, Hideki; Hamar, Gergoe; Hanratty, Luke David; Hansen, Alexander; Harris, John William; Hartmann, Helvi; Harton, Austin Vincent; Hatzifotiadou, Despina; Hayashi, Shinichi; Heckel, Stefan Thomas; Heide, Markus Ansgar; Helstrup, Haavard; Herghelegiu, Andrei Ionut; Herrera Corral, Gerardo Antonio; Hess, Benjamin Andreas; Hetland, Kristin Fanebust; Hilden, Timo Eero; Hillemanns, Hartmut; Hippolyte, Boris; Hristov, Peter Zahariev; Huang, Meidana; Humanic, Thomas; Hussain, Nur; Hussain, Tahir; Hutter, Dirk; Hwang, Dae Sung; Ilkaev, Radiy; Ilkiv, Iryna; Inaba, Motoi; Ionita, Costin; Ippolitov, Mikhail; Irfan, Muhammad; Ivanov, Marian; Ivanov, Vladimir; Izucheev, Vladimir; Jacholkowski, Adam Wlodzimierz; Jacobs, Peter Martin; Jahnke, Cristiane; Jang, Haeng Jin; Janik, Malgorzata Anna; Pahula Hewage, Sandun; Jena, Chitrasen; Jena, Satyajit; Jimenez Bustamante, Raul Tonatiuh; Jones, Peter Graham; Jung, Hyungtaik; Jusko, Anton; Kalinak, Peter; Kalweit, Alexander Philipp; Kamin, Jason Adrian; Kang, Ju Hwan; Kaplin, Vladimir; Kar, Somnath; Karasu Uysal, Ayben; Karavichev, Oleg; Karavicheva, Tatiana; Karpechev, Evgeny; Kebschull, Udo Wolfgang; Keidel, Ralf; Keijdener, Darius Laurens; Keil, Markus; Khan, Kamal; Khan, Mohammed Mohisin; Khan, Palash; Khan, Shuaib Ahmad; Khanzadeev, Alexei; Kharlov, Yury; Kileng, Bjarte; Kim, Beomkyu; Kim, Do Won; Kim, Dong Jo; Kim, Hyeonjoong; Kim, Jinsook; Kim, Mimae; Kim, Minwoo; Kim, Se Yong; Kim, Taesoo; Kirsch, Stefan; Kisel, Ivan; Kiselev, Sergey; Kisiel, Adam Ryszard; Kiss, Gabor; Klay, Jennifer Lynn; Klein, Carsten; Klein, Jochen; Klein-Boesing, Christian; Kluge, Alexander; Knichel, Michael Linus; Knospe, Anders Garritt; Kobayashi, Taiyo; Kobdaj, Chinorat; Kofarago, Monika; Kohler, Markus Konrad; Kollegger, Thorsten; Kolozhvari, Anatoly; Kondratev, Valerii; Kondratyeva, Natalia; Kondratyuk, Evgeny; Konevskikh, Artem; Kouzinopoulos, Charalampos; Kovalenko, Vladimir; Kowalski, Marek; Kox, Serge; Koyithatta Meethaleveedu, Greeshma; Kral, Jiri; Kralik, Ivan; Kravcakova, Adela; Krelina, Michal; Kretz, Matthias; Krivda, Marian; Krizek, Filip; Kryshen, Evgeny; Krzewicki, Mikolaj; Kubera, Andrew Michael; Kucera, Vit; Kucheryaev, Yury; Kugathasan, Thanushan; Kuhn, Christian Claude; Kuijer, Paulus Gerardus; Kulakov, Igor; Kumar, Jitendra; Lokesh, Kumar; Kurashvili, Podist; Kurepin, Alexander; Kurepin, Alexey; Kuryakin, Alexey; Kushpil, Svetlana; Kweon, Min Jung; Kwon, Youngil; La Pointe, Sarah Louise; La Rocca, Paola; Lagana Fernandes, Caio; Lakomov, Igor; Langoy, Rune; Lara Martinez, Camilo Ernesto; Lardeux, Antoine Xavier; Lattuca, Alessandra; Laudi, Elisa; Lea, Ramona; Leardini, Lucia; Lee, Graham Richard; Lee, Seongjoo; Legrand, Iosif; Lehnert, Joerg Walter; Lemmon, Roy Crawford; Lenti, Vito; Leogrande, Emilia; Leon Monzon, Ildefonso; Leoncino, Marco; Levai, Peter; Li, Shuang; Li, Xiaomei; Lien, Jorgen Andre; Lietava, Roman; Lindal, Svein; Lindenstruth, Volker; Lippmann, Christian; Lisa, Michael Annan; Ljunggren, Hans Martin; Lodato, Davide Francesco; Lonne, Per-Ivar; Loggins, Vera Renee; Loginov, Vitaly; Loizides, Constantinos; Lopez, Xavier Bernard; Lopez Torres, Ernesto; Lowe, Andrew John; Lu, Xianguo; Luettig, Philipp Johannes; Lunardon, Marcello; Luparello, Grazia; Maevskaya, Alla; Mager, Magnus; Mahajan, Sanjay; Mahmood, Sohail Musa; Maire, Antonin; Majka, Richard Daniel; Malaev, Mikhail; Maldonado Cervantes, Ivonne Alicia; Malinina, Liudmila; Mal'Kevich, Dmitry; Malzacher, Peter; Mamonov, Alexander; Manceau, Loic Henri Antoine; Manko, Vladislav; Manso, Franck; Manzari, Vito; Marchisone, Massimiliano; Mares, Jiri; Margagliotti, Giacomo Vito; Margotti, Anselmo; Margutti, Jacopo; Marin, Ana Maria; Markert, Christina; Marquard, Marco; Martashvili, Irakli; Martin, Nicole Alice; Martin Blanco, Javier; Martinengo, Paolo; Martinez Hernandez, Mario Ivan; Martinez-Garcia, Gines; Martinez Pedreira, Miguel; Martynov, Yevgen; Mas, Alexis Jean-Michel; Masciocchi, Silvia; Masera, Massimo; Masoni, Alberto; Massacrier, Laure Marie; Mastroserio, Annalisa; Matyja, Adam Tomasz; Mayer, Christoph; Mazer, Joel Anthony; Mazzoni, Alessandra Maria; Mcdonald, Daniel; Meddi, Franco; Menchaca-Rocha, Arturo Alejandro; Meninno, Elisa; Mercado-Perez, Jorge; Meres, Michal; Miake, Yasuo; Mieskolainen, Matti Mikael; Mikhaylov, Konstantin; Milano, Leonardo; Milosevic, Jovan; Minervini, Lazzaro Manlio; Mischke, Andre; Mishra, Aditya Nath; Miskowiec, Dariusz Czeslaw; Mitra, Jubin; Mitu, Ciprian Mihai; Mohammadi, Naghmeh; Mohanty, Bedangadas; Molnar, Levente; Montano Zetina, Luis Manuel; Montes Prado, Esther; Morando, Maurizio; Moretto, Sandra; Morreale, Astrid; Morsch, Andreas; Muccifora, Valeria; Mudnic, Eugen; Muhlheim, Daniel Michael; Muhuri, Sanjib; Mukherjee, Maitreyee; Muller, Hans; Mulligan, James Declan; Gameiro Munhoz, Marcelo; Murray, Sean; Musa, Luciano; Musinsky, Jan; Nandi, Basanta Kumar; Nania, Rosario; Nappi, Eugenio; Naru, Muhammad Umair; Nattrass, Christine; Nayak, Kishora; Nayak, Tapan Kumar; Nazarenko, Sergey; Nedosekin, Alexander; Nellen, Lukas; Ng, Fabian; Nicassio, Maria; Niculescu, Mihai; Niedziela, Jeremi; Nielsen, Borge Svane; Nikolaev, Sergey; Nikulin, Sergey; Nikulin, Vladimir; Noferini, Francesco; Nomokonov, Petr; Nooren, Gerardus; Norman, Jaime; Nyanin, Alexander; Nystrand, Joakim Ingemar; Oeschler, Helmut Oskar; Oh, Saehanseul; Oh, Sun Kun; Ohlson, Alice Elisabeth; Okatan, Ali; Okubo, Tsubasa; Olah, Laszlo; Oleniacz, Janusz; Oliveira Da Silva, Antonio Carlos; Oliver, Michael Henry; Onderwaater, Jacobus; Oppedisano, Chiara; Ortiz Velasquez, Antonio; Oskarsson, Anders Nils Erik; Otwinowski, Jacek Tomasz; Oyama, Ken; Ozdemir, Mahmut; Pachmayer, Yvonne Chiara; Pagano, Paola; Paic, Guy; Pajares Vales, Carlos; Pal, Susanta Kumar; Pan, Jinjin; Pandey, Ashutosh Kumar; Pant, Divyash; Papikyan, Vardanush; Pappalardo, Giuseppe; Pareek, Pooja; Park, Woojin; Parmar, Sonia; Passfeld, Annika; Paticchio, Vincenzo; Paul, Biswarup; Pawlak, Tomasz Jan; Peitzmann, Thomas; Pereira Da Costa, Hugo Denis Antonio; Pereira De Oliveira Filho, Elienos; Peresunko, Dmitry Yurevich; Perez Lara, Carlos Eugenio; Peskov, Vladimir; Pestov, Yury; Petracek, Vojtech; Petrov, Viacheslav; Petrovici, Mihai; Petta, Catia; Piano, Stefano; Pikna, Miroslav; Pillot, Philippe; Pinazza, Ombretta; Pinsky, Lawrence; Piyarathna, Danthasinghe; Ploskon, Mateusz Andrzej; Planinic, Mirko; Pluta, Jan Marian; Pochybova, Sona; Podesta Lerma, Pedro Luis Manuel; Poghosyan, Martin; Polishchuk, Boris; Poljak, Nikola; Poonsawat, Wanchaloem; Pop, Amalia; Porteboeuf, Sarah Julie; Porter, R Jefferson; Pospisil, Jan; Prasad, Sidharth Kumar; Preghenella, Roberto; Prino, Francesco; Pruneau, Claude Andre; Pshenichnov, Igor; Puccio, Maximiliano; Puddu, Giovanna; Pujahari, Prabhat Ranjan; Punin, Valery; Putschke, Jorn Henning; Qvigstad, Henrik; Rachevski, Alexandre; Raha, Sibaji; Rajput, Sonia; Rak, Jan; Rakotozafindrabe, Andry Malala; Ramello, Luciano; Raniwala, Rashmi; Raniwala, Sudhir; Rasanen, Sami Sakari; Rascanu, Bogdan Theodor; Rathee, Deepika; Razazi, Vahedeh; Read, Kenneth Francis; Real, Jean-Sebastien; Redlich, Krzysztof; Reed, Rosi Jan; Rehman, Attiq Ur; Reichelt, Patrick Simon; Reicher, Martijn; Reidt, Felix; Ren, Xiaowen; Renfordt, Rainer Arno Ernst; Reolon, Anna Rita; Reshetin, Andrey; Rettig, Felix Vincenz; Revol, Jean-Pierre; Reygers, Klaus Johannes; Riabov, Viktor; Ricci, Renato Angelo; Richert, Tuva Ora Herenui; Richter, Matthias Rudolph; Riedler, Petra; Riegler, Werner; Riggi, Francesco; Ristea, Catalin-Lucian; Rivetti, Angelo; Rocco, Elena; Rodriguez Cahuantzi, Mario; Rodriguez Manso, Alis; Roeed, Ketil; Rogochaya, Elena; Rohr, David Michael; Roehrich, Dieter; Romita, Rosa; Ronchetti, Federico; Ronflette, Lucile; Rosnet, Philippe; Rossi, Andrea; Roukoutakis, Filimon; Roy, Ankhi; Roy, Christelle Sophie; Roy, Pradip Kumar; Rubio Montero, Antonio Juan; Rui, Rinaldo; Russo, Riccardo; Ryabinkin, Evgeny; Ryabov, Yury; Rybicki, Andrzej; Sadovskiy, Sergey; Safarik, Karel; Sahlmuller, Baldo; Sahoo, Pragati; Sahoo, Raghunath; Sahoo, Sarita; Sahu, Pradip Kumar; Saini, Jogender; Sakai, Shingo; Saleh, Mohammad Ahmad; Salgado Lopez, Carlos Alberto; Salzwedel, Jai Samuel Nielsen; Sambyal, Sanjeev Singh; Samsonov, Vladimir; Sanchez Castro, Xitzel; Sandor, Ladislav; Sandoval, Andres; Sano, Masato; Santagati, Gianluca; Sarkar, Debojit; Scapparone, Eugenio; Scarlassara, Fernando; Scharenberg, Rolf Paul; Schiaua, Claudiu Cornel; Schicker, Rainer Martin; Schmidt, Christian Joachim; Schmidt, Hans Rudolf; Schuchmann, Simone; Schukraft, Jurgen; Schulc, Martin; Schuster, Tim Robin; Schutz, Yves Roland; Schwarz, Kilian Eberhard; Schweda, Kai Oliver; Scioli, Gilda; Scomparin, Enrico; Scott, Rebecca Michelle; Seeder, Karin Soraya; Seger, Janet Elizabeth; Sekiguchi, Yuko; Selyuzhenkov, Ilya; Senosi, Kgotlaesele; Seo, Jeewon; Serradilla Rodriguez, Eulogio; Sevcenco, Adrian; Shabanov, Arseniy; Shabetai, Alexandre; Shadura, Oksana; Shahoyan, Ruben; Shangaraev, Artem; Sharma, Ankita; Sharma, Natasha; Shigaki, Kenta; Shtejer Diaz, Katherin; Sibiryak, Yury; Siddhanta, Sabyasachi; Sielewicz, Krzysztof Marek; Siemiarczuk, Teodor; Silvermyr, David Olle Rickard; Silvestre, Catherine Micaela; Simatovic, Goran; Simonetti, Giuseppe; Singaraju, Rama Narayana; Singh, Ranbir; Singha, Subhash; Singhal, Vikas; Sinha, Bikash; Sarkar - Sinha, Tinku; Sitar, Branislav; Sitta, Mario; Skaali, Bernhard; Slupecki, Maciej; Smirnov, Nikolai; Snellings, Raimond; Snellman, Tomas Wilhelm; Soegaard, Carsten; Soltz, Ron Ariel; Song, Jihye; Song, Myunggeun; Song, Zixuan; Soramel, Francesca; Sorensen, Soren Pontoppidan; Spacek, Michal; Spiriti, Eleuterio; Sputowska, Iwona Anna; Spyropoulou-Stassinaki, Martha; Srivastava, Brijesh Kumar; Stachel, Johanna; Stan, Ionel; Stefanek, Grzegorz; Steinpreis, Matthew Donald; Stenlund, Evert Anders; Steyn, Gideon Francois; Stiller, Johannes Hendrik; Stocco, Diego; Strmen, Peter; Alarcon Do Passo Suaide, Alexandre; Sugitate, Toru; Suire, Christophe Pierre; Suleymanov, Mais Kazim Oglu; Sultanov, Rishat; Sumbera, Michal; Symons, Timothy; Szabo, Alexander; Szanto De Toledo, Alejandro; Szarka, Imrich; Szczepankiewicz, Adam; Szymanski, Maciej Pawel; Takahashi, Jun; Tanaka, Naoto; Tangaro, Marco-Antonio; Tapia Takaki, Daniel Jesus; Tarantola Peloni, Attilio; Tariq, Mohammad; Tarzila, Madalina-Gabriela; Tauro, Arturo; Tejeda Munoz, Guillermo; Telesca, Adriana; Terasaki, Kohei; Terrevoli, Cristina; Teyssier, Boris; Thaeder, Jochen Mathias; Thomas, Deepa; Tieulent, Raphael Noel; Timmins, Anthony Robert; Toia, Alberica; Trogolo, Stefano; Trubnikov, Victor; Trzaska, Wladyslaw Henryk; Tsuji, Tomoya; Tumkin, Alexandr; Turrisi, Rosario; Tveter, Trine Spedstad; Ullaland, Kjetil; Uras, Antonio; Usai, Gianluca; Utrobicic, Antonija; Vajzer, Michal; Vala, Martin; Valencia Palomo, Lizardo; Vallero, Sara; Van Der Maarel, Jasper; Van Hoorne, Jacobus Willem; Van Leeuwen, Marco; Vanat, Tomas; Vande Vyvre, Pierre; Varga, Dezso; Diozcora Vargas Trevino, Aurora; Vargyas, Marton; Varma, Raghava; Vasileiou, Maria; Vasiliev, Andrey; Vauthier, Astrid; Vechernin, Vladimir; Veen, Annelies Marianne; Veldhoen, Misha; Velure, Arild; Venaruzzo, Massimo; Vercellin, Ermanno; Vergara Limon, Sergio; Vernet, Renaud; Verweij, Marta; Vickovic, Linda; Viesti, Giuseppe; Viinikainen, Jussi Samuli; Vilakazi, Zabulon; Villalobos Baillie, Orlando; Vinogradov, Alexander; Vinogradov, Leonid; Vinogradov, Yury; Virgili, Tiziano; Vislavicius, Vytautas; Viyogi, Yogendra; Vodopyanov, Alexander; Volkl, Martin Andreas; Voloshin, Kirill; Voloshin, Sergey; Volpe, Giacomo; Von Haller, Barthelemy; Vorobyev, Ivan; Vranic, Danilo; Vrlakova, Janka; Vulpescu, Bogdan; Vyushin, Alexey; Wagner, Boris; Wagner, Jan; Wang, Hongkai; Wang, Mengliang; Wang, Yifei; Watanabe, Daisuke; Weber, Michael; Weber, Steffen Georg; Wessels, Johannes Peter; Westerhoff, Uwe; Wiechula, Jens; Wikne, Jon; Wilde, Martin Rudolf; Wilk, Grzegorz Andrzej; Wilkinson, Jeremy John; Williams, Crispin; Windelband, Bernd Stefan; Winn, Michael Andreas; Yaldo, Chris G; Yamaguchi, Yorito; Yang, Hongyan; Yang, Ping; Yano, Satoshi; Yasnopolskiy, Stanislav; Yin, Zhongbao; Yokoyama, Hiroki; Yoo, In-Kwon; Yurchenko, Volodymyr; Yushmanov, Igor; Zaborowska, Anna; Zaccolo, Valentina; Zaman, Ali; Zampolli, Chiara; Correia Zanoli, Henrique Jose; Zaporozhets, Sergey; Zarochentsev, Andrey; Zavada, Petr; Zavyalov, Nikolay; Zbroszczyk, Hanna Paulina; Zgura, Sorin Ion; Zhalov, Mikhail; Zhang, Haitao; Zhang, Xiaoming; Zhang, Yonghong; Zhao, Chengxin; Zhigareva, Natalia; Zhou, Daicui; Zhou, You; Zhou, Zhuo; Zhu, Hongsheng; Zhu, Jianhui; Zhu, Xiangrong; Zichichi, Antonino; Zimmermann, Alice; Zimmermann, Markus Bernhard; Zinovjev, Gennady; Zyzak, Maksym

    2016-01-10

    We present results of a search for two hypothetical strange dibaryon states, i.e. the H-dibaryon and the possible $\\overline{\\Lambda\\mathrm{n}}$ bound state. The search is performed with the ALICE detector in central (0-10%) Pb-Pb collisions at $ \\sqrt{s_{\\rm{NN}}} = 2.76$ TeV, by invariant mass analysis in the decay modes $\\overline{\\Lambda\\mathrm{n}} \\rightarrow \\overline{\\mathrm{d}} \\pi^{+} $ and H-dibaryon $\\rightarrow \\Lambda \\mathrm{p} \\pi^{-}$. No evidence for these bound states is observed. Upper limits are determined at 99% confidence level for a wide range of lifetimes and for the full range of branching ratios. The results are compared to thermal, coalescence and hybrid UrQMD model expectations, which describe correctly the production of other loosely bound states, like the deuteron and the hypertriton.

  7. Surface Andreev Bound States and Odd-Frequency Pairing in Topological Superconductor Junctions

    Science.gov (United States)

    Tanaka, Yukio; Tamura, Shun

    2018-04-01

    In this review, we summarize the achievement of the physics of surface Andreev bound states (SABS) up to now. The route of this activity has started from the physics of SABS of unconventional superconductors where the pair potential has a sign change on the Fermi surface. It has been established that SABS can be regarded as a topological edge state with topological invariant defined in the bulk Hamiltonian. On the other hand, SABS accompanies odd-frequency pairing like spin-triplet s-wave or spin-singlet p-wave. In a spin-triplet superconductor junction, induced odd-frequency pairing can penetrate into a diffusive normal metal (DN) attached to the superconductor. It causes so called anomalous proximity effect where the local density of states of quasiparticle in DN has a zero energy peak. When bulk pairing symmetry is spin-triplet px-wave, the anomalous proximity effect becomes prominent and the zero bias voltage conductance is always quantized independent of the resistance in DN and interface. Finally, we show that the present anomalous proximity effect is realized in an artificial topological superconducting system, where a nanowire with spin-orbit coupling and Zeeman field is put on the conventional spin-singlet s-wave superconductor.

  8. International Workshop on Exotic Hadronic Atoms, Deeply Bound Kaonic Nuclear States and Antihydrogen : Present Results, Future Challenges

    CERN Document Server

    Widmann, E; Curceanu, C; Trento 2006; Trento06

    2006-01-01

    These are the miniproceedings of the workshop "Exotic hadronic atoms, deeply bound kaonic nuclear states and antihydrogen: present results, future challenges," which was held at the European Centre for Theoretical Nuclear Physics and Related Studies (ECT*), Trento (Italy), June 19-24, 2006. The document includes a short presentation of the topics, the list of participants, and a short contribution from each speaker.

  9. Faddeev-Yakubovsky technique for weakly bound systems

    International Nuclear Information System (INIS)

    Hadizadeh, M.R.; Yamashita, M.T.; Tomio, Lauro; Delfino, A.

    2011-01-01

    Nature shows the existence of weakly bound systems in different sectors, ranging from atomic to nuclear physics. Few-body systems with large scattering length exhibit universal features, which are independent of the details of the interaction, and thus are common to nuclear and atomic systems. Very different methods are used to study the properties of few-body systems, from Faddeev methods to diagonalization methods that rely on an expansion of the wave functions in a complete basis set, like e.g. hyper-spherical harmonics and no core shell model. In this talk we present Faddeev-Yakubovsky method to study the three- and four-body bound states in momentum space. To show the efficiency and accuracy of the method we investigate the three- and four-boson weakly bound states in unitary limit (for zero two-body binding) and we present a pretty complete picture of universality. (author)

  10. Inquiry for the conversion of the (π+ - π-) bound state into two π0

    International Nuclear Information System (INIS)

    Bunatyan, G.G.

    1998-01-01

    In the work presented, the decay of the pionium, that is the (π + π - ) bound state, into two π 0 is studied, the ππ-interaction causing this transition being described by the underlying Weinberg Lagrangian. The calculation with such a ππ-Lagrangian being carried out, the π-meson size r 0 emerges to be allowed for, and this quantity occurs in the final result. The bound (π + π - )-system itself is presumed to be due to the instantaneous Coulomb interaction and is treated consistently nonrelativistically, the Bethe-Salpeter equation being utilized. When calculating, the terms to the lowest order in the fine structure constant α and the terms ∼ ln (r 0 ) are retained. The obtained pionium lifetime τ is thought to be compatible with the conceivable future experimental data. The dependence of the results on the effective Lagrangian parameters is visualized. The investigation carried out persuades us that it is just the complete form of the genuine ππ-interaction that determines the pionium lifetime , but not much simply the ππ scattering lengths. The inquiry into pionium decaying promotes to specify the validity of the various ππ-interaction descriptions

  11. Color-suppression of non-planar diagrams in bosonic bound states

    Science.gov (United States)

    Alvarenga Nogueira, J. H.; Ji, Chueng-Ryong; Ydrefors, E.; Frederico, T.

    2018-02-01

    We study the suppression of non-planar diagrams in a scalar QCD model of a meson system in 3 + 1 space-time dimensions due to the inclusion of the color degrees of freedom. As a prototype of the color-singlet meson, we consider a flavor-nonsinglet system consisting of a scalar-quark and a scalar-antiquark with equal masses exchanging a scalar-gluon of a different mass, which is investigated within the framework of the homogeneous Bethe-Salpeter equation. The equation is solved by using the Nakanishi representation for the manifestly covariant bound-state amplitude and its light-front projection. The resulting non-singular integral equation is solved numerically. The damping of the impact of the cross-ladder kernel on the binding energies are studied in detail. The color-suppression of the cross-ladder effects on the light-front wave function and the elastic electromagnetic form factor are also discussed. As our results show, the suppression appears significantly large for Nc = 3, which supports the use of rainbow-ladder truncations in practical non-perturbative calculations within QCD.

  12. Localized end states in density modulated quantum wires and rings.

    Science.gov (United States)

    Gangadharaiah, Suhas; Trifunovic, Luka; Loss, Daniel

    2012-03-30

    We study finite quantum wires and rings in the presence of a charge-density wave gap induced by a periodic modulation of the chemical potential. We show that the Tamm-Shockley bound states emerging at the ends of the wire are stable against weak disorder and interactions, for discrete open chains and for continuum systems. The low-energy physics can be mapped onto the Jackiw-Rebbi equations describing massive Dirac fermions and bound end states. We treat interactions via the continuum model and show that they increase the charge gap and further localize the end states. The electrons placed in the two localized states on the opposite ends of the wire can interact via exchange interactions and this setup can be used as a double quantum dot hosting spin qubits. The existence of these states could be experimentally detected through the presence of an unusual 4π Aharonov-Bohm periodicity in the spectrum and persistent current as a function of the external flux.

  13. Bound states via Higgs exchanging and heavy resonant di-Higgs

    Directory of Open Access Journals (Sweden)

    Zhaofeng Kang

    2017-08-01

    Full Text Available The existence of Higgs boson h predicted by the standard model (SM was established and hunting for clues to new physics (NP hidden in h has become the top priority in particle physics. In this paper we explore an intriguing phenomenon that prevails in NP associated with h, bound state (Bh, referring to the ground state only of relatively heavy particles ϕ out of NP via interchanging h. This is well-motivated due to the intrinsic properties of h: It has zero spin and light mass, capable of mediating Yukawa interactions; moreover, it may be strongly coupled to ϕ in several important contexts, from addressing the naturalness problem by compositeness/supersymmetry (SUSY/classical scale invariance to understanding neutrino mass origin radiatively and matter asymmetry by electroweak baryogensis. The new resonance Bh, being a neutral scalar boson, has important implications to the large hadron collider (LHC di-Higgs search because it yields a clear resonant di-Higgs signature at the high mass region (≳1 TeV. In other words, searching for Bh offers a new avenue to probe the hidden sector with a Higgs-portal. For illustration in this paper we concentrate on two examples, the stop sector in SUSY and an inert Higgs doublet from a radiative neutrino model. In particular, h-mediation opens a new and wide window to probe the conventional stoponium and the current date begins to have sensitivity to stoponium around TeV.

  14. Bound states via Higgs exchanging and heavy resonant di-Higgs

    Science.gov (United States)

    Kang, Zhaofeng

    2017-08-01

    The existence of Higgs boson h predicted by the standard model (SM) was established and hunting for clues to new physics (NP) hidden in h has become the top priority in particle physics. In this paper we explore an intriguing phenomenon that prevails in NP associated with h, bound state (Bh, referring to the ground state only) of relatively heavy particles ϕ out of NP via interchanging h. This is well-motivated due to the intrinsic properties of h: It has zero spin and light mass, capable of mediating Yukawa interactions; moreover, it may be strongly coupled to ϕ in several important contexts, from addressing the naturalness problem by compositeness/supersymmetry (SUSY)/classical scale invariance to understanding neutrino mass origin radiatively and matter asymmetry by electroweak baryogensis. The new resonance Bh, being a neutral scalar boson, has important implications to the large hadron collider (LHC) di-Higgs search because it yields a clear resonant di-Higgs signature at the high mass region (≳ 1 TeV). In other words, searching for Bh offers a new avenue to probe the hidden sector with a Higgs-portal. For illustration in this paper we concentrate on two examples, the stop sector in SUSY and an inert Higgs doublet from a radiative neutrino model. In particular, h-mediation opens a new and wide window to probe the conventional stoponium and the current date begins to have sensitivity to stoponium around TeV.

  15. Electroweak-charged bound states as LHC probes of hidden forces

    Science.gov (United States)

    Li, Lingfeng; Salvioni, Ennio; Tsai, Yuhsin; Zheng, Rui

    2018-01-01

    We explore the LHC reach on beyond-the-standard model (BSM) particles X associated with a new strong force in a hidden sector. We focus on the motivated scenario where the SM and hidden sectors are connected by fermionic mediators ψ+,0 that carry SM electroweak charges. The most promising signal is the Drell-Yan production of a ψ±ψ¯ 0 pair, which forms an electrically charged vector bound state ϒ± due to the hidden force and later undergoes resonant annihilation into W±X . We analyze this final state in detail in the cases where X is a real scalar ϕ that decays to b b ¯, or a dark photon γd that decays to dileptons. For prompt X decays, we show that the corresponding signatures can be efficiently probed by extending the existing ATLAS and CMS diboson searches to include heavy resonance decays into BSM particles. For long-lived X , we propose new searches where the requirement of a prompt hard lepton originating from the W boson ensures triggering and essentially removes any SM backgrounds. To illustrate the potential of our results, we interpret them within two explicit models that contain strong hidden forces and electroweak-charged mediators, namely λ -supersymmetry (SUSY) and non-SUSY ultraviolet extensions of the twin Higgs model. The resonant nature of the signals allows for the reconstruction of the mass of both ϒ± and X , thus providing a wealth of information about the hidden sector.

  16. Exact spinor-scalar bound states in a quantum field theory with scalar interactions

    International Nuclear Information System (INIS)

    Shpytko, Volodymyr; Darewych, Jurij

    2001-01-01

    We study two-particle systems in a model quantum field theory in which scalar particles and spinor particles interact via a mediating scalar field. The Lagrangian of the model is reformulated by using covariant Green's functions to solve for the mediating field in terms of the particle fields. This results in a Hamiltonian in which the mediating-field propagator appears directly in the interaction term. It is shown that exact two-particle eigenstates of the Hamiltonian can be determined. The resulting relativistic fermion-boson equation is shown to have Dirac and Klein-Gordon one-particle limits. Analytical solutions for the bound state energy spectrum are obtained for the case of massless mediating fields

  17. Quasiparticle Scattering off Defects and Possible Bound States in Charge-Ordered YBa_{2}Cu_{3}O_{y}.

    Science.gov (United States)

    Zhou, R; Hirata, M; Wu, T; Vinograd, I; Mayaffre, H; Krämer, S; Horvatić, M; Berthier, C; Reyes, A P; Kuhns, P L; Liang, R; Hardy, W N; Bonn, D A; Julien, M-H

    2017-01-06

    We report the NMR observation of a skewed distribution of ^{17}O Knight shifts when a magnetic field quenches superconductivity and induces long-range charge-density-wave (CDW) order in YBa_{2}Cu_{3}O_{y}. This distribution is explained by an inhomogeneous pattern of the local density of states N(E_{F}) arising from quasiparticle scattering off, yet unidentified, defects in the CDW state. We argue that the effect is most likely related to the formation of quasiparticle bound states, as is known to occur, under specific circumstances, in some metals and superconductors (but not in the CDW state, in general, except for very few cases in 1D materials). These observations should provide insight into the microscopic nature of the CDW, especially regarding the reconstructed band structure and the sensitivity to disorder.

  18. Orotidine-5'-monophosphate decarboxylase catalysis: Kinetic isotope effects and the state of hybridization of a bound transition-state analogue

    Energy Technology Data Exchange (ETDEWEB)

    Acheson, S.A.; Bell, J.B.; Jones, M.E.; Wolfenden, R. (Univ. of North Carolina School of Medicine, Chapel Hill (USA))

    1990-04-03

    The enzymatic decarboxylation of orotidine 5'-monophosphate may proceed by an addition-elimination mechanism involving a covalently bound intermediate or by elimination of CO2 to generate a nitrogen ylide. In an attempt to distinguish between these two alternatives, 1-(phosphoribosyl)barbituric acid was synthesized with 13C at the 5-position. Interaction of this potential transition-state analogue inhibitor with yeast orotidine-5'-monophosphate decarboxylase resulted in a small (0.6 ppm) downfield displacement of the C-5 resonance, indicating no rehybridization of the kind that might have been expected to accompany 5,6-addition of an enzyme nucleophile. When the substrate orotidine 5'-monophosphate was synthesized with deuterium at C-5, no significant change in kcat (H/D = 0.99 +/- 0.06) or kcat/KM (H/D = 1.00 +/- 0.06) was found to result, suggesting that C-5 does not undergo significant changes in geometry before or during the step that determines the rate of the catalytic process. These results are consistent with a nitrogen ylide mechanism and offer no support for the intervention of covalently bound intermediates in the catalytic process.

  19. Bounds and enhancements for negative scattering time delays

    International Nuclear Information System (INIS)

    Muga, J.G.; Egusquiza, I.L.; Damborenea, J.A.; Delgado, F.

    2002-01-01

    The time of passage of the transmitted wave packet in a tunneling collision of a quantum particle with a square potential barrier becomes independent of the barrier width in a range of barrier thickness. This is the Hartman effect, which has been frequently associated with 'superluminality'. A fundamental limitation on the effect is set by nonrelativistic 'causality conditions'. We demonstrate first that the causality conditions impose more restrictive bounds on the negative time delays (time advancements) when no bound states are present. These restrictive bounds are in agreement with a naive, and generally false, causality argument based on the positivity of the 'extrapolated phase time', one of the quantities proposed to characterize the duration of the barrier's traversal. Nevertheless, square wells may in fact lead to much larger advancements than square barriers. We point out that close to the thresholds of new bound states, the time advancement increases considerably, while, at the same time, the transmission probability is large, which facilitates the possible observation of the enhanced time advancement

  20. Bound and scattering wave functions for a velocity-dependent Kisslinger potential for l>0

    International Nuclear Information System (INIS)

    Jaghoub, M.I.

    2002-01-01

    Using formal scattering theory, the scattering wave functions are extrapolated to negative energies corresponding to bound-state poles. It is shown that the ratio of the normalized scattering and the corresponding bound-state wave functions, at a bound-state pole, is uniquely determined by the bound-state binding energy. This simple relation is proved analytically for an arbitrary angular momentum quantum number l>0, in the presence of a velocity-dependent Kisslinger potential. The extrapolation relation is tested analytically by solving the Schroedinger equation in the p-wave case exactly for the scattering and the corresponding bound-state wave functions when the Kisslinger potential has the form of a square well. A numerical resolution of the Schroedinger equation in the p-wave case and of a square-well Kisslinger potential is carried out to investigate the range of validity of the extrapolated connection. It is found that the derived relation is satisfied best at low energies and short distances. (orig.)

  1. Evolutionary Stable Strategy

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 21; Issue 9. Evolutionary Stable Strategy: Application of Nash Equilibrium in Biology. General Article Volume 21 Issue 9 September 2016 pp 803- ... Keywords. Evolutionary game theory, evolutionary stable state, conflict, cooperation, biological games.

  2. Stable solid state reference electrodes for high temperature water chemistry

    International Nuclear Information System (INIS)

    Jayaweera, P.; Millett, P.J.

    1995-01-01

    A solid state electrode capable of providing a stable reference potential under a wide range of temperatures and chemical conditions has been demonstrated. The electrode consists of a zirconia or yttria-stabilized zirconia tube packed with an inorganic polymer electrolyte and a silver/silver chloride sensing element. The sensing element is maintained near room temperature by a passive cooling heat sink. The electrode stability was demonstrated by testing it in high temperature (280 C) aqueous solutions over extended periods of time. This reference electrode is useful in many applications, particularly for monitoring the chemistry in nuclear and fossil power plants

  3. A rigorous approach to relativistic corrections of bound state energies for spin-1/2 particles

    International Nuclear Information System (INIS)

    Gesztesy, F.; Thaller, B.; Grosse, H.

    1983-01-01

    Under fairly general conditions on the interactions we prove holomorphy of the Dirac resolvent around its nonrelativistic limit. As a consequences, perturbation theory in terms of resolvents (instead of Hamiltonians) yields holomorphy of Dirac eigenvalues and eigenfunctions with respect to c - 1 and a new method of calculating relativistic corrections to bound state energies. Due to a formulation in an abstract setting our method is applicable in many different concrete situation. In particular our approach covers the case of the relavistic hydrogen atom in external electromagnetic fields. (Author)

  4. Braneworld black holes and entropy bounds

    Directory of Open Access Journals (Sweden)

    Y. Heydarzade

    2018-01-01

    Full Text Available The Bousso's D-bound entropy for the various possible black hole solutions on a 4-dimensional brane is checked. It is found that the D-bound entropy here is apparently different from that of obtained for the 4-dimensional black hole solutions. This difference is interpreted as the extra loss of information, associated to the extra dimension, when an extra-dimensional black hole is moved outward the observer's cosmological horizon. Also, it is discussed that N-bound entropy is hold for the possible solutions here. Finally, by adopting the recent Bohr-like approach to black hole quantum physics for the excited black holes, the obtained results are written also in terms of the black hole excited states.

  5. The g-factor of the electron bound in {sup 28}Si{sup 13+}. The most stringent test of bound-state quantum electrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Sturm, Sven

    2012-09-06

    This thesis describes the ultra-precise determination of the g-factor of the electron bound to hydrogenlike {sup 28}Si{sup 13+}. The experiment is based on the simultaneous determination of the cyclotron- and Larmor frequency of a single ion, which is stored in a triple Penning-trap setup. The continuous Stern-Gerlach effect is used to couple the spin of the bound electron to the motional frequencies of the ion via a magnetic bottle, which allows the non-destructive determination of the spin state. To this end, a highly sensitive, cryogenic detection system was developed, which allowed the direct, non-destructive detection of the eigenfrequencies with the required precision. The development of a novel, phase sensitive detection technique finally allowed the determination of the g-factor with a relative accuracy of 4 . 10{sup -11}, which was previously inconceivable. The comparison of the hereby determined value with the value predicted by quantumelectrodynamics (QED) allows the verification of the validity of this fundamental theory under the extreme conditions of the strong binding potential of a highly charged ion. The exact agreement of theory and experiment is an impressive demonstration of the exactness of QED. The experimental possibilities created in this work will allow in the near future not only further tests of theory, but also the determination of the mass of the electron with a precision that exceeds the current literature value by more than an order of magnitude.

  6. Electron-electron bound states in Maxwell-Chern-Simons-Proca QED{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Belich, H.; Helayel-Neto, J.A. [Grupo de Fisica Teorica Jose Leite Lopes, Petropolis, RJ (Brazil)]|[Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil). Coordenacao de Teoria de Campos e Particulas]. E-mail: belich@cbpf.br; helayel@gft.ucp.br; Del Cima, O.M. [Grupo de Fisica Teorica Jose Leite Lopes, Petropolis, RJ (Brazil)]. E-mail: delcima@gft.ucp.br; Ferreira, M.M. Jr. [Grupo de Fisica Teorica Jose Leite Lopes, Petropolis, RJ (Brazil)]|[Maranhao Univ., Sao Luis, MA (Brazil). Dept. de Fisica]. E-mail: manojr@cbpf.br

    2002-10-01

    We start from a parity-breaking MCS QED{sub 3} model with spontaneous breaking of the gauge symmetry as a framework for evaluation of the electron-electron interaction potential and for attainment of numerical values for the e{sup -}e{sup -} - bound state. Three expressions (V{sub eff{down_arrow}}{sub {down_arrow}}, V{sub eff{down_arrow}}{sub {up_arrow}}, V{sub eff{down_arrow}}{sub {down_arrow}}) are obtained according to the polarization state of the scattered electrons. In an energy scale compatible with condensed matter electronic excitations, these potentials become degenerated. The resulting potential is implemented in the Schroedinger equation and the variational method is applied to carry out the electronic binding energy. The resulting binding energies in the scale of 10-100 meV and a correlation length in the scale of 10 - 30 Angstrom are possible indications that the MCS-QED{sub 3} model adopted may be suitable to address an eventual case of e{sup -}e{sup -} pairing in the presence of parity-symmetry breakdown. The data analyzed here suggest an energy scale of 10-100 meV to fix the breaking of the U(1)-symmetry. (author)

  7. Impact of Enhanced Health Interventions for United States-Bound Refugees: Evaluating Best Practices in Migration Health.

    Science.gov (United States)

    Mitchell, Tarissa; Lee, Deborah; Weinberg, Michelle; Phares, Christina; James, Nicola; Amornpaisarnloet, Kittisak; Aumpipat, Lalita; Cooley, Gretchen; Davies, Anita; Tin Shwe, Valerie Daw; Gajdadziev, Vasil; Gorbacheva, Olga; Khwan-Niam, Chutharat; Klosovsky, Alexander; Madilokkowit, Waritorn; Martin, Diana; Htun Myint, Naing Zaw; Yen Nguyen, Thi Ngoc; Nutman, Thomas B; O'Connell, Elise M; Ortega, Luis; Prayadsab, Sugunya; Srimanee, Chetdanai; Supakunatom, Wasant; Vesessmith, Vattanachai; Stauffer, William M

    2018-03-01

    With an unprecedented number of displaced persons worldwide, strategies for improving the health of migrating populations are critical. United States-bound refugees undergo a required overseas medical examination to identify inadmissible conditions (e.g., tuberculosis) 2-6 months before resettlement, but it is limited in scope and may miss important, preventable infectious, chronic, or nutritional causes of morbidity. We sought to evaluate the feasibility and health impact of diagnosis and management of such conditions before travel. We offered voluntary testing for intestinal parasites, anemia, and hepatitis B virus infection, to U.S.-bound refugees from three Thailand-Burma border camps. Treatment and preventive measures (e.g., anemia and parasite treatment, vaccination) were initiated before resettlement. United States refugee health partners received overseas results and provided post-arrival medical examination findings. During July 9, 2012 to November 29, 2013, 2,004 refugees aged 0.5-89 years enrolled. Among 463 participants screened for seven intestinal parasites overseas and after arrival, helminthic infections decreased from 67% to 12%. Among 118 with positive Strongyloides -specific antibody responses, the median fluorescent intensity decreased by an average of 81% after treatment. The prevalence of moderate-to-severe anemia (hemoglobin migration process to improve the health of refugees before resettlement. With more than 250 million migrants globally, this model may offer insights into healthier migration strategies.

  8. Universal bounds in even-spin CFTs

    Energy Technology Data Exchange (ETDEWEB)

    Qualls, Joshua D. [Department of Physics, National Taiwan University,Taipei, Taiwan (China)

    2015-12-01

    We prove using invariance under the modular S− and ST−transformations that every unitary two-dimensional conformal field theory (CFT) having only even-spin primary operators (with no extended chiral algebra and with right- and left-central charges c,c̃>1) contains a primary operator with dimension Δ{sub 1} satisfying 0<Δ{sub 1}<((c+c̃)/24)+0.09280…. After deriving both analytical and numerical bounds, we discuss how to extend our methods to bound higher conformal dimensions before deriving lower and upper bounds on the number of primary operators in a given energy range. Using the AdS{sub 3}/CFT{sub 2} dictionary, the bound on Δ{sub 1} proves the lightest massive excitation in appropriate theories of 3D matter and gravity with cosmological constant Λ<0 can be no heavier than 1/8G{sub N}+O(√(−Λ)); the bounds on the number of operators are related via AdS/CFT to the entropy of states in the dual gravitational theory. In the flat-space approximation, the limiting mass is exactly that of the lightest BTZ black hole.

  9. Bi-stable optical actuator

    Science.gov (United States)

    Holdener, Fred R.; Boyd, Robert D.

    2000-01-01

    The present invention is a bi-stable optical actuator device that is depowered in both stable positions. A bearing is used to transfer motion and smoothly transition from one state to another. The optical actuator device may be maintained in a stable position either by gravity or a restraining device.

  10. Exact S-matrices for dn+1(2) affine Toda solitons and their bound states

    International Nuclear Information System (INIS)

    Gandenberger, G.M.; MacKay, N.J.

    1995-01-01

    We conjecture an exact S-matrix for the scattering of solitons in d n+1 (2) affine Toda field theory in terms of the R-matrix of the quantum group U q (c n (1) ). From this we construct the scattering amplitudes for all scalar bound states (breathers) of the theory. This S-matrix conjecture is justified by detailed examination of its pole structure. We show that a breather-particle identification holds by comparing the S-matrix elements for the lowest breathers with the S-matrix for the quantum particles in real affine Toda field theory, and discuss the implications for various forms of duality. (orig.)

  11. Bone Mineral 31P and Matrix-Bound Water Densities Measured by Solid-State 1H and 31P MRI

    Science.gov (United States)

    Seifert, Alan C.; Li, Cheng; Rajapakse, Chamith S.; Bashoor- Zadeh, Mahdieh; Bhagat, Yusuf A.; Wright, Alexander C.; Zemel, Babette S.; Zavaliangos, Antonios; Wehrli, Felix W.

    2014-01-01

    Bone is a composite material consisting of mineral and hydrated collagen fractions. MRI of bone is challenging due to extremely short transverse relaxation times, but solid-state imaging sequences exist that can acquire the short-lived signal from bone tissue. Previous work to quantify bone density via MRI used powerful experimental scanners. This work seeks to establish the feasibility of MRI-based measurement on clinical scanners of bone mineral and collagen-bound water densities, the latter as a surrogate of matrix density, and to examine the associations of these parameters with porosity and donors’ age. Mineral and matrix-bound water images of reference phantoms and cortical bone from 16 human donors, ages 27-97 years, were acquired by zero-echo-time 31P and 1H MRI on whole body 7T and 3T scanners, respectively. Images were corrected for relaxation and RF inhomogeneity to obtain density maps. Cortical porosity was measured by micro-CT, and apparent mineral density by pQCT. MRI-derived densities were compared to x-ray-based measurements by least-squares regression. Mean bone mineral 31P density was 6.74±1.22 mol/L (corresponding to 1129±204 mg/cc mineral), and mean bound water 1H density was 31.3±4.2 mol/L (corresponding to 28.3±3.7 %v/v). Both 31P and bound water (BW) densities were correlated negatively with porosity (31P: R2 = 0.32, p bone mineralization ratio (expressed here as the ratio of 31P density to bound water density), which is proportional to true bone mineralization, was found to be uncorrelated with porosity, age, or pQCT density. This work establishes the feasibility of image-based quantification of bone mineral and bound water densities using clinical hardware. PMID:24846186

  12. On the role of anti-bound states in the RPA description of the giant monopole resonance

    International Nuclear Information System (INIS)

    Vertse, T.; Bang, J.

    1989-01-01

    The limit of the applicability of the resonant Random Phase Approximation (RPA) method is tested by calculating escape widths in the giant monopole resonance of 16 O and comparing them to the results of a time dependent Hartree-Fock calculation. Though the widths of the narrow s-wave component agree reasonably well, the broad p-wave component shows large disagreement, which cannot be cured by complementing the basis with anti-bound states in the RPA calculation. (author) 18 refs.; 3 tabs

  13. Weakly-bound adsorption states and low-temperature adsorption kinetiks of oxygen on tungsten (100) and (110) faces

    International Nuclear Information System (INIS)

    Zhukov, V.V.; Osovskij, V.D.; Ptushnikov, Yu.G.; Sukretnyj, V.G.; Chujkov, B.A.

    1986-01-01

    A molecular beam technique with an effusion source operating at T=200 K is used to study the adsorption interaction of oxygen with W(100) and (110) faces in the range of the simple temperatures from 5 to 340 K. Three weakly-bound adsorption states of oxygen are detected corresponding to adsorption in the second, third and forth monolayer. These states are characterized by adsorption energies of 0.13, 0.08 and 0.07 eV and desorption temperatures of 45, 27 and 25 K, respectively. The kinetics of filling of these states is almost similar for both faces, whereas the adsorption kinetics in the first monolayer is essentially different. A dissociative nature of adsorption at T >or approx. 5 K and a jump migration mechanism of the admolecules in the precursor state to the stationary adsorption sites are suggested

  14. Equilibrium mercury isotope fractionation between dissolved Hg(II) species and thiol-bound Hg

    NARCIS (Netherlands)

    Wiederhold, Jan G.; Cramer, Christopher J.; Daniel, Kelly; Infante, Ivan; Bourdon, Bernard; Kretzschmar, Ruben

    2010-01-01

    Stable Hg isotope ratios provide a new tool to trace environmental Hg cycling. Thiols (-SH) are the dominant Hg-binding groups in natural organic matter. Here, we report experimental and computational results on equilibrium Hg isotope fractionation between dissolved Hg(II) species and thiol-bound

  15. Numerical analysis of Markov-perfect equilibria with multiple stable steady states : A duopoly application with innovative firms

    NARCIS (Netherlands)

    Dawid, H.; Keoula, M.Y.; Kort, Peter

    2017-01-01

    This paper presents a numerical method for the characterization of Markov-perfect equilibria of symmetric differential games exhibiting coexisting stable steady states. The method relying on the calculation of ‘local value functions’ through collocation in overlapping parts of the state space, is

  16. Hadrons in two-dimensional quantum chromodynamics: Construction and study of bound states by means of perturbative and non-perturbative methods

    International Nuclear Information System (INIS)

    Zeppenfeld, D.

    1984-01-01

    The present thesis deals with the construction and the analysis of mesonic bound states in SU(N) gauge theories in a two-dimensional space-time. The based field theory can thereby be considered as a simplified version of the QCD, the theory of the strong interactions. After an extensive discussion of the quantization in the temporal gauge and after the Poincare invariance of the theory has been shown mesonic bound states and the meson spectrum for different ranges of the free parameters of the theory (quark mass, coupling constant, and index N of the gauge group) are treated. The spectrum is given by a boundary value problem which in the perturbative limit is solved analytically. For massless quarks gauge-invariant annihilation operators are constructed which permit an exact solution of the energy eigenvalue equation. The energy eigenstates so found described massive interacting mesons which are surrounded by a cloud of massless free particles. (orig.) [de

  17. On the problem of bound states of pions and neutrons

    International Nuclear Information System (INIS)

    Gudima, K.K.; Karnaukhov, V.A.

    1992-01-01

    The problem of existence of the bound states of negative pions and neutrons has been widely discussed for the last years. It is considered possibilities of the experimental observation of pion-neutron clusters, if they do exist, in nucleus-nucleus collisions. The yields of exotic fragments π -Z n A in the interactions of 12 C and 56 Fe with 208 Pb at the energies from 0.3 to 3.7 GeV per nucleon are calculated. For 40 Ar+ 238 U and 139 La+ 238 U collisions the calculations were performed at the energied of 1.8 GeV and 1.3 GeV per nucleon, respectively. These calculations were performed in the framework of the coalescence mechanism with the differential cross sections for pion and neutron production generated by firestreak model. The differential cross sections for production of π -1 n -2 , π -2 N 2 , π - n 4 , π -4 n 6 , and π -12 n 6 were calculated. It is shown that the use of very heavy projectiles like 56 Fe and 139 La has a great advantage in the experimental search for the exotic clusters. 20 refs.; 8 figs

  18. Detecting Majorana bound states coupling with an Aharonov-Bohm interferometer

    Science.gov (United States)

    Orellana, Pedro; Ramos Andrade, Juan Pablo; Ulloa, Sergio

    In this work we consider a quantum dot (QD) connected to current leads arranged to mediate the interaction between two topological nanowires, both hosting Majorana bound states (MBS) at their ends. In an interesting system geometry, one nanowire has both ends coupled with the QD, forming an Aharonov-Bohm (AB) interferometer, while the other is placed nearby such that two MBS belonging to different nanowires can interact. We model the system using an effective low energy Hamiltonian, considering that the QD is embedded between metallic leads. Using a Green's function formalism via the equation of motion procedure, we find that the conductance across the leads can show MBS signatures, i.e. half-maximum conductance at zero-energy, when both topological nanowires are connected, independent of the AB flux phase. This system may be used as a detector of the effective connections between independent MBS by monitoring the conductance while tuning the AB phase. J.P.R.-A. acknowledge support from scholarship CONICYT-Chile No.21141034. P.A.O. acknowledges support from FONDECYT Grant No. 1140571 and S.E.U. acknowledge support from NSF Grant No. DMR 1508325.

  19. Theoretical investigation of potential energy surface and bound states for the van der Waals complex Ar–BrCl dimer

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Rui [School of Mathematics and Information Science, North China University of Water Resources and Electric Power, Zhengzhou (China); Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Centre for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan (China); Li, Song, E-mail: lsong@yangtzeu.edu.cn [School of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou (China); Chen, Shan-Jun; Chen, Yan [School of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou (China); Zheng, Li-Min [Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Centre for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan (China)

    2015-09-08

    Highlights: • A two-dimensional potential for Ar–BrCl is constructed at the CCSD(T) level. • The PES is characterized by three minima and two saddle points between them. • Bound state calculations were carried out for the complex. - Abstract: The intermolecular potential energy surface (PES) of the ground electronic state for the Ar–BrCl dimer is constructed at the CCSD(T) level with the aug-cc-pVQZ basis set and mid-bond functions. The PES is characterized by three minima and two saddle points. The global minimum corresponding to a collinear Ar–BrCl configuration, which has been observed experimentally, is located at R = 4.10 Å and θ = 2.5° with a well depth of −285.207 cm{sup −1}. A nearly T-shaped structure and an anti-linear Ar–ClBr geometry is also predicted. The bound state calculations are preformed to study intermolecular vibrational modes, rotational levels and average structures for the complex. Our transition frequencies, spectroscopic constants and average structures for all isotopomers of the collinear isomer agree well with experimental data. We have also provided pure rotational transitional frequencies for both nearly T-shaped and anti-linear isomers. These results are significant for further experimental investigations of the Ar–BrCl dimer.

  20. Local density of states in two-dimensional topological superconductors under a magnetic field: Signature of an exterior Majorana bound state

    Science.gov (United States)

    Suzuki, Shu-Ichiro; Kawaguchi, Yuki; Tanaka, Yukio

    2018-04-01

    We study quasiparticle states on a surface of a topological insulator (TI) with proximity-induced superconductivity under an external magnetic field. An applied magnetic field creates two Majorana bound states: a vortex Majorana state localized inside a vortex core and an exterior Majorana state localized along a circle centered at the vortex core. We calculate the spin-resolved local density of states (LDOS) and demonstrate that the shrinking of the radius of the exterior Majorana state, predicted in R. S. Akzyanov et al., Phys. Rev. B 94, 125428 (2016), 10.1103/PhysRevB.94.125428, under a strong magnetic field can be seen in LDOS without smeared out by nonzero-energy states. The spin-resolved LDOS further reveals that the spin of the exterior Majorana state is strongly spin-polarized. Accordingly, the induced odd-frequency spin-triplet pairs are found to be spin-polarized as well. In order to detect the exterior Majorana states, however, the Fermi energy should be closed to the Dirac point to avoid contributions from continuum levels. We also study a different two-dimensional topological-superconducting system where a two-dimensional electron gas with the spin-orbit coupling is sandwiched between an s -wave superconductor and a ferromagnetic insulator. We show that the radius of an exterior Majorana state can be tuned by an applied magnetic field. However, on the contrary to the results at a TI surface, neither the exterior Majorana state nor the induced odd-frequency spin-triplet pairs are spin-polarized. We conclude that the spin polarization of the Majorana state is attributed to the spin-polarized Landau level, which is characteristic for systems with the Dirac-like dispersion.

  1. Shell closures, loosely bound structures, and halos in exotic nuclei

    International Nuclear Information System (INIS)

    Saxena, G.; Singh, D.

    2013-01-01

    Inspired by the recent experiments indicating doubly magic nuclei that lie near the drip-line and encouraged by the success of our relativistic mean-field (RMF) plus state-dependent BCS approach to the description of the ground-state properties of drip-line nuclei, we develop this approach further, across the entire periodic table, to explore magic nuclei, loosely bound structures, and halo formation in exotic nuclei. In our RMF+BCS approach, the single-particle continuum corresponding to the RMF is replaced by a set of discrete positive-energy states for the calculations of pairing energy. Detailed analysis of the single-particle spectrum, pairing energies, and densities of the nuclei predict the unusual proton shell closures at proton numbers Z = 6, 14, 16, 34, and unusual neutron shell closures at neutron numbers N = 6, 14, 16, 34, 40, 70, 112. Further, in several nuclei like the neutron-rich isotopes of Ca, Zr, Mo, etc., the gradual filling of lowlying single-particle resonant state together with weakly bound single-particle states lying close to the continuum threshold helps accommodate more neutrons but with an extremely small increase in the binding energy. This gives rise to the occurrence of loosely bound systems of neutron-rich nuclei with a large neutron-to-proton ratio. In general, the halo-like formation, irrespective of the existence of any resonant state, is seen to be due to the large spatial extension of the wave functions for the weakly bound single-particle states with low orbital angular momentum having very small or no centrifugal barriers.

  2. Shell closures, loosely bound structures, and halos in exotic nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Saxena, G., E-mail: gauravphy@gmail.com [Govt. Women Engineering College, Department of Physics (India); Singh, D. [University of Rajasthan, Department of Physics (India)

    2013-04-15

    Inspired by the recent experiments indicating doubly magic nuclei that lie near the drip-line and encouraged by the success of our relativistic mean-field (RMF) plus state-dependent BCS approach to the description of the ground-state properties of drip-line nuclei, we develop this approach further, across the entire periodic table, to explore magic nuclei, loosely bound structures, and halo formation in exotic nuclei. In our RMF+BCS approach, the single-particle continuum corresponding to the RMF is replaced by a set of discrete positive-energy states for the calculations of pairing energy. Detailed analysis of the single-particle spectrum, pairing energies, and densities of the nuclei predict the unusual proton shell closures at proton numbers Z = 6, 14, 16, 34, and unusual neutron shell closures at neutron numbers N = 6, 14, 16, 34, 40, 70, 112. Further, in several nuclei like the neutron-rich isotopes of Ca, Zr, Mo, etc., the gradual filling of lowlying single-particle resonant state together with weakly bound single-particle states lying close to the continuum threshold helps accommodate more neutrons but with an extremely small increase in the binding energy. This gives rise to the occurrence of loosely bound systems of neutron-rich nuclei with a large neutron-to-proton ratio. In general, the halo-like formation, irrespective of the existence of any resonant state, is seen to be due to the large spatial extension of the wave functions for the weakly bound single-particle states with low orbital angular momentum having very small or no centrifugal barriers.

  3. Highly accurate bound state calculations of the two-center molecular ions by using the universal variational expansion for three-body systems

    Science.gov (United States)

    Frolov, Alexei M.

    2018-03-01

    The universal variational expansion for the non-relativistic three-body systems is explicitly constructed. This universal expansion can be used to perform highly accurate numerical computations of the bound state spectra in various three-body systems, including Coulomb three-body systems with arbitrary particle masses and electric charges. Our main interest is related to the adiabatic three-body systems which contain one bound electron and two heavy nuclei of hydrogen isotopes: the protium p, deuterium d and tritium t. We also consider the analogous (model) hydrogen ion ∞H2+ with the two infinitely heavy nuclei.

  4. Excitations and possible bound states in the S = 1/2 alternating chain compound (VO)2P2O7

    International Nuclear Information System (INIS)

    Tennant, D.A.; Nagler, S.E.; Sales, B.C.

    1997-01-01

    Magnetic excitations in an array of (VO) 2 P 2 O 7 single crystals have been measured using inelastic neutron scattering. Until now, (VO) 2 P 2 O 7 has been thought of as a two-leg antiferromagnetic Heisenberg spin ladder with chains running in the a-direction. The present results show unequivocally that (VO) 2 P 2 O 7 is best described as an alternating spin-chain directed along the crystallographic b-direction. In addition to the expected magnon with magnetic zone-center energy gap Δ = 3.1 meV, a second excitation is observed at an energy just below 2Δ. The higher mode may be a triplet two-magnon bound state. Numerical results in support of bound modes are presented

  5. Optimization method to branch-and-bound large SBO state spaces under dynamic probabilistic risk assessment via use of LENDIT scales and S2R2 sets

    International Nuclear Information System (INIS)

    Nielsen, Joseph; Tokuhiro, Akira; Khatry, Jivan; Hiromoto, Robert

    2014-01-01

    Traditional probabilistic risk assessment (PRA) methods have been developed to evaluate risk associated with complex systems; however, PRA methods lack the capability to evaluate complex dynamic systems. In these systems, time and energy scales associated with transient events may vary as a function of transition times and energies to arrive at a different physical state. Dynamic PRA (DPRA) methods provide a more rigorous analysis of complex dynamic systems. Unfortunately DPRA methods introduce issues associated with combinatorial explosion of states. In order to address this combinatorial complexity, a branch-and-bound optimization technique is applied to the DPRA formalism to control the combinatorial state explosion. In addition, a new characteristic scaling metric (LENDIT – length, energy, number, distribution, information and time) is proposed as linear constraints that are used to guide the branch-and-bound algorithm to limit the number of possible states to be analyzed. The LENDIT characterization is divided into four groups or sets – 'state, system, resource and response' (S2R2) – describing reactor operations (normal and off-normal). In this paper we introduce the branch-and-bound DPRA approach and the application of LENDIT scales and S2R2 sets to a station blackout (SBO) transient. (author)

  6. Circuit lower bounds in bounded arithmetics

    Czech Academy of Sciences Publication Activity Database

    Pich, Ján

    2015-01-01

    Roč. 166, č. 1 (2015), s. 29-45 ISSN 0168-0072 R&D Projects: GA AV ČR IAA100190902 Keywords : bounded arithmetic * circuit lower bounds Subject RIV: BA - General Mathematics Impact factor: 0.582, year: 2015 http://www.sciencedirect.com/science/article/pii/S0168007214000888

  7. Bottom and charm mass determinations from global fits to Q\\overline{Q} bound states at N3LO

    Science.gov (United States)

    Mateu, Vicent; Ortega, Pablo G.

    2018-01-01

    The bottomonium spectrum up to n = 3 is studied within Non-Relativistic Quantum Chromodynamics up to N3LO. We consider finite charm quark mass effects both in the QCD potential and the \\overline{MS} -pole mass relation up to third order in the Y-scheme counting. The u = 1 /2 renormalon of the static potential is canceled by expressing the bottom quark pole mass in terms of the MSR mass. A careful investigation of scale variation reveals that, while n = 1 , 2 states are well behaved within perturbation theory, n = 3 bound states are no longer reliable. We carry out our analysis in the n ℓ = 3 and n ℓ = 4 schemes and conclude that, as long as finite m c effects are smoothly incorporated in the MSR mass definition, the difference between the two schemes is rather small. Performing a fit to b\\overline{b} bound states we find {\\overline{m}}_b({\\overline{m}}_b) = 4 .216 ± 0 .039 GeV. We extend our analysis to the lowest lying charmonium states finding {\\overline{m}}_c({\\overline{m}}_c) = 1 .273 ± 0 .054 GeV. Finally, we perform simultaneous fits for {\\overline{m}}_b and α s finding {α}_s^{({n}_f=5)}({m}_Z)=0.1178± 0.0051 . Additionally, using a modified version of the MSR mass with lighter massive quarks we are able to predict the uncalculated O({α}_s^4) virtual massive quark corrections to the relation between the \\overline{MS} and pole masses.

  8. The ground state energy of a bound polaron in the presence of a magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Zorkani, I [International Centre for Theoretical Physics, Trieste (Italy); Belhissi, R [Faculte des Sciences Dhar Mahraz, Fes (Morocco). Dept. de Physique

    1995-09-01

    A theoretical calculation for the ground state energy of a bound polaron as a function of the magnetic field is presented. The theory is based on a variational approach using a trial wave function proposed by Devreese et al. in the absence of the magnetic field. It was shown that his function is adequate for all electron - phonon coupling {alpha} and all parameter {gamma}{sub 0} which is the ratio between the L.O. phonon energy and the Colombian one. Analytical results are obtained in the weak coupling limit. (author). 27 refs, 4 figs, 1 tab.

  9. Big-bang nucleosynthesis through bound-state effects with a long-lived slepton in the NMSSM

    Science.gov (United States)

    Kohri, Kazunori; Koike, Masafumi; Konishi, Yasufumi; Ohta, Shingo; Sato, Joe; Shimomura, Takashi; Sugai, Kenichi; Yamanaka, Masato

    2014-08-01

    We show that the Li problems can be solved in the next-to-minimal supersymmetric standard model where the slepton as the next-to-lightest supersymmetric (SUSY) particle is very long lived. Such a long-lived slepton induces exotic nuclear reactions in big-bang nucleosynthesis, and destroys and produces the Li7 and Li6 nuclei via bound state formation. We study cases where the lightest SUSY particle is singlino-like neutralino and bino-like neutralino to present allowed regions in the parameter space, which is consistent with the observations on the dark matter and the Higgs mass.

  10. Bounds on the moment of inertia of nonrotating neutron stars

    International Nuclear Information System (INIS)

    Sabbadini, A.G.; Hartle, J.B.

    1977-01-01

    Upper and lower bounds are placed on the moments of inertia of relativistic, spherical, perfect fluid neutron stars assuming that the pressure p and density p are positive and that (dp/drho) is positive. Bounds are obtained (a) for the moment of inertia of a star with given mass and radius, (b) for the moment of inertia of neutron stars for which the equation of state is known below a given density rho/sub omicron/and (c) for the mass-moment of inertia relation for stars whose equation of state is known below a given density rho/sub omicron/The bounds are optimum ones in the sense that there always exists a configuration consistent with the assumptions having a moment of inertia equal to that of the bound. The implications of the results for the maximum mass of slowly rotating neutron stars are discussed

  11. Stable Tetraquarks

    Energy Technology Data Exchange (ETDEWEB)

    Quigg, Chris [Fermilab

    2018-04-13

    For very heavy quarks, relations derived from heavy-quark symmetry imply novel narrow doubly heavy tetraquark states containing two heavy quarks and two light antiquarks. We predict that double-beauty states will be stable against strong decays, whereas the double-charm states and mixed beauty+charm states will dissociate into pairs of heavy-light mesons. Observing a new double-beauty state through its weak decays would establish the existence of tetraquarks and illuminate the role of heavy color-antitriplet diquarks as hadron constituents.

  12. The Kadanoff lower-bound variational renormalization group applied to an SU(2) lattice spin model

    International Nuclear Information System (INIS)

    Thorleifsson, G.; Damgaard, P.H.

    1990-07-01

    We apply the variational lower-bound Renormalization Group transformation of Kadanoff to an SU(2) lattice spin model in 2 and 3 dimensions. Even in the one-hypercube framework of this renormalization group transformation the present model is characterised by having an infinite basis of fundamental operators. We investigate whether the lower-bound variational renormalization group transformation yields results stable under truncations of this operator basis. Our results show that for this particular spin model this is not the case. (orig.)

  13. Higgs boson mass bounds in the presence of a heavy fourth quark family

    Energy Technology Data Exchange (ETDEWEB)

    Bulava, John [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Gerhold, Philipp; Kallarackal, Jim; Nagy, Attila [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik; Jansen, Karl [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC

    2013-01-15

    We present Higgs boson mass bounds in a lattice regularization allowing thus for non-perturbative investigations. In particular, we employ a lattice modified chiral invariant Higgs-Yukawa model using the overlap operator. We show results for the upper and lower Higgs boson mass bounds in the presence of a heavy mass-degenerate quark doublet with masses ranging up to 700 GeV. We perform infinite volume extrapolations in most cases, and examine several values of the lattice cutoff. Furthermore, we argue that the lower Higgs boson mass bound is stable with respect to the addition of higher dimensional operators to the scalar field potential. Our results have severe consequences for the phenomenology of a fourth generation of quarks if a light Higgs boson is discovered at the LHC.

  14. Higgs boson mass bounds in the presence of a heavy fourth quark family

    CERN Document Server

    Bulava, John; Nagy, Attila; Kallarackal, Jim; Jansen, Karl

    2012-01-01

    We present Higgs boson mass bounds in a lattice regularization allowing thus for non-perturbative investigations. In particular, we employ a lattice modified chiral invariant Higgs-Yukawa model using the overlap operator. We show results for the upper and lower Higgs boson mass bounds in the presence of a heavy mass-degenerate quark doublet with masses ranging up to 700 GeV. We perform infinite volume extrapolations in most cases, and examine several values of the lattice cutoff. Furthermore, we argue that the lower Higgs boson mass bound is stable with respect to the addition of higher dimensional operators to the scalar field potential. Our results have severe consequences for the phenomenology of a fourth generation of quarks if a light Higgs boson is discovered at the LHC.

  15. Lysine-Derived Protein-Bound Heyns Compounds in Bakery Products.

    Science.gov (United States)

    Treibmann, Stephanie; Hellwig, Anne; Hellwig, Michael; Henle, Thomas

    2017-12-06

    Fructose and dicarbonyl compounds resulting from fructose in heated foods have been linked to pathophysiological pathways of several metabolic disorders. Up to now, very little has been known about the Maillard reaction of fructose in food. Heyns rearrangement compounds (HRCs), the first stable intermediates of the Maillard reaction between amino components and fructose, have not yet been quantitated as protein-bound products in food. Therefore, the HRCs glucosyllysine and mannosyllysine were synthesized and characterized by NMR. Protein-bound HRCs in cookies containing various sugars and in commercial bakery products were quantitated after enzymatic hydrolysis by RP-HPLC-ESI-MS/MS in the multiple reaction monitoring mode through application of the standard addition method. Protein-bound HRCs were quantitated for the first time in model cookies and in commercial bakery products containing honey, banana, and invert sugar syrup. Concentrations of HRCs from 19 to 287 mg/kg were found, which were similar to or exceeded the content of other frequently analyzed Maillard reaction products, such as N-ε-carboxymethyllysine (10-76 mg/kg), N-ε-carboxyethyllysine (2.5-53 mg/kg), and methylglyoxal-derived hydroimidazolone 1 (10-218 mg/kg) in the analyzed cookies. These results show that substantial amounts of HRCs form during food processing. Analysis of protein-bound HRCs in cookies is therefore useful to evaluate the Maillard reaction of fructose.

  16. Bounds on the mass and the moment of inertia of nonrotating neutron stars

    International Nuclear Information System (INIS)

    Sabbadini, A.G.

    1976-01-01

    Bounds are placed on the mass and the moment of inertia of relativistic, spherical, perfect fluid neutron stars, under minimal assumptions on the equation of state of neutron star matter above nuclear densities. The assumptions are: the pressure p, the density rho, and the derivative dp/d rho are positive. The equation of state is assumed to be known below the density rho 0 = 5 x 10 14 g/cm 3 . The upper bound on the mass of a nonrotating neutron star, under these assumptions, is found to be 5 M/sub solar mass/. Upper and lower bounds on the moment of inertia are derived: for a spherical star of given mass and radius (without assuming a specific equation of state in any density region); for a spherical neutron star of arbitrary mass and radius; for a spherical neutron star of given mass. These bounds are optimum ones, in the sense that there always exists a configuration consistent with the assumptions, having a moment of inertia equal to the bound. Using these results for the moment of inertia, the correction to the upper bound on the mass due to slow rotation is discussed

  17. Instability of hot electroweak theory: Bounds on mH and mt

    International Nuclear Information System (INIS)

    Arnold, P.; Vokos, S.

    1991-01-01

    The electroweak vacuum need not be absolutely stable. For certain top-quark and Higgs-boson masses in the minimal standard model, it is instead metastable with a lifetime exceeding the present age of the Universe. The decay of our vacuum may be nucleated at low temperature by quantum tunneling or at high temperature by thermal excitation. We show that the requirement that the vacuum survive the high temperatures of the early Universe places the strongest constraints from vacuum stability on the top-quark and Higgs-boson masses in the minimal standard model. If a single Higgs boson is found experimentally, these constraints may place an upper bound on the scale of new physics beyond the minimal standard model. In contrast with other work, we examine temperatures very large compared to the scale of weak symmetry restoration and find much stronger bounds. We also present a simple analytic approximation that directly relates the bounds to the running coupling constants of the minimal standard model

  18. Bound-bound transitions in the emission spectra of Ba+-He excimer

    Science.gov (United States)

    Moroshkin, P.; Kono, K.

    2016-05-01

    We present an experimental and theoretical study of the emission and absorption spectra of the Ba+ ions and Ba+*He excimer quasimolecules in the cryogenic Ba-He plasma. We observe several spectral features in the emission spectrum, which we assign to the electronic transitions between bound states of the excimer correlating to the 6 2P3 /2 and 5 2D3 /2 ,5 /2 states of Ba+. The resulting Ba+(5 2DJ) He is a metastable electronically excited complex with orbital angular momentum L =2 , thus expanding the family of known metal-helium quasimolecules. It might be suitable for high-resolution spectroscopic studies and for the search for new polyatomic exciplex structures.

  19. Estimation of radon progeny equilibrium factors and their uncertainty bounds using solid state nuclear track detectors

    International Nuclear Information System (INIS)

    Eappen, K.P.; Mayya, Y.S.; Patnaik, R.L.; Kushwaha, H.S.

    2006-01-01

    For the assessment of inhalation doses due to radon and its progeny to uranium mine workers, it is necessary to have information on the time integrated gas concentrations and equilibrium factors. Passive single cup dosimeters using solid state nuclear track detectors (SSNTD) are best suited for this purpose. These generally contain two SSNTDs, one placed inside the cup to measure only the radon gas concentration and other outside the cup for recording tracks due to both radon gas and the progeny species. However, since one obtains only two numbers by this method whereas information on four quantities is required for an unambiguous estimation of dose, there is a need for developing an optimal methodology for extracting information on the equilibrium factors. Several techniques proposed earlier have essentially been based on deterministic approaches, which do not fully take into account all the possible uncertainties in the environmental parameters. Keeping this in view, a simple 'mean of bounds' methodology is proposed to extract equilibrium factors based on their absolute bounds and the associated uncertainties as obtained from general arguments of radon progeny disequilibrium. This may be considered as reasonable estimates of the equilibrium factors in the absence of a knowledge of fluctuation in the environmental variables. The results are compared with those from direct measurements both in the laboratory and in real field situations. In view of the good agreement found between these, it is proposed that the simple mean of bounds estimate may be useful for practical applications in inhalation dosimetry of mine workers

  20. Information-entropic stability bound for compact objects: Application to Q-balls and the Chandrasekhar limit of polytropes

    Energy Technology Data Exchange (ETDEWEB)

    Gleiser, Marcelo, E-mail: mgleiser@dartmouth.edu; Sowinski, Damian, E-mail: Damian.Sowinski.GR@dartmouth.edu

    2013-11-25

    Spatially-bound objects across diverse length and energy scales are characterized by a binding energy. We propose that their spatial structure is mathematically encoded as information in their momentum modes and described by a measure known as configurational entropy (CE) [1]. Investigating solitonic Q-balls and stars with a polytropic equation of state P=Kρ{sup γ}, we show that objects with large binding energy have low CE, whereas those at the brink of instability (zero binding energy) have near maximal CE. In particular, we use the CE to find the critical charge allowing for classically stable Q-balls and the Chandrasekhar limit for white dwarfs (γ=4/3) with an accuracy of a few percent.

  1. Perceptron Mistake Bounds

    OpenAIRE

    Mohri, Mehryar; Rostamizadeh, Afshin

    2013-01-01

    We present a brief survey of existing mistake bounds and introduce novel bounds for the Perceptron or the kernel Perceptron algorithm. Our novel bounds generalize beyond standard margin-loss type bounds, allow for any convex and Lipschitz loss function, and admit a very simple proof.

  2. Three-body unitary transformations, three-body forces, and trinucleon bound state properties

    International Nuclear Information System (INIS)

    Haftel, M.I.

    1976-01-01

    A three-body unitary transformation method for the study of three-body forces is presented. Starting with a three-body Hamiltonian with two-body forces, unitary transformations are introduced to generate Hamiltonians that have both two- and three-body forces. For cases of physical interest, the two-body forces of the altered Hamiltonians are phase equivalent (for two-body scattering) to the original and the three-body force vanishes when any interparticle distance is large. Specific examples are presented. Applications for studying the possible role of three-body forces in accounting for trinucleon bound state properties are examined. Calculations of the 3 He and 3 H charge form factors and Coulomb energy difference with hyperspherical radial transformations and with conventional N-N potentials are performed. The form factor calculations demonstrate how the proposed method can help obtain improved agreement with experiment by the introduction of appropriate three-body forces. Calculations of the Coulomb energy difference confirm previous estimates concerning charge symmetry breaking in the N-N interaction

  3. Bound states in the continuum on periodic structures surrounded by strong resonances

    Science.gov (United States)

    Yuan, Lijun; Lu, Ya Yan

    2018-04-01

    Bound states in the continuum (BICs) are trapped or guided modes with their frequencies in the frequency intervals of the radiation modes. On periodic structures, a BIC is surrounded by a family of resonant modes with their quality factors approaching infinity. Typically the quality factors are proportional to 1 /|β - β*|2 , where β and β* are the Bloch wave vectors of the resonant modes and the BIC, respectively. But for some special BICs, the quality factors are proportional to 1 /|β - β*|4 . In this paper, a general condition is derived for such special BICs on two-dimensional periodic structures. As a numerical example, we use the general condition to calculate special BICs, which are antisymmetric standing waves, on a periodic array of circular cylinders, and show their dependence on parameters. The special BICs are important for practical applications, because they produce resonances with large quality factors for a very large range of β .

  4. Recoil effects in the hyperfine structure of QED bound states

    International Nuclear Information System (INIS)

    Bodwin, G.T.; Yennie, D.R.; Gregorio, M.A.

    1985-01-01

    The authors give a general discussion of the derivation from field theory of a formalism for the perturbative solution of the relativistic two-body problem. The lowest-order expression for the four-point function is given in terms of a two-particle three-dimensional propagator in a static potential. It is obtained by fixing the loop energy in the four-dimensional formalism at a point which is independent of the loop momentum and is symmetric in the two particle variables. This method avoids awkward positive- and negative-energy projectors, with their attendant energy square roots, and allows one to recover the Dirac equation straightforwardly in the nonrecoil limit. The perturbations appear as a variety of four-dimensional kernels which are rearranged and regrouped into convenient sets. In particular, they are transformed from the Coulomb to the Feynman gauge, which greatly simplifies the expressions that must be evaluated. Although the approach is particularly convenient for the precision analysis of QED bound states, it is not limited to such applications. The authors use it to give the first unified treatment of all presently known recoil corrections to the muonium hyperfine structure and also to verify the corresponding contributions through order α 2 lnαE/sub F/ in positronium. The required integrals are evaluated analytically

  5. Sliding Mode Control for Pressurized-Water Nuclear Reactors in load following operations with bounded xenon oscillations

    International Nuclear Information System (INIS)

    Ansarifar, G.R.; Saadatzi, S.

    2015-01-01

    Highlights: • We present SMC which is a robust nonlinear controller to control the PWR power. • Xenon oscillations are kept bounded within acceptable limits. • The stability analysis has been based on Lyapunov approach. • Simulation results indicate the high performance of this new control. - Abstract: One of the important operations in nuclear power plants is load-following in which imbalance of axial power distribution induces xenon oscillations. These oscillations must be maintained within acceptable limits otherwise the nuclear power plant could become unstable. Therefore, bounded xenon oscillation considered to be a constraint for the load-following operation. In this paper, sliding mode control (SMC) which is a robust nonlinear controller is designed to control the Pressurized-Water Nuclear Reactor (PWR) power for the load-following operation problem that ensures xenon oscillations are kept bounded within acceptable limits. The proposed controller uses constant axial offset (AO) strategy to maintain xenon oscillations to be bounded. The constant AO is a robust state constraint for load-following problem. The reactor core is simulated based on the two-point nuclear reactor model and one delayed neutron group. The stability analysis is given by means Lyapunov approach, thus the control system is guaranteed to be stable within a large range. The employed method is easy to implement in practical applications and moreover, the sliding mode control exhibits the desired dynamic properties during the entire output-tracking process independent of perturbations. Simulation results are presented to demonstrate the effectiveness of the proposed controller in terms of performance, robustness and stability. Results show that the proposed controller for the load-following operation is sufficiently effective so that the xenon oscillations are kept bounded in the considered region

  6. Cyclotron transitions of bound ions

    Science.gov (United States)

    Bezchastnov, Victor G.; Pavlov, George G.

    2017-06-01

    A charged particle in a magnetic field possesses discrete energy levels associated with particle rotation around the field lines. The radiative transitions between these levels are the well-known cyclotron transitions. We show that a bound complex of particles with a nonzero net charge displays analogous transitions between the states of confined motion of the entire complex in the field. The latter bound-ion cyclotron transitions are affected by a coupling between the collective and internal motions of the complex and, as a result, differ from the transitions of a "reference" bare ion with the same mass and charge. We analyze the cyclotron transitions for complex ions by including the coupling within a rigorous quantum approach. Particular attention is paid to comparison of the transition energies and oscillator strengths to those of the bare ion. Selection rules based on integrals of collective motion are derived for the bound-ion cyclotron transitions analytically, and the perturbation and coupled-channel approaches are developed to study the transitions quantitatively. Representative examples are considered and discussed for positive and negative atomic and cluster ions.

  7. On Nash Equilibrium and Evolutionarily Stable States That Are Not Characterised by the Folk Theorem.

    Directory of Open Access Journals (Sweden)

    Jiawei Li

    Full Text Available In evolutionary game theory, evolutionarily stable states are characterised by the folk theorem because exact solutions to the replicator equation are difficult to obtain. It is generally assumed that the folk theorem, which is the fundamental theory for non-cooperative games, defines all Nash equilibria in infinitely repeated games. Here, we prove that Nash equilibria that are not characterised by the folk theorem do exist. By adopting specific reactive strategies, a group of players can be better off by coordinating their actions in repeated games. We call it a type-k equilibrium when a group of k players coordinate their actions and they have no incentive to deviate from their strategies simultaneously. The existence and stability of the type-k equilibrium in general games is discussed. This study shows that the sets of Nash equilibria and evolutionarily stable states have greater cardinality than classic game theory has predicted in many repeated games.

  8. On Nash Equilibrium and Evolutionarily Stable States That Are Not Characterised by the Folk Theorem

    Science.gov (United States)

    Li, Jiawei; Kendall, Graham

    2015-01-01

    In evolutionary game theory, evolutionarily stable states are characterised by the folk theorem because exact solutions to the replicator equation are difficult to obtain. It is generally assumed that the folk theorem, which is the fundamental theory for non-cooperative games, defines all Nash equilibria in infinitely repeated games. Here, we prove that Nash equilibria that are not characterised by the folk theorem do exist. By adopting specific reactive strategies, a group of players can be better off by coordinating their actions in repeated games. We call it a type-k equilibrium when a group of k players coordinate their actions and they have no incentive to deviate from their strategies simultaneously. The existence and stability of the type-k equilibrium in general games is discussed. This study shows that the sets of Nash equilibria and evolutionarily stable states have greater cardinality than classic game theory has predicted in many repeated games. PMID:26288088

  9. Insight into partial agonism by observing multiple equilibria for ligand-bound and Gs-mimetic nanobody-bound β1-adrenergic receptor.

    Science.gov (United States)

    Solt, Andras S; Bostock, Mark J; Shrestha, Binesh; Kumar, Prashant; Warne, Tony; Tate, Christopher G; Nietlispach, Daniel

    2017-11-27

    A complex conformational energy landscape determines G-protein-coupled receptor (GPCR) signalling via intracellular binding partners (IBPs), e.g., G s and β-arrestin. Using 13 C methyl methionine NMR for the β 1 -adrenergic receptor, we identify ligand efficacy-dependent equilibria between an inactive and pre-active state and, in complex with G s -mimetic nanobody, between more and less active ternary complexes. Formation of a basal activity complex through ligand-free nanobody-receptor interaction reveals structural differences on the cytoplasmic receptor side compared to the full agonist-bound nanobody-coupled form, suggesting that ligand-induced variations in G-protein interaction underpin partial agonism. Significant differences in receptor dynamics are observed ranging from rigid nanobody-coupled states to extensive μs-to-ms timescale dynamics when bound to a full agonist. We suggest that the mobility of the full agonist-bound form primes the GPCR to couple to IBPs. On formation of the ternary complex, ligand efficacy determines the quality of the interaction between the rigidified receptor and an IBP and consequently the signalling level.

  10. Cooperation of CMEA member states in the field of the manufacture and use of stable isotopes and compounds thus labelled

    International Nuclear Information System (INIS)

    Ertel, G.; Ewald, G.

    1977-01-01

    The contribution presents a survey of scientific-technical cooperation of CMEA member states in the field of stable isotopes, it deals with the specialization of stable isotope production and compounds thus labelled, and gives the prospects for further development of this cooperation. (HK) [de

  11. Nonlinear behaviors of a bounded electron beam-plasma system

    International Nuclear Information System (INIS)

    Iizuka, Satoru; Saeki, Koichi; Sato, Noriyoshi; Hatta, Yoshisuke

    1985-01-01

    Nonlinear developments of a bounded electron beam-plasma system including stationary electrons are investigated experimentally. A stable double layer is formed as a result of ion trapping in a growing negative potential dip induced by the Pierce instability above the current regime of the Buneman instability. In the in-between regime of the Buneman and Pierce instabilities, energetic ions are observed. This effective ion heating is caused by ion detrapping due to double-layer disruption, being consistent with computer simulation. (author)

  12. Precision Measurement of the Position-Space Wave Functions of Gravitationally Bound Ultracold Neutrons

    Directory of Open Access Journals (Sweden)

    Y. Kamiya

    2014-01-01

    Full Text Available Gravity is the most familiar force at our natural length scale. However, it is still exotic from the view point of particle physics. The first experimental study of quantum effects under gravity was performed using a cold neutron beam in 1975. Following this, an investigation of gravitationally bound quantum states using ultracold neutrons was started in 2002. This quantum bound system is now well understood, and one can use it as a tunable tool to probe gravity. In this paper, we review a recent measurement of position-space wave functions of such gravitationally bound states and discuss issues related to this analysis, such as neutron loss models in a thin neutron guide, the formulation of phase space quantum mechanics, and UCN position sensitive detectors. The quantum modulation of neutron bound states measured in this experiment shows good agreement with the prediction from quantum mechanics.

  13. Output controllability of nonlinear systems with bounded control

    International Nuclear Information System (INIS)

    Garcia, Rafael; D'Attellis, Carlos

    1990-01-01

    The control problem treated in this paper is the output controllability of a nonlinear system in the form: x = f(x) + g(x)u(t); y = h(x), using bounded controls. The approach to the problem consists of a modification in the system using dynamic feedback in such a way that the input/output behaviour of the closed loop matches the input/output behaviour of a completely output-controllable system with bounded controls. Sufficient conditions are also put forward on the system so that a compact set in the output space may be reached in finite time using uniformally bounded controls, and a result on output regulation in finite time with asymptotic state stabilization is obtained. (Author)

  14. Bound state solution of Dirac equation for Hulthen plus trigonometric Rosen Morse non-central potential using Romanovski polynomial

    Energy Technology Data Exchange (ETDEWEB)

    Suparmi, A., E-mail: suparmiuns@gmail.com; Cari, C., E-mail: suparmiuns@gmail.com [Physics Department, Post Graduate Study, Sebelas Maret University (Indonesia); Angraini, L. M. [Physics Department, Mataram University (Indonesia)

    2014-09-30

    The bound state solutions of Dirac equation for Hulthen and trigonometric Rosen Morse non-central potential are obtained using finite Romanovski polynomials. The approximate relativistic energy spectrum and the radial wave functions which are given in terms of Romanovski polynomials are obtained from solution of radial Dirac equation. The angular wave functions and the orbital quantum number are found from angular Dirac equation solution. In non-relativistic limit, the relativistic energy spectrum reduces into non-relativistic energy.

  15. Realization of Multi-Stable Ground States in a Nematic Liquid Crystal by Surface and Electric Field Modification

    Science.gov (United States)

    Gwag, Jin Seog; Kim, Young-Ki; Lee, Chang Hoon; Kim, Jae-Hoon

    2015-06-01

    Owing to the significant price drop of liquid crystal displays (LCDs) and the efforts to save natural resources, LCDs are even replacing paper to display static images such as price tags and advertising boards. Because of a growing market demand on such devices, the LCD that can be of numerous surface alignments of directors as its ground state, the so-called multi-stable LCD, comes into the limelight due to the great potential for low power consumption. However, the multi-stable LCD with industrial feasibility has not yet been successfully performed. In this paper, we propose a simple and novel configuration for the multi-stable LCD. We demonstrate experimentally and theoretically that a battery of stable surface alignments can be achieved by the field-induced surface dragging effect on an aligning layer with a weak surface anchoring. The simplicity and stability of the proposed system suggest that it is suitable for the multi-stable LCDs to display static images with low power consumption and thus opens applications in various fields.

  16. Stieltjes electrostatic model interpretation for bound state problems

    Indian Academy of Sciences (India)

    moving imaginary charges i¯h is given by the logarithm of the wave function. For an exactly solvable potential, this system attains stable equilibrium position at the zeros of the orthogonal polynomials depending upon the interval of the classical turning points. Keywords. Orthogonal polynomials; quantum Hamilton Jacobi ...

  17. Lower bounds on scintillation detector timing performance

    International Nuclear Information System (INIS)

    Clinthorne, N.H.; Rogers, W.L.; Hero, A.O. III.; Petrick, N.A.

    1990-01-01

    Fundamental method-independent limits on the timing performance of scintillation detectors are useful for identifying regimes in which either present timing methods are nearly optimal or where a considerable performance gain might be realized using better pulse processing techniques. Several types of lower bounds on mean-squared timing error (MSE) performance have been developed and applied to scintillation detectors. The simple Cramer-Rao (CR) bound can be useful in determining the limiting MSE for scintillators having a relatively high rate of photon problction such as BaF 2 and NaI(Tl); however, it tends to overestimate the achievalbe performance for scintillators with lower rates such as BGO. For this reason, alternative bounds have been developed using rate-distortion theory or by assuming that the conversion of energy to scintillation light must pass through excited states which have exponential lifetime densities. The bounds are functions of the mean scintillation pulse shape, the scintillation intensity, and photodetector characteristics; they are simple to evaluate and can be used to conveniently assess the limiting timing performance of scintillation detectors. (orig.)

  18. Bounding the effects of social experiments: accounting for attrition in administrative data.

    Science.gov (United States)

    Grogger, Jeffrey

    2012-12-01

    Social experiments frequently exploit data from administrative records. However, most administrative data systems are designed to track earnings or benefit payments among residents within a single state. When an experimental participant moves across state lines, his entries in the data system of his state of origin consist entirely of zeros. Such attrition may bias the estimated effect of the experiment. To estimate the attrition arising from interstate mobility and provide bounds on the effect of the experiment. Attrition is estimated from runs of zeros at the end of the sample period. Bounds are constructed from these estimates. These estimates can be refined by imposing a stationarity assumption. The width of the estimated bounds depends importantly on the nature of the data being analyzed. Negatively correlated outcomes provide tighter bounds than positively correlated outcomes. Attrition can introduce considerable ambiguity into the estimated effects of experimental programs. To reduce ambiguity, one should collect as much data as possible. Even data on outcomes of no direct interest to the objectives of the experiment may be valuable for reducing the ambiguity that arises due to attrition.

  19. Capacity bounds for parallel IM-DD optical wireless channels

    KAUST Repository

    Chaaban, Anas; Rezki, Zouheir; Alouini, Mohamed-Slim

    2016-01-01

    A system consisting of parallel intensity-modulation direct-detection optical wireless channels with a total average intensity constraint is studied. Capacity upper and lower bounds for this system are derived. If channel-state information is available at the transmitter, the bounds have to be optimized with respect to intensity allocation over the parallel channels. The optimization of the lower bound is non-convex, however, the Karush-Kuhn-Tucker conditions can be used to find a list of possible solutions one of which is optimal. The optimal solution can then be found by an exhaustive search algorithm, which is computationally expensive. To overcome this, we propose a low-complexity intensity allocation algorithm which is nearly optimal. The optimized capacity lower bound coincides with the capacity at high signal-to-noise ratio. © 2016 IEEE.

  20. Capacity bounds for parallel IM-DD optical wireless channels

    KAUST Repository

    Chaaban, Anas

    2016-07-26

    A system consisting of parallel intensity-modulation direct-detection optical wireless channels with a total average intensity constraint is studied. Capacity upper and lower bounds for this system are derived. If channel-state information is available at the transmitter, the bounds have to be optimized with respect to intensity allocation over the parallel channels. The optimization of the lower bound is non-convex, however, the Karush-Kuhn-Tucker conditions can be used to find a list of possible solutions one of which is optimal. The optimal solution can then be found by an exhaustive search algorithm, which is computationally expensive. To overcome this, we propose a low-complexity intensity allocation algorithm which is nearly optimal. The optimized capacity lower bound coincides with the capacity at high signal-to-noise ratio. © 2016 IEEE.

  1. Lieb-Robinson Bound and the Butterfly Effect in Quantum Field Theories.

    Science.gov (United States)

    Roberts, Daniel A; Swingle, Brian

    2016-08-26

    As experiments are increasingly able to probe the quantum dynamics of systems with many degrees of freedom, it is interesting to probe fundamental bounds on the dynamics of quantum information. We elaborate on the relationship between one such bound-the Lieb-Robinson bound-and the butterfly effect in strongly coupled quantum systems. The butterfly effect implies the ballistic growth of local operators in time, which can be quantified with the "butterfly" velocity v_{B}. Similarly, the Lieb-Robinson velocity places a state-independent ballistic upper bound on the size of time evolved operators in nonrelativistic lattice models. Here, we argue that v_{B} is a state-dependent effective Lieb-Robinson velocity. We study the butterfly velocity in a wide variety of quantum field theories using holography and compare with free-particle computations to understand the role of strong coupling. We find that v_{B} remains constant or decreases with decreasing temperature. We also comment on experimental prospects and on the relationship between the butterfly velocity and signaling.

  2. Relativistic actions for bound-states and applications in the meson spectroscopy; Acoes relativisticas para estados ligados e aplicacoes na espectroscopia de mesons

    Energy Technology Data Exchange (ETDEWEB)

    Silva Carvalho, Hendly da

    1991-08-01

    We study relativistic equations for bound states of two-body systems using Dirac`s constraint formalism and supersymmetry. The two-body system can be of spinless particles, one of them spinning and the other one spinless, or both of them spinning. The interaction is described by scalar, timelike four-vector and spacelike four-vector potentials under Lorentz transformations. As an application we use the relativistic wave equation for two scalar particles and calculate the mass spectra of the mesons treating them as spinless quark-antiquark bound states. The interaction potential in this case is a convenient adaptation of the potential employed in non-relativistic calculations. Finally, we compare our results with more recent experimental data and with theoretical results obtained with the same potential used by us but with a non-relativistic wave equation. We also compare our results with results obtained with the relativistic wave equation but with a different interaction potential. (author). 38 refs, 9 figs, 8 tabs.

  3. Solving binary-state multi-objective reliability redundancy allocation series-parallel problem using efficient epsilon-constraint, multi-start partial bound enumeration algorithm, and DEA

    International Nuclear Information System (INIS)

    Khalili-Damghani, Kaveh; Amiri, Maghsoud

    2012-01-01

    In this paper, a procedure based on efficient epsilon-constraint method and data envelopment analysis (DEA) is proposed for solving binary-state multi-objective reliability redundancy allocation series-parallel problem (MORAP). In first module, a set of qualified non-dominated solutions on Pareto front of binary-state MORAP is generated using an efficient epsilon-constraint method. In order to test the quality of generated non-dominated solutions in this module, a multi-start partial bound enumeration algorithm is also proposed for MORAP. The performance of both procedures is compared using different metrics on well-known benchmark instance. The statistical analysis represents that not only the proposed efficient epsilon-constraint method outperform the multi-start partial bound enumeration algorithm but also it improves the founded upper bound of benchmark instance. Then, in second module, a DEA model is supplied to prune the generated non-dominated solutions of efficient epsilon-constraint method. This helps reduction of non-dominated solutions in a systematic manner and eases the decision making process for practical implementations. - Highlights: ► A procedure based on efficient epsilon-constraint method and DEA was proposed for solving MORAP. ► The performance of proposed procedure was compared with a multi-start PBEA. ► Methods were statistically compared using multi-objective metrics.

  4. Entropy stable high order discontinuous Galerkin methods for ideal compressible MHD on structured meshes

    Science.gov (United States)

    Liu, Yong; Shu, Chi-Wang; Zhang, Mengping

    2018-02-01

    We present a discontinuous Galerkin (DG) scheme with suitable quadrature rules [15] for ideal compressible magnetohydrodynamic (MHD) equations on structural meshes. The semi-discrete scheme is analyzed to be entropy stable by using the symmetrizable version of the equations as introduced by Godunov [32], the entropy stable DG framework with suitable quadrature rules [15], the entropy conservative flux in [14] inside each cell and the entropy dissipative approximate Godunov type numerical flux at cell interfaces to make the scheme entropy stable. The main difficulty in the generalization of the results in [15] is the appearance of the non-conservative "source terms" added in the modified MHD model introduced by Godunov [32], which do not exist in the general hyperbolic system studied in [15]. Special care must be taken to discretize these "source terms" adequately so that the resulting DG scheme satisfies entropy stability. Total variation diminishing / bounded (TVD/TVB) limiters and bound-preserving limiters are applied to control spurious oscillations. We demonstrate the accuracy and robustness of this new scheme on standard MHD examples.

  5. Strong Dependence of Hydration State of F-Actin on the Bound Mg(2+)/Ca(2+) Ions.

    Science.gov (United States)

    Suzuki, Makoto; Imao, Asato; Mogami, George; Chishima, Ryotaro; Watanabe, Takahiro; Yamaguchi, Takaya; Morimoto, Nobuyuki; Wazawa, Tetsuichi

    2016-07-21

    Understanding of the hydration state is an important issue in the chemomechanical energetics of versatile biological functions of polymerized actin (F-actin). In this study, hydration-state differences of F-actin by the bound divalent cations are revealed through precision microwave dielectric relaxation (DR) spectroscopy. G- and F-actin in Ca- and Mg-containing buffer solutions exhibit dual hydration components comprising restrained water with DR frequency f2 (fw). The hydration state of F-actin is strongly dependent on the ionic composition. In every buffer tested, the HMW signal Dhyme (≡ (f1 - fw)δ1/(fwδw)) of F-actin is stronger than that of G-actin, where δw is DR-amplitude of bulk solvent and δ1 is that of HMW in a fixed-volume ellipsoid containing an F-actin and surrounding water in solution. Dhyme value of F-actin in Ca2.0-buffer (containing 2 mM Ca(2+)) is markedly higher than in Mg2.0-buffer (containing 2 mM Mg(2+)). Moreover, in the presence of 2 mM Mg(2+), the hydration state of F-actin is changed by adding a small fraction of Ca(2+) (∼0.1 mM) and becomes closer to that of the Ca-bound form in Ca2.0-buffer. This is consistent with the results of the partial specific volume and the Cotton effect around 290 nm in the CD spectra, indicating a change in the tertiary structure and less apparent change in the secondary structure of actin. The number of restrained water molecules per actin (N2) is estimated to be 1600-2100 for Ca2.0- and F-buffer and ∼2500 for Mg2.0-buffer at 10-15 °C. These numbers are comparable to those estimated from the available F-actin atomic structures as in the first water layer. The number of HMW molecules is roughly explained by the volume between the equipotential surface of -kT/2e and the first water layer of the actin surface by solving the Poisson-Boltzmann equation using UCSF Chimera.

  6. Bound states in the continuum and Fano antiresonance in electronic transport through a four-quantum-dot system

    International Nuclear Information System (INIS)

    Yan Junxia; Fu Huahua

    2013-01-01

    We study the electronic transport through a four-quantum-dot (FQD) structure with a diamond-like shape through nonequilibrium Green's function theory. It is observed that the bound state in the continuum (BIC) appears in this multiple QDs system, and the position of the BIC in the total density of states (TDOS) spectrum is tightly determined by the strength of the electronic hopping between the upper QD and the lower one. As the symmetry in the energy levels in these two QDs is broken, the BIC is suppressed to a general conductance peak with a finite width, and meanwhile a Fano-type antiresonance with a zero point appears in the conductance spectrum. These results will develop our understanding of the BICs and their spintronic device applications of spin filter and quantum computing.

  7. Search for Stable Hadronising Squarks and Gluinos at the ATLAS Experiment at the LHC

    CERN Document Server

    Aad, Georges; Abdallah, Jalal; Abdelalim, Ahmed Ali; Abdesselam, Abdelouahab; Abdinov, Ovsat; Abi, Babak; Abolins, Maris; Abramowicz, Halina; Abreu, Henso; Acerbi, Emilio; Acharya, Bobby Samir; Adams, David; Addy, Tetteh; Adelman, Jahred; Aderholz, Michael; Adomeit, Stefanie; Adragna, Paolo; Adye, Tim; Aefsky, Scott; Aguilar-Saavedra, Juan Antonio; Aharrouche, Mohamed; Ahlen, Steven; Ahles, Florian; Ahmad, Ashfaq; Ahsan, Mahsana; Aielli, Giulio; Akdogan, Taylan; Akesson, Torsten Paul; Akimoto, Ginga; Akimov, Andrei; Alam, Mohammad; Alam, Muhammad Aftab; Albrand, Solveig; Aleksa, Martin; Aleksandrov, Igor; Aleppo, Mario; Alessandria, Franco; Alexa, Calin; Alexander, Gideon; Alexandre, Gauthier; Alexopoulos, Theodoros; Alhroob, Muhammad; Aliev, Malik; Alimonti, Gianluca; Alison, John; Aliyev, Magsud; Allport, Phillip; Allwood-Spiers, Sarah; Almond, John; Aloisio, Alberto; Alon, Raz; Alonso, Alejandro; Alviggi, Mariagrazia; Amako, Katsuya; Amaral, Pedro; Amelung, Christoph; Ammosov, Vladimir; Amorim, Antonio; Amoros, Gabriel; Amram, Nir; Anastopoulos, Christos; Andeen, Timothy; Anders, Christoph Falk; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Andrieux, Marie-Laure; Anduaga, Xabier; Angerami, Aaron; Anghinolfi, Francis; Anjos, Nuno; Annovi, Alberto; Antonaki, Ariadni; Antonelli, Mario; Antonelli, Stefano; Antos, Jaroslav; Anulli, Fabio; Aoun, Sahar; Aperio Bella, Ludovica; Apolle, Rudi; Arabidze, Giorgi; Aracena, Ignacio; Arai, Yasuo; Arce, Ayana; Archambault, John-Paul; Arfaoui, Samir; Arguin, Jean-Francois; Arik, Engin; Arik, Metin; Armbruster, Aaron James; Arnaez, Olivier; Arnault, Christian; Artamonov, Andrei; Artoni, Giacomo; Arutinov, David; Asai, Shoji; Asfandiyarov, Ruslan; Ask, Stefan; Asman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astbury, Alan; Astvatsatourov, Anatoli; Atoian, Grigor; Aubert, Bernard; Auerbach, Benjamin; Auge, Etienne; Augsten, Kamil; Aurousseau, Mathieu; Austin, Nicholas; Avramidou, Rachel Maria; Axen, David; Ay, Cano; Azuelos, Georges; Azuma, Yuya; Baak, Max; Baccaglioni, Giuseppe; Bacci, Cesare; Bach, Andre; Bachacou, Henri; Bachas, Konstantinos; Bachy, Gerard; Backes, Moritz; Backhaus, Malte; Badescu, Elisabeta; Bagnaia, Paolo; Bahinipati, Seema; Bai, Yu; Bailey, David; Bain, Travis; Baines, John; Baker, Oliver Keith; Baker, Mark; Baker, Sarah; Baltasar Dos Santos Pedrosa, Fernando; Banas, Elzbieta; Banerjee, Piyali; Banerjee, Swagato; Banfi, Danilo; Bangert, Andrea Michelle; Bansal, Vikas; Bansil, Hardeep Singh; Barak, Liron; Baranov, Sergei; Barashkou, Andrei; Galtieri, Angela Barbaro; Barber, Tom; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Bardin, Dmitri; Barillari, Teresa; Barisonzi, Marcello; Barklow, Timothy; Barlow, Nick; Barnett, Bruce; Barnett, Michael; Baroncelli, Antonio; Barr, Alan; Barreiro, Fernando; Barreiro Guimaraes da Costa, Joao; Barrillon, Pierre; Bartoldus, Rainer; Barton, Adam Edward; Bartsch, Detlef; Bates, Richard; Batkova, Lucia; Batley, Richard; Battaglia, Andreas; Battistin, Michele; Battistoni, Giuseppe; Bauer, Florian; Bawa, Harinder Singh; Beare, Brian; Beau, Tristan; Beauchemin, Pierre-Hugues; Beccherle, Roberto; Bechtle, Philip; Beck, Hans Peter; Beckingham, Matthew; Becks, Karl-Heinz; Beddall, Andrew; Beddall, Ayda; Bednyakov, Vadim; Bee, Christopher; Begel, Michael; Behar Harpaz, Silvia; Behera, Prafulla; Beimforde, Michael; Belanger-Champagne, Camille; Bell, Paul; Bell, William; Bella, Gideon; Bellagamba, Lorenzo; Bellina, Francesco; Bellomo, Giovanni; Bellomo, Massimiliano; Belloni, Alberto; Beloborodova, Olga; Belotskiy, Konstantin; Beltramello, Olga; Ben Ami, Sagi; Benary, Odette; Benchekroun, Driss; Benchouk, Chafik; Bendel, Markus; Benedict, Brian Hugues; Benekos, Nektarios; Benhammou, Yan; Benjamin, Douglas; Benoit, Mathieu; Bensinger, James; Benslama, Kamal; Bentvelsen, Stan; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Berghaus, Frank; Berglund, Elina; Beringer, Jurg; Bernardet, Karim; Bernat, Pauline; Bernhard, Ralf; Bernius, Catrin; Berry, Tracey; Bertin, Antonio; Bertinelli, Francesco; Bertolucci, Federico; Besana, Maria Ilaria; Besson, Nathalie; Bethke, Siegfried; Bhimji, Wahid; Bianchi, Riccardo-Maria; Bianco, Michele; Biebel, Otmar; Bieniek, Stephen Paul; Biesiada, Jed; Biglietti, Michela; Bilokon, Halina; Bindi, Marcello; Binet, Sebastien; Bingul, Ahmet; Bini, Cesare; Biscarat, Catherine; Bitenc, Urban; Black, Kevin; Blair, Robert; Blanchard, Jean-Baptiste; Blanchot, Georges; Blocker, Craig; Blocki, Jacek; Blondel, Alain; Blum, Walter; Blumenschein, Ulrike; Bobbink, Gerjan; Bobrovnikov, Victor; Bocci, Andrea; Boddy, Christopher Richard; Boehler, Michael; Boek, Jennifer; Boelaert, Nele; Boser, Sebastian; Bogaerts, Joannes Andreas; Bogdanchikov, Alexander; Bogouch, Andrei; Bohm, Christian; Boisvert, Veronique; Bold, Tomasz; Boldea, Venera; Bona, Marcella; Bondarenko, Valery; Boonekamp, Maarten; Boorman, Gary; Booth, Chris; Booth, Peter; Bordoni, Stefania; Borer, Claudia; Borisov, Anatoly; Borissov, Guennadi; Borjanovic, Iris; Borroni, Sara; Bos, Kors; Boscherini, Davide; Bosman, Martine; Boterenbrood, Hendrik; Botterill, David; Bouchami, Jihene; Boudreau, Joseph; Bouhova-Thacker, Evelina Vassileva; Boulahouache, Chaouki; Bourdarios, Claire; Bousson, Nicolas; Boveia, Antonio; Boyd, James; Boyko, Igor; Bozhko, Nikolay; Bozovic-Jelisavcic, Ivanka; Bracinik, Juraj; Braem, Andre; Brambilla, Elena; Branchini, Paolo; Brandenburg, George; Brandt, Andrew; Brandt, Gerhard; Brandt, Oleg; Bratzler, Uwe; Brau, Benjamin; Brau, James; Braun, Helmut; Brelier, Bertrand; Bremer, Johan; Brenner, Richard; Bressler, Shikma; Breton, Dominique; Brett, Nicolas; Bright-Thomas, Paul; Britton, Dave; Brochu, Frederic; Brock, Ian; Brock, Raymond; Brodbeck, Timothy; Brodet, Eyal; Broggi, Francesco; Bromberg, Carl; Brooijmans, Gustaaf; Brooks, William; Brown, Gareth; Brubaker, Erik; Bruckman de Renstrom, Pawel; Bruncko, Dusan; Bruneliere, Renaud; Brunet, Sylvie; Bruni, Alessia; Bruni, Graziano; Bruschi, Marco; Buanes, Trygve; Bucci, Francesca; Buchanan, James; Buchanan, Norman; Buchholz, Peter; Buckingham, Ryan; Buckley, Andrew; Buda, Stelian Ioan; Budagov, Ioulian; Budick, Burton; Buscher, Volker; Bugge, Lars; Buira-Clark, Daniel; Buis, Ernst-Jan; Bulekov, Oleg; Bunse, Moritz; Buran, Torleiv; Burckhart, Helfried; Burdin, Sergey; Burgess, Thomas; Burke, Stephen; Busato, Emmanuel; Bussey, Peter; Buszello, Claus-Peter; Butin, Francois; Butler, Bart; Butler, John; Buttar, Craig; Butterworth, Jonathan; Buttinger, William; Byatt, Tom; Cabrera Urban, Susana; Caccia, Massimo; Caforio, Davide; Cakir, Orhan; Calafiura, Paolo; Calderini, Giovanni; Calfayan, Philippe; Calkins, Robert; Caloba, Luiz; Caloi, Rita; Calvet, David; Calvet, Samuel; Camacho Toro, Reina; Camard, Arnaud; Camarri, Paolo; Cambiaghi, Mario; Cameron, David; Cammin, Jochen; Campana, Simone; Campanelli, Mario; Canale, Vincenzo; Canelli, Florencia; Canepa, Anadi; Cantero, Josu; Capasso, Luciano; Garrido, Maria Del Mar Capeans; Caprini, Irinel; Caprini, Mihai; Capriotti, Daniele; Capua, Marcella; Caputo, Regina; Caramarcu, Costin; Cardarelli, Roberto; Carli, Tancredi; Carlino, Gianpaolo; Carminati, Leonardo; Caron, Bryan; Caron, Sascha; Carpentieri, Carmen; Montoya, German D.Carrillo; Carter, Antony; Carter, Janet; Carvalho, Joao; Casadei, Diego; Casado, Maria Pilar; Cascella, Michele; Caso, Carlo; Castaneda Hernandez, Alfredo Martin; Castaneda-Miranda, Elizabeth; Castillo Gimenez, Victoria; Castro, Nuno Filipe; Cataldi, Gabriella; Cataneo, Fernando; Catinaccio, Andrea; Catmore, James; Cattai, Ariella; Cattani, Giordano; Caughron, Seth; Cauz, Diego; Cavallari, Alvise; Cavalleri, Pietro; Cavalli, Donatella; Cavalli-Sforza, Matteo; Cavasinni, Vincenzo; Cazzato, Antonio; Ceradini, Filippo; Santiago Cerqueira, Augusto; Cerri, Alessandro; Cerrito, Lucio; Cerutti, Fabio; Cetin, Serkant Ali; Cevenini, Francesco; Chafaq, Aziz; Chakraborty, Dhiman; Chan, Kevin; Chapleau, Bertrand; Chapman, John Derek; Chapman, John Wehrley; Chareyre, Eve; Charlton, Dave; Chavda, Vikash; Cheatham, Susan; Chekanov, Sergei; Chekulaev, Sergey; Chelkov, Gueorgui; Chelstowska, Magda Anna; Chen, Chunhui; Chen, Hucheng; Chen, Li; Chen, Shenjian; Chen, Tingyang; Chen, Xin; Cheng, Shaochen; Cheplakov, Alexander; Chepurnov, Vladimir; Cherkaoui El Moursli, Rajaa; Chernyatin, Valeriy; Cheu, Elliott; Cheung, Sing-Leung; Chevalier, Laurent; Chevallier, Florent; Chiefari, Giovanni; Chikovani, Leila; Childers, John Taylor; Chilingarov, Alexandre; Chiodini, Gabriele; Chizhov, Mihail; Choudalakis, Georgios; Chouridou, Sofia; Christidi, Illectra-Athanasia; Christov, Asen; Chromek-Burckhart, Doris; Chu, Ming-Lee; Chudoba, Jiri; Ciapetti, Guido; Ciba, Krzysztof; Ciftci, Abbas Kenan; Ciftci, Rena; Cinca, Diane; Cindro, Vladimir; Ciobotaru, Matei Dan; Ciocca, Claudia; Ciocio, Alessandra; Cirilli, Manuela; Ciubancan, Mihai; Clark, Allan G.; Clark, Philip; Cleland, Bill; Clemens, Jean-Claude; Clement, Benoit; Clement, Christophe; Clifft, Roger; Coadou, Yann; Cobal, Marina; Coccaro, Andrea; Cochran, James H.; Coe, Paul; Cogan, Joshua Godfrey; Coggeshall, James; Cogneras, Eric; Cojocaru, Claudiu; Colas, Jacques; Colijn, Auke-Pieter; Collard, Caroline; Collins, Neil; Collins-Tooth, Christopher; Collot, Johann; Colon, German; Coluccia, Rita; Comune, Gianluca; Conde Muino, Patricia; Coniavitis, Elias; Conidi, Maria Chiara; Consonni, Michele; Constantinescu, Serban; Conta, Claudio; Conventi, Francesco; Cook, James; Cooke, Mark; Cooper, Ben; Cooper-Sarkar, Amanda; Cooper-Smith, Neil; Copic, Katherine; Cornelissen, Thijs; Corradi, Massimo; Corriveau, Francois; Cortes-Gonzalez, Arely; Cortiana, Giorgio; Costa, Giuseppe; Costa, Maria Jose; Costanzo, Davide; Costin, Tudor; Cote, David; Coura Torres, Rodrigo; Courneyea, Lorraine; Cowan, Glen; Cowden, Christopher; Cox, Brian; Cranmer, Kyle; Crescioli, Francesco; Cristinziani, Markus; Crosetti, Giovanni; Crupi, Roberto; Crepe-Renaudin, Sabine; Cuenca Almenar, Cristobal; Donszelmann, Tulay Cuhadar; Cuneo, Stefano; Curatolo, Maria; Curtis, Chris; Cwetanski, Peter; Czirr, Hendrik; Czyczula, Zofia; D'Auria, Saverio; D'Onofrio, Monica; D'Orazio, Alessia; Da Rocha Gesualdi Mello, Aline; Da Silva, Paulo Vitor; Da Via, Cinzia; Dabrowski, Wladyslaw; Dahlhoff, Andrea; Dai, Tiesheng; Dallapiccola, Carlo; Dallison, Steve; Dam, Mogens; Dameri, Mauro; Damiani, Daniel; Danielsson, Hans Olof; Dankers, Reinier; Dannheim, Dominik; Dao, Valerio; Darbo, Giovanni; Darlea, Georgiana Lavinia; Daum, Cornelis; Dauvergne, Jean-Pierre; Davey, Will; Davidek, Tomas; Davidson, Nadia; Davidson, Ruth; Davies, Merlin; Davison, Adam; Dawe, Edmund; Dawson, Ian; Dawson, John; Daya, Rozmin; De, Kaushik; De Asmundis, Riccardo; De Castro, Stefano; De Castro Faria Salgado, Pedro; De Cecco, Sandro; de Graat, Julien; De Groot, Nicolo; de Jong, Paul; de la Taille, Christophe; de la Torre, Hector; De Lotto, Barbara; De Mora, Lee; De Nooij, Lucie; De Oliveira Branco, Miguel; De Pedis, Daniele; de Saintignon, Paul; De Salvo, Alessandro; De Sanctis, Umberto; De Santo, Antonella; de Vivie De Regie, Jean-Baptiste; Dean, Simon; Dedovich, Dmitri; Degenhardt, James; Dehchar, Mohamed; Deile, Mario; del Papa, Carlo; del Peso, Jose; del Prete, Tarcisio; Dell'Acqua, Andrea; Dell'Asta, Lidia; Della Pietra, Massimo; della Volpe, Domenico; Delmastro, Marco; Delpierre, Pierre; Delruelle, Nicolas; Delsart, Pierre-Antoine; Deluca, Carolina; Demers, Sarah; Demichev, Mikhail; Demirkoz, Bilge; Deng, Jianrong; Denisov, Sergey; Derendarz, Dominik; Derkaoui, Jamal Eddine; Derue, Frederic; Dervan, Paul; Desch, Klaus Kurt; Devetak, Erik; Deviveiros, Pier-Olivier; Dewhurst, Alastair; DeWilde, Burton; Dhaliwal, Saminder; Dhullipudi, Ramasudhakar; Di Ciaccio, Anna; Di Ciaccio, Lucia; Di Girolamo, Alessandro; Di Girolamo, Beniamino; Di Luise, Silvestro; Di Mattia, Alessandro; Di Micco, Biagio; Di Nardo, Roberto; Di Simone, Andrea; Di Sipio, Riccardo; Diaz, Marco Aurelio; Diblen, Faruk; Diehl, Edward; Dietl, Hans; Dietrich, Janet; Dietzsch, Thorsten; Diglio, Sara; Yagci, Kamile Dindar; Dingfelder, Jochen; Dionisi, Carlo; Dita, Petre; Dita, Sanda; Dittus, Fridolin; Djama, Fares; Djilkibaev, Rashid; Djobava, Tamar; Barros do Vale, Maria Aline; Do Valle Wemans, Andre; Doan, Thi Kieu Oanh; Dobbs, Matt; Dobinson, Robert; Dobos, Daniel; Dobson, Ellie; Dobson, Marc; Dodd, Jeremy; Dogan, Ozgen Berkol; Doglioni, Caterina; Doherty, Tom; Doi, Yoshikuni; Dolejsi, Jiri; Dolenc, Irena; Dolezal, Zdenek; Dolgoshein, Boris; Dohmae, Takeshi; Donadelli, Marisilvia; Donega, Mauro; Donini, Julien; Dopke, Jens; Doria, Alessandra; dos Anjos, Andre; Dosil, Mireia; Dotti, Andrea; Dova, Maria-Teresa; Dowell, John; Doxiadis, Alexander; Doyle, Tony; Drasal, Zbynek; Drees, Jurgen; Dressnandt, Nandor; Drevermann, Hans; Driouichi, Chafik; Dris, Manolis; Drohan, Janice; Dubbert, Jorg; Dubbs, Tim; Dube, Sourabh; Duchovni, Ehud; Duckeck, Guenter; Dudarev, Alexey; Dudziak, Fanny; Duhrssen, Michael; Duerdoth, Ian; Duflot, Laurent; Dufour, Marc-Andre; Dunford, Monica; Duran Yildiz, Hatice; Duxfield, Robert; Dwuznik, Michal; Dydak, Friedrich; Dzahini, Daniel; Duren, Michael; Ebenstein, William; Ebke, Johannes; Eckert, Simon; Eckweiler, Sebastian; Edmonds, Keith; Edwards, Clive; Efthymiopoulos, Ilias; Ehrenfeld, Wolfgang; Ehrich, Thies; Eifert, Till; Eigen, Gerald; Einsweiler, Kevin; Eisenhandler, Eric; Ekelof, Tord; El Kacimi, Mohamed; Ellert, Mattias; Elles, Sabine; Ellinghaus, Frank; Ellis, Katherine; Ellis, Nicolas; Elmsheuser, Johannes; Elsing, Markus; Ely, Robert; Emeliyanov, Dmitry; Engelmann, Roderich; Engl, Albert; Epp, Brigitte; Eppig, Andrew; Erdmann, Johannes; Ereditato, Antonio; Eriksson, Daniel; Ernst, Jesse; Ernst, Michael; Ernwein, Jean; Errede, Deborah; Errede, Steven; Ertel, Eugen; Escalier, Marc; Escobar, Carlos; Espinal Curull, Xavier; Esposito, Bellisario; Etienne, Francois; Etienvre, Anne-Isabelle; Etzion, Erez; Evangelakou, Despoina; Evans, Hal; Fabbri, Laura; Fabre, Caroline; Facius, Katrine; Fakhrutdinov, Rinat; Falciano, Speranza; Falou, Alain; Fang, Yaquan; Fanti, Marcello; Farbin, Amir; Farilla, Addolorata; Farley, Jason; Farooque, Trisha; Farrington, Sinead; Farthouat, Philippe; Fasching, Damon; Fassnacht, Patrick; Fassouliotis, Dimitrios; Fatholahzadeh, Baharak; Favareto, Andrea; Fayard, Louis; Fazio, Salvatore; Febbraro, Renato; Federic, Pavol; Fedin, Oleg; Fedorko, Ivan; Fedorko, Woiciech; Fehling-Kaschek, Mirjam; Feligioni, Lorenzo; Fellmann, Denis; Felzmann, Ulrich; Feng, Cunfeng; Feng, Eric; Fenyuk, Alexander; Ferencei, Jozef; Ferland, Jonathan; Fernandes, Bruno; Fernando, Waruna; Ferrag, Samir; Ferrando, James; Ferrara, Valentina; Ferrari, Arnaud; Ferrari, Pamela; Ferrari, Roberto; Ferrer, Antonio; Ferrer, Maria Lorenza; Ferrere, Didier; Ferretti, Claudio; Ferretto Parodi, Andrea; Fiascaris, Maria; Fiedler, Frank; Filipcic, Andrej; Filippas, Anastasios; Filthaut, Frank; Fincke-Keeler, Margret; Fiolhais, Miguel; Fiorini, Luca; Firan, Ana; Fischer, Gordon; Fischer, Peter; Fisher, Matthew; Fisher, Steve; Flammer, Joachim; Flechl, Martin; Fleck, Ivor; Fleckner, Johanna; Fleischmann, Philipp; Fleischmann, Sebastian; Flick, Tobias; Flores Castillo, Luis; Flowerdew, Michael; Fohlisch, Florian; Fokitis, Manolis; Fonseca Martin, Teresa; Forbush, David Alan; Formica, Andrea; Forti, Alessandra; Fortin, Dominique; Foster, Joe; Fournier, Daniel; Foussat, Arnaud; Fowler, Andrew; Fowler, Ken; Fox, Harald; Francavilla, Paolo; Franchino, Silvia; Francis, David; Frank, Tal; Franklin, Melissa; Franz, Sebastien; Fraternali, Marco; Fratina, Sasa; French, Sky; Froeschl, Robert; Froidevaux, Daniel; Frost, James; Fukunaga, Chikara; Fullana Torregrosa, Esteban; Fuster, Juan; Gabaldon, Carolina; Gabizon, Ofir; Gadfort, Thomas; Gadomski, Szymon; Gagliardi, Guido; Gagnon, Pauline; Galea, Cristina; Gallas, Elizabeth; Gallas, Manuel; Gallo, Valentina Santina; Gallop, Bruce; Gallus, Petr; Galyaev, Eugene; Gan, K.K.; Gao, Yongsheng; Gapienko, Vladimir; Gaponenko, Andrei; Garberson, Ford; Garcia-Sciveres, Maurice; Garcia, Carmen; Garcia Navarro, Jose Enrique; Gardner, Robert; Garelli, Nicoletta; Garitaonandia, Hegoi; Garonne, Vincent; Garvey, John; Gatti, Claudio; Gaudio, Gabriella; Gaumer, Olivier; Gaur, Bakul; Gauthier, Lea; Gavrilenko, Igor; Gay, Colin; Gaycken, Goetz; Gayde, Jean-Christophe; Gazis, Evangelos; Ge, Peng; Gee, Norman; Geerts, Daniel Alphonsus Adrianus; Geich-Gimbel, Christoph; Gellerstedt, Karl; Gemme, Claudia; Gemmell, Alistair; Genest, Marie-Helene; Gentile, Simonetta; George, Matthias; George, Simon; Gerlach, Peter; Gershon, Avi; Geweniger, Christoph; Ghazlane, Hamid; Ghez, Philippe; Ghodbane, Nabil; Giacobbe, Benedetto; Giagu, Stefano; Giakoumopoulou, Victoria; Giangiobbe, Vincent; Gianotti, Fabiola; Gibbard, Bruce; Gibson, Adam; Gibson, Stephen; Gieraltowski, Gerry; Gilbert, Laura; Gilchriese, Murdock; Gilewsky, Valentin; Gillberg, Dag; Gillman, Tony; Gingrich, Douglas; Ginzburg, Jonatan; Giokaris, Nikos; Giordano, Raffaele; Giorgi, Francesco Michelangelo; Giovannini, Paola; Giraud, Pierre-Francois; Giugni, Danilo; Giusti, Paolo; Gjelsten, Borge Kile; Gladilin, Leonid; Glasman, Claudia; Glatzer, Julian; Glazov, Alexandre; Glitza, Karl-Walter; Glonti, George; Godfrey, Jennifer; Godlewski, Jan; Goebel, Martin; Gopfert, Thomas; Goeringer, Christian; Gossling, Claus; Gottfert, Tobias; Goldfarb, Steven; Goldin, Daniel; Golling, Tobias; Golovnia, Serguei; Gomes, Agostinho; Gomez Fajardo, Luz Stella; Goncalo, Ricardo; Goncalves Pinto Firmino Da Costa, Joao; Gonella, Laura; Gonidec, Allain; Gonzalez, Saul; Gonzalez de la Hoz, Santiago; Gonzalez Silva, Laura; Gonzalez-Sevilla, Sergio; Goodson, Jeremiah Jet; Goossens, Luc; Gorbounov, Petr Andreevich; Gordon, Howard; Gorelov, Igor; Gorfine, Grant; Gorini, Benedetto; Gorini, Edoardo; Gorisek, Andrej; Gornicki, Edward; Gorokhov, Serguei; Goryachev, Vladimir; Gosdzik, Bjoern; Gosselink, Martijn; Gostkin, Mikhail Ivanovitch; Gouanere, Michel; Gough Eschrich, Ivo; Gouighri, Mohamed; Goujdami, Driss; Goulette, Marc Phillippe; Goussiou, Anna; Goy, Corinne; Grabowska-Bold, Iwona; Grabski, Varlen; Grafstrom, Per; Grah, Christian; Grahn, Karl-Johan; Grancagnolo, Francesco; Grancagnolo, Sergio; Grassi, Valerio; Gratchev, Vadim; Grau, Nathan; Gray, Heather; Gray, Julia Ann; Graziani, Enrico; Grebenyuk, Oleg; Greenfield, Debbie; Greenshaw, Timothy; Greenwood, Zeno Dixon; Gregor, Ingrid-Maria; Grenier, Philippe; Griesmayer, Erich; Griffiths, Justin; Grigalashvili, Nugzar; Grillo, Alexander; Grinstein, Sebastian; Gris, Philippe Luc Yves; Grishkevich, Yaroslav; Grivaz, Jean-Francois; Grognuz, Joel; Groh, Manfred; Gross, Eilam; Grosse-Knetter, Joern; Groth-Jensen, Jacob; Gruwe, Magali; Grybel, Kai; Guarino, Victor; Guest, Daniel; Guicheney, Christophe; Guida, Angelo; Guillemin, Thibault; Guindon, Stefan; Guler, Hulya; Gunther, Jaroslav; Guo, Bin; Guo, Jun; Gupta, Ambreesh; Gusakov, Yury; Gushchin, Vladimir; Gutierrez, Andrea; Gutierrez, Phillip; Guttman, Nir; Gutzwiller, Olivier; Guyot, Claude; Gwenlan, Claire; Gwilliam, Carl; Haas, Andy; Haas, Stefan; Haber, Carl; Hackenburg, Robert; Hadavand, Haleh Khani; Hadley, David; Haefner, Petra; Hahn, Ferdinand; Haider, Stefan; Hajduk, Zbigniew; Hakobyan, Hrachya; Haller, Johannes; Hamacher, Klaus; Hamal, Petr; Hamilton, Andrew; Hamilton, Samuel; Han, Hongguang; Han, Liang; Hanagaki, Kazunori; Hance, Michael; Handel, Carsten; Hanke, Paul; Hansen, Christian Johan; Hansen, John Renner; Hansen, Jorgen Beck; Hansen, Jorn Dines; Hansen, Peter Henrik; Hansson, Per; Hara, Kazuhiko; Hare, Gabriel; Harenberg, Torsten; Harper, Devin; Harrington, Robert; Harris, Orin; Harrison, Karl; Hartert, Jochen; Hartjes, Fred; Haruyama, Tomiyoshi; Harvey, Alex; Hasegawa, Satoshi; Hasegawa, Yoji; Hassani, Samira; Hatch, Mark; Hauff, Dieter; Haug, Sigve; Hauschild, Michael; Hauser, Reiner; Havranek, Miroslav; Hawes, Brian; Hawkes, Christopher; Hawkings, Richard John; Hawkins, Donovan; Hayakawa, Takashi; Hayden, Daniel; Hayward, Helen; Haywood, Stephen; Hazen, Eric; He, Mao; Head, Simon; Hedberg, Vincent; Heelan, Louise; Heim, Sarah; Heinemann, Beate; Heisterkamp, Simon; Helary, Louis; Heldmann, Michael; Heller, Mathieu; Hellman, Sten; Helsens, Clement; Henderson, Robert; Henke, Michael; Henrichs, Anna; Henriques Correia, Ana Maria; Henrot-Versille, Sophie; Henry-Couannier, Frederic; Hensel, Carsten; Henss, Tobias; Hernandez Jimenez, Yesenia; Herrberg, Ruth; Hershenhorn, Alon David; Herten, Gregor; Hertenberger, Ralf; Hervas, Luis; Hessey, Nigel; Hidvegi, Attila; Higon-Rodriguez, Emilio; Hill, Daniel; Hill, John; Hill, Norman; Hiller, Karl Heinz; Hillert, Sonja; Hillier, Stephen; Hinchliffe, Ian; Hines, Elizabeth; Hirose, Minoru; Hirsch, Florian; Hirschbuehl, Dominic; Hobbs, John; Hod, Noam; Hodgkinson, Mark; Hodgson, Paul; Hoecker, Andreas; Hoeferkamp, Martin; Hoffman, Julia; Hoffmann, Dirk; Hohlfeld, Marc; Holder, Martin; Holmes, Alan; Holmgren, Sven-Olof; Holy, Tomas; Holzbauer, Jenny; Homma, Yasuhiro; Hooft van Huysduynen, Loek; Horazdovsky, Tomas; Horn, Claus; Horner, Stephan; Horton, Katherine; Hostachy, Jean-Yves; Hott, Thomas; Hou, Suen; Houlden, Michael; Hoummada, Abdeslam; Howarth, James; Howell, David; Hristova, Ivana; Hrivnac, Julius; Hruska, Ivan; Hryn'ova, Tetiana; Hsu, Pai-hsien Jennifer; Hsu, Shih-Chieh; Huang, Guang Shun; Hubacek, Zdenek; Hubaut, Fabrice; Huegging, Fabian; Huffman, Todd Brian; Hughes, Emlyn; Hughes, Gareth; Hughes-Jones, Richard; Huhtinen, Mika; Hurst, Peter; Hurwitz, Martina; Husemann, Ulrich; Huseynov, Nazim; Huston, Joey; Huth, John; Iacobucci, Giuseppe; Iakovidis, Georgios; Ibbotson, Michael; Ibragimov, Iskander; Ichimiya, Ryo; Iconomidou-Fayard, Lydia; Idarraga, John; Idzik, Marek; Iengo, Paolo; Igonkina, Olga; Ikegami, Yoichi; Ikeno, Masahiro; Ilchenko, Yuri; Iliadis, Dimitrios; Imbault, Didier; Imhaeuser, Martin; Imori, Masatoshi; Ince, Tayfun; Inigo-Golfin, Joaquin; Ioannou, Pavlos; Iodice, Mauro; Ionescu, Gelu; Irles Quiles, Adrian; Ishii, Koji; Ishikawa, Akimasa; Ishino, Masaya; Ishmukhametov, Renat; Issever, Cigdem; Istin, Serhat; Itoh, Yuki; Ivashin, Anton; Iwanski, Wieslaw; Iwasaki, Hiroyuki; Izen, Joseph; Izzo, Vincenzo; Jackson, Brett; Jackson, John; Jackson, Paul; Jaekel, Martin; Jain, Vivek; Jakobs, Karl; Jakobsen, Sune; Jakubek, Jan; Jana, Dilip; Jankowski, Ernest; Jansen, Eric; Jantsch, Andreas; Janus, Michel; Jarlskog, Goran; Jeanty, Laura; Jelen, Kazimierz; Jen-La Plante, Imai; Jenni, Peter; Jeremie, Andrea; Jez, Pavel; Jezequel, Stephane; Jha, Manoj Kumar; Ji, Haoshuang; Ji, Weina; Jia, Jiangyong; Jiang, Yi; Jimenez Belenguer, Marcos; Jin, Ge; Jin, Shan; Jinnouchi, Osamu; Joergensen, Morten Dam; Joffe, David; Johansen, Lars; Johansen, Marianne; Johansson, Erik; Johansson, Per; Johnert, Sebastian; Johns, Kenneth; Jon-And, Kerstin; Jones, Graham; Jones, Roger; Jones, Tegid; Jones, Tim; Jonsson, Ove; Joram, Christian; Jorge, Pedro; Joseph, John; Ju, Xiangyang; Juranek, Vojtech; Jussel, Patrick; Kabachenko, Vasily; Kabana, Sonja; Kaci, Mohammed; Kaczmarska, Anna; Kadlecik, Peter; Kado, Marumi; Kagan, Harris; Kagan, Michael; Kaiser, Steffen; Kajomovitz, Enrique; Kalinin, Sergey; Kalinovskaya, Lidia; Kama, Sami; Kanaya, Naoko; Kaneda, Michiru; Kanno, Takayuki; Kantserov, Vadim; Kanzaki, Junichi; Kaplan, Benjamin; Kapliy, Anton; Kaplon, Jan; Kar, Deepak; Karagoz, Muge; Karnevskiy, Mikhail; Karr, Kristo; Kartvelishvili, Vakhtang; Karyukhin, Andrey; Kashif, Lashkar; Kasmi, Azzedine; Kass, Richard; Kastanas, Alex; Kataoka, Mayuko; Kataoka, Yousuke; Katsoufis, Elias; Katzy, Judith; Kaushik, Venkatesh; Kawagoe, Kiyotomo; Kawamoto, Tatsuo; Kawamura, Gen; Kayl, Manuel; Kazanin, Vassili; Kazarinov, Makhail; Kazi, Sandor Istvan; Keates, James Robert; Keeler, Richard; Kehoe, Robert; Keil, Markus; Kekelidze, George; Kelly, Marc; Kennedy, John; Kenney, Christopher John; Kenyon, Mike; Kepka, Oldrich; Kerschen, Nicolas; Kersevan, Borut Paul; Kersten, Susanne; Kessoku, Kohei; Ketterer, Christian; Khakzad, Mohsen; Khalil-zada, Farkhad; Khandanyan, Hovhannes; Khanov, Alexander; Kharchenko, Dmitri; Khodinov, Alexander; Kholodenko, Anatoli; Khomich, Andrei; Khoo, Teng Jian; Khoriauli, Gia; Khovanskiy, Nikolai; Khovanskiy, Valery; Khramov, Evgeniy; Khubua, Jemal; Kilvington, Graham; Kim, Hyeon Jin; Kim, Min Suk; Kim, Peter; Kim, Shinhong; Kimura, Naoki; Kind, Oliver; King, Barry; King, Matthew; King, Robert Steven Beaufoy; Kirk, Julie; Kirsch, Guillaume; Kirsch, Lawrence; Kiryunin, Andrey; Kisielewska, Danuta; Kittelmann, Thomas; Kiver, Andrey; Kiyamura, Hironori; Kladiva, Eduard; Klaiber-Lodewigs, Jonas; Klein, Max; Klein, Uta; Kleinknecht, Konrad; Klemetti, Miika; Klier, Amit; Klimentov, Alexei; Klingenberg, Reiner; Klinkby, Esben; Klioutchnikova, Tatiana; Klok, Peter; Klous, Sander; Kluge, Eike-Erik; Kluge, Thomas; Kluit, Peter; Kluth, Stefan; Kneringer, Emmerich; Knobloch, Juergen; Knoops, Edith B F G; Knue, Andrea; Ko, Byeong Rok; Kobayashi, Tomio; Kobel, Michael; Koblitz, Birger; Kocian, Martin; Kocnar, Antonin; Kodys, Peter; Koneke, Karsten; Konig, Adriaan; Koenig, Sebastian; Konig, Stefan; Kopke, Lutz; Koetsveld, Folkert; Koevesarki, Peter; Koffas, Thomas; Koffeman, Els; Kohn, Fabian; Kohout, Zdenek; Kohriki, Takashi; Koi, Tatsumi; Kokott, Thomas; Kolachev, Guennady; Kolanoski, Hermann; Kolesnikov, Vladimir; Koletsou, Iro; Koll, James; Kollar, Daniel; Kollefrath, Michael; Kolya, Scott; Komar, Aston; Komaragiri, Jyothsna Rani; Kondo, Takahiko; Kono, Takanori; Kononov, Anatoly; Konoplich, Rostislav; Konstantinidis, Nikolaos; Kootz, Andreas; Koperny, Stefan; Kopikov, Sergey; Korcyl, Krzysztof; Kordas, Kostantinos; Koreshev, Victor; Korn, Andreas; Korol, Aleksandr; Korolkov, Ilya; Korolkova, Elena; Korotkov, Vladislav; Kortner, Oliver; Kortner, Sandra; Kostyukhin, Vadim; Kotamaki, Miikka Juhani; Kotov, Sergey; Kotov, Vladislav; Kourkoumelis, Christine; Kouskoura, Vasiliki; Koutsman, Alex; Kowalewski, Robert Victor; Kowalski, Tadeusz; Kozanecki, Witold; Kozhin, Anatoly; Kral, Vlastimil; Kramarenko, Viktor; Kramberger, Gregor; Krasel, Olaf; Krasny, Mieczyslaw Witold; Krasznahorkay, Attila; Kraus, James; Kreisel, Arik; Krejci, Frantisek; Kretzschmar, Jan; Krieger, Nina; Krieger, Peter; Kroeninger, Kevin; Kroha, Hubert; Kroll, Joe; Kroseberg, Juergen; Krstic, Jelena; Kruchonak, Uladzimir; Kruger, Hans; Krumshteyn, Zinovii; Kruth, Andre; Kubota, Takashi; Kuehn, Susanne; Kugel, Andreas; Kuhl, Thorsten; Kuhn, Dietmar; Kukhtin, Victor; Kulchitsky, Yuri; Kuleshov, Sergey; Kummer, Christian; Kuna, Marine; Kundu, Nikhil; Kunkle, Joshua; Kupco, Alexander; Kurashige, Hisaya; Kurata, Masakazu; Kurochkin, Yurii; Kus, Vlastimil; Kuykendall, William; Kuze, Masahiro; Kuzhir, Polina; Kvasnicka, Ondrej; Kvita, Jiri; Kwee, Regina; La Rosa, Alessandro; La Rotonda, Laura; Labarga, Luis; Labbe, Julien; Lacasta, Carlos; Lacava, Francesco; Lacker, Heiko; Lacour, Didier; Lacuesta, Vicente Ramon; Ladygin, Evgueni; Lafaye, Remi; Laforge, Bertrand; Lagouri, Theodota; Lai, Stanley; Laisne, Emmanuel; Lamanna, Massimo; Lampen, Caleb; Lampl, Walter; Lancon, Eric; Landgraf, Ulrich; Landon, Murrough; Landsman, Hagar; Lane, Jenna; Lange, Clemens; Lankford, Andrew; Lanni, Francesco; Lantzsch, Kerstin; Lapin, Vladimir; Laplace, Sandrine; Lapoire, Cecile; Laporte, Jean-Francois; Lari, Tommaso; Larionov, Anatoly; Larner, Aimee; Lasseur, Christian; Lassnig, Mario; Lau, Wing; Laurelli, Paolo; Lavorato, Antonia; Lavrijsen, Wim; Laycock, Paul; Lazarev, Alexandre; Lazzaro, Alfio; Le Dortz, Olivier; Le Guirriec, Emmanuel; Le Maner, Christophe; Le Menedeu, Eve; Leahu, Marius; Lebedev, Alexander; Lebel, Celine; LeCompte, Thomas; Ledroit-Guillon, Fabienne Agnes Marie; Lee, Hurng-Chun; Lee, Jason; Lee, Shih-Chang; Lee, Lawrence; Lefebvre, Michel; Legendre, Marie; Leger, Annie; LeGeyt, Benjamin; Legger, Federica; Leggett, Charles; Lehmacher, Marc; Lehmann Miotto, Giovanna; Lei, Xiaowen; Leite, Marco Aurelio Lisboa; Leitner, Rupert; Lellouch, Daniel; Lellouch, Jeremie; Leltchouk, Mikhail; Lendermann, Victor; Leney, Katharine; Lenz, Tatiana; Lenzen, Georg; Lenzi, Bruno; Leonhardt, Kathrin; Leontsinis, Stefanos; Leroy, Claude; Lessard, Jean-Raphael; Lesser, Jonas; Lester, Christopher; Leung Fook Cheong, Annabelle; Leveque, Jessica; Levin, Daniel; Levinson, Lorne; Levitski, Mikhail; Lewandowska, Marta; Lewis, George; Leyton, Michael; Li, Bo; Li, Haifeng; Li, Shu; Li, Xuefei; Liang, Zhihua; Liang, Zhijun; Liberti, Barbara; Lichard, Peter; Lichtnecker, Markus; Lie, Ki; Liebig, Wolfgang; Lifshitz, Ronen; Lilley, Joseph; Limbach, Christian; Limosani, Antonio; Limper, Maaike; Lin, Simon; Linde, Frank; Linnemann, James; Lipeles, Elliot; Lipinsky, Lukas; Lipniacka, Anna; Liss, Tony; Lissauer, David; Lister, Alison; Litke, Alan; Liu, Chuanlei; Liu, Dong; Liu, Hao; Liu, Jianbei; Liu, Minghui; Liu, Shengli; Liu, Yanwen; Livan, Michele; Livermore, Sarah; Lleres, Annick; Lloyd, Stephen; Lobodzinska, Ewelina; Loch, Peter; Lockman, William; Lockwitz, Sarah; Loddenkoetter, Thomas; Loebinger, Fred; Loginov, Andrey; Loh, Chang Wei; Lohse, Thomas; Lohwasser, Kristin; Lokajicek, Milos; Loken, James; Lombardo, Vincenzo Paolo; Long, Robin Eamonn; Lopes, Lourenco; Lopez Mateos, David; Losada, Marta; Loscutoff, Peter; Sterzo, Francesco Lo; Losty, Michael; Lou, Xinchou; Lounis, Abdenour; Loureiro, Karina; Love, Jeremy; Love, Peter; Lowe, Andrew; Lu, Feng; Lu, Jiansen; Lu, Liang; Lubatti, Henry; Luci, Claudio; Lucotte, Arnaud; Ludwig, Andreas; Ludwig, Dorthe; Ludwig, Inga; Ludwig, Jens; Luehring, Frederick; Luijckx, Guy; Lumb, Debra; Luminari, Lamberto; Lund, Esben; Lund-Jensen, Bengt; Lundberg, Bjorn; Lundberg, Johan; Lundquist, Johan; Lungwitz, Matthias; Lupi, Anna; Lutz, Gerhard; Lynn, David; Lys, Jeremy; Lytken, Else; Ma, Hong; Ma, Lian Liang; Macana Goia, Jorge Andres; Maccarrone, Giovanni; Macchiolo, Anna; Macek, Bostjan; Machado Miguens, Joana; Macina, Daniela; Mackeprang, Rasmus; Madaras, Ronald; Mader, Wolfgang; Maenner, Reinhard; Maeno, Tadashi; Mattig, Peter; Mattig, Stefan; Magalhaes Martins, Paulo Jorge; Magnoni, Luca; Magradze, Erekle; Magrath, Caroline; Mahalalel, Yair; Mahboubi, Kambiz; Mahout, Gilles; Maiani, Camilla; Maidantchik, Carmen; Maio, Amelia; Majewski, Stephanie; Makida, Yasuhiro; Makovec, Nikola; Mal, Prolay; Malecki, Pawel; Malecki, Piotr; Maleev, Victor; Malek, Fairouz; Mallik, Usha; Malon, David; Maltezos, Stavros; Malyshev, Vladimir; Malyukov, Sergei; Mameghani, Raphael; Mamuzic, Judita; Manabe, Atsushi; Mandelli, Luciano; Mandic, Igor; Mandrysch, Rocco; Maneira, Jose; Mangeard, Pierre-Simon; Manjavidze, Ioseb; Mann, Alexander; Manning, Peter; Manousakis-Katsikakis, Arkadios; Mansoulie, Bruno; Manz, Andreas; Mapelli, Alessandro; Mapelli, Livio; March, Luis; Marchand, Jean-Francois; Marchese, Fabrizio; Marchesotti, Marco; Marchiori, Giovanni; Marcisovsky, Michal; Marin, Alexandru; Marino, Christopher; Marroquim, Fernando; Marshall, Robin; Marshall, Zach; Martens, Kalen; Marti-Garcia, Salvador; Martin, Andrew; Martin, Brian; Martin, Brian Thomas; Martin, Franck Francois; Martin, Jean-Pierre; Martin, Philippe; Martin, Tim; Martin Dit Latour, Bertrand; Martinez, Mario; Martinez Outschoorn, Verena; Martyniuk, Alex; Marx, Marilyn; Marzano, Francesco; Marzin, Antoine; Masetti, Lucia; Mashimo, Tetsuro; Mashinistov, Ruslan; Masik, Jiri; Maslennikov, Alexey; Mass, Martin; Massa, Ignazio; Massaro, Graziano; Massol, Nicolas; Mastroberardino, Anna; Masubuchi, Tatsuya; Mathes, Markus; Matricon, Pierre; Matsumoto, Hiroshi; Matsunaga, Hiroyuki; Matsushita, Takashi; Mattravers, Carly; Maugain, Jean-Marie; Maxfield, Stephen; Maximov, Dmitriy; May, Edward; Mayne, Anna; Mazini, Rachid; Mazur, Michael; Mazzanti, Marcello; Mazzoni, Enrico; Mc Kee, Shawn Patrick; McCarn, Allison; McCarthy, Robert; McCarthy, Tom; McCubbin, Norman; McFarlane, Kenneth; Mcfayden, Josh; McGlone, Helen; Mchedlidze, Gvantsa; McLaren, Robert Andrew; Mclaughlan, Tom; McMahon, Steve; McPherson, Robert; Meade, Andrew; Mechnich, Joerg; Mechtel, Markus; Medinnis, Mike; Meera-Lebbai, Razzak; Meguro, Tatsuma; Mehdiyev, Rashid; Mehlhase, Sascha; Mehta, Andrew; Meier, Karlheinz; Meinhardt, Jens; Meirose, Bernhard; Melachrinos, Constantinos; Mellado Garcia, Bruce Rafael; Mendoza Navas, Luis; Meng, Zhaoxia; Mengarelli, Alberto; Menke, Sven; Menot, Claude; Meoni, Evelin; Mermod, Philippe; Merola, Leonardo; Meroni, Chiara; Merritt, Frank; Messina, Andrea; Metcalfe, Jessica; Mete, Alaettin Serhan; Meuser, Stefan; Meyer, Carsten; Meyer, Jean-Pierre; Meyer, Jochen; Meyer, Joerg; Meyer, Thomas Christian; Meyer, W.Thomas; Miao, Jiayuan; Michal, Sebastien; Micu, Liliana; Middleton, Robin; Miele, Paola; Migas, Sylwia; Mijovic, Liza; Mikenberg, Giora; Mikestikova, Marcela; Mikulec, Bettina; Mikuz, Marko; Miller, David; Miller, Robert; Mills, Bill; Mills, Corrinne; Milov, Alexander; Milstead, David; Milstein, Dmitry; Minaenko, Andrey; Minano, Mercedes; Minashvili, Irakli; Mincer, Allen; Mindur, Bartosz; Mineev, Mikhail; Ming, Yao; Mir, Lluisa-Maria; Mirabelli, Giovanni; Miralles Verge, Lluis; Misiejuk, Andrzej; Mitrevski, Jovan; Mitrofanov, Gennady; Mitsou, Vasiliki A.; Mitsui, Shingo; Miyagawa, Paul; Miyazaki, Kazuki; Mjornmark, Jan-Ulf; Moa, Torbjoern; Mockett, Paul; Moed, Shulamit; Moeller, Victoria; Monig, Klaus; Moser, Nicolas; Mohapatra, Soumya; Mohn, Bjarte; Mohr, Wolfgang; Mohrdieck-Mock, Susanne; Moisseev, Artemy; Moles-Valls, Regina; Molina-Perez, Jorge; Moneta, Lorenzo; Monk, James; Monnier, Emmanuel; Montesano, Simone; Monticelli, Fernando; Monzani, Simone; Moore, Roger; Moorhead, Gareth; Mora Herrera, Clemencia; Moraes, Arthur; Morais, Antonio; Morange, Nicolas; Morel, Julien; Morello, Gianfranco; Moreno, Deywis; Moreno Llácer, María; Morettini, Paolo; Morii, Masahiro; Morin, Jerome; Morita, Youhei; Morley, Anthony Keith; Mornacchi, Giuseppe; Morone, Maria-Christina; Morozov, Sergey; Morris, John; Moser, Hans-Guenther; Mosidze, Maia; Moss, Josh; Mount, Richard; Mountricha, Eleni; Mouraviev, Sergei; Moyse, Edward; Mudrinic, Mihajlo; Mueller, Felix; Mueller, James; Mueller, Klemens; Muller, Thomas; Muenstermann, Daniel; Muijs, Sandra; Muir, Alex; Munwes, Yonathan; Murakami, Koichi; Murray, Bill; Mussche, Ido; Musto, Elisa; Myagkov, Alexey; Myska, Miroslav; Nadal, Jordi; Nagai, Koichi; Nagano, Kunihiro; Nagasaka, Yasushi; Nairz, Armin Michael; Nakahama, Yu; Nakamura, Koji; Nakano, Itsuo; Nanava, Gizo; Napier, Austin; Nash, Michael; Nation, Nigel; Nattermann, Till; Naumann, Thomas; Navarro, Gabriela; Neal, Homer; Nebot, Eduardo; Nechaeva, Polina; Negri, Andrea; Negri, Guido; Nektarijevic, Snezana; Nelson, Andrew; Nelson, Silke; Nelson, Timothy Knight; Nemecek, Stanislav; Nemethy, Peter; Nepomuceno, Andre Asevedo; Nessi, Marzio; Nesterov, Stanislav; Neubauer, Mark; Neusiedl, Andrea; Neves, Ricardo; Nevski, Pavel; Newman, Paul; Nickerson, Richard; Nicolaidou, Rosy; Nicolas, Ludovic; Nicquevert, Bertrand; Niedercorn, Francois; Nielsen, Jason; Niinikoski, Tapio; Nikiforov, Andriy; Nikolaenko, Vladimir; Nikolaev, Kirill; Nikolic-Audit, Irena; Nikolopoulos, Konstantinos; Nilsen, Henrik; Nilsson, Paul; Ninomiya, Yoichi; Nisati, Aleandro; Nishiyama, Tomonori; Nisius, Richard; Nodulman, Lawrence; Nomachi, Masaharu; Nomidis, Ioannis; Nomoto, Hiroshi; Nordberg, Markus; Nordkvist, Bjoern; Norton, Peter; Novakova, Jana; Nozaki, Mitsuaki; Nozicka, Miroslav; Nozka, Libor; Nugent, Ian Michael; Nuncio-Quiroz, Adriana-Elizabeth; Nunes Hanninger, Guilherme; Nunnemann, Thomas; Nurse, Emily; Nyman, Tommi; O'Brien, Brendan Joseph; O'Neale, Steve; O'Neil, Dugan; O'Shea, Val; Oakham, Gerald; Oberlack, Horst; Ocariz, Jose; Ochi, Atsuhiko; Oda, Susumu; Odaka, Shigeru; Odier, Jerome; Ogren, Harold; Oh, Alexander; Oh, Seog; Ohm, Christian; Ohshima, Takayoshi; Ohshita, Hidetoshi; Ohska, Tokio Kenneth; Ohsugi, Takashi; Okada, Shogo; Okawa, Hideki; Okumura, Yasuyuki; Okuyama, Toyonobu; Olcese, Marco; Olchevski, Alexander; Oliveira, Miguel Alfonso; Oliveira Damazio, Denis; Oliver Garcia, Elena; Olivito, Dominick; Olszewski, Andrzej; Olszowska, Jolanta; Omachi, Chihiro; Onofre, Antonio; Onyisi, Peter; Oram, Christopher; Ordonez, Gustavo; Oreglia, Mark; Orellana, Frederik; Oren, Yona; Orestano, Domizia; Orlov, Iliya; Oropeza Barrera, Cristina; Orr, Robert; Ortega, Eduardo; Osculati, Bianca; Ospanov, Rustem; Osuna, Carlos; Otero y Garzon, Gustavo; Ottersbach, John; Ouchrif, Mohamed; Ould-Saada, Farid; Ouraou, Ahmimed; Ouyang, Qun; Owen, Mark; Owen, Simon; Oyarzun, Alejandro; Oye, Ola; Ozcan, Veysi Erkcan; Ozturk, Nurcan; Pacheco Pages, Andres; Padilla Aranda, Cristobal; Paganis, Efstathios; Paige, Frank; Pajchel, Katarina; Palestini, Sandro; Pallin, Dominique; Palma, Alberto; Palmer, Jody; Pan, Yibin; Panagiotopoulou, Evgenia; Panes, Boris; Panikashvili, Natalia; Panitkin, Sergey; Pantea, Dan; Panuskova, Monika; Paolone, Vittorio; Paoloni, Alessandro; Papadelis, Aras; Papadopoulou, Theodora; Paramonov, Alexander; Park, Woochun; Parker, Andy; Parodi, Fabrizio; Parsons, John; Parzefall, Ulrich; Pasqualucci, Enrico; Passeri, Antonio; Pastore, Fernanda; Pastore, Francesca; Pasztor, Gabriella; Pataraia, Sophio; Patel, Nikhul; Pater, Joleen; Patricelli, Sergio; Pauly, Thilo; Pecsy, Martin; Pedraza Morales, Maria Isabel; Peleganchuk, Sergey; Peng, Haiping; Pengo, Ruggero; Penson, Alexander; Penwell, John; Perantoni, Marcelo; Perez, Kerstin; Cavalcanti, Tiago Perez; Perez Codina, Estel; Perez Garcia-Estan, Maria Teresa; Perez Reale, Valeria; Peric, Ivan; Perini, Laura; Pernegger, Heinz; Perrino, Roberto; Perrodo, Pascal; Persembe, Seda; Peshekhonov, Vladimir; Peters, Onne; Petersen, Brian; Petersen, Jorgen; Petersen, Troels; Petit, Elisabeth; Petridis, Andreas; Petridou, Chariclia; Petrolo, Emilio; Petrucci, Fabrizio; Petschull, Dennis; Petteni, Michele; Pezoa, Raquel; Phan, Anna; Phillips, Alan; Phillips, Peter William; Piacquadio, Giacinto; Piccaro, Elisa; Piccinini, Maurizio; Pickford, Andrew; Piec, Sebastian Marcin; Piegaia, Ricardo; Pilcher, James; Pilkington, Andrew; Pina, Joao Antonio; Pinamonti, Michele; Pinder, Alex; Pinfold, James; Ping, Jialun; Pinto, Belmiro; Pirotte, Olivier; Pizio, Caterina; Placakyte, Ringaile; Plamondon, Mathieu; Plano, Will; Pleier, Marc-Andre; Pleskach, Anatoly; Poblaguev, Andrei; Poddar, Sahill; Podlyski, Fabrice; Poggioli, Luc; Poghosyan, Tatevik; Pohl, Martin; Polci, Francesco; Polesello, Giacomo; Policicchio, Antonio; Polini, Alessandro; Poll, James; Polychronakos, Venetios; Pomarede, Daniel Marc; Pomeroy, Daniel; Pommes, Kathy; Pontecorvo, Ludovico; Pope, Bernard; Popeneciu, Gabriel Alexandru; Popovic, Dragan; Poppleton, Alan; Bueso, Xavier Portell; Porter, Robert; Posch, Christoph; Pospelov, Guennady; Pospisil, Stanislav; Potrap, Igor; Potter, Christina; Potter, Christopher; Poulard, Gilbert; Poveda, Joaquin; Prabhu, Robindra; Pralavorio, Pascal; Prasad, Srivas; Pravahan, Rishiraj; Prell, Soeren; Pretzl, Klaus Peter; Pribyl, Lukas; Price, Darren; Price, Lawrence; Price, Michael John; Prichard, Paul; Prieur, Damien; Primavera, Margherita; Prokofiev, Kirill; Prokoshin, Fedor; Protopopescu, Serban; Proudfoot, James; Prudent, Xavier; Przysiezniak, Helenka; Psoroulas, Serena; Ptacek, Elizabeth; Purdham, John; Purohit, Milind; Puzo, Patrick; Pylypchenko, Yuriy; Qian, Jianming; Qian, Zuxuan; Qin, Zhonghua; Quadt, Arnulf; Quarrie, David; Quayle, William; Quinonez, Fernando; Raas, Marcel; Radescu, Voica; Radics, Balint; Rador, Tonguc; Ragusa, Francesco; Rahal, Ghita; Rahimi, Amir; Rahm, David; Rajagopalan, Srinivasan; Rajek, Silke; Rammensee, Michael; Rammes, Marcus; Ramstedt, Magnus; Randrianarivony, Koloina; Ratoff, Peter; Rauscher, Felix; Rauter, Emanuel; Raymond, Michel; Read, Alexander Lincoln; Rebuzzi, Daniela; Redelbach, Andreas; Redlinger, George; Reece, Ryan; Reeves, Kendall; Reichold, Armin; Reinherz-Aronis, Erez; Reinsch, Andreas; Reisinger, Ingo; Reljic, Dusan; Rembser, Christoph; Ren, Zhongliang; Renaud, Adrien; Renkel, Peter; Rensch, Bertram; Rescigno, Marco; Resconi, Silvia; Resende, Bernardo; Reznicek, Pavel; Rezvani, Reyhaneh; Richards, Alexander; Richter, Robert; Richter-Was, Elzbieta; Ridel, Melissa; Rieke, Stefan; Rijpstra, Manouk; Rijssenbeek, Michael; Rimoldi, Adele; Rinaldi, Lorenzo; Rios, Ryan Randy; Riu, Imma; Rivoltella, Giancesare; Rizatdinova, Flera; Rizvi, Eram; Robertson, Steven; Robichaud-Veronneau, Andree; Robinson, Dave; Robinson, James; Robinson, Mary; Robson, Aidan; Rocha de Lima, Jose Guilherme; Roda, Chiara; Roda Dos Santos, Denis; Rodier, Stephane; Rodriguez, Diego; Rodriguez Garcia, Yohany; Roe, Adam; Roe, Shaun; Rohne, Ole; Rojo, Victoria; Rolli, Simona; Romaniouk, Anatoli; Romanov, Victor; Romeo, Gaston; Romero Maltrana, Diego; Roos, Lydia; Ros, Eduardo; Rosati, Stefano; Rose, Matthew; Rosenbaum, Gabriel; Rosenberg, Eli; Rosendahl, Peter Lundgaard; Rosselet, Laurent; Rossetti, Valerio; Rossi, Elvira; Rossi, Leonardo Paolo; Rossi, Lucio; Rotaru, Marina; Roth, Itamar; Rothberg, Joseph; Rottlander, Iris; Rousseau, David; Royon, Christophe; Rozanov, Alexander; Rozen, Yoram; Ruan, Xifeng; Rubinskiy, Igor; Ruckert, Benjamin; Ruckstuhl, Nicole; Rud, Viacheslav; Rudolph, Gerald; Ruhr, Frederik; Ruggieri, Federico; Ruiz-Martinez, Aranzazu; Rulikowska-Zarebska, Elzbieta; Rumiantsev, Viktor; Rumyantsev, Leonid; Runge, Kay; Runolfsson, Ogmundur; Rurikova, Zuzana; Rusakovich, Nikolai; Rust, Dave; Rutherfoord, John; Ruwiedel, Christoph; Ruzicka, Pavel; Ryabov, Yury; Ryadovikov, Vasily; Ryan, Patrick; Rybar, Martin; Rybkin, Grigori; Ryder, Nick; Rzaeva, Sevda; Saavedra, Aldo; Sadeh, Iftach; Sadrozinski, Hartmut; Sadykov, Renat; Safai Tehrani, Francesco; Sakamoto, Hiroshi; Salamanna, Giuseppe; Salamon, Andrea; Saleem, Muhammad; Salihagic, Denis; Salnikov, Andrei; Salt, Jose; Salvachua Ferrando, Belen; Salvatore, Daniela; Salvatore, Pasquale Fabrizio; Salzburger, Andreas; Sampsonidis, Dimitrios; Samset, Bjorn Hallvard; Sandaker, Heidi; Sander, Heinz Georg; Sanders, Michiel; Sandhoff, Marisa; Sandhu, Pawan; Sandoval, Tanya; Sandstroem, Rikard; Sandvoss, Stephan; Sankey, Dave; Sansoni, Andrea; Santamarina Rios, Cibran; Santoni, Claudio; Santonico, Rinaldo; Santos, Helena; Saraiva, Joao; Sarangi, Tapas; Sarkisyan-Grinbaum, Edward; Sarri, Francesca; Sartisohn, Georg; Sasaki, Osamu; Sasaki, Takashi; Sasao, Noboru; Satsounkevitch, Igor; Sauvage, Gilles; Sauvan, Jean-Baptiste; Savard, Pierre; Savinov, Vladimir; Savu, Dan Octavian; Savva, Panagiota; Sawyer, Lee; Saxon, David; Says, Louis-Pierre; Sbarra, Carla; Sbrizzi, Antonio; Scallon, Olivia; Scannicchio, Diana; Schaarschmidt, Jana; Schacht, Peter; Schafer, Uli; Schaepe, Steffen; Schaetzel, Sebastian; Schaffer, Arthur; Schaile, Dorothee; Schamberger, R. Dean; Schamov, Andrey; Scharf, Veit; Schegelsky, Valery; Scheirich, Daniel; Scherzer, Max; Schiavi, Carlo; Schieck, Jochen; Schioppa, Marco; Schlenker, Stefan; Schlereth, James; Schmidt, Evelyn; Schmidt, Michael; Schmieden, Kristof; Schmitt, Christian; Schmitz, Martin; Schoning, Andre; Schott, Matthias; Schouten, Doug; Schovancova, Jaroslava; Schram, Malachi; Schroeder, Christian; Schroer, Nicolai; Schuh, Silvia; Schuler, Georges; Schultes, Joachim; Schultz-Coulon, Hans-Christian; Schulz, Holger; Schumacher, Jan; Schumacher, Markus; Schumm, Bruce; Schune, Philippe; Schwanenberger, Christian; Schwartzman, Ariel; Schwemling, Philippe; Schwienhorst, Reinhard; Schwierz, Rainer; Schwindling, Jerome; Scott, Bill; Searcy, Jacob; Sedykh, Evgeny; Segura, Ester; Seidel, Sally; Seiden, Abraham; Seifert, Frank; Seixas, Jose; Sekhniaidze, Givi; Seliverstov, Dmitry; Sellden, Bjoern; Sellers, Graham; Seman, Michal; Semprini-Cesari, Nicola; Serfon, Cedric; Serin, Laurent; Seuster, Rolf; Severini, Horst; Sevior, Martin; Sfyrla, Anna; Shabalina, Elizaveta; Shamim, Mansoora; Shan, Lianyou; Shank, James; Shao, Qi Tao; Shapiro, Marjorie; Shatalov, Pavel; Shaver, Leif; Shaw, Christian; Shaw, Kate; Sherman, Daniel; Sherwood, Peter; Shibata, Akira; Shimizu, Shima; Shimojima, Makoto; Shin, Taeksu; Shmeleva, Alevtina; Shochet, Mel; Short, Daniel; Shupe, Michael; Sicho, Petr; Sidoti, Antonio; Siebel, Anca-Mirela; Siegert, Frank; Siegrist, James; Sijacki, Djordje; Silbert, Ohad; Silva, Jose; Silver, Yiftah; Silverstein, Daniel; Silverstein, Samuel; Simak, Vladislav; Simard, Olivier; Simic, Ljiljana; Simion, Stefan; Simmons, Brinick; Simonyan, Margar; Sinervo, Pekka; Sinev, Nikolai; Sipica, Valentin; Siragusa, Giovanni; Sisakyan, Alexei; Sivoklokov, Serguei; Sjolin, Jorgen; Sjursen, Therese; Skinnari, Louise Anastasia; Skovpen, Kirill; Skubic, Patrick; Skvorodnev, Nikolai; Slater, Mark; Slavicek, Tomas; Sliwa, Krzysztof; Sloan, Terrence; Sloper, John erik; Smakhtin, Vladimir; Smirnov, Sergei; Smirnova, Lidia; Smirnova, Oxana; Smith, Ben Campbell; Smith, Douglas; Smith, Kenway; Smizanska, Maria; Smolek, Karel; Snesarev, Andrei; Snow, Steve; Snow, Joel; Snuverink, Jochem; Snyder, Scott; Soares, Mara; Sobie, Randall; Sodomka, Jaromir; Soffer, Abner; Solans, Carlos; Solar, Michael; Solc, Jaroslav; Soldevila, Urmila; Solfaroli Camillocci, Elena; Solodkov, Alexander; Solovyanov, Oleg; Sondericker, John; Soni, Nitesh; Sopko, Vit; Sopko, Bruno; Sorbi, Massimo; Sosebee, Mark; Soukharev, Andrey; Spagnolo, Stefania; Spano, Francesco; Spighi, Roberto; Spigo, Giancarlo; Spila, Federico; Spiriti, Eleuterio; Spiwoks, Ralf; Spousta, Martin; Spreitzer, Teresa; Spurlock, Barry; St. Denis, Richard Dante; Stahl, Thorsten; Stahlman, Jonathan; Stamen, Rainer; Stanecka, Ewa; Stanek, Robert; Stanescu, Cristian; Stapnes, Steinar; Starchenko, Evgeny; Stark, Jan; Staroba, Pavel; Starovoitov, Pavel; Staude, Arnold; Stavina, Pavel; Stavropoulos, Georgios; Steele, Genevieve; Steinbach, Peter; Steinberg, Peter; Stekl, Ivan; Stelzer, Bernd; Stelzer, Harald Joerg; Stelzer-Chilton, Oliver; Stenzel, Hasko; Stevenson, Kyle; Stewart, Graeme; Stillings, Jan Andre; Stockmanns, Tobias; Stockton, Mark; Stoerig, Kathrin; Stoicea, Gabriel; Stonjek, Stefan; Strachota, Pavel; Stradling, Alden; Straessner, Arno; Strandberg, Jonas; Strandberg, Sara; Strandlie, Are; Strang, Michael; Strauss, Emanuel; Strauss, Michael; Strizenec, Pavol; Strohmer, Raimund; Strom, David; Strong, John; Stroynowski, Ryszard; Strube, Jan; Stugu, Bjarne; Stumer, Iuliu; Stupak, John; Sturm, Philipp; Soh, Dart-yin; Su, Dong; Subramania, Siva; Sugaya, Yorihito; Sugimoto, Takuya; Suhr, Chad; Suita, Koichi; Suk, Michal; Sulin, Vladimir; Sultansoy, Saleh; Sumida, Toshi; Sun, Xiaohu; Sundermann, Jan Erik; Suruliz, Kerim; Sushkov, Serge; Susinno, Giancarlo; Sutton, Mark; Suzuki, Yu; Sviridov, Yuri; Swedish, Stephen; Sykora, Ivan; Sykora, Tomas; Szeless, Balazs; Sanchez, Javier; Ta, Duc; Tackmann, Kerstin; Taffard, Anyes; Tafirout, Reda; Taga, Adrian; Taiblum, Nimrod; Takahashi, Yuta; Takai, Helio; Takashima, Ryuichi; Takeda, Hiroshi; Takeshita, Tohru; Talby, Mossadek; Talyshev, Alexey; Tamsett, Matthew; Tanaka, Junichi; Tanaka, Reisaburo; Tanaka, Satoshi; Tanaka, Shuji; Tanaka, Yoshito; Tani, Kazutoshi; Tannoury, Nancy; Tappern, Geoffrey; Tapprogge, Stefan; Tardif, Dominique; Tarem, Shlomit; Tarrade, Fabien; Tartarelli, Giuseppe Francesco; Tas, Petr; Tasevsky, Marek; Tassi, Enrico; Tatarkhanov, Mous; Taylor, Christopher; Taylor, Frank; Taylor, Geoffrey; Taylor, Wendy; Teixeira Dias Castanheira, Matilde; Teixeira-Dias, Pedro; Temming, Kim Katrin; Ten Kate, Herman; Teng, Ping-Kun; Terada, Susumu; Terashi, Koji; Terron, Juan; Terwort, Mark; Testa, Marianna; Teuscher, Richard; Tevlin, Christopher; Thadome, Jocelyn; Therhaag, Jan; Theveneaux-Pelzer, Timothee; Thioye, Moustapha; Thoma, Sascha; Thomas, Juergen; Thompson, Emily; Thompson, Paul; Thompson, Peter; Thompson, Stan; Thomson, Evelyn; Thomson, Mark; Thun, Rudolf; Tic, Tomas; Tikhomirov, Vladimir; Tikhonov, Yury; Timmermans, Charles; Tipton, Paul; Viegas, Florbela De Jes Tique Aires; Tisserant, Sylvain; Tobias, Jurgen; Toczek, Barbara; Todorov, Theodore; Todorova-Nova, Sharka; Toggerson, Brokk; Tojo, Junji; Tokar, Stanislav; Tokunaga, Kaoru; Tokushuku, Katsuo; Tollefson, Kirsten; Tomoto, Makoto; Tompkins, Lauren; Toms, Konstantin; Tonazzo, Alessandra; Tong, Guoliang; Tonoyan, Arshak; Topfel, Cyril; Topilin, Nikolai; Torchiani, Ingo; Torrence, Eric; Torro Pastor, Emma; Toth, Jozsef; Touchard, Francois; Tovey, Daniel; Traynor, Daniel; Trefzger, Thomas; Treis, Johannes; Tremblet, Louis; Tricoli, Alesandro; Trigger, Isabel Marian; Trincaz-Duvoid, Sophie; Trinh, Thi Nguyet; Tripiana, Martin; Triplett, Nathan; Trischuk, William; Trivedi, Arjun; Trocme, Benjamin; Troncon, Clara; Trottier-McDonald, Michel; Trzupek, Adam; Tsarouchas, Charilaos; Tseng, Jeffrey; Tsiakiris, Menelaos; Tsiareshka, Pavel; Tsionou, Dimitra; Tsipolitis, Georgios; Tsiskaridze, Vakhtang; Tskhadadze, Edisher; Tsukerman, Ilya; Tsulaia, Vakhtang; Tsung, Jieh-Wen; Tsuno, Soshi; Tsybychev, Dmitri; Tua, Alan; Tuggle, Joseph; Turala, Michal; Turecek, Daniel; Turk Cakir, Ilkay; Turlay, Emmanuel; Turra, Ruggero; Tuts, Michael; Tykhonov, Andrii; Tylmad, Maja; Tyndel, Mike; Typaldos, Dimitrios; Tyrvainen, Harri; Tzanakos, George; Uchida, Kirika; Ueda, Ikuo; Ueno, Ryuichi; Ugland, Maren; Uhlenbrock, Mathias; Uhrmacher, Michael; Ukegawa, Fumihiko; Unal, Guillaume; Underwood, David; Undrus, Alexander; Unel, Gokhan; Unno, Yoshinobu; Urbaniec, Dustin; Urkovsky, Evgeny; Urquijo, Phillip; Urrejola, Pedro; Usai, Giulio; Uslenghi, Massimiliano; Vacavant, Laurent; Vacek, Vaclav; Vachon, Brigitte; Vahsen, Sven; Valderanis, Chrysostomos; Valenta, Jan; Valente, Paolo; Valentinetti, Sara; Valkar, Stefan; Valladolid Gallego, Eva; Vallecorsa, Sofia; Ferrer, Juan Antonio Valls; Van der Graaf, Harry; van der Kraaij, Erik; van der Leeuw, Robin; van der Poel, Egge; van der Ster, Daniel; Van Eijk, Bob; van Eldik, Niels; Van Gemmeren, Peter; van Kesteren, Zdenko; Van Vulpen, Ivo; Vandelli, Wainer; Vandoni, Giovanna; Vaniachine, Alexandre; Vankov, Peter; Vannucci, Francois; Varela Rodriguez, Fernando; Vari, Riccardo; Varnes, Erich; Varouchas, Dimitris; Vartapetian, Armen; Varvell, Kevin; Vassilakopoulos, Vassilios; Vazeille, Francois; Vegni, Guido; Veillet, Jean-Jacques; Vellidis, Constantine; Veloso, Filipe; Veness, Raymond; Veneziano, Stefano; Ventura, Andrea; Ventura, Daniel; Venturi, Manuela; Venturi, Nicola; Vercesi, Valerio; Verducci, Monica; Verkerke, Wouter; Vermeulen, Jos; Vest, Anja; Vetterli, Michel; Vichou, Irene; Vickey, Trevor; Viehhauser, Georg; Viel, Simon; Villa, Mauro; Villaplana Perez, Miguel; Vilucchi, Elisabetta; Vincter, Manuella; Vinek, Elisabeth; Vinogradov, Vladimir; Virchaux, Marc; Viret, Sebastien; Virzi, Joseph; Vitale, Antonio; Vitells, Ofer; Viti, Michele; Vivarelli, Iacopo; Vives Vaque, Francesc; Vlachos, Sotirios; Vlasak, Michal; Vlasov, Nikolai; Vogel, Adrian; Vokac, Petr; Volpi, Guido; Volpi, Matteo; Volpini, Giovanni; von der Schmitt, Hans; von Loeben, Joerg; von Radziewski, Holger; von Toerne, Eckhard; Vorobel, Vit; Vorobiev, Alexander; Vorwerk, Volker; Vos, Marcel; Voss, Rudiger; Voss, Thorsten Tobias; Vossebeld, Joost; Vovenko, Anatoly; Vranjes, Nenad; Vranjes Milosavljevic, Marija; Vrba, Vaclav; Vreeswijk, Marcel; Anh, Tuan Vu; Vuillermet, Raphael; Vukotic, Ilija; Wagner, Wolfgang; Wagner, Peter; Wahlen, Helmut; Wakabayashi, Jun; Walbersloh, Jorg; Walch, Shannon; Walder, James; Walker, Rodney; Walkowiak, Wolfgang; Wall, Richard; Waller, Peter; Wang, Chiho; Wang, Haichen; Wang, Jike; Wang, Jin; Wang, Joshua C.; Wang, Rui; Wang, Song-Ming; Warburton, Andreas; Ward, Patricia; Warsinsky, Markus; Watkins, Peter; Watson, Alan; Watson, Miriam; Watts, Gordon; Watts, Stephen; Waugh, Anthony; Waugh, Ben; Weber, Jens; Weber, Marc; Weber, Michele; Weber, Pavel; Weidberg, Anthony; Weigell, Philipp; Weingarten, Jens; Weiser, Christian; Wellenstein, Hermann; Wells, Phillippa; Wen, Mei; Wenaus, Torre; Wendler, Shanti; Weng, Zhili; Wengler, Thorsten; Wenig, Siegfried; Wermes, Norbert; Werner, Matthias; Werner, Per; Werth, Michael; Wessels, Martin; Whalen, Kathleen; Wheeler-Ellis, Sarah Jane; Whitaker, Scott; White, Andrew; White, Martin; White, Sebastian; Whitehead, Samuel Robert; Whiteson, Daniel; Whittington, Denver; Wicek, Francois; Wicke, Daniel; Wickens, Fred; Wiedenmann, Werner; Wielers, Monika; Wienemann, Peter; Wiglesworth, Craig; Wiik, Liv Antje Mari; Wijeratne, Peter Alexander; Wildauer, Andreas; Wildt, Martin Andre; Wilhelm, Ivan; Wilkens, Henric George; Will, Jonas Zacharias; Williams, Eric; Williams, Hugh; Willis, William; Willocq, Stephane; Wilson, John; Wilson, Michael Galante; Wilson, Alan; Wingerter-Seez, Isabelle; Winkelmann, Stefan; Winklmeier, Frank; Wittgen, Matthias; Wolter, Marcin Wladyslaw; Wolters, Helmut; Wooden, Gemma; Wosiek, Barbara; Wotschack, Jorg; Woudstra, Martin; Wraight, Kenneth; Wright, Catherine; Wrona, Bozydar; Wu, Sau Lan; Wu, Xin; Wu, Yusheng; Wulf, Evan; Wunstorf, Renate; Wynne, Benjamin; Xaplanteris, Leonidas; Xella, Stefania; Xie, Song; Xie, Yigang; Xu, Chao; Xu, Da; Xu, Guofa; Yabsley, Bruce; Yamada, Miho; Yamamoto, Akira; Yamamoto, Kyoko; Yamamoto, Shimpei; Yamamura, Taiki; Yamaoka, Jared; Yamazaki, Takayuki; Yamazaki, Yuji; Yan, Zhen; Yang, Haijun; Yang, Un-Ki; Yang, Yi; Yang, Yi; Yang, Zhaoyu; Yanush, Serguei; Yao, Weiming; Yao, Yushu; Yasu, Yoshiji; Ye, Jingbo; Ye, Shuwei; Yilmaz, Metin; Yoosoofmiya, Reza; Yorita, Kohei; Yoshida, Riktura; Young, Charles; Youssef, Saul; Yu, Dantong; Yu, Jaehoon; Yu, Jie; Yuan, Li; Yurkewicz, Adam; Zaets, Vassilli; Zaidan, Remi; Zaitsev, Alexander; Zajacova, Zuzana; Zalite, Youris; Zanello, Lucia; Zarzhitsky, Pavel; Zaytsev, Alexander; Zeitnitz, Christian; Zeller, Michael; Zema, Pasquale Federico; Zemla, Andrzej; Zendler, Carolin; Zenin, Anton; Zenin, Oleg; Zenis, Tibor; Zenonos, Zenonas; Zenz, Seth; Zerwas, Dirk; Zevi Della Porta, Giovanni; Zhan, Zhichao; Zhang, Dongliang; Zhang, Huaqiao; Zhang, Jinlong; Zhang, Xueyao; Zhang, Zhiqing; Zhao, Long; Zhao, Tianchi; Zhao, Zhengguo; Zhemchugov, Alexey; Zheng, Shuchen; Zhong, Jiahang; Zhou, Bing; Zhou, Ning; Zhou, Yue; Zhu, Cheng Guang; Zhu, Hongbo; Zhu, Yingchun; Zhuang, Xuai; Zhuravlov, Vadym; Zieminska, Daria; Zilka, Branislav; Zimmermann, Robert; Zimmermann, Simone; Zimmermann, Stephanie; Ziolkowski, Michael; Zitoun, Robert; Zivkovic, Lidija; Zmouchko, Viatcheslav; Zobernig, Georg; Zoccoli, Antonio; Zolnierowski, Yves; Zsenei, Andras; zur Nedden, Martin; Zutshi, Vishnu; Zwalinski, Lukasz

    2011-06-27

    Hitherto unobserved long-lived massive particles with electric and/or colour charge are predicted by a range of theories which extend the Standard Model. In this paper a search is performed at the ATLAS experiment for slow-moving charged particles produced in proton-proton collisions at 7 TeV centre-of-mass energy at the LHC, using a data-set corresponding to an integrated luminosity of 34 pb-1. No deviations from Standard Model expectations are found. This result is interpreted in a framework of supersymmetry models in which coloured sparticles can hadronise into long-lived bound hadronic states, termed R-hadrons, and 95% CL limits are set on the production cross-sections of squarks and gluinos. The in influence of R-hadron interactions in matter was studied using a number of different models, and lower mass limits for stable sbottoms and stops are found to be 294 and 309 GeV respectively. The lower mass limit for a stable gluino lies in the range from 562 to 586 GeV depending on the model assumed. Each of t...

  8. Experimental study of bound states in 12Be through low-energy 11Be(d,p)-transfer reactions

    DEFF Research Database (Denmark)

    Johansen, Jacob S.; Bildstein, V.; Borge, M. J. G.

    2013-01-01

    The bound states of 12Be have been studied through a 11Be(d,p)12Be transfer reaction experiment in inverse kinematics. A 2.8 MeV/u beam of 11Be was produced using the REX-ISOLDE facility at CERN. The outgoing protons were detected with the T-REX silicon detector array. The MINIBALL germanium arra...

  9. On Landauer's Principle and Bound for Infinite Systems

    Science.gov (United States)

    Longo, Roberto

    2018-04-01

    Landauer's principle provides a link between Shannon's information entropy and Clausius' thermodynamical entropy. Here we set up a basic formula for the incremental free energy of a quantum channel, possibly relative to infinite systems, naturally arising by an Operator Algebraic point of view. By the Tomita-Takesaki modular theory, we can indeed describe a canonical evolution associated with a quantum channel state transfer. Such evolution is implemented both by a modular Hamiltonian and a physical Hamiltonian, the latter being determined by its functoriality properties. This allows us to make an intrinsic analysis, extending our QFT index formula, but without any a priori given dynamics; the associated incremental free energy is related to the logarithm of the Jones index and is thus quantised. This leads to a general lower bound for the incremental free energy of an irreversible quantum channel which is half of the Landauer bound, and to further bounds corresponding to the discrete series of the Jones index. In the finite dimensional context, or in the case of DHR charges in QFT, where the dimension is a positive integer, our lower bound agrees with Landauer's bound.

  10. Bound states for a neutral particle analogous to a quantum dot induced by the non-inertial effects of the Fermi-Walker reference frame

    International Nuclear Information System (INIS)

    Bakke, Knut

    2010-01-01

    We study the appearance of bound states analogous to a quantum dot, proposed by Tan and Inkson (1996) , in the non-relativistic quantum dynamics of a neutral particle with permanent magnetic dipole moment induced by the non-inertial effects of the Fermi-Walker reference frame.

  11. Virial Expansion Bounds

    Science.gov (United States)

    Tate, Stephen James

    2013-10-01

    In the 1960s, the technique of using cluster expansion bounds in order to achieve bounds on the virial expansion was developed by Lebowitz and Penrose (J. Math. Phys. 5:841, 1964) and Ruelle (Statistical Mechanics: Rigorous Results. Benjamin, Elmsford, 1969). This technique is generalised to more recent cluster expansion bounds by Poghosyan and Ueltschi (J. Math. Phys. 50:053509, 2009), which are related to the work of Procacci (J. Stat. Phys. 129:171, 2007) and the tree-graph identity, detailed by Brydges (Phénomènes Critiques, Systèmes Aléatoires, Théories de Jauge. Les Houches 1984, pp. 129-183, 1986). The bounds achieved by Lebowitz and Penrose can also be sharpened by doing the actual optimisation and achieving expressions in terms of the Lambert W-function. The different bound from the cluster expansion shows some improvements for bounds on the convergence of the virial expansion in the case of positive potentials, which are allowed to have a hard core.

  12. Upper bounds on superpartner masses from upper bounds on the Higgs boson mass.

    Science.gov (United States)

    Cabrera, M E; Casas, J A; Delgado, A

    2012-01-13

    The LHC is putting bounds on the Higgs boson mass. In this Letter we use those bounds to constrain the minimal supersymmetric standard model (MSSM) parameter space using the fact that, in supersymmetry, the Higgs mass is a function of the masses of sparticles, and therefore an upper bound on the Higgs mass translates into an upper bound for the masses for superpartners. We show that, although current bounds do not constrain the MSSM parameter space from above, once the Higgs mass bound improves big regions of this parameter space will be excluded, putting upper bounds on supersymmetry (SUSY) masses. On the other hand, for the case of split-SUSY we show that, for moderate or large tanβ, the present bounds on the Higgs mass imply that the common mass for scalars cannot be greater than 10(11)  GeV. We show how these bounds will evolve as LHC continues to improve the limits on the Higgs mass.

  13. Detonation of Meta-stable Clusters

    Energy Technology Data Exchange (ETDEWEB)

    Kuhl, Allen; Kuhl, Allen L.; Fried, Laurence E.; Howard, W. Michael; Seizew, Michael R.; Bell, John B.; Beckner, Vincent; Grcar, Joseph F.

    2008-05-31

    We consider the energy accumulation in meta-stable clusters. This energy can be much larger than the typical chemical bond energy (~;;1 ev/atom). For example, polymeric nitrogen can accumulate 4 ev/atom in the N8 (fcc) structure, while helium can accumulate 9 ev/atom in the excited triplet state He2* . They release their energy by cluster fission: N8 -> 4N2 and He2* -> 2He. We study the locus of states in thermodynamic state space for the detonation of such meta-stable clusters. In particular, the equilibrium isentrope, starting at the Chapman-Jouguet state, and expanding down to 1 atmosphere was calculated with the Cheetah code. Large detonation pressures (3 and 16 Mbar), temperatures (12 and 34 kilo-K) and velocities (20 and 43 km/s) are a consequence of the large heats of detonation (6.6 and 50 kilo-cal/g) for nitrogen and helium clusters respectively. If such meta-stable clusters could be synthesized, they offer the potential for large increases in the energy density of materials.

  14. Bound State Eigenvalues of the Schroedinger Eq. in two Spatial Variables.

    Science.gov (United States)

    Rawitscher, George H.; Koltracht, Israel

    2002-08-01

    An efficient spectral integral equation method (SIEM) has recently been developed for obtaining the scattering solution of a one-dimensional Schroedinger equation.(R.A. Gonzales, S.-Y. Kang, I. Koltracht and G. Rawitscher, J. of Comput. Phys. 153, 160 (1999).) The purpose of the present study is to extend this method to the case of bound-states in more than one dimension. Even though other methods have already been developed for this case, such as finite element methods, the application we have in mind is to solve the non-linear Bose-Einstein condensate case in the presence of an optical lattice. In the presence of a trapping potential alone, a B-E condensate solution has been obtained by a new iterative spectral method which solves the differential equation.(Y.-S. Choi, J. Javanainen, I. Koltracht, M. Koš)trun, P.J. McKenna and N. Savytska "A Fast Algorithm for the Solution of the Time-Independent Gross-Pitaevskii Equation," Submitted to Computational Physics. But this method becomes inadequate for the case that several potential barriers are also present. The reason that the SIEM is expected to be better suited is that it distributes the collocation points much more efficiently into partitions of variable size.

  15. Energy consumption and economic growth nexus in Tanzania: An ARDL bounds testing approach

    International Nuclear Information System (INIS)

    Odhiambo, Nicholas M.

    2009-01-01

    In this paper, we examine the intertemporal causal relationship between energy consumption and economic growth in Tanzania during the period of 1971-2006. Unlike the majority of the previous studies, we employ the newly developed autoregressive distributed lag (ARDL)-bounds testing approach by Pesaran et al. [2001. Bounds testing approaches to the analysis of level relationships. Journal of Applied Econometrics 16, 289-326] to examine this linkage. We also use two proxies of energy consumption, namely total energy consumption per capita and electricity consumption per capita. The results of the bounds test show that there is a stable long-run relationship between each of the proxies of energy consumption and economic growth. The results of the causality test, on the other hand, show that there is a unidirectional causal flow from total energy consumption to economic growth and a prima-facie causal flow from electricity consumption to economic growth. Overall, the study finds that energy consumption spurs economic growth in Tanzania

  16. Energy consumption and economic growth nexus in Tanzania. An ARDL bounds testing approach

    Energy Technology Data Exchange (ETDEWEB)

    Odhiambo, Nicholas M. [Economics Department, University of South Africa (UNISA), P.O. Box 392, UNISA, 0003, Pretoria (South Africa)

    2009-02-15

    In this paper, we examine the intertemporal causal relationship between energy consumption and economic growth in Tanzania during the period of 1971-2006. Unlike the majority of the previous studies, we employ the newly developed autoregressive distributed lag (ARDL)-bounds testing approach by Pesaran et al. [2001. Bounds testing approaches to the analysis of level relationships. Journal of Applied Econometrics 16, 289-326] to examine this linkage. We also use two proxies of energy consumption, namely total energy consumption per capita and electricity consumption per capita. The results of the bounds test show that there is a stable long-run relationship between each of the proxies of energy consumption and economic growth. The results of the causality test, on the other hand, show that there is a unidirectional causal flow from total energy consumption to economic growth and a prima-facie causal flow from electricity consumption to economic growth. Overall, the study finds that energy consumption spurs economic growth in Tanzania. (author)

  17. Energy consumption and economic growth nexus in Tanzania: An ARDL bounds testing approach

    Energy Technology Data Exchange (ETDEWEB)

    Odhiambo, Nicholas M. [Economics Department, University of South Africa (UNISA), P.O. Box 392, UNISA, 0003, Pretoria (South Africa)], E-mail: nmbaya99@yahoo.com

    2009-02-15

    In this paper, we examine the intertemporal causal relationship between energy consumption and economic growth in Tanzania during the period of 1971-2006. Unlike the majority of the previous studies, we employ the newly developed autoregressive distributed lag (ARDL)-bounds testing approach by Pesaran et al. [2001. Bounds testing approaches to the analysis of level relationships. Journal of Applied Econometrics 16, 289-326] to examine this linkage. We also use two proxies of energy consumption, namely total energy consumption per capita and electricity consumption per capita. The results of the bounds test show that there is a stable long-run relationship between each of the proxies of energy consumption and economic growth. The results of the causality test, on the other hand, show that there is a unidirectional causal flow from total energy consumption to economic growth and a prima-facie causal flow from electricity consumption to economic growth. Overall, the study finds that energy consumption spurs economic growth in Tanzania.

  18. Electromagnetic structure of a bound nucleon

    International Nuclear Information System (INIS)

    Nogami, Y.

    1977-01-01

    The effect of binding on the electromagnetic (e.m.) structure of a nucleon in a nucleus is examined by means of a model consisting of a single nucleon which is bound in a harmonic oscillator potential and also coupled to the pion field through the Chew-Low interaction. The 'two-pion contribution' to the e.m. structure is considered. This is the part which is probably most susceptible to the binding effect. By the binding effect it is meant the one which arises because the nucleon wave functions, in the intermediate state as well as in the initial and final states, are distorted by the potential in which the nucleon is bound. This may be compared to a similar correction to the impulse approximation for pion-nucleus scattering. Unlike the latter which is likely to be quite appreciable, the binding correction to the e.m. structure of the nucleon is found to be negligibly small. The so-called quenching effect due to the Pauli principle when there are other nucleons is also discussed [pt

  19. Nonlinear behavior of multiple-helicity resistive interchange modes near marginally stable states

    International Nuclear Information System (INIS)

    Sugama, Hideo; Nakajima, Noriyoshi; Wakatani, Masahiro.

    1991-05-01

    Nonlinear behavior of resistive interchange modes near marginally stable states is theoretically studied under the multiple-helicity condition. Reduced fluid equations in the sheared slab configuration are used in order to treat a local transport problem. With the use of the invariance property of local reduced fluid model equations under a transformation between the modes with different rational surfaces, weakly nonlinear theories for single-helicity modes by Hamaguchi and Nakajima are extended to the multiple-helicity case and applied to the resistive interchange modes. We derive the nonlinear amplitude equations of the multiple-helicity modes, from which the convective transport in the saturated state is obtained. It is shown how the convective transport is enhanced by nonlinear interaction between modes with different rational surfaces compared with the single-helicity case. We confirm that theoretical results are in good agreement with direct numerical simulations. (author)

  20. The DMM Bound

    DEFF Research Database (Denmark)

    Emiris, Ioannis Z.; Mourrain, Bernard; Tsigaridas, Elias

    2010-01-01

    ) resultant by means of mixed volume, as well as recent advances on aggregate root bounds for univariate polynomials, and are applicable to arbitrary positive dimensional systems. We improve upon Canny's gap theorem [7] by a factor of O(dn-1), where d bounds the degree of the polynomials, and n is the number...... bound on the number of steps that subdivision-based algorithms perform in order to isolate all real roots of a polynomial system. This leads to the first complexity bound of Milne's algorithm [22] in 2D....

  1. Stable tetrabenzo-Chichibabin's hydrocarbons: Tunable ground state and unusual transition between their closed-shell and open-shell resonance forms

    KAUST Repository

    Zeng, Zebing

    2012-09-05

    Stable open-shell polycyclic aromatic hydrocarbons (PAHs) are of fundamental interest due to their unique electronic, optical, and magnetic properties and promising applications in materials sciences. Chichibabin\\'s hydrocarbon as a classical open-shell PAH has been investigated for a long time. However, most of the studies are complicated by their inherent high reactivity. In this work, two new stable benzannulated Chichibabin\\'s hydrocarbons 1-CS and 2-OS were prepared, and their electronic structure and geometry in the ground state were studied by various experiments (steady-state and transient absorption spectra, NMR, electron spin resonance (ESR), superconducting quantum interference device (SQUID), FT Raman, X-ray crystallographic etc.) and density function theory (DFT) calculations. 1-CS and 2-OS exhibited tunable ground states, with a closed-shell quinoidal structure for 1-CS and an open-shell biradical form for 2-OS. Their corresponding excited-state forms 1-OS and 2-CS were also chemically approached and showed different decay processes. The biradical 1-OS displayed an unusually slow decay to the ground state (1-CS) due to a large energy barrier (95 ± 2.5 kJ/mol) arising from severe steric hindrance during the transition from an orthogonal biradical form to a butterfly-like quinoidal form. The quick transition from the quinoidal 2-CS (excited state) to the orthogonal biradicaloid 2-OS (ground state) happened during the attempted synthesis of 2-CS. Compounds 1-CS and 2-OS can be oxidized into stable dications by FeCl 3 and/or concentrated H 2SO 4. The open-shell 2-OS also exhibited a large two-photon absorption (TPA) cross section (760 GM at 1200 nm). © 2012 American Chemical Society.

  2. Faddeev Treatment of the Quasi-Bound and Scattering States in the K¯NN−πΣN System: New Results

    International Nuclear Information System (INIS)

    Shevchenko, N.V.

    2014-01-01

    A chiral-motivated K¯N−πΣ−πΛ potential was constructed and used in Faddeev calculations of different characteristics of K¯NN−πΣN system. First of all, binding energy and width of the K − pp quasi-bound state were newly obtained. The low-energy K − d scattering amplitudes, including scattering length, together with the 1s level shift and width of kaonic deuterium were calculated. Comparison with the results obtained with the phenomenological K¯N−πΣ potential demonstrates that the chiral-motivated potential gives more shallow K − pp state, while the characteristics of K − d system are less sensitive to the form of K¯N interaction. (author)

  3. Solar-bound weakly interacting massive particles a no-frills phenomenology

    CERN Document Server

    Collar, J I

    1999-01-01

    The case for a stable population of solar-bound Earth-crossing Weakly Interacting Massive Particles (WIMPs) is reviewed. A practical general expression for their speed distribution in the laboratory frame is derived under basic assumptions. If such a population exists -even with a conservative phase-space density-, the next generation of large-mass, low-threshold underground bolometers should bring about a sizable enhancement in WIMP sensitivity. Finally, a characteristic yearly modulation in their recoil signal, arising from the ellipticity of the Earth's orbit, is presented.

  4. Relevance of the ICRP biokinetic model for dietary organically bound tritium

    International Nuclear Information System (INIS)

    Trivedi, A.

    1999-10-01

    Ingested dietary tritium can participate in metabolic processes, and become synthesized into organically bound tritium in the tissues and organs. The distribution and retention of the organically bound tritium throughout the body are much different than tritium in the body water. The International Commission on Radiological Protection (ICRP) Publication 56 (1989) has a biokinetic model to calculate dose from the ingestion of organically bound dietary tritium. The model predicts that the dose from the ingestion of organically bound dietary tritium is about 2.3 times higher than from the ingestion of the same activity of tritiated water. Under steady-state conditions, the calculated dose rate (using the first principle approach) from the ingestion of dietary organically bound tritium can be twice that from the ingestion of tritiated water. For an adult, the upper-bound dose estimate for the ingestion of dietary organically bound tritium is estimated to be close to 2.3 times higher than that of tritiated water. Therefore, given the uncertainty in the dose calculation with respect to the actual relevant dose, the ICRP biokinetic model for organically bound tritium is sufficient for dosimetry for adults. (author)

  5. Molecular simulations and Markov state modeling reveal the structural diversity and dynamics of a theophylline-binding RNA aptamer in its unbound state.

    Directory of Open Access Journals (Sweden)

    Becka M Warfield

    Full Text Available RNA aptamers are oligonucleotides that bind with high specificity and affinity to target ligands. In the absence of bound ligand, secondary structures of RNA aptamers are generally stable, but single-stranded and loop regions, including ligand binding sites, lack defined structures and exist as ensembles of conformations. For example, the well-characterized theophylline-binding aptamer forms a highly stable binding site when bound to theophylline, but the binding site is unstable and disordered when theophylline is absent. Experimental methods have not revealed at atomic resolution the conformations that the theophylline aptamer explores in its unbound state. Consequently, in the present study we applied 21 microseconds of molecular dynamics simulations to structurally characterize the ensemble of conformations that the aptamer adopts in the absence of theophylline. Moreover, we apply Markov state modeling to predict the kinetics of transitions between unbound conformational states. Our simulation results agree with experimental observations that the theophylline binding site is found in many distinct binding-incompetent states and show that these states lack a binding pocket that can accommodate theophylline. The binding-incompetent states interconvert with binding-competent states through structural rearrangement of the binding site on the nanosecond to microsecond timescale. Moreover, we have simulated the complete theophylline binding pathway. Our binding simulations supplement prior experimental observations of slow theophylline binding kinetics by showing that the binding site must undergo a large conformational rearrangement after the aptamer and theophylline form an initial complex, most notably, a major rearrangement of the C27 base from a buried to solvent-exposed orientation. Theophylline appears to bind by a combination of conformational selection and induced fit mechanisms. Finally, our modeling indicates that when Mg2+ ions are

  6. Organically bound tritium

    International Nuclear Information System (INIS)

    Diabate, S.; Strack, S.

    1993-01-01

    Tritium released into the environment may be incorporated into organic matter. Organically bound tritium in that case will show retention times in organisms that are considerably longer than those of tritiated water which has significant consequences on dose estimates. This article reviews the most important processes of organically bound tritium production and transport through food networks. Metabolic reactions in plant and animal organisms with tritiated water as a reaction partner are of great importance in this respect. The most important production process, in quantitative terms, is photosynthesis in green plants. The translocation of organically bound tritium from the leaves to edible parts of crop plants should be considered in models of organically bound tritium behavior. Organically bound tritium enters the human body on several pathways, either from the primary producers (vegetable food) or at a higher tropic level (animal food). Animal experiments have shown that the dose due to ingestion of organically bound tritium can be up to twice as high as a comparable intake of tritiated water in gaseous or liquid form. In the environment, organically bound tritium in plants and animals is often found to have higher specific tritium concentrations than tissue water. This is not due to some tritium enrichment effects but to the fact that no equilibrium conditions are reached under natural conditions. 66 refs

  7. Bionic Control of Cheetah Bounding with a Segmented Spine

    OpenAIRE

    Wang, Chunlei; Wang, Shigang

    2016-01-01

    A cheetah model is built to mimic real cheetah and its mechanical and dimensional parameters are derived from the real cheetah. In particular, two joints in spine and four joints in a leg are used to realize the motion of segmented spine and segmented legs which are the key properties of the cheetah bounding. For actuating and stabilizing the bounding gait of cheetah, we present a bioinspired controller based on the state-machine. The controller mainly mimics the function of the cerebellum to...

  8. Bound states of spin-half particles in a static gravitational field close to the black hole field

    Science.gov (United States)

    Spencer-Smith, A. F.; Gossel, G. H.; Berengut, J. C.; Flambaum, V. V.

    2013-03-01

    We consider the bound-state energy levels of a spin-1/2 fermion in the gravitational field of a near-black hole object. In the limit that the metric of the body becomes singular, all binding energies tend to the rest-mass energy (i.e. total energy approaches zero). We present calculations of the ground state energy for three specific interior metrics (Florides, Soffel and Schwarzschild) for which the spectrum collapses and becomes quasi-continuous in the singular metric limit. The lack of zero or negative energy states prior to this limit being reached prevents particle pair production occurring. Therefore, in contrast to the Coulomb case, no pairs are produced in the non-singular static metric. For the Florides and Soffel metrics the singularity occurs in the black hole limit, while for the Schwarzschild interior metric it corresponds to infinite pressure at the centre. The behaviour of the energy level spectrum is discussed in the context of the semi-classical approximation and using general properties of the metric.

  9. Physical Uncertainty Bounds (PUB)

    Energy Technology Data Exchange (ETDEWEB)

    Vaughan, Diane Elizabeth [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Preston, Dean L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-03-19

    This paper introduces and motivates the need for a new methodology for determining upper bounds on the uncertainties in simulations of engineered systems due to limited fidelity in the composite continuum-level physics models needed to simulate the systems. We show that traditional uncertainty quantification methods provide, at best, a lower bound on this uncertainty. We propose to obtain bounds on the simulation uncertainties by first determining bounds on the physical quantities or processes relevant to system performance. By bounding these physics processes, as opposed to carrying out statistical analyses of the parameter sets of specific physics models or simply switching out the available physics models, one can obtain upper bounds on the uncertainties in simulated quantities of interest.

  10. Experimental investigation of supercurrent enhancement in S-N-S junctions by non-equilibrium injection into supercurrent-carrying bound Andreev states

    DEFF Research Database (Denmark)

    Kutchinsky, Jonatan; Taboryski, Rafael Jozef; Sørensen, C B

    2001-01-01

    We report measurements on three-terminal superconductor-semiconductor-superconductor injection devices demonstrating enhancement of the supercurrent by injection from a superconducting injector electrode. Two other electrodes were used to form the detector junction. Applying a small voltage...... of enhancement of the supercurrent by non-equilibrium injection into bound supercurrent-carrying Andreev states. The effect persists to temperatures where the equilibrium supercurrent has vanished. (C) 2001 Elsevier Science B.V. All rights reserved....

  11. Determination of the self-adjoint matrix Schrödinger operators without the bound state data

    Science.gov (United States)

    Xu, Xiao-Chuan; Yang, Chuan-Fu

    2018-06-01

    (i) For the matrix Schrödinger operator on the half line, it is shown that the scattering data, which consists of the scattering matrix and the bound state data, uniquely determines the potential and the boundary condition. It is also shown that only the scattering matrix uniquely determines the self-adjoint potential and the boundary condition if either the potential exponentially decreases fast enough or the potential is known a priori on (), where a is an any fixed positive number. (ii) For the matrix Schrödinger operator on the full line, it is shown that the left (or right) reflection coefficient uniquely determine the self-adjoint potential if either the potential exponentially decreases fast enough or the potential is known a priori on (or ()), where b is an any fixed number.

  12. Calculations of antiproton-nucleus quasi-bound states using the Paris N bar N potential

    Science.gov (United States)

    Hrtánková, Jaroslava; Mareš, Jiří

    2018-01-01

    An optical potential constructed using the p bar N scattering amplitudes derived from the 2009 version of the Paris N bar N potential is applied in calculations of p bar quasi-bound states in selected nuclei across the periodic table. A proper self-consistent procedure for treating energy dependence of the amplitudes in a nucleus appears crucial for evaluating p bar binding energies and widths. Particular attention is paid to the role of P-wave amplitudes. While the P-wave potential nearly does not affect calculated p bar binding energies, it reduces considerably the corresponding widths. The Paris S-wave potential supplemented by a phenomenological P-wave term yields in dynamical calculations p bar binding energies Bpbar ≈ 200 MeV and widths Γpbar ∼ 200- 230 MeV, which is very close to the values obtained within the RMF model consistent with p bar -atom data.

  13. Lower Bound on the Energy Density in Classical and Quantum Field Theories.

    Science.gov (United States)

    Wall, Aron C

    2017-04-14

    A novel method for deriving energy conditions in stable field theories is described. In a local classical theory with one spatial dimension, a local energy condition always exists. For a relativistic field theory, one obtains the dominant energy condition. In a quantum field theory, there instead exists a quantum energy condition, i.e., a lower bound on the energy density that depends on information-theoretic quantities. Some extensions to higher dimensions are briefly discussed.

  14. Applications of stable isotopes

    International Nuclear Information System (INIS)

    Letolle, R.; Mariotti, A.; Bariac, T.

    1991-06-01

    This report reviews the historical background and the properties of stable isotopes, the methods used for their measurement (mass spectrometry and others), the present technics for isotope enrichment and separation, and at last the various present and foreseeable application (in nuclear energy, physical and chemical research, materials industry and research; tracing in industrial, medical and agronomical tests; the use of natural isotope variations for environmental studies, agronomy, natural resources appraising: water, minerals, energy). Some new possibilities in the use of stable isotope are offered. A last chapter gives the present state and forecast development of stable isotope uses in France and Europe

  15. Protein-bound solute removal during extended multipass versus standard hemodialysis

    DEFF Research Database (Denmark)

    Eloot, Sunny; Van Biesen, Wim; Axelsen, Mette

    2015-01-01

    and middle molecules compared to standard hemodialysis (SHD). Since protein-bound solutes (PBS) exert important pathophysiological effects, we investigated whether MPHD results in improved removal of PBS as well. METHODS: A cross-over study (Clinical Trial NCT01267760) was performed in nine stable HD......), hippuric acid (HA), indole acetic acid (IAA), indoxyl sulfate (IS), and p-cresylsulfate (PCS). Dialyser extraction ratio, reduction ratio, and solute removal were calculated for these solutes. RESULTS: Already at 60 min after dialysis start, the extraction ratio in the hemodialyser was a factor 1.4-4 lower...

  16. Three-body Coulomb bound states

    Science.gov (United States)

    Bhatia, A. K.; Drachman, Richard J.

    1987-01-01

    The binding energies of three-particle systems containing two electrons and one positive particle of mass M are reexamined in an attempt to understand the approximate proportionality of the 1Se ground-state binding energies of the reduced masses, as pointed out by Botero and Green (1986). The contribution to the energy of the mass-polarization term is evaluated. No fundamental principle is involved, since the mass polarization merely decreases somewhat as the mass of the positive particle is reduced below the proton mass. In the case of the excited 3Pe state, this reduction is not sufficient to allow binding when M approaches the electron mass. Some properties of the recently observed negative muonium ion (e/-/ mu/+/ e/-/) are also computed.

  17. Non-existence of bipartite bound entanglement with negative partial transposition

    OpenAIRE

    Sperling, J.; Vogel, W.

    2009-01-01

    Bound entanglement with a nonpositive partial transposition (NPT) does not exist. For any NPT entangled state a distillation procedure can be based on a certain number of copies. This number is the minimal Schmidt rank of a pure state needed to witness the NPT entanglement under study.

  18. A study of a stable Al-Cu-Fe quasicrystal in solid and liquid state

    International Nuclear Information System (INIS)

    Chen Lifan; Chen Xishen

    1992-01-01

    A stable Al 65 Cu 20 Fe 15 quasicrystal with an icosahedral structure is studied in solid and liquid state. It is found that the icosahedral phase in Al 65 Cu 20 Fe 15 alloy does not grow directly from the pure liquid state, but rather forms between monoclinic Al 13 Fe 4 and residual liquid state at 865degC. The melting point of the Al 65 Cu 20 Fe 15 icosahedral quasicrystal occurs at 865degC and that of the Al 65 Cu 20 Fe 15 alloy occurs at 1008degC. Moreover, the monoclinic Al 13 Fe 4 is transformed into the icosahedral phase easily at the temperature of 845degC. The icosahedral quasicrystal in Al 65 Cu 20 Fe 15 alloy has a high thermal stability even at 950degC. Above 950degC, the icosahedral structure tends to an amorphous structure. (orig.)

  19. An efficient algorithm for computing fixed length attractors based on bounded model checking in synchronous Boolean networks with biochemical applications.

    Science.gov (United States)

    Li, X Y; Yang, G W; Zheng, D S; Guo, W S; Hung, W N N

    2015-04-28

    Genetic regulatory networks are the key to understanding biochemical systems. One condition of the genetic regulatory network under different living environments can be modeled as a synchronous Boolean network. The attractors of these Boolean networks will help biologists to identify determinant and stable factors. Existing methods identify attractors based on a random initial state or the entire state simultaneously. They cannot identify the fixed length attractors directly. The complexity of including time increases exponentially with respect to the attractor number and length of attractors. This study used the bounded model checking to quickly locate fixed length attractors. Based on the SAT solver, we propose a new algorithm for efficiently computing the fixed length attractors, which is more suitable for large Boolean networks and numerous attractors' networks. After comparison using the tool BooleNet, empirical experiments involving biochemical systems demonstrated the feasibility and efficiency of our approach.

  20. Analytical bounds on SET charge sensitivity for qubit readout in a solid-state quantum computer

    International Nuclear Information System (INIS)

    Green, F.; Buehler, T.M.; Brenner, R.; Hamilton, A.R.; Dzurak, A.S.; Clark, R.G.

    2002-01-01

    Full text: Quantum Computing promises processing powers orders of magnitude beyond what is possible in conventional silicon-based computers. It harnesses the laws of quantum mechanics directly, exploiting the in built potential of a wave function for massively parallel information processing. Highly ordered and scaleable arrays of single donor atoms (quantum bits, or qubits), embedded in Si, are especially promising; they are a very natural fit to the existing, highly sophisticated, Si industry. The success of Si-based quantum computing depends on precisely initializing the quantum state of each qubit, and on precise reading out its final form. In the Kane architecture the qubit states are read out by detecting the spatial distribution of the donor's electron cloud using a sensitive electrometer. The single-electron transistor (SET) is an attractive candidate readout device for this, since the capacitive, or charging, energy of a SET's metallic central island is exquisitely sensitive to its electronic environment. Use of SETs as high-performance electrometers is therefore a key technology for data transfer in a solid-state quantum computer. We present an efficient analytical method to obtain bounds on the charge sensitivity of a single electron transistor (SET). Our classic Green-function analysis provides reliable estimates of SET sensitivity optimizing the design of the readout hardware. Typical calculations, and their physical meaning, are discussed. We compare them with the measured SET-response data