WorldWideScience

Sample records for stable alfven wave

  1. Alfven wave heating

    International Nuclear Information System (INIS)

    Stix, H.

    1981-01-01

    The physics of Alfven-wave heating is particularly sensitive to the character of the linear mode conversion which occurs at the Alfven resonance layer. Parameter changes can profoundly affect both the location within the plasma and the mechanism for the power absorption. Under optimal conditions the heating power may be absorbed by electron Landau damping and by electron transit-time magnetic pumping in the plasma interior, or by the same processes acting near the resonance layer on the mode-converted kinetic Alfven wave. The method is outlined for computing the coefficients for reflection, transmission and absorption at the resonance layer and some representative results are offered

  2. Shear Alfven waves in tokamaks

    International Nuclear Information System (INIS)

    Kieras, C.E.

    1982-12-01

    Shear Alfven waves in an axisymmetric tokamak are examined within the framework of the linearized ideal MHD equations. Properties of the shear Alfven continuous spectrum are studied both analytically and numerically. Implications of these results in regards to low frequency rf heating of toroidally confined plasmas are discussed. The structure of the spatial singularities associated with these waves is determined. A reduced set of ideal MHD equations is derived to describe these waves in a very low beta plasma

  3. Alfven wave heating in ASDEX

    International Nuclear Information System (INIS)

    Besson, G.; Borg, G.G.; Lister, J.B.; Marmillod, Ph.; Braun, F.; Murphy, A.B.; Noterdaeme, J.M.; Ryter, F.; Wesner, F.

    1990-01-01

    An experiment has been completed on ASDEX to study the response of the plasma to Alfven wave heating (AWH). Antenna excitation was provided by the old TCA rf generator with an output power capability of 500 kW. Two poloidal loop antennas were installed at the east and west ends of the tokamak allowing either N=1 or N=2 phasings. Since the largest antenna coupling to the Alfven resonance is provided by the m=1 surface wave, the antenna consisted only of a single element on the low field side, whereas in TCA the antennas are located on the top and the bottom of the torus. The antenna elements consisted of 2 parallel bars of inductance 730 nH and, as in TCA, were left unshielded. A typical antenna circulating current of 2 kA peak at 1.80 MHz was provided for the experiments. (author) 3 refs., 4 figs

  4. SURFACE ALFVEN WAVES IN SOLAR FLUX TUBES

    Energy Technology Data Exchange (ETDEWEB)

    Goossens, M.; Andries, J.; Soler, R.; Van Doorsselaere, T. [Centre for Plasma Astrophysics, Department of Mathematics, Katholieke Universiteit Leuven, Celestijnenlaan 200B, 3001 Leuven (Belgium); Arregui, I.; Terradas, J., E-mail: marcel.goossens@wis.kuleuven.be [Solar Physics Group, Departament de Fisica, Universitat de les Illes Balears, E-07122 Palma de Mallorca (Spain)

    2012-07-10

    Magnetohydrodynamic (MHD) waves are ubiquitous in the solar atmosphere. Alfven waves and magneto-sonic waves are particular classes of MHD waves. These wave modes are clearly different and have pure properties in uniform plasmas of infinite extent only. Due to plasma non-uniformity, MHD waves have mixed properties and cannot be classified as pure Alfven or magneto-sonic waves. However, vorticity is a quantity unequivocally related to Alfven waves as compression is for magneto-sonic waves. Here, we investigate MHD waves superimposed on a one-dimensional non-uniform straight cylinder with constant magnetic field. For a piecewise constant density profile, we find that the fundamental radial modes of the non-axisymmetric waves have the same properties as surface Alfven waves at a true discontinuity in density. Contrary to the classic Alfven waves in a uniform plasma of infinite extent, vorticity is zero everywhere except at the cylinder boundary. If the discontinuity in density is replaced with a continuous variation of density, vorticity is spread out over the whole interval with non-uniform density. The fundamental radial modes of the non-axisymmetric waves do not need compression to exist unlike the radial overtones. In thin magnetic cylinders, the fundamental radial modes of the non-axisymmetric waves with phase velocities between the internal and the external Alfven velocities can be considered as surface Alfven waves. On the contrary, the radial overtones can be related to fast-like magneto-sonic modes.

  5. Alfven wave. DOE Critical Review Series

    International Nuclear Information System (INIS)

    Hasegawa, A.; Uberoi, C.

    1982-01-01

    This monograph deals with the properties of Alfven waves and with their application to fusion. The book is divided into 7 chapters dealing with linear properties in homogeneous and inhomogeneous plasmas. Absorption is treated by means of kinetic theory. Instabilities and nonlinear processes are treated in Chapters 1 to 6, and the closing chapter is devoted to theory and experiments in plasma heating by Alfven waves

  6. Discrete Alfven waves in the TORTUS tokamak

    International Nuclear Information System (INIS)

    Amagishi, Y.; Ballico, M.J.; Cross, R.C.; Donnely, I.J.

    1989-01-01

    Discrete Alfven Waves (DAWs) have been observed as antenna resistance peaks and as enhanced edge fields in the TORTUS tokamak during Alfven wave heating experiments. A kinetic theory code has been used to calculate the antenna loading and the structure of the DAW fields for a range of plasma current and density profiles. There is fair agreement between the measured and predicted amplitude of the DAW fields in the plasma edge when both are normalized to the same antenna power

  7. Alfven wave. DOE Critical Review Series

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, A.; Uberoi, C.

    1982-01-01

    This monograph deals with the properties of Alfven waves and with their application to fusion. The book is divided into 7 chapters dealing with linear properties in homogeneous and inhomogeneous plasmas. Absorption is treated by means of kinetic theory. Instabilities and nonlinear processes are treated in Chapters 1 to 6, and the closing chapter is devoted to theory and experiments in plasma heating by Alfven waves. (MOW)

  8. Nonlinear evolution of astrophysical Alfven waves

    Science.gov (United States)

    Spangler, S. R.

    1984-01-01

    Nonlinear Alfven waves were studied using the derivative nonlinear Schrodinger equation as a model. The evolution of initial conditions, such as envelope solitons, amplitude-modulated waves, and band-limited noise was investigated. The last two furnish models for naturally occurring Alfven waves in an astrophysical plasma. A collapse instability in which a wave packet becomes more intense and of smaller spatial extent was analyzed. It is argued that this instability leads to enhanced plasma heating. In studies in which the waves are amplified by an electron beam, the instability tends to modestly inhibit wave growth.

  9. Plasma heating by kinetic Alfven wave

    International Nuclear Information System (INIS)

    Assis, A.S. de.

    1982-01-01

    The heating of a nonuniform plasma (electron-ion) due to the resonant excitation of the shear Alfven wave in the low β regime is studied using initially the ideal MHD model and posteriorly using the kinetic model. The Vlasov equation for ions and the drift kinetic equation for electrons have been used. Through the ideal MHD model, it is concluded that the energy absorption is due to the continuous spectrum (phase mixing) which the shear Alfven wave has in a nonuniform plasma. An explicit expression for the energy absorption is derived. Through the kinetic model it is concluded that the energy absorption is due to a resonant mode convertion of the incident wave into the kinetic Alfven wave which propagates away from the resonant region. Its electron Landau damping has been observed. There has been a concordance with the MHD calculations. (Author) [pt

  10. Nonlinear Evolution of Alfvenic Wave Packets

    Science.gov (United States)

    Buti, B.; Jayanti, V.; Vinas, A. F.; Ghosh, S.; Goldstein, M. L.; Roberts, D. A.; Lakhina, G. S.; Tsurutani, B. T.

    1998-01-01

    Alfven waves are a ubiquitous feature of the solar wind. One approach to studying the evolution of such waves has been to study exact solutions to approximate evolution equations. Here we compare soliton solutions of the Derivative Nonlinear Schrodinger evolution equation (DNLS) to solutions of the compressible MHD equations.

  11. Current generation by the Kinetic Alfven wave

    International Nuclear Information System (INIS)

    Assis, A.S.

    1987-01-01

    The current generated and the efficiency of the shear Kinetic Alfven wave are obtained using a self-consistent quasilinear formulation. Also, the current generation by the monochromatic shear Kinetic Alfven wave introduced by Hasegawa is re-examined taking into account the nonresonant electrons. To obtain the RF current density at the level of the ohmic heating current density in a tokamak, the required external magnetic field is smaller than 0.1% of the DC magnetic field, and the parallel electric field (E 2 ), using the Lausanne-TCA-Tokamak parameters is of the order of 0.01 V cm -1 . (author) [pt

  12. The spectrum of axisymmetric torsional Alfven waves

    International Nuclear Information System (INIS)

    Sy, W.N.

    1977-03-01

    The spectrum of axisymmetric torsional Alfven waves propagating in a cylindrical, non-uniform, resistive plasma waveguide has been analysed by a method of singular perturbations. A simple condition has been derived which predicts whether the spectrum is continuous or discrete under given physical conditions. Application of this result to resolve an apparent discrepancy in experimental observations is briefly discussed. (Author)

  13. Alfven wave studies on a tokamak

    International Nuclear Information System (INIS)

    Kortbawi, D.

    1987-10-01

    The continuum modes of the shear Alfven resonance are studied on the Tokapole II device, a small tokamak operated in a four node poloidal divertor configuration. A variety of antenna designs and the efficiency with which they deliver energy to the resonant layer are discussed. The spatial structure of the driven waves is studied by means of magnetic probes inserted into the current channel. In an attempt to optimize the coupling of energy in to the resonant layer, the angle of antenna currents with respect to the equilibrium field, antenna size, and plasma-to-antenna distance are varied. The usefulness of Faraday shields, particle shields, and local limiters are investigated. Antennas should be well shielded, either a dense Faraday shield or particle shield being satisfactory. The antenna should be large and very near to the plasma. The wave magnetic fields measured show a spatial resonance, the position of which varies with the value of the equilibrium field and mass density. They are polarized perpendicular to the equilibrium field. A wave propagates radially in to the resonant surface where it is converted to the shear Alfven wave. The signal has a short risetime and does not propagate far toroidally. These points are all consistent with a strongly damped shear Alfven wave. Comparisons of this work to theoretical predictions and results from other tokamaks are made

  14. Spiky soliton in circular polarized Alfven wave

    International Nuclear Information System (INIS)

    Ichikawa, Y.H.; Sanuki, H.; Konno, K.; Wadati, M.

    1979-06-01

    A new type of nonlinear evolution equation for the Alfven waves, propagating parallel to the magnetic field, is now registered to the completely integrable family of nonlinear evolution equations. In spite of the extensive studies of Kaup and Newell, and of Kawata and Inoue, these analysis have been dealing with solutions for restricted boundary conditions. The present paper presents full account of stationary solitary wave solutions for the plane wave boundary condition. The obtained results exhibit peculiar structure of spiky modulation of amplitude and phase, which arises from the derivative nonlinear coupling term. A nonlinear equation for complex amplitude associated with the carrier wave is shown to be a mixed type of nonlinear Schroedinger equation, having and ordinary cubic nonlinear term and the derivative of cubic nonlinear term. (author)

  15. Alfven wave experiments on the TORTUS tokamak

    International Nuclear Information System (INIS)

    Ballico, M.J.; Bowden, M.; Brand, G.F.; Brennan, M.H.; Cross, R.C.; Fekete, P.; James, B.W.

    1989-01-01

    Results are presented on the first observations of the Discrete Alfven Wave (DAW) and the first measurements of laser scattering off the kinetic Alfven wave in the TORTUS tokamak. TORTUS is a relatively small device, with major radius R=0.44m, minor radius 0.1m and has previously been operated routinely with B Φ =0.7T, I p =20 kA and n e ∼ 1x10 19 m -3 . Under these conditions, and over a wide frequency range (1-14 MHz), there has been no evidence of the DAW modes observed on TCA. Recently, a minor upgrade of TORTUS has permitted routine operation at B Φ =1.0 T, I p =39 kA, q(a)∼5 and n e ∼1-4 x 10 19 m -3 . At the operating frequency, 3.2 MHz, chosen for this study, DAW modes are observed clearly at both low and high densities. The appearance of DAW modes appears to be due to a steeper current profile at the higher plasma currents now generated in TORTUS. The general behaviour of DAW modes is in fact quite sensitive to the density and current profiles, indicating that DAW modes should provide a useful current profile diagnostic. (author) 6 refs., 2 figs

  16. Stability of Global Alfven Waves (Tae, Eae) in Jet Tritium Discharges

    NARCIS (Netherlands)

    Kerner, W.; Borba, D.; Huysmans, G. T. A.; Porcelli, F.; Poedts, S.; Goedbloed, J. P.; Betti, R.

    1994-01-01

    The interaction of alpha-particles in JET tritium discharges with global Alfven waves via inverse Landau damping is analysed. It is found that alpha-particle driven eigenmodes were stable in the PTE1 and should also be stable in a future 50:50 deuterium-tritium mix discharge aiming at Q(DT) = 1,

  17. Heating of solar coronal holes by reflected Alfven waves

    Science.gov (United States)

    Moore, R. L.; Musielak, Z. E.; Suess, S. T.; An, C.-H.

    1992-01-01

    As a continuation of the work of Moore et al. (1991), who found evidence that coronal holes are heated by Alfven waves that are reflected back down within the coronal holes, this paper shows that to demonstrate this evidence, it is only necessary to consider a subset of the Moore et al. models, namely, those having radial magnetic field. Using these models, it is shown that the Alfven velocity is not constant in the atmosphere of coronal holes, but changes with height (or radius), causing downward reflection of all upward Alfven waves of sufficiently long wavelength (or period).

  18. Central mass feedback control using the discrete Alfven wave spectrum

    International Nuclear Information System (INIS)

    Dudok de Wit, Th.; Lister, J.B.; Duval, B.P.; Joye, B.; Marmillod, Ph.

    1990-04-01

    The dispersion relation of the shear Alfven wave depends on several internal plasma parameters, including the central effective mass. By frequency tracking a Discrete Alfven Wave during the plasma current flat-top, we obtained a real-time estimate of the central effective mass. Using the measured mass, we have been able to feedback control both the effective mass and the electron density of the plasma, using separately controllable hydrogen and deuterium filling valves. (author) 5 refs., 6 figs

  19. Ion temperature in plasmas with intrinsic Alfven waves

    International Nuclear Information System (INIS)

    Wu, C. S.; Yoon, P. H.; Wang, C. B.

    2014-01-01

    This Brief Communication clarifies the physics of non-resonant heating of protons by low-frequency Alfvenic turbulence. On the basis of general definition for wave energy density in plasmas, it is shown that the wave magnetic field energy is equivalent to the kinetic energy density of the ions, whose motion is induced by the wave magnetic field, thus providing a self-consistent description of the non-resonant heating by Alfvenic turbulence. Although the study is motivated by the research on the solar corona, the present discussion is only concerned with the plasma physics of the heating process

  20. Stimulated Brillouin scattering of electromagnetic Alfven waves in a plasma

    International Nuclear Information System (INIS)

    Sharma, R.R.; Sharma, R.C.; Sharma, O.P.

    1981-01-01

    The phenomenon of stimulated Brillouin scattering of electromagnetic Alfven waves in a plasma is investigated by employing fluid model approach. The low frequency nonlinearity of ion acoustic wave arises through the ponderomotive force on ions and high frequency nonlinearity arises through the equation of continuity. For a typical isothermal plasma (Tsub(e)/Tsub(i)approx.=10), Alfven wave frequency ω 0 approx.=10 6 rad. sec -1 , the threshold for this instability in a uniform plasma is approx.= milliwatt cm -2 . Above the threshold, the growth rate for forward and back scatterings are approx.=10 -3 rad.sec -1 and approx.=10 -4 rad.sec. -1 , respectively. (author)

  1. ALFVEN WAVES IN A PARTIALLY IONIZED TWO-FLUID PLASMA

    Energy Technology Data Exchange (ETDEWEB)

    Soler, R.; Ballester, J. L.; Terradas, J. [Departament de Fisica, Universitat de les Illes Balears, E-07122 Palma de Mallorca (Spain); Carbonell, M., E-mail: roberto.soler@uib.es, E-mail: joseluis.ballester@uib.es, E-mail: jaume.terradas@uib.es, E-mail: marc.carbonell@uib.es [Departament de Matematiques i Informatica, Universitat de les Illes Balears, E-07122 Palma de Mallorca (Spain)

    2013-04-20

    Alfven waves are a particular class of magnetohydrodynamic waves relevant in many astrophysical and laboratory plasmas. In partially ionized plasmas the dynamics of Alfven waves is affected by the interaction between ionized and neutral species. Here we study Alfven waves in a partially ionized plasma from the theoretical point of view using the two-fluid description. We consider that the plasma is composed of an ion-electron fluid and a neutral fluid, which interact by means of particle collisions. To keep our investigation as general as possible, we take the neutral-ion collision frequency and the ionization degree as free parameters. First, we perform a normal mode analysis. We find the modification due to neutral-ion collisions of the wave frequencies and study the temporal and spatial attenuation of the waves. In addition, we discuss the presence of cutoff values of the wavelength that constrain the existence of oscillatory standing waves in weakly ionized plasmas. Later, we go beyond the normal mode approach and solve the initial-value problem in order to study the time-dependent evolution of the wave perturbations in the two fluids. An application to Alfven waves in the low solar atmospheric plasma is performed and the implication of partial ionization for the energy flux is discussed.

  2. Solitary Alfven wave envelopes and the modulational instability

    International Nuclear Information System (INIS)

    Kennel, C.F.

    1987-06-01

    The derivative nonlinear Schroedinger equation describes the modulational instability of circularly polarized dispersive Alfven wave envelopes. It also may be used to determine the properties of finite amplitude localized stationary wave envelopes. Such envelope solitons exist only in conditions of modulational stability. This leaves open the question of whether, and if so, how, the modulational instability produces envelope solitons. 12 refs

  3. Reflection of Alfven waves at an open magnetopause

    International Nuclear Information System (INIS)

    Cao, F.; Kan, J.R.

    1990-01-01

    Reflection of an Alfven wave incident on an open magnetopause form the magnetospheric side is examined. An open magnetopause, whose structure is different from the standard rotational discontinuity, is assumed to be a parameterized discontinuity with a nonzero normal field component. When an Alfven wave is incident on the open magnetopause, reflected and transmitted waves are generated. The emanating waves can be analyzed using linearized MHD conservation relations across the magnetopause, together with Snell's law. Under the assumption that the magnetic fields on the two sides of the open magnetopause are coplanar with the normal direction of the magnetopause, the governing equations are solved numerically. The results show that the electric fields of emanating Alfven waves depend mainly on the number density and the magnetic field jumps across the magnetopause. Under conditions representing the open magnetopause, it turns out that the open magnetopause behaves like a near perfect reflector. The corresponding reflection coefficient for the wave electric field can be approximated by R E = E r /E i ∼ -1 as has been deduced by Kan and Sun (1985) based on physical arguments. In other words, the solar wind flow is more or less unchanged by the loading effect of the Alfven wave incident on the magnetopause from the magnetospheric side. Therefore, under the assumptions of the model, the open magnetopause can be viewed as a constant voltage source

  4. Alfven Eigenmode excitation by ICRH beat-waves

    International Nuclear Information System (INIS)

    Fasoli, A.; Lister, J.B.; Dobbing, J.A.; Gormezano, C.; Jacquinot, J.; Sharapov, S.; Sibley, A.

    1995-08-01

    The resonant excitation of Alfven Eigenmodes by ICRH beat waves has been attempted experimentally on JET tokamak plasmas. Toroidicity induced AE are excited when the difference frequency between two ICRH antennas is of the order of the central frequency of the relative Alfven continuum gap. The relatively large amplitudes for the TAE driven ICRH beat waves suggest that this new non-linear excitation mechanism could allow investigations into the effects of AE on particle orbits and should be taken into account in ICRH heated thermonuclear plasmas. (author) 6 figs., 9 refs

  5. Resonant Alfven wave instabilities driven by streaming fast particles

    International Nuclear Information System (INIS)

    Zachary, A.

    1987-01-01

    A plasma simulation code is used to study the resonant interactions between streaming ions and Alfven waves. The medium which supports the Alfven waves is treated as a single, one-dimensional, ideal MHD fluid, while the ions are treated as kinetic particles. The code is used to study three ion distributions: a cold beam; a monoenergetic shell; and a drifting distribution with a power-law dependence on momentum. These distributions represent: the field-aligned beams upstream of the earth's bow shock; the diffuse ions upstream of the bow shock; and the cosmic ray distribution function near a supernova remnant shock. 92 refs., 31 figs., 12 tabs

  6. Comments on the Alfven wave spectrum as measured on the TCA tokamak

    International Nuclear Information System (INIS)

    Puri, S.

    1986-06-01

    The heating in the TCA tokamak is ascribed to a combination of compressional Alfven wave heating (CAW) and discrete Alfven wave (DAW) heating. In this communication we invoke an alternative plasma heating mechanism by the direct excitation of torsional Alfven waves (TAW) to account for the observed features of the TCA experiment. (orig./GG)

  7. Neutrino induced vorticity, Alfven waves and the normal modes

    Energy Technology Data Exchange (ETDEWEB)

    Bhatt, Jitesh R. [Theory Division, Physical Research Laboratory, Ahmedabad (India); George, Manu [Theory Division, Physical Research Laboratory, Ahmedabad (India); Indian Institute of Technology, Department of Physics, Ahmedabad (India)

    2017-08-15

    We consider a plasma consisting of electrons and ions in the presence of a background neutrino gas and develop the magnetohydrodynamic equations for the system. We show that the electron neutrino interaction can induce vorticity in the plasma even in the absence of any electromagnetic perturbations if the background neutrino density is left-right asymmetric. This induced vorticity supports a new kind of Alfven wave whose velocity depends on both the external magnetic field and on the neutrino asymmetry. The normal mode analysis show that in the presence of neutrino background the Alfven waves can have different velocities. We also discuss our results in the context of dense astrophysical plasma such as magnetars and show that the difference in the Alfven velocities can be used to explain the observed pulsar kick. We discuss also the relativistic generalisation of the electron fluid in presence of an asymmetric neutrino background. (orig.)

  8. Direct excitation of resonant torsional Alfven waves by footpoint motions

    NARCIS (Netherlands)

    Ruderman, M. S.; Berghmans, D.; Goossens, M.; Poedts, S.

    1997-01-01

    The present paper studies the heating of coronal loops by linear resonant Alfven waves that are excited by the motions of the photospheric footpoints of the magnetic field lines. The analysis is restricted to torsionally polarised footpoint motions in an axially symmetric system so that only

  9. Shear Alfven wave excitation by direct antenna coupling and fast wave resonant mode conversion

    International Nuclear Information System (INIS)

    Borg, G.G.

    1994-01-01

    Antenna coupling to the shear Alfven wave by both direct excitation and fast wave resonant mode conversion is modelled analytically for a plasma with a one dimensional linear density gradient. We demonstrate the existence of a shear Alfven mode excited directly by the antenna. For localised antennas, this mode propagates as a guided beam along the steady magnetic field lines intersecting the antenna. Shear Alfven wave excitation by resonant mode conversion of a fast wave near the Alfven resonance layer is also demonstrated and we prove that energy is conserved in this process. We compare the efficiency of these two mechanisms of shear Alfven wave excitation and present a simple analytical formula giving the ratio of the coupled powers. Finally, we discuss the interpretation of some experimental results. 45 refs., 7 figs

  10. Current drive by Alfven waves in elongated cross section tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Tsypin, V.S.; Elfimov, A.G.; Nekrasov, F.M.; Azevedo, C.A. [Universidade Federal, Rio de Janeiro, RJ (Brazil). Inst. de Fisica; Assis, A.S. de [Universidade Federal Fluminense, Niteroi, RJ (Brazil). Inst. de Fisica

    1997-12-31

    Full text. The problem of the noninductive current drive in cylindrical plasma model and in circular cross-section tokamaks had been already discussed intensively. At the beginning of the study of this problem it have been clear that there are significant difficulties in using of the current-drive in toroidal magnetic traps, especially in a tokamak reactor. Thus, in the case of the lower-hybrid current-drive the efficiency of this current-drive drops strongly as the plasma density increases. For the Alfven waves, there is an opinion that the efficiency of the current-drive drops as a result of waves absorption by the trapped particles 1,2. Okhawa proposed that the current in a magnetized plasma can be maintained also by means of forces, depending on the radiofrequency (rf) field amplitude gradients (the helicity injection). This idea was developed later, some new hopes appeared, connected with the possibility of the current-drive efficiency increasing. It was shown that for the cylindrical plasmas the local efficiency of Alfev wave current drive can be increased by one order of magnitude due to gradient forces, for the kinetic Alfven waves (KAW) and the global Alfven waves (GAW) at some range of the phase velocity. For tokamaks, this additional nonresonant current drive does not depend on the trapped particle effects, which reduce strongly the Alfven current drive efficiency in tokamaks, as it is supposed. Now, the theory development of the Alfven wave (AW) current drive is very important in the cource of the future experiments on the TCA/BR tokamak (Brazil). In this paper, an attempt is made to clarify some general aspects of this problems for magnetic traps. For large aspects ratio tokamaks, with an elongated cross-section, some general formulas concerning the untrapped and trapped particles dynamics and their input to the Landau damping of the Alfven waves, are presented. They are supposed to be used for the further development of the Alfven current drive theory

  11. The stationary Alfven wave in laboratory and space regimes

    Science.gov (United States)

    Finnegan, S. M.

    In this thesis, a non-linear, collisional, two-fluid model of uniform plasma convection across field-aligned current (FAC) sheets, describing stationary Alfven (StA) waves is developed in support of laboratory experiments performed to test the hypothesis that a stationary inertial Alfven wave pattern forms within a channel of parallel electron current across which plasma is convected. In a previous work, Knudsen (D. J. Knudsen, J. Geophys. Res. 101, 10,761 (1996)) showed that, for cold, collisionless plasma, stationary inertial Alfven (StIA) waves can accelerate electrons parallel to a background magnetic field and cause large, time-independent plasma-density variations having spatial periodicity in the direction of the convective flow over a broad range of spatial scales and energies. Here, Knudsen's model has been generalized for warm, collisional, anisotropic plasma. The inclusion of parallel electron thermal pressure introduces dispersive effects which extend the model to the kinetic (beta > me/mi) regime. The effects of both ion-neutral and electron-ion collisional resistivity on StIA and stationary kinetic Alfven (StKA) wave solutions is studied. Conditions for both periodic and solitary wave solutions are identified. In the small amplitude limit, it is shown that the StA wave equation reduces to the differential equation describing the behavior of a forced harmonic oscillator. Analytical solutions are obtained for both a step and impulse, of finite width, forcing functions. Plasma rotation experiments in the West Virginia University Q-machine (WVUQ) demonstrate that an electron-emitting spiral electrode produces controllable, parabolic radial profile of floating potential, while the space potential showed no such structure. Laser-induced fluorescence measurements confirmed that the azimuthal ion drift velocity is inconsistent with a drift due to a gradient in the space potential. Experiments designed to produce StIA wave signatures were performed in the

  12. Simulation of the interaction between Alfven waves and fast particles

    Energy Technology Data Exchange (ETDEWEB)

    Feher, Tamas Bela

    2014-02-18

    There is a wide variety of Alfven waves in tokamak and stellarator plasmas. While most of them are damped, some of the global eigenmodes can be driven unstable when they interact with energetic particles. By coupling the MHD code CKA with the gyrokinetic code EUTERPE, a hybrid kinetic-MHD model is created to describe this wave-particle interaction in stellarator geometry. In this thesis, the CKA-EUTERPE code package is presented. This numerical tool can be used for linear perturbative stability analysis of Alfven waves in the presence of energetic particles. The equations for the hybrid model are based on the gyrokinetic equations. The fast particles are described with linearized gyrokinetic equations. The reduced MHD equations are derived by taking velocity moments of the gyrokinetic equations. An equation for describing the Alfven waves is derived by combining the reduced MHD equations. The Alfven wave equation can retain kinetic corrections. Considering the energy transfer between the particles and the waves, the stability of the waves can be calculated. Numerically, the Alfven waves are calculated using the CKA code. The equations are solved as an eigenvalue problem to determine the frequency spectrum and the mode structure of the waves. The results of the MHD model are in good agreement with other sophisticated MHD codes. CKA results are shown for a JET and a W7-AS example. The linear version of the EUTERPE code is used to study the motion of energetic particles in the wavefield with fixed spatial structure, and harmonic oscillations in time. In EUTERPE, the gyrokinetic equations are discretized with a PIC scheme using the delta-f method, and both full orbit width and finite Larmor radius effects are included. The code is modified to be able to use the wavefield calculated externally by CKA. Different slowing-down distribution functions are also implemented. The work done by the electric field on the particles is measured to calculate the energy transfer

  13. Filamentation instability of large-amplitude Alfven waves

    International Nuclear Information System (INIS)

    Kuo, S.P.; Whang, M.H.; Lee, M.C.

    1988-01-01

    An instability that leads to the filamentation of large-amplitude Alfven waves and gives rise to purely growing density and magnetic field fluctuations is studied. The dispersion relation of the instability is derived, from which the threshold conditions and the growth rates of the instability are analyzed quantitatively for applications to the solar wind plasma. We have examined their dependence on the filamentation spectrum, the plasma β, and the pump frequency and intensity for both right-hand and left-hand circularly polarized Alfven waves. The excitation of filamentation instability for certain cases of interest is discussed and compared with that of the parametric decay and modulation instability. The relevance of the proposed instability with some observations is discussed. copyright American Geophysical Union 1988

  14. Coronal heating by Alfven waves dissipation in compressible nonuniform media

    International Nuclear Information System (INIS)

    Malara, Francesco; Primavera, Leonardo; Veltri, Pierluigi

    1996-01-01

    The possibility to produce small scales and then to efficiently dissipate energy has been studied by Malara et al. [1992b] in the case of MHD disturbances propagating in an weakly dissipative incompressible and inhomogeneous medium, for a strictly 2D geometry. We extend this work to include both compressibility and the third component for vector quantities. Numerical simulations show that, when an Alfven wave propagates in a compressible nonuniform medium, the two dynamical effects responsible for the small scales formation in the incompressible case are still at work: energy pinching and phase-mixing. These effects give rise to the formation of compressible perturbations (fast and slow waves or a static entropy wave). Some of these compressive fluctuations are subject to the steepening of the wave front and become shock waves, which are extremely efficient in dissipating their energy, their dissipation being independent of the Reynolds number. Rough estimates of the typical times the various dynamical processes take to produce small scales show that these times are consistent with those required to dissipate inside the solar corona the energy of Alfven waves of photospheric origin

  15. Non-axial-symmetric Alfven waves in cylindrical, radial inhomogeneous plasmas

    International Nuclear Information System (INIS)

    Raeuchle, E.

    1978-08-01

    The propagation of nonaxialsymmetric Alfven waves is investigated theoretically. Eigenfunctions and dispersion relations are calculated numerically for radial inhomogeneous cylindrical plasmas. In the MHD treatment resistivity, neutral particle loading and ion cyclotron effects are included. The investigations are of importance for plasma heating by Alfven waves. (orig.) [de

  16. High-n ideal and resistive shear Alfven waves in tokamaks

    International Nuclear Information System (INIS)

    Cheng, C.Z.; Chen, L.; Chance, M.S.

    1984-05-01

    Ideal and resistive MHD equations for the shear Alfven waves are studied in a low-β toroidal model by employing the high-n ballooning formalism. The ion sound effects are neglected. For an infinite shear slab, the ideal MHD model gives rise to a continuous spectrum of real frequencies and discrete eigenmodes (Alfven-Landau modes) with complex frequencies. With toroidal coupling effects due to nonuniform toroidal magnetic field, the continuum is broken up into small continuum bands and new discrete toroidal eigenmodes can exist inside the continuum gaps. Unstable ballooning eigenmodes are also introduced by the bad curvature when β > β/sub c/. The resistivity (n) can be considered perturbatively for the ideal modes. In addition, four branches of resistive modes are induced by the resistivity: (1) Resistive entropy modes which are stable (Δ' < 0) with frequencies approaching zero as n/sup 3/5/, (3) Resistive periodic shear Alfven waves which approach the finite frequency end points of the continuum bands and n/sup 1/2, and (4) Resistive ballooning modes which are purely growing with growth rate proportional to eta/sup 1/3/β/sup 2/3/ as eta → O and β → O

  17. Effects of compressional magnetic perturbation on kinetic Alfven waves

    Science.gov (United States)

    Dong, Ge; Bhattacharjee, Amitava; Lin, Zhihong

    2016-10-01

    Kinetic Alfven waves play a very important role in the dynamics of fusion as well as space and astrophysical plasmas. The compressional magnetic perturbation δB|| can play important role in kinetic Alfven waves (KAW) and various instabilities at large plasma β. It could affect the nonlinear behavior of these modes significantly even at small β. In this study, we have implemented δB|| in gyrokinetic toroidal code (GTC). The perpendicular Ampere's law is solved as a force balance equation. Double gyroaveraging is incorporated in the code to treat the finite Larmor radius effects related to δB|| terms. KAW is studied in slab geometry as a benchmark case. A scan in β for the KAW dispersion relation shows that as β approaches 1 (>0.3), the effects of δB|| becomes important. Connections are made with other existing studies of KAWs in the fusion and space plasma literature. This new capability of including δB|| in GTC could be applied to nonlinear simulations of modes such as kinetic ballooning and tearing modes. This research is supported by DOE Contract No. DE-AC02-09CH11466.

  18. Alfven Waves Underlying Ionospheric Destabilization: Ground-Based Observations

    Science.gov (United States)

    Hirsch, Michael

    During geomagnetic storms, terawatts of power in the million mile-per-hour solar wind pierce the Earth's magnetosphere. Geomagnetic storms and substorms create transverse magnetic waves known as Alfven waves. In the auroral acceleration region, Alfven waves accelerate electrons up to one-tenth the speed of light via wave-particle interactions. These inertial Alfven wave (IAW) accelerated electrons are imbued with sub-100 meter structure perpendicular to geomagnetic field B. The IAW electric field parallel to B accelerates electrons up to about 10 keV along B. The IAW dispersion relation quantifies the precipitating electron striation observed with high-speed cameras as spatiotemporally dynamic fine structured aurora. A network of tightly synchronized tomographic auroral observatories using model based iterative reconstruction (MBIR) techniques were developed in this dissertation. The TRANSCAR electron penetration model creates a basis set of monoenergetic electron beam eigenprofiles of auroral volume emission rate for the given location and ionospheric conditions. Each eigenprofile consists of nearly 200 broadband line spectra modulated by atmospheric attenuation, bandstop filter and imager quantum efficiency. The L-BFGS-B minimization routine combined with sub-pixel registered electron multiplying CCD video stream at order 10 ms cadence yields estimates of electron differential number flux at the top of the ionosphere. Our automatic data curation algorithm reduces one terabyte/camera/day into accurate MBIR-processed estimates of IAW-driven electron precipitation microstructure. This computer vision structured auroral discrimination algorithm was developed using a multiscale dual-camera system observing a 175 km and 14 km swath of sky simultaneously. This collective behavior algorithm exploits the "swarm" behavior of aurora, detectable even as video SNR approaches zero. A modified version of the algorithm is applied to topside ionospheric radar at Mars and

  19. On field line resonances of hydromagnetic Alfven waves in dipole magnetic field

    International Nuclear Information System (INIS)

    Chen, Liu; Cowley, S.C.

    1989-07-01

    Using the dipole magnetic field model, we have developed the theory of field line resonances of hydromagnetic Alfven waves in general magnetic field geometries. In this model, the Alfven speed thus varies both perpendicular and parallel to the magnetic field. Specifically, it is found that field line resonances do persist in the dipole model. The corresponding singular solutions near the resonant field lines as well as the natural definition of standing shear Alfven eigenfunctions have also been systematically derived. 11 refs

  20. Alfven wave stability in D-III-D

    International Nuclear Information System (INIS)

    Campbell, R.B.; Samec, T.K.

    1989-09-01

    Within the framework of the global Alfven eigenmode theory in a cylindrical background plasma, I examine the excitation of global Alfven eigenmodes by intense neutral beam injection in the D III-D tokamak operating at General Atomics. I have considered two separate sets of experimental conditions, a ''low power'' set of cases using 10MW of hydrogen beams, and a ''high power'' shot of 20MW of deuterium beams. My results are particularly sensitive to the background density profile. For parabolic background density profiles, n 0 x (1 - (r/a) 2 ), I have determined that the plasma is stable to all toroidal and poloidal mode numbers for both high and low power cases. For density profiles which are of the form n 0 x (1 - (r/a) 2 ) 1/2 , for the same n 0 , my calculation indicates that the m = -1, l = 0 mode is unstable in each case. The high power case has a considerably higher growth rate at the baseline conditions, which motivated me to study this case more extensively. The results are also sensitive to the beam source radial scalelength, L s , and the electron temperature T e . By narrowing the source from the baseline 36 cm to 20 cm, the growth rate of the (0,-1) actually decreases, but the (0,-2) mode appears with a substantial growth rate. If the source could be made even narrower, L s ∼ 10 cm, the (1,-1) mode would appear, also with a large growth rate. 12 refs., 16 figs., 6 tabs

  1. Particle energization by inertial Alfven wave in auroral ionosphere

    Science.gov (United States)

    Kumar, S.

    2017-12-01

    The role of inertial Alfven wave in auroral acceleration region and in the inertial regime to energize the plasma particles is an interesting field and widely discussed observationally as well as theoretically in recent years. In this work, we present the density perturbations by inertial Alfvén wave (AW) in the auroral ionosphere. We obtain dynamical equations for inertial AW and fast mode of AW using two-fluid model and then solve them numerically in order to analyze the localized structures and cavity formation. The ponderomotive force due to the high frequency inertial AW changes the background density and is believed to be responsible for the wave localization or for the formation of density cavities in auroral ionosphere. These density cavities are believed to be the sites for particle energization. This perturbed density channel grow with time until the modulation instability acquires steady state. We find that the density cavities are accompanied by the high amplitude magnetic fields. The amplitude of the strongest density cavity is estimated as ˜ 0.26n0 (n0 is unperturbed plasma number density). The results presented here are found consistent with the observational studies using FAST spacecraft.

  2. Alfven wave trapping, network microflaring, and heating in solar coronal holes

    Science.gov (United States)

    Moore, R. L.; Suess, S. T.; Musielak, Z. E.; An, C.-H.

    1991-01-01

    Fresh evidence that much of the heating in coronal holes is provided by Alfven waves is presented. This evidence comes from examining the reflection of Alfven waves in an isothermal hydrostatic model coronal hole with an open magnetic field. Reflection occurs if the wavelength is as long as the order of the scale height of the Alfven velocity. For Alfven waves with periods of about 5 min, and for realistic density, magnetic field strength, and magnetic field spreading in the model, the waves are reflected back down within the model hole if the coronal temperature is only slightly less than 1.0 x 10 to the 6th K, but are not reflected and escape out the top of the model if the coronal temperature is only slightly greater than 1.0 x 10 to the 6th K. Because the spectrum of Alfven waves in real coronal holes is expected to peak around 5 min and the temperature is observed to be close to 1.0 x 10 to the 6th K, the sensitive temperature dependence of the trapping suggests that the temperature in coronal holes is regulated by heating by the trapped Alfven waves.

  3. Winds from Luminous Late-Type Stars: II. Broadband Frequency Distribution of Alfven Waves

    Science.gov (United States)

    Airapetian, V.; Carpenter, K. G.; Ofman, L.

    2010-01-01

    We present the numerical simulations of winds from evolved giant stars using a fully non-linear, time dependent 2.5-dimensional magnetohydrodynamic (MHD) code. This study extends our previous fully non-linear MHD wind simulations to include a broadband frequency spectrum of Alfven waves that drive winds from red giant stars. We calculated four Alfven wind models that cover the whole range of Alfven wave frequency spectrum to characterize the role of freely propagated and reflected Alfven waves in the gravitationally stratified atmosphere of a late-type giant star. Our simulations demonstrate that, unlike linear Alfven wave-driven wind models, a stellar wind model based on plasma acceleration due to broadband non-linear Alfven waves, can consistently reproduce the wide range of observed radial velocity profiles of the winds, their terminal velocities and the observed mass loss rates. Comparison of the calculated mass loss rates with the empirically determined mass loss rate for alpha Tau suggests an anisotropic and time-dependent nature of stellar winds from evolved giants.

  4. Alfven-wave particle interaction in finite-dimensional self-consistent field model

    International Nuclear Information System (INIS)

    Padhye, N.; Horton, W.

    1998-01-01

    A low-dimensional Hamiltonian model is derived for the acceleration of ions in finite amplitude Alfven waves in a finite pressure plasma sheet. The reduced low-dimensional wave-particle Hamiltonian is useful for describing the reaction of the accelerated ions on the wave amplitudes and phases through the self-consistent fields within the envelope approximation. As an example, the authors show for a single Alfven wave in the central plasma sheet of the Earth's geotail, modeled by the linear pinch geometry called the Harris sheet, the time variation of the wave amplitude during the acceleration of fast protons

  5. Convective cell excitation by inertial Alfven waves in a low density plasma

    International Nuclear Information System (INIS)

    Pokhotelov, O.A.; Onishchenko, O.G.; Sagdeev, R.Z.; Srenflo, L.; Balikhin, M.A.

    2005-01-01

    The parametric interaction of inertial Alfven waves with large-scale convective cells in a low-density plasma is investigated. It is shown that, in plasmas where the Alfven velocity is comparable to or exceeds the speed of light, the parametric interaction is substantially suppressed. A compact expression for the optimal scale and instability growth rate of the fastest growing mode is obtained [ru

  6. Experiments and Observations on Intense Alfven Waves in the Laboratory and in Space

    International Nuclear Information System (INIS)

    Gekelman, W.; VanZeeland, M.; Vincena, S.; Pribyl, P.

    2003-01-01

    There are many situations, which occur in space (coronal mass ejections, supernovas), or are man-made (upper atmospheric detonations) in which a dense plasma expands into a background magnetized plasma that can support Alfven waves. The LArge Plasma Device (LAPD) is a machine, at UCLA, in which Alfven wave propagation in homogeneous and inhomogeneous plasmas has been studied. These will be briefly reviewed. A new class of experiments which involve the expansion of a dense (initially, δn/no>>1) laser-produced plasma into an ambient highly magnetized background plasma capable of supporting Alfven waves will be presented. Measurements are used to estimate the coupling efficiency of the laser energy and kinetic energy of the dense plasma into wave energy. The wave generation mechanism is due to field aligned return currents, coupled to the initial electron current, which replace fast electrons escaping the initial blast

  7. Kinetic Alfven waves and electron physics. II. Oblique slow shocks

    International Nuclear Information System (INIS)

    Yin, L.; Winske, D.; Daughton, W.

    2007-01-01

    One-dimensional (1D) particle-in-cell (PIC; kinetic ions and electrons) and hybrid (kinetic ions; adiabatic and massless fluid electrons) simulations of highly oblique slow shocks (θ Bn =84 deg. and β=0.1) [Yin et al., J. Geophys. Res., 110, A09217 (2005)] have shown that the dissipation from the ions is too weak to form a shock and that kinetic electron physics is required. The PIC simulations also showed that the downstream electron temperature becomes anisotropic (T e parallel )>T e perpendicular ), as observed in slow shocks in space. The electron anisotropy results, in part, from the electron acceleration/heating by parallel electric fields of obliquely propagating kinetic Alfven waves (KAWs) excited by ion-ion streaming, which cannot be modeled accurately in hybrid simulations. In the shock ramp, spiky structures occur in density and electron parallel temperature, where the ion parallel temperature decreases due to the reduction of the ion backstreaming speed. In this paper, KAW and electron physics in oblique slow shocks are further examined under lower electron beta conditions. It is found that as the electron beta is reduced, the resonant interaction between electrons and the wave parallel electric fields shifts to the tail of the electron velocity distribution, providing more efficient parallel heating. As a consequence, for β e =0.02, the electron physics is shown to influence the formation of a θ Bn =75 deg. shock. Electron effects are further enhanced at a more oblique shock angle (θ Bn =84 deg.) when both the growth rate and the range of unstable modes on the KAW branch increase. Small-scale electron and ion phase-space vortices in the shock ramp formed by electron-KAW interactions and the reduction of the ion backstreaming speed, respectively, are observed in the simulations and confirmed in homogeneous geometries in one and two spatial dimensions in the accompanying paper [Yin et al., Phys. Plasmas 14, 062104 (2007)]. Results from this study

  8. Heating of solar coronal loops by resonant absorption of Alfven waves

    Science.gov (United States)

    Grossmann, William; Smith, Robert A.

    1988-01-01

    Numerical calculations governing the efficiency of coronal loop heating by the resonant absorption of shear Alfven waves are reported. The loop structure is modeled by a class of axisymmetric force-free equilibria of a long straight cylinder, approximating a large aspect ratio loop. For a range of parameters characterizing the evolution of solar coronal loops, the absorption bandwidth falls in the frequency range of the photospheric motions due to granulation and p-modes. Resonant Alfven wave absorption is thus a viable mechanism for coronal loop heating.

  9. The soliton transform and a possible application to nonlinear Alfven waves in space

    Science.gov (United States)

    Hada, T.; Hamilton, R. L.; Kennel, C. F.

    1993-01-01

    The inverse scattering transform (IST) based on the derivative nonlinear Schroedinger (DNLS) equation is applied to a complex time series of nonlinear Alfven wave data generated by numerical simulation. The IST describes the long-time evolution of quasi-parallel Alfven waves more efficiently than the Fourier transform, which is adapted to linear rather than nonlinear problems. When dissipation is added, so the conditions for the validity of the DNLS are not strictly satisfied, the IST continues to provide a compact description of the wavefield in terms of a small number of decaying envelope solitons.

  10. Differential field equations for the MHD waves and wave equation of Alfven; Las ecuaciones diferenciales de campo para las ondas MHD y la ecuacion de onda de Alfven

    Energy Technology Data Exchange (ETDEWEB)

    Fierros Palacios, Angel [Instituto de Investigaciones Electricas, Temixco, Morelos (Mexico)

    2001-02-01

    In this work the complete set of differential field equations which describes the dynamic state of a continuos conducting media which flow in presence of a perturbed magnetic field is obtained. Then, the thermic equation of state, the wave equation and the conservation law of energy for the Alfven MHD waves are obtained. [Spanish] Es este trabajo se obtiene el conjunto completo de ecuaciones diferenciales de campo que describen el estado dinamico de un medio continuo conductor que se mueve en presencia de un campo magnetico externo perturbado. Asi, se obtiene la ecuacion termica de estado, la ecuacion de onda y la ley de la conservacion de la energia para las ondas de Alfven de la MHD.

  11. Kinetic Alfven Waves at the Magnetopause-Mode Conversion, Transport and Formation of LLBL; TOPICAL

    International Nuclear Information System (INIS)

    Jay R. Johnson; C.Z. Cheng

    2002-01-01

    At the magnetopause, large amplitude, low-frequency (ULF), transverse MHD waves are nearly always observed. These waves likely result from mode conversion of compressional MHD waves observed in the magnetosheath to kinetic Alfven waves at the magnetopause where there is a steep gradient in the Alfven velocity[Johnson and Cheng, Geophys. Res. Lett. 24 (1997) 1423]. The mode-conversion process can explain the following wave observations typically found during satellite crossings of the magnetopause: (1) a dramatic change in wave polarization from compressional in the magnetosheath to transverse at the magnetopause, (2) an amplification of wave amplitude at the magnetopause, (3) a change in Poynting flux from cross-field in the magnetosheath to field-aligned at the magnetopause, and (4) a steepening in the wave power spectrum at the magnetopause. We examine magnetic field data from a set of ISEE1, ISEE2, and WIND magnetopause crossings and compare with the predictions of theoretical wave solutions based on the kinetic-fluid model with particular attention to the role of magnetic field rotation across the magnetopause. The results of the study suggest a good qualitative agreement between the observations and the theory of mode conversion to kinetic Alfven waves. Because mode-converted kinetic Alfven waves readily decouple particles from the magnetic field lines, efficient quasilinear transport (D(approx) 109m2/s) can occur. Moreover, if the wave amplitude is sufficiently large (Bwave/B0 and gt; 0.2) stochastic particle transport also occurs. This wave-induced transport can lead to significant heating and particle entry into the low latitude boundary layer across closed field lines.At the magnetopause, large amplitude, low-frequency (ULF), transverse MHD waves are nearly always observed. These waves likely result from mode conversion of compressional MHD waves observed in the magnetosheath to kinetic Alfven waves at the magnetopause where there is a steep gradient in

  12. Alfven waves in the auroral ionosphere: A numerical model compared with measurements

    International Nuclear Information System (INIS)

    Knudsen, D.J.; Kelley, M.C.; Vickrey, J.F.

    1992-01-01

    The authors solve a linear numerical model of Alfven waves reflecting from the high-latitude ionosphere, both to better understanding the role of the ionosphere in the magnetosphere/ionosphere coupling process and to compare model results with in situ measurements. They use the model to compute the frequency-dependent amplitude and phase relations between the meridional electric and the zonal magnetic fields due to Alfven waves. These relations are compared with measurements taken by an auroral sounding rocket flow in the morningside oval and by the HILAT satellite traversing the oval at local noon. The sounding rocket's trajectory was mostly parallel to the auroral oval, and is measured enhanced fluctuating field energy in regions of electron precipitation. The rocket-measured phase data are in excellent agreement with the Alfven wave model, and the relation between the modeled and the measured by HILAT are related by the height-integrated Pedersen conductivity Σ p , indicating that the measured field fluctuations were due mainly to structured field-aligned current systems. A reason for the relative lack of Alfven wave energy in the HILAT measurements could be the fact that the satellite traveled mostly perpendicular to the oval and therefore quickly traversed narrow regions of electron precipitation and associated wave activity

  13. Influence of the Alfven wave spectrum on the scrape-off layer of the TCA tokamak

    International Nuclear Information System (INIS)

    Martin, Y.; Hollenstein, C.

    1989-01-01

    The study of the scrape-off layer (SOL) during Alfven wave heating may lead to a better understanding of the antenna-plasma interaction. The scrape-off layer of the TCA tokamak has been widely investigated by means of Langmuir probes. The aim of this work is to present measurements on the influence of the Alfven wave spectrum on the scrape-off layer. These experiments have shown that the plasma boundary layer is strongly affected by the wave field, in particular the ion saturation current and the floating potential. In TCA, as the spectrum evolves due to a density rise, the passage of the Alfven continua and their associated eigenmodes, the Discrete Alfven Wave (DAW) induces a strong depletion in the edge density of up to 70% during the continuum part and a density increase during the crossing of an eigenmode. The floating potential becomes negative during the continua and even more negative crossing the eigenmodes. In case of MHD mode activity, this behaviour changes for power exceeding 100 kW. The profiles of basic parameters are modified, depending on the wave spectrum. MHD mode activity which can occur during the RF (radio frequency) phase considerably alters the behaviour mentioned above. Finally, the modulation of the RF power allows us to characterize the coupling between RF power and typical edge parameters. (orig.)

  14. Improved model of quasi-particle turbulence (with applications to Alfven and drift wave turbulence)

    International Nuclear Information System (INIS)

    Mendonca, J. T.; Hizanidis, K.

    2011-01-01

    We consider the classical problem of wave stability and dispersion in a turbulent plasma background. We adopt a kinetic description for the quasi-particle turbulence. We describe an improved theoretical approach, which goes beyond the geometric optics approximation and retains the recoil effects associated with the emission and absorption of low frequency waves by nearly resonant quasi-particles. We illustrate the present approach by considering two particular examples. One is the excitation of zonal flows by drift wave turbulence or driftons. The other is the coupling between ion acoustic waves and Alfven wave turbulence, eventually leading to saturation of Alfven wave growth. Both examples are relevant to anomalous transport in magnetic fusion devices. Connection with previous results is established. We show that these results are recovered in the geometric optics approximation.

  15. Influence of the Alfven wave spectrum on the scrape-off layer of the TCA tokamak

    International Nuclear Information System (INIS)

    Martin, Y.; Hollenstein, Ch.

    1988-01-01

    The study of the Scrape-Off Layer (SOL) during Alfven wave heating may lead to a better understanding of the antenna-plasma interaction. The SOL of the TCA tokamak has been widely investigated by means of Langmuir probes. The aim of the present work is to present in detail the influence of the Alfven wave spectrum on the SOL. The experiments have shown that the plasma boundary layer is strongly affected by the RF, in particular the ion density, the electron temperature and the floating potential. In TCA, as the spectrum evolves due to a density rise, the passage of the Alfven continua and their associated eigenmodes (DAW) induces a strong depletion in the edge density of up to 70% during the continuum part and a density increase during the crossing of an eigenmode. The floating potential becomes negative during the continua and even more negative crossing the eigenmodes. This behaviour changes as a function of the power transmitted to the plasma through the antennae, especially we have found with MHD modes a change around 100 kW. The profiles of the basic parameters are modified, depending on the wave spectrum. MHD mode activity which can occur during the RF phase considerably alters the behaviour mentioned above. Finally, the modulation of the RF power allows us to characterize the difference in coupling, for the continua and the eigenmodes, between the Alfven wave field and the scrape-off layer. (author) 5 figs., 6 refs

  16. Energy balance in the TCA tokamak plasma with Alfven wave heating

    International Nuclear Information System (INIS)

    Ding Ning; Qu Wenxiao; Huang Li; Long Yongxing; Qiu Xiaoming

    1993-01-01

    The energy balance in TCA tokamak plasma with Alfven wave heating is studied, in which the equivalent electron thermal conductivity is determined by using the profile consistency principle. The results are in good agreement with experiments. It is shown that this method is applicable to various devices and other heating methods

  17. Heating and current-drive with high phase velocity compressional Alfven waves

    International Nuclear Information System (INIS)

    Li, Y.M.; Mahajan, S.M.; Ross, D.W.

    1986-12-01

    It is shown that high phase velocity compressional Alfven waves have the desirable features needed for efficient current drive in fusion-reactor-like conditions; the energy deposition is low on the α-particles, and high on the hot electrons in the plasma interior

  18. Laser plasma simulations of the generation processes of Alfven and collisionless shock waves in space plasma

    International Nuclear Information System (INIS)

    Prokopov, P A; Zakharov, Yu P; Tishchenko, V N; Shaikhislamov, I F; Boyarintsev, E L; Melekhov, A V; Ponomarenko, A G; Posukh, V G; Terekhin, V A

    2016-01-01

    Generation of Alfven waves propagating along external magnetic field B 0 and Collisionless Shock Waves propagating across B 0 are studied in experiments with laser- produced plasma and magnetized background plasma. The collisionless interaction of interpenetrating plasma flows takes place through a so-called Magnetic Laminar Mechanism (MLM) or Larmor Coupling. At the edge of diamagnetic cavity LP-ions produce induction electric field E φ which accelerates BP-ions while LP-ions rotate in opposite direction. The ions movement generates sheared azimuthal magnetic field B φ which could launches torsional Alfven wave. In previous experiments at KI-1 large scale facility a generation of strong perturbations propagating across B 0 with magnetosonic speed has been studied at a moderate value of interaction parameter δ∼0.3. In the present work we report on experiments at conditions of 5∼R2 and large Alfven-Mach number M A ∼10 in which strong transverse perturbations traveling at a scale of ∼1 m in background plasma at a density of ∼3*10 13 cm -3 is observed. At the same conditions but smaller M A ∼ 2 a generation, the structure and dynamic of Alfven wave with wavelength ∼0.5 m propagating along fields B 0 ∼100÷500 G for a distance of ∼2.5 m is studied. (paper)

  19. Driving Perpendicular Decay by the Parametric Instabilities of Parallel Propagating Alfven Waves

    Science.gov (United States)

    Comisel, H.; Nariyuki, Y.; Narita, Y.; Motschmann, U. M.

    2017-12-01

    The decay of monochromatic Alfven waves is studied by means of 2-D and 3-D hybrid simulations. The goal of the work is to follow up the long-time nonlinear development of theparametric decays after the saturation process in a multi-spatial dimension for coherent Alfven waves with three different polarizations: left-handed circularly polarized -, right-handed circularly polarized - and linearly polarized - Alfven pump waves. The analyzing is restricted for the parallel propagation with respect to the direction of the mean magnetic field in low beta plasmas. Numerical results suggest that the parametric instabilities can lead to broadband decays along the perpendicular direction, in which the magnetic field spectrum is extended towards the perpendicular direction.Perpendicular propagating daughter waves are observed atfinite perpendicular wave numbers as well as direct incompressible energy cascades driven by plasma turbulence.The density power spectrum shows inverse compressible cascades at smallerperpendicular wave numbers and direct cascades at larger wave numbers. The one-dimensional reduced spectra of the magnetic field and densities show correlations for a significant large range of perpendicular wave numbers beforedissipation. The time evolution of the anisotropy index is also determined for all the three analyzed setups.

  20. Plasma mass density, species mix and fluctuation diagnostics using fast Alfven wave

    International Nuclear Information System (INIS)

    Ikezi, H.; deGrassie, J.S.; Pinsker, R.I.; Snider, R.T.

    1996-06-01

    The authors propose to employ a fast Alfven wave interferometer and reflectometer as a tokamak diagnostic to measure the plasma mass density, D-T species mix profile, and density fluctuations. Utilize the property that the phase velocity of the fast wave propagating across the magnetic field is the Alfven speed with thermal correction, this fast wave interferometer on the DIII-D tokamak was successfully used to obtain the line integrated density. Since the position of the ion-ion hybrid cut-off in tokamaks is uniquely determined by the species mix ratio and the wave frequency, the reflectometer arrangement finds the species mix profile. The inversion method of reflectometry is discussed. The multiple chord interferometer also measures the mass density fluctuation profile

  1. Alfven Wave Reflection Model of Field-Aligned Currents at Mercury

    Science.gov (United States)

    Lyatsky, Wladislaw; Khazanov, George V.; Slavin, James

    2010-01-01

    An Alfven Wave Reflection (AWR) model is proposed that provides closure for strong field-aligned currents (FACs) driven by the magnetopause reconnection in the magnetospheres of planets having no significant ionospheric and surface electrical conductance. The model is based on properties of the Alfven waves, generated at high altitudes and reflected from the low-conductivity surface of the planet. When magnetospheric convection is very slow, the incident and reflected Alfven waves propagate along approximately the same path. In this case, the net field-aligned currents will be small. However, as the convection speed increases. the reflected wave is displaced relatively to the incident wave so that the incident and reflected waves no longer compensate each other. In this case, the net field-aligned current may be large despite the lack of significant ionospheric and surface conductivity. Our estimate shows that for typical solar wind conditions at Mercury, the magnitude of Region 1-type FACs in Mercury's magnetosphere may reach hundreds of kilo-Amperes. This AWR model of field-aligned currents may provide a solution to the long-standing problem of the closure of FACs in the Mercury's magnetosphere. c2009 Elsevier Inc. All rights reserved.

  2. Magnetic fluctuations due to thermally excited Alfven waves

    International Nuclear Information System (INIS)

    Agim, Y.Z.; Prager, S.C.

    1990-01-01

    Magnetic fluctuations due to the thermally excited MHD waves are investigated using fluid and kinetic models to describe a stable, uniform, compressible plasma in the range above the drift wave frequency and below the ion cyclotron frequency. It is shown that the fluid model with resistivity yields spectral densities which are roughly Lorentzian, exhibit equipartition with no apparent cutoff in wavenumber space and a Bohm-type diffusion coefficient. Under certain conditions, the ensuing transport may be comparable to classical values. For a phenomenological cutoff imposed on the spectrum, the typical fluctuating-to-equilibrium magnetic field ratio is found to be of the order of 10 -10 . Physical mechanisms to obtain decay profiles of the spectra with increasing wavenumber due to dispersion and/or different forms of damping are investigated analytically in a cold fluid approximation and numerically, with a kinetic model. The mode dispersion due to the finite ion-gyrofrequency is identified as the leading effect determining the spectral profile shapes. It is found that the amplitude of fluctuations may be within a factor of the value suggested by the cold plasma model. The results from both models are presented and compared in low- and high-β regimes. 21 refs., 6 figs

  3. Enhancement of current diffusion in the presence of a kink mode or an Alfven wave

    International Nuclear Information System (INIS)

    Beklemishev, A.D.

    1991-08-01

    Many characteristic features of Alfven waves and related instabilities are strongly dependent on the inhomogeneity of the background density and the magnetic field. On the other hand, these waves also have an influence on the inhomogeneity, which is caused by the enhancement of the cross-field transport through wave- distortion of flux surfaces. This problem is addressed here within the framework of the single-fluid reduced MHD model and generalized Lagrangian representation of motion. The new effect of transport enhancement is identified as a consequence of the local squeezing of adjacent flux surfaces, which results in increased radial gradients and cross-field fluxes. This effect is found to be proportional to the second power of the ratio of the magnetic field perturbation to the normal field component. The result is applied to several problems related to m = 1 equilibrium relaxation and Alfven resonance broadening. 10 refs., 1 fig

  4. Propagation of Alfvenic Waves from corona to chromosphere and consequences for solar flares

    Science.gov (United States)

    Fletcher, L.; Russell, A. J.

    2013-12-01

    Much of the work on Alfven waves in the solar atmosphere is concerned with the transport of energy from the lower atmosphere into the corona. Here we address Alfvenic energy flow in the opposite direction. We suggest that during a solar flare, energy is radiated from the reconnection region in the corona as Alfvenic perturbations and ducted along the magnetic field to the chromosphere, where it is dissipated in electron Landau damping in the upper chromosphere, and (primarily) ion-neutral friction in the mid- to low- chromosphere. We present results of two-fluid numerical simulations of the transport of wave energy across the corona-chromosphere boundary for a number different chromospheric models (e.g. facula, plage, umbra) and evaluate the transmission, heating and acceleration that results. We conclude that for wave periods of a few seconds, between 10 and 20% of wave energy can be transmitted through the corona-chromosphere boundary, and a large fraction (up to 100%) of this is dissipated by ion-neutral friction around the temperature minimum region, which may lead to a white-light flare.

  5. The analysis of Alfven wave current drive and plasma heating in TCABR tokamak

    International Nuclear Information System (INIS)

    Ruchko, L.F.; Lerche, E.A.; Galvao, R.M.O.; Elfimov, A.G.; Nascimento, I.C.; Sa, W.P. de; Sanada, E.; Elizondo, J.I.; Ferreira, A.A.; Saettone, E.A.; Severo, J.H.F.; Bellintani, V.; Usuriaga, O.N.

    2002-01-01

    The results of experiments on Alfven wave current drive and plasma heating in the TCABR tokamak are analyzed with the help of a numerical code for simulation of the diffusion of the toroidal electric field. It permits to find radial distributions of plasma current density and conductivity, which match the experimentally measured total plasma current and loop voltage changes, and thus to study the performance of the RF system during Alfven wave plasma heating and current drive experiments. Regimes with efficient RF power input in TCABR have been analyzed and revealed the possibility of noninductive current generation with magnitudes up to ∼8 kA. The increase of plasma energy content due to RF power input is consistent with the diamagnetic measurements. (author)

  6. Dissipation of Alfven waves in solar coronal arches

    International Nuclear Information System (INIS)

    1989-01-01

    It is shown that the slow motion of the feet of coronal arches lead to irregular magnetic fields and that Alfvan waves propagating in the irregular magnetic sturcture are dissipated though filamentation of the wave packet that generates short scales necessary for efficient dissipation. (author). 19 refs.; 3 figs

  7. Role of 3D-Dispersive Alfven Waves in Coronal Heating and Solar Wind

    Science.gov (United States)

    Sharma, R. P.; Yadav, N.

    2013-03-01

    Dispersive Alfven waves (DAWs) play a very important role in the acceleration and heating of plasma particles in space as well in laboratory plasmas. DAWs may be Kinetic Alfven waves (KAW) or Inertial Alfven waves (IAW) depending upon the plasma beta (here beta is ratio of the plasma thermal pressure and magnetic pressure). Using two-fluid model of plasma DAWs have been studied extensively in literature but to explain the dynamics of Alfvén vortices one has to study the three dimensional (3D) propagation of these waves rather than 2D- propagation. 3D- DAW itself propagates in magnetized plasma in the form of a vortex beam which is manifestation of orbital angular momentum. These magnetic flux ropes or Alfvén vortices trap charged plasma particles and energize and transport them from one place to another. Thus these Alfvén vortices can also be an alternative mechanism to explain the energy transport in space plasmas. Coronal heating is one of the unresolved problems in solar physics. A number of theories have been given to explain the mystery behind coronal heating but no satisfactory solution has been found yet. We propose to study the nonlinear interaction between 3D-DAW and Ion acoustic wave as a mechanism in solar environment to generate the 3D- DAW localized structures. In the absence of ponderomotive non-linearity we get Laguerre Gauss (LG) polynomials as solutions of paraxial wave equation governing propagation of 3D-KAW. These LG modes are characterized by spiral phase front and concentric rings as intensity pattern. The relevance of this nonlinear process to coronal heating and solar wind turbulence has been pointed out. For this we have developed a (numerical) code based on pseudo-spectral technique and simulate this nonlinear interaction.

  8. Oscillations in sunspot umbras due to trapped Alfven waves excited by overstability

    International Nuclear Information System (INIS)

    Uchida, Yutaka; Sakurai, Takashi.

    1975-01-01

    Oscillations observed in sunspot umbras are interpreted as a vertical motion in the atmosphere induced by a standing Alfven wave trapped in the region between the overstable layer under the photosphere and the chromosphere-corona transition layer. The Alfven wave motion is considered to be excited by the overstable convection occurring at the bottom of the abovementioned oscillating layer, and waves with special frequencies are selected as eigen-mode waves standing in the ''cavity,'' while other waves which are out of phase with themselves after reflections will disappear. It is shown by solving the eigen-value problem that the fundamental eigen frequency falls in a range around 0.04 rad s -1 (corresponding to 140-180 s) for the condition in the umbra of a typical spot, and also that the eigen frequencies do not depend greatly on the circumstantial physical or geometric parameters of the model atmosphere, such as the temperature in the layer, or the height of the transition layer, etc. The eigen frequencies, however, depend on the Alfven velocity at the base of the oscillating layer (or at the top of the overstable layer), but the latter quantity, which represents the stiffness of the magnetic tube of force against the overturning motion, takes roughly a common value for different sunspots according to SAVAGE's (1969) stability analysis of the umbral atmosphere against thermal convection, and thus gives a comparatively narrow range of resonant frequencies. In addition to the selection mechanism for oscillations of 140-180-s period, some other aspects of the oscillation, such as the relation to the running penumbral waves, are discussed. (auth.)

  9. Heating of the solar corona by the resonant absorption of Alfven waves

    International Nuclear Information System (INIS)

    Davila, J.M.

    1987-01-01

    An improved method for calculating the resonance absorption heating rate is discussed and the results are compared with observations in the solar corona. To accomplish this, the wave equation for a dissipative, compressible plasma is derived from the linearized magnetohydrodynamic equations for a plasma with transverse Alfven speed gradients. For parameters representative of the solar corona, it is found that a two-scale description of the wave motion is appropriate. The large-scale motion, which can be approximated as nearly ideal, has a scale which is on the order of the width of the loop. The small-scale wave, however, has a transverse scale much smaller than the width of the loop, with a width of about 0.3-250 km, and is highly dissipative. These two wave motions are coupled in a narrow resonance region in the loop where the global wave frequency equals the local Alfven wave frequency. Formally, this coupling comes about from using the method of matched asymptotic expansions to match the inner and outer (small and large scale) solutions. The resultant heating rate can be calculated from either of these solutions. A formula derived using the outer (ideal) solution is presented, and shown to be consistent with observations of heating and line broadening in the solar corona. 34 references

  10. On the definition of the momentum of an Alfven wave packet

    International Nuclear Information System (INIS)

    Khudik, V.N.

    1993-01-01

    The different definitions of the momentum of a wave disturbance are considered, corresponding to the invariance of the Lagrangian with respect to different kinds of translation in magnetohydrodynamics. It is shown that the value of the momentum of an Alfven wave packet calculated using the definition accepted in the electrodynamics of continuous media is not the same as the total momentum of the particles in the medium and the electromagnetic field in the region within which the packet is localized. 5 refs., 2 figs

  11. ULF Waves in the Ionospheric Alfven Resonator: Modeling of MICA Observations

    Science.gov (United States)

    Streltsov, A. V.; Tulegenov, B.

    2017-12-01

    We present results from a numerical study of physical processes responsible for the generation of small-scale, intense electromagnetic structures in the ultra-low-frequency range frequently observed in the close vicinity of bright discrete auroral arcs. In particular, our research is focused on the role of the ionosphere in generating these structures. A significant body of observations demonstrate that small-scale electromagnetic waves with frequencies below 1 Hz are detected at high latitudes where the large-scale, downward magnetic field-aligned current (FAC) interact with the ionosphere. Some theoretical studies suggest that these waves can be generated by the ionospheric feedback instability (IFI) inside the ionospheric Alfven resonator (IAR). The IAR is the region in the low-altitude magnetosphere bounded by the strong gradient in the Alfven speed at high altitude and the conducting bottom of the ionosphere (ionospheric E-region) at low altitude. To study ULF waves in this region we use a numerical model developed from reduced two fluid MHD equations describing shear Alfven waves in the ionosphere and magnetosphere of the earth. The active ionospheric feedback on structure and amplitude of magnetic FACs that interact with the ionosphere is implemented through the ionospheric boundary conditions that link the parallel current density with the plasma density and the perpendicular electric field in the ionosphere. Our numerical results are compared with the in situ measurements performed by the Magnetosphere-Ionosphere Coupling in the Alfven Resonator (MICA) sounding rocket, launched on February 19, 2012 from Poker Flat Research Range in Alaska to measure fields and particles during a passage through a discreet auroral arc. Parameters of the simulations are chosen to match actual MICA parameters, allowing the comparison in the most precise and rigorous way. Waves generated in the numerical model have frequencies between 0.30 and 0.45 Hz, while MICA measured

  12. Conditions for sustainment of magnetohydrodynamic turbulence driven by Alfven waves

    International Nuclear Information System (INIS)

    Dmitruk, P.; Matthaeus, W.H.; Milano, L.J.; Oughton, S.

    2001-01-01

    In a number of space and astrophysical plasmas, turbulence is driven by the supply of wave energy. In the context of incompressible magnetohydrodynamics (MHD) there are basic physical reasons, associated with conservation of cross helicity, why this kind of driving may be ineffective in sustaining turbulence. Here an investigation is made into some basic requirements for sustaining steady turbulence and dissipation in the context of incompressible MHD in a weakly inhomogeneous open field line region, driven by the supply of unidirectionally propagating waves at a boundary. While such wave driving cannot alone sustain turbulence, the addition of reflection permits sustainment. Another sustainment issue is the action of the nonpropagating or quasi-two dimensional part of the spectrum; this is particularly important in setting up a steady cascade. Thus, details of the wave boundary conditions also affect the ease of sustaining a cascade. Supply of a broadband spectrum of waves can overcome the latter difficulty but not the former, that is, the need for reflections. Implications for coronal heating and other astrophysical applications, as well as simulations, are suggested

  13. Signatures of mode conversion and kinetic Alfven waves at the magnetopause

    International Nuclear Information System (INIS)

    Johnson, Jay R.; Cheng, C. Z.

    2000-01-01

    It has been suggested that resonant mode conversion of compressional MHD waves into kinetic Alfven waves at the magnetopause can explain the abrupt transition in wave polarization from compressional to transverse commonly observed during magnetopause crossings. The authors analyze magnetic field data for magnetopause crossings as a function of magnetic shear angle (defined as the angle between the magnetic fields in the magnetosheath and magnetosphere) and compare with the theory of resonant mode conversion. The data suggest that amplification in the transverse magnetic field component at the magnetopause is not significant up to a threshold magnetic shear angle. Above the threshold angle significant amplification results, but with weak dependence on magnetic shear angle. Waves with higher frequency are less amplified and have a higher threshold angle. These observations are qualitatively consistent with theoretical results obtained from the kinetic-fluid wave equations

  14. Oblique Propagation and Dissipation of Alfven Waves in Coronal ...

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... We investigate the effect of viscosity and magnetic diffusivity on the oblique propagation and dissipation of Alfvén waves with respect to the normal outward direction, making use of MHD equations, density, temperature and magnetic field structure in coronal holes and underlying magnetic funnels. We find ...

  15. The Parametric Instability of Alfven Waves: Effects of Temperature Anisotropy

    Czech Academy of Sciences Publication Activity Database

    Tenerani, A.; Velli, M.; Hellinger, Petr

    2017-01-01

    Roč. 851, č. 2 (2017), 99/1-99/9 ISSN 0004-637X R&D Projects: GA ČR GA15-10057S Institutional support: RVO:67985815 Keywords : instabilities * plasmas * waves Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics OBOR OECD: Astronomy (including astrophysics,space science) Impact factor: 5.533, year: 2016

  16. Non-inductive electric current generation with the Alfven waves

    International Nuclear Information System (INIS)

    Assis, A.S. de.

    1988-01-01

    Non-inductive current generation by means of radio frequency waves is studied using one-dimensional (1D) quasilinear equations. The main results obtained in this thesis are the general expressions for the current generated, for the efficiency of current generation and for the critical power - the lowest power required for current saturation. (M.W.O.) [pt

  17. Design of the RF system for Alfven wave heating and current drive in a TCA/BR tokamak

    International Nuclear Information System (INIS)

    Ruchko, L.; Andrade, M.L.; Ozono, E.; Galvao, R.M.O.; Degaspari, F.T.; Nascimento, I.C.

    1995-01-01

    The advanced RF system for Alfven wave plasma heating and current drive in TCA/BR tokamak is presented. The antenna system is capable of exciting the standing and travelling wave M = -1,N = 1,N =-4,-6 with single helicity and thus provides the possibility to improve Alfven wave plasma heating efficiency in TCA/BR tokamak and to increase input power level up to P ≅ 1 MW, without the uncontrolled density rise which was encountered in previous TCA (Switzerland) experiments. (author). 4 refs., 3 figs

  18. Advanced antenna system for Alfven wave plasma heating and current drive in TCABR tokamak

    International Nuclear Information System (INIS)

    Ruchko, L.F.; Ozono, E.; Galvao, R.M.O.; Nascimento, I.C.; Degasperi, F.T.; Lerche, E.

    1998-01-01

    An advanced antenna system that has been developed for investigation of Alfven wave plasma heating and current drive in the TCABR tokamak is described. The main goal was the development of such a system that could insure the excitation of travelling single helicity modes with predefined wave mode numbers M and N. The system consists of four similar modules with poloidal windings. The required spatial spectrum is formed by proper phasing of the RF feeding currents. The impedance matching of the antenna with the four-phase oscillator is accomplished by resonant circuits which form one assembly unit with the RF feeders. The characteristics of the antenna system design with respect to the antenna-plasma coupling and plasma wave excitation, for different phasing of the feeding currents, are summarised. The antenna complex impedance Z=Z R +Z I is calculated taking into account both the plasma response to resonant excitation of fast Alfven waves and the nonresonant excitation of vacuum magnetic fields in conducting shell. The matching of the RF generator with the antenna system during plasma heating is simulated numerically, modelling the plasma response with mutually coupled effective inductances with corresponding active Z R and reactive Z I impedances. The results of the numerical simulation of the RF system performance, including both the RF magnetic field spectrum analysis and the modeling of the RF generator operation with plasma load, are presented. (orig.)

  19. Nonlinear standing shear Alfven waves in the Earth`s magnetosphere

    Energy Technology Data Exchange (ETDEWEB)

    Rankin, R.; Frycz, P.; Tikhonchuk, V.T.; Samson, J. C. [Univ. of Alberta, Edmonton, Alberta (Canada)

    1994-11-01

    We present theory and numerical simulations of strong nonlinear effects in standing shear Alfven waves (SAWs) in the Earth`s magnetosphere, which is modeled as a finite size box with straight magnetic lines and (partially) reflecting boundaries. In a low beta plasma it is shown that the ponderomotive force can lead to a large-amplitude SAW spatial harmonic generation due to nonlinear coupling between the SAW and a slow magnetosonic wave. The nonlinear coupling leads to secularly growing frequency shifts, and in the case of driven systems, nonlinear dephasing can lead to saturation of the driven wave fields. The results are discussed on the context of their possible relevance to the theory of standing ionospheric cavity wave modes and field line resonances in the high-latitude magnetosphere.

  20. Scrape-off measurements during Alfven wave heating in the TCA tokamak

    International Nuclear Information System (INIS)

    Hofmann, F.; Hollenstein, C.; Joye, B.; Lietti, A.; Lister, J.B.; Pochelon, A.; Gimzewski, J.K.; Veprek, S.

    1984-01-01

    Plasma parameters and impurity fluxes in the scrape-off layer of the TCA tokamak have been measured during Alfven wave heating. Langmuir probes are used to measure electron density, electron temperature and plasma potential. Collection probes, in conjunction with XPS surface analysis, are used to determine impurity fluxes and ion impact energies. During RF heating, the electron edge temperature rises, the plasma potential drops and impurity fluxes are enhanced. Probe erosion due to impurity sputtering is clearly observed. The measurements are correlated with other diagnostics on TCA. (orig.)

  1. Comment on Propagation and Dissipation of Alfven Waves in Coronal Holes

    Science.gov (United States)

    Chandra, Suresh

    2009-03-01

    Dwivedi and Srivastava [1] (DS) investigated the propagation and dissipation of Alfven waves in coronal holes after accounting for the viscosity and magnetic diffusivity. After solving a set of equations with the help of computer results are reported by them. We find that the same set of equations can be solved even analytically. Since DS have not reported any values of physical parameters used by them except their expressions, we could not trace out the source of error. One reason for the difference in our results and those of DS can be assigned to some mistakes in their computer program or to the values of parameters used.

  2. The Dynamics of Current Carriers In Standing Alfven Waves

    Science.gov (United States)

    Wright, A. N.; Allan, W.; Ruderman, M. S.; Elphic, R. C.

    The acceleration of current carriers in an Alfvén wave current system is considered. The model incorporates a dipole magnetic field geometry, and we present an analyt- ical solution of the two-fluid equations by successive approximations. The leading solution corresponds to the familiar single-fluid toroidal oscillations. The next order describes the nonlinear dynamics of electrons responsible for carrying a few µAm-2 field aligned current into the ionosphere. The solution shows how most of the elec- tron acceleration in the magnetosphere occurs within 1 RE of the ionosphere, and that a parallel electric field of the order of 1 mVm-1 is reponsible for energising the electrons to 1 keV. The limitations of the electron fluid approximation are considered, and a qualitative solution including electron beams and a modified E is developed in accord with observations. We find that the electron acceleration can be nonlinear, (ve )ve > ve , as a result of our nonuniform equilibrium field geometry even when ve is less than the Alfvén speed. Our calculation also elucidates the processes through which E is generated and supported.

  3. Polarization and Compressibility of Oblique Kinetic Alfven Waves

    Science.gov (United States)

    Hunana, Peter; Goldstein, M. L.; Passot, T.; Sulem, P. L.; Laveder, D.; Zank, G. P.

    2012-01-01

    Even though solar wind, as a collisionless plasma, is properly described by the kineticMaxwell-Vlasov description, it can be argued that much of our understanding of solar wind observational data comes from an interpretation and numerical modeling which is based on a fluid description of magnetohydrodynamics. In recent years, there has been a significant interest in better understanding the importance of kinetic effects, i.e. the differences between the kinetic and usual fluid descriptions. Here we concentrate on physical properties of oblique kinetic Alfvn waves (KAWs), which are often recognized as one of the key ingredients in the solar wind turbulence cascade. We use three different fluid models with various degrees of complexity and calculate polarization and magnetic compressibility of oblique KAWs (propagation angle q = 88), which we compare to solutions derived from linear kinetic theory. We explore a wide range of possible proton plasma b = [0.1,10.0] and a wide range of length scales krL = [0.001,10.0]. It is shown that the classical isotropic two-fluid model is very compressible in comparison with kinetic theory and that the largest discrepancy occurs at scales larger than the proton gyroscale. We also show that the two-fluid model contains a large error in the polarization of electric field, even at scales krL 1. Furthermore, to understand these discrepancies between the two-fluid model and the kinetic theory, we employ two versions of the Landau fluid model that incorporate linear low-frequency kinetic effects such as Landau damping and finite Larmor radius (FLR) corrections into the fluid description. It is shown that Landau damping significantly reduces the magnetic compressibility and that FLR corrections (i.e. nongyrotropic contributions) are required to correctly capture the polarization.We also show that, in addition to Landau damping, FLR corrections are necessary to accurately describe the damping rate of KAWs. We conclude that kinetic effects

  4. Alfvenic tornadoes

    OpenAIRE

    Shukla, P. K.

    2012-01-01

    It is shown that a three-dimensional (3D) modified-kinetic Alfv\\'en waves (m-KAWs) can propagate in the form of Alfv\\'enic tornadoes characterized by plasma density whirls or magnetic flux ropes carrying orbital angular momentum (OAM). By using the two fluid model, together with Amp\\`ere's law, we derive the wave equation for a 3D m-KAWs in a magnetoplasma with $m_e/m_i \\ll \\beta \\ll 1$, where $m_e$ $(m_i)$ is the electron (ion) mass, $\\beta =4 \\pi n_0 k_B (T_e + T_i)/B_0^2$, $n_0$ the unpert...

  5. Ion beam generation at the plasma sheet boundary layer by kinetic Alfven waves

    International Nuclear Information System (INIS)

    Moghaddam-Taaheri, E.; Goertz, C.K.; Smith, R.A.

    1989-01-01

    The kinetic Alfven wave, an Alfven wave with a perpendicular wavelength comparable to the ion gyroradius, can diffuse ions both in velocity and coordinate spaces with comparable transport rates. This may lead to the generation of ion beams in the plasma sheet boundary layer (PSBL). To investigate the ion beam generation process numerically, a two-dimensional quasi-linear code was constructed. Assuming that the plasma β (the ratio of plasma pressure to the magnetic pressure) varies from β = 1 to β << 1 across the magnetic field, the dynamics of the ion beam generation in the PSBL was studied. It was found that if your start with an ion distribution function which monotonically decreases with velocity along the magnetic field and a density gradient across the magnetic field, ions diffuse in velocity-coordinate space until nearly a plateau is established along the diffusion path. Depending on the topology of the magnetic field at the lobe side of the simulation system, i.e., open or closed field lines, the ion distribution function may or may not reach a steady state. If the field lines are open there, i.e., if the diffusion extends into the lobe, the double diffusion process may provide a mechanism for continuously transferring the ions from the central plasma sheet to the lobe. The authors comment on the effect of the particle loss on the establishment of the pressure balance in the plasma sheet

  6. Dissipation of Alfven Waves at Fluid Scale through Parametric Decay Instabilities in Low-beta Turbulent Plasma

    Science.gov (United States)

    Fu, X.; Li, H.; Guo, F.; Li, X.; Roytershteyn, V.

    2017-12-01

    The solar wind is a turbulent magnetized plasma extending from the upper atmosphere of the sun to the edge of the heliosphere. It carries charged particles and magnetic fields originated from the Sun, which have great impact on the geomagnetic environment and human activities in space. In such a magnetized plasma, Alfven waves play a crucial role in carrying energy from the surface of the Sun, injecting into the solar wind and establishing power-law spectra through turbulent energy cascades. On the other hand, in compressible plasmas large amplitude Alfven waves are subject to a parametric decay instability (PDI) which converts an Alfven wave to another counter-propagating Alfven wave and an ion acoustic wave (slow mode). The counter-propagating Alfven wave provides an important ingredient for turbulent cascade, and the slow-mode wave provides a channel for solar wind heating in a spatial scale much larger than ion kinetic scales. Growth and saturation of PDI in quiet plasma have been intensively studied using linear theory and nonlinear simulations in the past. Here using 3D hybrid simulations, we show that PDI is still effective in turbulent low-beta plasmas, generating slow modes and causing ion heating. Selected events in WIND data are analyzed to identify slow modes in the solar wind and the role of PDI, and compared with our simulation results. We also investigate the validity of linear Vlasov theory regarding PDI growth and slow mode damping in turbulent plasmas. Since PDI favors low plasma beta, we expect to see more evidence of PDI in the solar wind close to the Sun, especially from the upcoming NASA's Parker Solar Probe mission which will provide unprecedented wave and plasma data as close as 8.5 solar radii from the Sun.

  7. Determination of central q and effective mass on textor based on discrete Alfven wave (DAW) spectrum measurements

    International Nuclear Information System (INIS)

    Descamps, P.; Wassenhove, G. van; Koch, R.; Messiaen, A.M.; Vandenplas, P.E.; Lister, J.B.; Marmillod, P.

    1990-01-01

    The use of the discrete Alfven wave spectrum to determine the current density profile and the effective mass density of the plasma in the TEXTOR tokamak is studied; the measurement, the validity of which is discussed, confirms independently the central q(r=0)<1 already obtained by polarimetry. (orig.)

  8. Determination of central q and effective mass on TEXTOR based on Discrete Alfven Wave (DAW) spectrum measurements

    International Nuclear Information System (INIS)

    Descamps, P.; Wasserhove, G. van; Koch, R.; Messiaen, A.M.; Vandenplas, P.E.

    1989-12-01

    The use of the Discrete Alfven Wave spectrum to determine the current density profile and the effective mass density of the plasma in the TEXTOR tokamak is studied; the measurement, the validity of which is discussed, confirms independently the central q(r=0)<1 already obtained by polarimetry. (author) 5 figs., 1 tab., 10 refs

  9. CORONAL HEATING BY SURFACE ALFVEN WAVE DAMPING: IMPLEMENTATION IN A GLOBAL MAGNETOHYDRODYNAMICS MODEL OF THE SOLAR WIND

    Energy Technology Data Exchange (ETDEWEB)

    Evans, R. M. [NASA Goddard Space Flight Center, Space Weather Lab, Greenbelt, MD 20771 (United States); Opher, M. [Astronomy Department, Boston University, 675 Commonwealth Avenue, Boston, MA 02215 (United States); Oran, R.; Van der Holst, B.; Sokolov, I. V.; Frazin, R.; Gombosi, T. I. [Center for Space Environment Modeling, University of Michigan, 2455 Hayward Street, Ann Arbor, MI 48109 (United States); Vasquez, A., E-mail: Rebekah.e.frolov@nasa.gov [Instituto de Astronomia y Fisica del Espacio (CONICET-UBA) and FCEN (UBA), CC 67, Suc 28, Ciudad de Buenos Aires (Argentina)

    2012-09-10

    The heating and acceleration of the solar wind is an active area of research. Alfven waves, because of their ability to accelerate and heat the plasma, are a likely candidate in both processes. Many models have explored wave dissipation mechanisms which act either in closed or open magnetic field regions. In this work, we emphasize the boundary between these regions, drawing on observations which indicate unique heating is present there. We utilize a new solar corona component of the Space Weather Modeling Framework, in which Alfven wave energy transport is self-consistently coupled to the magnetohydrodynamic equations. In this solar wind model, the wave pressure gradient accelerates and wave dissipation heats the plasma. Kolmogorov-like wave dissipation as expressed by Hollweg along open magnetic field lines was presented in van der Holst et al. Here, we introduce an additional dissipation mechanism: surface Alfven wave (SAW) damping, which occurs in regions with transverse (with respect to the magnetic field) gradients in the local Alfven speed. For solar minimum conditions, we find that SAW dissipation is weak in the polar regions (where Hollweg dissipation is strong), and strong in subpolar latitudes and the boundaries of open and closed magnetic fields (where Hollweg dissipation is weak). We show that SAW damping reproduces regions of enhanced temperature at the boundaries of open and closed magnetic fields seen in tomographic reconstructions in the low corona. Also, we argue that Ulysses data in the heliosphere show enhanced temperatures at the boundaries of fast and slow solar wind, which is reproduced by SAW dissipation. Therefore, the model's temperature distribution shows best agreement with these observations when both dissipation mechanisms are considered. Lastly, we use observational constraints of shock formation in the low corona to assess the Alfven speed profile in the model. We find that, compared to a polytropic solar wind model, the wave

  10. Theory of charged particle heating by low-frequency Alfven waves

    International Nuclear Information System (INIS)

    Guo Zehua; Crabtree, Chris; Chen, Liu

    2008-01-01

    The heating of charged particles by a linearly polarized and obliquely propagating shear Alfven wave (SAW) at frequencies a fraction of the charged particle cyclotron frequency is demonstrated both analytically and numerically. Applying Lie perturbation theory, with the wave amplitude as the perturbation parameter, the resonance conditions in the laboratory frame are systematically derived. At the lowest order, one recovers the well-known linear cyclotron resonance condition k parallel v parallel -ω-nΩ=0, where v parallel is the particle velocity parallel to the background magnetic field, k parallel is the parallel wave number, ω is the wave frequency, Ω is the gyrofrequency, and n is any integer. At higher orders, however, one discovers a novel nonlinear cyclotron resonance condition given by k parallel v parallel -ω-nΩ/2=0. Analytical predictions on the locations of fixed points, widths of resonances, and resonance overlapping criteria for global stochasticity are also found to agree with those given by computed Poincare surfaces of section

  11. Hybrid Model of Inhomogeneous Solar Wind Plasma Heating by Alfven Wave Spectrum: Parametric Studies

    Science.gov (United States)

    Ofman, L.

    2010-01-01

    Observations of the solar wind plasma at 0.3 AU and beyond show that a turbulent spectrum of magnetic fluctuations is present. Remote sensing observations of the corona indicate that heavy ions are hotter than protons and their temperature is anisotropic (T(sub perpindicular / T(sub parallel) >> 1). We study the heating and the acceleration of multi-ion plasma in the solar wind by a turbulent spectrum of Alfvenic fluctuations using a 2-D hybrid numerical model. In the hybrid model the protons and heavy ions are treated kinetically as particles, while the electrons are included as neutralizing background fluid. This is the first two-dimensional hybrid parametric study of the solar wind plasma that includes an input turbulent wave spectrum guided by observation with inhomogeneous background density. We also investigate the effects of He++ ion beams in the inhomogeneous background plasma density on the heating of the solar wind plasma. The 2-D hybrid model treats parallel and oblique waves, together with cross-field inhomogeneity, self-consistently. We investigate the parametric dependence of the perpendicular heating, and the temperature anisotropy in the H+-He++ solar wind plasma. It was found that the scaling of the magnetic fluctuations power spectrum steepens in the higher-density regions, and the heating is channeled to these regions from the surrounding lower-density plasma due to wave refraction. The model parameters are applicable to the expected solar wind conditions at about 10 solar radii.

  12. Generation of kinetic Alfven waves in the high-latitude near-Earth magnetotail: A global hybrid simulation

    International Nuclear Information System (INIS)

    Guo, Zhifang; Hong, Minghua; Du, Aimin; Lin, Yu; Wang, Xueyi; Wu, Mingyu; Lu, Quanming

    2015-01-01

    In this paper, effects of a fast flow in the tail plasma sheet on the generation of kinetic Alfven waves (KAWs) in the high-latitude of the near-Earth magnetotail are investigated by performing a two-dimensional (2-D) global-scale hybrid simulation, where the plasma flow is initialized by the E×B drift near the equatorial plane due to the existence of the dawn-dusk convection electric field. It is found that firstly, the plasma sheet becomes thinned and the dipolarization of magnetic field appears around (x,z)=(−10.5R E ,0.3R E ), where R E is the radius of the Earth. Then, shear Alfven waves are excited in the plasma sheet, and the strong earthward flow is braked by the dipole-like magnetic field. These waves propagate along the magnetic field lines toward the polar regions later. Subsequently, KAWs with k ⊥ ≫k ∥ are generated in the high-latitude magnetotail due to the existence of the non-uniformity of the magnetic field and density in the polar regions. The ratio of the electric field to the magnetic field in these waves is found to obey the relation (δE z )/(δB y  )∼ω/k ∥ of KAWs. Our simulation provides a mechanism for the generation of the observed low-frequency shear Alfven waves in the plasma sheet and kinetic Alfven waves in the high-latitude near-Earth magnetotail, whose source is suggested to be the flow braking in the low-latitude plasma sheet

  13. On the stochastic interaction of monochromatic Alfven waves with toroidally trapped particles

    International Nuclear Information System (INIS)

    Krlin, L.; Pavlo, P.; Tluchor, Z.; Gasek, Z.

    1987-07-01

    Monochromatic Alfven wave interaction with toroidaly trapped particles in the intrinsic stochasticity regime is discussed. Both the diffusion in velocities and in the radial position of bananas is studied. Using a suitable Hamiltonian formalism, the effect of wave parallel components E-tilde paral and B-tilde paral is investigated. The stochasticity threshold is estimated for plasma electrons and for thermonuclear alpha-particles (neglecting the effect of B-tilde paral ) by means of direct numerical integration of the corresponding canonical equations. Stochasticity causes transfer between trapped and untrapped regimes and the induced radial diffusion of bananas. The latter effect can considerably exceed neoclassical diffusion. The effect of B-tilde paral was only estimated analytically. It consisted in frequency modulation of the banana periodic motion coupled with a possible Mathieu instability. Nevertheless, for B-tilde paral corresponding to E-tilde paral , the effect seems to be weaker than the effect of E-tilde paral when the thermonuclear regime is considered. (author). 14 figs., 36 refs

  14. Influence of gyroradius and dissipation on the Alfven-wave continuum

    International Nuclear Information System (INIS)

    Connor, J.W.; Tang, W.M.; Taylor, J.B.

    1982-01-01

    It is well known that in ideal magnetohydrodynamics there is a continuous spectrum of real frequencies associated with a singularity of the shear Alfven waves on the surface k/sub parallel to/v/sub A/ = omega. It is also known that the introduction of first-order gyroradius effects eliminates the continuum. In the present work we examine the influence of the full gyroradius response and of dissipation on the continuum. In the absence of dissipation we first confirm that if only first-order gyroradius effects are incorporated, the continuum disappears. However, when the full gyroradius response is included, this discrete spectrum vanishes, and a new continuum (associated with singularities at k/sub parallel to/v/sub A/ = 0) appears. The introduction of collisional dissipation removes the original MHD continuum leaving discrete modes whose frequency tends to zero with the collision rate as ν/sup 1/3/. collisions also remove the new continuum of the full gyroradius model leaving discrete modes whose frequency tends to zero as (log ν) -1 . Collisionless Landau damping has a similar effect

  15. Structured Slow Solar Wind Variability: Streamer Blob Flux Ropes and Torsional Alfven Waves

    Science.gov (United States)

    Lynch, B. J.; Higginson, A. K.

    2017-12-01

    The slow solar wind exhibits strong variability on timescales from minutes to days, in addition to changing with the heliosphere on longer timescales from months to years. While the large-scale changes are likely due to the emerging or restructuring of coronal flux, the variability in magnetic field and plasma properties on the smaller timescales is likely related to magnetic reconnection processes in the extended solar corona. Higginson et al. (2017, ApJ 840, L10) presented a numerical magnetohydrodynamic simulation which showed that interchange magnetic reconnection is likely responsible for the release of much of the slow solar wind, including along topological features known as the Separatrix-web (S-web). Here, we continue our analysis of the Higginson et al. simulation, focusing now on two specific aspects of structured slow solar wind variability. First, we examine the formation and evolution of three-dimensional magnetic flux ropes that form at the top of the helmet streamer belt by reconnection in the heliospheric current sheet (HCS). Second, we examine the simulated remote and in situ signatures of the large-scale torsional Alfven wave (TAW) which propagates along an S-web arc to high latitudes. We describe the similarities and differences between the reconnection-generated flux ropes in the HCS, which resemble the well-known "streamer blob" observations, and the similarly structured TAW. We discuss the implications of our results for the complexity of the HCS and surrounding plasma sheet, and the potential for particle acceleration, as well as the interchange reconnection scenarios which may generate TAWs in the solar corona. We consider our simulation results within the context of the future Parker Solar Probe and Solar Orbiter observations, and make predictions for the dynamic slow solar wind in the extended corona and inner heliosphere.

  16. Kinetic Alfven Waves and the Depletion of the Thermal Population in Extragalactic Jets

    Science.gov (United States)

    Jafelice, L. C.; Opher, R.

    1990-11-01

    problems are intimately related to one another. Jafe- lice and Opher (1987a)(Astrophys. Space Sci. 137, 303)showed that an abundant generation of kinetic Alfven waves (KAw) within EJ and ERS is expected. In the present work we study the chain of processes: a) KAW accelerate thermal electrons along the background magnetic field producing suprathermal runaway electrons; b) which generate Langmuir waves and c) which in turn further accelerate a fraction of the runaway electrons to moderately relativistic energies. We show that assuming that there is no other source of a thermal population but the original one, the above sequence of processes can account for the consumption of thermal electrons in a time scale the source lifetime. Key o : GALAXIES-JETS - HYDROMAGNETICS

  17. The ion cyclotron turbulence generated by a low frequency kinetic Alfven wave, and the related turbulent heating of ions

    Science.gov (United States)

    Mykhaylenko, Volodymyr S.; Mykhaylenko, Volodymyr V.; Lee, Hae June

    2017-10-01

    The ion cyclotron instability driven by the strong kinetic Alfven wave is investigated as a possible source of the anisotropic heating of ions in the coronal holes and solar wind. We present a novel model of a plasma with coupled inhomogeneous current and the sheared flow, which follows from the studies of the particles motion in the electric field of the kinetic Alfven wave of the finite wavelength. The investigation is performed employing the non-modal kinetic theory grounded on the shearing modes approach. The solution of the governing linear integral equation for the perturbed potential displays that the flow velocity shear, which for the corona conditions may be above the growth rate of the ion cyclotron instability in plasma with steady current, changes the exponential growth of the ion cyclotron potential on the power function of time, that impedes the growth of the unstable ion cyclotron wave and reduces the turbulent heating rate of ions across the magnetic field. This work was funded by National R&D Program through the National Research Foundation of Korea (NRF) (Grant No. NRF-2015R1D1A1A01061160).

  18. Ion and electron beam effects on kinetic Alfven wave with general loss-cone distribution function-kinetic approach

    International Nuclear Information System (INIS)

    Shukla, Nidhi; Mishra, Ruchi; Varma, P; Tiwari, M S

    2008-01-01

    This work studies the effect of ion and electron beam on kinetic Alfven wave (KAW) with general loss-cone distribution function. The kinetic theory has been adopted to evaluate the dispersion relation and damping rate of the wave in the presence of loss-cone distribution indices J. The variations in wave frequency ω and damping rate with perpendicular wave number k perpendicular ρ i (k perpendicular is perpendicular wave number and ρ i is ion gyroradius) and parallel wave number k parallel are studied. It is found that the distribution index J and ion beam velocity enhance the wave frequency at lower k perpendicular ρ i , whereas the electron beam velocity enhances the wave frequency at higher k perpendicular ρ i . The calculated values of frequency correspond to the observed values in the range 0.1-4 Hz. Increase in damping rate due to higher distribution indices J and ion beam velocity is observed. The effect of electron beam is to reduce the damping rate at higher k perpendicular ρ i . The plasma parameters appropriate to plasma sheet boundary layer are used. The results may explain the transfer of Poynting flux from the magnetosphere to the ionosphere. It is also found that in the presence of the loss-cone distribution function the ion beam becomes a sensitive parameter to reduce the Poynting flux of KAW propagating towards the ionosphere

  19. ELF wave production by an electron beam emitting rocket system and its suppression on auroral field lines - Evidence for Alfven and drift waves

    Science.gov (United States)

    Winckler, J. R.; Erickson, K. N.; Abe, Y.; Steffen, J. E.; Malcolm, P. R.

    1985-01-01

    Orthogonal probes on a free-flying plasma diagnostics payload are used to study ELF electric disturbances in the auroral ionosphere that are due to the injection of powerful electron beams. Frequency spectrograms are presented for various pitch angles, pulsing characteristics, and other properties of the injected beams; the large scale DC ionospheric convection electric field is measured, together with auroral particle precipitation, visual auroral forms, and ionospheric parameters. In view of the experimental results obtained, it is postulated that the observed ELF waves are in the Alfven and drift modes, and are generated by the positive vehicle potential during beam injection.

  20. Optimization of transport suppression barriers generated by externally driven Alfven waves in D-shaped, low aspect ratio tokamaks

    International Nuclear Information System (INIS)

    Bruma, C; Cuperman, S; Komoshvili, K

    2003-01-01

    In an effort to optimize the internal transport barriers (ITBs) generated by externally launched mode-converted fast waves (FWs) in pre-heated spherical tokamaks (STs), we have carried out a systematic parametric investigation with respect to the rf waves and antenna characteristics; as a study case, a START-like device has been considered. Within the framework of a plasma model including both kinetic effects (collisionless Landau damping on passing electrons) and collisional damping on both trapped and passing electrons and ions, and starting with the solution of the full wave equation for a ST-plasma, we show that optimized ITBs, suitable for the stabilization of plasma turbulence (e.g. overpassing the maximum growth rate of the ITG-instability, γ ITG ) in STs can be generated by the aid of externally launched FW and mode-converted to kinetic Alfven waves. This result holds in spite of the limiting trapped-particles associated squeezing factor S present in the non-linear equation for E r (via the viscosity coefficient μ θi ∝|S| 3/2 , S = S(dE r /dr))

  1. Mechanism of merging of torsional Alfven and slow magnetosonic waves produced by train of laser pulses upon irradiation of a target located in a space plasma with a magnetic field. Laboratory modeling

    Science.gov (United States)

    Tischenko, V. N.; Zakharov, Yu. P.; Posukh, V. G.; Berezutsky, A. G.; Boyarintsev, E. L.; Melekhov, A. V.; Miroshnichenko, I. B.; Shaikhislamov, I. F.

    2017-10-01

    Experimentally, conditions under which a train of periodic laser plasma bunches creates a train of Alfven and a single slow magnetosonic waves which propagate in a tube of the geomagnetic field in the ionosphere were determined.

  2. Three dimensional magnetohydrodynamic simulation of linearly polarised Alfven wave dynamics in Arnold-Beltrami-Childress magnetic field

    Science.gov (United States)

    Tsiklauri, David

    2015-04-01

    Previous studies (e.g., Malara et al., Astrophys. J. 533, 523 (2000)) considered small-amplitude Alfven wave (AW) packets in Arnold-Beltrami-Childress (ABC) magnetic field using WKB approximation. They draw a distinction between 2D AW dissipation via phase mixing and 3D AW dissipation via exponentially divergent magnetic field lines. In the former case, AW dissipation time scales as S 1/3 and in the latter as log(S) , where S is the Lundquist number. In this work [1], linearly polarised Alfven wave dynamics in ABC magnetic field via direct 3D magnetohydrodynamic (MHD) numerical simulation is studied for the first time. A Gaussian AW pulse with length-scale much shorter than ABC domain length and a harmonic AW with wavelength equal to ABC domain length are studied for four different resistivities. While it is found that AWs dissipate quickly in the ABC field, contrary to an expectation, it is found the AW perturbation energy increases in time. In the case of the harmonic AW, the perturbation energy growth is transient in time, attaining peaks in both velocity and magnetic perturbation energies within timescales much smaller than the resistive time. In the case of the Gaussian AW pulse, the velocity perturbation energy growth is still transient in time, attaining a peak within few resistive times, while magnetic perturbation energy continues to grow. It is also shown that the total magnetic energy decreases in time and this is governed by the resistive evolution of the background ABC magnetic field rather than AW damping. On contrary, when the background magnetic field is uniform, the total magnetic energy decrease is prescribed by AW damping, because there is no resistive evolution of the background. By considering runs with different amplitudes and by analysing the perturbation spectra, possible dynamo action by AW perturbation-induced peristaltic flow and inverse cascade of magnetic energy have been excluded. Therefore, the perturbation energy growth is attributed

  3. Cascade and Dissipation of Solar Wind Turbulence at Electron Scales: Whistlers or Kinetic Alfv\\'en Waves?

    Science.gov (United States)

    Sahraoui, Fouad; Goldstein, Melvyn L.

    2010-01-01

    Over the past few decades, large-scales solar wind (SW) turbulence has been studied extensively, both theoretically and observationally. Observed power spectra of the low frequency turbulence, which can be described in the magnetohydrodynamic (MHD) limit, are shown to obey the Kolmogorov scaling, $k"{ -5/3 }$, down the local proton gyrofrequency ($C{ci} \\sim O.l$-Hz). Turbulence at frequencies above $C{ci}$ has not been thoroughly investigated and remains far less well understood. Above $C{ ci}$ the spectrum steepens to $\\sim f"{ -2.5}$ and a debate exists as to whether the turbulence has become dominated by dispersive kinetic Alfven waves (KA W) or by whistler waves, before it is dissipated at small scales, In a case study Sahraoui et al., PRL (2009) have reported the first direct determination of the dissipation range of solar wind turbulence near the electron gyroscale using the high resolution Cluster magnetic and electric field data (up to $10"2$-Hz in the spacecraft reference frame). Above the Doppler-shifted proton scale $C{\\rho i}$ a new inertial range with a scaling $\\sim f"{ -2.3}$ has been evidenced and shown to remarkably agree with theoretical predictions of a quasi-two-dimensional cascade into KA W turbulence. Here, we use a wider sample of data sets of small scale SW turbulence under different plasma conditions, and investigate under which physical criteria the KA W (or the whistler) turbulence may be observed to carry out the cascade at small scales, These new observations/criteria are compared to the predictions on the cascade and the (kinetic) dissipation from the Vlasov theory. Implications of the results on the heating problem of the solar wind will be discussed.

  4. Theoretical Studies of Alfven Waves and Energetic Particle Physics in Fusion Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Liu [Univ. of California, Irvine, CA (United States)

    2017-12-20

    This report summarizes major theoretical findings in the linear as well as nonlinear physics of Alfvén waves and energetic particles in magnetically confined fusion plasmas. On the linear physics, a variational formulation, based on the separation of singular and regular spatial scales, for drift-Alfvén instabilities excited by energetic particles is established. This variational formulation is then applied to derive the general fishbone-like dispersion relations corresponding to the various Alfvén eigenmodes and energetic-particle modes. It is further employed to explore in depth the low-frequency Alfvén eigenmodes and demonstrate the non-perturbative nature of the energetic particles. On the nonlinear physics, new novel findings are obtained on both the nonlinear wave-wave interactions and nonlinear wave-energetic particle interactions. It is demonstrated that both the energetic particles and the fine radial mode structures could qualitatively affect the nonlinear evolution of Alfvén eigenmodes. Meanwhile, a theoretical approach based on the Dyson equation is developed to treat self-consistently the nonlinear interactions between Alfvén waves and energetic particles, and is then applied to explain simulation results of energetic-particle modes. Relevant list of journal publications on the above findings is also included.

  5. Sub-Alfvenic reduced equations in a tokamak

    Science.gov (United States)

    Sengupta, Wrick

    Magnetized fusion experiments generally perform under conditions where ideal Alfvenic modes are stable. It is therefore desirable to develop a reduced formalism which would order out Alfvenic frequencies. This is challenging because sub-Alfvenic phenomena are sensitive to magnetic geometries. In this work an attempt has been made to develop a formalism to study plasma phenomena on time scales much longer than the Alfvenic time scales. (Abstract shortened by ProQuest.).

  6. Kinetics of parametric instabilities of Alfven waves: Evolution of ion distribution functions

    Czech Academy of Sciences Publication Activity Database

    Matteini, L.; Landi, S.; Velli, M.; Hellinger, Petr

    2010-01-01

    Roč. 115, September (2010), A09106/1-A09106/12 ISSN 0148-0227 Institutional research plan: CEZ:AV0Z10030501 Keywords : Alfvén waves * evolution Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 3.303, year: 2010

  7. Kinetic Damping of Toroidal Alfven Eigenmodes

    International Nuclear Information System (INIS)

    Fu, G.Y.; Berk, H.L.; Pletzer, A.

    2005-01-01

    The damping of Toroidal Alfven Eigenmodes in JET plasmas is investigated by using a reduced kinetic model. Typically no significant damping is found to occur near the center of the plasma due to mode conversion to kinetic Alfven waves. In contrast, continuum damping from resonance near the plasma edge may be significant, and when it is, it gives rise to damping rates that are compatible with the experimental observations

  8. Magnetosphere as an Alfven maser

    International Nuclear Information System (INIS)

    Trakhtengerts, V.Yu.

    1979-01-01

    The Earth magnetosphere is considered as an Alfven maser. The operation mechanism of such a maser is duscussed. The main fact of this mechanism is ''overpopulation'' of the Earth radiation belt with particles moving with cross velocities. The cross velocity particles excess results in the excitation of cyclotron instability in the radiation belt and in the self-arbitrary increase of Alfven waves. At late the theory of cyclotron instability of radiation belts has been universally developed. On the basis of ideas on magnetosphere maser on cyclotron resonance it was possible to explain many geophysical phenomena such as periodical spillings out of particles from the radiation belts, pulsing polar lights, oscillations of magnetic force tubes etc. It is proposed to carry out active cosmic experiments to understand deeper the processes occuring in radiation belts

  9. Experiments on linear high beta helical axis stellarators to study simulated toroidal effects and Alfven-wave heating: [Annual] progress report No. 1, February 16, 1987-November 15, 1987

    International Nuclear Information System (INIS)

    Ribe, F.L.

    1987-01-01

    This paper discusses experiments on linear high beta helical axis stellarators. Experiments considered are: formation of linear high beta heliac plasma configurations; Alfven wave heating in a straight tube and in a linear high beat stellarator; shifted hardcore heliac studies; a system for measuring the timing of high-current switches in a pulsed high voltage fusion experiment; HBQM general refurbishment; and proposed experiment on excitation of the m = 1 tilt mode in field-reversed configurations

  10. Electric Field Observations of Plasma Convection, Shear, Alfven Waves, and other Phenomena Observed on Sounding Rockets in the Cusp and Boundary Layer

    Science.gov (United States)

    Pfaff, R. F.

    2009-01-01

    On December 14,2002, a NASA Black Brant X sounding rocket was launched equatorward from Ny Alesund, Spitzbergen (79 N) into the dayside cusp and subsequently cut across the open/closed field line boundary, reaching an apogee of771 km. The launch occurred during Bz negative conditions with strong By negative that was changing during the flight. SuperDarn (CUTLASS) radar and subsequent model patterns reveal a strong westward/poleward convection, indicating that the rocket traversed a rotational reversal in the afternoon merging cell. The payload returned DC electric and magnetic fields, plasma waves, energetic particle, suprathermal electron and ion, and thermal plasma data. We provide an overview of the main observations and focus on the DC electric field results, comparing the measured E x B plasma drifts in detail with the CUTLASS radar observations of plasma drifts gathered simultaneously in the same volume. The in situ DC electric fields reveal steady poleward flows within the cusp with strong shears at the interface of the closed/open field lines and within the boundary layer. We use the observations to discuss ionospheric signatures of the open/closed character of the cusp/low latitude boundary layer as a function of the IMF. The electric field and plasma density data also reveal the presence of very strong plasma irregularities with a large range of scales (10 m to 10 km) that exist within the open field line cusp region yet disappear when the payload was equatorward of the cusp on closed field lines. These intense low frequency wave observations are consistent with strong scintillations observed on the ground at Ny Alesund during the flight. We present detailed wave characteristics and discuss them in terms of Alfven waves and static irregularities that pervade the cusp region at all altitudes.

  11. Nonlinear density waves in a marginally stable gravitating disk

    International Nuclear Information System (INIS)

    Korchagin, V.I.

    1986-01-01

    The evolution of short nonlinear density waves in a disk at the stability limit is studied for arbitrary values of the radial wave number k/sub r/. For waves with wave numbers that do not lie at the minimum of the dispersion curve, the behavior of the amplitude is described by a nonlinear parabolic equation; however, stationary soliton solutions cannot exist in such a system since there is no dispersion spreading of a packet. For wave numbers lying at the minimum of the dispersion curve, soliton structures with determined amplitude are possible. In stable gravitating disks and in a disk at the stability limit, two physically different types of soliton can exist

  12. An Unconditionally Stable Method for Solving the Acoustic Wave Equation

    Directory of Open Access Journals (Sweden)

    Zhi-Kai Fu

    2015-01-01

    Full Text Available An unconditionally stable method for solving the time-domain acoustic wave equation using Associated Hermit orthogonal functions is proposed. The second-order time derivatives in acoustic wave equation are expanded by these orthogonal basis functions. By applying Galerkin temporal testing procedure, the time variable can be eliminated from the calculations. The restriction of Courant-Friedrichs-Levy (CFL condition in selecting time step for analyzing thin layer can be avoided. Numerical results show the accuracy and the efficiency of the proposed method.

  13. Interplanetary Alfvenic fluctuations: A stochastic model

    International Nuclear Information System (INIS)

    Barnes, A.

    1981-01-01

    The strong alignment of the average directions of minimum magnetic variance and mean magnetic field in interplanetary Alfvenic fluctuations is inconsistent with the usual wave-propagation models. We investigate the concept of minimum variance for nonplanar Alfvenic fluctuations in which the field direction varies stochastically. It is found that the tendency of the minimum variance and mean field directions to be aligned may be purely a consequence of the randomness of the field direction. In particular, a well-defined direction of minimum variance does not imply that the fluctuations are necessarily planar. The fluctuation power spectrum is a power law for frequencies much higher than the inverse of the correlation time. The probability distribution of directions a randomly fluctuating field of constant magnitude is calculated. A new approach for observational studies of interplanetary fluctuations is suggested

  14. Nonlinear hybrid simulation of toroidicity-induced alfven eigenmode

    International Nuclear Information System (INIS)

    Fu, G.Y.; Park, W.

    1994-11-01

    Gyrokinetic/Magnetohydrodynamics hybrid simulations have been carried out using MH3D-K code to study the nonlinear saturation of the toroidicity-induced Alfven eigenmode driven by energetic particles in a tokamak plasma. It is shown that the wave particle trapping is the nonlinear saturation mechanism for the parameters considered. The corresponding density profile flattening of hot particles is observed. The saturation amplitude is proportional to the square of linear growth rate. In addition to TAE modes, a new n = 1, m = 0 global Alfven eigenmode is shown to be excited by the energetic particles

  15. High and low frequency Alfven modes in tokamaks

    International Nuclear Information System (INIS)

    Briguglio, S.; Fogaccia, G.; Vlad, G.; Zonca, F.; Chen, L.; Dong, J.Q.; Santoro, R.A.

    2001-01-01

    We present an analysis of the typical features of shear Alfven waves in tokamak plasmas in a frequency domain ranging from the ''high'' frequencies (ω ≅ ν A /2qR 0 ; ν A being the Alfven speed and qR 0 the tokamak connection length) of the toroidal gap to the ''low'' frequencies, comparable with the thermal ion diamagnetic frequency, ω *pi and/or the thermal ion transit frequency ω ti = ν ti /qR 0 (ν ti being the ion thermal speed). (author)

  16. Kinetic global analysis of Alfven eigenmodes in toroidal plasmas

    International Nuclear Information System (INIS)

    Fukuyama, A.

    2002-01-01

    Systematic study on low to medium n (toroidal mode number) Alfven eigenmodes (AE) in tokamaks and helical systems is presented. Linear stability of AE in the presence of energetic ions was studied using the kinetic full-wave code TASK/WM.We have reproduced the destabilizing effect of toroidal co-rotation on TAE for JT-60U parameters. We have found the existence of reversed-shear-induced Alfven eigenmode (RSAE) which localizes near the q minimum in a reversed magnetic shear configuration. Two kinds of mode structures are identified for energetic particle mode (EPM) below the TAE frequency gap. The coupling to lower-frequency modes such as drift waves and MHD modes as well as the effect of trapped particles are also taken into account. For a helical plasma, the existence of GAE in the central region and TAE in the off-axis region was confirmed. (author)

  17. Ion and relativistic electron acceleration by Alfven and whistler turbulence in solar flares

    Science.gov (United States)

    Miller, James A.; Ramaty, Reuven

    1987-01-01

    A model is proposed in which turbulent Alfven and whistler waves simultaneously produce the proton and electron spectra implied by the gamma-ray observations noted during the impulsive phase of the June 3, 1982 flare. The results demonstrate that protons can be accelerated to several GeV in less than about 10 sec by Alfven turbulence whose energy density is greater than a few erg/cu cm. It is also found that electrons may be accelerated to tens of MeV on similar time scales by whistler and Alfven turbulence. A lower limit on the energy density of the Alfven turbulence is obtained which is small compared to the total magnetic energy density.

  18. Stable one-dimensional periodic waves in Kerr-type saturable and quadratic nonlinear media

    Energy Technology Data Exchange (ETDEWEB)

    Kartashov, Yaroslav V [ICFO-Institut de Ciencies Fotoniques, and Department of Signal Theory and Communications, Universitat Politecnica de Catalunya, E-08034 Barcelona (Spain); Egorov, Alexey A [Physics Department, M V Lomonosov Moscow State University, 119899, Moscow (Russian Federation); Vysloukh, Victor A [Departamento de Fisica y Matematicas, Universidad de las Americas-Puebla, Santa Catarina Martir, 72820, Puebla, Cholula (Mexico); Torner, Lluis [ICFO-Institut de Ciencies Fotoniques, and Department of Signal Theory and Communications, Universitat Politecnica de Catalunya, E-08034 Barcelona (Spain)

    2004-05-01

    We review the latest progress and properties of the families of bright and dark one-dimensional periodic waves propagating in saturable Kerr-type and quadratic nonlinear media. We show how saturation of the nonlinear response results in the appearance of stability (instability) bands in a focusing (defocusing) medium, which is in sharp contrast with the properties of periodic waves in Kerr media. One of the key results discovered is the stabilization of multicolour periodic waves in quadratic media. In particular, dark-type waves are shown to be metastable, while bright-type waves are completely stable in a broad range of energy flows and material parameters. This yields the first known example of completely stable periodic wave patterns propagating in conservative uniform media supporting bright solitons. Such results open the way to the experimental observation of the corresponding self-sustained periodic wave patterns.

  19. Extremely stable piezo mechanisms for the New Gravitational Wave Observatory

    NARCIS (Netherlands)

    Pijnenburg, J.A.C.M.; Rijnveld, N.; Hogenhuis, H.

    2012-01-01

    Detection and observation of gravitational waves requires extreme stability in the frequency range 3e-5 Hz to 1 Hz. NGO/LISA will attain this by creating a giant interferometer in space, based on free floating proof masses in three spacecrafts. To operate NGO/LISA, the following piezo mechanisms are

  20. The Interaction of Coronal Mass Ejections with Alfvenic Turbulence

    Science.gov (United States)

    Manchester, W.; van der Holst, B.

    2017-12-01

    We provide a first attempt to understand the interaction between Alfven wave turbulence, kinetic instabilities and temperature anisotropies in the environment of a fast coronal mass ejection (CME). The impact of a fast CME on the solar corona causes turbulent energy, thermal energy and dissipative heating to increase by orders of magnitude, and produces conditions suitable for a host of kinetic instabilities. We study these CME-induced effects with the recently developed Alfven Wave Solar Model, with which we are able to self-consistently simulate the turbulent energy transport and dissipation as well as isotropic electron heating and anisotropic proton heating. Furthermore, the model also offers the capability to address the effects of firehose, mirror mode, and cyclotron kinetic instabilities on proton energy partitioning, all in a global-scale numerical simulation. We find turbulent energy greatly enhanced in the CME sheath, strong wave reflection at the shock, which leads to wave dissipation rates increasing by more than a factor of 100. In contrast, wave energy is greatly diminished by adiabatic expansion in the flux rope. Finally, we find proton temperature anisotropies are limited by kinetic instabilities to a level consistent with solar wind observations.

  1. Wave driven magnetic reconnection in the Taylor problem

    International Nuclear Information System (INIS)

    Fitzpatrick, Richard; Bhattacharjee, Amitava; Ma Zhiwei; Linde, Timur

    2003-01-01

    An improved Laplace transform theory is developed in order to investigate the initial response of a stable slab plasma equilibrium enclosed by conducting walls to a suddenly applied wall perturbation in the so-called Taylor problem. The novel feature of this theory is that it does not employ asymptotic matching. If the wall perturbation is switched on slowly compared to the Alfven time then the plasma response eventually asymptotes to that predicted by conventional asymptotic matching theory. However, at early times there is a compressible Alfven wave driven contribution to the magnetic reconnection rate which is not captured by asymptotic matching theory, and leads to a significant increase in the reconnection rate. If the wall perturbation is switched on rapidly compared to the Alfven time then strongly localized compressible Alfven wave-pulses are generated which bounce backward and forward between the walls many times. Each instance these wave-pulses cross the resonant surface they generate a transient surge in the reconnection rate. The maximum pulse driven reconnection rate can be much larger than that predicted by conventional asymptotic matching theory

  2. On the stability of shear-Alfven vortices

    International Nuclear Information System (INIS)

    Jovanovic, D.; Horton, W.

    1993-08-01

    Linear stability of shear-Alfven vortices is studied analytically using the Lyapunov method. Instability is demonstrated for vortices belonging to the drift mode, which is a generalization of the standard Hasegawa-Mima vortex to the case of large parallel phase velocities. In the case of the convective-cell mode, short perpendicular-wavelength perturbations are stable for a broad class of vortices. Eventually, instability of convective-cell vortices may occur on the perpendicular scale comparable with the vortex size, but it is followed by a simultaneous excitation of coherent structures with better localization than the original vortex

  3. Measurement of the ion temperature by analysing the neutral particles in TCA (Tokamak Chauffage Alfven)

    International Nuclear Information System (INIS)

    Chambrier, A. de; Heym, A.; Hofmann, F.; Joye, B.; Keller, R.; Lietti, A.; Lister, J.B.; Pochelon, A.; Simm, W.

    1983-01-01

    The aim of the TCA project is to investigate the heating effects of resonant absorption of Alfven waves in a Tokamak plasma. In TCA, the ion temperature increases linearly with the heating. Depending on the conditions, the ion temperature rises from 150 eV to 225 eV. (Auth./G.T.H.)

  4. Advection of pollutants by internal solitary waves in oceanic and atmospheric stable stratifications

    Directory of Open Access Journals (Sweden)

    G. W. Haarlemmer

    1998-01-01

    Full Text Available When a pollutant is released into the ocean or atmosphere under turbulent conditions, even a steady release is captured by large eddies resulting in localized patches of high concentration of the pollutant. If such a cloud of pollutant subsequently enters a stable stratification-either a pycnocline or thermocline-then internal waves are excited. Since large solitary internal waves have a recirculating core, pollutants may be trapped in the sclitary wave, and advected large distances through the waveguide provided by the stratification. This paper addresses the mechanisms, through computer and physical simulation, by which a localized release of a dense pollutant results in solitary waves that trap the pollutant or disperse the pollutant faster than in the absence of the waves.

  5. Gravity Waves and Wind-Farm Efficiency in Neutral and Stable Conditions

    Science.gov (United States)

    Allaerts, Dries; Meyers, Johan

    2018-02-01

    We use large-eddy simulations (LES) to investigate the impact of stable stratification on gravity-wave excitation and energy extraction in a large wind farm. To this end, the development of an equilibrium conventionally neutral boundary layer into a stable boundary layer over a period of 8 h is considered, using two different cooling rates. We find that turbulence decay has considerable influence on the energy extraction at the beginning of the boundary-layer transition, but afterwards, energy extraction is dominated by geometrical and jet effects induced by an inertial oscillation. It is further shown that the inertial oscillation enhances gravity-wave excitation. By comparing LES results with a simple one-dimensional model, we show that this is related to an interplay between wind-farm drag, variations in the Froude number and the dispersive effects of vertically-propagating gravity waves. We further find that the pressure gradients induced by gravity waves lead to significant upstream flow deceleration, reducing the average turbine output compared to a turbine in isolated operation. This leads us to the definition of a non-local wind-farm efficiency, next to a more standard wind-farm wake efficiency, and we show that both can be of the same order of magnitude. Finally, an energy flux analysis is performed to further elucidate the effect of gravity waves on the flow in the wind farm.

  6. Excitation of Alfvenic instabilities in spherical tokamaks

    International Nuclear Information System (INIS)

    McClements, K.G.; Appel, L.C.; Hole, M.J.; Thyagaraja, A.

    2003-01-01

    Understanding energetic particle confinement in spherical tokamak (STs) is important for optimising the design of ST power plants, and provides a testbed for theoretical modelling under conditions of strong toroidicity and shaping, and high beta. MHD analysis of some recent beam-heated discharges in the MAST ST indicates that high frequency modes observed in these discharges can be identified as toroidal Alfven Eigenmodes (TAEs) and elliptical Alfven Eigenmodes (EAEs). It is possible that such modes could strongly enhance fusion alpha-particle transport in an ST power plant. Computations of TAE growth rates for one particular MAST discharge, made using the HAGIS guiding centre code and benchmarked against analytical estimates, indicate strong drive by sub-Alfvenic neutral beam ions. HAGIS computations using higher mode amplitudes than those observed indicate that whereas co-passing beam ions provide the bulk of he TAE drive, counter-passing ions provide the dominant component of TAE-induced particle losses. Axisymmetric Alfvenic mode activity has been detected during ohmic discharges in MAST. These observations are shown by computational modelling to be consistent with the excitation of global Alfven Eigenmodes (GAEs) with n=0 and low m, driven impulsively by low frequency MHD. (author)

  7. A globally stable autopilot with wave filter using only yaw angle measurements

    Directory of Open Access Journals (Sweden)

    Trygve Lauvdal

    1996-04-01

    Full Text Available A stable minimum phase transfer function from rudder angle to yaw angle is used to design a globally stable adaptive ship autopilot. First-order wave disturbances in yaw are filtered by applying a notch filter. Integral action is introduced by using a reference model technique. Global stability is proven for the total system which include the yaw rate observer, the parameter update law, the feedback controller, the notch filter and the integral part of the controller. The simulation results showed that the performance is excellent, even with no a priori knowledge of the ship parameters.

  8. On the possibility for laboratory simulation of generation of Alfven disturbances in magnetic tubes in the solar atmosphere

    Science.gov (United States)

    Prokopov, Pavel; Zaharov, Yuriy; Tishchenko, Vladimir; Boyarintsev, Eduard; Melehov, Aleksandr; Ponomarenko, Arnold; Posuh, Vitaliy; Shayhislamov, Ildar

    2016-03-01

    The paper deals with generation of Alfven plasma disturbances in magnetic flux tubes through exploding laser plasma in magnetized background plasma. Processes with similar effect of excitation of torsion-type waves seem to provide energy transfer from the solar photosphere to corona. The studies were carried out at experimental stand KI-1 represented a high-vacuum chamber of 1.2 m diameter, 5 m long, external magnetic field up to 500 Gs along the chamber axis, and up to 2×10^-6 Torr pressure in operating mode. Laser plasma was produced when focusing the CO2 laser pulse on a flat polyethylene target, and then the laser plasma propagated in θ-pinch background hydrogen (or helium) plasma. As a result, the magnetic flux tube of 15-20 cm radius was experimentally simulated along the chamber axis and the external magnetic field direction. Also, the plasma density distribution in the tube was measured. Alfven wave propagation along the magnetic field was registered from disturbance of the magnetic field transverse component B_ψ and field-aligned current J_z. The disturbances propagate at near-Alfven velocity of 70-90 km/s and they are of left-hand circular polarization of the transverse component of magnetic field. Presumably, Alfven wave is generated by the magnetic laminar mechanism of collisionless interaction between laser plasma cloud and background. The right-hand polarized high-frequency whistler predictor was registered which have been propagating before Alfven wave at 300 km/s velocity. The polarization direction changed with Alfven wave coming. Features of a slow magnetosonic wave as a sudden change in background plasma concentration along with simultaneous displacement of the external magnetic field were found. The disturbance propagates at ~20-30 km/s velocity, which is close to that of ion sound at low plasma beta value. From preliminary estimates, the disturbance transfers about 10 % of the original energy of laser plasma.

  9. Bi-stable wave propagation and early afterdepolarization-mediated cardiac arrhythmias.

    Science.gov (United States)

    Chang, Marvin G; Sato, Daisuke; de Lange, Enno; Lee, Jong-Hwan; Karagueuzian, Hrayr S; Garfinkel, Alan; Weiss, James N; Qu, Zhilin

    2012-01-01

    In normal atrial and ventricular tissue, the electrical wavefronts are mediated by the fast sodium current (I(Na)), whereas in sinoatrial and atrioventricular nodal tissue, conduction is mediated by the slow L-type calcium current (I(Ca,L)). However, it has not been shown whether the same tissue can exhibit both the I(Na)-mediated and the I(Ca,L)-mediated conduction. This study sought to test the hypothesis that bi-stable cardiac wave conduction, mediated by I(Na) and I(Ca,L), respectively, can occur in the same tissue under conditions promoting early afterdepolarizations (EADs), and to study how this novel wave dynamics is related to the mechanisms of EAD-mediated arrhythmias. Computer models of two-dimensional (2D) tissue with a physiologically detailed action potential model were used to study the bi-stable wave dynamics. Theoretical predictions were tested experimentally by optical mapping in neonatal rat ventricular myocyte monolayers. In the same 2D homogeneous tissue, we could induce spiral waves that are mediated by either I(Na) or I(Ca,L) under conditions in which the action potential model exhibited EADs. This bi-stable wave propagation behavior was similar to bi-stability shown in many other nonlinear systems. Because the bi-stable states are also excitable, we call this novel behavior bi-excitability. In a 2D heterogeneous tissue, the I(Ca,L)-mediated spiral wave meanders, giving rise to a twisting electrocardiographic QRS axis, resembling torsades de pointes, whereas the coexistence and interplay between the I(Na)-mediated wavefronts and I(Ca,L)-mediated wavefronts give rise to polymorphic ventricular tachycardia. We also present experimental evidence for bi-excitability under EAD-promoting conditions in neonatal rat ventricular myocyte monolayers exposed to BayK8644 and isoproterenol. Under EAD-prone conditions, both I(Na)-mediated conduction and I(Ca,L)-mediated conduction can occur in the same tissue. These novel wave dynamics may be responsible for

  10. Stable and high order accurate difference methods for the elastic wave equation in discontinuous media

    KAUST Repository

    Duru, Kenneth

    2014-12-01

    © 2014 Elsevier Inc. In this paper, we develop a stable and systematic procedure for numerical treatment of elastic waves in discontinuous and layered media. We consider both planar and curved interfaces where media parameters are allowed to be discontinuous. The key feature is the highly accurate and provably stable treatment of interfaces where media discontinuities arise. We discretize in space using high order accurate finite difference schemes that satisfy the summation by parts rule. Conditions at layer interfaces are imposed weakly using penalties. By deriving lower bounds of the penalty strength and constructing discrete energy estimates we prove time stability. We present numerical experiments in two space dimensions to illustrate the usefulness of the proposed method for simulations involving typical interface phenomena in elastic materials. The numerical experiments verify high order accuracy and time stability.

  11. Polarons as stable solitary wave solutions to the Dirac-Coulomb system

    Science.gov (United States)

    Comech, Andrew; Zubkov, Mikhail

    2013-11-01

    We consider solitary wave solutions to the Dirac-Coulomb system both from physical and mathematical points of view. Fermions interacting with gravity in the Newtonian limit are described by the model of Dirac fermions with the Coulomb attraction. This model also appears in certain condensed matter systems with emergent Dirac fermions interacting via optical phonons. In this model, the classical soliton solutions of equations of motion describe the physical objects that may be called polarons, in analogy to the solutions of the Choquard equation. We develop analytical methods for the Dirac-Coulomb system, showing that the no-node gap solitons for sufficiently small values of charge are linearly (spectrally) stable.

  12. Anisotropic Alfven-ballooning modes in the Earth's magnetosphere

    International Nuclear Information System (INIS)

    Chan, A.A.; Xia, Mengfen; Chen, Liu

    1993-05-01

    We have carried out a theoretical analysis of the stability and parallel structure of coupled shear-Alfven and slow-magnetosonic waves in the Earth's inner magnetosphere including effects of finite anisotropic plasma pressure. Multiscale perturbation analysis of the anisotropic Grad-Shafranov equation yields an approximate self-consistent magnetohydrodynamic (MHD) equilibrium. This MHD equilibrium is used in the numerical solution of a set of eigenmode equations which describe the field line eigenfrequency, linear stability, and parallel eigenmode structure. We call these modes anisotropic Alfven-ballooning modes. The main results are: The field line eigenfrequency can be significantly lowered by finite pressure effects. The parallel mode structure of the transverse wave components is fairly insensitive to changes in the plasma pressure but the compressional magnetic component can become highly peaked near the magnetic equator due to increased pressure, especially when P perpendicular > P parallel. For the isotropic case ballooning instability can occur when the ratio of the plasma pressure to the magnetic pressure, exceeds a critical value β o B ∼ 3.5 at the equator. Compared to the isotropic case the critical beta value is lowered by anisotropy, either due to decreased field-line-bending stabilization when P parallel > P perpendicular, or due to increased ballooning-mirror destabilization when P perpendicular > P parallel. We use a ''β-6 stability diagram'' to display the regions of instability with respect to the equatorial values of the parameters bar β and δ, where bar β = (1/3)(β parallel + 2 β perpendicular) is an average beta value and δ = 1 - P parallel/P perpendicular is a measure of the plasma anisotropy

  13. Nonlinear competition between the whistler and Alfven firehoses. Journal of Geophysical Research, 106, 13,215, 2001

    Czech Academy of Sciences Publication Activity Database

    Hellinger, Petr; Matsumoto, H.

    2001-01-01

    Roč. 106, - (2001), s. 13,215-13,224 ISSN 0148-0227 R&D Projects: GA AV ČR IAB3042106 Institutional research plan: CEZ:AV0Z3042911 Keywords : instability * whistler * Alfven wave Subject RIV: BE - Theoretical Physics Impact factor: 2.609, year: 2001

  14. Formation and loss of hierarchical structure in two-dimensional MHD simulations of wave-driven turbulence in interstellar clouds

    OpenAIRE

    Elmegreen, Bruce G.

    1999-01-01

    Two dimensional compressible magneto-hydrodynamical (MHD) simulations run for 20 crossing times on a 800x640 grid with two stable thermal states show persistent hierarchical density structures and Kolmogorov turbulent motions in the interaction zone between incoming non-linear Alfven waves. These structures and motions are similar to what are commonly observed in weakly self-gravitating interstellar clouds, suggesting that these clouds get their fractal structures from non-linear magnetic wav...

  15. On resonant destabilization of toroidal Alfven eigenmodes by circulating and trapped energetic ions/alpha particles in tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Biglari, H.; Zonca, F.; Chen, L.

    1991-10-01

    Toroidal Alfven eigenmodes are shown to be resonantly destabilized by both circulating and trapped energetic ions/alpha particles. In particular, the energetic circulating ions are shown to resonate with the mode not only at the Alfven speed ({upsilon}{sub A}), but also one-third of this speed, while resonances exist between trapped energetic ions and the wave when {upsilon} = {upsilon}{sub A}/21{epsilon}{sup {1/2}} (l=integer, {epsilon}=r/R is the local inverse aspect ratio), although the instability becomes weaker for resonances other than the fundamental. The oft-quoted criterion that instability requires super-Alfvenic ion velocities is thus sufficient but not necessary. 14 refs.

  16. Low-n shear Alfven spectra in axisymmetric toroidal plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, C.Z.; Chance, M.S.

    1985-11-01

    In toroidal plasmas, the toroidal magnetic field is nonuniform over a magnetic surface and causes coupling of different poloidal harmonics. It is shown both analytically and numerically that the toroidicity not only breaks up the shear Alfven continuous spectrum, but also creates new, discrete, toroidicity-induced shear Alfven eigenmodes with frequencies inside the continuum gaps. Potential applications of the low-n toroidicity-induced shear Alfven eigenmodes on plasma heating and instabilities are addressed. 17 refs., 4 figs.

  17. Low-n shear Alfven spectra in axisymmetric toroidal plasmas

    International Nuclear Information System (INIS)

    Cheng, C.Z.; Chance, M.S.

    1985-11-01

    In toroidal plasmas, the toroidal magnetic field is nonuniform over a magnetic surface and causes coupling of different poloidal harmonics. It is shown both analytically and numerically that the toroidicity not only breaks up the shear Alfven continuous spectrum, but also creates new, discrete, toroidicity-induced shear Alfven eigenmodes with frequencies inside the continuum gaps. Potential applications of the low-n toroidicity-induced shear Alfven eigenmodes on plasma heating and instabilities are addressed. 17 refs., 4 figs

  18. Dispersive MHD Shock Properties and Interactions with Alfven Solitons

    Science.gov (United States)

    Hamilton, R.; Toll, K.; Ellis, C.

    2017-12-01

    The weakly nonlinear, weakly dispersive limit of Hall MHD with resistivity for 1D waves travelling nearly parallel to the ambient magnetic field reduces to the derivative nonlinear Schrödinger-Burgers (DNLSB) equation. This model equation describes the coupling between the Alfvenic and magnetosonic modes for a low b plasma. Without dissipation this model equation reduces to the DNLS which can be solved as an initial value problem using the Inverse Scattering Transformation through which the nonlinear component of the magnetic field profile can be represented as a combination of one-parameter bright and dark solitons as well as two-parameter solitons. The one-parameter solitons are constrained to travel at speeds ranging between the Alfvenic and magnetosonic characteristic speeds of the ambient field. We have found that these one-parameter solitons are effectively bound to a 1-2 Fast Shock and will pass back and forth across the shock until they are damped away with no apparent effect on the Fast Shock. A similar mechanism is expected for a sufficiently compressive Intermediate Shock as it arises simply from two effects: damping of a one-parameter soliton causes it to speed up and, if it does not damp away, it will eventually overtake the shock; passing forwards through a compressive shock the decrease of the field strength leads to a slowing of the soliton. We also discuss an extension of results [C. F. Kennel, R. D. Blandford, C. C. Wu, Phys. Fluids B 2(2), 1990] related to the time dependence of Intermediate Shocks in the presence of dispersion.

  19. Investigation of global Alfven instabilities in TFTR

    International Nuclear Information System (INIS)

    Wong, K.L.; Paul, S.F.; Fredrickson, E.D.; Nazikian, R.; Park, H.K.; Bell, M.; Bretz, N.L.; Budny, R.; Cheng, C.Z.; Cohen, S.; Hammett, G.W.; Jobes, F.C.; Johnson, L.; Meade, D.M.; Medley, S.S.; Mueller, D.; Nagayama, Y.; Owens, D.K.; Synakowski, E.J.; Roberts, D.R.; Sabbagh, S.

    1992-01-01

    Toroidal Alfven Eigenmodes (TAE) were excited by the energetic neutral beam ions tangentially injected into TFTR plasmas at low magnetic field such that the injection velocities were comparable to the Alfven speed. The modes were identified by measurements from Mirnov coils and beam emission spectroscopy (BES). TAE modes appear in bursts whose repetition rate increases with beam power. The neutron emission rate exhibits sawtooth-like behavior and the crashes always coincide with TAE bursts. This indicates ejection of fast ions from the plasma until these modes are stabilized. The dynamics of growth and stabilization was investigated at various plasma current and magnetic field. The results indicate that the instability can effectively clamp the number of energetic ions in the plasma. The observed instability threshold is discussed in the light of recent theories. In addition to these TAE modes, intermittent oscillations at three times the fundamental TAE frequency were observed by Mirnov coils, but no corresponding signal was found in BES. It appears that these high frequency oscillations do not have direct effect on the plasma neutron source strength

  20. Electromagnetic internal gravity waves in the Earth's ionospheric E-layer

    International Nuclear Information System (INIS)

    Kaladze, T.D.; Tsamalashvili, L.V.; Kaladze, D.T.

    2011-01-01

    In the Earth's ionospheric E-layer existence of the new waves connecting with the electromagnetic nature of internal gravity waves is shown. They represent the mixture of the ordinary internal gravity waves and the new type of dispersive Alfven waves. -- Highlights: ► Existence of electromagnetic internal gravity waves in the ionospheric E-layer is shown. ► Electromagnetic nature of internal gravity waves is described. ► Appearance of the new dispersive Alfven waves is shown.

  1. Resonant interaction of energetic ions with Alfven-like perturbations in stellarators

    International Nuclear Information System (INIS)

    Karulin, N.; Wobig, H.

    1994-04-01

    The modification of passing guiding center orbits of 3.5 MeV alpha particles and 45 keV protons in the presence of global Alfven eigenmodes (GAE's) is studied in modular advanced stellarators. It is found that if resonances between particles and waves occur, drift surfaces form a set of island structures. The mode numbers of the perturbations, which are dangerous for the energetic particle confinement, are discussed for two particular stellarators (Helias reactor and Wendelstein 7-AS). The perturbation amplitudes corresponding to the onset of orbit stochasticity are studied numerically. The coefficient of the collisionless stochastic diffusion is estimated using the island width derived analytically. (orig.)

  2. Theory of semicollisional kinetic Alfven modes in sheared magnetic fields

    International Nuclear Information System (INIS)

    Hahm, T.S.; Chen, L.

    1985-02-01

    The spectra of the semicollisional kinetic Alfven modes in a sheared slab geometry are investigated, including the effects of finite ion Larmor radius and diamagnetic drift frequencies. The eigenfrequencies of the damped modes are derived analytically via asymptotic analyses. In particular, as one reduces the resistivity, we find that, due to finite ion Larmor radius effects, the damped mode frequencies asymptotically approach finite real values corresponding to the end points of the kinetic Alfven continuum

  3. Confinement relevant Alfven instabilities in Wendelstein 7-AS

    International Nuclear Information System (INIS)

    Yakovenko, Yu.V.; Kolesnichenko, Ya.I.; Lutsenko, V.V.; Weller, A.; Werner, A.; Zegenhagen, S.; Geiger, J.

    2005-01-01

    Bursting Alfvenic activity accompanied by strong thermal crashes and frequency chirping in a W7-AS shot is studied. A theory explaining the experimental observations is developed. A novel mechanism of anomalous electron thermal conductivity is found. In addition, a general consideration of the influence of the gap crossing on the Alfven continuum in stellarators is carried out and a phenomenon of gap annihilation is predicted. (author)

  4. Corotating light cylinders and Alfv\\'en waves

    OpenAIRE

    Gourgouliatos, K. N.; Lynden-Bell, D.

    2010-01-01

    Exact relativistic force free fields with cylindrical symmetry are explored. Such fields are generated in the interstellar gas via their connection to pulsar magnetospheres both inside and outside their light cylinders. The possibility of much enhanced interstellar fields wound on cylinders of Solar system dimensions is discussed but these are most likely unstable.

  5. Experimental Verification of a Global Exponentially Stable Nonlinear Wave Encounter Frequency Estimator

    DEFF Research Database (Denmark)

    Belleter, Dennis J.W.; Galeazzi, Roberto; Fossen, Thor Inge

    2015-01-01

    This paper presents a global exponential stability (GES) proof for a signalbased nonlinear wave encounter frequency estimator. The estimator under consideration is a second-order nonlinear observer designed to estimate the frequency of a sinusoid with unknown frequency, amplitude and phase. The GES...... proof extends previous results that only guarantee global K-exponential stability. Typical applications are control and decision-support systems for marine craft, where it is important to know the sea state and wave frequency. The theoretical results are verified experimentally by analyzing data from...

  6. Excitation of global Alfven Eigenmodes by RF heating in JET

    Energy Technology Data Exchange (ETDEWEB)

    Kerner, W.; Borba, D.; Gormezano, C.; Huysmans, G.; Porcelli, F.; Start, D. [Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking; Fasoli, A. [Ecole Polytechnique Federale, Lausanne (Switzerland). Centre de Recherche en Physique des Plasma (CRPP); Sharapov, S. [Kurchatov Institute, Moscow (Russian Federation)

    1994-07-01

    The alpha-particle confinement of future D-T experiments at JET can be severely degraded by Global Alfven Eigenmodes (AE). Scenarios for the excitation of Alfven Eigenmodes in usual (e.g. D-D) plasmas are proposed, which provide a MHD diagnostic and allow the study of the transport of super-Alfvenic ions. Active studies with separate control of TAE amplitude and energetic particle destabilization, measuring the plasma response, give more information than passive studies, in particular concerning the damping mechanisms. The TAE excitation can be achieved by means of the saddle coil and the ICRH antenna. The experimental method is introduced together with a theoretical model for RF excitation. (authors). 6 refs., 3 figs.

  7. The Berk-Breizman Model as a Paradigm for Energetic Particle-driven Alfven Eigenmodes

    International Nuclear Information System (INIS)

    Lesur, M.

    2010-01-01

    The achievement of sustained nuclear fusion in magnetically confined plasma relies on efficient confinement of alpha particles, which are high-energy ions produced by the fusion reaction. Such particles can excite instabilities in the frequency range of Alfven Eigenmodes (AEs), which significantly degrade their confinement and threatens the vacuum vessel of future reactors. In order to develop diagnostics and control schemes, a better understanding of linear and nonlinear features of resonant interactions between plasma waves and high-energy particles, which is the aim of this thesis, is required. In the case of an isolated single resonance, the description of AE destabilization by high-energy ions is homothetic to the so-called Berk-Breizman (BB) problem, which is an extension of the classic bump-on-tail electrostatic problem, including external damping to a thermal plasma, and collisions. A semi-Lagrangian simulation code, COBBLES, is developed to solve the initial-value BB problem in both perturbative (δ f) and self-consistent (full-f) approaches. Two collision models are considered, namely a Krook model, and a model that includes dynamical friction (drag) and velocity-space diffusion. The nonlinear behavior of instabilities in experimentally-relevant conditions is categorized into steady-state, periodic, chaotic, and frequency-sweeping (chirping) regimes, depending on external damping rate and collision frequency. The chaotic regime is shown to extend into a linearly stable region, and a mechanism that solves the paradox formed by the existence of such subcritical instabilities is proposed. Analytic and semi-empirical laws for nonlinear chirping characteristics, such as sweeping-rate, lifetime, and asymmetry, are developed and validated. Long-time simulations demonstrate the existence of a quasi-periodic chirping regime. Although the existence of such regime stands for both collision models, drag and diffusion are essential to reproduce the alternation between

  8. Direct measurement of the damping of toroidicity induced Alfven eigenmodes

    International Nuclear Information System (INIS)

    Fasoli, A.; Lister, J.B.; Moret, J.M.; Lavanchy, P.; Marmillod, P.; Sharapov, S.; Borba, D.; Bosia, G.; Campbell, D.J.; Dobbing, J.A.; Gormezano, C.; Jacquinot, J.; Santagiustina, A.

    1995-01-01

    This paper presents the first direct experimental measurements of the damping of toroidicity induced Alfven eigenmodes (TAE), carried out in the JET tokamak. These measurements were obtained during the first experiments to drive these modes with antennas external to a tokamak plasma. Different regimes corresponding to different dominant TAE absorption mechanisms with a wide range of damping rates, 10 -3 ≤γ/ω≤10 -1 , have been identified in ohmically heated plasma discharges using this new active diagnostic for Alfven eigenmodes. (author) 5 figs., tabs., 25 refs

  9. Towards a climatology of orographic induced wave drag in the stable boundary layer over real terrain

    NARCIS (Netherlands)

    Kleczek, M.A.; Steeneveld, G.J.; Nappo, C.J.; Holtslag, A.A.M.

    2012-01-01

    The stable boundary layer (SBL) is of particular interest for numerous environmental issues as air quality, aviation, fog forecasting, wind energy engineering, and climate modelling. Unfortunately the current understanding of the SBL is still rather poor, and progress is slow. The relatively poor

  10. Alfvenic Turbulence from the Sun to 65 Solar Radii: Numerical predictions.

    Science.gov (United States)

    Perez, J. C.; Chandran, B. D. G.

    2015-12-01

    The upcoming NASA Solar Probe Plus (SPP) mission will fly to within 9 solar radii from the solar surface, about 7 times closer to the Sun than any previous spacecraft has ever reached. This historic mission will gather unprecedented remote-sensing data and the first in-situ measurements of the plasma in the solar atmosphere, which will revolutionize our knowledge and understanding of turbulence and other processes that heat the solar corona and accelerate the solar wind. This close to the Sun the background solar-wind properties are highly inhomogeneous. As a result, outward-propagating Alfven waves (AWs) arising from the random motions of the photospheric magnetic-field footpoints undergo strong non-WKB reflections and trigger a vigorous turbulent cascade. In this talk I will discuss recent progress in the understanding of reflection-driven Alfven turbulence in this scenario by means of high-resolution numerical simulations, with the goal of predicting the detailed nature of the velocity and magnetic field fluctuations that the SPP mission will measure. In particular, I will place special emphasis on relating the simulations to relevant physical mechanisms that might govern the radial evolution of the turbulence spectra of outward/inward-propagating fluctuations and discuss the conditions that lead to universal power-laws.

  11. Are genetic and environmental influences on job satisfaction stable over time? A three-wave longitudinal twin study.

    Science.gov (United States)

    Li, Wen-Dong; Stanek, Kevin C; Zhang, Zhen; Ones, Deniz S; McGue, Matt

    2016-11-01

    Job satisfaction research has unfolded as an exemplary manifestation of the "person versus environment" debate in applied psychology. With the increasing recognition of the importance of time, it is informative to examine a question critical to the dispositional view of job satisfaction: Are genetic influences on job satisfaction stable across different time points? Drawing upon dispositional and situational perspectives on job satisfaction and recent research in developmental behavioral genetics, we examined whether the relative potency of genetic (i.e., the person) and environmental influences on job satisfaction changed over time in a 3-wave longitudinal twin study. Biometric behavioral genetics analyses showed that genetic influences accounted for 31.2% of the variance in job satisfaction measured at approximately Age 21, which was markedly greater than the 18.7% and 19.8% of variance explained by genetic factors at Age 25 and Age 30. Such genetic influences were mediated via positive affectivity and negative affectivity, but not via general mental ability. After partialing out genetic influences, environmental influences on job satisfaction were related to interpersonal conflict at work and occupational status, and these influences were relatively stable across the 3 time points. These results offer important implications for organizations and employees to better understand and implement practices to enhance job satisfaction. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  12. Study of Thermonuclear Alfven Instabilities in Next Step Burning Plasma Experiments

    Energy Technology Data Exchange (ETDEWEB)

    N.N. Gorelenkov; H.L. Berk; R. Budny; C.Z. Cheng; G.-Y. Fu; W.W. Heidbrink; G. Kramer; D. Meade; and R. Nazikian

    2002-07-02

    A study is presented for the stability of alpha-particle driven shear Alfven Eigenmodes (AE) for the normal parameters of the three major burning plasma proposals, ITER (International Thermonuclear Experimental Reactor), FIRE (Fusion Ignition Research Experiment), and IGNITOR (Ignited Torus). A study of the JET (Joint European Torus) plasma, where fusion alphas were generated in tritium experiments, is also included to attempt experimental validation of the numerical predictions. An analytic assessment of Toroidal AE (TAE) stability is first presented, where the alpha particle beta due to the fusion reaction rate and electron drag is simply and accurately estimated in 7-20 keV plasma temperature regime. In this assessment the hot particle drive is balanced against ion-Landau damping of the background deuterons and electron collision effects and stability boundaries are determined. Then two numerical studies of AE instability are presented. In one the High-n stability code HINST is used . This code is capable of predicting instabilities of low and moderately high frequency Alfven modes. HINST computes the non-perturbative solution of the Alfven eigenmodes including effects of ion finite Larmor radius, orbit width, trapped electrons etc. The stability calculations are repeated using the global code NOVAK. We show that for these tokamaks the spectrum of the least stable AE modes are TAE that appear at medium-/high-n numbers. In HINST TAEs are locally unstable due to the alphas pressure gradient in all the devices under the consideration except IGNITOR. However, NOVAK calculations show that the global mode structure enhances the damping mechanisms and produces stability in all configurations considered here. A serious question remains whether the perturbation theory used in NOVAK overestimates the stability predictions, so that it is premature to conclude that the nominal operation of all three proposals are stable to AEs. In addition NBI ions produce a strong

  13. Kinetic theory of plasma waves: Part II homogeneous plasma

    NARCIS (Netherlands)

    Westerhof, E.

    2000-01-01

    The theory of electromagnetic waves in a homogeneous plasma is reviewed. The linear response of the plasma to the waves is obtained in the form of the dielectric tensor. Waves ranging from the low frequency Alfven to the high frequency electron cyclotron waves are discussed in the limit of the cold

  14. KINETIC THEORY OF PLASMA WAVES: Part II: Homogeneous Plasma

    NARCIS (Netherlands)

    Westerhof, E.

    2010-01-01

    The theory of electromagnetic waves in a homogeneous plasma is reviewed. The linear response of the plasma to the waves is obtained in the form of the dielectric tensor. Waves ranging from the low frequency Alfven to the high frequency electron cyclotron waves are discussed in the limit of the cold

  15. Kinetic theory of plasma waves - Part II: Homogeneous plasma

    NARCIS (Netherlands)

    Westerhof, E.

    2008-01-01

    The theory of electromagnetic waves in a homogeneous plasma is reviewed. The linear response of the plasma to the waves is obtained in the form of the dielectric tensor. Waves ranging from the low frequency Alfven to the high frequency electron cyclotron waves axe discussed in the limit of the cold

  16. Alfven frequency modes at the edge of TFTR plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Z.; Fredrickson, E.D.; Zweben, S.J. [and others

    1995-07-01

    An Alfven frequency mode (AFM) is very often seen in TFTR neutral beam heated plasmas as well as ohmic plasmas. This quasi-coherent mode is so far only seen on the magnetic fluctuation diagnostics (Mirnov coils). A close correlation between the plasma edge density and the mode activity (frequency and amplitude) has been observed, which indicates that the AFM is an edge localized mode with r/a > 0.85. No direct impact of this mode on the plasma global performance or fast ion loss (e.g., the {alpha}-particles in DT experiments) has been observed. This mode is apparently not the conventional TAE (toroidicity-induced Alfven eigenmodes). The present TAE theory cannot explain the observation. Other possible explanations are discussed.

  17. The effect of compressibility on the Alfven spatial resonance heating

    International Nuclear Information System (INIS)

    Azevedo, C.A.

    1984-01-01

    The effect of compressibility of magnetic field line on the damping rate of Alfven spatial resonance heating for a high beta plasma (Kinetic pressure/magnetic pressure) was analysed, using the ideal MHD (Magnetohydrodynamic) model in cylindrical geometry for a diffuse θ-pinch with conducting wall. The dispersion relation was obtained solving the equation of motion in the plasma and vacuum regions together with boundary conditions. (Author) [pt

  18. Kelvin-Helmholtz instability in an Alfven resonant layer of a solar coronal loop

    Science.gov (United States)

    Uchimoto, E.; Strauss, H. R.; Lawson, W. S.

    1991-01-01

    A Kelvin-Helmholtz instability has been identified numerically on an azimuthally symmetric Alfven resonant layer in an axially bounded, straight cylindrical coronal loop. The set of equations is solved numerically as an initial value problem. The linear growth rate of this instability is shown to be approximately proportional to the Alfven driving amplitude and inversely proportional to the width of the Alfven resonant layer. It is also shown that the linear growth rate increases linearly with m - 1 up to a certain m, reaches its maximum value for the mode whose half wavelength is comparable to the Alfven resonant layer width, and decreases at higher azimuthal mode number.

  19. Peculiarities of destabilization of Alfven modes by energetic ions in stellarators

    International Nuclear Information System (INIS)

    Lutsenko, V.V.; Kolesnichenko, Ya.I.; Yakovenko, Yu.V.; Fesenyuk, O.P.; Weller, A.; Werner, A.; Wobig, H.

    2003-01-01

    Alfven Eigenmodes (AE) associated with the breaking of the axial symmetry in stellarators are considered. Specific calculations are carried out for the Helias reactor HSR4/18. An explanation of the temporal evolution of Alfvenic activity observed in experiments on W7-AS is suggested. (author)

  20. Destabilization of Alfven eigenmodes by fast particles in W7-AS

    Energy Technology Data Exchange (ETDEWEB)

    Zegenhagen, S.

    2006-02-15

    In the present thesis, a systematic study of beam driven Alfven eigenmodes in high-density and low-temperature plasmas of the W7-AS stellarator is performed. The goal of this thesis is twofold: (I) identification and description of fast particle driven Alfven instabilities in W7-AS, and (II) study of energetic particle losses induced by Alfven instabilities. A total of 133 different Alfven eigenmodes is studied in discharges from different experimental campaigns. The discharges are characterized by high density, n{sub e}=5 x 1019 m{sup -3} to 2.5 x 1020 m{sup -3} at relatively low temperatures of T{sub e}=T{sub i}=150..600 eV. Additional 13 events are found to have frequencies inside the EAE gap and could possibly be EAEs. Evidence for high-frequency Alfven eigenmodes (mirror- and helicity-induced Alfven eigenmodes) is seen, but can not be proven rigorously due to uncertain mode numbers and the complexity of the Alfven continuum. The remaining 41 Alfven eigenmodes can not be classified to be one of the above cases. (orig.)

  1. Geometrical and profile effects on toroidicity and ellipticity induced Alfven eigenmodes

    International Nuclear Information System (INIS)

    Villard, L.; Fu, G.Y.

    1992-04-01

    The wave structures, eigenfrequencies and damping rates of toroidicity and ellipticity induced Alfven eigenmodes (TAE, EAE) of low toroidal mode numbers (n) are calculated in various axisymmetric ideal MHD equilibria with the global wave finite element code LION. The importance of safety factor (q) and density (ρ) profiles on continuum damping rates is analysed. For realistic profiles several continuum gaps exist in the plasma discharge. Frequency misalignment of these gaps yields continuum damping rates γ/ω of the order of a few percent. Finite β pol lowers the TAE eigenfrequency. For β values below the Troyon limit the TAE enters the continuum and can thus be stabilized. Finite elongation allows the EAE to exist but triangularity can have a stabilizing effect through coupling to the continuum. The localization of TAE and EAE eigenfunctions is found to increase with the shear and with n. Therefore large shear, through enhanced Landau and collisional damping, is a stabilizing factor for TAE and EAE modes. (author) 16 figs., 28 refs

  2. Excitation of beta Alfven eigenmodes in Tore-Supra

    International Nuclear Information System (INIS)

    Nguyen, C; Garbet, X; Sabot, R; Goniche, M; Maget, P; Basiuk, V; Decker, J; Elbeze, D; Huysmans, G T A; Macor, A; Segui, J-L; Schneider, M; Eriksson, L-G

    2009-01-01

    Modes oscillating at the acoustic frequency and identified as beta Alfven eigenmodes (BAEs) have been observed in Tore-Supra under ion cyclotron resonant heating. In this paper, the linear excitation threshold of these modes, thought to be driven by suprathermal ions, is calculated and compared with Tore-Supra observations. Similar studies of the linear excitation threshold of energetic particles driven modes were carried out previously for toroidal Alfven eigenmodes or fishbones. In the case of BAEs, the main point is to understand whether the energetic particle drive is able to exceed ion Landau damping, which is expected to be important in the acoustic frequency range. For this, the BAE dispersion relation is computed and simplified in order to derive a tractable excitation criterion suitable for comparison with experiments. The observation of BAEs in Tore-Supra is found to be in agreement with the calculated criterion and confirms the possibility to trigger these modes in the presence of ion Landau damping. Moreover, the conducted analysis clearly puts forward the role of the global tunable parameters which play a role in the BAE excitation (the magnetic field, the density etc), as well as the role of some plasma profiles. In particular, the outcome of a modification of the shear or of the heating localization is found to be non-negligible and it is discussed in the paper.

  3. A new formulation of theta pinch implosions - a collisionless wave model

    International Nuclear Information System (INIS)

    Tsui, K.H.

    Previous work in theta pinch implosions is characterized by anomalous resistivity owing its origin to plasma instabilities. A diametrically opposite collisionless model is proposed here that consists of an inhomogeneous wave equation. The electron velocities are solved by guiding center approximation. This model offers qualitative explanations to various effects like experimental Alfven scaling law, Alfven penetration time, sheath thickness, shock formation, shock width, piston thickness, Alfven Mach number. Although collision is not essential, the plasma has an apparent resistivity with an effective collision frequency of roughly the same as those anomalous ones used in turbulent model. (Author) [pt

  4. Fokker-Planck simulation study of Alfven eigenmode burst

    International Nuclear Information System (INIS)

    Todo, Y.; Watanabe, T.; Park, Hyoung-Bin; Sato, T.

    2001-01-01

    Recurrent bursts of toroidicity-induced Alfven eigenmodes (TAEs) are reproduced with a Fokker-Planck-magnetohydrodynamic simulation where a fast-ion source and slowing down are incorporated self-consistently. The bursts take place at regular time intervals and the behaviors of all the TAEs are synchronized. The fast-ion transport due to TAE activity spatially broadens the classical fast-ion distribution and significantly reduces its peak value. Only a small change of the distribution takes place with each burst, leading to loss of a small fraction of the fast ions. The system stays close to the marginal stability state established through the interplay of the fast-ion source, slowing down, and TAE activity. (author)

  5. Calculating the azimuth of mountain waves, using the effect of tilted fine-scale stable layers on VHF radar echoes

    Directory of Open Access Journals (Sweden)

    R. M. Worthington

    1999-02-01

    Full Text Available A simple method is described, based on standard VHF wind-profiler data, where imbalances of echo power between four off-vertical radar beams, caused by mountain waves, can be used to calculate the orientation of the wave pattern. It is shown that the mountain wave azimuth (direction of the horizontal component of the wavevector, is given by the vector [ W (PE - P W ,W (PN - P S ]; PN, PS, PE, PW are radar echo powers, measured in dB, in beams pointed away from vertical by the same angle towards north, south, east and west respectively, and W is the vertical wind velocity. The method is applied to Aberystwyth MST radar data, and the calculated wave vector usually, but not always, points into the low-level wind direction. The mean vertical wind at Aberystwyth, which may also be affected by tilted aspect-sensitive layers, is investigated briefly using the entire radar output 1990-1997. The mean vertical-wind profile is inconsistent with existing theories, but a new mountain-wave interpretation is proposed.Key words. Meteorology and atmospheric dynamics (middle atmosphere dynamics; waves and tides; instruments and techniques.

  6. Nonlinear Dynamics of Fast-electron Driven Beta-induced Alfven eigenmode

    Science.gov (United States)

    Cheng, Junyi; Zhang, Wenlu; Lin, Zhihong; Li, Ding

    2017-10-01

    The fast-electron driven beta-induced Alfven eigenmode (e-BAE) has been routinely observed in HL-2A tokamak. We study e-BAE for the first time using global gyrokinetic GTC simulations, where the fast electrons are described by the drift kinetic model. Frequency chirping is observed in nonlinear simulations in the absence of sources and sinks, which provides a new nonlinear paradigm beyond the standard ``bump-on-tail'' model. Analysis of nonlinear wave-particle interactions shows that the frequency chirping is induced by the nonlinear evolution of the coherent structures in the fast electron phase space, where the dynamics of the coherent structure is controlled by the formation and destruction of phase space islands in the canonical variables. Furthermore, we put forward a new theory frame to demonstrate that the evolution of chirping phenomenon is essentially induced by balance and destruction of net shear flow in the toroidal direction combined by the background shear flow and perturbed shear flow, which provides a novel and clear physical image.

  7. High-n helicity-induced shear Alfven eigenmodes

    International Nuclear Information System (INIS)

    Nakajima, N.; Cheng, C.Z.; Okamoto, M.

    1992-05-01

    The high-n Helicity-induced shear Alfven Eigenmodes (HAE) are considered both analytically and numerically for the straight helical magnetic system, where n is the toroidal mode number. The eigenmode equation for the high-n HAE modes is derived along the field line and with the aid of the averaging method is shown to reduce to the Mathieu equation asymptotically. The discrete HAE modes are shown to exist inside the continuum spectrum gaps. The continuous spectrum gaps appear around ω 2 = ω A 2 [N(lι-m)/2] 2 for N = 1,2,.., where ω A is the toroidal Alfven transit frequency, and l, m, and ι are the polarity of helical coils, the toroidal pitch number of helical coils, and the rotational transform, respectively. For the same ω A and ι, the frequency of the helical continuum gap is larger than that of the continuum gap in tokamak plasmas by |l-ι -1 m|. The polarity of helical coils l plays a crucial role in determining the spectrum gaps and the properties of the high-n HAE modes. The spectrum gaps near the magnetic axis are created by the helical ripple with circular flux surfaces for l = 1, and ≥ 3 helicals. For l = 2 helical systems, the spectrum gaps are created by the ellipticity of the flux surfaces. These analytical results for the continuum gaps and the existence of the high-n HAE modes in the continuum gaps are confirmed numerically for the l = 2 case, and we find that the HAE modes exist for mode structures with the even and the odd parities. (author)

  8. Alfven. Symphony No 5 in A minor, Op. 54 / Robert Layton

    Index Scriptorium Estoniae

    Layton, Robert

    1994-01-01

    Uuest heliplaadist "Alfven. Symphony No 5 in A minor, Op. 54. The Mountain King - Suite, Gustav II Adolf, Op. 49 - Elegy. Royal Stockholm Philarmonic Orchestra / Neeme Järvi. BIS CD 585 (68 minutes) Recorded in association with Trygg Hansa"

  9. Calculating the azimuth of mountain waves, using the effect of tilted fine-scale stable layers on VHF radar echoes

    Directory of Open Access Journals (Sweden)

    R. M. Worthington

    Full Text Available A simple method is described, based on standard VHF wind-profiler data, where imbalances of echo power between four off-vertical radar beams, caused by mountain waves, can be used to calculate the orientation of the wave pattern. It is shown that the mountain wave azimuth (direction of the horizontal component of the wavevector, is given by the vector [ W (PE - P W ,W (PN - P S ]; PN, PS, PE, PW are radar echo powers, measured in dB, in beams pointed away from vertical by the same angle towards north, south, east and west respectively, and W is the vertical wind velocity. The method is applied to Aberystwyth MST radar data, and the calculated wave vector usually, but not always, points into the low-level wind direction. The mean vertical wind at Aberystwyth, which may also be affected by tilted aspect-sensitive layers, is investigated briefly using the entire radar output 1990-1997. The mean vertical-wind profile is inconsistent with existing theories, but a new mountain-wave interpretation is proposed.

    Key words. Meteorology and atmospheric dynamics (middle atmosphere dynamics; waves and tides; instruments and techniques.

  10. Stable indications of relic gravitational waves in Wilkinson Microwave Anisotropy Probe data and forecasts for the Planck mission

    International Nuclear Information System (INIS)

    Zhao, W.; Baskaran, D.; Grishchuk, L. P.

    2009-01-01

    The relic gravitational waves are the cleanest probe of the violent times in the very early history of the Universe. They are expected to leave signatures in the observed cosmic microwave background anisotropies. We significantly improved our previous analysis [W. Zhao, D. Baskaran, and L. P. Grishchuk, Phys. Rev. D 79, 023002 (2009)] of the 5-year WMAP TT and TE data at lower multipoles l. This more general analysis returned essentially the same maximum likelihood result (unfortunately, surrounded by large remaining uncertainties): The relic gravitational waves are present and they are responsible for approximately 20% of the temperature quadrupole. We identify and discuss the reasons by which the contribution of gravitational waves can be overlooked in a data analysis. One of the reasons is a misleading reliance on data from very high multipoles l and another a too narrow understanding of the problem as the search for B modes of polarization, rather than the detection of relic gravitational waves with the help of all correlation functions. Our analysis of WMAP5 data has led to the identification of a whole family of models characterized by relatively high values of the likelihood function. Using the Fisher matrix formalism we formulated forecasts for Planck mission in the context of this family of models. We explore in detail various 'optimistic', 'pessimistic', and 'dream case' scenarios. We show that in some circumstances the B-mode detection may be very inconclusive, at the level of signal-to-noise ratio S/N=1.75, whereas a smarter data analysis can reveal the same gravitational wave signal at S/N=6.48. The final result is encouraging. Even under unfavorable conditions in terms of instrumental noises and foregrounds, the relic gravitational waves, if they are characterized by the maximum likelihood parameters that we found from WMAP5 data, will be detected by Planck at the level S/N=3.65.

  11. Observations and modeling of the effects of waves and rotors on submeso and turbulence variability within the stable boundary layer over central Pennsylvania

    Science.gov (United States)

    Suarez Mullins, Astrid

    Terrain-induced gravity waves and rotor circulations have been hypothesized to enhance the generation of submeso motions (i.e., nonstationary shear events with spatial and temporal scales greater than the turbulence scale and smaller than the meso-gamma scale) and to modulate low-level intermittency in the stable boundary layer (SBL). Intermittent turbulence, generated by submeso motions and/or the waves, can affect the atmospheric transport and dispersion of pollutants and hazardous materials. Thus, the study of these motions and the mechanisms through which they impact the weakly to very stable SBL is crucial for improving air quality modeling and hazard predictions. In this thesis, the effects of waves and rotor circulations on submeso and turbulence variability within the SBL is investigated over the moderate terrain of central Pennsylvania using special observations from a network deployed at Rock Springs, PA and high-resolution Weather Research and Forecasting (WRF) model forecasts. The investigation of waves and rotors over central PA is important because 1) the moderate topography of this region is common to most of the eastern US and thus the knowledge acquired from this study can be of significance to a large population, 2) there have been little evidence of complex wave structures and rotors reported for this region, and 3) little is known about the waves and rotors generated by smaller and more moderate topographies. Six case studies exhibiting an array of wave and rotor structures are analyzed. Observational evidence of the presence of complex wave structures, resembling nonstationary trapped gravity waves and downslope windstorms, and complex rotor circulations, resembling trapped and jump-type rotors, is presented. These motions and the mechanisms through which they modulate the SBL are further investigated using high-resolution WRF forecasts. First, the efficacy of the 0.444-km horizontal grid spacing WRF model to reproduce submeso and meso

  12. Strongly nonlinear evolution of low-frequency wave packets in a dispersive plasma

    Science.gov (United States)

    Vasquez, Bernard J.

    1993-01-01

    The evolution of strongly nonlinear, strongly modulated wave packets is investigated in a dispersive plasma using a hybrid numerical code. These wave packets have amplitudes exceeding the strength of the external magnetic field, along which they propagate. Alfven (left helicity) wave packets show strong steepening for p Schrodinger (DNLS) equation.

  13. Phase mixing and surface wave decay in an inhomogeneous plasma

    International Nuclear Information System (INIS)

    Cally, P.S.; Sedlacek, Z.

    1992-02-01

    The decay rate is calculated of an Alfven or plasma surface wave propagating along an inhomogeneous layer of plasma. The inhomogeneous profile is thin and odd, but otherwise arbitrary. The wave's decay rate is determined using two fundamentally different methods, the integral-differential equation approach of Sedlacek and the Fourier expansion technique of Cally, and found by both to depend only on the slope of the Alfven or plasma frequency profile at the r esonant point , and not on other details of its shape. The result is verified numerically. This problem represents a good example with which to compare and contrast the two methods. (author) 3 figs., 7 refs

  14. Improved forward wave propagation and adjoint-based sensitivity kernel calculations using a numerically stable finite-element PML

    DEFF Research Database (Denmark)

    Xie, Zhinan; Komatitsch, Dimitri; Martin, Roland

    2014-01-01

    the auxiliary differential equation (ADE) form of CFS-UPML, which allows for extension to higher order time schemes and is easier to implement. Secondly, we rigorously derive the CFS-UPML formulation for time-domain adjoint elastic wave problems, which to our knowledge has never been done before. Thirdly...... an efficient infinite-domain truncation method suitable for accurately truncating an infinite domain governed by the second-order elastic wave equation written in displacement and computed based on a finite-element (FE) method. In this paper, we make several steps towards this goal. First, we make the 2-D...... in both formulations, in particular if very small mesh elements are present inside the absorbing layer, but we explain how these instabilities can be delayed as much as needed by using a stretching factor to reach numerical stability in practice for applications. Fourthly, in the case of adjoint problems...

  15. The theory of magnetohydrodynamic wave generation by localized sources. III - Efficiency of plasma heating by dissipation of far-field waves. [in solar corona

    Science.gov (United States)

    Collins, William

    1992-01-01

    The fraction of radiation emitted by Alfven waves is calculated by using two separate methods to determine whether the Alfven flux generated in the photosphere is sufficient to heat the corona. One method employs a set of scaling laws for the fluxes as functions of plasma and source parameters; the second method consist of a procedure for calculating the flux in each waveband from the interaction of vector-harmonic components of an arbitrary applied forcing. Both methods indicate that the Alfven flux accounts roughly for half of the total emission. The need to reexamine estimates of the amount of Alfven flux reaching the corona based on observations of plasma disturbances in the photosphere is emphasized.

  16. ENERGY CONTENT AND PROPAGATION IN TRANSVERSE SOLAR ATMOSPHERIC WAVES

    Energy Technology Data Exchange (ETDEWEB)

    Goossens, M.; Van Doorsselaere, T. [Centre for mathematical Plasma Astrophysics, Mathematics Department, Celestijnenlaan 200B bus 2400, B-3001 Heverlee (Belgium); Soler, R. [Solar Physics Group, Departament de Fisica, Universitat de les Illes Balears, E-07122 Palma de Mallorca (Spain); Verth, G., E-mail: tom.vandoorsselaere@wis.kuleuven.be [Solar Physics and Space Plasma Research Centre (SP2RC), School of Mathematics and Statistics, University of Sheffield, Hounsfield Road, Hicks Building, Sheffield S3 7RH (United Kingdom)

    2013-05-10

    Recently, a significant amount of transverse wave energy has been estimated propagating along solar atmospheric magnetic fields. However, these estimates have been made with the classic bulk Alfven wave model which assumes a homogeneous plasma. In this paper, the kinetic, magnetic, and total energy densities and the flux of energy are computed for transverse MHD waves in one-dimensional cylindrical flux tube models with a piecewise constant or continuous radial density profile. There are fundamental deviations from the properties for classic bulk Alfven waves. (1) There is no local equipartition between kinetic and magnetic energy. (2) The flux of energy and the velocity of energy transfer have, in addition to a component parallel to the magnetic field, components in the planes normal to the magnetic field. (3) The energy densities and the flux of energy vary spatially, contrary to the case of classic bulk Alfven waves. This last property has the important consequence that the energy flux computed with the well known expression for bulk Alfven waves could overestimate the real flux by a factor in the range 10-50, depending on the flux tube equilibrium properties.

  17. Finite orbit energetic particle linear response to toroidal Alfven eigenmodes

    International Nuclear Information System (INIS)

    Berk, H.L.; Ye Huanchun; Breizman, B.N.

    1992-01-01

    The linear response of energetic particles of the TAE modes is calculated taking into account their finite orbit excursion from the flux surfaces. The general expression reproduces the previously derived theory for small banana width; when the banana width Δ b is much larger than the mode thickness Δ m , we obtain a new compact expression for the linear power transfer. When Δ m /Δ b m /Δ b from that predicted by the narrow orbit theory. A comparison is made of the contribution to the TAE growth rate of energetic particles with a slowing-down distribution arising from an isotropic source, and a balanced-injected beam source when the source speed is close to the Alfven speed. For the same stored energy density, the contribution from the principal resonances (vertical strokev parallel vertical stroke=v A ) is substantially enhanced in the beam case compared to the isotropic case, while the contribution at the higher sidebands (vertical strokev parallel vertical stroke=v A /(2l-1) with l≥2) is substantially reduced. (orig.)

  18. Wave

    DEFF Research Database (Denmark)

    Ibsen, Lars Bo

    2008-01-01

    Estimates for the amount of potential wave energy in the world range from 1-10 TW. The World Energy Council estimates that a potential 2TW of energy is available from the world’s oceans, which is the equivalent of twice the world’s electricity production. Whilst the recoverable resource is many...

  19. Searching for stable Si(n)C(n) clusters: combination of stochastic potential surface search and pseudopotential plane-wave Car-Parinello simulated annealing simulations.

    Science.gov (United States)

    Duan, Xiaofeng F; Burggraf, Larry W; Huang, Lingyu

    2013-07-22

    To find low energy Si(n)C(n) structures out of hundreds to thousands of isomers we have developed a general method to search for stable isomeric structures that combines Stochastic Potential Surface Search and Pseudopotential Plane-Wave Density Functional Theory Car-Parinello Molecular Dynamics simulated annealing (PSPW-CPMD-SA). We enhanced the Sunders stochastic search method to generate random cluster structures used as seed structures for PSPW-CPMD-SA simulations. This method ensures that each SA simulation samples a different potential surface region to find the regional minimum structure. By iterations of this automated, parallel process on a high performance computer we located hundreds to more than a thousand stable isomers for each Si(n)C(n) cluster. Among these, five to 10 of the lowest energy isomers were further optimized using B3LYP/cc-pVTZ method. We applied this method to Si(n)C(n) (n = 4-12) clusters and found the lowest energy structures, most not previously reported. By analyzing the bonding patterns of low energy structures of each Si(n)C(n) cluster, we observed that carbon segregations tend to form condensed conjugated rings while Si connects to unsaturated bonds at the periphery of the carbon segregation as single atoms or clusters when n is small and when n is large a silicon network spans over the carbon segregation region.

  20. Searching for Stable SinCn Clusters: Combination of Stochastic Potential Surface Search and Pseudopotential Plane-Wave Car-Parinello Simulated Annealing Simulations

    Directory of Open Access Journals (Sweden)

    Larry W. Burggraf

    2013-07-01

    Full Text Available To find low energy SinCn structures out of hundreds to thousands of isomers we have developed a general method to search for stable isomeric structures that combines Stochastic Potential Surface Search and Pseudopotential Plane-Wave Density Functional Theory Car-Parinello Molecular Dynamics simulated annealing (PSPW-CPMD-SA. We enhanced the Sunders stochastic search method to generate random cluster structures used as seed structures for PSPW-CPMD-SA simulations. This method ensures that each SA simulation samples a different potential surface region to find the regional minimum structure. By iterations of this automated, parallel process on a high performance computer we located hundreds to more than a thousand stable isomers for each SinCn cluster. Among these, five to 10 of the lowest energy isomers were further optimized using B3LYP/cc-pVTZ method. We applied this method to SinCn (n = 4–12 clusters and found the lowest energy structures, most not previously reported. By analyzing the bonding patterns of low energy structures of each SinCn cluster, we observed that carbon segregations tend to form condensed conjugated rings while Si connects to unsaturated bonds at the periphery of the carbon segregation as single atoms or clusters when n is small and when n is large a silicon network spans over the carbon segregation region.

  1. Beta-Suppression of Alfven Cascade Modes in the National Spherical Torus Experiment

    International Nuclear Information System (INIS)

    Fredrickson, E.D.; N.A. Crocker; N.N. Gorelenkov; W.W. Heidbrink; S. Kubota; F.M. Levinton; H. Yuh; J.E. Menard; Bell, R.E.

    2007-01-01

    The coupling of Alfven Cascade (AC) modes or reversed-shear Alfven eigenmodes (rsAE) to Geodesic Acoustic Modes (GAM) implies that the range of the AC frequency sweep is reduced as the electron β is increased. This model provides an explanation for the otherwise surprising absence of AC modes in reverse shear NSTX plasmas, given the rich spectrum of beam-driven instabilities typically seen in NSTX. In experiments done at very low β to investigate this prediction, AC modes were seen, and as the β e was increased from shot to shot, the range of the AC frequency sweep was reduced, in agreement with this theoretical prediction.

  2. Distribution of stable isotopes in arid storms . II. A double-component model of kinematic wave flow and transport

    Science.gov (United States)

    Yakirevich, Alexander; Dody, Avraham; Adar, Eilon M.; Borisov, Viacheslav; Geyh, Mebus

    A new mathematical method based on a double-component model of kinematic wave flow and approach assesses the dynamic isotopic distribution in arid rain storms and runoff. This model describes the transport and δ18O evolution of rainfall to overland flow and runoff in an arid rocky watershed with uniformly distributed shallow depression storage. The problem was solved numerically. The model was calibrated using a set of temporal discharge and δ18O distribution data for rainfall and runoff collected on a small rocky watershed at the Sede Boker Experimental Site, Israel. Simulation of a reliable result with respect to observation was obtained after parameter adjustment by trial and error. Sensitivity analysis and model application were performed. The model is sensitive to changes in parameters characterizing the depression storage zones. The model reflects the effect of the isotopic memory in the water within the depression storage between sequential rain spells. The use of the double-component model of kinematic wave flow and transport provides an appropriate qualitative and quantitative fitting between computed and observed δ18O distribution in runoff. RésuméUne nouvelle méthode mathématique basée sur un modèle à double composante d'écoulement et de transport par une onde cinématique a été développée pour évaluer la distribution dynamique en isotopes dans les précipitations et dans l'écoulement en région aride. Ce modèle décrit le transport et les variations des δ18O de la pluie vers le ruissellement et l'écoulement de surface dans un bassin aride rocheux où le stockage se fait dans des dépressions peu profondes uniformément réparties. Le problème a été résolu numériquement. Le modèle a été calibré au moyen d'une chronique de débits et d'une distribution des δ18O dans la pluie et dans l'écoulement de surface sur un petit bassin versant rocheux du site expérimental de Sede Boker (Israël). La simulation d'un résultat cr

  3. Experimental observations of surface electrostatic wave on KT-5B tokamak

    International Nuclear Information System (INIS)

    Zhu Shiyao; Han Shensheng

    1991-01-01

    Shear Alfven waves have been successfully excited in KT-5B small tokamak by means of the one turn longitudinal loop antenna located in the shadow area. The measured antenna loadings show their rich structure, and the loadings are also found to be sensitive to the plasma current. Preliminary evidence of surface electrostatic wave was observed

  4. Numerical analysis of current-driven collisional drift and Alfven instabilities in a sheared magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Nishi-Kawa, K.I.

    1978-12-01

    Collisional drift eigenmode, coupled to shear Alfven mode, is studied numerically in a current-carrying slab with finite magnetic shear. It is shown that, due to finite-beta effects, in the presence of current, a drift mode becomes unstable.

  5. The effect of toroidal plasma rotation on low-frequency reversed shear Alfven eigenmodes in tokamaks

    NARCIS (Netherlands)

    Haverkort, J. W.

    2012-01-01

    The influence of toroidal plasma rotation on the existence of reversed shear Alfven eigenmodes (RSAEs) near their minimum frequency is investigated analytically. An existence condition is derived showing that a radially decreasing kinetic energy density is unfavourable for the existence of RSAEs.

  6. Electromagnetic transport components and sheared flows in drift-Alfven turbulence

    DEFF Research Database (Denmark)

    Naulin, V.

    2003-01-01

    Results from three-dimensional numerical simulations of drift-Alfven turbulence in a toroidal geometry with sheared magnetic field are presented. The simulations show a relation between self-generated poloidal shear flows and magnetic field perturbations. For large values of the plasma beta we...

  7. Alfven, Hugo. Die drei Schwedischen Rhapsodien op. 19, 24 und 47 / Andreas Meyer

    Index Scriptorium Estoniae

    Meyer, Andreas

    1995-01-01

    Uuest heliplaadist "Alfven, Hugo. Die drei Schwedischen Rhapsodien op. 19, 24 und 47, En skärgardssägen op. 20, Suite aus Der Berkönig. Königliche Stockholmer Philharmoniker, Neeme Järvi". AD: 1987-1992. BIS?Disco-Center CD 725 (WD: 77'00")

  8. Stable Boundary Layer Issues

    NARCIS (Netherlands)

    Steeneveld, G.J.

    2012-01-01

    Understanding and prediction of the stable atmospheric boundary layer is a challenging task. Many physical processes are relevant in the stable boundary layer, i.e. turbulence, radiation, land surface coupling, orographic turbulent and gravity wave drag, and land surface heterogeneity. The

  9. Cusp Alfven and Plasma Electrodynamics Rocket (CAPER) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Launch a single rocket from Andoya Rocket Range into an active cusp event. Observe electric and magnetic fields, HF waves, electron and ion distributions and...

  10. High-Q energy trapping of temperature-stable shear waves with Lamé cross-sectional polarization in a single crystal silicon waveguide

    Science.gov (United States)

    Tabrizian, R.; Daruwalla, A.; Ayazi, F.

    2016-03-01

    A multi-port electrostatically driven silicon acoustic cavity is implemented that efficiently traps the energy of a temperature-stable eigen-mode with Lamé cross-sectional polarization. Dispersive behavior of propagating and evanescent guided waves in a ⟨100⟩-aligned single crystal silicon waveguide is used to engineer the acoustic energy distribution of a specific shear eigen-mode that is well known for its low temperature sensitivity when implemented in doped single crystal silicon. Such an acoustic energy trapping in the central region of the acoustic cavity geometry and far from substrate obviates the need for narrow tethers that are conventionally used for non-destructive and high quality factor (Q) energy suspension in MEMS resonators; therefore, the acoustically engineered waveguide can simultaneously serve as in-situ self-oven by passing large uniformly distributed DC currents through its body and without any concern about perturbing the mode shape or deforming narrow supports. Such a stable thermo-structural performance besides large turnover temperatures than can be realized in Lamé eigen-modes make this device suitable for implementation of ultra-stable oven-controlled oscillators. 78 MHz prototypes implemented in arsenic-doped single crystal silicon substrates with different resistivity are transduced by in- and out-of-plane narrow-gap capacitive ports, showing high Q of ˜43k. The low resistivity device shows an overall temperature-induced frequency drift of 200 ppm over the range of -20 °C to 80 °C, which is ˜15× smaller compared to overall frequency drift measured for the similar yet high resistivity device in the same temperature range. Furthermore, a frequency tuning of ˜2100 ppm is achieved in high resistivity device by passing 45 mA DC current through its body. Continuous operation of the device under such a self-ovenizing current over 10 days did not induce frequency instability or degradation in Q.

  11. Linear wave propagation in a hot axisymmetric toroidal plasma

    Energy Technology Data Exchange (ETDEWEB)

    Jaun, A. [Ecole Polytechnique Federale, Lausanne (Switzerland). Centre de Recherche en Physique des Plasma (CRPP)

    1995-03-01

    Kinetic effects on the propagation of the Alfven wave are studied for the first time in a toroidal plasma relevant for experiments. This requires the resolution of a set of coupled partial differential equations whose coefficients depend locally on the plasma parameters. For this purpose, a numerical wave propagation code called PENN has been developed using either a bilinear or a bicubic Hermite finite element discretization. It solves Maxwell`s equations in toroidal geometry, with a dielectric tensor operator that takes into account the linear response of the plasma. Two different models have been implemented and can be used comparatively to describe the same physical case: the first treats the plasma as resistive fluids and gives results which are in good agreement with toroidal fluid codes. The second is a kinetic model and takes into account the finite size of the Larmor radii; it has successfully been tested against a kinetic plasma model in cylindrical geometry. New results have been obtained when studying kinetic effects in toroidal geometry. Two different conversion mechanisms to the kinetic Alfven wave have been described: one occurs at toroidally coupled resonant surfaces and is the kinetic counterpart of the fluid models` resonance absorption. The other has no such correspondence and results directly from the toroidal coupling between the kinetic Alfven wave and the global wavefield. An analysis of a heating scenario suggests that it might be difficult to heat a plasma with Alfven waves up to temperatures that are relevant for a tokamak reactor. Kinetic effects are studied for three types of global Alfven modes (GAE, TAE, BAE) and a new class of kinetic eigenmodes is described which appear inside the fluid gap: it could be related to recent observations in the JET (Joint European Torus) tokamak. (author) 56 figs., 6 tabs., 58 refs.

  12. The Berk-Breizman Model as a Paradigm for Energetic Particle-driven Alfven Eigenmodes

    International Nuclear Information System (INIS)

    Lesur, M.

    2010-01-01

    The achievement of sustained nuclear fusion in magnetically confined plasma relies on efficient confinement of alpha particles. Such particles can excite instabilities in the frequency range of Alfven Eigenmodes (AEs), which significantly degrade their confinement and threatens the vacuum vessel of future reactors. In the case of an isolated single resonance, the description of AE destabilization by high-energy ions is homothetic to the so-called Berk-Breizman (BB) problem. A semi-Lagrangian simulation code, COBBLES, is developed to solve the initial-value BB problem in both perturbative (δf) and self-consistent (full-f) approaches. Two collision models are considered, namely a Krook model, and a model that includes dynamical friction (drag) and velocity-space diffusion. The nonlinear behavior of instabilities in experimentally-relevant conditions is categorized into steady-state, periodic, chaotic, and frequency-sweeping (chirping) regimes, depending on external damping rate and collision frequency. The chaotic regime is shown to extend into a linearly stable region, and a mechanism that solves the paradox formed by the existence of such subcritical instabilities is proposed. Analytic and semi-empirical laws for nonlinear chirping characteristics, such as sweeping-rate, lifetime, and asymmetry, are developed and validated. Long-time simulations demonstrate the existence of a quasi-periodic chirping regime. Although the existence of such regime stands for both collision models, drag and diffusion are essential to reproduce the alternation between major chirping events and quiescent phases, which is observed in experiments. A new method for analyzing fundamental kinetic plasma parameters, such as linear drive and external damping rate, is developed. The method, which consists of fitting procedures between COBBLES simulations and quasi-periodic chirping AE experiments, does not require any internal diagnostics. This approach is applied to Toroidicity-induced AEs

  13. Phenomenology of non-Alfvenic turbulence in a uniformly expanding medium

    Science.gov (United States)

    Matthaeus, W. H.; Zank, G. P.

    1995-01-01

    Transport and decay of magnetohydrodynamic (MHD) turbulence in a weakly inhomogeneous uniformly expanding medium involves a fairly complex formalism, even for the case where no spectral information is required. Here we argue that the phenomenology for decay simplifies greatly if: (1) the cross helicity (Alfvenicity) is small, (2) the dynamical influence of the large scale magnetic field is negligible either because of spectral anisotropy or because the expansion speed is much greater than the corresponding Alfven speed, and (3) the ratio of kinetic energy to magnetic energy for the fluctuations is either unity or some other constant. These conditions are acceptable as an approximation to solar wind turbulence in the outer heliosphere. In these circumstances a reasonable MHD energy-containing phenomenology is essentially that of locally homogeneous Kolmogoroff turbulence in a uniformly expanding medium. Analytical solutions for this model are presented for both undriven and driven cases.

  14. MMS Observations of Reconnection at Dayside Magnetopause Crossings During Transitions of the Solar Wind to Sub-Alfvenic Flow

    Science.gov (United States)

    Farrugia, C. J.; Lugaz, N.; Alm, L.; Vasquez, B. J.; Argall, M. R.; Kucharek, H.; Matsui, H.; Torbert, R. B.; Lavraud, B.; Le Contel, O.; Shuster, J. R.; Burch, J. L.; Khotyaintsev, Y. V.; Giles, B. L.; Fuselier, S. A.; Gershman, D. J.; Ergun, R.; Eastwood, J. P.; Cohen, I. J.; Dorelli, J.; Lindqvist, P. A.; Strangeway, R. J.; Russell, C. T.; Marklund, G. T.; Paulson, K.; Petrinec, S.; Phan, T.; Pollock, C.

    2017-12-01

    We present MMS) observations during two dayside magnetopause crossingsunder hitherto unexamined conditions: (i) when the bow shock is weakening and the solar wind transitioning to sub-Alfvenic flow, and (ii) when it is reforming. Interplanetary conditions consist of a magnetic cloud with (i) a strong B ( 20 nT) pointing south, and (ii) a density profile with episodic decreases to values of 0.3 /cc followed by moderate recovery. During the crossings he magnetosheath magnetic field is stronger than the magnetosphere field by a factor of 2.2. As a result, during the outbound crossing through the ion diffusion region, MMS observed an inversion of relative positions of the X and stagnation (S) lines from that typically the case: the S line was closer to the magnetosheath side. The S-line appears in the form of a slow expansion fan near which most of the energy dissipation is taking place. While in the magnetosphere between the crossings, MMS observed strong field and flow perturbations, which we argue to be due kinetic Alfvén waves.During the reconnection interval, whistler mode waves generated by an electron temperature anisotropy (Tperp>Tpar) were observed. Another aim of the paper isto distinguish bow shock-induced field and flow perturbations from reconnection-related signatures.The high resolution MMS data together with 2D hybrid simulations of bow shock dynamics helped us to distinguish between the two sources. We show examples of bow shock-related effects (such as heating) and reconnection effects such as accelerated flows satisfying the Walen relation.

  15. Warm-ion drift Alfven turbulence and the L-H transition

    International Nuclear Information System (INIS)

    Scott, B.

    1998-01-01

    Computations of fluid drift turbulence treating ions and electrons on equal footing, including both temperatures, are conducted in a model toroidal geometry. The resulting 'ion mixing mode' turbulence bears features of both electron drift-Alfven and ion temperature gradient turbulence, and nonlinear sensitivity to the relative strengths of the density and temperature gradients provides a possible route to the bifurcation needed for the L-H transition. (author)

  16. Alfvenic drift Kelvin-Helmholtz instability in the presence of an equilibrium electric field

    Science.gov (United States)

    Sharma, Avadhesh C.; Srivastava, Krishna M.

    1992-01-01

    The Alfvenic drift Kelvin-Helmholtz instability of a high-beta plasma in the presence of equilibrium magnetic and electric fields perpendicular to each other are studied. The plasma components are assumed to have 2D sheared velocity in y and z directions. The dispersion relation is derived, and the instability criterion is determined. It is shown that the equilibrium electric field has either stabilizing or destabilizing effect depending on certain conditions discussed in the paper.

  17. Expansion of parameter space for Toroidal Alfven Eigenmode experiments in TFTR

    Energy Technology Data Exchange (ETDEWEB)

    Wong, K.L.; Wilson, J.R.; Chang, Z.Y.; Fredrickson, E.; Hammett, G.W.; Bush, C.; Nazikian, R.; Phillips, C.K.; Snipes, J.; Taylor, G.

    1993-05-01

    Several techniques were used to excite toroidal Alfven Eigenmodes in the Tokamak Fusion Test Reactor (TFTR) at magnetic fields above 10 kG. These involve pellet injection to raise the plasma density, variation of plasma current to change the energetic ion orbit and the q-profile, and ICRF heating to produce energetic hydrogen ions at velocities comparable to 3.5 MeV alpha particles. These experimental results are presented and relevance to fusion reactors are discussed.

  18. Interstellar electron density fluctuations due to cosmic-ray acceleration at supernova remnant shock waves

    International Nuclear Information System (INIS)

    Max, C.E.; Zachary, A.; Arons, J.

    1988-01-01

    We have performed computer simulations to investigate whether sizeable electron density fluctuations might be produced in the process of cosmic-ray acceleration at supernova remnant shock waves. The hypothesis is the following: Cosmic-ray acceleration via a Fermi I mechanism leads to large-amplitude Alfven waves upstream of a supernova remnant shock wave. If the Alfven waves reach a large enough amplitude, they can drive sound waves in the interstellar medium. The fluctuations in the electron density due to these sound waves will then contribute to the observed interstellar scintillation. Our simulations suggest that this mechanism may be a plausible one. Issues remaining to be addressed include the resulting filling factor, and the integrated strength C 2 /sub n/ to be expected for the turbulence

  19. Spectral analysis of ICRF [Ion Cyclotron Range of Frequencies] wave field measurements in the Tara Central Cell

    International Nuclear Information System (INIS)

    Wang, L.; Golovato, S.N.; Horne, S.F.

    1987-12-01

    A simple spectral analysis technique has been developed to analyse the digital signals from an array of magnetic probes for ICRF field measurements in the Tara Tandem Mirror central cell. The wave dispersion relations of both the applied ICRF and the Alfven Ion Cyclotron Instability have been studied and the waves have been identified as slow in cyclotron waves. The radial profiles of field amplitude and wave vectors were also generated. 9 refs., 10 figs

  20. A Highly Stable Marching-on-in-Time Volume Integral Equation Solver for Analyzing Transient Wave Interactions on High-Contrast Scatterers

    KAUST Repository

    Bagci, Hakan

    2014-01-06

    Time domain integral equation (TDIE) solvers represent an attractive alternative to finite difference (FDTD) and finite element (FEM) schemes for analyzing transient electromagnetic interactions on composite scatterers. Current induced on a scatterer, in response to a transient incident field, generates a scattered field. First, the scattered field is expressed as a spatio-temporal convolution of the current and the Green function of the background medium. Then, a TDIE is obtained by enforcing boundary conditions and/or fundamental field relations. TDIEs are often solved for the unknown current using marching on-in-time (MOT) schemes. MOT-TDIE solvers expand the current using local spatio-temporal basis functions. Inserting this expansion into the TDIE and testing the resulting equation in space and time yields a lower triangular system of equations (termed MOT system), which can be solved by marching in time for the coefficients of the current expansion. Stability of the MOT scheme often depends on how accurately the spatio-temporal convolution of the current and the Green function is discretized. In this work, band-limited prolate-based interpolation functions are used as temporal bases in expanding the current and discretizing the spatio-temporal convolution. Unfortunately, these functions are two sided, i.e., they require ”future” current samples for interpolation, resulting in a non-causal MOT system. To alleviate the effect of non-causality and restore the ability to march in time, an extrapolation scheme can be used to estimate the future values of the currents from their past values. Here, an accurate, stable and band-limited extrapolation scheme is developed for this purpose. This extrapolation scheme uses complex exponents, rather than commonly used harmonics, so that propagating and decaying mode fields inside the dielectric scatterers are accurately modeled. The resulting MOT scheme is applied to solving the time domain volume integral equation (VIE

  1. Theory of magnetospheric hydromagnetic waves excited by energetic ring-current protons

    International Nuclear Information System (INIS)

    Chen, Liu; Hasegawa, Akira.

    1987-06-01

    A general theoretical formulation, allowing finite ion Larmor radii, general magnetic field geometries and plasma equilibria, has been developed to investigate excitations of magnetohydrodynamic (MHD) Alfven waves within the earth's magnetosphere by the storm-time energetic ring-current protons. In particular, it is found that for adiabatically injected protons, various predicted instability properties are consistent with satellite observations. 8 refs

  2. Wave propagation in a magnetically structured atmosphere. Pt. 2

    International Nuclear Information System (INIS)

    Roberts, B.

    1981-01-01

    Magnetic fields may introduce structure (inhomogeneity) into an otherwise uniform medium and thus change the nature of wave propagation in that medium. As an example of such structuring, wave propagation in an isolated magnetic slab is considered. It is supposed that disturbances outside the slab are laterally non-propagating. The effect of gravity is ignored. The field can support the propagation of both body and surface waves. The existence and nature of these waves depends upon the relative magnitudes of the sound speed c 0 and Alfven speed upsilonsub(A) inside the slab, and the sound speed csub(e) in the field-free environment. (orig./WL)

  3. The Potential for Ambient Plasma Wave Propulsion

    Science.gov (United States)

    Gilland, James H.; Williams, George J.

    2016-01-01

    A truly robust space exploration program will need to make use of in-situ resources as much as possible to make the endeavor affordable. Most space propulsion concepts are saddled with one fundamental burden; the propellant needed to produce momentum. The most advanced propulsion systems currently in use utilize electric and/or magnetic fields to accelerate ionized propellant. However, significant planetary exploration missions in the coming decades, such as the now canceled Jupiter Icy Moons Orbiter, are restricted by propellant mass and propulsion system lifetimes, using even the most optimistic projections of performance. These electric propulsion vehicles are inherently limited in flexibility at their final destination, due to propulsion system wear, propellant requirements, and the relatively low acceleration of the vehicle. A few concepts are able to utilize the environment around them to produce thrust: Solar or magnetic sails and, with certain restrictions, electrodynamic tethers. These concepts focus primarily on using the solar wind or ambient magnetic fields to generate thrust. Technically immature, quasi-propellantless alternatives lack either the sensitivity or the power to provide significant maneuvering. An additional resource to be considered is the ambient plasma and magnetic fields in solar and planetary magnetospheres. These environments, such as those around the Sun or Jupiter, have been shown to host a variety of plasma waves. Plasma wave propulsion takes advantage of an observed astrophysical and terrestrial phenomenon: Alfven waves. These are waves that propagate in the plasma and magnetic fields around and between planets and stars. The generation of Alfven waves in ambient magnetic and plasma fields to generate thrust is proposed as a truly propellantless propulsion system which may enable an entirely new matrix of exploration missions. Alfven waves are well known, transverse electromagnetic waves that propagate in magnetized plasmas at

  4. The theory of magnetohydrodynamic wave generation by localized sources. I - General asymptotic theory

    Science.gov (United States)

    Collins, William

    1989-01-01

    The magnetohydrodynamic wave emission from several localized, periodic, kinematically specified fluid velocity fields are calculated using Lighthill's method for finding the far-field wave forms. The waves propagate through an isothermal and uniform plasma with a constant B field. General properties of the energy flux are illustrated with models of pulsating flux tubes and convective rolls. Interference theory from geometrical optics is used to find the direction of minimum fast-wave emission from multipole sources and slow-wave emission from discontinuous sources. The distribution of total flux in fast and slow waves varies with the ratios of the source dimensions l to the acoustic and Alfven wavelengths.

  5. Exploring the role of wave drag in the stable stratified oceanic and atmospheric bottom boundary layer in the cnrs-toulouse (cnrm-game) large stratified water flume

    NARCIS (Netherlands)

    Kleczek, M.; Steeneveld, G.J.; Paci, A.; Calmer, R.; Belleudy, A.; Canonici, J.C.; Murguet, F.; Valette, V.

    2014-01-01

    This paper reports on a laboratory experiment in the CNRM-GAME (Toulouse) stratified water flume of a stably stratified boundary layer, in order to quantify the momentum transfer due to orographically induced gravity waves by gently undulating hills in a boundary layer flow. In a stratified fluid, a

  6. Properties of Hall magnetohydrodynamic waves modified by electron inertia and finite Larmor radius effects

    International Nuclear Information System (INIS)

    Damiano, P. A.; Wright, A. N.; McKenzie, J. F.

    2009-01-01

    The linear wave equation (sixth order in space and time) and the corresponding dispersion relation is derived for Hall magnetohydrodynamic (MHD) waves including electron inertial and finite Larmor radius effects together with several limiting cases for a homogeneous plasma. We contrast these limits with the solution of the full dispersion relation in terms of wave normal (k perpendicular ,k || ) diagrams to clearly illustrate the range of applicability of the individual approximations. We analyze the solutions in terms of all three MHD wave modes (fast, slow, and Alfven), with particular attention given to how the Alfven branch (including the cold ideal field line resonance (FLR) [D. J. Southwood, Planet. Space Sci. 22, 483 (1974)]) is modified by the Hall term and electron inertial and finite Larmor radius effects. The inclusion of these terms breaks the degeneracy of the Alfven branch in the cold plasma limit and displaces the asymptote position for the FLR to a line defined by the electron thermal speed rather than the Alfven speed. For a driven system, the break in this degeneracy implies that a resonance would form at one field line for small k perpendicular and then shift to another as k perpendicular →∞. However for very large ωk perpendicular /V A , Hall term effects lead to a coupling to the whistler mode, which would then transport energy away from the resonant layer. The inclusion of the Hall term also significantly effects the characteristics of the slow mode. This analysis reveals an interesting 'swapping' of the perpendicular root behavior between the slow and Alfven branches.

  7. The Development of Drift Wave Turbulence in Magnetic Reconnection

    Science.gov (United States)

    McMurtrie, L.; Drake, J. F.; Swisdak, M. M.

    2013-12-01

    An important feature in collisionless magnetic reconnection is the development of sharp discontinuities along the separatrices bounding the Alfvenic outflow. The typical scale length of these features is ρs (the Larmor radius based on the sound speed) for guide field reconnection. Temperature gradients in the inflowing plasma (as might be found in the magnetopause) can lead to instabilities at these separatrices, specifically drift wave turbulence. We present standalone 2D and 3D PIC simulations of drift wave turbulence to investigate scaling properties and growth rates. Further investigations of the relative importance of drift wave turbulence in the development of reconnection will also be considered.

  8. Stable isotopes

    International Nuclear Information System (INIS)

    Evans, D.K.

    1986-01-01

    Seventy-five percent of the world's stable isotope supply comes from one producer, Oak Ridge Nuclear Laboratory (ORNL) in the US. Canadian concern is that foreign needs will be met only after domestic needs, thus creating a shortage of stable isotopes in Canada. This article describes the present situation in Canada (availability and cost) of stable isotopes, the isotope enrichment techniques, and related research programs at Chalk River Nuclear Laboratories (CRNL)

  9. A full wave code for ion cyclotron waves in toroidal plasmas

    International Nuclear Information System (INIS)

    Brambilla, M.

    1996-02-01

    The code TORIC solves the finite Larmor radius wave equations in the ion cyclotron frequency range in arbitrary axisymmetric toroidal geometry. The model used describes the compressional and torsional Alfven waves (or, depending on the parallel phase velocity, the kinetic counterpart of the latter), and ion Bernstein waves excited by mode conversion near the first ion cyclotron harmonic. In the ion response the broadening of the absorption regions due to the finite width of the cyclotron resonance of individual ions in toroidal geometry is taken into account. The parallel component of the wave electric field is evaluated on the same footing as the transverse ones; the response of the electrons includes Landau damping, Transit Time damping and the mixed term. The numerical approach uses a spectral representation of the solution in the poloidal angle θ, and cubic finite elements in the radial variable ψ. Great flexibility is provided in the way ion Bernstein waves excited by mode conversion are damped when their wavelength becomes comparable with the ion Larmor radius, in the regularization of Alfven resonances, and in the treatment of the outer plasma layers. As an option, we have also implemented the Order Reduction Algorithm, which provides a particularly fast, yet accurate evaluation of the power deposition profiles in toroidal geometry. Thee present report describes the model and its numerical implementation, and provides the information needed to use the code. A few examples illustrating applications of TORIC are also included. (orig.)

  10. Zonal Flows Driven by Small-Scale Drift-Alfven Modes

    International Nuclear Information System (INIS)

    Li Dehui; Zhou Deng

    2011-01-01

    Generation of zonal flows by small-scale drift-Alfven modes is investigated by adopting the approach of parametric instability with the electron polarization drift included. The zonal mode can be excited by primary modes propagating at both electron and ion diamagnetic drift directions in contrast to the assertion in previous studies that only primary modes propagating in the ion diamagnetic drift directions can drive zonal instabilities. Generally, the growth rate of the driven zonal mode is in the same order as that in previous study. However, different from the previous work, the growth rate is no longer proportional to the difference between the diamagnetic drift frequencies of electrons and ions. (magnetically confined plasma)

  11. Theory of high-n toroidicity-induced shear Alfven eigenmode in tokamaks

    International Nuclear Information System (INIS)

    Fu, G.Y.; Cheng, C.Z.; Princeton Univ., NJ

    1989-07-01

    High-n WKB-ballooning mode equation is employed to study toroidicity-induced shear Alfven eigenmodes (TAE) in the δ - α space, where δ = (r/q)(dq/dr) is the magnetic shear, and α = -(2Rq 2 /B 2 )(dp/dr) is the normalized pressure gradient for tokamak plasmas. In the ballooning mode first stability region, TAE modes are found to exist only for α less than some critical value α c . We also find that these TAE modes reappear in the ballooning mode second stability region for bands of α values. The global envelope structures of these TAE modes are studied by WKB method and are found to be bounded radially if the local mode frequency has a maximum in radius. 15 refs., 14 figs

  12. Experimental study of toroidicity-induced Alfven eigenmode (TAE) stability at high q(0)

    Energy Technology Data Exchange (ETDEWEB)

    Batha, S.H.; Levinton, F.M. [Fusion Physics and Technology, Torrance, CA (United States); Spong, D.A. [Oak Ridge National Lab., TN (United States)] [and others

    1995-07-01

    Experiments to destabilize the Toroidicity-induced Alfven Eigenmode (TAE) by energetic alpha particles were performed on the Tokamak Fusion Test Reactor using deuterium and tritium fuel. To decrease the alpha particle pressure instability threshold, discharges with an elevated value of q(0) > 1.5 were used. By raising q(0), the radial location of the low toroidal-mode-number TAE gaps moves toward the magnetic axis and into alignment with the region of maximum alpha pressure gradient, thereby (in theory) lowering the value of {beta}{sub {alpha}}(0) required for instability. No TAE activity was observed when the central alpha particle {beta}{sub {alpha}} reached 0.08% in a discharge with fusion power of 2.4 MW. Calculations show that the fusion power is within a factor of 1.5 to 3 of the instability threshold.

  13. New Digital Control System for the JET Alfv'en Eigenmode Active Spectroscopy Diagnostic

    Science.gov (United States)

    Woskov, P. P.; Stillerman, J.; Porkolab, M.; Fasoli, A.; Testa, D.; Galvao, R.; Pires Dos Resis, A.; Pires de Sa, W.; Ruchko, L.; Blanchard, P.; Figueiredo, J.; Dorling, S.; Farthing, J.; Graham, M.; Dowson, S.; Yu, L.; Concezzi, S.

    2012-10-01

    The state-of-the-art JET Alfv'en active spectroscopy diagnostic with eight internal inductive antennas is being upgraded from a single 5 kW tube amplifier to eight parallel, 10 -- 1000 kHz, 4 kW solid state class D power switching amplifiers. A new digital control system has been designed with arbitrary constant phase controlled frequency sweeps for traveling mode studies, amplifier gain control through a feedback loop referenced to programmed antenna current profiles, and integration with CODAS for synchronization, triggering, gating, and fault tripping. A combination of National Instruments Real Time LabView software and FPGA circuits is used to achieve the multiple control requirements with better than 1 ms response. System specifications and digital-analog design trade offs for sweep rates, response times, frequency resolution, and voltage levels will be presented.

  14. Optogenetically Blocking Sharp Wave Ripple Events in Sleep Does Not Interfere with the Formation of Stable Spatial Representation in the CA1 Area of the Hippocampus.

    Directory of Open Access Journals (Sweden)

    Krisztián A Kovács

    Full Text Available During hippocampal sharp wave/ripple (SWR events, previously occurring, sensory input-driven neuronal firing patterns are replayed. Such replay is thought to be important for plasticity-related processes and consolidation of memory traces. It has previously been shown that the electrical stimulation-induced disruption of SWR events interferes with learning in rodents in different experimental paradigms. On the other hand, the cognitive map theory posits that the plastic changes of the firing of hippocampal place cells constitute the electrophysiological counterpart of the spatial learning, observable at the behavioral level. Therefore, we tested whether intact SWR events occurring during the sleep/rest session after the first exploration of a novel environment are needed for the stabilization of the CA1 code, which process requires plasticity. We found that the newly-formed representation in the CA1 has the same level of stability with optogenetic SWR blockade as with a control manipulation that delivered the same amount of light into the brain. Therefore our results suggest that at least in the case of passive exploratory behavior, SWR-related plasticity is dispensable for the stability of CA1 ensembles.

  15. Behaviour of hot ions and spontaneously excited Alfven ion cyclotron mode in the GAMMA 10 tandem mirror

    International Nuclear Information System (INIS)

    Ichimura, Makoto; Tanaka, Satoru; Nakamura, Motoyuki

    2000-01-01

    With a strong ion cyclotron range of frequency (ICRF) heating in the GAMMA 10 tandem mirror, an ion temperature of 10 keV has been attained and a temperature anisotropy has been observed to become greater than 10. Unstable Alfven ion cyclotron (AIC) modes are driven with such a strong temperature anisotropy. High energy ions with energies of more than 50 keV are detected both parallel and perpendicular to the magnetic field lines. With the AIC modes, increase of the high energy ions at the end of the device and decrease of the high energy ions with a pitch angle of nearly 90 degrees are observed. The pitch angle scattering of high energy ions due to the spontaneously excited Alfven modes in the plasma is suggested. (author)

  16. Oblique propagation of surface waves in an ideal Hall-magnetohydrodynamic finite β plasma slab

    International Nuclear Information System (INIS)

    Zhelyazkov, Ivan; Mann, Gottfried

    2003-01-01

    The paper considers the most general case of oblique propagation of sausage and kink magnetohydrodynamic (MHD) surface waves in an ideal finite β magnetized plasma slab by taking into account the Hall term in the generalized Ohm's law. It is found that, like the cases of incompressible (β→∞) and cold (β→0) plasmas, the combining action of the Hall effect and the oblique wave propagation makes possible, for a given wave vector k making an angle θ with respect to the ambient magnetic field B 0 , the existence of multivalued solutions to the dispersion relations of both kinds of MHD surface waves. Like in unbounded Hall-MHD plasmas, in the low-frequency limit (the wave frequency ω smaller than the ion-cyclotron frequency ω ci ), there is generally observed three type of waves, notably fast, intermediate (or Alfven) and slow modes. In view of possible solar-wind applications, here, is considered only Alfven and slow surface waves. A peculiarity of sausage and kink surface waves is that their structure (in the direction perpendicular to the ambient magnetic field B 0 ) is determined by four attenuation coefficients (two pairs inside and outside the layer, respectively) being real or imaginary quantities. This complex structure of Hall-MHD surface waves make them akin (however, not equivalent) to the Rayleigh-type waves in solids and geophysics

  17. Stable particles

    International Nuclear Information System (INIS)

    Samios, N.P.

    1994-01-01

    I have been asked to review the subject of stable particles, essentially the particles that eventually comprised the meson and baryon octets, with a few more additions - with an emphasis on the contributions made by experiments utilizing the bubble chamber technique. In this activity, much work had been done by the photographic emulsion technique and cloud chambers - exposed to cosmic rays as well as accelerator based beams. In fact, many if not most of the stable particles were found by these latter two techniques, however, the foree of the bubble chamber (coupled with the newer and more powerful accelerators) was to verify, and reinforce with large statistics, the existence of these states, to find some of the more difficult ones, mainly neutrals and further to elucidate their properties, i.e., spin, parity, lifetimes, decay parameters, etc. (orig.)

  18. Stable particles

    International Nuclear Information System (INIS)

    Samios, N.P.

    1993-01-01

    I have been asked to review the subject of stable particles, essentially the particles that eventually comprised the meson and baryon octets. with a few more additions -- with an emphasis on the contributions made by experiments utilizing the bubble chamber technique. In this activity, much work had been done by the photographic emulsion technique and cloud chambers-exposed to cosmic rays as well as accelerator based beams. In fact, many if not most of the stable particles were found by these latter two techniques, however, the forte of the bubble chamber (coupled with the newer and more powerful accelerators) was to verify, and reinforce with large statistics, the existence of these states, to find some of the more difficult ones, mainly neutrals and further to elucidate their properties, i.e., spin, parity, lifetimes, decay parameters, etc

  19. Linear and Nonlinear MHD Wave Processes in Plasmas. Final Report

    International Nuclear Information System (INIS)

    Tataronis, J. A.

    2004-01-01

    This program treats theoretically low frequency linear and nonlinear wave processes in magnetized plasmas. A primary objective has been to evaluate the effectiveness of MHD waves to heat plasma and drive current in toroidal configurations. The research covers the following topics: (1) the existence and properties of the MHD continua in plasma equilibria without spatial symmetry; (2) low frequency nonresonant current drive and nonlinear Alfven wave effects; and (3) nonlinear electron acceleration by rf and random plasma waves. Results have contributed to the fundamental knowledge base of MHD activity in symmetric and asymmetric toroidal plasmas. Among the accomplishments of this research effort, the following are highlighted: Identification of the MHD continuum mode singularities in toroidal geometry. Derivation of a third order ordinary differential equation that governs nonlinear current drive in the singular layers of the Alfven continuum modes in axisymmetric toroidal geometry. Bounded solutions of this ODE implies a net average current parallel to the toroidal equilibrium magnetic field. Discovery of a new unstable continuum of the linearized MHD equation in axially periodic circular plasma cylinders with shear and incompressibility. This continuum, which we named ''accumulation continuum'' and which is related to ballooning modes, arises as discrete unstable eigenfrequency accumulate on the imaginary frequency axis in the limit of large mode numbers. Development of techniques to control nonlinear electron acceleration through the action of multiple coherent and random plasmas waves. Two important elements of this program aye student participation and student training in plasma theory

  20. Self-consistent Study of Fast Particle Redistribution by Alfven Eigenmodes During Ion Cyclotron Resonance Heating

    International Nuclear Information System (INIS)

    Bergkvist, T.; Hellsten, T.; Johnson, T.

    2006-01-01

    Alfven eigenmodes (AEs) excited by fusion born α particles can degrade the heating efficiency of a burning plasma and throw out αs. To experimentally study the effects of excitation of AEs and the redistribution of the fast ions, ion cyclotron resonance heating (ICRH) is often used. The distribution function of thermonuclear αs in a reactor is expected to be isotropic and constantly renewed through DT reactions. The distribution function of cyclotron heated ions is strongly anisotropic, and the ICRH do not only renew the distribution function but also provide a strong decorrelation mechanism between the fast ions and the AE. Because of the sensitivity of the AE dynamics on the details of the distribution function, the location of the resonance surfaces in phase space and the extent of the overlapping resonant regions for different AEs, a self-consistent treatment of the AE excitation and the ICRH is necessary. Interactions of fast ions with AEs during ICRH has been implemented in the SELFO code. Simulations are in good agreement with the experimentally observer pitch-fork splitting and rapid damping of the AE as ICRH is turned off. The redistribution of fast ions have been studied in the presence of several driven AEs. (author)

  1. Stochastic Acceleration of Ions Driven by Pc1 Wave Packets

    Science.gov (United States)

    Khazanov, G. V.; Sibeck, D. G.; Tel'nikhin, A. A.; Kronberg, T. K.

    2015-01-01

    The stochastic motion of protons and He(sup +) ions driven by Pc1 wave packets is studied in the context of resonant particle heating. Resonant ion cyclotron heating typically occurs when wave powers exceed 10(exp -4) nT sq/Hz. Gyroresonance breaks the first adiabatic invariant and energizes keV ions. Cherenkov resonances with the electrostatic component of wave packets can also accelerate ions. The main effect of this interaction is to accelerate thermal protons to the local Alfven speed. The dependencies of observable quantities on the wave power and plasma parameters are determined, and estimates for the heating extent and rate of particle heating in these wave-particle interactions are shown to be in reasonable agreement with known empirical data.

  2. Stable beams

    CERN Multimedia

    2015-01-01

    Stable beams: two simple words that carry so much meaning at CERN. When LHC page one switched from "squeeze" to "stable beams" at 10.40 a.m. on Wednesday, 3 June, it triggered scenes of jubilation in control rooms around the CERN sites, as the LHC experiments started to record physics data for the first time in 27 months. This is what CERN is here for, and it’s great to be back in business after such a long period of preparation for the next stage in the LHC adventure.   I’ve said it before, but I’ll say it again. This was a great achievement, and testimony to the hard and dedicated work of so many people in the global CERN community. I could start to list the teams that have contributed, but that would be a mistake. Instead, I’d simply like to say that an achievement as impressive as running the LHC – a machine of superlatives in every respect – takes the combined effort and enthusiasm of everyone ...

  3. Proton gyroresonance with parallel waves in a low-beta solar flare plasma

    Science.gov (United States)

    Steinacker, Juergen; Miller, James A.

    1992-01-01

    We consider the gyroresonant interaction of protons with parallel electromagnetic plasma waves. These waves have either right- or left-hand circular polarization and include as a subset Alfven and whistler waves. We identify three comoving gyroresonances, which can lead to divergences in the Fokker-Planck coefficients. Taking into account thermal damping, we calculate the Fokker-Planck coefficient along with momentum diffusion coefficient D(p) and the mean-free path. Resulting acceleration time scales are compared with solar flare observations.

  4. Funnel-shaped, low-frequency equatorial waves

    Science.gov (United States)

    Boardsen, S. A.; Gallagher, D. L.; Gurnett, D. A.; Peterson, W. K.; Green, J. L.

    1992-01-01

    Funnel-shaped, low-frequency radiation, as observed in frequency time spectrograms, is frequently found at the earth's magnetic equator which extends from the proton-cyclotron frequency up to the lower hybrid frequency. Ray-tracing calculations can qualitatively reproduce the observed frequency-time characteristics of these emissions if the waves are propagating in the fast magnetosonic mode starting with wave normal angles of about 88 deg at the magnetic equator. The funnel-shaped emissions are consistent with generation by protons with a ring-type velocity space distribution. A ring-shaped region of positive slope in the velocity space density distribution of protons is observed near the Alfven velocity, indicating that the ring protons strongly interact with the waves. Ray-tracing calculations show that for similar equatorial wave normal angles lower-frequency fast magnetosonic waves are more closely confined to the magnetic equator than higher-frequency fast magnetosonic waves. For waves refracted back toward the equator at similar magnetic latitudes, the lower-frequency waves experience stronger damping in the vicinity of the equator than higher-frequency waves. Also, wave growth is restricted to higher frequencies at larger magnetic latitudes. Wave damping at the equator and wave growth off the equator favors equatorial wave normal angle distributions which lead to the funnel-shaped frequency time characteristic.

  5. Coronal heating by the resonant absorption of Alfven waves - Importance of the global mode and scaling laws

    Science.gov (United States)

    Steinolfson, Richard S.; Davila, Joseph M.

    1993-01-01

    Numerical simulations of the MHD equations for a fully compressible, low-beta, resistive plasma are used to study the resonance absorption process for the heating of coronal active region loops. Comparisons with more approximate analytic models show that the major predictions of the analytic theories are, to a large extent, confirmed by the numerical computations. The simulations demonstrate that the dissipation occurs primarily in a thin resonance layer. Some of the analytically predicted features verified by the simulations are (a) the position of the resonance layer within the initial inhomogeneity; (b) the importance of the global mode for a large range of loop densities; (c) the dependence of the resonance layer thickness and the steady-state heating rate on the dissipation coefficient; and (d) the time required for the resonance layer to form. In contrast with some previous analytic and simulation results, the time for the loop to reach a steady state is found to be the phase-mixing time rather than a dissipation time. This disagreement is shown to result from neglect of the existence of the global mode in some of the earlier analyses. The resonant absorption process is also shown to behave similar to a classical driven harmonic oscillator.

  6. Generation of spectrally-stable continuous-wave emission and ns pulses at 800 nm and 975 nm with a peak power of 4 W using a distributed Bragg reflector laser and a ridge-waveguide power amplifier

    Science.gov (United States)

    Klehr, A.; Wenzel, H.; Fricke, J.; Bugge, F.; Liero, A.; Hoffmann, Th.; Erbert, G.; Tränkle, G.

    2015-03-01

    Semiconductor based sources which emit high-power spectrally stable nearly diffraction-limited optical pulses in the nanosecond range are ideally suited for a lot of applications, such as free-space communications, metrology, material processing, seed lasers for fiber or solid state lasers, spectroscopy, LIDAR and frequency doubling. Detailed experimental investigations of 975 nm and 800 nm diode lasers based on master oscillator power amplifier (MOPA) light sources are presented. The MOPA systems consist of distributed Bragg reflector lasers (DBR) as master oscillators driven by a constant current and ridge waveguide power amplifiers which can be driven DC and by current pulses. In pulse regime the amplifiers modulated with rectangular current pulses of about 5 ns width and a repetition frequency of 200 kHz act as optical gates, converting the continuous wave (CW) input beam emitted by the DBR lasers into a train of short optical pulses which are amplified. With these experimental MOPA arrangements no relaxation oscillations in the pulse power occur. With a seed power of about 5 mW at a wavelength of 973 nm output powers behind the amplifier of about 1 W under DC injection and 4 W under pulsed operation, corresponding to amplification factors of 200 (amplifier gain 23 dB) and 800 (gain 29 dB) respectively, are reached. At 800 nm a CW power of 1 W is obtained for a seed power of 40 mW. The optical spectra of the emission of the amplifiers exhibit a single peak at a constant wavelength with a line width 50 dB. The output beams are nearly diffraction limited with beam propagation ratios M2lat ~ 1.1 and M2ver ~ 1.2 up to 4 W pulse power.

  7. MAGNETOHYDRODYNAMIC WAVES IN A PARTIALLY IONIZED FILAMENT THREAD

    International Nuclear Information System (INIS)

    Soler, R.; Oliver, R.; Ballester, J. L.

    2009-01-01

    Oscillations and propagating waves are commonly seen in high-resolution observations of filament threads, i.e., the fine-structures of solar filaments/prominences. Since the temperature of prominences is typically of the order of 10 4 K, the prominence plasma is only partially ionized. In this paper, we study the effect of neutrals on the wave propagation in a filament thread modeled as a partially ionized homogeneous magnetic flux tube embedded in an homogeneous and fully ionized coronal plasma. Ohmic and ambipolar magnetic diffusion are considered in the basic resistive magnetohydrodynamic (MHD) equations. We numerically compute the eigenfrequencies of kink, slow, and Alfven linear MHD modes and obtain analytical approximations in some cases. We find that the existence of propagating modes is constrained by the presence of critical values of the longitudinal wavenumber. In particular, the lower and upper frequency cutoffs of kink and Alfven waves owe their existence to magnetic diffusion parallel and perpendicular to magnetic field lines, respectively. The slow mode only has a lower frequency cutoff, which is caused by perpendicular magnetic diffusion and is significantly affected by the ionization degree. In addition, ion-neutral collision is the most efficient damping mechanism for short wavelengths, while ohmic diffusion dominates in the long-wavelength regime.

  8. Survey of the Favorable Conditions for Magnetosonic Wave Excitation

    Science.gov (United States)

    Kim, Kyung-Chan; Shprits, Yuri

    2018-01-01

    The ratio of the proton ring velocity (VR) to the local Alfven speed (VA), in addition to proton ring distributions, plays a key factor in the excitation of magnetosonic waves at frequencies between the proton cyclotron frequency fcp and the lower hybrid resonance frequency fLHR in the Earth's magnetosphere. Here we investigate whether there is a statistically significant relationship between occurrences of proton rings and magnetosonic waves both outside and inside the plasmapause using particle and wave data from Van Allen Probe-A during the time period of October 2012 to December 2015. We also perform a statistical survey of the ratio of the ring energy (ER, corresponding to VR) to the Alfven energy (EA, corresponding to VA) to determine the favorable conditions under which magnetosonic waves in each of two frequency bands (fcp 0.5 fLHR and 0.5 fLHR LHR) can be excited. The results show that the magnetosonic waves in both frequency bands occur around the postnoon (12-18 magnetic local time, MLT) sector outside the plasmapause when ER is comparable to or lower than EA, and those in lower-frequency bands (fcp 0.5 fLHR) occur around the postnoon sector inside the plasmapause when ER/EA > 9. However, there is one discrepancy between occurrences of proton rings and magnetosonic waves in low-frequency bands around the prenoon sector (6-12 MLT) outside the plasmapause, which suggests either that the waves may have propagated during active time from the postnoon sector after being excited during quiet time, or they may have locally excited in the prenoon sector during active time.

  9. Experimental investigation of a collisionless shock wave in a longitudinal magnetic field

    International Nuclear Information System (INIS)

    El-Khalafawy, T.A.; El-Nicklawy, M.; Beshara, A.B.; Abo-Ellil, M.S.

    1978-01-01

    The results of the experimental investigations of the parameters and the structure of a shock wave propagating along a static magnetic field are discussed. It is also shown that the wave observed experimentally represents a ''switch-on'' shock and its front structure is determined by the mechanism of the energy collisionless dissipation. In case of small Alfvene-Mach numbers I 3 smaller than the conductivity caused by Coulombs' collisions. The paper describes briefly the installation and also the probe methods of measuring the main plasma parameters, (the electron temperature Tsub(e) and the density nsub(e))

  10. A Full-wave Model for Wave Propagation and Dissipation in the Inner Magnetosphere Using the Finite Element Method

    International Nuclear Information System (INIS)

    Valeo, Ernest; Johnson, Jay R.; Kim, Eun-Hwa; Phillips, Cynthia

    2012-01-01

    A wide variety of plasma waves play an important role in the energization and loss of particles in the inner magnetosphere. Our ability to understand and model wave-particle interactions in this region requires improved knowledge of the spatial distribution and properties of these waves as well as improved understanding of how the waves depend on changes in solar wind forcing and/or geomagnetic activity. To this end, we have developed a two-dimensional, finite element code that solves the full wave equations in global magnetospheric geometry. The code describes three-dimensional wave structure including mode conversion when ULF, EMIC, and whistler waves are launched in a two-dimensional axisymmetric background plasma with general magnetic field topology. We illustrate the capabilities of the code by examining the role of plasmaspheric plumes on magnetosonic wave propagation; mode conversion at the ion-ion and Alfven resonances resulting from external, solar wind compressions; and wave structure and mode conversion of electromagnetic ion cyclotron waves launched in the equatorial magnetosphere, which propagate along the magnetic field lines toward the ionosphere. We also discuss advantages of the finite element method for resolving resonant structures, and how the model may be adapted to include nonlocal kinetic effects.

  11. A Full-wave Model for Wave Propagation and Dissipation in the Inner Magnetosphere Using the Finite Element Method

    Energy Technology Data Exchange (ETDEWEB)

    Ernest Valeo, Jay R. Johnson, Eun-Hwa and Cynthia Phillips

    2012-03-13

    A wide variety of plasma waves play an important role in the energization and loss of particles in the inner magnetosphere. Our ability to understand and model wave-particle interactions in this region requires improved knowledge of the spatial distribution and properties of these waves as well as improved understanding of how the waves depend on changes in solar wind forcing and/or geomagnetic activity. To this end, we have developed a two-dimensional, finite element code that solves the full wave equations in global magnetospheric geometry. The code describes three-dimensional wave structure including mode conversion when ULF, EMIC, and whistler waves are launched in a two-dimensional axisymmetric background plasma with general magnetic field topology. We illustrate the capabilities of the code by examining the role of plasmaspheric plumes on magnetosonic wave propagation; mode conversion at the ion-ion and Alfven resonances resulting from external, solar wind compressions; and wave structure and mode conversion of electromagnetic ion cyclotron waves launched in the equatorial magnetosphere, which propagate along the magnetic field lines toward the ionosphere. We also discuss advantages of the finite element method for resolving resonant structures, and how the model may be adapted to include nonlocal kinetic effects.

  12. Experimental Study of Reversed Shear Alfven Eigenmodes During The Current Ramp In The Alcator C-Mod Tokamak

    International Nuclear Information System (INIS)

    Edlund, E.M.; Porkolab, M.; Kramer, G.J.; Lin, L.; Lin, Y.; Tsuji, N.; Wukitch, S.J.

    2010-01-01

    Experiments conducted in the Alcator C-Mod tokamak at MIT have explored the physics of reversed shear Alfven eigenmodes (RSAEs) during the current ramp. The frequency evolution of the RSAEs throughout the current ramp provides a constraint on the evolution of q min , a result which is important in transport modeling and for comparison with other diagnostics which directly measure the magnetic field line structure. Additionally, a scaling of the RSAE minimum frequency with the sound speed is used to derive a measure of the adiabatic index, a measure of the plasma compressibility. This scaling bounds the adiabatic index at 1.40 ± 0.15 used in MHD models and supports the kinetic calculation of separate electron and ion compressibilities with an ion adiabatic index close to 7/4.

  13. Effects of Toroidal Rotation Sshear on Toroidicity-induced Alfven Eigenmodes in the National Spherical Torus Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Podesta, M; Fredrickson, E D; Gorelenkov, N N; LeBlanc, B P; Heidbrink, W W; Crocker, N A; Kubota, S

    2010-08-19

    The effects of a sheared toroidal rotation on the dynamics of bursting Toroidicity-induced Alfven eigenmodes are investigated in neutral beam heated plasmas on the National Spherical Torus Experiment (NSTX) [M. Ono et al., Nucl. Fusion 40 557 (2000)]. The modes have a global character, extending over most of the minor radius. A toroidal rotation shear layer is measured at the location of maximum drive for the modes. Contrary to results from other devices, no clear evidence of increased damping is found. Instead, experiments with simultaneous neutral beam and radio-frequency auxiliary heating show a strong correlation between the dynamics of the modes and the instability drive. It is argued that kinetic effects involving changes in the mode drive and damping mechanisms other than rotation shear, such as continuum damping, are mostly responsible for the bursting dynamics of the modes.

  14. Effects of Toroidal Rotation Shear on Toroidicity-induced Alfven Eigenmodes in the National Spherical Torus Experiment

    International Nuclear Information System (INIS)

    Podesta, M.; Bell, R.E.; Fredrickson, E.D.; Gorelenkov, N.N.; LeBlanc, B.P.; Heidbrink, W.W.; Crocker, N.A.; Kubota, S.; Yuh, H.

    2010-01-01

    The effects of a sheared toroidal rotation on the dynamics of bursting Toroidicity-induced Alfven eigenmodes are investigated in neutral beam heated plasmas on the National Spherical Torus Experiment (NSTX) (M. Ono et al., Nucl. Fusion 40 557 (2000)). The modes have a global character, extending over most of the minor radius. A toroidal rotation shear layer is measured at the location of maximum drive for the modes. Contrary to results from other devices, no clear evidence of increased damping is found. Instead, experiments with simultaneous neutral beam and radio-frequency auxiliary heating show a strong correlation between the dynamics of the modes and the instability drive. It is argued that kinetic effects involving changes in the mode drive and damping mechanisms other than rotation shear, such as continuum damping, are mostly responsible for the bursting dynamics of the modes.

  15. Not completely flattened radial profile of the electron temperature in the vicinity of magnetic islands in Tokamak Chauffage Alfven Bresilien

    International Nuclear Information System (INIS)

    Fonseca, A.M.M.; Tsypin, V.S.; Galvao, R.M.O.; Kuznetsov, Y.K.; Nascimento, I.C.; Silva, R.P. da; Saettone, E.A.; Vannucci, A.

    2005-01-01

    Recent results obtained in TCABR (Tokamak Chauffage Alfven Bresilien) [J. H. F. Severo, I. C. Nascimento, V. S. Tsypin, and R. M. O. Galvao, Nucl. Fusion 43, 1047 (2003)] show a nonmonotonic variation of the poloidal rotation velocity at the position of major magnetic islands. In this paper, the associated effect of the magnetic islands on the radial profile of the electron temperature is discussed. Analytical temperature profiles are used to analyze the experimental data obtained with electron cyclotron emission radiometry. It is shown that the competition between strong anomalous perpendicular diffusive transport and parallel heat convection is the dominant mechanism for the oscillations observed in the radial profile of the electron temperature in TCABR

  16. The energy flux of MHD wave modes excited by realistic photospheric drivers

    Science.gov (United States)

    Fedun, Viktor; Von Fay-Siebenburgen, Erdélyi Robert; Mumford, Stuart

    The mechanism(s) responsible for solar coronal heating are still an unresolved and challenging task. In the framework of 3D numerical modelling of MHD wave excitation and propagation in the strongly stratified solar atmosphere we analyse the mode coupling and estimate the wave energy partition which can be supplied to the upper layers of the solar atmosphere by locally decomposed slow, fast and Alfven modes. These waves are excited by a number of realistic photospheric drivers which are mimicking the random granular buffeting, the coherent global solar oscillations and swirly motion observed in e.g. magnetic bright points. Based on a self-similar approach, a realistic magnetic flux tubes configuration is constructed and implemented in the VALIIIC model of the solar atmosphere. A novel method for decomposing the velocity perturbations into parallel, perpendicular and azimuthal components in 3D geometry is developed using field lines to trace a volume of constant energy flux. This method is used to identify the excited wave modes propagating upwards from the photosphere and to compute the percentage energy contribution of each mode. We have found, that for all cases where torsional motion is present, the main contribution to the flux (60%) is by Alfven wave. In the case of the vertical driver it is found to mainly excite the fast- and slow-sausage modes and a horizontal driver primarily excites the slow kink mode.

  17. Alfvén wave filamentation and dispersive phase mixing in a high-density channel: Landau fluid and hybrid simulations

    Czech Academy of Sciences Publication Activity Database

    Borgogno, D.; Hellinger, Petr; Passot, T.; Sulem, P. L.; Trávníček, Pavel M.

    2009-01-01

    Roč. 16, č. 2 (2009), s. 275-285 ISSN 1023-5809 R&D Projects: GA AV ČR IAA300420702 Institutional research plan: CEZ:AV0Z30420517; CEZ:AV0Z10030501 Keywords : Alfven wave * phase mixing * filamentation Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.152, year: 2009 http://www.nonlin-processes-geophys.net/16/275/2009/npg-16-275-2009.pdf

  18. Stable Isotope Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Tissue samples (skin, bone, blood, muscle) are analyzed for stable carbon, stable nitrogen, and stable sulfur analysis. Many samples are used in their entirety for...

  19. Energy Flow in Saturn's Ion Cyclotron Wave Belt

    Science.gov (United States)

    Leisner, J. S.; Russell, C. T.; Dougherty, M. K.; Persoon, A. M.; Blanco-Cano, X.; McAndrews, H. J.; Thomsen, M. F.; Strangeway, R. J.

    2007-12-01

    When molecules in Saturn's water-group neutral cloud are ionized, they are accelerated by the electric field associated with the motion of the magnetospheric plasma. This acceleration brings the pick-up ions to the bulk plasma speed and gives them free energy that leads to the growth of ion cyclotron waves. Ion cyclotron waves propagating along the magnetic field have been observed near the equatorial plane on almost all of Cassini's orbits through the inner magnetosphere. On near-equatorial orbits, these waves are observed to peak below the gyrofrequencies of water-group (O, OH, H2O) and molecular oxygen (O2) ions. On inclined orbits, the velocity of the spacecraft along the waves' direction of propagation produced Doppler shifts in the wave frequency. Using this shift, we calculate the phase velocity of the waves through the wave belt. We find that near the magnetic equator, the waves are propagating both parallel and anti-parallel to the magnetic field and have phase velocities of 40-50 km/s, one-half to one-third of the local Alfven speed. Beyond +/- 0.04 Rs of the magnetic equator, the water-group waves are propagating away from that plane and increasing in power until about +/- 0.25 Rs. Then they quickly damp. The wave power profile is similar for molecular oxygen waves, except these waves are about one-tenth as strong. Beyond +/- 0.3 Rs of the magnetic equator the water-group waves are absent, but the molecular oxygen waves persist until higher latitudes, although with low power. We discuss the energy carried by these waves, considering both ion species and where the background plasma gains energy from their absorption.

  20. Characterizing MHD Fast Mode Wave Properties Relevant for Radiation Belt Interactions

    Science.gov (United States)

    Hartinger, M.; Takahashi, K.

    2017-12-01

    Magnetohydrodynamic (MHD) fast mode waves (FMW) can interact with radiation belt electrons directly or by coupling to standing Alfven waves via field line resonance (FLR). Statistical analysis of FMW amplitudes, frequencies, and spatial distributions is needed to constrain the role of FMW in wave-particle interactions and FLR. However, observations of FMW outside the plasmasphere are complicated by the presence of other Ultra Low Frequency (ULF) wave modes with large amplitudes and similar magnetic signatures to FMW. We use Time History of Events and Macroscale Interactions during Substorms (THEMIS) satellite measurements of the thermal pressure, magnetic field, and electric field near the magnetic equator to identify FMW events and discriminate them from other ULF wave modes. We present preliminary results for the spatial distribution and typical amplitudes of FMW with frequencies appropriate for radiation belt interactions.

  1. One-dimensional model of global Alfven Eigenmodes in TORTUS and Wendelstein WVII-AS

    International Nuclear Information System (INIS)

    Teo, C.Y.

    1998-07-01

    In this article, a model for GAEs in a screw pinch plasma geometry is presented. The wave equations are derived from an ideal MHD model with corrections for finite frequency. Analytical and numerical solutions of these equations, applied to parameter sets approximating the TORTUS Tokamak and the Wendelstein WVII-AS advanced stellarator, are presented and discussed. (orig.)

  2. Resonant behaviour of MHD waves on magnetic flux tubes. I - Connection formulae at the resonant surfaces. II - Absorption of sound waves by sunspots

    Science.gov (United States)

    Sakurai, Takashi; Goossens, Marcel; Hollweg, Joseph V.

    1991-01-01

    The present method of addressing the resonance problems that emerge in such MHD phenomena as the resonant absorption of waves at the Alfven resonance point avoids solving the fourth-order differential equation of dissipative MHD by recourse to connection formulae across the dissipation layer. In the second part of this investigation, the absorption of solar 5-min oscillations by sunspots is interpreted as the resonant absorption of sounds by a magnetic cylinder. The absorption coefficient is interpreted (1) analytically, under certain simplifying assumptions, and numerically, under more general conditions. The observed absorption coefficient magnitude is explained over suitable parameter ranges.

  3. Stable convergence and stable limit theorems

    CERN Document Server

    Häusler, Erich

    2015-01-01

    The authors present a concise but complete exposition of the mathematical theory of stable convergence and give various applications in different areas of probability theory and mathematical statistics to illustrate the usefulness of this concept. Stable convergence holds in many limit theorems of probability theory and statistics – such as the classical central limit theorem – which are usually formulated in terms of convergence in distribution. Originated by Alfred Rényi, the notion of stable convergence is stronger than the classical weak convergence of probability measures. A variety of methods is described which can be used to establish this stronger stable convergence in many limit theorems which were originally formulated only in terms of weak convergence. Naturally, these stronger limit theorems have new and stronger consequences which should not be missed by neglecting the notion of stable convergence. The presentation will be accessible to researchers and advanced students at the master's level...

  4. Predictions of lithium interactions with earth's bow shock in the presence of wave activity

    Science.gov (United States)

    Decker, R. B.; Lui, A. T. Y.; Vlahos, L.

    1984-01-01

    The results of a test-particle simulation studying the movement of a lithium tracer ion injected upstream of the bow shock are reported. Wave activity consists of parallel and antiparallel propagating Alfven waves characterized by a frequency power spectrum within a frequency or range of amplitudes defined separately in the upstream and downstream regions. The results show that even a moderate level of wave activity can substantially change the results obtained in the absence of waves. Among the effects observed are: (1) increased ion transmission; (2) both the average energy gain and spread about the average are increased for transmitted and reflected particles; (3) the average final pitch angle for transmitted particles tends to 90 deg, and the spread of reflected particles is reduced; and (4) the spatial dispersion of the ions on the bow shock after a single encounter is increased.

  5. Kinetic theory of geomagnetic pulsations 2. Ion flux modulations by transverse waves

    Energy Technology Data Exchange (ETDEWEB)

    Liu Chen (Princeton Plasma Physics Lab., NJ (United States)); Hasegawa, Akira (Osaka Univ. (Japan))

    1993-07-01

    Ion flux modulations by ultra-low-frequency radially polarized geomagnetic pulsations are examined theoretically based on the gyrokinetic analysis of Chen and Hasegawa. The theoretical results thus contain important effects such as plasma anisotropy and inhomogeneities, finite Larmor radii, realistic magnetic field, magnetic trapping, and wave mode structures. The predicted properties are consistent with the satellite observations [Takahashi et al.] and further support the drift-Alfven ballooning mode as a primary instability candidate. The analysis, furthermore, demonstrates that, in the case of highly energetic ions, it is crucial to include the finite-Larmor-radius effects self-consistently in order to properly analyze and compare with the satellite observations.

  6. Resonant behaviour of MHD waves on magnetic flux tubes. III - Effect of equilibrium flow

    Science.gov (United States)

    Goossens, Marcel; Hollweg, Joseph V.; Sakurai, Takashi

    1992-01-01

    The Hollweg et al. (1990) analysis of MHD surface waves in a stationary equilibrium is extended. The conservation laws and jump conditions at Alfven and slow resonance points obtained by Sakurai et al. (1990) are generalized to include an equilibrium flow, and the assumption that the Eulerian perturbation of total pressure is constant is recovered as the special case of the conservation law for an equilibrium with straight magnetic field lines and flow along the magnetic field lines. It is shown that the conclusions formulated by Hollweg et al. are still valid for the straight cylindrical case. The effect of curvature is examined.

  7. stableGP

    Data.gov (United States)

    National Aeronautics and Space Administration — The code in the stableGP package implements Gaussian process calculations using efficient and numerically stable algorithms. Description of the algorithms is in the...

  8. Stable cosmology in chameleon bigravity

    Science.gov (United States)

    De Felice, Antonio; Mukohyama, Shinji; Oliosi, Michele; Watanabe, Yota

    2018-02-01

    The recently proposed chameleonic extension of bigravity theory, by including a scalar field dependence in the graviton potential, avoids several fine-tunings found to be necessary in usual massive bigravity. In particular it ensures that the Higuchi bound is satisfied at all scales, that no Vainshtein mechanism is needed to satisfy Solar System experiments, and that the strong coupling scale is always above the scale of cosmological interest all the way up to the early Universe. This paper extends the previous work by presenting a stable example of cosmology in the chameleon bigravity model. We find a set of initial conditions and parameters such that the derived stability conditions on general flat Friedmann background are satisfied at all times. The evolution goes through radiation-dominated, matter-dominated, and de Sitter eras. We argue that the parameter space allowing for such a stable evolution may be large enough to encompass an observationally viable evolution. We also argue that our model satisfies all known constraints due to gravitational wave observations so far and thus can be considered as a unique testing ground of gravitational wave phenomenologies in bimetric theories of gravity.

  9. Brief communication: Multiscaled solitary waves

    Science.gov (United States)

    Derzho, Oleg G.

    2017-11-01

    It is analytically shown how competing nonlinearities yield multiscaled structures for internal solitary waves in stratified shallow fluids. These solitary waves only exist for large amplitudes beyond the limit of applicability of the Korteweg-de Vries (KdV) equation or its usual extensions. The multiscaling phenomenon exists or does not exist for almost identical density profiles. The trapped core inside the wave prevents the appearance of such multiple scales within the core area. The structural stability of waves of large amplitudes is briefly discussed. Waves of large amplitudes displaying quadratic, cubic and higher-order nonlinear terms have stable and unstable branches. Multiscaled waves without a vortex core are shown to be structurally unstable. It is anticipated that multiscaling phenomena will exist for solitary waves in various physical contexts.

  10. Modulational instability of coupled waves

    International Nuclear Information System (INIS)

    McKinstrie, C.J.; Bingham, R.

    1989-01-01

    The collinear propagation of an arbitrary number of finite-amplitude waves is modeled by a system of coupled nonlinear Schroedinger equations; one equation for each complex wave amplitude. In general, the waves are modulationally unstable with a maximal growth rate larger than the modulational growth rate of any wave alone. Moreover, waves that are modulationally stable by themselves can be driven unstable by the nonlinear coupling. The general theory is then applied to the relativistic modulational instability of two laser beams in a beat-wave accelerator. For parameters typical of a proposed beat-wave accelerator, this instability can seriously distort the incident laser pulse shapes on the particle-acceleration time scale, with detrimental consequences for particle acceleration

  11. Possible wave amplitudes in shocks in the solar corona - Predictions for Solar Probe

    Science.gov (United States)

    Moses, S. L.; Coroniti, F. V.; Greenstadt, E. W.; Tsurutani, B. T.

    1991-01-01

    Terrestrial shock measurements are scaled to coronal parameters to demonstrate the need for improvements for the Solar Probe instrumentation. A model of coronal shock is presented to estimate corresponding shock parameters, and a comparison is made with ISEE 3 crossings to examine terrestrial bow shock and wave activity downstream. The turbulence in the magnetosheath is scaled to predict the specific range of amplitudes and frequencies of wave regions that the Solar Probe can encounter. The high velocity of the spacecraft at perihelion constrains the potential application of present instrumentation. In order to properly characterize the coronal shocks the Solar Probe requires instrumentation that can detect shock-generated Alfven waves Doppler-shifted to frequencies of a few kHz.

  12. Stable isotopes labelled compounds

    International Nuclear Information System (INIS)

    1982-09-01

    The catalogue on stable isotopes labelled compounds offers deuterium, nitrogen-15, and multiply labelled compounds. It includes: (1) conditions of sale and delivery, (2) the application of stable isotopes, (3) technical information, (4) product specifications, and (5) the complete delivery programme

  13. Evolutionary Stable Strategy

    Indian Academy of Sciences (India)

    IAS Admin

    After Maynard-Smith and Price [1] mathematically derived why a given behaviour or strategy was adopted by a certain proportion of the population at a given time, it was shown that a strategy which is currently stable in a population need not be stable in evolutionary time (across generations). Additionally it was sug-.

  14. Wave turbulence

    Science.gov (United States)

    Nazarenko, Sergey

    2015-07-01

    Wave turbulence is the statistical mechanics of random waves with a broadband spectrum interacting via non-linearity. To understand its difference from non-random well-tuned coherent waves, one could compare the sound of thunder to a piece of classical music. Wave turbulence is surprisingly common and important in a great variety of physical settings, starting with the most familiar ocean waves to waves at quantum scales or to much longer waves in astrophysics. We will provide a basic overview of the wave turbulence ideas, approaches and main results emphasising the physics of the phenomena and using qualitative descriptions avoiding, whenever possible, involved mathematical derivations. In particular, dimensional analysis will be used for obtaining the key scaling solutions in wave turbulence - Kolmogorov-Zakharov (KZ) spectra.

  15. Drift wave instability and turbulence in advanced stellarator configurations

    International Nuclear Information System (INIS)

    Kendl, A.

    2001-08-01

    In the following chapter, an overview and references on the physics and geometry of helical advanced stellarators is given. On the basis of this configuration, the influence of magnetic field geometry is then discussed in a basic model of drift-Alfven wave turbulence which contains the necessary physics that applies to the plasma edge. By means of linear models, core physics in the form of ITG and dissipative trapped electron modes is further included in our survey. These models are, of course, by far not comprehensive in order to cover the complex physics of plasma turbulence in three-dimensional fusion devices, where a large range of parameter and mode regimes is present. Optimization criteria for a possible systematic minimization of turbulent transport in Helias configurations therefore still have to be regarded as tentative. The results presented here should, however, encourage for more detailed future computations. (orig.)

  16. Plasma waves

    CERN Document Server

    Swanson, DG

    1989-01-01

    Plasma Waves discusses the basic development and equations for the many aspects of plasma waves. The book is organized into two major parts, examining both linear and nonlinear plasma waves in the eight chapters it encompasses. After briefly discussing the properties and applications of plasma wave, the book goes on examining the wave types in a cold, magnetized plasma and the general forms of the dispersion relation that characterize the waves and label the various types of solutions. Chapters 3 and 4 analyze the acoustic phenomena through the fluid model of plasma and the kinetic effects. Th

  17. Wave-Particle Interactions in the Radiation Belts, Aurora,and Solar Wind: Opportunities for Lab Experiments

    Science.gov (United States)

    Kletzing, C.

    2017-12-01

    The physics of the creation, loss, and transport of radiation belt particles is intimately connected to the electric and magnetic fields which mediate these processes. A large range of field and particle interactions are involved in this physics from large-scale ring current ion and magnetic field dynamics to microscopic kinetic interactions of whistler-mode chorus waves with energetic electrons. To measure these kinds of radiation belt interactions, NASA implemented the two-satellite Van Allen Probes mission. As part of the mission, the Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) investigation is an integrated set of instruments consisting of a triaxial fluxgate magnetometer (MAG) and a Waves instrument which includes a triaxial search coil magnetometer (MSC). We show a variety of waves thought to be important for wave particle interactionsin the radiation belts: low frequency ULF pulsations, EMIC waves, and whistler mode waves including upper and lower band chorus. Outside ofthe radiation belts, Alfven waves play a key role in both solar wind turbulenceand auroral particle acceleration. Several of these wave modes could benefit (or have benefitted) from laboratory studies to further refineour understanding of the detailed physics of the wave-particle interactionswhich lead to energization, pitch angle scattering, and cross-field transportWe illustrate some of the processes and compare the wave data with particle measurements to show relationships between wave activity and particle processobserved in the inner magnetosphere and heliosphere.

  18. Normal modified stable processes

    DEFF Research Database (Denmark)

    Barndorff-Nielsen, Ole Eiler; Shephard, N.

    2002-01-01

    This paper discusses two classes of distributions, and stochastic processes derived from them: modified stable (MS) laws and normal modified stable (NMS) laws. This extends corresponding results for the generalised inverse Gaussian (GIG) and generalised hyperbolic (GH) or normal generalised inverse...... Gaussian (NGIG) laws. The wider framework thus established provides, in particular, for added flexibility in the modelling of the dynamics of financial time series, of importance especially as regards OU based stochastic volatility models for equities. In the special case of the tempered stable OU process...

  19. Applications of stable isotopes

    International Nuclear Information System (INIS)

    Letolle, R.; Mariotti, A.; Bariac, T.

    1991-06-01

    This report reviews the historical background and the properties of stable isotopes, the methods used for their measurement (mass spectrometry and others), the present technics for isotope enrichment and separation, and at last the various present and foreseeable application (in nuclear energy, physical and chemical research, materials industry and research; tracing in industrial, medical and agronomical tests; the use of natural isotope variations for environmental studies, agronomy, natural resources appraising: water, minerals, energy). Some new possibilities in the use of stable isotope are offered. A last chapter gives the present state and forecast development of stable isotope uses in France and Europe

  20. Wave Star

    DEFF Research Database (Denmark)

    Kramer, Morten; Brorsen, Michael; Frigaard, Peter

    Denne rapport beskriver numeriske beregninger af forskellige flydergeometrier for bølgeenergianlæget Wave Star.......Denne rapport beskriver numeriske beregninger af forskellige flydergeometrier for bølgeenergianlæget Wave Star....

  1. Gravitational Waves

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Jonah Maxwell [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-10-18

    This report has slides on Gravitational Waves; Pound and Rebka: A Shocking Fact; Light is a Ruler; Gravity is the Curvature of Spacetime; Gravitational Waves Made Simple; How a Gravitational Wave Affects Stuff Here; LIGO; This Detection: Neutron Stars; What the Gravitational Wave Looks Like; The Sound of Merging Neutron Stars; Neutron Star Mergers: More than GWs; The Radioactive Cloud; The Kilonova; and finally Summary, Multimessenger Astronomy.

  2. Seasonal, longitude, local time, and altitude distributions of electric field, magnetic field, and plasma density components of depletions, structures, and waves observed on the C/NOFS satellite in the low latitude ionosphere

    Science.gov (United States)

    Pfaff, R. F., Jr.; Freudenreich, H. T.; Klenzing, J.; Liebrecht, M. C.

    2016-12-01

    The Vector Electric Field Investigation (VEFI) on the C/NOFS equatorial satellite provides simultaneous measurements of electric field, magnetic field, and plasma density irregularities associated with the equatorial ionosphere and in particular with plasma depletions. C/NOFS was launched into a 401 km by 857 km orbit with a 13 degree inclination in April, 2008 and gathered near continuous data until November, 2015. We present C/NOFS observations that address a variety of questions regarding the nature of equatorial plasma depletions, irregularities, and Alfven waves in the low latitude ionosphere. The presentation includes distributions of the different components with respect to longitude, latitude, local time, altitude, and season. Among the predominant findings are: (1) the strong tendency for plasma depletions to occur post-midnight in the April-September time frame where they were also observed predominantly in the African sector; (2) the prevalence of nighttime electric field structures to exist without corresponding density depletions or irregularities, particularly during solar minimum conditions; and (3) AC magnetic field observations which we interpret as signatures of small-scale filamentary currents and/or Alfven waves which were most pronounced in the South American sector after sunset. We focus in particular on the magnetic signatures which were strongest towards the end of the mission where solar activity (and hence the ambient plasma density) was moderately elevated and the satellite sampling altitudes were lowest. The AC magnetic field signatures appear in two categories: wave-like strutures, which do not appear to be organized about the magnetic equator and may represent Alfven waves propagating between hemispheres along closed magnetic field lines, and magnetic structures associated with plasma density depletions which, when combined with simultaneous electric field structures, reveal Poynting Flux energy flow in the poleward direction. The

  3. Wave Dragon

    DEFF Research Database (Denmark)

    Kofoed, Jens Peter; Frigaard, Peter; Sørensen, H. C.

    1998-01-01

    This paper concerns with the development of the wave energy converter (WEC) Wave Dragon. This WEC is based on the overtopping principle. An overview of the performed research done concerning the Wave Dragon over the past years is given, and the results of one of the more comprehensive studies...

  4. Wave phenomena

    CERN Document Server

    Towne, Dudley H

    1988-01-01

    This excellent undergraduate-level text emphasizes optics and acoustics, covering inductive derivation of the equation for transverse waves on a string, acoustic plane waves, boundary-value problems, polarization, three-dimensional waves and more. With numerous problems (solutions for about half). ""The material is superbly chosen and brilliantly written"" - Physics Today. Problems. Appendices.

  5. Electromagnetic Waves

    DEFF Research Database (Denmark)

    This book is dedicated to various aspects of electromagnetic wave theory and its applications in science and technology. The covered topics include the fundamental physics of electromagnetic waves, theory of electromagnetic wave propagation and scattering, methods of computational analysis......, material characterization, electromagnetic properties of plasma, analysis and applications of periodic structures and waveguide components, etc....

  6. Analysing Stable Time Series

    National Research Council Canada - National Science Library

    Adler, Robert

    1997-01-01

    We describe how to take a stable, ARMA, time series through the various stages of model identification, parameter estimation, and diagnostic checking, and accompany the discussion with a goodly number...

  7. Fast wave current drive in DIII-D

    International Nuclear Information System (INIS)

    Petty, C.C.; Callis, R.W.; Chiu, S.C.; deGrassie, J.S.; Forest, C.B.; Freeman, R.L.; Gohil, P.; Harvey, R.W.; Ikezi, H.; Lin-Liu, Y.-R.

    1995-02-01

    The non-inductive current drive from fast Alfven waves launched by a directional four-element antenna was measured in the DIII-D tokamak. The fast wave frequency (60 MHz) was eight times the deuterium cyclotron frequency at the plasma center. An array of rf pickup loops at several locations around the torus was used to verify the directivity of the four-element antenna. Complete non-inductive current drive was achieved using a combination of fast wave current drive (FWCD) and electron cyclotron current drive (ECCD) in discharges for which the total plasma current was inductively ramped down from 400 to 170 kA. For discharges with steady plasma current, up to 110 kA of FWCD was inferred from an analysis of the loop voltage, with a maximum non-inductive current (FWCD, ECCD, and bootstrap) of 195 out of 310 kA. The FWCD efficiency increased linearly with central electron temperature. For low current discharges, the FWCD efficiency was degraded due to incomplete fast wave damping. The experimental FWCD was found to agree with predictions from the CURRAY ray-tracing code only when a parasitic loss of 4% per pass was included in the modeling along with multiple pass damping

  8. On Plasma Rotation Induced by Traveling Fast Alfvin Waves

    International Nuclear Information System (INIS)

    F.W. Perkins; R.B. White; V.S. Chan

    2001-01-01

    Absorption of fast Alfven waves by the minority fundamental ion-cyclotron resonance, coupled with finite banana width physics, generates torque distributions and ultimately rotational shear layers in the bulk plasma, even when the toroidal wavenumber k(subscript ''phi'') = n/R of the fast wave vanishes (n=0) and cyclotron absorption introduces no angular momentum nor canonical angular momentum [F.W. Perkins, R.B. White, P.T. Bonoli, and V.S. Chan, Phys. Plasmas 8 (2001) 2181]. The present work extends these results to travelling waves with non-zero n where heating directly introduces angular momentum. Since tokamak fast-wave antennas have approximately one wavelength per toroidal field coil, the toroidal mode number n lies in the range n = 10-20, independent of machine size. A zero-dimensional analysis shows that the rotation rate arising from direct torque is comparable to that of the rotational shear layer and has the same scaling. Nondimensional rotation profiles for n = (-10, 10) show modest changes from the n = 0 case in the expected direction. For a balanced antenna spectrum, the nondimensional rotational profile (averaged over n = -10, 10) lies quite close to the n = 0 profile

  9. Development of slow and fast wave coupling and heating from the C-Stellarator to NSTX

    Directory of Open Access Journals (Sweden)

    Hosea Joel

    2017-01-01

    Full Text Available A historical perspective on key discoveries which contributed to understanding the properties of coupling both slow and fast waves and the effects on plasma heating and current drive will be presented. Important steps made include the demonstration that the Alfven resonance was in fact a mode conversion on the C-stellarator, that toroidal m = -1 eigenmodes were excited in toroidal geometry and impurity influx caused the Z mode on the ST tokamak, that the H minority regime provided strong heating and that 3He minority could be used as well on PLT, that the 2nd harmonic majority tritium regime was viable on TFTR, and that high harmonic fast wave heating was efficient when the SOL losses were avoided on NSTX.

  10. Calcium stable isotope geochemistry

    Energy Technology Data Exchange (ETDEWEB)

    Gausonne, Nikolaus [Muenster Univ. (Germany). Inst. fuer Mineralogie; Schmitt, Anne-Desiree [Strasbourg Univ. (France). LHyGeS/EOST; Heuser, Alexander [Bonn Univ. (Germany). Steinmann-Inst. fuer Geologie, Mineralogie und Palaeontologie; Wombacher, Frank [Koeln Univ. (Germany). Inst. fuer Geologie und Mineralogie; Dietzel, Martin [Technische Univ. Graz (Austria). Inst. fuer Angewandte Geowissenschaften; Tipper, Edward [Cambridge Univ. (United Kingdom). Dept. of Earth Sciences; Schiller, Martin [Copenhagen Univ. (Denmark). Natural History Museum of Denmark

    2016-08-01

    This book provides an overview of the fundamentals and reference values for Ca stable isotope research, as well as current analytical methodologies including detailed instructions for sample preparation and isotope analysis. As such, it introduces readers to the different fields of application, including low-temperature mineral precipitation and biomineralisation, Earth surface processes and global cycling, high-temperature processes and cosmochemistry, and lastly human studies and biomedical applications. The current state of the art in these major areas is discussed, and open questions and possible future directions are identified. In terms of its depth and coverage, the current work extends and complements the previous reviews of Ca stable isotope geochemistry, addressing the needs of graduate students and advanced researchers who want to familiarize themselves with Ca stable isotope research.

  11. Direct measurements of the damping of Alfven eigenmodes for an assessment of their stability limits in Tokamak plasmas

    International Nuclear Information System (INIS)

    Panis, T.

    2010-12-01

    Direct damping rate measurements of Alfven eigenmodes (AE) are obtained using the active MHD spectroscopy system installed on the JET tokamak. The system was recently equipped with new antennas, designed to study especially the modes of intermediate toroidal mode number n, ¦n¦ = 3 -- 15, as the AEs of this range are most prone to destabilization by the fast particles in JET and in future burning plasma experiments such as ITER. The broad n-spectrum that is driven by the new antennas and the more localized structure of intermediate-n AEs has important implications for the ability to measure damping rates of intermediate n. To obtain an extended database of high accuracy individual-n measurements, experimental work on technical and engineering aspects was indispensable both on the excitation side and on the detection side. On the excitation side, the electrical model of the AE exciter has been constructed during this thesis. The model is used to determine the operational capabilities of the exciter with the new antennas, to optimize the antenna currents and to design the relevant impedance matching circuits. On the detection side, the excitation of multiple-n, degenerate AEs at close frequencies prompted for a sophisticated method to correctly estimate the n-spectrum of the plasma response. To this end, a sparse spectrum representation method was adapted to deal with the complex and real-time data produced by the active MHD spectroscopy system. The n-decomposition of the plasma response requires an accurate relative calibration of the magnetic pick-up coils. An in situ method was developed and applied for the calibration of the coils using the direct coupling to the new AE antennas. A large collection of damping rate measurements of, mainly, toroidal AEs (TAEs) was obtained during the 2008/2009 JET experimental campaigns following the technical optimization of the antenna system. Selected measurements of ¦n¦ = 3, 4 and ¦n¦ = 7 TAEs are compared to the plasma

  12. Letter to the editor: The ionospheric response during an interval of Pc5 ULF wave activity

    Directory of Open Access Journals (Sweden)

    M. Lester

    2000-02-01

    Full Text Available A preliminary analysis of Pc5, ULF wave activity observed with the IMAGE magnetometer array and the EISCAT UHF radar in the post midnight sector indicates that such waves can be caused by the modulation of the ionospheric conductivity as well as the wave electric field. An observed Pc5 pulsation is divided into three separate intervals based upon the EISCAT data. In the first and third, the Pc5 waves are observed only in the measured electron density between 90 and 112 km and maxima in the electron density at these altitudes are attributed to pulsed precipitation of electrons with energies up to 40 keV which result in the height integrated Hall conductivity being pulsed between 10 and 50 S. In the second interval, the Pc5 wave is observed in the F-region ion temperature, electron density and electron temperature but not in the D and E region electron densities. The analysis suggests that the wave during this interval is a coupled Alfven and compressional mode.Key words: Ionosphere (electric fields and currents - Magnetospheric physics (magnetosphere-ionosphere interaction; MHD waves and instabilities

  13. Parametric Excitation of Magnetopause Surface Waves: Global Magnetospheric Modeling in SWMF

    Science.gov (United States)

    Ellington, S.

    2017-12-01

    Magnetopause surface waves are an efficient energy transport modality in the coupling of the solar wind with the magnetosphere. The magnetopause supports several known waves such as the Kelvin-Helmholtz and Kruskal-Schwartzchild modes, which are excited by velocity shear and impulsive solarwind pressure pulses, respectively. Here we have discovered via simulations in SWMF a parametrically excited surface wave in which a slow magnetosonic wave excited by broadband, low amplitude fluctuations in the upstream solarwind number density couples to a circularly polarized shear Alfven wave at half the frequency. By varying the amplitude of the fluctuations and using various constitutive MHD equation sets-ideal, resistive, and anisotropic ion pressure with electron pressure, we verify that the theoretical model of parametric excitation accurately predicts the observed growth rates in each case. We briefly discuss the saturation mechanism of the shear modes as a nonlocal phenomenon mediated by ionospheric conductivity and describe several observations made downstream involving their decay, a process which subsequently couples the surface waves to kink mode waves that then propagate across the entire magnetotail. Lastly, we discuss the implications of these results in the context of observed magnetosphere phenomena and the impact of the numerical design of these simulations therein.

  14. Gravitation Waves

    CERN Multimedia

    CERN. Geneva

    2005-01-01

    We will present a brief introduction to the physics of gravitational waves and their properties. We will review potential astrophysical sources of gravitational waves, and the physics and astrophysics that can be learned from their study. We will survey the techniques and technologies for detecting gravitational waves for the first time, including bar detectors and broadband interferometers, and give a brief status report on the international search effort, with special emphasis on the LIGO detectors and search results.

  15. Evolutionary Stable Strategy

    Indian Academy of Sciences (India)

    2016-08-26

    Aug 26, 2016 ... Home; Journals; Resonance – Journal of Science Education; Volume 21; Issue 9. Evolutionary Stable Strategy: Application of Nash Equilibrium in Biology. General ... Using some examples of classical games, we show how evolutionary game theory can help understand behavioural decisions of animals.

  16. The Stable Concordance Genus

    OpenAIRE

    Kearney, M. Kate

    2013-01-01

    The concordance genus of a knot is the least genus of any knot in its concordance class. Although difficult to compute, it is a useful invariant that highlights the distinction between the three-genus and four-genus. In this paper we define and discuss the stable concordance genus of a knot, which describes the behavior of the concordance genus under connected sum.

  17. Manifolds admitting stable forms

    Czech Academy of Sciences Publication Activity Database

    Le, Hong-Van; Panák, Martin; Vanžura, Jiří

    2008-01-01

    Roč. 49, č. 1 (2008), s. 101-11 ISSN 0010-2628 R&D Projects: GA ČR(CZ) GP201/05/P088 Institutional research plan: CEZ:AV0Z10190503 Keywords : stable forms * automorphism groups Subject RIV: BA - General Mathematics

  18. Stable isotope studies

    International Nuclear Information System (INIS)

    Ishida, T.

    1992-01-01

    The research has been in four general areas: (1) correlation of isotope effects with molecular forces and molecular structures, (2) correlation of zero-point energy and its isotope effects with molecular structure and molecular forces, (3) vapor pressure isotope effects, and (4) fractionation of stable isotopes. 73 refs, 38 figs, 29 tabs

  19. Interactive Stable Ray Tracing

    DEFF Research Database (Denmark)

    Dal Corso, Alessandro; Salvi, Marco; Kolb, Craig

    2017-01-01

    Interactive ray tracing applications running on commodity hardware can suffer from objectionable temporal artifacts due to a low sample count. We introduce stable ray tracing, a technique that improves temporal stability without the over-blurring and ghosting artifacts typical of temporal post-pr...

  20. The stable subgroup graph

    Directory of Open Access Journals (Sweden)

    Behnaz Tolue

    2018-07-01

    Full Text Available In this paper we introduce stable subgroup graph associated to the group $G$. It is a graph with vertex set all subgroups of $G$ and two distinct subgroups $H_1$ and $H_2$ are adjacent if $St_{G}(H_1\\cap H_2\

  1. Energization of helium ions by proton-induced hydromagnetic waves

    International Nuclear Information System (INIS)

    Gendrin, R.; Roux, A.

    1980-01-01

    We consider the diffusion of He + ions under the influence of ion cyclotron waves generated in a plasma consisting of three different ion populations: a thermal isotropic population containing both H + and He + ions and an energetic H + population, with a positive anisotropy A=T/sub perpendicular//T/sub parallel/-1. We compute, in the velocity space upsilon/sub parallel/, upsilon/sub perpendicular/, the diffusion curves that He + ions will follow in the presence of ion cyclotron waves propagating in such a medium. We show that for small concentrations of the He + ions, of the order of 1 to approx.10%, these ions can be energized by such a process up to and above suprathermal energies (E> or approx. =20 eV). On some occasions the He + ions may even reach energies of the order of the Alfven energy of the cold plasma population: E/sub a/approx. =m/sub p/V/sub a/ 2 approx. =5 keV. Characteristic diffusion times, in pitch angle and energy, for both ion species, are evaluated. They are of the order of 2 to 20 min. These theoretical results are discussed in the frame of recent observations by Geos experimenters showing the close association that exists between the occurrence of ion cyclotron ULF waves and the presence of thermal or supra-thermal He + ions in the equatorial region of the magnetosphere

  2. Wave Star

    DEFF Research Database (Denmark)

    Kramer, Morten; Brorsen, Michael; Frigaard, Peter

    Nærværende rapport beskriver numeriske beregninger af den hydrodynamiske interaktion mellem 5 flydere i bølgeenergianlægget Wave Star.......Nærværende rapport beskriver numeriske beregninger af den hydrodynamiske interaktion mellem 5 flydere i bølgeenergianlægget Wave Star....

  3. Stable fiber interferometer

    International Nuclear Information System (INIS)

    Izmajlov, G.N.; Nikolaev, F.A.; Ozolin, V.V.; Grigor'yants, V.V.; Chamorovskij, Yu.K.

    1989-01-01

    The problem of construction the long-base Michelson interferometer for gravitational wave detection is discussed. Possible sources of noise and instability are considered. It is shown that evacuation of fiber interferometer, the winding of its arms on the glass ceramic bases, stabilization of radiation source frequency and seismic isolation of the base allow one to reduce its instability to the level, typical of mirror interferometer with the comparable optical base. 10 refs.; 2 figs

  4. Stable isotope analysis

    International Nuclear Information System (INIS)

    Tibari, Elghali; Taous, Fouad; Marah, Hamid

    2014-01-01

    This report presents results related to stable isotopes analysis carried out at the CNESTEN DASTE in Rabat (Morocco), on behalf of Senegal. These analyzes cover 127 samples. These results demonstrate that Oxygen-18 and Deuterium in water analysis were performed by infrared Laser spectroscopy using a LGR / DLT-100 with Autosampler. Also, the results are expressed in δ values (‰) relative to V-SMOW to ± 0.3 ‰ for oxygen-18 and ± 1 ‰ for deuterium.

  5. Forensic Stable Isotope Biogeochemistry

    Science.gov (United States)

    Cerling, Thure E.; Barnette, Janet E.; Bowen, Gabriel J.; Chesson, Lesley A.; Ehleringer, James R.; Remien, Christopher H.; Shea, Patrick; Tipple, Brett J.; West, Jason B.

    2016-06-01

    Stable isotopes are being used for forensic science studies, with applications to both natural and manufactured products. In this review we discuss how scientific evidence can be used in the legal context and where the scientific progress of hypothesis revisions can be in tension with the legal expectations of widely used methods for measurements. Although this review is written in the context of US law, many of the considerations of scientific reproducibility and acceptance of relevant scientific data span other legal systems that might apply different legal principles and therefore reach different conclusions. Stable isotopes are used in legal situations for comparing samples for authenticity or evidentiary considerations, in understanding trade patterns of illegal materials, and in understanding the origins of unknown decedents. Isotope evidence is particularly useful when considered in the broad framework of physiochemical processes and in recognizing regional to global patterns found in many materials, including foods and food products, drugs, and humans. Stable isotopes considered in the larger spatial context add an important dimension to forensic science.

  6. Stable complex solitary waves of Sasa Satsuma equation

    Indian Academy of Sciences (India)

    dispersion (TOD), self-steeping (SS) related to Kerr effect and the self frequency shifting via stimulated Raman scattering. It is the last term, which plays an important role in the propagation of distortionless optical pulses over a long distance. But the contribution from the last three terms becomes appreciable only for the very ...

  7. A Review of Low Frequency Electromagnetic Wave Phenomena Related to Tropospheric-Ionospheric Coupling Mechanisms

    Science.gov (United States)

    Simoes, Fernando; Pfaff, Robert; Berthelier, Jean-Jacques; Klenzing, Jeffrey

    2012-01-01

    Investigation of coupling mechanisms between the troposphere and the ionosphere requires a multidisciplinary approach involving several branches of atmospheric sciences, from meteorology, atmospheric chemistry, and fulminology to aeronomy, plasma physics, and space weather. In this work, we review low frequency electromagnetic wave propagation in the Earth-ionosphere cavity from a troposphere-ionosphere coupling perspective. We discuss electromagnetic wave generation, propagation, and resonance phenomena, considering atmospheric, ionospheric and magnetospheric sources, from lightning and transient luminous events at low altitude to Alfven waves and particle precipitation related to solar and magnetospheric processes. We review in situ ionospheric processes as well as surface and space weather phenomena that drive troposphere-ionosphere dynamics. Effects of aerosols, water vapor distribution, thermodynamic parameters, and cloud charge separation and electrification processes on atmospheric electricity and electromagnetic waves are reviewed. We also briefly revisit ionospheric irregularities such as spread-F and explosive spread-F, sporadic-E, traveling ionospheric disturbances, Trimpi effect, and hiss and plasma turbulence. Regarding the role of the lower boundary of the cavity, we review transient surface phenomena, including seismic activity, earthquakes, volcanic processes and dust electrification. The role of surface and atmospheric gravity waves in ionospheric dynamics is also briefly addressed. We summarize analytical and numerical tools and techniques to model low frequency electromagnetic wave propagation and solving inverse problems and summarize in a final section a few challenging subjects that are important for a better understanding of tropospheric-ionospheric coupling mechanisms.

  8. Fast wave current drive in H mode plasmas on the DIII-D tokamak

    International Nuclear Information System (INIS)

    Petty, C.C.; Grassie, J.S. de; Baity, F.W.

    1999-01-01

    Current driven by fast Alfven waves is measured in H mode and VH mode plasmas on the DIII-D tokamak for the first time. Analysis of the poloidal flux evolution shows that the fast wave current drive profile is centrally peaked but sometimes broader than theoretically expected. Although the measured current drive efficiency is in agreement with theory for plasmas with infrequent ELMs, the current drive efficiency is an order of magnitude too low for plasmas with rapid ELMs. Power modulation experiments show that the reduction in current drive with increasing ELM frequency is due to a reduction in the fraction of centrally absorbed fast wave power. The absorption and current drive are weakest when the electron density outside the plasma separatrix is raised above the fast wave cut-off density by the ELMs, possibly allowing an edge loss mechanism to dissipate the fast wave power since the cut-off density is a barrier for fast waves leaving the plasma. (author)

  9. Wave Dragon

    DEFF Research Database (Denmark)

    Tedd, James; Kofoed, Jens Peter; Knapp, W.

    2006-01-01

    power of the device. The project development team has gained much soft experience from working in the harsh offshore environment. In particular the effect of marine growth in the draft tubes of the turbines has been investigated. The control of the device has been a focus for development as is operates......Wave Dragon is a floating wave energy converter working by extracting energy principally by means of overtopping of waves into a reservoir. A 1:4.5 scale prototype has been sea tested for 20 months. This paper presents results from testing, experiences gained and developments made during...

  10. Causal inheritance in plane wave quotients

    International Nuclear Information System (INIS)

    Hubeny, Veronika E.; Rangamani, Mukund; Ross, Simon F.

    2003-01-01

    We investigate the appearance of closed timelike curves in quotients of plane waves along spacelike isometries. First we formulate a necessary and sufficient condition for a quotient of a general spacetime to preserve stable causality. We explicitly show that the plane waves are stably causal; in passing, we observe that some pp-waves are not even distinguishing. We then consider the classification of all quotients of the maximally supersymmetric ten-dimensional plane wave under a spacelike isometry, and show that the quotient will lead to closed timelike curves iff the isometry involves a translation along the u direction. The appearance of these closed timelike curves is thus connected to the special properties of the light cones in plane wave spacetimes. We show that all other quotients preserve stable causality

  11. Heat Waves

    Science.gov (United States)

    ... quickly. - Drink plenty of water regularly and often. - Eat small meals and eat more often. - Avoid using salt tablets ... plenty of water during a heat wave and eat smaller, more frequent meals. Text from "Are You Prepared?" by the Cass ( ...

  12. Efficient Wave Energy Amplification with Wave Reflectors

    DEFF Research Database (Denmark)

    Kramer, Morten Mejlhede; Frigaard, Peter Bak

    2002-01-01

    Wave Energy Converters (WEC's) extract wave energy from a limited area, often a single point or line even though the wave energy is generally spread out along the wave crest. By the use of wave reflectors (reflecting walls) the wave energy is effectively focused and increased to approximately 130...... for different geometries of the wave reflectors and optimal geometrical design parameters are specified. On this basis inventors of WEC's can evaluate whether a specific WEC possible could benefit from wave reflectors....

  13. Travelling waves in models of neural tissue: from localised structures to periodic waves

    NARCIS (Netherlands)

    Meijer, Hil Gaétan Ellart; Coombes, Stephen

    2014-01-01

    We consider travelling waves (fronts, pulses and periodics) in spatially extended one dimensional neural field models. We demonstrate for an excitatory field with linear adaptation that, in addition to an expected stable pulse solution, a stable anti-pulse can exist. Varying the adaptation strength

  14. Wave Star

    DEFF Research Database (Denmark)

    Kramer, Morten; Frigaard, Peter

    Nærværende rapport beskriver modelforsøg udført på Aalborg Universitet, Institut for Byggeri og Anlæg med bølgeenergianlæget Wave Star.......Nærværende rapport beskriver modelforsøg udført på Aalborg Universitet, Institut for Byggeri og Anlæg med bølgeenergianlæget Wave Star....

  15. Wave Star

    DEFF Research Database (Denmark)

    Kramer, Morten; Andersen, Thomas Lykke

    Nærværende rapport beskriver modelforsøg udført på Aalborg Universitet, Institut for Vand, Jord og Miljøteknik med bølgeenergianlægget Wave Star.......Nærværende rapport beskriver modelforsøg udført på Aalborg Universitet, Institut for Vand, Jord og Miljøteknik med bølgeenergianlægget Wave Star....

  16. Blast Waves

    CERN Document Server

    Needham, Charles E

    2010-01-01

    The primary purpose of this text is to document many of the lessons that have been learned during the author’s more than forty years in the field of blast and shock. The writing therefore takes on an historical perspective, in some sense, because it follows the author’s experience. The book deals with blast waves propagating in fluids or materials that can be treated as fluids. It begins by distinguishing between blast waves and the more general category of shock waves. It then examines several ways of generating blast waves, considering the propagation of blast waves in one, two and three dimensions as well as through the real atmosphere. One section treats the propagation of shocks in layered gases in a more detailed manner. The book also details the interaction of shock waves with structures in particular reflections, progressing from simple to complex geometries, including planar structures, two-dimensional structures such as ramps or wedges, reflections from heights of burst, and three-dimensional st...

  17. Evolution Of Nonlinear Waves in Compressing Plasma

    Energy Technology Data Exchange (ETDEWEB)

    P.F. Schmit, I.Y. Dodin, and N.J. Fisch

    2011-05-27

    Through particle-in-cell simulations, the evolution of nonlinear plasma waves is examined in one-dimensional collisionless plasma undergoing mechanical compression. Unlike linear waves, whose wavelength decreases proportionally to the system length L(t), nonlinear waves, such as solitary electron holes, conserve their characteristic size {Delta} during slow compression. This leads to a substantially stronger adiabatic amplification as well as rapid collisionless damping when L approaches {Delta}. On the other hand, cessation of compression halts the wave evolution, yielding a stable mode.

  18. Nonsimilar Solution for Shock Waves in a Rotational Axisymmetric Perfect Gas with a Magnetic Field and Exponentially Varying Density

    Science.gov (United States)

    Nath, G.; Sinha, A. K.

    2017-01-01

    The propagation of a cylindrical shock wave in an ideal gas in the presence of a constant azimuthal magnetic field with consideration for the axisymmetric rotational effects is investigated. The ambient medium is assumed to have the radial, axial, and azimuthal velocity components. The fluid velocities and density of the ambient medium are assumed to vary according to an exponential law. Nonsimilar solutions are obtained by taking into account the vorticity vector and its components. The dependences of the characteristics of the problem on the Alfven-Mach number and time are obtained. It is shown that the presence of a magnetic field has a decaying effect on the shock wave. The pressure and density are shown to vanish at the inner surface (piston), and hence a vacuum forms at the line of symmetry.

  19. Wave Generation Theory

    DEFF Research Database (Denmark)

    Frigaard, Peter; Høgedal, Michael; Christensen, Morten

    The intention of this manual is to provide some formulas and techniques which can be used for generating waves in hydraulic laboratories. Both long crested waves (2-D waves) and short crested waves (3-D waves) are considered.......The intention of this manual is to provide some formulas and techniques which can be used for generating waves in hydraulic laboratories. Both long crested waves (2-D waves) and short crested waves (3-D waves) are considered....

  20. Marginally Stable Nuclear Burning

    Science.gov (United States)

    Strohmayer, Tod E.; Altamirano, D.

    2012-01-01

    Thermonuclear X-ray bursts result from unstable nuclear burning of the material accreted on neutron stars in some low mass X-ray binaries (LMXBs). Theory predicts that close to the boundary of stability oscillatory burning can occur. This marginally stable regime has so far been identified in only a small number of sources. We present Rossi X-ray Timing Explorer (RXTE) observations of the bursting, high- inclination LMXB 4U 1323-619 that reveal for the first time in this source the signature of marginally stable burning. The source was observed during two successive RXTE orbits for approximately 5 ksec beginning at 10:14:01 UTC on March 28, 2011. Significant mHz quasi- periodic oscillations (QPO) at a frequency of 8.1 mHz are detected for approximately 1600 s from the beginning of the observation until the occurrence of a thermonuclear X-ray burst at 10:42:22 UTC. The mHz oscillations are not detected following the X-ray burst. The average fractional rms amplitude of the mHz QPOs is 6.4% (3 - 20 keV), and the amplitude increases to about 8% below 10 keV.This phenomenology is strikingly similar to that seen in the LMXB 4U 1636-53. Indeed, the frequency of the mHz QPOs in 4U 1323-619 prior to the X-ray burst is very similar to the transition frequency between mHz QPO and bursts found in 4U 1636-53 by Altamirano et al. (2008). These results strongly suggest that the observed QPOs in 4U 1323-619 are, like those in 4U 1636-53, due to marginally stable nuclear burning. We also explore the dependence of the energy spectrum on the oscillation phase, and we place the present observations within the context of the spectral evolution of the accretion-powered flux from the source.

  1. Internal Wave Generation by Convection

    Science.gov (United States)

    Lecoanet, Daniel Michael

    In nature, it is not unusual to find stably stratified fluid adjacent to convectively unstable fluid. This can occur in the Earth's atmosphere, where the troposphere is convective and the stratosphere is stably stratified; in lakes, where surface solar heating can drive convection above stably stratified fresh water; in the oceans, where geothermal heating can drive convection near the ocean floor, but the water above is stably stratified due to salinity gradients; possible in the Earth's liquid core, where gradients in thermal conductivity and composition diffusivities maybe lead to different layers of stable or unstable liquid metal; and, in stars, as most stars contain at least one convective and at least one radiative (stably stratified) zone. Internal waves propagate in stably stratified fluids. The characterization of the internal waves generated by convection is an open problem in geophysical and astrophysical fluid dynamics. Internal waves can play a dynamically important role via nonlocal transport. Momentum transport by convectively excited internal waves is thought to generate the quasi-biennial oscillation of zonal wind in the equatorial stratosphere, an important physical phenomenon used to calibrate global climate models. Angular momentum transport by convectively excited internal waves may play a crucial role in setting the initial rotation rates of neutron stars. In the last year of life of a massive star, convectively excited internal waves may transport even energy to the surface layers to unbind them, launching a wind. In each of these cases, internal waves are able to transport some quantity--momentum, angular momentum, energy--across large, stable buoyancy gradients. Thus, internal waves represent an important, if unusual, transport mechanism. This thesis advances our understanding of internal wave generation by convection. Chapter 2 provides an underlying theoretical framework to study this problem. It describes a detailed calculation of the

  2. Final Report (1994 to 1996) Diagnostic of the Spatial and Velocity Distribution of Alpha Particles in Tokamak Fusion Reactor using Beat-wave Generated Lower Hybrid Wave

    International Nuclear Information System (INIS)

    Hwang, D.Q.; Horton, R.D.; Evans, R.W.

    1999-01-01

    The alpha particles in a fusion reactor play a key role in the sustaining the fusion reaction. It is the heating provided by the alpha particles that help a fusion reactor operating in the ignition regime. It is, therefore, essential to understand the behavior of the alpha population both in real space and velocity space in order to design the optimal confinement device for fusion application. Moreover, the alphas represent a strong source of free energy that may generate plasma instabilities. Theoretical studies has identified the Toroidal Alfven Eigenmode (TAE) as an instability that can be excited by the alpha population in a toroidal device. Since the alpha has an energy of 3.5 MeV, a good confinement device will retain it in the interior of the plasma. Therefore, alpha measurement system need to probe the interior of a high density plasma. Due to the conducting nature of a plasma, wave with frequencies below the plasma frequency can not penetrate into the interior of the plasma where the alphas reside. This project uses a wave that can interact with the perpendicular motion of the alphas to probe its characteristics. However, this wave (the lower hybrid wave) is below the plasma frequency and can not be directly launched from the plasma edge. This project was designed to non-linearly excite the lower hybrid in the interior of a magnetized plasma and measure its interaction with a fast ion population

  3. Freak waves in white dwarfs and magnetars

    Energy Technology Data Exchange (ETDEWEB)

    Sabry, R. [Theoretical Physics Group, Physics Department, Faculty of Science, Damietta University, New Damietta 34517 (Egypt); Department of Physics, College of Science and Humanitarian Studies, Salman bin Abdulaziz University, Alkharj (Saudi Arabia); International Centre for Advanced Studies in Physical Sciences, Faculty of Physics and Astronomy, Ruhr University Bochum, D-44780 Bochum (Germany); Moslem, W. M. [International Centre for Advanced Studies in Physical Sciences, Faculty of Physics and Astronomy, Ruhr University Bochum, D-44780 Bochum (Germany); Department of Physics, Faculty of Science, Port Said University, Port Said (Egypt); Centre for Theoretical Physics, The British University in Egypt (BUE), El-Shorouk City, Cairo (Egypt); Shukla, P. K. [International Centre for Advanced Studies in Physical Sciences, Faculty of Physics and Astronomy, Ruhr University Bochum, D-44780 Bochum (Germany); Department of Mechanical and Aerospace Engineering and Center for Energy Research, University of California, San Diego, La Jolla, California 92093 (United States)

    2012-12-15

    We report properties of ion acoustic freak waves that propagate in a plasma composed of warm ions and ultrarelativistic electrons and positrons. The dynamics of the nonlinear freak waves is governed by the nonlinear Schroedinger equation. The possible region for the freak waves to exist is defined precisely for typical parameters of white dwarfs and magnetars corona. It is found that for low wave number, the nonlinear ion-acoustic wave packets are structurally stable in magnetars corona than in white dwarfs. However, for large wave numbers the situation is opposite. The critical wave number threshold (k{sub c}), which indicates where the modulational instability sets in, is defined for both applications. It is seen that near to k{sub c} the freak wave amplitude becomes high, but it decreases whenever we stepped away from k{sub c}. For the wave numbers close to k{sub c}, the increase of the unperturbed density ratio of positrons-to-electrons ({beta}) would lead to increase the freak wave amplitude, but for larger wave numbers the amplitude decreases with the increase of {beta}.

  4. Freak waves in white dwarfs and magnetars

    Science.gov (United States)

    Sabry, R.; Moslem, W. M.; Shukla, P. K.

    2012-12-01

    We report properties of ion acoustic freak waves that propagate in a plasma composed of warm ions and ultrarelativistic electrons and positrons. The dynamics of the nonlinear freak waves is governed by the nonlinear Schrödinger equation. The possible region for the freak waves to exist is defined precisely for typical parameters of white dwarfs and magnetars corona. It is found that for low wave number, the nonlinear ion-acoustic wave packets are structurally stable in magnetars corona than in white dwarfs. However, for large wave numbers the situation is opposite. The critical wave number threshold (kc), which indicates where the modulational instability sets in, is defined for both applications. It is seen that near to kc the freak wave amplitude becomes high, but it decreases whenever we stepped away from kc. For the wave numbers close to kc, the increase of the unperturbed density ratio of positrons-to-electrons (β) would lead to increase the freak wave amplitude, but for larger wave numbers the amplitude decreases with the increase of β .

  5. Freak waves in white dwarfs and magnetars

    International Nuclear Information System (INIS)

    Sabry, R.; Moslem, W. M.; Shukla, P. K.

    2012-01-01

    We report properties of ion acoustic freak waves that propagate in a plasma composed of warm ions and ultrarelativistic electrons and positrons. The dynamics of the nonlinear freak waves is governed by the nonlinear Schrödinger equation. The possible region for the freak waves to exist is defined precisely for typical parameters of white dwarfs and magnetars corona. It is found that for low wave number, the nonlinear ion-acoustic wave packets are structurally stable in magnetars corona than in white dwarfs. However, for large wave numbers the situation is opposite. The critical wave number threshold (k c ), which indicates where the modulational instability sets in, is defined for both applications. It is seen that near to k c the freak wave amplitude becomes high, but it decreases whenever we stepped away from k c . For the wave numbers close to k c , the increase of the unperturbed density ratio of positrons-to-electrons (β) would lead to increase the freak wave amplitude, but for larger wave numbers the amplitude decreases with the increase of β.

  6. Finite Amplitude Ocean Waves

    Indian Academy of Sciences (India)

    IAS Admin

    plitude waves and finite amplitude waves. This article provides a brief introduction to finite amplitude wave theories. Some of the general characteristics of waves as well as the importance of finite amplitude wave theories are touched upon. 2. Small Amplitude Waves. The topmost and the lowest levels of the waves are re-.

  7. Gravity waves from relativistic binaries

    OpenAIRE

    Levin, Janna; O'Reilly, Rachel; Copeland, E. J.

    1999-01-01

    The stability of binary orbits can significantly shape the gravity wave signal which future Earth-based interferometers hope to detect. The inner most stable circular orbit has been of interest as it marks the transition from the late inspiral to final plunge. We consider purely relativistic orbits beyond the circular assumption. Homoclinic orbits are of particular importance to the question of stability as they lie on the boundary between dynamical stability and instability. We identify thes...

  8. On a Stable and Consistent Finite Difference Scheme for a Time ...

    African Journals Online (AJOL)

    In this paper, a stable and consistent criterion to an explicit finite difference scheme for a time-dependent Schrodinger wave equation (TDSWE) was presented. This paper is a departure from the well-established time independent Schrodinger Wave Equation (SWE). To develop the stability criterion for the scheme, the ...

  9. Dynamical attraction to stable processes

    OpenAIRE

    Fisher, Albert M.; Talet, Marina

    2012-01-01

    We apply dynamical ideas within probability theory, proving an almost-sure invariance principle in log density for stable processes. The familiar scaling property (self-similarity) of the stable process has a stronger expression, that the scaling flow on Skorokhod path space is a Bernoulli flow. We prove that typical paths of a random walk with i.i.d. increments in the domain of attraction of a stable law can be paired with paths of a stable process so that, after applying a non-random regula...

  10. Impact of Wave Dragon on Wave Climate

    DEFF Research Database (Denmark)

    Andersen, Thomas Lykke; Tedd, James; Kramer, Morten

    This report is an advisory paper for use in determining the wave dragon effects on hydrography, by considering the effect on the wave climate in the region of a wave dragon. This is to be used in the impact assessment for the Wave Dragon pre-commercial demonstrator.......This report is an advisory paper for use in determining the wave dragon effects on hydrography, by considering the effect on the wave climate in the region of a wave dragon. This is to be used in the impact assessment for the Wave Dragon pre-commercial demonstrator....

  11. Gravitational waves

    CERN Document Server

    Ciufolini, I; Moschella, U; Fre, P

    2001-01-01

    Gravitational waves (GWs) are a hot topic and promise to play a central role in astrophysics, cosmology, and theoretical physics. Technological developments have led us to the brink of their direct observation, which could become a reality in the coming years. The direct observation of GWs will open an entirely new field: GW astronomy. This is expected to bring a revolution in our knowledge of the universe by allowing the observation of previously unseen phenomena, such as the coalescence of compact objects (neutron stars and black holes), the fall of stars into supermassive black holes, stellar core collapses, big-bang relics, and the new and unexpected.With a wide range of contributions by leading scientists in the field, Gravitational Waves covers topics such as the basics of GWs, various advanced topics, GW detectors, astrophysics of GW sources, numerical applications, and several recent theoretical developments. The material is written at a level suitable for postgraduate students entering the field.

  12. Wave Star

    DEFF Research Database (Denmark)

    Kramer, Morten; Frigaard, Peter; Brorsen, Michael

    Nærværende rapport beskriver foreløbige hovedkonklusioner på modelforsøg udført på Aalborg Universitet, Institut for Vand, Jord og Miljøteknik med bølgeenergianlægget Wave Star i perioden 13/9 2004 til 12/11 2004.......Nærværende rapport beskriver foreløbige hovedkonklusioner på modelforsøg udført på Aalborg Universitet, Institut for Vand, Jord og Miljøteknik med bølgeenergianlægget Wave Star i perioden 13/9 2004 til 12/11 2004....

  13. Magneto-thermoelastic waves in a perfectly conducting elastic half-space in thermoelasticity III

    Directory of Open Access Journals (Sweden)

    S. K. Roychoudhuri

    2005-01-01

    Full Text Available The propagation of magneto-thermoelastic disturbances in an elastic half-space caused by the application of a thermal shock on the stress-free bounding surface in contact with vacuum is investigated. The theory of thermoelasticity III proposed by Green and Naghdi is used to study the interaction between elastic, thermal, and magnetic fields. Small-time approximations of solutions for displacement, temperature, stress, perturbed magnetic fields both in the vacuum and in the half-space are derived. The solutions for displacement, temperature, stress, perturbed magnetic field in the solid consist of a dilatational wave front with attenuation depending on magneto-thermoelastic coupling and also consists of a part diffusive in nature due to the damping term present in the heat transport equation, while the perturbed field in vacuum represents a wave front without attenuation traveling with Alfv'en acoustic wave speed. Displacement and temperatures are continuous at the elastic wave front, while both the stress and the perturbed magnetic field in the half-space suffer finite jumps at this location. Numerical results for a copper-like material are presented.

  14. Heating and Acceleration of Solar Wind Ions by Turbulent Wave Spectrum in Inhomogeneous Expanding Plasma

    Science.gov (United States)

    Ofman, Leon; Ozak, Nataly; Vinas, Adolfo F.

    2016-01-01

    Near the Sun (acceleration, heating, and propagation of the solar wind are likely affected by the background inhomogeneities of the magnetized plasma. The heating and the acceleration of the solar wind ions by turbulent wave spectrum in inhomogeneous plasma is studied using a 2.5D hybrid model. The hybrid model describes the kinetics of the ions, while the electrons are modeled as massless neutralizing fluid in an expanding box approach. Turbulent magnetic fluctuations dominated by power-law frequency spectra, which are evident from in-situ as well as remote sensing measurements, are used in our models. The effects of background density inhomogeneity across the magnetic field on the resonant ion heating are studied. The effect of super- Alfvenic ion drift on the ion heating is investigated. It is found that the turbulent wave spectrum of initially parallel propagating waves cascades to oblique modes, and leads to enhanced resonant ion heating due to the inhomogeneity. The acceleration of the solar wind ions is achieved by the parametric instability of large amplitude waves in the spectrum, and is also affected by the inhomogeneity. The results of the study provide the ion temperature anisotropy and drift velocity temporal evolution due to relaxation of the instability. The non-Maxwellian velocity distribution functions (VDFs) of the ions are modeled in the inhomogeneous solar wind plasma in the acceleration region close to the Sun.

  15. Kinetic Evidence of Magnetic Reconnection Due to Kelvin-Helmholtz Waves

    Science.gov (United States)

    Li, W.; Andre, M.; Khotainstev, Yu. V.; Vaivads, A.; Graham, D. B.; Toledo-Redondo, S.; Norgren, C.; Henri, P.; Wang, C.; Tang, B. B.; hide

    2016-01-01

    The Kelvin-Helmholtz (ICH) instability at the Earth's magnetopause is predominantly excited during northward interplanetary magnetic field (IMF). Magnetic reconnection due to KH waves has been suggested as one of the mechanisms to transfer solar wind plasma into the magnetosphere. We investigate KH waves observed at the magnetopause by the Magnetospheric Multlscale (MMS) mission; in particular, we study the trailing edges of KH waves with Alfvenic ion jets. We observe gradual mixing of magnetospheric and magnetosheath ions at the boundary layer. The magnetospheric electrons with energy up to 80 keV are observed on the magnetosheath side of the jets, which indicates that they escape into the magnetosheath through reconnected magnetic field lines. At the same time, the low-energy (below 100eV) magnetosheath electrons enter the magnetosphere and are heated in the field-aligned direction at the high-density edge of the jets. Our observations provide unambiguous kinetic evidence for ongoing reconnection due to KH waves.

  16. Shock Waves

    CERN Document Server

    Jiang, Z

    2005-01-01

    The International Symposium on Shock Waves (ISSW) is a well established series of conferences held every two years in a different location. A unique feature of the ISSW is the emphasis on bridging the gap between physicists and engineers working in fields as different as gas dynamics, fluid mechanics and materials sciences. The main results presented at these meetings constitute valuable proceedings that offer anyone working in this field an authoritative and comprehensive source of reference.

  17. Wave Propagation

    CERN Document Server

    Ferrarese, Giorgio

    2011-01-01

    Lectures: A. Jeffrey: Lectures on nonlinear wave propagation.- Y. Choquet-Bruhat: Ondes asymptotiques.- G. Boillat: Urti.- Seminars: D. Graffi: Sulla teoria dell'ottica non-lineare.- G. Grioli: Sulla propagazione del calore nei mezzi continui.- T. Manacorda: Onde nei solidi con vincoli interni.- T. Ruggeri: "Entropy principle" and main field for a non linear covariant system.- B. Straughan: Singular surfaces in dipolar materials and possible consequences for continuum mechanics

  18. Coexistence of collapse and stable spatiotemporal solitons in multimode fibers

    Science.gov (United States)

    Shtyrina, Olga V.; Fedoruk, Mikhail P.; Kivshar, Yuri S.; Turitsyn, Sergei K.

    2018-01-01

    We analyze spatiotemporal solitons in multimode optical fibers and demonstrate the existence of stable solitons, in a sharp contrast to earlier predictions of collapse of multidimensional solitons in three-dimensional media. We discuss the coexistence of blow-up solutions and collapse stabilization by a low-dimensional external potential in graded-index media, and also predict the existence of stable higher-order nonlinear waves such as dipole-mode spatiotemporal solitons. To support the main conclusions of our numerical studies we employ a variational approach and derive analytically the stability criterion for input powers for the collapse stabilization.

  19. Control methods for localization of nonlinear waves.

    Science.gov (United States)

    Porubov, Alexey; Andrievsky, Boris

    2017-03-06

    A general form of a distributed feedback control algorithm based on the speed-gradient method is developed. The goal of the control is to achieve nonlinear wave localization. It is shown by example of the sine-Gordon equation that the generation and further stable propagation of a localized wave solution of a single nonlinear partial differential equation may be obtained independently of the initial conditions. The developed algorithm is extended to coupled nonlinear partial differential equations to obtain consistent localized wave solutions at rather arbitrary initial conditions.This article is part of the themed issue 'Horizons of cybernetical physics'. © 2017 The Author(s).

  20. Split degenerate states and stable p+ip phases from holography

    Energy Technology Data Exchange (ETDEWEB)

    Nie, Zhang-Yu; Zeng, Hui [Kunming University of Science and Technology, Kunming (China); Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing (China); Pan, Qiyuan [Hunan Normal Univ., Key Lab. of Low Dimensional Quantum Structures and Quantum Control of Ministry of Education, and Synergetic Innovation Center for Quantum Effects and Applications, Dept. of Physics, Changsha (China); Zeng, Hua-Bi [Yangzhou University, College of Physics Science and Technology, Yangzhou, Jiangsu (China); National Central University, Department of Physics, Chungli (China)

    2017-02-15

    In this paper, we investigate the p+ip superfluid phases in the complex vector field holographic p-wave model. We find that in the probe limit, the p+ip phase and the p-wave phase are equally stable, hence the p and ip orders can be mixed with an arbitrary ratio to form more general p+λip phases, which are also equally stable with the p-wave and p+ip phases. As a result, the system possesses a degenerate thermal state in the superfluid region. We further study the case on considering the back-reaction on the metric, and we find that the degenerate ground states will be separated into p-wave and p+ip phases, and the p-wave phase is more stable. Finally, due to the different critical temperature of the zeroth order phase transitions from p-wave and p+ip phases to the normal phase, there is a temperature region where the p+ip phase exists but the p-wave phase does not. In this region we find the stable holographic p+ip phase for the first time. (orig.)

  1. Separate P‐ and SV‐wave equations for VTI media

    KAUST Repository

    Pestana, Reynam C.

    2011-01-01

    In isotropic media we use the scalar acoustic wave equation to perform reverse time migration RTM of the recorded pressure wavefleld data. In anisotropic media P- and SV-waves are coupled and the elastic wave equation should be used for RTM. However, an acoustic anisotropic wave equation is often used instead. This results in significant shear wave energy in both modeling and RTM. To avoid this undesired SV-wave energy, we propose a different approach to separate P- and SV-wave components for vertical transversely isotropic VTI media. We derive independent pseudo-differential wave equations for each mode. The derived equations for P- and SV-waves are stable and reduce to the isotropic case. The equations presented here can be effectively used to model and migrate seismic data in VTI media where ε - δ is small. The SV-wave equation we develop is now well-posed and triplications in the SV wavefront are removed resulting in stable wave propagation. We show modeling and RTM results using the derived pure P-wave mode in complex VTI media and use the rapid expansion method REM to propagate the waveflelds in time. © 2011 Society of Exploration Geophysicists.

  2. Making Waves: Seismic Waves Activities and Demonstrations

    Science.gov (United States)

    Braile, S. J.; Braile, L. W.

    2011-12-01

    The nature and propagation of seismic waves are fundamental concepts necessary for understanding the exploration of Earth's interior structure and properties, plate tectonics, earthquakes, and seismic hazards. Investigating seismic waves is also an engaging approach to learning basic principles of the physics of waves and wave propagation. Several effective educational activities and demonstrations are available for teaching about seismic waves, including the stretching of a spring to demonstrate elasticity; slinky wave propagation activities for compressional, shear, Rayleigh and Love waves; the human wave activity to demonstrate P- and S- waves in solids and liquids; waves in water in a simple wave tank; seismic wave computer animations; simple shake table demonstrations of model building responses to seismic waves to illustrate earthquake damage to structures; processing and analysis of seismograms using free and easy to use software; and seismic wave simulation software for viewing wave propagation in a spherical Earth. The use of multiple methods for teaching about seismic waves is useful because it provides reinforcement of the fundamental concepts, is adaptable to variable classroom situations and diverse learning styles, and allows one or more methods to be used for authentic assessment. The methods described here have been used effectively with a broad range of audiences, including K-12 students and teachers, undergraduate students in introductory geosciences courses, and geosciences majors.

  3. Multisatellite and ground-based observations of transient ULF waves

    International Nuclear Information System (INIS)

    Potemra, T.A.; Zanetti, L.J.; Takahashi, K.; Erlandson, R.E.; Luehr, H.; Marklund, G.T.; Block, L.P.; Blomberg, L.G.; Lepping, R.P.

    1989-01-01

    A unique alignment of the Active Magnetospheric Particle Tracer Explorers (AMPTE) CCE and Viking satellites with respect to the EISCAT Magnetometer Cross has provided an opportunity to study transient ULF pulsations associated with variations in solar wind plasma density observed by the IMP 8 satellite. These observations were acquired during a relatively quiet period on April 24, 1986, during the Polar Region and Outer Magnetosphere International Study (PROMIS) period. An isolated 4-mHz (4-min period) pulsation was detected on the ground which was associated with transverse magnetic field oscillations observed by Viking at a ∼ 2-R E altitude above the auroral zone and by CCE at ∼ 8-R E in the equatorial plane on nearly the same flux tube. CCE detected a compressional oscillation in the magnetic field with twice the period (∼ 10 min) of the transverse waves, and with a waveform nearly identical to an isolated oscillation in the solar wind plasma density measured by IMP 8. The authors conclude that the isolated 10-min oscillation in solar wind plasma density produced magnetic field compression oscillations inside the magnetosphere at the same frequency which also enhanced resonant oscillations at approximately twice the frequency that were already present. The ground magnetic field variations are due to ionospheric Hall currents driven by the electric field of the standing Alfven waves. The time delay between surface and satellite data acquired at different local times supports the conclusion that the periodic solar wind density variation excites a tailward traveling large-scale magnetosphere wave train which excites local field line resonant oscillations. They conclude that these transient magnetic field variations are not associated with magnetic field reconnection or flux transfer events

  4. Fifth-order amplitude equation for traveling waves in isothermal double diffusive convection

    International Nuclear Information System (INIS)

    Mendoza, S.; Becerril, R.

    2009-01-01

    Third-order amplitude equations for isothermal double diffusive convection are known to hold the tricritical condition all along the oscillatory branch, predicting that stable traveling waves exist Only at the onset of the instability. In order to properly describe stable traveling waves, we perform a fifth-order calculation and present explicitly the corresponding amplitude equation.

  5. Redefinition of the Q-wave

    DEFF Research Database (Denmark)

    Jensen, Jesper Khédri; Øvrehus, Kristian; Mickley, Hans

    2006-01-01

    This study evaluated the potential consequences of the redefined joint European/American electrocardiographic criteria for an established myocardial infarction (MI). New and previous diagnostic Q-wave criteria were used in patients with stable angina pectoris. Seventy-nine patients with and 77 pa...

  6. An acoustic wave equation for pure P wave in 2D TTI media

    KAUST Repository

    Zhan, Ge

    2011-01-01

    In this paper, a pure P wave equation for an acoustic 2D TTI media is derived. Compared with conventional TTI coupled equations, the resulting equation is unconditionally stable due to the complete isolation of the SV wave mode. To avoid numerical dispersion and produce high quality images, the rapid expansion method REM is employed for numerical implementation. Synthetic results validate the proposed equation and show that it is a stable algorithm for modeling and reverse time migration RTM in a TTI media for any anisotropic parameter values. © 2011 Society of Exploration Geophysicists.

  7. A theory for narrow-banded radio bursts at Uranus - MHD surface waves as an energy driver

    Science.gov (United States)

    Farrell, W. M.; Curtis, S. A.; Desch, M. D.; Lepping, R. P.

    1992-01-01

    A possible scenario for the generation of the narrow-banded radio bursts detected at Uranus by the Voyager 2 planetary radio astronomy experiment is described. In order to account for the emission burstiness which occurs on time scales of hundreds of milliseconds, it is proposed that ULF magnetic surface turbulence generated at the frontside magnetopause propagates down the open/closed field line boundary and mode-converts to kinetic Alfven waves (KAW) deep within the polar cusp. The oscillating KAW potentials then drive a transient electron stream that creates the bursty radio emission. To substantiate these ideas, Voyager 2 magnetometer measurements of enhanced ULF magnetic activity at the frontside magnetopause are shown. It is demonstrated analytically that such magnetic turbulence should mode-convert deep in the cusp at a radial distance of 3 RU.

  8. Shelf-Stable Food Safety

    Science.gov (United States)

    ... is an MRE? Is an MRE shelf stable? What foods are packaged in retort packages? What is aseptic ... type of package is used for aseptic processing? What foods are packaged in aseptic packages? Can I microwave ...

  9. Stable solitons of quadratic ginzburg-landau equations

    Science.gov (United States)

    Crasovan; Malomed; Mihalache; Mazilu; Lederer

    2000-07-01

    We present a physical model based on coupled Ginzburg-Landau equations that supports stable temporal solitary-wave pulses. The system consists of two parallel-coupled cores, one having a quadratic nonlinearity, the other one being effectively linear. The former core is active, with bandwidth-limited amplification built into it, while the latter core has only losses. Parameters of the model can be easily selected so that the zero background is stable. The model has nongeneric exact analytical solutions in the form of solitary pulses ("dissipative solitons"). Direct numerical simulations, using these exact solutions as initial configurations, show that they are unstable; however, the evolution initiated by the exact unstable solitons ends up with nontrivial stable localized pulses, which are very robust attractors. Direct simulations also demonstrate that the presence of group-velocity mismatch (walkoff) between the two harmonics in the active core makes the pulses move at a constant velocity, but does not destabilize them.

  10. Pharmaceuticals labelled with stable isotopes

    International Nuclear Information System (INIS)

    Krumbiegel, P.

    1986-11-01

    The relatively new field of pharmaceuticals labelled with stable isotopes is reviewed. Scientific, juridical, and ethical questions are discussed concerning the application of these pharmaceuticals in human medicine. 13 C, 15 N, and 2 H are the stable isotopes mainly utilized in metabolic function tests. Methodical contributions are given to the application of 2 H, 13 C, and 15 N pharmaceuticals showing new aspects and different states of development in the field under discussion. (author)

  11. Stable isotope research pool inventory

    International Nuclear Information System (INIS)

    1984-03-01

    This report contains a listing of electromagnetically separated stable isotopes which are available at the Oak Ridge National Laboratory for distribution for nondestructive research use on a loan basis. This inventory includes all samples of stable isotopes in the Research Materials Collection and does not designate whether a sample is out on loan or is in reprocessing. For some of the high abundance naturally occurring isotopes, larger amounts can be made available; for example, Ca-40 and Fe-56

  12. Finite Amplitude Ocean Waves

    Indian Academy of Sciences (India)

    IAS Admin

    are known as intermediate or transitional water waves and if the depth of the water column is less than 1/20 of wavelength, they are called shallow water waves. In the case of both these waves, the particle motion is elliptical. Particle motions are shown in Figure 1. The velocity of waves is generally referred to as wave.

  13. Compressional wave events in the dawn plasma sheet observed by Interball-1

    Directory of Open Access Journals (Sweden)

    O. Verkhoglyadova

    1999-09-01

    Full Text Available Compressional waves with periods greater than 2 min (about 10-30 min at low geomagnetic latitudes, namely compressional Pc5 waves, are studied. The data set obtained with magnetometer MIF-M and plasma analyzer instrument CORALL on board the Interball-1 are analyzed. Measurements performed in October 1995 and October 1996 in the dawn plasma sheet at -30 RE ≤ XGSM and |ZGSM| ≤ 10 RE are considered. Anti-phase variations of magnetic field and ion plasma pressures are analyzed by searching for morphological similarities in the two time series. It is found that longitudinal and transverse magnetic field variations with respect to the background magnetic field are of the same order of magnitude. Plasma velocities are processed for each time period of the local dissimilarity in the pressure time series. Velocity disturbances occur mainly transversely to the local field line. The data reveal the rotation of the velocity vector. Because of the field line curvature, there is no fixed position of the rotational plane in the space. These vortices are localized in the regions of anti-phase variations of the magnetic field and plasma pressures, and the vortical flows are associated with the compressional Pc5 wave process. A theoretical model is proposed to explain the main features of the nonlinear wave processes. Our main goal is to study coupling of drift Alfven wave and magnetosonic wave in a warm inhomogeneous plasma. A vortex is the partial solution of the set of the equations when the compression is neglected. A compression effect gives rise to a nonlinear soliton-like solution.Key words. Magnetosphere physics (magnetotail · Space plasma physics (kinetic and MHD theory; non-linear phenomena

  14. Fast wave and electron cyclotron current drive in the DIII-D tokamak

    International Nuclear Information System (INIS)

    Petty, C.C.; Pinsker, R.I.; Austin, M.E.

    1995-01-01

    The non-inductive current drive from directional fast Alfven and electron cyclotron waves was measured in the DIII-D tokamak in order to demonstrate these forms of radiofrequency (RF) current drive and to compare the measured efficiencies with theoretical expectations. The fast wave frequency was 8 times the deuterium cyclotron frequency at the plasma centre, while the electron cyclotron wave was at twice the electron cyclotron frequency. Complete non-inductive current drive was achieved using a combination of fast wave current drive (FWCD) and electron cyclotron current drive (ECCD) in discharges for which the total plasma current was inductively ramped down from 400 to 170 kA. For steady current discharges, an analysis of the loop voltage revealed up to 195 kA of a non-inductive current (out of 310 kA) during combined electron cyclotron and fast wave injection, with a maximum of 110 kA of FWCD and 80 kA of ECCD achieved (not simultaneously). The peakedness of the current profile increased with RF current drive, indicating that the driven current was centrally localized. The FWCD efficiency increased linearly with the central electron temperature as expected; however, the FWCD was severely degraded in low current discharges owing to incomplete fast wave absorption. The measured FWCD agreed with the predictions of a ray tracing code only when a parasitic loss of 4% per pass was included in the modelling along with multiple pass absorption. Enhancement of the second harmonic ECCD efficiency by the toroidal electric field was observed experimentally. The measured ECCD was in good agreement with Fokker-Planck code predictions. (author). 41 refs, 13 figs, 1 tab

  15. Stability of negative solitary waves for an integrable modified Camassa-Holm equation

    International Nuclear Information System (INIS)

    Yin Jiuli; Tian Lixin; Fan Xinghua

    2010-01-01

    In this paper, we prove that the modified Camassa-Holm equation is Painleve integrable. We also study the orbital stability problem of negative solitary waves for this integrable equation. It is shown that the negative solitary waves are stable for arbitrary wave speed of propagation.

  16. Gravitational-wave astronomy

    Science.gov (United States)

    Press, W. H.; Thorne, K. S.

    1972-01-01

    The significance of experimental evidence for gravitational waves is considered for astronomy. Properties, generation, and astrophysical sources of the waves are discussed. Gravitational wave receivers and antennas are described. A review of the Weber experiment is presented.

  17. Stable Boundary Layer Education (STABLE) Final Campaign Summary

    Energy Technology Data Exchange (ETDEWEB)

    Turner, David D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-03-01

    The properties of, and the processes that occur in, the nocturnal stable boundary layer are not well understood, making it difficult to represent adequately in numerical models. The nocturnal boundary layer often is characterized by a temperature inversion and, in the Southern Great Plains region, a low-level jet. To advance our understanding of the nocturnal stable boundary layer, high temporal and vertical resolution data on the temperature and wind properties are needed, along with both large-eddy simulation and cloud-resolving modeling.

  18. Wave maps on a wormhole

    Science.gov (United States)

    Bizoń, Piotr; Kahl, Michał

    2015-03-01

    We consider equivariant wave maps from a fixed wormhole spacetime into the 3-sphere. This toy model is designed for gaining insight into the dissipation-by-dispersion phenomena, in particular the soliton resolution conjecture. We first prove that for each topological degree of the map there exists a unique static solution (harmonic map) that is linearly stable. Then, using the hyperboloidal formulation of the initial value problem, we give numerical evidence that every solution starting from smooth initial data of any topological degree evolves asymptotically to the harmonic map of the same degree. The late-time asymptotics of this relaxation process is described in detail.

  19. Atom Wave Interferometers

    National Research Council Canada - National Science Library

    Pritchard, David

    1999-01-01

    Matter wave interferometers, in which de Broglie waves are coherently split and then recombined to produce interference fringes, have opened exciting new possibilities for precision and fundamental...

  20. A waved journal bearing concept with improved steady-state and dynamic performance

    Science.gov (United States)

    Dimofte, Florin

    1994-01-01

    Analysis of the waved journal bearing concept featuring a waved inner bearing diameter for use with a compressible lubricant (gas) is presented. A three wave, waved journal bearing geometry is used to show the geometry of this concept. The performance of generic waved bearings having either three, four, six, or eight waves is predicted for air lubricated bearings. Steady-state performance is discussed in terms of bearing load capacity, while the dynamic performance is discussed in terms of dynamic coefficients and fluid film stability. It was found that the bearing wave amplitude has an important influence on both steady-state and dynamic performance of the waved journal bearing. For a fixed eccentricity ratio, the bearing steady-state load capacity and direct dynamic stiffness coefficient increase as the wave amplitude increases. Also, the waved bearing becomes more stable as the wave amplitude increases. In addition, increasing the number of waves reduces the waved bearing's sensitivity to the direction of the applied load relative to the wave. However, the range in which the bearing performance can be varied decreases as the number of waves increases. Therefore, both the number and the amplitude of the waves must be properly selected to optimize the waved bearing design for a specific application. It is concluded that the stiffness of an air bearing, due to the hydrodynamic effect, could be doubled and made to run stably by using a six or eight wave geometry with a wave amplitude approximately half of the bearing radial clearance.

  1. Stable gastric pentadecapeptide BPC 157 and bupivacaine.

    Science.gov (United States)

    Zivanovic-Posilovic, Gordana; Balenovic, Diana; Barisic, Ivan; Strinic, Dean; Stambolija, Vasilije; Udovicic, Mario; Uzun, Sandra; Drmic, Domagoj; Vlainic, Josipa; Bencic, Martina Lovric; Sindic, Aleksandra; Seiwerth, Sven; Sikiric, Predrag

    2016-12-15

    Bupivacaine toxicity following accidental overdose still lacks therapeutic solution. However, there are major arguments for testing BPC 157 against bupivacaine toxicity in vivo in rats, in particular, and then finally, in vitro. These are: the lack of any known BPC 157 toxicity, a lifesaving effect via the mitigation of arrhythmias in rats underwent hyperkalemia or digitalis toxicity, the elimination of hyperkalemia and arrhythmias in rats underwent succinylcholine toxicity and finally, the reduction of potassium-induced depolarization in vitro (in HEK293 cells) in severe hyperkalemia. Most importantly, BPC 157 successfully prevents and counteracts bupivacaine cardiotoxicity; BPC 157 is effective even against the worst outcomes such as a severely prolonged QRS complex. Here, rats injected with bupivacaine (100mg/kg IP) exhibited bradycardia, AV-block, ventricular ectopies, ventricular tachycardia, T-wave elevation and asystole. All of the fatalities had developed T-wave elevation, high-degree AV-block, respiratory arrest and asystole. These were largely counteracted by BPC 157 administration (50µg/kg, 10µg/kg, 10ng/kg, or 10pg/kg IP) given 30min before or 1min after the bupivacaine injection. When BPC 157 was given 6min after bupivacaine administration, and after the development of prolonged QRS intervals (20ms), the fatal outcome was markedly postponed. Additionally, the effect of bupivacaine on cell membrane depolarization was explored by measuring membrane voltages (Vm) in HEK293 cells. Bupivacaine (1mM) alone caused depolarization of the cells, while in combination with BPC 157 (1µm), the bupivacaine-induced depolarization was inhibited. Together, these findings suggest that the stable gastric pentadecapeptide BPC 157 should be a potential antidote for bupivacaine cardiotoxicity. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Traveling waves in an optimal velocity model of freeway traffic

    Science.gov (United States)

    Berg, Peter; Woods, Andrew

    2001-03-01

    Car-following models provide both a tool to describe traffic flow and algorithms for autonomous cruise control systems. Recently developed optimal velocity models contain a relaxation term that assigns a desirable speed to each headway and a response time over which drivers adjust to optimal velocity conditions. These models predict traffic breakdown phenomena analogous to real traffic instabilities. In order to deepen our understanding of these models, in this paper, we examine the transition from a linear stable stream of cars of one headway into a linear stable stream of a second headway. Numerical results of the governing equations identify a range of transition phenomena, including monotonic and oscillating travelling waves and a time- dependent dispersive adjustment wave. However, for certain conditions, we find that the adjustment takes the form of a nonlinear traveling wave from the upstream headway to a third, intermediate headway, followed by either another traveling wave or a dispersive wave further downstream matching the downstream headway. This intermediate value of the headway is selected such that the nonlinear traveling wave is the fastest stable traveling wave which is observed to develop in the numerical calculations. The development of these nonlinear waves, connecting linear stable flows of two different headways, is somewhat reminiscent of stop-start waves in congested flow on freeways. The different types of adjustments are classified in a phase diagram depending on the upstream and downstream headway and the response time of the model. The results have profound consequences for autonomous cruise control systems. For an autocade of both identical and different vehicles, the control system itself may trigger formations of nonlinear, steep wave transitions. Further information is available [Y. Sugiyama, Traffic and Granular Flow (World Scientific, Singapore, 1995), p. 137].

  3. Radiation-stable polyolefin compositions

    International Nuclear Information System (INIS)

    Rekers, J.W.

    1986-01-01

    This invention relates to compositions of olefinic polymers suitable for high energy radiation treatment. In particular, the invention relates to olefinic polymer compositions that are stable to sterilizing dosages of high energy radiation such as a gamma radiation. Stabilizers are described that include benzhydrol and benzhydrol derivatives; these stabilizers may be used alone or in combination with secondary antioxidants or synergists

  4. Monitoring of stable glaucoma patients

    NARCIS (Netherlands)

    K.M. Holtzer-Goor (Kim); N.S. Klazinga (Niek); M.A. Koopmanschap (Marc); H.G. Lemij (Hans); T. Plochg; E. van Sprundel (Esther)

    2010-01-01

    textabstractA high workload for ophthalmologists and long waiting lists for patients challenge the organization of ophthalmic care. Tasks that require less specialized skills, like the monitoring of stable (well controlled) glaucoma patients could be substituted from ophthalmologists to other

  5. Financial Rogue Waves

    International Nuclear Information System (INIS)

    Yan Zhenya

    2010-01-01

    We analytically give the financial rogue waves in the nonlinear option pricing model due to Ivancevic, which is nonlinear wave alternative of the Black-Scholes model. These rogue wave solutions may he used to describe the possible physical mechanisms for rogue wave phenomenon in financial markets and related fields.

  6. Finsler p p -waves

    Science.gov (United States)

    Fuster, Andrea; Pabst, Cornelia

    2016-11-01

    In this work we present Finsler gravitational waves. These are a Finslerian version of the well-known p p -waves, generalizing the very special relativity line element. Our Finsler p p -waves are an exact solution of Finslerian Einstein's equations in vacuum and describe gravitational waves propagating in an anisotropic background.

  7. Waves in inhomogeneous media

    NARCIS (Netherlands)

    Gerritsen, S.

    2007-01-01

    In this thesis we study wave propagation in inhomogeneous media. Examples of the classical (massless) waves we consider are acoustic waves (sound) and electromagnetic waves (light, for example). Interaction with inhomogeneities embedded in a reference medium alter the propagation direction, velocity

  8. Waves in the seas

    Digital Repository Service at National Institute of Oceanography (India)

    Varkey, M.J.

    Not all sea waves look alike in form. Scientists, in fact, classify all waves into definite groups, which can be simulated on a computer using specific models. Thus there are many types of wave forms on the sea surface like regular sinusoidal waves...

  9. Alfven, Prof. Hannes Olof Gosta

    Indian Academy of Sciences (India)

    Academy News. IAS Logo. Theory Of Evolution. Posted on 23 January 2018. Joint Statement by the Three Science Academies of India on the teaching of the theory of evolution more... ACADEMY PUBLIC LECTURE: How Things Break – The Mechanics of Dynamic Fracture. Posted on 16th February 2018. SPEAKER: Prof.

  10. Wave Data Analysis

    DEFF Research Database (Denmark)

    Alikhani, Amir; Frigaard, Peter; Burcharth, Hans F.

    1998-01-01

    The data collected over the course of the experiment must be analysed and converted into a form suitable for its intended use. Type of analyses range from simple to sophisticated. Depending on the particular experiment and the needs of the researcher. In this study three main part of irregular wave...... data analyses are presented e.g. Time Domain (Statistical) Analyses, Frequency Domain (Spectral) Analyses and Wave Reflection Analyses. Random wave profile and definitions of representative waves, distributions of individual wave height and wave periods and spectra of sea waves are presented....

  11. Wave disc engine apparatus

    Energy Technology Data Exchange (ETDEWEB)

    Muller, Norbert; Piechna, Janusz; Sun, Guangwei; Parraga, Pablo-Francisco

    2018-01-02

    A wave disc engine apparatus is provided. A further aspect employs a constricted nozzle in a wave rotor channel. A further aspect provides a sharp bend between an inlet and an outlet in a fluid pathway of a wave rotor, with the bend being spaced away from a peripheral edge of the wave rotor. A radial wave rotor for generating electricity in an automotive vehicle is disclosed in yet another aspect.

  12. Evaluation of brain stem auditory evoked potentials in stable patients with chronic obstructive pulmonary disease

    Directory of Open Access Journals (Sweden)

    Gupta Prem

    2008-01-01

    Full Text Available Though there are few studies addressing brainstem auditory evoked potentials (BAEP in patients with chronic obstructive pulmonary disease (COPD, subclinical BAEP abnormalities in stable COPD patients have not been studied. The present study aimed to evaluate the BAEP abnormalities in this study group. Materials and Methods : In the present study, 80 male subjects were included: COPD group comprised 40 smokers with stable COPD with no clinical neuropathy; 40 age-matched healthy volunteers served as the control group. Latencies of BAEP waves I, II, III, IV, and V, together with interpeak latencies (IPLs of I-III, I-V, and III-V, and amplitudes of waves I-Ia and V-Va were studied in both the groups to compare the BAEP abnormalities in COPD group; the latter were correlated with patient characteristics and Mini-Mental Status Examination Questionnaire (MMSEQ scores to seek any significant correlation. Results: Twenty-six (65% of the 40 COPD patients had BAEP abnormalities. We observed significantly prolonged latencies of waves I, III, V over left ear and waves III, IV, V over right ear; increased IPLs of I-V, III-V over left ear and of I-III, I-V, III-V over right side. Amplitudes of waves I-Ia and V-Va were decreased bilaterally. Over left ear, the latencies of wave I and III were significantly correlated with FEV 1 ; and amplitude of wave I-Ia, with smoking pack years. A weak positive correlation between amplitude of wave I-Ia and duration of illness; and a weak negative correlation between amplitude of wave V-Va and MMSEQ scores were seen over right side. Conclusions : We observed significant subclinical BAEP abnormalities on electrophysiological evaluation in studied stable COPD male patients having mild-to-moderate airflow obstruction.

  13. Toward Practical Secure Stable Matching

    Directory of Open Access Journals (Sweden)

    Riazi M. Sadegh

    2017-01-01

    Full Text Available The Stable Matching (SM algorithm has been deployed in many real-world scenarios including the National Residency Matching Program (NRMP and financial applications such as matching of suppliers and consumers in capital markets. Since these applications typically involve highly sensitive information such as the underlying preference lists, their current implementations rely on trusted third parties. This paper introduces the first provably secure and scalable implementation of SM based on Yao’s garbled circuit protocol and Oblivious RAM (ORAM. Our scheme can securely compute a stable match for 8k pairs four orders of magnitude faster than the previously best known method. We achieve this by introducing a compact and efficient sub-linear size circuit. We even further decrease the computation cost by three orders of magnitude by proposing a novel technique to avoid unnecessary iterations in the SM algorithm. We evaluate our implementation for several problem sizes and plan to publish it as open-source.

  14. Shock and magnetosonic waves in a Mather-type plasma focus

    International Nuclear Information System (INIS)

    Gerdin, G.; Venneri, F.; Boulais, K.

    1986-01-01

    A fast streak camera has been used to measure the speeds of the axially propagating transverse ionization wave (or rundown phase), the radial collapse, and what appears to be a magnetosonic compression wave propagating along the pinch. The current flowing in the moving current sheath was measured by means of a magnetic probe placed between the coaxial electrodes. The magnetic probe is necessary to determine the pinch current since the device current does not always entirely flow in the current sheath (CS). The CS current was varied from about 200 to 800 kA in the experiments reported here at a static fill of 3 Torr of deuterium. All three velocities were found to be linear with the CS current as predicted from simple models with less than a 10% uncertainty in the least squares slope. The axial or rundown speed was found to be consistent with the constant speed model of v/sub AX/ ≅ v/sub A//√2 where v/sub A/ is the Alfven speed at the surface of the inner conductor. The velocity of the radial collapse was compared with a 4th Order Runge-Kutta solution to the snowplow model or 'M' theory and the agreement was not as good. The magnetosonic scaling with current at constant fill pressure is consistent with a constant mass per unit length being swept up by the snowplow and representing about 1/4 of the original fill gas mass per unit length over the center electrode

  15. Towards stable acceleration in LINACS

    CERN Document Server

    Dubrovskiy, A D

    2014-01-01

    Ultra-stable and -reproducible high-energy particle beams with short bunches are needed in novel linear accelerators and, in particular, in the Compact Linear Collider CLIC. A passive beam phase stabilization system based on a bunch compression with a negative transfer matrix element R56 and acceleration at a positive off-crest phase is proposed. The motivation and expected advantages of the proposed scheme are outlined.

  16. Robust Wave Resource Estimation

    DEFF Research Database (Denmark)

    Lavelle, John; Kofoed, Jens Peter

    2013-01-01

    An assessment of the wave energy resource at the location of the Danish Wave Energy test Centre (DanWEC) is presented in this paper. The Wave Energy Converter (WEC) test centre is located at Hanstholm in the of North West Denmark. Information about the long term wave statistics of the resource...... is necessary for WEC developers, both to optimise the WEC for the site, and to estimate its average yearly power production using a power matrix. The wave height and wave period sea states parameters are commonly characterized with a bivariate histogram. This paper presents bivariate histograms and kernel....... An overview is given of the methods used to do this, and a method for identifying outliers of the wave elevation data, based on the joint distribution of wave elevations and accelerations, is presented. The limitations of using a JONSWAP spectrum to model the measured wave spectra as a function of Hm0 and T0...

  17. Testbed for High-Acuity Imaging and Stable Photometry

    Science.gov (United States)

    Gregory, James

    This proposal from MIT Lincoln Laboratory (LL) accompanies the NASA/APRA proposal enti-tled THAI-SPICE: Testbed for High-Acuity Imaging - Stable Photometry and Image-Motion Compensa-tion Experiment (submitted by Eliot Young, Southwest Research Institute). The goal of the THAI-SPICE project is to demonstrate three technologies that will help low-cost balloon-borne telescopes achieve diffraction-limited imaging: stable pointing, passive thermal stabilization and in-flight monitoring of the wave front error. This MIT LL proposal supplies a key element of the pointing stabilization component of THAI-SPICE: an electronic camera based on an orthogonaltransfer charge-coupled device (OTCCD). OTCCD cameras have been demonstrated with charge-transfer efficiencies >0.99999, noise of 90%. In addition to supplying a camera with an OTCCD detector, MIT LL will help with integration and testing of the OTCCD with the THAI-SPICE payload’s guide camera.

  18. Stable corrugated state of the two-dimensional electron gas

    International Nuclear Information System (INIS)

    Mendez-Moreno, R.M.; Moreno, M.; Ortiz, M.A.

    1991-01-01

    A corrugated and stable ground state is found for the two-dimensional electron gas in both the normal paramagnetic and the fully polarized phases. The self-consistent Hartree-Fock method is used with a modulated set of trial wave functions within the deformable jellium model. The results for high metallic densities reproduce the usual noncorrugated ferromagnetic electron-gas behavior. A transition to a paramagnetic corrugated state for values of r s ∼6.5 is predicted. At lower densities r s ∼30, a second transition to a corrugated ferromagnetic phase is suggested

  19. Vertical elliptic operator for efficient wave propagation in TTI media

    KAUST Repository

    Waheed, Umair bin

    2015-08-19

    Elliptic wave extrapolation operators require significantly less computational cost than the ones for transversely isotropic (TI) media. However, it does not provide accurate wavefield representation or imaging for the prevalent TI media. We propose a new vertical elliptically anisotropic (VEA) wave equation by decomposing the acoustic TI pseudo-differential wave equation. The decomposition results in a vertical elliptic differential equation and a scalar operator. The new VEA-like wave equation shares the same dispersion relation as that of the original acoustic TI wave equation. Therefore, the kinematic contents are correctly matched to the original equation. Moreover, the proposed decomposition yields better amplitude properties than the isotropic decomposition without increasing the computational load. Therefore, it exhibits better cost versus accuracy tradeoff compared to the isotropic or the tilted elliptic decompositions. We demonstrate with numerical examples that the proposed methodology is numerically stable for complex models and is free from shear-wave artifacts.

  20. Diffractons: Solitary Waves Created by Diffraction in Periodic Media

    KAUST Repository

    Ketcheson, David I.

    2015-03-31

    A new class of solitary waves arises in the solution of nonlinear wave equations with constant impedance and no dispersive terms. These solitary waves depend on a balance between nonlinearity and a dispersion-like effect due to spatial variation in the sound speed of the medium. A high-order homogenized model confirms this effective dispersive behavior, and its solutions agree well with those obtained by direct simulation of the variable-coefficient system. These waves are observed to be long-time stable, globally attracting solutions that arise in general as solutions to nonlinear wave problems with periodically varying sound speed. They share some properties with known classes of solitary waves but possess important differences as well.

  1. Propagation of a cylindrical shock wave in a rotational axisymmetric isothermal flow of a non-ideal gas in magnetogasdynamics

    Directory of Open Access Journals (Sweden)

    G. Nath

    2012-12-01

    Full Text Available Self-similar solutions are obtained for unsteady, one-dimensional isothermal flow behind a shock wave in a rotational axisymmetric non-ideal gas in the presence of an azimuthal magnetic field. The shock wave is driven out by a piston moving with time according to power law. The fluid velocities and the azimuthal magnetic field in the ambient medium are assumed to be varying and obeying a power law. The density of the ambient medium is assumed to be constant. The gas is assumed to be non-ideal having infinite electrical conductivity and the angular velocity of the ambient medium is assumed to be decreasing as the distance from the axis increases. It is expected that such an angular velocity may occur in the atmospheres of rotating planets and stars. The effects of the non-idealness of the gas and the Alfven-Mach number on the flow-field are obtained. It is shown that the presence of azimuthal magnetic field and the rotation of the medium has decaying effect on the shock wave. Also, a comparison is made between rotating and non-rotating cases.

  2. Reflectors to Focus Wave Energy

    DEFF Research Database (Denmark)

    Kramer, Morten; Frigaard, Peter

    2005-01-01

    Wave Energy Converters (WEC’s) extract wave energy from a limited area, often a single point or line even though the wave energy is generally spread out along the wave crest. By the use of wave reflectors (reflecting walls) the wave energy is effectively focused and increased by approximately 30......-50%. Clearly longer wave reflectors will focus more wave energy than shorter wave reflectors. Thus the draw back is the increased wave forces for the longer wave reflectors. In the paper a procedure for calculating the energy efficiency and the wave forces on the reflectors are described, this by use of a 3D...

  3. On the Dynamics of Two-Dimensional Capillary-Gravity Solitary Waves with a Linear Shear Current

    Directory of Open Access Journals (Sweden)

    Dali Guo

    2014-01-01

    Full Text Available The numerical study of the dynamics of two-dimensional capillary-gravity solitary waves on a linear shear current is presented in this paper. The numerical method is based on the time-dependent conformal mapping. The stability of different kinds of solitary waves is considered. Both depression wave and large amplitude elevation wave are found to be stable, while small amplitude elevation wave is unstable to the small perturbation, and it finally evolves to be a depression wave with tails, which is similar to the irrotational capillary-gravity waves.

  4. Head-on collision of internal waves with trapped cores

    Science.gov (United States)

    Maderich, Vladimir; Jung, Kyung Tae; Terletska, Kateryna; Kim, Kyeong Ok

    2017-12-01

    The dynamics and energetics of a head-on collision of internal solitary waves (ISWs) with trapped cores propagating in a thin pycnocline were studied numerically within the framework of the Navier-Stokes equations for a stratified fluid. The peculiarity of this collision is that it involves trapped masses of a fluid. The interaction of ISWs differs for three classes of ISWs: (i) weakly non-linear waves without trapped cores, (ii) stable strongly non-linear waves with trapped cores, and (iii) shear unstable strongly non-linear waves. The wave phase shift of the colliding waves with equal amplitude grows as the amplitudes increase for colliding waves of classes (i) and (ii) and remains almost constant for those of class (iii). The excess of the maximum run-up amplitude, normalized by the amplitude of the waves, over the sum of the amplitudes of the equal colliding waves increases almost linearly with increasing amplitude of the interacting waves belonging to classes (i) and (ii); however, it decreases somewhat for those of class (iii). The colliding waves of class (ii) lose fluid trapped by the wave cores when amplitudes normalized by the thickness of the pycnocline are in the range of approximately between 1 and 1.75. The interacting stable waves of higher amplitude capture cores and carry trapped fluid in opposite directions with little mass loss. The collision of locally shear unstable waves of class (iii) is accompanied by the development of instability. The dependence of loss of energy on the wave amplitude is not monotonic. Initially, the energy loss due to the interaction increases as the wave amplitude increases. Then, the energy losses reach a maximum due to the loss of potential energy of the cores upon collision and then start to decrease. With further amplitude growth, collision is accompanied by the development of instability and an increase in the loss of energy. The collision process is modified for waves of different amplitudes because of the exchange

  5. Stable Hemiaminals: 2-Aminopyrimidine Derivatives

    Directory of Open Access Journals (Sweden)

    Anna Kwiecień

    2015-08-01

    Full Text Available Stable hemiaminals can be obtained in the one-pot reaction between 2-aminopyrimidine and nitrobenzaldehyde derivatives. Ten new hemiaminals have been obtained, six of them in crystal state. The molecular stability of these intermediates results from the presence of both electron-withdrawing nitro groups as substituents on the phenyl ring and pyrimidine ring, so no further stabilisation by intramolecular interaction is required. Hemiaminal molecules possess a tetrahedral carbon atom constituting a stereogenic centre. As the result of crystallisation in centrosymmetric space groups both enantiomers are present in the crystal structure.

  6. Organic synthesis with stable isotopes

    International Nuclear Information System (INIS)

    Daub, G.H.; Kerr, V.N.; Williams, D.L.; Whaley, T.W.

    1978-01-01

    Some general considerations concerning organic synthesis with stable isotopes are presented. Illustrative examples are described and discussed. The examples include DL-2-amino-3-methyl- 13 C-butanoic-3,4- 13 C 2 acid (DL-valine- 13 C 3 ); methyl oleate-1- 13 C; thymine-2,6- 13 C 2 ; 2-aminoethanesulfonic- 13 C acid (taurine- 13 C); D-glucose-6- 13 C; DL-2-amino-3-methylpentanoic-3,4- 13 C 2 acid (DL-isoleucine- 13 C 2 ); benzidine- 15 N 2 ; and 4-ethylsulfonyl-1-naphthalene-sulfonamide- 15 N

  7. Stable agents for imaging investigations

    International Nuclear Information System (INIS)

    Tofe, A.J.

    1976-01-01

    This invention concerns highly stable compounds useful in preparing technetium 99m based scintiscanning exploration agents. The compounds of this invention include a pertechnetate reducing agent or a solution of oxidized pertechnetate and an efficient proportion, sufficient to stabilize the compounds in the presence of oxygen and of radiolysis products, of ascorbic acid or a pharmaceutically acceptable salt or ester of this acid. The invention also concerns a perfected process for preparing a technetium based exploration agent, consisting in codissolving the ascorbic acid or a pharmaceutically acceptable salt or ester of such an acid and a pertechnetate reducing agent in a solution of oxidized pertechnetate [fr

  8. Stable classical orbits for atomic hydrogen in magnetic and rotating electric fields

    International Nuclear Information System (INIS)

    Kazanskij, A.K.

    1989-01-01

    A hydrogen atom, being in a magnetic field and in a field of circulation-polarized electromagnetic wave propagating along the magnetic field is considered. Classical orbits in the hydrogen atom, being in various external fields, were investigated to find stable orbits. Determination of a stationary region for considering conditions is the result of invesigation

  9. Coronal Waves and Oscillations

    Directory of Open Access Journals (Sweden)

    Nakariakov Valery M.

    2005-07-01

    Full Text Available Wave and oscillatory activity of the solar corona is confidently observed with modern imaging and spectral instruments in the visible light, EUV, X-ray and radio bands, and interpreted in terms of magnetohydrodynamic (MHD wave theory. The review reflects the current trends in the observational study of coronal waves and oscillations (standing kink, sausage and longitudinal modes, propagating slow waves and fast wave trains, the search for torsional waves, theoretical modelling of interaction of MHD waves with plasma structures, and implementation of the theoretical results for the mode identification. Also the use of MHD waves for remote diagnostics of coronal plasma - MHD coronal seismology - is discussed and the applicability of this method for the estimation of coronal magnetic field, transport coefficients, fine structuring and heating function is demonstrated.

  10. Electromagnetic ultrasonic guided waves

    CERN Document Server

    Huang, Songling; Li, Weibin; Wang, Qing

    2016-01-01

    This book introduces the fundamental theory of electromagnetic ultrasonic guided waves, together with its applications. It includes the dispersion characteristics and matching theory of guided waves; the mechanism of production and theoretical model of electromagnetic ultrasonic guided waves; the effect mechanism between guided waves and defects; the simulation method for the entire process of electromagnetic ultrasonic guided wave propagation; electromagnetic ultrasonic thickness measurement; pipeline axial guided wave defect detection; and electromagnetic ultrasonic guided wave detection of gas pipeline cracks. This theory and findings on applications draw on the author’s intensive research over the past eight years. The book can be used for nondestructive testing technology and as an engineering reference work. The specific implementation of the electromagnetic ultrasonic guided wave system presented here will also be of value for other nondestructive test developers.

  11. Atom Wave Interferometers

    National Research Council Canada - National Science Library

    Pritchard, David

    2000-01-01

    Long-term research objective: Matter wave interferometers, in which de Broglie waves are coherently split and then recombined to produce interference fringes, have opened exciting new possibilities for precision and fundamental...

  12. Detonation Wave Profile

    Energy Technology Data Exchange (ETDEWEB)

    Menikoff, Ralph [Los Alamos National Laboratory

    2015-12-14

    The Zel’dovich-von Neumann-Doering (ZND) profile of a detonation wave is derived. Two basic assumptions are required: i. An equation of state (EOS) for a partly burned explosive; P(V, e, λ). ii. A burn rate for the reaction progress variable; d/dt λ = R(V, e, λ). For a steady planar detonation wave the reactive flow PDEs can be reduced to ODEs. The detonation wave profile can be determined from an ODE plus algebraic equations for points on the partly burned detonation loci with a specified wave speed. Furthermore, for the CJ detonation speed the end of the reaction zone is sonic. A solution to the reactive flow equations can be constructed with a rarefaction wave following the detonation wave profile. This corresponds to an underdriven detonation wave, and the rarefaction is know as a Taylor wave.

  13. Electromagnetic wave matching device

    International Nuclear Information System (INIS)

    Hirata, Yosuke; Mitsunaka, Yoshika; Hayashi, Ken-ichi; Ito, Yasuyuki.

    1997-01-01

    The present invention provides an electromagnetic wave matching capable of reducing a cost for the transmission system in a system of using electromagnetic waves for plasma heating of a thermonuclear reactor. Namely, incident electromagnetic waves are reflected by using a plurality of phase correction mirrors. The reflected electromagnetic waves are connected to an external transmission system through an exit. The phase correction mirrors have such a shape to receive a plurality of beam-like electromagnetic waves and output electromagnetic waves by the number different from the number of the received electromagnetic wave beams having a predetermined distribution. Further, at least two of the phase correction mirrors have such a shape to change the phase of the electromagnetic waves beams incident to the reflection surface of the phase correction mirrors by a predetermined amount corresponding to the position of the reflection surface. Then, the cost for transmission system can greatly be reduced. (I.S.)

  14. Energy of plasma waves

    International Nuclear Information System (INIS)

    Schmidt, G.

    1975-01-01

    A new definition of the sign of wave energy is given, which is valid where the old definition based on an expansion procedure breaks down. It is shown that a beam-plasma wave does not produce explosive instabilities

  15. Wave Meteorology and Soaring

    Science.gov (United States)

    Wiley, Scott

    2008-01-01

    This viewgraph document reviews some mountain wave turbulence and operational hazards while soaring. Maps, photographs, and satellite images of the meteorological phenomena are included. Additionally, photographs of aircraft that sustained mountain wave damage are provided.

  16. Cylindrically converging blast waves in air

    Science.gov (United States)

    Matsuo, H.; Nakamura, Y.

    1981-07-01

    Cylindrically converging shock waves are produced by utilizing the detonation of cylindrical explosive shells. The production and the propagation of shock waves are observed by framing and streak camera photographs, and the trajectory of shock propagations is determined by using an electrical ionization probing system. The effect of the quantity of explosives on the stability, or the axial symmetry, of shock fronts and on the strength of shocks produced is investigated. It has been shown that, for practical purposes, the approximation of shock trajectories by Guderley's formulas would be sufficiently acceptable in an unexpectedly wide region near the implosion center, and that the axial symmetry of the shock front is improved by increasing the quantity of explosives, and thus, strong shocks are produced by merely increasing the quantity of explosives. The reflected diverging shock seems to be very stable. Piezoelectric elements have also been used to detect reflected diverging waves.

  17. Internal wave interferometry.

    Science.gov (United States)

    Mathur, Manikandan; Peacock, Thomas

    2010-03-19

    Internal waves are a ubiquitous and significant means of momentum and energy transport in the oceans, atmosphere, and astrophysical bodies. Here, we show that internal wave propagation in nonuniform density stratifications, which are prevalent throughout nature, has a direct mathematical analogy with the classical optical problem of a Fabry-Perot multiple-beam light interferometer. We rigorously establish this correspondence, and furthermore provide the first experimental demonstration of an internal wave interferometer, based on the theory of resonant transmission of internal waves.

  18. Waves in unmagnetized plasma

    International Nuclear Information System (INIS)

    Lambert, A.J.D.

    1979-01-01

    A review of linear and weakly non-linear theory of electron waves, ion waves and electromagnetic waves in plasmas is presented. The author restricts the discussion to an infinitely extended, homogeneous and isotropic plasma, not affected by external fields and described by Vlasov's and Maxwell's equations. (Auth.)

  19. Gravitational-Wave Astronomy

    Indian Academy of Sciences (India)

    We present a broad overview of the emerging field of gravitational-wave astronomy. Although gravitational waves have not been directly de- tected yet, the worldwide scientific community is engaged in an exciting search for these elusive waves. Once detected, they will open up a new observational window to the Universe.

  20. Fundamentals of wave phenomena

    CERN Document Server

    Hirose, Akira

    2010-01-01

    This textbook provides a unified treatment of waves that either occur naturally or can be excited and propagated in various media. This includes both longitudinal and transverse waves. The book covers both mechanical and electrical waves, which are normally covered separately due to their differences in physical phenomena.

  1. B-waves revisited

    Directory of Open Access Journals (Sweden)

    Andreas Spiegelberg

    2016-12-01

    With the still unmet need for a clinically acceptable method for acquiring intracranial compliance, and the revival of ICP waveform analysis, B-waves are moving back into the research focus. Herein we provide a concise review of the literature on B-waves, including a critical assessment of non-invasive methods for obtaining B-wave surrogates.

  2. Amplitude modulation of hydromagnetic waves and associated rogue waves in magnetoplasmas

    Science.gov (United States)

    Sabry, R.; Moslem, W. M.; Shukla, P. K.

    2012-09-01

    It is shown that the dynamics of amplitude-modulated compressional dispersive Alfvénic (CDA) waves in a collisional megnetoplasma is governed by a complex Ginzburg-Landau (CGL) equation. The nonlinear dispersion relation for the modulational instability of the CDA waves is derived and investigated numerically. It is found that the growth rate of the modulational instability decreases (increases) with the increase of the normalized electron-ion collision frequency α (the plasma β). The modulational instability criterion for the CGL equation is defined precisely and investigated numerically. The region of the modulational instability becomes narrower with the increase of α and β, indicating that the system dissipates the wave energy by collisions, and a stable CDA wave envelope packet in the form of a hole will be a dominant localized pulse. For a collisionless plasma, i.e., α=0, the CGL equation reduces to the standard nonlinear Schrödinger (NLS) equation. The latter is used to investigate the modulational (in)stability region for the CDA waves in a collisionless magnetoplasma. It is shown that, within unstable regions, a random set of nonlinearly interacting CDA perturbations leads to the formation of CDA rogue waves. In order to demonstrate that the characteristics of the CDA rogue waves are influenced by the plasma β, the relevant numerical analysis of the appropriate nonlinear solution of the NLS equation is presented. The application of our investigation to space and laboratory magnetoplasmas is discussed.

  3. Stable isotope mass spectrometry in petroleum exploration

    International Nuclear Information System (INIS)

    Mathur, Manju

    1997-01-01

    The stable isotope mass spectrometry plays an important role to evaluate the stable isotopic composition of hydrocarbons. The isotopic ratios of certain elements in petroleum samples reflect certain characteristics which are useful for petroleum exploration

  4. Wave refraction in relation to beach stability along the coast from Cape Ramas to Karwar

    Digital Repository Service at National Institute of Oceanography (India)

    Gouveia, A.D.; Joseph, P.S.; Kurup, P.G.

    Results of wave refraction and beach profile studies are presented for a stretch of 35 km shore line comprising of Loliem Beach, Karwar, Karnataka, India which is separated by rock promontories from comparatively stable beaches on either side of it...

  5. Wave turbulence in annular wave tank

    Science.gov (United States)

    Onorato, Miguel; Stramignoni, Ettore

    2014-05-01

    We perform experiments in an annular wind wave tank at the Dipartimento di Fisica, Universita' di Torino. The external diameter of the tank is 5 meters while the internal one is 1 meter. The tank is equipped by two air fans which can lead to a wind of maximum 5 m/s. The present set up is capable of studying the generation of waves and the development of wind wave spectra for large duration. We have performed different tests including different wind speeds. For large wind speed we observe the formation of spectra consistent with Kolmogorv-Zakharov predictions.

  6. Stable rotating dipole solitons in nonlocal media

    DEFF Research Database (Denmark)

    Lopez-Aguayo, Servando; Skupin, Stefan; Desyatnikov, Anton S.

    2006-01-01

    We present the first example of stable rotating two-soliton bound states in nonlinear optical media with nonlocal response. We show that, in contrast to media with local response, nonlocality opens possibilities to generate stable azimuthons.......We present the first example of stable rotating two-soliton bound states in nonlinear optical media with nonlocal response. We show that, in contrast to media with local response, nonlocality opens possibilities to generate stable azimuthons....

  7. The Wave Energy Device

    DEFF Research Database (Denmark)

    Frigaard, Peter; Kofoed, Jens Peter; Tedd, James William

    2006-01-01

    The Wave Dragon is a 4 to 11 MW offshore wave energy converter of the overtopping type. It basically consists of two wave reflectors focusing the waves towards a ramp, a reservoir for collecting the overtopping water and a number of hydro turbines for converting the pressure head into power......'s first offshore wave energy converter. During this period an extensive measuring program has established the background for optimal design of the structure and regulation of the power take off system. Planning for full scale deployment of a 7 MW unit within the next 2 years is in progress. The prototype...

  8. Physics of waves

    CERN Document Server

    Elmore, William C

    1985-01-01

    Because of the increasing demands and complexity of undergraduate physics courses (atomic, quantum, solid state, nuclear, etc.), it is often impossible to devote separate courses to the classic wave phenomena of optics, acoustics, and electromagnetic radiation. This brief comprehensive text helps alleviate the problem with a unique overview of classical wave theory in one volume.By examining a sequence of concrete and specific examples (emphasizing the physics of wave motion), the authors unify the study of waves, developing abstract and general features common to all wave motion. The fundam

  9. Uses of stable isotopes in fish ecology

    Science.gov (United States)

    Analyses of fish tissues (other than otoliths) for stable isotope ratios can provide substantial information on fish ecology, including physiological ecology. Stable isotopes of nitrogen and carbon frequently are used to determine the mix of diet sources for consumers. Stable i...

  10. The Gravitational-Wave Physics

    OpenAIRE

    Cai, Rong-Gen; Cao, Zhoujian; Guo, Zong-Kuan; Wang, Shao-Jiang; Yang, Tao

    2017-01-01

    The direct detection of gravitational wave by Laser Interferometer Gravitational-Wave Observatory indicates the coming of the era of gravitational-wave astronomy and gravitational-wave cosmology. It is expected that more and more gravitational-wave events will be detected by currently existing and planned gravitational-wave detectors. The gravitational waves open a new window to explore the Universe and various mysteries will be disclosed through the gravitational-wave detection, combined wit...

  11. Periodicity of the stable isotopes

    CERN Document Server

    Boeyens, J C A

    2003-01-01

    It is demonstrated that all stable (non-radioactive) isotopes are formally interrelated as the products of systematically adding alpha particles to four elementary units. The region of stability against radioactive decay is shown to obey a general trend based on number theory and contains the periodic law of the elements as a special case. This general law restricts the number of what may be considered as natural elements to 100 and is based on a proton:neutron ratio that matches the golden ratio, characteristic of biological and crystal growth structures. Different forms of the periodic table inferred at other proton:neutron ratios indicate that the electronic configuration of atoms is variable and may be a function of environmental pressure. Cosmic consequences of this postulate are examined. (author)

  12. Stable States of Biological Organisms

    Science.gov (United States)

    Yukalov, V. I.; Sornette, D.; Yukalova, E. P.; Henry, J.-Y.; Cobb, J. P.

    2009-04-01

    A novel model of biological organisms is advanced, treating an organism as a self-consistent system subject to a pathogen flux. The principal novelty of the model is that it describes not some parts, but a biological organism as a whole. The organism is modeled by a five-dimensional dynamical system. The organism homeostasis is described by the evolution equations for five interacting components: healthy cells, ill cells, innate immune cells, specific immune cells, and pathogens. The stability analysis demonstrates that, in a wide domain of the parameter space, the system exhibits robust structural stability. There always exist four stable stationary solutions characterizing four qualitatively differing states of the organism: alive state, boundary state, critical state, and dead state.

  13. Theory of stable allocations II

    Directory of Open Access Journals (Sweden)

    Pantelić Svetlana

    2015-01-01

    Full Text Available The Swedish Royal Academy awarded the 2012 Nobel Prize in Economics to Lloyd Shapley and Alvin Roth, for the theory of stable allocations and the practice of market design. These two American researchers worked independently from each other, combining basic theory and empirical investigations. Through their experiments and practical design they generated a flourishing field of research and improved the performance of many markets. Shapley provided the fundamental theoretical contribution to this field of research, whereas Roth, a professor at the Harvard University in Boston, developed and upgraded these theoretical investigations by applying them to the American market of medical doctors. Namely, their research helps explain the market processes at work, for instance, when doctors are assigned to hospitals, students to schools and human organs for transplant to recipients.

  14. Stable massive particles at colliders

    Energy Technology Data Exchange (ETDEWEB)

    Fairbairn, M.; /Stockholm U.; Kraan, A.C.; /Pennsylvania U.; Milstead, D.A.; /Stockholm U.; Sjostrand, T.; /Lund U.; Skands, P.; /Fermilab; Sloan, T.; /Lancaster U.

    2006-11-01

    We review the theoretical motivations and experimental status of searches for stable massive particles (SMPs) which could be sufficiently long-lived as to be directly detected at collider experiments. The discovery of such particles would address a number of important questions in modern physics including the origin and composition of dark matter in the universe and the unification of the fundamental forces. This review describes the techniques used in SMP-searches at collider experiments and the limits so far obtained on the production of SMPs which possess various colour, electric and magnetic charge quantum numbers. We also describe theoretical scenarios which predict SMPs, the phenomenology needed to model their production at colliders and interactions with matter. In addition, the interplay between collider searches and open questions in cosmology such as dark matter composition are addressed.

  15. Questions about elastic waves

    CERN Document Server

    Engelbrecht, Jüri

    2015-01-01

    This book addresses the modelling of mechanical waves by asking the right questions about them and trying to find suitable answers. The questions follow the analytical sequence from elementary understandings to complicated cases, following a step-by-step path towards increased knowledge. The focus is on waves in elastic solids, although some examples also concern non-conservative cases for the sake of completeness. Special attention is paid to the understanding of the influence of microstructure, nonlinearity and internal variables in continua. With the help of many mathematical models for describing waves, physical phenomena concerning wave dispersion, nonlinear effects, emergence of solitary waves, scales and hierarchies of waves as well as the governing physical parameters are analysed. Also, the energy balance in waves and non-conservative models with energy influx are discussed. Finally, all answers are interwoven into the canvas of complexity.

  16. Realization of Localized Bohr-Like Wave Packets

    Science.gov (United States)

    Mestayer, J. J.; Wyker, B.; Lancaster, J. C.; Dunning, F. B.; Reinhold, C. O.; Yoshida, S.; Burgdörfer, J.

    2008-06-01

    We demonstrate a protocol to create localized wave packets in very-high-n Rydberg states which travel in nearly circular orbits around the nucleus. Although these wave packets slowly dephase and eventually lose their localization, their motion can be monitored over several orbital periods. These wave packets represent the closest analog yet achieved to the original Bohr model of the hydrogen atom, i.e., an electron in a circular classical orbit around the nucleus. The possible extension of the approach to create “planetary atoms” in highly correlated stable multiply excited states is discussed.

  17. The Travelling Wave Group - 5 Departures from Dirac's Principles

    Science.gov (United States)

    Bourdillon, Antony J.

    2014-03-01

    The Traveling Wave Group (TWG) for a free particle is written, ψ = A(X2 / 2σ2 + X) . Here, X = i(kx - ωt) , σ is an experimental initial value, with Aa normalizing constant dependent on it, while ω is the mean angular frequency, and k the mean wave vector. Unlike Dirac's unstable wave packet; the TWG is stable. From it, the following are derived: the Uncertainty Principle; Planck's law; the de Broglie hypothesis; phase velocity; pseudo mass M'; conservation of M'PT; 5-dimensional space; mass as a local excess of energy over momentum; an explanation for entanglement at a distance, etc.

  18. Stable local moments of vacancies, substitutional and hollow site impurities in graphene.

    Science.gov (United States)

    Mashkoori, M; Jafari, S A

    2015-04-22

    The two-sublattice nature of graphene lattice in conjunction with three-fold rotational symmetry, allows for the p-wave hybridization of the impurity state with the Bloch states of carbon atoms. Such an opportunity is not available in normal metals where the wave function is scalar. The p-wave hybridization function V(→k) appears when dealing with vacancies, substitutional adatoms and the hollow site impurities while the s-wave mixing on graphene lattice pertains only to the top site impurities. In this work, we compare the local moment formation in these two cases and find that the local moments formed by p-wave mixing compared to the s-wave one are robust against the changes in the parameters of the model. Furthermore, we investigate the stability of the local moments in the above cases. We find that the quantum fluctuations can destroy the local moments in the case of s-wave hybridization, while the local moments formed by p-wave hybridization survive the quantum fluctuations. Based on these findings, we propose vacancies, substitutional adatoms, and hollow site adatoms as possible candidates to produce stable local moments in graphene.

  19. Stable lattice Boltzmann model for Maxwell equations in media

    Science.gov (United States)

    Hauser, A.; Verhey, J. L.

    2017-12-01

    The present work shows a method for stable simulations via the lattice Boltzmann (LB) model for electromagnetic waves (EM) transiting homogeneous media. LB models for such media were already presented in the literature, but they suffer from numerical instability when the media transitions are sharp. We use one of these models in the limit of pure vacuum derived from Liu and Yan [Appl. Math. Model. 38, 1710 (2014), 10.1016/j.apm.2013.09.009] and apply an extension that treats the effects of polarization and magnetization separately. We show simulations of simple examples in which EM waves travel into media to quantify error scaling, stability, accuracy, and time scaling. For conductive media, we use the Strang splitting and check the simulations accuracy at the example of the skin effect. Like pure EM propagation, the error for the static limits, which are constructed with a current density added in a first-order scheme, can be less than 1 % . The presented method is an easily implemented alternative for the stabilization of simulation for EM waves propagating in spatially complex structured media properties and arbitrary transitions.

  20. Cycloidal Wave Energy Converter

    Energy Technology Data Exchange (ETDEWEB)

    Stefan G. Siegel, Ph.D.

    2012-11-30

    This program allowed further advancing the development of a novel type of wave energy converter, a Cycloidal Wave Energy Converter or CycWEC. A CycWEC consists of one or more hydrofoils rotating around a central shaft, and operates fully submerged beneath the water surface. It operates under feedback control sensing the incoming waves, and converts wave power to shaft power directly without any intermediate power take off system. Previous research consisting of numerical simulations and two dimensional small 1:300 scale wave flume experiments had indicated wave cancellation efficiencies beyond 95%. The present work was centered on construction and testing of a 1:10 scale model and conducting two testing campaigns in a three dimensional wave basin. These experiments allowed for the first time for direct measurement of electrical power generated as well as the interaction of the CycWEC in a three dimensional environment. The Atargis team successfully conducted two testing campaigns at the Texas A&M Offshore Technology Research Center and was able to demonstrate electricity generation. In addition, three dimensional wave diffraction results show the ability to achieve wave focusing, thus increasing the amount of wave power that can be extracted beyond what was expected from earlier two dimensional investigations. Numerical results showed wave cancellation efficiencies for irregular waves to be on par with results for regular waves over a wide range of wave lengths. Using the results from previous simulations and experiments a full scale prototype was designed and its performance in a North Atlantic wave climate of average 30kW/m of wave crest was estimated. A full scale WEC with a blade span of 150m will deliver a design power of 5MW at an estimated levelized cost of energy (LCOE) in the range of 10-17 US cents per kWh. Based on the new results achieved in the 1:10 scale experiments these estimates appear conservative and the likely performance at full scale will

  1. Long gravitational waves in a closed universe

    International Nuclear Information System (INIS)

    Grishchuk, L.P.; Doroshkevich, A.G.; Yudin, V.M.

    The important part played by long gravitational waves in the evolution of a homogeneous closed universe (model of type IX in Biancki's classification) is discussed. It is shown that the metric of this model can be represented in the form of a sum of a background metric, describing nonstationary space of constant positive curvature, and a group of terms that may be interpreted as a set of gravitational waves of maximal length compatible with closure of the space. This subdivision of the metric is exact and does not presuppose necessary smallness of the wave corrections. For this reason the behavior of the wave terms can be traced at all stages of their evolution--both in the epoch when the contribution of the ''energy density'' and ''pressure'' of the gravitational waves to the dynamics of the background universe is negligibly small and in the epoch when this contribution is dominant. It was demonstrated, in particular, that in the limiting case of complete absence of ordinary matter the scale factor of the background metric, because of the negativity of gravitational ''pressure,''can pass during the evolution of the universe through a state of stable regular minimum

  2. On the joint statistics of stable random processes

    International Nuclear Information System (INIS)

    Hopcraft, K I; Jakeman, E

    2011-01-01

    A utilitarian continuous bi-variate random process whose first-order probability density function is a stable random variable is constructed. Results paralleling some of those familiar from the theory of Gaussian noise are derived. In addition to the joint-probability density for the process, these include fractional moments and structure functions. Although the correlation functions for stable processes other than Gaussian do not exist, we show that there is coherence between values adopted by the process at different times, which identifies a characteristic evolution with time. The distribution of the derivative of the process, and the joint-density function of the value of the process and its derivative measured at the same time are evaluated. These enable properties to be calculated analytically such as level crossing statistics and those related to the random telegraph wave. When the stable process is fractal, the proportion of time it spends at zero is finite and some properties of this quantity are evaluated, an optical interpretation for which is provided. (paper)

  3. Computer Simulation of a Traveling-Wave Direct Energy Converter

    Science.gov (United States)

    Katayama, Hideaki; Sato, Kunihiro; Miyawaki, Fujio

    Beam-circuit code is presented to simulate a Traveling-Wave Direct Energy Converter (TWDEC), which recovers the energy of fusion protons escaping from a FRC/D3He fusion reactor. A transmission line loop for propagation of the electrostatic traveling wave is designed using lumped constant elements L.C.R. Electrostatic coupling between proton beam and circuits is treated by directly solving Poisson’s equation. Circuit equations are transformed to temporal finite-difference equations, which are solved following the leap-flog scheme. Simulation results display desirable performance characteristics. Traveling wave with a fixed frequency is excited spontaneously without any external power supply. The wave is kept its equilibrium state under loading, and the wave is stable to variation of the load.

  4. Computer simulation of a Traveling-Wave Direct Energy Converter

    Energy Technology Data Exchange (ETDEWEB)

    Katayama, Hideaki [Maizuru National College of Technology, Maizuru, Kyoto (Japan); Sato, Kunihiro; Miyawaki, Fujio

    1999-12-01

    Beam-circuit code is presented to simulate a Traveling-Wave Direct Energy Converter (TWDEC), which recovers the energy of fusion protons escaping from a FRC/D{sup 3}He fusion reactor. A transmission line loop for propagation of the electrostatic traveling wave is designed using lumped constant elements L, C, R. Electrostatic coupling between proton beam and circuits is treated by directly solving Poisson's equation. Circuit equations are transformed to temporal finite-difference equations, which are solved following the leap-flog scheme. Simulation results display desirable performance characteristics. Traveling wave with a fixed frequency is excited spontaneously without any external power supply. The wave is kept its equilibrium state under loading, and the wave is stable to variation of the load. (author)

  5. Whistler waves, core ion heating, and nonstationarity in oblique collisionless shocks

    International Nuclear Information System (INIS)

    Scholer, Manfred; Burgess, David

    2007-01-01

    One-dimensional full particle simulations of supercritical collisionless shocks with an ion and electron beta of 0.1 (particle to magnetic field pressure) over a wide Alfven Mach number range and range of shock normal-magnetic field angles between Θ Bn =60 deg. and Θ Bn =80 deg. are presented. The whistler critical Mach number M w , below which a linear phase-standing whistler can exist, is proportional to the square root of the ion-to-electron mass ratio and to cos Θ Bn . In small mass ratio simulations of oblique shocks, M w can be artificially small and close to the first critical Mach number M c , above which the process of ion reflection is needed in order to achieve shock dissipation. We use in the simulations the physical ion-to-electron mass ratio so that M c and M w are well separated. This also allows excitation of the modified two-stream instability (MTSI) between incoming ions and electrons. We find that in oblique but close to perpendicular (Θ Bn ≥80 deg.) shocks, upstream whistler waves do occur, but reformation is due to accumulation of reflected-gyrating ions at the upstream edge of the foot. In less oblique shocks above the whistler critical Mach number, the whistler amplitude in the foot upstream of the ramp grows, leading to vortices of the incoming ions and the reflected ions in velocity phase space, and eventually to phase mixing. The shock re-forms at the upstream edge of the whistler wave train, which is particularly evident in very high Mach number shocks where the scale of the foot is large compared with the whistler wave train. After reformation, the region with phase-mixed incoming and reflected ions constitutes a hot core downstream of the shock ramp. In this whistler induced reformation process, the MTSI results mainly in heating of the incoming ions in the foot

  6. Stable Treemaps via Local Moves.

    Science.gov (United States)

    Sondag, Max; Speckmann, Bettina; Verbeek, Kevin

    2018-01-01

    Treemaps are a popular tool to visualize hierarchical data: items are represented by nested rectangles and the area of each rectangle corresponds to the data being visualized for this item. The visual quality of a treemap is commonly measured via the aspect ratio of the rectangles. If the data changes, then a second important quality criterion is the stability of the treemap: how much does the treemap change as the data changes. We present a novel stable treemapping algorithm that has very high visual quality. Whereas existing treemapping algorithms generally recompute the treemap every time the input changes, our algorithm changes the layout of the treemap using only local modifications. This approach not only gives us direct control over stability, but it also allows us to use a larger set of possible layouts, thus provably resulting in treemaps of higher visual quality compared to existing algorithms. We further prove that we can reach all possible treemap layouts using only our local modifications. Furthermore, we introduce a new measure for stability that better captures the relative positions of rectangles. We finally show via experiments on real-world data that our algorithm outperforms existing treemapping algorithms also in practice on either visual quality and/or stability. Our algorithm scores high on stability regardless of whether we use an existing stability measure or our new measure.

  7. Prolonged signal-averaged P wave duration as a prognostic marker for morbidity and mortality in patients with congestive heart failure

    DEFF Research Database (Denmark)

    Dixen, Ulrik; Wallevik, Laura; Hansen, Maja

    2003-01-01

    To evaluate the prognostic roles of prolonged signal-averaged P wave duration (SAPWD), raised levels of natriuretic peptides, and clinical characteristics in patients with stable congestive heart failure (CHF).......To evaluate the prognostic roles of prolonged signal-averaged P wave duration (SAPWD), raised levels of natriuretic peptides, and clinical characteristics in patients with stable congestive heart failure (CHF)....

  8. Computational study on full-wave inversion based on the acoustic wave-equation; Onkyoha hado hoteishiki full wave inversion no model keisan ni yoru kento

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, T.; Sassa, K. [Kyoto University, Kyoto (Japan); Uesaka, S. [Kyoto University, Kyoto (Japan). Faculty of Engineering

    1996-10-01

    The effect of initial models on full-wave inversion (FWI) analysis based on acoustic wave-equation was studied for elastic wave tomography of underground structures. At present, travel time inversion using initial motion travel time is generally used, and inverse analysis is conducted using the concept `ray,` assuming very high wave frequency. Although this method can derive stable solutions relatively unaffected by initial model, it uses only the data of initial motion travel time. FWI calculates theoretical waveform at each receiver using all of observed waveforms as data by wave equation modeling where 2-D underground structure is calculated by difference calculus under the assumption that wave propagation is described by wave equation of P wave. Although it is a weak point that FWI is easily affected by noises in an initial model and data, it is featured by high resolution of solutions. This method offers very excellent convergence as a proper initial model is used, resulting in sufficient performance, however, it is strongly affected by initial model. 2 refs., 7 figs., 1 tab.

  9. Gravitational wave astronomy

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    In the past year, the LIGO-Virgo Collaboration announced the first secure detection of gravitational waves. This discovery heralds the beginning of gravitational wave astronomy: the use of gravitational waves as a tool for studying the dense and dynamical universe. In this talk, I will describe the full spectrum of gravitational waves, from Hubble-scale modes, through waves with periods of years, hours and milliseconds. I will describe the different techniques one uses to measure the waves in these bands, current and planned facilities for implementing these techniques, and the broad range of sources which produce the radiation. I will discuss what we might expect to learn as more events and sources are measured, and as this field matures into a standard part of the astronomical milieu.

  10. Electromagnetic wave matching device

    International Nuclear Information System (INIS)

    Hirata, Yosuke; Mitsunaka, Yoshika; Hayashi, Ken-ichi; Ito, Yasuyuki.

    1997-01-01

    The present invention provides a matching device capable of increasing an efficiency of combining beams of electromagnetic waves outputted from an output window of a gyrotron which is expected for plasma heating of a thermonuclear reactor and an electromagnetic wave transmission system as high as possible. Namely, an electromagnetic wave matching device reflects beams of electromagnetic waves incident from an inlet by a plurality of phase correction mirrors and combines them to an external transmission system through an exit. In this case, the phase correction mirrors change the phase of the beams of electromagnetic waves incident to the phase correction mirrors by a predetermined amount corresponding to the position of the reflection mirrors. Then, the beams of electromagnetic waves outputted, for example, from a gyrotron can properly be shaped as desired for the intensity and the phase. As a result, combination efficiency with the transmission system can be increased. (I.S.)

  11. Analysis of Waves

    DEFF Research Database (Denmark)

    Frigaard, Peter; Andersen, Thomas Lykke

    The present book describes the most important aspects of wave analysis techniques applied to physical model tests. Moreover, the book serves as technical documentation for the wave analysis software WaveLab 3, cf. Aalborg University (2012). In that respect it should be mentioned that supplementary...... to the present technical documentation exists also the online help document describing the WaveLab software in detail including all the inputs and output fields. In addition to the two main authors also Tue Hald, Jacob Helm-Petersen and Morten Møller Jakobsen have contributed to the note. Their input is highly...... acknowledged. The outline of the book is as follows: • Chapter 2 and 3 describes analysis of waves in time and frequency domain. • Chapter 4 and 5 describes the separation of incident and reflected waves for the two-dimensional case. • Chapter 6 describes the estimation of the directional spectra which also...

  12. Waves and compressible flow

    CERN Document Server

    Ockendon, Hilary

    2016-01-01

    Now in its second edition, this book continues to give readers a broad mathematical basis for modelling and understanding the wide range of wave phenomena encountered in modern applications.  New and expanded material includes topics such as elastoplastic waves and waves in plasmas, as well as new exercises.  Comprehensive collections of models are used to illustrate the underpinning mathematical methodologies, which include the basic ideas of the relevant partial differential equations, characteristics, ray theory, asymptotic analysis, dispersion, shock waves, and weak solutions. Although the main focus is on compressible fluid flow, the authors show how intimately gasdynamic waves are related to wave phenomena in many other areas of physical science.   Special emphasis is placed on the development of physical intuition to supplement and reinforce analytical thinking. Each chapter includes a complete set of carefully prepared exercises, making this a suitable textbook for students in applied mathematics, ...

  13. An implicit discontinuous Galerkin finite element model for water waves

    NARCIS (Netherlands)

    van der Vegt, Jacobus J.W.; Tomar, S.K.; Yao, Z.H.; Yuan, M.W.; Zhong, W.X.

    2004-01-01

    An overview is given of a discontinuous Galerkin finite element method for linear free surface water waves. The method uses an implicit time integration method which is unconditionally stable and does not suffer from the frequently encountered mesh dependent saw-tooth type instability at the free

  14. Gravitational Wave Astronomy

    CERN Multimedia

    CERN. Geneva

    2006-01-01

    Gravitational wave astronomy is expected to become an observational field within the next decade. First direct detection of gravitational waves is possible with existing terrestrial-based detectors, and highly probable with proposed upgrades. In this three-part lecture series, we give an overview of the field, including material on gravitional wave sources, detection methods, some details of interferometric detectors, data analysis methods, and current results from observational data-taking runs of the LIGO and GEO projects.

  15. Mask Waves Benchmark

    Science.gov (United States)

    2007-10-01

    frequenciesfoeahpbeswllsa"gdnsmtrc fo eah/Rbe. /Qthe acuation are de fiamn aprltmethod raetheorta cmiurve fTtn,wihe ies whynee select ful cycle wisdoimporat tob...See Figure 22 for a comparison of measured waves, linear waves, and non- linear Stokes waves. Looking at the selected 16 runs from the trough-to-peak...Figure 23 for the benchmark data set, the relation of obtained frequency verses desired frequency is almost completely linear . The slight variation at

  16. Traveling wave laser system

    International Nuclear Information System (INIS)

    Gregg, D.W.; Kidder, R.E.; Biehl, A.T.

    1975-01-01

    A method is described for generating a traveling wave laser pulse of almost unlimited energy content wherein a gain medium is pumped into a traveling wave mode, the traveling wave moving at essentially the velocity of light to generate an amplifying region or zone which moves through the medium at the velocity of light in the presence of directed stimulating radiation, thereby generating a traveling coherent, directed radiation pulse moving with the amplification zone through the gain medium. (U.S.)

  17. Gravitation Waves seminar

    CERN Multimedia

    CERN. Geneva HR-RFA

    2006-01-01

    We will present a brief introduction to the physics of gravitational waves and their properties. We will review potential astrophysical sources of gravitational waves, and the physics and astrophysics that can be learned from their study. We will survey the techniques and technologies for detecting gravitational waves for the first time, including bar detectors and broadband interferometers, and give a brief status report on the international search effort.

  18. WaveNet

    Science.gov (United States)

    2015-10-30

    Coastal Inlets Research Program WaveNet WaveNet is a web-based, Graphical-User-Interface ( GUI ) data management tool developed for Corps coastal...generates tabular and graphical information for project planning and design documents. The WaveNet is a web-based GUI designed to provide users with a...data from different sources, and employs a combination of Fortran, Python and Matlab codes to process and analyze data for USACE applications

  19. Non-diffractive waves

    CERN Document Server

    Hernandez-Figueroa, Hugo E; Recami, Erasmo

    2013-01-01

    This continuation and extension of the successful book ""Localized Waves"" by the same editors brings together leading researchers in non-diffractive waves to cover the most important results in their field and as such is the first to present the current state.The well-balanced presentation of theory and experiments guides readers through the background of different types of non-diffractive waves, their generation, propagation, and possible applications. The authors include a historical account of the development of the field, and cover different types of non-diffractive waves, including Airy

  20. Propagation of waves

    CERN Document Server

    David, P

    2013-01-01

    Propagation of Waves focuses on the wave propagation around the earth, which is influenced by its curvature, surface irregularities, and by passage through atmospheric layers that may be refracting, absorbing, or ionized. This book begins by outlining the behavior of waves in the various media and at their interfaces, which simplifies the basic phenomena, such as absorption, refraction, reflection, and interference. Applications to the case of the terrestrial sphere are also discussed as a natural generalization. Following the deliberation on the diffraction of the "ground? wave around the ear

  1. The Wave Energy Sector

    DEFF Research Database (Denmark)

    Kofoed, Jens Peter

    2017-01-01

    This Handbook for Ocean Wave Energy aims at providing a guide into the field of ocean wave energy utilization. The handbook offers a concise yet comprehensive overview of the main aspects and disciplines involved in the development of wave energy converters (WECs). The idea for the book has been...... shaped by the development, research, and teaching that we have carried out at the Wave Energy Research Group at Aalborg University over the past decades. It is our belief and experience that it would be useful writing and compiling such a handbook in order to enhance the understanding of the sector...

  2. Wave Loads on Cylinders

    DEFF Research Database (Denmark)

    Burcharth, H. F.; Frigaard, Peter

    1989-01-01

    Wave loads may be defined as time varying forces on a body resulting from the wave induced flow fields which surrounds the body in whole or in part. Such unsteady fluid forces are the net result of pressure and shear forces integrated over the instantaneous wetted area.......Wave loads may be defined as time varying forces on a body resulting from the wave induced flow fields which surrounds the body in whole or in part. Such unsteady fluid forces are the net result of pressure and shear forces integrated over the instantaneous wetted area....

  3. Traveling wave laser system

    International Nuclear Information System (INIS)

    Gregg, D.W.; Kidder, R.E.; Biehl, A.T.

    1975-01-01

    The invention broadly involves a method and means for generating a traveling wave laser pulse and is basically analogous to a single pass light amplifier system. However, the invention provides a traveling wave laser pulse of almost unlimited energy content, wherein a gain medium is pumped in a traveling wave mode, the traveling wave moving at essentially the velocity of light to generate an amplifying region or zone which moves through the medium at the velocity of light in the presence of directed stimulating radiation, thereby generating a traveling coherent, directed radiation pulse moving with the amplification zone through the gain medium. (U.S.)

  4. Surfing surface gravity waves

    Science.gov (United States)

    Pizzo, Nick

    2017-11-01

    A simple criterion for water particles to surf an underlying surface gravity wave is presented. It is found that particles travelling near the phase speed of the wave, in a geometrically confined region on the forward face of the crest, increase in speed. The criterion is derived using the equation of John (Commun. Pure Appl. Maths, vol. 6, 1953, pp. 497-503) for the motion of a zero-stress free surface under the action of gravity. As an example, a breaking water wave is theoretically and numerically examined. Implications for upper-ocean processes, for both shallow- and deep-water waves, are discussed.

  5. Caustics of atmospheric waves

    Science.gov (United States)

    Godin, Oleg A.

    2015-04-01

    Much like light and sound, acoustic-gravity waves in inhomogeneous atmosphere often have a caustic or caustics, where the ray theory predicts unphysical, divergent values of the wave amplitude and needs to be modified. Increase of the wave magnitude in the vicinity of a caustic makes such vicinities of primary interest in a number of problems, where a signal needs to be separated from a background noise. The value of wave focusing near caustics should be carefully quantified in order to evaluate possible nonlinearities promoted by the focusing. Physical understanding of the wave field in the vicinity of a caustic is also important for understanding of the wave reflection from and transmission (tunneling) through the caustic. To our knowledge, in contrast to caustics of acoustic, electromagnetic, and seismic waves as well as gravity waves in incompressible fluids, asymptotics of acoustic-gravity waves in the vicinity of a caustic have never been studied systematically. In this paper, we fill this gap. Atmospheric waves are considered as linear acoustic-gravity waves in a neutral, horizontally stratified, moving ideal gas of variable composition. Air temperature and wind velocity are assumed to be gradually varying functions of height, and slowness of these variations determines the large parameter of the problem. The scale height of the atmosphere can be large or small compared to the vertical wavelength. It is found that the uniform asymptotics of the wave field in the presence of a simple caustic can be expressed in terms of the Airy function and its derivative. As for the acoustic waves, the argument of the Airy function is expressed in terms of the eikonal calculated in the ray, or WKB, approximation. The geometrical, or Berry, phase, which arises in the consistent WKB approximation for acoustic-gravity waves, plays an important role in the caustic asymptotics. In the uniform asymptotics, the terms with the Airy function and its derivative are weighted by cosine

  6. Wave Dragon Wave Energy Converters Used as Coastal Protection

    DEFF Research Database (Denmark)

    Nørgaard, Jørgen Harck; Andersen, Thomas Lykke; Kofoed, Jens Peter

    2011-01-01

    This paper deals with wave energy converters used to reduce the wave height along shorelines. For this study the Wave Dragon wave energy converter is chosen. The wave height reduction from a single device has been evaluated from physical model tests in scale 1:51.8 of the 260 x 150 m, 24 kW/m mod...

  7. Abnormal Waves Modelled as Second-order Conditional Waves

    DEFF Research Database (Denmark)

    Jensen, Jørgen Juncher

    2005-01-01

    , the water depth and the directional spreading on the conditional mean wave profile are presented. Application of conditional waves to model and explain abnormal waves, e.g. the well-known New Year Wave measured at the Draupner platform January 1st 1995, is discussed. Whereas the wave profile can be modelled...

  8. Advanced thermally stable jet fuels

    Energy Technology Data Exchange (ETDEWEB)

    Schobert, H.H.

    1999-01-31

    The Pennsylvania State University program in advanced thermally stable coal-based jet fuels has five broad objectives: (1) Development of mechanisms of degradation and solids formation; (2) Quantitative measurement of growth of sub-micrometer and micrometer-sized particles suspended in fuels during thermal stressing; (3) Characterization of carbonaceous deposits by various instrumental and microscopic methods; (4) Elucidation of the role of additives in retarding the formation of carbonaceous solids; (5) Assessment of the potential of production of high yields of cycloalkanes by direct liquefaction of coal. Future high-Mach aircraft will place severe thermal demands on jet fuels, requiring the development of novel, hybrid fuel mixtures capable of withstanding temperatures in the range of 400--500 C. In the new aircraft, jet fuel will serve as both an energy source and a heat sink for cooling the airframe, engine, and system components. The ultimate development of such advanced fuels requires a thorough understanding of the thermal decomposition behavior of jet fuels under supercritical conditions. Considering that jet fuels consist of hundreds of compounds, this task must begin with a study of the thermal degradation behavior of select model compounds under supercritical conditions. The research performed by The Pennsylvania State University was focused on five major tasks that reflect the objectives stated above: Task 1: Investigation of the Quantitative Degradation of Fuels; Task 2: Investigation of Incipient Deposition; Task 3: Characterization of Solid Gums, Sediments, and Carbonaceous Deposits; Task 4: Coal-Based Fuel Stabilization Studies; and Task 5: Exploratory Studies on the Direct Conversion of Coal to High Quality Jet Fuels. The major findings of each of these tasks are presented in this executive summary. A description of the sub-tasks performed under each of these tasks and the findings of those studies are provided in the remainder of this volume

  9. Population Games, Stable Games, and Passivity

    Directory of Open Access Journals (Sweden)

    Michael J. Fox

    2013-10-01

    Full Text Available The class of “stable games”, introduced by Hofbauer and Sandholm in 2009, has the attractive property of admitting global convergence to equilibria under many evolutionary dynamics. We show that stable games can be identified as a special case of the feedback-system-theoretic notion of a “passive” dynamical system. Motivated by this observation, we develop a notion of passivity for evolutionary dynamics that complements the definition of the class of stable games. Since interconnections of passive dynamical systems exhibit stable behavior, we can make conclusions about passive evolutionary dynamics coupled with stable games. We show how established evolutionary dynamics qualify as passive dynamical systems. Moreover, we exploit the flexibility of the definition of passive dynamical systems to analyze generalizations of stable games and evolutionary dynamics that include forecasting heuristics as well as certain games with memory.

  10. Head-on collision of large amplitude internal solitary waves of the first mode

    Science.gov (United States)

    Terletska, Kateryna; Maderich, Vladimir; Brovchenko, Igor; Jung, Kyung Tae; Talipova, Tatiana

    2016-04-01

    The dynamics and energetics of a frontal collision of internal solitary waves of depression and elevation of moderate and large amplitudes propagating in a two-layer stratified fluid are studied numerically in frame of the Navier-Stokes equations. It was considered symmetric and asymmetric head-on collisions. We propose the dimensionless characteristic of the wave collision ξ that is the ratio of the wave steepnesses. Wave runup normalized on the amplitude of incoming wave as function of the waves steepness is proposed. Interval 01 corresponds to the larger wave in the case of asymmetric collision. Results of modeling were compared with the results of laboratory experiments [1]. It was shown that the frontal collision of internal solitary waves of moderate amplitude leads to a small phase shift and to the generation of dispersive wavetrain trailing behind transmitted solitary wave. The phase shift grows with increasing amplitudes of the interacting waves and approaches the limiting value when amplitudes of the waves are equal to the upper/lower layer for waves of depression/elevation. The deviation of the maximum wave height during collision from the twice the amplitude are maximal when wave amplitudes are equal to the upper/lower layer for waves of depression/elevation, then it decays with growth of amplitudes of interacting waves. It was found that the interaction of waves of large amplitude leads to the shear instability and the formation of Kelvin - Helmholtz vortices in the interface layer, however, subsequently waves again become stable. References [1] R.-C. Hsu, M. H. Cheng, C.-Y. Chen, Potential hazards and dynamical analysis of interfacial solitary wave interactions. Nat Hazards. 65 (2013) 255-278

  11. Making waves: visualizing fluid flows

    NARCIS (Netherlands)

    Zweers, Wout; Zwart, Valerie; Bokhove, Onno

    2013-01-01

    We explore the visualization of violent wave dynamics and erosion by waves and jets in laser-cut reliefs, laser engravings, and three-dimensional printing. For this purpose we built table-top experiments to cast breaking waves, and also explored the creation of extreme or rogue waves in larger wave

  12. Gravitational waves from inflation

    International Nuclear Information System (INIS)

    Guzzetti, M.C.; Bartolo, N.; Liguori, M.; Matarrese, S.

    2016-01-01

    The production of a stochastic background of gravitational waves is a fundamental prediction of any cosmological inflationary model. The features of such a signal encode unique information about the physics of the Early Universe and beyond, thus representing an exciting, powerful window on the origin and evolution of the Universe. We review the main mechanisms of gravitational-wave production, ranging from quantum fluctuations of the gravitational field to other mechanisms that can take place during or after inflation. These include e.g. gravitational waves generated as a consequence of extra particle production during inflation, or during the (p)reheating phase. Gravitational waves produced in inflation scenarios based on modified gravity theories and second-order gravitational waves are also considered. For each analyzed case, the expected power spectrum is given. We discuss the discriminating power among different models, associated with the validity/violation of the standard consistency relation between tensor-to-scalar ratio r and tensor spectral index ηT. In light of the prospects for (directly/indirectly) detecting primordial gravitational waves, we give the expected present-day gravitational radiation spectral energy-density, highlighting the main characteristics imprinted by the cosmic thermal history, and we outline the signatures left by gravitational waves on the Cosmic Microwave Background and some imprints in the Large-Scale Structure of the Universe. Finally, current bounds and prospects of detection for inflationary gravitational waves are summarized.

  13. Five Waves of Innovation

    DEFF Research Database (Denmark)

    Østergaard, Claus Møller; Rosenstand, Claus Andreas Foss; Gertsen, Frank

    2012-01-01

    Building on previous well-argued work by Jon Sundbo (1995a), on how innovation has evolved in three phases or waves since 1880, this paper’s contribution is extending the historical line, by offering arguments and explanations for two additional waves of innovation that explain the most recent de...

  14. Magnetospheric plasma waves

    International Nuclear Information System (INIS)

    Shawhan, S.D.

    1977-01-01

    A brief history of plasma wave observations in the Earth's magnetosphere is recounted and a classification of the identified plasma wave phenomena is presented. The existence of plasma waves is discussed in terms of the characteristic frequencies of the plasma, the energetic particle populations and the proposed generation mechanisms. Examples are given for which plasmas waves have provided information about the plasma parameters and particle characteristics once a reasonable theory has been developed. Observational evidence and arguments by analogy to the observed Earth plasma wave processes are used to identify plasma waves that may be significant in other planetary magnetospheres. The similarities between the observed characteristics of the terrestrial kilometric radiation and radio bursts from Jupiter, Saturn and possibly Uranus are stressed. Important scientific problems concerning plasma wave processes in the solar system and beyond are identified and discussed. Models for solar flares, flare star radio outbursts and pulsars include elements which are also common to the models for magnetospheric radio bursts. Finally, a listing of the research and development in terms of instruments, missions, laboratory experiments, theory and computer simulations needed to make meaningful progress on the outstanding scientific problems of plasma wave research is given. (Auth.)

  15. Vector financial rogue waves

    International Nuclear Information System (INIS)

    Yan, Zhenya

    2011-01-01

    The coupled nonlinear volatility and option pricing model presented recently by Ivancevic is investigated, which generates a leverage effect, i.e., stock volatility is (negatively) correlated to stock returns, and can be regarded as a coupled nonlinear wave alternative of the Black–Scholes option pricing model. In this Letter, we analytically propose vector financial rogue waves of the coupled nonlinear volatility and option pricing model without an embedded w-learning. Moreover, we exhibit their dynamical behaviors for chosen different parameters. The vector financial rogue wave (rogon) solutions may be used to describe the possible physical mechanisms for the rogue wave phenomena and to further excite the possibility of relative researches and potential applications of vector rogue waves in the financial markets and other related fields. -- Highlights: ► We investigate the coupled nonlinear volatility and option pricing model. ► We analytically present vector financial rogue waves. ► The vector financial rogue waves may be used to describe the extreme events in financial markets. ► This results may excite the relative researches and potential applications of vector rogue waves.

  16. Wave Reflection Model Tests

    DEFF Research Database (Denmark)

    Burcharth, H. F.; Larsen, Brian Juul

    The investigation concerns the design of a new internal breakwater in the main port of Ibiza. The objective of the model tests was in the first hand to optimize the cross section to make the wave reflection low enough to ensure that unacceptable wave agitation will not occur in the port. Secondly...

  17. Those Elusive Gravitational Waves

    Science.gov (United States)

    MOSAIC, 1976

    1976-01-01

    The presence of gravitational waves was predicted by Einstein in his theory of General Relativity. Since then, scientists have been attempting to develop a detector sensitive enough to measure these cosmic signals. Once the presence of gravitational waves is confirmed, scientists can directly study star interiors, galaxy cores, or quasars. (MA)

  18. Developing de Broglie Wave

    Directory of Open Access Journals (Sweden)

    Zheng-Johansson J. X.

    2006-10-01

    Full Text Available The electromagnetic component waves, comprising together with their generating oscillatory massless charge a material particle, will be Doppler shifted when the charge hence particle is in motion, with a velocity v, as a mere mechanical consequence of the source motion. We illustrate here that two such component waves generated in opposite directions and propagating at speed c between walls in a one-dimensional box, superpose into a traveling beat wave of wavelength Λd=vcΛ and phase velocity c2/v+v which resembles directly L. de Broglie’s hypothetic phase wave. This phase wave in terms of transmitting the particle mass at the speed v and angular frequency Ωd= 2πv/Λd, with Λd and Ωd obeying the de Broglie relations, represents a de Broglie wave. The standing-wave function of the de Broglie (phase wave and its variables for particle dynamics in small geometries are equivalent to the eigen-state solutions to Schrödinger equation of an identical system.

  19. SSG Wave Energy Converter

    DEFF Research Database (Denmark)

    Margheritini, Lucia; Vicinanza, Diego; Frigaard, Peter

    2008-01-01

    The SSG (Sea Slot-cone Generator) is a wave energy converter of the overtopping type. The structure consists of a number of reservoirs one on the top of each others above the mean water level, in which the water of incoming waves is stored temporary. In each reservoir, expressively designed low h...

  20. Parametric analysis of change in wave number of surface waves

    Directory of Open Access Journals (Sweden)

    Tadić Ljiljana

    2015-01-01

    Full Text Available The paper analyzes the dependence of the change wave number of materials soil constants, ie the frequency of the waves. The starting point in this analysis cosists of wave equation and dynamic stiffness matrix of soil.

  1. Parsimonious Surface Wave Interferometry

    KAUST Repository

    Li, Jing

    2017-10-24

    To decrease the recording time of a 2D seismic survey from a few days to one hour or less, we present a parsimonious surface-wave interferometry method. Interferometry allows for the creation of a large number of virtual shot gathers from just two reciprocal shot gathers by crosscoherence of trace pairs, where the virtual surface waves can be inverted for the S-wave velocity model by wave-equation dispersion inversion (WD). Synthetic and field data tests suggest that parsimonious wave-equation dispersion inversion (PWD) gives S-velocity tomograms that are comparable to those obtained from a full survey with a shot at each receiver. The limitation of PWD is that the virtual data lose some information so that the resolution of the S-velocity tomogram can be modestly lower than that of the S-velocity tomogram inverted from a conventional survey.

  2. 4-wave dynamics in kinetic wave turbulence

    Science.gov (United States)

    Chibbaro, Sergio; Dematteis, Giovanni; Rondoni, Lamberto

    2018-01-01

    A general Hamiltonian wave system with quartic resonances is considered, in the standard kinetic limit of a continuum of weakly interacting dispersive waves with random phases. The evolution equation for the multimode characteristic function Z is obtained within an ;interaction representation; and a perturbation expansion in the small nonlinearity parameter. A frequency renormalization is performed to remove linear terms that do not appear in the 3-wave case. Feynman-Wyld diagrams are used to average over phases, leading to a first order differential evolution equation for Z. A hierarchy of equations, analogous to the Boltzmann hierarchy for low density gases is derived, which preserves in time the property of random phases and amplitudes. This amounts to a general formalism for both the N-mode and the 1-mode PDF equations for 4-wave turbulent systems, suitable for numerical simulations and for investigating intermittency. Some of the main results which are developed here in detail have been tested numerically in a recent work.

  3. Ion Acoustic Waves in the Presence of Electron Plasma Waves

    DEFF Research Database (Denmark)

    Michelsen, Poul; Pécseli, Hans; Juul Rasmussen, Jens

    1977-01-01

    Long-wavelength ion acoustic waves in the presence of propagating short-wavelength electron plasma waves are examined. The influence of the high frequency oscillations is to decrease the phase velocity and the damping distance of the ion wave.......Long-wavelength ion acoustic waves in the presence of propagating short-wavelength electron plasma waves are examined. The influence of the high frequency oscillations is to decrease the phase velocity and the damping distance of the ion wave....

  4. Plane-wave least-squares reverse-time migration

    KAUST Repository

    Dai, Wei

    2013-06-03

    A plane-wave least-squares reverse-time migration (LSRTM) is formulated with a new parameterization, where the migration image of each shot gather is updated separately and an ensemble of prestack images is produced along with common image gathers. The merits of plane-wave prestack LSRTM are the following: (1) plane-wave prestack LSRTM can sometimes offer stable convergence even when the migration velocity has bulk errors of up to 5%; (2) to significantly reduce computation cost, linear phase-shift encoding is applied to hundreds of shot gathers to produce dozens of plane waves. Unlike phase-shift encoding with random time shifts applied to each shot gather, plane-wave encoding can be effectively applied to data with a marine streamer geometry. (3) Plane-wave prestack LSRTM can provide higher-quality images than standard reverse-time migration. Numerical tests on the Marmousi2 model and a marine field data set are performed to illustrate the benefits of plane-wave LSRTM. Empirical results show that LSRTM in the plane-wave domain, compared to standard reversetime migration, produces images efficiently with fewer artifacts and better spatial resolution. Moreover, the prestack image ensemble accommodates more unknowns to makes it more robust than conventional least-squares migration in the presence of migration velocity errors. © 2013 Society of Exploration Geophysicists.

  5. Tension waves in tethered satellite cables

    Science.gov (United States)

    Lallman, F. J.

    1984-01-01

    A one-degree-of-freedom simulation of the Tethered Satellite System (TSS) was programmed using a distributed system model of the tether based on the one-dimensional wave equation. This model represents the time varying tension profile along the tether as the sum of two traveling waves of tension moving in opposite directions. A control loop was devised which combines a deployment rate command with the measured tension at the deployer to produce a smooth, stable rate of deployment of the subsatellite. Simulation results show a buildup of periodic bursts of high frequency oscillation in tension. This report covers the mathematical modelling and simulation results and explains the reason for the observed oscillations. The design of a possible vibration damping device is discussed.

  6. Plasma rotation effect on interaction of low frequency fields with plasmas at the rational surfaces in tokamaks

    International Nuclear Information System (INIS)

    Rondan, E.R.; Elfimov, A.G.; Galvao, R.M.O.; Pires, C.J.A.

    2006-01-01

    The effect of plasma rotation on low frequency (LF) field penetration, absorption and ponderomotive forces in TEXTOR and in Tokamak Chauffage Alfven Bresilien (TCABR) is investigated in the frequency band of 1-10 kHz. The LF fields are driven by the dynamic ergodic divertor in TEXTOR and the ergodic magnetic limiter in TCABR. Alfven wave mode conversion is responsible for the LF field absorption at the rational magnetic surface where q = -M/N is the integer. Analytical and numerical calculations show the maxima of the LF field absorption at the local Alfven wave resonance ω - k · U = k parallel c A , where ω and k are the frequency and the wave vector, respectively, and c A is the Alfven velocity at the rational magnetic surface q = 2, 3 in TEXTOR and TCABR. The rotation velocity U along the magnetic surfaces, taken into account in the dielectric tensor, can strongly modify the LF field and dissipated power profiles. The absorption in the local AW resonances begins to be non-symmetric in relation to the resonance surface. Calculations show that coil impedance has a maximum related to excitation of some stable (possibly Suydam) modes for waves travelling in the direction of plasma rotation

  7. Gas phase thermal diffusion of stable isotopes

    International Nuclear Information System (INIS)

    Eck, C.F.

    1979-01-01

    The separation of stable isotopes at Mound Facility is reviewed from a historical perspective. The historical development of thermal diffusion from a laboratory process to a separation facility that handles all the noble gases is described. In addition, elementary thermal diffusion theory and elementary cascade theory are presented along with a brief review of the uses of stable isotopes

  8. physico-chemical and stable isotopes

    African Journals Online (AJOL)

    This paper details the mineralogical, chemical and stable isotope abundances of calcrete in the Letlhakeng fossil valley. The stable isotope abundances (O and C) of calcretes yielded some values which were tested against the nature of the calcretes – pedogenic or groundwater type. The Kgalagadi (Kalahari) is a vast ...

  9. Modelling stable atmospheric boundary layers over snow

    NARCIS (Netherlands)

    Sterk, H.A.M.

    2015-01-01

    Thesis entitled:

    Modelling Stable Atmospheric Boundary Layers over Snow

    H.A.M. Sterk

    Wageningen, 29th of April, 2015

    Summary

    The emphasis of this thesis is on the understanding and forecasting of the Stable Boundary Layer (SBL) over snow-covered surfaces. SBLs

  10. Modelling stable atmospheric boundary layers over snow

    NARCIS (Netherlands)

    Sterk, H.A.M.

    2015-01-01

    Thesis entitled: Modelling Stable Atmospheric Boundary Layers over Snow H.A.M. Sterk Wageningen, 29th of April, 2015 Summary The emphasis of this thesis is on the understanding and forecasting of the Stable Boundary Layer (SBL) over snow-covered surfaces. SBLs typically form at night and in polar

  11. Stable isotopes and biomarkers in microbial ecology

    NARCIS (Netherlands)

    Boschker, H.T.S.; Middelburg, J.J.

    2002-01-01

    The use of biomarkers in combination with stable isotope analysis is a new approach in microbial ecology and a number of papers on a variety of subjects have appeared. We will first discuss the techniques for analysing stable isotopes in biomarkers, primarily gas chromatography-combustion-isotope

  12. Stable Agrobacterium -mediated transformation of the halophytic ...

    African Journals Online (AJOL)

    Stable Agrobacterium-mediated transformation of the halophytic Leymus chinensis (Trin.) Yan-Lin Sun, Soon-Kwan Hong. Abstract. In this study, an efficient procedure for stable Agrobacterium-mediated transformation of Leymus chinensis (Trin.) was established. Agrobacterium tumefaciens strain EHA105, harboring a ...

  13. Directional spectrum of ocean waves

    Digital Repository Service at National Institute of Oceanography (India)

    Fernandes, A.A.; Gouveia, A.D.; Nagarajan, R.

    This paper describes a methodology for obtaining the directional spectrum of ocean waves from time series measurement of wave elevation at several gauges arranged in linear or polygonal arrays. Results of simulated studies using sinusoidal wave...

  14. Internal wave turbulence near a Texel beach.

    Directory of Open Access Journals (Sweden)

    Hans van Haren

    Full Text Available A summer bather entering a calm sea from the beach may sense alternating warm and cold water. This can be felt when moving forward into the sea ('vertically homogeneous' and 'horizontally different', but also when standing still between one's feet and body ('vertically different'. On a calm summer-day, an array of high-precision sensors has measured fast temperature-changes up to 1 °C near a Texel-island (NL beach. The measurements show that sensed variations are in fact internal waves, fronts and turbulence, supported in part by vertical stable stratification in density (temperature. Such motions are common in the deep ocean, but generally not in shallow seas where turbulent mixing is expected strong enough to homogenize. The internal beach-waves have amplitudes ten-times larger than those of the small surface wind waves. Quantifying their turbulent mixing gives diffusivity estimates of 10(-4-10(-3 m(2 s(-1, which are larger than found in open-ocean but smaller than wave breaking above deep sloping topography.

  15. Structure of acid-stable carmine.

    Science.gov (United States)

    Sugimoto, Naoki; Kawasaki, Yoko; Sato, Kyoko; Aoki, Hiromitsu; Ichi, Takahito; Koda, Takatoshi; Yamazaki, Takeshi; Maitani, Tamio

    2002-02-01

    Acid-stable carmine has recently been distributed in the U.S. market because of its good acid stability, but it is not permitted in Japan. We analyzed and determined the structure of the major pigment in acid-stable carmine, in order to establish an analytical method for it. Carminic acid was transformed into a different type of pigment, named acid-stable carmine, through amination when heated in ammonia solution. The features of the structure were clarified using a model compound, purpurin, in which the orientation of hydroxyl groups on the A ring of the anthraquinone skeleton is the same as that of carminic acid. By spectroscopic means and the synthesis of acid-stable carmine and purpurin derivatives, the structure of the major pigment in acid-stable carmine was established as 4-aminocarminic acid, a novel compound.

  16. Stable Fly, (L., Dispersal and Governing Factors

    Directory of Open Access Journals (Sweden)

    Allan T. Showler

    2015-01-01

    Full Text Available Although the movement of stable fly, Stomoxys calcitrans (L., has been studied, its extent and significance has been uncertain. On a local scale (13 km is mainly wind-driven by weather fronts that carry stable flies from inland farm areas for up to 225 km to beaches of northwestern Florida and Lake Superior. Stable flies can reproduce for a short time each year in washed-up sea grass, but the beaches are not conducive to establishment. Such movement is passive and does not appear to be advantageous to stable fly's survival. On a regional scale, stable flies exhibit little genetic differentiation, and on the global scale, while there might be more than one “lineage”, the species is nevertheless considered to be panmictic. Population expansion across much of the globe likely occurred from the late Pleistocene to the early Holocene in association with the spread of domesticated nomad livestock and particularly with more sedentary, penned livestock.

  17. Viscoelastic Surface Waves

    Science.gov (United States)

    Borcherdt, R. D.

    2007-12-01

    General theoretical solutions for Rayleigh- and Love-Type surface waves in viscoelastic media describe physical characteristics of the surface waves in elastic as well as anelastic media with arbitrary amounts of intrinsic absorption. In contrast to corresponding physical characteristics for Rayleigh waves in elastic media, Rayleigh- Type surface waves in anelastic media demonstrate; 1) tilt of the particle motion orbit that varies with depth, and 2) amplitude and volumetric strain distributions with superimposed sinusoidal variations that decay exponentially with depth. Each characteristic is dependent on the amount of intrinsic absorption and the chosen model of viscoelasticity. Distinguishing characteristics of anelastic Love-Type surface waves include: 1) dependencies of the wave speed and absorption coefficient on the chosen model and amount of intrinsic absorption and frequency, and 2) superimposed sinusoidal amplitude variations with an exponential decay with depth. Numerical results valid for a variety of viscoelastic models provide quantitative estimates of the physical characteristics of both types of viscoelastic surface waves appropriate for interpretations pertinent to models of earth materials ranging from low-loss in the crust to moderate- and high-loss in water-saturated soils.

  18. Abnormal Waves Modelled as Second-order Conditional Waves

    DEFF Research Database (Denmark)

    Jensen, Jørgen Juncher

    2005-01-01

    The paper presents results for the expected second order short-crested wave conditional of a given wave crest at a specific point in time and space. The analysis is based on the second order Sharma and Dean shallow water wave theory. Numerical results showing the importance of the spectral density......, the water depth and the directional spreading on the conditional mean wave profile are presented. Application of conditional waves to model and explain abnormal waves, e.g. the well-known New Year Wave measured at the Draupner platform January 1st 1995, is discussed. Whereas the wave profile can be modelled...... quite well by the second order conditional wave including directional spreading and finite water depth the probability to encounter such a wave is still, however, extremely rare. The use of the second order conditional wave as initial condition to a fully non-linear three-dimensional analysis...

  19. Mixing height determination from the momentum balance of the neutral or stable PBL

    Energy Technology Data Exchange (ETDEWEB)

    Bergmann, J.C. [Risoe National Lab., Roskilde (Denmark)

    1997-10-01

    The mixing height is defined by the top of the layer of turbulent mixing. This height is equal to the height H of turbulent vertical momentum transport (fiction) in neutral or stable stratification. In very stable cases, the wave induced momentum transport must be excluded if the waves do not have mixing effects (e.g. break) within the frictional layer. Thus the conditions provided by the momentum balance determine the mixing height in most cases of mechanical turbulence. Mixing is a time dependent process and depends also on the height of release of substance to be mixed. It depends on the specific form of the exchange coefficient function whether the mixing time for the mixed layer is finite of infinite. If this time is infinite, an additional mixing time criterion for a substance released close to the ground must be applied for the determination of the corresponding mixing height. (au)

  20. Relativistic wave mechanics

    CERN Document Server

    Corinaldesi, Ernesto

    1963-01-01

    Geared toward advanced undergraduate and graduate students of physics, this text provides readers with a background in relativistic wave mechanics and prepares them for the study of field theory. The treatment originated as a series of lectures from a course on advanced quantum mechanics that has been further amplified by student contributions.An introductory section related to particles and wave functions precedes the three-part treatment. An examination of particles of spin zero follows, addressing wave equation, Lagrangian formalism, physical quantities as mean values, translation and rotat

  1. Vibrations and waves

    CERN Document Server

    Kaliski, S

    2013-01-01

    This book gives a comprehensive overview of wave phenomena in different media with interacting mechanical, electromagnetic and other fields. Equations describing wave propagation in linear and non-linear elastic media are followed by equations of rheological models, models with internal rotational degrees of freedom and non-local interactions. Equations for coupled fields: thermal, elastic, electromagnetic, piezoelectric, and magneto-spin with adequate boundary conditions are also included. Together with its companion volume Vibrations and Waves. Part A: Vibrations this work provides a wealth

  2. Water wave scattering

    CERN Document Server

    Mandal, Birendra Nath

    2015-01-01

    The theory of water waves is most varied and is a fascinating topic. It includes a wide range of natural phenomena in oceans, rivers, and lakes. It is mostly concerned with elucidation of some general aspects of wave motion including the prediction of behaviour of waves in the presence of obstacles of some special configurations that are of interest to ocean engineers. Unfortunately, even the apparently simple problems appear to be difficult to tackle mathematically unless some simplified assumptions are made. Fortunately, one can assume water to be an incompressible, in viscid and homogeneous

  3. Dyakonov surface waves

    DEFF Research Database (Denmark)

    Takayama, Osamu; Crasovan, Lucian Cornel; Johansen, Steffen Kjær

    2008-01-01

    The interface of two semi-infinite media, where at least one of them is a birefringent crystal, supports a special type of surface wave that was predicted theoretically by D'yakonov in 1988. Since then, the properties of such waves, which exist in transparent media only under very special...... conditions, have been analyzed in different geometries and settings. Nevertheless, they are still awaiting experimental demonstration. The most important advances in this topic are briefly discussed in this review, pointing out aspects that have not been clearly covered by the literature. Finally......, the existence of these surface waves in specific material examples is analyzed, discussing the challenge posed by their experimental observation....

  4. NMR and NQR study of the thermodynamically stable quasicrystals

    Energy Technology Data Exchange (ETDEWEB)

    Shastri, Ananda [Iowa State Univ., Ames, IA (United States)

    1995-02-10

    27Al and 61,65Cu NMR measurements are reported for powder samples of stable AlCuFe and AlCuRu icosahedral quasicrystals and their crystalline approximants, and for a AlPdMn single grain quasicrystal. Furthermore, 27Al NQR spectra at 4.2 K have been observed in the AlCuFe and AlCuRu samples. From the quadrupole perturbed NMR spectra at different magnetic fields, and from the zero field NQR spectra, a wide distribution of local electric field gradient (EFG) tensor components and principal axis system orientations was found at the Al site. A model EFG calculation based on a 1/1 AlCuFe approximant was successful in explaining the observed NQR spectra. It is concluded that the average local gradient is largely determined by the p-electron wave function at the Al site, while the width of the distribution is due to the lattice contribution to the EFG. Comparison of 63Cu NMR with 27Al NMR shows that the EFG distribution at the two sites is similar, but that the electronic contribution to the EFG is considerably smaller at the Cu site, in agreement with a more s-type wave function of the conduction electrons.

  5. Effects of abnormal excitation on the dynamics of spiral waves

    Science.gov (United States)

    Min-Yi, Deng; Xue-Liang, Zhang; Jing-Yu, Dai

    2016-01-01

    The effect of physiological and pathological abnormal excitation of a myocyte on the spiral waves is investigated based on the cellular automaton model. When the excitability of the medium is high enough, the physiological abnormal excitation causes the spiral wave to meander irregularly and slowly. When the excitability of the medium is low enough, the physiological abnormal excitation leads to a new stable spiral wave. On the other hand, the pathological abnormal excitation destroys the spiral wave and results in the spatiotemporal chaos, which agrees with the clinical conclusion that the early after depolarization is the pro-arrhythmic mechanism of some anti-arrhythmic drugs. The mechanisms underlying these phenomena are analyzed. Project supported by the National Natural Science Foundation of China (Grant Nos. 11365003 and 11165004).

  6. Lowrank seismic-wave extrapolation on a staggered grid

    KAUST Repository

    Fang, Gang

    2014-05-01

    © 2014 Society of Exploration Geophysicists. We evaluated a new spectral method and a new finite-difference (FD) method for seismic-wave extrapolation in time. Using staggered temporal and spatial grids, we derived a wave-extrapolation operator using a lowrank decomposition for a first-order system of wave equations and designed the corresponding FD scheme. The proposed methods extend previously proposed lowrank and lowrank FD wave extrapolation methods from the cases of constant density to those of variable density. Dispersion analysis demonstrated that the proposed methods have high accuracy for a wide wavenumber range and significantly reduce the numerical dispersion. The method of manufactured solutions coupled with mesh refinement was used to verify each method and to compare numerical errors. Tests on 2D synthetic examples demonstrated that the proposed method is highly accurate and stable. The proposed methods can be used for seismic modeling or reverse-time migration.

  7. Numerical Simulation of Cylindrical Solitary Waves in Periodic Media

    KAUST Repository

    Quezada de Luna, Manuel

    2013-07-14

    We study the behavior of nonlinear waves in a two-dimensional medium with density and stress relation that vary periodically in space. Efficient approximate Riemann solvers are developed for the corresponding variable-coefficient first-order hyperbolic system. We present direct numerical simulations of this multiscale problem, focused on the propagation of a single localized perturbation in media with strongly varying impedance. For the conditions studied, we find little evidence of shock formation. Instead, solutions consist primarily of solitary waves. These solitary waves are observed to be stable over long times and to interact in a manner approximately like solitons. The system considered has no dispersive terms; these solitary waves arise due to the material heterogeneity, which leads to strong reflections and effective dispersion.

  8. Stability of nonlinear ion sound waves and solitons in plasmas

    International Nuclear Information System (INIS)

    Infeld, E.; Rowlands, G.

    1979-01-01

    Large amplitude ion acoustic waves and solitons in two component plasmas are investigated for stability. The soliton solutions are found to be stable, while the nonlinear waves are always unstable, though for a significant range of parameters they are only unstable to fully three-dimensional perturbations. The results in one dimension are compared with those obtained from the Korteweg-de Vries equation, which gives stability for non linear waves and solitons. Agreement is surprisingly good for Mach numbers less than about 1.5 A three-dimensional generalization of the Korteweg-de Vries equation is considered but this leads to stability for all non linear solutions and hence is not a good model for nonlinear waves. It is, however, reasonable in the soliton limit. (author)

  9. Stable algorithm for the computation of the electromagnetic field distribution of eigenmodes of periodic diffraction structures.

    Science.gov (United States)

    Bezus, Evgeni A; Doskolovich, Leonid L

    2012-11-01

    In the present work, a stable algorithm for the calculation of the electromagnetic field distributions of the eigenmodes of one-dimensional diffraction gratings is presented. The proposed approach is based on the method for the computation of the propagation constants of Bloch waves of such structures previously presented by Cao et al.[J. Opt. Soc. Am. A 19, 335 (2002)] and uses a modified S-matrix algorithm to ensure numerical stability.

  10. Lattice Waves, Spin Waves, and Neutron Scattering

    Science.gov (United States)

    Brockhouse, Bertram N.

    1962-03-01

    Use of neutron inelastic scattering to study the forces between atoms in solids is treated. One-phonon processes and lattice vibrations are discussed, and experiments that verified the existence of the quantum of lattice vibrations, the phonon, are reviewed. Dispersion curves, phonon frequencies and absorption, and models for dispersion calculations are discussed. Experiments on the crystal dynamics of metals are examined. Dispersion curves are presented and analyzed; theory of lattice dynamics is considered; effects of Fermi surfaces on dispersion curves; electron-phonon interactions, electronic structure influence on lattice vibrations, and phonon lifetimes are explored. The dispersion relation of spin waves in crystals and experiments in which dispersion curves for spin waves in Co-Fe alloy and magnons in magnetite were obtained and the reality of the magnon was demonstrated are discussed. (D.C.W)

  11. Wave Height Distribution for Nonlinear Swell Waves in Deep an Depth Limited Wave Conditions

    DEFF Research Database (Denmark)

    Nørgaard, Jørgen Harck; Andersen, Thomas Lykke; Knudsen, Jannie Elkær

    2017-01-01

    This paper presents initial results from an on-going study on the influence from wave nonlinearity on the wave height distribution in deep- and depth-limited nonlinear wave conditions. A fully nonlinear VOF model, IH-2VOF, is applied to model the propagation of irregular waves on a sloping sea bed...... from deep to shallow water, including the effects of wave breaking. Different wave nonlinearities are evaluated in the model and the effects of the wave nonlinearity, described by the so-called Ursell-number, on the wave height distributions along the sloping sea bed are evaluated. The widely used...

  12. Acoustics waves and oscillations

    CERN Document Server

    Sen, S.N.

    2013-01-01

    Parameters of acoustics presented in a logical and lucid style Physical principles discussed with mathematical formulations Importance of ultrasonic waves highlighted Dispersion of ultrasonic waves in viscous liquids explained This book presents the theory of waves and oscillations and various applications of acoustics in a logical and simple form. The physical principles have been explained with necessary mathematical formulation and supported by experimental layout wherever possible. Incorporating the classical view point all aspects of acoustic waves and oscillations have been discussed together with detailed elaboration of modern technological applications of sound. A separate chapter on ultrasonics emphasizes the importance of this branch of science in fundamental and applied research. In this edition a new chapter ''Hypersonic Velocity in Viscous Liquids as revealed from Brillouin Spectra'' has been added. The book is expected to present to its readers a comprehensive presentation of the subject matter...

  13. Violent breaking wave impacts

    DEFF Research Database (Denmark)

    Bredmose, Henrik; Peregrine, D.H.; Bullock, G.N.

    2009-01-01

    a better understanding of the processes involved. The wave's approach towards a structure is modelled with classical irrotational flow to obtain the different types of impact profiles that may or may not lead to air entrapment. The subsequent impact is modelled with a novel compressible-flow model...... local error. The high pressures measured during wave impacts on a breakwater are reproduced and it is shown that trapped air can be compressed to a pressure of several atmospheres. Pressure shock waves, reflected off nearby surfaces such as the seabed, can lead to pressures comparable with those...... for a homogeneous mixture of incompressible liquid and ideal gas. This enables a numerical description of both trapped air pockets and the propagation of pressure shock waves through the aerated water. An exact Riemann solver is developed to permit a finite-volume solution to the flow model with smallest possible...

  14. Sound wave transmission (image)

    Science.gov (United States)

    When sounds waves reach the ear, they are translated into nerve impulses. These impulses then travel to the brain where they are interpreted by the brain as sound. The hearing mechanisms within the inner ear, can ...

  15. Gravitational waves: Stellar palaeontology

    Science.gov (United States)

    Mandel, Ilya; Farmer, Alison

    2017-07-01

    A third gravitational-wave signal has been detected with confidence, produced again by the merger of two black holes. The combined data from these detections help to reveal the histories of the stars that left these black holes behind.

  16. NOAA NDBC SOS - waves

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA NDBC SOS server is part of the IOOS DIF SOS Project. The stations in this dataset have waves data. Because of the nature of SOS requests, requests for data...

  17. Stable Organic Neutral Diradical via Reversible Coordination.

    Science.gov (United States)

    Lu, Zhenpin; Quanz, Henrik; Burghaus, Olaf; Hofmann, Jonas; Logemann, Christian; Beeck, Sebastian; Schreiner, Peter R; Wegner, Hermann A

    2017-12-27

    We report the formation of a stable neutral diboron diradical simply by coordination of an aromatic dinitrogen compound to an ortho-phenyldiborane. This process is reversible upon addition of pyridine. The diradical species is stable above 200 °C. Computations are consistent with an open-shell triplet diradical with a very small open-shell singlet-triplet energy gap that is indicative of the electronic disjointness of the two radical sites. This opens a new way of generating stable radicals with fascinating electronic properties useful for a large variety of applications.

  18. ACCELERATING WAVES IN POLAR CORONAL HOLES AS SEEN BY EIS AND SUMER

    International Nuclear Information System (INIS)

    Gupta, G. R.; Banerjee, D.; Teriaca, L.; Solanki, S.; Imada, S.

    2010-01-01

    understanding of the origin of these waves. We suggest that the waves are likely either Alfvenic or fast magnetoacoustic in the inter-plume region and slow magnetoacoustic in the plume region. This may lead to the conclusion that inter-plumes are a preferred channel for the acceleration of the fast solar wind.

  19. Sound Waves Levitate Substrates

    Science.gov (United States)

    Lee, M. C.; Wang, T. G.

    1982-01-01

    System recently tested uses acoustic waves to levitate liquid drops, millimeter-sized glass microballoons, and other objects for coating by vapor deposition or capillary attraction. Cylindrical contactless coating/handling facility employs a cylindrical acoustic focusing radiator and a tapered reflector to generate a specially-shaped standing wave pattern. Article to be processed is captured by the acoustic force field under the reflector and moves as reflector is moved to different work stations.

  20. Modeling storm waves

    International Nuclear Information System (INIS)

    Benoit, M.; Marcos, F.; Teisson, Ch.

    1999-01-01

    Nuclear power stations located on the coast take the water they use to cool their circuits from the sea. The water intake and discharge devices must be able to operate in all weathers, notably during extreme storms, with waves 10 m high and over. To predict the impact of the waves on the equipment, they are modeled digitally from the moment they form in the middle of the ocean right up to the moment they break on the shore. (authors)

  1. Wave Star C5

    DEFF Research Database (Denmark)

    Kramer, Morten; Kristensen, Tom Sten

    Design pile loads in this document are based on the Morison equation. In Chapter 3 and 4 the background for the design loads provided in Chapter 5 are given. In the remaining chapters from Chapter 6 and onward discussions and explanations of the results are given. A historical list of activities ...... to the present revision is given in Appendix A. Calculations of extreme events with wave slamming and plunging wave breaking is included in Appendix B and C....

  2. Imploding conical shock waves

    Science.gov (United States)

    Paton, R. T.; Skews, B. W.; Rubidge, S.; Snow, J.

    2013-07-01

    The behaviour of conical shock waves imploding axisymmetrically was first studied numerically by Hornung (J Fluid Mech 409:1-12, 2000) and this prompted a limited experimental investigation into these complex flow patterns by Skews et al. (Shock Waves 11:323-326, 2002). Modification of the simulation boundary conditions, resulting in the loss of self-similarity, was necessary to image the flow experimentally. The current tests examine the temporal evolution of these flows utilising a converging conical gap of fixed width fed by a shock wave impinging at its entrance, supported by CFD simulations. The effects of gap thickness, angle and incident shock strength were investigated. The wave initially diffracts around the outer lip of the gap shedding a vortex which, for strong incident shock cases, can contain embedded shocks. The converging shock at exit reflects on the axis of symmetry with the reflected wave propagating outwards resulting in a triple point developing on the incident wave together with the associated shear layer. This axisymmetric shear layer rolls up into a mushroom-shaped toroidal vortex ring and forward-facing jet. For strong shocks, this deforms the Mach disk to the extent of forming a second triple point with the primary shock exhibiting a double bulge. Separate features resembling the Richtmeyer-Meshkov and Kelvin-Helmholtz instabilities were noted in some tests. Aside from the incident wave curvature, the reflection patterns demonstrated correspond well with the V- and DV-types identified by Hornung although type S was not clearly seen, possibly due to the occlusion of the reflection region by the outer diffraction vortex at these early times. Some additional computational work explicitly exploring the limits of the parameter space for such systems has demonstrated the existence of a possible further reflection type, called vN-type, which is similar to the von Neumann reflection for plane waves. It is recommended that the parameter space be

  3. Wave Equation Inversion of Skeletonized SurfaceWaves

    KAUST Repository

    Zhang, Zhendong

    2015-08-19

    We present a surface-wave inversion method that inverts for the S-wave velocity from the Rayleigh dispersion curve for the fundamental-mode. We call this wave equation inversion of skeletonized surface waves because the dispersion curve for the fundamental-mode Rayleigh wave is inverted using finite-difference solutions to the wave equation. The best match between the predicted and observed dispersion curves provides the optimal S-wave velocity model. Results with synthetic and field data illustrate the benefits and limitations of this method.

  4. Solitary wave collisions in the regularized long wave equation

    Directory of Open Access Journals (Sweden)

    Henrik Kalisch

    2013-01-01

    Full Text Available The regularized long-wave equation admits families of positive and negative solitary waves. Interactions of these waves are studied, and it is found that interactions of pairs of positive and pairs of negative solitary waves feature the same phase shift asymptotically as the wave velocities grow large as long as the same amplitude ratio is maintained. The collision of a positive with a negative wave leads to a host of phenomena, including resonance, annihilation and creation of secondary waves. A sharp criterion on the resonance for positive-negative interactions is found.

  5. Solitary waves in fluids

    CERN Document Server

    Grimshaw, RHJ

    2007-01-01

    After the initial observation by John Scott Russell of a solitary wave in a canal, his insightful laboratory experiments and the subsequent theoretical work of Boussinesq, Rayleigh and Korteweg and de Vries, interest in solitary waves in fluids lapsed until the mid 1960's with the seminal paper of Zabusky and Kruskal describing the discovery of the soliton. This was followed by the rapid development of the theory of solitons and integrable systems. At the same time came the realization that solitary waves occur naturally in many physical systems, and play a fundamental role in many circumstances. The aim of this text is to describe the role that soliton theory plays in fluids in several contexts. After an historical introduction, the book is divided five chapters covering the basic theory of the Korteweg-de Vries equation, and the subsequent application to free-surface solitary waves in water to internal solitary waves in the coastal ocean and the atmospheric boundary layer, solitary waves in rotating flows, ...

  6. Chorus Wave Modulation of Langmuir Waves in the Radiation Belts

    Science.gov (United States)

    Li, Jinxing; Bortnik, Jacob; An, Xin; Li, Wen; Thorne, Richard M.; Zhou, Meng; Kurth, William S.; Hospodarsky, George B.; Funsten, Herbert O.; Spence, Harlan E.

    2017-12-01

    Using high-resolution waveforms measured by the Van Allen Probes, we report a novel observation in the radiation belts. Namely, we show that multiband, discrete, rising-tone whistler mode chorus emissions exhibit a one-to-one correlation with Langmuir wave bursts. Moreover, the periodic Langmuir wave bursts are generally observed at the phase location where the chorus wave E|| component is oriented opposite to its propagation direction. The electron measurements show a beam in phase space density at the particle velocity that matches the parallel phase velocity of the chorus waves. Based on this evidence, we conclude that the chorus waves accelerate the suprathermal electrons via Landau resonance and generate a localized electron beam in phase space density. Consequently, the Langmuir waves are excited locally and are modulated by the chorus wave phase. This microscale interaction between chorus waves and high-frequency electrostatic waves provides a new insight into the nonlinear wave-particle interaction process.

  7. Runge-Kutta Integration of the Equal Width Wave Equation Using the Method of Lines

    Directory of Open Access Journals (Sweden)

    M. A. Banaja

    2015-01-01

    Full Text Available The equal width (EW equation governs nonlinear wave phenomena like waves in shallow water. Numerical solution of the (EW equation is obtained by using the method of lines (MOL based on Runge-Kutta integration. Using von Neumann stability analysis, the scheme is found to be unconditionally stable. Solitary wave motion and interaction of two solitary waves are studied using the proposed method. The three invariants of the motion are evaluated to determine the conservation properties of the generated scheme. Accuracy of the proposed method is discussed by computing the L2 and L∞ error norms. The results are found in good agreement with exact solution.

  8. Dynamics of zonal flows and self-regulating drift-wave turbulence

    International Nuclear Information System (INIS)

    Diamond, P.H.; Fleischer, J.; Rosenbluth, M.N.; Hinton, F.L.; Malkov, M.; Smolyakov, A.

    1999-01-01

    We present a theory of zonal flow - drift wave dynamics. Zonal flows are generated by modulational instability of a drift wave spectrum, and are damped by collisions. Drift waves undergo random shearing-induced refraction, resulting in increased mean square radial wavenumber. Drift waves and zonal flows together form a simple dynamical system, which has a single stable fixed point. In this state, the fluctuation intensity and turbulent diffusivity are ultimately proportional to the collisional zonal flow damping. The implications of these results for transport models is discussed. (author)

  9. Wave Height Distribution for Nonlinear Swell Waves in Deep an Depth-Limited Wave Conditions

    DEFF Research Database (Denmark)

    Nørgaard, Jørgen Harck; Andersen, Thomas Lykke; Knudsen, Jannie Elkær

    2017-01-01

    This paper presents initial results from an on-going study on the influence from wave nonlinearity on the wave height distribution in deep- and depth-limited nonlinear wave conditions. A fully nonlinear VOF model, IH-2VOF, is applied to model the propagation of irregular waves on a sloping sea bed...... Battjes & Groenendijk (2000) shallow water wave height distribution is concluded in the present study to significantly underpredict the low-exceedance wave heights in case of very nonlinear waves. A modification of the Battjess & Groenendijk (2000) distribution is suggested in order to include the effects...... from deep to shallow water, including the effects of wave breaking. Different wave nonlinearities are evaluated in the model and the effects of the wave nonlinearity, described by the so-called Ursell-number, on the wave height distributions along the sloping sea bed are evaluated. The widely used...

  10. Fast wave current drive above the slow wave density limit

    International Nuclear Information System (INIS)

    McWilliams, R.; Sheehan, D.P.; Wolf, N.S.; Edrich, D.

    1989-01-01

    Fast wave and slow wave current drive near the mean gyrofrequency were compared in the Irvine Torus using distinct phased array antennae of similar principal wavelengths, frequencies, and input powers. The slow wave current drive density limit was measured for 50ω ci ≤ω≤500ω ci and found to agree with trends in tokamaks. Fast wave current drive was observed at densities up to the operating limit of the torus, demonstrably above the slow wave density limit

  11. The wave buoy analogy - estimating high-frequency wave excitations

    DEFF Research Database (Denmark)

    Nielsen, Ulrik Dam

    2008-01-01

    The paper deals with the wave buoy analogy where a ship is considered as a wave buoy, so that measured ship responses are used as a basis to estimate wave spectra and associated sea state parameters. The study presented follows up on a previous paper, Nielsen [Nielsen UD. Response-based estimation...... be estimated reasonably well, even considering high-frequency wave components of a wind sea wave spectrum....

  12. Stable Isotope Group 1983 progress report

    International Nuclear Information System (INIS)

    Stewart, M.K.

    1984-06-01

    The work of the Stable Isotope Group of the Institute of Nuclear Sciences in the fields of isotope geology, isotope hydrology, geochronology, isotope biology and related fields, and mass spectrometer instrumentation, during 1983, is described

  13. Stable Isotope Group 1982 progress report

    International Nuclear Information System (INIS)

    Stewart, M.K.

    1983-06-01

    The work of the Stable Isotope Group of the Institute of Nuclear Sciences during 1982, in the fields of isotope geology, isotope hydrology, geochronology, isotope biology and mass spectrometer instrumentation, is described

  14. Bartolome Island, Galapagos Stable Oxygen Calibration Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Galapagos Coral Stable Oxygen Calibration Data. Sites: Bartolome Island: 0 deg, 17'S, 90 deg 33' W. Champion Island: 1 deg, 15'S, 90 deg, 05' W. Urvina Bay (Isabela...

  15. Allan Hills Stable Water Isotopes, Version 1

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set includes stable water isotope values at 10 m resolution along an approximately 5 km transect through the main icefield of the Allan Hills Blue Ice...

  16. Applications of stable isotopes in clinical pharmacology

    Science.gov (United States)

    Schellekens, Reinout C A; Stellaard, Frans; Woerdenbag, Herman J; Frijlink, Henderik W; Kosterink, Jos G W

    2011-01-01

    This review aims to present an overview of the application of stable isotope technology in clinical pharmacology. Three main categories of stable isotope technology can be distinguished in clinical pharmacology. Firstly, it is applied in the assessment of drug pharmacology to determine the pharmacokinetic profile or mode of action of a drug substance. Secondly, stable isotopes may be used for the assessment of drug products or drug delivery systems by determination of parameters such as the bioavailability or the release profile. Thirdly, patients may be assessed in relation to patient-specific drug treatment; this concept is often called personalized medicine. In this article, the application of stable isotope technology in the aforementioned three areas is reviewed, with emphasis on developments over the past 25 years. The applications are illustrated with examples from clinical studies in humans. PMID:21801197

  17. Tannaka duality and stable infinity-categories

    OpenAIRE

    Iwanari, Isamu

    2014-01-01

    We introduce the notion of fine tannakian infinity-categories and prove Tannaka duality results for symmetric monoidal stable infinity-categories over a field of characteristic zero. We also discuss several examples.

  18. On Stable Marriages and Greedy Matchings

    Energy Technology Data Exchange (ETDEWEB)

    Manne, Fredrik; Naim, Md; Lerring, Hakon; Halappanavar, Mahantesh

    2016-12-11

    Research on stable marriage problems has a long and mathematically rigorous history, while that of exploiting greedy matchings in combinatorial scientific computing is a younger and less developed research field. In this paper we consider the relationships between these two areas. In particular we show that several problems related to computing greedy matchings can be formulated as stable marriage problems and as a consequence several recently proposed algorithms for computing greedy matchings are in fact special cases of well known algorithms for the stable marriage problem. However, in terms of implementations and practical scalable solutions on modern hardware, the greedy matching community has made considerable progress. We show that due to the strong relationship between these two fields many of these results are also applicable for solving stable marriage problems.

  19. Nucleation of reaction-diffusion waves on curved surfaces

    International Nuclear Information System (INIS)

    Kneer, Frederike; Schöll, Eckehard; Dahlem, Markus A

    2014-01-01

    We study reaction-diffusion waves on curved two-dimensional surfaces, and determine the influence of curvature upon the nucleation and propagation of spatially localized waves in an excitable medium modelled by the generic FitzHugh–Nagumo model. We show that the stability of propagating wave segments depends crucially on the curvature of the surface. As they propagate, they may shrink to the uniform steady state, or expand, depending on whether they are smaller or larger, respectively, than a critical nucleus. This critical nucleus for wave propagation is modified by the curvature acting like an effective space-dependent local spatial coupling, similar to diffuson, thus extending the regime of propagating excitation waves beyond the excitation threshold of flat surfaces. In particular, a negative gradient of Gaussian curvature Γ, as on the outside of a torus surface (positive Γ), when the wave segment symmetrically extends into the inside (negative Γ), allows for stable propagation of localized wave segments remaining unchanged in size and shape, or oscillating periodically in size. (paper)

  20. Partnership for Wave Power - Roadmaps

    DEFF Research Database (Denmark)

    Nielsen, Kim; Krogh, Jan; Brodersen, Hans Jørgen

    This Wave Energy Technology Roadmap is developed by the Partnership for Wave Power including nine Danish wave energy developers. It builds on to the strategy [1] published by the Partnership in 2012, a document that describes the long term vision of the Danish Wave Energy sector: “By 2030...