WorldWideScience

Sample records for stable alkaline serine

  1. Purification and characterization of thiol dependent, oxidation-stable serine alkaline protease from thermophilic Bacillus sp.

    Directory of Open Access Journals (Sweden)

    Aysha Kamran

    2015-06-01

    Full Text Available Alkaline serine protease was purified to homogeneity from culture supernatant of a thermophilic, alkaliphilic Bacillus sp. by 80% ammonium sulphate precipitation followed by CM-cellulose and DEAE-cellulose ion exchange column chromatography. The enzyme was purified up to 16.5-fold with 6900 U/mg activity. The protease exhibited maximum activity towards casein at pH 8.0 and at 80 °C. The enzyme was stable at pH 8.0 and 80 °C temperature up to 2 h. The Ca2+ and Mn2+ enhanced the proteolytic activity up to 44% and 36% as compared to control, respectively. However, Zn2+, K+, Ba2+, Co2+, Hg2+ and Cu2+ significantly reduced the enzyme activity. PMSF (phenyl methyl sulphonyl fluoride completely inhibited the protease activity, whereas the activity of protease was stimulated up to two folds in the presence of 5 mM 2-mercaptoethanol. The enzyme was also stable in surfactant (Tween-80 and other commercial detergents (SDS, Triton X-100.

  2. A novel detergent-stable solvent-tolerant serine thiol alkaline protease from Streptomyces koyangensis TN650.

    Science.gov (United States)

    Ben Elhoul, Mouna; Zaraî Jaouadi, Nadia; Rekik, Hatem; Bejar, Wacim; Boulkour Touioui, Souraya; Hmidi, Maher; Badis, Abdelmalek; Bejar, Samir; Jaouadi, Bassem

    2015-08-01

    An alkaline proteinase (STAP) was produced from strain TN650 isolated from a Tunisian off-shore oil field and assigned as Streptomyces koyangensis strain TN650 based on physiological and biochemical properties and 16S rRNA gene sequencing. Matrix assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF/MS) analysis revealed that the purified enzyme was a monomer with a molecular mass of 45125.17-Da. The enzyme had an NH2-terminal sequence of TQSNPPSWGLDRIDQTTAFTKACSIKY, thus sharing high homology with those of Streptomyces proteases. The results showed that this protease was completely inhibited by phenylmethanesulfonyl fluoride (PMSF), diiodopropyl fluorophosphates (DFP), and partially inhibited by 5,5-dithio-bis-(2-nitro benzoic acid) (DTNB), which strongly suggested its belonging to the serine thiol protease family. Using casein as a substrate, the optimum pH and temperature values for protease activity were pH 10 and 70 °C, respectively. The protease was stable at pH 7-10 and 30-60 °C for 24 h. STAP exhibited high catalytic efficiency, significant detergent stability, and elevated organic solvent resistance compared to the SG-XIV proteases from S. griseus and KERAB from Streptomyces sp. AB1. The stap gene encoding STAP was isolated, and its DNA sequence was determined. These properties make STAP a potential candidate for future application in detergent formulations and non-aqueous peptide biocatalysis. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Purification and biochemical characterization of a serine alkaline ...

    African Journals Online (AJOL)

    USER

    2010-08-02

    Aug 2, 2010 ... The enzyme was inactivated by diisopropyl fluorophosphate and phenylmethylsulfonyl fluoride, suggesting that it is a serine protease. The protease was stable in 0.5% SDS and retained 70.3% of its initial activity after 1 h of incubation. It was active in the presence of 3% Triton X-100 with 100% activity.

  4. Production, purification and characterization of a thermotolerant alkaline serine protease from a novel species Bacillus caseinilyticus.

    Science.gov (United States)

    Mothe, Thirumala; Sultanpuram, Vishnuvardhan Reddy

    2016-06-01

    Alkaline proteases are important enzymes in many industrial applications, especially as additives in laundry detergent industry. Though there are a number of Bacillus species which are reported to be producing proteases, the efficiency of a protease produced by a novel strain has to be studied in comparison to the others. Hence, in this study, an alkaline serine protease produced by a novel species Bacillus caseinilyticus was purified and characterized for its possible usage in detergent industry. Ammonium sulphate, dialysis and DEAE column chromatographic methods were used for purification of the isolated alkaline protease. The molecular weight of the protease was determined by SDS-PAGE and it was found to be 66 kDa. Peptide mass fingerprinting (PMF) was carried out using MALDI-TOF-TOF mass spectrometry and the peptides were found to be similar to that of subtilisin protease. Specific activity of purified protein was found to be 89.2 U/mg. Optimum pH and temperature for enzyme activity were at pH 8 and 60 °C, respectively, showing stability with 10 mM CaCl 2 . Phenyl methyl sulphonyl fluoride (PMSF) at both 5 and 10 mM concentrations completely inhibited the enzyme activity suggesting its serine nature. EDTA, metal ions Mg 2+ and Ca 2+ increased the enzyme activity. The one factor at a time optimisation of the protease production was carried to identify the important factors that affect its production. After optimisation, the protease was produced at lab scale, purified and characterised. This alkali, thermotolerant serine protease was found to be significantly stable in the presence of various surfactants and H 2 O 2. Also, it was successfully able to remove blood stain when used as an additive along with commercial detergent suggesting its potential application in the laundry detergent industry.

  5. Purification and biochemical characterization of a serine alkaline ...

    African Journals Online (AJOL)

    USER

    2010-08-02

    , which sulfonated the essential serine residue in the active site and resulted in the complete loss of its activity. However, the enzyme was resistant to EDTA. The high activity of TC4 in the presence of EDTA was advantageous.

  6. Expression and characterization of Coprothermobacter proteolyticus alkaline serine protease

    Science.gov (United States)

    TECHNICAL ABSTRACT A putative protease gene (aprE) from the thermophilic bacterium Coprothermobacter proteolyticus was cloned and expressed in Bacillus subtilis. The enzyme was determined to be a serine protease based on inhibition by PMSF. Biochemical characterization demonstrated the enzyme had...

  7. Purification and biochemical characterization of a serine alkaline ...

    African Journals Online (AJOL)

    The protease was stable in 0.5% SDS and retained 70.3% of its initial activity after 1 h of incubation. It was active in the presence of 3% Triton X-100 with 100% activity and stable towards oxidizing agent with 69.2% activity in the presence of 1% H2O2. The enzyme showed excellent compatibility with commercial detergents ...

  8. Crystal structure of the high-alkaline serine protease PB92 from Bacillus alcalophilus

    NARCIS (Netherlands)

    van der Laan, J.M.; Teplyakov, A.V.; Kelders, H.; Kalk, K.H.; Misset, O.; Mulleners, L.J.S.M.; Dijkstra, B.W.

    The crystal structure of a serine protease from the alkalophilic strain Bacillus alcalophilus PB92 has been determined by X-ray diffraction at 1.75 Å resolution. The structure has been solved by molecular replacement using the atomic model of subtilisin Carlsberg. The model of the PB92 protease has

  9. Purification and biochemical characterization of a novel thermostable serine alkaline protease from Aeribacillus pallidus C10: a potential additive for detergents.

    Science.gov (United States)

    Yildirim, Vildan; Baltaci, Mustafa Ozkan; Ozgencli, Ilknur; Sisecioglu, Melda; Adiguzel, Ahmet; Adiguzel, Gulsah

    2017-12-01

    An extracellular thermostable alkaline serine protease enzyme from Aeribacillus pallidus C10 (GenBank No: KC333049), was purified 4.85 and 17. 32-fold with a yield of 26.9 and 19.56%, respectively, through DE52 anion exchange and Probond affinity chromatography. The molecular mass of the enzyme was determined through sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), with approximately 38.35 kDa. The enzyme exhibited optimum activity at pH 9 and at temperature 60 °C. It was determined that the enzyme had remained stable at the range of pH 7.0-10.0, and that it had preserved more than 80% of its activity at a broad temperature range (20-80 °C). The enzyme activity was found to retain more than 70% and 55% in the presence of organic solvents and commercial detergents, respectively. In addition, it was observed that the enzyme activity had increased in the presence of 5% SDS. K M and V max values were calculated as 0.197 mg/mL and 7.29 μmol.mL - 1 .min - 1 , respectively.

  10. Purification and characterization of a thermostable keratinolytic serine alkaline proteinase from Streptomyces sp. strain AB1 with high stability in organic solvents.

    Science.gov (United States)

    Jaouadi, Bassem; Abdelmalek, Badis; Fodil, Djamila; Ferradji, Fatma Zohra; Rekik, Hatem; Zaraî, Nedia; Bejar, Samir

    2010-11-01

    A keratinolytic alkaline proteinase (KERAB) was isolated from Streptomyces sp. strain AB1. Based on MALDI-TOF mass spectrometry analysis, the purified enzyme is a monomer with a molecular mass of 29850.17Da. The NH(2)-terminal sequence of the enzyme was determined to be TQANPPSWGLDDIDQTAL. This keratinase was completely inhibited by phenylmethanesulfonyl fluoride (PMSF) and diiodopropyl fluorophosphates (DIFP), which suggests that it belongs to the serine protease family. Using keratin azure as a substrate, the optimum pH and temperature values for keratinase activity were pH 11.5 and 75 degrees C, respectively. This keratinase was stable between 30 and 60 degrees C and pH 4 and 11 for 4 and 96 h, respectively, and thermoactivity and thermostability were enhanced in the presence of 5 mM Mg(2+). Its catalytic efficiency was higher than those of SAPB-L31I/T33S/N99Y, nattokinase and subtilisin Carlsberg. KERAB exhibited stability to detergents and high resistance against organic solvents and was able to degrade feathers completely. These properties make KERAB a potential candidate for future applications in detergent formulations, dehairing during leather processing, and non-aqueous peptide biocatalysis. Copyright 2010 Elsevier Ltd. All rights reserved.

  11. An oxidant, detergent and salt stable alkaline protease from Bacillus ...

    African Journals Online (AJOL)

    A novel soil bacterium, Bacillus cereus SIU1 was earlier isolated from non-saline, slightly alkaline soil of Eastern Uttar Pradesh, India. The isolate B. cereus SIU1 was grown in modified glucose yeast extract (modified GYE) medium at pH 9.0 and 45°C. It produced maximum protease at 20 h incubation. The enzyme was ...

  12. Raf-1 forms a stable complex with Mek1 and activates Mek1 by serine phosphorylation.

    OpenAIRE

    Huang, W; Alessandrini, A; Crews, C M; Erikson, R L

    1993-01-01

    Recombinant Mek1 and Raf-1 proteins produced in Sf9 cells undergo a tight association both in vivo and in vitro, which apparently does not depend on additional factors or the kinase activity of Mek1 or Raf-1. The complex can be disrupted by two polyclonal antibodies raised against Raf-1 peptides. Coinfection with Raf-1 activates Mek1 > 150-fold, and coinfection with Raf-1 and Mek1 activates Erk1 approximately 90-fold. The activation of Mek1 by Raf-1 involves only serine phosphorylation, which...

  13. A two disulfide bridge Kazal domain from Phytophthora exhibits stable inhibitory activity against serine proteases of the subtilisin family

    Directory of Open Access Journals (Sweden)

    Kamoun Sophien

    2005-08-01

    Full Text Available Abstract Background Kazal-like serine protease inhibitors are defined by a conserved sequence motif. A typical Kazal domain contains six cysteine residues leading to three disulfide bonds with a 1–5/2–4/3–6 pattern. Most Kazal domains described so far belong to this class. However, a novel class of Kazal domains with two disulfide bridges resulting from the absence of the third and sixth cysteines have been found in biologically important molecules, such as human LEKTI, a 15-domain inhibitor associated with the severe congenital disease Netherton syndrome. These domains are referred to as atypical Kazal domains. Previously, EPI1, a Kazal-like protease inhibitor from the oomycete plant pathogen Phytophthora infestans, was shown to be a tight-binding inhibitor of subtilisin A. EPI1 also inhibits and interacts with the pathogenesis-related P69B subtilase of the host plant tomato, suggesting a role in virulence. EPI1 is composed of two Kazal domains, the four-cysteine atypical domain EPI1a and the typical domain EPI1b. Results In this study, we predicted the inhibition constants of EPI1a and EPI1b to subtilisin A using the additivity-based sequence to reactivity algorithm (Laskowski algorithm. The atypical domain EPI1a, but not the typical domain EPI1b, was predicted to have strong inhibitory activity against subtilisin A. Inhibition assays and coimmunoprecipitation experiments showed that recombinant domain EPI1a exhibited stable inhibitory activity against subilisin A and was solely responsible for inhibition and interaction with tomato P69B subtilase. Conclusion The finding that the two disulfide bridge atypical Kazal domain EPI1a is a stable inhibitor indicates that the missing two cysteines and their corresponding disulfide bond are not essential for inhibitor reactivity and stability. This report also suggests that the Laskowski algorithm originally developed and validated with typical Kazal domains might operate accurately for atypical

  14. Preparation and performance evaluation of novel alkaline stable anion exchange membranes

    Science.gov (United States)

    Irfan, Muhammad; Bakangura, Erigene; Afsar, Noor Ul; Hossain, Md. Masem; Ran, Jin; Xu, Tongwen

    2017-07-01

    Novel alkaline stable anion exchange membranes are prepared from various amounts of N-methyl dipicolylamine (MDPA) and brominated poly (2,6-dimethyl-1,4-phenylene oxide) (BPPO). The dipicolylamine and MDPA are synthesized through condensation reaction and confirmed by 1H NMR spectroscopy. The morphologies of prepared membranes are investigated by atomic force microscopy (AFM), fourier transform infrared spectroscopy (FTIR), 1H NMR spectroscopy and scanning electron microscopy (SEM). The electrochemical and physical properties of AEMs are tested comprising water uptake (WU), ion exchange capacity (IEC), alkaline stability, linear expansion ratio (LER), thermal stability and mechanical stability. The obtained hydroxide conductivity of MDPA-4 is 66.5 mS/cm at 80 °C. The MDPA-4 membrane shows good alkaline stability, high hydroxide conductivity, low methanol permeability (3.43 × 10-7 cm2/s), higher selectivity (8.26 × 107 mS s/cm3), less water uptake (41.1%) and lower linear expansion (11.1%) despite of high IEC value (1.62 mmol/g). The results prove that MDPA membranes have great potential application in anion exchange membrane fuel cell.

  15. Computational Design of a pH Stable Enzyme: Understanding Molecular Mechanism of Penicillin Acylase's Adaptation to Alkaline Conditions

    Science.gov (United States)

    Suplatov, Dmitry; Panin, Nikolay; Kirilin, Evgeny; Shcherbakova, Tatyana; Kudryavtsev, Pavel; Švedas, Vytas

    2014-01-01

    Protein stability provides advantageous development of novel properties and can be crucial in affording tolerance to mutations that introduce functionally preferential phenotypes. Consequently, understanding the determining factors for protein stability is important for the study of structure-function relationship and design of novel protein functions. Thermal stability has been extensively studied in connection with practical application of biocatalysts. However, little work has been done to explore the mechanism of pH-dependent inactivation. In this study, bioinformatic analysis of the Ntn-hydrolase superfamily was performed to identify functionally important subfamily-specific positions in protein structures. Furthermore, the involvement of these positions in pH-induced inactivation was studied. The conformational mobility of penicillin acylase in Escherichia coli was analyzed through molecular modeling in neutral and alkaline conditions. Two functionally important subfamily-specific residues, Gluβ482 and Aspβ484, were found. Ionization of these residues at alkaline pH promoted the collapse of a buried network of stabilizing interactions that consequently disrupted the functional protein conformation. The subfamily-specific position Aspβ484 was selected as a hotspot for mutation to engineer enzyme variant tolerant to alkaline medium. The corresponding Dβ484N mutant was produced and showed 9-fold increase in stability at alkaline conditions. Bioinformatic analysis of subfamily-specific positions can be further explored to study mechanisms of protein inactivation and to design more stable variants for the engineering of homologous Ntn-hydrolases with improved catalytic properties. PMID:24959852

  16. Computational design of a pH stable enzyme: understanding molecular mechanism of penicillin acylase's adaptation to alkaline conditions.

    Directory of Open Access Journals (Sweden)

    Dmitry Suplatov

    Full Text Available Protein stability provides advantageous development of novel properties and can be crucial in affording tolerance to mutations that introduce functionally preferential phenotypes. Consequently, understanding the determining factors for protein stability is important for the study of structure-function relationship and design of novel protein functions. Thermal stability has been extensively studied in connection with practical application of biocatalysts. However, little work has been done to explore the mechanism of pH-dependent inactivation. In this study, bioinformatic analysis of the Ntn-hydrolase superfamily was performed to identify functionally important subfamily-specific positions in protein structures. Furthermore, the involvement of these positions in pH-induced inactivation was studied. The conformational mobility of penicillin acylase in Escherichia coli was analyzed through molecular modeling in neutral and alkaline conditions. Two functionally important subfamily-specific residues, Gluβ482 and Aspβ484, were found. Ionization of these residues at alkaline pH promoted the collapse of a buried network of stabilizing interactions that consequently disrupted the functional protein conformation. The subfamily-specific position Aspβ484 was selected as a hotspot for mutation to engineer enzyme variant tolerant to alkaline medium. The corresponding Dβ484N mutant was produced and showed 9-fold increase in stability at alkaline conditions. Bioinformatic analysis of subfamily-specific positions can be further explored to study mechanisms of protein inactivation and to design more stable variants for the engineering of homologous Ntn-hydrolases with improved catalytic properties.

  17. Kinetics Study of Extracellular Detergent Stable Alkaline Protease from Rhizopus oryzae

    Directory of Open Access Journals (Sweden)

    Zareena Mushtaq

    2015-04-01

    Full Text Available In this study, extracellular alkaline protease was produced from Rhizopus oryzae in submerged fermentation using dairy waste (whey as a substrate. Fermentation kinetics was studied and various parameters were optimized. The strain produced maximum protease at initial medium pH of 6.0 medium depth of 26 mm, inoculum size of 2% at incubation temperature of 35ºC for 168 h of fermentation. Alkaline protease was purified to homogeneity by ammonium sulphate fractionation followed by sephadex G-100 chromatography. The molecular mass of alkaline protease was 69 kDa determined by 10% SDS-PAGE. The optimum pH and temperature of alkaline protease was 9.0 and 40ºC, respectively. Metal profile of the enzyme showed that the enzyme was non-metallic in nature. The Km , Kcat , Vmax and Kcat/Km values of purified protease were 7.0 mg/mL, 3.8 x102S-1, 54.30 µmol/min and 54.28 s-1mg -1.mL respectively, using casein as substrate. The purified alkaline protease had stability with commercial detergents.

  18. Purification and Characterization of a New Thermostable, Haloalkaline, Solvent Stable, and Detergent Compatible Serine Protease from Geobacillus toebii Strain LBT 77

    Directory of Open Access Journals (Sweden)

    Wajdi Thebti

    2016-01-01

    Full Text Available A new thermostable, haloalkaline, solvent stable SDS-induced serine protease was purified and characterized from a thermophilic Geobacillus toebii LBT 77 newly isolated from a Tunisian hot spring. This study reveals the potential of the protease from Geobacillus toebii LBT 77 as an additive to detergent with spectacular proprieties described for the first time. The protease was purified to homogeneity by ammonium sulfate precipitation followed by Sephadex G-75 and DEAE-Cellulose chromatography. It was a monomeric enzyme with molecular weight of 30 kDa. The optimum pH, temperature, and NaCl for maximum protease activity were 13.0, 95°C, and 30%, respectively. Activity was stimulated by Ca2+, Mg2+, DTNB, β-mercaptoethanol, and SDS. The protease was extremely stable even at pH 13.25, 90°C, and 30% NaCl and in the presence of hydrophilic, hydrophobic solvents at high concentrations. The high compatibility with ionic, nonionic, and commercial detergents confirms the utility as an additive to cleaning products. Kinetic and thermodynamic characterization of protease revealed Km=1 mg mL−1,  Vmax=217.5 U mL−1, Kcat/Km=99 mg mL−1 S−1, Ea=51.5 kJ mol−1, and ΔG⁎=56.5 kJ mol−1.

  19. Towards a stable ion-solvating polymer electrolyte for advanced alkaline water electrolysis

    DEFF Research Database (Denmark)

    Aili, David; Wright, Andrew G.; Kraglund, Mikkel Rykær

    2017-01-01

    Advanced alkaline water electrolysis using ion-solvating polymer membranes as electrolytes represents a new direction in the field of electrochemical hydrogen production. Polybenzimidazole membranes equilibrated in aqueous KOH combine the mechanical robustness and gas-tightness of a polymer......-dimensional electrodes completely free from noble metals, they show polarization characteristics comparable to those of commercially available separators and good performance stability over several days....

  20. Purification and characterization of detergent stable alkaline protease from Bacillus amyloliquefaciens SP1 isolated from apple rhizosphere.

    Science.gov (United States)

    Guleria, Shiwani; Walia, Abhishek; Chauhan, Anjali; Shirkot, Chand Karan

    2016-02-01

    A thermostable extracellular alkaline protease producing Bacillus amyloliquefaciens SP1 was isolated from apple rhizosphere having multifarious plant growth promoting activities. Strain SP1 was purified to 6.48-fold using four-step purification protocol and characterized in detail for its robustness and ecofriendly application in leather and detergent industries. Structural analysis revealed that the protease was monomeric and had a molecular weight of 43 kDa. It exhibited optimum activity at 60°C in alkaline environment (pH 8.0) and stable in the presence of surfactants and oxidizing agents. Enzyme was thermostable at 50°C and retained more than 70% activity after 30 min incubation. It has shown stain removal property and dehairing of goat skin without chemical assistance and hydrolyzing fibrous proteins. This protease showed Km of 0.125 mg ml(-1) and V(max) of 12820 μg ml(-1) indicating its excellent affinity and catalytic role. Thermal inactivation of the pure enzyme followed first-order kinetics. The half life of the pure enzyme at 50, 60, and 65°C was 77, 19.80, and 13.33 min, respectively. The activation energy was 37.19 KJ mol(-1). The results suggest that the B. amyloliquefaciens SP1 has a potential application in different industries. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Stable isotope labeling confirms mixotrophic nature of streamer biofilm communities at alkaline hot springs

    Directory of Open Access Journals (Sweden)

    Florence eSchubotz

    2015-02-01

    Full Text Available Streamer biofilm communities (SBC are often observed within chemosynthetic zones of Yellowstone hot spring outflow channels, where temperatures exceed those conducive to photosynthesis. Nearest the hydrothermal source (75-88°C SBC comprise thermophilic Archaea and Bacteria, often mixed communities including Desulfurococcales and uncultured Crenarchaeota, as well as Aquificae, Thermus, each carrying diagnostic membrane lipid biomarkers. We tested the hypothesis that SBC can alternate their metabolism between autotrophy and heterotrophy depending on substrate availability. Feeding experiments were performed at two alkaline hot springs in Yellowstone National Park: Octopus Spring and ‘Bison Pool’, using various 13C-labeled substrates (bicarbonate, formate, acetate and glucose to determine the relative uptake of these different carbon sources. Highest 13C uptake, at both sites, was from acetate into almost all bacterial fatty acids, particularly into methyl-branched C15, C17 and C19 fatty acids that are diagnostic for Thermus/Meiothermus and some Firmicutes as well as into universally common C16:0 and C18:0 fatty acids. 13C-glucose showed a similar, but a 10 to 30 times lower uptake across most fatty acids. 13C bicarbonate uptake, signifying the presence of autotrophic communities was only significant at ‘Bison Pool’ and was observed predominantly in non-specific saturated C16, C18, C20 and C22 fatty acids. Incorporation of 13C-formate occurred only at very low rates at ‘Bison Pool’ and was almost undetectable at Octopus Spring, suggesting that formate is not an important carbon source for SBC. 13C uptake into archaeal lipids occurred predominantly with 13C acetate, suggesting also that archaeal communities at both springs have primarily heterotrophic carbon assimilation pathways. We hypothesize that these communities are energy-limited and predominantly nurtured by input of exogenous organic material, with only a small fraction being

  2. Serine protease inhibitor Serp-1 strongly impairs atherosclerotic lesion formation and induces a stable plaque phenotype in ApoE-/-mice

    NARCIS (Netherlands)

    Bot, Ilze; von der Thüsen, Jan H.; Donners, Marjo M. P. C.; Lucas, Alexandra; Fekkes, Madelon L.; de Jager, Saskia C. A.; Kuiper, Johan; Daemen, Mat J. A. P.; van Berkel, Theo J. C.; Heeneman, Sylvia; Biessen, Erik A. L.

    2003-01-01

    The myxoma virus protein Serp-1 is a member of the serine protease inhibitor superfamily. Serp-1 potently inhibits human serum proteases including plasmin, urokinase-type plasminogen activator (uPA), and tissue-type plasminogen activator (tPA). Serp-1 also displays a high antiinflammatory activity,

  3. Phospholipid metabolism of serine in Plasmodium-infected erythrocytes involves phosphatidylserine and direct serine decarboxylation.

    Science.gov (United States)

    Elabbadi, N; Ancelin, M L; Vial, H J

    1997-01-01

    Erythrocytes infected with Plasmodium falciparum or Plasmodium knowlesi efficiently incorporated radioactive serine into phosphatidylserine (PtdSer), phosphatidylethanolamine (PtdEtn) and phosphatidylcholine (PtdCho). Serine was also metabolized into ethanolamine (Etn) and phosphorylethanolamine (P-Etn) via direct serine decarboxylation; this is a major phenomenon since together these metabolites represent 60% of total radioactive water-soluble metabolites. They were identified by reverse-phase HPLC and two TLC-type analyses and confirmed by alkaline phosphatase treatment, which depleted the radioactive P-Etn peak completely with a concomitant increase in that of Etn. In the presence of 5 microM labelled serine, radioactivity appeared in Etn and P-Etn after a 25 min lag period, and isotopic equilibrium was reached at 40 and 95 min respectively. There was a similar lag period for PtdEtn formation, which accumulated steadily for at least 180 min. Incorporation of serine into phospholipids and water-soluble metabolites increased in the presence of up to 500 microM external serine. An apparent plateau was then reached for all metabolites except intracellular serine and Etn. Exogenous Etn (at 20 microM) induced a concomitant dramatic decrease in serine incorporation into P-Etn and all phospholipids, but not into Etn. Increasing exogenous serine to 100 microM decreased the incorporation of radioactive Etn into PtdEtn by only 30%, and the PtdCho level was not affected. 2-Hydroxyethylhydrazine significantly decreased serine incorporation into P-Etn and PtdEtn, whereas Etn was accumulated. No concomitant inhibition of PtdSer or PtdCho labelling from serine occurred, even when PtdEtn formation was decreased by 95%. This indicates that the PtdEtn pool derived from direct serine decarboxylation differed from that derived from PtdSer decarboxylation, and the latter appeared to be preferentially used for PtdCho biosynthesis. Hydroxylamine also inhibited phosphorylation of serine

  4. Selective alkaline stripping of metal ions after solvent extraction by base-stable 1,2,3-triazolium ionic liquids.

    Science.gov (United States)

    Raiguel, Stijn; Depuydt, Daphne; Vander Hoogerstraete, Tom; Thomas, Joice; Dehaen, Wim; Binnemans, Koen

    2017-04-19

    Novel 1,2,3-triazolium ionic liquids with a high base stability were synthesized for use in solvent extraction of first-row transition elements and rare earths from chloride media. The synthesis of these ionic liquids makes use of a recently reported, metal-free multicomponent reaction that allows full substitution of the 1,2,3-triazolium skeleton. The physical and chemical properties of these ionic liquids are compared with those of a trisubstituted analog. Peralkylation of the 1,2,3-triazolium skeleton leads to ionic liquids with superior properties, such as low viscosity, low solubility in water and higher thermal and base stability. Iodide and thiocyanate ionic liquids with peralkylated cations were applied to the solvent extraction of metal ions, and their stability in alkaline media was exploited in the selective stripping of the metals from the loaded ionic liquid phase by alkaline solutions. EXAFS and Raman spectroscopy were performed to gain insight into the extraction mechanism. The applicability of these extraction systems was demonstrated in separations relevant for the recovery of metals from ores and end-of-life products: Fe(iii)/Cu(ii)/Zn(ii) (copper ores, brass scraps) and Fe(iii)/Nd(iii) (rare earth magnets).

  5. Isolation and characterization of a cold-active, alkaline, detergent stable α-amylase from a novel bacterium Bacillus subtilis N8.

    Science.gov (United States)

    Arabacı, Nihan; Arıkan, Burhan

    2018-03-21

    A cold-active alkaline amylase producer Bacillus subtilis N8 was isolated from soil samples. Amylase synthesis optimally occurred at 15°C and pH 10.0 on agar plates containing starch. The molecular weight of the enzyme was found to be 205 kDa by performing SDS-PAGE. While the enzyme exhibited the highest activity at 25°C and pH 8.0, it was highly stable in alkaline media (pH 8.0-12.0) and retained 96% of its original activity at low temperatures (10-40°C) for 24 h. While the amylase activity increased in the presence of β-mercaptoethanol (103%); Ba 2+ , Ca 2+ , Na + , Zn 2+ , Mn 2+ , H 2 O 2 and TritonX-100 slightly inhibited the activity. The enzyme showed resistance to some denaturants: such as SDS, EDTA, and urea (52, 65 and 42%, respectively). N8 α -amylase displayed the maximum remaining activity of 56% with 3% NaCl. The major final products of starch were glucose, maltose, and maltose-derived oligosaccharides. This novel cold-active α -amylase has the potential to be used in the industries of detergent and food, bioremediation process and production of prebiotics.

  6. Bifunctional coating based on carboxymethyl chitosan with stable conjugated alkaline phosphatase for inhibiting bacterial adhesion and promoting osteogenic differentiation on titanium

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Dong; Neoh, Koon Gee, E-mail: chenkg@nus.edu.sg; Kang, En-Tang

    2016-01-01

    Graphical abstract: - Highlights: • Alkaline phosphatase was immobilized on carboxymethyl chitosan coating on Ti. • The coating is bifunctional; resists bacterial adhesion and enhances cell functions. • Osteogenic differentiation of osteoblasts and stem cells is enhanced on the coating. • The coating remains stable and functional after ethanol treatment and autoclaving. - Abstract: In this work, alkaline phosphatase (ALP) was covalently immobilized on carboxymethyl chitosan (CMCS)-coated polydopamine (PDA)-functionalized Ti to achieve a bifunctional surface. Our results showed ∼89% reduction in Staphylococcus epidermidis adhesion on this surface compared to that on pristine Ti. The ALP-modified Ti supported cell proliferation, and significantly enhanced cellular ALP activity and calcium deposition of osteoblasts, human mesenchymal stem cells (hMSCs) and human adipose-derived stem cells (hADSCs). The extent of enhancement in the functions of these cells is dependent on the surface density of immobilized ALP. The substrate prepared using an ALP solution of 50 μg/cm{sup 2} resulted in 44%, 54% and 129% increase in calcium deposited by osteoblasts, hMSCs and hADSCs, respectively, compared to those cultured on pristine Ti. The ALP-modified substrates also promoted the osteogenic differentiation of hMSCs and hADSCs by up-regulating gene expressions of runt-related transcription factor 2 (RUNX2), osterix (OSX), and osteocalcin (OC) in the two types of stem cells. The surface-immobilized ALP was stable after being subjected to 1 h immersion in 70% ethanol and autoclaving at 121 °C for 20 min. However, the enzymatic bioactivity of the surface-immobilized ALP was reduced by about 50% after these substrates were immersed in phosphate buffered saline (PBS) or PBS containing lysozyme for 14 days.

  7. SrCo(0.9)Ti(0.1)O(3-δ) As a New Electrocatalyst for the Oxygen Evolution Reaction in Alkaline Electrolyte with Stable Performance.

    Science.gov (United States)

    Su, Chao; Wang, Wei; Chen, Yubo; Yang, Guangming; Xu, Xiaomin; Tadé, Moses O; Shao, Zongping

    2015-08-19

    The development of efficient, inexpensive, and stable electrocatalysts for the oxygen evolution reaction (OER) is critical for many electrochemical energy conversion technologies. The prohibitive price and insufficient stability of the state-of-the-art IrO2 electrocatalyst for the OER inhibits its use in practical devices. Here, SrM0.9Ti0.1O3-δ (M = Co, Fe) perovskites with different B-site transition metal elements were investigated as potentially cheaper OER electrocatalysts. They were prepared through a typical sol-gel route, and their catalytic activities for the OER in alkaline medium were comparatively studied using rotating disk electrodes. Both materials show high initial intrinsic activities in alkaline electrolyte for the OER, comparable to the benchmark perovskite-type electrocatalyst Ba0.5Sr0.5Co0.8Fe0.2O3-δ (BSCF), but SrCo0.9Ti0.1O3-δ (SCT) possessed more operational stability than SrFe0.9Ti0.1O3-δ (SFT), even better than BSCF and IrO2 catalysts. Based on the X-ray photoelectron spectra analysis of the oxidation states of the surface Co/Fe in both SFT and SCT before and after the OER tests, an explanation for their different operational stabilities was proposed by adopting a reported activity descriptor correlated to the eg occupancy of the 3d electron of the surface transition metal cations in the perovskite oxides. The above results indicate that SCT is a promising alternative electrocatalyst for the OER and can be used in electrochemical devices for water oxidation.

  8. Serine biosynthesis and transport defects.

    Science.gov (United States)

    El-Hattab, Ayman W

    2016-07-01

    l-serine is a non-essential amino acid that is biosynthesized via the enzymes phosphoglycerate dehydrogenase (PGDH), phosphoserine aminotransferase (PSAT), and phosphoserine phosphatase (PSP). Besides its role in protein synthesis, l-serine is a potent neurotrophic factor and a precursor of a number of essential compounds including phosphatidylserine, sphingomyelin, glycine, and d-serine. Serine biosynthesis defects result from impairments of PGDH, PSAT, or PSP leading to systemic serine deficiency. Serine biosynthesis defects present in a broad phenotypic spectrum that includes, at the severe end, Neu-Laxova syndrome, a lethal multiple congenital anomaly disease, intermediately, infantile serine biosynthesis defects with severe neurological manifestations and growth deficiency, and at the mild end, the childhood disease with intellectual disability. A serine transport defect resulting from deficiency of the ASCT1, the main transporter for serine in the central nervous system, has been recently described in children with neurological manifestations that overlap with those observed in serine biosynthesis defects. l-serine therapy may be beneficial in preventing or ameliorating symptoms in serine biosynthesis and transport defects, if started before neurological damage occurs. Herein, we review serine metabolism and transport, the clinical, biochemical, and molecular aspects of serine biosynthesis and transport defects, the mechanisms of these diseases, and the potential role of serine therapy. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Serine/threonine/tyrosine phosphorylation regulates DNA binding of bacterial transcriptional regulators

    DEFF Research Database (Denmark)

    Kalantari, Aida; Derouiche, Abderahmane; Shi, Lei

    2015-01-01

    of residue, i.e. serine, threonine, tyrosine and cysteine, is also quite common. The phosphorylation of the ester type (phospho-serine/threonine/tyrosine) is more stable than the aspartate phosphorylation of TCSs. The kinases which catalyse these phosphorylation events (Hanks-type serine/threonine protein...

  10. Convergent synthesis of a deuterium-labeled serine dipeptide lipid for analysis of biological samples.

    Science.gov (United States)

    Dietz, Christopher; Clark, Robert B; Nichols, Frank C; Smith, Michael B

    2017-05-30

    Bacterial serine dipeptide lipids are known to promote inflammatory processes and are detected in human tissues associated with periodontal disease or atherosclerosis. Accurate quantification of bacterial serine lipid, specifically lipid 654 [((S)-15-methyl-3-((13-methyltetradecanoyl)oxy)hexadecanoyl)glycyl-l-serine, (3S)-l-serine] isolated from Porphyromonas gingivalis, in biological samples requires the preparation of a stable isotope internal standard for sample supplementation and subsequent mass spectrometric analysis. This report describes the convergent synthesis of a deuterium-substituted serine dipeptide lipid, which is an isotopically labeled homologue that represents a dominant form of serine dipeptide lipid recovered in bacteria. Copyright © 2017 John Wiley & Sons, Ltd.

  11. Hydromagnesite precipitation in the Alkaline Lake Dujiali, central Qinghai-Tibetan Plateau: Constraints on hydromagnesite precipitation from hydrochemistry and stable isotopes

    International Nuclear Information System (INIS)

    Lin, Yongjie; Zheng, Mianping; Ye, Chuanyong

    2017-01-01

    The mineral hydromagnesite, Mg 5 (CO 3 ) 4 (OH) 2 ·4H 2 O, is a common form of hydrated Mg-carbonate in alkaline lakes, yet the processes involved in its formation are not well understood. This study focuses on Dujiali Lake, in the central Qinghai-Tibetan Plateau (QTP), which is one of the few environments on the earth's surface with extensive Holocene precipitation of hydromagnesite. The hydrogeochemistry of surface waters, and the mineralogical, stable isotope (δ 13 C and δ 18 O), and radiogenic isotope content of hydromagnesite deposits were analyzed to investigate formation mechanisms. The chemical composition of surface water around Dujiali Lake evolved from the rock-weathering-type waters of T1 (Ca−Mg−HCO 3 water type) to more concentrated sodic waters of T2 (Na−SO 4 −Cl water type) due to evaporation. XRD results show that the mineralogical composition of samples is pure hydromagnesite. Analysis of oxygen isotopes in the hydromagnesite indicates that supergene formation with authigenic carbonate crystallization from evaporation water is the dominant precipitation process. Combined carbon-oxygen isotope analysis suggests atmospheric CO 2 provided a carbon source for the precipitation of hydromagnesite. These findings suggest that hydromagnesite precipitation at Lake Dujiali is mainly inorganic in nature, and the greenhouse gas, CO 2 , is trapped and stored in the hydromagnesite directly from the atmosphere. AMS radiocarbon dating of samples indicates CO 2 was sequestered between 5845 ± 30 to 6090 ± 25 cal a BP in the Dujiali Lake hydromagnesite deposit. The study contributes to improved understanding of hydromagnesite formation in modern and ancient playas. - Highlights: • The stable isotopes, radiogenic isotope data are firstly obtained from the hydromagnesite deposits of Lake Dujiali in QTP. • Hydromagnesite precipitation at Lake Dujiali is mainly inorganic. • δ 18 O indicates supergene formation with authigenic carbonate

  12. Cloning, Purification, and Characterization of a Heat- and Alkaline-Stable Endoglucanase B from Aspergillus niger BCRC31494

    Directory of Open Access Journals (Sweden)

    Tsong-Rong Yan

    2012-08-01

    Full Text Available Endoglucanase B (EGLB derived from Aspergillus niger BCRC31494 has been used in the food fermentation industry because of its thermal and alkaline tolerance. It was cloned and expressed in Pichia pastoris. According to sequence analysis, the gene open reading frame comprises 1,217 bp with five introns (GenBank GQ292753. According to sequence and protein domain analyses, EGLB was assigned to glycosyl hydrolase family 5 of the cellulase superfamily. Several binding sites were found in the promoter region. The purified recombinant enzyme was induced by 0.5% methanol, and it exhibited optimal activity at 70 °C and pH 4. EGLB was stable for 3 h at temperatures below 60 °C, with more than 90% of its activity remaining. The enzyme was specific for substrates with β-1,3 and β-1,4 linkages. In Lineweaver-Burk plot analysis, the Km and Vmax values of EGLB for β-D-glucan were 134 mg/mL and 4.68 U/min/mg, respectively. The enzyme activity was increased by 1.86-fold by Co2+ and by 2-fold by Triton X-100 and Tween 80. These favorable properties make EGLB a potential candidate for use in laundry and textile industrial applications.

  13. Application of alkaline thermo-stable lipase(s) enzyme produced from irradiated microbial isolate in the field of detergent technology

    International Nuclear Information System (INIS)

    Ahmed, O.E.A.M.S

    2010-01-01

    (s) from Bacillus brevis B 2 was studied. It was found that:1-The optimum incubation temperature for maximum lipase(s) formation is 70 degree C after 24h at ph 11.5.2- Maximum lipase(s) biosynthesis attained at concentration of 1% for each of fish-wastes and yeast extract with inoculum size equal 2 ml/100 ml culture medium incubating under shaking condition.3-Using fish-wastes-yeast extract medium fortified with disaccharide (sucrose or maltose or lactose) was the best nutritional medium for lipase formation. On contrary none of the tested nitrogen sources affect the induction of the enzyme.4-The addition of some surfactant to the nutritional medium revealed that Tween-20 slightly increase lipase(s) synthesis while the presence of zinc sulfate (100 ppm) and folic acid (500 ppm) enhanced the formation of lipase(s) by B. brevis B 2 . 5-Exposure of the experimental organism to 1 KGy gamma-irradiation resulted in slight increase in the level of enzyme. Thermoalkalo-stable lipase(s) from B. brevis B 2 was purified 21.8-fold using ammonium sulphate precipitation (100% saturation) followed by fractionation on Sephadex G-200 column chromatography. The properties of the enzyme were studied.Maximal enzyme activity occurred at 80 degree C. In addition, exposure of the enzyme to 70-80 degree C for 1h resulted remaining activities equal 98-90% respectively, indicating that it was thermo-stable. Optimum ph for maximal enzyme activity was ph 9.5 and exposure of the enzyme to alkaline condition (ph 9 - 10.5) for 1h resulted remaining activity from 80-90%, indicating the alkalo-stable nature of the enzyme. - The relationship between enzyme activity and enzyme concentration indicated that the extent of catalytic action was a function of the concentration of the enzyme. Maximal enzyme activity obtained after 60 minute and the reaction rate increased as a result of increasing substrate concentration, up to 1.2 mg of p-nitrophenyl palmitate, with some saturation at the highest concentration

  14. Phosphorylation of mouse serine racemase regulates D-serine synthesis

    DEFF Research Database (Denmark)

    Foltyn, Veronika N; Zehl, Martin; Dikopoltsev, Elena

    2010-01-01

    Serine racemase (SR) catalyses the synthesis of the transmitter/neuromodulator D-serine, which plays a major role in synaptic plasticity and N-methyl D-aspartate receptor neurotoxicity. We now report that SR is phosphorylated at Thr71 and Thr227 as revealed by mass spectrometric analysis...

  15. Production and Characterization of Alkaline Protease from a High Yielding and Moderately Halophilic Strain of SD11 Marine Bacteria

    Directory of Open Access Journals (Sweden)

    Hongxia Cui

    2015-01-01

    Full Text Available A marine bacterium SD11, which was isolated from sea muds (Geziwo Qinhuangdao Sea area, China, was used to produce thermostable alkaline serine nonmetal protease in the skim milk agar plate medium with 10% NaCl. The optimal temperature about the manufacture of the extracellular protease was ~60°C. The crude enzyme was stable at 20–50°C. The activity was retained to 60% and 45% after heating for 1 h at 60 and 70°C, respectively. The protease was highly active in a wide pH scope (8.0–10.0 and maximum protease activity exhibited at pH 10.0. The activity was restrained by phenylmethylsulfonyl fluoride (PMSF but mildly increased (~107% in the presence of ethylenediaminetetraacetic acid (EDTA, indicating that the production contains serine-protease(s and nonmetal protease(s. Moreover, the crude alkaline protease was active with the 5 mM Ca2+, Mn2+, Zn2+, Cu2+, Na+, and K+ that existed separately. In addition, the protease showed superduper stability when exposed to an anionic surfactant (5 mM SDS, an oxidizing agent (1% H2O2, and several organic solvents (methanol, isopropanol, and acetone. These results suggest that the marine bacterium SD11 is significant in the industry from the prospects of its ability to produce thermally stable alkaline protease.

  16. Structure-property relationship of bifunctional MnO2 nanostructures: highly efficient, ultra-stable electrochemical water oxidation and oxygen reduction reaction catalysts identified in alkaline media.

    Science.gov (United States)

    Meng, Yongtao; Song, Wenqiao; Huang, Hui; Ren, Zheng; Chen, Sheng-Yu; Suib, Steven L

    2014-08-13

    Manganese oxides of various structures (α-, β-, and δ-MnO2 and amorphous) were synthesized by facile methods. The electrocatalytic properties of these materials were systematically investigated for catalyzing both oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) in alkaline media. Extensive characterization was correlated with the activity study by investigating the crystal structures (XRD, HRTEM), morphologies (SEM), porosities (BET), surfaces (XPS, O2-TPD/MS), and electrochemical properties (Tafel analysis, Koutechy-Levich plots, and constant-current electrolysis). These combined results show that the electrocatalytic activities are strongly dependent on the crystallographic structures, and follow an order of α-MnO2 > AMO > β-MnO2 > δ-MnO2. Both OER studies and ORR studies reveal similar structure-determined activity trends in alkaline media. In the OER studies, α-MnO2 displays an overpotential of 490 mV compared to 380 mV shown by an Ir/C catalyst in reaching 10 mA cm(-2). Meanwhile, α-MnO2 also exhibits stability for 3 h when supplying a constant current density of 5 mA cm(-2). This was further improved by adding Ni(2+) dopants (ca. 8 h). The superior OER activity was attributed to several factors, including abundant di-μ-oxo bridges existing in α-MnO2 as the protonation sites, analogous to the OEC in PS-II of the natural water oxidation system; the mixed valencies (AOS = 3.7); and the lowest charge transfer resistances (91.8 Ω, η = 430 mV) as revealed from in situ electrochemical impedance spectroscopy (EIS). In the ORR studies, when reaching 3 mA cm(-2), α-MnO2 shows 760 mV close to 860 mV for the best ORR catalyst (20% Pt/C). The outstanding ORR activity was due to the strongest O2 adsorption capability of α-MnO2 suggested by temperature-programmed desorption. As a result, this discovery of the structure-related electrocatalytic activities could provide guidance in the further development of easily prepared, scalable, and low

  17. Bioprocessing of “Hair Waste” by Paecilomyces lilacinus as a Source of a Bleach-Stable, Alkaline, and Thermostable Keratinase with Potential Application as a Laundry Detergent Additive: Characterization and Wash Performance Analysis

    Science.gov (United States)

    Cavello, Ivana A.; Hours, Roque A.; Cavalitto, Sebastián F.

    2012-01-01

    Paecilomyces lilacinus (Thom) Samson LPS 876, a locally isolated fungal strain, was grown on minimal mineral medium containing “hair waste,” a residue from the hair-saving unhairing process, and produced a protease with keratinolytic activity. This enzyme was biochemically characterized. The optimum reaction conditions, determined with a response surface methodology, were 60°C and pH 6.0. It was remarkably stable in a wide range of pHs and temperatures. Addition of Ca2+, Mg2+, or sorbitol was found to be effective in increasing thermal stability of the protease. PMSF and Hg2+ inhibited the proteolytic activity indicating the presence of a thiol-dependent serine protease. It showed high stability toward surfactants, bleaching agents, and solvents. It was also compatible with commercial detergents (7 mg/mL) such as Ariel, Skip, Drive, and Ace, retaining more than 70% of its proteolytic activity in all detergents after 1 h of incubation at 40°C. Wash performance analysis revealed that this protease could effectively remove blood stains. From these properties, this enzyme may be considered as a potential candidate for future use in biotechnological processes, as well as in the formulation of laundry detergents. PMID:23365760

  18. Purification and characterization of alkaline proteases from aspergillus terreus

    International Nuclear Information System (INIS)

    Hussain, A.; Mannan, A.; Zubair, H.; Mirza, B.

    2010-01-01

    Proteases belong to an important class of enzymes known as hydrolases and catalyze hydrolysis of proteins. They act primarily to degrade proteins that are used for energy production and as biosynthetic precursors. In the following study, protease produced from Aspergillus terreus was found to be thermo stable and included in the category of alkaline serine and metallo protease. During partial purification, presence of enzyme in 60% (NH/sub 4/)/sub 2/SO/sub 4/ indicated small molecular weight polypeptide; later purification with Sephadex G-75 fractionation yielded a single proteolytic active molecule. At final purification step, the increase in specific activity of the enzyme was 7.5 fold with 23% yield. SDS-PAGE analysis revealed that alkaline protease of Aspergillus terreus is a monomer with approximate molecular weight of 35 kDa. Optimum pH for protease activity was found in the range of 7.5-11.0 (maximum at pH 8.5), thus apparently classified as an alkaline protease. The enzyme was thermo stable towards high temperature (60 deg. C), however it denatured irreversibly at 70 deg. C showing 80% loss of activity. The maximum proteolytic activity was found at 40 deg. C. The enzyme was effectively inhibited by PMSF, EDTA and urea whereas iodoacetamide and thiourea did not result in any loss in activity while cysteine was found to be activator molecule. The study with metal ions Mg/sup +2/, Mn/sup +2/ and Fe/sup +3/ (1 mM each) showed minute stimulatory effects on enzyme activity. Co/sup +2/ and Ca/sup +2/ (1 mM) had neither excitatory nor inhibitory effect while Hg/sup +2/ and Cu/sup +2/ (1 mM) slightly reduced the enzyme activity. (author)

  19. An update on serine deficiency disorders

    NARCIS (Netherlands)

    van der Crabben, S. N.; Verhoeven-Duif, N. M.; Brilstra, E. H.; Van Maldergem, L.; Coskun, T.; Rubio-Gozalbo, E.; Berger, R.; de Koning, T. J.

    Serine deficiency disorders are caused by a defect in one of the three synthesising enzymes of the L-serine biosynthesis pathway. Serine deficiency disorders give rise to a neurological phenotype with psychomotor retardation, microcephaly and seizures in newborns and children or progressive

  20. Infrared spectrum and structure of the homochiral serine octamer-dichloride complex

    Science.gov (United States)

    Seo, Jongcheol; Warnke, Stephan; Pagel, Kevin; Bowers, Michael T.; von Helden, Gert

    2017-12-01

    The amino acid serine is known to form a very stable octamer that has properties that set it apart from serine complexes of different sizes or from complexes composed of other amino acids. For example, both singly protonated serine octamers and anionic octamers complexed with two halogen ions strongly prefer homochirality, even when assembled from racemic D,L mixtures. Consequently, the structures of these complexes are of great interest, but no acceptable candidates have so far been identified. Here, we investigate anionic serine octamers coordinated with two chloride ions using a novel technique coupling ion mobility spectrometry-mass spectrometry with infrared spectroscopy, in combination with theoretical calculations. The results allow the identification of a unique structure for (Ser8Cl2)2- that is highly symmetric, very stable and homochiral and whose calculated properties match those observed in experiments.

  1. Alkaline Electrochemical Capacitor and Electrode Fabrication

    National Research Council Canada - National Science Library

    Finello, D

    1999-01-01

    Highly capacitive (high surface area) electrodes that are electrochemically stable in strong alkaline electrolyte will form the basis for a new generation of electrical and electrochemical energy storage and conversion devices...

  2. Effects of alkaline earth metal ion complexation on amino acid zwitterion stability: Results from infrared action spectroscopy

    NARCIS (Netherlands)

    Bush, M. F.; Oomens, J.; Saykally, R. J.; Williams, E. R.

    2008-01-01

    The structures of isolated alkaline earth metal cationized amino acids are investigated using infrared multiple photon dissociation (IRMPD) spectroscopy and theory. These results indicate that arginine, glutamine, proline, serine, and valine all adopt zwitterionic structures when complexed with

  3. Optical properties of D-serine doped TGS crystals for pyroelectric sensors*

    Directory of Open Access Journals (Sweden)

    Kurlyak V.Yu.

    2015-12-01

    Full Text Available Refractive and birefringence indices in the range of transparency of 300 to 700 nm for triglycine sulphate crystals doped with D-serine molecules have been measured in the temperature range of 290 K to 340 K. The obtained optical properties are discussed together with characteristic electrical features of these materials used as pyroelectric sensors for measurement of temperature. The experimental results obtained in this study will be necessary as the reference data for comparison with the calculated refractive indices of TGS + D-serine on the basis of density functional theory. Determination of the proper position of D-serine, will reveal the features of TGS + D-serine crystal structure necessary to achieve stable unipolarity.

  4. L-serine in disease and development

    NARCIS (Netherlands)

    de Koning, Tom J.; Snell, Keith; Duran, Marinus; Berger, Ruud; Poll-The, Bwee-Tien; Surtees, Robert

    2003-01-01

    The amino acid L-serine, one of the so-called non-essential amino acids, plays a central role in cellular proliferation. L-Serine is the predominant source of one-carbon groups for the de novo synthesis of purine nucleotides and deoxythymidine monophosphate. It has long been recognized that, in cell

  5. Continuing education in neurometabolic disorders--serine deficiency disorders

    NARCIS (Netherlands)

    de Koning, T. J.; Poll-The, B. T.; Jaeken, J.

    1999-01-01

    Serine deficiency disorders comprise a new group of inborn errors of serine metabolism. Patients affected with these disorders present with major neurological symptoms including congenital microcephaly, seizures, psychomotor retardation or polyneuropathy. The diagnosis of serine deficiency is based

  6. Antibacterial activity of silver nanoparticles synthesized from serine

    Energy Technology Data Exchange (ETDEWEB)

    Jayaprakash, N. [Catalysis and Nanomaterials Research Laboratory, Department of Chemistry, Loyola College, Chennai 600 034 (India); SRM Valliammai Engineering College, Department of Chemistry, Chennai 603 203 (India); Judith Vijaya, J., E-mail: jjvijayaloyola@yahoo.co.in [Catalysis and Nanomaterials Research Laboratory, Department of Chemistry, Loyola College, Chennai 600 034 (India); John Kennedy, L. [Materials Division, School of Advanced Sciences, VIT University, Chennai Campus, Chennai 600 048 (India); Priadharsini, K.; Palani, P. [Department of Center for Advanced Study in Botany, University of Madras, Guindy Campus, Chennai 600 025 (India)

    2015-04-01

    Silver nanoparticles (Ag NPs) were synthesized by a simple microwave irradiation method using polyvinyl pyrrolidone (PVP) as a capping agent and serine as a reducing agent. UV–Visible spectra were used to confirm the formation of Ag NPs by observing the surface plasmon resonance (SPR) band at 443 nm. The emission spectrum of Ag NPs showed an emission band at 484 nm. In the presence of microwave radiation, serine acts as a reducing agent, which was confirmed by Fourier transformed infrared (FT-IR) spectrum. High-resolution transmission electron microscopy (HR-TEM) and high-resolution scanning electron microscopy (HR-SEM) were used to investigate the morphology of the synthesized sample. These images showed the sphere-like morphology. The elemental composition of the sample was determined by the energy dispersive X-ray analysis (EDX). Selected area electron diffraction (SAED) was used to find the crystalline nature of the Ag NPs. The electrochemical behavior of the synthesized Ag NPs was analyzed by the cyclic voltammetry (CV). Antibacterial experiments showed that the prepared Ag NPs showed relatively similar antibacterial activities, when compared with AgNO{sub 3} against Gram-positive and Gram-negative bacteria. - Highlights: • Microwave irradiation method is used to synthesize silver nanoparticles. • Highly stable silver nanoparticles are produced from serine. • A detailed study of antibacterial activities is discussed. • Formation mechanism of silver microspheres has been proposed.

  7. Pnserpin: A Novel Serine Protease Inhibitor from Extremophile Pyrobaculum neutrophilum

    Directory of Open Access Journals (Sweden)

    Huan Zhang

    2017-01-01

    Full Text Available Serine protease inhibitors (serpins are native inhibitors of serine proteases, constituting a large protein family with members spread over eukaryotes and prokaryotes. However, only very few prokaryotic serpins, especially from extremophiles, have been characterized to date. In this study, Pnserpin, a putative serine protease inhibitor from the thermophile Pyrobaculum neutrophilum, was overexpressed in Escherichia coli for purification and characterization. It irreversibly inhibits chymotrypsin-, trypsin-, elastase-, and subtilisin-like proteases in a temperature range from 20 to 100 °C in a concentration-dependent manner. The stoichiometry of inhibition (SI of Pnserpin for proteases decreases as the temperature increases, indicating that the inhibitory activity of Pnserpin increases with the temperature. SDS-PAGE (sodium dodecyl sulfate polyacrylamide gel electrophoresis showed that Pnserpin inhibits proteases by forming a SDS-resistant covalent complex. Homology modeling and molecular dynamic simulations predicted that Pnserpin can form a stable common serpin fold. Results of the present work will help in understanding the structural and functional characteristics of thermophilic serpin and will broaden the current knowledge about serpins from extremophiles.

  8. Pnserpin: A Novel Serine Protease Inhibitor from Extremophile Pyrobaculum neutrophilum.

    Science.gov (United States)

    Zhang, Huan; Fei, Rui; Xue, Baigong; Yu, Shanshan; Zhang, Zuoming; Zhong, Sheng; Gao, Yuanqi; Zhou, Xiaoli

    2017-01-07

    Serine protease inhibitors (serpins) are native inhibitors of serine proteases, constituting a large protein family with members spread over eukaryotes and prokaryotes. However, only very few prokaryotic serpins, especially from extremophiles, have been characterized to date. In this study, Pnserpin, a putative serine protease inhibitor from the thermophile Pyrobaculum neutrophilum , was overexpressed in Escherichia coli for purification and characterization. It irreversibly inhibits chymotrypsin-, trypsin-, elastase-, and subtilisin-like proteases in a temperature range from 20 to 100 °C in a concentration-dependent manner. The stoichiometry of inhibition (SI) of Pnserpin for proteases decreases as the temperature increases, indicating that the inhibitory activity of Pnserpin increases with the temperature. SDS-PAGE (sodium dodecyl sulfate polyacrylamide gel electrophoresis) showed that Pnserpin inhibits proteases by forming a SDS-resistant covalent complex. Homology modeling and molecular dynamic simulations predicted that Pnserpin can form a stable common serpin fold. Results of the present work will help in understanding the structural and functional characteristics of thermophilic serpin and will broaden the current knowledge about serpins from extremophiles.

  9. D-serine and serine racemase are associated with PSD-95 and glutamatergic synapse stability

    Directory of Open Access Journals (Sweden)

    Hong eLin

    2016-02-01

    Full Text Available D-serine is an endogenous coagonist at the glycine site of synaptic NMDA receptors (NMDARs, synthesized by serine racemase (SR through conversion of L-serine. It is crucial for synaptic plasticity and is implicated in schizophrenia. Our previous studies demonstrated specific loss of SR, D-serine-responsive synaptic NMDARs, and glutamatergic synapses in cortical neurons lacking alpha7 nicotinic acetylcholine receptors, which promotes glutamatergic synapse formation and maturation during development. We thus hypothesize that D-serine and SR (D-serine/SR are associated with glutamatergic synaptic development. Using morphological and molecular studies in cortical neuronal cultures, we demonstrate that D-serine/SR are associated with PSD-95 and NMDARs in postsynaptic neurons and with glutamatergic synapse stability during synaptic development. Endogenous D-serine and SR colocalize with PSD-95, but not presynaptic vesicular glutamate transporter 1 (VGLUT1, in glutamatergic synapses of cultured cortical neurons. Low-density astrocytes in cortical neuronal cultures lack SR expression but contain enriched D-serine in large vesicle-like structures, suggesting possible synthesis of D-serine in postsynaptic neurons and storage in astrocytes. More interestingly, endogenous D-serine and SR colocalize with PSD-95 in the postsynaptic terminals of glutamatergic synapses during early and late synaptic development, implicating involvement of D-serine/SR in glutamatergic synaptic development. Exogenous application of D-serine enhances the interactions of SR with PSD-95 and NR1, and increases the number of VGLUT1- and PSD-95-positive glutamatergic synapses, suggesting that exogenous D-serine enhances postsynaptic SR/PSD-95 signaling and stabilizes glutamatergic synapses during cortical synaptic development. This is blocked by NMDAR antagonist 2-amino-5-phosphonopentanoic acid (AP5 and 7-chlorokynurenic acid (7-CK, a specific antagonist at the glycine site of NMDARs

  10. Alkaline rocks and the occurrence of uranium

    International Nuclear Information System (INIS)

    Hambleton-Jones, B.B.; Toens, P.D.

    1980-10-01

    Many alkaline complexes contain uranium and other minerals in low concentrations and are regarded as constituting valuable potential reserves. Certain complex metallurgical problems, however, remain to be solved. Alkaline rocks occur in a number of forms and environments and it is noted that they are generated during periods of geological quiescence emplaced mainly in stable aseismic areas. Many occur along the extensions of oceanic transform faults beneath the continental crust and the application of this concept to areas not currently known to host alkaline complexes may prove useful in identifying potential target areas for prospecting operations [af

  11. Inhibition of serine proteases by peptidyl fluoromethyl ketones

    International Nuclear Information System (INIS)

    Imperiali, B.; Abeles, R.H.

    1986-01-01

    Peptidyl fluoromethyl ketones that are specific inhibitors of the serine proteases α-chymotrypsin and porcine pancreatic elastase were synthesized. By analogy with the corresponding aldehydes it is assumed that the fluoromethyl ketones react with the γ-OH group of the active site serine to form a stable hemiacetal. 19 F NMR studies of the chymotrypsin-bound trifluoromethyl ketone inhibitors Ac-Leu-ambo-Phe-CF 3 1 and Ac-ambo-Phe-CF 3 clearly indicate that the carbonyl carbon is tetrahedral at the active site of the enzyme. The inhibitor is bound as either the stable hydrat or the hemiacetal, involving the active site serine. The effect of varying the number of amino acid residues in the peptidyl portion of the inhibitor and the number of fluorines in the fluoromethyl ketone moiety is examined. In the series of trifluoromethyl ketone elastase inhibitors, the lowering of K/sub i/ concomitant with the change from a dipeptide analogue to a tetrapeptide analogue correlates well with the variation in V/K for hydrolysis of the corresponding amide substrates. This trend is indicative of the inhibitors acting as transition-state analogues. In addition to chain length, the number of fluorine substituents also affects the K/sub i/. In the case of chymotrypsin, the K/sub i/ for Ac-Leu-ambo-Phe-CF 3 is 30-fold lower than that for Ac-Leu-ambo-Phe-CF 2 H. With elastase this trend is not as profound. In all cases, however, the difluoro- and trifluoromethyl ketones are better inhibitors than the monofluoromethyl and nonfluorinated analogues. This improvement must be associated with both the degree of hydration of the fluoromethyl ketones and the significant effect that fluorine substitution has on lowering the first pK/sub a/ of the hemiacetal hydroxyl. The monofluoromethyl ketone inhibitor of chymotrypsin, Ac-Leu-ambo-Phe-CFH 2 , is a weak competitive inhibitor

  12. Serine deprivation enhances antineoplastic activity of biguanides.

    Science.gov (United States)

    Gravel, Simon-Pierre; Hulea, Laura; Toban, Nader; Birman, Elena; Blouin, Marie-José; Zakikhani, Mahvash; Zhao, Yunhua; Topisirovic, Ivan; St-Pierre, Julie; Pollak, Michael

    2014-12-15

    Metformin, a biguanide widely used in the treatment of type II diabetes, clearly exhibits antineoplastic activity in experimental models and has been reported to reduce cancer incidence in diabetics. There are ongoing clinical trials to evaluate its antitumor properties, which may relate to its fundamental activity as an inhibitor of oxidative phosphorylation. Here, we show that serine withdrawal increases the antineoplastic effects of phenformin (a potent biguanide structurally related to metformin). Serine synthesis was not inhibited by biguanides. Instead, metabolic studies indicated a requirement for serine to allow cells to compensate for biguanide-induced decrease in oxidative phosphorylation by upregulating glycolysis. Furthermore, serine deprivation modified the impact of metformin on the relative abundance of metabolites within the citric acid cycle. In mice, a serine-deficient diet reduced serine levels in tumors and significantly enhanced the tumor growth-inhibitory actions of biguanide treatment. Our results define a dietary manipulation that can enhance the efficacy of biguanides as antineoplastic agents that target cancer cell energy metabolism. ©2014 American Association for Cancer Research.

  13. D-serine increases adult hippocampal neurogenesis

    Directory of Open Access Journals (Sweden)

    Sebastien eSultan

    2013-08-01

    Full Text Available Adult hippocampal neurogenesis results in the continuous formation of new neurons and is a process of brain plasticity involved in learning and memory. The neurogenic niche regulates the stem cell proliferation and the differentiation and survival of new neurons and a major contributor to the neurogenic niche are astrocytes. Among the molecules secreted by astrocytes, D-serine is an important gliotransmitter and is a co-agonist of the glutamate, N-methyl-D-aspartate (NMDA receptor. D-serine has been shown to enhance the proliferation of neural stem cells in vitro, but its effect on adult neurogenesis in vivo is unknown. Here, we tested the effect of exogenous administration of D-serine on adult neurogenesis in the mouse dentate gyrus. We found that 1 week of treatment with D-serine increased cell proliferation in vivo and in vitro and increased the density of neural stem cells and transit amplifying progenitors. Furthermore, D-serine increased the survival of newborn neurons. Together, these results indicate that D-serine treatment resulted in the improvement of several steps of adult neurogenesis in vivo.

  14. Genetically modified microorganisms having improved tolerance towards l-serine

    DEFF Research Database (Denmark)

    2016-01-01

    The present invention generally relates to the microbiological industry, and specifically to the production of L-serine or L-serine derivatives using genetically modified bacteria. The present invention provides genetically modified microorganisms, such as bacteria, wherein the expression of genes...... tolerant towards higher concentrations of serine. The present invention also provides methods for the production of L-serine or L-serine derivative using such genetically modified microorganisms....

  15. An Alkaline Protease from Bacillus pumilus MP 27: Functional Analysis of its Binding Model towards its Applications as Detergent Additive

    Directory of Open Access Journals (Sweden)

    Mehak Baweja

    2016-08-01

    Full Text Available A proteolytic strain of Bacillus pumilus MP 27 was isolated from water samples of Southern ocean produced alkaline protease. Since protease production need expensive ingredients, an economically viable process was developed by using low cost carbon source, wheat straw, supplemented with peptone. This protease was active within temperature ranges 10˚C -70˚C at pH 9. This process was optimized by response surface methodology using a Box Bekhman design by Design Expert 7.0 software that increased the protease activity to 776.5 U/ml. Moreover, the enzyme was extremely stable at a broad range of temperature and pH retaining 69% of its activity at 50 ºC and 70% at pH 11. The enzyme exhibited excellent compatibility with surfactants and commercial detergents, showing 87% stability with triton X-100 and ̴ 100% stability with Tide commercial detergent. The results of the wash performance analysis demonstrated considerably good de-staining at 50ºC and 4ºC with low supplementation (109 U/ml. Molecular modeling of the protease revealed the presence of serine proteases, subtilase family and serine active site and further docking supported the association of catalytic site with the various substrates. Certainly, such protease can be considered as a good detergent additive in detergent industry with a possibility to remove the stains effectively even in a cold wash.

  16. Crystal structure and characterization of a novel L-serine ammonia-lyase from Rhizomucor miehei

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Zhen [College of Food Science and Nutritional Engineering, Beijing Advanced Innovation Center of Food Nutrition and Human Health, China Agricultural University, Beijing 100083 (China); Yan, Qiaojuan [College of Engineering, China Agricultural University, Beijing 100083 (China); Ma, Qingjun [Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071 (China); Jiang, Zhengqiang, E-mail: zhqjiang@cau.edu.cn [College of Food Science and Nutritional Engineering, Beijing Advanced Innovation Center of Food Nutrition and Human Health, China Agricultural University, Beijing 100083 (China)

    2015-10-23

    L-serine ammonia-lyase, as a member of the β-family of pyridoxal-5′-phosphate (PLP) dependent enzymes, catalyzes the conversion of L-serine (L-threonine) to pyruvate (α-ketobutyrate) and ammonia. The crystal structure of L-serine ammonia-lyase from Rhizomucor miehei (RmSDH) was solved at 1.76 Å resolution by X-ray diffraction method. The overall structure of RmSDH had the characteristic β-family PLP dependent enzyme fold. It consisted of two distinct domains, both of which show the typical open twisted α/β structure. A PLP cofactor was located in the crevice between the two domains, which was attached to Lys52 by a Schiff-base linkage. Unique residue substitutions (Gly78, Pro79, Ser146, Ser147 and Thr312) were discovered at the catalytic site of RmSDH by comparison of structures of RmSDH and other reported eukaryotic L-serine ammonia-lyases. Optimal pH and temperature of the purified RmSDH were 7.5 and 40 °C, respectively. It was stable in the pH range of 7.0–9.0 and at temperatures below 40 °C. This is the first crystal structure of a fungal L-serine ammonia-lyase. It will be useful to study the catalytic mechanism of β-elimination enzymes and will provide a basis for further enzyme engineering. - Highlights: • The crystal structure of a fungal L-serine ammonia-lyase (RmSDH) was solved. • Five unique residue substitutions are found at the catalytic site of RmSDH. • RmSDH was expressed in Pichia. pastoris and biochemically characterized. • RmSDH has potential application in splitting D/L-serine.

  17. Optical properties of alkaline earth borate glasses

    African Journals Online (AJOL)

    user

    applications in the field of optical fibers, optoelectronic devices; radiation shields, surgical lasers and their glass ceramic counter parts have wide range of applications (Rajasree et al., 2011; Sharma et al., 2007, Limkitjaroenporn et al., 2010). Boric acid. (H3BO3) form stable glasses with alkaline earth oxides (R= MgO, CaO, ...

  18. Increased tolerance towards serine obtained by adaptive laboratory evolution

    DEFF Research Database (Denmark)

    Mundhada, Hemanshu; Seoane, Jose Miguel; Koza, Anna

    2014-01-01

    The amino acid serine has previously been identified as one of the top 30 candidates of value added chemicals, making the production of serine from glucose attractive. Production of serine have previously been attempted in E. coli and C. glutamicum, however, titers sufficient for commercial...... by glyA), the conversion of serine to pyruvate (encoded by sdaA, sdaB and tdcG) was also deleted. As expected, the resulting strain turned out to be susceptible to even low concentrations of serine in the media. In order to improve the tolerance of the strain towards serine, adaptive laboratory evolution...

  19. Anodes for alkaline electrolysis

    Science.gov (United States)

    Soloveichik, Grigorii Lev [Latham, NY

    2011-02-01

    A method of making an anode for alkaline electrolysis cells includes adsorption of precursor material on a carbonaceous material, conversion of the precursor material to hydroxide form and conversion of precursor material from hydroxide form to oxy-hydroxide form within the alkaline electrolysis cell.

  20. Alkaline "Permanent" Paper.

    Science.gov (United States)

    Pacey, Antony

    1991-01-01

    Discussion of paper manufacturing processes and their effects on library materials focuses on the promotion of alkaline "permanent" paper, with less acid, by Canadian library preservation specialists. Standards for paper acidity are explained; advantages of alkaline paper are described, including decreased manufacturing costs; and…

  1. Method for the production of l-serine using genetically engineered microorganisms deficient in serine degradation pathways

    DEFF Research Database (Denmark)

    2016-01-01

    The present invention generally relates to the microbiological industry, and specifically to the production of L-serine using genetically modified bacteria. The present invention provides genetically modified microorganisms, such as bacteria, wherein the expression of genes encoding for enzymes...... concentrations of serine. The present invention also provides methods for the production of L-serine or L-serine derivative using such genetically modified microorganisms....

  2. Alkaline battery operational methodology

    Science.gov (United States)

    Sholklapper, Tal; Gallaway, Joshua; Steingart, Daniel; Ingale, Nilesh; Nyce, Michael

    2016-08-16

    Methods of using specific operational charge and discharge parameters to extend the life of alkaline batteries are disclosed. The methods can be used with any commercial primary or secondary alkaline battery, as well as with newer alkaline battery designs, including batteries with flowing electrolyte. The methods include cycling batteries within a narrow operating voltage window, with minimum and maximum cut-off voltages that are set based on battery characteristics and environmental conditions. The narrow voltage window decreases available capacity but allows the batteries to be cycled for hundreds or thousands of times.

  3. A New Bacillus licheniformis Mutant Strain Producing Serine Protease Efficient for Hvdrolvqis of Sov Meal Proteins.

    Science.gov (United States)

    Kostyleva, E V; Sereda, A S; Velikoretskaya, I A; Nefedova, L I; Sharikov, A Yu; Tsurikova, N V; Lobanov, N S; Semenova, M V; Sinitsyn, A P

    2016-07-01

    Induced mutagenesis with y-irradiation of the industrial strain Bacillus licheniformis-60 VKM B-2366,D was used to obtain a new highly active producer of an extracellular serine protease, Bacillus licheni- formis7 145. Samples of dry.concentrated preparations of serine protease produced by the original and mutant strains were obtained, and identity of their protein composition was'established. Alkaline serine protease sub- tilisin DY was the main component of the preparations. The biochemical and physicochemical properties of the Protolkheterm-145 enzyme preparation obtained from the mutant strain were studied. It exhibited pro- teolytic activity (1.5 times higher than the preparation from the initial strain) within broad ranges of pH (5- 11) and temperature (30-70'C).-Efficient hydrolysis of extruded soy meal protein at high concentrations (2 to 50%) in-the reaction mixture was.the main advantage of the Protolikheterm 145 preparation. Compared to,. the preparation obtained using the initial strain, the new preparation with increased proteolytic-activity pro- vided for more complete hydrolysis of the main non-nutritious soy,proteins.(glycinin and 0-conglycinin) with the yield of soluble protein increased by 19-28%, which decreased the cost of bioconversion of the protein- aceous material and indicated promise of the new preparation in resource-saving technologies for processing soy meals and cakes.

  4. Small serine recombination systems ParA-MRS and CinH-RS2 perform precise excision of plastid DNA

    Science.gov (United States)

    Selectable marker genes (SMGs) are necessary for selection of transgenic plants. However, once stable transformants have been identified, the marker gene is no longer needed. In this study, we demonstrate the use of the small serine recombination systems, ParA-MRS and CinH-RS2, to precisely excise ...

  5. Uranium in alkaline rocks

    International Nuclear Information System (INIS)

    Murphy, M.; Wollenberg, H.; Strisower, B.; Bowman, H.; Flexser, S.; Carmichael, I.

    1978-04-01

    Geologic and geochemical criteria were developed for the occurrence of economic uranium deposits in alkaline igneous rocks. A literature search, a limited chemical analytical program, and visits to three prominent alkaline-rock localities (Ilimaussaq, Greenland; Pocos de Caldas, Brazil; and Powderhorn, Colorado) were made to establish criteria to determine if a site had some uranium resource potential. From the literature, four alkaline-intrusive occurrences of differing character were identified as type-localities for uranium mineralization, and the important aspects of these localities were described. These characteristics were used to categorize and evaluate U.S. occurrences. The literature search disclosed 69 U.S. sites, encompassing nepheline syenite, alkaline granite, and carbonatite. It was possible to compare two-thirds of these sites to the type localities. A ranking system identified ten of the sites as most likely to have uranium resource potential

  6. Uranium in alkaline rocks

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, M.; Wollenberg, H.; Strisower, B.; Bowman, H.; Flexser, S.; Carmichael, I.

    1978-04-01

    Geologic and geochemical criteria were developed for the occurrence of economic uranium deposits in alkaline igneous rocks. A literature search, a limited chemical analytical program, and visits to three prominent alkaline-rock localities (Ilimaussaq, Greenland; Pocos de Caldas, Brazil; and Powderhorn, Colorado) were made to establish criteria to determine if a site had some uranium resource potential. From the literature, four alkaline-intrusive occurrences of differing character were identified as type-localities for uranium mineralization, and the important aspects of these localities were described. These characteristics were used to categorize and evaluate U.S. occurrences. The literature search disclosed 69 U.S. sites, encompassing nepheline syenite, alkaline granite, and carbonatite. It was possible to compare two-thirds of these sites to the type localities. A ranking system identified ten of the sites as most likely to have uranium resource potential.

  7. Growth energetics of an alkaline serine protease-producing strain of Bacillus clausii during continuous cultivation

    DEFF Research Database (Denmark)

    Christiansen, Torben; Nielsen, Jens

    2002-01-01

    .93 mmol ATP/gDW/h. From these values it is concluded that the high oxygen consumption compared with other Bacillus species is due to a low efficiency in respiration resulting in a low P/O ratio. Finally, the energetic parameters were estimated for different architectures of the respiratory chain....

  8. Alkaline phosphatase: an overview.

    Science.gov (United States)

    Sharma, Ujjawal; Pal, Deeksha; Prasad, Rajendra

    2014-07-01

    Alkaline phosphatase (ALP; E.C.3.I.3.1.) is an ubiquitous membrane-bound glycoprotein that catalyzes the hydrolysis of phosphate monoesters at basic pH values. Alkaline phosphatase is divided into four isozymes depending upon the site of tissue expression that are Intestinal ALP, Placental ALP, Germ cell ALP and tissue nonspecific alkaline phosphatase or liver/bone/kidney (L/B/K) ALP. The intestinal and placental ALP loci are located near the end of long arm of chromosome 2 and L/B/K ALP is located near the end of the short arm of chromosome 1. Although ALPs are present in many mammalian tissues and have been studied for the last several years still little is known about them. The bone isoenzyme may be involved in mammalian bone calcification and the intestinal isoenzyme is thought to play a role in the transport of phosphate into epithelial cells of the intestine. In this review, we tried to provide an overview about the various forms, structure and functions of alkaline phosphatase with special focus on liver/bone/kidney alkaline phosphatase.

  9. Serine proteinases and their inhibitors in fertilization

    Czech Academy of Sciences Publication Activity Database

    Jonáková, Věra; Jelínková-Slavíčková, Petra

    2004-01-01

    Roč. 8, 3,4 (2004), s. 108-110 ISSN 1211-8869. [Central European Conference on Human Tumor Markers /5./. Praha, 01.10.2004-03.10.2004] R&D Projects: GA ČR GA303/02/0433; GA ČR GP303/02/P069; GA ČR GP303/04/P070; GA MZd NJ7463 Institutional research plan: CEZ:AV0Z5052915 Keywords : serine proteinase * proteinase inhibitors * fertilization Subject RIV: CE - Biochemistry

  10. Advanced alkaline water electrolysis

    International Nuclear Information System (INIS)

    Marini, Stefania; Salvi, Paolo; Nelli, Paolo; Pesenti, Rachele; Villa, Marco; Berrettoni, Mario; Zangari, Giovanni; Kiros, Yohannes

    2012-01-01

    A short review on the fundamental and technological issues relevant to water electrolysis in alkaline and proton exchange membrane (PEM) devices is given. Due to price and limited availability of the platinum group metal (PGM) catalysts they currently employ, PEM electrolyzers have scant possibilities of being employed in large-scale hydrogen production. The importance and recent advancements in the development of catalysts without PGMs are poised to benefit more the field of alkaline electrolysis rather than that of PEM devices. This paper presents our original data which demonstrate that an advanced alkaline electrolyzer with performances rivaling those of PEM electrolyzers can be made without PGM and with catalysts of high stability and durability. Studies on the advantages/limitations of electrolyzers with different architectures do show how a judicious application of pressure differentials in a recirculating electrolyte scheme helps reduce mass transport limitations, increasing efficiency and power density.

  11. A cytotoxic serine proteinase isolated from mouse submandibular gland.

    Science.gov (United States)

    Shimamura, T; Nagumo, N; Ikigai, H; Murakami, K; Okubo, S; Toda, M; Ohnishi, R; Tomita, M

    1989-08-01

    We have isolated a novel cytotoxic factor from the submandibular glands of male BALB/c mice by Sephadex G-50 gel filtration chromatography and reverse-phase HPLC. The cytotoxic factor is a serine proteinase, which belongs to the mouse glandular kallikrein (mGK) family, with an Mr of approximately 27,000. The purified serine proteinase showed cytotoxic activity against mouse thymocytes in a dose-dependent manner, and a serine proteinase inhibitor, diisopropyl fluorophosphate, blocked its cytotoxic activity.

  12. Characterization of the Usage of the Serine Metabolic Network in Human Cancer

    Directory of Open Access Journals (Sweden)

    Mahya Mehrmohamadi

    2014-11-01

    Full Text Available The serine, glycine, one-carbon (SGOC metabolic network is implicated in cancer pathogenesis, but its general functions are unknown. We carried out a computational reconstruction of the SGOC network and then characterized its expression across thousands of cancer tissues. Pathways including methylation and redox metabolism exhibited heterogeneous expression indicating a strong context dependency of their usage in tumors. From an analysis of coexpression, simultaneous up- or downregulation of nucleotide synthesis, NADPH, and glutathione synthesis was found to be a common occurrence in all cancers. Finally, we developed a method to trace the metabolic fate of serine using stable isotopes, high-resolution mass spectrometry, and a mathematical model. Although the expression of single genes didn’t appear indicative of flux, the collective expression of several genes in a given pathway allowed for successful flux prediction. Altogether, these findings identify expansive and heterogeneous functions for the SGOC metabolic network in human cancer.

  13. Conserved water molecules in bacterial serine hydroxymethyltransferases.

    Science.gov (United States)

    Milano, Teresa; Di Salvo, Martino Luigi; Angelaccio, Sebastiana; Pascarella, Stefano

    2015-10-01

    Water molecules occurring in the interior of protein structures often are endowed with key structural and functional roles. We report the results of a systematic analysis of conserved water molecules in bacterial serine hydroxymethyltransferases (SHMTs). SHMTs are an important group of pyridoxal-5'-phosphate-dependent enzymes that catalyze the reversible conversion of l-serine and tetrahydropteroylglutamate to glycine and 5,10-methylenetetrahydropteroylglutamate. The approach utilized in this study relies on two programs, ProACT2 and WatCH. The first software is able to categorize water molecules in a protein crystallographic structure as buried, positioned in clefts or at the surface. The other program finds, in a set of superposed homologous proteins, water molecules that occur approximately in equivalent position in each of the considered structures. These groups of molecules are referred to as 'clusters' and represent structurally conserved water molecules. Several conserved clusters of buried or cleft water molecules were found in the set of 11 bacterial SHMTs we took into account for this work. The majority of these clusters were not described previously. Possible structural and functional roles for the conserved water molecules are envisaged. This work provides a map of the conserved water molecules helpful for deciphering SHMT mechanism and for rational design of molecular engineering experiments. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  14. [Advances of alkaline amylase production and applications].

    Science.gov (United States)

    Yang, Haiquan; Liu, Long; Li, Jianghua; Du, Guocheng; Chen, Jian

    2012-04-01

    Alkaline amylase is one of alkaline enzymes with optimum pH in the alkaline range, and it could keep stability and efficiently hydrolyze starch under alkaline conditions. Alkaline amylase finds wide applications in textile, detergent, pharmaceutical, food and other fields. Alkaline amylases could be produced by alkaliphilic microorganisms. In this work, the advances of alkaline amylase production and applications were reviewed.

  15. Induction of serine racemase expression and D-serine release from microglia by amyloid β-peptide

    Directory of Open Access Journals (Sweden)

    Griffin W Sue T

    2004-04-01

    Full Text Available Abstract Background Roles for excitotoxicity and inflammation in Alzheimer's disease have been hypothesized. Proinflammatory stimuli, including amyloid β-peptide (Aβ, elicit a release of glutamate from microglia. We tested the possibility that a coagonist at the NMDA class of glutamate receptors, D-serine, could respond similarly. Methods Cultured microglial cells were exposed to Aβ. The culture medium was assayed for levels of D-serine by HPLC and for effects on calcium and survival on primary cultures of rat hippocampal neurons. Microglial cell lysates were examined for the levels of mRNA and protein for serine racemase, the enzyme that forms D-serine from L-serine. The racemase mRNA was also assayed in Alzheimer hippocampus and age-matched controls. A microglial cell line was transfected with a luciferase reporter construct driven by the putative regulatory region of human serine racemase. Results Conditioned medium from Aβ-treated microglia contained elevated levels of D-serine. Bioassays of hippocampal neurons with the microglia-conditioned medium indicated that Aβ elevated a NMDA receptor agonist that was sensitive to an antagonist of the D-serine/glycine site (5,7-dicholorokynurenic acid; DCKA and to enzymatic degradation of D-amino acids by D-amino acid oxidase (DAAOx. In the microglia, Aβ elevated steady-state levels of dimeric serine racemase, the apparent active form of the enzyme. Promoter-reporter and mRNA analyses suggest that serine racemase is transcriptionally induced by Aβ. Finally, the levels of serine racemase mRNA were elevated in Alzheimer's disease hippocampus, relative to age-matched controls. Conclusions These data suggest that Aβ could contribute to neurodegeneration through stimulating microglia to release cooperative excitatory amino acids, including D-serine.

  16. Neonatal disruption of serine racemase causes schizophrenia-like behavioral abnormalities in adulthood: clinical rescue by d-serine.

    Directory of Open Access Journals (Sweden)

    Hiroko Hagiwara

    Full Text Available D-Serine, an endogenous co-agonist of the N-methyl-D-aspartate (NMDA receptor, is synthesized from L-serine by serine racemase (SRR. Given the role of D-serine in both neurodevelopment and the pathophysiology of schizophrenia, we examined whether neonatal disruption of D-serine synthesis by SRR inhibition could induce behavioral abnormalities relevant to schizophrenia, in later life.Neonatal mice (7-9 days were injected with vehicle or phenazine methosulfate (Met-Phen: 3 mg/kg/day, an SRR inhibitor. Behavioral evaluations, such as spontaneous locomotion, novel object recognition test (NORT, and prepulse inhibition (PPI were performed at juvenile (5-6 weeks old and adult (10-12 weeks old stages. In addition, we tested the effects of D-serine on PPI deficits in adult mice after neonatal Met-Phen exposure. Finally, we assessed whether D-serine could prevent the onset of schizophrenia-like behavior in these mice. Neonatal Met-Phen treatment reduced D-serine levels in the brain, 24 hours after the final dose. Additionally, this treatment caused behavioral abnormalities relevant to prodromal symptoms in juveniles and to schizophrenia in adults. A single dose of D-serine improved PPI deficits in adult mice. Interestingly, chronic administration of D-serine (900 mg/kg/day from P35 to P70 significantly prevented the onset of PPI deficits after neonatal Met-Phen exposure.This study shows that disruption of D-serine synthesis during developmental stages leads to behavioral abnormalities relevant to prodromal symptoms and schizophrenia, in later life. Furthermore, early pharmacological intervention with D-serine may prevent the onset of psychosis in adult.

  17. D-serine : The right or wrong isoform?

    NARCIS (Netherlands)

    Fuchs, Sabine A; Berger, Ruud; de Koning, Tom J

    2011-01-01

    Only recently, d-amino acids have been identified in mammals. Of these, d-serine has been most extensively studied. d-Serine was found to play an important role as a neurotransmitter in the human central nervous system (CNS) by binding to the N-methyl-d-aspartate receptor (NMDAr), similar to

  18. Study of niobium corrosion in alkaline medium

    International Nuclear Information System (INIS)

    Almeida, S.H. de.

    1987-01-01

    A comparative study of niobium electrochemical behaviour in NaOH and KOH solution, with concentrations between 0,5 and 6,1M is presented. The studies were done through electrochemicals assays, consisting in the corrosion potential and anodic and cathodic polarization curves, complemented by loss of mass experiments. The niobium anodic behaviour in alkaline medium is characterized by passivation occurrence, with a stable film formation. The Na oH solution in alkaline medium are more corrosible to niobium than the KOH solution. The loss of mass assays showed that the corrosion velocit is more dependente of hydroxide concentration in KOH medium than the NaOH medium. (C.G.C.) [pt

  19. Crystal Structure of Serine Racemase that Produces Neurotransmitter d-Serine for Stimulation of the NMDA Receptor

    Science.gov (United States)

    Goto, Masaru

    d-Serine is an endogenous coagonist for the N-methyl-d-aspartate receptor and is involved in excitatory neurotransmission in the brain. Mammalian pyridoxal 5’-phosphate-dependent serine racemase, which is localized in the mammalian brain, catalyzes the racemization of l-serine to yield d-serine and vice versa. We have determined the structures of three forms of the mammalian enzyme homolog from Schizosaccharomyces pombe. Lys57 and Ser82 located on the protein and solvent sides, respectively, with respect to the cofactor plane, are acid-base catalysts that shuttle protons to the substrate. The modified enzyme, which has a unique lysino-d-alanyl residue at the active site, also binds the substrate serine in the active site, suggesting that the lysino-d-alanyl residue acts as a catalytic base in the same manner as Lys57 of the wild type enzyme.

  20. Two novel pyrrolooxazole pigments formed by the Maillard reaction between glucose and threonine or serine.

    Science.gov (United States)

    Noda, Kyoko; Murata, Masatsune

    2017-02-01

    Pyrrolothiazolate formed by the Maillard reaction between l-cysteine and d-glucose has a pyrrolothiazole skeleton as a chromophore. We searched for a Maillard pigment having a pyrrolooxazole skeleton formed from l-threonine or l-serine instead of l-cysteine in the presence of d-glucose. As a result, two novel yellow pigments, named pyrrolooxazolates A and B, were isolated from model solutions of the Maillard reaction containing l-threonine and d-glucose, and l-serine and d-glucose, respectively, and identified as (2R,3S,7aS)-2,3,7,7a-tetrahydro-6-hydroxy-2,5,7a-trimethyl-7-oxo-pyrrolo[2,1-b]oxazole-3-calboxylic acid and (3S,7aS)-2,3,7,7a-tetrahydro-6-hydroxy-5,7a-dimethyl-7-oxo-pyrrolo[2,1-b]oxazole-3-calboxylic acid by instrumental analyses. These compounds were pyrrolooxazole derivatives carrying a carboxy group, and showed the absorption maxima at 300-360 nm under acidic and neutral conditions and at 320-390 nm under alkaline conditions.

  1. Preliminary characterisation of extracellular serine proteases of Dermatophilus congolensis isolates from cattle, sheep and horses.

    Science.gov (United States)

    Ambrose, N C; Mijinyawa, M S; Hermoso de Mendoza, J

    1998-08-15

    Dermatophilus congolensis is a filamentous branching actinomycete that causes dermatophilosis, an exudative dermatitis in ruminants. The pathogenesis of this disease is poorly understood and virulence factors of D. congolensis have not been characterised. Culture filtrate (CF) of 14 D. congolensis isolates from cattle, 15 from sheep and four from horses were examined for proteolytic activity using azocasein as a non-specific substrate. The isolates were from a variety of geographical locations. All the isolates examined produced extracellular proteolytic activity. CF from 24 and 48 h cultures and from first and third passages contained proteases. Proteolytic activity was greatest in neutral to alkaline pH (pH 7-10). CF of bovine isolates contained more proteolytic activity than that of ovine isolates. Furthermore, in substrate SDS-PAGE gels containing azocasein the number of proteolytic bands and their molecular weights in CF of bovine, ovine and equine isolates were different, giving distinctive band patterns for isolates from each host species. Three out of four bovine isolates from Antigua gave a fourth band pattern. Bands of equivalent molecular weights to the proteases could not be identified in silver stained SDS-PAGE gels of CF. Serine protease inhibitors had a concentration-dependent inhibitory effect on proteolytic activity in CF and inhibited activity of all proteolytic bands in substrate gels. With the exception of EDTA which had a variable-enhancing effect on activity, inhibitors of other classes of protease had no effect on activity. We conclude that D. congolensis produces a number of extracellular alkaline serine proteases, our results suggest the presence of host-specific variation between isolates and to a lesser extent between isolates from the same host species.

  2. Purification and biochemical characterization of the haloalkaliphilic archaeon Natronococcus occultus extracellular serine protease

    DEFF Research Database (Denmark)

    Studdert, C A; Herrera Seitz, M K; Plasencia, I

    2001-01-01

    other halobacteria nor with commercial proteases except subtilisin. The amino acid sequences of three tryptic peptides obtained from Natronococcus occultus protease did not show significant similarity to other known proteolytic enzymes. This fact, in addition to its high molecular mass suggests......A serine protease was purified from Natronococcus occultus stationary phase culture medium (328-fold, yield 19%) and characterized at the biochemical level. The enzyme has a native molecular mass of 130 kDa, has chymotrypsin-like activity, is stable and active in a broad pH range (5...... that Natronococcus occultus extracellular protease may be a novel enzyme. Udgivelsesdato: 2001-null...

  3. Stable isotopes

    International Nuclear Information System (INIS)

    Evans, D.K.

    1986-01-01

    Seventy-five percent of the world's stable isotope supply comes from one producer, Oak Ridge Nuclear Laboratory (ORNL) in the US. Canadian concern is that foreign needs will be met only after domestic needs, thus creating a shortage of stable isotopes in Canada. This article describes the present situation in Canada (availability and cost) of stable isotopes, the isotope enrichment techniques, and related research programs at Chalk River Nuclear Laboratories (CRNL)

  4. Fibrin(ogen)olytic activity of bumblebee venom serine protease

    International Nuclear Information System (INIS)

    Qiu Yuling; Choo, Young Moo; Yoon, Hyung Joo; Jia Jingming; Cui Zheng; Wang Dong; Kim, Doh Hoon; Sohn, Hung Dae; Jin, Byung Rae

    2011-01-01

    Bee venom is a rich source of pharmacologically active components; it has been used as an immunotherapy to treat bee venom hypersensitivity, and venom therapy has been applied as an alternative medicine. Here, we present evidence that the serine protease found in bumblebee venom exhibits fibrin(ogen)olytic activity. Compared to honeybee venom, bumblebee venom contains a higher content of serine protease, which is one of its major components. Venom serine proteases from bumblebees did not cross-react with antibodies against the honeybee venom serine protease. We provide functional evidence indicating that bumblebee (Bombus terrestris) venom serine protease (Bt-VSP) acts as a fibrin(ogen)olytic enzyme. Bt-VSP activates prothrombin and directly degrades fibrinogen into fibrin degradation products. However, Bt-VSP is not a plasminogen activator, and its fibrinolytic activity is less than that of plasmin. Taken together, our results define roles for Bt-VSP as a prothrombin activator, a thrombin-like protease, and a plasmin-like protease. These findings offer significant insight into the allergic reaction sequence that is initiated by bee venom serine protease and its potential usefulness as a clinical agent in the field of hemostasis and thrombosis. - Graphical abstract: Display Omitted Highlights: → Bumblebee venom serine protease (Bt-VSP) is a fibrin(ogen)olytic enzyme. → Bt-VSP activates prothrombin. → Bt-VSP directly degrades fibrinogen into fibrin degradation products. → Bt-VSP is a hemostatically active protein that is a potent clinical agent.

  5. Alkaline earth metal catalysts for asymmetric reactions.

    Science.gov (United States)

    Kobayashi, Shū; Yamashita, Yasuhiro

    2011-01-18

    The group 2 alkaline earth metals calcium (Ca), strontium (Sr), and barium (Ba) are among the most common elements on Earth, abundant in both the sea and the Earth's crust. Although they are familiar in our daily lives, their application to organic synthesis has, so far, been limited. Some particularly useful properties of these elements include (i) low electronegativity, (ii) a stable oxidation state of +2, meaning that they can potentially form two covalent bonds with anions, and (iii) the ability to occupy a variety of coordination sites due to their large ionic radius. Furthermore, the alkaline earth metals, found between the group 1 and group 3 elements, show mild but significant Lewis acidity, which can be harnessed to control coordinative molecules via a Lewis acid-base interaction. Taken together, these characteristics make the metals Ca, Sr, and Ba very promising components of highly functionalized acid-base catalysts. In this Account, we describe the development of chiral alkaline earth metal catalysts for asymmetric carbon-carbon bond-forming reactions. Recently prepared chiral alkaline earth metal complexes have shown high diastereo- and enantioselectivities in fundamental and important chemical transformations. We chose chiral bisoxazoline (Box) derivatives bearing a methylene tether as a ligand for chiral modification. These molecules are very useful because they can covalently coordinate to alkaline earth metals in a bidentate fashion through deprotonation of the tether portion. It was found that chiral calcium-Box complexes could successfully promote catalytic asymmetric 1,4-addition and [3 + 2] cycloaddition reactions with high diastereo- and enantioselectivities. Both the calcium-Box complexes and chiral strontium-bis-sulfonamide and chiral barium-BINOLate complexes could catalyze asymmetric 1,4-addition reactions with high enantioselectivities. Furthermore, we designed a calcium-neutral coordinative ligand complex as a new type of chiral alkaline

  6. Detergent-compatible, organic solvent-tolerant alkaline protease from Bacillus circulans MTCC 7942: Purification and characterization.

    Science.gov (United States)

    Patil, Ulhas; Mokashe, Narendra; Chaudhari, Ambalal

    2016-01-01

    Proteases are now recognized as the most indispensable industrial biocatalyst owing to their diverse microbial sources and innovative applications. In the present investigation, a thermostable, organic solvent-tolerant, alkaline serine protease from Bacillus circulans MTCC 7942, was purified and characterized. The protease was purified to 37-fold by a three-step purification scheme with 39% recovery. The optimum pH and temperature for protease was 10 and 60 °C, respectively. The apparent molecular mass of the purified enzyme was 43 kD as revealed by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). The Km and Vmax values using casein-substrate were 3.1 mg/mL and 1.8 µmol/min, respectively. The protease remained stable in the presence of organic solvents with higher (>3.2) log P value (cyclohexane, n-octane, n-hexadecane, n-decane, and n-dodecane), as compared to organic solvents with lower (detergents. In addition, a protease-detergent formulation effectively washed out egg and blood stains as compared to detergent alone. The protease was suitable for various commercial applications like processing of gelatinous film and as a compatible additive to detergent formulation with its operative utility in hard water.

  7. Exploring Alkaline Stable Organic Cations for Polymer Hydroxide Exchange Membranes

    Science.gov (United States)

    2015-04-29

    reaction mixture was extracted with ethyl ether three times, the combined ether extract washed with brine and then DI water, and dried over anhydrous...Martinent, D. Marsacq, Desalination 2006, 199, 286-288. [156] K.-D. Kreuer, Chemistry of Materials 2014, 26, 361-380. [157] M. A. Hickner, A. M...B. Bauer, H. Strathmann, F. Effenberger, Desalination 1990, 79, 125-144. [175] O. I. Deavin, S. Murphy, A. L. Ong, S. D. Poynton, R. Zeng, H

  8. Oxidant and solvent stable alkaline protease from Aspergillus flavus ...

    African Journals Online (AJOL)

    The enzyme retained 80% of its original activity in the presence of non ionic and ionic surfactants and 100% with 10% H2O2 after 1 h of incubation at 30°C. In addition, the enzyme showed excellent compatibility with some commercial powder detergents. The compatibility of our protease with several detergents, oxidants ...

  9. THERMOPHILIC BACILLUS LICHENIFORMIS RBS 5 ISOLATED FROM HOT TUNISIAN SPRING CO-PRODUCING ALKALINE AND THERMOSTABLE α-AMYLASE AND PROTEASE ENZYMES

    Directory of Open Access Journals (Sweden)

    Rakia Ben Salem

    2016-06-01

    Full Text Available Bacillus licheniformis RBS 5 was isolated from thermal spring in Tunisia. The isolate coproduce α-amylase and protease enzymes. The α-amylase activity showed an optimal activity at approximately 65°C and in wide pH interval ranging from 4 to 9. This enzyme was stable over the range of 45 to 70°C after 30 min of incubation and in the pH range of 8 to 10. Protease activity was optimal; at 80°C, pH 12. This enzyme was stable until 60°C over the pH range of 10 to 12. EDTA at concentration of 5 mM reduces slightly both activities evoking the serine alkaline protease. Cationic ions (Ca2+, Cu2+, Zn2+, and Mg 2+ have an inhibition effect on α-amylase. However, protease activity was enhanced by Ca2+, Cu2+ and Mg 2+; the other cations reduce slightly the proteolytic activity. SDS and H2O2 were found as inhibitors for both activities whereas Triton X-100 and perfume have no effect. Taken together, these traits make protease activity of B. licheniformis RBS 5 as efficient for use in detergent industry.

  10. Sugarcane Serine Peptidase Inhibitors, Serine Peptidases, and Clp Protease System Subunits Associated with Sugarcane Borer (Diatraea saccharalis) Herbivory and Wounding.

    Science.gov (United States)

    Medeiros, Ane H; Mingossi, Fabiana B; Dias, Renata O; Franco, Flávia P; Vicentini, Renato; Mello, Marcia O; Moura, Daniel S; Silva-Filho, Marcio C

    2016-09-01

    Sugarcane's (Saccharum spp.) response to Diatraea saccharalis (F.) (Lepidoptera: (Crambidae) herbivory was investigated using a macroarray spotted with 248 sugarcane Expressed Sequence Tags (ESTs) encoding serine peptidase inhibitors, serine peptidases. and Clp protease system subunits. Our results showed that after nine hours of herbivory, 13 sugarcane genes were upregulated and nine were downregulated. Among the upregulated genes, nine were similar to serine peptidase inhibitors and four were similar to Bowman-Birk Inhibitors (BBIs). Phylogenetic analysis revealed that these sequences belong to a phylogenetic group of sugarcane BBIs that are potentially involved in plant defense against insect predation. The remaining four upregulated genes included serine peptidases and one homolog to the Arabidopsis AAA+ chaperone subunit ClpD, which is a member of the Clp protease system. Among the downregulated genes, five were homologous to serine peptidases and four were homologous to Arabidopsis Clp subunits (three homologous to Clp AAA+ chaperones and one to a ClpP-related ClpR subunit). Although the roles of serine peptidase inhibitors in plant defenses against herbivory have been extensively investigated, the roles of plant serine peptidases and the Clp protease system represent a new and underexplored field of study. The up- and downregulated D. saccharalis genes presented in this study may be candidate genes for the further investigation of the sugarcane response to herbivory.

  11. Sugarcane Serine Peptidase Inhibitors, Serine Peptidases, and Clp Protease System Subunits Associated with Sugarcane Borer (Diatraea saccharalis) Herbivory and Wounding

    Science.gov (United States)

    Medeiros, Ane H.; Mingossi, Fabiana B.; Dias, Renata O.; Franco, Flávia P.; Vicentini, Renato; Mello, Marcia O.; Moura, Daniel S.; Silva-Filho, Marcio C.

    2016-01-01

    Sugarcane’s (Saccharum spp.) response to Diatraea saccharalis (F.) (Lepidoptera: (Crambidae) herbivory was investigated using a macroarray spotted with 248 sugarcane Expressed Sequence Tags (ESTs) encoding serine peptidase inhibitors, serine peptidases. and Clp protease system subunits. Our results showed that after nine hours of herbivory, 13 sugarcane genes were upregulated and nine were downregulated. Among the upregulated genes, nine were similar to serine peptidase inhibitors and four were similar to Bowman-Birk Inhibitors (BBIs). Phylogenetic analysis revealed that these sequences belong to a phylogenetic group of sugarcane BBIs that are potentially involved in plant defense against insect predation. The remaining four upregulated genes included serine peptidases and one homolog to the Arabidopsis AAA+ chaperone subunit ClpD, which is a member of the Clp protease system. Among the downregulated genes, five were homologous to serine peptidases and four were homologous to Arabidopsis Clp subunits (three homologous to Clp AAA+ chaperones and one to a ClpP-related ClpR subunit). Although the roles of serine peptidase inhibitors in plant defenses against herbivory have been extensively investigated, the roles of plant serine peptidases and the Clp protease system represent a new and underexplored field of study. The up- and downregulated D. saccharalis genes presented in this study may be candidate genes for the further investigation of the sugarcane response to herbivory. PMID:27598134

  12. Astrocytes in primary cultures express serine racemase, synthesize d-serine and acquire A1 reactive astrocyte features.

    Science.gov (United States)

    Li, Suyan; Uno, Yota; Rudolph, Uwe; Cobb, Johanna; Liu, Jing; Anderson, Thea; Levy, Deborah; Balu, Darrick T; Coyle, Joseph T

    2018-01-03

    d-Serine is a co-agonist at forebrain N-methyl-d-aspartate receptors (NMDAR) and is synthesized by serine racemase (SR). Although d-serine and SR were originally reported to be localized to glia, recent studies have provided compelling evidence that under healthy physiologic conditions both are localized primarily in neurons. However, in pathologic conditions, reactive astrocytes can also express SR and synthesize d-serine. Since cultured astrocytes exhibit features of reactive astrocytes, we have characterized d-serine synthesis and the expression of enzymes involved in its disposition in primary glial cultures. The levels of SR were quite low early in culture and increased markedly in all astrocytes with the duration in vitro. The concentration of d-serine in the culture medium increased in parallel with SR expression in the astrocytes. Microglia, identified by robust expression of Iba1, did not express SR. While the levels of glial fibrillary acidic protein (GFAP), glycine decarboxylase (GLDC) and phosphoglycerate dehydrogenase (PHGDH), the initial enzyme in the pathway converting glycine to l-serine, remained constant in culture, the expression of lipocalin-2, a marker for pan-reactive astrocytes, increased several-fold. The cultured astrocytes also expressed Complement-3a, a marker for a subpopulation of reactive astrocytes (A1). Astrocytes grown from mice with a copy number variant associated with psychosis, which have four copies of the GLDC gene, showed a more rapid production of d-serine and a reduction in glycine in the culture medium. These results substantiate the conclusion that A1 reactive astrocytes express SR and release d-serine under pathologic conditions, which may contribute to their neurotoxic effects by activating extra-synaptic NMDARs. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Alkaline fuel cells applications

    Science.gov (United States)

    Kordesch, Karl; Hacker, Viktor; Gsellmann, Josef; Cifrain, Martin; Faleschini, Gottfried; Enzinger, Peter; Fankhauser, Robert; Ortner, Markus; Muhr, Michael; Aronson, Robert R.

    On the world-wide automobile market technical developments are increasingly determined by the dramatic restriction on emissions as well as the regimentation of fuel consumption by legislation. Therefore there is an increasing chance of a completely new technology breakthrough if it offers new opportunities, meeting the requirements of resource preservation and emission restrictions. Fuel cell technology offers the possibility to excel in today's motive power techniques in terms of environmental compatibility, consumer's profit, costs of maintenance and efficiency. The key question is economy. This will be decided by the costs of fuel cell systems if they are to be used as power generators for future electric vehicles. The alkaline hydrogen-air fuel cell system with circulating KOH electrolyte and low-cost catalysed carbon electrodes could be a promising alternative. Based on the experiences of Kordesch [K. Kordesch, Brennstoffbatterien, Springer, Wien, 1984, ISBN 3-387-81819-7; K. Kordesch, City car with H 2-air fuel cell and lead-battery, SAE Paper No. 719015, 6th IECEC, 1971], who operated a city car hybrid vehicle on public roads for 3 years in the early 1970s, improved air electrodes plus new variations of the bipolar stack assembly developed in Graz are investigated. Primary fuel choice will be a major issue until such time as cost-effective, on-board hydrogen storage is developed. Ammonia is an interesting option. The whole system, ammonia dissociator plus alkaline fuel cell (AFC), is characterised by a simple design and high efficiency.

  14. Biochemical properties and evaluation of washing performance in commercial detergent compatibility of two collagenolytic serine peptidases secreted by Aspergillus fischeri and Penicillium citrinum.

    Science.gov (United States)

    Ida, Érika Lika; da Silva, Ronivaldo Rodrigues; de Oliveira, Tássio Brito; Souto, Tatiane Beltramini; Leite, Juliana Abigail; Rodrigues, André; Cabral, Hamilton

    2017-03-16

    Filamentous fungi secrete diverse peptidases with different biochemical properties, which is of considerable importance for application in various commercial sectors. In this study, we describe the isolation of two fungal species collected from the soil of decayed organic matter: Aspergillus fischeri and Penicillium citrinum. In a submerged bioprocess, we observed better peptidase production with the fungus P. citrinum, which reached a peak production at 168 h with 760 U/mL, in comparison with the fungus A. fischeri, which reached a peak production at 72 h with 460 U/mL. In both situations, the fermentative medium contained 0.5% crushed feathers as a source of nitrogen. On performing biochemical characterization, we detected two alkaline serine peptidases: The one secreted by P. citrinum had optimal activity at pH 7.0 and at 45°C, while the one secreted by A. fischeri had optimal activity in pH 6.5-8 and at 55-60°C. Metallic ions were effective in modulating these peptidases; in particular, Cu 2+ promoted negative modulation of both peptidases. The peptidases were stable and functional under conditions of nonionic surfactants, temperatures up to 45°C for 1 h, and incubation over a wide pH range. In addition, it was observed that both peptidases had the capacity to hydrolyze collagen and performed well in removing an egg protein stain when supplemented into a commercial powder detergent; this was especially true for the peptidase from P. citrinum.

  15. Neutral alkaline-metal and alkaline-earth-metal derivatives of imidazole and benzimidazole.

    Science.gov (United States)

    Blanco, Fernando; Lloyd, David G; Alkorta, Ibon; Elguero, José

    2014-06-12

    A theoretical study of the minima and connecting transition states of the neutral complexes formed by alkaline-metal and alkaline-earth-metal derivatives of imidazolate and benzimidazolate anions has been carried out using B3LYP/6-31+G(d,p), B3LYP/6-311+G(3df,2p), and G3B3 methods. Two and three nondegenerated minima and two and four TS structures have been identified for imidazole and benzimidazole derivatives, respectively. The most stable minima of the alkaline-metal derivatives of both systems correspond to the metal interacting with the imidazole ring, whereas in the alkaline-earth-metal derivatives, the preferred minima depend on the substituent. A remarkable feature of some minima is the fact that some of the metal-aromatic interactions follow the classical π-cation pattern, even though the global structure corresponds to a neutral salt, constituting a class of noncovalent interaction of great interest in the chemistry of aromatic and heterocyclic complexes. A CSD search has confirmed that the two bonding modes, N-σ and π, are present in the solid phase. The π mode has been analyzed by comparison with other azoles.

  16. COUPLING THE ALKALINE-SURFACTANT-POLYMER TECHNOLOGY AND THE GELATION TECHNOLOGY TO MAXIMIZE OIL PRODUCTION

    Energy Technology Data Exchange (ETDEWEB)

    Malcolm Pitts; Jie Qui; Dan Wilson; Phil Dowling

    2004-05-01

    Gelation technologies have been developed to provide more efficient vertical sweep efficiencies for flooding naturally fractured oil reservoirs or more efficient areal sweep efficiency those with high permeability contrast ''thief zones''. The field proven alkaline-surfactant-polymer technology economically recovers 15% to 25% OOIP more oil than waterflooding in the swept pore space of an oil reservoir. However, alkaline-surfactant-polymer technology is not amenable to the naturally fractured reservoirs or those with thief zones because much of the injected solution bypasses the target pore space containing oil. The objective of this work is to investigate whether combining these two technologies could broaden the applicability of alkaline-surfactant-polymer flooding into these reservoirs. Fluid-fluid interaction with different gel chemical compositions and alkaline-surfactant-polymer solution with pH values ranging from 9.2 to 12.9 have been tested. Aluminum-polyacrylamide gels are not stable to alkaline-surfactant-polymer solutions at any pH. Chromium--polyacrylamide gels with polymer to chromium ion ratios of 25 or greater were stable to alkaline-surfactant-polymer solutions if solution pH was 10.6 or less. When the polymer to chromium ion was 15 or less, chromium-polyacrylamide gels were stable to alkaline-surfactant-polymer solutions with pH values up to 12.9. Chromium-xanthan gum gels were stable to alkaline-surfactant-polymer solutions with pH values of 12.9 at the polymer to chromium ion ratios tested. Silicate-polyacrylamide, resorcinol-formaldehyde, and sulfomethylated resorcinol-formaldehyde gels were also stable to alkaline-surfactant-polymer solutions with pH values ranging from 9.2 to 12.9. Iron-polyacrylamide gels were immediately destroyed when contacted with any of the alkaline-surfactant-polymer solutions with pH values of 9.2 to 12.9.

  17. Production and some properties of crude alkaline proteases of indigenous Central Amazonian rhizobia strains

    Directory of Open Access Journals (Sweden)

    Arlem Nascimento de Oliveira

    2010-10-01

    Full Text Available Two rhizobia strains isolated from soils of the Central Amazonian floodplain produced appreciable quantities of crude alkaline protease extracts with inexpensive carbon and nitrogen sources. These protease crude extracts were optimally active at pH 9.0-11.0. The optimum temperatures were 35 ºC for Rhizobium sp. strain R-986 and 55 ºC for Bradyrhizobium sp. strain R-993. Protease activities in the crude extracts were enhanced in the presence of 5 mM metal ions, such as Na+, Ca2+, Mg2+ and Mn2+. Rhizobia proteases were strongly inhibited by PMSF, a serine-protease inhibitor. The enzymes were active in the presence of surfactants (SDS and Triton X-100 and stable in oxidizing (H2O2 and reducing agents (β-mercaptoethanol, and organic solvents (acetone, hexane, methanol, 1-propanol and toluene.Duas estirpes de rizóbia isoladas de solos de várzea da Amazônia Central produziram grandes quantidades de proteases alcalinas extracelulares, usando fontes baratas de carbono e nitrogênio. Os extratos brutos de proteases foram ativos em pH 9,0-11,0. As temperaturas ótimas foram de 35 ºC para a enzima do Rhizobium R-986 e de 55 ºC para a do Bradyrhizobium R-993. As atividades proteolíticas aumentaram na presença de 5 mM dos íons Na+, Ca2+ , Mg2+ e Mn2+ . As proteases secretadas pelos rizóbios foram fortemente inibidas por PMSF, um inibidor de serina protease. As enzimas foram ativas na presença de surfactantes (SDS e Triton X-100, e estáveis na presença de agentes oxidantes (H2O2 e redutores (β-mercaptoetanol e solventes orgânicos (acetona, hexano, metanol, 1-propanol e tolueno.

  18. ACTIVATION OF A CRYPTIC D-SERINE DEAMINASE (DSD) GENE FROM PSEUDOMONAS CEPACIA 17616

    Science.gov (United States)

    D-serine inhibits growth of P. cepacia 17616; however, resistant mutants able to express an ordinarily cryptic D-serine deaminase (dsd) gene were isolated readily. The resistant strains formed high levels of a D-serine deaminase active on D-threonine as well as D-serine. IS eleme...

  19. Structural and spectroscopic investigation on antioxidant dipeptide, L-Methionyl-L-Serine: A combined experimental and DFT study

    Science.gov (United States)

    Kecel-Gunduz, Serda; Bicak, Bilge; Celik, Sefa; Akyuz, Sevim; Ozel, Aysen E.

    2017-06-01

    The focus of this study is to determine the conformational, structural and vibrational properties of Methionyl-Serine dipeptide (L-Methionyl-L-Serine, Met-Ser), a biological active molecule. To investigate their energetically preferred conformations, molecular mechanics methods were utilized to determine the optimal conformations of the 3402 different dihedral angle values of the backbone and side chains. It was found that the extended (e) backbone shape in the LB conformational range was the most stable L-Methionyl-L-Serine dipeptide conformation, with 3.12 kcal/mol of energy. Density Functional Theory (DFT) was used to determine the optimized geometry, the vibrational wavenumbers and modes of the title dipeptide values, with 6-31G (d,p) and 6-311++G (d,p) basis sets. The potential energy distribution data was used to carry out the assignment of the bands. In addition, the vibrational spectra of the most stable conformer and its dimer form were determined and the obtained results were compared with the experimental IR and Raman spectra in the solid phase. To determine the presence of intramolecular charge transfer, molecular dipole moment, polarizability and hyperpolarizability, the Natural Bond Orbital (NBO), HOMO-LUMO calculations, the linear polarizability (α) and the first order hyperpolarizability (β0) value analyses of the investigated molecule were carried out using the DFT with the B3LYP/6-31++G(d,p) basis set. This study aims to determine a relatively stable conformation of antioxidant dipeptide and to investigate the molecular geometry, molecular vibrations and hydrogen bonding interactions between monomeric and dimeric forms of Methiony-Serine dipeptide.

  20. Sequence conservation, phylogenetic relationships, and expression profiles of nondigestive serine proteases and serine protease homologs in Manduca sexta

    OpenAIRE

    Cao, Xiaolong; He, Yan; Hu, Yingxia; Zhang, Xiufeng; Wang, Yang; Zou, Zhen; Chen, Yunru; Blissard, Gary W.; Kanost, Michael R.; Jiang, Haobo

    2014-01-01

    Serine protease (SP) and serine protease homolog (SPH) genes in insects encode a large family of proteins involved in digestion, development, immunity, and other processes. While 68 digestive SPs and their close homologs are reported in a companion paper (Kuwar et al., 2015), we have identified 125 other SPs/SPHs in Manduca sexta and studied their structure, evolution, and expression. Fifty-two of them contain cystine-stabilized structures for molecular recognition, including clip, LDLa, Sush...

  1. Synthesis of novel chitosan resin derivatized with serine moiety for the column collection/concentration of uranium and the determination of uranium by ICP-MS

    International Nuclear Information System (INIS)

    Oshita, Koji; Oshima, Mitsuko; Gao Yunhua; Lee, Kyue-Hyung; Motomizu, Shoji

    2003-01-01

    A chitosan resin derivatized with serine moiety (serine-type chitosan) was newly developed by using the cross-linked chitosan as a base material. The adsorption behavior of trace amounts of metal ions on the serine-type chitosan resin was systematically examined by packing it in a mini-column, passing a metal solution through it and measuring metal ions in the effluent by ICP-MS. The resin could adsorb a number of metal cations at pH from neutral to alkaline region, and several oxoanionic metals at acidic pH region by an anion exchange mechanism. Uranium and Cu could be adsorbed selectively at pH from acidic to alkaline region by a chelating mechanism; U could be adsorbed quantitatively even at pH 3-4. Uranium adsorbed on the resin was easily eluted with 1 M nitric acid: the preconcentration (5-, 10-, 50- and 100-fold) of U was possible. The column treatment method was used prior to the ICP-MS measurement of U in natural river, sea and tap waters; R.S.D. were 2.63, 1.13 and 1.37%, respectively. Uranium in tap water could be determined by 10-fold preconcentration: analytical result was 1.46±0.02 ppt. The resin also was applied to the recovery of U in sea water: the recovery tests for artificial and natural sea water were 97.1 and 93.0%, respectively

  2. Method of cleaning alkaline metal

    International Nuclear Information System (INIS)

    Kawakami, Yukio; Naito, Kesahiro; Iizawa, Katsuyuki; Nakasuji, Takashi

    1981-01-01

    Purpose: To prevent scattering of used sodium and aqueous alkaline solution when cleaning used sodium and metallic sodium adhering to equipment with an aqueous alkaline solution. Method: A sodium treating container is filled with an aqueous alkaline solution, and stainless steel gauze is sunk in the container. Equipment to be cleaned such as equipment with sodium adhering to it are retained under the gauze and are thus cleaned. On the other hand, the surface of the aqueous alkaline solution is covered with a fluid paraffin liquid covering material. Thus, the hydrogen produced by the reaction of the sodium and the aqueous alkaline solution will float up, pass through the liquid covering material and be discharged. The sodium will pass through the gauze and float upwardly while reacting with the aqueous alkaline solution in a partic ulate state to the boundary between the aqueous alkaline solution and up to the covering material, and thus the theratment reaction will continue. Thus, the cover material prevents the sodium and the aqueous alkaline solution from scattering. (Kamimura, M.)

  3. Alkaline direct alcohol fuel cells

    Science.gov (United States)

    Antolini, E.; Gonzalez, E. R.

    The faster kinetics of the alcohol oxidation and oxygen reduction reactions in alkaline direct alcohol fuel cells (ADAFCs), opening up the possibility of using less expensive metal catalysts, as silver, nickel and palladium, makes the alkaline direct alcohol fuel cell a potentially low cost technology compared to acid direct alcohol fuel cell technology, which employs platinum catalysts. A boost in the research regarding alkaline fuel cells, fuelled with hydrogen or alcohols, was due to the development of alkaline anion-exchange membranes, which allows the overcoming of the problem of the progressive carbonation of the alkaline electrolyte. This paper presents an overview of catalysts and membranes for ADAFCs, and of testing of ADAFCs, fuelled with methanol, ethanol and ethylene glycol, formed by these materials.

  4. Cross genome comparisons of serine proteases in Arabidopsis and rice

    Directory of Open Access Journals (Sweden)

    Sowdhamini R

    2006-08-01

    Full Text Available Abstract Background Serine proteases are one of the largest groups of proteolytic enzymes found across all kingdoms of life and are associated with several essential physiological pathways. The availability of Arabidopsis thaliana and rice (Oryza sativa genome sequences has permitted the identification and comparison of the repertoire of serine protease-like proteins in the two plant species. Results Despite the differences in genome sizes between Arabidopsis and rice, we identified a very similar number of serine protease-like proteins in the two plant species (206 and 222, respectively. Nearly 40% of the above sequences were identified as potential orthologues. Atypical members could be identified in the plant genomes for Deg, Clp, Lon, rhomboid proteases and species-specific members were observed for the highly populated subtilisin and serine carboxypeptidase families suggesting multiple lateral gene transfers. DegP proteases, prolyl oligopeptidases, Clp proteases and rhomboids share a significantly higher percentage orthology between the two genomes indicating substantial evolutionary divergence was set prior to speciation. Single domain architectures and paralogues for several putative subtilisins, serine carboxypeptidases and rhomboids suggest they may have been recruited for additional roles in secondary metabolism with spatial and temporal regulation. The analysis reveals some domain architectures unique to either or both of the plant species and some inactive proteases, like in rhomboids and Clp proteases, which could be involved in chaperone function. Conclusion The systematic analysis of the serine protease-like proteins in the two plant species has provided some insight into the possible functional associations of previously uncharacterised serine protease-like proteins. Further investigation of these aspects may prove beneficial in our understanding of similar processes in commercially significant crop plant species.

  5. Intracellular alkaline proteases produced by thermoacidophiles: detection of protease heterogeneity by gelatin zymography and polymerase chain reaction (PCR)

    Energy Technology Data Exchange (ETDEWEB)

    Kocab, S.; Erdem, B. [Middle East Technical University, Ankara (Turkey). Dept. of Biological Sciences

    2002-08-01

    In this study 24 thermoacidophilic archeal and bacterial strains isolated from hot-springs and hot-soils were screened for their ability to produce intracellular alkaline proteases. The protease activities of the strains, based on azocasein hydrolysis, showed a variation from 0.6 to 5.1 U. The cell extracts of three most potent producers were further examined and it was found that their proteases exhibited maximum activity at 60-70{sup o}C and showed a pH optimum over a range of pH 7.0-8.5. Gelatin zymography revealed that two of the selected archeal strains produced multiple active SDS-resistant proteases. On the other hand, PCR amplification of alkaline serine protease gene sequences of total DNA from all isolates yielded four distinct amplification fragments of 650, 450, 400 and 300 bp, which might have been derived from different serine protease genes. (author)

  6. Microstructure and nanomechanical properties of enamel remineralized with asparagine-serine-serine peptide

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Hsiu-Ying, E-mail: hychung@mail.fcu.edu.tw; Li, Cheng Che

    2013-03-01

    A highly biocompatible peptide, triplet repeats of asparagine-serine-serine (3NSS) was designed to regulate mineral deposition from aqueous ions in saliva for the reconstruction of enamel lesions. Healthy human enamel was sectioned and acid demineralized to create lesions, then exposed to the 3NSS peptide solution, and finally immersed in artificial saliva for 24 h. The surface morphology and roughness were examined using scanning electron microscopy (SEM) and atomic force microscopy (AFM), respectively. X-ray diffraction (XRD) was used to identify the phases and crystallinity of the deposited minerals observed on the enamel surface. Attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) was used to quantitatively analyze the mineral variation by calculating the relative integrated-area of characteristic bands. Nanohardness and elastic modulus measured by nanoindentation at various treatment stages were utilized to evaluate the degree of recovery. Biomimetic effects were accessed according to the degree of nanohardness recovery and the amount of hydroxyapatite deposition. The charged segments in the 3NSS peptide greatly attracted aqueous ions from artificial saliva to form hydroxyapatite crystals to fill enamel caries, in particular the interrod areas, resulting in a slight reduction in overall surface roughness. Additionally, the deposited hydroxyapatites were of a small crystalline size in the presence of the 3NSS peptide, which effectively restrained the plastic deformations and thus resulted in greater improvements in nanohardness and elastic modulus. The degree of nanohardness recovery was 5 times greater for remineralized enamel samples treated with the 3NSS peptide compared to samples without peptide treatment. - Highlights: Black-Right-Pointing-Pointer The degree of nanohardness recovery of enamel was 4 times greater with the aid of 3NSS peptide. Black-Right-Pointing-Pointer 3NSS peptide promoted the formation of hydroxyapatites with

  7. A novel subtilase with NaCl-activated and oxidant-stable activity from Virgibacillus sp. SK37.

    Science.gov (United States)

    Phrommao, Ekkarat; Yongsawatdigul, Jirawat; Rodtong, Sureelak; Yamabhai, Montarop

    2011-06-09

    Microbial proteases are one of the most commercially valuable enzymes, of which the largest market share has been taken by subtilases or alkaline proteases of the Bacillus species. Despite a large amount of information on microbial proteases, a search for novel proteases with unique properties is still of interest for both basic and applied aspects of this highly complex class of enzymes. Oxidant stable proteases (OSPs) have been shown to have a wide application in the detergent and bleaching industries and recently have become one of the most attractive enzymes in various biotechnological applications. A gene encoding a novel member of the subtilase superfamily was isolated from Virgibacillus sp. SK37, a protease-producing bacterium isolated from Thai fish sauce fermentation. The gene was cloned by an activity-based screening of a genomic DNA expression library on Luria-Bertani (LB) agar plates containing 1 mM IPTG and 3% skim milk. Of the 100,000 clones screened, all six isolated positive clones comprised one overlapping open reading frame of 45% identity to the aprX gene from Bacillus species. This gene, designated aprX-sk37 was cloned into pET21d(+) and over-expressed in E. coli BL21(DE3). The enzyme product, designated AprX-SK37, was purified by an immobilized metal ion affinity chromatography to apparent homogeneity and characterized. The AprX-SK37 enzyme showed optimal catalytic conditions at pH 9.5 and 55°C, based on the azocasein assay containing 5 mM CaCl2. Maximum catalytic activity was found at 1 M NaCl with residual activity of 30% at 3 M NaCl. Thermal stability of the enzyme was also enhanced by 1 M NaCl. The enzyme was absolutely calcium-dependent, with optimal concentration of CaCl2 at 15 mM. Inhibitory effects by phenylmethanesulfonyl fluoride and ethylenediaminetetraacetic acid indicated that this enzyme is a metal-dependent serine protease. The enzyme activity was sensitive towards reducing agents, urea, and SDS, but relatively stable up to 5

  8. A novel subtilase with NaCl-activated and oxidant-stable activity from Virgibacillus sp. SK37

    Directory of Open Access Journals (Sweden)

    Yamabhai Montarop

    2011-06-01

    Full Text Available Abstract Background Microbial proteases are one of the most commercially valuable enzymes, of which the largest market share has been taken by subtilases or alkaline proteases of the Bacillus species. Despite a large amount of information on microbial proteases, a search for novel proteases with unique properties is still of interest for both basic and applied aspects of this highly complex class of enzymes. Oxidant stable proteases (OSPs have been shown to have a wide application in the detergent and bleaching industries and recently have become one of the most attractive enzymes in various biotechnological applications. Results A gene encoding a novel member of the subtilase superfamily was isolated from Virgibacillus sp. SK37, a protease-producing bacterium isolated from Thai fish sauce fermentation. The gene was cloned by an activity-based screening of a genomic DNA expression library on Luria-Bertani (LB agar plates containing 1 mM IPTG and 3% skim milk. Of the 100,000 clones screened, all six isolated positive clones comprised one overlapping open reading frame of 45% identity to the aprX gene from Bacillus species. This gene, designated aprX-sk37 was cloned into pET21d(+ and over-expressed in E. coli BL21(DE3. The enzyme product, designated AprX-SK37, was purified by an immobilized metal ion affinity chromatography to apparent homogeneity and characterized. The AprX-SK37 enzyme showed optimal catalytic conditions at pH 9.5 and 55°C, based on the azocasein assay containing 5 mM CaCl2. Maximum catalytic activity was found at 1 M NaCl with residual activity of 30% at 3 M NaCl. Thermal stability of the enzyme was also enhanced by 1 M NaCl. The enzyme was absolutely calcium-dependent, with optimal concentration of CaCl2 at 15 mM. Inhibitory effects by phenylmethanesulfonyl fluoride and ethylenediaminetetraacetic acid indicated that this enzyme is a metal-dependent serine protease. The enzyme activity was sensitive towards reducing agents

  9. The binding mechanism of a peptidic cyclic serine protease inhibitor

    DEFF Research Database (Denmark)

    Jiang, Longguang; Svane, Anna Sigrid P.; Sørensen, Hans Peter

    2011-01-01

    Serine proteases are classical objects for studies of catalytic and inhibitory mechanisms as well as interesting as therapeutic targets. Since small-molecule serine protease inhibitors generally suffer from specificity problems, peptidic inhibitors, isolated from phage-displayed peptide libraries......, have attracted considerable attention. Here, we have investigated the mechanism of binding of peptidic inhibitors to serine protease targets. Our model is upain-1 (CSWRGLENHRMC), a disulfide-bond-constrained competitive inhibitor of human urokinase-type plasminogen activator with a noncanonical...... inhibitory mechanism and an unusually high specificity. Using a number of modified variants of upain-1, we characterised the upain-1-urokinase-type plasminogen activator complex using X-ray crystal structure analysis, determined a model of the peptide in solution by NMR spectroscopy, and analysed binding...

  10. Dosage compensation of serine-4 transfer RNA in Drosophila melanogaster

    International Nuclear Information System (INIS)

    Birchler, J.A.; Owenby, R.K.; Jacobson, K.B.

    1982-01-01

    A dosage series of the X chromosome site for serine-4 transfer RNA consisting of one of three copies in females and one to two in males was constructed to test whether transfer RNA expression is governed by dosage compensation. A dosage effect on the level of the serine-4 isoacceptor was observed in both females and males when the structural locus was varied. However, in males, each dose had a relatively greater expression so the normal one dose was slightly greater than the total female value and the duplicated male had the highest relative expression of all the types examined. Serine-4 levels in males and females from an isogenic Oregon-R stock were similar. Thus the transfer RNA levels conform to the expectations of dosage compensation

  11. Stable particles

    International Nuclear Information System (INIS)

    Samios, N.P.

    1994-01-01

    I have been asked to review the subject of stable particles, essentially the particles that eventually comprised the meson and baryon octets, with a few more additions - with an emphasis on the contributions made by experiments utilizing the bubble chamber technique. In this activity, much work had been done by the photographic emulsion technique and cloud chambers - exposed to cosmic rays as well as accelerator based beams. In fact, many if not most of the stable particles were found by these latter two techniques, however, the foree of the bubble chamber (coupled with the newer and more powerful accelerators) was to verify, and reinforce with large statistics, the existence of these states, to find some of the more difficult ones, mainly neutrals and further to elucidate their properties, i.e., spin, parity, lifetimes, decay parameters, etc. (orig.)

  12. Stable particles

    International Nuclear Information System (INIS)

    Samios, N.P.

    1993-01-01

    I have been asked to review the subject of stable particles, essentially the particles that eventually comprised the meson and baryon octets. with a few more additions -- with an emphasis on the contributions made by experiments utilizing the bubble chamber technique. In this activity, much work had been done by the photographic emulsion technique and cloud chambers-exposed to cosmic rays as well as accelerator based beams. In fact, many if not most of the stable particles were found by these latter two techniques, however, the forte of the bubble chamber (coupled with the newer and more powerful accelerators) was to verify, and reinforce with large statistics, the existence of these states, to find some of the more difficult ones, mainly neutrals and further to elucidate their properties, i.e., spin, parity, lifetimes, decay parameters, etc

  13. Heterogeneity of the serine synthetic pathway in Entamoeba species.

    Science.gov (United States)

    Chiba, Yoko; Makiuchi, Takashi; Jeelani, Ghulam; Nozaki, Tomoyoshi

    2016-06-01

    Phosphoserine phosphatase (PSP) catalyzes the third step of the phosphorylated serine biosynthetic pathway, and occurred multiple times in evolution, while enzymes catalyzing the first and second steps in the pathway have single respective origins. In the present study, we examined the existence of PSP among genus Entamoeba including a human enteric parasite, Entamoeba histolytica. E. histolytica as well as majority of Entamoeba species have the first and second enzymes, but lacks PSP. In contrast, a reptilian enteric parasite, Entamoeba invadens possesses canonical PSP. Thus, there are variations in the existence of the serine biosynthetic ability among Entamoeba species. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Safety of an alkalinizing buffer designed for inhaled medications in humans.

    Science.gov (United States)

    Davis, Michael D; Walsh, Brian K; Dwyer, Scott T; Combs, Casey; Vehse, Nico; Paget-Brown, Alix; Pajewski, Thomas; Hunt, John F

    2013-07-01

    Airway acidification plays a role in disorders of the pulmonary tract. We hypothesized that the inhalation of alkalinized glycine buffer would measurably alkalinize the airways without compromising lung function or causing adverse events. We evaluated the safety of an inhaled alkaline glycine buffer in both healthy subjects and in subjects with stable obstructive airway disease. This work includes 2 open-label safety studies. The healthy controls were part of a phase 1 safety study of multiple inhalations of low-dose alkaline glycine buffer; nebulized saline was used as a comparator in 8 of the healthy controls. Subsequently, a phase 2 study in subjects with stable obstructive airway disease was completed using a single nebulized higher-dose strategy of the alkaline inhalation. We studied 20 non-smoking adults (10 healthy controls and 10 subjects with obstructive airway disease), both at baseline and after inhalation of alkaline buffer. We used spirometry and vital signs as markers of clinical safety. We used changes in fraction of exhaled nitric oxide (NO) and exhaled breath condensate (EBC) pH as surrogate markers of airway pH modification. Alkaline glycine inhalation was tolerated by all subjects in both studies, with no adverse effects on spirometric parameters or vital signs. Airway alkalinization was confirmed by a median increase in EBC pH of 0.235 pH units (IQR 0.56-0.03, P = .03) in subjects after inhalation of the higher-dose alkaline buffer (2.5 mL of 100 mmol/L glycine). Alkalinization of airway lining fluid is accomplished with inhalation of alkaline glycine buffer and causes no adverse effects on pulmonary function or vital signs.

  15. Stable beams

    CERN Multimedia

    2015-01-01

    Stable beams: two simple words that carry so much meaning at CERN. When LHC page one switched from "squeeze" to "stable beams" at 10.40 a.m. on Wednesday, 3 June, it triggered scenes of jubilation in control rooms around the CERN sites, as the LHC experiments started to record physics data for the first time in 27 months. This is what CERN is here for, and it’s great to be back in business after such a long period of preparation for the next stage in the LHC adventure.   I’ve said it before, but I’ll say it again. This was a great achievement, and testimony to the hard and dedicated work of so many people in the global CERN community. I could start to list the teams that have contributed, but that would be a mistake. Instead, I’d simply like to say that an achievement as impressive as running the LHC – a machine of superlatives in every respect – takes the combined effort and enthusiasm of everyone ...

  16. Fatal cerebral edema associated with serine deficiency in CSF

    NARCIS (Netherlands)

    Keularts, Irene M. L. W.; Leroy, Piet L. J. M.; Rubio-Gozalbo, Estela M.; Spaapen, Leo J. M.; Weber, Biene; Dorland, Bert; de Koning, Tom J.; Verhoeven-Duif, Nanda M.

    2010-01-01

    Two young girls without a notable medical history except for asthma presented with an acute toxic encephalopathy with very low serine concentrations both in plasma and cerebrospinal fluid (CSF) comparable to patients with 3-phosphoglycerate dehydrogenase (3-PGDH) deficiency. Clinical symptoms and

  17. Serine protease from midgut of Bombus terrestris males

    Czech Academy of Sciences Publication Activity Database

    Brabcová, Jana; Kindl, Jiří; Valterová, Irena; Pichová, Iva; Zarevúcka, Marie; Brabcová, J.; Jágr, Michal; Mikšík, Ivan

    2013-01-01

    Roč. 82, č. 3 (2013), s. 117-128 ISSN 0739-4462 R&D Projects: GA ČR GA203/09/1446; GA TA ČR TA01020969 Institutional support: RVO:61388963 ; RVO:67985823 Keywords : Bombus terrestris * midgut * serine protease * bumblebee Subject RIV: CE - Biochemistry; CE - Biochemistry (FGU-C) Impact factor: 1.160, year: 2013

  18. Distribution pattern of histone H3 phosphorylation at serine 10

    Indian Academy of Sciences (India)

    Histones are the major eukaryotic DNA-binding proteins. Posttranslational modifications on N-terminal tails of histones that form nucleosomes are often associated with distinct biological functions. Some theories suggest that one of these modifications, the phosphorylation of histone H3 at serine 10 (H3S10ph) plays a role ...

  19. Metabolism of serine and ethanolamine plasmalogens in Megasphaera elsdenii

    NARCIS (Netherlands)

    Prins, R.A.; Akkermans-Kruyswijk, J.; Franklin-Klein, W.; Lankhorst, A.; Golde, L.M.G. van

    1974-01-01

    1. 1. Megasphaera elsdenii appears to be a very suitable organism for studies on the metabolism of plasmalogens in anaerobic bacteria due to its extremely high content of both serine and ethanolamine plasmalogen. 2. 2. Growth of this organism in the presence of either 32Pi or [2-3H]glycerol

  20. Sphingoid bases and the serine catabolic enzyme CHA1 define a novel feedforward/feedback mechanism in the response to serine availability.

    Science.gov (United States)

    Montefusco, David J; Newcomb, Benjamin; Gandy, Jason L; Brice, Sarah E; Matmati, Nabil; Cowart, L Ashley; Hannun, Yusuf A

    2012-03-16

    Targets of bioactive sphingolipids in Saccharomyces cerevisiae were previously identified using microarray experiments focused on sphingolipid-dependent responses to heat stress. One of these heat-induced genes is the serine deamidase/dehydratase Cha1 known to be regulated by increased serine availability. This study investigated the hypothesis that sphingolipids may mediate the induction of Cha1 in response to serine availability. The results showed that inhibition of de novo synthesis of sphingolipids, pharmacologically or genetically, prevented the induction of Cha1 in response to increased serine availability. Additional studies implicated the sphingoid bases phytosphingosine and dihydrosphingosine as the likely mediators of Cha1 up-regulation. The yeast protein kinases Pkh1 and Pkh2, known sphingoid base effectors, were found to mediate CHA1 up-regulation via the transcription factor Cha4. Because the results disclosed a role for sphingolipids in negative feedback regulation of serine metabolism, we investigated the effects of disrupting this mechanism on sphingolipid levels and on cell growth. Intriguingly, exposure of the cha1Δ strain to high serine resulted in hyperaccumulation of endogenous serine and in turn a significant accumulation of sphingoid bases and ceramides. Under these conditions, the cha1Δ strain displayed a significant growth defect that was sphingolipid-dependent. Together, this work reveals a feedforward/feedback loop whereby the sphingoid bases serve as sensors of serine availability and mediate up-regulation of Cha1 in response to serine availability, which in turn regulates sphingolipid levels by limiting serine accumulation.

  1. Self-assembled micelles of amphiphilic poly(L-phenylalanine)-b-poly(L-serine) polypeptides for tumor-targeted delivery.

    Science.gov (United States)

    Zhao, Ziming; Wang, Yu; Han, Jin; Wang, Keli; Yang, Dan; Yang, Yihua; Du, Qian; Song, Yuanjian; Yin, Xiaoxing

    2014-01-01

    The aim of this work was to design, synthesize, and characterize self-assembled micelles based on polypeptides as a potential antitumor drug carrier. Amphiphilic poly(L-phenylalanine)-b-poly(L-serine) (PFS) polypeptides were obtained through the polymerization of N-carboxyanhydride. As a novel hydrophilic segment, poly(L-serine) was utilized to enhance tumor targeting due to a large demand of tumors for serine. PFS could self-assemble into micelles with an average diameter of 110-240 nm and a slightly negative charge. PFS polypeptides adopted random coil in pH 7.4 phosphate-buffered saline and could partly transform to α-helix induced by trifluoroethanol. PFS micelles with a low critical micelle concentration of 4.0 μg mL(-1) were stable in pH 5-9 buffers and serum albumin solution. PFS micelles had a loading capacity of 3.8% for coumarin-6 and exhibited a sustained drug release. Coumarin-6 loaded rhodamine B isothiocyanate-labeled PFS micelles were incubated with Huh-7 tumor cells to study the correlation between drugs and carriers during endocytosis. The uptake of drugs was consistent with the micelles, illustrating that the intracellular transport of drugs highly depended on the micelles. PFS micelles diffused in whole cytoplasm while coumarin-6 assumed localized distribution, suggesting that the micelles could release the loaded drugs in particular areas. The internalization mechanism of PFS micelles was involved with clathrin-mediated endocytosis and macropinocytosis. Excess serine inhibited the uptake of PFS micelles, which demonstrated that serine receptors played a positive role in the internalization of PFS. The more interesting thing was that the uptake inhibition impacted on normal cells but not on tumor cells at the physiological concentration of serine. The difference in the uptake of PFS micelles was fourfold as high between the tumor cells and the normal cells, which indicated that PFS micelles had good tumor targeting in vitro. In conclusion, PFS

  2. Increased production of L-serine in Escherichia coli through Adaptive Laboratory Evolution

    DEFF Research Database (Denmark)

    Mundhada, Hemanshu; Seoane, Jose Miguel; Schneider, Konstantin

    2017-01-01

    L-serine is a promising building block biochemical with a high theoretical production yield from glucose. Toxicity of L-serine is however prohibitive for high-titer production in E. coli. Here, E. coli lacking L-serine degradation pathways was evolved for improved tolerance by gradually increasin...

  3. Engineering of High Yield Production of L-serine in Escherichia coli

    DEFF Research Database (Denmark)

    Mundhada, Hemanshu; Schneider, Konstantin; Christensen, Hanne Bjerre

    2016-01-01

    high serine production yield (0.45 g/g glucose) during small-scale batch fermentation in minimal medium. Serine, however, was found to be highly toxic even at low concentrations to this strain, which lead to slow growth and production during fed batch fermentation, resulting in a serine production of 8...

  4. Coupling the Alkaline-Surfactant-Polymer Technology and The Gelation Technology to Maximize Oil Production

    Energy Technology Data Exchange (ETDEWEB)

    Malcolm Pitts; Jie Qi; Dan Wilson; Phil Dowling; David Stewart; Bill Jones

    2005-12-01

    Gelation technologies have been developed to provide more efficient vertical sweep efficiencies for flooding naturally fractured oil reservoirs or reservoirs with different sand lenses with high permeability contrast. The field proven alkaline-surfactant-polymer technology economically recovers 15% to 25% OOIP more crude oil than waterflooding from swept pore space of an oil reservoir. However, alkaline-surfactant-polymer technology is not amenable to naturally fractured reservoirs or reservoirs with high permeability contrast zones because much of injected solution bypasses target pore space containing oil. This work investigates whether combining these two technologies could broaden applicability of alkaline-surfactant-polymer flooding into these reservoirs. Fluid-fluid interaction with different gel chemical compositions and alkaline-surfactant-polymer solution with pH values ranging from 9.2 to 12.9 have been tested. Aluminum-polyacrylamide gels are not stable to alkaline-surfactant-polymer solutions at any pH. Chromium-polyacrylamide gels with polymer to chromium ion ratios of 25 or greater were stable to alkaline-surfactant-polymer solutions if solution pH was 10.6 or less. When the polymer to chromium ion was 15 or less, chromium-polyacrylamide gels were stable to alkaline-surfactant-polymer solutions with pH values up to 12.9. Chromium-xanthan gum gels were stable to alkaline-surfactant-polymer solutions with pH values of 12.9 at the polymer to chromium ion ratios tested. Silicate-polyacrylamide, resorcinol-formaldehyde, and sulfomethylated resorcinol-formaldehyde gels were also stable to alkaline-surfactant-polymer solutions with pH values ranging from 9.2 to 12.9. Iron-polyacrylamide gels were immediately destroyed when contacted with any of the alkaline-surfactant-polymer solutions with pH values ranging from 9.2 to 12.9. Gel solutions under dynamic conditions of linear corefloods showed similar stability to alkaline-surfactant-polymer solutions as in

  5. 2nd Generation Alkaline Electrolysis

    DEFF Research Database (Denmark)

    Yde, Lars; Kjartansdóttir, Cecilia Kristin; Allebrod, Frank

    This report provides the results of the 2nd Generation Alkaline Electrolysis project which was initiated in 2008. The project has been conducted from 2009-2012 by a consortium comprising Århus University Business and Social Science – Centre for Energy Technologies (CET (former HIRC)), Technical...

  6. Zinc electrode in alkaline electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    McBreen, J.

    1995-12-31

    The zinc electrode in alkaline electrolyte is unusual in that supersaturated zincate solutions can form during discharge and spongy or mossy zinc deposits can form on charge at low overvoltages. The effect of additives on regular pasted ZnO electrodes and calcium zincate electrodes is discussed. The paper also reports on in situ x-ray absorption (XAS) results on mossy zinc deposits.

  7. Preferred stereoselective brain uptake of D-serine - a modulator of glutamatergic neurotransmission

    International Nuclear Information System (INIS)

    Bauer, Dagmar; Hamacher, Kurt; Broeer, Stefan; Pauleit, Dirk; Palm, Christoph; Zilles, Karl; Coenen, Heinz H.; Langen, Karl-Josef

    2005-01-01

    Although it has long been presumed that D-amino acids are uncommon in mammalians, substantial amounts of free D-serine have been detected in the mammalian brain. D-Serine has been demonstrated to be an important modulator of glutamatergic neurotransmission and acts as an agonist at the strychnine-insensitive glycine site of N-methyl-D-aspartate receptors. The blood-to-brain transfer of D-serine is thought to be extremely low, and it is assumed that D-serine is generated by isomerization of L-serine in the brain. Stimulated by the observation of a preferred transport of the D-isomer of proline at the blood-brain barrier, we investigated the differential uptake of [ 3 H]-D-serine and [ 3 H]-L-serine in the rat brain 1 h after intravenous injection using quantitative autoradiography. Surprisingly, brain uptake of [ 3 H]-D-serine was significantly higher than that of [ 3 H]-L-serine, indicating a preferred transport of the D-enantiomer of serine at the blood-brain barrier. This finding indicates that exogenous D-serine may have a direct influence on glutamatergic neurotransmission and associated diseases

  8. Proteolytic profiling and comparative analyses of active trypsin-like serine peptidases in preimaginal stages of Culex quinquefasciatus

    Directory of Open Access Journals (Sweden)

    Borges-Veloso Andre

    2012-06-01

    Full Text Available Abstract Background The mosquito Culex quinquefasciatu s, a widespread insect in tropical and sub-tropical regions of the world, is a vector of multiple arboviruses and parasites, and is considered an important risk to human and veterinary health. Proteolytic enzymes play crucial roles in the insect physiology including the modulation of embryonic development and food digestion. Therefore, these enzymes represent important targets for the development of new control strategies. This study presents zymographic characterization and comparative analysis of the proteolytic activity found in eggs, larval instars and pupae of Culex quinquefasciatus. Methods The proteolytic profiles of eggs, larvae and pupa of Cx. quinquefasciatus were characterized by SDS-PAGE co-polymerized with 0.1% gelatin, according to the pH, temperature and peptidase inhibitor sensitivity. In addition, the proteolytic activities were characterized in solution using 100 μM of the fluorogenic substrate Z-Phe-Arg-AMC. Results Comparison of the proteolytic profiles by substrate-SDS-PAGE from all preimaginal stages of the insect revealed qualitative and quantitative differences in the peptidase expression among eggs, larvae and pupae. Use of specific inhibitors revealed that the proteolytic activity from preimaginal stages is mostly due to trypsin-like serine peptidases that display optimal activity at alkaline pH. In-solution, proteolytic assays of the four larval instars using the fluorogenic substrate Z-Phe-Arg-AMC in the presence or absence of a trypsin-like serine peptidase inhibitor confirmed the results obtained by substrate-SDS-PAGE analysis. The trypsin-like serine peptidases of the four larval instars were functional over a wide range of temperatures, showing activities at 25°C and 65°C, with an optimal activity between 37°C and 50°C. Conclusion The combined use of zymography and in-solution assays, as performed in this study, allowed for a more detailed analysis of the

  9. Electrochemical behaviour of alkaline copper complexes

    Indian Academy of Sciences (India)

    cyanide- plating bath for copper has been developed using alkaline trisodium citrate and triethanolamine solutions5. The present investigation presents cyclic voltammetric studies on the electrochemical behaviour of alkaline copper complexes, ...

  10. Evaluation of oxidative stress in D-serine induced nephrotoxicity

    International Nuclear Information System (INIS)

    Orozco-Ibarra, Marisol; Medina-Campos, Omar Noel; Sanchez-Gonzalez, Dolores Javier; Martinez-Martinez, Claudia Maria; Floriano-Sanchez, Esau; Santamaria, Abel; Ramirez, Victoria; Bobadilla, Norma A.; Pedraza-Chaverri, Jose

    2007-01-01

    It has been suggested that oxidative stress is involved in D-serine-induced nephrotoxicity. The purpose of this study was to assess if oxidative stress is involved in this experimental model using several approaches including (a) the determination of several markers of oxidative stress and the activity of some antioxidant enzymes in kidney and (b) the use of compounds with antioxidant or prooxidant effects. Rats were sacrificed at several periods of time (from 3 to 24 h) after a single i.p. injection of D-serine (400 mg/kg). Control rats were injected with L-serine (400 mg/kg) and sacrificed 24 h after. The following markers were used to assess the temporal aspects of renal damage: (a) urea nitrogen (BUN) and creatinine in blood serum, (b) kidney injury molecule (KIM-1) mRNA levels, and (c) tubular necrotic damage. In addition, creatinine clearance, proteinuria, and urinary excretion of N-acetyl-β-D-glucosaminidase (NAG) were measured 24 h after D-serine injection. Protein carbonyl content, malondialdehyde (MDA), 4-hydroxy-2-nonenal (4-HNE), fluorescent products of lipid peroxidation, reactive oxygen species (ROS), glutathione (GSH) content, and heme oxygenase-1 (HO-1) expression were measured as markers of oxidative stress in the kidney. Additional experiments were performed using the following compounds with antioxidant or pro-oxidant effects before D-serine injection: (a) α-phenyl-tert-butyl-nitrone (PBN), a spin trapping agent; (b) 5,10,15,20-tetrakis (4-sulfonatophenyl) porphyrinato iron(III) (FeTPPS), a soluble complex able to metabolize peroxynitrite; (c) aminotriazole (ATZ), a catalase (CAT) inhibitor; (d) stannous chloride (SnCl 2 ), an HO-1 inductor; (e) tin mesoporphyrin (SnMP), an HO inhibitor. In the time-course study, serum creatinine and BUN increased significantly on 15-24 and 20-24 h, respectively, and KIM-1 mRNA levels increased significantly on 6-24 h. Histological analyses revealed tubular necrosis at 12 h. The activity of antioxidant enzymes

  11. The alteration of serine transporter activity in a cell line model of amyotrophic lateral sclerosis (ALS).

    Science.gov (United States)

    Lee, Na-Young; Kim, Yunha; Ryu, Hoon; Kang, Young-Sook

    2017-01-29

    The alteration of d-serine levels is associated with the pathogenesis of sporadic ALS and mutant SOD1 (G93A) animal model of ALS. However, the exact mechanism of d-serine transport is not known in ALS. To better understand the distribution of d-serine in ALS, we determined the activity and the expression of serine transporter in a motor neuronal cell line model of ALS (NSC-34/hSOD1 G93A cells). The uptake of [ 3 H]d-serine was significantly lower in NSC-34/hSOD1 G93A cells than in control NSC-34 and NSC-34/hSOD1 wt cells. In contrast, the uptake of [ 3 H]l-serine, precursor of d-serine, was markedly increased in NSC-34/hSOD1 G93A cells compared to control NSC-34 and NSC-34/hSOD1 wt cells. Both [ 3 H]d-serine and [ 3 H]l-serine uptake were saturable in these cells. The estimated Michaelis-Menten constant, K m , for d-serine uptakes was higher in NSC-34/hSOD1 G93A cells than in NSC-34/hSOD1 wt cells while the K m for l-serine uptake was 2 fold lower in NSC-34/hSOD1 G93A cells than in control cells. [ 3 H]d-serine and [ 3 H]l-serine uptakes took place in a Na + -dependent manner, and both uptakes were significantly inhibited by system ASC (alanine-serine-cysteine) substrates. As a result of small interfering RNA experiments, we found that ASCT2 (SLC1A5) and ASCT1 (SLC1A4) are involved in [ 3 H]d-serine and [ 3 H]l-serine uptake in NSC-34/hSOD1 G93A cells, respectively. The level of SLC1A4 mRNA was significantly increased in NSC-34/hSOD1 G93A compared to NSC-34 and NSC-34/hSOD1 wt cells. In contrast, the level of SLC7A10 mRNA was relatively lower in NSC-34/hSOD1 G93A cells than the control cells. Together, these data suggest that the pathological alteration of d- and l-serine uptakes in ALS is driven by the affinity change of d-and l-serine uptake system. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Development of alkaline fuel cells.

    Energy Technology Data Exchange (ETDEWEB)

    Hibbs, Michael R.; Jenkins, Janelle E.; Alam, Todd Michael; Janarthanan, Rajeswari; Horan, James L.; Caire, Benjamin R.; Ziegler, Zachary C.; Herring, Andrew M.; Yang, Yuan; Zuo, Xiaobing; Robson, Michael H.; Artyushkova, Kateryna; Patterson, Wendy; Atanassov, Plamen Borissov

    2013-09-01

    This project focuses on the development and demonstration of anion exchange membrane (AEM) fuel cells for portable power applications. Novel polymeric anion exchange membranes and ionomers with high chemical stabilities were prepared characterized by researchers at Sandia National Laboratories. Durable, non-precious metal catalysts were prepared by Dr. Plamen Atanassovs research group at the University of New Mexico by utilizing an aerosol-based process to prepare templated nano-structures. Dr. Andy Herrings group at the Colorado School of Mines combined all of these materials to fabricate and test membrane electrode assemblies for single cell testing in a methanol-fueled alkaline system. The highest power density achieved in this study was 54 mW/cm2 which was 90% of the project target and the highest reported power density for a direct methanol alkaline fuel cell.

  13. Alkaline-earth metal compounds. Oddities and applications

    International Nuclear Information System (INIS)

    Harder, Sjoerd

    2013-01-01

    This book contains the following six topics: heavy alkaline-earth metal organometallic and metal organic chemistry: synthetic methods and properties (Ana Torvisco, Karin Ruhlandt-Senge); Heavier group 2 Grignard reagents of the type aryl-ae(l) n -x post-Grignard reagents (Matthias Westerhausen, Jens Langer, Sven Krieck, Reinald Fischer, Helmar Goerls, Mathias Koehler); stable molecular magnesium(I) dimers: A fundamentally appealing yet synthetically versatile compound class (Cameron Jones, Andreas Stasch); Modern developments in magnesium reagent chemistry for synthesis (Robert E. Mulvey, Stuart D. Robertson); Alkaline-earth metal complexes in homogeneous polymerization catalysis (Jean-Francois Carpentier, Yann Sarazin); homogeneous catalysis with organometallic complexes of group 2 (Mark R. Crimmin, Michael S. Hill); Chiral Ca, Sr and Ba-catalyzed asymmetric direct-type aldol, Michael, and Mannich and related reactions (Tetsu Tsubogo, Yasuhiro Yamashita, Shu- Kobayashi).

  14. Insulin resistance and muscle insulin receptor substrate‐1 serine hyperphosphorylation

    Science.gov (United States)

    Stuart, Charles A.; Howell, Mary E. A.; Cartwright, Brian M.; McCurry, Melanie P.; Lee, Michelle L.; Ramsey, Michael W.; Stone, Michael H.

    2014-01-01

    Abstract Insulin resistance in metabolic syndrome subjects is profound in spite of muscle insulin receptor and insulin‐responsive glucose transporter (GLUT4) expression being nearly normal. Insulin receptor tyrosine kinase phosphorylation of insulin receptor substrate‐1 (IRS‐1) at Tyr896 is a necessary step in insulin stimulation of translocation of GLUT4 to the cell surface. Serine phosphorylation of IRS‐1 by some kinases diminishes insulin action in mice. We evaluated the phosphorylation status of muscle IRS‐1 in 33 subjects with the metabolic syndrome and seventeen lean controls. Each underwent euglycemic insulin clamps and a thigh muscle biopsy before and after 8 weeks of either strength or endurance training. Muscle IRS‐1 phosphorylation at six sites was quantified by immunoblots. Metabolic syndrome muscle IRS‐1 had excess phosphorylation at Ser337 and Ser636 but not at Ser307, Ser789, or Ser1101. Ser337 is a target for phosphorylation by glycogen synthase kinase 3 (GSK3) and Ser636 is phosphorylated by c‐Jun N‐terminal kinase 1 (JNK1). Exercise training without weight loss did not change the IRS‐1 serine phosphorylation. These data suggest that baseline hyperphosphorylation of at least two key serines within muscle IRS‐1 diminishes the transmission of the insulin signal and thereby decreases the insulin‐stimulated translocation of GLUT4. Excess fasting phosphorylation of muscle IRS‐1 at Ser636 may be a major cause of the insulin resistance seen in obesity and might prevent improvement in insulin responsiveness when exercise training is not accompanied by weight loss. PMID:25472611

  15. Coupling the Alkaline-Surfactant-Polymer Technology and the Gelation Technology to Maximize Oil Production

    Energy Technology Data Exchange (ETDEWEB)

    Malcolm Pitts; Jie Qi; Dan Wilson; Phil Dowling; David Stewart; Bill Jones

    2005-12-01

    Gelation technologies have been developed to provide more efficient vertical sweep efficiencies for flooding naturally fractured oil reservoirs or reservoirs with different sand lenses with high permeability contrast. The field proven alkaline-surfactant-polymer technology economically recovers 15% to 25% OOIP more crude oil than waterflooding froin swept pore space of an oil reservoir. However, alkaline-surfactant-polymer technology is not amenable to naturally fractured reservoirs or reservoirs with high permeability contrast zones because much of injected solution bypasses target pore space containing oil. This work investigates whether combining these two technologies could broaden applicability of alkaline-surfactant-polymer flooding into these reservoirs. Fluid-fluid interaction with different gel chemical compositions and alkaline-surfactant-polymer solution with pH values ranging from 9.2 to 12.9 have been tested. Aluminum-polyacrylamide gels are not stable to alkaline-surfactant-polymer solutions at any pH. Chromium-polyacrylamide gels with polymer to chromium ion ratios of 25 or greater were stable to alkaline-surfactant-polymer solutions if solution pH was 10.6 or less. When the polymer to chromium ion was 15 or less, chromium-polyacrylamide gels were stable to alkaline-surfactant-polymer solutions with pH values up to 12.9. Chromium-xanthan gum gels were stable to alkaline-surfactant-polymer solutions with pH values of 12.9 at the polymer to chromium ion ratios tested. Silicate-polyacrylamide, resorcinol-formaldehyde, and sulfomethylated resorcinol-formaldehyde gels were also stable to alkaline-surfactant-polymer solutions with pH values ranging from 9.2 to 12.9. Iron-polyacrylamide gels were immediately destroyed when contacted with any of the alkaline-surfactant-polymer solutions with pH values ranging from 9.2 to 12.9. Gel solutions under dynamic conditions of linear corefloods showed similar stability to alkaline-surfactant-polymer solutions as in

  16. IrPdRu/C as H2Oxidation Catalysts for Alkaline Fuel Cells.

    Science.gov (United States)

    Wang, Hongsen; Abruña, Héctor D

    2017-05-24

    H 2 oxidation kinetics on Pt in alkaline media are very sluggish, being over 100 times slower than in acidic media, and thus, new and more active H 2 oxidation electrocatalysts must be developed in order to enable alkaline exchange membrane fuel cells (AEMFCs). In this Communication, we present a new type of catalysts-carbon-supported IrPdRu nanoparticles-as H 2 oxidation catalysts in alkaline media. These catalysts exhibit higher activity than Pt/C and Ir/C catalysts and are also quite stable. In particular, Ir 3 Ru 7 /C and Ir 3 Pd 1 Ru 6 /C catalysts are significantly more active and less expensive than Pt/C and Ir/C, and are thus promising new anode catalysts for alkaline fuel cell applications.

  17. Cementitious porous pavement in stormwater quality control: pH and alkalinity elevation.

    Science.gov (United States)

    Kuang, Xuheng; Sansalone, John

    2011-01-01

    A certain level of alkalinity acts as a buffer and maintains the pH value in a stable range in water bodies. With rapid urban development, more and more acidic pollutants flow to watersheds with runoff and drop alkalinity to a very low level and ultimately degrade the water environment. Cementitious porous pavement is an effective tool for stormwater acidic neutralization. When stormwater infiltrates cement porous pavement (CPP) materials, alkalinity and pH will be elevated due to the basic characteristics of cement concrete. The elevated alkalinity will neutralize acids in water bodies and maintain the pH in a stable level as a buffer. It is expected that CPP materials still have a certain capability of alkalinity elevation after years of service, which is important for CPP as an effective tool for stormwater management. However, few previous studies have reported on how CPP structures would elevate runoff alkalinity and pH after being exposed to rainfall-runoff for years. In this study, three groups of CPP specimens, all exposed to rainfall-runoff for 3 years, were used to test the pH and alkalinity elevation properties. It was found that runoff pH values were elevated from 7.4 to the range of 7.8-8.6 after infiltrating through the uncoated specimens, and from 7.4 to 8.5-10.7 after infiltrating through aluminum-coated specimens. Runoff alkalinity elevation efficiencies are 11.5-14.5% for uncoated specimens and 42.2% for coated specimens. The study shows that CPP is an effective passive unit operation for stormwater acid neutralization in our built environment.

  18. Characterization of alkaline xylanases from Bacillus pumilus

    Directory of Open Access Journals (Sweden)

    Duarte Marta Cristina Teixeira

    2000-01-01

    Full Text Available Alkaline xylanases produced by four different strains of Bacillus pumilus were characterized. The optimal pH and temperature were pH 9.0 and 60ºC for strain 13a, and pH 8.0 and 55ºC for strains 5(2, 5(14, and 4a. Under these conditions the following activities were found after 10 min in the presence of 1% xylan (birchwood: 328 U.ml-1, 131 U.ml-1, 90 U.ml-1, and 167 U.ml-1, respectively, for the four strains. The enzymes were stable at 40ºC, with 40% of the xylanase activity remaining after 2 hours for the enzymes of strain 5(2 and 60% for the other three strains. Stability at 50ºC was improved by addition of glycerol. Taking into account the conditions under which kraft pulps are bleached during the manufacture of paper, xylanases from B. pumilus exhibit favorable potential for application to bleaching in the paper making process.

  19. Heterogeneity of D-Serine Distribution in the Human Central Nervous System

    Science.gov (United States)

    Suzuki, Masataka; Imanishi, Nobuaki; Mita, Masashi; Hamase, Kenji; Aiso, Sadakazu

    2017-01-01

    D-serine is an endogenous ligand for N-methyl-D-aspartate glutamate receptors. Accumulating evidence including genetic associations of D-serine metabolism with neurological or psychiatric diseases suggest that D-serine is crucial in human neurophysiology. However, distribution and regulation of D-serine in humans are not well understood. Here, we found that D-serine is heterogeneously distributed in the human central nervous system (CNS). The cerebrum contains the highest level of D-serine among the areas in the CNS. There is heterogeneity in its distribution in the cerebrum and even within the cerebral neocortex. The neocortical heterogeneity is associated with Brodmann or functional areas but is unrelated to basic patterns of cortical layer structure or regional expressional variation of metabolic enzymes for D-serine. Such D-serine distribution may reflect functional diversity of glutamatergic neurons in the human CNS, which may serve as a basis for clinical and pharmacological studies on D-serine modulation. PMID:28604057

  20. L-serine capped ZnS:Mn nanocrystals for plant cell biological studies and as a growth enhancing agent for micropropagation of Bacopa monnieri Linn. (Brahmi:Scrophulariaceae)

    Energy Technology Data Exchange (ETDEWEB)

    Augustine, M. Sajimol, E-mail: sajimollazar@gmail.com [Department of Physics, St.Teresa' s College , Kochi-11, Kerala (India); Mathew, Lizzy [Department of Botany, St.Teresa' s College , Kochi-11, Kerala (India); Alex, Roselin [Department of Biotechnology, Cochin University of Science and Technology, Kochi-22 (India); Deepa, G. D. [NCAAH, Cochin University of Science and Technology,Kochi-22, Kerala (India); Jayalekshmi, S., E-mail: jayalekshmi@cusat.ac.in [Department of Physics, Cochin University of Science and Technology, Kochi-22 (India)

    2014-01-28

    In the present work, the prospects of ZnS:Mn nanocrystals capped with L- serine, a bio-compatible amino acid, synthesized by wet chemical route, as efficient fluorescent probes for plant cell biological studies have been investigated. The present synthesis route using bio-compatible material is a low cost and easy to control method. The colloidal stability of the capped nano crystals is very good as they remain stable without settling down for long time. It is observed that L- serine significantly modifies the structural and optical characteristics of the ZnS:Mn nanocrystals and hence is suitable as a bio-compatible capping agent. The structural properties of L- serine capped nanocrystals were investigated by XRD technique. The size of the L- serine capped ZnS:Mn nanocrystals is found to be around 2 nm . The optical characterization of the nanocrystals was carried out on the basis of photoluminescence (PL) spectroscopic studies. The intense photoluminescence emission observed around 597nm for L-serine capped ZnS:Mn offers high prospects of applications in bio-imaging fields. The unique optical properties of nanoparticles make them appealing as in vivo and in vitro fluorophores in a variety of biological investigations. In the present study, L-serine capped ZnS:Mn nanocrystals were used as a staining dye in fluorescent microscope for observing cell division, cell structure etc. These nanocrystals were also incorporated into the culture media along with the normal auxin- cytokinin hormone combinations in Murashige and Skoog (MS) medium for micropropagation of Bacopa monnieri Linn. (Brahmi:Scrophulariaceae), an Ayurvedic medicine. The results suggest that L-serine capped ZnS:Mn nanocrystals can act as efficient enhancers towards quick callusing and shoot proliferation.

  1. L-serine capped ZnS:Mn nanocrystals for plant cell biological studies and as a growth enhancing agent for micropropagation of Bacopa monnieri Linn. (Brahmi:Scrophulariaceae)

    Science.gov (United States)

    Augustine, M. Sajimol; Mathew, Lizzy; Alex, Roselin; Deepa, G. D.; Jayalekshmi, S.

    2014-01-01

    In the present work, the prospects of ZnS:Mn nanocrystals capped with L- serine, a bio-compatible amino acid, synthesized by wet chemical route, as efficient fluorescent probes for plant cell biological studies have been investigated. The present synthesis route using bio-compatible material is a low cost and easy to control method. The colloidal stability of the capped nano crystals is very good as they remain stable without settling down for long time. It is observed that L- serine significantly modifies the structural and optical characteristics of the ZnS:Mn nanocrystals and hence is suitable as a bio-compatible capping agent. The structural properties of L- serine capped nanocrystals were investigated by XRD technique. The size of the L- serine capped ZnS:Mn nanocrystals is found to be around 2 nm . The optical characterization of the nanocrystals was carried out on the basis of photoluminescence (PL) spectroscopic studies. The intense photoluminescence emission observed around 597nm for L-serine capped ZnS:Mn offers high prospects of applications in bio-imaging fields. The unique optical properties of nanoparticles make them appealing as in vivo and in vitro fluorophores in a variety of biological investigations. In the present study, L-serine capped ZnS:Mn nanocrystals were used as a staining dye in fluorescent microscope for observing cell division, cell structure etc. These nanocrystals were also incorporated into the culture media along with the normal auxin- cytokinin hormone combinations in Murashige and Skoog (MS) medium for micropropagation of Bacopa monnieri Linn. (Brahmi:Scrophulariaceae), an Ayurvedic medicine. The results suggest that L-serine capped ZnS:Mn nanocrystals can act as efficient enhancers towards quick callusing and shoot proliferation.

  2. Short hydrogen bonds in the catalytic mechanism of serine proteases

    Directory of Open Access Journals (Sweden)

    VLADIMIR LESKOVAC

    2008-04-01

    Full Text Available The survey of crystallographic data from the Protein Data Bank for 37 structures of trypsin and other serine proteases at a resolution of 0.78–1.28 Å revealed the presence of hydrogen bonds in the active site of the enzymes, which are formed between the catalytic histidine and aspartate residues and are on average 2.7 Å long. This is the typical bond length for normal hydrogen bonds. The geometric properties of the hydrogen bonds in the active site indicate that the H atom is not centered between the heteroatoms of the catalytic histidine and aspartate residues in the active site. Taken together, these findings exclude the possibility that short “low-barrier” hydrogen bonds are formed in the ground state structure of the active sites examined in this work. Some time ago, it was suggested by Cleland that the “low-barrier hydrogen bond” hypothesis is operative in the catalytic mechanism of serine proteases, and requires the presence of short hydrogen bonds around 2.4 Å long in the active site, with the H atom centered between the catalytic heteroatoms. The conclusions drawn from this work do not exclude the validity of the “low-barrier hydrogen bond” hypothesis at all, but they merely do not support it in this particular case, with this particular class of enzymes.

  3. Mechanism of Ribonuclease III Catalytic Regulation by Serine Phosphorylation

    Science.gov (United States)

    Gone, Swapna; Alfonso-Prieto, Mercedes; Paudyal, Samridhdi; Nicholson, Allen W.

    2016-05-01

    Ribonuclease III (RNase III) is a conserved, gene-regulatory bacterial endonuclease that cleaves double-helical structures in diverse coding and noncoding RNAs. RNase III is subject to multiple levels of control, reflective of its global regulatory functions. Escherichia coli (Ec) RNase III catalytic activity is known to increase during bacteriophage T7 infection, reflecting the expression of the phage-encoded protein kinase, T7PK. However, the mechanism of catalytic enhancement is unknown. This study shows that Ec-RNase III is phosphorylated on serine in vitro by purified T7PK, and identifies the targets as Ser33 and Ser34 in the N-terminal catalytic domain. Kinetic experiments reveal a 5-fold increase in kcat and a 1.4-fold decrease in Km following phosphorylation, providing a 7.4-fold increase in catalytic efficiency. Phosphorylation does not change the rate of substrate cleavage under single-turnover conditions, indicating that phosphorylation enhances product release, which also is the rate-limiting step in the steady-state. Molecular dynamics simulations provide a mechanism for facilitated product release, in which the Ser33 phosphomonoester forms a salt bridge with the Arg95 guanidinium group, thereby weakening RNase III engagement of product. The simulations also show why glutamic acid substitution at either serine does not confer enhancement, thus underscoring the specific requirement for a phosphomonoester.

  4. Stable Isotope Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Tissue samples (skin, bone, blood, muscle) are analyzed for stable carbon, stable nitrogen, and stable sulfur analysis. Many samples are used in their entirety for...

  5. Histochemistry of placental alkaline phosphatase in preeclampsia

    OpenAIRE

    Shevade, Sapna Prashant; Arole, Vasanti; Paranjape, Vaishali Mohan; Bharambe, Vaishaly Kishore

    2016-01-01

    Objectives: Placental alkaline phosphatase (PALP) is synthesized in placenta and increases with gestational age. Alkaline phosphatase supports pregnancy and could play an essential role in nutrient supply and growth of the fetus. Preeclampsia is a systemic disorder which affects 5 to 7 percent of women worldwide and is a major cause for maternal and neonatal morbidity and mortality. As it has a major role in fetal growth, nutrition and defense mechanism study of alkaline phosphatase enzymatic...

  6. Alkaline Electrochemical Capacitor and Electrode Fabrication

    National Research Council Canada - National Science Library

    Finello, D

    1999-01-01

    .... The subject low cost alkaline electrochemical capacitor designs are based upon titanium nitride electrodes which exhibit 125 mF/sq cm surface capacitance density and remarkable electrochemical...

  7. Identification, purification and characterization of a novel collagenolytic serine protease from fig (Ficus carica var. Brown Turkey) latex.

    Science.gov (United States)

    Raskovic, Brankica; Bozovic, Olga; Prodanovic, Radivoje; Niketic, Vesna; Polovic, Natalija

    2014-12-01

    A novel collagenolytic serine protease was identified and then purified (along with ficin) to apparent homogeneity from the latex of fig (Ficus carica, var. Brown Turkey) by two step chromatographic procedure using gel and covalent chromatography. The enzyme is a monomeric protein of molecular mass of 41 ± 9 kDa as estimated by analytical gel filtration chromatography. It is an acidic protein with a pI value of approximately 5 and optimal activity at pH 8.0-8.5 and temperature 60°C. The enzymatic activity was strongly inhibited by PMSF and Pefabloc SC, indicating that the enzyme is a serine protease. The enzyme showed specificity towards gelatin and collagen (215 GDU/mg and 24.8 CDU/mg, respectively) and non-specific protease activity (0.18 U/mg against casein). The enzyme was stable and retained full activity over a broad range of pH and temperature. The fig latex collagenolytic protease is potentially useful as a non-microbial enzyme with collagenolytic activity for various applications in the fields of biochemistry, biotechnology and medicine. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  8. Progress of research on the influence of alkaline cation and alkaline solution on bentonite properties

    International Nuclear Information System (INIS)

    Ye Weimin; Zheng Zhenji; Chen Bao; Chen Yonggui

    2011-01-01

    Based on the previous laboratory studies and numerical simulation on bentonite in alkaline environments, the effects of alkaline cation and alkaline solution on mineral composition, microstructure, swelling capacity and hydraulic properties of bentonite are emphasized in this paper, temperature, pH values and concentration are discussed as main affecting factors. When bentonite is exposed to alkaline cation or alkaline solution, microstructure of bentonite will be changed due to the dissolution of montmorillonite and the formation of secondary minerals, which results in the decrease of swelling pressure. The amount of the reduction of swelling pressure depends on the concentration of alkaline solution. Temperature, polyvalent cation, salinity and concentration are the main factors affecting hydraulic properties of bentonite under alkaline conditions. Therefore, future research should focus on the mechanism of coupling effects of weak alkaline solutions on the mineral composition, microstructure, swelling capacity and hydraulic properties of bentonite under different temperatures and different pH values. (authors)

  9. Alkaline and alkaline earth metal phosphate halides and phosphors

    Science.gov (United States)

    Lyons, Robert Joseph; Setlur, Anant Achyut; Cleaver, Robert John

    2012-11-13

    Compounds, phosphor materials and apparatus related to nacaphite family of materials are presented. Potassium and rubidium based nacaphite family compounds and phosphors designed by doping divalent rare earth elements in the sites of alkaline earth metals in the nacaphite material families are descried. An apparatus comprising the phosphors based on the nacaphite family materials are presented herein. The compounds presented is of formula A.sub.2B.sub.1-yR.sub.yPO.sub.4X where the elements A, B, R, X and suffix y are defined such that A is potassium, rubidium, or a combination of potassium and rubidium and B is calcium, strontium, barium, or a combination of any of calcium, strontium and barium. X is fluorine, chlorine, or a combination of fluorine and chlorine, R is europium, samarium, ytterbium, or a combination of any of europium, samarium, and ytterbium, and y ranges from 0 to about 0.1.

  10. Two-step purification of a highly thermostable alkaline protease from salt-tolerant alkaliphilic Streptomyces clavuligerus strain Mit-1.

    Science.gov (United States)

    Thumar, Jignasha; Singh, S P

    2007-07-01

    An alkaline protease from a salt-tolerant alkaliphilic Streptomyces clavuligerus was purified to homogeneity by 141-fold with a yield of 12% using two-step method of salt precipitation and ion exchange chromatography on DEAE cellulose. The apparent molecular mass was 49+/-2 kDa and the enzyme appeared as monomer based on SDS and Native-PAGE. The temperature optimum was 70 degrees C with significant stability at 60-80 degrees C for more than 60 min. The enzyme was active over the pH range of 8.5-11, with an optimum at 10-11. The serine nature of the protease was confirmed by PMSF inhibition. The enzyme was highly resistant against chemical denaturation and displayed varied effects towards metal ions. The results are significant as extremozymes are difficult to purify and therefore, a two-step purification of alkaline protease from relatively less explored group of actinomycetes is quite appealing.

  11. Phosphorylation of connexin43 on serine 306 regulates electrical coupling

    DEFF Research Database (Denmark)

    Procida, Kristina; Jørgensen, Lone; Schmitt, Nicole

    2009-01-01

    BACKGROUND: Phosphorylation is a key regulatory event in controlling the function of the cardiac gap junction protein connexin43 (Cx43). Three new phosphorylation sites (S296, S297, S306) have been identified on Cx43; two of these sites (S297 and S306) are dephosphorylated during ischemia....... The functional significance of these new sites is currently unknown. OBJECTIVE: The purpose of this study was to examine the role of S296, S297, and S306 in the regulation of electrical intercellular communication. METHODS: To mimic constitutive dephosphorylation, serine was mutated to alanine at the three sites...... and expressed in HeLa cells. Electrical coupling and single channel measurements were performed by double patch clamp. Protein expression levels were assayed by western blotting, localization of Cx43, and phosphorylation of S306 by immunolabeling. Free hemichannels were assessed by biotinylation. RESULTS...

  12. Serine/threonine ligation for the chemical synthesis of proteins.

    Science.gov (United States)

    Lee, Chi Lung; Li, Xuechen

    2014-10-01

    Advances in the development of efficient peptide ligation methods have enabled the total synthesis of complex proteins to be successfully undertaken. Recently, a Ser/Thr ligation has emerged as a new tool in synthetic protein chemistry. The chemoselective reaction between an N-terminal serine or threonine of an unprotected peptide segment and a C-terminal salicylaldehyde ester of another unprotected peptide segment gives rise to an N,O-benzylidene acetal linked product, which upon acidolysis produces a native peptide bond at the site of ligation. Ser/Thr ligation has been used for the synthesis of the human erythrocyte acylphosphatase protein and MUC1 glycopeptide segments, semisynthesis of peptoid/PEG-RNase S protein hybrids, and cyclic peptide synthesis including cyclic tetrapeptides, cyclomontanin B, yunnanin C, mahafacyclin B, and daptomycin. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Random mutagenesis of human serine racemase reveals residues important for the enzymatic activity

    Czech Academy of Sciences Publication Activity Database

    Hoffman, Hillary Elizabeth; Jirásková, Jana; Zvelebil, M.; Konvalinka, Jan

    2010-01-01

    Roč. 75, č. 1 (2010), s. 59-79 ISSN 0010-0765 R&D Projects: GA MŠk 1M0508 Institutional research plan: CEZ:AV0Z40550506 Keywords : D-serine * serine racemase * random mutagenesis Subject RIV: CE - Biochemistry Impact factor: 0.853, year: 2010

  14. D-serine influences synaptogenesis in a p19 cell model

    NARCIS (Netherlands)

    Fuchs, Sabine A; Roeleveld, Martin W; Klomp, Leo W J; Berger, Ruud; de Koning, Tom J

    2012-01-01

    Recently, D-serine has been identified as an important NMDA-receptor co-agonist, which might play a role in central nervous system development. We investigated this by studying rat P19 cells, an established model for neuronal and glial differentiation. Our results show that (1) the D-serine

  15. Serine proteases of the human immune system in health and disease

    NARCIS (Netherlands)

    Heutinck, Kirstin M.; ten Berge, Ineke J. M.; Hack, C. Erik; Hamann, Jörg; Rowshani, Ajda T.

    2010-01-01

    Serine proteases form a large family of protein-cleaving enzymes that play an essential role in processes like blood coagulation, apoptosis and inflammation. Immune cells express a wide variety of serine proteases such as granzymes in cytotoxic lymphocytes, neutrophil elastase, cathepsin G and

  16. Astrocytes are involved in trigeminal dynamic mechanical allodynia: potential role of D-serine.

    Science.gov (United States)

    Dieb, W; Hafidi, A

    2013-09-01

    Trigeminal neuropathic pain affects millions of people worldwide. Despite decades of study on the neuronal processing of pain, mechanisms underlying enhanced pain states after injury remain unclear. N-methyl-D-aspartate (NMDA) receptor-dependent changes play a critical role in triggering central sensitization in neuropathic pain. These receptors are regulated at the glycine site through a mandatory endogenous co-agonist D-serine, which is synthesized by astrocytes. Therefore, the present study was carried out to determine whether astrocytes are involved, through D-serine secretion, in dynamic mechanical allodynia (DMA) obtained after chronic constriction of the infraorbital nerve (CCI-IoN) in rats. Two weeks after CCI-IoN, an important reaction of astrocytes was present in the medullary dorsal horn (MDH), as revealed by an up-regulation of glial fibrillary acidic protein (GFAP) in allodynic rats. In parallel, an increase in D-serine synthesis, which co-localized with its synthesis enzyme serine racemase, was strictly observed in astrocytes. Blocking astrocyte metabolism by intracisternal delivery of fluorocitrate alleviated DMA. Furthermore, the administration of D-amino-acid oxidase (DAAO), a D-serine-degrading enzyme, or that of L-serine O-sulfate (LSOS), a serine racemase inhibitor, significantly decreased pain behavior in allodynic rats. These results demonstrate that astrocytes are involved in the modulation of orofacial post-traumatic neuropathic pain via the release of the gliotransmitter D-serine.

  17. Transition-state structures for enzymatic and alkaline phosphotriester hydrolysis

    International Nuclear Information System (INIS)

    Caldwell, S.R.; Raushel, F.M.; Weiss, P.M.; Cleland, W.W.

    1991-01-01

    The primary and secondary 18 O isotope effects for the alkaline (KOH) and enzymatic (phosphotriesterase) hydrolysis of two phosphotriesters, O,O-diethyl p-nitrophenyl phosphate (I) and O,O-diethyl O-(4-carbamoylphenyl) phosphate (II), are consistent with an associative mechanism with significant changes in bond order to both the phosphoryl and phenolic leaving group oxygens in the transition state. The synthesis of [ 15 N, phosphoryl- 18 O]-,[ 15 N, phenolic- 18 O]-, and [ 15 N]-O,O-diethyl p-nitrophenyl phosphate and O,O-diethyl O-(4-carbamoylphenyl)phosphate is described. The primary and secondary 18 O isotope effects for the alkaline hydrolysis of compound I are 1.0060 and 1.0063 ± 0.0001, whereas for compound II they are 1.027±0.002 and 1.025 ± 0.002, respectively. These isotope effects are consistent with the rate-limiting addition of hydroxide and provide evidence for a S N 2-like transition state with the absence of a stable phosphorane intermediate. For the enzymatic hydrolysis of compound I, the primary and secondary 18 O isotope effects are very small, 1.0020 and 1.0021±0.0004, respectively, and indicate that the chemical step in the enzymatic mechanism is not rate-limiting. The 18 O isotope effects for the enzymatic hydrolysis of compound II are 1.036±0.001 and 1.0181±0.0007, respectively, and are comparable in magnitude to the isotope effects for alkaline hydrolysis, suggesting that the chemical step is rate-limiting. The relative magnitude of the primary 18 O isotope effects for the alkaline and enzymatic hydrolysis of compound II reflect a transition state that is more progressed for the enzymatic reaction

  18. Ocean Acidification: Coccolithophore's Light Controlled Effect on Alkalinity

    Science.gov (United States)

    Dobbins, W.

    2015-12-01

    Coccolithophorids, which play a significant role in the flux of calcite and organic carbon from the photic region to deeper pelagic and benthic zones, are potentially far more useful than siliceous phytoplankton for ocean fertilization projects designed to sequester CO2. However, the production of H+ ions during calcification (HCO3 + Ca+ —> CaCO3 + H+) has resulted in localized acidification around coccolithophore blooms. It has been hypothesized that under the correct light conditions photosynthesis could proceed at a rate such that CO2 is removed in amounts equimolar or greater than the H+ produced by calcification, allowing stable or increasing alkalinity despite ongoing calcification. Previously, this effect had not been demonstrated under laboratory conditions. Fifteen Emiliania huxleyi cultures were separated into equal groups with each receiving: 0, 6, 12, 18, or 24 hours of light each day for 24 days. Daily pH, cell density, and temperature measurements revealed a strong positive correlation between light exposure and pH, and no significant decline in pH in any of the cultures. Alkalinity increases were temperature independent and not strongly correlated with cell density, implying photosynthetic removal of carbon dioxide as the root cause. The average pH across living cultures increased from 7.9 to 8.3 over the first week and changed little for the reminder of the 24-day period. The results demonstrate coccolithophorids can increase alkalinity across a broad range of cell densities, despite the acidification inherent to the calcification process. If the light-alkalinity effect reported here proves scalable to larger cultures, Emiliania huxleyi are a strong candidate for carbon sequestration via targeted ocean fertilization.

  19. Alkaline azide mutagenicity in cowpea

    International Nuclear Information System (INIS)

    Mahna, S.K.; Bhargava, Anubha; Mohan, Lalit

    1990-01-01

    Sodium azide is known as a potent mutagen in cereals and legumes. It is very effective in acidic medium in barley. Here an attempt is made to measure the effectiveness of sodium azide in alkaline medium (pH 7.4) on cowpea (Vigna unguiculata (L.) Walp., variety FS-68). Seeds pre-soaked in distilled water for 5 hours were treated with different concentrations (10 -6 , 10 -5 , 10 -4 and 10 -3 M) of sodium azide (NaN 3 ) for 4 hours at 28± 2 deg. C. Bottles were intermittently shaken, then the seeds were thoroughly washed in running tap water and subsequently planted in pots. The treatment caused significant biological damage such as reduction in seed germination, length of root and shoot, number of nodules and pods per plant and morphological leaf variations. Morphological, as well as chlorophyll mutants, were detected in M 2

  20. Hydroxide Self-Feeding High-Temperature Alkaline Direct Formate Fuel Cells.

    Science.gov (United States)

    Li, Yinshi; Sun, Xianda; Feng, Ying

    2017-05-22

    Conventionally, both the thermal degradation of the anion-exchange membrane and the requirement of additional hydroxide for fuel oxidation reaction hinder the development of the high-temperature alkaline direct liquid fuel cells. The present work addresses these two issues by reporting a polybenzimidazole-membrane-based direct formate fuel cell (DFFC). Theoretically, the cell voltage of the high-temperature alkaline DFFC can be as high as 1.45 V at 90 °C. It has been demonstrated that a proof-of-concept alkaline DFFC without adding additional hydroxide yields a peak power density of 20.9 mW cm -2 , an order of magnitude higher than both alkaline direct ethanol fuel cells and alkaline direct methanol fuel cells, mainly because the hydrolysis of formate provides enough OH - ions for formate oxidation reaction. It was also found that this hydroxide self-feeding high-temperature alkaline DFFC shows a stable 100 min constant-current discharge at 90 °C, proving the conceptual feasibility. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Electrocatalysts for Hydrogen Evolution in Alkaline Electrolytes: Mechanisms, Challenges, and Prospective Solutions.

    Science.gov (United States)

    Mahmood, Nasir; Yao, Yunduo; Zhang, Jing-Wen; Pan, Lun; Zhang, Xiangwen; Zou, Ji-Jun

    2018-02-01

    Hydrogen evolution reaction (HER) in alkaline medium is currently a point of focus for sustainable development of hydrogen as an alternative clean fuel for various energy systems, but suffers from sluggish reaction kinetics due to additional water dissociation step. So, the state-of-the-art catalysts performing well in acidic media lose considerable catalytic performance in alkaline media. This review summarizes the recent developments to overcome the kinetics issues of alkaline HER, synthesis of materials with modified morphologies, and electronic structures to tune the active sites and their applications as efficient catalysts for HER. It first explains the fundamentals and electrochemistry of HER and then outlines the requirements for an efficient and stable catalyst in alkaline medium. The challenges with alkaline HER and limitation with the electrocatalysts along with prospective solutions are then highlighted. It further describes the synthesis methods of advanced nanostructures based on carbon, noble, and inexpensive metals and their heterogeneous structures. These heterogeneous structures provide some ideal systems for analyzing the role of structure and synergy on alkaline HER catalysis. At the end, it provides the concluding remarks and future perspectives that can be helpful for tuning the catalysts active-sites with improved electrochemical efficiencies in future.

  2. catalysed oxidation of atenolol by alkaline permanganate

    Indian Academy of Sciences (India)

    Unknown

    Abstract. Kinetics of ruthenium (III) catalyzed oxidation of atenolol by permanganate in alkaline medium at constant ionic strength of 0⋅30 mol dm3 has been studied spectrophotometrically using a rapid kinetic accessory. Reaction between permanganate and atenolol in alkaline medium exhibits 1 : 8 stoichiometry.

  3. Increased liver alkaline phosphatase and aminotransferase ...

    African Journals Online (AJOL)

    The effect of daily, oral administration of ethanolic extract of Khaya senegalensis stem bark (2mg/kg body weight) for 18days on the alkaline phosphatase, aspartate and alanine aminotransferase activities of rat liver and serum were investigated. Compared with the control, the activities of liver alkaline phosphatase (ALP), ...

  4. Alkaline Phosphatases From Camel Small Intestine | Fahmy ...

    African Journals Online (AJOL)

    Camel intestinal alkaline phosphatase have been purified and characterized. The purification was carried out by chromatography on DEAE-cellulose. Five intestinal alkaline phosphatase isoenzymes (IAP1 to IAP5) were obtained. IAP2 and IAP5 with the highest activity levels were purified to homogeneity by Sephacryl ...

  5. Handbook of Indigenous Foods Involving Alkaline Fermentation

    NARCIS (Netherlands)

    Sarkar, P.K.; Nout, M.J.R.

    2014-01-01

    This book details the basic approaches of alkaline fermentation, provides a brief history, and offers an overview of the subject. The book discusses the diversity of indigenous fermented foods involving an alkaline reaction, as well as the taxonomy, ecology, physiology, and genetics of predominant

  6. Stable convergence and stable limit theorems

    CERN Document Server

    Häusler, Erich

    2015-01-01

    The authors present a concise but complete exposition of the mathematical theory of stable convergence and give various applications in different areas of probability theory and mathematical statistics to illustrate the usefulness of this concept. Stable convergence holds in many limit theorems of probability theory and statistics – such as the classical central limit theorem – which are usually formulated in terms of convergence in distribution. Originated by Alfred Rényi, the notion of stable convergence is stronger than the classical weak convergence of probability measures. A variety of methods is described which can be used to establish this stronger stable convergence in many limit theorems which were originally formulated only in terms of weak convergence. Naturally, these stronger limit theorems have new and stronger consequences which should not be missed by neglecting the notion of stable convergence. The presentation will be accessible to researchers and advanced students at the master's level...

  7. Feedback inactivation of D-serine synthesis by NMDA receptor-elicited translocation of serine racemase to the membrane

    DEFF Research Database (Denmark)

    Balan, Livia; Foltyn, Veronika N; Zehl, Martin

    2009-01-01

    translocation of SR to the plasma membrane, which dramatically reduces the enzyme activity. Membrane-bound SR isolated from rat brain is not extracted from the membrane by high detergent and salt concentration, indicating a strong association. Colocalization studies indicate that most membrane-bound SR...... is located at the plasma membrane and dendrites, with much less SR observed in other types of membrane. NMDAR activation promotes translocation of the cytosolic SR to the membrane, resulting in reduced D-serine synthesis, and this effect is averted by blockade of NMDARs. In primary neuronal cultures, SR...... translocation to the membrane is blocked by a palmitoylation inhibitor, indicating that membrane binding is mediated by fatty acid acylation of SR. In agreement, we found that SR is acylated in transfected neuroblastoma cells using [(3)H]palmitate or [(3)H]octanoic acid as precursors. In contrast to classical S...

  8. Sequence conservation, phylogenetic relationships, and expression profiles of nondigestive serine proteases and serine protease homologs in Manduca sexta.

    Science.gov (United States)

    Cao, Xiaolong; He, Yan; Hu, Yingxia; Zhang, Xiufeng; Wang, Yang; Zou, Zhen; Chen, Yunru; Blissard, Gary W; Kanost, Michael R; Jiang, Haobo

    2015-07-01

    Serine protease (SP) and serine protease homolog (SPH) genes in insects encode a large family of proteins involved in digestion, development, immunity, and other processes. While 68 digestive SPs and their close homologs are reported in a companion paper (Kuwar et al., in preparation), we have identified 125 other SPs/SPHs in Manduca sexta and studied their structure, evolution, and expression. Fifty-two of them contain cystine-stabilized structures for molecular recognition, including clip, LDLa, Sushi, Wonton, TSP, CUB, Frizzle, and SR domains. There are nineteen groups of genes evolved from relatively recent gene duplication and sequence divergence. Thirty-five SPs and seven SPHs contain 1, 2 or 5 clip domains. Multiple sequence alignment and molecular modeling of the 54 clip domains have revealed structural diversity of these regulatory modules. Sequence comparison with their homologs in Drosophila melanogaster, Anopheles gambiae and Tribolium castaneum allows us to classify them into five subfamilies: A are SPHs with 1 or 5 group-3 clip domains, B are SPs with 1 or 2 group-2 clip domains, C, D1 and D2 are SPs with a single clip domain in group-1a, 1b and 1c, respectively. We have classified into six categories the 125 expression profiles of SP-related proteins in fat body, brain, midgut, Malpighian tubule, testis, and ovary at different stages, suggesting that they participate in various physiological processes. Through RNA-Seq-based gene annotation and expression profiling, as well as intragenomic sequence comparisons, we have established a framework of information for future biochemical research of nondigestive SPs and SPHs in this model species. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Biochemical aspects of a serine protease from Caesalpinia echinata Lam. (Brazilwood) seeds: a potential tool to access the mobilization of seed storage proteins.

    Science.gov (United States)

    Praxedes-Garcia, Priscila; Cruz-Silva, Ilana; Gozzo, Andrezza Justino; Abreu Nunes, Viviane; Torquato, Ricardo José; Tanaka, Aparecida Sadae; Figueiredo-Ribeiro, Rita de Cássia; Gonzalez, Yamile Gonzalez; Araújo, Mariana da Silva

    2012-01-01

    Several proteins have been isolated from seeds of leguminous, but this is the first report that a protease was obtained from seeds of Caesalpinia echinata Lam., a tree belonging to the Fabaceae family. This enzyme was purified to homogeneity by hydrophobic interaction and anion exchange chromatographies and gel filtration. This 61-kDa serine protease (CeSP) hydrolyses H-D-prolyl-L-phenylalanyl-L-arginine-p-nitroanilide (K(m) 55.7 μM) in an optimum pH of 7.1, and this activity is effectively retained until 50 °C. CeSP remained stable in the presence of kosmotropic anions (PO(4) (3-), SO(4) (2-), and CH(3)COO(-)) or chaotropic cations (K(+) and Na(+)). It is strongly inhibited by TLCK, a serine protease inhibitor, but not by E-64, EDTA or pepstatin A. The characteristics of the purified enzyme allowed us to classify it as a serine protease. The role of CeSP in the seeds cannot be assigned yet but is possible to infer that it is involved in the mobilization of seed storage proteins.

  10. Photovoltaic hydrogen production with commercial alkaline electrolysers

    Energy Technology Data Exchange (ETDEWEB)

    Ursua, A.; Lopez, J.; Gubia, E.; Marroyo, L.; Sanchis, P. [Public Univ. of Navarra, Pamplona (Spain). Dept. of Electric and Electronic Engineering

    2010-07-01

    Renewable energy sources and Electrolysis generate the so-called green Hydrogen, a zero-emission and potentially fossil fuel independent energy source. However, the inherent variability of the renewable energy sources implies a mode of operation for which most current electrolysers have not been designed. This paper analyses the operation of a water electrolyser fed with photovoltaic (PV) generator electric profile. The system, Integrated by a 1 Nm{sup 3}/h Hydrogenics alkaline electrolyser and a 5100 W PV generator with 60 BP585 modules, is installed at the Public University of Navarra (Spain). The PV generator profile fed to the electrolyser is emulated by a custom-made apparatus designed and built by the authors of this paper. The profile is designed according to real irradiance data measured by a calibration cell. The irradiance data are converted to the electric power profile that the PV generator would have delivered in case of having been connected to the electrolyser by means of a DC/DC converter with maximum power point tracking (MPPT). Finally, from previously measured power-current electrolyser characteristic curves, the current profile to be delivered to the electrolyser is obtained and programmed to the electronic device. The electrolyser was tested for two types of days. During the first day, the irradiance was very stable, whereas during the second day, the irradiance was very variable. The experimental results show an average power consumption rate and an efficiency of 4908 Wh/Nm{sup 3} and 72.1%, on the first day, and 4842 Wh/Nm{sup 3} and 73.3% on the second day. The electrolyser performance was particularly good in spite of the high variability of the electric supply of the second day. (orig.)

  11. New insights into the evolution of subtilisin-like serine protease genes in Pezizomycotina

    Science.gov (United States)

    2010-01-01

    Background Subtilisin-like serine proteases play an important role in pathogenic fungi during the penetration and colonization of their hosts. In this study, we perform an evolutionary analysis of the subtilisin-like serine protease genes of subphylum Pezizomycotina to find if there are similar pathogenic mechanisms among the pathogenic fungi with different life styles, which utilize subtilisin-like serine proteases as virulence factors. Within Pezizomycotina, nematode-trapping fungi are unique because they capture soil nematodes using specialized trapping devices. Increasing evidence suggests subtilisin-like serine proteases from nematode-trapping fungi are involved in the penetration and digestion of nematode cuticles. Here we also conduct positive selection analysis on the subtilisin-like serine protease genes from nematode-trapping fungi. Results Phylogenetic analysis of 189 subtilisin-like serine protease genes from Pezizomycotina suggests five strongly-supported monophyletic clades. The subtilisin-like serine protease genes previously identified or presumed as endocellular proteases were clustered into one clade and diverged the earliest in the phylogeny. In addition, the cuticle-degrading protease genes from entomopathogenic and nematode-parasitic fungi were clustered together, indicating that they might have overlapping pathogenic mechanisms against insects and nematodes. Our experimental bioassays supported this conclusion. Interestingly, although they both function as cuticle-degrading proteases, the subtilisin-like serine protease genes from nematode-trapping fungi and nematode-parasitic fungi were not grouped together in the phylogenetic tree. Our evolutionary analysis revealed evidence for positive selection on the subtilisin-like serine protease genes of the nematode-trapping fungi. Conclusions Our study provides new insights into the evolution of subtilisin-like serine protease genes in Pezizomycotina. Pezizomycotina subtilisins most likely evolved

  12. Alkaline Phosphatase: MedlinePlus Lab Test Information

    Science.gov (United States)

    ... this page: https://medlineplus.gov/labtests/alkalinephosphatase.html Alkaline Phosphatase To use the sharing features on this page, please enable JavaScript. What is an Alkaline Phosphatase Test? An alkaline phosphatase (ALP) test measures ...

  13. Multisystemic functions of alkaline phosphatases.

    Science.gov (United States)

    Buchet, René; Millán, José Luis; Magne, David

    2013-01-01

    Human and mouse alkaline phosphatases (AP) are encoded by a multigene family expressed ubiquitously in multiple tissues. Gene knockout (KO) findings have helped define some of the precise exocytic functions of individual isozymes in bone, teeth, the central nervous system, and in the gut. For instance, deficiency in tissue-nonspecific alkaline phosphatase (TNAP) in mice (Alpl (-/-) mice) and humans leads to hypophosphatasia (HPP), an inborn error of metabolism characterized by epileptic seizures in the most severe cases, caused by abnormal metabolism of pyridoxal-5'-phosphate (the predominant form of vitamin B6) and by hypomineralization of the skeleton and teeth featuring rickets and early loss of teeth in children or osteomalacia and dental problems in adults caused by accumulation of inorganic pyrophosphate (PPi). Enzyme replacement therapy with mineral-targeting TNAP prevented all the manifestations of HPP in mice, and clinical trials with this protein therapeutic are showing promising results in rescuing life-threatening HPP in infants. Conversely, TNAP induction in the vasculature during generalized arterial calcification of infancy (GACI), type II diabetes, obesity, and aging can cause medial vascular calcification. TNAP inhibitors, discussed extensively in this book, are in development to prevent pathological arterial calcification. The brush border enzyme intestinal alkaline phosphatase (IAP) plays an important role in fatty acid (FA) absorption, in protecting gut barrier function, and in determining the composition of the gut microbiota via its ability to dephosphorylate lipopolysaccharide (LPS). Knockout mice (Akp3 (-/-)) deficient in duodenal-specific IAP (dIAP) become obese, and develop hyperlipidemia and hepatic steatosis when fed a high-fat diet (HFD). These changes are accompanied by upregulation in the jejunal-ileal expression of the Akp6 IAP isozyme (global IAP, or gIAP) and concomitant upregulation of FAT/CD36, a phosphorylated fatty acid

  14. Serine integrase chimeras with activity in E. coli and HeLa cells

    Directory of Open Access Journals (Sweden)

    Alfonso P. Farruggio

    2014-09-01

    Full Text Available In recent years, application of serine integrases for genomic engineering has increased in popularity. The factor-independence and unidirectionality of these large serine recombinases makes them well suited for reactions such as site-directed vector integration and cassette exchange in a wide variety of organisms. In order to generate information that might be useful for altering the specificity of serine integrases and to improve their efficiency, we tested a hybridization strategy that has been successful with several small serine recombinases. We created chimeras derived from three characterized members of the serine integrase family, phiC31, phiBT1, and TG1 integrases, by joining their amino- and carboxy-terminal portions. We found that several phiBT1-phiC31 (BC and phiC31-TG1 (CT hybrid integrases are active in E. coli. BC chimeras function on native att-sites and on att-sites that are hybrids between those of the two donor enzymes, while CT chimeras only act on the latter att-sites. A BC hybrid, BC{−1}, was also active in human HeLa cells. Our work is the first to demonstrate chimeric serine integrase activity. This analysis sheds light on integrase structure and function, and establishes a potentially tractable means to probe the specificity of the thousands of putative large serine recombinases that have been revealed by bioinformatics studies.

  15. stableGP

    Data.gov (United States)

    National Aeronautics and Space Administration — The code in the stableGP package implements Gaussian process calculations using efficient and numerically stable algorithms. Description of the algorithms is in the...

  16. In situ activity-based protein profiling of serine hydrolases in E. coli

    Directory of Open Access Journals (Sweden)

    Dmitry Shamshurin

    2014-09-01

    Full Text Available A fluorophosphonate based alkyne activity probe was used for the selective labeling of active serine hydrolases in intact Escherichia coli cells. A biotin-azide tag was subsequently attached to the alkyne functionality of the probe with copper-catalyzed azide-alkyne cycloaddition (CuAAC reaction. Comparison of proteins from in-cell and lysate labeled preparations suggested qualitatively similar patterns of reactivity in both preparations. Approximately 68%, 30 of the total 44 serine hydrolases detectable in E. coli were labeled with the probe indicating significant coverage with a single probe. The methods described here offer a useful tool for profiling and monitoring serine hydrolase activity in situ.

  17. Alkaline sorbent injection for mercury control

    Science.gov (United States)

    Madden, Deborah A.; Holmes, Michael J.

    2002-01-01

    A mercury removal system for removing mercury from combustion flue gases is provided in which alkaline sorbents at generally extremely low stoichiometric molar ratios of alkaline earth or an alkali metal to sulfur of less than 1.0 are injected into a power plant system at one or more locations to remove at least between about 40% and 60% of the mercury content from combustion flue gases. Small amounts of alkaline sorbents are injected into the flue gas stream at a relatively low rate. A particulate filter is used to remove mercury-containing particles downstream of each injection point used in the power plant system.

  18. D-Serine in Neuropsychiatric Disorders: New Advances

    Directory of Open Access Journals (Sweden)

    Andrea R. Durrant

    2014-01-01

    Full Text Available D-Serine (DSR is an endogenous amino acid involved in glia-synapse interactions that has unique neurotransmitter characteristics. DSR acts as obligatory coagonist at the glycine site associated with the N-methyl-D-aspartate subtype of glutamate receptors (NMDAR and has a cardinal modulatory role in major NMDAR-dependent processes including NMDAR-mediated neurotransmission, neurotoxicity, synaptic plasticity, and cell migration. Since either over- or underfunction of NMDARs may be involved in the pathophysiology of neuropsychiatric disorders; the pharmacological manipulation of DSR signaling represents a major drug development target. A first generation of proof-of-concept animal and clinical studies suggest beneficial DSR effects in treatment-refractory schizophrenia, movement, depression, and anxiety disorders and for the improvement of cognitive performance. A related developing pharmacological strategy is the indirect modification of DSR synaptic levels by use of compounds that alter the function of main enzymes responsible for DSR production and degradation. Accumulating data indicate that, during the next decade, we will witness important advances in the understanding of DSR role that will further contribute to elucidating the causes of neuropsychiatric disorders and will be instrumental in the development of innovative treatments.

  19. Stromal serine protein kinase activity in spinach chloroplasts

    International Nuclear Information System (INIS)

    Cortez, N.; Lucero, H.A.; Vallejos, R.H.

    1987-01-01

    At least twelve 32 P-labeled stromal proteins were detected by electrophoresis under denaturing conditions when intact chloroplasts were incubated with 32 Pi, in the light but only three were detected in the presence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) or in the dark. Incubation of isolated stroma with [gamma- 32 P]ATP resulted in the preferential phosphorylation of one of them, a 70-kDa polypeptide, in serine residues. Thylakoid membranes in the dark promoted the phosphorylation of two additional stromal polypeptides of 55 and 40 kDa. Illumination during the phosphorylation of stroma in the presence of thylakoids stimulated severalfold the labeling of the 40-kDa polypeptide but not when DCMU was added. The protein kinase activity present in isolated stroma phosphorylated exogenous substrates like histone III, phosvitin, histone II, and casein with specific activities of 3, 1.8, 0.7, and 0.2 pmol X mg-1 X min-1. Histone III polypeptides were phosphorylated differently by stroma and by thylakoids in the dark. Moreover, histone III phosphorylated by thylakoids in the dark yielded a pattern of phosphopeptides after V8 protease treatment that was different from the pattern obtained when histone III was phosphorylated by stroma

  20. Regulation of Adrenal Aldosterone Production by Serine Protease Prostasin

    Directory of Open Access Journals (Sweden)

    Takehiro Ko

    2010-01-01

    Full Text Available A serine protease prostasin has been demonstrated to have a pivotal role in the activation of the epithelial sodium channel. Systemic administration of adenovirus carrying human prostasin gene in rats resulted in an increase in plasma prostasin and aldosterone levels. However, the mechanism by which the elevation of prostasin levels in the systemic circulation stimulated the plasma aldosterone levels remains unknown. Therefore, we examined if prostasin increases the aldosterone synthesis in a human adrenocortical cell line (H295R cells. Luciferase assay using CYP11B2 promoter revealed that prostasin significantly increased the transcriptional activity of CYP11B2. Prostasin significantly increased both CYP11B2 mRNA expression and aldosterone production in a dose-dependent manner. Surprisingly, treatment with camostat mesilate, a potent prostasin inhibitor, had no effect on the aldosterone synthesis by prostasin and also a protease-dead mutant of prostasin significantly stimulated the aldosterone production. A T-type/L-type calcium channel blocker and a protein kinase C (PKC inhibitor significantly reduced the aldosterone synthesis by prostasin. Our findings suggest a stimulatory effect of prostasin on the aldosterone synthesis by adrenal gland through the nonproteolytic action and indicate a new role of prostasin in the systemic circulation.

  1. Eichrom's ABEC trademark resins: Alkaline radioactive waste treatment, radiopharmaceutical, and potential hydrometallurgical applications

    International Nuclear Information System (INIS)

    Bond, A.H.; Gula, M.J.; Chang, F.; Rogers, R.D.

    1997-01-01

    Eichrom's ABEC trademark resins selectivity extract certain anions from high ionic strength acidic, neutral, or strongly alkaline media, and solute stripping can be accomplished by eluting with water. ABEC resins are stable to pH extreme and radiolysis and operate in high ionic strength and/or alkaline solutions where anion-exchange is often ineffective. Potential applications of the ABEC materials include heavy metal and ReO 4 - separations in hydrometallurgy and purification of perrhenate iodide, and iodate in radiopharmaceutical production. Separation of 99m TcO 4 - from its 99 MoO 4 2- parent and stripping with water or physiological saline solution have been demonstrated for radiopharmaceutical applications. Removal of 99 TcO 4 - and 129 I - from alkaline tank wastes has also been successfully demonstrated. The authors will discuss the scale-up studies, process-scale testing, and market development of this new extraction material

  2. Alkalinity in oil field waters - what alkalinity is and how it is measured

    International Nuclear Information System (INIS)

    Kaasa, B.; Oestvold, T.

    1996-01-01

    The alkalinity is an important parameter in the description of pH-behaviour, buffer capacity and scaling potentials in oil field waters. Although the alkalinity is widely used, it seems to be considerable confusion in connection with the concept. It is often used incorrectly and different authors define the concept in different ways. Several different methods for the determination of alkalinity can be found in the literature. This paper discusses the definition of alkalinity and how to use alkalinity in oil field waters to obtain data of importance for scale and pH predictions. There is also shown how a simple titration of oil field waters can give both the alkalinity and the content of organic acids in these waters. It is obvious from these findings that most of the methods used to day may give considerable errors when applied to oil field waters with high contents of organic acids. 8 refs., 8 figs., 5 tabs

  3. Improvement in regional CBF by L-serine contributes to its neuroprotective effect in rats after focal cerebral ischemia.

    Directory of Open Access Journals (Sweden)

    Tao-Jie Ren

    Full Text Available To investigate the mechanisms underlying the neuroprotective effect of L-serine, permanent focal cerebral ischemia was induced by occlusion of the middle cerebral artery while monitoring cerebral blood flow (CBF. Rats were divided into control and L-serine-treated groups after middle cerebral artery occlusion. The neurological deficit score and brain infarct volume were assessed. Nissl staining was used to quantify the cortical injury. L-serine and D-serine levels in the ischemic cortex were analyzed with high performance liquid chromatography. We found that L-serine treatment: 1 reduced the neurological deficit score, infarct volume and cortical neuron loss in a dose-dependent manner; 2 improved CBF in the cortex, and this effect was inhibited in the presence of apamin plus charybdotoxin while the alleviation of both neurological deficit score and infarct volume was blocked; and 3 increased the amount of L-serine and D-serine in the cortex, and inhibition of the conversion of L-serine into D-serine by aminooxyacetic acid did not affect the reduction of neurological deficit score and infarct volume by L-serine. In conclusion, improvement in regional CBF by L-serine may contribute to its neuroprotective effect on the ischemic brain, potentially through vasodilation which is mediated by the small- and intermediate-conductance Ca(2+-activated K(+ channels on the cerebral blood vessel endothelium.

  4. Alkaline Electrochemical Capacitor and Electrode Fabrication

    National Research Council Canada - National Science Library

    Finello, D

    1999-01-01

    .... With energy density in excess of 300 mJ/cc and the potential to exceed a power density of 100 W/cc, the alkaline electrochemical capacitor represents a significant advancement in technology for high power energy storage.

  5. Qualitative Carbohydrate Analysis using Alkaline Potassium ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 21; Issue 3. Qualitative Carbohydrate Analysis using Alkaline Potassium Ferricyanide. Sangeeta Pandita Saral Baweja. Classroom Volume 21 Issue 3 March 2016 pp 285-288 ...

  6. Toxicity of alkalinity to Hyalella azteca

    Science.gov (United States)

    Lasier, P.J.; Winger, P.V.; Reinert, R.E.

    1997-01-01

    Toxicity testing and chemical analyses of sediment pore water have been suggested for use in sediment quality assessments and sediment toxicity identification evaluations. However, caution should be exercised in interpreting pore-water chemistry and toxicity due to inherent chemical characteristics and confounding relationships. High concentrations of alkalinity, which are typical of sediment pore waters from many regions, have been shown to be toxic to test animals. A series of tests were conducted to assess the significance of elevated alkalinity concentrations to Hyalella azteca, an amphipod commonly used for sediment and pore-water toxicity testing. Toxicity tests with 14-d old and 7-d old animals were conducted in serial dilutions of sodium bicarbonate (NaHCO3) solutions producing alkalinities ranging between 250 to 2000 mg/L as CaCO3. A sodium chloride (NaCl) toxicity test was also conducted to verify that toxicity was due to bicarbonate and not sodium. Alkalinity was toxic at concentrations frequently encountered in sediment pore water. There was also a significant difference in the toxicity of alkalinity between 14-d old and 7-d old animals. The average 96-h LC50 for alkalinity was 1212 mg/L (as CaCO3) for 14-d old animals and 662 mg/L for the younger animals. Sodium was not toxic at levels present in the NaHCO3 toxicity tests. Alkalinity should be routinely measured in pore-water toxicity tests, and interpretation of toxicity should consider alkalinity concentration and test-organism tolerance.

  7. Tailored Ahp-cyclodepsipeptides as Potent Non-covalent Serine Protease Inhibitors.

    Science.gov (United States)

    Köcher, Steffen; Rey, Juliana; Bongard, Jens; Tiaden, André N; Meltzer, Michael; Richards, Peter J; Ehrmann, Michael; Kaiser, Markus

    2017-07-10

    The S1 serine protease family is one of the largest and most biologically important protease families. Despite their biomedical significance, generic approaches to generate potent, class-specific, bioactive non-covalent inhibitors for these enzymes are still limited. In this work, we demonstrate that Ahp-cyclodepsipeptides represent a suitable scaffold for generating target-tailored inhibitors of serine proteases. For efficient synthetic access, we developed a practical mixed solid- and solution-phase synthesis that we validated through performing the first chemical synthesis of the two natural products Tasipeptin A and B. The suitability of the Ahp-cyclodepsipeptide scaffold for tailored inhibitor synthesis is showcased by the generation of the most potent human HTRA protease inhibitors to date. We anticipate that our approach may also be applied to other serine proteases, thus opening new avenues for a systematic discovery of serine protease inhibitors. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Hybrid Alkaline Cements: Bentonite-Opc Binders

    Directory of Open Access Journals (Sweden)

    Ines Garcia-Lodeiro

    2018-03-01

    Full Text Available Moderately alkaline activators can be used to formulate cementitious binders with a high Supplemetary Cementitious Materials (SCMs and a low portland cement content (hybrid alkaline cements. This study aimed to prepare hybrid alkaline cements containing large percentages of dehydroxylated bentonite (BT and small Portland cement (OPC fractions, with 5% Na2SO4 as a solid alkaline activator. The hydration kinetics of the pastes hydrated in water in the presence and absence of the solid activator were assessed by isothermal conduction calorimetry, whilst the reaction products were characterised with X-Ray Powder Diffraction (XRD and Fourier-transform Infrared Spectroscopy (FTIR. The presence of the alkaline activator hastened OPC and BT/OPC hydration: more heat of hydration was released, favouring greater initial bentonite reactivity. The portlandite forming during cement hydration reacted readily with the Na2SO4, raising medium alkalinity and enhancing bentonite dissolution and with it reaction product precipitation (primarily (N,C-A-S-H-like gels that co-exist with C-S-H- or C-A-S-H-like gels. The presence of sulfate ions favoured the formation of AFm-like phases. Preceding aspects accelerated the hydration reactions, with the formation of more reaction product and matrix densification. As a result, the 28 days Na2SO4 activated systems developed greater mechanical strength than the water-hydrated systems, with the 60% BT/40% OPC blends exhibiting higher compressive strength than the 100% OPC pastes.

  9. Characterization and quantification of biochar alkalinity.

    Science.gov (United States)

    Fidel, Rivka B; Laird, David A; Thompson, Michael L; Lawrinenko, Michael

    2017-01-01

    Lack of knowledge regarding the nature of biochar alkalis has hindered understanding of pH-sensitive biochar-soil interactions. Here we investigate the nature of biochar alkalinity and present a cohesive suite of methods for its quantification. Biochars produced from cellulose, corn stover and wood feedstocks had significant low-pK a organic structural (0.03-0.34 meq g -1 ), other organic (0-0.92 meq g -1 ), carbonate (0.02-1.5 meq g -1 ), and other inorganic (0-0.26 meq g -1 ) alkalinities. All four categories of biochar alkalinity contributed to total biochar alkalinity and are therefore relevant to pH-sensitive soil processes. Total biochar alkalinity was strongly correlated with base cation concentration, but biochar alkalinity was not a simple function of elemental composition, soluble ash, fixed carbon, or volatile matter content. More research is needed to characterize soluble biochar alkalis other than carbonates and to establish predictive relationships among biochar production parameters and the composition of biochar alkalis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Intracellular serine protease inhibitor SERPINB4 inhibits granzyme M-induced cell death.

    Directory of Open Access Journals (Sweden)

    Pieter J A de Koning

    Full Text Available Granzyme-mediated cell death is the major pathway for cytotoxic lymphocytes to kill virus-infected and tumor cells. In humans, five different granzymes (i.e. GrA, GrB, GrH, GrK, and GrM are known that all induce cell death. Expression of intracellular serine protease inhibitors (serpins is one of the mechanisms by which tumor cells evade cytotoxic lymphocyte-mediated killing. Intracellular expression of SERPINB9 by tumor cells renders them resistant to GrB-induced apoptosis. In contrast to GrB, however, no physiological intracellular inhibitors are known for the other four human granzymes. In the present study, we show that SERPINB4 formed a typical serpin-protease SDS-stable complex with both recombinant and native human GrM. Mutation of the P2-P1-P1' triplet in the SERPINB4 reactive center loop completely abolished complex formation with GrM and N-terminal sequencing revealed that GrM cleaves SERPINB4 after P1-Leu. SERPINB4 inhibited GrM activity with a stoichiometry of inhibition of 1.6 and an apparent second order rate constant of 1.3×10(4 M(-1 s(-1. SERPINB4 abolished cleavage of the macromolecular GrM substrates α-tubulin and nucleophosmin. Overexpression of SERPINB4 in tumor cells inhibited recombinant GrM-induced as well as NK cell-mediated cell death and this inhibition depended on the reactive center loop of the serpin. As SERPINB4 is highly expressed by squamous cell carcinomas, our results may represent a novel mechanism by which these tumor cells evade cytotoxic lymphocyte-induced GrM-mediated cell death.

  11. Cytokeratin 8 Is an Epithelial Cell Receptor for Pet, a Cytotoxic Serine Protease Autotransporter of Enterobacteriaceae

    OpenAIRE

    Nava-Acosta, Raul; Navarro-Garcia, Fernando

    2013-01-01

    ABSTRACT The group of proteins known as serine protease autotransporters of Enterobacteriaceae (SPATE) is a growing family of serine proteases secreted to the external milieu by the type V secretion system. Pet toxin and some other SPATE belong to the class 1 cytotoxic SPATE, which have comparable protease strength on fodrin. Pet is internalized and is directed to its intracellular substrate by retrograde transport. However, the epithelial cell receptor for Pet has yet to be identified. We sh...

  12. Glycine inhibitory dysfunction turns touch into pain through astrocyte-derived D-serine.

    Science.gov (United States)

    Miraucourt, Loïs S; Peirs, Cédric; Dallel, Radhouane; Voisin, Daniel L

    2011-06-01

    Glycine inhibitory dysfunction provides a useful experimental model for studying the mechanism of dynamic mechanical allodynia, a widespread and intractable symptom of neuropathic pain. In this model, allodynia expression relies on N-methyl-d-aspartate receptors (NMDARs), and it has been shown that astrocytes can regulate their activation through the release of the NMDAR coagonist d-serine. Recent studies also suggest that astrocytes potentially contribute to neuropathic pain. However, the involvement of astrocytes in dynamic mechanical allodynia remains unknown. Here, we show that after blockade of glycine inhibition, orofacial tactile stimuli activated medullary dorsal horn (MDH) astrocytes, but not microglia. Accordingly, the glia inhibitor fluorocitrate, but not the microglia inhibitor minocycline, prevented allodynia. Fluorocitrate also impeded activation of astrocytes and blocked activation of the superficial MDH neural circuit underlying allodynia, as revealed by study of Fos expression. MDH astrocytes are thus required for allodynia. They may also produce d-serine because astrocytic processes were selectively immunolabeled for serine racemase, the d-serine synthesizing enzyme. Accordingly, selective degradation of d-serine with d-amino acid oxidase applied in vivo prevented allodynia and activation of the underlying neural circuit. Conversely, allodynia blockade by fluorocitrate was reversed by exogenous d-serine. These results suggest the following scenario: removal of glycine inhibition makes tactile stimuli able to activate astrocytes; activated astrocytes may provide d-serine to enable NMDAR activation and thus allodynia. Such a contribution of astrocytes to pathological pain fuels the emerging concept that astrocytes are critical players in pain signaling. Glycine disinhibition makes tactile stimuli able to activate astrocytes, which may provide d-serine to enable NMDA receptor activation and thus allodynia. Copyright © 2011 International Association

  13. The characterization of soybean oil body integral oleosin isoforms and the effects of alkaline pH on them.

    Science.gov (United States)

    Cao, Yanyun; Zhao, Luping; Ying, Yusang; Kong, Xiangzhen; Hua, Yufei; Chen, Yeming

    2015-06-15

    Oil body, an organelle in seed cell (naturally pre-emulsified oil), has great potentials to be used in food, cosmetics, pharmaceutical and other applications requiring stable oil-in-water emulsions. Researchers have tried to extract oil body by alkaline buffers, which are beneficial for removing contaminated proteins. But it is not clear whether alkaline buffers could remove oil body integral proteins (mainly oleosins), which could keep oil body integrity and stability. In this study, seven oleosin isoforms were identified for soybean oil body (three isoforms, 24 kDa; three isoforms, 18 kDa; one isoform, 16kDa). Oleosins were not glycoproteins and 24 kDa oleosin isoforms possessed less thiol groups than 18 kDa ones. It was found that alkaline pH not only removed contaminated proteins but also oleosins, and more and more oleosins were removed with increasing alkaline pH. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Structural Mechanisms of Inactivation in Scabies Mite Serine Protease Paralogues

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Katja; Langendorf, Christopher G.; Irving, James A.; Reynolds, Simone; Willis, Charlene; Beckham, Simone; Law, Ruby H.P.; Yang, Sundy; Bashtannyk-Puhalovich, Tanya A.; McGowan, Sheena; Whisstock, James C.; Pike, Robert N.; Kemp, David J.; Buckle, Ashley M.; (Monash); (Queensland Inst. of Med. Rsrch.)

    2009-08-07

    The scabies mite (Sarcoptes scabiei) is a parasite responsible for major morbidity in disadvantaged communities and immuno-compromised patients worldwide. In addition to the physical discomfort caused by the disease, scabies infestations facilitate infection by Streptococcal species via skin lesions, resulting in a high prevalence of rheumatic fever/heart disease in affected communities. The scabies mite produces 33 proteins that are closely related to those in the dust mite group 3 allergen and belong to the S1-like protease family (chymotrypsin-like). However, all but one of these molecules contain mutations in the conserved active-site catalytic triad that are predicted to render them catalytically inactive. These molecules are thus termed scabies mite inactivated protease paralogues (SMIPPs). The precise function of SMIPPs is unclear; however, it has been suggested that these proteins might function by binding and protecting target substrates from cleavage by host immune proteases, thus preventing the host from mounting an effective immune challenge. In order to begin to understand the structural basis for SMIPP function, we solved the crystal structures of SMIPP-S-I1 and SMIPP-S-D1 at 1.85 {angstrom} and 2.0 {angstrom} resolution, respectively. Both structures adopt the characteristic serine protease fold, albeit with large structural variations over much of the molecule. In both structures, mutations in the catalytic triad together with occlusion of the S1 subsite by a conserved Tyr200 residue is predicted to block substrate ingress. Accordingly, we show that both proteases lack catalytic function. Attempts to restore function (via site-directed mutagenesis of catalytic residues as well as Tyr200) were unsuccessful. Taken together, these data suggest that SMIPPs have lost the ability to bind substrates in a classical 'canonical' fashion, and instead have evolved alternative functions in the lifecycle of the scabies mite.

  15. Thermodynamic characteristics of protolytic equilibria of L-serine in aqueous solutions

    Science.gov (United States)

    Kochergina, L. A.; Volkov, A. V.; Khokhlova, E. A.; Krutova, O. N.

    2011-05-01

    The heat effects of the reaction of aqueous solution of L-serine with aqueous solutions of HNO3 and KOH were determined by calorimetry at temperatures of 288.15, 298.15, and 308.15 K, and ionic strength values of 0.2, 0.5, and 1.0 (background electrolyte, KNO3). Standard thermodynamic characteristics (Δr H o, Δr G o, Δr S o, Δ C {/p o}) of the acid-base reactions in aqueous solutions of L-serine were calculated. The effect of the concentration of background electrolyte and temperature on the heats of dissociation of amino acid was considered. The combustion energy of L-serine by bomb calorimetry in the medium of oxygen was determined. The standard combustion and formation enthalpies of crystalline L-serine were calculated. The heats of dissolution of crystalline L-serine in water and solutions of potassium hydroxide at 298.15 K were measured by direct calorimetry. The standard enthalpies of formation of L-serine and products of its dissociation in aqueous solution were calculated.

  16. Serine protease inhibitors to treat inflammation: a patent review (2011-2016).

    Science.gov (United States)

    Soualmia, Feryel; El Amri, Chahrazade

    2018-02-01

    Inflammation is a physiological part of the complex biological response of tissues to counteract various harmful signals. This process involves diverse actors such as immune cells, blood vessels, and nerves as sources of mediators for inflammation control. Among them serine proteases are key elements in both physiological and pathological inflammation. Areas covered: Serine protease inhibitors to treat inflammatory diseases are being actively investigated by various industrial and academic institutions. The present review covers patent literature on serine protease inhibitors for the therapy of inflammatory diseases patented between 2011 and 2016. Expert opinion: Serine proteases regulating inflammation are versatile enzymes, usually involved in proinflammatory cytokine production and activation of immune cells. Their dysregulation during inflammation can have devastating consequences, promoting various diseases including skin and lung inflammation, neuroinflammation, and inflammatory arthritis. Several serine proteases were selected for their contribution to inflammatory diseases and significant efforts that are spread to develop inhibitors. Strategies developed for inhibitor identification consist on either peptide-based inhibitor derived from endogenous protein inhibitors or small-organic molecules. It is also worth noting that among the recent patents on serine protease inhibitors related to inflammation a significant number are related to retinal vascular dysfunction and skin diseases.

  17. Ketamine Metabolites Enantioselectively Decrease Intracellular D-Serine Concentrations in PC-12 Cells.

    Directory of Open Access Journals (Sweden)

    Nagendra S Singh

    Full Text Available D-Serine is an endogenous NMDA receptor co-agonist that activates synaptic NMDA receptors modulating neuronal networks in the cerebral cortex and plays a key role in long-term potentiation of synaptic transmission. D-serine is associated with NMDA receptor neurotoxicity and neurodegeneration and elevated D-serine concentrations have been associated with Alzheimer's and Parkinsons' diseases and amyotrophic lateral sclerosis. Previous studies have demonstrated that the ketamine metabolites (rac-dehydronorketamine and (2S,6S-hydroxynorketamine decrease intracellular D-serine concentrations in a concentration dependent manner in PC-12 cells. In the current study, PC-12 cells were incubated with a series of ketamine metabolites and the IC50 values associated with attenuated intracellular D-serine concentrations were determined. The results demonstrate that structural and stereochemical features of the studied compounds contribute to the magnitude of the inhibitory effect with (2S,6S-hydroxynorketamine and (2R,6R-hydroxynorketamine displaying the most potent inhibition with IC50 values of 0.18 ± 0.04 nM and 0.68 ± 0.09 nM. The data was utilized to construct a preliminary 3D-QSAR/pharmacophore model for use in the design of new and more efficient modulators of D-serine.

  18. Contribution of the D-Serine-dependent pathway to the cellular mechanisms underlying cognitive aging

    Directory of Open Access Journals (Sweden)

    Emilie Rouaud

    2010-02-01

    Full Text Available An association between age-related memory impairments and changes in functional plasticity in the aging brain has been under intense study within the last decade. In this article, we show that an impaired activation of the strychnine-insensitive glycine site of N-Methyl-D-Aspartate receptors (NMDA-R by its agonist D-serine contributes to deficits of synaptic plasticity in the hippocampus of memory-impaired aged rats. Supplementation with exogenous D-serine prevents the age-related deficits of isolated NMDA-R-dependent synaptic potentials as well as those of theta-burst-induced long-term potentiation and synaptic depotentiation. Endogenous levels of D-serine are reduced in the hippocampus with aging, that correlates with a weaker expression of serine racemase synthesizing the amino acid. On the contrary, the affinity of D-serine binding to NMDA-R is not affected by aging. These results point to a critical role for the D-serine-dependent pathway in the functional alterations of the brain underlying memory impairment and provide key information in the search for new therapeutic strategies for the treatment of memory deficits in the elderly.

  19. 21 CFR 864.7660 - Leukocyte alkaline phosphatase test.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Leukocyte alkaline phosphatase test. 864.7660... Leukocyte alkaline phosphatase test. (a) Identification. A leukocyte alkaline phosphatase test is a device used to identify the enzyme leukocyte alkaline phosphatase in neutrophilic granulocytes (granular...

  20. Improved electrodes and gas impurity investigations on alkaline electrolysers

    DEFF Research Database (Denmark)

    Reissner, R.; Schiller, G.; Knoeri, T.

    Alkaline water electrolysis for hydrogenproduction is a well-established techniquebut some technological issues regarding thecoupling of alkaline water electrolysis andRenewable Energy Sources (RES) remain tobe improved.......Alkaline water electrolysis for hydrogenproduction is a well-established techniquebut some technological issues regarding thecoupling of alkaline water electrolysis andRenewable Energy Sources (RES) remain tobe improved....

  1. Enhanced Thermostability of a Fungal Alkaline Protease by Different Additives

    Directory of Open Access Journals (Sweden)

    Nilesh P. Nirmal

    2014-01-01

    Full Text Available A fungal strain (Conidiobolus brefeldianus MTCC 5184 isolated from plant detritus secreted a high activity alkaline protease. Thermostability studies of the fungal alkaline protease (FAP revealed that the protease is stable up to 50°C with 40% residual activity after one hour. Effect of various additives such as sugars, sugar alcohols, polyols, and salts, on the thermostability of FAP was evaluated. Among the additives tested, glycerol, mannitol, xylitol, sorbitol, and trehalose were found to be very effective in increasing the stability of FAP, which was found to be concentration dependent. Fivefold increase in residual activity of FAP was observed in the presence of trehalose (50% and sorbitol (50% at 50°C for 4 h, compared to FAP without additive. Other additives like calcium at 20 mM and 10–15% ammonium sulphate showed lower stability improvement than trehalose and sorbitol. NaCl, MgCl2, K2HPO4, and glycine were found to be poor stabilizers and showed only a marginal improvement. PEG 6000 did not show any increase in stability but was found to be slightly inhibitory.

  2. Purification and characterization of a novel extracellular alkaline protease from Cellulomonas bogoriensis.

    Science.gov (United States)

    Li, Fan; Yang, Liyuan; Lv, Xue; Liu, Dongbo; Xia, Hongmei; Chen, Shan

    2016-05-01

    An extracellular alkaline protease produced by the alkali-tolerant Cellulomonas bogoriensis was purified by a combination of ammonium sulfate precipitation and cation exchange chromatography. The purity of the protease was detected by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and its molecular weight was confirmed to be 18.3 kDa. The enzyme showed optimum activity at 60 °C and pH 11. The stability of the protease was maintained at a wide temperature range of 4-60 °C and pH range of 3-12. Irreversible inhibition of the enzyme activity by phenylmethylsulfonyl fluoride and tosyl-l-phenylalanine chloromethyl ketone demonstrated that the purified enzyme is a chymotrypsin of the serine protease family. The Km and Vmax of the protease activity on casein were 19.2 mg/mL and 25000 μg/min/mg, respectively. The broad substrate specificity and remarkable stability in the presence of organic solvents, salt, and commercial detergents, as well as its excellent stain removal and dehairing capability, make the purified alkaline protease a promising candidate for industrial applications. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Purification and characterization of an alkaline protease from Micrococcus sp. isolated from the South China Sea

    Science.gov (United States)

    Hou, Enling; Xia, Tao; Zhang, Zhaohui; Mao, Xiangzhao

    2017-04-01

    Protease is wildly used in various fields, such as food, medicine, washing, leather, cosmetics and other industrial fields. In this study, an alkaline protease secreted by Micrococcus NH54PC02 isolated from the South China Sea was purified and characterized. The growth curve and enzyme activity curve indicated that the cell reached a maximum concentration at the 30th hour and the enzyme activity reached the maximum value at the 36th hour. The protease was purified with 3 steps involving ammonium sulfate precipitation, ion-exchange chromatography and hydrophobic chromatography with 8.22-fold increase in specific activity and 23.68% increase in the recovery. The molecular mass of the protease was estimated to be 25 kDa by SDS-PAGE analysis. The optimum temperature and pH for the protease activity were 50°C and pH 10.0, respectively. The protease showed a strong stability in a wide range of pH values ranging from 6.0-11.0, and maintained 90% enzyme activity in strong alkaline environment with pH 11.0. Inhibitor trials indicated that the protease might be serine protease. But it also possessed the characteristic of metalloprotease as it could be strongly inhibited by EDTA and strongly stimulated by Mn2+. Evaluation of matrix-assisted laser desorption ionization/time-of-flight MS (MALDI-TOF-TOF/MS) showed that the protease might belong to the peptidase S8 family.

  4. FBXO22 Protein Is Required for Optimal Synthesis of the N-Methyl-d-Aspartate (NMDA) Receptor Coagonist d-Serine

    DEFF Research Database (Denmark)

    Dikopoltsev, Elena; Foltyn, Veronika N; Zehl, Martin

    2014-01-01

    d-Serine is a physiological activator of NMDA receptors (NMDARs) in the nervous system that mediates several NMDAR-mediated processes ranging from normal neurotransmission to neurodegeneration. d-Serine is synthesized from l-serine by serine racemase (SR), a brain-enriched enzyme. However, little...

  5. Search of microorganisms that degrade PAHs under alkaline conditions

    Energy Technology Data Exchange (ETDEWEB)

    Gerbeth, A.; Gemende, B. [Westsaechsische Hochschule Zwickau, Fachbereich Physikalische Technik/Informatik, D-08012 Zwickau (Germany); Krausse, S. [Hochschule Mittweida, Umwelttechnik/Wasser- und Abwassertechnik, Technikumplatz 17, D-09648 Mittweida (Germany); Mueller, R.H. [UFZ-Umweltforschungszentrum Leipzig-Halle GmbH, Department Umweltmikrobiologie, Permoserstrasse 15, D-04318 Leipzig (Germany)

    2004-08-01

    Bacterial strains were enriched from building rubble contaminated with polycyclic aromatic hydrocarbons (PAHs). These strains were studied as an inoculum in bioremediation processes with contaminated building rubble. The selection criteria for the bacteria were broad profiles in PAH degradation, stable expression of the traits and tolerance to alkaline conditions. Various strains of Micrococcus sp., Dietzia sp., Rhodococcus sp. and Pseudomonas sp. met the selection criteria. In general, degradative activity was limited at higher pH values. Strains of Micrococcus were suitable for practical use as complete degradation of various PAHs was observed at pH values exceeding 10. Strains of Dietzia sp. showed broad PAH degradation profile, but in some cases degradation came to a halt leaving some of the PAHs unutilized. With Dietzia sp. this could be due to inhibitory effects from the accumulation of toxic PAH metabolic products and/or growth-limiting media conditions. (Abstract Copyright [2004], Wiley Periodicals, Inc.)

  6. N-methyl-d-aspartate receptor coagonist d-serine suppresses intake of high-preference food.

    Science.gov (United States)

    Sasaki, Tsutomu; Kinoshita, Yoshihiro; Matsui, Sho; Kakuta, Shigeru; Yokota-Hashimoto, Hiromi; Kinoshita, Kuni; Iwasaki, Yusaku; Kinoshita, Toshio; Yada, Toshihiko; Amano, Naoji; Kitamura, Tadahiro

    2015-09-01

    d-Serine is abundant in the forebrain and physiologically important for modulating excitatory glutamatergic neurotransmission as a coagonist of synaptic N-methyl-d-aspartate (NMDA) receptor. NMDA signaling has been implicated in the control of food intake. However, the role of d-serine on appetite regulation is unknown. To clarify the effects of d-serine on appetite, we investigated the effect of oral d-serine ingestion on food intake in three different feeding paradigms (one-food access, two-food choice, and refeeding after 24-h fasting) using three different strains of male mice (C57Bl/6J, BKS, and ICR). The effect of d-serine was also tested in leptin signaling-deficient db/db mice and sensory-deafferented (capsaicin-treated) mice. The expression of orexigenic neuropeptides [neuropeptide Y (Npy) and agouti-related protein (Agrp)] in the hypothalamus was compared in fast/refed experiments. Conditioned taste aversion for high-fat diet (HFD) was tested in the d-serine-treated mice. Under the one-food-access paradigm, some of the d-serine-treated mice showed starvation, but not when fed normal chow. HFD feeding with d-serine ingestion did not cause aversion. Under the two-food-choice paradigm, d-serine suppressed the intake of high-preference food but not normal chow. d-Serine also effectively suppressed HFD intake but not normal chow in db/db mice and sensory-deafferented mice. In addition, d-serine suppressed normal chow intake after 24-h fasting despite higher orexigenic gene expression in the hypothalamus. d-Serine failed to suppress HFD intake in the presence of L-701,324, the selective and full antagonist at the glycine-binding site of the NMDA receptor. Therefore, d-serine suppresses the intake of high-preference food through coagonism toward NMDA receptors. Copyright © 2015 the American Physiological Society.

  7. Prophylactic treatment with alkaline phosphatase in cardiac surgery induces endogenous alkaline phosphatase release

    NARCIS (Netherlands)

    Kats, Suzanne; Brands, Ruud; Hamad, Mohamed A. Soliman; Seinen, Willem; Schamhorst, Volkher; Wulkan, Raymond W.; Schoenberger, Jacques P.; van Oeveren, Wim

    Introduction: Laboratory and clinical data have implicated endotoxin as an important factor in the inflammatory response to cardiopulmonary bypass. We assessed the effects of the administration of bovine intestinal alkaline phosphatase (bIAP), an endotoxin detoxifier, on alkaline phosphatase levels

  8. Viscosity of Molten Alkaline-Earth Fluorides

    Science.gov (United States)

    Takeda, Osamu; Hoshino, Yosuke; Anbo, Yusuke; Yanagase, Kei-ichi; Aono, Masahiro; Sato, Yuzuru

    2015-04-01

    The viscosities of molten alkaline-earth fluorides were measured using the oscillating crucible method, which is especially suitable for measuring molten salts with low viscosity. The results showed a good Arrhenius linearity over a wide temperature range. The measured viscosities and activation energies increased in the following order: . Judging by the charge density, the viscosity of alkaline-earth fluorides should increase from molten to . However, the results indicate a different tendency, which may be explained by a Coulomb force that is very strong. The low viscosity of can be attributed to a decreased cohesive force, due to a partial loss of the Coulomb force caused by a higher charge density of the material. The viscosities were also compared to those of molten alkali fluorides and alkaline-earth chlorides. The viscosities of molten alkaline-earth fluorides were higher than those of molten alkali fluorides and alkaline-earth chlorides. The viscosity determined in this study was compared to literature values and showed a reasonable value in the relatively low-viscosity region.

  9. Surface treatment of silica nanoparticles for stable and charge-controlled colloidal silica

    Science.gov (United States)

    Kim, Kyoung-Min; Kim, Hye Min; Lee, Won-Jae; Lee, Chang-Woo; Kim, Tae-il; Lee, Jong-Kwon; Jeong, Jayoung; Paek, Seung-Min; Oh, Jae-Min

    2014-01-01

    An attempt was made to control the surface charge of colloidal silica nanoparticles with 20 nm and 100 nm diameters. Untreated silica nanoparticles were determined to be highly negatively charged and have stable hydrodynamic sizes in a wide pH range. To change the surface to a positively charged form, various coating agents, such as amine containing molecules, multivalent metal cation, or amino acids, were used to treat the colloidal silica nanoparticles. Molecules with chelating amine sites were determined to have high affinity with the silica surface to make agglomerations or gel-like networks. Amino acid coatings resulted in relatively stable silica colloids with a modified surface charge. Three amino acid moiety coatings (L-serine, L-histidine, and L-arginine) exhibited surface charge modifying efficacy of L-histidine > L-arginine > L-serine and hydrodynamic size preservation efficacy of L-serine > L-arginine > L-histidine. The time dependent change in L-arginine coated colloidal silica was investigated by measuring the pattern of the backscattered light in a Turbiscan™. The results indicated that both the 20 nm and 100 nm L-arginine coated silica samples were fairly stable in terms of colloidal homogeneity, showing only slight coalescence and sedimentation. PMID:25565824

  10. X-ray structure reveals a new class and provides insight into evolution of alkaline phosphatases.

    Directory of Open Access Journals (Sweden)

    Subhash C Bihani

    Full Text Available The alkaline phosphatase (AP is a bi-metalloenzyme of potential applications in biotechnology and bioremediation, in which phosphate monoesters are nonspecifically hydrolysed under alkaline conditions to yield inorganic phosphate. The hydrolysis occurs through an enzyme intermediate in which the catalytic residue is phosphorylated. The reaction, which also requires a third metal ion, is proposed to proceed through a mechanism of in-line displacement involving a trigonal bipyramidal transition state. Stabilizing the transition state by bidentate hydrogen bonding has been suggested to be the reason for conservation of an arginine residue in the active site. We report here the first crystal structure of alkaline phosphatase purified from the bacterium Sphingomonas. sp. Strain BSAR-1 (SPAP. The crystal structure reveals many differences from other APs: 1 the catalytic residue is a threonine instead of serine, 2 there is no third metal ion binding pocket, and 3 the arginine residue forming bidentate hydrogen bonding is deleted in SPAP. A lysine and an aspargine residue, recruited together for the first time into the active site, bind the substrate phosphoryl group in a manner not observed before in any other AP. These and other structural features suggest that SPAP represents a new class of APs. Because of its direct contact with the substrate phosphoryl group, the lysine residue is proposed to play a significant role in catalysis. The structure is consistent with a mechanism of in-line displacement via a trigonal bipyramidal transition state. The structure provides important insights into evolutionary relationships between members of AP superfamily.

  11. Stable isotopes labelled compounds

    International Nuclear Information System (INIS)

    1982-09-01

    The catalogue on stable isotopes labelled compounds offers deuterium, nitrogen-15, and multiply labelled compounds. It includes: (1) conditions of sale and delivery, (2) the application of stable isotopes, (3) technical information, (4) product specifications, and (5) the complete delivery programme

  12. Stable Boundary Layer Issues

    NARCIS (Netherlands)

    Steeneveld, G.J.

    2012-01-01

    Understanding and prediction of the stable atmospheric boundary layer is a challenging task. Many physical processes are relevant in the stable boundary layer, i.e. turbulence, radiation, land surface coupling, orographic turbulent and gravity wave drag, and land surface heterogeneity. The

  13. Evolutionary Stable Strategy

    Indian Academy of Sciences (India)

    IAS Admin

    After Maynard-Smith and Price [1] mathematically derived why a given behaviour or strategy was adopted by a certain proportion of the population at a given time, it was shown that a strategy which is currently stable in a population need not be stable in evolutionary time (across generations). Additionally it was sug-.

  14. Identification and characterization of fusolisin, the Fusobacterium nucleatum autotransporter serine protease.

    Directory of Open Access Journals (Sweden)

    Lior Doron

    Full Text Available Fusobacterium nucleatum is an oral anaerobe associated with periodontal disease, adverse pregnancy outcomes and colorectal carcinoma. A serine endopeptidase of 61-65 kDa capable of damaging host tissue and of inactivating immune effectors was detected previously in F. nucleatum. Here we describe the identification of this serine protease, named fusolisin, in three oral F. nucleatum sub-species. Gel zymogram revealed fusobacterial proteolytic activity with molecular masses ranging from 55-101 kDa. All of the detected proteases were inhibited by the serine protease inhibitor PMSF. analysis revealed that all of the detected proteases are encoded by genes encoding an open reading frame (ORF with a calculated mass of approximately 115 kDa. Bioinformatics analysis of the identified ORFs demonstrated that they consist of three domains characteristic of autotransporters of the type Va secretion system. Our results suggest that the F. nucleatum fusolisins are derived from a precursor of approximately 115 kDa. After crossing the cytoplasmic membrane and cleavage of the leader sequence, the C-terminal autotransporter domain of the remaining 96-113 kDa protein is embedded in the outer membrane and delivers the N-terminal S8 serine protease passenger domain to the outer cell surface. In most strains the N-terminal catalytic 55-65 kDa domain self cleaves and liberates itself from the autotransporter domain after its transfer across the outer cell membrane. In F. nucleatum ATCC 25586 this autocatalytic activity is less efficient resulting in a full length membrane-anchored serine protease. The mature serine protease was found to cleave after Thr, Gly, Ala and Leu residues at the P1 position. Growth of F. nucleatum in complex medium was inhibited when serine protease inhibitors were used. Additional experiments are needed to determine whether fusolisin might be used as a target for controlling fusobacterial infections.

  15. Identification and characterization of fusolisin, the Fusobacterium nucleatum autotransporter serine protease.

    Science.gov (United States)

    Doron, Lior; Coppenhagen-Glazer, Shunit; Ibrahim, Yara; Eini, Amir; Naor, Ronit; Rosen, Graciela; Bachrach, Gilad

    2014-01-01

    Fusobacterium nucleatum is an oral anaerobe associated with periodontal disease, adverse pregnancy outcomes and colorectal carcinoma. A serine endopeptidase of 61-65 kDa capable of damaging host tissue and of inactivating immune effectors was detected previously in F. nucleatum. Here we describe the identification of this serine protease, named fusolisin, in three oral F. nucleatum sub-species. Gel zymogram revealed fusobacterial proteolytic activity with molecular masses ranging from 55-101 kDa. All of the detected proteases were inhibited by the serine protease inhibitor PMSF. analysis revealed that all of the detected proteases are encoded by genes encoding an open reading frame (ORF) with a calculated mass of approximately 115 kDa. Bioinformatics analysis of the identified ORFs demonstrated that they consist of three domains characteristic of autotransporters of the type Va secretion system. Our results suggest that the F. nucleatum fusolisins are derived from a precursor of approximately 115 kDa. After crossing the cytoplasmic membrane and cleavage of the leader sequence, the C-terminal autotransporter domain of the remaining 96-113 kDa protein is embedded in the outer membrane and delivers the N-terminal S8 serine protease passenger domain to the outer cell surface. In most strains the N-terminal catalytic 55-65 kDa domain self cleaves and liberates itself from the autotransporter domain after its transfer across the outer cell membrane. In F. nucleatum ATCC 25586 this autocatalytic activity is less efficient resulting in a full length membrane-anchored serine protease. The mature serine protease was found to cleave after Thr, Gly, Ala and Leu residues at the P1 position. Growth of F. nucleatum in complex medium was inhibited when serine protease inhibitors were used. Additional experiments are needed to determine whether fusolisin might be used as a target for controlling fusobacterial infections.

  16. Electromigration in molten salts and application to isotopic separation of alkaline and alkaline-earth elements

    International Nuclear Information System (INIS)

    Menes, F.

    1969-01-01

    The separation of the isotopes of the alkaline-earth elements has been studied using counter-current electromigration in molten bromides. The conditions under which the cathode operates as a bromine electrode for the highest possible currents have been examined. For the separation of calcium, it has been necessary to use a stable CaBr 2 - (CaBr 2 + KBr) 'chain'. In the case of barium and strontium, it was possible to employ the pure bromides. Enrichment factors of the order of 10 for 48 Ca and of the order of 1.5 for the rare isotopes of barium and strontium have been obtained. In the case of magnesium the method is slightly more difficult to apply because of material loss due to the relatively high vapour pressure of the salt requiring the use of electrolyte chains, MgBr 2 - CeBr 3 . A study has been made that has led to a larger-scale application of the method. These are essentially the inhibition of reversible operation of the cathode by traces of water, limiting the intensity which can be tolerated; evacuation of the heat produced by the Joule effect, in the absence of which the separation efficiency is reduced by thermal gradients; corrosion of the materials by molten salts at high temperature. Several cells capable of treating a few kilograms of substance have been put into operation; none of these has lasted long enough to produce a satisfactory enrichment. The method is thus limited actually to yields of the order of a few grams. (author) [fr

  17. Strategy for O-Alkylation of Serine and Threonine from Serinyl and Threoninyl Acetic Acids by Photoinduced Decarboxylative Radical Reactions: Connection between Serine/Threonine and Carbohydrates/Amino Acids at the Side Chain.

    Science.gov (United States)

    Yamamoto, Takashi; Iwasaki, Tomoya; Morita, Toshio; Yoshimi, Yasuharu

    2018-04-06

    O-Alkylations of serine and threonine derivatives at the hydroxy group were achieved using photoinduced decarboxylative radical reactions of serinyl and threoninyl acetic acids with an organic photocatalyst without racemization under mild conditions. Photoinduced decarboxylative radical additions of serinyl and threoninyl acetic acids to electron-deficient alkenes provided linked serine and threonine with carbohydrates and amino acids at the side chain. In addition, O-methylations containing deuterium and O-benzylation of serine were performed under similar photochemical conditions.

  18. Assessing ocean alkalinity for carbon sequestration

    Science.gov (United States)

    Renforth, Phil; Henderson, Gideon

    2017-09-01

    Over the coming century humanity may need to find reservoirs to store several trillions of tons of carbon dioxide (CO2) emitted from fossil fuel combustion, which would otherwise cause dangerous climate change if it were left in the atmosphere. Carbon storage in the ocean as bicarbonate ions (by increasing ocean alkalinity) has received very little attention. Yet recent work suggests sufficient capacity to sequester copious quantities of CO2. It may be possible to sequester hundreds of billions to trillions of tons of C without surpassing postindustrial average carbonate saturation states in the surface ocean. When globally distributed, the impact of elevated alkalinity is potentially small and may help ameliorate the effects of ocean acidification. However, the local impact around addition sites may be more acute but is specific to the mineral and technology. The alkalinity of the ocean increases naturally because of rock weathering in which >1.5 mol of carbon are removed from the atmosphere for every mole of magnesium or calcium dissolved from silicate minerals (e.g., wollastonite, olivine, and anorthite) and 0.5 mol for carbonate minerals (e.g., calcite and dolomite). These processes are responsible for naturally sequestering 0.5 billion tons of CO2 per year. Alkalinity is reduced in the ocean through carbonate mineral precipitation, which is almost exclusively formed from biological activity. Most of the previous work on the biological response to changes in carbonate chemistry have focused on acidifying conditions. More research is required to understand carbonate precipitation at elevated alkalinity to constrain the longevity of carbon storage. A range of technologies have been proposed to increase ocean alkalinity (accelerated weathering of limestone, enhanced weathering, electrochemical promoted weathering, and ocean liming), the cost of which may be comparable to alternative carbon sequestration proposals (e.g., $20-100 tCO2-1). There are still many

  19. Catalytic oxidation of soot over alkaline niobates

    International Nuclear Information System (INIS)

    Pecchi, G.; Cabrera, B.; Buljan, A.; Delgado, E.J.; Gordon, A.L.; Jimenez, R.

    2013-01-01

    Highlights: ► No previous reported studies about alkaline niobates as catalysts for soot oxidation. ► NaNbO 3 and KNbO 3 perovskite-type oxides show lower activation energy than other lanthanoid perovskite-type oxides. ► The alkaline niobate does not show deactivation by metal loss. - Abstract: The lack of studies in the current literature about the assessment of alkaline niobates as catalysts for soot oxidation has motivated this research. In this study, the synthesis, characterization and assessment of alkaline metal niobates as catalysts for soot combustion are reported. The solids MNbO 3 (M = Li, Na, K, Rb) are synthesized by a citrate method, calcined at 450 °C, 550 °C, 650 °C, 750 °C, and characterized by AAS, N 2 adsorption, XRD, O 2 -TPD, FTIR and SEM. All the alkaline niobates show catalytic activity for soot combustion, and the activity depends basically on the nature of the alkaline metal and the calcination temperature. The highest catalytic activity, expressed as the temperature at which combustion of carbon black occurs at the maximum rate, is shown by KNbO 3 calcined at 650 °C. At this calcination temperature, the catalytic activity follows an order dependent on the atomic number, namely: KNbO 3 > NaNbO 3 > LiNbO 3 . The RbNbO 3 solid do not follow this trend presumably due to the perovskite structure was not reached. The highest catalytic activity shown by of KNbO 3 , despite the lower apparent activation energy of NaNbO 3 , stress the importance of the metal nature and suggests the hypothesis that K + ions are the active sites for soot combustion. It must be pointed out that alkaline niobate subjected to consecutive soot combustion cycles does not show deactivation by metal loss, due to the stabilization of the alkaline metal inside the perovskite structure.

  20. Separation of pig bone alkaline phosphatase activities.

    Science.gov (United States)

    Leunis, J C; Vancraeynest, T; Brauman, J

    1977-01-01

    A simple method for the separation of alkaline phosphatase and pyrophosphatase activities of pig bone ribs is described. Using anionic exchange chromatography (DEAE-cellulose) and affinity chromatography on Concanavalin A sepharose (Con A) eluted by a step pH gradient and Na4P2O7, several activities were obtained. A pyrophosphatase containing very little alkaline phosphatase activity was isolated from Con A sepharose by elution with pyrophosphatase. Our data are consistent, with the hypothesis that cortical alcaline phosphatase and pyrophosphatase activities are not due to a single enzyme protein. The method was used on whole bone, on bone marrow and on cortical bone.

  1. Alkaline earth filled nickel skutterudite antimonide thermoelectrics

    Science.gov (United States)

    Singh, David Joseph

    2013-07-16

    A thermoelectric material including a body centered cubic filled skutterudite having the formula A.sub.xFe.sub.yNi.sub.zSb.sub.12, where A is an alkaline earth element, x is no more than approximately 1.0, and the sum of y and z is approximately equal to 4.0. The alkaline earth element includes guest atoms selected from the group consisting of Be, Mb, Ca, Sr, Ba, Ra and combinations thereof. The filled skutterudite is shown to have properties suitable for a wide variety of thermoelectric applications.

  2. D-Serine and Glycine Differentially Control Neurotransmission during Visual Cortex Critical Period.

    Directory of Open Access Journals (Sweden)

    Claire N J Meunier

    Full Text Available N-methyl-D-aspartate receptors (NMDARs play a central role in synaptic plasticity. Their activation requires the binding of both glutamate and d-serine or glycine as co-agonist. The prevalence of either co-agonist on NMDA-receptor function differs between brain regions and remains undetermined in the visual cortex (VC at the critical period of postnatal development. Here, we therefore investigated the regulatory role that d-serine and/or glycine may exert on NMDARs function and on synaptic plasticity in the rat VC layer 5 pyramidal neurons of young rats. Using selective enzymatic depletion of d-serine or glycine, we demonstrate that d-serine and not glycine is the endogenous co-agonist of synaptic NMDARs required for the induction and expression of Long Term Potentiation (LTP at both excitatory and inhibitory synapses. Glycine on the other hand is not involved in synaptic efficacy per se but regulates excitatory and inhibitory neurotransmission by activating strychnine-sensitive glycine receptors, then producing a shunting inhibition that controls neuronal gain and results in a depression of synaptic inputs at the somatic level after dendritic integration. In conclusion, we describe for the first time that in the VC both D-serine and glycine differentially regulate somatic depolarization through the activation of distinct synaptic and extrasynaptic receptors.

  3. Cell-type specific mechanisms of D-serine uptake and release in the brain

    Directory of Open Access Journals (Sweden)

    Magalie eMartineau

    2014-05-01

    Full Text Available Accumulating evidence during the last decade established that D-serine is a key signaling molecule utilized by neurons and astroglia in the mammalian central nervous system. D-serine is increasingly appreciated as the main physiological endogenous coagonist for synaptic NMDA receptors at central excitatory synapses; it is mandatory for long-term changes in synaptic strength, memory, learning, and social interactions. Alterations in the extracellular levels of D-serine leading to disrupted cell-cell signaling are a trademark of many chronic or acute neurological (i.e. Alzheimer disease, epilepsy, stroke and psychiatric (i.e. schizophrenia disorders, and are associated with addictive behavior (i.e. cocaine addiction. Indeed, fine tuning of the extracellular levels of D-serine, achieved by various molecular machineries and signaling pathways, is necessary for maintenance of accurate NMDA receptor functions. Here, we review the experimental data supporting the notion that astroglia and neurons use different pathways to regulate levels of extracellular D-serine.

  4. Quantitative serine protease assays based on formation of copper(II)-oligopeptide complexes.

    Science.gov (United States)

    Ding, Xiaokang; Yang, Kun-Lin

    2015-01-07

    A quantitative protease assay based on the formation of a copper-oligopeptide complex is developed. In this assay, when a tripeptide GGH fragment is cleaved from an oligopeptide chain by serine proteases, the tripeptide quickly forms a pink GGH/Cu(2+) complex whose concentration can be determined quantitatively by using UV-Vis spectroscopy. Therefore, activities of serine proteases can be determined from the formation rate of the GGH/Cu(2+) complex. This principle can be used to detect the presence of serine protease in a real-time manner, or measure proteolytic activities of serine protease cleaving different oligopeptide substrates. For example, by using this assay, we demonstrate that trypsin, a model serine protease, is able to cleave two oligopeptides GGGGKGGH () and GGGGRGGH (). However, the specificity constant (kcat/Km) for is higher than that of (6.4 × 10(3) mM(-1) min(-1)vs. 1.3 × 10(3) mM(-1) min(-1)). This result shows that trypsin is more specific toward arginine (R) than lysine (K) in the oligopeptide sequence.

  5. Normal modified stable processes

    DEFF Research Database (Denmark)

    Barndorff-Nielsen, Ole Eiler; Shephard, N.

    2002-01-01

    This paper discusses two classes of distributions, and stochastic processes derived from them: modified stable (MS) laws and normal modified stable (NMS) laws. This extends corresponding results for the generalised inverse Gaussian (GIG) and generalised hyperbolic (GH) or normal generalised inverse...... Gaussian (NGIG) laws. The wider framework thus established provides, in particular, for added flexibility in the modelling of the dynamics of financial time series, of importance especially as regards OU based stochastic volatility models for equities. In the special case of the tempered stable OU process...

  6. Applications of stable isotopes

    International Nuclear Information System (INIS)

    Letolle, R.; Mariotti, A.; Bariac, T.

    1991-06-01

    This report reviews the historical background and the properties of stable isotopes, the methods used for their measurement (mass spectrometry and others), the present technics for isotope enrichment and separation, and at last the various present and foreseeable application (in nuclear energy, physical and chemical research, materials industry and research; tracing in industrial, medical and agronomical tests; the use of natural isotope variations for environmental studies, agronomy, natural resources appraising: water, minerals, energy). Some new possibilities in the use of stable isotope are offered. A last chapter gives the present state and forecast development of stable isotope uses in France and Europe

  7. Identification of the active site serine in pancreatic cholesterol esterase by chemical modification and site-specific mutagenesis.

    Science.gov (United States)

    DiPersio, L P; Fontaine, R N; Hui, D Y

    1990-10-05

    Chemical modification and site-specific mutagenesis approaches were used in this study to identify the active site serine residue of pancreatic cholesterol esterase. In the first approach, purified porcine pancreatic cholesterol esterase was covalently modified by incubation with [3H]diisopropylfluorophosphate (DFP). The radiolabeled cholesterol esterase was digested with CNBr, and the peptides were separated by high performance liquid chromatography. A single 3H-containing peptide was obtained for sequence determination. The results revealed the binding of DFP to a serine residue within the serine esterase homologous domain of the protein. Furthermore, the DFP-labeled serine was shown to correspond to serine residue 194 of rat cholesterol esterase (Kissel, J. A., Fontaine, R. N., Turck, C. W., Brockman, H. L., and Hui, D. Y. (1989) Biochim. Biophys. Acta 1006, 227-236). The codon for serine 194 in rat cholesterol esterase cDNA was then mutagenized to ACT or GCT to yield mutagenized cholesterol esterase with either threonine or alanine, instead of serine, at position 194. Expression of the mutagenized cDNA in COS-1 cells demonstrated that substitution of serine 194 with threonine or alanine abolished enzyme activity in hydrolyzing the water-soluble substrate, p-nitrophenyl butyrate, and the lipid substrates cholesteryl [14C]oleate and [14C] lysophosphatidylcholine. These studies definitively identified serine 194 in the catalytic site of pancreatic cholesterol esterase.

  8. Determination of Acidity and Alkalinity of Food Materials

    OpenAIRE

    三浦,芳助; 福永,祐子; 瀧川,裕里子; 津田,真美; 渡辺,陽子; 瀨山,一正

    2006-01-01

    The acidity and alkalinity of food materials in various menus was determined to clarify the influence of food on physiological functions. Menus mainly containing alkaline food materials (alkaline menu) and acid ones (acid menu) were compared. Determination of acidity and alkalinity was performed for each food material in the alkaline menu and acid menu, and acidity and alkalinity of one meal and a day's one were estimated. 1. Most of food materials in acid menu were assessed to be...

  9. The Alkaline Diet: Is There Evidence That an Alkaline pH Diet Benefits Health?

    Directory of Open Access Journals (Sweden)

    Gerry K. Schwalfenberg

    2012-01-01

    Full Text Available This review looks at the role of an alkaline diet in health. Pubmed was searched looking for articles on pH, potential renal acid loads, bone health, muscle, growth hormone, back pain, vitamin D and chemotherapy. Many books written in the lay literature on the alkaline diet were also reviewed and evaluated in light of the published medical literature. There may be some value in considering an alkaline diet in reducing morbidity and mortality from chronic diseases and further studies are warranted in this area of medicine.

  10. Identification of a New Marine Bacterial Strain SD8 and Optimization of Its Culture Conditions for Producing Alkaline Protease

    Science.gov (United States)

    Cui, Hongxia; Yang, Muyang; Wang, Liping; Xian, Cory J.

    2015-01-01

    While much attention has been given to marine microorganisms for production of enzymes, which in general are relatively more stable and active compared to those from plants and animals, studies on alkaline protease production from marine microorganisms have been very limited. In the present study, the alkaline protease producing marine bacterial strain SD8 isolated from sea muds in the Geziwo Qinhuangdao sea area of China was characterized and its optimal culture conditions were investigated. Strain SD8 was initially classified to belong to genus Pseudomonas by morphological, physiological and biochemical characterizations, and then through 16S rDNA sequence it was identified to be likely Pseudomonas hibiscicola. In addition, the culture mediums, carbon sources and culture conditions of strain SD8 were optimized for maximum production of alkaline protease. Optimum enzyme production (236U/mL when cultured bacteria being at 0.75 mg dry weight/mL fermentation broth) was obtained when the isolate at a 3% inoculum size was grown in LB medium at 20 mL medium/100mL Erlenmeyer flask for 48h culture at 30°C with an initial of pH 7.5. This was the first report of strain Pseudomonas hibiscicola secreting alkaline protease, and the data for its optimal cultural conditions for alkaline protease production has laid a foundation for future exploration for the potential use of SD8 strain for alkaline protease production. PMID:26716833

  11. Remarkable alkaline stability of an engineered protein A as immunoglobulin affinity ligand: C domain having only one amino acid substitution

    Science.gov (United States)

    Minakuchi, Kazunobu; Murata, Dai; Okubo, Yuji; Nakano, Yoshiyuki; Yoshida, Shinichi

    2013-01-01

    Protein A affinity chromatography is the standard purification process for the capture of therapeutic antibodies. The individual IgG-binding domains of protein A (E, D, A, B, C) have highly homologous amino acid sequences. From a previous report, it has been assumed that the C domain has superior resistance to alkaline conditions compared to the other domains. We investigated several properties of the C domain as an IgG-Fc capture ligand. Based on cleavage site analysis of a recombinant protein A using a protein sequencer, the C domain was found to be the only domain to have neither of the potential alkaline cleavage sites. Circular dichroism (CD) analysis also indicated that the C domain has good physicochemical stability. Additionally, we evaluated the amino acid substitutions at the Gly-29 position of the C domain, as the Z domain (an artificial B domain) acquired alkaline resistance through a G29A mutation. The G29A mutation proved to increase the alkaline resistance of the C domain, based on BIACORE analysis, although the improvement was significantly smaller than that observed for the B domain. Interestingly, a number of other amino acid mutations at the same position increased alkaline resistance more than did the G29A mutation. This result supports the notion that even a single mutation on the originally alkali-stable C domain would improve its alkaline stability. An engineered protein A based on this C domain is expected to show remarkable performance as an affinity ligand for immunoglobulin. PMID:23868198

  12. Analysing Stable Time Series

    National Research Council Canada - National Science Library

    Adler, Robert

    1997-01-01

    We describe how to take a stable, ARMA, time series through the various stages of model identification, parameter estimation, and diagnostic checking, and accompany the discussion with a goodly number...

  13. Expression of serine and glycine-related enzymes in phyllodes tumor.

    Science.gov (United States)

    Kwon, J E; Kim, D H; Jung, W-H; Koo, J S

    2014-01-01

    Expression patterns of proteins involved in serine and glycine metabolism, and correlations of these patterns with clinicopathologic factors in phyllodes tumor were investigated. Tissue microarrays were prepared from 203 phyllodes tumors (PT) and stained with antibodies specific for glycine decarboxylase (GLDC), phosphoserine aminotransferase 1 (PSAT1), phosphoserine phosphatase (PSPH), phosphoglycerate dehydrogenase (PHGDH), and serine hydroxymethyltransferase 1 (SHMT1). These immunohistochemical results and clinicopathologic parameters were analyzed for correlation. Numbers of benign, borderline, and malignant tumors were 155, 32, and 16, respectively. Stromal expression of PHGDH, PSAT1, PSPH, SHMT1, and GLDC increased with increasing tumor grade, and epithelial expression of SHMT1 also increased with increasing tumor grade (pphyllodes tumor. glycine, tumor grade, metabolism, phyllodes tumor, serine.

  14. Potentiometric assay for acid and alkaline phosphatase

    International Nuclear Information System (INIS)

    Koncki, Robert; Ogonczyk, Dominika; Glab, Stanislaw

    2005-01-01

    Simple potentiometric kinetic assay for evaluation of acid and alkaline phosphatase activity has been developed. Enzymatically catalyzed hydrolysis of monofluorophosphate, the simplest inorganic compound containing P-F bond, has been investigated as the basis of the assays. Fluoride ions formed in the course of the hydrolysis of this specific substrate have been detected using conventional fluoride ion-selective electrode based on membrane made of lanthanum fluoride. The key analytical parameters necessary for sensitive and selective detection of both enzymes have been assessed. Maximal sensitivity of the assays was observed at monofluorophosphate concentration near 10 -3 M. Maximal sensitivity of acid phosphatase assay was found at pH 6.0, but pH of 4.8 is recommended to eliminate effects from alkaline phosphatase. Optimal pH for alkaline phosphatase assay is 9.0. The utility of the developed substrate-sensor system for determination of acid and alkaline phosphatase activity in human serum has been demonstrated

  15. Alkaline Activator Impact on the Geopolymer Binders

    Science.gov (United States)

    Błaszczyński, Tomasz Z.; Król, Maciej R.

    2017-10-01

    Concrete structures are constantly moving in the direction of improving the durability. Durability depends on many factors, which are the composition of concrete mix, the usage of additives and admixtures and the place, where material will work and carry the load. The introduction of new geopolymer binders for geopolymer structures adds a new aspect that is type of used activator. This substance with strongly alkaline reaction is divided because of the physical state, the alkaline degree and above all the chemical composition. Taking into account, that at present the geopolymer binders are made essentially from waste materials or by-products from the combustion of coal or iron ore smelting, unambiguous determination of the effect of the activator on the properties of the geopolymer material requires a number of trials, researches and observation. This paper shows the influence of the most alkaline activators on the basic parameters of the durability of geopolymer binders. In this study there were used highly alkaline hydroxides, water glasses and granules, which are waste materials in a variety of processes taking place in chemical plants. As the substrate of geopolymer binders there were used fly ash which came from coal and high calcareous ash from the burning of lignite.

  16. Qualitative Carbohydrate Analysis using Alkaline Potassium ...

    Indian Academy of Sciences (India)

    IAS Admin

    and yellow colour appears. Initial colour remains but fades. Orange colour appears. Yellow colour appears. Carbohydrates. Monosaccharide. Disaccharide. + Alkaline ferricyanide (shake for 5 minutes). Colour disappears. Colour does not disappear. Put the test tube in boiling water for 10 seconds. Put the test tube in boiling.

  17. Optimization of alkaline protease production from Pseudomonas ...

    African Journals Online (AJOL)

    PRECIOUS

    2009-12-15

    Dec 15, 2009 ... the metal ions tested. Key words: Alkaline protease, casein agar, meat waste contaminated soil, Pseudomonas fluorescens. INTRODUCTION. Proteases are the most important industrial enzymes that execute a wide variety of functions and have various important biotechnological applications (Mohen et al.,.

  18. Modulation of glycine sites enhances social memory in rats using PQQ combined with d-serine.

    Science.gov (United States)

    Zhou, Xingqin; Liu, Dong; Zhang, Rongjun; Peng, Ying; Qin, Xiaofeng; Mao, Shishi

    2016-07-15

    The aim of study was to investigate the effects of pyrroloquinoline quinone (PQQ) combined with d-serine on the modulation of glycine sites in the brain of rats using social recognition test. Rats were divided into seven groups (n=10) and given repeated intraperitoneal (ip) injections of saline, MK-801 (0.5mg/kg), clozapine (1mg/kg), haloperidol (0.1mg/kg), d-serine (0.8g/kg), PQQ (2.0μg/kg), or d-serine (0.4g/kg) combined with PQQ (1.0μg/kg) for seven days. A social recognition test, including assessment of time-dependent memory impairment, was performed. A non-competitive NMDA receptor antagonist, MK-801, significantly impaired social memory, and this impairment was significantly repaired with an atypical antipsychotic (clozapine) but not with a typical antipsychotic (haloperidol). Likewise, d-serine combined with PQQ significantly improved MK-801-disrupted cognition in naïve rats, whereas haloperidol was ineffective. The present results show that the co-agonist NMDA receptor treated with PQQ and d-serine enhances social memory and may be an effective approach for treating the cognitive dysfunction observed in schizophrenic patients. PQQ stimulates glycine modulatory sites by which it may antagonize indirectly by removing glycine from the synaptic cleft or by binding the unsaturated site with d-serine in the brain, providing the insights into future research of central nervous system and drug discovery. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Hepatitis B and Hepatitis C Virus Replication Upregulates Serine Protease Inhibitor Kazal, Resulting in Cellular Resistance to Serine Protease-Dependent Apoptosis▿ †

    OpenAIRE

    Lamontagne, Jason; Pinkerton, Mark; Block, Timothy M.; Lu, Xuanyong

    2009-01-01

    Hepatitis B and C viruses (HBV and HCV, respectively) are different and distinct viruses, but there are striking similarities in their disease potential. Infection by either virus can cause chronic hepatitis, liver cirrhosis, and ultimately, liver cancer, despite the fact that no pathogenetic mechanisms are known which are shared by the two viruses. Our recent studies have suggested that replication of either of these viruses upregulates a cellular protein called serine protease inhibitor Kaz...

  20. Characterisation of an extracellular serine protease gene (nasp gene) from Dermatophilus congolensis.

    Science.gov (United States)

    Garcia-Sanchez, Alfredo; Cerrato, Rosario; Larrasa, Jose; Ambrose, Nicholas C; Parra, Alberto; Alonso, Juan M; Hermoso-de-Mendoza, Miguel; Rey, Joaquin M; Mine, Madisa O; Carnegie, Patrick R; Ellis, Trevor M; Masters, Anne M; Pemberton, Alan D; Hermoso-de-Mendoza, Javier

    2004-02-09

    A partial amino acid sequence of a serine protease from Dermatophilus congolensis allowed the design of oligonucleotide primers that were complemented with additional ones from previously published partial sequences of the gene encoding the enzyme. The polymerase chain reaction (PCR), using combinations of specific and degenerate oligonucleotide primers, allowed the amplification of a 1738-bp internal fragment of the gene, which was finally characterised by inverse PCR as the first full-length sequenced serine protease gene (nasp) from Dermatophilus congolensis. The deduced amino acid sequence of this enzyme, probably involved in the pathogenesis of dermatophilosis, links it to the subtilisin family of proteases.

  1. Serine Protease Zymography: Low-Cost, Rapid, and Highly Sensitive RAMA Casein Zymography.

    Science.gov (United States)

    Yasumitsu, Hidetaro

    2017-01-01

    To detect serine protease activity by zymography, casein and CBB stain have been used as a substrate and a detection procedure, respectively. Casein zymography has been using substrate concentration at 1 mg/mL and employing conventional CBB stain. Although ordinary casein zymography provides reproducible results, it has several disadvantages including time-consuming and relative low sensitivity. Improved casein zymography, RAMA casein zymography, is rapid and highly sensitive. RAMA casein zymography completes the detection process within 1 h after incubation and increases the sensitivity at least by tenfold. In addition to serine protease, the method also detects metalloprotease 7 (MMP7, Matrilysin) with high sensitivity.

  2. Computer simulation studies of ternary uranate phases with alkali and alkaline-earth metals: Pt. 1

    International Nuclear Information System (INIS)

    Ball, R.G.J.

    1992-01-01

    Solid-state computer simulation techniques have been used to study the alkali and alkaline-earth metal MUO 3 uranate phases. These compounds display an interesting gradation in their structures which, it is shown, is accompanied by a variation in their intrinsic defect chemistry. For example, in the alkali-metal series, LiUO 3 adopts the lithium niobate structure and lithium Frenkel disorder dominates whereas KUO 3 and RbUO 3 adopt regular perovskite structures with Schottky defects being dominant. For the alkaline-earth metal compounds, both the calculations and experiment show that only SrUO 3 and BaUO 3 are stable with respect to the binary oxides. Both of these phases adopt the GdFeO 3 distorted perovskite structure and both have anti-site defects as the dominant intrinsic disorder. The tendency for anti-site disorder is also seen in the oxidation behaviour of these compounds. The calculations suggest that the oxidation will occur through the formation of a secondary UO 2 fluorite phase by the movement of alkaline-earth ions onto uranium sites, leaving behind M vacancies. The calculated energies for such oxidation processes are particularly favourable. The solution of alkaline-earth oxide, M 11 O, in M 11 UO 3 is shown to occur via a mechanism in which the M 11 ions substitute onto both the M 11 and U sublattices. (author)

  3. Osteocalcin and bone-specific alkaline phosphatase in Sickle cell ...

    African Journals Online (AJOL)

    specific alkaline phosphatase (b-AP) total protein levels were evaluated as indicators of bone turnover in twenty patients with sickle cell haemoglobinopathies and in twenty normal healthy individuals. The serum bonespecific alkaline phosphatase ...

  4. Chabazite: stable cation-exchanger in hyper alkaline concrete pore water.

    Science.gov (United States)

    Van Tendeloo, Leen; Wangermez, Wauter; Kurttepeli, Mert; de Blochouse, Benny; Bals, Sara; Van Tendeloo, Gustaaf; Martens, Johan A; Maes, André; Kirschhock, Christine E A; Breynaert, Eric

    2015-02-17

    To avoid impact on the environment, facilities for permanent disposal of hazardous waste adopt multibarrier design schemes. As the primary barrier very often consists of cement-based materials, two distinct aspects are essential for the selection of suitable complementary barriers: (1) selective sorption of the contaminants in the repository and (2) long-term chemical stability in hyperalkaline concrete-derived media. A multidisciplinary approach combining experimental strategies from environmental chemistry and materials science is therefore essential to provide a reliable assessment of potential candidate materials. Chabazite is typically synthesized in 1 M KOH solutions but also crystallizes in simulated young cement pore water, a pH 13 aqueous solution mainly containing K(+) and Na(+) cations. Its formation and stability in this medium was evaluated as a function of temperature (60 and 85 °C) over a timeframe of more than 2 years and was also asessed from a mechanistic point of view. Chabazite demonstrates excellent cation-exchange properties in simulated young cement pore water. Comparison of its Cs(+) cation exchange properties at pH 8 and pH 13 unexpectedly demonstrated an increase of the KD with increasing pH. The combined results identify chabazite as a valid candidate for inclusion in engineered barriers for concrete-based waste disposal.

  5. Cyclic, Early Diagenetic Dolomite Formation in Alkaline Lake Van

    Science.gov (United States)

    McCormack, J.; Bontognali, T. R. R.; Immenhauser, A.; Kwiecien, O.

    2017-12-01

    Modern dolomite-forming environments are commonly constrained to evaporitic marine or marginal marine settings such as lagoons and sabkhas. Beside microbial mediation, high temperatures and Mg2+ concentrations in solution are factors considered important in aiding dolomite formation. Accordingly, previous studies associate the presence of dolomite within deep sediments of alkaline Lake Van (Turkey) with periods of enhanced evaporation, low lake levels and high Mg/Ca ratio. We systematically studied dolomite within the sedimentary record of Lake Van by means of XRD, SEM and stable isotope (δ18O and δ13C) mass spectrometry. First, we considered the origin of the dolomite; next, we focused on the wider implication of its presence. SEM imaging documents large dolomite crystals interwoven with clay minerals and individual crystals with different crystallographic orientations grown together, indicating space-limited growth within the sediment. According to recent climatic reconstructions for the same sequence (ICDP PALEOVAN project), the water depth of the coring site - today at 350 m - unlikely fell below 200 m. Consequently, dolomite formed below a thick water column at constantly low temperatures (supported by heavy δ18O signature). Within this environment, variations in Mg/Ca ratio, pH and alkalinity, which are constantly high, have no effect on the episodic nature of dolomite precipitation. These observations call for a re-evaluation of the palaeoenvironments often invoked to interpret intervals rich in dolomite within ancient sedimentary sequences (e.g., periods of enhanced aridity and evaporation). Further, and in contrast to previous interpretations, our dolomite concentration data backed up by ICDP PALEOVAN reconstructions suggest that intervals rich in dolomite coincide with periods of high lake level and increased humidity. High dolomite concentrations (20 - 85 % relative carbonate content) occur cyclically within the last glacial period and coincide with

  6. Expression and characterization of a thermostable serine protease (TfpA) from Thermomonospora fusca YX in Pichia pastoris.

    Science.gov (United States)

    Kim, Taewan; Lei, Xin Gen

    2005-08-01

    A serine protease produced by Thermomonospora fusca YX (TfpA) is heat-stable (up to 85 degrees C) and has a broad pH activity range and strong resistance to detergents. The objective of this study was to determine if the methylotropic yeast Pichia pastoris could express TfpA extracellularly. A 1.0-kb DNA fragment (tfpA) encoding the pro-peptide and mature protein of TfpA was cloned into expression vectors pPICZalphaA (inducible) and pGAPZalphaA (constitutive) and introduced into P. pastoris by electroporation. Expression of r-TfpA was greater in the inducible system than in the constitutive one, producing 135 U ml(-1) medium supernatant 6 days after methanol induction. The r-TfpA was not glycosylated (21.7 kDa), and had pH and temperature optima of 8.5 and 80 degrees C, respectively, using azocasein as a substrate. In conclusion, P. pastoris can be used as a host to produce extracellular r-TfpA, and expression efficiency may be improved by optimizing fermentation conditions and modifying factors related to protein expression and stability.

  7. Calcium stable isotope geochemistry

    Energy Technology Data Exchange (ETDEWEB)

    Gausonne, Nikolaus [Muenster Univ. (Germany). Inst. fuer Mineralogie; Schmitt, Anne-Desiree [Strasbourg Univ. (France). LHyGeS/EOST; Heuser, Alexander [Bonn Univ. (Germany). Steinmann-Inst. fuer Geologie, Mineralogie und Palaeontologie; Wombacher, Frank [Koeln Univ. (Germany). Inst. fuer Geologie und Mineralogie; Dietzel, Martin [Technische Univ. Graz (Austria). Inst. fuer Angewandte Geowissenschaften; Tipper, Edward [Cambridge Univ. (United Kingdom). Dept. of Earth Sciences; Schiller, Martin [Copenhagen Univ. (Denmark). Natural History Museum of Denmark

    2016-08-01

    This book provides an overview of the fundamentals and reference values for Ca stable isotope research, as well as current analytical methodologies including detailed instructions for sample preparation and isotope analysis. As such, it introduces readers to the different fields of application, including low-temperature mineral precipitation and biomineralisation, Earth surface processes and global cycling, high-temperature processes and cosmochemistry, and lastly human studies and biomedical applications. The current state of the art in these major areas is discussed, and open questions and possible future directions are identified. In terms of its depth and coverage, the current work extends and complements the previous reviews of Ca stable isotope geochemistry, addressing the needs of graduate students and advanced researchers who want to familiarize themselves with Ca stable isotope research.

  8. High-pressure neutron diffraction study of L-serine-I and L-serine-II, and the structure of L-serine-III at 8.1 GPa.

    Science.gov (United States)

    Moggach, Stephen A; Marshall, William G; Parsons, Simon

    2006-10-01

    The hydrostatic compression of L-serine-d(7) has been studied to 8.1 GPa by neutron powder diffraction. Over the course of this pressure range the compound undergoes two phase transitions, the first between 4.6 and 5.2 GPa, yielding L-serine-II, and the second between 7.3 and 8.1 GPa, yielding L-serine-III. All three polymorphs are orthorhombic, P2(1)2(1)2(1), and feature chains of serine molecules connected via head-to-tail ND...O hydrogen bonds formed between ammonium and carboxylate groups. The chains are linked into a ribbon by a second set of ND...O hydrogen bonds. The hydroxyl moieties are distributed along the outer edges of the ribbon and in phase I they connect the ribbons into a layer by chains of OD...OD hydrogen bonds. The layers are connected together by a third set of ND...O hydrogen bonds, forming R;3_4(14) rings with substantial voids at their centres. In the transition from phase I to II these voids begin to close up, but at the cost of breaking the OD...OD chains. The OD...OD hydrogen bonds are replaced by shorter OD...O hydrogen bonds to carboxylate groups. At 7.3 GPa the O...O distance in the OD...O hydrogen bonds measures only 2.516 (17) A, which is short, and we propose that the phase transition to phase III that occurs between 7.3 and 8.1 GPa relieves the strain that has built up in this region of the structure. The hydroxyl D atom now bifurcates between the OD...O contact that had been present in phase II and a new OD...O contact formed to a carboxylate in another layer. Hirshfeld surface fingerprint plots show that D...D interactions become more numerous, while hydrogen bonds actually begin to lengthen in the transition from phase II to III.

  9. Tryptophanase-Catalyzed L-Tryptophan Synthesis from D-Serine in the Presence of Diammonium Hydrogen Phosphate

    Directory of Open Access Journals (Sweden)

    Fujii Noriko

    2009-06-01

    Full Text Available Tryptophanase, an enzyme with extreme absolute stereospecificity for optically active stereoisomers, catalyzes the synthesis of L-tryptophan from L-serine and indole through a β-substitution mechanism of the ping-pong type, and has no activity on D-serine. We previously reported that tryptophanase changed its stereospecificity to degrade D-tryptophan in highly concentrated diammonium hydrogen phosphate, (NH42HPO4 solution. The present study provided the same stereospecific change seen in the D-tryptophan degradation reaction also occurs in tryptophan synthesis from D-serine. Tryptophanase became active to D-serine to synthesize L-tryptophan in the presence of diammonium hydrogen phosphate. This reaction has never been reported before. D-serine seems to undergo β-replacement via an enzyme-bonded α-aminoacylate intermediate to yield L-tryptophan.

  10. Engineering of the Lactococcus lactis serine proteinase by construction of hybrid enzymes

    NARCIS (Netherlands)

    Boerrigter, Ingrid J.; Buist, Girbe; Haandrikman, Alfred J.; Nijhuis, Monique; Reuver, Marjon B. de; Siezen, Roland J.; Venema, Gerhardus; Vos, Willem M. de; Kok, Jan

    Plasmids containing wild-type and hybrid proteinase genes were constructed from DNA fragments of the prtP genes of Lactococcus lactis strains Wg2 and SK11. These plasmids were introduced into the plasmid-free strain L. lactis MG1363. The serine proteinases produced by these L. lactis strains were

  11. Generation of serine/threonine check points in HN(C)N spectra

    Indian Academy of Sciences (India)

    Administrator

    ing to generate alanine. 6 and serine/threonine specific peak patterns. 7 have enhanced the speed of assign- ment quite substantially. These developments involved a simple modification to the pulse sequence. Continuing such efforts for rapid resonance as- signments, we have implemented here the tuning ideas.

  12. Identification and purification of O-acetyl-L-serine sulphhydrylase in Penicillium chrysogenum

    DEFF Research Database (Denmark)

    østergaard, Simon; Theilgaard, Hanne Birgitte; Nielsen, Jens Bredal

    1998-01-01

    We have demonstrated that Penicillium chrysogenum possesses the L-cysteine biosynthetic enzyme O-acetyI-L-serine sulphhydrylase (EC 4.2.99.8) of the direct sulphhydrylation pathway. The finding of this enzyme, and thus the presence of the direct sulphhydrylation pathway in P. chrysogenum, creates...

  13. Sol-gel immobilization of serine proteases for application in organic solvents

    NARCIS (Netherlands)

    van Unen, D.J.; Engbersen, Johannes F.J.; Reinhoudt, David

    2001-01-01

    The serine proteases α-chymotrypsin, trypsin, and subtilisin Carlsberg were immobilized in a sol-gel matrix and the effects on the enzyme activity in organic media are evaluated. The percentage of immobilized enzyme is 90% in the case of α-chymotrypsin and the resulting specific enzyme activity in

  14. Mannan-binding lectin and MBL-associated serine protease-2

    DEFF Research Database (Denmark)

    Jorgensen, J.; Ytting, H.; Steffensen, R.M.

    2008-01-01

    be used for detection, evaluation of prognosis, therapy selection and monitoring. The serum proteins of the innate immune system mannan-binding lectin (MBL) and MBL-associated serine protease-2 (MASP-2) are novel biomarkers under validation in CRC. Low preoperative MBL levels are predictive of pneumonia...

  15. Modulation of Escherichia coli serine acetyltransferase catalytic activity in the cysteine synthase complex

    Czech Academy of Sciences Publication Activity Database

    Benoni, Roberto; De Bei, O.; Paredi, G.; Hayes, C. S.; Franko, N.; Mozzarelli, A.; Bettati, S.; Campanini, B.

    2017-01-01

    Roč. 591, č. 9 (2017), s. 1212-1224 ISSN 0014-5793 Institutional support: RVO:61388963 Keywords : cysteine synthase * protein-protein interaction * serine acetyltransferase Subject RIV: CE - Biochemistry OBOR OECD: Biochemistry and molecular biology Impact factor: 3.623, year: 2016

  16. Distinct kinetics of serine and threonine dephosphorylation are essential for mitosis

    DEFF Research Database (Denmark)

    Hein, Jamin B; Hertz, Emil P T; Garvanska, Dimitriya H

    2017-01-01

    Protein phosphatase 2A (PP2A) in complex with B55 regulatory subunits reverses cyclin-dependent kinase 1 (Cdk1) phosphorylations at mitotic exit. Interestingly, threonine and serine residues phosphorylated by Cdk1 display distinct phosphorylation dynamics, but the biological significance remains ...

  17. A novel non-canonical binding mode for serine proteases on plant Kunitz inhibitors

    Czech Academy of Sciences Publication Activity Database

    Srp, Jaroslav; Pachl, Petr; Mishra, Manasi; Horn, Martin; Mareš, Michael

    2017-01-01

    Roč. 284, Suppl 1 (2017), s. 299 ISSN 1742-464X. [FEBS Congress /42./ From Molecules to Cells and Back. 10.09.2017-14.09.2017, Jerusalem] Institutional support: RVO:61388963 Keywords : Kunitz inhibitors * serine proteases Subject RIV: CE - Biochemistry

  18. Membrane-anchored Serine Protease Matriptase Is a Trigger of Pulmonary Fibrogenesis

    NARCIS (Netherlands)

    Bardou, Olivier; Menou, Awen; François, Charlène; Duitman, Jan Willem; von der Thüsen, Jan H.; Borie, Raphaël; Sales, Katiuchia Uzzun; Mutze, Kathrin; Castier, Yves; Sage, Edouard; Liu, Ligong; Bugge, Thomas H.; Fairlie, David P.; Königshoff, Mélanie; Crestani, Bruno; Borensztajn, Keren S.

    2016-01-01

    Idiopathic pulmonary fibrosis (IPF) is a devastating disease that remains refractory to current therapies. To characterize the expression and activity of the membrane-anchored serine protease matriptase in IPF in humans and unravel its potential role in human and experimental pulmonary fibrogenesis.

  19. Membrane-anchored serine protease matriptase is a trigger of pulmonary fibrogenesis

    NARCIS (Netherlands)

    Bardou, O. (Olivier); Menou, A. (Awen); François, C. (Charlène); J.W. Duitman (Jan Willem); J. von der Thusen (Jan); Borie, R. (Raphaël); Sales, K.U. (Katiuchia Uzzun); Mutze, K. (Kathrin); Y. Castier (Yves); Sage, E. (Edouard); Liu, L. (Ligong); Bugge, T.H. (Thomas H.); Fairlie, D.P. (David P.); Königshoff, M. (Mélanie); B. Crestani (Bruno); K. Borensztajn (Keren)

    2016-01-01

    textabstractRationale: Idiopathic pulmonary fibrosis (IPF) is a devastating disease that remains refractory to current therapies. Objectives: To characterize the expression and activity of the membrane-anchored serine protease matriptase in IPF in humans and unravel its potential role in human and

  20. CSF d-serine concentrations are similar in Alzheimer's disease, other dementias, and elderly controls

    NARCIS (Netherlands)

    Biemans, E.A.L.M.; Verhoeven-Duif, N.M.; Gerrits, J.; Claassen, J.A.H.R.; Kuiperij, H.B.; Verbeek, M.M.

    2016-01-01

    Cerebrospinal fluid (CSF) levels of d-serine were recently reported as a potential new biomarker for Alzheimer's disease (AD), showing a perfect distinction between AD patients and healthy controls. In this study, we aimed to confirm these results and extend these previous findings to dementia with

  1. CSF d-serine concentrations are similar in Alzheimer's disease, other dementias, and elderly controls

    NARCIS (Netherlands)

    Biemans, Elisanne A L M; Verhoeven-Duif, Nanda M|info:eu-repo/dai/nl/310926556; Gerrits, Johan; Claassen, Jurgen A H R; Kuiperij, H Bea; Verbeek, Marcel M

    Cerebrospinal fluid (CSF) levels of d-serine were recently reported as a potential new biomarker for Alzheimer's disease (AD), showing a perfect distinction between AD patients and healthy controls. In this study, we aimed to confirm these results and extend these previous findings to dementia with

  2. Kazal-type serine proteinase inhibitors in the midgut of Phlebotomus papatasi

    Directory of Open Access Journals (Sweden)

    Leah Theresa Sigle

    2013-09-01

    Full Text Available Sandflies (Diptera: Psychodidae are important disease vectors of parasites of the genus Leishmania, as well as bacteria and viruses. Following studies of the midgut transcriptome of Phlebotomus papatasi, the principal vector of Leishmania major, two non-classical Kazal-type serine proteinase inhibitors were identified (PpKzl1 and PpKzl2. Analyses of expression profiles indicated that PpKzl1 and PpKzl2 transcripts are both regulated by blood-feeding in the midgut of P. papatasi and are also expressed in males, larva and pupa. We expressed a recombinant PpKzl2 in a mammalian expression system (CHO-S free style cells that was applied to in vitro studies to assess serine proteinase inhibition. Recombinant PpKzl2 inhibited α-chymotrypsin to 9.4% residual activity and also inhibited α-thrombin and trypsin to 33.5% and 63.9% residual activity, suggesting that native PpKzl2 is an active serine proteinase inhibitor and likely involved in regulating digestive enzymes in the midgut. Early stages of Leishmania are susceptible to killing by digestive proteinases in the sandfly midgut. Thus, characterising serine proteinase inhibitors may provide new targets and strategies to prevent transmission of Leishmania.

  3. Combined strategies for improving production of a thermo-alkali stable laccase in Pichia pastoris

    Directory of Open Access Journals (Sweden)

    Jiayi Wang

    2017-07-01

    Conclusions: The productivity of the thermo-alkali stable laccase from B. licheniformis expressed in P. pastoris was significantly improved through the combination of site-directed mutagenesis and optimization of the cultivation process. The mutant enzyme retains good stability under high temperature and alkaline conditions, and is a good candidate for industrial application in dye decolorization.

  4. Photolysis of alkaline-earth nitrates

    Science.gov (United States)

    Kriger, L. D.; Miklin, M. B.; Dyagileva, E. P.; Anan'ev, V. A.

    2013-02-01

    Peroxynitrite and nitrite ions are the diamagnetic products of photolysis (with light at a wavelength of 253.7 nm) of alkaline-earth nitrates; the paramagnetic products and hydrogen peroxide were not found. The structural water in alkaline-earth nitrate crystals did not affect the qualitative composition of the photodecomposition products. The quantum yield of nitrite ions was 0.0012, 0.0038, 0.0078, and 0.0091 quanta-1 and that of peroxynitrite ions was 0.0070, 0.0107, 0.0286, and 0.0407 quanta-1 for Sr(NO3)2, Ba(NO3)2, Ca(NO3)2 · 4H2O, and Mg(NO3)2 · 6H2O, respectively.

  5. Hydrolysis of alkaline pretreated banana peel

    Science.gov (United States)

    Fatmawati, A.; Gunawan, K. Y.; Hadiwijaya, F. A.

    2017-11-01

    Banana peel is one of food wastes that are rich in carbohydrate. This shows its potential as fermentation substrate including bio-ethanol. This paper presented banana peel alkaline pretreatment and enzymatic hydrolysis. The pretreatment was intended to prepare banana peel in order to increase hydrolysis performance. The alkaline pretreatment used 10, 20, and 30% w/v NaOH solution and was done at 60, 70 and 80°C for 1 hour. The hydrolysis reaction was conducted using two commercial cellulose enzymes. The reaction time was varied for 3, 5, and 7 days. The best condition for pretreatment process was one conducted using 30% NaOH solution and at 80°C. This condition resulted in cellulose content of 90.27% and acid insoluble lignin content of 2.88%. Seven-day hydrolysis time had exhibited the highest reducing sugar concentration, which was7.2869 g/L.

  6. Stability and activity profile of alkaline protease produced from bacillus subtilis

    International Nuclear Information System (INIS)

    Anjum, S.; Mukhtar, H.; Nawaz, A.; Haq, I.U.

    2015-01-01

    The present study gives an insight into the effect of different activators and inhibitors on the activity and stability of alkaline proteases produced by Bacillus subtilis IH-72. The alkaline protease was strongly activated both by bivalent and monovalent cations such as Mg/sup 2+/, Mn/sup 2+/, Na/sup +/ and K/sup +/. The enzyme activity was considerably enhanced in the presence of fructose, galactose, glucose and mannitol. The enzyme was stabilized up to 10 days by immobilization on activated charcoal and was efficiently stabilized up to 2 months by lyophilization. The enzyme remained stable up to 19 days both at 4 degree C and 30 degree C in the presence of Mn/sup 2+/. However, it exhibited significant stability up to 22 days at 4 degree C and 30 degree C in the presence of fructose, galactose and polyethylene glycol. (author)

  7. Oxidation catalysts on alkaline earth supports

    Science.gov (United States)

    Mohajeri, Nahid

    2017-03-21

    An oxidation catalyst includes a support including particles of an alkaline earth salt, and first particles including a palladium compound on the support. The oxidation catalyst can also include precious metal group (PMG) metal particles in addition to the first particles intermixed together on the support. A gas permeable polymer that provides a continuous phase can completely encapsulate the particles and the support. The oxidation catalyst may be used as a gas sensor, where the first particles are chemochromic particles.

  8. Purification and characterisation of alkaline phosphotase enzyme ...

    African Journals Online (AJOL)

    L'enzyme phosphatase alkaline était purifié de la bactérie Escherichia coli C90 cultivé dans un médium pauvre en phosphate comme phase stationnaire utilisant une colonne d'échange d'ion enveloppée avec une cellulose DEAE comme matrice et exclusion de taille chromographique utilisant le Sepharcryl S-300HR ...

  9. The chaperone and potential mannan-binding lectin (MBL) co-receptor calreticulin interacts with MBL through the binding site for MBL-associated serine proteases

    DEFF Research Database (Denmark)

    Pagh, Rasmus; Duus, Karen; Laursen, Inga

    2008-01-01

    was immobilized on a solid surface or bound to mannan on a surface. The binding was non-covalent and biphasic with an initial salt-sensitive phase followed by a more stable salt-insensitive interaction. For plasma-derived MBL, known to be complexed with MBL-associated serine proteases (MASPs), no binding...... with calreticulin. Comparative analysis of MBL with complement component C1q, its counterpart of the classical pathway, revealed that they display similar binding characteristics for calreticulin, providing further indication that calreticulin is a common co-receptor/chaperone for both proteins. In conclusion......The chaperone calreticulin has been suggested to function as a C1q and collectin receptor. The interaction of calreticulin with mannan-binding lectin (MBL) was investigated by solid-phase binding assays. Calreticulin showed saturable and time-dependent binding to recombinant MBL, provided that MBL...

  10. The Pochonia chlamydosporia serine protease gene vcp1 is subject to regulation by carbon, nitrogen and pH: implications for nematode biocontrol.

    Directory of Open Access Journals (Sweden)

    Elaine Ward

    Full Text Available The alkaline serine protease VCP1 of the fungus Pochonia chlamydosporia belongs to a family of subtilisin-like enzymes that are involved in infection of nematode and insect hosts. It is involved early in the infection process, removing the outer proteinaceous vitelline membrane of nematode eggs. Little is known about the regulation of this gene, even though an understanding of how nutrients and other factors affect its expression is critical for ensuring its efficacy as a biocontrol agent. This paper provides new information on the regulation of vcp1 expression. Sequence analysis of the upstream regulatory region of this gene in 30 isolates revealed that it was highly conserved and contained sequence motifs characteristic of genes that are subject to carbon, nitrogen and pH-regulation. Expression studies, monitoring enzyme activity and mRNA, confirmed that these factors affect VCP1 production. As expected, glucose reduced VCP1 expression and for a few hours so did ammonium chloride. Surprisingly, however, by 24 h VCP1 levels were increased in the presence of ammonium chloride for most isolates. Ambient pH also regulated VCP1 expression, with most isolates producing more VCP1 under alkaline conditions. There were some differences in the response of one isolate with a distinctive upstream sequence including a variant regulatory-motif profile. Cryo-scanning electron microscopy studies indicated that the presence of nematode eggs stimulates VCP1 production by P. chlamydosporia, but only where the two are in close contact. Overall, the results indicate that readily-metabolisable carbon sources and unfavourable pH in the rhizosphere/egg-mass environment may compromise nematode parasitism by P. chlamydosporia. However, contrary to previous indications using other nematophagous and entomopathogenic fungi, ammonium nitrate (e.g. from fertilizers may enhance biocontrol potential in some circumstances.

  11. Evolutionary Stable Strategy

    Indian Academy of Sciences (India)

    2016-08-26

    Aug 26, 2016 ... Home; Journals; Resonance – Journal of Science Education; Volume 21; Issue 9. Evolutionary Stable Strategy: Application of Nash Equilibrium in Biology. General ... Using some examples of classical games, we show how evolutionary game theory can help understand behavioural decisions of animals.

  12. The Stable Concordance Genus

    OpenAIRE

    Kearney, M. Kate

    2013-01-01

    The concordance genus of a knot is the least genus of any knot in its concordance class. Although difficult to compute, it is a useful invariant that highlights the distinction between the three-genus and four-genus. In this paper we define and discuss the stable concordance genus of a knot, which describes the behavior of the concordance genus under connected sum.

  13. Manifolds admitting stable forms

    Czech Academy of Sciences Publication Activity Database

    Le, Hong-Van; Panák, Martin; Vanžura, Jiří

    2008-01-01

    Roč. 49, č. 1 (2008), s. 101-11 ISSN 0010-2628 R&D Projects: GA ČR(CZ) GP201/05/P088 Institutional research plan: CEZ:AV0Z10190503 Keywords : stable forms * automorphism groups Subject RIV: BA - General Mathematics

  14. Stable isotope studies

    International Nuclear Information System (INIS)

    Ishida, T.

    1992-01-01

    The research has been in four general areas: (1) correlation of isotope effects with molecular forces and molecular structures, (2) correlation of zero-point energy and its isotope effects with molecular structure and molecular forces, (3) vapor pressure isotope effects, and (4) fractionation of stable isotopes. 73 refs, 38 figs, 29 tabs

  15. Interactive Stable Ray Tracing

    DEFF Research Database (Denmark)

    Dal Corso, Alessandro; Salvi, Marco; Kolb, Craig

    2017-01-01

    Interactive ray tracing applications running on commodity hardware can suffer from objectionable temporal artifacts due to a low sample count. We introduce stable ray tracing, a technique that improves temporal stability without the over-blurring and ghosting artifacts typical of temporal post-pr...

  16. The stable subgroup graph

    Directory of Open Access Journals (Sweden)

    Behnaz Tolue

    2018-07-01

    Full Text Available In this paper we introduce stable subgroup graph associated to the group $G$. It is a graph with vertex set all subgroups of $G$ and two distinct subgroups $H_1$ and $H_2$ are adjacent if $St_{G}(H_1\\cap H_2\

  17. Degradation of polymers in an alkaline environment

    Energy Technology Data Exchange (ETDEWEB)

    Borges, P. G.; Thorpe, S. J.; Venter, R. D. [Toronto Univ., Toronto, ON (Canada)

    1999-10-01

    To introduce widespread use of hydrogen as a source of fuel, it is essential to significantly reduce the cost of electrolysers and fuel cells, preferably by substituting degradation-resistant low cost alternatives for traditional materials. An experimental apparatus for evaluating short-term degradation characteristics of polymers in 25 per cent potassium hydroxide aqueous solution at 70 and at 85 degrees C was constructed to determine changes in physical appearance, weight, volume and dimensions as a function of immersion time from 0 to 670 hours. Polymers that were part of this test included chlorinated polyvinyl chloride (CPVC), polypropylene (PP),and a polyurethane/polyester blend. Polypropylene demonstrated the greatest degradation resistance to the alkaline environment at both temperatures. CPVC discolored and the polyurethane/polyester blend deteriorated into smaller pieces when subjected to identical conditions. Resistance to degradation in an alkaline environment is a primary requirement for the selection of polymers for use as structural materials in alkaline water analyzers, which in turn is fundamental to the widespread adoption of a hydrogen economy. 6 refs., 13 figs.

  18. Alkaline Material Effects on Roots of Teeth

    Directory of Open Access Journals (Sweden)

    Sowmya Shetty

    2017-12-01

    Full Text Available The aim of this review was to identify and analyse all studies related to the effects of alkaline materials used in dentistry on roots of teeth. The first part of the review focused on mechanical property alterations of root dentine due to sodium hypochlorite (SH used as an irrigant solution based on MeSH (Medical Subject Heading terms from a previous study by Pascon et al in 2009. The second part reviewed literature on calcium hydroxide (CH, mineral trioxide aggregate (MTA and other alkaline materials used as root canal dressings or filling materials. Additional MeSH terms used included “compressive strength”, “elastic modulus” “flexural strength”, “fracture strength” and “fracture resistance”. The language filter was English. Of the initial 205 articles identified, 49 were included in this review, of which 29 were on SH, 21 on CH/MTA, and 1 relating to both. Many in vitro studies indicated a strong link between reduced mechanical properties of roots of teeth or radicular dentine treated with SH, and when sealers or root fillings with CH- or MTA-based materials were placed in contact with roots or radicular dentine. Recent literature indicates that the association between reduced mechanical properties and alkaline sealers and/or root-filling materials is not as straightforward as previously assumed, and requires further investigation using more valid experimental models.

  19. Young calcareous soil chronosequences as a model for ecological restoration on alkaline mine tailings.

    Science.gov (United States)

    Cross, Adam T; Lambers, Hans

    2017-12-31

    Tailings are artificial soil-forming substrates that have not been created by the natural processes of soil formation and weathering. The extreme pH environment and corresponding low availability of some macro- and micronutrients in alkaline tailings, coupled with hostile physical and geochemical conditions, present a challenging environment to native biota. Some significant nutritional constraints to ecosystem reconstruction on alkaline tailings include i) predominant or complete absence of combined nitrogen (N) and poor soil N retention; ii) the limited bioavailability of some micronutrients at high soil pH (e.g., Mn, Fe, Zn and Cu); and iii) potentially toxic levels of biologically available soil phosphorus (P) for P-sensitive plants. The short regulatory time frames (years) for mine closure on tailings landforms are at odds with the long time required for natural pedogenic processes to ameliorate these factors (thousands of years). However, there are similarities between the chemical composition and nutrient status of alkaline tailings and the poorly-developed, very young calcareous soils of biodiverse regions such as south-western Australia. We propose that basic knowledge of chronosequences that start with calcareous soils may provide an informative model for understanding the pedogenic processes required to accelerate soil formation on tailings. Development of a functional, stable root zone is crucial to successful ecological restoration on tailings, and three major processes should be facilitated as early as possible during processing or in the early stages of restoration to accelerate soil development on alkaline tailings: i) acidification of the upper tailings profile; ii) establishment of appropriate and resilient microbial communities; and iii) the early development of appropriate pioneer vegetation. Achieving successful ecological restoration outcomes on tailings landforms is likely one of the greatest challenges faced by restoration ecologists and the

  20. Processing Methods of Alkaline Hydrolysate from Rice Husk

    Directory of Open Access Journals (Sweden)

    Olga D. Arefieva

    2017-07-01

    Full Text Available This paper devoted to finding processing methods of alkaline hydrolysate produced from rice husk pre-extraction, and discusses alkaline hydrolysate processing schemed and disengagement of some products: amorphous silica of various quality, alkaline lignin, and water and alkaline extraction polysaccharides. Silica samples were characterized: crude (air-dried, burnt (no preliminary water treatment, washed in distilled water, and washed in distilled water and burnt. Waste water parameters upon the extraction of solids from alkaline hydrolysate dropped a few dozens or thousand times depending on the applied processing method. Color decreased a few thousand times, turbidity was virtually eliminated, chemical oxygen demanded about 20–136 times; polyphenols content might decrease 50% or be virtually eliminated. The most prospective scheme obtained the two following solid products from rice husk alkaline hydrolysate: amorphous silica and alkaline extraction polysaccharide. Chemical oxygen demand of the remaining waste water decreased about 140 times compared to the silica-free solution.

  1. Alkaline and ultrasound assisted alkaline pretreatment for intensification of delignification process from sustainable raw-material.

    Science.gov (United States)

    Subhedar, Preeti B; Gogate, Parag R

    2014-01-01

    Alkaline and ultrasound-assisted alkaline pretreatment under mild operating conditions have been investigated for intensification of delignification. The effect of NaOH concentration, biomass loading, temperature, ultrasonic power and duty cycle on the delignification has been studied. Most favorable conditions for only alkaline pretreatment were alkali concentration of 1.75 N, solid loading of 0.8% (w/v), temperature of 353 K and pretreatment time of 6 h and under these conditions, 40.2% delignification was obtained. In case of ultrasound-assisted alkaline approach, most favorable conditions obtained were alkali concentration of 1N, paper loading of 0.5% (w/v), sonication power of 100 W, duty cycle of 80% and pretreatment time of 70 min and the delignification obtained in ultrasound-assisted alkaline approach under these conditions was 80%. The material samples were characterized by FTIR, SEM, XRD and TGA technique. The lignin was recovered from solution by precipitation method and was characterized by FTIR, GPC and TGA technique. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Identification of a retroelement from the resurrection plant Boea hygrometrica that confers osmotic and alkaline tolerance in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Yan Zhao

    Full Text Available Functional genomic elements, including transposable elements, small RNAs and non-coding RNAs, are involved in regulation of gene expression in response to plant stress. To identify genomic elements that regulate dehydration and alkaline tolerance in Boea hygrometrica, a resurrection plant that inhabits drought and alkaline Karst areas, a genomic DNA library from B. hygrometrica was constructed and subsequently transformed into Arabidopsis using binary bacterial artificial chromosome (BIBAC vectors. Transgenic lines were screened under osmotic and alkaline conditions, leading to the identification of Clone L1-4 that conferred osmotic and alkaline tolerance. Sequence analyses revealed that L1-4 contained a 49-kb retroelement fragment from B. hygrometrica, of which only a truncated sequence was present in L1-4 transgenic Arabidopsis plants. Additional subcloning revealed that activity resided in a 2-kb sequence, designated Osmotic and Alkaline Resistance 1 (OAR1. In addition, transgenic Arabidopsis lines carrying an OAR1-homologue also showed similar stress tolerance phenotypes. Physiological and molecular analyses demonstrated that OAR1-transgenic plants exhibited improved photochemical efficiency and membrane integrity and biomarker gene expression under both osmotic and alkaline stresses. Short transcripts that originated from OAR1 were increased under stress conditions in both B. hygrometrica and Arabidopsis carrying OAR1. The relative copy number of OAR1 was stable in transgenic Arabidopsis under stress but increased in B. hygrometrica. Taken together, our results indicated a potential role of OAR1 element in plant tolerance to osmotic and alkaline stresses, and verified the feasibility of the BIBAC transformation technique to identify functional genomic elements from physiological model species.

  3. Identification, recombinant production and partial biochemical characterization of an extracellular cold-active serine-metalloprotease from an Antarctic Pseudomonas isolate

    Directory of Open Access Journals (Sweden)

    Natalia Fullana

    2017-08-01

    Full Text Available Cold-adapted enzymes are generally derived from psychrophilic microorganisms and have features that make them very attractive for industrial and biotechnological purposes. In this work, we identified a 50 kDa extracellular protease (MP10 from the Antarctic isolate Pseudomonas sp. AU10. The enzyme was produced by recombinant DNA technology, purified using immobilized metal affinity chromatography and partially characterized. MP10 is an alkaline thermosensitive serine-metallo protease with optimal activity at pH 8.0 and 40 ℃, in the presence of 1.5 mM Ca2+. MP10 showed 100% residual activity and stability (up to 60 min when incubated with 7% of non-ionic surfactants (Triton X-100, Tween-80 and Tween-20 and 1.5% of the oxidizing agent hydrogen peroxide. The 3D MP10 structure was predicted and compared with the crystal structure of mesophilic homologous protease produced by Pseudomonas aeruginosa PA01 (reference strain and other proteases, showing similarity in surface area and volume of proteins, but a significantly higher surface pocket area and volume of MP10. The observed differences presumably may explain the enhanced activity of MP10 for substrate binding at low temperatures. These results give insight to the potential use of MP10 in developing new biotechnologically processes active at low to moderate temperatures, probably with focus in the detergent industry.

  4. Heparin and alkalinized lidocaine versus alkalinized lidocaine for treatment of interstitial cystitis symptoms.

    Science.gov (United States)

    Parsons, C Lowell; Koziol, James A; Proctor, Jeffrey G; Zupkas, Paul; Argade, Sulabha

    2015-04-01

    Interstitial cystitis (IC), sometimes referred to as IC/bladder pain syndrome, is a substantial health care problem. Once considered a rare, orphan disease, it is now believed to be relatively common. This pilot study was undertaken to determine if the combination of heparin and alkalinized lidocaine (heparin-lidocaine) was more efficacious than alkalinized lidocaine at relieving pain and urgency symptoms associated with IC and also capable of yielding higher lidocaine absorption. A single blind study was conducted on 14 IC patients with a heparin-lidocaine combination versus alkalinized lidocaine instilled intravesically. In a separate study serum lidocaine levels for heparin-alkalinized lidocaine combination versus USP lidocaine only were determined by high performance liquid chromatography. Alkalinized lidocaine and heparin have been reported to provide relief from pain and urgency symptoms associated with IC. The heparin-lidocaine combination significantly reduced the % of bladder pain (38% versus 13%, p = 0.029) and urgency (42% versus 8% p = 0.003) compared to lidocaine. In addition the GAR was significantly better for the heparin-lidocaine combination at both 1 hr % improved (77% versus 50%, p = 0.04) and 24 hrs (57% versus 23%, p = 0.002) after study drug treatment. Serum lidocaine levels for the heparin-lidocaine combination were significantly higher compared to USP lidocaine (unalkalinized). The mean +/- SEM was 0.45 +/- 0.09 µg/mL and 0.20 +/- 0.05 µg/mL, respectively (p = 0.019). In this pilot study the heparin-lidocaine combination results in significantly better relief of IC symptoms compared to alkalinized lidocaine and the combination yields higher lidocaine absorption than USP lidocaine.

  5. Stable isotope analysis

    International Nuclear Information System (INIS)

    Tibari, Elghali; Taous, Fouad; Marah, Hamid

    2014-01-01

    This report presents results related to stable isotopes analysis carried out at the CNESTEN DASTE in Rabat (Morocco), on behalf of Senegal. These analyzes cover 127 samples. These results demonstrate that Oxygen-18 and Deuterium in water analysis were performed by infrared Laser spectroscopy using a LGR / DLT-100 with Autosampler. Also, the results are expressed in δ values (‰) relative to V-SMOW to ± 0.3 ‰ for oxygen-18 and ± 1 ‰ for deuterium.

  6. Inhibition of homocysteine-induced endoplasmic reticulum stress and endothelial cell damage by l-serine and glycine.

    Science.gov (United States)

    Sim, Woo-Cheol; Han, Inhoi; Lee, Wonseok; Choi, You-Jin; Lee, Kang-Yo; Kim, Dong Gwang; Jung, Seung-Hwan; Oh, Seon-Hee; Lee, Byung-Hoon

    2016-08-01

    Hyperhomocysteinemia is an independent risk factor for several cardiovascular diseases. The use of vitamins to modulate homocysteine metabolism substantially lowers the risk by reducing plasma homocysteine levels. In this study, we evaluated the effects of l-serine and related amino acids on homocysteine-induced endoplasmic reticulum (ER) stress and endothelial cell damage using EA.hy926 human endothelial cells. Homocysteine treatment decreased cell viability and increased apoptosis, which were reversed by cotreatment with l-serine. l-Serine inhibited homocysteine-induced ER stress as verified by decreased glucose-regulated protein 78kDa (GRP78) and C/EBP homologous protein (CHOP) expression as well as X-box binding protein 1 (xbp1) mRNA splicing. The effects of l-serine on homocysteine-induced ER stress are not attributed to intracellular homocysteine metabolism, but instead to decreased homocysteine uptake. Glycine exerted effects on homocysteine-induced ER stress, apoptosis, and cell viability that were comparable to those of l-serine. Although glycine did not affect homocysteine uptake or export, coincubation of homocysteine with glycine for 24h reduced the intracellular concentration of homocysteine. Taken together, l-serine and glycine cause homocysteine-induced endothelial cell damage by reducing the level of intracellular homocysteine. l-Serine acts by competitively inhibiting homocysteine uptake in the cells. However, the mechanism(s) by which glycine lowers homocysteine levels are unclear. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Forensic Stable Isotope Biogeochemistry

    Science.gov (United States)

    Cerling, Thure E.; Barnette, Janet E.; Bowen, Gabriel J.; Chesson, Lesley A.; Ehleringer, James R.; Remien, Christopher H.; Shea, Patrick; Tipple, Brett J.; West, Jason B.

    2016-06-01

    Stable isotopes are being used for forensic science studies, with applications to both natural and manufactured products. In this review we discuss how scientific evidence can be used in the legal context and where the scientific progress of hypothesis revisions can be in tension with the legal expectations of widely used methods for measurements. Although this review is written in the context of US law, many of the considerations of scientific reproducibility and acceptance of relevant scientific data span other legal systems that might apply different legal principles and therefore reach different conclusions. Stable isotopes are used in legal situations for comparing samples for authenticity or evidentiary considerations, in understanding trade patterns of illegal materials, and in understanding the origins of unknown decedents. Isotope evidence is particularly useful when considered in the broad framework of physiochemical processes and in recognizing regional to global patterns found in many materials, including foods and food products, drugs, and humans. Stable isotopes considered in the larger spatial context add an important dimension to forensic science.

  8. Temperature Dependence of Mineral Solubility in Water. Part 2. Alkaline and Alkaline Earth Bromides

    Science.gov (United States)

    Krumgalz, B. S.

    2018-03-01

    Databases of alkaline and alkaline earth bromide solubilities in water at various temperatures were created using experimental data from publications over about the last two centuries. Statistical critical evaluation of the created databases was produced since there were enough independent data sources to justify such evaluation. The reliable experimental data were adequately described by polynomial expressions over various temperature ranges. Using the Pitzer approach for ionic activity and osmotic coefficients, the thermodynamic solubility products for the discussed bromide minerals have been calculated at various temperature intervals and also represented by polynomial expressions.

  9. Optimization and physicochemical properties of nutritional protein isolate from pork liver with ultrasound-assisted alkaline extraction.

    Science.gov (United States)

    Zou, Ye; Bian, Huan; Li, Pengpeng; Sun, Zhilan; Sun, Chong; Zhang, Muhan; Geng, Zhiming; Xu, Weimin; Wang, Daoying

    2018-02-01

    The aim of this study was to investigate the optimal conditions of ultrasound-assisted alkaline extraction (UAAE) on pork liver protein isolate (UPLPI) and its physico-chemical properties. Response surface methodology was used to determine the optimal conditions for UAAE, which were at ultrasonic power 265 W, ultrasonic time 42 min, NaOH concentration 0.80%, temperature 50°C, and solvent/raw material ratio 70. The extraction yield and efficiency of UPLPI were significantly improved over the conventional alkaline extraction (PLPI). The results of amino acid composition showed that UAAE could increase serine (36.5 g/kg), arginine (38.1 g/kg), alanine (37.5 g/kg), proline (48.7 g/kg), phenylalanine (55.6 g/kg) and lysine (47.2 g/kg) elution amount. The changes in fourier transform infrared spectra indicated unfolding and destruction of the protein structure in UPLPI. The differential scanning calorimetry analysis presented UPLPI with a slightly lower onset and peak denaturation temperature over PLPI. Surface hydrophobicity increased and the microstructures presented larger and more pores of UPLPI, therefore, it had better in vitro digestibility than PLPI. Therefore, UPLPI might have a potential application prospect in the food field due to its changes on molecular structure as well as on the microstructure of protein by UAAE. © 2017 Japanese Society of Animal Science.

  10. Net alkalinity and net acidity 2: Practical considerations

    Science.gov (United States)

    Kirby, C.S.; Cravotta, C.A.

    2005-01-01

    The pH, alkalinity, and acidity of mine drainage and associated waters can be misinterpreted because of the chemical instability of samples and possible misunderstandings of standard analytical method results. Synthetic and field samples of mine drainage having various initial pH values and concentrations of dissolved metals and alkalinity were titrated by several methods, and the results were compared to alkalinity and acidity calculated based on dissolved solutes. The pH, alkalinity, and acidity were compared between fresh, unoxidized and aged, oxidized samples. Data for Pennsylvania coal mine drainage indicates that the pH of fresh samples was predominantly acidic (pH 2.5-4) or near neutral (pH 6-7); ??? 25% of the samples had pH values between 5 and 6. Following oxidation, no samples had pH values between 5 and 6. The Standard Method Alkalinity titration is constrained to yield values >0. Most calculated and measured alkalinities for samples with positive alkalinities were in close agreement. However, for low-pH samples, the calculated alkalinity can be negative due to negative contributions by dissolved metals that may oxidize and hydrolyze. The Standard Method hot peroxide treatment titration for acidity determination (Hot Acidity) accurately indicates the potential for pH to decrease to acidic values after complete degassing of CO2 and oxidation of Fe and Mn, and it indicates either the excess alkalinity or that required for neutralization of the sample. The Hot Acidity directly measures net acidity (= -net alkalinity). Samples that had near-neutral pH after oxidation had negative Hot Acidity; samples that had pH mine drainage treatment can lead to systems with insufficient Alkalinity to neutralize metal and H+ acidity and is not recommended. The use of net alkalinity = -Hot Acidity titration is recommended for the planning of mine drainage treatment. The use of net alkalinity = (Alkalinitymeasured - Aciditycalculated) is recommended with some cautions

  11. Enzymes for the laundry industries: tapping the vast metagenomic pool of alkaline proteases

    Science.gov (United States)

    Niehaus, F.; Gabor, E.; Wieland, S.; Siegert, P.; Maurer, K. H.; Eck, J.

    2011-01-01

    Summary In the wide field of laundry and cleaning applications, there is an unbroken need for novel detergent proteases excelling in high stability and activity and a suitable substrate range. We demonstrated the large amount of highly diverse subtilase sequences present in metagenomic DNA by recovering 57 non‐redundant subtilase sequence tags with degenerate primers. Furthermore, an activity‐ as well as a sequence homology‐based screening of metagenomic DNA libraries was carried out, using alkaline soil and habitat enrichments as a source of DNA. In this way, 18 diverse full‐length protease genes were recovered, sharing only 37–85% of their amino acid residues with already known protease genes. Active clones were biochemically characterized and subjected to a laundry application assay, leading to the identification of three promising detergent proteases. According to sequence similarity, two proteases (HP53 and HP70) can be classified as subtilases, while the third enzyme (HP23) belongs to chymotrypsin‐like S1 serine proteases, a class of enzymes that has not yet been described for the use in laundry and cleaning applications. PMID:21895993

  12. AQP4 plasma membrane trafficking or channel gating is not significantly modulated by phosphorylation at C-terminal serine residues

    DEFF Research Database (Denmark)

    Assentoft, Mette; Larsen, Brian R; Olesen, Emma T B

    2014-01-01

    heterologous expression in Xenopus laevis oocytes (along with serine-to-aspartate mutants of the same residues to mimic a phosphorylation). None of the mutant AQP4 constructs displayed alterations in the unit water permeability. Thus phosphorylation of six different serine residues in the COOH terminus of AQP4....... Phosphorylation of aquaporins can regulate plasma membrane localization and, possibly, the unit water permeability via gating of the AQP channel itself. In vivo phosphorylation of six serine residues in the COOH terminus of AQP4 has been detected by mass spectrometry: Ser(276), Ser(285), Ser(315), Ser(316), Ser...

  13. Retinol activates tyrosine hydroxylase acutely by increasing the phosphorylation of serine40 and then serine31 in bovine adrenal chromaffin cells.

    Science.gov (United States)

    Gelain, Daniel P; Moreira, Jose C F; Bevilaqua, Lia R M; Dickson, Phillip W; Dunkley, Peter R

    2007-12-01

    Tyrosine hydroxylase is the rate-limiting enzyme in the biosynthesis of the catecholamines. It has been reported that retinol (vitamin A) modulates tyrosine hydroxylase activity by increasing its expression through the activation of the nuclear retinoid receptors. In this study, we observed that retinol also leads to an acute activation of tyrosine hydroxylase in bovine adrenal chromaffin cells and this was shown to occur via two distinct non-genomic mechanisms. In the first mechanism, retinol induced an influx in extracellular calcium, activation of protein kinase C and serine40 phosphorylation, leading to tyrosine hydroxylase activation within 15 min. This effect then declined over time. The retinol-induced rise in intracellular calcium then led to a second slower mechanism; this involved an increase in reactive oxygen species, activation of extracellular signal-regulated kinase 1/2 and serine31 phosphorylation and the maintenance of tyrosine hydroxylase activation for up to 2 h. No effects were observed with retinoic acid. These results show that retinol activates tyrosine hydroxylase via two sequential non-genomic mechanisms, which have not previously been characterized. These mechanisms are likely to operate in vivo to facilitate the stress response, especially when vitamin supplements are taken or when retinol is used as a therapeutic agent.

  14. Effect of alkaline earth metal and magnesium cations on cadmium extraction from chloride solutions by tributyl phosphate

    International Nuclear Information System (INIS)

    Prokuev, V.A.; Belousov, E.A.

    1985-01-01

    At 298 K thermodynamic constants of cadmium (2) extraction from chloride solutions of magnesium, calcium, strontium and barium by tributyl phosphate are calculated. It is established, that logarithm of the thermodynamic extraction constant is in a linear dependence from the change in the cation hydration enthalpy in agqueous solution. It is shown, that activity coefficient of neutral complex CdVCl 2 differs from one, and it is the higher the more stable the complex is in alkaline earth metal chloride solutions

  15. Dehydrogenases, Acid and Alkaline Phosphatases, and Esterases for Chemotaxonomy of Selected Meloidogyne, Ditylenchus, Heterodera and Aphelenchus spp.

    Science.gov (United States)

    Dickson, D W; Huisingh, D; Sasser, J N

    1971-01-01

    Various taxonomically useful profiles of four dehydrogenases (lactate, malate, glucose-6-phosphate, and a-glycerophosphate) and three hydrolases (acid and alkaline phosphatase and esterase) were detected in whole nematode homogenates of Meloidogynejavanica, M. hapla, M. incognita, M. arenaria, Ditylenchus dipsaci, D. triformis, Heterodera glycines, and Aphelenchus avenae. The enzyme profiles were stable in populations cultured on several different hosts. A tentative enzymically-determined phylogeny of Meloidogyne is given.

  16. Persistently increased intestinal fraction of alkaline phosphatase

    DEFF Research Database (Denmark)

    Nathan, E; Baatrup, G; Berg, H

    1984-01-01

    Persistent elevation of the intestinal fraction of the alkaline phosphatase (API) as an isolated finding has to our knowledge not been reported previously. It was found in a boy followed during a period of 5.5 years. The only symptom was transient periodic fatigue observed at home, but not apparent...... during hospitalization. His blood type was O, RH+, Le (a-, b+) and he was a secretor of H-substance, which may be associated with rising API activity after fat-loading. In this case API was unchanged after fat-loading. Neither intestinal nor liver diseases were found, and no other cause for the elevated...

  17. Alkaline erosion of CR 39 polymer surfaces

    International Nuclear Information System (INIS)

    Faiman, Laurence

    2009-01-01

    We have investigated the mechanism of erosion of CR 39 polymer in alkaline environments. We observed the kinetics of absorption of water and methanol into both unirradiated and γ-irradiated samples. We use a capillary model to interpret our results. We etched our samples in both KOH solutions, and KOH solutions doped with methanol. Etch rate was desensitizing to γ-irradiation when KOH concentration approached saturation, but KOH solutions doped with methanol were not desensitizing, unlike with nuclear tracks. We account for this difference

  18. Alkaline carbonates in blast furnace process

    Directory of Open Access Journals (Sweden)

    P. Besta

    2014-10-01

    Full Text Available The production of iron in blast furnaces is a complex of physical, chemical and mechanical processes. The input raw materials contain not only metallic components, but also a number of negative elements. The most important negative elements include alkaline carbonates. They can significantly affect the course of the blast furnace process and thus the overall performance of the furnace. As a result of that, it is essential to accurately monitor the alkali content in the blast furnace raw materials. The article analyzes the alkali content in input and output raw materials and their impact on the blast furnace process.

  19. RES Hydrogen: efficient pressurised alkaline electrolysers

    DEFF Research Database (Denmark)

    Bowen, Jacob R.; Bentzen, Janet Jonna; Jørgensen, Peter Stanley

    The RESelyser project addresses issues associated with coupling alkaline electrolysis to renewable energy sources such as electrode stability and gas purity by implementing improved electrodes and a new separator membrane concept. The project aims to improve performance, operation pressure...... and reduce system cost. The project supports DTU Energy's activities on electrodes within the larger FCH-JU project. The overall project demonstrated: improved electrode efficiency also during cyclic operation, safe gas purity at a system pressure of 30 bar, 10 kW stack operation and estimated system costs...

  20. Net alkalinity and net acidity 2: Practical considerations

    Science.gov (United States)

    Kirby, C.S.; Cravotta, C.A.

    2005-01-01

    The pH, alkalinity, and acidity of mine drainage and associated waters can be misinterpreted because of the chemical instability of samples and possible misunderstandings of standard analytical method results. Synthetic and field samples of mine drainage having various initial pH values and concentrations of dissolved metals and alkalinity were titrated by several methods, and the results were compared to alkalinity and acidity calculated based on dissolved solutes. The pH, alkalinity, and acidity were compared between fresh, unoxidized and aged, oxidized samples. Data for Pennsylvania coal mine drainage indicates that the pH of fresh samples was predominantly acidic (pH 2.5-4) or near neutral (pH 6-7); ??? 25% of the samples had pH values between 5 and 6. Following oxidation, no samples had pH values between 5 and 6. The Standard Method Alkalinity titration is constrained to yield values >0. Most calculated and measured alkalinities for samples with positive alkalinities were in close agreement. However, for low-pH samples, the calculated alkalinity can be negative due to negative contributions by dissolved metals that may oxidize and hydrolyze. The Standard Method hot peroxide treatment titration for acidity determination (Hot Acidity) accurately indicates the potential for pH to decrease to acidic values after complete degassing of CO2 and oxidation of Fe and Mn, and it indicates either the excess alkalinity or that required for neutralization of the sample. The Hot Acidity directly measures net acidity (= -net alkalinity). Samples that had near-neutral pH after oxidation had negative Hot Acidity; samples that had pH calculated based on initial pH and dissolved concentrations of Fe, Mn, and Al minus the initial alkalinity. Acidity calculated from the pH and dissolved metals concentrations, assuming equivalents of 2 per mole of Fe and Mn and 3 per mole of Al, was equivalent to that calculated based on complete aqueous speciation of FeII/FeIII. Despite changes in

  1. Alkaline chemistry of transuranium elements and technetium and the treatment of alkaline radioactive wastes

    Energy Technology Data Exchange (ETDEWEB)

    Delegard, C.H. [Westinghouse Hanford Co., Richland, WA (United States); Peretrukhin, V.F.; Shilov, V.P.; Pikaev, A.K. [Russian Academy of Sciences (Russian Federation). Inst. of Physical Chemistry

    1995-05-01

    Goal of this survey is to generalize the known data on fundamental physical-chemical properties of TRUs and Tc, methods for their isolation, and to provide recommendations that will be useful for partitioning them from alkaline high-level wastes.

  2. Alkaline chemistry of transuranium elements and technetium and the treatment of alkaline radioactive wastes

    International Nuclear Information System (INIS)

    Delegard, C.H.; Peretrukhin, V.F.; Shilov, V.P.; Pikaev, A.K.

    1995-05-01

    Goal of this survey is to generalize the known data on fundamental physical-chemical properties of TRUs and Tc, methods for their isolation, and to provide recommendations that will be useful for partitioning them from alkaline high-level wastes

  3. Serine carboxypeptidases of Triatoma brasiliensis (Hemiptera, Reduviidae): Sequence characterization, expression pattern and activity localization.

    Science.gov (United States)

    Waniek, Peter J; Araújo, Catarina A C; Momoli, Marisa M; Azambuja, Patricia; Jansen, Ana M; Genta, Fernando A

    2014-04-01

    Using specific oligonucleotides, 5'- and 3'-RACE and sequencing, two cDNAs encoding serine carboxypeptidases (tbscp-1 and tbscp-2) from the midgut of the blood sucking heteropteran Triatoma brasiliensis were identified. Both cDNAs with an open reading frame of 1389bp, encode serine carboxypeptidase precursors of 463 amino acid residues, which possess a signal peptide cleavage site after Ala19. Analysis of tbscp-1 and tbscp-2 genomic DNA showed an absence of introns in both sequences and the presence of a further intron-free SCP encoding gene (tbscp-2b). By reverse transcription polymerase chain reaction (RT-PCR), tbscp-1 and tbscp-2 transcript abundance was found similarly in fifth instar nymphs at different days after feeding (daf), high in the posterior midgut (small intestine), lower in the anterior midgut (stomach) and fat body and almost undetectable in the salivary glands. In the anterior, middle and posterior regions of the small intestine at 5daf the transcript abundance of both genes was almost identical. Also in adult female and male insects at 5daf both genes showed the strongest signal in the posterior midgut. Molecular modeling suggested that TBSCP-1 has carboxypeptidase D activity; activities against Hippuryl-Phenylalanine and Hippuryl-Arginine were also located at the posterior midgut, both were induced after blood feeding. Treatment of the posterior midgut extracts with the serine protease inhibitor PMSF strongly reduced carboxypeptidase activity. These findings suggest that triatomines might use serine carboxypeptidases, which are usually found in lysosomes, as digestive enzymes in the posterior midgut lumen, from which TBSCP-1 and TBSCP-2 are possible candidates to fulfill this function. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Kinetic Mechanism and the Rate-limiting Step of Plasmodium vivax Serine Hydroxymethyltransferase*

    Science.gov (United States)

    Maenpuen, Somchart; Amornwatcharapong, Watcharee; Krasatong, Pasupat; Sucharitakul, Jeerus; Palfey, Bruce A.; Yuthavong, Yongyuth; Chitnumsub, Penchit; Leartsakulpanich, Ubolsree; Chaiyen, Pimchai

    2015-01-01

    Serine hydroxymethyltransferase (SHMT) is a pyridoxal 5′-phosphate (PLP)-dependent enzyme that catalyzes a hydroxymethyl group transfer from l-serine to tetrahydrofolate (H4folate) to yield glycine and 5,10-methylenetetrahydrofolate (CH2-H4folate). SHMT is crucial for deoxythymidylate biosynthesis and a target for antimalarial drug development. Our previous studies indicate that PvSHMT catalyzes the reaction via a ternary complex mechanism. To define the kinetic mechanism of this catalysis, we explored the PvSHMT reaction by employing various methodologies including ligand binding, transient, and steady-state kinetics as well as product analysis by rapid-quench and HPLC/MS techniques. The results indicate that PvSHMT can bind first to either l-serine or H4folate. The dissociation constants for the enzyme·l-serine and enzyme·H4folate complexes were determined as 0.18 ± 0.08 and 0.35 ± 0.06 mm, respectively. The amounts of glycine formed after single turnovers of different preformed binary complexes were similar, indicating that the reaction proceeds via a random-order binding mechanism. In addition, the rate constant of glycine formation measured by rapid-quench and HPLC/MS analysis is similar to the kcat value (1.09 ± 0.05 s−1) obtained from the steady-state kinetics, indicating that glycine formation is the rate-limiting step of SHMT catalysis. This information will serve as a basis for future investigation on species-specific inhibition of SHMT for antimalarial drug development. PMID:25678710

  5. Novel role of serine racemase in anti-apoptosis and metabolism.

    Science.gov (United States)

    Talukdar, Gourango; Inoue, Ran; Yoshida, Tomoyuki; Ishimoto, Tetsuya; Yaku, Keisuke; Nakagawa, Takashi; Mori, Hisashi

    2017-01-01

    Serine racemase (SR) catalyzes the production of d-serine, a co-agonist of the N-methyl-d-aspartate receptor (NMDAR). A previous report shows the contribution of SR in the NMDAR-mediated neuronal cell death process. To analyze the intrinsic role of SR in the cell death process, we established the epithelial human embryonic kidney 293T (HEK293T) cell lines expressing wild-type SR (SR-WT), catalytically inactive mutant SR (SR-K56G), and catalytically hyperactive mutant SR (SR-Q155D). To these cell lines, staurosporine (STS), which induces apoptosis, was introduced. The cells expressing SR-WT and SR-Q155D showed resistance to STS-induced apoptosis, compared with nontransfected HEK293T cells and cells expressing SR-K56G. The SR-WT cells also showed a significant higher viability than the SR-QD cells. Furthermore, we detected elevated phosphorylation levels of Bcl-2 at serine-70 and Akt at serine-473 and threonine-308, which are related to cell survival, in the cells expressing SR-WT and SR-Q155D. From the results of metabolite analysis, we found elevated levels of acetyl CoA and ATP in cells expressing SR-WT. Because SR has two enzymatic activities, namely, racemization and α, β-elimination, and SR-Q155D shows enhanced racemization and reduced α, β-elimination activities, we concluded that the racemization reaction catalyzed by SR may have a more protective role against apoptosis than the α, β-elimination reaction. Moreover, both of these activities are important for maximal survival and elevated levels of acetyl CoA and ATP. Our findings reveal the NMDAR-independent roles of SR in metabolism and cell survival. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. A Clostridium difficile alanine racemase affects spore germination and accommodates serine as a substrate.

    Science.gov (United States)

    Shrestha, Ritu; Lockless, Steve W; Sorg, Joseph A

    2017-06-23

    Clostridium difficile has become one of the most common bacterial pathogens in hospital-acquired infections in the United States. Although C. difficile is strictly anaerobic, it survives in aerobic environments and transmits between hosts via spores. C. difficile spore germination is triggered in response to certain bile acids and glycine. Although glycine is the most effective co-germinant, other amino acids can substitute with varying efficiencies. Of these, l-alanine is an effective co-germinant and is also a germinant for most bacterial spores. Many endospore-forming bacteria embed alanine racemases into their spore coats, and these enzymes are thought to convert the l-alanine germinant into d-alanine, a spore germination inhibitor. Although the C. difficile Alr2 racemase is the sixth most highly expressed gene during C. difficile spore formation, a previous study reported that Alr2 has little to no role in germination of C. difficile spores in rich medium. Here, we hypothesized that Alr2 could affect C. difficile l-alanine-induced spore germination in a defined medium. We found that alr2 mutant spores more readily germinate in response to l-alanine as a co-germinant. Surprisingly, d-alanine also functioned as a co-germinant. Moreover, we found that Alr2 could interconvert l- and d-serine and that Alr2 bound to l- and d-serine with ∼2-fold weaker affinity to that of l- and d-alanine. Finally, we demonstrate that l- and d-serine are also co-germinants for C. difficile spores. These results suggest that C. difficile spores can respond to a diverse set of amino acid co-germinants and reveal that Alr2 can accommodate serine as a substrate. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. Localization of a new serine protease, ingobsin, in goblet cells in rat, pig and man

    DEFF Research Database (Denmark)

    Poulsen, Steen Seier; Nexø, Ebba

    1985-01-01

    A serine protease, ingobsin, that cleaves Lys-x and Arg-x, has been purified from rat duodenal tissue. By immunohistochemical methods, the enzyme was localized in goblet cells in the small intestine of rat, pig, and man. The immunoreactive cells were most numerous in the proximal part of the inte...... of the intestine. In the electron microscope, the immunoreaction was localized mainly to the rough endoplasmic reticulum of the goblet cells and to the secretion being extruded from the cells....

  8. Alternaria-derived serine protease activity drives IL-33–mediated asthma exacerbations

    Science.gov (United States)

    Snelgrove, Robert J.; Gregory, Lisa G.; Peiró, Teresa; Akthar, Samia; Campbell, Gaynor A.; Walker, Simone A.; Lloyd, Clare M.

    2014-01-01

    Background The fungal allergen Alternaria alternata is implicated in severe asthma and rapid onset life-threatening exacerbations of disease. However, the mechanisms that underlie this severe pathogenicity remain unclear. Objective We sought to investigate the mechanism whereby Alternaria was capable of initiating severe, rapid onset allergic inflammation. Methods IL-33 levels were quantified in wild-type and ST2−/− mice that lacked the IL-33 receptor given inhaled house dust mite, cat dander, or Alternaria, and the effect of inhibiting allergen-specific protease activities on IL-33 levels was assessed. An exacerbation model of allergic airway disease was established whereby mice were sensitized with house dust mite before subsequently being challenged with Alternaria (with or without serine protease activity), and inflammation, remodeling, and lung function assessed 24 hours later. Results Alternaria, but not other common aeroallergens, possessed intrinsic serine protease activity that elicited the rapid release of IL-33 into the airways of mice through a mechanism that was dependent upon the activation of protease activated receptor-2 and adenosine triphosphate signaling. The unique capacity of Alternaria to drive this early IL-33 release resulted in a greater pulmonary inflammation by 24 hours after challenge relative to the common aeroallergen house dust mite. Furthermore, this Alternaria serine protease–IL-33 axis triggered a rapid, augmented inflammation, mucus release, and loss of lung function in our exacerbation model. Conclusion Alternaria-specific serine protease activity causes rapid IL-33 release, which underlies the development of a robust TH2 inflammation and exacerbation of allergic airway disease. PMID:24636086

  9. Alternaria-derived serine protease activity drives IL-33-mediated asthma exacerbations.

    Science.gov (United States)

    Snelgrove, Robert J; Gregory, Lisa G; Peiró, Teresa; Akthar, Samia; Campbell, Gaynor A; Walker, Simone A; Lloyd, Clare M

    2014-09-01

    The fungal allergen Alternaria alternata is implicated in severe asthma and rapid onset life-threatening exacerbations of disease. However, the mechanisms that underlie this severe pathogenicity remain unclear. We sought to investigate the mechanism whereby Alternaria was capable of initiating severe, rapid onset allergic inflammation. IL-33 levels were quantified in wild-type and ST2(-/-) mice that lacked the IL-33 receptor given inhaled house dust mite, cat dander, or Alternaria, and the effect of inhibiting allergen-specific protease activities on IL-33 levels was assessed. An exacerbation model of allergic airway disease was established whereby mice were sensitized with house dust mite before subsequently being challenged with Alternaria (with or without serine protease activity), and inflammation, remodeling, and lung function assessed 24 hours later. Alternaria, but not other common aeroallergens, possessed intrinsic serine protease activity that elicited the rapid release of IL-33 into the airways of mice through a mechanism that was dependent upon the activation of protease activated receptor-2 and adenosine triphosphate signaling. The unique capacity of Alternaria to drive this early IL-33 release resulted in a greater pulmonary inflammation by 24 hours after challenge relative to the common aeroallergen house dust mite. Furthermore, this Alternaria serine protease-IL-33 axis triggered a rapid, augmented inflammation, mucus release, and loss of lung function in our exacerbation model. Alternaria-specific serine protease activity causes rapid IL-33 release, which underlies the development of a robust TH2 inflammation and exacerbation of allergic airway disease. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  10. The Contribution of Serine 194 Phosphorylation to Steroidogenic Acute Regulatory Protein Function

    OpenAIRE

    Sasaki, Goro; Zubair, Mohamad; Ishii, Tomohiro; Mitsui, Toshikatsu; Hasegawa, Tomonobu; Auchus, Richard J.

    2014-01-01

    The steroidogenic acute regulatory protein (StAR) facilitates the delivery of cholesterol to the inner mitochondrial membrane, where the cholesterol side-chain cleavage enzyme catalyzes the initial step of steroid hormone biosynthesis. StAR was initially identified in adrenocortical cells as a phosphoprotein, the expression and phosphorylation of which were stimulated by corticotropin. A number of in vitro studies have implicated cAMP-dependent phosphorylation at serine 194 (S194, S195 in hum...

  11. Spinal cord NR1 serine phosphorylation and NR2B subunit suppression following peripheral inflammation

    Directory of Open Access Journals (Sweden)

    Del Valle-Pinero Arseima Y

    2005-09-01

    Full Text Available Abstract Background Spinal cord N-methyl-D-aspartate (NMDA receptors are intimately involved in the development and maintenance of central sensitization. However, the mechanisms mediating the altered function of the NMDA receptors are not well understood. In this study the role of phosphorylation of NR1 splice variants and NR2 subunits was examined following hind paw inflammation in rats. We further examined the level of expression of these proteins following the injury. Results Lumbar spinal cord NR1 subunits were found to be phosphorylated on serine residues within two hours of the induction of hind paw inflammation with carrageenan. The enhanced NR1 serine phosphorylation reversed within six hours. No phosphorylation on NR1 threonine or tyrosine residues was observed. Likewise, no NR2 subunit phosphorylation was observed on serine, threonine or tyrosine residues. An analysis of NR1 and NR2 protein expression demonstrated no change in the levels of NR1 splice variants or NR2A following the inflammation. However, spinal cord NR2B expression was depressed by the hind paw inflammation. The expression of NR2B remained depressed for more than one week following initiation of the inflammation. Conclusion These data suggest that NR1 serine phosphorylation leads to an initial increase in NMDA receptor activity in the spinal cord following peripheral injury. The suppression of NR2B expression suggests compensation for the enhanced nociceptive activity. These data indicate that spinal cord NMDA receptors are highly dynamic in the development, maintenance and recovery from central sensitization following an injury. Thus, chronic pain therapies targeted to NMDA receptors should be designed for the exact configuration of NMDA receptor subunits and post-translational modifications present during specific stages of the disease.

  12. Activation of Alkaline Irrigation Fluids in Endodontics.

    Science.gov (United States)

    Walsh, Laurence J; George, Roy

    2017-10-23

    In conventional endodontic treatment, alkaline solutions of sodium hypochlorite (NaOCl) and ethylenediaminetetraacetic acid (EDTA) are used in combination to disinfect the root canal system and to eliminate debris and smear layers. An important concept that has emerged over recent years is the use of active physical methods for agitating these fluids to improve their penetration within areas that are not reached by endodontic instruments and to accelerate the chemical actions of these alkaline fluids against planktonic microorganisms, biofilms, soft tissue remnants and smear layers. Ultrasonic agitation and more recently pulsed lasers have emerged as two promising methods for activating endodontic irrigation fluids. Ultrasonic agitation with piezoelectric devices employs a moving tip, while laser agitation uses a stationary tip. Both methods cause cavitation, followed by implosions and shear forces which assist with debridement. Fluid streaming further enhances the activity of the fluids. While agitation enhances performance of irrigants, extrusion of fluids from the root canal during activation is a hazard that must be controlled.

  13. High temperature and pressure alkaline electrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Ganley, Jason C. [Department of Chemical Engineering, Howard University, 2013 Lewis K. Downing Hall, 2300 6th Street NW, Washington, DC 20059 (United States)

    2009-05-15

    This paper describes experimental work involving the direct-current electrolysis of highly concentrated potassium hydroxide solutions at high temperatures (up to 400 C) and under various pressures. A high-temperature alkaline electrolysis cell resistant to chemical attack from the highly corrosive electrolyte solution and capable of high-pressure operation was designed and tested. The cell was constructed with a Monel {sup registered} alloy housing and cathode, while various anode materials were compared. The anode materials tested included nickel, Monel alloy, lithiated nickel, and cobalt-plated nickel. The advantages of operating an alkaline electrolysis cell at high temperatures include increasing the ionic conductivity of the electrolyte and enhancing the rates of electrochemical reactions at the electrode surfaces. Cell operation with increasing steam partial pressure over the solution is also shown to enhance cell performance. The prudent selection of anode material also impacts the required terminal potential for a given current density, and consequently the cell's electric power efficiency. The best cell performance was achieved using a cobalt-plated nickel anode at a temperature of 400 C and a steam partial pressure of 8.7 MPa. (author)

  14. Activation of Alkaline Irrigation Fluids in Endodontics

    Science.gov (United States)

    George, Roy

    2017-01-01

    In conventional endodontic treatment, alkaline solutions of sodium hypochlorite (NaOCl) and ethylenediaminetetraacetic acid (EDTA) are used in combination to disinfect the root canal system and to eliminate debris and smear layers. An important concept that has emerged over recent years is the use of active physical methods for agitating these fluids to improve their penetration within areas that are not reached by endodontic instruments and to accelerate the chemical actions of these alkaline fluids against planktonic microorganisms, biofilms, soft tissue remnants and smear layers. Ultrasonic agitation and more recently pulsed lasers have emerged as two promising methods for activating endodontic irrigation fluids. Ultrasonic agitation with piezoelectric devices employs a moving tip, while laser agitation uses a stationary tip. Both methods cause cavitation, followed by implosions and shear forces which assist with debridement. Fluid streaming further enhances the activity of the fluids. While agitation enhances performance of irrigants, extrusion of fluids from the root canal during activation is a hazard that must be controlled. PMID:29065540

  15. Activation of Alkaline Irrigation Fluids in Endodontics

    Directory of Open Access Journals (Sweden)

    Laurence J. Walsh

    2017-10-01

    Full Text Available In conventional endodontic treatment, alkaline solutions of sodium hypochlorite (NaOCl and ethylenediaminetetraacetic acid (EDTA are used in combination to disinfect the root canal system and to eliminate debris and smear layers. An important concept that has emerged over recent years is the use of active physical methods for agitating these fluids to improve their penetration within areas that are not reached by endodontic instruments and to accelerate the chemical actions of these alkaline fluids against planktonic microorganisms, biofilms, soft tissue remnants and smear layers. Ultrasonic agitation and more recently pulsed lasers have emerged as two promising methods for activating endodontic irrigation fluids. Ultrasonic agitation with piezoelectric devices employs a moving tip, while laser agitation uses a stationary tip. Both methods cause cavitation, followed by implosions and shear forces which assist with debridement. Fluid streaming further enhances the activity of the fluids. While agitation enhances performance of irrigants, extrusion of fluids from the root canal during activation is a hazard that must be controlled.

  16. Spectroscopic characterization of alkaline earth uranyl carbonates

    International Nuclear Information System (INIS)

    Amayri, Samer; Reich, Tobias; Arnold, Thuro; Geipel, Gerhard; Bernhard, Gert

    2005-01-01

    A series of alkaline uranyl carbonates, M[UO 2 (CO 3 ) 3 ].nH 2 O (M=Mg 2 , Ca 2 , Sr 2 , Ba 2 , Na 2 Ca, and CaMg) was synthesized and characterized by inductively coupled plasma mass spectrometry (ICP-MS) and atomic absorption spectrometry (AAS) after nitric acid digestion, X-ray powder diffraction (XRD), and thermal analysis (TGA/DTA). The molecular structure of these compounds was characterized by extended X-ray absorption fine-structure (EXAFS) spectroscopy and X-ray photoelectron spectroscopy (XPS). Crystalline Ba 2 [UO 2 (CO 3 ) 3 ].6H 2 O was obtained for the first time. The EXAFS analysis showed that this compound consists of (UO 2 )(CO 3 ) 3 clusters similar to the other alkaline earth uranyl carbonates. The average U-Ba distance is 3.90+/-0.02A.Fluorescence wavelengths and life times were measured using time-resolved laser-induced fluorescence spectroscopy (TRLFS). The U-O bond distances determined by EXAFS, TRLFS, XPS, and Raman spectroscopy agree within the experimental uncertainties. The spectroscopic signatures observed could be useful for identifying uranyl carbonate species adsorbed on mineral surfaces

  17. DNA DAMAGE QUANTITATION BY ALKALINE GEL ELECTROPHORESIS.

    Energy Technology Data Exchange (ETDEWEB)

    SUTHERLAND,B.M.; BENNETT,P.V.; SUTHERLAND, J.C.

    2004-03-24

    Physical and chemical agents in the environment, those used in clinical applications, or encountered during recreational exposures to sunlight, induce damages in DNA. Understanding the biological impact of these agents requires quantitation of the levels of such damages in laboratory test systems as well as in field or clinical samples. Alkaline gel electrophoresis provides a sensitive (down to {approx} a few lesions/5Mb), rapid method of direct quantitation of a wide variety of DNA damages in nanogram quantities of non-radioactive DNAs from laboratory, field, or clinical specimens, including higher plants and animals. This method stems from velocity sedimentation studies of DNA populations, and from the simple methods of agarose gel electrophoresis. Our laboratories have developed quantitative agarose gel methods, analytical descriptions of DNA migration during electrophoresis on agarose gels (1-6), and electronic imaging for accurate determinations of DNA mass (7-9). Although all these components improve sensitivity and throughput of large numbers of samples (7,8,10), a simple version using only standard molecular biology equipment allows routine analysis of DNA damages at moderate frequencies. We present here a description of the methods, as well as a brief description of the underlying principles, required for a simplified approach to quantitation of DNA damages by alkaline gel electrophoresis.

  18. Effects of serine palmitoyltransferase inhibitor ISP-I on the stratum corneum of intact mouse skin.

    Science.gov (United States)

    Mizukoshi, Koji; Matsumoto, Katsuo; Hirose, Ryouji; Fujita, Tetsuro; Ishida-Yamamoto, Akemi; Iizuka, Hajime

    2011-01-01

    Serine palmitoyltransferase (SPT) is involved in the ceramide synthesis pathway. We investigated the effects of ISP-I, a potent inhibitor of SPT, on the stratum corneum (SC) of hairless mouse skin. Application of ISP-I for one week resulted in a significant decrease in the amount of ceramide, which was associated with a decrease in SC hydration. However, there was an increase in the number of SC layers and less transepidermal water loss than control. Transmission Electron Microscopy observation revealed that the number of desmosome-like structures in the layers immediately above the stratum granulosum (SG) was significantly increased in ISP-I-treated skin compared to vehicle-treated skin. The activity of serine protease-an enzyme associated with the process of desquamation-was lower in the SC of ISP-I-treated skin than control. Furthermore, immunoelectronmicroscopy revealed that glucosylceramide and corneodesmosin tended to remain in corneocytes and were not secreted into the intercellular spaces of the SC in the ISP-I-treated skin. These results indicate that the application of ISP-I decreases ceramide and skin hydration, while at the same time increases the number of SC layers. The accumulation of corneocyte layers may originate from an aberrant desquamation process related to the decrease in the serine protease activity as well as an alteration in the transport of desquamation-related proteases by lamellar bodies.

  19. A 25-kDa serine peptidase with keratinolytic activity secreted by Coccidioides immitis.

    Science.gov (United States)

    Lopes, Bárbara Gabriela Brum; Santos, André Luis Souza Dos; Bezerra, Cláudia de Carvalho Falci; Wanke, Bodo; Dos Santos Lazéra, Márcia; Nishikawa, Marília Martins; Mazotto, Ana Maria; Kussumi, Vânia Monteiro; Haido, Rosa Maria Tavares; Vermelho, Alane Beatriz

    2008-07-01

    Coccidioides immitis is the causative agent of coccidioidomycosis, a systemic mycosis that attacks humans and a wide variety of animals. In the present study, we showed that the C. immitis mycelial form is able to release proteolytic enzyme into the extracellular environment. Under chemically defined growth conditions, mycelia secreted seven distinct polypeptides ranging from 15 to 65 kDa and an extracellular peptidase of 25 kDa. This enzyme had its activity fully inhibited by phenylmethylsulphonyl fluoride, a serine peptidase inhibitor. Conversely, metallo, cysteine, and aspartyl peptidase inhibitors did not alter the 25-kDa enzyme behavior. This extracellular serine peptidase was able to degrade keratin, a fibrous protein that composes human epidermis. Additionally, this peptidase cleaved different protein substrates, including gelatin, casein, hemoglobin, and albumin. Curiously, an 18-kDa serine peptidase activity was evidenced solely when casein was used as the co-polymerized protein substrate into the gel. The existence of different secreted peptidases could be advantageous for the adaptation of C. immitis to distinct environments during its complex life cycle.

  20. Modeling and structural analysis of evolutionarily diverse S8 family serine proteases.

    Science.gov (United States)

    Laskar, Aparna; Rodger, Euan James; Chatterjee, Aniruddha; Mandal, Chhabinath

    2011-01-01

    Serine proteases are an abundant class of enzymes that are involved in a wide range of physiological processes and are classified into clans sharing structural homology. The active site of the subtilisin-like clan contains a catalytic triad in the order Asp, His, Ser (S8 family) or a catalytic tetrad in the order Glu, Asp and Ser (S53 family). The core structure and active site geometry of these proteases is of interest for many applications. The aim of this study was to investigate the structural properties of different S8 family serine proteases from a diverse range of taxa using molecular modeling techniques. In conjunction with 12 experimentally determined three-dimensional structures of S8 family members, our predicted structures from an archaeon, protozoan and a plant were used for analysis of the catalytic core. Amino acid sequences were obtained from the MEROPS database and submitted to the LOOPP server for threading based structure prediction. The predicted structures were refined and validated using PROCHECK, SCRWL and MODELYN. Investigation of secondary structures and electrostatic surface potential was performed using MOLMOL. Encompassing a wide range of taxa, our structural analysis provides an evolutionary perspective on S8 family serine proteases. Focusing on the common core containing the catalytic site of the enzyme, the analysis presented here is beneficial for future molecular modeling strategies and structure-based rational drug design.

  1. Cross-phosphorylation of bacterial serine/threonine and tyrosine protein kinases on key regulatory residues

    Directory of Open Access Journals (Sweden)

    Lei eShi

    2014-09-01

    Full Text Available Bacteria possess protein serine/threonine and tyrosine kinases which resemble eukaryal kinases in their capacity to phosphorylate multiple substrates. We hypothesized that the analogy might extend further, and bacterial kinases may also undergo mutual phosphorylation and activation, which is currently considered as a hallmark of eukaryal kinase networks. In order to test this hypothesis, we explored the capacity of all members of four different classes of serine/threonine and tyrosine kinases present in the firmicute model organism Bacillus subtilis to phosphorylate each other in vitro and interact with each other in vivo. The interactomics data suggested a high degree of connectivity among all types of kinases, while phosphorylation assays revealed equally wide-spread cross-phosphorylation events. Our findings suggest that the Hanks-type kinases PrkC, PrkD and YabT exhibit the highest capacity to phosphorylate other B. subtilis kinases, while the BY-kinase PtkA and the two-component-like kinases RsbW and SpoIIAB show the highest propensity to be phosphorylated by other kinases. Analysis of phosphorylated residues on several selected recipient kinases suggests that most cross-phosphorylation events concern key regulatory residues. Therefore, cross-phosphorylation events are very likely to influence the capacity of recipient kinases to phosphorylate substrates downstream in the signal transduction cascade. We therefore conclude that bacterial serine/threonine and tyrosine kinases probably engage in a network-type behavior previously described only in eukaryal cells.

  2. Lanthanide complexation with amino acids. Eu(III) with glutamine and serine in water

    International Nuclear Information System (INIS)

    Silber, H.B.; Ghajari, N.; Maraschin, V.

    1998-01-01

    Full text: A problem of long term interest in lanthanide chemistry is whether a ligand resides in the inner or outer solvation shell of the cation. Complexation between lanthanide ions and ligands can be detected by deviations from Beer's Law using hypersensitive peaks. We have been investigating lanthanide complexation with amino acids as a function of temperature in water and mixed solvents to learn about the nature of the complexes. In our previous studies using alanine and glycine, as well as in this investigation with glutamine and serine, only a single complex forms, and the Benesi-Hildebrand method allows us to determine the complexation constants. Enthalpy and entropy data are used to predict if a complex is outer or inner sphere in water. In all four amino acid systems, the complexation constant in water is near unity, with little differences found in its magnitude. The equilibrium constants with Eu(III) at I = 0.5 and 25 C is 1.3 with serine and 1.5 with glutamine. The enthalpy and entropy are consistent with inner sphere complexation with glutamine and outer sphere with serine. These results will be compared to other lanthanide amino acid systems

  3. Recovery of serine protease inhibitor from fish roes by polyethylene glycol precipitation

    Directory of Open Access Journals (Sweden)

    Hyun Ji Lee

    2016-07-01

    Full Text Available Abstract The fractionation of serine protease inhibitor (SPI from fish roe extracts was carried out using polyethylene glycol-4000 (PEG4000 precipitation. The protease inhibitory activity of extracts and PEG fractions from Alaska pollock (AP, bastard halibut (BH, skipjack tuna (ST, and yellowfin tuna (YT roes were determined against target proteases. All of the roe extracts showed inhibitory activity toward bromelain (BR, chymotrypsin (CH, trypsin (TR, papain-EDTA (PED, and alcalase (AL as target proteases. PEG fractions, which have positive inhibitory activity and high recovery (%, were the PEG1 fraction (0–5 %, w/v against cysteine proteases (BR and PA and the PEG4 fraction (20–40 %, w/v against serine proteases (CH and TR. The strongest specific inhibitory activity toward CH and TR of PEG4 fractions was AP (9278 and 1170 U/mg followed by ST (6687 and 2064 U/mg, YT (3951 and 1536 U/mg, and BH (538 and 98 U/mg. The inhibitory activity of serine protease in extracts and PEG fractions from fish roe was stronger than that of cysteine protease toward common casein substrate. Therefore, SPI is mainly distributed in fish roe and PEG fractionation effectively isolated the SPI from fish roes.

  4. Assessment and partial purification of serine protease inhibitors from Rhipicephalus (Boophilus annulatuslarvae

    Directory of Open Access Journals (Sweden)

    Sedigheh Nabian

    Full Text Available Ticks are rich sources of serine protease inhibitors, particularly those that prevent blood clotting and inflammatory responses during blood feeding. The tick Rhipicephalus (Boophlus annulatusis an important ectoparasite of cattle. The aims of this study were to characterize and purify the serine protease inhibitors present in R. (B. annulatus larval extract. The inhibitors were characterized by means of one and two-dimensional reverse zymography, and purified using affinity chromatography on a trypsin-Sepharose column. The analysis on one and two-dimensional reverse zymography of the larval extract showed trypsin inhibitory activity at between 13 and 40 kDa. Through non-reducing SDS-PAGE and reverse zymography for proteins purified by trypsin-Sepharose affinity chromatography, some protein bands with molecular weights between 13 and 34 kDa were detected. Western blotting showed that five protein bands at 48, 70, 110, 130 and 250 kDa reacted positively with immune serum, whereas there was no positive reaction in the range of 13-40 kDa. Serine protease inhibitors from R. (B. annulatus have anti-trypsin activity similar to inhibitors belonging to several other hard tick species, thus suggesting that these proteins may be useful as targets in anti-tick vaccines.

  5. Artemether Exhibits Amoebicidal Activity against Acanthamoeba castellanii through Inhibition of the Serine Biosynthesis Pathway.

    Science.gov (United States)

    Deng, Yihong; Ran, Wei; Man, Suqin; Li, Xueping; Gao, Hongjian; Tang, Wei; Tachibana, Hiroshi; Cheng, Xunjia

    2015-08-01

    Acanthamoeba sp. parasites are the causative agents of Acanthamoeba keratitis, fatal granulomatous amoebic encephalitis, and cutaneous infections. However, there are currently no effective drugs for these organisms. Here, we evaluated the activity of the antimalarial agent artemether against Acanthamoeba castellanii trophozoites and identified potential targets of this agent through a proteomic approach. Artemether exhibited in vitro amoebicidal activity in a time- and dose-dependent manner and induced ultrastructural modification and cell apoptosis. The iTRAQ quantitative proteomic analysis identified 707 proteins that were differentially expressed after artemether treatment. We focused on phosphoglycerate dehydrogenase and phosphoserine aminotransferase in the serine biosynthesis pathway because of their importance to the growth and proliferation of protozoan and cancer cells. The expression of these proteins in Acanthamoeba was validated using quantitative real-time PCR and Western blotting after artemether treatment. The changes in the expression levels of phosphoserine aminotransferase were consistent with those of phosphoglycerate dehydrogenase. Therefore, the downregulation of phosphoserine aminotransferase may be due to the downregulation of phosphoglycerate dehydrogenase. Furthermore, exogenous serine might antagonize the activity of artemether against Acanthamoeba trophozoites. These results indicate that the serine biosynthesis pathway is important to amoeba survival and that targeting these enzymes would improve the treatment of Acanthamoeba infections. Artemether may be used as a phosphoglycerate dehydrogenase inhibitor to control or block Acanthamoeba infections. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  6. A Highly Conserved Bacterial D-Serine Uptake System Links Host Metabolism and Virulence.

    Directory of Open Access Journals (Sweden)

    James P R Connolly

    2016-01-01

    Full Text Available The ability of any organism to sense and respond to challenges presented in the environment is critically important for promoting or restricting colonization of specific sites. Recent work has demonstrated that the host metabolite D-serine has the ability to markedly influence the outcome of infection by repressing the type III secretion system of enterohaemorrhagic Escherichia coli (EHEC in a concentration-dependent manner. However, exactly how EHEC monitors environmental D-serine is not understood. In this work, we have identified two highly conserved members of the E. coli core genome, encoding an inner membrane transporter and a transcriptional regulator, which collectively help to "sense" levels of D-serine by regulating its uptake from the environment and in turn influencing global gene expression. Both proteins are required for full expression of the type III secretion system and diversely regulated prophage-encoded effector proteins demonstrating an important infection-relevant adaptation of the core genome. We propose that this system acts as a key safety net, sampling the environment for this metabolite, thereby promoting colonization of EHEC to favorable sites within the host.

  7. Ultrastable α phase nickel hydroxide as energy storage materials for alkaline secondary batteries

    Science.gov (United States)

    Huang, Haili; Guo, Yinjian; Cheng, Yuanhui

    2018-03-01

    α Phase nickel hydroxide (α-Ni(OH)2) has higher theoretical capacity than that of commercial β phase Ni(OH)2. But the low stability inhibits its wide application in alkaline rechargeable batteries. Here, we propose a totally new idea to stabilize α phase Ni(OH)2 by introducing large organic molecule into the interlayer spacing together with doping multivalent cobalt into the layered Ni(OH)2 host. Ethylene glycol is served as neutral stabilizer in the interlayer spacing. Nickel is substituted by cobalt to increase the electrostatic attraction between layered Ni(OH)2 host and anion ions in the interlayer spacing. Polyethylene glycol (PEG-200) is utilized to design a three-dimensional network structure. This prepared α-Ni(OH)2-20 exhibits specific capacity as high as 334 mAh g-1and good structural stability even after immersing into strong alkaline zincate solution for 20 days. Ni(OH)2 electrode with a specific capacity of 35 mAh cm-2 is fabricated and used as positive electrode in zinc-nickel single flow batteries, which also shows good cycling stability. This result can provide an important guideline for the rational design and preparation of highly active and stable α phase Ni(OH)2 for alkaline secondary battery.

  8. Diversity and activity of methanotrophs in alkaline soil from a Chinese coal mine.

    Science.gov (United States)

    Han, Bing; Chen, Yin; Abell, Guy; Jiang, Hao; Bodrossy, Levente; Zhao, Jiangang; Murrell, J Colin; Xing, Xin-Hui

    2009-11-01

    Culture-independent molecular biological techniques, including 16S rRNA gene and functional gene clone libraries and microarray analyses using pmoA (encoding a key subunit of particulate methane monooxygenase), were applied to investigate the methanotroph community structure in alkaline soil from a Chinese coal mine. This environment contained a high diversity of methanotrophs, including the type II methanotrophs Methylosinus/Methylocystis, type I methanotrophs related to Methylobacter/Methylosoma and Methylococcus, and a number of as yet uncultivated methanotrophs. In order to identify the metabolically active methane-oxidizing bacteria from this alkaline environment, DNA stable isotope probing (DNA-SIP) experiments using (13)CH(4) were carried out. This showed that both type I and type II methanotrophs were active, together with methanotrophs related to Methylocella, which had previously been found only in acidic environments. Methylotrophs, including Methylopila and Hyphomicrobium, were also detected in soil DNA and after DNA-SIP experiments. DNA sequence information on the most abundant, active methanotrophs in this alkaline soil will facilitate the design of oligonucleotide probes to monitor enrichment cultures when isolating key alkaliphilic methanotrophs from such environments.

  9. Diversity and activity of methanotrophs in alkaline soil from a Chinese coal mine

    Energy Technology Data Exchange (ETDEWEB)

    Han, Bing; Chen, Yin; Abell, Guy; Jiang, Hao; Bodrossy, Levente; Zhao, Jiangang; Murrell, J. Colin; Xing, Xin-Hui [Tsinghua University, Beijing (China). Dept. of Chemical Engineering

    2009-11-15

    Culture-independent molecular biological techniques, including 16S rRNA gene and functional gene clone libraries and microarray analyses using pmoA (encoding a key subunit of particulate methane monooxygenase), were applied to investigate the methanotroph community structure in alkaline soil from a Chinese coal mine. This environment contained a high diversity of methanotrophs, including the type II methanotrophs Methylosinus/Methylocystis, type I methanotrophs related to Methylobacter/Methylosoma and Methylococcus, and a number of as yet uncultivated methanotrophs. In order to identify the metabolically active methane-oxidizing bacteria from this alkaline environment, DNA stable isotope probing (DNA-SIP) experiments using {sup 13}CH{sub 4} were carried out. This showed that both type I and type II methanotrophs were active, together with methanotrophs related to Methylocella, which had previously been found only in acidic environments. Methylotrophs, including Methylopila and Hyphomicrobium, were also detected in soil DNA and after DNA-SIP experiments. DNA sequence information on the most abundant, active methanotrophs in this alkaline soil will facilitate the design of oligonucleotide probes to monitor enrichment cultures when isolating key alkaliphilic methanotrophs from such environments.

  10. Protein kinase A phosphorylates serine 267 in the homeodomain of engrailed-2 leading to decreased DNA binding

    DEFF Research Database (Denmark)

    Hjerrild, Majbrit; Stensballe, Allan; Jensen, Ole N

    2004-01-01

    Engrailed-2 (En-2) belongs to an evolutionarily conserved family of DNA binding homeodomain-containing proteins that are expressed in mammalian brain during development. Here, we demonstrate that serine 267 in the homeodomain of En-2 is phosphorylated by protein kinase A (PKA) in forskolin......-treated COS-7 cells. Furthermore, we analyze the physiological function of En-2 phosphorylation by PKA. The nuclear localization of En-2 is not influenced by the phosphorylation of serine 267. However, substitution of serine 267 with alanine resulted in increased binding of En-2 to DNA, while replacing serine...... 267 with glutamic acid resulted in decreased En-2 DNA binding. These results suggest that the transcriptional activity of En-2 is regulated by PKA....

  11. Structural basis of metallo-β-lactamase, serine-β-lactamase and penicillin-binding protein inhibition by cyclic boronates

    Science.gov (United States)

    Brem, Jürgen; Cain, Ricky; Cahill, Samuel; McDonough, Michael A.; Clifton, Ian J.; Jiménez-Castellanos, Juan-Carlos; Avison, Matthew B.; Spencer, James; Fishwick, Colin W. G.; Schofield, Christopher J.

    2016-08-01

    β-Lactamases enable resistance to almost all β-lactam antibiotics. Pioneering work revealed that acyclic boronic acids can act as `transition state analogue' inhibitors of nucleophilic serine enzymes, including serine-β-lactamases. Here we report biochemical and biophysical analyses revealing that cyclic boronates potently inhibit both nucleophilic serine and zinc-dependent β-lactamases by a mechanism involving mimicking of the common tetrahedral intermediate. Cyclic boronates also potently inhibit the non-essential penicillin-binding protein PBP 5 by the same mechanism of action. The results open the way for development of dual action inhibitors effective against both serine- and metallo-β-lactamases, and which could also have antimicrobial activity through inhibition of PBPs.

  12. Experimental Gene Therapy with Serine-Histogranin and Endomorphin 1 for the Treatment of Chronic Neuropathic Pain

    Directory of Open Access Journals (Sweden)

    Stanislava Jergova

    2017-12-01

    Full Text Available The insufficient pain relief provided by current pharmacotherapy for chronic neuropathic pain is a serious medical problem. The enhanced glutamate signaling via NMDA receptors appears to be one of the key events in the development of chronic pain. Although effective, clinical use of systemic NMDA antagonists is limited by adverse effects such as hallucinations and motor dysfunction. Opioids are also potent analgesics but their chronic use is accompanied by tolerance and risk of addiction. However, combination of NMDA antagonists and opioids seems to provide a stable pain relieve at subthreshold doses of both substances, eliminating development of side effects. Our previous research showed that combined delivery of NMDA antagonist Serine histrogranin (SHG and endomorphin1 (EM1 leads to attenuation of acute and chronic pain. The aim of this study was to design and evaluate an analgesic potency of the gene construct encoding SHG and EM1. Constructs with 1SHG copy in combination with EM1, 1SHG/EM1, and 6SHG/EM1 were intraspinally injected to animals with peripheral nerve injury-induced pain (chronic constriction injury, CCI or spinal cord injury induced pain (clip compression model, SCI and tactile and cold allodynia were evaluated. AAV2/8 particles were used for gene delivery. The results demonstrated 6SHG/EM1 as the most efficient for alleviation of pain-related behavior. The effect was observed up to 8 weeks in SCI animals, suggesting the lack of tolerance of possible synergistic effect between SHG and EM1. Intrathecal injection of SHG antibody or naloxone attenuated the analgesic effect in treated animals. Biochemical and histochemical evaluation confirmed the presence of both peptides in the spinal tissue. The results of this study showed that the injection of AAV vectors encoding combined SHG/EM constructs can provide long term attenuation of pain without overt adverse side effects. This approach may provide better treatment options for

  13. Biopotency of serine protease inhibitors from cowpea (Vigna unguiculata) seeds on digestive proteases and the development of Spodoptera littoralis (Boisduval).

    Science.gov (United States)

    Abd El-latif, Ashraf Oukasha

    2015-05-01

    Serine protease inhibitors (PIs) have been described in many plant species and are universal throughout the plant kingdom, where trypsin inhibitors is the most common type. In the present study, trypsin and chymotrypsin inhibitory activity was detected in the seed flour extracts of 13 selected cultivars/accessions of cowpea. Two cowpea cultivars, Cream7 and Buff, were found to have higher trypsin and chymotrypsin inhibitory potential compared to other tested cultivars for which they have been selected for further purification studies using ammonium sulfate fractionation and DEAE-Sephadex A-25 column. Cream7-purified proteins showed two bands on sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) corresponding to molecular mass of 17.10 and 14.90 kDa, while the purified protein from Buff cultivar showed a single band corresponding mass of 16.50 kDa. The purified inhibitors were stable at temperature below 60°C and were active at wide range of pH from 2 to 12. The kinetic analysis revealed noncompetitive type of inhibition for both inhibitors against both enzymes. The inhibitor constant (Ki ) values suggested high affinity between inhibitors and enzymes. Purified inhibitors were found to have deep and negative effects on the mean larval weight, larval mortality, pupation, and mean pupal weight of Spodoptera littoralis, where Buff PI was more effective than Cream7 PI. It may be concluded that cowpea PI gene(s) could be potential insect control protein for future studies in developing insect-resistant transgenic plants. © 2014 Wiley Periodicals, Inc.

  14. The essential structures of ISP-I that influence serine palmitoyltransferase inhibition in Chinese hamster ovary cells.

    Science.gov (United States)

    Mizukoshi, Koji; Matsumoto, Katsuo; Hirose, Ryoji; Fujita, Tetsuro

    2012-01-01

    We investigated the structure-activity relationship between various ISP-I (myriocin, thermozymocidin) analogous which has sphingosine-like structure and serine palmitoyltransferase (SPT) in Chinese hamster ovary (CHO) cells utilizing sphingolipid production as a marker. Our data suggest that the double bond and/or ketone group within the alkyl chain as well as the alkyl chain are necessary for ISP-I to inhibit SPT. In addition, a serine structure is necessary for SPT inhibitory activity, which confirms previous findings.

  15. Overexpression of the methanol dehydrogenase gene mxaF in Methylobacterium sp. MB200 enhances L-serine production.

    Science.gov (United States)

    Chao, H; Wu, B; Shen, P

    2015-10-01

    Increase in L-serine production is of interest for industry. Here, we describe a metabolic engineering approach to increase the production of L-serine in a methylotrophic bacterium. mxaF, the gene encoding the large subunit of a methanol dehydrogenase, was cloned from Methylobacterium sp. MB200 through transposon mutagenesis. Deletion of mxaF gene prevented the strain to grow on methanol, suggesting that mxaF is involved in methanol metabolism. Overexpression of mxaF gene in the strain MB200 resulted in a fivefold increase in methanol dehydrogenase activity compared to the wild-type. Resting cell assays showed that the recombinant strain accumulated 6·6 mg ml(-1) L-serine in 72 h with 30 mg ml(-1) wet cells from 50 mg ml(-1) glycine and 50 mg ml(-1) methanol, representing a 1·5-fold increment for L-serine production in contrast to the wild-type strain. These results demonstrate that the potential for improving the production of L-serine can be achieved by overexpressing mxaF gene in methylotrophic bacteria. The amount of L-serine produced each year worldwide is relatively small compared with the amounts of the other amino acids and hence it is in great demand. Here, we describe a metabolic engineering approach to increase the production of L-serine in a methylotrophic bacterium Methylobacterium sp. MB200. The result demonstrates that raising the output of L-serine can be achieved by overexpressing mxaF gene in methylotrophic bacteria. © 2015 The Society for Applied Microbiology.

  16. Differential gene expression for suicide-substrate serine proteinase inhibitors (serpins) in vegetative and grain tissues of barley

    DEFF Research Database (Denmark)

    Roberts, T.H.; Marttila, S.; Rasmussen, S.K.

    2003-01-01

    Proteins of the serpin superfamily (similar to43 kDa) from mature cereal grains are in vitro suicide-substrate inhibitors of specific mammalian serine proteinases of the chymotrypsin family. However, unlike the 'standard-mechanism' serine proteinase inhibitors (<25 kDa), the biological functions ...... their irreversible inhibitory mechanism in the inhibition of exogenous proteinases capable of breaking down seed storage proteins, and in the defence of specific cell types in vegetative tissues....

  17. Fluorescently labeled inhibitors detect localized serine protease activities in Drosophila melanogaster pole cells, embryos, and ovarian egg chambers

    DEFF Research Database (Denmark)

    Jakobsen, Rasmus Kragh; Ono, S.; Powers, J. C.

    2005-01-01

    processes that they mediate. Until only recently, the tools to conveniently address the question of where and when serine proteases are active within complex tissues have been lacking. In order to detect spatially restricted serine protease activities in Drosophila embryos and ovaries we introduce...... activity localized to the oocyte-somatic follicle cell interface of the developing egg chamber. Our results suggest that this technique holds promise to identify new spatially restricted activities in adult Drosophila tissues and developing embryos....

  18. Geochemical modeling of the influence of silicate mineral alteration on alkalinity production and carbonate precipitation

    Science.gov (United States)

    Herda, Gerhard; Kraemer, Stephan M.; Gier, Susanne; Meister, Patrick

    2016-04-01

    High CO2 partial pressure (pCO2) in deep rock reservoirs causes acidification of the porefluid. Such conditions occur during injection and subsurface storage of CO2 (to prevent the release of greenhouse gas) but also naturally in zones of strong methanogenic microbial activity in organic matter-rich ocean margin sediments. The acidic fluids are corrosive to carbonates and bear the risk of leakage of CO2 gas to the surface. Porefluid acidification may be moderated by processes that increase the alkalinity, i.e. that produce weak acid anions capable of buffering the acidification imposed by the CO2. Often, alkalinity increases as a result of anaerobic microbial activity, such as anaerobic oxidation of methane. However, on a long term the alteration of silicates, in particular, clay minerals, may be a more efficient mechanism of alkalinity production. Under altered temperature, pressure and porefluid composition at depth, clay minerals may change to thermodynamically more stable states, thereby increasing the alkalinity of the porefluid by partial leaching of Mg-(OH)2 and Ca-(OH)2 (e.g. Wallmann et al., 2008; Mavromatis et al., 2014). This alteration may even be enhanced by a high pCO2. Thus, silicate alteration can be essential for a long-term stabilization of volatile CO2 in the form of bicarbonate or may even induce precipitation of carbonate minerals, but these processes are not fully understood yet. The goal of this study is to simulate the alkalinity effect of silicate alteration under diagenetic conditions and high pCO2 by geochemical modeling. We are using the program PHREEQC (Parkhurst and Appelo, 2013) to generate high rock/fluid ratio characteristics for deep subsurface rock reservoirs. Since we are interested in the long-term evolution of diagenetic processes, over millions of years, we do not consider kinetics but calculate the theoretically possible equilibrium conditions. In a first step we are calculating the saturation state of different clay minerals

  19. Marginally Stable Nuclear Burning

    Science.gov (United States)

    Strohmayer, Tod E.; Altamirano, D.

    2012-01-01

    Thermonuclear X-ray bursts result from unstable nuclear burning of the material accreted on neutron stars in some low mass X-ray binaries (LMXBs). Theory predicts that close to the boundary of stability oscillatory burning can occur. This marginally stable regime has so far been identified in only a small number of sources. We present Rossi X-ray Timing Explorer (RXTE) observations of the bursting, high- inclination LMXB 4U 1323-619 that reveal for the first time in this source the signature of marginally stable burning. The source was observed during two successive RXTE orbits for approximately 5 ksec beginning at 10:14:01 UTC on March 28, 2011. Significant mHz quasi- periodic oscillations (QPO) at a frequency of 8.1 mHz are detected for approximately 1600 s from the beginning of the observation until the occurrence of a thermonuclear X-ray burst at 10:42:22 UTC. The mHz oscillations are not detected following the X-ray burst. The average fractional rms amplitude of the mHz QPOs is 6.4% (3 - 20 keV), and the amplitude increases to about 8% below 10 keV.This phenomenology is strikingly similar to that seen in the LMXB 4U 1636-53. Indeed, the frequency of the mHz QPOs in 4U 1323-619 prior to the X-ray burst is very similar to the transition frequency between mHz QPO and bursts found in 4U 1636-53 by Altamirano et al. (2008). These results strongly suggest that the observed QPOs in 4U 1323-619 are, like those in 4U 1636-53, due to marginally stable nuclear burning. We also explore the dependence of the energy spectrum on the oscillation phase, and we place the present observations within the context of the spectral evolution of the accretion-powered flux from the source.

  20. Phosphorylation of SAF-A/hnRNP-U Serine 59 by Polo-Like Kinase 1 Is Required for Mitosis.

    Science.gov (United States)

    Douglas, Pauline; Ye, Ruiqiong; Morrice, Nicholas; Britton, Sébastien; Trinkle-Mulcahy, Laura; Lees-Miller, Susan P

    2015-08-01

    Scaffold attachment factor A (SAF-A), also called heterogenous nuclear ribonuclear protein U (hnRNP-U), is phosphorylated on serine 59 by the DNA-dependent protein kinase (DNA-PK) in response to DNA damage. Since SAF-A, DNA-PK catalytic subunit (DNA-PKcs), and protein phosphatase 6 (PP6), which interacts with DNA-PKcs, have all been shown to have roles in mitosis, we asked whether DNA-PKcs phosphorylates SAF-A in mitosis. We show that SAF-A is phosphorylated on serine 59 in mitosis, that phosphorylation requires polo-like kinase 1 (PLK1) rather than DNA-PKcs, that SAF-A interacts with PLK1 in nocodazole-treated cells, and that serine 59 is dephosphorylated by protein phosphatase 2A (PP2A) in mitosis. Moreover, cells expressing SAF-A in which serine 59 is mutated to alanine have multiple characteristics of aberrant mitoses, including misaligned chromosomes, lagging chromosomes, polylobed nuclei, and delayed passage through mitosis. Our findings identify serine 59 of SAF-A as a new target of both PLK1 and PP2A in mitosis and reveal that both phosphorylation and dephosphorylation of SAF-A serine 59 by PLK1 and PP2A, respectively, are required for accurate and timely exit from mitosis. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  1. Bacillus thuringiensis Cry3Aa protoxin intoxication of Tenebrio molitor induces widespread changes in the expression of serine peptidase transcripts.

    Science.gov (United States)

    Oppert, Brenda; Martynov, Alexander G; Elpidina, Elena N

    2012-09-01

    The yellow mealworm, Tenebrio molitor, is a pest of stored grain products and is sensitive to the Bacillus thuringiensis (Bt) Cry3Aa toxin. As digestive peptidases are a determining factor in Cry toxicity and resistance, we evaluated the expression of peptidase transcripts in the midgut of T. molitor larvae fed either a control or Cry3Aa protoxin diet for 24 h (RNA-Seq), or in larvae exposed to the protoxin for 6, 12, or 24 h (microarrays). Cysteine peptidase transcripts (9) were similar to cathepsins B, L, and K, and their expression did not vary more than 2.5-fold in control and Cry3Aa-treated larvae. Serine peptidase transcripts (48) included trypsin, chymotrypsin and chymotrypsin-like, elastase 1-like, and unclassified serine peptidases, as well as homologs lacking functional amino acids. Highly expressed trypsin and chymotrypsin transcripts were severely repressed, and most serine peptidase transcripts were expressed 2- to 15-fold lower in Cry3Aa-treated larvae. Many serine peptidase and homolog transcripts were found only in control larvae. However, expression of a few serine peptidase transcripts was increased or found only in Cry3Aa-treated larvae. Therefore, Bt intoxication significantly impacted the expression of serine peptidases, potentially important in protoxin processing, while the insect maintained the production of critical digestive cysteine peptidases. Published by Elsevier Inc.

  2. Unlike pregnant adult women, pregnant adolescent girls cannot maintain glycine flux during late pregnancy because of decreased synthesis from serine.

    Science.gov (United States)

    Hsu, Jean W; Thame, Minerva M; Gibson, Raquel; Baker, Tameka M; Tang, Grace J; Chacko, Shaji K; Jackson, Alan A; Jahoor, Farook

    2016-03-14

    During pregnancy, glycine and serine become more important because they are the primary suppliers of methyl groups for the synthesis of fetal DNA, and more glycine is required for fetal collagen synthesis as pregnancy progresses. In an earlier study, we reported that glycine flux decreased by 39% from the first to the third trimester in pregnant adolescent girls. As serine is a primary precursor for glycine synthesis, the objective of this study was to measure and compare glycine and serine fluxes and inter-conversions in pregnant adolescent girls and adult women in the first and third trimesters. Measurements were made after an overnight fast by continuous intravenous infusions of 2H2-glycine and 15N-serine in eleven adolescent girls (17·4 (se 0·1) years of age) and in ten adult women (25·8 (se 0·5) years of age) for 4 h. Adolescent girls had significantly slower glycine flux and they made less glycine from serine in the third (Padolescent girls (P=0·04) and was significantly associated with third trimester glycine flux. These findings suggest that the pregnant adolescent cannot maintain glycine flux in late pregnancy compared with early pregnancy because of decreased synthesis from serine. It is possible that the inability to maintain glycine synthesis makes her fetus vulnerable to impaired cartilage synthesis, and thus linear growth.

  3. Effect of Medium Composition on Commercially Important Alkaline Protease Production by Bacillus licheniformis N-2

    Directory of Open Access Journals (Sweden)

    Javed Iqbal Qazi

    2008-01-01

    Full Text Available Protease production by alkalophilic B. licheniformis N-2 was investigated in 50 mL of the growth medium consisting of (in g/L: glucose 10.0, soybean meal 10.0, K2HPO4 3.0, MgSO4·7H2O 0.5, NaCl 0.5 and CaCl2·2H2O 0.5 at pH=10. Different carbon and nitrogen sources in the form of fine powder of organic, inorganic and defatted meals were studied to select the suitable substrate for alkaline protease production. The highest level of alkaline protease (677.64 U/mL was obtained in the medium containing glucose followed by soluble starch and wheat bran. Among various nitrogen sources, defatted soybean meal was found to be the best inducer of alkaline protease, while inorganic nitrogen sources in the form of ammonium salts repressed the enzyme activity up to 96 %. Thermostability studies showed that the enzyme in the presence of 10 mM Ca2+ ions retained its residual activity up to 80 % even after incubation at 40 °C for 12 h. The enzyme was found stable over a broad range of pH (8–11 and lost 52 % of its residual activity at pH=12. After the treatment with Tween 20, Tween 45, Tween 65, Triton X-405, H2O2 and sodium perborate, each at 1.0 % concentration, the enzyme showed residual activity of 105, 82, 116, 109, 135 and 126 %, respectively. The application of alkaline protease for removal of blood stains from cotton fabric also indicates its potential use in detergent formulations.

  4. Corrosion of copper in alkaline chloride environments

    International Nuclear Information System (INIS)

    King, F.

    2002-08-01

    The available literature information on the corrosion and electrochemical behaviour of copper in alkaline environments has been reviewed. The purpose of the review was to assess the impact of an alkaline plume from cementitious material on the corrosion behaviour of a copper canister in an SKB-3 type repository. The effect of the evolution of the environmental conditions within the repository have been considered, including the effects of temperature, redox conditions, pore-water salinity and pH. If the pore-water pH increases prior to the establishment of anoxic conditions, the canister surface will passivate as the pore-water pH exceeds a value of ∼ pH 9. Passivation will result from the formation of a duplex Cu 2 O/Cu(OH) 2 film. The corrosion potential will be determined by the equilibrium potential for the Cu 2 O/Cu(OH) 2 couple under oxic conditions, or by the Cu/Cu 2 O redox couple under anoxic conditions (in the absence of sulphide). Pitting corrosion is only likely to occur early in the evolution of the repository environment, whilst the canister is still relatively cool ( 2 available to support localised corrosion, and prior to the increase in pore-water pH and salinity. The subsequent increase in canister surface temperature, pore-water pH and salinity, and decrease in O 2 will make pit initiation less likely, although the canister will remain passive provided the pore-water pH is maintained above pH 9. The higher the pore-water pH, the more strongly the canister is passivated and the less likely the surface is to undergo localised attack. If the pore-water salinity increases prior to the increase in pH, there could be a period of active canister corrosion before passivation occurs.Under these circumstances, the corrosion potential will be a true mixed potential, determine by the relative kinetics of Cu dissolution as CuCl 2 - and of the reduction of O 2 . The development of anoxic conditions and an increase in pore-water sulphide concentration will

  5. Alkaline lixiviation of uranium in granitic pegmatite

    International Nuclear Information System (INIS)

    Jambor, S.

    1980-06-01

    The work described herein concerns the determination of the experimental optimum conditions for the alkaline lixiviation of uranium based on the following parameters: time, pH, temperature, density and grane size. The samples were obtained from the Supamo complex, near the Currupia river in the Piar District of the Bolivar State in Venezuela. They have a granitic composition and graphitic texture. The uranium was found in them as a secondary oxidized mineral of green-yellow colour localized in fractures fissures, intergranular spaces and also in the mica as. Secondary uranitite. The lixiviation process was carried out using Na 2 CO 3 /NaHCO 3 buffer solution and for 100 gr. samples the best values for an efficient process were found by using 170 mesh grane size and 500 ml of pH buffer at 70 0 C for a 24 hour time period. (author)

  6. Properties of cathode materials in alkaline cells

    International Nuclear Information System (INIS)

    Salkind, A.J.; McBreen, J.; Freeman, R.; Parkhurst, W.A.

    1985-01-01

    Conventional and new cathode materials in primary and secondary alkaline cells were investigated for stability, structure, electrochemical reversibility and efficiency. Included were various forms of AgO for reserve-type silver-zinc batteries, a new material - AgNiO/sub 2/ - and several nickel electrodes for nickel-cadmium and nickel-hydrogen cells for aerospace applications. A comparative study was made of the stability of electroformed and chemically prepared AgO. Stability was correlated with impurities detected by XPS and SAM. After the first discharge AgNiO/sub 2/ can be recharged to the monovalent level. The discharge product is predominantly silver. Plastic-bonded nickel electrodes display a second plateau on discharge. Additions of Co(OH)/sub 2/ largely eliminate this

  7. Alkaline pulping of some eucalypts from Sudan.

    Science.gov (United States)

    Khristova, P; Kordsachia, O; Patt, R; Dafaalla, S

    2006-03-01

    Four eucalypts (Eucalyptus camaldulensis, Eucalyptus microtheca, Eucalyptus tereticornis and Eucalyptus citriodora) grown in Sudan were examined for their suitability for pulping and papermaking with different alkaline methods. Their physical, morphological and chemical characteristics are reported. The pulping trials with E. citriodora and E. tereticornis were carried out using the kraft-AQ, soda-AQ, modified AS/AQ (ASA), ASAM and kraft methods. For the other two species, only the ASAM and the kraft process were applied. ASAM pulping gave the best results in terms of yield, degree of delignification, mechanical and optical pulp properties. The best pulps, obtained in kraft and ASAM cooking of E. citriodora, were bleached to 88% ISO brightness in a totally chlorine free bleaching sequence (OQ1O/PQ2P). The bleached pulps, especially the ASAM pulp, showed good papermaking properties and would be suitable for manufacture of writing and printing grades of paper.

  8. Retention of alkaline earth elements in man

    International Nuclear Information System (INIS)

    Newton, D.

    1990-06-01

    The data on human metabolism and long-term retention of alkaline earth elements ( 133 Ba injected into six healthy male volunteers at age 25-81 y and 45 Ca and 85 Sr received by one healthy male volunteer) are presented. Excreta were collected for 2-3 weeks after injection of the tracer into an antecubital vein. Activity in urine, ashed faeces and early samples of blood plasma was determined by gamma-ray scintillation spectrometry. Whole body retention has been assessed through serial measurements of body radioactivity. The injected 133 Ba apparently became mainly skeletal within several days, much earlier than predicted by the ICRP model. The whole-body retention at 32 d ranged from 5 to 14%, the rate of loss correlating with the excretory plasma clearance rate. No age-related trends were identified in the metabolism of Ca and Sr. 2 refs, 2 figs

  9. Properties of cathode materials in alkaline cells

    Science.gov (United States)

    Salkind, A. J.; McBreen, J.; Freeman, R.; Parkhurst, W. A.

    1984-04-01

    Conventional and new cathode materials in primary and secondary alkaline cells were investigated for stability, structure, electrochemical reversibility and efficiency. Included were various forms of AgO for reserve type silver zinc batteries, a new material - AgNiO2 and several nickel electrodes for nickel cadmium and nickel hydrogen cells for aerospace applications. A comparative study was made of the stability of electroformed and chemically prepared AgO. Stability was correlated with impurities. After the first discharge AgNiO2 can be recharged to the monovalent level. The discharge product is predominantly silver. Plastic bonded nickel electrodes display a second plateau on discharge. Additions of Co(OH)2 largely eliminate this.

  10. Enzymatic Hydrolysis of Alkaline Pretreated Coconut Coir

    Directory of Open Access Journals (Sweden)

    Akbarningrum Fatmawati

    2013-06-01

    Full Text Available The purpose of this research is to study the effect of concentration and temperature on the cellulose and lignin content, and the reducing sugars produced in the enzymatic hydrolysis of coconut coir. In this research, the coconut coir is pretreated using 3%, 7%, and 11% NaOH solution at 60oC, 80oC, and 100oC. The pretreated coir were assayed by measuring the amount of cellulose and lignin and then hydrolysed using Celluclast and Novozyme 188 under various temperature (30oC, 40oC, 50oC and pH (3, 4, 5. The hydrolysis results were assayed for the reducing sugar content. The results showed that the alkaline delignification was effective to reduce lignin and to increase the cellulose content of the coir. The best delignification condition was observed at 11% NaOH solution and 100oC which removed 14,53% of lignin and increased the cellulose content up to 50,23%. The best condition of the enzymatic hydrolysis was obtained at 50oC and pH 4 which produced 7,57 gr/L reducing sugar. © 2013 BCREC UNDIP. All rights reservedReceived: 2nd October 2012; Revised: 31st January 2013; Accepted: 6th February 2013[How to Cite: Fatmawati, A., Agustriyanto, R., Liasari, Y. (2013. Enzymatic Hydrolysis of Alkaline Pre-treated Coconut Coir. Bulletin of Chemical Reaction Engineering & Catalysis, 8 (1: 34-39 (doi:10.9767/bcrec.8.1.4048.34-39[Permalink/DOI: http://dx.doi.org/10.9767/bcrec.8.1.4048.34-39] | View in  |

  11. Synthesis and Characterization of Stable Anion Exchange Membranes: The Addition of Electron-withdrawing Group

    Directory of Open Access Journals (Sweden)

    Gülşen ALBAYRAK ARI

    2016-10-01

    Full Text Available Anion exchange membranes (AEM based on poly(2,6-dimethyl-1,4-phenylene oxide (PPO were used as polymer electrolyte membrane for fuel cell applications. The membranes were prepared via bromination, quaternization and nitration reactions and their fuel cell-related properties (water uptake, ion exchange capacity, ionic conductivity were determined. Also, the structures and thermal properties were studied with Fourier transform infrared spectroscopy (FTIR, Size exclusion chromatography (SEC and Differential scanning calorimetry (DSC. Nitration of quaternized PPO (Q-PPO leaded to a decrease in water uptake and ion exchange capacity of the AEM. However, Q-PPO membrane treated with nitration reaction (NO2-Q-PPO exhibited a significant alkaline stability compared to quaternized PPO (Q-PPO.   The results indicated that the addition of electron-withdrawing group, such as nitro, into the structure in order to improve in alkaline stability is a promising new route for preparation alkaline stable AEM membranes.

  12. Enhanced oil recovery using local alkaline | Akpoturi | Nigerian ...

    African Journals Online (AJOL)

    The efficiency of the local alkaline (palm bunch ash) was compared with other conventional alkaline (NaOH, KOH, and Na2CO3). Eight cores (A1 – A$ and C1 – C4) were prepared, saturated with formation brine of 30, 000ppm salinity; crude (light and medium) were then flowed through sand samples. The samples were ...

  13. Waterbirds of alkaline lakes in Western Uganda | Pomeroy | Journal ...

    African Journals Online (AJOL)

    Uganda's only alkaline lakes are found in the Queen Elizabeth Conservation Area and the adjoining Kyambura Wildlife Reserve. Both are Important Bird Areas, a status to which the birds of the lakes contribute. A total of 179 waterbird counts were made between 1984 and 2000, covering eight of the nine alkaline lakes, ...

  14. based anion exchange membrane for alkaline polymer electrolyte

    Indian Academy of Sciences (India)

    Administrator

    Alkaline polymer electrolyte fuel cell; anion exchange membrane; PPO; homogeneous quaterni- zation. 1. Introduction. Presently, alkaline polymer electrolyte fuel cells (APEFCs) using anion exchange membranes have received an immense interest among researchers (Varcoe and Slade. 2005). The advantages of ...

  15. Dynamic Properties of the Alkaline Vesicle Population at Hippocampal Synapses

    Science.gov (United States)

    Röther, Mareike; Brauner, Jan M.; Ebert, Katrin; Welzel, Oliver; Jung, Jasmin; Bauereiss, Anna; Kornhuber, Johannes; Groemer, Teja W.

    2014-01-01

    In compensatory endocytosis, scission of vesicles from the plasma membrane to the cytoplasm is a prerequisite for intravesicular reacidification and accumulation of neurotransmitter molecules. Here, we provide time-resolved measurements of the dynamics of the alkaline vesicle population which appears upon endocytic retrieval. Using fast perfusion pH-cycling in live-cell microscopy, synapto-pHluorin expressing rat hippocampal neurons were electrically stimulated. We found that the relative size of the alkaline vesicle population depended significantly on the electrical stimulus size: With increasing number of action potentials the relative size of the alkaline vesicle population expanded. In contrast to that, increasing the stimulus frequency reduced the relative size of the population of alkaline vesicles. Measurement of the time constant for reacification and calculation of the time constant for endocytosis revealed that both time constants were variable with regard to the stimulus condition. Furthermore, we show that the dynamics of the alkaline vesicle population can be predicted by a simple mathematical model. In conclusion, here a novel methodical approach to analyze dynamic properties of alkaline vesicles is presented and validated as a convenient method for the detection of intracellular events. Using this method we show that the population of alkaline vesicles is highly dynamic and depends both on stimulus strength and frequency. Our results implicate that determination of the alkaline vesicle population size may provide new insights into the kinetics of endocytic retrieval. PMID:25079223

  16. Alkaline protease production on date waste by an alkalophilic ...

    African Journals Online (AJOL)

    This research focused on isolation and characterization of a new strain of Bacillus sp. from alkaline soil, which was able to producing extracellular alkaline protease and amylase from date waste at pH ranging from 8 to 11 and temperatures of 20 to 50°C. Purification was conducted by fractionation, concentration, and cation ...

  17. A generally applicable sequential alkaline phosphatase immunohistochemical double staining

    NARCIS (Netherlands)

    van der Loos, Chris M.; Teeling, Peter

    2008-01-01

    A universal type of sequential double alkaline phosphatase immunohistochemical staining is described that can be used for formalin-fixed, paraffin-embedded and cryostat tissue sections from human and mouse origin. It consists of two alkaline phosphatase detection systems including enzymatic

  18. Partial purification and characterization of alkaline proteases from ...

    African Journals Online (AJOL)

    Alkaline proteases from the digestive tract of anchovy were partially purified by ammonium sulfate fractionation, dialysis and Sephadex G-75 gel filtration. The purification fold and yield were 6.23 and 4.49%, respectively. The optimum activities of partially purified alkaline proteases were observed at 60°C and at pH 11.0.

  19. Comparative Detection of Alkaline Protease Production in Exiguobacterium acetylicum

    International Nuclear Information System (INIS)

    Gomaa, O.M.; EI Shafey, H.M.

    2009-01-01

    Alkaline protease is one of the most important enzymes in industry, medicine, and research. In the present work, a comparative detection for alkaline protease activity was established for instant detection of enzyme activity. Eight different alkalophilic bacterial isolates were compared based on the clear zone they produced on skim milk agar. One strain gave an absolute clear zone in 16 hours and was used for alkaline protease detection. The result of Phenotypic identification using Biology Microlog 3 identified the isolate as Exiguobacterium acetylicum. The isolate under study showed slightly different characteristics from a known Exiguobacterium acetylicum strain. The isolate tolerated alkaline conditions up to ph 11, while good growth was evident at ph 7, the maximum alkaline protease activity was observed at ph 9 which reached up to 109.01 U/ml. The alkaline activity assay using alkaline protease enzyme assay were coordinating with those obtained by conductivity; there was a relevant decrease in conductivity at the maximum increase in enzyme activity, which proved the cell membrane conductivity has a close relation to alkaline protease production. This isolate has tolerated gamma radiation, the increase in dose (up to 4 Gy) gave wider clear zones in terms of diameter and this was relevant to the conductivity measurements

  20. Application of alkaline waterflooding to a high acidity crude oil

    Energy Technology Data Exchange (ETDEWEB)

    Sayyouh, M.H. (King Sand Univ., Riyadh (SA). Petroleum Engineering Dept.); Abdel-Waly, A.; Osman, A. (Cairo Univ. (EG). Petroleum Engineering Dept.); Awara, A.Z. (Geisum Oil Company, Cairo (EG))

    The enhanced recovery of a high acidity crude oil (South Geisum crude) by alkaline solutions is studied. Acidity, interfacial tension, and contact angle, were investigated. Displacement tests were carried out to study the effect of alkaline slug concentration, slug size, oil alkali type, temperature and viscosity on recovery. The interfacial tension between crude oil and formation water decreases with increasing alkaline concentration until a minimum, after which it increases again. Contact angle measurements indicated oil-wetting conditions that increase by the addition of alkaline solutions. At the early stages of displacement, oil recovery increases with increasing alkaline concentration until a maximum at 4% by weight NaOH concentration. Also, at such early stages, an excessive increase in alkaline concentration results in lower oil recovery. On the other hand, after the injection of many pore volumes of water, oil recovery is almost the same regardless of the alkaline concentration. Oil recovery increases with increasing alkaline slug size until a maximum at 15% PV. Sodium hydroxide slugs produce more oil recovery than sodium carbonate slugs. Oil recovery increases with increasing temperature (from 25 to 55{sup 0}C) and decreasing oil viscosity.

  1. Production of Thermostab Streptomyc ction of Thermostable Alkaline ...

    African Journals Online (AJOL)

    Correspondence: onyi4bernardine@gmail.com. Introduction. Proteases are enzymes that catalyze the hydrolysis of protein into amino-acid. Proteases, especially alkaline type constitute about 60-65% of the global industrial enzyme market (Gupta et al., 2010). Among different proteases, alkaline proteases produced by.

  2. Production of alkaline protease by Teredinobacter turnirae cells ...

    African Journals Online (AJOL)

    The conditions for immobilizing the new alkaline protease-producing bacteria strain Teredinobacter turnirae by entrapment in calcium alginate gel were investigated. The influence of alginate concentration (20, 25 and 30 g/l) and initial cell loading (ICL) on enzyme production were studied. The production of alkaline ...

  3. Timing-dependent reduction in ethanol sedation and drinking preference by NMDA receptor co-agonist d-serine.

    Science.gov (United States)

    Lockridge, Amber; Romero, Gabriel; Harrington, Justin; Newland, Brett; Gong, Zi; Cameron, Andrew; Yuan, Li-Lian

    2012-06-01

    NMDA receptors become a major contributor to acute ethanol intoxication effects at high concentrations as ethanol binds to a unique site on the receptor and inhibits glutamatergic activity in multiple brain areas. Although a convincing body of literature exists on the ability of NMDA receptor antagonists to mimic and worsen cellular and behavioral ethanol effects, receptor agonists have been less well-studied. In addition to a primary agonist site for glutamate, the NMDA receptor contains a separate co-agonist site that responds to endogenous amino acids glycine and d-serine. d-serine is both selective for this co-agonist site and potent in boosting NMDA dependent activity even after systemic administration. In this study, we hypothesized that exogenous d-serine might ameliorate some acute ethanol behaviors by opposing NMDA receptor inhibition. We injected adult male C57 mice with a high concentration of d-serine at various time windows relative to ethanol administration and monitored sedation, motor coordination and voluntary ethanol drinking. d-serine (2.7 g/kg, ip) prolonged latency to a loss of righting reflex (LoRR) and shortened LoRR duration when given 15 min before ethanol (3 g/kg) but not when it was injected with or shortly after ethanol. Blood samples taken at sedative recovery and at fixed time intervals revealed no effect of d-serine on ethanol concentration but an ethanol-induced decrease in l-serine and glycine content was prevented by acute d-serine pre-administration. d-serine had no effect on ethanol-induced (2 g/kg) rotarod deficits in young adult animals but independently and interactively degraded motor performance in a subset of older mice. Finally, a week-long series of daily ip injections resulted in a 50% decrease in free choice ethanol preference for d-serine treated animals compared to saline-injected controls in a two-bottle choice experiment. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. Stable isotope separation

    International Nuclear Information System (INIS)

    Botter, F.; Molinari, Ph.; Dirian, G.

    1964-01-01

    circulates. Studies are going forward to increase the separation factor of the cascade by using an auxiliary gas. Isotopic Exchange: A series of experiments has been performed to determine the isotopic separation factor between a lithium amalgam and an organic solvent containing a lithium salt. The various parameters which may enter into this exchange were studied: the influence of the type of solvent (the two solvents used were dimethylformamide and tetrahydrofurane), of the temperature, of the concentration and of the nature of the associated halogen. Solutions of Li metal and liquid NH 3 were studied also. A number of tests were carried out to see whether there was a difference between the isotopic compositions of the Li present in the two liquid layers obtained by the dissolution of Li metal in ammonia. No difference was observed between the Li isotopic ratios in the two phases. This was also true in the case of a layer of of Li in liquid NH 3 and a layer of Li I in a similar solvent. Electromigration: The method of counter current electro Migration in fused salts is a powerful isotopic enrichment technique. It can be used successfully to separate the isotopes of elements with strongly metallic character. In the case of alkalis, small quantities of isotopically pure 7 Li have been obtained, while the enrichment factors obtained for potassium are of the order of 10. With regard to the alkaline earths, it has been possible to produce small quantities of calcium enriched 5 times in 46 Ca. However considerable technological difficulties rise up in the way of production on a semi-industrial scale. (authors) [fr

  5. Ethanol production from bamboo using mild alkaline pre-extraction followed by alkaline hydrogen peroxide pretreatment.

    Science.gov (United States)

    Yuan, Zhaoyang; Wen, Yangbing; Kapu, Nuwan Sella

    2018-01-01

    A sequential two-stage pretreatment process comprising alkaline pre-extraction and alkaline hydrogen peroxide pretreatment (AHP) was investigated to convert bamboo carbohydrates into bioethanol. The results showed that mild alkaline pre-extraction using 8% (w/w) sodium hydroxide (NaOH) at 100°C for 180min followed by AHP pretreatment with 4% (w/w) hydrogen peroxide (H 2 O 2 ) was sufficient to generate a substrate that could be efficiently digested with low enzyme loadings. Moreover, alkali pre-extraction enabled the use of lower H 2 O 2 charges in AHP treatment. Two-stage pretreatment followed by enzymatic hydrolysis with only 9FPU/g cellulose led to the recovery of 87% of the original sugars in the raw feedstock. The use of the pentose-hexose fermenting Saccharomyces cerevisiae SR8u strain enabled the utilization of 95.7% sugars in the hydrolysate to reach 4.6%w/v ethanol titer. The overall process also enabled the recovery of 62.9% lignin and 93.8% silica at high levels of purity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Phosphatidylinositol anchor of HeLa cell alkaline phosphatase

    International Nuclear Information System (INIS)

    Jemmerson, R.; Low, M.G.

    1987-01-01

    Alkaline phosphatase from cancer cells, HeLa TCRC-1, was biosynthetically labeled with either 3 H-fatty acids or [ 3 H]ethanolamine as analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and fluorography of immunoprecipitated material. Phosphatidylinositol-specific phospholipase C (PI-PLC) released a substantial proportion of the 3 H-fatty acid label from immunoaffinity-purified alkaline phosphatase but had no effect on the radioactivity of [ 3 H]ethanolamine-labeled material. PI-PLC also liberated catalytically active alkaline phosphatase from viable cells, and this could be selectively blocked by monoclonal antibodies to alkaline phosphatase. However, the alkaline phosphatase released from 3 H-fatty acid labeled cells by PI-PLC was not radioactive. By contrast, treatment with bromelain removed both the 3 H-fatty acid and the [ 3 H]ethanolamine label from purified alkaline phosphatase. Subtilisin was also able to remove the [ 3 H]ethanolamine label from the purified alkaline phosphatase. The 3 H radioactivity in alkaline phosphatase purified from [ 3 H]ethanolamine-labeled cells comigrated with authentic [ 3 H]ethanolamine by anion-exchange chromatography after acid hydrolysis. The data suggest that the 3 H-fatty acid and [ 3 H]ethanolamine are covalently attached to the carboxyl-terminal segment since bromelain and subtilisin both release alkaline phosphatase from the membrane by cleavage at that end of the polypeptide chain. The data are consistent with findings for other proteins recently shown to be anchored in the membrane through a glycosylphosphatidylinositol structure and indicate that a similar structure contributes to the membrane anchoring of alkaline phosphatase

  7. The effect of irrigated rice cropping on the alkalinity of two alkaline rice soils in the Sahel

    NARCIS (Netherlands)

    Asten, van P.J.A.; Zelfde, van 't J.A.; Zee, van der S.E.A.T.M.; Hammecker, C.

    2004-01-01

    Irrigated rice cropping is practiced to reclaim alkaline-sodic soils in many parts of the world. This practice is in apparent contrast with earlier studies in the Sahel, which suggests that irrigated rice cropping may lead to the formation of alkaline-sodic soils. Soil column experiments were done

  8. Influence of alkalinity and VFAs on the performance of an UASB reactor with recirculation for the treatment of Tequila vinasses.

    Science.gov (United States)

    López-López, Alberto; León-Becerril, Elizabeth; Rosales-Contreras, María Elena; Villegas-García, Edgardo

    2015-01-01

    The main problem linked to the stability of upflow anaerobic sludge blanket (UASB) reactors during the treatment of Tequila vinasse is the high acidity and the null alkalinity present in this effluent. This research evaluates the effect of alkalinity and volatile fatty acids (VFAs) concentration on the performance of an UASB reactor with recirculation of the effluent for removing organic matter and biogas production from Tequila vinasses. Recirculation of the effluent reduces the impact of VFAs and organic matter concentration present in the influent, inducing the stability of the reactor. The UASB reactor was operated during 235 days at organic loading rates from 2.5 to 20.0 kg m(-3) d(-1), attaining a removal efficiency of COD greater than 75% with a methane yield of 335 ml CH4 g(-1) COD at SPT, maintaining a ratio of VFAs/Alk ≤ 0.5. Therefore, an optimal ratio of VFAs/Alk was established for the system operating in stable conditions for the treatment of Tequila vinasses. Under these conditions, the alkalinity was recuperated by the system itself, without the addition of external alkalinity.

  9. Influence of alkali and alkaline earth elements on the uptake of radionuclides by Pleurototus eryngii fruit bodies

    Energy Technology Data Exchange (ETDEWEB)

    Guillen, J., E-mail: fguillen@unex.es [LARUEX, Dpt. Applied Physics, Faculty of Veterinary Science, University of Extremadura, Avda. Universidad, s/n, 10071 Caceres (Spain); Baeza, A.; Salas, A. [LARUEX, Dpt. Applied Physics, Faculty of Veterinary Science, University of Extremadura, Avda. Universidad, s/n, 10071 Caceres (Spain)

    2012-04-15

    In the literature, there are many data available on radionuclide contents and their transfer to different species of mushrooms. There are some variables, however, which affect the transfer but are very difficult to observe in collected wild mushrooms. An example is the effect of different concentrations of alkali and alkaline earth elements in the soil. Modification of these concentrations in the soil solution has traditionally been used as a countermeasure to deal with radioactively contaminated areas. In the present work, fruiting bodies of Pleurotus eryngii, a saprophytic mushroom, were grown under controlled laboratory conditions, varying the content of alkali (potassium and caesium) and alkaline earth (calcium and strontium) elements. The transfer of {sup 134}Cs, {sup 85}Sr, and {sup 60}Co (added to the cultures) and of natural {sup 210}Pb was analysed by increasing the content of each stable element considered. A significant, but nonlinear, enhancement of stable caesium and {sup 134}Cs was observed with increasing content of stable caesium in the substrate/mycelium. The transfer of {sup 85}Sr decreased with the addition of each stable cation, whereas the {sup 60}Co and {sup 210}Pb transfers were unaffected. - Highlights: Black-Right-Pointing-Pointer The addition of stable potassium did not affect the uptake of radiocaesium. Black-Right-Pointing-Pointer The addition of stable caesium increased the stable caesium and {sup 134}Cs content in the fruiting bodies of Pleurotus eryngii. Black-Right-Pointing-Pointer The addition of calcium reduced the content of calcium and {sup 85}Sr in the fruiting bodies. Black-Right-Pointing-Pointer These countermeasures did not work properly in the case of {sup 60}Co and {sup 210}Pb, no effect was observed.

  10. Serine Proteolytic Pathway Activation Reveals an Expanded Ensemble of Wound Response Genes in Drosophila

    Science.gov (United States)

    Patterson, Rachel A.; Juarez, Michelle T.; Hermann, Anita; Sasik, Roman; Hardiman, Gary; McGinnis, William

    2013-01-01

    After injury to the animal epidermis, a variety of genes are transcriptionally activated in nearby cells to regenerate the missing cells and facilitate barrier repair. The range and types of diffusible wound signals that are produced by damaged epidermis and function to activate repair genes during epidermal regeneration remains a subject of very active study in many animals. In Drosophila embryos, we have discovered that serine protease function is locally activated around wound sites, and is also required for localized activation of epidermal repair genes. The serine protease trypsin is sufficient to induce a striking global epidermal wound response without inflicting cell death or compromising the integrity of the epithelial barrier. We developed a trypsin wounding treatment as an amplification tool to more fully understand the changes in the Drosophila transcriptome that occur after epidermal injury. By comparing our array results with similar results on mammalian skin wounding we can see which evolutionarily conserved pathways are activated after epidermal wounding in very diverse animals. Our innovative serine protease-mediated wounding protocol allowed us to identify 8 additional genes that are activated in epidermal cells in the immediate vicinity of puncture wounds, and the functions of many of these genes suggest novel genetic pathways that may control epidermal wound repair. Additionally, our data augments the evidence that clean puncture wounding can mount a powerful innate immune transcriptional response, with different innate immune genes being activated in an interesting variety of ways. These include puncture-induced activation only in epidermal cells in the immediate vicinity of wounds, or in all epidermal cells, or specifically in the fat body, or in multiple tissues. PMID:23637905

  11. The S8 serine, C1A cysteine and A1 aspartic protease families in Arabidopsis.

    Science.gov (United States)

    Beers, Eric P; Jones, Alan M; Dickerman, Allan W

    2004-01-01

    The Arabidopsis thaliana genome has over 550 protease sequences representing all five catalytic types: serine, cysteine, aspartic acid, metallo and threonine (MEROPS peptidase database, http://merops.sanger.ac.uk/), which probably reflect a wide variety of as yet unidentified functions performed by plant proteases. Recent indications that the 26S proteasome, a T1 family-threonine protease, is a regulator of light and hormone responsive signal transduction highlight the potential of proteases to participate in many aspects of plant growth and development. Recent discoveries that proteases are required for stomatal distribution, embryo development and disease resistance point to wider roles for four additional multigene families that include some of the most frequently studied (yet poorly understood) plant proteases: the subtilisin-like, serine proteases (family S8), the papain-like, cysteine proteases (family C1A), the pepsin-like, aspartic proteases (family A1) and the plant matrixin, metalloproteases (family M10A). In this report, 54 subtilisin-like, 30 papain-like and 59 pepsin-like proteases from Arabidopsis, are compared with S8, C1A and A1 proteases known from other plant species at the functional, phylogenetic and gene structure levels. Examples of structural conservation between S8, C1A and A1 genes from rice, barley, tomato and soybean and those from Arabidopsis are noted, indicating that some common, essential plant protease roles were established before the divergence of monocots and eudicots. Numerous examples of tandem duplications of protease genes and evidence for a variety of restricted expression patterns suggest that a high degree of specialization exists among proteases within each family. We propose that comprehensive analysis of the functions of these genes in Arabidopsis will firmly establish serine, cysteine and aspartic proteases as regulators and effectors of a wide range of plant processes.

  12. Efficient Reassignment of a Frequent Serine Codon in Wild-Type Escherichia coli.

    Science.gov (United States)

    Ho, Joanne M; Reynolds, Noah M; Rivera, Keith; Connolly, Morgan; Guo, Li-Tao; Ling, Jiqiang; Pappin, Darryl J; Church, George M; Söll, Dieter

    2016-02-19

    Expansion of the genetic code through engineering the translation machinery has greatly increased the chemical repertoire of the proteome. This has been accomplished mainly by read-through of UAG or UGA stop codons by the noncanonical aminoacyl-tRNA of choice. While stop codon read-through involves competition with the translation release factors, sense codon reassignment entails competition with a large pool of endogenous tRNAs. We used an engineered pyrrolysyl-tRNA synthetase to incorporate 3-iodo-l-phenylalanine (3-I-Phe) at a number of different serine and leucine codons in wild-type Escherichia coli. Quantitative LC-MS/MS measurements of amino acid incorporation yields carried out in a selected reaction monitoring experiment revealed that the 3-I-Phe abundance at the Ser208AGU codon in superfolder GFP was 65 ± 17%. This method also allowed quantification of other amino acids (serine, 33 ± 17%; phenylalanine, 1 ± 1%; threonine, 1 ± 1%) that compete with 3-I-Phe at both the aminoacylation and decoding steps of translation for incorporation at the same codon position. Reassignments of different serine (AGU, AGC, UCG) and leucine (CUG) codons with the matching tRNA(Pyl) anticodon variants were met with varying success, and our findings provide a guideline for the choice of sense codons to be reassigned. Our results indicate that the 3-iodo-l-phenylalanyl-tRNA synthetase (IFRS)/tRNA(Pyl) pair can efficiently outcompete the cellular machinery to reassign select sense codons in wild-type E. coli.

  13. Inhibition of serine beta-lactamases by vanadate-catechol complexes.

    Science.gov (United States)

    Adediran, S A; Pratt, R F

    2008-09-09

    All three classes of serine beta-lactamases are inhibited at micromolar levels by 1:1 complexes of catechols with vanadate. Vanadate reacts with catechols at submillimolar concentrations in aqueous buffer at neutral pH in several steps, initially forming 1:1, 1:2, and, possibly, 1:3 complexes. Formation of these complexes is followed by the slower reduction of vanadate (V (V)) to vanadyl (V (IV)) and oxidation of the catechol. Vanadyl-catechol complexes, however, do not inhibit the beta-lactamases. Rate and equilibrium constants of formation of the 1:1 and 1:2 complexes of vanadate with catechol itself and with 2,3-dihydroxynaphthalene were measured by stopped-flow spectrophotometry. Typical examples of all three classes of serine beta-lactamases (the class A TEM-2, class C P99, and class D OXA-1 enzymes) were competitively inhibited by the 1:1 vanadate-catechol complexes. The inhibition was modestly enhanced by hydrophobic substituents on the catechol. The 1:1 vanadate complexes are considerably better inhibitors of the P99 beta-lactamase than 1:1 complexes of catechol with boric acid and are likely to contain penta- or hexacoordinated vanadium rather than tetracooordinated. Molecular modeling showed that a pentacoordinated 1:1 vanadate-catechol complex readily fits into the class C beta-lactamase active site with coordination to the nucleophilic serine hydroxyl oxygen. Such complexes may resemble the pentacoordinated transition states of phosphyl transfer, a reaction also catalyzed by beta-lactamases.

  14. Thromboxane receptor hyper-responsiveness in hypoxic pulmonary hypertension requires serine 324.

    Science.gov (United States)

    Santhosh, K T; Sikarwar, A S; Hinton, M; Chelikani, P; Dakshinamurti, S

    2014-02-01

    Dysregulation of the thromboxane A₂ (TP) receptor, resulting in agonist hypersensitivity and hyper-responsiveness, contributes to exaggerated vasoconstriction in the hypoxic pulmonary artery in neonatal persistent pulmonary hypertension. We previously reported that hypoxia inhibits TP receptor phosphorylation, causing desensitization. Hence, we examined the role of PKA-accessible serine residues in determining TP receptor affinity, using site-directed mutational analysis. Vasoconstriction to a thromboxane mimetic and phosphorylation of TP receptor serine was examined in pulmonary arteries from neonatal swine with persistent pulmonary hypertension and controls. Effects of hypoxia were determined in porcine and human TP receptors. Human TPα serines at positions 324, 329 and 331 (C-terminal tail) were mutated to alanine and transiently expressed in HEK293T cells. Saturation binding and displacement kinetics of a TP antagonist and agonist were determined in porcine TP, wild-type human TPα and all TP mutants. Agonist-elicited calcium mobilization was determined for each TP mutant, in the presence of a PKA activator or inhibitor, and in hypoxic and normoxic conditions. The Ser324A mutant was insensitive to PKA activation and hypoxia, had a high affinity for agonist and increased agonist-induced calcium mobilization. Ser329A was no different from wild-type TP receptors. Ser331A was insensitive to hypoxia and PKA with a decreased agonist-mediated response. In hypoxic pulmonary hypertension, loss of site-specific phosphorylation of the TP receptor causes agonist hyper-responsiveness. Ser324 is the primary residue phosphorylated by PKA, which regulates TP receptor-agonist interactions. Ser331 mutation confers loss of TP receptor-agonist interaction, regardless of PKA activity. © 2013 The British Pharmacological Society.

  15. Serine proteolytic pathway activation reveals an expanded ensemble of wound response genes in Drosophila.

    Directory of Open Access Journals (Sweden)

    Rachel A Patterson

    Full Text Available After injury to the animal epidermis, a variety of genes are transcriptionally activated in nearby cells to regenerate the missing cells and facilitate barrier repair. The range and types of diffusible wound signals that are produced by damaged epidermis and function to activate repair genes during epidermal regeneration remains a subject of very active study in many animals. In Drosophila embryos, we have discovered that serine protease function is locally activated around wound sites, and is also required for localized activation of epidermal repair genes. The serine protease trypsin is sufficient to induce a striking global epidermal wound response without inflicting cell death or compromising the integrity of the epithelial barrier. We developed a trypsin wounding treatment as an amplification tool to more fully understand the changes in the Drosophila transcriptome that occur after epidermal injury. By comparing our array results with similar results on mammalian skin wounding we can see which evolutionarily conserved pathways are activated after epidermal wounding in very diverse animals. Our innovative serine protease-mediated wounding protocol allowed us to identify 8 additional genes that are activated in epidermal cells in the immediate vicinity of puncture wounds, and the functions of many of these genes suggest novel genetic pathways that may control epidermal wound repair. Additionally, our data augments the evidence that clean puncture wounding can mount a powerful innate immune transcriptional response, with different innate immune genes being activated in an interesting variety of ways. These include puncture-induced activation only in epidermal cells in the immediate vicinity of wounds, or in all epidermal cells, or specifically in the fat body, or in multiple tissues.

  16. A Mycobacterium avium subsp. paratuberculosis predicted serine protease is associated with acid stress and intraphagosomal survival

    Directory of Open Access Journals (Sweden)

    Abirami Kugadas

    2016-08-01

    Full Text Available AbstractThe ability to maintain intra-cellular pH is crucial for bacteria and other microbes to survive in diverse environments, particularly those that undergo fluctuations in pH. Mechanisms of acid resistance remain poorly understood in mycobacteria. Although studies investigating acid stress in M. tuberculosis are gaining traction, few center on Mycobacterium avium subsp. paratuberculosis (MAP, the etiological agent of chronic enteritis in ruminants. We identified a MAP acid stress response network involved in macrophage infection. The central node of this network was MAP0403, a predicted serine protease that shared an 86% amino acid identity with MarP in M. tuberculosis. Previous studies confirmed MarP as a serine protease integral to maintaining intra-bacterial pH and survival in acid in vitro and in vivo. We show that MAP0403 is upregulated in infected macrophage and MAC-T cells and coincided with phagosome acidification. Treatment of mammalian cells with bafilomcyin A1, a potent inhibitor of phagosomal vATPases, diminished MAP0403 transcription. MAP0403 expression was also noted in acidic medium. A surrogate host, M. smegmatis mc2 155, was designed to express MAP0403 and when exposed to either macrophages or in vitro acid stress had increase bacterial cell viability, which corresponds to maintenance of intra-bacterial pH in acidic (pH = 5 conditions. These data suggest that MAP0403 may be the equivalent of MarP in MAP. Future studies confirming MAP0403 as a serine protease and exploring its structure and possible substrates are warranted.

  17. Trypsin- and Chymotrypsin-Like Serine Proteases in Schistosoma mansoni - 'The Undiscovered Country'

    Czech Academy of Sciences Publication Activity Database

    Horn, Martin; Fajtová, Pavla; Arreola, L. R.; Ulrychová, Lenka; Bartošová-Sojková, Pavla; Franta, Zdeněk; Protasio, A. V.; Opavský, David; Vondrášek, Jiří; McKerrow, J. H.; Mareš, Michael; Caffrey, C. R.; Dvořák, Jan

    2014-01-01

    Roč. 8, č. 3 (2014), e2766/1-e2766/13 ISSN 1935-2735 R&D Projects: GA ČR(CZ) GAP302/11/1481; GA MŠk(CZ) ME10011 EU Projects: European Commission(XE) 248642 - SCHISTOSOMA PROTEASE Institutional support: RVO:61388963 ; RVO:68378050 ; RVO:60077344 Keywords : schistosomiasis * blood fluke * serine protease Subject RIV: CE - Biochemistry; EB - Genetics ; Molecular Biology (UMG-J); FN - Epidemiology, Contagious Diseases ; Clinical Immunology (BC-A) Impact factor: 4.446, year: 2014 http://www.plosntds.org/article/info%3Adoi%2F10.1371%2Fjournal.pntd.0002766

  18. Inhibition of Human Serine Racemase, an Emerging Target for Medicinal Chemistry

    Czech Academy of Sciences Publication Activity Database

    Jirásková-Vaníčková, Jana; Ettrich, Rüdiger; Vorlová, Barbora; Hoffman, Hillary Elizabeth; Lepšík, Martin; Jansa, Petr; Konvalinka, Jan

    2011-01-01

    Roč. 12, č. 7 (2011), s. 1037-1055 ISSN 1389-4501 R&D Projects: GA MŠk 1M0508; GA ČR GA203/08/0114 Institutional research plan: CEZ:AV0Z40550506; CEZ:AV0Z60870520 Keywords : amino acid analogs * L-erythro-3-hydroxyaspartate (L-EHA) * D-serine * neurodegenerative diseases * NMDA receptors * pyridoxal-5´-phosphate (PLP) Subject RIV: FR - Pharmacology ; Medidal Chemistry Impact factor: 3.553, year: 2011

  19. Campylobacter jejuni gene cj0511 encodes a serine peptidase essential for colonisation

    Directory of Open Access Journals (Sweden)

    A.V. Karlyshev

    2014-01-01

    Full Text Available According to MEROPS peptidase database, Campylobacter species encode 64 predicted peptidases. However, proteolytic properties of only a few of these proteins have been confirmed experimentally. In this study we identified and characterised a Campylobacter jejuni gene cj0511 encoding a novel peptidase. The proteolytic activity associated with this enzyme was demonstrated in cell lysates. Moreover, enzymatic studies conducted with a purified protein confirmed a prediction of it being a serine peptidase. Furthermore, cj0511 mutant was found to be severely attenuated in chicken colonisation model, suggesting a role of the Cj0511 protein in infection.

  20. The action of neutrophil serine proteases on elastin and its precursor

    DEFF Research Database (Denmark)

    Heinz, Andrea; Jung, Michael C; Jahreis, Günther

    2012-01-01

    proteases in tropoelastin and elastin revealed that HLE and PR3 similarly tolerate hydrophobic and/or aliphatic amino acids such as Ala, Gly and Val at P(1), which are also preferred by CG. In addition, CG prefers the bulky hydrophobic amino acid Leu and accepts the bulky aromatic amino acids Phe and Tyr....... CG shows a strong preference for the charged amino acid Lys at P(1) in tropoelastin, whereas Lys was not identified at P(1) in CG digests of elastin due to extensive cross-linking at Lys residues in mature elastin. All three serine proteases showed a clear preference for Pro at P(2) and P(4...

  1. Malonate-based inhibitors of mammalian serine racemase: Kinetic characterization and structure-based computational study

    Czech Academy of Sciences Publication Activity Database

    Vorlová, Barbora; Nachtigallová, Dana; Jirásková-Vaníčková, Jana; Ajani, Haresh; Jansa, Petr; Řezáč, Jan; Fanfrlík, Jindřich; Otyepka, M.; Hobza, Pavel; Konvalinka, Jan; Lepšík, Martin

    2015-01-01

    Roč. 89, Jan 7 (2015), s. 189-197 ISSN 0223-5234 R&D Projects: GA ČR GBP208/12/G016 Grant - others:GA MŠk(CZ) ED2.1.00/03.0058 Program:ED Institutional support: RVO:61388963 Keywords : NMDA receptor * pyridoxal-5 '-phosphate-dependent enzyme * human/mouse serine racemase * malonate-based inhibitors * semiempirical quantum mechanical calculations Subject RIV: CE - Biochemistry Impact factor: 3.902, year: 2015

  2. Macrophage migration inhibitory factor (MIF) modulates trophic signaling through interaction with serine protease HTRA1

    DEFF Research Database (Denmark)

    Fex Svenningsen, Åsa; Loering, Svenja; Sørensen, Anna Lahn

    2017-01-01

    its function is far from clear. Here, we report the finding of a new binding partner to MIF, the ser-ine protease HTRA1. This enzyme cleaves several growth factors, extracellular matrix molecules and is implicated in some of the same diseases as MIF. We show that the func-tion of the binding between...... MIF and HTRA1 is to inhibit the proteolytic activity of HTRA1, modulating the availability of molecules that can change cell growth and differentiation. MIF is therefore the first endogenous inhibitor ever found for HTRA1. It was found that both molecules were present in astrocytes...

  3. Batteries: from alkaline to zinc-air.

    Science.gov (United States)

    Dondelinger, Robert M

    2004-01-01

    There is no perfect disposable battery--one that will sit on the shelf for 20 years, then continually provide unlimited current, at a completely constant voltage until exhausted, without producing heat. There is no perfect rechargeable battery--one with all of the above characteristics and will also withstand an infinite overcharge while providing an equally infinite cycle life. There are only compromises. Every battery selection is a compromise between the ideally required characteristics, the advantages, and the limitations of each battery type. General selection of a battery type to power a medical device is largely outside the purview of the biomed. Initially, these are engineering decisions made at the time of medical equipment design and are intended to be followed in perpetuity. However, since newer cell types evolve and the manufacturer's literature is fixed at the time of printing, some intelligent substitutions may be made as long as the biomed understands the characteristics of both the recommended cell and the replacement cell. For example, when the manufacturer recommends alkaline, it is usually because of the almost constant voltage it produces under the devices' design load. Over time, other battery types may be developed that will meet the intent of the manufacturer, at a lower cost, providing longer operational life, at a lower environmental cost, or with a combination of these advantages. In the Obstetrical Doppler cited at the beginning of this article, the user had put in carbon-zinc cells, and the biomed had unknowingly replaced them with carbonzinc cells. If the alkaline cells recommended by the manufacturer had been used, there would have been the proper output voltage at the battery terminals when the [table: see text] cells were at their half-life. Instead, the device refused to operate since the battery voltage was below presumed design voltage. While battery-type substitutions may be easily and relatively successfully made in disposable

  4. Serine and alanine racemase activities of VanT: a protein necessary for vancomycin resistance in Enterococcus gallinarum BM4174.

    Science.gov (United States)

    Arias, C A; Weisner, J; Blackburn, J M; Reynolds, P E

    2000-07-01

    Vancomycin resistance in Enterococcus gallinarum results from the production of UDP-MurNAc-pentapeptide[D-Ser]. VanT, a membrane-bound serine racemase, is one of three proteins essential for this resistance. To investigate the selectivity of racemization of L-Ser or L-Ala by VanT, a strain of Escherichia coli TKL-10 that requires D-Ala for growth at 42 degrees C was used as host for transformation experiments using plasmids containing the full-length vanT from Ent. gallinarum or the alanine racemase gene (alr) of Bacillus stearothermophilus: both plasmids were able to complement E. coli TKL-10 at 42 degrees C. No alanine or serine racemase activities were detected in the host strain E. coli TKL-10 grown at 30, 34 or 37 degrees C. Serine and alanine racemase activities were found almost exclusively (96%) in the membrane fraction of E. coli TKL-10/pCA4(vanT): the alanine racemase activity of VanT was 14% of the serine racemase activity in both E. coli TKL-10/pCA4(vanT) and E. coli XL-1 Blue/pCA4(vanT). Alanine racemase activity was present mainly (95%) in the cytoplasmic fraction of E. coli TKL-10/pJW40(alr), with a trace (1.6%) of serine racemase activity. Additionally, DNA encoding the soluble domain of VanT was cloned and expressed in E. coli M15 as a His-tagged polypeptide and purified: this polypeptide also exhibited both serine and alanine racemase activities; the latter was approximately 18% of the serine racemase activity, similar to that of the full-length, membrane-bound enzyme. N-terminal sequencing of the purified His-tagged polypeptide revealed a single amino acid sequence, indicating that the formation of heterodimers between subunits of His-tagged C-VanT and endogenous alanine racemases from E. coli was unlikely. The authors conclude that the membrane-bound serine racemase VanT also has alanine racemase activity but is able to racemize serine more efficiently than alanine, and that the cytoplasmic domain is responsible for the racemase activity.

  5. Site-specific and synergistic stimulation of methylation on the bacterial chemotaxis receptor Tsr by serine and CheW

    Directory of Open Access Journals (Sweden)

    Weis Robert M

    2005-03-01

    Full Text Available Abstract Background Specific glutamates in the methyl-accepting chemotaxis proteins (MCPs of Escherichia coli are modified during sensory adaptation. Attractants that bind to MCPs are known to increase the rate of receptor modification, as with serine and the serine receptor (Tsr, which contributes to an increase in the steady-state (adapted methylation level. However, MCPs form ternary complexes with two cytoplasmic signaling proteins, the kinase (CheA and an adaptor protein (CheW, but their influences on receptor methylation are unknown. Here, the influence of CheW on the rate of Tsr methylation has been studied to identify contributions to the process of adaptation. Results Methyl group incorporation was measured in a series of membrane samples in which the Tsr molecules were engineered to have one available methyl-accepting glutamate residue (297, 304, 311 or 493. The relative rates at these sites (0.14, 0.05, 0.05 and 1, respectively differed from those found previously for the aspartate receptor (Tar, which was in part due to sequence differences between Tar and Tsr near site four. The addition of CheW generated unexpectedly large and site-specific rate increases, equal to or larger than the increases produced by serine. The increases produced by serine and CheW (added separately were the largest at site one, ~3 and 6-fold, respectively, and the least at site four, no change and ~2-fold, respectively. The rate increases were even larger when serine and CheW were added together, larger than the sums of the increases produced by serine and CheW added separately (except site four. This resulted in substantially larger serine-stimulated increases when CheW was present. Also, CheW enhanced methylation rates when either two or all four sites were available. Conclusion The increase in the rate of receptor methylation upon CheW binding contributes significantly to the ligand specificity and kinetics of sensory adaptation. The synergistic effect of

  6. Extraction of uranium from alkaline medium by organic extractants

    International Nuclear Information System (INIS)

    El - nadi, Y.A.M.

    1996-01-01

    A recent possible route for treatment of small amounts of neutron irradiated uranium from alkaline medium was addressed. This have some advantages related to the isolation of many troublesome fission products which forms insoluble carbonates or hydroxides upon alkaline carbonate dissolution of uranium oxide. In alkaline solution containing sodium carbonate and hydroxide, hexavalent uranium is expected to be dissolved in solution whereby most of the fission products transition elements exemplified by zirconium and niobium as well as trivalent lanthanides and actinides will be precipitated. Therefore, in this medium the solution will contain mainly alkali and alkaline earth metal such as Cs + and Sr 2+ and anionic fission products such as pertechnetates and antimonates, Which can be easily separted from uranium. Therefore, The present thesis is directed to investigate the following; 1 - solubility of uranium oxide in alkaline medium consists of sodium carbonate and sodium hydroxide in presence of oxidizing agent. 2 - Extraction of uranium from the aforementioned alkaline medium by immiscible organic diluent containing different amine extractants. 3 - Extraction behaviour of uranium by the macroporous anion exchanger, amberlite IRA - 410, from alkaline solution

  7. Dynamical attraction to stable processes

    OpenAIRE

    Fisher, Albert M.; Talet, Marina

    2012-01-01

    We apply dynamical ideas within probability theory, proving an almost-sure invariance principle in log density for stable processes. The familiar scaling property (self-similarity) of the stable process has a stronger expression, that the scaling flow on Skorokhod path space is a Bernoulli flow. We prove that typical paths of a random walk with i.i.d. increments in the domain of attraction of a stable law can be paired with paths of a stable process so that, after applying a non-random regula...

  8. Optimization of the Conditions for Extraction of Serine Protease from Kesinai Plant (Streblus asper Leaves Using Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Md. Zaidul Islam Sarker

    2011-11-01

    Full Text Available Response surface methodology (RSM using a central composite design (CCD was employed to optimize the conditions for extraction of serine protease from kesinai (Streblus asper leaves. The effect of independent variables, namely temperature (42.5,47.5, X1, mixing time (2–6 min, X2, buffer content (0–80 mL, X3 and buffer pH (4.5–10.5, X4 on specific activity, storage stability, temperature and oxidizing agent stability of serine protease from kesinai leaves was investigated. The study demonstrated that use of the optimum temperature, mixing time, buffer content and buffer pH conditions protected serine protease during extraction, as demonstrated by low activity loss. It was found that the interaction effect of mixing time and buffer content improved the serine protease stability, and the buffer pH had the most significant effect on the specific activity of the enzyme. The most desirable conditions of 2.5 °C temperature, 4 min mixing time, 40 mL buffer at pH 7.5 was established for serine protease extraction from kesinai leaves.

  9. Efficient utilization of licorice root by alkaline extraction.

    Science.gov (United States)

    Ohno, Hirokazu; Miyoshi, Shozo; Araho, Daisuke; Kanamoto, Taisei; Terakubo, Shigemi; Nakashima, Hideki; Tsuda, Tadashi; Sunaga, Katsuyoshi; Amano, Shigeru; Ohkoshi, Emika; Sakagami, Hiroshi; Satoh, Kazue; Yamamoto, Masaji

    2014-01-01

    Compared to studies of water extracts of plants, those utilising alkaline extracts are limited. Both water and alkaline extracts from licorice root were compared regarding their biological activities. Licorice root was successively extracted first with water or alkaline solution (pH 9 or 12), and the alkaline (pH 12.0) extract was further separated into 50% ethanol-soluble and -insoluble fractions. Viable cell number was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide method. Antibacterial activity against Porphyromonas gingivalis 381 was determined by turbidity assay. Cytochrome P-450 (CYP)3A4 activity was measured by β-hydroxylation of testosterone using human recombinant CYP3A4. Radical intensity of superoxide and hydroxyl radicals was determined by electron spin resonance spectroscopy. Alkaline extraction yielded slightly higher amounts of dried materials compared to water extraction. Alkaline extract showed higher anti-HIV and antibacterial activities, and similar magnitudes of CYP3A4 inhibitory and superoxide and hydroxyl radical-scavenging activities, compared to water extract. When alkaline extract was fractionated by 50% ethanol, anti-HIV activity was recovered from the insoluble fraction representing approximately 3% of the alkaline extract, whereas antibacterial activity was concentrated in the soluble fraction rich in glycyrrhizid acid, flavanones and chalcones. All extracts and sub-fractions led to bimodal hormetic dose-response (maximum hormetic response=238%) on the bacterial growth. The present study demonstrated the superiority of alkaline extraction over water extraction for preparing anti-HIV and antibacterial agents at higher yield from licorice root. Copyright © 2014 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  10. A Novel Low-Temperature Alkaline Lipase from Acinetobacter johnsonii LP28 Suitable for Detergent Formulation

    Directory of Open Access Journals (Sweden)

    Hai Kuan Wang

    2011-01-01

    Full Text Available A strain LP28 that produces alkaline and low-temperature lipase was isolated from the soil collected from the Bay of Bohai, PR China and identified as Acinetobacter johnsonii using 16S rDNA sequencing. The lipase was purified to homogeneity by centrifugation, followed by ammonium sulphate precipitation, dialysis, ion exchange chromatography on cellulose DE-52 and gel filtration chromatography on Sephadex G-75. The enzyme was purified about 34-fold with a final yield of 13 % and the relative molecular mass of the enzyme was determined to be 53 kDa by SDS-PAGE. The purified enzyme exhibited maximum activity at 30 °C and pH=9.0, and retained 94.53 % of its maximum activity at 20 °C. The enzyme was stable at 50 °C and retained 80.9 % of its original activity for 30 min. It was also highly stable in a pH range of 8.0–11.0. The enzyme hydrolyzed a wide range of oils and showed a high level of lipase activity in hydrolyzing tributyrin. The enzyme activity was promoted in the presence of Na+, Ca2+, K+, Mg2+ and sodium citrate. Ba2+, Mn2+, Cr3+ and Co2+ did not affect the enzyme activity, whereas the presence of Al3+, Cu2+, Fe2+, Fe3+, Zn2+ and EDTA reduced the enzyme activity. Regarding the stability of detergent process, the enzyme was highly stable in the presence of various oxidizing agents, some commercial detergents and alkaline protease, and its activity was also promoted by most of the surfactants, viz. Tween 20, Tween 80, sodium cholate, sodium taurocholate and saponin. For these characteristics, the lipase from Acinetobacter johnsonii LP28 showed good potential as an additive in laundry detergent formulation.

  11. Response of Desulfovibrio vulgaris to Alkaline Stress

    Energy Technology Data Exchange (ETDEWEB)

    Stolyar, S.; He, Q.; He, Z.; Yang, Z.; Borglin, S.E.; Joyner, D.; Huang, K.; Alm, E.; Hazen, T.C.; Zhou, J.; Wall, J.D.; Arkin, A.P.; Stahl, D.A.

    2007-11-30

    The response of exponentially growing Desulfovibrio vulgarisHildenborough to pH 10 stress was studied using oligonucleotidemicroarrays and a study set of mutants with genes suggested by microarraydata to be involved in the alkaline stress response deleted. The datashowed that the response of D. vulgaris to increased pH is generallysimilar to that of Escherichia coli but is apparently controlled byunique regulatory circuits since the alternative sigma factors (sigma Sand sigma E) contributing to this stress response in E. coli appear to beabsent in D. vulgaris. Genes previously reported to be up-regulated in E.coli were up-regulated in D. vulgaris; these genes included three ATPasegenes and a tryptophan synthase gene. Transcription of chaperone andprotease genes (encoding ATP-dependent Clp and La proteases and DnaK) wasalso elevated in D. vulgaris. As in E. coli, genes involved in flagellumsynthesis were down-regulated. The transcriptional data also identifiedregulators, distinct from sigma S and sigma E, that are likely part of aD. vulgaris Hildenborough-specific stress response system.Characterization of a study set of mutants with genes implicated inalkaline stress response deleted confirmed that there was protectiveinvolvement of the sodium/proton antiporter NhaC-2, tryptophanase A, andtwo putative regulators/histidine kinases (DVU0331 andDVU2580).

  12. Solubility of pllutonium in alkaline salt solutions

    International Nuclear Information System (INIS)

    Hobbs, D.T.; Edwards, T.B.

    1993-01-01

    Plutonium solubility data from several studies have been evaluated. For each data set, a predictive model has been developed where appropriate. In addition, a statistical model and corresponding prediction intervals for plutonium solubility as a quadratic function of the hydroxide concentration have been developed. Because of the wide range of solution compositions, the solubility of plutonium can vary by as much as three orders of magnitude for any given hydroxide concentration and still remain within the prediction interval. Any nuclear safety assessments that depend on the maximum amount of plutonium dissolved in alkaline salt solutions should use concentrations at least as great as the upper prediction limits developed in this study. To increase the confidence in the prediction model, it is recommended that additional solubility tests be conducted at low hydroxide concentrations and with all of the other solution components involved. To validate the model for application to actual waste solutions, it is recommended that the plutonium solubilities in actual waste solutions be determined and compared to the values predicted by the quadratic model

  13. Alkaline Phosphatase, an Unconventional Immune Protein

    Directory of Open Access Journals (Sweden)

    Bethany A. Rader

    2017-08-01

    Full Text Available Recent years have seen an increase in the number of studies focusing on alkaline phosphatases (APs, revealing an expanding complexity of function of these enzymes. Of the four human AP (hAP proteins, most is known about tissue non-specific AP (TNAP and intestinal AP (IAP. This review highlights current understanding of TNAP and IAP in relation to human health and disease. TNAP plays a role in multiple processes, including bone mineralization, vitamin B6 metabolism, and neurogenesis, is the genetic cause of hypophosphatasia, influences inflammation through regulation of purinergic signaling, and has been implicated in Alzheimer’s disease. IAP regulates fatty acid absorption and has been implicated in the regulation of diet-induced obesity and metabolic syndrome. IAP and TNAP can dephosphorylate bacterial-derived lipopolysaccharide, and IAP has been identified as a potential regulator of the composition of the intestinal microbiome, an evolutionarily conserved function. Endogenous and recombinant bovine APs and recombinant hAPs are currently being explored for their potential as pharmacological agents to treat AP-associated diseases and mitigate multiple sources of inflammation. Continued research on these versatile proteins will undoubtedly provide insight into human pathophysiology, biochemistry, and the human holobiont.

  14. Alkaline Materials and Regenerative Endodontics: A Review

    Directory of Open Access Journals (Sweden)

    Bill Kahler

    2017-12-01

    Full Text Available Periapical health is the primary goal of endodontic treatment in mature and immature teeth. In addition, the goals of treatment of immature teeth with arrested root development include root growth to length and maturation of the apex, as well as thickening of the canal wall. These goals are valid for immature teeth that have been subjected to trauma and dental caries or that are the result of developmental anomalies that expose the tooth to the risk of pulp necrosis and consequently result in the cessation of root maturation. Regenerative endodontic procedures (REPs have been described as a “paradigm shift” in the treatment of immature teeth with pulp necrosis and underdeveloped roots, as there is the potential for further root maturation and return of vitality. Treatment with REPs is advocated as the treatment of choice for immature teeth with pulp necrosis. REP protocols involve the use of alkaline biomaterials, primarily sodium hypochlorite, calcium hydroxide, mineral trioxide aggregates and Biodentine, and are the essential components of a successful treatment regimen.

  15. 2nd Generation alkaline electrolysis. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Yde, L. [Aarhus Univ. Business and Social Science - Centre for Energy Technologies (CET), Aarhus (Denmark); Kjartansdottir, C.K. [Technical Univ. of Denmark. DTU Mechanical Engineering, Kgs. Lyngby (Denmark); Allebrod, F. [Technical Univ. of Denmark. DTU Energy Conversion, DTU Risoe Campus, Roskilde (Denmark)] [and others

    2013-03-15

    The overall purpose of this project has been to contribute to this load management by developing a 2{sup nd} generation of alkaline electrolysis system characterized by being compact, reliable, inexpensive and energy efficient. The specific targets for the project have been to: 1) Increase cell efficiency to more than 88% (according to the higher heating value (HHV)) at a current density of 200 mA /cm{sup 2}; 2) Increase operation temperature to more than 100 degree Celsius to make the cooling energy more valuable; 3) Obtain an operation pressure more than 30 bar hereby minimizing the need for further compression of hydrogen for storage; 4) Improve stack architecture decreasing the price of the stack with at least 50%; 5) Develop a modular design making it easy to customize plants in the size from 20 to 200 kW; 6) Demonstrating a 20 kW 2{sup nd} generation stack in H2College at the campus of Arhus University in Herning. The project has included research and development on three different technology tracks of electrodes; an electrochemical plating, an atmospheric plasma spray (APS) and finally a high temperature and pressure (HTP) track with operating temperature around 250 deg. C and pressure around 40 bar. The results show that all three electrode tracks have reached high energy efficiencies. In the electrochemical plating track a stack efficiency of 86.5% at a current density of 177mA/cm{sup 2} and a temperature of 74.4 deg. C has been shown. The APS track showed cell efficiencies of 97%, however, coatings for the anode side still need to be developed. The HTP cell has reached 100 % electric efficiency operating at 1.5 V (the thermoneutral voltage) with a current density of 1. 1 A/cm{sup 2}. This track only tested small cells in an externally heated laboratory set-up, and thus the thermal loss to surroundings cannot be given. The goal set for the 2{sup nd} generation electrolyser system, has been to generate 30 bar pressure in the cell stack. An obstacle to be

  16. Stable Strontium Isotope (δ88/86Sr) Fractionation in the Marine Realm: A Pilot Study

    OpenAIRE

    Krabbenhöft, André

    2011-01-01

    The determination of the isotopic composition of natural substances is an important field of research within isotope geochemistry. Especially the investigation of the alkaline earth element strontium (Sr) plays an important role in geological and geochemical research. In order to quantify the degree of natural stable Sr isotope fractionation a double spike technique was developed in the frame of this study. This technique allows the precise determination of natural Sr isotope frac...

  17. Characterization of Toxoplasma DegP, a rhoptry serine protease crucial for lethal infection in mice.

    Directory of Open Access Journals (Sweden)

    Gaelle Lentini

    Full Text Available During the infection process, Apicomplexa discharge their secretory organelles called micronemes, rhoptries and dense granules to sustain host cell invasion, intracellular replication and to modulate host cell pathways and immune responses. Herein, we describe the Toxoplasma gondii Deg-like serine protein (TgDegP, a rhoptry protein homologous to High temperature requirement A (HtrA or Deg-like family of serine proteases. TgDegP undergoes processing in both types I and II strains as most of the rhoptries proteins. We show that genetic disruption of the degP gene does not impact the parasite lytic cycle in vitro but affects virulence in mice. While in a type I strain DegPI appears dispensable for the establishment of an infection, removal of DegPII in a type II strain dramatically impairs the virulence. Finally, we show that KO-DegPII parasites kill immunodeficient mice as efficiently as the wild-type strain indicating that the protease might be involved in the complex crosstalk that the parasite engaged with the host immune response. Thus, this study unravels a novel rhoptry protein in T. gondii important for the establishment of lethal infection.

  18. Structure Determination of Mycobacterium tuberculosis Serine Protease Hip1 (Rv2224c)

    Energy Technology Data Exchange (ETDEWEB)

    Naffin-Olivos, Jacqueline L.; Daab, Andrew; White, Andre; Goldfarb, Nathan E.; Milne, Amy C.; Liu, Dali; Baikovitz, Jacqueline; Dunn, Ben M.; Rengarajan, Jyothi; Petsko, Gregory A.; Ringe, Dagmar

    2017-04-07

    The Mycobacterium tuberculosis (Mtb) serine protease Hip1 (hydrolase important for pathogenesis; Rv2224c) promotes tuberculosis (TB) pathogenesis by impairing host immune responses through proteolysis of a protein substrate, Mtb GroEL2. The cell surface localization of Hip1 and its immunomodulatory functions make Hip1 a good drug target for new adjunctive immune therapies for TB. Here, we report the crystal structure of Hip1 to a resolution of 2.6 Å and the kinetic studies of the enzyme against model substrates and the protein GroEL2. The structure shows a two-domain protein, one of which contains the catalytic residues that are the signature of a serine protease. Surprisingly, a threonine is located within the active site close enough to hydrogen bond with the catalytic residues Asp463 and His490. Mutation of this residue, Thr466, to alanine established its importance for function. Our studies provide insights into the structure of a member of a novel family of proteases. Knowledge of the Hip1 structure will aid in designing inhibitors that could block Hip1 activity

  19. Conservative Mechanisms of Extracellular Trap Formation by Annelida Eisenia andrei: Serine Protease Activity Requirement.

    Directory of Open Access Journals (Sweden)

    Joanna Homa

    Full Text Available Formation of extracellular traps (ETs capturing and immobilizing pathogens is now a well-established defense mechanism added to the repertoire of vertebrate phagocytes. These ETs are composed of extracellular DNA (extDNA, histones and antimicrobial proteins. Formation of mouse and human ETs depends on enzymes (i facilitating decondensation of chromatin by citrullination of histones, and (ii serine proteases degrading histones. In invertebrates, initial reports revealed existence of ETs composed of extDNA and histones, and here we document for the first time that also coelomocytes, immunocompetent cells of an earthworm Eisenia andrei, cast ETs which successfully trap bacteria in a reactive oxygen species (ROS-dependent and -independent manner. Importantly, the formation of ETs was observed not only when coelomocytes were studied ex vivo, but also in vivo, directly in the earthworm coelom. These ETs were composed of extDNA, heat shock proteins (HSP27 and H3 histones. Furthermore, the formation of E. andrei ETs depended on activity of serine proteases, including elastase-like activity. Moreover, ETs interconnected and hold together aggregating coelomocytes, a processes proceeding encapsulation. In conclusion, the study confirms ET formation by earthworms, and unravels mechanisms leading to ET formation and encapsulation in invertebrates.

  20. Interaction of protein C inhibitor with the type II transmembrane serine protease enteropeptidase.

    Directory of Open Access Journals (Sweden)

    Thomas A Prohaska

    Full Text Available The serine protease inhibitor protein C inhibitor (PCI is expressed in many human tissues and exhibits broad protease reactivity. PCI binds glycosaminoglycans and certain phospholipids, which modulate its inhibitory activity. Enteropeptidase (EP is a type II transmembrane serine protease mainly found on the brush border membrane of epithelial cells in the duodenum, where it activates trypsinogen to initiate the digestion of food proteins. Some active EP is also present in duodenal fluid and has been made responsible for causing pancreatitis in case of duodeno-pancreatic reflux. Together with its substrate trypsinogen, EP is furthermore present in the epidermis and in some cancer cells. In this report, we show that PCI inhibited EP with an apparent 2nd order rate constant of 4.48 × 10(4 M(-1 s(-1. Low molecular weight (LMWH and unfractionated heparin (UFH slightly reduced the inhibitory effect of PCI. The SI (stoichiometry of inhibition value for the inhibition of EP by PCI was 10.8 in the absence and 17.9 in the presence of UFH (10 U/ml. By inhibiting trypsin, chymotrypsin, and additionally EP, PCI might play a role in the protection of the pancreas from autodigestion. Furthermore the interaction of PCI with EP may influence the regulation of epithelial differentiation.

  1. A secreted serine protease of Paracoccidioides brasiliensis and its interactions with fungal proteins

    Directory of Open Access Journals (Sweden)

    Soares Célia MA

    2010-11-01

    Full Text Available Abstract Background Paracoccidioides brasiliensis is a thermodimorphic fungus, the causative agent of paracoccidioidomycosis (PCM. Serine proteases are widely distributed and this class of peptidase has been related to pathogenesis and nitrogen starvation in pathogenic fungi. Results A cDNA (Pbsp encoding a secreted serine protease (PbSP, was isolated from a cDNA library constructed with RNAs of fungal yeast cells recovered from liver of infected mice. Recombinant PbSP was produced in Escherichia coli, and used to develop polyclonal antibodies that were able to detect a 66 kDa protein in the P. brasiliensis proteome. In vitro deglycosylation assays with endoglycosidase H demonstrated that PbSP is a N-glycosylated molecule. The Pbsp transcript and the protein were induced during nitrogen starvation. The Pbsp transcript was also induced in yeast cells infecting murine macrophages. Interactions of PbSP with P. brasiliensis proteins were evaluated by two-hybrid assay in the yeast Saccharomyces cerevisiae. PbSP interacts with a peptidyl prolyl cis-trans isomerase, calnexin, HSP70 and a cell wall protein PWP2. Conclusions A secreted subtilisin induced during nitrogen starvation was characterized indicating the possible role of this protein in the nitrogen acquisition. PbSP interactions with other P. brasiliensis proteins were reported. Proteins interacting with PbSP are related to folding process, protein trafficking and cytoskeleton reorganization.

  2. Crystal Structure of the Catalytic Domain of a Serine Threonine Protein Phosphatase

    Science.gov (United States)

    Swinglel, Mark; Honkanel, Richard; Ciszak, Ewa

    2003-01-01

    Reversible phosphorylation of serine and threonine residues is a well-recognized mechanism in eukaryotic cells for the regulation of cell-cycle progression, cell growth and metabolism. Human serine/threonine phosphatases can be placed into two major families, PPP and PPM. To date the structure on one PPP family member (PPl) has been determined. Here we present the structure of a 323-residue catalytic domain of a second phosphatase belonging to the PPP family of enzyme. catalytic domain of the enzyme has been determined to 1.60Angstrom resolution and refined to R=17.5 and Rfree = 20.8%. The catalytic domain possesses a unique fold consisting of a largely monolithic structure, divisible into closely-associated helical and sheet regions. The catalytic site contains two manganese ions that are involved in substrate binding and catalysis. The enzyme crystallizes as a dimer that completely buries catalytic surfaces of both monomers, Also, the structure shows evidence of some flexibility around the active site cleft that may be related to substrate specificity of this enzyme.

  3. Realizing Serine/Threonine Ligation: Scope and Limitations and Mechanistic Implication Thereof

    Directory of Open Access Journals (Sweden)

    Clarence T. T. Wong

    2014-05-01

    Full Text Available Serine/Threonine ligation (STL has emerged as an alternative tool for protein chemical synthesis, bioconjugations as well as macrocyclization of peptides of various sizes. Owning to the high abundance of Ser/Thr residues in natural peptides and proteins, STL is expected to find a wide range of applications in chemical biology research. Herein, we have fully investigated the compatibility of the serine/threonine ligation strategy for X-Ser/Thr ligation sites, where X is any of the 20 naturally occurring amino acids. Our studies have shown that 17 amino acids are suitable for ligation, while Asp, Glu, and Lys are not compatible. Among the working 17 C-terminal amino acids, the retarded reaction resulted from the bulky β-branched amino acid (Thr, Val and Ile is not seen under the current ligation condition. We have also investigated the chemoselectivity involving the amino group of the internal lysine which may compete with the N-terminal Ser/Thr for reaction with the C-terminal salicylaldehyde (SAL ester aldehyde group. The result suggested that the free internal amino group does not adversely slow down the ligation rate.

  4. Insulin Induces Phosphorylation of Serine Residues of Translationally Controlled Tumor Protein in 293T Cells

    Directory of Open Access Journals (Sweden)

    Jeehye Maeng

    2015-04-01

    Full Text Available Insulin induces the activation of Na,K-ATPase while translationally controlled tumor protein (TCTP inhibits this enzyme and the associated pump activity. Because binding of insulin with its membrane receptor is known to mediate the phosphorylation of multiple intracellular proteins, phosphorylation of TCTP by insulin might be related to the sodium pump regulation. We therefore examined whether insulin induces TCTP phosphorylation in embryonic kidney 293T cells. Using immunoprecipitation and Western blotting, we found that insulin phosphorylates serine (Ser residues of TCTP. Following fractionation of the insulin-treated cells into cytosol and membrane fractions, phosphorylated TCTP at its Ser residue (p-Ser-TCTP was detected exclusively in the cytosolic part and not in the membrane fraction. Phosphorylation of TCTP reached maximum in about 10 min after insulin treatment in 293T cells. In studies of cell-type specificity of insulin-mediated phosphorylation of TCTP, insulin did not phosphorylate TCTP in HeLa cells. Computational prediction and immunoprecipitation using several constructs having Ser to Ala mutation at potential p-Ser sites of TCTP revealed that insulin phosphorylated the serine-9 and -15 residues of TCTP. Elucidations of how insulin-mediated TCTP phosphorylation promotes Na,K-ATPase activation, may offer potential therapeutic approaches to diseases associated with vascular activity and sodium pump dysregulation.

  5. Crystal Structure of a Novel Viral Protease with a Serine/Lysine Catalytic Dyad Mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Feldman,A.; Lee, J.; Delmas, B.; Paetzel, M.

    2006-01-01

    The blotched snakehead virus (BSNV), an aquatic birnavirus, encodes a polyprotein (NH2-pVP2-X-VP4-VP3-COOH) that is processed through the proteolytic activity of its own protease (VP4) to liberate itself and the viral proteins pVP2, X and VP3. The protein pVP2 is further processed by VP4 to give rise to the capsid protein VP2 and four structural peptides. We report here the crystal structure of a VP4 protease from BSNV, which displays a catalytic serine/lysine dyad in its active site. This is the first crystal structure of a birnavirus protease and the first crystal structure of a viral protease that utilizes a lysine general base in its catalytic mechanism. The topology of the VP4 substrate binding site is consistent with the enzymes substrate specificity and a nucleophilic attack from the si-face of the substrates scissile bond. Despite low levels of sequence identity, VP4 shows similarities in its active site to other characterized Ser/Lys proteases such as signal peptidase, LexA protease and Lon protease. Together, the structure of VP4 provides insights into the mechanism of a recently characterized clan of serine proteases that utilize a lysine general base and reveals the structure of potential targets for antiviral therapy, especially for other related and economically important viruses, such as infectious bursal disease virus in poultry and infectious pancreatic necrosis virus in aquaculture.

  6. Stepwise Versus Concerted Mechanisms in General-Base Catalysis by Serine Proteases.

    Science.gov (United States)

    Uritsky, Neta; Shokhen, Michael; Albeck, Amnon

    2016-01-26

    General-base catalysis in serine proteases still poses mechanistic challenges despite decades of research. Whether proton transfer from the catalytic Ser to His and nucleophilic attack on the substrate are concerted or stepwise is still under debate, even for the classical Asp-His-Ser catalytic triad. To address these key catalytic steps, the transformation of the Michaelis complex to tetrahedral complex in the covalent inhibition of two prototype serine proteases was studied: chymotrypsin (with the catalytic triad) inhibition by a peptidyl trifluoromethane and GlpG rhomboid (with Ser-His dyad) inhibition by an isocoumarin derivative. The sampled MD trajectories of averaged pKa  values of catalytic residues were QM calculated by the MD-QM/SCRF(VS) method on molecular clusters simulating the active site. Differences between concerted and stepwise mechanisms are controlled by the dynamically changing pKa  values of the catalytic residues as a function of their progressively reduced water exposure, caused by the incoming ligand. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Serum response factor MADS box serine -162 phosphorylation switches proliferation and myogenic gene programs

    Science.gov (United States)

    Iyer, Dinakar; Chang, David; Marx, Joe; Wei, Lei; Olson, Eric N.; Parmacek, Michael S.; Balasubramanyam, Ashok; Schwartz, Robert J.

    2006-01-01

    Phosphorylation of a cluster of amino acids in the serum response factor (SRF) “MADS box” αI coil DNA binding domain regulated the transcription of genes associated with proliferation or terminal muscle differentiation. Mimicking phosphorylation of serine-162, a target of protein kinase C-α, with an aspartic acid substitution (SRF-S162D) completely inhibited SRF–DNA binding and blocked α-actin gene transcription even in the presence of potent myogenic cofactors, while preserving c-fos promoter activity because of stabilization of the ternary complex via Elk-1. Introduction of SRF-S162D into SRF null ES cells permitted transcription of the c-fos gene but was unable to rescue expression of myogenic contractile genes. Transition of proliferating C2C12 myoblasts to postfusion myocytes after serum withdrawal was associated with a progressive decline in SRF-S162 phosphorylation and an increase in α-actin gene expression. Hence, the phosphorylation status of serine-162 in the αI coil may constitute a novel switch that directs target gene expression into proliferation or differentiation programs. PMID:16537394

  8. Serine-like proteolytic enzymes correlated with differential pathogenicity in patients with acute Acanthamoeba keratitis.

    Science.gov (United States)

    de Souza Carvalho, F R; Carrijo-Carvalho, L C; Chudzinski-Tavassi, A M; Foronda, A S; de Freitas, D

    2011-04-01

    Acute ocular infection due to free-living amoebae of the genus Acanthamoeba is characterized by severe pain, loss of corneal transparency and, eventually, blindness. Proteolytic enzymes secreted by trophozoites of virulent Acanthamoeba strains have an essential role in the mechanisms of pathogenesis, including adhesion, invasion and destruction of the corneal stroma. In this study, we analysed the relationship between the extracellular proteases secreted by clinical isolates of Acanthamoeba and the clinical manifestations and severity of disease that they caused. Clinical isolates were obtained from patients who showed typical symptoms of Acanthamoeba keratitis. Trophozoites were cultivated axenically, and extracellular proteins were collected from cell culture supernatants. Secreted enzymes were partially characterized by gelatin and collagen zymography. Acanthamoeba trophozoites secreted proteases with different molecular masses, proteolysis rates and substrate specificities, mostly serine-like proteases. Different enzymatic patterns of collagenases were observed, varying between single and multiple collagenolytic activities. Low molecular weight serine proteases were secreted by trophozoites associated with worse clinical manifestations. Consequently, proteolytic enzymes of some Acanthamoeba trophozoites could be related to the degree of their virulence and clinical manifestations of disease in the human cornea. © 2010 European Society of Clinical Microbiology and Infectious Diseases. No claim to original US government works.

  9. Tryptogalinin is a tick Kunitz serine protease inhibitor with a unique intrinsic disorder.

    Directory of Open Access Journals (Sweden)

    James J Valdés

    Full Text Available A salivary proteome-transcriptome project on the hard tick Ixodes scapularis revealed that Kunitz peptides are the most abundant salivary proteins. Ticks use Kunitz peptides (among other salivary proteins to combat host defense mechanisms and to obtain a blood meal. Most of these Kunitz peptides, however, remain functionally uncharacterized, thus limiting our knowledge about their biochemical interactions.We discovered an unusual cysteine motif in a Kunitz peptide. This peptide inhibits several serine proteases with high affinity and was named tryptogalinin due to its high affinity for β-tryptase. Compared with other functionally described peptides from the Acari subclass, we showed that tryptogalinin is phylogenetically related to a Kunitz peptide from Rhipicephalus appendiculatus, also reported to have a high affinity for β-tryptase. Using homology-based modeling (and other protein prediction programs we were able to model and explain the multifaceted function of tryptogalinin. The N-terminus of the modeled tryptogalinin is detached from the rest of the peptide and exhibits intrinsic disorder allowing an increased flexibility for its high affinity with its inhibiting partners (i.e., serine proteases.By incorporating experimental and computational methods our data not only describes the function of a Kunitz peptide from Ixodes scapularis, but also allows us to hypothesize about the molecular basis of this function at the atomic level.

  10. Novel Serine 176 Phosphorylation of YBX1 Activates NF-κB in Colon Cancer.

    Science.gov (United States)

    Martin, Matthew; Hua, Laiqing; Wang, Benlian; Wei, Han; Prabhu, Lakshmi; Hartley, Antja-Voy; Jiang, Guanglong; Liu, Yunlong; Lu, Tao

    2017-02-24

    Y box protein 1 (YBX1) is a well known oncoprotein that has tumor-promoting functions. YBX1 is widely considered to be an attractive therapeutic target in cancer. To develop novel therapeutics to target YBX1, it is of great importance to understand how YBX1 is finely regulated in cancer. Previously, we have shown that YBX1 could function as a tumor promoter through phosphorylation of its Ser-165 residue, leading to the activation of the NF-κB signaling pathway (1). In this study, using mass spectrometry analysis, we discovered a distinct phosphorylation site, Ser-176, on YBX1. Overexpression of the YBX1-S176A (serine-to-alanine) mutant in either HEK293 cells or colon cancer HT29 cells showed dramatically reduced NF-κB-activating ability compared with that of WT-YBX1, confirming that Ser-176 phosphorylation is critical for the activation of NF-κB by YBX1. Importantly, the mutant of Ser-176 and the previously reported Ser-165 sites regulate distinct groups of NF-κB target genes, suggesting the unique and irreplaceable function of each of these two phosphorylated serine residues. Our important findings could provide a novel cancer therapy strategy by blocking either Ser-176 or Ser-165 phosphorylation or both of YBX1 in colon cancer. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Haploinsufficiency of cytosolic serine hydroxymethyltransferase in the Smith-Magenis syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Elsea, S.H.; Juyal, R.C.; Jiralerspong, S. [Baylor College of Medicine, Houston, TX (United States)] [and others

    1995-12-01

    Folate-dependent one-carbon metabolism is critical for the synthesis of numerous cellular constituents required for cell growth, and serine hydroxymethyltransferase (SHMT) is central to this process. Our studies reveal that the gene for cytosolic SHMT (cSHMT) maps to the critical interval for Smith-Magenis syndrome (SMS) on chromosome 17p11.2. The basic organization of the cSHMT locus on chromosome 17 was determined and was found to span{approximately}40 kb. The gene for cSHMT was found to be deleted in all 26 SMS patients examined by PCR, FISH, and/or Southern analysis. Furthermore, with respect to haploinsufficiency, cSHMT enzyme activity in patient lymphoblasts was determined to be {approximately}50% that of unaffected parent lymphoblasts. Serine, glycine, and folate levels were also assessed in three SMS patients and were found to be within normal ranges. The possible effects of cSHMT hemizygosity on the SMS phenotype are discussed. 40 refs., 3 figs., 21 tabs.

  12. Portulaca oleracea L. as a Prospective Candidate Inhibitor of Hepatitis C Virus NS3 Serine Protease.

    Science.gov (United States)

    Noreen, Sobia; Hussain, Ishtiaq; Tariq, Muhammad Ilyas; Ijaz, Bushra; Iqbal, Shahid; Qamar-ul-Zaman; Ashfaq, Usman Ali; Husnain, Tayyab

    2015-06-01

    Hepatitis C virus (HCV) infection is a worldwide health problem affecting about 300 million individuals. HCV causes chronic liver disease, liver cirrhosis, hepatocellular carcinoma, and death. Many side effects are associated with the current treatment options. Natural products that can be used as anti-HCV drugs are thus of considerable potential significance. NS3 serine protease (NS3-SP) is a target for the screening of antiviral activity against HCV. The present work explores plants with anti-HCV potential, isolating possible lead compounds. Ten plants, used for medicinal purposes against different infections in rural areas of Pakistan, were collected. The cellular toxicity effects of methanolic extracts of the plants on the viability of Huh-7 cells were studied through the Trypan blue dye exclusion method. Following this, the anti-HCV potential of phytoextracts was assessed by infecting liver cells with HCV-3a-infected serum inoculum. Only the methanolic extract of Portulaca oleracea L. (PO) exhibited more than 70% inhibition. Four fractions were obtained through bioassay-guided extraction of PO. Subsequent inhibition of all organic extract fractions against NS3 serine protease was checked to track the specific target in the virus. The results showed that the PO methanolic crude and ethyl acetate extract specifically abridged the HCV NS3 protease expression in a dose-dependent fashion. Hence, PO extract and its constituents either alone or with interferon could offer a future option to treat chronic HCV.

  13. Systematic Survey of Serine Hydrolase Activity in Mycobacterium tuberculosis Defines Changes Associated with Persistence

    Energy Technology Data Exchange (ETDEWEB)

    Ortega, Corrie; Anderson, Lindsey N.; Frando, Andrew; Sadler, Natalie C.; Brown, Robert W.; Smith, Richard D.; Wright, Aaron T.; Grundner, Christoph

    2016-02-01

    The transition between replication and non-replication underlies much of Mycobacterium tuberculosis (Mtb) pathogenicity, as non- or slowly replicating Mtb are responsible for persistence and poor treatment outcomes. Therapeutic targeting of non-replicating, persistent populations is a priority for tuberculosis treatment, but only few drug targets in non-replicating Mtb are currently known. Here, we directly measure the activity of the highly diverse and druggable serine hydrolases (SHs) during active replication and non-replication by activity-based proteomics. We predict serine hydrolase activity for 78 proteins, including 27 proteins with previously unknown function, and identify 37 SHs that remain active even in the absence of replication, providing a set of candidate persistence targets. Non-replication was associated with large shifts in the activity of the majority of SHs. These activity changes were largely independent of SH abundance, indicating extensive post-translational regulation. By probing a large cross-section of druggable Mtb enzyme space during replication and non-replication, we identify new SHs and suggest new persistence targets.

  14. Characterization of a membrane-associated serine protease in Escherichia coli

    International Nuclear Information System (INIS)

    Palmer, S.M.; St John, A.C.

    1987-01-01

    Three membrane-associated proteolytic activities in Escherichia coli were resolved by DEAE-cellulose chromatography from detergent extracts of the total envelope fraction. On the basis of substrate specificity for the hydrolysis of chromogenic amino acid ester substrates, the first two eluting activities were determined previously to be protease V and protease IV, respectively. The third proteolytic activity eluting from the DEAE-cellulose column was further purified by affinity chromatography on benzamidine-Sepharose 6B. They termed this enzyme protease VI. Protease VI did not hydrolyze any of the chromogenic substrates used in the detection of protease IV and protease V. However, all three enzymes generated acid-soluble fragments from a mixture of E. coli membrane proteins which were biosynthetically labeled with radioactive amino acids. The activity of protease VI was sensitive to serine protease inhibitors. Using [ 3 H]diisopropylfluorophosphate as an active-site labeling reagent, they determined that protease VI has an apparent molecular weight of 43,000 in polyacrylamide gels. All three membrane-associated serine proteases were insensitive to inhibition by Ecotin, an endogenous, periplasmic inhibitor of trypsin

  15. Clinical and biochemical study of D-serine metabolism among schizophrenia patients

    Directory of Open Access Journals (Sweden)

    El-Tallawy HN

    2017-04-01

    Full Text Available Hamdy N El-Tallawy,1 Tahia H Saleem,2 Abdallah MAA El-Ebidi,3 Mohammed H Hassan,4 Romany H Gabra,1 Wafaa MA Farghaly,1 Nagwa Abo El-Maali,5 Hoda S Sherkawy3 1Department of Neuropsychiatry, 2Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Assiut University, Assiut, 3Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Aswan University, Aswan, 4Department of Medical Biochemistry and Molecular Biology, Qena Faculty of Medicine, South Valley University, Qena, 5Department of Chemistry, Faculty of Science, Assiut University, Assiut, Egypt Background: Schizophrenia is a typical N-methyl-d-aspartate receptor (NMDA-R hypofunction disorder. Decreased d-serine (d-Ser levels in the periphery occur in schizophrenia and may reflect decreased availability of d-Ser to activate NMDA-R in the brain.Objective: The objective of this study was to investigate the role of d-Ser metabolism in the pathogenesis of schizophrenia via biochemical assays and correlates, the serum level of d-Ser, d-serine racemase (SR (responsible for its formation from l-serine [l-Ser] and d-amino acid oxidase (DAAO (responsible for its catabolism, among different clinical types of schizophrenia patients.Patients and methods: This cross-sectional case–control study was carried out on 100 patients and 50 controls. They were recruited from the outpatients’ psychiatric unit of the Neuropsychiatric Department of Assiut University Hospital, Upper Egypt. The type of schizophrenia was determined according to the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition (DSM-IV, while the severity of schizophrenia was determined according to the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-5. Serum d-Ser levels were estimated using high-performance liquid chromatography (HPLC, while serum SR and DAAO were measured using commercially available enzyme-linked immunosorbent assay kits.Results: There

  16. Structural and Functional Adaptation of Vancomycin Resistance VanT Serine Racemases.

    Science.gov (United States)

    Meziane-Cherif, Djalal; Stogios, Peter J; Evdokimova, Elena; Egorova, Olga; Savchenko, Alexei; Courvalin, Patrice

    2015-08-11

    Vancomycin resistance in Gram-positive bacteria results from the replacement of the D-alanyl-D-alanine target of peptidoglycan precursors with D-alanyl-D-lactate or D-alanyl-D-serine (D-Ala-D-Ser), to which vancomycin has low binding affinity. VanT is one of the proteins required for the production of D-Ala-D-Ser-terminating precursors by converting L-Ser to D-Ser. VanT is composed of two domains, an N-terminal membrane-bound domain, likely involved in L-Ser uptake, and a C-terminal cytoplasmic catalytic domain which is related to bacterial alanine racemases. To gain insight into the molecular function of VanT, the crystal structure of the catalytic domain of VanTG from VanG-type resistant Enterococcus faecalis BM4518 was determined. The structure showed significant similarity to type III pyridoxal 5'-phosphate (PLP)-dependent alanine racemases, which are essential for peptidoglycan synthesis. Comparative structural analysis between VanTG and alanine racemases as well as site-directed mutagenesis identified three specific active site positions centered around Asn696 which are responsible for the L-amino acid specificity. This analysis also suggested that VanT racemases evolved from regular alanine racemases by acquiring additional selectivity toward serine while preserving that for alanine. The 4-fold-lower relative catalytic efficiency of VanTG against L-Ser versus L-Ala implied that this enzyme relies on its membrane-bound domain for L-Ser transport to increase the overall rate of d-Ser production. These findings illustrate how vancomycin pressure selected for molecular adaptation of a housekeeping enzyme to a bifunctional enzyme to allow for peptidoglycan remodeling, a strategy increasingly observed in antibiotic-resistant bacteria. Vancomycin is one of the drugs of last resort against Gram-positive antibiotic-resistant pathogens. However, bacteria have evolved a sophisticated mechanism which remodels the drug target, the D-alanine ending precursors in cell wall

  17. Alkaline sodium borohydride gel as a hydrogen source for PEMFC or an energy carrier for NaBH 4-air battery

    Science.gov (United States)

    Liu, B. H.; Li, Z. P.; Chen, L. L.

    In this preliminary study, we tried to use sodium polyacrylate as the super absorbent polymer to form alkaline NaBH 4 gel and explored its possibilities for borohydride hydrolysis and borohydride electro-oxidation. It was found that the absorption capacity of sodium polyacrylate decreased with increasing NaBH 4 concentration. The formed gel was rather stable in the sealed vessel but tended to slowly decompose in open air. Hydrogen generation from the gel was carried out using CoCl 2 catalyst precursor solutions. Hydrogen generation rate from the alkaline NaBH 4 gel was found to be higher and impurities in hydrogen were less than that from the alkaline NaBH 4 solution. The NaBH 4 gel also successfully powered a NaBH 4-air battery.

  18. Purification and characterization of an alkaline protease from Bacillus licheniformis UV-9 for detergent formulations

    Directory of Open Access Journals (Sweden)

    Muhammad Nadeem

    2013-04-01

    Full Text Available Alkaline protease produced by mutant strain B. licheniformis UV-9 was purified and characterized for its exploitationin detergent formulation. The enzyme was purified to homogeneity by employing ammonium sulphate precipitation andsephadex G-100 gel filtration chromatography with a 36.83 fold increase in specific activity and 11% recovery. The molecularweight of the protease was found to be 36.12 kDa by SDS-PAGE. The Km and Vmax values exhibited by purified proteasewere 5 mg/ml and 61.58ìM/ml/min, respectively, using casein as substrate. The enzyme exhibited highest activity at pH 11 andtemperature 60°C. Stability studies showed that the enzyme retained higher than 80% residual activity in the pH and temperature ranges of 8 to 11 and 30 to 50°C, respectively. However, in the presence of 10 mM Ca2+ ions the enzyme tained morethan 90% of its residual activity at pH 11 and temperature 60°C. Phenyl methyl sulphonyl fluoride (PMSF completelyinhibited the enzyme activity suggesting that it was serine protease. Among metal ions, the Mg2+ and Ca2+ ions enhancedactivity up to 128% and 145%, respectively. The purified enzyme showed extreme stability towards various surfactantssuch as Tween-20, Tween- 45, Tween-65 and Triton X-45. In addition, the enzyme also exhibited more than 100% residualactivity in the presence of oxidizing agents, H2O2 and sodium perborate. These biochemical properties indicate the potentialuse of B. licheniformis UV-9 enzyme in laundry detergents.

  19. Polymorphisms of clip domain serine proteinase and serine proteinase homolog in the swimming crab Portunus trituberculatus and their association with Vibrio alginolyticus

    Science.gov (United States)

    Liu, Meng; Liu, Yuan; Hui, Min; Song, Chengwen; Cui, Zhaoxia

    2017-03-01

    Clip domain serine proteases (cSPs) and their homologs (SPHs) play an important role in various biological processes that are essential components of extracellular signaling cascades, especially in the innate immune responses of invertebrates. Here, polymorphisms of PtcSP and PtSPH from the swimming crab Portunus trituberculatus were investigated to explore their association with resistance/susceptibility to Vibrio alginolyticus. Polymorphic loci were identified using Clustal X, and characterized with SPSS 16.0 software, and then the significance of genotype and allele frequencies between resistant and susceptible stocks was determined by a χ 2 test. A total of 109 and 77 single nucleotide polymorphisms (SNPs) were identified in the genomic fragments of PtcSP and PtSPH, respectively. Notably, nearly half of PtSPH polymorphisms were found in the non-coding exon 1. Fourteen SNPs investigated were significantly associated with susceptibility/resistance to V. alginolyticus ( P <0.05). Among them, eight SNPs were observed in introns, and one synonymous, four non-synonymous SNPs and one ins-del were found in coding exons. In addition, five simple sequence repeats (SSRs) were detected in intron 3 of PtcSP. Although there was no statistically significant difference of allele frequencies, the SSRs showed different polymorphic alleles on the basis of the repeat number between resistant and susceptible stocks. After further validation, polymorphisms investigated here might be applied to select potential molecular markers of P. trituberculatus with resistance to V. alginolyticus.

  20. Paracoccus seriniphilus sp. nov., an L-serine-dehydratase-producing coccus isolated from the marine bryozoan Bugula plumosa.

    Science.gov (United States)

    Pukall, Rüdiger; Laroche, Marc; Kroppenstedt, Reiner M; Schumann, Peter; Stackebrandt, Erko; Ulber, Roland

    2003-03-01

    A novel marine Gram-negative, non-motile, non-spore-forming, aerobic bacterium, associated with the bryozoan Bugula plumosa, was isolated in a screening programme for strains containing enzymes able to convert the amino acid L-serine. Strain MBT-A4T produced L-serine dehydratase and was able to grow on L-serine as the sole carbon and nitrogen source. The nearest phylogenetic neighbour was Paracoccus marcusii, as determined by 16S rDNA sequence analysis (97.8% similarity). The DNA-DNA reassociation value obtained for Paracoccus marcusii DSM11574T and MBT-A4T was 32.6%. The major ubiquinone was 0-10. Based on genotypic, chemotaxonomic and physiological characteristics, a new species of the genus Paracoccus is proposed, Paracoccus seriniphilus sp. nov., the type strain being strain MBT-A4T (=DSM 14827T =CIP 107400T).

  1. Inhibition of protein phosphatase 2A induces serine/threonine phosphorylation, subcellular redistribution, and functional inhibition of STAT3

    DEFF Research Database (Denmark)

    Woetmann, A; Nielsen, M; Christensen, S T

    1999-01-01

    STAT3. We show that an inhibitor of protein phosphatases (PPs) PP1/PP2A, calyculin A, induces (i) phosphorylation of STAT3 on serine and threonine residues, (ii) inhibition of STAT3 tyrosine phosphorylation and DNA binding activity, and (iii) relocation of STAT3 from the nucleus to the cytoplasm......, whereas inhibitors of serine/threonine kinases, such as mitogen-activated protein kinase-1 extracellular-regulated kinase-kinase, mitogen-activated protein p38 kinase, and phosphatidylinositol 3-kinase, did not. In conclusion, we provide evidence that PP2A plays a crucial role in the regulation of STAT3....... Similar results were obtained with other PP2A inhibitors (okadaic acid, endothall thioanhydride) but not with inhibitors of PP1 (tautomycin) or PP2B (cyclosporine A). Pretreatment with the broad serine/threonine kinase inhibitor staurosporine partly blocked the calyculin A-induced STAT3 phosphorylation...

  2. The Estimation Formation Alkaline In The Proses Desalination MSF

    International Nuclear Information System (INIS)

    Latiffah, Siti Nurul

    2000-01-01

    Already to go on estimation phenomena formation alkaline scale of a seawater. In desalination system seawater on MSF to go on scale by a thermal decomposition HCO sub.3- ion and hydrolysis carbonate ion with water on the temperature operation. The varieties alkaline scale in attached on tube surface, while reduced efficiency heat transfer and to raise corrosion attack to structure material is caused all this high cost. Estimation to take please which a sum step by step decomposition ion bicarbonate from then information scale which carbonate and hydroxyl ion. The various scale maximal is alkaline form is a calcium carbonate = 116,5 gram per meter cubic the various sedimentation is alkaline and magnesium hydroxide = 67,57 gram per meter cubic

  3. Microbial alkaline pectinases and their industrial applications: a review.

    Science.gov (United States)

    Hoondal, G S; Tiwari, R P; Tewari, R; Dahiya, N; Beg, Q K

    2002-08-01

    The biotechnological potential of pectinolytic enzymes from microorganisms has drawn a great deal of attention from various researchers worldwide as likely biological catalysts in a variety of industrial processes. Alkaline pectinases are among the most important industrial enzymes and are of great significance in the current biotechnological arena with wide-ranging applications in textile processing, degumming of plant bast fibers, treatment of pectic wastewaters, paper making, and coffee and tea fermentations. The present review features the potential applications and uses of microbial alkaline pectinases, the nature of pectin, and the vast range of pectinolytic enzymes that function to mineralize pectic substances present in the environment. It also emphasizes the environmentally friendly applications of microbial alkaline pectinases thereby revealing their underestimated potential. The review intends to explore the potential of these enzymes and to encourage new alkaline pectinase-based industrial technology.

  4. Microbial alkaline proteases: Optimization of production parameters and their properties

    Directory of Open Access Journals (Sweden)

    Kanupriya Miglani Sharma

    2017-06-01

    Full Text Available Proteases are hydrolytic enzymes capable of degrading proteins into small peptides and amino acids. They account for nearly 60% of the total industrial enzyme market. Proteases are extensively exploited commercially, in food, pharmaceutical, leather and detergent industry. Given their potential use, there has been renewed interest in the discovery of proteases with novel properties and a constant thrust to optimize the enzyme production. This review summarizes a fraction of the enormous reports available on various aspects of alkaline proteases. Diverse sources for isolation of alkaline protease producing microorganisms are reported. The various nutritional and environmental parameters affecting the production of alkaline proteases in submerged and solid state fermentation are described. The enzymatic and physicochemical properties of alkaline proteases from several microorganisms are discussed which can help to identify enzymes with high activity and stability over extreme pH and temperature, so that they can be developed for industrial applications.

  5. Palladium-based nanocatalysts for alcohol electrooxidation in alkaline media

    CSIR Research Space (South Africa)

    Modibedi, RM

    2013-01-01

    Full Text Available Direct alcohol alkaline fuel cells (DAAFCs) are potential power sources for a variety of portable applications as they provide unique advantages over hydrogen-based fuel cell devices. Alcohols (such as methanol, ethanol, ethylene glycol...

  6. Effects of alkaline treatment for fibroblastic adhesion on titanium

    Directory of Open Access Journals (Sweden)

    Miryam Cuellar-Flores

    2016-01-01

    Conclusion: The treatment of Ti plates with NaOH enhances cell adhesion and the proliferation of HPLF cells. Clinically, the alkaline treatment of Ti-based implants could be an option to improve and accelerate osseointegration.

  7. Kinetics of the Fading of Phenolphthalein in Alkaline Solution.

    Science.gov (United States)

    Nicholson, Lois

    1989-01-01

    Described is an experiment which illustrates pseudo-first-order kinetics in the fading of a common indicator in an alkaline solution. Included are background information, details of materials used, laboratory procedures, and sample results. (CW)

  8. Mutations in SLC1A4, encoding the brain serine transporter, are associated with developmental delay, microcephaly and hypomyelination.

    Science.gov (United States)

    Damseh, Nadirah; Simonin, Alexandre; Jalas, Chaim; Picoraro, Joseph A; Shaag, Avraham; Cho, Megan T; Yaacov, Barak; Neidich, Julie; Al-Ashhab, Motee; Juusola, Jane; Bale, Sherri; Telegrafi, Aida; Retterer, Kyle; Pappas, John G; Moran, Ellen; Cappell, Joshua; Anyane Yeboa, Kwame; Abu-Libdeh, Bassam; Hediger, Matthias A; Chung, Wendy K; Elpeleg, Orly; Edvardson, Simon

    2015-08-01

    L-serine plays an essential role in neuronal development and function. Although a non-essential amino acid, L-serine must be synthesised within the brain because of its poor permeability by the blood-brain barrier. Within the brain, its synthesis is confined to astrocytes, and its shuttle to neuronal cells is performed by a dedicated neutral amino acid transporter, ASCT1. Using exome analysis we identified the recessive mutations, p.E256K, p.L315fs, and p.R457W, in SLC1A4, the gene encoding ASCT1, in patients with developmental delay, microcephaly and hypomyelination; seizure disorder was variably present. When expressed in a heterologous system, the mutations did not affect the protein level at the plasma membrane but abolished or markedly reduced L-serine transport for p.R457W and p.E256K mutations, respectively. Interestingly, p.E256K mutation displayed a lower L-serine and alanine affinity but the same substrate selectivity as wild-type ASCT1. The clinical phenotype of ASCT1 deficiency is reminiscent of defects in L-serine biosynthesis. The data underscore that ASCT1 is essential in brain serine transport. The SLC1A4 p.E256K mutation has a carrier frequency of 0.7% in the Ashkenazi-Jewish population and should be added to the carrier screening panel in this community. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  9. Specific membrane binding of factor VIII is mediated by O-phospho-L-serine, a moiety of phosphatidylserine.

    Science.gov (United States)

    Gilbert, G E; Drinkwater, D

    1993-09-21

    Phosphatidylserine, a negatively charged lipid, is exposed on the platelet membrane following cell stimulation, correlating with the expression of factor VIII receptors. We have explored the importance of the negative electrostatic potential of phosphatidylserine vs chemical moieties of phosphatidylserine for specific membrane binding of factor VIII. Fluorescein-labeled factor VIII bound to membranes containing 15% phosphatidic acid, a negatively charged phospholipid, with low affinity compared to phosphatidylserine-containing membranes. Binding was not specific as it was inhibited by other proteins in plasma. Factor VIII bound to membranes containing 10% phosphatidylserine in spite of a varying net charge provided by 0-15% stearylamine, a positively charged lipid. The soluble phosphatidylserine moiety, O-phospho-L-serine, inhibited factor VIII binding to phosphatidylserine-containing membranes with a Ki of 20 mM, but the stereoisomer, O-phospho-D-serine, was 5-fold less effective. Furthermore, binding of factor VIII to membranes containing synthetic phosphatidyl-D-serine was 5-fold less than binding to membranes containing phosphatidyl-L-serine. Membranes containing synthetic phosphatidyl-L-homoserine, differing from phosphatidylserine by a single methylene, supported high-affinity binding, but it was not specific as factor VIII was displaced by other plasma proteins. O-Phospho-L-serine also inhibited the binding of factor VIII to platelet-derived microparticles with a Ki of 20 mM, and the stereoisomer was 4-fold less effective. These results indicate that membrane binding of factor VIII is mediated by a stereoselective recognition O-phospho-L-serine of phosphatidylserine and that negative electrostatic potential is of lesser importance.

  10. Anti-fibrinolytic and anti-microbial activities of a serine protease inhibitor from honeybee (Apis cerana) venom.

    Science.gov (United States)

    Yang, Jie; Lee, Kwang Sik; Kim, Bo Yeon; Choi, Yong Soo; Yoon, Hyung Joo; Jia, Jingming; Jin, Byung Rae

    2017-10-01

    Bee venom contains a variety of peptide constituents, including low-molecular-weight protease inhibitors. While the putative low-molecular-weight serine protease inhibitor Api m 6 containing a trypsin inhibitor-like cysteine-rich domain was identified from honeybee (Apis mellifera) venom, no anti-fibrinolytic or anti-microbial roles for this inhibitor have been elucidated. In this study, we identified an Asiatic honeybee (A. cerana) venom serine protease inhibitor (AcVSPI) that was shown to act as a microbial serine protease inhibitor and plasmin inhibitor. AcVSPI was found to consist of a trypsin inhibitor-like domain that displays ten cysteine residues. Interestingly, the AcVSPI peptide sequence exhibited high similarity to the putative low-molecular-weight serine protease inhibitor Api m 6, which suggests that AcVSPI is an allergen Api m 6-like peptide. Recombinant AcVSPI was expressed in baculovirus-infected insect cells, and it demonstrated inhibitory activity against trypsin, but not chymotrypsin. Additionally, AcVSPI has inhibitory effects against plasmin and microbial serine proteases; however, it does not have any detectable inhibitory effects on thrombin or elastase. Consistent with these inhibitory effects, AcVSPI inhibited the plasmin-mediated degradation of fibrin to fibrin degradation products. AcVSPI also bound to bacterial and fungal surfaces and exhibited anti-microbial activity against fungi as well as gram-positive and gram-negative bacteria. These findings demonstrate the anti-fibrinolytic and anti-microbial roles of AcVSPI as a serine protease inhibitor. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Effects of a marine serine protease inhibitor on viability and morphology of Trypanosoma cruzi, the agent of Chagas disease.

    Science.gov (United States)

    de Almeida Nogueira, Natália Pereira; Morgado-Díaz, José Andrés; Menna-Barreto, Rubem Figueiredo Sadok; Paes, Marcia Cristina; da Silva-López, Raquel Elisa

    2013-10-01

    It has been reported that serine peptidase activities of Trypanosoma cruzi play crucial roles in parasite dissemination and host cell invasion and therefore their inhibition could affect the progress of Chagas disease. The present study investigates the interference of the Stichodactyla helianthus Kunitz-type serine protease inhibitor (ShPI-I), a 55-amino acid peptide, in T. cruzi serine peptidase activities, parasite viability, and parasite morphology. The effect of this peptide was also studied in Leishmania amazonensis promastigotes and it was proved to be a powerful inhibitor of serine proteases activities and the parasite viability. The ultrastructural alterations caused by ShPI-I included vesiculation of the flagellar pocket membrane and the appearance of a cytoplasmic vesicle that resembles an autophagic vacuole. ShPI-I, which showed itself to be an important T. cruzi serine peptidase inhibitor, reduced the parasite viability, in a dose and time dependent manner. The maximum effect of peptide on T. cruzi viability was observed when ShPI-I at 1×10(-5)M was incubated for 24 and 48h which killed completely both metacyclic trypomastigote and epimastigote forms. At 1×10(-6)M ShPI-I, in the same periods of time, reduced parasite viability about 91-95% respectively. Ultrastructural analysis demonstrated the formation of concentric membranar structures especially in the cytosol, involving organelles and small vesicles. Profiles of endoplasmic reticulum were also detected, surrounding cytosolic vesicles that resembled autophagic vacuoles. These results suggest that serine peptidases are important in T. cruzi physiology since the inhibition of their activity killed parasites in vitro as well as inducing important morphological alterations. Protease inhibitors thus appear to have a potential role as anti-trypanosomatidal agents. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Functional analysis of a missense mutation in the serine protease inhibitor SPINT2 associated with congenital sodium diarrhea.

    Directory of Open Access Journals (Sweden)

    Nicolas Faller

    Full Text Available Membrane-bound serine proteases play important roles in different biological processes. Their regulation by endogenous inhibitors is poorly understood. A Y163C mutation in the SPINT2 gene encoding the serine protease inhibitor Hepatocyte Growth Factor Inhibitor HAI-2 is associated with a congenital sodium diarrhea. The functional consequences of this mutation on HAI-2 activity and its physiological targets are unknown. We established a cellular assay in Xenopus laevis oocytes to study functional interactions between HAI-2 and candidate membrane-bound serine proteases expressed in the gastro-intestinal tract. We found that the wild-type form of HAI-2 is a potent inhibitor of nine gastro-intestinal serine proteases. The Y163C mutation in the second Kunitz domain of HAI-2 resulted in a complete loss of inhibitory activity on two intestinal proteases, prostasin and tmprss13. The effect of the mutation of the homologous Y68C in the first Kunitz domain of HAI-2 is consistent with a differential contribution of the two Kunitz domains of HAI-2 in the inhibition of serine proteases. By contrast to the Tyr to Cys, the Tyr to Ser substitution did not change the inhibitory potency of HAI-2, indicating that the thiol-group of the cysteine rather than the Tyr deletion is responsible for the HAI-2 loss of function. Our functional assay allowed us to identify membrane-bound serine proteases as cellular target for inhibition by HAI-2 wild type and mutants, and to better define the role of the Tyr in the second Kunitz domain in the inhibitory activity of HAI-2.

  13. Negative Role of RIG-I Serine 8 Phosphorylation in the Regulatin of Interferon-beta Production

    Energy Technology Data Exchange (ETDEWEB)

    E Nistal-Villan; M Gack; G Martinez-Delgado; N Maharaj; K Inn; H Yang; R Wang; A Aggarwal; J Jung; A Garcia-Sastre

    2011-12-31

    RIG-I (retinoic acid-inducible gene I) and TRIM25 (tripartite motif protein 25) have emerged as key regulatory factors to induce interferon (IFN)-mediated innate immune responses to limit viral replication. Upon recognition of viral RNA, TRIM25 E3 ligase binds the first caspase recruitment domain (CARD) of RIG-I and subsequently induces lysine 172 ubiquitination of the second CARD of RIG-I, which is essential for the interaction with downstream MAVS/IPS-1/CARDIF/VISA and, thereby, IFN-beta mRNA production. Although ubiquitination has emerged as a major factor involved in RIG-I activation, the potential contribution of other post-translational modifications, such as phosphorylation, to the regulation of RIG-I activity has not been addressed. Here, we report the identification of serine 8 phosphorylation at the first CARD of RIG-I as a negative regulatory mechanism of RIG-I-mediated IFN-beta production. Immunoblot analysis with a phosphospecific antibody showed that RIG-I serine 8 phosphorylation steady-state levels were decreased upon stimulation of cells with IFN-beta or virus infection. Substitution of serine 8 in the CARD RIG-I functional domain with phosphomimetic aspartate or glutamate results in decreased TRIM25 binding, RIG-I ubiquitination, MAVS binding, and downstream signaling. Finally, sequence comparison reveals that only primate species carry serine 8, whereas other animal species carry an asparagine, indicating that serine 8 phosphorylation may represent a primate-specific regulation of RIG-I activation. Collectively, these data suggest that the phosphorylation of RIG-I serine 8 operates as a negative switch of RIG-I activation by suppressing TRIM25 interaction, further underscoring the importance of RIG-I and TRIM25 connection in type I IFN signal transduction.

  14. Rethinking the evolution of eukaryotic metabolism: novel cellular partitioning of enzymes in stramenopiles links serine biosynthesis to glycolysis in mitochondria.

    Science.gov (United States)

    Abrahamian, Melania; Kagda, Meenakshi; Ah-Fong, Audrey M V; Judelson, Howard S

    2017-12-04

    An important feature of eukaryotic evolution is metabolic compartmentalization, in which certain pathways are restricted to the cytosol or specific organelles. Glycolysis in eukaryotes is described as a cytosolic process. The universality of this canon has been challenged by recent genome data that suggest that some glycolytic enzymes made by stramenopiles bear mitochondrial targeting peptides. Mining of oomycete, diatom, and brown algal genomes indicates that stramenopiles encode two forms of enzymes for the second half of glycolysis, one with and the other without mitochondrial targeting peptides. The predicted mitochondrial targeting was confirmed by using fluorescent tags to localize phosphoglycerate kinase, phosphoglycerate mutase, and pyruvate kinase in Phytophthora infestans, the oomycete that causes potato blight. A genome-wide search for other enzymes with atypical mitochondrial locations identified phosphoglycerate dehydrogenase, phosphoserine aminotransferase, and phosphoserine phosphatase, which form a pathway for generating serine from the glycolytic intermediate 3-phosphoglycerate. Fluorescent tags confirmed the delivery of these serine biosynthetic enzymes to P. infestans mitochondria. A cytosolic form of this serine biosynthetic pathway, which occurs in most eukaryotes, is missing from oomycetes and most other stramenopiles. The glycolysis and serine metabolism pathways of oomycetes appear to be mosaics of enzymes with different ancestries. While some of the noncanonical oomycete mitochondrial enzymes have the closest affinity in phylogenetic analyses with proteins from other stramenopiles, others cluster with bacterial, plant, or animal proteins. The genes encoding the mitochondrial phosphoglycerate kinase and serine-forming enzymes are physically linked on oomycete chromosomes, which suggests a shared origin. Stramenopile metabolism appears to have been shaped through the acquisition of genes by descent and lateral or endosymbiotic gene transfer

  15. Net alkalinity and net acidity 1: Theoretical considerations

    International Nuclear Information System (INIS)

    Kirby, Carl S.; Cravotta, Charles A.

    2005-01-01

    Net acidity and net alkalinity are widely used, poorly defined, and commonly misunderstood parameters for the characterization of mine drainage. The authors explain theoretical expressions of 3 types of alkalinity (caustic, phenolphthalein, and total) and acidity (mineral, CO 2 , and total). Except for rarely-invoked negative alkalinity, theoretically defined total alkalinity is closely analogous to measured alkalinity and presents few practical interpretation problems. Theoretically defined 'CO 2 -acidity' is closely related to most standard titration methods with an endpoint pH of 8.3 used for determining acidity in mine drainage, but it is unfortunately named because CO 2 is intentionally driven off during titration of mine-drainage samples. Using the proton condition/mass-action approach and employing graphs to illustrate speciation with changes in pH, the authors explore the concept of principal components and how to assign acidity contributions to aqueous species commonly present in mine drainage. Acidity is defined in mine drainage based on aqueous speciation at the sample pH and on the capacity of these species to undergo hydrolysis to pH 8.3. Application of this definition shows that the computed acidity in mgL -1 as CaCO 3 (based on pH and analytical concentrations of dissolved Fe II , Fe III , Mn, and Al in mgL -1 ):acidity calculated =50{1000(10 -pH )+[2(Fe II )+3(Fe III )]/56+2(Mn) /55+3(Al)/27}underestimates contributions from HSO 4 - and H + , but overestimates the acidity due to Fe 3+ and Al 3+ . However, these errors tend to approximately cancel each other. It is demonstrated that 'net alkalinity' is a valid mathematical construction based on theoretical definitions of alkalinity and acidity. Further, it is shown that, for most mine-drainage solutions, a useful net alkalinity value can be derived from: (1) alkalinity and acidity values based on aqueous speciation (2) measured alkalinity minus calculated acidity, or (3) taking the negative of the

  16. Fluorescence quenching based alkaline phosphatase activity detection.

    Science.gov (United States)

    Mei, Yaqi; Hu, Qiong; Zhou, Baojing; Zhang, Yonghui; He, Minhui; Xu, Ting; Li, Feng; Kong, Jinming

    2018-01-01

    Simple and fast detection of alkaline phosphatase (ALP) activity is of great importance for diagnostic and analytical applications. In this work, we report a turn-off approach for the real-time detection of ALP activity on the basis of the charge transfer induced fluorescence quenching of the Cu(BCDS) 2 2- (BCDS = bathocuproine disulfonate) probe. Initially, ALP can enzymatically hydrolyze the substrate ascorbic acid 2-phosphate to release ascorbic acid (AA). Subsequently, the AA-mediated reduction of the Cu(BCDS) 2 2- probe, which displays an intense photoluminescence band at the wavelength of 402nm, leads to the static quenching of fluorescence of the probe as a result of charge transfer. The underlying mechanism of the fluorescence quenching was demonstrated by quantum mechanical calculations. The Cu(BCDS) 2 2- probe features a large Stokes shift (86nm) and is highly immune to photo bleaching. In addition, this approach is free of elaborately designed fluorescent probes and allows the detection of ALP activity in a real-time manner. Under optimal conditions, it provides a fast and sensitive detection of ALP activity within the dynamic range of 0-220mUmL -1 , with a detection limit down to 0.27mUmL -1 . Results demonstrate that it is highly selective, and applicable to the screening of ALP inhibitors in drug discovery. More importantly, it shows a good analytical performance for the direct detection of the endogenous ALP levels of undiluted human serum and even whole blood samples. Therefore, the proposed charge transfer based approach has great potential in diagnostic and analytical applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Chlorine solubility in evolved alkaline magmas

    Directory of Open Access Journals (Sweden)

    M. R. Carroll

    2005-06-01

    Full Text Available Experimental studies of Cl solubility in trachytic to phonolitic melts provide insights into the capacity of alkaline magmas to transport Cl from depth to the earth?s surface and atmosphere, and information on Cl solubility variations with pressure, temperature and melt or fluid composition is crucial for understanding the reasons for variations in Cl emissions at active volcanoes. This paper provides a brief review of Cl solubility experiments conducted on a range of trachytic to phonolitic melt compositions. Depending on the experimental conditions the melts studied were in equilibrium with either a Cl-bearing aqueous fluid or a subcritical assemblage of low- Cl aqueous fluid + Cl-rich brine. The nature of the fluid phase(s was identified by examination of fluid inclusions present in run product glasses and the fluid bulk composition was calculated by mass balance. Chlorine concentrations in the glass increase with increasing Cl molality in the fluid phase until a plateau in Cl concentration is reached when melt coexists with aqueous fluid + brine. With fluids of similar Cl molality, higher Cl concentrations are observed in peralkaline phonolitic melts compared with peraluminous phonolitic melts; overall the Cl concentrations observed in phonolitic and trachytic melts are approximately twice those found in calcalkaline rhyolitic melts under similar conditions. The observed negative pressure dependence of Cl solubility implies that Cl contents of melts may actually increase during magma decompression if the magma coexists with aqueous fluid and Cl-rich brine (assuming melt-vapor equilibrium is maintained. The high Cl contents (approaching 1 wt% Cl observed in some melts/glasses from the Vesuvius and Campi Flegrei areas suggest saturation with a Cl-rich brine prior to eruption.

  18. Alkaline Peroxide Delignification of Corn Stover

    Energy Technology Data Exchange (ETDEWEB)

    Mittal, Ashutosh [Biosciences; Katahira, Rui [National; Donohoe, Bryon S. [Biosciences; Black, Brenna A. [National; Pattathil, Sivakumar [Complex; Stringer, Jack M. [National; Beckham, Gregg T. [National

    2017-05-30

    Selective biomass fractionation into carbohydrates and lignin is a key challenge in the conversion of lignocellulosic biomass to fuels and chemicals. In the present study, alkaline hydrogen peroxide (AHP) pretreatment was investigated to fractionate lignin from polysaccharides in corn stover (CS), with a particular emphasis on the fate of the lignin for subsequent valorization. The influence of peroxide loading on delignification during AHP pretreatment was examined over the range of 30-500 mg H2O2/g dry CS at 50 degrees C for 3 h. Mass balances were conducted on the solid and liquid fractions generated after pretreatment for each of the three primary components, lignin, hemicellulose, and cellulose. AHP pretreatment at 250 mg H2O2/g dry CS resulted in the pretreated solids with more than 80% delignification consequently enriching the carbohydrate fraction to >90%. Two-dimensional nuclear magnetic resonance (2D-NMR) spectroscopy of the AHP pretreated residue shows that, under high peroxide loadings (>250 mg H2O2/g dry CS), most of the side chain structures were oxidized and the aryl-ether bonds in lignin were partially cleaved, resulting in significant delignification of the pretreated residues. Gel permeation chromatography (GPC) analysis shows that AHP pretreatment effectively depolymerizes CS lignin into low molecular weight (LMW) lignin fragments in the aqueous fraction. Imaging of AHP pretreated residues shows a more granular texture and a clear lamellar pattern in secondary walls, indicative of layers of varying lignin removal or relocalization. Enzymatic hydrolysis of this pretreated residue at 20 mg/g of glucan resulted in 90% and 80% yields of glucose and xylose, respectively, after 120 h. Overall, AHP pretreatment is able to selectively remove more than 80% of the lignin from biomass in a form that has potential for downstream valorization processes and enriches the solid pulp into a highly digestible material.

  19. Economic Analysis of Improved Alkaline Water Electrolysis

    International Nuclear Information System (INIS)

    Kuckshinrichs, Wilhelm; Ketelaer, Thomas; Koj, Jan Christian

    2017-01-01

    Alkaline water electrolysis (AWE) is a mature hydrogen production technology and there exists a range of economic assessments for available technologies. For advanced AWEs, which may be based on novel polymer-based membrane concepts, it is of prime importance that development comes along with new configurations and technical and economic key process parameters for AWE that might be of interest for further economic assessments. This paper presents an advanced AWE technology referring to three different sites in Europe (Germany, Austria, and Spain). The focus is on financial metrics, the projection of key performance parameters of advanced AWEs, and further financial and tax parameters. For financial analysis from an investor’s (business) perspective, a comprehensive assessment of a technology not only comprises cost analysis but also further financial analysis quantifying attractiveness and supply/market flexibility. Therefore, based on cash flow (CF) analysis, a comprehensible set of metrics may comprise levelised cost of energy or, respectively, levelized cost of hydrogen (LCH) for cost assessment, net present value (NPV) for attractiveness analysis, and variable cost (VC) for analysis of market flexibility. The German AWE site turns out to perform best in all three financial metrics (LCH, NPV, and VC). Though there are slight differences in investment cost and operation and maintenance cost projections for the three sites, the major cost impact is due to the electricity cost. Although investment cost is slightly lower and labor cost is significantly lower in Spain, the difference can not outweigh the higher electricity cost compared to Germany. Given the assumption that the electrolysis operators are customers directly and actively participating in power markets, and based on the regulatory framework in the three countries, in this special case electricity cost in Germany is lowest. However, as electricity cost is profoundly influenced by political decisions as

  20. Interaction between cysteine synthase and serine O-acetyltransferase proteins and their stage specific expression in Leishmania donovani.

    Science.gov (United States)

    Singh, Kuljit; Singh, Krishn Pratap; Equbal, Asif; Suman, Shashi S; Zaidi, Amir; Garg, Gaurav; Pandey, Krishna; Das, Pradeep; Ali, Vahab

    2016-12-01

    Leishmania possess a unique trypanothione redox metabolism with undebated roles in protection from oxidative damage and drug resistance. The biosynthesis of trypanothione depends on l-cysteine bioavailability which is regulated by cysteine biosynthesis pathway. The de novo cysteine biosynthesis pathway is comprised of serine O-acetyltransferase (SAT) and cysteine synthase (CS) enzymes which sequentially mediate two consecutive steps of cysteine biosynthesis, and is absent in mammalian host. However, despite the apparent dependency of redox metabolism on cysteine biosynthesis pathway, the role of SAT and CS in redox homeostasis has been unexplored in Leishmania parasites. Herein, we have characterized CS and SAT to investigate their interaction and relative abundance of these proteins in promastigote vs. amastigote growth stages of L. donovani. CS and SAT genes of L. donovani (LdCS and LdSAT) were cloned, expressed, and fusion proteins purified to homogeneity with affinity column chromatography. Purified LdCS contains PLP as cofactor and showed optimum enzymatic activity at pH 7.5. Enzyme kinetics showed that LdCS catalyses the synthesis of cysteine using O-acetylserine and sulfide with a K m of 15.86 mM and 0.17 mM, respectively. Digitonin fractionation and indirect immunofluorescence microscopy showed that LdCS and LdSAT are localized in the cytoplasm of promastigotes. Size exclusion chromatography, co-purification, pull down and immuno-precipitation assays demonstrated a stable complex formation between LdCS and LdSAT proteins. Furthermore, LdCS and LdSAT proteins expression/activity was upregulated in amastigote growth stage of the parasite. Thus, the stage specific differential expression of LdCS and LdSAT suggests that it may have a role in the redox homeostasis of Leishmania. Copyright © 2016 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  1. Emplacement of Amba Dongar Carbonatite-alkaline Complex at ...

    Indian Academy of Sciences (India)

    40Ar-39Ar analyses of three fresh alkaline rock samples and a phlogopite separate from a carbonatite from Amba Dongar carbonatite-alkaline complex of the Deccan Flood Basalt Province, India, yield indistinguishable precise plateau ages of 64.8 ± 0.6, 64.7 ± 0.5, 65.5 ± 0.8 and 65.3 ± 0.6 Ma, giving a mean plateau age ...

  2. Processes determining the marine alkalinity and carbonate saturation distributions

    OpenAIRE

    B. R. Carter; J. R. Toggweiler; R. M. Key; J. L. Sarmiento

    2014-01-01

    We introduce a composite tracer, Alk*, that has a global distribution primarily determined by CaCO3 precipitation and dissolution. Alk* also highlights riverine alkalinity plumes that are due to dissolved calcium carbonate from land. We estimate the Arctic receives approximately twice the riverine alkalinity per unit area as the Atlantic, and 8 times that of the other oceans. Riverine inputs broadly elevate Alk* in the Arctic surface and particularly near ri...

  3. Protection of mice from lethal endotoxemia by use of an ornithine-containing lipid or a serine-containing lipid.

    OpenAIRE

    Kawai, Y; Kaneda, K; Morisawa, Y; Akagawa, K

    1991-01-01

    The effects of an ornithine-containing lipid [alpha-N-(3-acyloxyacyl)-ornithine (Orn-L)] or a serine-containing lipid [alpha-N-(3-acyloxyacyl)-serine (Ser-L)] from Flavobacterium meningosepticum on lethal endotoxemia in mice were examined. When 500 micrograms of Orn-L was intravenously administered 1 h before intravenous administration of a lethal dose of endotoxin, none of the mice died. The protective effect of Ser-L was weaker than that of Orn-L. Light and electron microscopic studies demo...

  4. Acid transformation of bauxite residue: Conversion of its alkaline characteristics.

    Science.gov (United States)

    Kong, Xiangfeng; Li, Meng; Xue, Shengguo; Hartley, William; Chen, Chengrong; Wu, Chuan; Li, Xiaofei; Li, Yiwei

    2017-02-15

    Bauxite residue (BR) is a highly alkaline solid hazardous waste produced from bauxite processing for alumina production. Alkaline transformation appears to reduce the environmental risk of bauxite residue disposal areas (BRDAs) whilst potentially providing opportunities for the sustainable reuse and on-going management of BR. Mineral acids, a novel citric acid and a hybrid combination of acid-gypsum treatments were investigated for their potential to reduce residue pH and total alkalinity and transform the alkaline mineral phase. XRD results revealed that with the exception of andradite, the primary alkaline solid phases of cancrinite, grossular and calcite were transformed into discriminative products based on the transformation used. Supernatants separated from BR and transformed bauxite residue (TBR) displayed distinct changes in soluble Na, Ca and Al, and a reduction in pH and total alkalinity. SEM images suggest that mineral acid transformations promote macro-aggregate formation, and the positive promotion of citric acid, confirming the removal or reduction in soluble and exchangeable Na. NEXAFS analysis of Na K-edge revealed that the chemical speciation of Na in TBRs was consistent with BR. Three acid treatments and gypsum combination had no effect on Na speciation, which affects the distribution of Na revealed by sodium STXM imaging. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Overexpression of Human Bone Alkaline Phosphatase in Pichia Pastoris

    Science.gov (United States)

    Karr, Laurel; Malone, Christine, C.; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    The Pichiapastoris expression system was utilized to produce functionally active human bone alkaline phosphatase in gram quantities. Bone alkaline phosphatase is a key enzyme in bone formation and biomineralization, yet important questions about its structural chemistry and interactions with other cellular enzymes in mineralizing tissues remain unanswered. A soluble form of human bone alkaline phosphatase was constructed by deletion of the 25 amino acid hydrophobic C-terminal region of the encoding cDNA and inserted into the X-33 Pichiapastoris strain. An overexpression system was developed in shake flasks and converted to large-scale fermentation. Alkaline phosphatase was secreted into the medium to a level of 32mgAL when cultured in shake flasks. Enzyme activity was 12U/mg measured by a spectrophotometric assay. Fermentation yielded 880mgAL with enzymatic activity of 968U/mg. Gel electrophoresis analysis indicates that greater than 50% of the total protein in the fermentation is alkaline phosphatase. A purification scheme has been developed using ammonium sulfate precipitation followed by hydrophobic interaction chromatography. We are currently screening crystallization conditions of the purified recombinant protein for subsequent X-ray diffraction analyses. Structural data should provide additional information on the role of alkaline phosphatase in normal bone mineralization and in certain bone mineralization anomalies.

  6. INFLUENCE OF VARIOUS FACTORS ON THE THERMAL DECOMPOSITION OF ALKALINE-REDUCING SUBSTANCES

    Directory of Open Access Journals (Sweden)

    V. A. Golybin

    2014-01-01

    Full Text Available Summary. According to the modern technology of sugar production normative expansion reducing substances in the cleaning diffusion juice, should be held in the main liming controlled temperature with an excess of lime alkalinity, followed by removal of the decay products have appeared due to the adsorption of calcium carbonate in the processing of juice carbon dioxide. Test data show the growth rate of thermochemical quantities of sucrose decay with increasing temperature, with the greatest degree in the experiments with a small share of reducing substances in solutions. With increase in the proportion of reducing substances to 0,3 %, the rate is reduced to about twice, with a 80 ° C and found to decrease its rate of growth . Main liming process preceded progressive preliming , not only where the epimerization faster but less stable , and the decomposition of fructose in the composition of the reducing substances to produce reactive products influencing the alkalinity of the solution and the surface state of microparticles of calcium hydroxide . The presence on the surface OH-groups and the appearance of tumors in the working environment, having in their structures group (= CO, (= O, (- СОН contributes to the appearance of induced hydrogen bonds and partial reduction of the specific surface of the mass transfer between the solid particles and the components of the solution. Carboxyl group reduce the level of active alkalinity, which as a result of blocking is limited, which reduces the pH of the environment and the decay constant reducing substances. When heated to about 85 °C decomposed 20% of the reducing substances, and chromaticity increased by 83,1 %, taking into account the heating and hot main liming chromaticity increased by 116,9 %. That is, the more reducing substances remain in solution after the first stage of the main liming, the stronger chroma increases upon subsequent heating and hot workability.

  7. Serine protease inhibitor attenuates ovalbumin induced inflammation in mouse model of allergic airway disease.

    Directory of Open Access Journals (Sweden)

    Sanjay Saw

    Full Text Available BACKGROUND: Serine proteases promote inflammation and tissue remodeling by activating proteinase-activated receptors, urokinase, metalloproteinases and angiotensin. In the present study, 4-(2-Aminoethyl benzenesulfonyl fluoride (AEBSF a serine protease inhibitor was evaluated for prophylactic and therapeutic treatment in mouse model of airway allergy. METHODS: BALB/c mice were sensitized by i.p route and challenged with ovalbumin. They were treated i.n. with 2, 10 and 50 µg of AEBSF, one hour before or after challenge and euthanized to collect BALF (bronchoalveolar lavage fluid, blood and lungs. Proteolytic activity, total cell/eosinophil/neutrophil count eosinophil peroxidase activity (EPO, IL-4, IL-5, IL-10, IL-13, cysteinyl leukotrienes and 8-isoprostane were determined in BALF and immunoglobulins were measured in serum. H&E and PAS stained lung sections were examined for cellular infiltration and airway inflammation. RESULTS: Mice exposed to ovalbumin and treated with PBS showed increased cellular infiltration in lungs and higher serum IgE, IgG1 and IgG2a levels as compared to sham mice. Treatment with AEBSF reduced total cells/eosinophil/neutrophil infiltration. Both prophylactic and therapeutic AEBSF treatment of 10 or 50 µg reduced serum IgE and IgG1 significantly (p<0.05 than control. AEBSF treatment reduced the proteolytic activity in BALF. IL-4 IL-5 and IL-13 levels decreased significantly (p<0.05 after AEBSF treatment while IL-10 levels increased significantly (p<0.05 in BALF. Airway inflammation and goblet cell hyperplasia reduced as demonstrated by lung histopathology, EPO activity and cysteinyl leukotrienes in BALF after treatment. AEBSF treatment also suppressed oxidative stress in terms of 8-isoprostane in BALF. Among the treatment doses, 10 or 50 µg of AEBSF were most effective in reducing the inflammatory parameters. CONCLUSIONS: Prophylactic and therapeutic treatment with serine protease inhibitor attenuates the airway

  8. Snake venom serine proteinases specificity mapping by proteomic identification of cleavage sites.

    Science.gov (United States)

    Zelanis, André; Huesgen, Pitter F; Oliveira, Ana Karina; Tashima, Alexandre K; Serrano, Solange M T; Overall, Christopher M

    2015-01-15

    Many snake venom toxins are serine proteases but their specific in vivo targets are mostly unknown. Various act on components of the coagulation cascade, and fibrinolytic and kallikrein-kinin systems to trigger various pathological effects observed in the envenomation. Despite showing high similarity in terms of primary structure snake venom serine proteinases (SVSPs) show exquisite specificity towards macromolecular substrates. Therefore, the characterization of their peptide bond specificity is important for understanding the active site preference associated with effective proteolysis as well as for the design of peptide substrates and inhibitors. Bothrops jararaca contains various SVSPs among which Bothrops protease A is a specific fibrinogenolytic agent and PA-BJ is a platelet-activating enzyme. In this study we used proteome derived peptide libraries in the Proteomic Identification of protease Cleavage Sites (PICS) approach to explore the peptide bond specificity of Bothrops protease A and PA-BJ in order to determine their individual peptide cleavage sequences. A total of 371 cleavage sites (208 for Bothrops protease A and 163 for PA-BJ) were detected and both proteinases displayed a clear preference for arginine at the P1 position. Moreover, the analysis of the specificity profiles of Bothrops protease A and PA-BJ revealed subtle differences in the preferences along P6-P6', despite a common yet unusual preference for Pro at P2. Taken together, these results map the subsite specificity of both SVSPs and shed light in the functional differences between these proteinases. Proteolysis is key to various pathological effects observed upon envenomation by viperid snakes. The use of the Proteomic Identification of protease Cleavage Sites (PICS) approach for the easy mapping of proteinase subsite preferences at both the prime- and non-prime sides concurrently gives rise to a fresh understanding of the interaction of the snake venom serine proteinases with peptide and

  9. Role of serine racemase in behavioral sensitization in mice after repeated administration of methamphetamine.

    Directory of Open Access Journals (Sweden)

    Mao Horio

    Full Text Available BACKGROUND: The N-methyl-D-aspartate (NMDA receptors play a role in behavioral abnormalities observed after administration of the psychostimulant, methamphetamine (METH. Serine racemase (SRR is an enzyme which synthesizes D-serine, an endogenous co-agonist of NMDA receptors. Using Srr knock-out (KO mice, we investigated the role of SRR on METH-induced behavioral abnormalities in mice. METHODOLOGY/PRINCIPAL FINDINGS: Evaluations of behavior in acute hyperlocomotion, behavioral sensitization, and conditioned place preference (CPP were performed. The role of SRR on the release of dopamine (DA in the nucleus accumbens after administration of METH was examined using in vivo microdialysis technique. Additionally, phosphorylation levels of ERK1/2 proteins in the striatum, frontal cortex and hippocampus were examined using Western blot analysis. Acute hyperlocomotion after a single administration of METH (3 mg/kg was comparable between wild-type (WT and Srr-KO mice. However, repeated administration of METH (3 mg/kg/day, once daily for 5 days resulted in behavioral sensitization in WT, but not Srr-KO mice. Pretreatment with D-serine (900 mg/kg, 30 min prior to each METH treatment did not affect the development of behavioral sensitization after repeated METH administration. In the CPP paradigm, METH-induced rewarding effects were demonstrable in both WT and Srr-KO mice. In vivo microdialysis study showed that METH (1 mg/kg-induced DA release in the nucleus accumbens of Srr-KO mice previously treated with METH was significantly lower than that of the WT mice previously treated with METH. Interestingly, a single administration of METH (3 mg/kg significantly increased the phosphorylation status of ERK1/2 in the striatum of WT, but not Srr-KO mice. CONCLUSIONS/SIGNIFICANCE: These findings suggest first, that SRR plays a role in the development of behavioral sensitization in mice after repeated administration of METH, and second that phosphorylation of ERK1

  10. Potential benefits of pH 8.8 alkaline drinking water as an adjunct in the treatment of reflux disease.

    Science.gov (United States)

    Koufman, Jamie A; Johnston, Nikki

    2012-07-01

    At the cellular level, tissue-bound pepsin is fundamental to the pathophysiologic mechanism of reflux disease, and although the thresholds for laryngeal damage in laryngopharyngeal reflux and for esophageal damage in gastroesophageal reflux disease differ, both forms of damage are due to pepsin, which requires acid for its activation. In addition, human pepsin remains stable at pH 7.4 and may be reactivated by hydrogen ions from any source. Thus, most tap and bottled waters (typically pH 6.7 to 7.4) would not be expected to affect pepsin stability. The purposes of these in vitro studies were to investigate whether artesian well water containing natural bicarbonate (pH 8.8) might irreversibly denature (inactivate) human pepsin, and to establish its potential acid-buffering capacity. Laboratory studies were performed to determine whether human pepsin was inactivated by pH 8.8 alkaline water. In addition, the buffering capacity of the alkaline water was measured and compared to that of the two most popular commercially available bottled waters. The pH 8.8 alkaline water irreversibly inactivated human pepsin (in vitro), and its hydrochloric acid-buffering capacity far exceeded that of the conventional-pH waters. Unlike conventional drinking water, pH 8.8 alkaline water instantly denatures pepsin, rendering it permanently inactive. In addition, it has good acid-buffering capacity. Thus, the consumption of alkaline water may have therapeutic benefits for patients with reflux disease.

  11. Involvement of membrane potential in alkaline band formation by internodal cells of Chara corallina.

    Science.gov (United States)

    Shimmen, Teruo; Wakabayashi, Akiko

    2008-10-01

    Internodal cells of Chara corallina form alkaline bands on their surface upon illumination via photosynthesis. In the present study, the effect of KCl on alkaline band formation was analyzed. When the extracellular KCl concentration was increased, alkaline band formation was extensively inhibited. Electrophysiological analysis unequivocally showed the need for inner negative membrane potential for alkaline band formation.

  12. 40 CFR 420.110 - Applicability; description of the alkaline cleaning subcategory.

    Science.gov (United States)

    2010-07-01

    ... alkaline cleaning subcategory. 420.110 Section 420.110 Protection of Environment ENVIRONMENTAL PROTECTION... Alkaline Cleaning Subcategory § 420.110 Applicability; description of the alkaline cleaning subcategory... alkaline cleaning baths to remove mineral and animal fats or oils from the steel, and those rinsing...

  13. 21 CFR 862.1050 - Alkaline phosphatase or isoenzymes test system.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Alkaline phosphatase or isoenzymes test system... Test Systems § 862.1050 Alkaline phosphatase or isoenzymes test system. (a) Identification. An alkaline phosphatase or isoenzymes test system is a device intended to measure alkaline phosphatase or its isoenzymes...

  14. Experimental and analytical analysis of polarization and water transport behaviors of hydrogen alkaline membrane fuel cell

    Science.gov (United States)

    Huo, Sen; Zhou, Jiaxun; Wang, Tianyou; Chen, Rui; Jiao, Kui

    2018-04-01

    Experimental test and analytical modeling are conducted to investigate the operating behavior of an alkaline electrolyte membrane (AEM) fuel cell fed by H2/air (or O2) and explore the effect of various operating pressures on the water transfer mechanism. According to the experimental test, the cell performance is greatly improved through increasing the operating pressure gradient from anode to cathode which leads to significant liquid water permeation through the membrane. The high frequency resistance of the A901 alkaline membrane is observed to be relatively stable as the operating pressure varies based on the electrochemical impedance spectroscopy (EIS) method. Correspondingly, based on the modeling prediction, the averaged water content in the membrane electrode assembly (MEA) does not change too much which leads to the weak variation of membrane ohmic resistance. This reveals that the performance enhancement should give the credit to better electro-chemical reaction kinetics for both the anode and cathode, also prone by the EIS results. The reversion of water back diffusion direction across the membrane is also observed through analytical solution.

  15. One step alkaline synthesis of biocompatible gold nanoparticles using dextrin as capping agent

    Science.gov (United States)

    Anderson, Michael J.; Torres-Chavolla, Edith; Castro, Brian A.; Alocilja, Evangelyn C.

    2011-07-01

    Gold nanoparticles (AuNPs) are used in sensing methods as tracers and transducers. The most common AuNP synthesis techniques utilize citrate under acidic reaction conditions. The synthesis described in this article generates glyco-AuNPs under mild alkaline conditions providing a "greener" alternative to Brust and Turkevich methodologies. This biologically compatible one-step technique uses dextrin as a capping agent and sodium carbonate as the reducing agent for chloroauric acid. The generated particles were relatively mono-dispersed and water soluble with a range of controllable mean diameters from 5.9 to 16.8 ± 1.6 nm. The produced AuNPs were stable in water for more than 6 months stored at room temperature (21 °C) in generation solution without protection from light. This article shows the effect of temperature, pH, and dextrin concentration on the synthesis procedure and AuNP diameter. These factors were found to control the reaction speed. The produced glyco-AuNPs were successfully functionalized with DNA oligonucleotides, and the functionalization efficiency was similar to citrate-generated AuNPs. The alkaline synthesis allows future exploration of simultaneous synthesis and functionalization procedures, which could significantly reduce the time of current ligand exchange methodologies.

  16. Protease purification and characterization of a serine protease inhibitor from Egyptian varieties of soybean seeds and its efficacy against Spodoptera littoralis

    Directory of Open Access Journals (Sweden)

    El-latif Ashraf Oukasha Abd

    2015-01-01

    Full Text Available Serine inhibitors have been described in many plant species and are universal throughout the plant kingdom. Trypsin inhibitors are the most common type. In the present study, trypsin and chymotrypsin inhibitory activity was detected in the seed flour extracts of four Egyptian varieties of soybean (Glycine max. The soybean variety, Giza 22, was found to have higher trypsin and chymotrypsin inhibitory potential compared to other tested soybean varieties. For this reason, Giza 22 was selected for further purification studies which used ammonium sulphate fractionation and DEAE-Sephadex A-25 column. Soybean purified proteins showed a single band on SDS-PAGE corresponding to a molecular mass of 17.9 kDa. The purified inhibitor was stable at temperatures below 60°C and was active at a wide range of pH, from 2 to 12 pH. The kinetic analysis revealed a non-competitive type of inhibition against trypsin and chymotrypsin enzymes. The inhibitor constant (Ki values suggested that the inhibitor has higher affinity toward a trypsin enzyme than to a chymotrypsin enzyme. Purified inhibitor was found to have deep and negative effects on the mean larval weight, larval mortality, pupation, and mean pupal weight of Spodoptera littoralis. It may be concluded, that soybean protease inhibitor gene(s could be potential targets for those future studies which are concerned with developing insect resistant transgenic plants

  17. The growth hormone dependent serine protease inhibitor, Spi 2.1 inhibits the des (1-3) insulin-like growth factor-I generating protease.

    Science.gov (United States)

    Maake, C; Yamamoto, H; Murphy, L J

    1997-12-01

    The conversion of insulin-like growth factor-I (IGF-I) to the biologically more active des (1-3) IGF-I variant is catalyzed by a ubiquitous protease. This proteolytic activity is inhibited by human alpha1-antitrypsin and soy-bean trypsin inhibitor and is up-regulated in serum and tissue extracts of hypophysectomized rats. These observations lead us to investigate whether the growth hormone regulated, serine protease inhibitor, Spi 2.1 was able to inhibit the des (1-3) IGF-I generating protease. Dihydrofolate reductase deficient Chinese hamster ovary (CHO(dhfr-ve)) cells were transfected with a rat Spi 2.1 expression vector containing the dhfr and neomycin resistance gene. Stable transfectants were selected using G418 and amplified using methotrexate. Conditioned medium from Spi 2.1 transfected CHO cells potently inhibited proteolytic activity directed against a synthetic hexa-peptide with a sequence identical to the N-terminal of IGF-I. In contrast conditioned medium from wild-type CHO cells had little effect. Based upon these observations we suggest that our previous finding of enhanced des (1-3) IGF-I generating protease activity in growth hormone deficient rats may be, at least partly explained by reduced levels of Spi 2.1. Furthermore, we propose that the regulation of the generation of des (1-3) IGF-I may be an additional potential site of growth hormone regulation of IGF-I action.

  18. Effect of alkaline addition on anaerobic sludge digestion with combined pretreatment of alkaline and high pressure homogenization.

    Science.gov (United States)

    Fang, Wei; Zhang, Panyue; Zhang, Guangming; Jin, Shuguang; Li, Dongyi; Zhang, Meixia; Xu, Xiangzhe

    2014-09-01

    To improve anaerobic digestion efficiency, combination pretreatment of alkaline and high pressure homogenization was applied to pretreat sewage sludge. Effect of alkaline dosage on anaerobic sludge digestion was investigated in detail. SCOD of sludge supernatant significantly increased with the alkaline dosage increase after the combined pretreatment because of sludge disintegration. Organics were significantly degraded after the anaerobic digestion, and the maximal SCOD, TCOD and VS removal was 73.5%, 61.3% and 43.5%, respectively. Cumulative biogas production, methane content in biogas and biogas production rate obviously increased with the alkaline dosage increase. Considering both the biogas production and alkaline dosage, the optimal alkaline dosage was selected as 0.04 mol/L. Relationships between biogas production and sludge disintegration showed that the accumulative biogas was mainly enhanced by the sludge disintegration. The methane yield linearly increased with the DDCOD increase as Methane yield (ml/gVS)=4.66 DDCOD-9.69. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Acidic minespoil reclamation with alkaline biosolids

    International Nuclear Information System (INIS)

    Drill, C.; Lindsay, B.J.; Logan, T.L.

    1998-01-01

    The effectiveness of an alkaline stabilized biosolids product, N-Viro Soil (NVS), was studied at a wild animal preserve in Cumberland, OH. The preserve occupies land that was strip mined for high-sulfur coal. While most of the land has been conventionally reclaimed, several highly acidic hot spots remain. Two of these hot spots were studied through concurrent field, greenhouse, and laboratory projects. In April 1995, NVS was applied at rates ranging from 0--960 mt/ha (wet wt.) to plots at the two sites. The plots were seeded using a standard reclamation mix and soil samples were analyzed for chemical characteristics before and after application and also in 1996 and 1997. Soil pH increased from 3.5 to about 11 in the amended plots and soil EC values increased from 21.0 mmho/cm to a maximum of 6.0 mmho/cm in the amended plots immediately after application. Soil Cu and Zn concentrations also increased in the NVS amended plots, but this did not affect plant germination or growth. By the summer of 1996, soil pH values had decreased to 7.3--8.7 and EC values decreased to 0.34--1.36 mmho/cm to the amended plots. Soil samples were collected in September 1995 for physical analyses. N-Viro Soil improved the moisture retention and water conductivity properties of the spoil. The plots were monitored for growth during the summer of 1995 and plant biomass and soil samples were taken in 1996 and 1997 for trace element and nutrient analysis. NVS did not significantly increase trace element concentrations in the biomass. The addition of NVS to acid mine spoil improves the chemical and physical properties of the spoil material thus aiding vegetative establishment and growth. NVS improves the chemical nature of the spoil by increasing pH and providing micro and macronutrients and improves the physical properties of the spoil with the addition of organic matter

  20. Alkaline phosphatase in boar sperm function.

    Science.gov (United States)

    Bucci, D; Isani, G; Giaretta, E; Spinaci, M; Tamanini, C; Ferlizza, E; Galeati, G

    2014-01-01

    Alkaline phosphatase (AP) catalyses the detachment of phosphate residues from different substrates. Its activity has been demonstrated in seminal plasma and spermatozoa from porcine and other mammalian species; anyway, the role of AP in male reproduction has not been clarified yet and the aim of this study was to determine AP function in boar sperm capacitation and in vitro fertilization (IVF). AP activity was assayed in seminal plasma and in uncapacitated and in vitro capacitated (IVC) spermatozoa; in addition, capacitation was studied in presence of different doses of AP (1.2 and 2.5 IU/mL). The effect of different doses of AP (1.2 and 2.5 IU/mL) on several sperm parameters after IVC (viability, acrosome integrity with FITC-PSA, capacitation status with CTC staining, tyrosine phosphorylation) and on fertilizing ability during IVF were also evaluated. High AP activity was detected in seminal plasma, in particular in sperm-rich fraction; a lower activity was detected in uncapacitated spermatozoa while a significant decrease was evidenced after IVC. Viability was not changed by AP supplementation of the capacitating medium, whereas acrosome integrity and capacitation status were significantly affected by 1.2 and 2.5 doses, with a dose-dependent decrease in acrosome-reacted cells as well as in CTC B pattern displaying cells. As for sperm head protein phosphorylation, a decrease in relative fluorescence was detected in AP 2.5 group, if compared with capacitated one. After IVF, a dose-dependent decrease in penetrated oocytes was recorded, with an increase in monospermic zygote rate. In conclusion, we demonstrated that AP activity decreases under capacitating condition and that addition of AP to spermatozoa during capacitation results in a depression of the capacitating process and IVF. We can infer that AP plays a role in keeping spermatozoa quiescent until they are ejaculated and in modulating the acquisition of the fertilizing ability. © 2013 American Society of

  1. Potent and Selective Peptidyl Boronic Acid Inhibitors of the Serine Protease Prostate-Specific Antigen

    Science.gov (United States)

    LeBeau, Aaron M.; Singh, Pratap; Isaacs, John T.; Denmeade, Samuel R.

    2012-01-01

    SUMMARY Prostate cancer cells produce high (microgram to milligram/milliliter) levels of the serine protease Prostate-Specific Antigen (PSA). PSA is enzymatically active in the extracellular fluid surrounding prostate cancers but is found at 1,000- to 10,000-fold lower concentrations in the circulation, where it is inactivated due to binding to abundant serum protease inhibitors. The exclusive presence of high levels of active PSA within prostate cancer sites makes PSA an attractive candidate for targeted imaging and therapeutics. A synthetic approach based on a peptide substrate identified first peptide aldehyde and then boronic acid inhibitors of PSA. The best of these had the sequence Cbz-Ser-Ser-Lys-Leu-(boro)Leu, with a Ki for PSA of 65 nM. The inhibitor had a 60-fold higher Ki for chymotrypsin. A validated model of PSA’s catalytic site confirmed the critical interactions between the inhibitor and residues within the PSA enzyme. PMID:18635003

  2. The charge density distribution in a model compound of the catalytic triad in serine proteases.

    Science.gov (United States)

    Overgaard, J; Schiøtt, B; Larsen, F K; Iversen, B B

    2001-09-03

    Combined low temperature (28(1) K) X-ray and neutron diffraction measurements were carried out on the co-crystallised complex of betaine, imidazole, and picric acid (1). The experimental charge density was determined and compared with ab initio theoretical calculations at the B3LYP/6-311G(d,p) level of theory. The complex serves as a model for the active site in, for example, the serine protease class of enzymes, the so-called catalytic triad. The crystal contains three short strong N-H...O hydrogen bonds (HBs) with dN...O comparison with low-barrier and single-well hydrogen bonding systems (e.g., benzoylacetone and nitromalonamide) shows that the low-barrier hydrogen bond (LBHB) state is characterized by an enormously increased hydrogen atom source contribution to the bond critical point in the HB. In this context, HB2 can be characterized as intermediate between localized HBs and delocalized LBHBs.

  3. Disruption of the serine/threonine protein kinase H affects phthiocerol dimycocerosates synthesis in Mycobacterium tuberculosis

    Science.gov (United States)

    Gómez-Velasco, Anaximandro; Bach, Horacio; Rana, Amrita K.; Cox, Liam R.; Bhatt, Apoorva; Besra, Gurdyal S.

    2013-01-01

    Mycobacterium tuberculosis possesses a complex cell wall that is unique and essential for interaction of the pathogen with its human host. Emerging evidence suggests that the biosynthesis of complex cell-wall lipids is mediated by serine/threonine protein kinases (STPKs). Herein, we show, using in vivo radiolabelling, MS and immunostaining analyses, that targeted deletion of one of the STPKs, pknH, attenuates the production of phthiocerol dimycocerosates (PDIMs), a major M. tuberculosis virulence lipid. Comparative protein expression analysis revealed that proteins in the PDIM biosynthetic pathway are differentially expressed in a deleted pknH strain. Furthermore, we analysed the composition of the major lipoglycans, lipoarabinomannan (LAM) and lipomannan (LM), and found a twofold higher LAM/LM ratio in the mutant strain. Thus, we provide experimental evidence that PknH contributes to the production and synthesis of M. tuberculosis cell-wall components. PMID:23412844

  4. Arabidopsis PPP family of serine/threonine protein phosphatases: many targets but few engines.

    Science.gov (United States)

    Uhrig, R Glen; Labandera, Anne-Marie; Moorhead, Greg B

    2013-09-01

    The major plant serine/threonine protein phosphatases belong to the phosphoprotein phosphatase (PPP) family. Over the past few years the complement of Arabidopsis thaliana PPP family of catalytic subunits has been cataloged and many regulatory subunits identified. Specific roles for PPPs have been characterized, including roles in auxin and brassinosteroid signaling, in phototropism, in regulating the target of rapamycin pathway, and in cell stress responses. In this review, we provide a framework for understanding the PPP family by exploring the fundamental role of the phosphatase regulatory subunits that drive catalytic engine specificity. Although there are fewer plant protein phosphatases compared with their protein kinase partners, their function is now recognized to be as dynamic and as regulated as that of protein kinases. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Host generated siRNAs attenuate expression of serine protease gene in Myzus persicae.

    Science.gov (United States)

    Bhatia, Varnika; Bhattacharya, Ramcharan; Uniyal, Prem L; Singh, Rajendra; Niranjan, Rampal S

    2012-01-01

    Sap sucking hemipteran aphids damage diverse crop species. Although delivery of ds-RNA or siRNA through microinjection/feeding has been demonstrated, the efficacy of host-mediated delivery of aphid-specific dsRNA in developing aphid resistance has been far from being elucidated. Transgenic Arabidopsis expressing ds-RNA of Myzus persicae serine protease (MySP) was developed that triggered the generation of corresponding siRNAs amenable for delivery to the feeding aphids. M. persicae when fed on the transgenic plants for different time intervals under controlled growth conditions resulted in a significant attenuation of the expression of MySP and a commensurate decline in gut protease activity. Although the survivability of these aphids was not affected, there was a noticeable decline in their fecundity resulting in a significant reduction in parthenogenetic population. The study highlighted the feasibility of developing host based RNAi-mediated resistance against hemipteran pest aphids.

  6. Selective inhibition of plant serine hydrolases by agrochemicals revealed by competitive ABPP.

    Science.gov (United States)

    Kaschani, Farnusch; Nickel, Sabrina; Pandey, Bikram; Cravatt, Benjamin F; Kaiser, Markus; van der Hoorn, Renier A L

    2012-01-15

    Organophosphate and -phosphonates and their thio derivatives are often used in agroindustry as herbicides and insecticides, but their potential off-targets in the plant are poorly investigated. Here, we use competitive activity-based protein profiling (ABPP) of serine hydrolases (SHs) to detect targets of these agrochemicals and other compounds in Arabidopsis thaliana. Using broad-range and specific probes, and by overexpression of various SHs in planta, we are able to confirm eight SH-compound interactions, including selective inhibition of carboxylesterase CXE12, prolyloligopeptidase, methylesterase MES2 and tripeptidyl peptidase TPP2. These observations can be used for the design of novel probes and selective inhibitors and may help to assess physiological effects of agrochemicals on crop plants. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Structural analysis of Staphylococcus aureus serine/threonine kinase PknB.

    Directory of Open Access Journals (Sweden)

    Sonja Rakette

    Full Text Available Effective treatment of infections caused by the bacterium Staphylococcus aureus remains a worldwide challenge, in part due to the constant emergence of new strains that are resistant to antibiotics. The serine/threonine kinase PknB is of particular relevance to the life cycle of S. aureus as it is involved in the regulation of purine biosynthesis, autolysis, and other central metabolic processes of the bacterium. We have determined the crystal structure of the kinase domain of PknB in complex with a non-hydrolyzable analog of the substrate ATP at 3.0 Å resolution. Although the purified PknB kinase is active in solution, it crystallized in an inactive, autoinhibited state. Comparison with other bacterial kinases provides insights into the determinants of catalysis, interactions of PknB with ligands, and the pathway of activation.

  8. IRS-1 serine phosphorylation and insulin resistance in skeletal muscle from pancreas transplant recipients

    DEFF Research Database (Denmark)

    Bouzakri, Karim; Karlsson, Håkan K R; Vestergaard, Henrik

    2006-01-01

    Insulin-dependent diabetic recipients of successful pancreas allografts achieve self-regulatory insulin secretion and discontinue exogenous insulin therapy; however, chronic hyperinsulinemia and impaired insulin sensitivity generally develop. To determine whether insulin resistance is accompanied....... In conclusion, peripheral insulin resistance in pancreas-kidney transplant recipients may arise from a negative feedback regulation of the canonical insulin-signaling cascade from excessive serine phosphorylation of IRS-1, possibly as a consequence of immunosuppressive therapy and hyperinsulinemia....... insulin receptor substrate (IRS)-1 Ser (312) and Ser (616) phosphorylation, IRS-1-associated phosphatidylinositol 3-kinase activity, and extracellular signal-regulated kinase (ERK)-1/2 phosphorylation were elevated in pancreas-kidney transplant recipients, coincident with fasting hyperinsulinemia. Basal...

  9. IRS-1 serine phosphorylation and insulin resistance in skeletal muscle from pancreas tranplant recipient

    DEFF Research Database (Denmark)

    Bouzakri, K; Karlsson, HRK; Vestergaard, Henrik

    2006-01-01

    Insulin-dependent diabetic recipients of successful pancreas allografts achieve self-regulatory insulin secretion and discontinue exogenous insulin therapy; however, chronic hyperinsulinemia and impaired insulin sensitivity generally develop. To determine whether insulin resistance is accompanied....... In conclusion, peripheral insulin resistance in pancreas-kidney transplant recipients may arise from a negative feedback regulation of the canonical insulin-signaling cascade from excessive serine phosphorylation of IRS-1, possibly as a consequence of immunosuppressive therapy and hyperinsulinemia....... insulin receptor substrate (IRS)-1 Ser (312) and Ser (616) phosphorylation, IRS-1-associated phosphatidylinositol 3-kinase activity, and extracellular signal-regulated kinase (ERK)-1/2 phosphorylation were elevated in pancreas-kidney transplant recipients, coincident with fasting hyperinsulinemia. Basal...

  10. The Membrane-anchored Serine Protease Prostasin (CAP1/PRSS8) Supports Epidermal Development and Postnatal Homeostasis Independent of Its Enzymatic Activity

    DEFF Research Database (Denmark)

    Peters, Diane E; Szabo, Roman; Friis, Stine

    2014-01-01

    . Prostasin null (Prss8(-/-)) mice lack barrier formation and display fatal postnatal dehydration. In sharp contrast, mice homozygous for a point mutation in the Prss8 gene, which causes the substitution of the active site serine within the catalytic histidine-aspartate-serine triad with alanine and renders...

  11. Epigenetic Activation of ASCT2 in the Hippocampus Contributes to Depression-Like Behavior by Regulating D-Serine in Mice

    Directory of Open Access Journals (Sweden)

    Jiesi Wang

    2017-05-01

    Full Text Available The roles of D-serine in depression are raised concerned recently as an intrinsic co-agonist for the NMDA receptor. However, the mechanisms underlying its regulation are not fully elucidated. ASCT2 is a Na+-dependent D-serine transporter. We found that decreased D-serine and increased hippocampal ASCT2 levels correlated with chronic social defeat stress (CSDS in mice. Lentivirus-mediated shRNA-mediated knockdown of ASCT2 and the administration of exogenous D-serine in the hippocampus alleviated CSDS-induced social avoidance and immobility. In vivo and in vitro experiments revealed that upregulation of ASCT2 expression in CSDS was regulated through histone hyper-acetylation, not DNA methylation in its promoter region. Immunohistochemistry demonstrated the co-localization of ASCT2 and D-serine. Uptake of D-serine by ASCT2 was demonstrated by in vivo and in vitro experiments. Our results indicate that CSDS induces ASCT2 expression through epigenetic activation and decreases hippocampal D-serine levels, leading to social avoidance, and immobility. Thus, targeting D-serine transport represents an attractive new strategy for treating depression.

  12. Streptococcus pneumoniae Serine Protease HtrA, but Not SFP or PrtA, Is a Major Virulence Factor in Pneumonia

    NARCIS (Netherlands)

    Stoppelaar, S.F. de; Bootsma, H.J.; Zomer, A.L.; Roelofs, J.J.; Hermans, P.W.M.; Veer, C. van't; Poll, T. van der

    2013-01-01

    Streptococcus (S.) pneumoniae is a common causative pathogen in pneumonia. Serine protease orthologs expressed by a variety of bacteria have been found of importance for virulence. Previous studies have identified two serine proteases in S. pneumoniae, HtrA (high-temperature requirement A) and PrtA

  13. Streptococcus pneumoniae serine protease HtrA, but not SFP or PrtA, is a major virulence factor in pneumonia

    NARCIS (Netherlands)

    de Stoppelaar, Sacha F.; Bootsma, Hester J.; Zomer, Aldert; Roelofs, Joris J. T. H.; Hermans, Peter W. M.; van 't Veer, Cornelis; van der Poll, Tom

    2013-01-01

    Streptococcus (S.) pneumoniae is a common causative pathogen in pneumonia. Serine protease orthologs expressed by a variety of bacteria have been found of importance for virulence. Previous studies have identified two serine proteases in S. pneumoniae, HtrA (high-temperature requirement A) and PrtA

  14. Shelf-Stable Food Safety

    Science.gov (United States)

    ... is an MRE? Is an MRE shelf stable? What foods are packaged in retort packages? What is aseptic ... type of package is used for aseptic processing? What foods are packaged in aseptic packages? Can I microwave ...

  15. Molecular and biochemical characterisation of a serine acetyltransferase of onion, Allium cepa (L.).

    Science.gov (United States)

    McManus, Michael T; Leung, Susanna; Lambert, Anya; Scott, Richard W; Pither-Joyce, Meeghan; Chen, Balance; McCallum, John

    2005-06-01

    We have previously cloned a cDNA, designated SAT1, corresponding to a gene coding for a serine acetyltransferase (SAT) from onion (Allium cepa L.). The SAT1 locus was mapped to chromosome 7 of onion using a single-stranded conformation polymorphism (SSCP) in the 3' UTR of the gene. Northern analysis has demonstrated that expression of the SAT1 gene is induced in leaf tissue in response to low S-supply. Phylogenetic analysis has placed SAT1 in a strongly supported group (100% bootstrap) that comprises sequences that have been characterised biochemically, including Allium tuberosum, Spinacea oleracea, Glycine max, Citrullus vulgaris, and SAT5 (AT5g56760) of Arabidopsis thaliana. This group can be divided further with the SAT1 of A. cepa sequence grouping strongly with the A. tuberosum sequence. Translation of SAT1 from onion generates a protein of 289 amino acids with a calculated molecular mass of 30,573 Da and pI of 6.52. The conserved G277 and H282 residues that have been identified as critical for L-cysteine inhibition are observed at G272 and H277. SAT1 has been cloned into the pGEX plasmid, expressed in E. coli and SAT activity of the recombinant enzyme has been measured as acetyl-CoA hydrolysis detected at 232 nm. A Km of 0.72 mM was determined for l-serine as substrate, a Km of 92 microM was calculated with acetyl-CoA as substrate, and an inhibition curve for L-cysteine generated an IC50 value of 3.1 microM. Antibodies raised against the recombinant SAT1 protein recognised a protein of ca. 33 kDa in whole leaf onion extracts. These properties of the SAT1 enzyme from onion are compared with other SAT enzymes characterised from closely related species.

  16. Novel Computational Protocols for Functionally Classifying and Characterising Serine Beta-Lactamases.

    Directory of Open Access Journals (Sweden)

    David Lee

    2016-06-01

    Full Text Available Beta-lactamases represent the main bacterial mechanism of resistance to beta-lactam antibiotics and are a significant challenge to modern medicine. We have developed an automated classification and analysis protocol that exploits structure- and sequence-based approaches and which allows us to propose a grouping of serine beta-lactamases that more consistently captures and rationalizes the existing three classification schemes: Classes, (A, C and D, which vary in their implementation of the mechanism of action; Types (that largely reflect evolutionary distance measured by sequence similarity; and Variant groups (which largely correspond with the Bush-Jacoby clinical groups. Our analysis platform exploits a suite of in-house and public tools to identify Functional Determinants (FDs, i.e. residue sites, responsible for conferring different phenotypes between different classes, different types and different variants. We focused on Class A beta-lactamases, the most highly populated and clinically relevant class, to identify FDs implicated in the distinct phenotypes associated with different Class A Types and Variants. We show that our FunFHMMer method can separate the known beta-lactamase classes and identify those positions likely to be responsible for the different implementations of the mechanism of action in these enzymes. Two novel algorithms, ASSP and SSPA, allow detection of FD sites likely to contribute to the broadening of the substrate profiles. Using our approaches, we recognise 151 Class A types in UniProt. Finally, we used our beta-lactamase FunFams and ASSP profiles to detect 4 novel Class A types in microbiome samples. Our platforms have been validated by literature studies, in silico analysis and some targeted experimental verification. Although developed for the serine beta-lactamases they could be used to classify and analyse any diverse protein superfamily where sub-families have diverged over both long and short evolutionary

  17. Endothelin-1 stimulates catalase activity through the PKCδ mediated phosphorylation of Serine 167

    Science.gov (United States)

    Rafikov, Ruslan; Kumar, Sanjiv; Aggarwal, Saurabh; Hou, Yali; Kangath, Archana; Pardo, Daniel; Fineman, Jeffrey R.; Black, Stephen M.

    2013-01-01

    Our previous studies have shown that endothelin-1 (ET-1) stimulates catalase activity in endothelial cells and lambs with acute increases in pulmonary blood flow (PBF), without altering gene expression. The purpose of this study was to investigate the molecular mechanism by which this occurs. Exposing pulmonary arterial endothelial cells (PAEC) to ET-1 increased catalase activity and decreased cellular hydrogen peroxide (H2O2) levels. These changes correlated with an increase in serine phosphorylated catalase. Using the inhibitory peptide δV1.1, this phosphorylation was shown to be PKCδ dependent. Mass spectrometry identified serine167 as the phosphorylation site. Site-directed mutagenesis was used to generate a phospho-mimic (S167D) catalase. Activity assays using recombinant protein purified from E.coli or transiently transfected COS-7 cells, demonstrated that S167D-catalase had an increased ability to degrade H2O2 compared to the wildtype enzyme. Using a phospho-specific antibody, we were able to verify that pS167 catalase levels are modulated in lambs with acute increases in PBF in the presence and absence of the ET receptor antagonist, tezosentan. S167 is being located on the dimeric interface suggesting it could be involved in regulating the formation of catalase tetramers. To evaluate this possibility we utilized analytical gel-filtration to examine the multimeric structure of recombinant wildtype- and S167D-catalase. We found that recombinant wildtype catalase was present as a mixture of monomers and dimers while S167D catalase was primarily tetrameric. Further, the incubation of wildtype catalase with PKCδ was sufficient to convert wildtype catalase into a tetrameric structure. In conclusion, this is the first report indicating that the phosphorylation of catalase regulates its multimeric structure and activity. PMID:24211614

  18. Contribution of cutinase serine 42 side chain to the stabilization of the oxyanion transition state.

    Science.gov (United States)

    Nicolas, A; Egmond, M; Verrips, C T; de Vlieg, J; Longhi, S; Cambillau, C; Martinez, C

    1996-01-16

    Cutinase from the fungus Fusarium solani pisi is a lipolytic enzyme able to hydrolyze both aggregated and soluble substrates. It therefore provides a powerful tool for probing the mechanisms underlying lipid hydrolysis. Lipolytic enzymes have a catalytic machinery similar to those present in serine proteinases. It is characterized by the triad Ser, His, and Asp (Glu) residues, by an oxyanion binding site that stabilizes the transition state via hydrogen bonds with two main chain amide groups, and possibly by other determinants. It has been suggested on the basis of a covalently bond inhibitor that the cutinase oxyanion hole may consist not only of two main chain amide groups but also of the Ser42 O gamma side chain. Among the esterases and the serine and the cysteine proteases, only Streptomyces scabies esterase, subtilisin, and papain, respectively, have a side chain residue which is involved in the oxyanion hole formation. The position of the cutinase Ser42 side chain is structurally conserved in Rhizomucor miehei lipase with Ser82 O gamma, in Rhizopus delemar lipase with Thr83 O gamma 1, and in Candida antartica B lipase with Thr40 O gamma 1. To evaluate the increase in the tetrahedral intermediate stability provided by Ser42 O gamma, we mutated Ser42 into Ala. Furthermore, since the proper orientation of Ser42 O gamma is directed by Asn84, we mutated Asn84 into Ala, Leu, Asp, and Trp, respectively, to investigate the contribution of this indirect interaction to the stabilization of the oxyanion hole. The S42A mutation resulted in a drastic decrease in the activity (450-fold) without significantly perturbing the three-dimensional structure. The N84A and N84L mutations had milder kinetic effects and did not disrupt the structure of the active site, whereas the N84W and N84D mutations abolished the enzymatic activity due to drastic steric and electrostatic effects, respectively.

  19. Application of Asian pumpkin (Cucurbita ficifolia) serine proteinase for production of biologically active peptides from casein.

    Science.gov (United States)

    Dąbrowska, Anna; Szołtysik, Marek; Babij, Konrad; Pokora, Marta; Zambrowicz, Aleksandra; Chrzanowska, Józefa

    2013-01-01

    The main objective of this study was to determine potential application of a serine proteinase derived from Asian pumpkin for obtaining biologically active peptides from casein. The course of casein hydrolysis by three doses of the enzyme (50, 150, 300 U/mg of protein) was monitored for 24 hours by the determinations of: hydrolysis degree DH (%), free amino group content (μmole Gly/g), RP HPLC peptide profiles and by polyacrylamide gel electrophoresis. In all hydrolyzates analyzed antioxidant activities were determined using three tests: the ability to reduce iron ions in FRAP test, the ability to scavenge free radicals in DPPH test, and Fe(2+) chelating activity. The antimicrobial activity of obtained peptide fractions was determined as the ability to inhibit the growth of Escherichia coli, Bacillus cereus and Pseudomonas fluorescens in a diffusion plate test. The deepest degradation, expressed as the DH [%] and the free amino group content (67% and 7528 µmole Gly/mg, respectively), was noted in samples hydrolyzed with 300 U/ml of enzyme for 24 hours, while in other samples the determined values were about three and two times lower. The results were in agreement with the peptide profiles obtained by RP HPLC. The highest antioxidative activities determined in all tests were seen for the casein hydrolysate obtained with 300 U/mg protein of serine proteinase after 24 h of reaction (2.15 µM Trolox/mg, 96.15 µg Fe(3+)/mg, 814.97 µg Fe(2+)/mg). Antimicrobial activity was presented in three preparations. In other samples no antimicrobial activity was detected.

  20. Comparative mitogenomics of plant bugs (Hemiptera: Miridae: identifying the AGG codon reassignments between serine and lysine.

    Directory of Open Access Journals (Sweden)

    Ying Wang

    Full Text Available Insect mitochondrial genomes are very important to understand the molecular evolution as well as for phylogenetic and phylogeographic studies of the insects. The Miridae are the largest family of Heteroptera encompassing more than 11,000 described species and of great economic importance. For better understanding the diversity and the evolution of plant bugs, we sequence five new mitochondrial genomes and present the first comparative analysis of nine mitochondrial genomes of mirids available to date. Our result showed that gene content, gene arrangement, base composition and sequences of mitochondrial transcription termination factor were conserved in plant bugs. Intra-genus species shared more conserved genomic characteristics, such as nucleotide and amino acid composition of protein-coding genes, secondary structure and anticodon mutations of tRNAs, and non-coding sequences. Control region possessed several distinct characteristics, including: variable size, abundant tandem repetitions, and intra-genus conservation; and was useful in evolutionary and population genetic studies. The AGG codon reassignments were investigated between serine and lysine in the genera Adelphocoris and other cimicomorphans. Our analysis revealed correlated evolution between reassignments of the AGG codon and specific point mutations at the antidocons of tRNALys and tRNASer(AGN. Phylogenetic analysis indicated that mitochondrial genome sequences were useful in resolving family level relationship of Cimicomorpha. Comparative evolutionary analysis of plant bug mitochondrial genomes allowed the identification of previously neglected coding genes or non-coding regions as potential molecular markers. The finding of the AGG codon reassignments between serine and lysine indicated the parallel evolution of the genetic code in Hemiptera mitochondrial genomes.

  1. LFA-1 and Mac-1 integrins bind to the serine/threonine-rich domain of thrombomodulin

    Energy Technology Data Exchange (ETDEWEB)

    Kawamoto, Eiji [Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507 (Japan); Emergency and Critical Care Center, Mie University Hospital, 2-174 Edobashi, Tsu 514-8507 (Japan); Okamoto, Takayuki, E-mail: okamotot@doc.medic.mie-u.ac.jp [Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507 (Japan); Takagi, Yoshimi [Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507 (Japan); Honda, Goichi [Medical Affairs Department, Asahi Kasei Pharma Corporation, 1-105 Kanda Jinbo-cho, Chiyoda-ku, Tokyo 101-8101 (Japan); Suzuki, Koji [Faculty of Pharmaceutical Science, Suzuka University of Medical Science, 3500-3, Minamitamagaki-cho, Suzuka, Mie 513-8679 (Japan); Imai, Hiroshi [Emergency and Critical Care Center, Mie University Hospital, 2-174 Edobashi, Tsu 514-8507 (Japan); Shimaoka, Motomu, E-mail: shimaoka@doc.medic.mie-u.ac.jp [Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507 (Japan)

    2016-05-13

    LFA-1 (αLβ2) and Mac-1 (αMβ2) integrins regulate leukocyte trafficking in health and disease by binding primarily to IgSF ligand ICAM-1 and ICAM-2 on endothelial cells. Here we have shown that the anti-coagulant molecule thrombomodulin (TM), found on the surface of endothelial cells, functions as a potentially new ligand for leukocyte integrins. We generated a recombinant extracellular domain of human TM and Fc fusion protein (TM-domains 123-Fc), and showed that pheripheral blood mononuclear cells (PBMCs) bind to TM-domains 123-Fc dependent upon integrin activation. We then demonstrated that αL integrin-blocking mAb, αM integrin-blocking mAb, and β2 integrin-blocking mAb inhibited the binding of PBMCs to TM-domains 123-Fc. Furthermore, we show that the serine/threonine-rich domain (domain 3) of TM is required for the interaction with the LFA-1 (αLβ2) and Mac-1 (αMβ2) integrins to occur on PBMCs. These results demonstrate that the LFA-1 and Mac-1 integrins on leukocytes bind to TM, thereby establishing the molecular and structural basis underlying LFA-1 and Mac-1 integrin interaction with TM on endothelial cells. In fact, integrin-TM interactions might be involved in the dynamic regulation of leukocyte adhesion with endothelial cells. - Highlights: • LFA-1 and Mac-1 integrins bind to the anti-coagulant molecule thrombomodulin. • The serine/threonine-rich domain of thrombomodulin is essential to interact with the LFA-1 and Mac-1 integrins on PBMCs. • Integrin-TM interactions might be involved in the dynamic regulation of leukocyte adhesion with endothelial cells.

  2. Novel Computational Protocols for Functionally Classifying and Characterising Serine Beta-Lactamases

    Science.gov (United States)

    Das, Sayoni; Dawson, Natalie L.; Dobrijevic, Dragana; Orengo, Christine

    2016-01-01

    Beta-lactamases represent the main bacterial mechanism of resistance to beta-lactam antibiotics and are a significant challenge to modern medicine. We have developed an automated classification and analysis protocol that exploits structure- and sequence-based approaches and which allows us to propose a grouping of serine beta-lactamases that more consistently captures and rationalizes the existing three classification schemes: Classes, (A, C and D, which vary in their implementation of the mechanism of action); Types (that largely reflect evolutionary distance measured by sequence similarity); and Variant groups (which largely correspond with the Bush-Jacoby clinical groups). Our analysis platform exploits a suite of in-house and public tools to identify Functional Determinants (FDs), i.e. residue sites, responsible for conferring different phenotypes between different classes, different types and different variants. We focused on Class A beta-lactamases, the most highly populated and clinically relevant class, to identify FDs implicated in the distinct phenotypes associated with different Class A Types and Variants. We show that our FunFHMMer method can separate the known beta-lactamase classes and identify those positions likely to be responsible for the different implementations of the mechanism of action in these enzymes. Two novel algorithms, ASSP and SSPA, allow detection of FD sites likely to contribute to the broadening of the substrate profiles. Using our approaches, we recognise 151 Class A types in UniProt. Finally, we used our beta-lactamase FunFams and ASSP profiles to detect 4 novel Class A types in microbiome samples. Our platforms have been validated by literature studies, in silico analysis and some targeted experimental verification. Although developed for the serine beta-lactamases they could be used to classify and analyse any diverse protein superfamily where sub-families have diverged over both long and short evolutionary timescales. PMID

  3. The main proteinases in Dermatobia hominis second and third instars larvae are serine-proteinases.

    Science.gov (United States)

    Pires, F A; Moya-Borja, G E; Barreira, J D; Pinho, R T; Alves, C R

    2007-04-30

    We performed a combination of proteinase assay, either in solution or immobilized in sodium dodecyl sulfate-polyacrylamide gel copolymerized with gelatin, to detect and quantify proteinases of Dermatobia hominis second (L2) and third (L3) instar larvae. In the quantitative assay, we examined proteinase activity by hydrolysis of a panel of peptide bonds specific for the main proteinase classes. We verified that the pGlu-Phe-Leu p-nitroanilide substrate was hydrolyzed by crude extracts of L2 (3.0+/-0.2 nmol h(-1)mg of protein(-1)) and L3 (7.7+/-0.1 nmol h(-1)mg of protein(-1)) and that both activities were partially inhibited by trans-epoxysuccinyl-l-leucylamido-(4-guanidino)butane, 15% and 3%, respectively. Also, we demonstrated that the Nalpha-p-Tosyl-l-Arg methyl ester substrate was hydrolyzed by crude extracts of L2 (117+/-24 nmol h(-1)mg of protein(-1)) and L3 (111+/-10 nmol h(-1)mg of protein(-1)), suggesting a predominance of esterase activity in the crude larval preparation. Interestingly, the specific activity of serine-proteinases was totally inhibited by phenylmethylsulphonyl fluoride in the L3 crude extract, while only 10% of this enzyme class activity was inhibited in the L2 crude extract. The results of the qualitative assays with substrate gels suggested that L2 and L3 larvae express serine-proteinases with similar (13 and 22 kDa) and distinct (50 kDa in L2 and 30 kDa in L3) relative molecular masses. These findings contribute to the biochemical characterization of D. hominis L2 and L3 larvae.

  4. Protein phosphatase 2C is responsible for VP-induced dephosphorylation of AQP2 serine 261.

    Science.gov (United States)

    Cheung, Pui W; Ueberdiek, Lars; Day, Jack; Bouley, Richard; Brown, Dennis

    2017-08-01

    Aquaporin 2 (AQP2) trafficking is regulated by phosphorylation and dephosphorylation of serine residues in the AQP2 COOH terminus. Vasopressin (VP) binding to its receptor (V2R) leads to a cascade of events that result in phosphorylation of serine 256 (S256), S264, and S269, but dephosphorylation of S261. To identify which phosphatase is responsible for VP-induced S261 dephosphorylation, we pretreated cells with different phosphatase inhibitors before VP stimulation. Sanguinarine, a specific protein phosphatase (PP) 2C inhibitor, but not inhibitors of PP1, PP2A (okadaic acid), or PP2B (cyclosporine), abolished VP-induced S261 dephosphorylation. However, sanguinarine and VP significantly increased phosphorylation of ERK, a kinase that can phosphorylate S261; inhibition of ERK by PD98059 partially decreased baseline S261 phosphorylation. These data support a role of ERK in S261 phosphorylation but suggest that, upon VP treatment, increased phosphatase activity overcomes the increase in ERK activity, resulting in overall dephosphorylation of S261. We also found that sanguinarine abolished VP-induced S261 dephosphorylation in cells expressing mutated AQP2 S256A, suggesting that the phosphorylation state of S261 is independent of S256. Sanguinarine alone did not induce AQP2 membrane trafficking, nor did it inhibit VP-induced AQP2 membrane accumulation in cells and kidney tissues, suggesting that S261 does not play an observable role in acute AQP2 membrane accumulation. In conclusion, PP2C activity is required for S261 AQP2 dephosphorylation upon VP stimulation, which occurs independently of S256 phosphorylation. Understanding the pathways involved in modulating PP2C will help elucidate the role of S261 in cellular events involving AQP2. Copyright © 2017 the American Physiological Society.

  5. Scabies mite inactive serine proteases are potent inhibitors of the human complement lectin pathway.

    Directory of Open Access Journals (Sweden)

    Simone L Reynolds

    2014-05-01

    Full Text Available Scabies is an infectious skin disease caused by the mite Sarcoptes scabiei and has been classified as one of the six most prevalent epidermal parasitic skin diseases infecting populations living in poverty by the World Health Organisation. The role of the complement system, a pivotal component of human innate immunity, as an important defence against invading pathogens has been well documented and many parasites have an arsenal of anti-complement defences. We previously reported on a family of scabies mite proteolytically inactive serine protease paralogues (SMIPP-Ss thought to be implicated in host defence evasion. We have since shown that two family members, SMIPP-S D1 and I1 have the ability to bind the human complement components C1q, mannose binding lectin (MBL and properdin and are capable of inhibiting all three human complement pathways. This investigation focused on inhibition of the lectin pathway of complement activation as it is likely to be the primary pathway affecting scabies mites. Activation of the lectin pathway relies on the activation of MBL, and as SMIPP-S D1 and I1 have previously been shown to bind MBL, the nature of this interaction was examined using binding and mutagenesis studies. SMIPP-S D1 bound MBL in complex with MBL-associated serine proteases (MASPs and released the MASP-2 enzyme from the complex. SMIPP-S I1 was also able to bind MBL in complex with MASPs, but MASP-1 and MASP-2 remained in the complex. Despite these differences in mechanism, both molecules inhibited activation of complement components downstream of MBL. Mutagenesis studies revealed that both SMIPP-Ss used an alternative site of the molecule from the residual active site region to inhibit the lectin pathway. We propose that SMIPP-Ss are potent lectin pathway inhibitors and that this mechanism represents an important tool in the immune evasion repertoire of the parasitic mite and a potential target for therapeutics.

  6. Pharmaceuticals labelled with stable isotopes

    International Nuclear Information System (INIS)

    Krumbiegel, P.

    1986-11-01

    The relatively new field of pharmaceuticals labelled with stable isotopes is reviewed. Scientific, juridical, and ethical questions are discussed concerning the application of these pharmaceuticals in human medicine. 13 C, 15 N, and 2 H are the stable isotopes mainly utilized in metabolic function tests. Methodical contributions are given to the application of 2 H, 13 C, and 15 N pharmaceuticals showing new aspects and different states of development in the field under discussion. (author)

  7. Stable isotope research pool inventory

    International Nuclear Information System (INIS)

    1984-03-01

    This report contains a listing of electromagnetically separated stable isotopes which are available at the Oak Ridge National Laboratory for distribution for nondestructive research use on a loan basis. This inventory includes all samples of stable isotopes in the Research Materials Collection and does not designate whether a sample is out on loan or is in reprocessing. For some of the high abundance naturally occurring isotopes, larger amounts can be made available; for example, Ca-40 and Fe-56

  8. A statistical approach for optimization of alkaline lipase production by ascidian associated-Halobacillus trueperiRSK CAS9.

    Science.gov (United States)

    Sathishkumar, Ramamoorthy; Ananthan, Gnanakkan; Iyappan, Kathirvel; Stalin, Chinnathambi

    2015-12-01

    A marine ascidian-associated bacterium, Halobacillus trueperi RSK CAS9, was optimized for lipase production by response surface methodology using marine waste as substrate. The central composite design was employed, and the optimal medium constituents for maximum lipase production (1355.81 U/ml) were determined to be tuna powder (14.58 g/l), olive oil (5.05 ml/l); NaCl (72.42 g/l), temperature (45 °C) and pH 9.0. An alkaline lipase was purified to 8.46 fold with 1193.59 U mg -1 specific activities with the molecular weight of 44 kDa. The activity was substantially inhibited by EDTA and PMSF, indicating that it was a metalloenzyme serine residue which was essential for catalytic activity. Thus, lipase production by microbial conversion of marine fish wastes in this study suggested its potential utilization for the production of high value products.

  9. Effect of Strongly Alkaline Electrolyzed Water on Silk Degumming and the Physical Properties of the Fibroin Fiber

    OpenAIRE

    Cao, Ting-Ting; Wang, Yuan-Jing; Zhang, Yu-Qing

    2013-01-01

    Strongly alkaline electrolyzed water (SAEW) was prepared by electrolysis of tap water in a laboratory-made water electrolyzer. The pH of stored SAEW was stable for more than one month. The hardness of the electrolyzed water was 30% lower and the Na(+) concentration was 18% higher than those of the tap water. Silkworm cocoon shells were boiled in pH 11.50 SAEW at a ratio of 1∶40∼80 (W/V) for 20 min and the sericin layers around the silk fibroin fibers were removed completely. The tensile prope...

  10. Serum alkaline phosphatase screening for vitamin D deficiency states

    International Nuclear Information System (INIS)

    Shaheen, S.; Barrakzai, Q.

    2012-01-01

    Objective: To determine whether serum vitamin D levels are correlated with serum levels of alkaline phosphatase or not. Study Design: Cross-sectional, observational study. Place and Duration of Study: Multi-centre study, conducted at Liaquat National Hospital and Medical College, National Medical Centre and Medicare Hospital, Karachi, from January to October 2009. Methodology: Patients attending the Orthopaedic OPDs with complaints of pain in different body regions and serum vitamin D/sub 3/ levels of greater or equal to 30 ng/ml were included in the study. Patients with vitamin D deficiency were further categorized into mild deficiency or insufficiency (vit. D/sub 3/ = 20-29 ng/ml), moderate deficiency (vit. D/sub 3/ = 5 - 19 ng/ml) and severe deficiency forms (vit. D/sub 3/ < 5 ng/ml). Pearson correlation was applied to test the correlation of serum alkaline phosphatase levels with serum vitamin D/sub 3/ levels. P-value < 0.05 was considered to be significant. Results: Out of 110 samples, 26 had mild (23%), 61 had moderate (55%) and 21 had severe (19.1%) vitamin D deficiencies. All of the patients in the three groups had alkaline phosphatase with in normal limits and the total mean value of the enzyme was 135.97 +- 68.14I U/L. The inter group comparison showed highest values of alkaline phosphatase in the moderate vitamin D deficiency group. The correlation coefficient of alkaline phosphatase and serum vitamin D/sub 3/ levels was r =0.05 (p =0.593). Conclusion: Serum vitamin D/sub 3/ levels may not be correlated with increased serum alkaline phosphatase levels. Therefore, alkaline phosphatase may not be used as a screening test to rule out vitamin D deficiency. (author)

  11. Conditioning alkaline coolant radioactive waste from research reactor BR-10

    International Nuclear Information System (INIS)

    Vladimir, Smykov; Mikhail, Kononyuk; Kirill, Butov

    2014-01-01

    In the Institute for Physics and Power Engineering (Russia) has developed and was successfully demonstrated a technology of solid-phase oxidation of alkaline metal by slag from the copper-smelting industry. Neutralization of alkaline metal in the solid-phase oxidation process occurs in a single phase. The solid-phase oxidation process does not result in the generation of hydrogen. The product of alkaline metal radioactive waste processing is solid mineral-like sinter of reaction products, contained inside a steel reaction container, which is immediately shipped for dry storage in a solid radioactive waste storage facility. The presence of a mercury admixture in the research reactor BR-10 (BR-10) reactor alkaline metals radioactive waste makes conditioning of that waste considerably more complicated. Laboratory research demonstrated that mercury could be effectively removed from alkaline metal by pushing the Na-K alloy through chips of metallic magnesium in elevated temperatures. For neutralization of non-drainable sodium residues and admixtures in individual equipment (cold traps, pipe lines, tanks) of the research reactor BR-10 has developed a method for neutralization of non-drainable residues of alkaline liquid metal coolants with a gaseous sub oxide of nitrogen, which is characterized by absence of hydrogen generation, improving the safety of the technology. Currently, the reactor building is undergoing installation of the experimental-industrial plant 'Magma', the purpose of which is processing of accumulated alkaline metals radioactive waste. In according with concept of 'experimental polygon for testing the decommissioning technologies of the BN series of reactors' based on the BR-10 installation, it would appear sensible to start the development of the installation for conditioning by solid-phase oxidation of up to 1000 liters of radioactive waste per loading. (author)

  12. Reduction of nitrobenzene with alkaline ascorbic acid: Kinetics and pathways

    International Nuclear Information System (INIS)

    Liang, Chenju; Lin, Ya-Ting; Shiu, Jia-Wei

    2016-01-01

    Highlights: • Alkaline ascorbic acid (a.k.a. vitamin C) is capable of reductively degrading NB. • The pH above the pK a2 of ascorbic acid increases reductive electron transfer to NB. • The rate equation for the reactions between NB and AA is determined. • NSB, AZOXY, and AZO are identified as intermediates and aniline as a final product. • Alkaline pH is essential for AA remediation of NB contaminated soils. - Abstract: Alkaline ascorbic acid (AA) exhibits the potential to reductively degrade nitrobenzene (NB), which is the simplest of the nitroaromatic compounds. The nitro group (NO 2 − ) of NB has a +III oxidation state of the N atom and tends to gain electrons. The effect of alkaline pH ranging from 9 to 13 was initially assessed and the results demonstrated that the solution pH, when approaching or above the pK a2 of AA (11.79), would increase reductive electron transfer to NB. The rate equation for the reactions between NB and AA at pH 12 can be described as r = ((0.89 ± 0.11) × 10 −4 mM 1−(a + b) h −1 ) × [NB] a = 1.35 ± 0.10 [AA] b = 0.89 ± 0.01 . The GC/MS analytical method identified nitrosobenzene, azoxybenzene, and azobenzene as NB reduction intermediates, and aniline (AN) as a final product. These experimental results indicate that the alkaline AA reduction of NB to AN mainly proceeds via the direct route, consisting of a series of two-electron or four-electron transfers, and the condensation reaction plays a minor route. Preliminary evaluation of the remediation of spiked NB contaminated soils revealed that maintenance of alkaline pH and a higher water to soil ratio are essential for a successful alkaline AA application.

  13. Evaluation of some bean lines tolerance to alkaline soil

    Directory of Open Access Journals (Sweden)

    Abeer A. Radi

    2012-01-01

    Full Text Available Introduction: In less arid climates, salts are less concentrated and sodium dominates in carbonate and bicarbonate forms, which enhance the formation of alkaline soils. The development and identification of salt-tolerant crop cultivars or lines would complement salt management programs to improve the productivity and yields of salt stressed plants.Materials and methods: This work was to study the evaluation of alkalinity tolerance of some bean lines grown under different levels of sodium carbonate (Na2CO3 to select the most alkalinity tolerant lines versus the most-sensitive ones out of 6 lines of the test plants.Results: The symptoms induced by alkalinity included reduction in root, shoot growth, and leaf area which were more severe in some bean lines. Potassium leakage was severely affected by alkalinity in some lines at all tested levels, while in some others a moderate damage was manifested only at the higher levels. The increase in Na2CO3 level was associated with a gradual fall in chlorophyll a and b biosynthesis of all the test bean lines. However, alkalinity at low and moderate levels had a favorable effect on the biosynthesis of carotenoids in all the test bean lines. The increase in Na2CO3 supply had a considerable stimulatory effect on sodium accumulation, while potassium accumulation fluctuated in organs of bean lines.Conclusion: Assiut 1104 out of all the different lines investigated was found to display the lowest sensitivity to alkalinity stress, while Assiut 12/104 was the most sensitive one.

  14. Advanced alkaline water electrolysis. Task 2 summary report. Model for alkaline water electrolysis systems

    Energy Technology Data Exchange (ETDEWEB)

    Yaffe, M.R.; Murray, J.N.

    1980-04-01

    Task 2 involved the establishment of an engineering and economic model for the evaluation of various options in water electrolysis. The mode, verification of the specific coding and four case studies are described. The model was tested by evaluation of a nearly commercial technology, i.e., an 80-kW alkaline electrolyte system, operating at 60/sup 0/C, which delivers approximately 255 SLM, hydrogen for applications such as electrical generation cooling or semiconductor manufacturing. The calculated cost of hydrogen from this installed non-optimized case system with an initial cost to the customer of $87,000 was $6.99/Kg H/sub 2/ ($1.67/100 SCF) on a 20-yr levelized basis using 2.5 cents/kWh power costs. This compares favorably to a levelized average merchant hydrogen cost value of $9.11/Kg H/sub 2/ ($2.17/100 SCF) calculated using the same program.

  15. Studies of Environmental Risk Factors in Amyotrophic Lateral Sclerosis (ALS) and a Phase I Clinical Trial of L-Serine.

    Science.gov (United States)

    Bradley, Walter G; Miller, R X; Levine, T D; Stommel, E W; Cox, P A

    2018-01-01

    β-N-Methylamino-L-alanine (BMAA) has been linked to Guam ALS/PDC and shown to produce neurodegeneration in vitro and in vivo (Drosophila, mice, rats, primates). BMAA misincorporation into neuroproteins produces protein misfolding and is inhibited by L-serine. Case-control studies in Northern New England indicate that living near to water-bodies with cyanobacterial blooms increases the risk of developing amyotrophic lateral sclerosis (ALS). The distribution of addresses of ALS cases in New Hampshire, Vermont, and Florida was compared to that of controls. Areas of statistically significantly increased numbers of ALS cases were examined for sources of environmental toxins. A phase I trial of oral L-serine was performed in 20 ALS patients (0.5 to 15 g twice daily). Safety and tolerability were assessed by comparing the rate of deterioration with 430 matched placebo controls. The distribution of residential addresses of ALS cases in New England and Florida revealed many areas where the age- and gender-adjusted frequency of ALS was greater than expected (P ALS patients suggests that residential exposure to environmental pollutants may play an important role in the etiology of ALS. L-Serine in doses up to 15 g twice daily appears to be safe in patients with ALS. Exploratory studies of efficacy suggested that L-serine might slow disease progression. A phase II trial is planned.

  16. Subcellular localization of an intracellular serine protease of 68 kDa in Leishmania (Leishmania amazonensis promastigotes

    Directory of Open Access Journals (Sweden)

    José Andrés Morgado-Díaz

    2005-07-01

    Full Text Available Here we report the subcellular localization of an intracellular serine protease of 68 kDa in axenic promastigotes of Leishmania (Leishmania amazonensis, using subcellular fractionation, enzymatic assays, immunoblotting, and immunocytochemistry. All fractions were evaluated by transmission electron microscopy and the serine protease activity was measured during the cell fractionation procedure using a-N-r-tosyl-L-arginine methyl ester (L-TAME as substrate, phenylmethylsulphone fluoride (PMSF and L-1-tosylamino-2-phenylethylchloromethylketone (TPCK as specific inhibitors. The enzymatic activity was detected mainly in a membranous vesicular fraction (6.5-fold enrichment relative to the whole homogenate, but also in a crude plasma membrane fraction (2.0-fold. Analysis by SDS-PAGE gelatin under reducing conditions demonstrated that the major proteolytic activity was found in a 68 kDa protein in all fractions studied. A protein with identical molecular weight was also recognized in immunoblots by a polyclonal antibody against serine protease (anti-SP, with higher immunoreactivity in the vesicular fraction. Electron microscopic immunolocalization using the same polyclonal antibody showed the enzyme present at the cell surface, as well as in cytoplasmic membranous compartments of the parasite. Our findings indicate that the internal location of this serine protease in L. amazonensis is mainly restricted to the membranes of intracellular compartments resembling endocytic/exocytic elements.

  17. Bacillus thuringiensis Cry3Aa protoxin intoxication of Tenebrio molitor induces widespread changes in the expression of serine peptidase transcripts

    Science.gov (United States)

    The yellow mealworm, Tenebrio molitor, is a pest of stored grain products and is sensitive to the coleopteran-specific Cry3Aa toxin from Bacillus thuringiensis (Bt). Larvae digest protein initially with cysteine peptidases in the anterior midgut and further with serine peptidases in middle and poste...

  18. Molecular cloning and expression of phosphoglycerate dehydrogenase and phosphoserine aminotransferase in the serine biosynthetic pathway from Acanthamoeba castellanii.

    Science.gov (United States)

    Deng, Yihong; Wu, Duo; Tachibana, Hiroshi; Cheng, Xunjia

    2015-04-01

    Free-living amoebae of the genus Acanthamoeba are widespread protozoans that can cause serious infectious diseases. This study characterised phosphoglycerate dehydrogenase (PGDH) and phosphoserine aminotransferase (PSAT) in the phosphorylated serine biosynthetic pathway of Acanthamoeba castellanii. The PGDH gene encodes a protein of 442 amino acids with a calculated molecular weight of 47.7 kDa and an isoelectric point (pI) of 7.64. Meanwhile, the PSAT gene encodes a protein of 394 amino acids with a calculated molecular weight of 43.8 kDa and a pI of 5.80. Confocal microscopy suggests that PGDH is mainly diffused in the cytoplasm, whereas PSAT is located in the inner part of the cell membrane. The messenger RNA (mRNA) expression levels of PGDH and PSAT vary depending on growth state under consecutive culture conditions. No significant changes in the mRNA expression levels of both PGDH and PSAT occur after the incubation of L-serine with Acanthamoeba. This result indicates that exogenous serine exerts no influence on the expression of these genes and that the so-called feedback inhibition of both PGDH and PSAT in Acanthamoeba differs from that in bacteria or other organisms. We propose that the enzymes in the phosphorylated serine biosynthetic pathway function in amoeba growth and proliferation.

  19. Mannan-binding lectin and mannan-binding lectin-associated serine protease 2 in acute pancreatitis

    DEFF Research Database (Denmark)

    Novovic, Srdan; Andersen, Anders Møller; Ersbøll, Annette Kjær

    2011-01-01

    Complement activation may play a prominent role in acute pancreatitis (AP). Mannan-binding lectin (MBL) and MBL-associated serine protease 2 (MASP-2) participate in complement activation. The objective of the present study was to evaluate the role of MBL and MASP-2 as markers in AP with regard...

  20. The Serine Protease Inhibitor Neuroserpin Is Required for Normal Synaptic Plasticity and Regulates Learning and Social Behavior

    Science.gov (United States)

    Reumann, Rebecca; Vierk, Ricardo; Zhou, Lepu; Gries, Frederice; Kraus, Vanessa; Mienert, Julia; Romswinkel, Eva; Morellini, Fabio; Ferrer, Isidre; Nicolini, Chiara; Fahnestock, Margaret; Rune, Gabriele; Glatzel, Markus; Galliciotti, Giovanna

    2017-01-01

    The serine protease inhibitor neuroserpin regulates the activity of tissue-type plasminogen activator (tPA) in the nervous system. Neuroserpin expression is particularly prominent at late stages of neuronal development in most regions of the central nervous system (CNS), whereas it is restricted to regions related to learning and memory in the…