WorldWideScience

Sample records for stabilizing stiffness difference

  1. Association of Gastrocnemius Muscle Stiffness With Passive Ankle Joint Stiffness and Sex-Related Difference in the Joint Stiffness.

    Science.gov (United States)

    Chino, Kintaro; Takashi, Hideyuki

    2017-11-15

    Passive ankle joint stiffness is affected by all structures located within and over the joint, and is greater in men than in women. Localized muscle stiffness can be assessed by ultrasound shear wave elastography, and muscle architecture such as fascicle length and pennation angle can be measured by B-mode ultrasonography. Thus, we assessed localized muscle stiffness of the medial gastrocnemius (MG) with consideration of individual variability in the muscle architecture, and examined the association of the muscle stiffness with passive ankle joint stiffness and the sex-related difference in the joint stiffness. Localized muscle stiffness of the MG in 16 men and 17 women was assessed at 10° and 20° plantar flexion, neutral anatomical position, 10° and 20° dorsiflexion. Fascicle length and pennation angle of the MG were measured at these joint positions. Passive ankle joint stiffness was determined by the ankle joint angle-torque relationship. Localized MG muscle stiffness was not significantly correlated with passive ankle joint stiffness, and did not show significant sex-related difference, even when considering the muscle architecture. This finding suggest that muscle stiffness of the MG would not be a prominent factor to determine passive ankle joint stiffness and the sex-related difference in the joint stiffness.

  2. Coupling between the Output Force and Stiffness in Different Variable Stiffness Actuators

    Directory of Open Access Journals (Sweden)

    Amir Jafari

    2014-08-01

    Full Text Available The fundamental objective in developing variable stiffness actuators is to enable the actuator to deliberately tune its stiffness. This is done through controlling the energy flow extracted from internal power units, i.e., the motors of a variable stiffness actuator (VSA. However, the stiffness may also be unintentionally affected by the external environment, over which, there is no control. This paper analysis the correlation between the external loads, applied to different variable stiffness actuators, and their resultant output stiffness. Different types of variable stiffness actuators have been studied considering springs with different types of nonlinearity. The results provide some insights into how to design the actuator mechanism and nonlinearity of the springs in order to increase the decoupling between the load and stiffness in these actuators. This would significantly widen the application range of a variable stiffness actuator.

  3. A uniform quantitative stiff stability estimate for BDF schemes

    Directory of Open Access Journals (Sweden)

    Winfried Auzinger

    2006-01-01

    Full Text Available The concepts of stability regions, \\(A\\- and \\(A(\\alpha\\-stability - albeit based on scalar models - turned out to be essential for the identification of implicit methods suitable for the integration of stiff ODEs. However, for multistep methods, knowledge of the stability region provides no information on the quantitative stability behavior of the scheme. In this paper we fill this gap for the important class of Backward Differentiation Formulas (BDF. Quantitative stability bounds are derived which are uniformly valid in the stability region of the method. Our analysis is based on a study of the separation of the characteristic roots and a special similarity decomposition of the associated companion matrix.

  4. Shape optimization for maximum stability and dynamic stiffness

    Science.gov (United States)

    Szyszkowski, W.

    1990-01-01

    Any optimization of structures for maximum stability or for maximum dynamic stiffness deals with an eigenvalue problem. The goal of this optimization is to raise the lowest eigenvalue (or eigenvalues) of the problem to its highest (optimal) level at a constant volume of the structure. Likely the lowest eigenvalue may be either inherently multi-modal or it can become multi-modal as a result of the optimization process. The multimodeness introduces some ambiguity to the eigenvalue problem and make the optimization difficult to handle. Thus far, only the simplest cases of multi-modal structures have been effectively optimized using rather elaborate analytical methods. Numerous publications report design of a minimum volume structure with different eigenvalues constraints, in which, however, the modality of the problem is assumed a priori. The method presented here utilizes a multi-modal optimality criteria and allows for inclusion of an arbitrary number of buckling or vibrations modes which might influence the optimization process. The real multi-modality of the problem, that is the number of modes participating in the final optimal design is determined iteratively. Because of a natural use of the FEM technique the method is easy to program and might be helpful in design of large flexible space structures.

  5. Mixed, Nonsplit, Extended Stability, Stiff Integration of Reaction Diffusion Equations

    KAUST Repository

    Alzahrani, Hasnaa H.

    2016-07-26

    A tailored integration scheme is developed to treat stiff reaction-diffusion prob- lems. The construction adapts a stiff solver, namely VODE, to treat reaction im- plicitly together with explicit treatment of diffusion. The second-order Runge-Kutta- Chebyshev (RKC) scheme is adjusted to integrate diffusion. Spatial operator is de- scretised by second-order finite differences on a uniform grid. The overall solution is advanced over S fractional stiff integrations, where S corresponds to the number of RKC stages. The behavior of the scheme is analyzed by applying it to three simple problems. The results show that it achieves second-order accuracy, thus, preserving the formal accuracy of the original RKC. The presented development sets the stage for future extensions, particularly, to multidimensional reacting flows with detailed chemistry.

  6. Strength and Stiffness of Stabilized Alluvial Silt under Frost Actions

    Directory of Open Access Journals (Sweden)

    Haibo Wang

    2017-01-01

    Full Text Available The Yellow River alluvial silt was stabilized into pavement base materials for cold regions. The stabilizing additives were cement, fly ash, and lime, which were included in a range of combinations and dosages when mixed with the silt. Freeze-thaw cyclic impacts were conducted on the treated samples to assess materials performance of withstanding the frost actions. The tests were conducted on samples cured for 7 days to up to 180 days. Test results show that the cement-fly ash-treated samples outperform the other two stabilization categories with respect to material strength and stiffness developed under both normal and frost conditions. Under the normal conditions, the material unconfined compressive (UC strength rises to 3.0 MPa on day 28 depending on the cement and fly ash dosage used. If subjected to frost actions, the fly ash inclusions warrant a residual UC strength value of 1.3 MPa and above. The antifrost performance of the cement-fly ash-treated samples is related to thermal buffer capacity of the fly ash particles. Water adsorption and material soundness results agree with the strength and stiffness development. An optimal dosage was 3–6% for the cement and 0.3 for cement to fly ash mass ratio.

  7. Stability of generalized Runge-Kutta methods for stiff kinetics coupled differential equations

    International Nuclear Information System (INIS)

    Aboanber, A E

    2006-01-01

    A stability and efficiency improved class of generalized Runge-Kutta methods of order 4 are developed for the numerical solution of stiff system kinetics equations for linear and/or nonlinear coupled differential equations. The determination of the coefficients required by the method is precisely obtained from the so-called equations of condition which in turn are derived by an approach based on Butcher series. Since the equations of condition are fewer in number, free parameters can be chosen for optimizing any desired feature of the process. A further related coefficient set with different values of these parameters and the region of absolute stability of the method have been introduced. In addition, the A(α) stability properties of the method are investigated. Implementing the method in a personal computer estimated the accuracy and speed of calculations and verified the good performances of the proposed new schemes for several sample problems of the stiff system point kinetics equations with reactivity feedback

  8. Multi-stability and variable stiffness of cellular solids designed based on origami patterns

    Science.gov (United States)

    Sengupta, Sattam; Li, Suyi

    2017-04-01

    The application of origami-inspired designs to engineered structures and materials has been a subject of much research efforts. These structures and materials, whose mechanical properties are directly related to the geometry of folding, are capable of achieving a host of unique adaptive functions. In this study, we investigate a three-dimensional multistability and variable stiffness function of a cellular solid based on the Miura-Ori folding pattern. The unit cell of such a solid, consisting of two stacked Miura-Ori sheets, can be elastically bistable due to the nonlinear relationship between rigid-folding deformation and crease material bending. Such a bistability possesses an unorthodox property: the critical, unstable configuration lies on the same side of two stable ones, so that two different force-deformation curves co-exist within the same range of deformation. By exploiting such unique stability properties, we can achieve a programmable stiffness change between the two elastically stable states, and the stiffness differences can be prescribed by tailoring the crease patterns of the cell. This paper presents a comprehensive parametric study revealing the correlations between such variable stiffness and various design parameters. The unique properties stemming from the bistability and design of such a unit cell can be advanced further by assembling them into a solid which can be capable of shape morphing and programmable mechanical properties.

  9. Sex Differences in Limb and Joint Stiffness in Recreational Runners

    Directory of Open Access Journals (Sweden)

    Sinclair Jonathan

    2015-09-01

    Full Text Available Purpose. Female runners are known to be at greater risk from chronic running injuries than age-matched males, although the exact mechanisms are often poorly understood. The aim of the current investigation was to determine if female recreational runners exhibit distinct limb and joint stiffness characteristics in relation to their male counterparts. Methods. Fourteen male and fourteen female runners ran over a force platform at 4.0 m · s-1. Lower limb kinematics were collected using an eight-camera optoelectric motion capture system operating at 250 Hz. Measures of limb and joint stiffness were calculated as a function of limb length and joint moments divided by the extent of limb and joint excursion. All stiffness and joint moment parameters were normalized to body mass. Sex differences in normalized limb and knee and ankle joint stiffness were examined statistically using independent samples t tests. Results. The results indicate that normalized limb (male = 0.18 ± 0.07, female = 0.37 ± 0.10 kN · kg · m-1 and knee stiffness (male = 5.59 ± 2.02, female = 7.34 ± 1.78 Nm · kg · rad-1 were significantly greater in female runners. Conclusions. On the basis that normalized knee and limb stiffness were shown to be significantly greater in female runners, the findings from the current investigation may provide further insight into the aetiology of the distinct injury patterns observed between sexes.

  10. Laboratory study to investigate the development of stiffness in stabilized materials

    CSIR Research Space (South Africa)

    Paige-Green, P

    2010-08-01

    Full Text Available The development of stiffness of stabilized materials with time is critical to the construction process, particularly in the case of recycling, where traffic is often required to return to the recycled road soon after construction. However, little...

  11. Simulation methods with extended stability for stiff biochemical Kinetics

    Directory of Open Access Journals (Sweden)

    Rué Pau

    2010-08-01

    Full Text Available Abstract Background With increasing computer power, simulating the dynamics of complex systems in chemistry and biology is becoming increasingly routine. The modelling of individual reactions in (biochemical systems involves a large number of random events that can be simulated by the stochastic simulation algorithm (SSA. The key quantity is the step size, or waiting time, τ, whose value inversely depends on the size of the propensities of the different channel reactions and which needs to be re-evaluated after every firing event. Such a discrete event simulation may be extremely expensive, in particular for stiff systems where τ can be very short due to the fast kinetics of some of the channel reactions. Several alternative methods have been put forward to increase the integration step size. The so-called τ-leap approach takes a larger step size by allowing all the reactions to fire, from a Poisson or Binomial distribution, within that step. Although the expected value for the different species in the reactive system is maintained with respect to more precise methods, the variance at steady state can suffer from large errors as τ grows. Results In this paper we extend Poisson τ-leap methods to a general class of Runge-Kutta (RK τ-leap methods. We show that with the proper selection of the coefficients, the variance of the extended τ-leap can be well-behaved, leading to significantly larger step sizes. Conclusions The benefit of adapting the extended method to the use of RK frameworks is clear in terms of speed of calculation, as the number of evaluations of the Poisson distribution is still one set per time step, as in the original τ-leap method. The approach paves the way to explore new multiscale methods to simulate (biochemical systems.

  12. Primary stability and stiffness in ankle arthrodes-crossed screws versus anterior plating.

    Science.gov (United States)

    Betz, Michael M; Benninger, Emanuel E; Favre, Philipp P; Wieser, Karl K; Vich, Magdalena M; Espinosa, Norman

    2013-09-01

    Ankle arthrodesis is commonly used for the treatment of osteoarthritis or failed arthroplasty. Screw fixation is the predominant technique to perform ankle arthrodesis. Due to a considerable frequency of failures research suggests the use of an anatomically shaped anterior double plate system as a reliable method for isolated tibiotalar arthrodesis. The purpose of the present biomechanical study was to compare two groups of ankle fusion constructs - three screw fixation and an anterior double plate system - in terms of primary stability and stiffness. Six matched-pairs human cadaveric lower legs (Thiel fixated) were used in this study. One specimen from each pair was randomly assigned to be stabilized with the anterior double plate system and the other with the three-screw technique. The different arthrodesis methods were tested by dorsiflexing the foot until failure of the system, defined as rotation of the talus relative to the tibia in the sagittal plane. Experiments were performed on a universal materials testing machine. The force required to make arthrodesis fail was documented. For calculation of the stiffness, a linear regression was fitted to the force-displacement curve in the linear portion of the curve and its slope taken as the stiffness. For the anatomically shaped double-plate system a mean load of 967N was needed (range from 570N to 1400N) to make arthrodesis fail. The three-screw fixation method resisted a mean load of 190N (range from 100N to 280N) (p=0.005). In terms of stiffness a mean of 56N/mm (range from 35N/mm to 79N/mm) was achieved for the anatomically shaped double-plate system whereas a mean of 10N/mm (range from 6N/mm to 18N/mm) was achieved for the three-screw fixation method (p=0.004). Our biomechanical data demonstrates that the anterior double-plate system is significantly superior to the three-screw fixation technique for ankle arthrodesis in terms of primary stability and stiffness. Copyright © 2013 European Foot and Ankle

  13. Effect of boot shaft stiffness on stability joint energy and muscular co-contraction during walking on uneven surface.

    Science.gov (United States)

    Böhm, Harald; Hösl, Matthias

    2010-09-17

    Increased boot shaft stiffness may have a noticeable impact on the range of motion of the ankle joint. Therefore, the ability of the ankle joint to generate power for propulsion might be impaired. This might result in compensatory changes at the knee and hip joint. Besides, adaptability of the subtalar joint to uneven surface might be reduced, which could in turn affect stability. The aim of the study was therefore to investigate the influence of boot shaft stiffness on biomechanical gait parameters. Fifteen healthy young adults walked over coarse gravel wearing two different hiking boots that differed by 50% in passive shaft stiffness. Leg kinematics, kinetics and electromyography were measured. Gait velocity and indicators for stability were not different when walking with the hard and soft boot shaft over the gravel surface. However, the hard boot shaft decreased the ankle range of motion as well as the eccentric energy absorbed at the ankle joint. As a consequence, compensatory changes at the knee joint were observed. Co-contraction was increased, and greater eccentric energy was absorbed. Therefore, the efficiency of gait with hard boots might be decreased and joint loading at the knee might be increased, which might cause early fatigue of knee muscles during walking or hiking. The results of this study suggest that stiffness and blocking of joint motion at the ankle should not be equated with safety. A trade-off between lateral stiffness and free natural motion of the ankle joint complex might be preferable.

  14. The leg stiffnesses animals use may improve the stability of locomotion.

    Science.gov (United States)

    Shen, ZhuoHua; Seipel, Justin

    2015-07-21

    Despite a wide diversity of running animals, their leg stiffness normalized by animal size and weight (a relative leg stiffness) resides in a narrow range between 7 and 27. Here we determine if the stability of locomotion could be a driving factor for the tight distribution of animal leg stiffness. We simulated an established physics-based model (the actuated Spring-Loaded Inverted Pendulum model) of animal running and found that, with the same energetic cost, perturbations to locomotion are optimally corrected when relative leg stiffness is within the biologically observed range. Here we show that the stability of locomotion, in combination with energetic cost, could be a significant factor influencing the nearly universally observed animal relative leg stiffness range. The energetic cost of locomotion has been widely acknowledged as influencing the evolution of physiology and locomotion behaviors. Specifically, its potential importance for relative leg stiffness has been demonstrated. Here, we demonstrate that stability of locomotion may also be a significant factor influencing relative leg stiffness. Published by Elsevier Ltd.

  15. Stabilization of a magnetic island by localized heating in a tokamak with stiff temperature profile

    Science.gov (United States)

    Maget, Patrick; Widmer, Fabien; Février, Olivier; Garbet, Xavier; Lütjens, Hinrich

    2018-02-01

    In tokamaks plasmas, turbulent transport is triggered above a threshold in the temperature gradient and leads to stiff profiles. This particularity, neglected so far in the problem of magnetic island stabilization by a localized heat source, is investigated analytically in this paper. We show that the efficiency of the stabilization is deeply modified compared to the previous estimates due to the strong dependence of the turbulence level on the additional heat source amplitude inside the island.

  16. Weak Second Order Explicit Stabilized Methods for Stiff Stochastic Differential Equations

    KAUST Repository

    Abdulle, Assyr

    2013-01-01

    We introduce a new family of explicit integrators for stiff Itô stochastic differential equations (SDEs) of weak order two. These numerical methods belong to the class of one-step stabilized methods with extended stability domains and do not suffer from the step size reduction faced by standard explicit methods. The family is based on the standard second order orthogonal Runge-Kutta-Chebyshev (ROCK2) methods for deterministic problems. The convergence, meansquare, and asymptotic stability properties of the methods are analyzed. Numerical experiments, including applications to nonlinear SDEs and parabolic stochastic partial differential equations are presented and confirm the theoretical results. © 2013 Society for Industrial and Applied Mathematics.

  17. Relative stiffness of 3 bandage/splint constructs for stabilization of equine midmetacarpal fractures.

    Science.gov (United States)

    Lutter, John D; Cary, Julie A; Stephens, Robert R; Potts, Logan B

    2015-01-01

    Determine the relative stiffness of 3 bandage/splint constructs intended for emergency fracture stabilization. Experimental model. A single plane free end deflection model was developed to simulate the forces placed on a bandage/splint construct during stabilization of a complete mid-metacarpal bone fracture. The total deflection of the model in one plane was measured following application of 3 different bandage/splint combinations including a classic, 3 layered Robert Jones Bandage (RJB) with a splint placed on the outside of the bandage (RJB-3), an RJB with splint placed after the first of 3 bandage layers (RJB-1), and a single layer full limb bandage with external splint (SS). Comparisons were made between the deflections of the model with each bandage/splint combinations in an effort to determine the most effective method for field fracture stabilization. Laboratory. No animals were utilized in data collection for this study. Two live horses were utilized during the pilot study. Application of bandage and splint to a model intended to simulate the bending force on a lower forelimb fracture in a horse Deflection was determined by the difference between the height of the model's supported free end before application of a 4.5 kg weight and at the conclusion of the deflection test. There was no significant difference in the amount of deflection between bandage/splint combinations (78 ± 32 mm (RJB-1), 94 ± 44 mm (RJB-3), and 93 ± 33 mm (SS)) CONCLUSIONS: The one-layer bandage with splint was equivalent to either RJB configuration in the mean amount of deflection in the simple model of a fracture. © Veterinary Emergency and Critical Care Society 2015.

  18. Effect of stiffness modulation on mechanical stability of stretchable a-IGZO TFTs

    Science.gov (United States)

    Park, Hyungjin; Cho, Kyoungah; Oh, Hyungon; Kim, Sangsig

    2018-05-01

    In this study, we fabricate the amorphous indium gallium zinc oxide (a-IGZO) thin-film transistors (TFTs) on a stretchable substrate with a buffer stage and investigate the mechanical stability and electrical characteristics when the length of the substrate is stretched by 1.7 times. The buffer stage is responsible for the stiffness modulation of the stretchable substrate. The mobility, the threshold voltage and the on/off ratio of the stretchable a-IGZO TFT are measured to be 18.1 cm2/V·s, 1 V, and 3 × 107, respectively. Our simulation conducted by a three dimensional finite elements method reveals that the stiffness modulation reduces the stress experienced by the substrate in the stretched state by about one-tenth. In addition, the mechanical stability and electrical characteristics of the a-IGZO TFT are maintained even when the substrate is stretched by 1.7 times.

  19. Stability analysis and backward whirl investigation of cracked rotors with time-varying stiffness

    Science.gov (United States)

    AL-Shudeifat, Mohammad A.

    2015-07-01

    The dynamic stability of dynamical systems with time-periodic stiffness is addressed here. Cracked rotor systems with time-periodic stiffness are well-known examples of such systems. Time-varying area moments of inertia at the cracked element cross-section of a cracked rotor have been used to formulate the time-periodic finite element stiffness matrix. The semi-infinite coefficient matrix obtained by applying the harmonic balance (HB) solution to the finite element (FE) equations of motion is employed here to study the dynamic stability of the system. Consequently, the sign of the determinant of a scaled version of a sub-matrix of this semi-infinite coefficient matrix at a finite number of harmonics in the HB solution is found to be sufficient for identifying the major unstable zones of the system in the parameter plane. Specifically, it is found that the negative determinant always corresponds to unstable zones in all of the systems considered. This approach is applied to a parametrically excited Mathieu's equation, a two degree-of-freedom linear time-periodic dynamical system, a cracked Jeffcott rotor and a finite element model of the cracked rotor system. Compared to the corresponding results obtained by Floquet's theory, the sign of the determinant of the scaled sub-matrix is found to be an efficient tool for identifying the major unstable zones of the linear time-periodic parametrically excited systems, especially large-scale FE systems. Moreover, it is found that the unstable zones for a FE cracked rotor with an open transverse crack model only appear at the backward whirl. The theoretical and experimental results have been found to agree well for verifying that the open crack model excites the backward whirl amplitudes at the critical backward whirling rotational speeds.

  20. Improved stiffness confinement method within the coarse mesh finite difference framework for efficient spatial kinetics calculation

    International Nuclear Information System (INIS)

    Park, Beom Woo; Joo, Han Gyu

    2015-01-01

    Highlights: • The stiffness confinement method is combined with multigroup CMFD with SENM nodal kernel. • The systematic methods for determining the shape and amplitude frequencies are established. • Eigenvalue problems instead of fixed source problems are solved in the transient calculation. • It is demonstrated that much larger time step sizes can be used with the SCM–CMFD method. - Abstract: An improved Stiffness Confinement Method (SCM) is formulated within the framework of the coarse mesh finite difference (CMFD) formulation for efficient multigroup spatial kinetics calculation. The algorithm for searching for the amplitude frequency that makes the dynamic eigenvalue unity is developed in a systematic way along with the methods for determining the shape and precursor frequencies. A nodal calculation scheme is established within the CMFD framework to incorporate the cross section changes due to thermal feedback and dynamic frequency update. The conditional nodal update scheme is employed such that the transient calculation is performed mostly with the CMFD formulation and the CMFD parameters are conditionally updated by intermittent nodal calculations. A quadratic representation of amplitude frequency is introduced as another improvement. The performance of the improved SCM within the CMFD framework is assessed by comparing the solution accuracy and computing times for the NEACRP control rod ejection benchmark problems with those obtained with the Crank–Nicholson method with exponential transform (CNET). It is demonstrated that the improved SCM is beneficial for large time step size calculations with stability and accuracy enhancement

  1. An Approach to Evaluate Stability for Cable-based Parallel Camera Robots with Hybrid Tension-stiffness Properties

    OpenAIRE

    Wei, Huiling; Qiu, Yuanying; Yang, Jian

    2015-01-01

    This paper focuses on studying the effect of cable tensions and stiffness on the stability of cable-based parallel camera robots. For this purpose, the tension factor and the stiffness factor are defined, and the expression of stability is deduced. A new approach is proposed to calculate the hybrid-stability index with the minimum cable tension and the minimum singular value. Firstly, the kinematic model of a cable-based parallel camera robot is established. Based on the model, the tensions a...

  2. Spinal stability and role of passive stiffness in dynamic squat and stoop lifts.

    Science.gov (United States)

    Bazrgari, B; Shirazi-Adl, A

    2007-10-01

    The spinal stability and passive-active load partitioning under dynamic squat and stoop lifts were investigated as the ligamentous stiffness in flexion was altered. Measured in vivo kinematics of subjects lifting 180 N at either squat or stoop technique was prescribed in a nonlinear transient finite element model of the spine. The Kinematics-driven approach was utilized for temporal estimation of muscle forces, internal spinal loads and system stability. The finite element model accounted for nonlinear properties of the ligamentous spine, wrapping of thoracic extensor muscles and trunk dynamic characteristics while subject to measured kinematics and gravity/external loads. Alterations in passive properties of spine substantially influenced muscle forces, spinal loads and system stability in both lifting techniques, though more so in stoop than in squat. The squat technique is advocated for resulting in smaller spinal loads. Stability of spine in the sagittal plane substantially improved with greater passive properties, trunk flexion and load. Simulation of global extensor muscles with curved rather than straight courses considerably diminished loads on spine and increased stability throughout the task.

  3. An Approach to Evaluate Stability for Cable-Based Parallel Camera Robots with Hybrid Tension-Stiffness Properties

    Directory of Open Access Journals (Sweden)

    Huiling Wei

    2015-12-01

    Full Text Available This paper focuses on studying the effect of cable tensions and stiffness on the stability of cable-based parallel camera robots. For this purpose, the tension factor and the stiffness factor are defined, and the expression of stability is deduced. A new approach is proposed to calculate the hybrid-stability index with the minimum cable tension and the minimum singular value. Firstly, the kinematic model of a cable-based parallel camera robot is established. Based on the model, the tensions are solved and a tension factor is defined. In order to obtain the tension factor, an optimization of the cable tensions is carried out. Then, an expression of the system's stiffness is deduced and a stiffness factor is defined. Furthermore, an approach to evaluate the stability of the cable-based camera robots with hybrid tension-stiffness properties is presented. Finally, a typical three-degree-of-freedom cable-based parallel camera robot with four cables is studied as a numerical example. The simulation results show that the approach is both reasonable and effective.

  4. Contribution to assessing the stiffness reduction of structural elements in the global stability analysis of precast concrete multi-storey buildings

    Directory of Open Access Journals (Sweden)

    M. C. Marin

    Full Text Available This study deals with the reduction of the stiffness in precast concrete structural elements of multi-storey buildings to analyze global stability. Having reviewed the technical literature, this paper present indications of stiffness reduction in different codes, standards, and recommendations and compare these to the values found in the present study. The structural model analyzed in this study was constructed with finite elements using ANSYS® software. Physical Non-Linearity (PNL was considered in relation to the diagrams M x N x 1/r, and Geometric Non-Linearity (GNL was calculated following the Newton-Raphson method. Using a typical precast concrete structure with multiple floors and a semi-rigid beam-to-column connection, expressions for a stiffness reduction coefficient are presented. The main conclusions of the study are as follows: the reduction coefficients obtained from the diagram M x N x 1/r differ from standards that use a simplified consideration of PNL; the stiffness reduction coefficient for columns in the arrangements analyzed were approximately 0.5 to 0.6; and the variation of values found for stiffness reduction coefficient in concrete beams, which were subjected to the effects of creep with linear coefficients from 0 to 3, ranged from 0.45 to 0.2 for positive bending moments and 0.3 to 0.2 for negative bending moments.

  5. Torsional Stiffness Comparison of Different Tube Cross-Sections of a Formula SAE Car Space Frame

    Directory of Open Access Journals (Sweden)

    Hao Liu Cong

    2018-01-01

    Full Text Available Since torsional loading and the accompanying deformation of the frame and suspension parts can affect the handling and performance of the car, torsional stiffness is generally thought to be a primary determinant of frame performance for a FSAE car. According to the FSAE Rules, different tube cross-sections are available for some members of a space frame. By finite element simulation, this research compared different tube shapes and thicknesses. Compared with 1.6 mm thickness round tube, square tube with the same wall thickness can improve the torsional stiffness by 23% in test Mode I, and 65% in test Mode II. The 1.2mm thickness square tube also can improve the torsional stiffness by 6% and 39% in test Mode I and Mode II. From these comparisons, it can be found the usage of square tube can improve the frame torsional stiffness efficiently.

  6. Interaction of the human body and surfaces of different stiffness during drop jumps.

    Science.gov (United States)

    Arampatzis, Adamantios; Stafilidis, Savvas; Morey-Klapsing, Gaspar; Brüggemann, Gert-peter

    2004-03-01

    The purpose of this study was to examine two hypotheses: (a) the stiffness of the surface influences the leg stiffness of the subjects during drop jumps, and (b) drop jumping performance (jumping height and energy rates of the subject's center of mass during the contact phase) increases when decreasing surface stiffness due to a greater energy storage capacity of the surface for a given acting force. Ten female subjects performed a series of drop jumps from 40-cm height onto two sprung surfaces with different stiffness. Those trials of each subject displaying the maximal mechanical power during the upward phase were analyzed. The ground reaction forces were measured using a force plate. Sagittal kinematics of the subject's body positions and the deformation of the surface were recorded using two high-speed video cameras. On the soft surface, the jumping height and the energy rates of the subjects during the contact phase were greater than on the hard one. The energy delivered by the subjects during the upward phase, the leg and joint stiffness, as well as the range of motion of the subjects remained unchanged for both surfaces. The absolute energy loss is lower for the hard surface, but the jumping performance is greater for the soft one. The reason is a higher ratio of positive to negative mechanical work done by the subjects during the contact phase. The adjustment of the subjects to different surfaces is not only dependent on the stiffness of the surface but also on the intensity of the movement.

  7. Influence of surface stresses on stiffness properties and stability of nanoplates

    Science.gov (United States)

    Bochkarev, A. O.

    2017-12-01

    This paper presents the resolving equations of a large deflection of a plate in the framework of the classical non-linear von Karman theory with surface stresses taken into account. The given model is different from the original Gurtin-Murdoch model and does not include any non-strain terms in the surface stress-strain relation. It is shown that the classical form of the von Karman equations is preserved with the redefined elastic moduli. Along with the known effective properties (flexural and tangential stiffnesses), new effective elastic moduli (flexural and tangential Young's modulus and Poisson's ratio) that contain the characteristics of a body and a surface are introduced. This allows us to apply the known solutions and methods for macroplates to nanoplates. The difference of the buckling of a macro- and nanoplate in a homogeneous and inhomogeneous stress field is shown, and the factors affecting the difference are determined.

  8. Stability and vibration characteristics of a rotor-gas foil bearings system with high-static-low-dynamic-stiffness supports

    Science.gov (United States)

    Gu, Yongpeng; Ma, Yanhui; Ren, Gexue

    2017-06-01

    Supporting gas bearings with proper flexible supports can improve the stability performance of a rotor-bearings system. Many researchers had successfully applied O-rings to stabilize the high-speed rotor mounted on the rigid surface gas bearings. However, no systematic investigation on dynamic characteristics of gas foil bearing with flexible supports is available so far. Furthermore, how the support properties affect the unbalance and shock vibration characteristics has not been fully investigated yet. There may well be this case that a trade-off between stability, unbalance and shock vibration reduction performances exists. So this research aims to synthetically study the effects of support stiffness and damping on dynamic characteristics of the rotor-gas foil bearing system, i.e., stability, unbalance and shock vibration characteristics. In addition, high-static-low-dynamic stiffness (HSLDS) type springs are used as flexible supports to improve the dynamic performances of the system. Parameter studies of support stiffness and damping on dynamic performances provide guidance for the design of HSLDS. Simulation results demonstrated the effectiveness of the application of well-designed HSLDS.

  9. Acute effects of different types of aerobic exercise on endothelial function and arterial stiffness.

    Science.gov (United States)

    Siasos, Gerasimos; Athanasiou, Dimitrios; Terzis, Gerasimos; Stasinaki, Aggeliki; Oikonomou, Evangelos; Tsitkanou, Stavroula; Kolokytha, Theodora; Spengos, Konstantinos; Papavassiliou, Athanasios G; Tousoulis, Dimitris

    2016-09-01

    Chronic aerobic exercise training is associated with improved endothelial function and arterial stiffness and favourable long-term cardiovascular effects. We investigated the acute effects of continuous moderate intensity aerobic exercise (CAE) and high intensity interval aerobic exercise (hIAE) on endothelial function and arterial stiffness in healthy participants. Twenty healthy men were recruited to this cross-over study. They participated in two exercise sessions: (a) CAE, volume at 50% of maximum aerobic work for 30 minutes; and (b) hIAE, interval maximum aerobic work for 30 minutes. Endothelial function was evaluated by flow-mediated dilation in the brachial artery. The carotid femoral pulse wave velocity and the femoral dorsalis pedis pulse wave velocity were measured as indices of central aortic and peripheral arterial stiffness. Measurements were carried out before and immediately after each exercise session. There was no statistically significant difference in the baseline measurements before CAE and hIAE with respect to flow-mediated dilation, the carotid femoral pulse wave velocity and the femoral dorsalis pedis pulse wave velocity (p = NS). Both CAE and hIAE significantly improved the flow-mediated dilation compared with baseline (p exercise. These types of aerobic exercise have a different impact on the central and peripheral arterial stiffness. © The European Society of Cardiology 2016.

  10. EFFECTS OF STYRENE-BUTADIENE-STYRENE ON STIFFNESS OF ASPHALT CONCRETE AT DIFFERENT TRAFFIC CONDITIONS

    Directory of Open Access Journals (Sweden)

    GHOLAMALI SHAFABAKHSH

    2016-04-01

    Full Text Available The previous studies have explored the effects of Styrene-Butadiene-Styrene (SBS as the most prevalent modifier for asphalt mixtures. The current study intends to compare stiffness modulus of control and SBS modified asphalt mixtures under different traffic loadings. To this end, resilient modulus tests were performed on both conventional and SBS modified specimens. Tests were conducted at 5, 25 and 40°C with loading times of 50, 100, 300, 600 and 1000 milliseconds and 4, 9 and 30 as ratio of rest periods (between loading pulses to loading times (R/L. Using these test parameters and haversine and square loading pulses that represent vertical stress distribution at different depths within an asphalt layer, a variety of traffic densities and vehicle speeds were simulated and their effects on stiffness of asphalt concrete were determined. Results indicated that SBS modification provide higher stiffness under haversine pulse with long loading time at 40°C, so that it was about 3 times of unmodified mixture stiffness. The effect of traffic density that represented by R/L was significant only in long loading time (1000 ms especially under haversine pulse.

  11. Effects of Different Exercise Modes on Arterial Stiffness and Nitric Oxide Synthesis.

    Science.gov (United States)

    Hasegawa, Natsuki; Fujie, Shumpei; Horii, Naoki; Miyamoto-Mikami, Eri; Tsuji, Katsunori; Uchida, Masataka; Hamaoka, Takafumi; Tabata, Izumi; Iemitsu, Motoyuki

    2018-01-30

    Aerobic training (AT) and high-intensity intermittent training (HIIT) reduce arterial stiffness, whereas resistance training (RT) induces deterioration of or no change in arterial stiffness. However, the molecular mechanism of these effects of different exercise modes remains unclear. This study aimed to clarify the difference of different exercise effects on endothelial nitric oxide synthase (eNOS) signaling pathway and arterial stiffness in rats and humans. In the animal study, forty 10-week-old male Sprague-Dawley rats were randomly divided into 4groups: sedentary control (CON), AT (treadmill running, 60min at 30m/min, 5days/wk for 8weeks), RT (ladder-climbing, 8-10sets/day, 3days/wk for 8weeks), and HIIT (14repeats of 20-sec swimming session with 10-sec pause between sessions, 4days/wk for 6weeks from 12-week-old) groups (n=10 in each group). In the human study, we confirmed the effects of 6-week HIIT and 8-week AT interventions on central arterial stiffness and plasma nitrite/nitrate (NOx) level in untrained healthy young men in randomized controlled trial (HIIT, AT, and CON; n=7 in each group). In the animal study, the effect on aortic pulse wave velocity (PWV), as an index of central arterial stiffness, following HIIT was the same as the decrease in aortic PWV and increase in arterial eNOS/Akt phosphorylation following AT, which was not changed by RT. Negative correlation between aortic PWV and eNOS phosphorylation was observed (r=-0.38, pHIIT- and AT-induced changes in carotid-femoral PWV (HIIT -115.3±63.4 and AT -157.7±45.7 vs. CON 71.3±61.1 m/sec, each pHIIT may reduce central arterial stiffness via the increase in aortic NO bioavailability despite short time and short term and has the same effects as AT.

  12. Differences in neutral foot positions when measured barefoot compared to in shoes with varying stiffnesses.

    Science.gov (United States)

    Shultz, R; Birmingham, T B; Jenkyn, T R

    2011-12-01

    This study examined the absolute differences in neutral positions of the joints of the foot with different footwear. This addresses the question of whether separate static trials should be collected for each footwear condition to establish neutral positions. A multi-segment kinematic foot model and optical motion analysis system measured four inter-segmental joints of the foot: (1) hindfoot-to-midfoot in the frontal plane, (2) forefoot-to-midfoot in the frontal plane, (3) hallux-to-forefoot in the sagittal plane, and (4) the height-to-length ratio of the medial longitudinal arch. Barefoot was compared to three shoe condition using Nike Free trainers of varying longitudinal torsional stiffness in ten male volunteers. There was high variability both within subjects and shoe conditions. Shoes in general tended to raise the medial longitudinal arch and dorsiflex the hallux compared to barefoot condition. For the hallux, a minimum important difference of 5° or more was found between shoe conditions and the barefoot condition for majority of the subjects in all three shoe conditions (90% for control, 60% for least stiff, 50% for most stiff). This was less for the frontal plane inter-segmental joints of the foot where 50% of the subjects experience a change above 5° for at least one of the conditions. The choice of using condition-specific neutral trials versus a single common neutral trials should be considered carefully. A single common trial allows for differences in absolute joint angles to be compared between footwear conditions. This can be important clinically to determine whether a joint is approaching its end-of-range and therefore at risk of injury. Several condition-specific neutral trials allows for subtleties in kinematic waveforms to be better compared between conditions, since absolute shifts in joint angles due to changing neutral position are removed and the waveforms are better aligned. Copyright © 2011. Published by Elsevier Ltd.

  13. EXPERIMENTAL INVESTIGATIONS OF HORIZONTAL LATERAL STIFFNESS OF RAILS UNDER DIFFERENT DESIGNS OF RAIL FASTENERS

    Directory of Open Access Journals (Sweden)

    V. P. Velinets

    2015-11-01

    Full Text Available Purpose. Calculation of a railway track on the strength is one of the sections of the overall complex research problems of interaction track and rolling stock. This paper describes the experimental study of horizontal transverse stiffness of railway rails with various strands of rail fasteners. Materials of this article should be relevant and will make it possible to calculate the strength of railway track using the correct and corrected performance of horizontal transverse stiffness of rail threads. Methodology. Determination of horizontal transverse rigidity of rail yarns with different designs of rail fasteners was conducted by measuring the quantities of transverse displacement of rails calculation points – namely the head and sole. For research the specialist equipment was created, made up of lineside jack DC-20, equipped with a hydraulic pressure gauge to measure pressure and rigid rod for horizontal rail stop in the thread, the opposite of the jack. Lateral movement of the head and sole of the track were recorded, and measured with indicators of clock type within a few hundredths of a millimeter. The horizontal lateral load on the rail jack was created by the injection pressure in the cylinder which was fixed with manometer into the jack. Load of rails was conducted over 2 tons of degrees ranging from 0 to 8 tons. To obtain reliable measurement results of lateral movement of the head and the base rails, its movement was conducted for each type fasteners not less than in 3 sections. Measurements were carried out without the creation of vertical load. Findings. With the developed method was found transverse displacement magnitude of rails calculation points at different designs of rail fasteners. Originality. The experimental studies were first found the mentioned horizontal transverse stiffness of rail threads in the head and sole of modern designs for different rail fasteners. Practical value. The values of horizontal transverse

  14. Design and Analyze a New Measuring Lift Device for Fin Stabilizers Using Stiffness Matrix of Euler-Bernoulli Beam.

    Science.gov (United States)

    Liang, Lihua; Sun, Mingxiao; Shi, Hongyu; Luan, Tiantian

    2017-01-01

    Fin-angle feedback control is usually used in conventional fin stabilizers, and its actual anti-rolling effect is difficult to reach theoretical design requirements. Primarily, lift of control torque is a theoretical value calculated by static hydrodynamic characteristics of fin. However, hydrodynamic characteristics of fin are dynamic while fin is moving in waves. As a result, there is a large deviation between actual value and theoretical value of lift. Firstly, the reasons of deviation are analyzed theoretically, which could avoid a variety of interference factors and complex theoretical derivations. Secondly, a new device is designed for direct measurement of actual lift, which is composed of fin-shaft combined mechanism and sensors. This new device can make fin-shaft not only be the basic function of rotating fin, but also detect actual lift. Through analysis using stiffness matrix of Euler-Bernoulli beam, displacement of shaft-core end is measured instead of lift which is difficult to measure. Then quantitative relationship between lift and displacement is defined. Three main factors are analyzed with quantitative relationship. What is more, two installation modes of sensors and a removable shaft-end cover are proposed according to hydrodynamic characteristics of fin. Thus the new device contributes to maintenance and measurement. Lastly, the effectiveness and accuracy of device are verified by contrasting calculation and simulation on the basis of actual design parameters. And the new measuring lift method can be proved to be effective through experiments. The new device is achieved from conventional fin stabilizers. Accordingly, the reliability of original equipment is inherited. The alteration of fin stabilizers is minor, which is suitable for engineering application. In addition, the flexural properties of fin-shaft are digitized with analysis of stiffness matrix. This method provides theoretical support for engineering application by carrying out finite

  15. Importance of the different posterolateral knee static stabilizers: biomechanical study

    Directory of Open Access Journals (Sweden)

    Rodrigo Campos Pace Lasmar

    2010-01-01

    Full Text Available PURPOSE: The purpose of this study was to evaluate the relative importance of the different static stabilizers of the posterolateral corner of the knee in cadavers. METHODS: Tests were performed with the application of a varus and external rotation force to the knee in extension at 30 and 60 degrees of flexion using 10 cadaver knees. The forces were applied initially to an intact knee and then repeated after a selective sectioning of the ligaments into the following: section of the lateral collateral ligament; section of the lateral collateral ligament and the popliteofibular complex; and section of the lateral collateral ligament, the popliteofibular complex and the posterolateral capsule. The parameters studied were the angular deformity and stiffness when the knees were submitted to a 15 Newton-meter varus torque and a 6 Newton-meter external tibial torque. Statistical analysis was performed using the ANOVA (Analysis of Variance and Tukey's tests. RESULTS AND CONCLUSION: Our findings showed that the lateral collateral ligament was important in varus stability at 0, 30 and 60 degrees. The popliteofibular complex was the most important structure for external rotation stability at all angles of flexion and was also important for varus stability at 30 and 60 degrees. The posterolateral capsule was important for varus stability at 0 and 30 degrees and for external rotation stability in extension. Level of evidence: Level IV (cadaver study.

  16. Comparison of 3 different methods to analyze ankle plantarflexor stiffness in children with spastic diplegia cerebral palsy.

    Science.gov (United States)

    Ross, Sandy A; Foreman, Matthew; Engsberg, Jack R

    2011-12-01

    To compare 3 different methods of measuring plantarflexor stiffness in children with spastic diplegia cerebral palsy (CP) and children without disability. Case-control study. Human performance laboratory. A retrospective analysis was conducted with children with spastic diplegia (n=121; mean age, 8.4y) and children with typical development (TD) (n=48; mean age, 9.7y). Not applicable. An isokinetic dynamometer was used to measure ankle plantarflexor stiffness at 10°/s using 3 methods: (1) end-range method, which applied a linear slope to the end of the torque-angle curve; (2) set-range method, which applied a linear slope from 30° to 10° plantarflexion; and (3) a linear method, which applied a slope only to the linear portion of the curve. Two-way analysis of variance revealed significant main effects for group and stiffness method. The end-range method showed no significant difference between groups for plantarflexor stiffness (P=.62), the set-range method showed the CP group with 120% greater stiffness than the TD group (P<.046), and the linear method showed the CP group with 35% greater stiffness than the TD group (P<.001). The linear method appeared to resolve the issues with the previous methods; applying a linear slope to a nonlinear curve or applying a linear slope to the same range of motion for each child regardless of their range limitations. It is clear that children with CP have limited range of motion; therefore, stiffness occurs earlier in the range than would be expected for a typically developing child. Using the linear method, children with CP were 35% stiffer in the ankle plantarflexors than typically developing peers. Copyright © 2011 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  17. Differences in liver stiffness values obtained with new ultrasound elastography machines and Fibroscan: A comparative study.

    Science.gov (United States)

    Piscaglia, Fabio; Salvatore, Veronica; Mulazzani, Lorenzo; Cantisani, Vito; Colecchia, Antonio; Di Donato, Roberto; Felicani, Cristina; Ferrarini, Alessia; Gamal, Nesrine; Grasso, Valentina; Marasco, Giovanni; Mazzotta, Elena; Ravaioli, Federico; Ruggieri, Giacomo; Serio, Ilaria; Sitouok Nkamgho, Joules Fabrice; Serra, Carla; Festi, Davide; Schiavone, Cosima; Bolondi, Luigi

    2017-07-01

    Whether Fibroscan thresholds can be immediately adopted for none, some or all other shear wave elastography techniques has not been tested. The aim of the present study was to test the concordance of the findings obtained from 7 of the most recent ultrasound elastography machines with respect to Fibroscan. Sixteen hepatitis C virus-related patients with fibrosis ≥2 and having reliable results at Fibroscan were investigated in two intercostal spaces using 7 different elastography machines. Coefficients of both precision (an index of data dispersion) and accuracy (an index of bias correction factors expressing different magnitudes of changes in comparison to the reference) were calculated. Median stiffness values differed among the different machines as did coefficients of both precision (range 0.54-0.72) and accuracy (range 0.28-0.87). When the average of the measurements of two intercostal spaces was considered, coefficients of precision significantly increased with all machines (range 0.72-0.90) whereas of accuracy improved more scatteredly and by a smaller degree (range 0.40-0.99). The present results showed only moderate concordance of the majority of elastography machines with the Fibroscan results, preventing the possibility of the immediate universal adoption of Fibroscan thresholds for defining liver fibrosis staging for all new machines. Copyright © 2017 Editrice Gastroenterologica Italiana S.r.l. Published by Elsevier Ltd. All rights reserved.

  18. Some results on stability of difference systems

    Directory of Open Access Journals (Sweden)

    Xiao-Song Yang

    2002-01-01

    Full Text Available This paper presents some new results on existence and stability of equilibrium or periodic points for difference systems. First sufficient conditions of existence of asymptotically stable equilibrium point as well as the asymptotic stability of given equilibrium point are given for second order or delay difference systems. Then some similar results on existence of asymptotically stable periodic (equilibrium points to general difference systems are presented.

  19. Modulation of Huh7.5 spheroid formation and functionality using modified PEG-based hydrogels of different stiffness.

    Directory of Open Access Journals (Sweden)

    Bae Hoon Lee

    Full Text Available Physical cues, such as cell microenvironment stiffness, are known to be important factors in modulating cellular behaviors such as differentiation, viability, and proliferation. Apart from being able to trigger these effects, mechanical stiffness tuning is a very convenient approach that could be implemented readily into smart scaffold designs. In this study, fibrinogen-modified poly(ethylene glycol-diacrylate (PEG-DA based hydrogels with tunable mechanical properties were synthesized and applied to control the spheroid formation and liver-like function of encapsulated Huh7.5 cells in an engineered, three-dimensional liver tissue model. By controlling hydrogel stiffness (0.1-6 kPa as a cue for mechanotransduction representing different stiffness of a normal liver and a diseased cirrhotic liver, spheroids ranging from 50 to 200 μm were formed over a three week time-span. Hydrogels with better compliance (i.e. lower stiffness promoted formation of larger spheroids. The highest rates of cell proliferation, albumin secretion, and CYP450 expression were all observed for spheroids in less stiff hydrogels like a normal liver in a healthy state. We also identified that the hydrogel modification by incorporation of PEGylated-fibrinogen within the hydrogel matrix enhanced cell survival and functionality possibly owing to more binding of autocrine fibronectin. Taken together, our findings establish guidelines to control the formation of Huh7.5 cell spheroids in modified PEGDA based hydrogels. These spheroids may serve as models for applications such as screening of pharmacological drug candidates.

  20. Effect of plate working length on plate stiffness and cyclic fatigue life in a cadaveric femoral fracture gap model stabilized with a 12-hole 2.4 mm locking compression plate.

    Science.gov (United States)

    Chao, Peini; Conrad, Bryan P; Lewis, Daniel D; Horodyski, MaryBeth; Pozzi, Antonio

    2013-06-24

    There are several factors that can affect the fatigue life of a bone plate, including the mechanical properties of the plate and the complexity of the fracture. The position of the screws can influence construct stiffness, plate strain and cyclic fatigue of the implants. Studies have not investigated these variables in implants utilized for long bone fracture fixation in dogs and cats. The purpose of the present study was to evaluate the effect of plate working length on construct stiffness, gap motion and resistance to cyclic fatigue of dog femora with a simulated fracture gap stabilized using a 12-hole 2.4 mm locking compression plates (LCP). Femora were plated with 12-hole 2.4 mm LCP using 2 screws per fracture segment (long working length group) or with 12-hole 2.4 mm LCP using 5 screws per fracture segment (a short working length group). Construct stiffness did not differ significantly between stabilization techniques. Implant failure did not occur in any of the plated femora during cycling. Mean ± SD yield load at failure in the short plate working length group was significantly higher than in the long plate working length group. In a femoral fracture gap model stabilized with a 2.4 mm LCP applied in contact with the bone, plate working length had no effect on stiffness, gap motion and resistance to fatigue. The short plate working length constructs failed at higher loads; however, yield loads for both the short and long plate working length constructs were within physiologic range.

  1. The Influence of Outdoor Shoe Sole Stiffness on the Metatarsophalangeal Joint Kinematics When Walking and Running in Different Conditions

    Directory of Open Access Journals (Sweden)

    Paolo Mistretta

    2018-02-01

    Full Text Available Understanding the action of the metatarsophalangeal joint (MTP is fundamental to improving the design process of a new outdoor shoe. Coming from the stated consideration, the aim of this research is to study the influence of shoe sole stiffness and terrain slope on the MTP joint angle of subjects walking in different conditions. To pursue this intent, different data collection sessions have been carried out in-vitro and in-vivo, indoor and outdoor. Two different approaches have been used to collect gait kinematics: an IMU (Inertial Measurement Unit based system for the first campaign of tests, and a 2D video analysis for the second. Major findings showed a linear correlation between shoe sole stiffness and peak MTP joint angle during gait, as well as consistency in the value of the slope of the linear regression curves corresponding to the different conditions examined.

  2. Effects of metabolic syndrome on arterial function in different age groups: the Advanced Approach to Arterial Stiffness study.

    Science.gov (United States)

    Topouchian, Jirar; Labat, Carlos; Gautier, Sylvie; Bäck, Magnus; Achimastos, Apostolos; Blacher, Jacques; Cwynar, Marcin; de la Sierra, Alejandro; Pall, Denes; Fantin, Francesco; Farkas, Katalin; Garcia-Ortiz, Luis; Hakobyan, Zoya; Jankowski, Piotr; Jelakovic, Ana; Kobalava, Zhanna; Konradi, Alexandra; Kotovskaya, Yulia; Kotsani, Marina; Lazareva, Irina; Litvin, Alexander; Milyagin, Viktor; Mintale, Iveta; Persson, Oscar; Ramos, Rafael; Rogoza, Anatoly; Ryliskyte, Ligita; Scuteri, Angelo; Sirenko, Yuriy; Soulis, Georges; Tasic, Nebojsa; Udovychenko, Maryna; Urazalina, Saule; Wohlfahrt, Peter; Zelveian, Parounak; Benetos, Athanase; Asmar, Roland

    2018-04-01

    The aim of the Advanced Approach to Arterial Stiffness study was to compare arterial stiffness measured simultaneously with two different methods in different age groups of middle-aged and older adults with or without metabolic syndrome (MetS). The specific effects of the different MetS components on arterial stiffness were also studied. This prospective, multicentre, international study included 2224 patients aged 40 years and older, 1664 with and 560 without MetS. Patients were enrolled in 32 centres from 18 European countries affiliated to the International Society of Vascular Health & Aging. Arterial stiffness was evaluated using the cardio-ankle vascular index (CAVI) and the carotid-femoral pulse wave velocity (CF-PWV) in four prespecified age groups: 40-49, 50-59, 60-74, 75-90 years. In this report, we present the baseline data of this study. Both CF-PWV and CAVI increased with age, with a higher correlation coefficient for CAVI (comparison of coefficients P Age-adjusted and sex-adjusted values of CF-PWV and CAVI were weakly intercorrelated (r = 0.06, P Age-adjusted and sex-adjusted values for CF-PWV but not CAVI were higher in presence of MetS (CF-PWV: 9.57 ± 0.06 vs. 8.65 ± 0.10, P age on CAVI and CF-PWV and suggests that age may have a more pronounced effect on CAVI, whereas MetS increases CF-PWV but not CAVI. This important finding may be due to heterogeneous effects of MetS components on CAVI. The clinical significance of these original results will be assessed during the longitudinal phase of the study.

  3. Water Sorption and Hindered Diffusion with Different Chain Stiffness of Superabsorbent Polymer

    Energy Technology Data Exchange (ETDEWEB)

    Chun, Myung-Suk; Lee, Dae-Young [Korea Institute of Science and Technology, Seoul (Korea, Republic of)

    2015-01-15

    Water sorption and diffusion are essential physicochemical properties of a high-performance superabsorbent polymer (SAP). We combine the Park model with the obstruction-scaling model and the water clustering in confined spaces of the polymer hydrogel. Special attention is focused on elucidating the effect of chain stiffness by considering the conformation of the polymer chain. Theoretical model parameters are determined from the best fits by simultaneous nonlinear regressions for both sorption and corrected diffusion data based on previous experiments with poly(acrylamide-co-sodium acrylate) hydrogel. Predictions show that the hindered water diffusivity leads to a sigmoid curve with relative humidity a{sub w}, where it increases monotonically up to aw{sub ≅} 0.6 due to the swelling but decreases at higher a{sub w} caused by water clustering. Water diffusion decreases with increasing chain stiffness, and the larger persistence length provides a smaller opening radius in void spaces regarding the weak elastic deformation of hydrogel under the applied stress.

  4. Arterial stiffness

    Directory of Open Access Journals (Sweden)

    Ursula Quinn

    2012-09-01

    Full Text Available Measurements of biomechanical properties of arteries have become an important surrogate outcome used in epidemiological and interventional cardiovascular research. Structural and functional differences of vessels in the arterial tree result in a dampening of pulsatility and smoothing of blood flow as it progresses to capillary level. A loss of arterial elastic properties results a range of linked pathophysiological changes within the circulation including increased pulse pressure, left ventricular hypertrophy, subendocardial ischaemia, vessel endothelial dysfunction and cardiac fibrosis. With increased arterial stiffness, the microvasculature of brain and kidneys are exposed to wider pressure fluctuations and may lead to increased risk of stroke and renal failure. Stiffening of the aorta, as measured by the gold-standard technique of aortic Pulse Wave Velocity (aPWV, is independently associated with adverse cardiovascular outcomes across many different patient groups and in the general population. Therefore, use of aPWV has been proposed for early detection of vascular damage and individual cardiovascular risk evaluation and it seems certain that measurement of arterial stiffness will become increasingly important in future clinical care. In this review we will consider some of the pathophysiological processes that result from arterial stiffening, how it is measured and factors that may drive it as well as potential avenues for therapy. In the face of an ageing population where mortality from atheromatous cardiovascular disease is falling, pathology associated with arterial stiffening will assume ever greater importance. Therefore, understanding these concepts for all clinicians involved in care of patients with cardiovascular disease will become vital.

  5. Stress phase angle depicts differences in arterial stiffness: phantom and in vivo study

    Science.gov (United States)

    Niu, Lili; Meng, Long; Xu, Lisheng; Liu, Jia; Wang, Qiwen; Xiao, Yang; Qian, Ming; Zheng, Hairong

    2015-06-01

    The endothelial cells (ECs) lining of a blood vessel wall are exposed to both the wall shear stress (WSS) of blood flow and the circumferential strain (CS) of pulsing artery wall motion. Both WSS and CS keep involved in the modulation of ECs’ biochemical response and function and the temporal phase angle between the two is called stress phase angle (SPA). Previous studies at the cellular level have indicated that SPA is highly negative at sites that are prone to atherosclerosis, and hypothesized that large SPA may contribute to atherogenesis. Till now, there is no experimental data to support this hypothesis, probably due to the lack of a proper tool for measuring WSS and CS simultaneously and real time. In this study, a non-invasive ultrasonic biomechanics method was utilized to quantitatively calculate the SPA and experimentally evaluate the role of SPA in predicting early atherosclerosis. Three silicon tubes with a stiffness of 1.15, 3.62, 9.38 MPa were assembled in a pulsatile flow circuit and the values of SPA were measured to be -101.86 ± 3.65°,-170.19 ± 17.77° and -260.63 ± 18.62°, respectively. For the PVA-c phantoms, stiffness was 162.45, 235.68 and 374.24 kPa, the SPA corresponding to -170.32 ± 17.55°,-207.56 ± 10.78° and -261.08 ± 10.90°, respectively. Both phantom studies results demonstrated that SPA was highly negative in stiffer arteries. Further, experiments were taken in healthy living rats as control group (n = 3), atherosclerotic model group (n = 3), and drug treated group (n = 3), and the results showed that SPA was most negative in the model group, and SPA was least negative in the control group. Together, this study suggested that highly negative SPA appeared to be a prominent mechanical feature of vessels prone to atherosclerotic disease.

  6. An investigation into the accuracy, stability and parallel performance of a highly stable explicit technique for stiff reaction-transport PDEs

    Energy Technology Data Exchange (ETDEWEB)

    Franz, A., LLNL

    1998-02-17

    The numerical simulation of chemically reacting flows is a topic, that has attracted a great deal of current research At the heart of numerical reactive flow simulations are large sets of coupled, nonlinear Partial Differential Equations (PDES). Due to the stiffness that is usually present, explicit time differencing schemes are not used despite their inherent simplicity and efficiency on parallel and vector machines, since these schemes require prohibitively small numerical stepsizes. Implicit time differencing schemes, although possessing good stability characteristics, introduce a great deal of computational overhead necessary to solve the simultaneous algebraic system at each timestep. This thesis examines an algorithm based on a preconditioned time differencing scheme. The algorithm is explicit and permits a large stable time step. An investigation of the algorithm`s accuracy, stability and performance on a parallel architecture is presented

  7. Static and dynamic analysis of high-rise building with consideration of two different values of subsoil stiffness coefficients

    Directory of Open Access Journals (Sweden)

    Ivankova Olga

    2017-01-01

    Full Text Available This paper deals with the analysis of 21-storeyed cast in-situ reinforced concrete high-rise building. Two different 3D models were created, because of two considered values of subsoil stiffness coefficient -fixed structure (alt. 1 and the structure supported by elastic soil (alt. 2. For both alternatives of foundation of structure, required analyses (static and dynamic were done and obtained results were compared in this paper. Short description of the structure, applied loads and other input parameters are also mentioned here. The main purpose of this analysis was to provide more information to planning engineers about the behaviour of structure exposed the wind load or seismic load when different soil conditions were considered.

  8. Sex differences in flexibility-arterial stiffness relationship and its application for diagnosis of arterial stiffening: a cross-sectional observational study.

    Directory of Open Access Journals (Sweden)

    Masato Nishiwaki

    Full Text Available Arterial stiffness might be related to trunk flexibility in middle-aged and older participants, but it is also affected by age, sex, and blood pressure. This cross-sectional observational study investigated whether trunk flexibility is related to arterial stiffness after considering the major confounding factors of age, sex, and blood pressure. We further investigated whether a simple diagnostic test of flexibility could be helpful to screen for increased arterial stiffening.According to age and sex, we assigned 1150 adults (male, n = 536; female, n = 614; age, 18-89 y to groups with either high- or poor-flexibility based on the sit-and-reach test. Arterial stiffness was assessed by cardio-ankle vascular index.In all categories of men and in older women, arterial stiffness was higher in poor-flexibility than in high-flexibility (P<0.05. This difference remained significant after normalizing arterial stiffness for confounding factors such as blood pressure, but it was not found among young and middle-aged women. Stepwise multiple-regression analysis also supported the notion of the sex differences in flexibility-arterial stiffness relationship. Receiver operating characteristic curve analysis revealed that cut-off values for sit-and-reach among men and women were 33.2 (area under the curve [AUC], 0.711; 95% confidence interval [CI], 0.666-0.756; sensitivity, 61.7%; specificity, 69.7% and 39.2 (AUC, 0.639; 95% CI, 0.592-0.686; sensitivity, 61.1%; specificity, 62.0% cm, respectively.Our results indicate that flexibility-arterial stiffness relationship is not affected by BP, which is a major confounding factor. In addition, sex differences are observed in this relationship; poor trunk flexibility increases arterial stiffness in young, middle-aged, and older men, whereas the relationship in women is found only in the elderly. Also, the sit-and-reach test can offer a simple method of predicting arterial stiffness at home or elsewhere.

  9. Biomaterial stiffness determines stem cell fate.

    Science.gov (United States)

    Lv, Hongwei; Wang, Heping; Zhang, Zhijun; Yang, Wang; Liu, Wenbin; Li, Yulin; Li, Lisha

    2017-06-01

    Stem cells have potential to develop into numerous cell types, thus they are good cell source for tissue engineering. As an external physical signal, material stiffness is capable of regulating stem cell fate. Biomaterial stiffness is an important parameter in tissue engineering. We summarize main measurements of material stiffness under different condition, then list and compare three main methods of controlling stiffness (material amount, crosslinking density and photopolymeriztion time) which interplay with one another and correlate with stiffness positively, and current advances in effects of biomaterial stiffness on stem cell fate. We discuss the unsolved problems and future directions of biomaterial stiffness in tissue engineering. Copyright © 2017. Published by Elsevier Inc.

  10. Variable stiffness control of a single-link flexible robotic arm

    Science.gov (United States)

    Warkentin, A.; Semercigil, S. E.

    1995-10-01

    A case study is presented to demonstrate the use of variable stiffness control to attenuate the excessive oscillations of a single-link robotic arm. This relatively simple control technique actively changes the system's stiffness to take advantage of strain energy storage capabilities for different stiffnesses. The stiffness changes required for vibration control can be accomplished with minimal effort and without adding energy to the system, ensuring the stability of control. Numerical simulations predicted significant suppression of both transient and random vibrations. Simple experiments were performed to test the validity of the numerical predictions.

  11. Comparison between different methods for biomechanical assessment of ex vivo fracture callus stiffness in small animal bone healing studies.

    Directory of Open Access Journals (Sweden)

    Malte Steiner

    Full Text Available For ex vivo measurements of fracture callus stiffness in small animals, different test methods, such as torsion or bending tests, are established. Each method provides advantages and disadvantages, and it is still debated which of those is most sensitive to experimental conditions (i.e. specimen alignment, directional dependency, asymmetric behavior. The aim of this study was to experimentally compare six different testing methods regarding their robustness against experimental errors. Therefore, standardized specimens were created by selective laser sintering (SLS, mimicking size, directional behavior, and embedding variations of respective rat long bone specimens. For the latter, five different geometries were created which show shifted or tilted specimen alignments. The mechanical tests included three-point bending, four-point bending, cantilever bending, axial compression, constrained torsion, and unconstrained torsion. All three different bending tests showed the same principal behavior. They were highly dependent on the rotational direction of the maximum fracture callus expansion relative to the loading direction (creating experimental errors of more than 60%, however small angular deviations (<15° were negligible. Differences in the experimental results between the bending tests originate in their respective location of maximal bending moment induction. Compared to four-point bending, three-point bending is easier to apply on small rat and mouse bones under realistic testing conditions and yields robust measurements, provided low variation of the callus shape among the tested specimens. Axial compressive testing was highly sensitive to embedding variations, and therefore cannot be recommended. Although it is experimentally difficult to realize, unconstrained torsion testing was found to be the most robust method, since it was independent of both rotational alignment and embedding uncertainties. Constrained torsional testing showed small

  12. The relationship between trunk muscle activation and trunk stiffness: examining a non-constant stiffness gain.

    Science.gov (United States)

    Brown, Stephen H M; McGill, Stuart M

    2010-12-01

    The relationship between muscle activation, force and stiffness needs to be known to interpret the stability state of the spine. To test the relationship between these variables, a quick release approach was used to match quantified torso stiffness with an EMG activation-based estimate of individual muscle stiffnesses. The relationship between activation, force and stiffness was modelled as k = q x F/l, where k, F and l are muscle stiffness, force and length, respectively, and q is the dimensionless stiffness gain relating these variables. Under the tested experimental scenario, the 'stiffness gain', q, which linked activation with stiffness, demonstrated a decreasing trend with increasing levels of torso muscle activation. This highlights the likelihood that the choice of a single q value may be over simplistic to relate force to stiffness in muscles that control the spine. This has implications for understanding the potential for spine instability in situations requiring high muscular demand.

  13. Stability for Linear Volterra Difference Equations in Banach Spaces

    Directory of Open Access Journals (Sweden)

    Rigoberto Medina

    2018-01-01

    Full Text Available This paper is devoted to studying the existence and stability of implicit Volterra difference equations in Banach spaces. The proofs of our results are carried out by using an appropriate extension of the freezing method to Volterra difference equations in Banach spaces. Besides, sharp explicit stability conditions are derived.

  14. COMPARISON OF DIFFERENT TECHNIQUES FOR DESIGN OF POWER SYSTEM STABILIZER

    OpenAIRE

    M. Ravindra Babu,; A. Ramulu; B. Durga Prasad,; Doradla. Prathap Hari Krishna,

    2011-01-01

    The major problem in power system operation is related to small signal instability caused by insufficient damping in the system. The most effective way of countering this instability is to use auxiliary controllers called power system stabilizers, to produce additional damping during low frequency oscillations in the system. Heffron-Phillip’s Model of a synchronous machine is commonly used in small signal stability analysis. Different techniques for designing of power system stabilizer is pro...

  15. Stability of Difference Equations and Applications to Robustness Problems

    Directory of Open Access Journals (Sweden)

    Sasu Bogdan

    2010-01-01

    Full Text Available The aim of this paper is to obtain new necessary and sufficient conditions for the uniform exponential stability of variational difference equations with applications to robustness problems. We prove characterizations for exponential stability of variational difference equations using translation invariant sequence spaces and emphasize the importance of each hypothesis. We introduce a new concept of stability radius for a variational system of difference equations with respect to a perturbation structure and deduce a very general estimate for the lower bound of . All the results are obtained without any restriction concerning the coefficients, being applicable for any system of variational difference equations.

  16. On Stability Conditions for a Family of Nonselfadjoint Difference Schemes

    Science.gov (United States)

    Gulin, A. V.; Martynov, A. A.

    1983-04-01

    In the article, stability with respect to initial data of a family of explicit nonselfadjoint operator-difference schemes defined on the direct sum of two spaces is studied. Necessary and sufficient conditions for stability in the energy norms are obtained. The equivalence of the norms obtained to the mesh norm L2 is proved. Bibliography: 3 titles.

  17. Sex differences in associations between insulin resistance, heart rate variability, and arterial stiffness in healthy women and men: a physiology study.

    Science.gov (United States)

    Rannelli, Luke Anthony; MacRae, Jennifer M; Mann, Michelle C; Ramesh, Sharanya; Hemmelgarn, Brenda R; Rabi, Doreen; Sola, Darlene Y; Ahmed, Sofia B

    2017-04-01

    Diabetes confers greater cardiovascular risk to women than to men. Whether insulin-resistance-mediated risk extends to the healthy population is unknown. Measures of insulin resistance (fasting insulin, homeostatic model assessment, hemoglobin A1c, quantitative insulin sensitivity check index, glucose) were determined in 48 (56% female) healthy subjects. Heart rate variability (HRV) was calculated by spectral power analysis and arterial stiffness was determined using noninvasive applanation tonometry. Both were measured at baseline and in response to angiotensin II infusion. In women, there was a non-statistically significant trend towards increasing insulin resistance being associated with an overall unfavourable HRV response and increased arterial stiffness to the stressor, while men demonstrated the opposite response. Significant differences in the associations between insulin resistance and cardiovascular physiological profile exist between healthy women and men. Further studies investigating the sex differences in the pathophysiology of insulin resistance in cardiovascular disease are warranted.

  18. Lyapunov functionals and stability of stochastic difference equations

    CERN Document Server

    Shaikhet, Leonid

    2011-01-01

    This book offers a general method of Lyapunov functional construction which lets researchers analyze the degree to which the stability properties of differential equations are preserved in their difference analogues. Includes examples from physical systems.

  19. On the stability of some systems of exponential difference equations

    Directory of Open Access Journals (Sweden)

    N. Psarros

    2018-01-01

    Full Text Available In this paper we prove the stability of the zero equilibria of two systems of difference equations of exponential type, which are some extensions of an one-dimensional biological model. The stability of these systems is investigated in the special case when one of the eigenvalues is equal to -1 and the other eigenvalue has absolute value less than 1, using centre manifold theory. In addition, we study the existence and uniqueness of positive equilibria, the attractivity and the global asymptotic stability of these equilibria of some related systems of difference equations.

  20. Glenohumeral internal rotation measurements differ depending on stabilization techniques.

    Science.gov (United States)

    Wilk, Kevin E; Reinold, Michael M; Macrina, Leonard C; Porterfield, Ron; Devine, Kathleen M; Suarez, Kim; Andrews, James R

    2009-03-01

    The loss of glenohumeral internal rotation range of motion in overhead athletes has been well documented in the literature. Several different methods of assessing this measurement have been described, making comparison between the results of studies difficult. Significant differences in the amount of internal rotation range of motion exist when using different methods of stabilization. Descriptive laboratory study. THREE TECHNIQUES WERE USED BILATERALLY IN RANDOM FASHION TO MEASURE GLENOHUMERAL INTERNAL ROTATION RANGE OF MOTION: stabilization of the humeral head, stabilization of the scapula, and visual inspection without stabilization. An initial study on 20 asymptomatic participants was performed to determine the intrarater and interrater reliability for each measurement technique. Once complete, measurements were performed on 39 asymptomatic professional baseball players to determine if a difference existed in measurement techniques and if there was a significant side-to-side difference. A 2-way repeated-measures analysis of variance was used. While interrater reliability was fair between all 3 methods, scapular stabilization provided the best intrarater reliability. A statistically significant difference was observed between all 3 methods (P < .001). Internal rotation was significantly less in the dominant shoulder than in the nondominant shoulder (P < .001). Differences in internal rotation range of motion measurements exist when using different methods. The scapula stabilization method displayed the highest intrarater reproducibility and should be considered when evaluating internal rotation passive range of motion of the glenohumeral joint. A standardized method of measuring internal rotation range of motion is required to accurately compare physical examinations of patients. The authors recommend the use of the scapula stabilization method to assess internal rotation range of motion by allowing normal glenohumeral arthrokinematics while stabilizing the

  1. An active balance board system with real-time control of stiffness and time-delay to assess mechanisms of postural stability.

    Science.gov (United States)

    Cruise, Denise R; Chagdes, James R; Liddy, Joshua J; Rietdyk, Shirley; Haddad, Jeffrey M; Zelaznik, Howard N; Raman, Arvind

    2017-07-26

    Increased time-delay in the neuromuscular system caused by neurological disorders, concussions, or advancing age is an important factor contributing to balance loss (Chagdes et al., 2013, 2016a,b). We present the design and fabrication of an active balance board system that allows for a systematic study of stiffness and time-delay induced instabilities in standing posture. Although current commercial balance boards allow for variable stiffness, they do not allow for manipulation of time-delay. Having two controllable parameters can more accurately determine the cause of balance deficiencies, and allows us to induce instabilities even in healthy populations. An inverted pendulum model of human posture on such an active balance board predicts that reduced board rotational stiffness destabilizes upright posture through board tipping, and limit cycle oscillations about the upright position emerge as feedback time-delay is increased. We validate these two mechanisms of instability on the designed balance board, showing that rotational stiffness and board time-delay induced the predicted postural instabilities in healthy, young adults. Although current commercial balance boards utilize control of rotational stiffness, real-time control of both stiffness and time-delay on an active balance board is a novel and innovative manipulation to reveal balance deficiencies and potentially improve individualized balance training by targeting multiple dimensions contributing to standing balance. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Evaluating Stability of Aqueous Multiwalled Carbon Nanotube Nanofluids by Using Different Stabilizers

    Directory of Open Access Journals (Sweden)

    Tun-Ping Teng

    2014-01-01

    Full Text Available The 0.5 wt.% multiwalled carbon nanotubes/water nanofluids (MWNFs were produced by using a two-step synthetic method with different types and concentrations of stabilizers. The static position method, centrifugal sedimentation method, zeta potential measurements, and rheological experiments were used to assess the stability of the MWNFs and to determine the optimal type and fixed MWCNTs-stabilizer concentration of stabilizer. Finally, MWNFs with different concentrations of MWCNTs were produced using the optimal type and fixed concentration ratio of stabilizer, and their stability, thermal conductivity, and pH were measured to assess the feasibility of using them in heat transfer applications. MWNFs containing SDS and SDBS with MWCNTs-stabilizer concentration ratio were 5 : 2 and 5 : 4, respectively, showed excellent stability when they were evaluated by static position, centrifugal sedimentation, zeta potential, and rheological experiments at the same time. The thermal conductivity of the MWNFs indicated that the most suitable dispersing MWNF contained SDBS. MWNFs with MWCNTs concentrations of 0.25, 0.5, and 1.0 wt.% were fabricated using an aqueous SDBS solution. In addition, the thermal conductivity of the MWNFs was found to have increased, and the thermal conductivity values were greater than that of water at 25°C by 3.20%, 8.46%, and 12.49%.

  3. Differences in Thermal Stability of Glucosinolates in Five Brassica Vegetables

    NARCIS (Netherlands)

    Dekker, M.; Hennig, K.; Verkerk, R.

    2009-01-01

    The thermal stability of individual glucosinolates within five different Brassica vegetables was studied at 100°C for different incubation times up to 120 minutes. Three vegetables that were used in this study were Brassica oleracea (red cabbage, broccoli and Brussels sprouts) and two were Brassica

  4. Influence of absorption on stability of terahertz difference frequency generation.

    Science.gov (United States)

    Huang, Nan; Liu, Hongjun; Sun, Qibing; Wang, Zhaolu; Li, Shaopeng; Han, Jing

    2016-01-20

    This work presents numerical studies of the stability feature of terahertz difference frequency generation (THz-DFG) with a ZnGeP(2) crystal using two pump wavelengths. We found that the maximum output of a THz wave is located in the unstable output region because of the competitive equilibrium between the absorption and the gain. Furthermore, the output stability is dependent on the pump stability. Different from the results at the pump wavelength of 9.588 μm, there is neither an appropriate stable output region nor gain saturation region at the pump wavelength of 1.064 μm for a larger absorption coefficient. This work demonstrates that the stable output region of the THz wave is difficult to obtain when the pump absorption is excessively large in DFG.

  5. Continuing stability of center differences in pediatric diabetes care

    DEFF Research Database (Denmark)

    De Beaufort, Carine E.; Swift, Peter G.F.; Skinner, Chas T.

    2007-01-01

    OBJECTIVE- To reevaluate the persistence and stability of previously observed differences between pediatric diabetes centers and to investigate the influence of demography, language communication problems, and changes in insulin regimens on metabolic outcome, hypoglycemia, and ketoacidosis....... CONCLUSIONS - Despite many changes in diabetes management, major differences in metabolic outcome between 21 international pediatric diabetes centers persist. Different application between centers in the implementation of insulin treatment appears to be of more importance and needs further exploration....

  6. Effect of different microencapsulation materials on stability of ...

    African Journals Online (AJOL)

    The aim of this work was to investigate the effect of different microencapsulation materials on the stability of probiotic bacterium (Lactobacillus plantarum DSM 20174). Microencapsulation methods with alginates were carried out using sodium chloride, canola oil, olive oil, and chitosan. The recorded data showed that the ...

  7. Stiffness, resilience, compressibility

    Energy Technology Data Exchange (ETDEWEB)

    Leu, Bogdan M. [Argonne National Laboratory, Advanced Photon Source (United States); Sage, J. Timothy, E-mail: jtsage@neu.edu [Northeastern University, Department of Physics and Center for Interdisciplinary Research on Complex Systems (United States)

    2016-12-15

    The flexibility of a protein is an important component of its functionality. We use nuclear resonance vibrational spectroscopy (NRVS) to quantify the flexibility of the heme iron environment in the electron-carrying protein cytochrome c by measuring the stiffness and the resilience. These quantities are sensitive to structural differences between the active sites of different proteins, as illustrated by a comparative analysis with myoglobin. The elasticity of the entire protein, on the other hand, can be probed quantitatively from NRVS and high energy-resolution inelastic X-ray scattering (IXS) measurements, an approach that we used to extract the bulk modulus of cytochrome c.

  8. Clay facial masks: physicochemical stability at different storage temperatures.

    Science.gov (United States)

    Zague, Vivian; de Almeida Silva, Diego; Baby, André Rolim; Kaneko, Telma Mary; Velasco, Maria Valéria Robles

    2007-01-01

    Clay facial masks--formulations that contain a high percentage of solids dispersed in a liquid vehicle--have become of special interest due to specific properties presented by clays, such as particle size, cooling index, high adsorption capacity, and plasticity. Although most of the physicochemical properties of clay dispersions have been studied, specific aspects concerning the physicochemical stability of clay mask products remain unclear. This work aimed at investigating the accelerated physicochemical stability of clay mask formulations stored at different temperatures. Formulations were subjected to centrifuge testing and to thermal treatment for 15 days, during which temperature was varied from -5.0 degrees to 45.0 degrees C. The apparent viscosity and visual aspect (homogeneity) of all formulations were affected by temperature variation, whereas color, odor, and pH value remained unaltered. These results, besides the estimation of physicochemical stability under aging, can be useful in determining the best storage conditions for clay-based formulations.

  9. Lung surfactants and different contributions to thin film stability.

    Science.gov (United States)

    Hermans, Eline; Bhamla, M Saad; Kao, Peter; Fuller, Gerald G; Vermant, Jan

    2015-11-07

    The surfactant lining the walls of the alveoli in the lungs increases pulmonary compliance and prevents collapse of the lung at the end of expiration. In premature born infants, surfactant deficiency causes problems, and lung surfactant replacements are instilled to facilitate breathing. These pulmonary surfactants, which form complex structured fluid-fluid interfaces, need to spread with great efficiency and once in the alveolus they have to form a thin stable film. In the present work, we investigate the mechanisms affecting the stability of surfactant-laden thin films during spreading, using drainage flows from a hemispherical dome. Three commercial lung surfactant replacements Survanta, Curosurf and Infasurf, along with the phospholipid dipalmitoylphosphatidylcholine (DPPC), are used. The surface of the dome can be covered with human alveolar epithelial cells and experiments are conducted at the physiological temperature. Drainage is slowed down due to the presence of all the different lung surfactant replacements and therefore the thin films show enhanced stability. However, a scaling analysis combined with visualization experiments demonstrates that different mechanisms are involved. For Curosurf and Infasurf, Marangoni stresses are essential to impart stability and interfacial shear rheology does not play a role, in agreement with what is observed for simple surfactants. Survanta, which was historically the first natural surfactant used, is rheologically active. For DPPC the dilatational properties play a role. Understanding these different modes of stabilization for natural surfactants can benefit the design of effective synthetic surfactant replacements for treating infant and adult respiratory disorders.

  10. Stability Analysis of Two-Segment Stepped Columns with Different End Conditions and Internal Axial Loads

    OpenAIRE

    Pinarbasi, Seval; Okay, Fuad; Akpinar, Erkan; Erdogan, Hakan

    2013-01-01

    Members with varying geometrical and/or material properties are commonly used in many engineering applications. Stepped columns with internal axial loads constitute a special case of such nonuniform columns. Crane columns in industrial buildings or structural columns supporting intermediate floors are important applications of stepped members in civil engineering. Since neither axial load nor stiffness is constant along the column height, the stability analysis of a stepped column is usually ...

  11. Gender differences in job separation rates and employment stability

    DEFF Research Database (Denmark)

    Frederiksen, Anders

    2008-01-01

    I analyze the job separation process to learn about gender differences in job separation rates and employment stability. An essential finding is that employer-employee data are required to identify gender differences in job separation probabilities because of labor market segregation. Failure...... to recognize this may potentially lead to statistical discrimination. Three important empirical results are obtained from the analysis. First, women have higher unconditional job separation probabilities. Second, there are no gender differences in job separation probabilities for employees working in similar...

  12. Stiffness Control of Surgical Continuum Manipulators.

    Science.gov (United States)

    Mahvash, Mohsen; Dupont, Pierre E

    2011-04-01

    This paper introduces the first stiffness controller for continuum robots. The control law is based on an accurate approximation of a continuum robot's coupled kinematic and static force model. To implement a desired tip stiffness, the controller drives the actuators to positions corresponding to a deflected robot configuration that produces the required tip force for the measured tip position. This approach provides several important advantages. First, it enables the use of robot deflection sensing as a means to both sense and control tip forces. Second, it enables stiffness control to be implemented by modification of existing continuum robot position controllers. The proposed controller is demonstrated experimentally in the context of a concentric tube robot. Results show that the stiffness controller achieves the desired stiffness in steady state, provides good dynamic performance, and exhibits stability during contact transitions.

  13. Comparison of Different Techniques For Tuning of Power System Stabilizer

    OpenAIRE

    BAYAT, Ehsan; DELAVARİ, Hadi

    2015-01-01

    Abstract. The power system is subjected to different types of disturbances such as small changes in the load that affects its efficiency and sometimes leads to unstable system. These disturbances cause oscillations at low frequencies that are undesirable since it affects the amount of transferred power through the transmission lines and leads to external stress to the mechanical shaft. In order to compress low-frequency oscillations, a common solution is use the power system stabilizer (PSS)....

  14. Stability of soil's microaggregates derived from different parental materials

    International Nuclear Information System (INIS)

    Rondon de Rodriguez, Clara; Elizalde Albes, Graciano

    1998-01-01

    In two polipedons derived from different parental materials, it was found that microaggregates (50 - 250 μm ) aren't affected in their stability by the time, by the physical ultrasonic forces, neither by the blockage of electrostatic bonds of water, suggesting that in these aggregates, there are stronger bonds than the ones which can be broken by these agents. On the contrary water, the chemical treatments with HCl and H 2 O 2 concentrated, disjoin the microaggregates, being possible to differentiate a polipedon from other

  15. Dynamic stiffness of suction caissons

    DEFF Research Database (Denmark)

    Ibsen, Lars Bo; Liingaard, Morten; Andersen, Lars

    This report concerns the dynamic soil-structure interaction of steel suction caissons applied as foundations for offshore wind turbines. An emphasis is put on torsional vibrations and coupled sliding/rocking motion, and the influence of the foundation geometry and the properties of the surrounding...... soil is examined. The soil is simplified as a homogenous linear viscoelastic material and the dynamic stiffness of the suction caisson is expressed in terms of dimensionless frequency-dependent coefficients corresponding to the different degrees of freedom. The dynamic stiffness coefficients...

  16. Arterial Stiffness and Pharmacological Interventions – The TRanscend Arterial stiffNess Substudy (TRANS study

    Directory of Open Access Journals (Sweden)

    Jirar Topouchian

    2007-09-01

    Full Text Available Jirar Topouchian1, Ramzi El Feghali1, Bruno Pannier1, Shuyu Wang2, Feng Zhao3, Karel Smetana4, Koon Teo3, Roland Asmar11The CardioVascular Institute, Paris, France; 2Beijing Clinical Trial and Research Center, Beijing, China; 3Population Health Research Institute, Hamilton, Canada; 4Vojenska nemocnice Plzen, Pizen, Czech RepublicAbstract: The degree of arterial stiffness is correlated with the risk of cardiovascular diseases and it is a powerful predictor for morbidity and mortality. Studies have shown that arterial stiffness reduction is associated with an improvement in survival. Reduction of arterial stiffness by pharmacological drugs varies according to the drugs and doses used and duration of treatment. This effect on the arteries differs among the various classes of drugs and among individual drugs in the same class. Quantification of the stiffness and other properties of the arterial wall can be used to monitor the responses to therapy in individuals with hypertension and other cardiovascular diseases. These measures can then be used as surrogate markers for the risk of clinical events. Inhibition of the renin-angiotensin system (RAS is associated with an important decrease in cardiovascular risk. Findings from clinical trials support the hypothesis that the protective effects of RAS inhibition are partly independent from blood pressure reduction and related to several mechanisms including vascular protective effects. The aim of the TRanscend Arterial stiffNess Substudy (TRANS is to assess the effect of an angiotensin II receptor blocker (ARB, telmisartan, on the arterial stiffness in a subgroup of patients from the Telmisartan Randomized Assessment Study in aCE iNtolerant subjects with cardiovascular Disease (TRANSCEND trial. The TRANSCEND trial is an international, multicenter, randomized double blind placebo controlled trial of telmisartan that enrolled patients at high risk for cardiovascular events. Some clinical baseline data of the

  17. HIV infection and aortic stiffness.

    Science.gov (United States)

    Leite, Luisa Helena Maia; Cohen, Ariel; Boccara, Franck

    People living with human immunodeficiency virus (HIV) infection and receiving antiretroviral therapy now have the same life expectancy as the general population. However, they have a higher risk of atherosclerotic cardiovascular events because of a complex and polyfactorial vasculopathy, combining the effects of antiretroviral therapy, the HIV virus itself, immune activation, chronic inflammation and metabolic disturbances. Whether people living with HIV infection experience increased vascular aging compared with the general population remains controversial. To summarize current knowledge of the association between HIV infection and aortic stiffness as a marker of vascular aging. This review included 18 clinical studies in adult populations, published between 2009 and 2016, and identified on PubMed/MEDLINE or other databases. Search terms were aortic stiffness, arterial stiffness, vascular aging, pulse wave velocity and HIV. All 18 studies were observational, and compared groups infected (HIV+) and not infected (HIV-) with HIV. Ten studies (55%) reported no significant differences in aortic stiffness between HIV+ groups and age-matched HIV- control groups. The main reported determinants of aortic stiffness were age, blood pressure, smoking, metabolic syndrome and HIV-related variables, including CD4/CD8 ratio, current T-CD4 count CD4+ count < 200/mm 3 . We found discordant results regarding whether HIV+ patients had increased aortic stiffness compared with HIV- controls. However, HIV-related conditions were associated with vascular health. This association has been confirmed in recent prospective studies. There is emerging evidence that HIV itself and immune activity affect vascular health and the large arteries. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  18. Rolling Element Bearing Stiffness Matrix Determination (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Y.; Parker, R.

    2014-01-01

    Current theoretical bearing models differ in their stiffness estimates because of different model assumptions. In this study, a finite element/contact mechanics model is developed for rolling element bearings with the focus of obtaining accurate bearing stiffness for a wide range of bearing types and parameters. A combined surface integral and finite element method is used to solve for the contact mechanics between the rolling elements and races. This model captures the time-dependent characteristics of the bearing contact due to the orbital motion of the rolling elements. A numerical method is developed to determine the full bearing stiffness matrix corresponding to two radial, one axial, and two angular coordinates; the rotation about the shaft axis is free by design. This proposed stiffness determination method is validated against experiments in the literature and compared to existing analytical models and widely used advanced computational methods. The fully-populated stiffness matrix demonstrates the coupling between bearing radial, axial, and tilting bearing deflections.

  19. Stability of selected volatile contact allergens in different patch test chambers under different storage conditions

    DEFF Research Database (Denmark)

    Mose, Kristian Fredløv; Andersen, Klaus Ejner; Christensen, Lars Porskjaer

    2012-01-01

    storage conditions. Methods. Petrolatum samples of methyl methacrylate (MMA), 2-hydroxyethyl methacrylate (2-HEMA), 2-hydroxypropyl acrylate (2-HPA), cinnamal and eugenol in patch test concentrations were stored in three different test chambers (IQ chamber™, IQ Ultimate™, and Van der Bend® transport...... during storage in the refrigerator. For these two chamber systems, the contact allergen concentration dropped below the stability limit in the following order: MMA, cinnamal, 2-HPA, eugenol, and 2-HEMA. In the Van der Bend® transport container, the contact allergens exhibited acceptable stability under...

  20. On the Value of Estimating Human Arm Stiffness during Virtual Teleoperation with Robotic Manipulators

    Science.gov (United States)

    Buzzi, Jacopo; Ferrigno, Giancarlo; Jansma, Joost M.; De Momi, Elena

    2017-01-01

    Teleoperated robotic systems are widely spreading in multiple different fields, from hazardous environments exploration to surgery. In teleoperation, users directly manipulate a master device to achieve task execution at the slave robot side; this interaction is fundamental to guarantee both system stability and task execution performance. In this work, we propose a non-disruptive method to study the arm endpoint stiffness. We evaluate how users exploit the kinetic redundancy of the arm to achieve stability and precision during the execution of different tasks with different master devices. Four users were asked to perform two planar trajectories following virtual tasks using both a serial and a parallel link master device. Users' arm kinematics and muscular activation were acquired and combined with a user-specific musculoskeletal model to estimate the joint stiffness. Using the arm kinematic Jacobian, the arm end-point stiffness was derived. The proposed non-disruptive method is capable of estimating the arm endpoint stiffness during the execution of virtual teleoperated tasks. The obtained results are in accordance with the existing literature in human motor control and show, throughout the tested trajectory, a modulation of the arm endpoint stiffness that is affected by task characteristics and hand speed and acceleration. PMID:29018319

  1. Three dopamine pathways induce aversive odor memories with different stability.

    Directory of Open Access Journals (Sweden)

    Yoshinori Aso

    Full Text Available Animals acquire predictive values of sensory stimuli through reinforcement. In the brain of Drosophila melanogaster, activation of two types of dopamine neurons in the PAM and PPL1 clusters has been shown to induce aversive odor memory. Here, we identified the third cell type and characterized aversive memories induced by these dopamine neurons. These three dopamine pathways all project to the mushroom body but terminate in the spatially segregated subdomains. To understand the functional difference of these dopamine pathways in electric shock reinforcement, we blocked each one of them during memory acquisition. We found that all three pathways partially contribute to electric shock memory. Notably, the memories mediated by these neurons differed in temporal stability. Furthermore, combinatorial activation of two of these pathways revealed significant interaction of individual memory components rather than their simple summation. These results cast light on a cellular mechanism by which a noxious event induces different dopamine signals to a single brain structure to synthesize an aversive memory.

  2. Shifting the optimal stiffness for cell migration.

    Science.gov (United States)

    Bangasser, Benjamin L; Shamsan, Ghaidan A; Chan, Clarence E; Opoku, Kwaku N; Tüzel, Erkan; Schlichtmann, Benjamin W; Kasim, Jesse A; Fuller, Benjamin J; McCullough, Brannon R; Rosenfeld, Steven S; Odde, David J

    2017-05-22

    Cell migration, which is central to many biological processes including wound healing and cancer progression, is sensitive to environmental stiffness, and many cell types exhibit a stiffness optimum, at which migration is maximal. Here we present a cell migration simulator that predicts a stiffness optimum that can be shifted by altering the number of active molecular motors and clutches. This prediction is verified experimentally by comparing cell traction and F-actin retrograde flow for two cell types with differing amounts of active motors and clutches: embryonic chick forebrain neurons (ECFNs; optimum ∼1 kPa) and U251 glioma cells (optimum ∼100 kPa). In addition, the model predicts, and experiments confirm, that the stiffness optimum of U251 glioma cell migration, morphology and F-actin retrograde flow rate can be shifted to lower stiffness by simultaneous drug inhibition of myosin II motors and integrin-mediated adhesions.

  3. Stabilization of Model Crude Oil Emulsion using Different ...

    African Journals Online (AJOL)

    As part of an ongoing research into the stability of oil-field emulsions, model oil samples have been utilized to probe the effects of asphaltene interactions on crude oil/water emulsion stability. Asphaltenes were precipitated from treated Ondo State oil sand bitumen with n-hexane in a 40:1 solvent to bitumen ratio which was ...

  4. Comprehensive assessment of biventricular function and aortic stiffness in athletes with different forms of training by three-dimensional echocardiography and strain imaging.

    Science.gov (United States)

    Vitarelli, Antonio; Capotosto, Lidia; Placanica, Giuseppe; Caranci, Fiorella; Pergolini, Mario; Zardo, Francesco; Martino, Francesco; De Chiara, Stefania; Vitarelli, Massimo

    2013-10-01

    Previous studies have shown distinct models of cardiac adaptations to the training in master athletes and different effects of endurance and strength-training on cardiovascular function. We attempted to assess left-ventricular (LV) function, aortic (Ao) function, and right-ventricular (RV) function in athletes with different forms of training by using three-dimensional (3D) echocardiography, tissue Doppler imaging (TDI) and speckle-tracking imaging (STI). We examined 35 male marathon runners (endurance-trained athletes, ETA), 35 powerlifting athletes (strength-trained athletes, STA), 35 martial arts athletes (mixed-trained athletes, MTA), and 35 sedentary untrained healthy men (controls, CTR). Two-dimensional and three-dimensional echocardiography were performed for the assessment of LV and RV systolic/diastolic function. LV and RV longitudinal strain (LS) and LV torsion (LVtor) were determined using STI (EchoPAC BT11, GE-Ultrasound). Maximum velocity of systolic wall expansion peaks (AoSvel) was determined using TDI. ETA experienced LV eccentric hypertrophy with increased 3D LV end-diastolic volume and mass and significant increase in peak systolic apical rotation and LVtor. In all groups of athletes, RV-LS was reduced at rest and improved after exercise. AoSvel was significantly increased in ETA and MTA and significantly decreased in STA compared with CTR. There were good correlations between LV remodelling and aortic stiffness values. Multivariate analysis showed aortic wall velocities to be independently related to LV mass index. In strength-trained, endurance-trained, and mixed-trained athletes, ventricular and vascular response assessed by 3DE, TDI, and STI underlies different adaptations of LV, RV, and aortic indexes.

  5. Stability of endodontically treated teeth with differently invasive restorations: Adhesive vs. non-adhesive cusp stabilization.

    Science.gov (United States)

    Frankenberger, Roland; Zeilinger, Inka; Krech, Michael; Mörig, Gernot; Naumann, Michael; Braun, Andreas; Krämer, Norbert; Roggendorf, Matthias J

    2015-11-01

    Aim of the present study was to evaluate fracture strength of endodontically treated molars with different preparations/restorations after thermomechanical loading in vitro. 264 extracted human third molars were used. Beside the control group, 256 teeth in 32 test groups (n=8) received root canal treatment (MTwo #40/.6) and root canal obturation with AH Plus and Guttapercha. After postendodontic sealing and build-up (Syntac, SDR), specimens were additionally prepared MO or MOD. Postendodontic restorations were: Direct restorations (Tetric EvoCeram Bulk Fill bonded with Syntac; as filling or direct partial crown (PC) after reducing the cusps 3mm; amalgam as filling or direct pin-retained partial crown (PC)), vs. indirect adhesive restorations (I: Inlay vs. PC; IPS Empress I/PC; Celtra Duo I/PC; e.max CAD I/PC; Lava Ultimate I/PC; Enamic I/PC - all inserted with Syntac/Variolink) vs. cemented cast gold I/PC. After 300,000 thermocycles (5/55°C) and 1.2 Mio. 100N load cycles, specimens were loaded until fracture. Whereas IPS Empress showed no difference between I and PC (p>0.05), in all other groups PC were significantly more stable than fillings/inlays (pgold PC exhibited the highest fracture strengths (pAmalgam fillings showed the worst outcome (pgold PC remain the ultimate stabilization tool for ETT in terms of fracture resistance. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  6. Stability control of grasping objects with different locations of center of mass and rotational inertia.

    Science.gov (United States)

    Slota, Gregory P; Suh, Moon Suk; Latash, Mark L; Zatsiorsky, Vladimir M

    2012-01-01

    The objective of this study was to observe how the digits of the hand adjust to varying location of the center of mass (CoM) above or below the grasp and rotational inertia (RI) of a handheld object. Such manipulations do not immediately affect the equilibrium equations while stability control is affected. Participants were instructed to hold a handle, instrumented with 5 force-torque transducers and a 3-D rotational tilt sensor, while either the location of the CoM or the RI values were adjusted. On the whole, people use 2 mechanisms to adjust to the changed stability requirements; they increase the grip force and redistribute the total moment between the normal and tangential forces offsetting internal torques. The increase in grip force, an internal force, and offsetting internal torques allows for increases in joint and hand rotational apparent stiffness while not creating external forces-torques that would unbalance the equations of equilibrium.

  7. Stability comparison of two different dentoalveolar expansion treatment protocols

    Directory of Open Access Journals (Sweden)

    Ezgi Atik

    Full Text Available ABSTRACT Objective: The aim of this study was to compare the longitudinal stability of the conventional straight-wire system after the use of a quad-helix appliance with Damon self-ligating system in patients with Class I malocclusion. Methods: 27 adolescent patients were evaluated at three different periods: pre-treatment (T1, post-treatment (T2 and three years post-treatment (T3. Group 1 included 12 patients (with a mean age of 14.65 year treated with Damon 3MX bracket system; and Group 2 included 15 patients (with a mean age of 14.8 year who underwent orthodontic treatment with Roth prescribed brackets after expansion with Quad-Helix appliance. Relapse was evaluated with dental cast examination and cephalometric radiograph tracings. Statistical analysis was performed with IBM-SPSS for Windows software, version 21 (SPSS Inc., Chicago, IL. A p-value smaller than 0.05 was considered statistically significant. Results: There were significant increases in all transverse dental and postero-anterior measurements (except for UL6-ML mm in Group 1 with active treatment. There was some significant relapse in the long-term in inter-canine width in both groups and in the inter-first premolar width in Group 2 (p< 0.05. Significant decrease in all frontal measurements from T2 to T3 was seen for both groups. Upper and lower incisors significantly proclined in T1-T2 (p<0.05, however no relapse was found for both groups. When two systems were compared, there was no significant difference for the long-term follow-up period. Conclusion: Conventional (quad-helix appliance with conventional brackets and Damon systems were found similar with regard to the long-term incisor positions and transverse dimension changes of maxillary arch.

  8. Stability of iron in clays under different leaching conditions

    Czech Academy of Sciences Publication Activity Database

    Doušová, B.; Fuitová, L.; Koloušek, D.; Lhotka, M.; Matys Grygar, Tomáš; Spurná, P.

    2014-01-01

    Roč. 62, 1-2 (2014), s. 145-152 ISSN 0009-8604 Institutional support: RVO:61388980 Keywords : Clays * Iron * Leaching Stability * Structure * Surface Properties Subject RIV: DD - Geochemistry Impact factor: 1.228, year: 2014

  9. The impact of different peripheral suture techniques on the biomechanical stability in flexor tendon repair.

    Science.gov (United States)

    Wieskötter, B; Herbort, M; Langer, M; Raschke, M J; Wähnert, D

    2018-01-01

    Flexor tendon repair consists of circumferential peripheral sutures in combination with core sutures to avoid fraying and reduces the exposure of suture material on tendon surface. The peripheral suture adds up to a tenfold increase of the biomechanical stability compared to the core suture alone. The purpose of our study was to determine the most favourable peripheral repair technique for tendon repair. Seventy-two porcine flexor tendons underwent standardized tenotomy and repair using one of the following six methods (n = 12): simple-running (SR), simple-locking (SL), Halsted-mattress (HM), lin-locking (LL), Lembert-mattress (LM), and Silfverskiöld cross-stich (SCS) suture technique. The SL- suture was placed 2 mm; the HM, LM, SC, and LL suture were placed 5 mm from the tendon gap. The SR suture was placed 1, 2, and 3 mm from tendon ends; no additional core suture was applied. For cyclic testing (1000 cycles), elongation was calculated; for load to failure construct stiffness, yield load and maximum load were determined. The mean cyclic elongation for all tested suture techniques was less than 2 mm; there was no significant difference between the groups regarding elongation as well as yield load. The HM, LM, SCS, and LL suture techniques presented significantly higher maximum loads compared to the SR- and SL-sutures. The 3 mm SR showed significantly higher maximum loads compared to the 2 and 1 mm SR. Beside the distance from tendon gap, the type of linkage of the suture material across and beneath the epitendineum is important for biomechanical stability. Simple-running suture is easy to use, even with a slight increase of the distance from tendon gap significantly increases biomechanical strength. For future repairs of flexor tendon injuries, 3 mm stitch length is highly recommended for simple peripheral suture, while the Halsted-mattress suture unites the most important qualities: biomechanically strong, most part of suture material placed

  10. [Study of Lavoisier morphine chlorhydrate stability in different active perfusion systems after reconstitution in different solvents].

    Science.gov (United States)

    Truelle-Hugon, B; Tourrette, G; Couineaux, B; Gache-Charrette, C

    1997-01-01

    The stability of morphine chlorhydrate injectable solutions with no preservative used for drug delivery system (PCA) was investigated. Many concentrations of morphine chlorhydrate were prepared using different solvents and in several containers: PCA cartridges and plastic syringes stored at 37 degrees C. Assays of drug substance and of degradation products were determined at different time within 14 days. In such conditions, morphine chlorhydrate solutions were stable: degradation products were quantitated less than the usual normal i.e. 2% of the theoric concentration of the drug.

  11. Dynamic stiffness of suction caissons - vertical vibrations

    Energy Technology Data Exchange (ETDEWEB)

    Ibsen, Lars Bo; Liingaard, M.; Andersen, Lars

    2006-12-15

    The dynamic response of offshore wind turbines are affected by the properties of the foundation and the subsoil. The purpose of this report is to evaluate the dynamic soil-structure interaction of suction caissons for offshore wind turbines. The investigation is limited to a determination of the vertical dynamic stiffness of suction caissons. The soil surrounding the foundation is homogenous with linear viscoelastic properties. The dynamic stiffness of the suction caisson is expressed by dimensionless frequency-dependent dynamic stiffness coefficients corresponding to the vertical degree of freedom. The dynamic stiffness coefficients for the foundations are evaluated by means of a dynamic three-dimensional coupled Boundary Element/Finite Element model. Comparisons are made with known analytical and numerical solutions in order to evaluate the static and dynamic behaviour of the Boundary Element/Finite Element model. The vertical frequency dependent stiffness has been determined for different combinations of the skirt length, Poisson's ratio and the ratio between soil stiffness and skirt stiffness. Finally the dynamic behaviour at high frequencies is investigated. (au)

  12. Comparative study of stability in different TCP/RED models

    International Nuclear Information System (INIS)

    Nga, J.H.C.; Iu, H.H.C.; Ling, S.H.; Lam, H.K.

    2008-01-01

    This paper studies the stability issue of the average queue length of a Transmission Control Protocol (TCP) model when interacting with Random Early Detection (RED). The model used for the study has shown period doubling bifurcation (PDB) and border collision bifurcation (BCB) in the average queue size at certain values of parameters when original RED is deployed. In this paper, we adopt a gentle version of RED and a newly derived RED algorithm into the model to study the improvement in stability of average queue size of the system

  13. A Novel Variable Stiffness Mechanism Capable of an Infinite Stiffness Range and Unlimited Decoupled Output Motion

    Directory of Open Access Journals (Sweden)

    Stefan Groothuis

    2014-06-01

    Full Text Available In this paper, a novel variable stiffness mechanism is presented, which is capable of achieving an output stiffness with infinite range and an unlimited output motion, i.e., the mechanism output is completely decoupled from the rotor motion, in the zero stiffness configuration. The mechanism makes use of leaf springs, which are engaged at different positions by means of two movable supports, to realize the variable output stiffness. The Euler–Bernoulli leaf spring model is derived and validated through experimental data. By shaping the leaf springs, it is shown that the stiffness characteristic of the mechanism can be changed to fulfill different application requirements. Alternative designs can achieve the same behavior with only one leaf spring and one movable support pin.

  14. Stability over Time of Different Methods of Estimating School Performance

    Science.gov (United States)

    Dumay, Xavier; Coe, Rob; Anumendem, Dickson Nkafu

    2014-01-01

    This paper aims to investigate how stability varies with the approach used in estimating school performance in a large sample of English primary schools. The results show that (a) raw performance is considerably more stable than adjusted performance, which in turn is slightly more stable than growth model estimates; (b) schools' performance…

  15. Stability with respect to initial time difference for generalized delay differential equations

    Directory of Open Access Journals (Sweden)

    Ravi Agarwal

    2015-02-01

    Full Text Available Stability with initial data difference for nonlinear delay differential equations is introduced. This type of stability generalizes the known concept of stability in the literature. It gives us the opportunity to compare the behavior of two nonzero solutions when both initial values and initial intervals are different. Several sufficient conditions for stability and for asymptotic stability with initial time difference are obtained. Lyapunov functions as well as comparison results for scalar ordinary differential equations are employed. Several examples are given to illustrate the theory.

  16. Nutritional composition of rice bran submitted to different stabilization procedures

    Directory of Open Access Journals (Sweden)

    Simone Aparecida dos Santos Conceição Faria

    2012-12-01

    Full Text Available In order to inactivate enzymatic deterioration, whole rice bran samples were subjected to two stabilization methods. Changes in nutritional value in terms of, concerning chemical composition, minerals and fatty acid content, were evaluated to supplement existing data and promote the utilization of rice bran in the human diet. The following homemade heat treatments were applied: roasting on a conventional stove or heating in a microwave oven. Based on the results, the different heating methods affected sample composition, since the levels of some nutrients of treated samples showed significant changes (pA fim de inativar a deterioração enzimática, as amostras de farelo de arroz foram submetidas a dois métodos de estabilização. As mudanças do valor nutricional, no que se refere a composição química, os minerais e o conteúdo de ácidos graxos, foram avaliadas para adicionar mais informações aos dados existentes e promover a utilização de farelo de arroz na dieta humana. Os seguintes tratamentos caseiros por calor foram aplicados: torra em forno convencional ou de aquecimento em forno de micro-ondas. Com base nos resultados, os diferentes métodos de aquecimento afetaram a composição das amostras, já que os níveis de alguns nutrientes mostraram alterações significativas (p <0,05, comparado com as amostras cruas correspondentes. O farelo de arroz tratado em fogão convencional forneceu produtos com menos umidade (5,14 ± 0,10 g/100 g e nutrientes, tais como: de sódio 11,8%; ácido palmítico 9,9% e ácido esteárico 8,1%. O procedimento de forno de micro-ondas resultou em melhor preservação dos nutrientes, com teor de umidade um pouco maior (6,28 ± 0,10 g/100 g, o que parece ser uma ferramenta prática e rápida no tratamento térmico caseiro para o farelo de arroz.

  17. Stability of cosmetic emulsion containing different amount of hemp oil.

    Science.gov (United States)

    Kowalska, M; Ziomek, M; Żbikowska, A

    2015-08-01

    The aim of the study was to determine the optimal conditions, that is the content of hemp oil and time of homogenization to obtain stable dispersion systems. For this purpose, six emulsions were prepared, their stability was examined empirically and the most correctly formulated emulsion composition was determined using a computer simulation. Variable parameters (oil content and homogenization time) were indicated by the optimization software based on Kleeman's method. Physical properties of the synthesized emulsions were studied by numerous techniques involving particle size analysis, optical microscopy, Turbiscan test and viscosity of emulsions. The emulsion containing 50 g of oil and being homogenized for 6 min had the highest stability. Empirically determined parameters proved to be consistent with the results obtained using the computer software. The computer simulation showed that the most stable emulsion should contain from 30 to 50 g of oil and should be homogenized for 2.5-6 min. The computer software based on Kleeman's method proved to be useful for quick optimization of the composition and production parameters of stable emulsion systems. Moreover, obtaining an emulsion system with proper stability justifies further research extended with sensory analysis, which will allow the application of such systems (containing hemp oil, beneficial for skin) in the cosmetic industry. © 2015 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  18. Adaptability and stability of canola hybrids in different sowing dates

    Directory of Open Access Journals (Sweden)

    Luiz Henrique da Silva Lima

    Full Text Available ABSTRACT Canola is an important crop in the world market, mainly for its oil being used for human consumption and biodiesel production, being a great economical option for the farmer, which are the reasons to the increase in its cultivation in Brazil. This study aimed to evaluate the adaptability and stability of canola hybrids, depending on the sowing dates. The canola hybrids (Hyola 61, Hyola 76, Hyola 411 and Hyola 433 were evaluated in three sowing dates (04/10, 04/25 and 05/10 in the agricultural years of 2013 and 2014, under a randomized complete block design with five replications. The response variables analyzed were seed yield and oil content. Adaptability and stability of the hybrids were evaluated by three methods: Wricke's ecovalence (1962; confidence index (ANNICCHIARICO, 1992 and method of maximum ideal deviation (LIN; BINNS, 1988. The methodology proposed by Wricke (1962 highlighted as stable the hybrids Hyola 61 for seed yield and Hyola 411 for oil content. In the methodology proposed by Lin and Binns (1988 and Annicchiarico (1992, the hybrids with higher general adaptability and stability were Hyola 411 and 433. These hybrids presented the highest means for seed yield and oil content with predictable and responsive behavior to changes in sowing dates tested in the region of Maringá-PR.

  19. Stiff Quantum Polymers

    OpenAIRE

    Kleinert, H.

    2007-01-01

    At ultralow temperatures, polymers exhibit quantum behavior, which is calculated here for the second and fourth moments of the end-to-end distribution in the large-stiffness regime. The result should be measurable for polymers in wide optical traps.

  20. Characteristics of the Storage Stability for Different Saccharomyces cerevisiae Strains

    OpenAIRE

    Gomaa N. Abdel-Rahman; Nadia R. A. Nassar; Yehia A. Heikal; Mahmoud A. M. Abou-Donia; Mohamed B. M. Ahmed; Mohamed Fadel

    2017-01-01

    Storage stability is the important factor of baker's yeast quality. Effect of the storage period (fifteen days) on storage sugars and cell viability of baker's yeast, produced from three S. cerevisiae strains (FC-620, FH-620, and FAT-12) as comparison with baker's yeast produced by S. cerevisae F-707 (original strain of baker's yeast factory) were investigated. Studied trehalose and glycogen content ranged from 10.19 to 14.79 % and from 10.05 to 10.69 % (d.w.), respectively before storage. Th...

  1. Alterations in walking knee joint stiffness in individuals with knee osteoarthritis and self-reported knee instability.

    Science.gov (United States)

    Gustafson, Jonathan A; Gorman, Shannon; Fitzgerald, G Kelley; Farrokhi, Shawn

    2016-01-01

    Increased walking knee joint stiffness has been reported in patients with knee osteoarthritis (OA) as a compensatory strategy to improve knee joint stability. However, presence of episodic self-reported knee instability in a large subgroup of patients with knee OA may be a sign of inadequate walking knee joint stiffness. The objective of this work was to evaluate the differences in walking knee joint stiffness in patients with knee OA with and without self-reported instability and examine the relationship between walking knee joint stiffness with quadriceps strength, knee joint laxity, and varus knee malalignment. Overground biomechanical data at a self-selected gait velocity was collected for 35 individuals with knee OA without self-reported instability (stable group) and 17 individuals with knee OA and episodic self-reported instability (unstable group). Knee joint stiffness was calculated during the weight-acceptance phase of gait as the change in the external knee joint moment divided by the change in the knee flexion angle. The unstable group walked with lower knee joint stiffness (p=0.01), mainly due to smaller heel-contact knee flexion angles (pknee flexion excursions (pknee stable counterparts. No significant relationships were observed between walking knee joint stiffness and quadriceps strength, knee joint laxity or varus knee malalignment. Reduced walking knee joint stiffness appears to be associated with episodic knee instability and independent of quadriceps muscle weakness, knee joint laxity or varus malalignment. Further investigations of the temporal relationship between self-reported knee joint instability and walking knee joint stiffness are warranted. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Theoretical Design and Characteristics Analysis of a Quasi-Zero Stiffness Isolator Using a Disk Spring as Negative Stiffness Element

    Directory of Open Access Journals (Sweden)

    Lingshuai Meng

    2015-01-01

    Full Text Available This paper presents a novel quasi-zero stiffness (QZS isolator designed by combining a disk spring with a vertical linear spring. The static characteristics of the disk spring and the QZS isolator are investigated. The optimal combination of the configurative parameters is derived to achieve a wide displacement range around the equilibrium position in which the stiffness has a low value and changes slightly. By considering the overloaded or underloaded conditions, the dynamic equations are established for both force and displacement excitations. The frequency response curves (FRCs are obtained by using the harmonic balance method (HBM and confirmed by the numerical simulation. The stability of the steady-state solution is analyzed by applying Floquet theory. The force, absolute displacement, and acceleration transmissibility are defined to evaluate the isolation performance. Effects of the offset displacement, excitation amplitude, and damping ratio on the QZS isolator and the equivalent system (ELS are studied. The results demonstrate that the QZS isolator for overloaded or underloaded can exhibit different stiffness characteristics with changing excitation amplitude. If loaded with an appropriate mass, excited by not too large amplitude, and owned a larger damper, the QZS isolator can possess better isolation performance than its ELS in low frequency range.

  3. Vertical stiffness and muscle strain in professional Australian football.

    Science.gov (United States)

    Serpell, Benjamin G; Scarvell, Jennie M; Ball, Nick B; Smith, Paul N

    2014-12-01

    Abstract The purpose of this study was to establish if vertical stiffness was greater in professional Australian rules footballers who sustained a lower limb skeletal muscle strain compared to those who did not, and to establish if a relationship between age, or training history, and vertical stiffness existed. Thirty-one participants underwent weekly rebound jump testing on a force platform over two seasons. Vertical stiffness was calculated for injured players and the uninjured cohort 1 and 3 weeks prior to sustaining an injury and at the end of preseason. Eighteen athletes were in the "uninjured" cohort and 13 in the "injured" cohort. No significant difference in vertical stiffness was observed between groups (P = 0.18 for absolute stiffness; P = 0.08 for stiffness relative to body mass), within groups (P = 0.83 and P = 0.88, respectively) or for a time*cohort interaction (P = 0.77 and P = 0.80, respectively). No relationship between age and vertical stiffness existed (r = -0.06 for absolute and relative stiffness), or training history and vertical stiffness (r = -0.01 and 0.00 for absolute and relative stiffness, respectively) existed. These results and others lend to suggest that vertical stiffness is not related to lower limb muscle strain injury.

  4. Research on static angular stiffness measurement of flexible joint

    Directory of Open Access Journals (Sweden)

    Yongchao HUANG

    2016-10-01

    Full Text Available Measurement accuracy of the angular stiffness of flexible joint is directly related to the control accuracy and sensitivity of gyro, but the traditional measurement methods have many problems. According to the principle of angular stiffness measurement of flexible joint, two static measurement methods of angular stiffness are proposed based on different loading ways, namely mechanical loading angular stiffness measurement and piezoelectric loading angular stiffness measurement. The mechanical loading angular stiffness measurement system is built by using a motor driven indexing feeding tilting table, the measure experiment if the angular stiffness of flexible joint is conducted, and the angular stiffness of flexible joint is measured. For the excessive fluctuation problem of the measure result in mechanical load test, a piezoelectric loading structure is designed and a measurement method employing piezoelectric actuator is proposed for angular stiffness measurement of flexible joint. Based on ANSYS Workbench, the displacement output of the piezoelectric loading structure is analyzed by simulations. The simulation results illustrate that the displacement output meets the requirement of static loading angular stiffness measurement of flexible joint, and the theoretical feasibility of piezoelectric loading angular stiffness measurement method is validated.

  5. [Metabolic syndrome and aortic stiffness].

    Science.gov (United States)

    Simková, A; Bulas, J; Murín, J; Kozlíková, K; Janiga, I

    2010-09-01

    The metabolic syndrome (MS) is a cluster of risk factors that move the patient into higher level of risk category of cardiovascular disease and the probability of type 2 diabetes mellitus manifestation. Definition of MS is s based on the presence of selected risk factors as: abdominal obesity (lager waist circumpherence), atherogenic dyslipidemia (low value of HDL-cholesterol and increased level of triglycerides), increased fasting blood glucose (or type 2 DM diagnosis), higher blood pressure or antihypertensive therapy. In 2009 there were created harmonizing criteria for MS definition; the condition for assignment of MS is the presence of any 3 criteria of 5 mentioned above. The underlying disorder of MS is an insulin resistance or prediabetes. The patients with MS more frequently have subclinical (preclinical) target organ disease (TOD) which is the early sings of atherosclerosis. Increased aortic stiffness is one of the preclinical diseases and is defined by pathologically increased carotidofemoral pulse wave velocity in aorta (PWV Ao). With the aim to assess the influence of MS on aortic stiffness we examined the group of women with arterial hypertension and MS and compare them with the group of women without MS. The aortic stiffness was examined by Arteriograph--Tensiomed, the equipment working on the oscillometric principle in detection of pulsations of brachial artery. This method determines the global aortic stiffness based on the analysis of the shape of pulse curve of brachial artery. From the cohort of 49 pts 31 had MS, the subgroups did not differ in age or blood pressure level. The mean number of risk factors per person in MS was 3.7 comparing with 1.7 in those without MS. In the MS group there was more frequently abdominal obesity present (87% vs 44%), increased fasting blood glucose (81% vs 22%) and low HDL-cholesterol level. The pulse wave velocity in aorta, PWV Ao, was significantly higher in patients with MS (mean value 10,19 m/s vs 8,96 m

  6. [Study on effect of different extracts in curcuma long on stability of curcumin].

    Science.gov (United States)

    Han, Gang; Liu, Zheng-Meng; Wang, Xiao-Yan; Wang, Yan-Nan

    2007-05-01

    To investigate effects of different extracted fractions from Curcumia long on the stability of curcumin. There are some constituents that can stabilize curcumin. To add the extracts obtained from C. long were water, alcohol, acetone, ether, ethyl acetate, petroleum ether to pure solution of curcumin. To determine the change of curcumin by high performance liquid chromatography (HPLC). To investigate the dynamics of curcumin degradation. The stability obtained from alcohol, acetone, ether, ethyl ether all improved the stabilization of curcumin. 80% Alcohol extract had the optimal stabilizineg ability for curcumin. The extracts from alcohol are more stable than pure curcumin at same conditions. The stability of curcumin is improved by alcohol extracts.

  7. Age and Sex Effects on the Active Stiffness of Vastus Intermedius under Isometric Contraction

    Directory of Open Access Journals (Sweden)

    Cong-Zhi Wang

    2017-01-01

    Full Text Available Previously, a novel technique was proposed to quantify the relationship between the muscle stiffness and its nonfatigue contraction intensity. The method extended the measured range of isometric contraction to 100% maximum voluntary contraction (MVC using an ultrasonic shear wave measurement setup. Yet, it has not been revealed how this relationship could be affected by factors like age or sex. To clarify these questions, vastus intermedius (VI stiffness of 40 healthy subjects was assessed under 11 step levels of isometric contraction. The subjects were divided into four groups: young males, young females, elderly males, and elderly females (n=10 for each. In a relaxed state, no significant difference was observed between the male and female subjects (p=0.156 nor between the young and elderly subjects (p=0.221. However, when performing isometric contraction, the VI stiffness of males was found to be significantly higher than that of females at the same level (p<0.001, and that of the young was higher than the elderly (p<0.001. Meanwhile, for two knee joint angles used, the stiffness measured at a 90° knee joint angle was always significantly larger than that measured at 60° (p<0.001. Recognizing the active muscle stiffness of VI contributes to body stability, and these results may provide insight into the age and sex bias in musculoskeletal studies, such as those on fall risks.

  8. Loads and performance data from a wind-tunnel test of model articulated helicopter rotors with 2 different blade torsional stiffnesses

    Science.gov (United States)

    Yeager, W. T., Jr.; Mantay, W. R.

    1983-01-01

    A passive means of tailoring helicopter rotor blades to improve performance and reduce loads was evaluated. The parameters investigated were blade torsional stiffness, blade section camber, and distance between blade structural elastic axis and blade tip aerodynamic center. This offset was accomplished by sweeping the tip. The investigation was conducted at advance ratios of 0.20, 0.30, and 0.40. Data are presented without analysis; however, cross referencing of performance data and harmonic loads data may be useful to the analyst for validating aeroelastic theories and design methodologies as well as for evaluating passive aeroelastic tailoring or rotor blade parameters.

  9. Spine lateral flexion strength development differences between exercises with pelvic stabilization and without pelvic stabilization

    Science.gov (United States)

    Straton, Alexandru; Gidu, Diana Victoria; Micu, Alexandru

    2015-02-01

    Poor lateral flexor muscle strength can be an important source of lumbar/thoracic back pain in women. The purpose of this study was to evaluate pelvic stabilization (PS) and no pelvic stabilization (NoPS) lateral flexion strength exercise training on the development of isolated right and left lateral flexion strength. Isometric torque of the isolated right and left lateral flexion muscles was measured at two positions (0° and 30° opposed angle range of motion) on 42 healthy women before and after 8 weeks of PS and NoPS lateral flexion strength exercise training. Subjects were assigned in three groups, the first (n=14) trained 3 times/week with PS lateral flexion strength exercise, the second (n=14) trained 3 times/week with NoPS lateral flexion strength exercise and the third (control, n=14) did not train. Post training isometric strength values describing PS and NoPS lateral flexion strength improved in greater extent for the PS lateral flexion strength exercise group and in lesser extent for the NoPS lateral flexion strength exercise group, in both angles (pstrength exercises; NoPS lateral flexion strength exercises can be an effective way of training for the spine lateral flexion muscles, if there is no access to PS lateral flexion strength training machines.

  10. Estimation of seasonal atmospheric stability and mixing height by using different schemes

    International Nuclear Information System (INIS)

    Essa, K.S.M.; Embaby, M.; Mubarak, F.; Kamel, I.

    2007-01-01

    Different atmospheric stability schemes were used to characterize the plume growth (dispersion coefficients σ) in the lateral and vertical directions to determine the concentration distribution of pollutants through the PBL. The PBL is the region in which surface friction has a large effect on the mixing of pollutants. It is also suffer large fluctuation in temperature and wind and its depth (mixing depth) changes over a diurnal cycle. In this study, four months of surface meteorological parameters were used (to represent different seasons) to determine seasonal stability, classification. Five different stability schemes were estimated based on temperature gradient, standard deviation of the horizontal wind direction fluctuation, gradient and Bulk Richardson numbers and Monin-Obukhov length. Friction velocity, (u * ) for each stability scheme was estimated for characterizing the hourly, mixing height for each stability class. Also, plume rise was estimated for each stability class depending on the availability of meteorological parameters

  11. Stability estimates for solution of IBVP to fractional parabolic differential and difference equations

    Science.gov (United States)

    Ashyralyev, Allaberen; Cakir, Zafer

    2016-08-01

    In this work, we investigate initial-boundary value problems for fractional parabolic equations with the Neumann boundary condition. Stability estimates for the solution of this problem are established. Difference schemes for approximate solution of initial-boundary value problem are constructed. Furthermore, we give theorem on coercive stability estimates for the solution of the difference schemes.

  12. The effect of different drinks on the color stability of different restorative materials after one month

    Directory of Open Access Journals (Sweden)

    Neslihan Tekçe

    2015-11-01

    Full Text Available Objectives The aim of this study was to evaluate the effect of three different drinks on the color parameters of four different restorative materials. Materials and Methods Three different composites (Filtek Ultimate Universal Restorative, Filtek Ultimate Flowable, and Filtek Silorane, 3M ESPE and a polyacid-modified composite resin material (Dyract XP, Dentsply DeTrey GmbH were evaluated. Eighty-four disc-shaped specimens of 8 mm in diameter and 2 mm in thickness were prepared (n = 21 each. Color coordinates (L*a*b*, ΔL*, Δa*, Δb*, and ΔE* were measured using a VİTA Easyshade Compact (VİTA Zahnfabrik after 24 hr of storage (baseline and after 30 day of storage in three different beverages of black tea, Coca cola, or water (control (n = 7. In each beverage, the specimens were stored three times a day, one hr each, for 30 day. The color changes (ΔE were calculated and were analyzed by Kruskal-Wallis and Dunn multiple comparison test. Results The color difference (ΔE* of the resin materials ranged between 1.31 and 15.28 after 30 day of immersion in the staining solutions. Dyract XP in Coca cola (15.28 ± 2.61 and black tea (12.22 ± 2.73 showed the highest mean ΔE* value after 30 day, followed by Filtek Ultimate Universal Restorative (5.99 ± 1.25 and Filtek Ultimate Flowable (4.71 ± 1.40 in black tea (p < 0.05. Conclusions The compomers displayed unacceptable color changes at the end of 30 day in all beverages. Among resin composites, the silorane based composite exhibited relatively good color stability than the others. Filtek Ultimate Universal Restorative and Filtek Flowable showed similar color changes in all beverages.

  13. On gear tooth stiffness evaluation

    DEFF Research Database (Denmark)

    Pedersen, Niels Leergaard; Jørgensen, Martin Felix

    2014-01-01

    The estimation of gear stiffness is important for determining the load distribution between the gear teeth when two sets of teeth are in contact. Two factors have a major influence on the stiffness; firstly the boundary condition through the gear rim size included in the stiffness calculation...... and secondly the size of the contact. In the FE calculation the true gear tooth root profile is applied. The meshing stiffnesses of gears are highly non-linear, it is however found that the stiffness of an individual tooth can be expressed in a linear form assuming that the contact width is constant. © 2014...... Elsevier Ltd. All rights reserved....

  14. Difference equations in normed spaces stability and oscillations

    CERN Document Server

    Gil, Michael

    2007-01-01

    Difference equations appear as natural descriptions of observed evolution phenomena because most measurements of time evolving variables are discrete. They also appear in the applications of discretization methods for differential, integral and integro-differential equations. The application of the theory of difference equations is rapidly increasing to various fields, such as numerical analysis, control theory, finite mathematics, and computer sciences. This book is devoted to linear and nonlinear difference equations in a normed space. The main methodology presented in this book is based on a combined use of recent norm estimates for operator-valued functions with the following methods and results: The freezing methodThe Liapunov type equationThe method of majorantsThe multiplicative representation of solutionsDeals systematically with difference equations in normed spaces Considers new classes of equations that could not be studied in the frameworks of ordinary and partial difference equationsDevelops ...

  15. Traffic behavior of mixed traffic flow with two kinds of different self-stabilizing control vehicles

    Science.gov (United States)

    Li, Zhipeng; Li, Wenzhong; Xu, Shangzhi; Qian, Yeqing; Sun, Jian

    2015-10-01

    In this paper, we propose a heterogeneous car following model in terms of an extension to the original optimal velocity model characterizing two classes of different self-stabilizing control vehicles. Linear stability analysis method is utilized to the extended model, for purpose to explore how the varying percentages of the vehicles with short-duration self-stabilizing control influence the stability of the heterogeneous traffic flow. We obtain the neutral stability lines for different percentages of two classes of vehicles, with finding that the traffic flow trends to stable with the decrease of the percentage for short-duration self-stabilizing control vehicles. Moreover, we explore a special case that the same numbers of two different classes of vehicles with self-stabilizing control. We theoretically derive the stability condition of the special case, and conclude the effect of the average value and the standard deviation of two time gaps, on the heterogeneous traffic stability. At last, direct simulations are conducted to verify the conclusion of theoretical analysis.

  16. Treatment of Stiff Initial Value Problems using Block Backward ...

    African Journals Online (AJOL)

    ... on some standard stiff initial value Problems. The results show that the 3-point BDF step size ratio with r = 2 has the widest region of absolute stability and highest accuracy. Keywords: Zero stability, Hybrid, k –step, Block methods, first order initial value problem. Journal of the Nigerian Association of Mathematical Physics, ...

  17. Strength and Stiffness Analysis by the Finite-Difference Method of a Concrete Floor Slab Reinforced with Composite Rods During a Fire

    Science.gov (United States)

    Shirko, A. V.; Kamlyuk, A. N.; Drobysh, A. S.; Spiglazov, A. V.

    2017-05-01

    A strength and stiffness comparative analysis has been made of a concrete slab reinforced with composite-reinforcement rods and a slab reinforced with steel rods. The stress-strain state has been assessed for both versions of reinforcement of the slab. The stress-strain state was determined under the action of only static load and with subsequent application of temperature fields, i.e., under standard-fire conditions. It has been shown that the fire resistance of the slab with a composite reinforcement turns out to be 1.6 higher as far as the bearing capacity is concerned, than the fire resistance of the slab with a steel reinforcement, although the initial deflection due to the action of only static load for the slab reinforced with composite rods exceeds six to seven times the deflection of the slab reinforced with steel rods.

  18. Fractional Differential Equations in Terms of Comparison Results and Lyapunov Stability with Initial Time Difference

    Directory of Open Access Journals (Sweden)

    Coşkun Yakar

    2010-01-01

    Full Text Available The qualitative behavior of a perturbed fractional-order differential equation with Caputo's derivative that differs in initial position and initial time with respect to the unperturbed fractional-order differential equation with Caputo's derivative has been investigated. We compare the classical notion of stability to the notion of initial time difference stability for fractional-order differential equations in Caputo's sense. We present a comparison result which again gives the null solution a central role in the comparison fractional-order differential equation when establishing initial time difference stability of the perturbed fractional-order differential equation with respect to the unperturbed fractional-order differential equation.

  19. Investigation of Four Different Laponite Clays as Stabilizers in Pickering Emulsion Polymerization.

    Science.gov (United States)

    Brunier, Barthélémy; Sheibat-Othman, Nida; Chniguir, Mehdi; Chevalier, Yves; Bourgeat-Lami, Elodie

    2016-06-21

    Clay-armored polymer particles were prepared by emulsion polymerization in the presence of Laponite platelets that adsorb at the surface of latex particles and act as stabilizers during the course of the polymerization. While Laponite RDS clay platelets are most often used, the choice of the type of clay still remains an open issue that is addressed in the present article. Four different grades of Laponite were investigated as stabilizers in the emulsion polymerization of styrene. First, the adsorption isotherms of the clays, on preformed polystyrene particles, were determined by ICP-AES analysis of the residual clay in the aqueous phase. Adsorption of clay depended on the type of clay at low concentrations corresponding to adsorption as a monolayer. Adsorption of clay particles as multilayers was observed for all the grades above a certain concentration under the considered ionic strength (mainly due to the initiator ionic species). The stabilization efficiency of these clays was investigated during the polymerization reaction (free of any other stabilizer). The clays did not have the same effect on stabilization, which was related to differences in their compositions and in their adsorption isotherms. The different grades led to different polymer particles sizes and therefore to different polymerization reaction rates. Laponite RDS and S482 gave similar results, ensuring the best stabilization efficiency and the fastest reaction rate; the number of particles increased as the clay concentration increased. Stabilization with Laponite XLS gave the same particles size and number as the latter two clays at low clay concentrations, but it reached an upper limit in the number of nucleated polymer particles at higher concentrations indicating a decrease of stabilization efficiency at high concentrations. Laponite JS did not ensure a sufficient stability of the polymer particles, as the polymerization results were comparable to a stabilizer-free polymerization system.

  20. Stiffness and the automatic selection of ODE codes

    International Nuclear Information System (INIS)

    Shampine, L.F.

    1984-01-01

    The author describes the basic ideas behind the most popular methods for the numerical solution of ordinary differential equations (ODEs). He takes up the qualitative behavior of solutions of ODEs and its relation ot the propagation of numerical error. Codes for ODEs are intended either for stiff problems or for non-stiff problems. The difference is explained. Users of codes do not have the information needed to recognize stiffness. A code, DEASY, which automatically recognizes stiffness and selects a suitable method is described

  1. Post-traumatic knee stiffness: surgical techniques.

    Science.gov (United States)

    Pujol, N; Boisrenoult, P; Beaufils, P

    2015-02-01

    Post-traumatic knee stiffness and loss of range of motion is a common complication of injuries to the knee area. The causes of post-traumatic knee stiffness can be divided into flexion contractures, extension contractures, and combined contractures. Post-traumatic stiffness can be due to the presence of dense intra-articular adhesions and/or fibrotic transformation of peri-articular structures. Various open and arthroscopic surgical treatments are possible. A precise diagnosis and understanding of the pathology is mandatory prior to any surgical treatment. Failure is imminent if all pathologies are not addressed correctly. From a general point of view, a flexion contracture is due to posterior adhesions and/or anterior impingement. On the other hand, extension contractures are due to anterior adhesions and/or posterior impingement. This overview will describe the different modern surgical techniques for treating post-traumatic knee stiffness. Any bony impingements must be treated before soft tissue release is performed. Intra-articular stiff knees with a loss of flexion can be treated by an anterior arthroscopic arthrolysis. Extra-articular pathology causing a flexion contracture can be treated by open or endoscopic quadriceps release. Extension contractures can be treated by arthroscopic or open posterior arthrolysis. Postoperative care (analgesia, rehabilitation) is essential to maintaining the range of motion obtained intra-operatively. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  2. Biotemplated Palladium Catalysts Can Be Stabilized on Different Support Materials

    KAUST Repository

    Yates, Matthew D.

    2014-07-30

    © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. Sustainably biotemplated palladium catalysts generated on different carbon-based support materials are examined for durability under electrochemical (oxidative) and mechanical-stress conditions. Biotemplated catalysts on carbon paper under both stresses retain 95% (at 0.6V) of the initial catalytic activity as opposed to 70% for carbon cloth and 60% for graphite. Graphite electrodes retain 95% of initial catalytic activity under a single stress. Using electrodeposited polyaniline (PANI) and polydimethylsiloxane binder increases the current density after the stress tests by 22%, as opposed to a 30% decrease for Nafion. PANI-coated electrodes retain more activity than carbon-paper electrodes under elevated mechanical (94 versus 70%) or increased oxidative (175 versus 62%) stress. Biotemplated catalytic electrodes may be useful alternatives to synthetically produce catalysts for some electrochemical applications. Sustainable electrode fabrication: The biotemplated synthesis of catalytic porous electrodes is a sustainable process and, according to the results of durability tests under electrochemical and mechanical stress, these electrodes (e.g. the Pd/carbon paper electrode shown in the picture) are durable enough to replace catalytic electrodes based on synthetic materials in certain applications.

  3. A comparison of shoulder pressure among different patient stabilization techniques.

    Science.gov (United States)

    Suozzi, Brent A; Brazell, Hema D; O'Sullivan, David M; Tulikangas, Paul K

    2013-11-01

    The purpose of this study was to evaluate the pressure placed on the shoulders as a function of varying degrees of head-down tilt (the Trendelenburg position) and to compare these pressures among 3 different patient-positioning systems. Participants were placed in the dorsal-lithotomy position with arms tucked and tilted at 5, 10, 15, 20, 25, and 30 degrees of head-down tilt. Using a manometer, we measured the pressure (centimeters of water) on the shoulders at each angle for 3 support devices: the Skytron shoulder support (Skytron, Grand Rapids, MI), the Allen shoulder support (Allen Medical Systems, Acton, MA), and the Allen Hug-u-Vac. Among 23 participants, body mass index (mean ± SD) was 24.5 ± 4.3 kg/m(2). As the tilt angle increased, so did the shoulder pressure for all support systems. At a 30-degree Trendelenburg position, the Allen Hug-u-Vac transmitted less pressure to the shoulders than the Skytron (right and left, P pressure increases as tilt angle increases. Of the 3 support systems that were tested, the Allen Hug-u-Vac transmitted less pressure to the shoulders at a 30-degree Trendelenburg position than the Skytron and the Allen shoulder support systems. Copyright © 2013 Mosby, Inc. All rights reserved.

  4. Pharmacological modulation of arterial stiffness.

    LENUS (Irish Health Repository)

    Boutouyrie, Pierre

    2011-09-10

    Arterial stiffness has emerged as an important marker of cardiovascular risk in various populations and reflects the cumulative effect of cardiovascular risk factors on large arteries, which in turn is modulated by genetic background. Arterial stiffness is determined by the composition of the arterial wall and the arrangement of these components, and can be studied in humans non-invasively. Age and distending pressure are two major factors influencing large artery stiffness. Change in arterial stiffness with drugs is an important endpoint in clinical trials, although evidence for arterial stiffness as a therapeutic target still needs to be confirmed. Drugs that independently affect arterial stiffness include antihypertensive drugs, mostly blockers of the renin-angiotensin-aldosterone system, hormone replacement therapy and some antidiabetic drugs such as glitazones. While the quest continues for \\'de-stiffening drugs\\

  5. Dynamic stiffness of suction caissons

    DEFF Research Database (Denmark)

    Ibsen, Lars Bo; Liingaard, Morten; Andersen, Lars

    The purpose of this report is to evaluate the dynamic soil-structure interaction of suction caissons for offshore wind turbines. The investigation is limited to a determination of the vertical dynamic stiffness of suction caissons. The soil surrounding the foundation is homogenous with linear...... viscoelastic properties. The dynamic stiffness of the suction caisson is expressed by dimensionless frequency-dependent dynamic stiffness coefficients corresponding to the vertical degree of freedom. The dynamic stiffness coefficients for the foundations are evaluated by means of a dynamic three...

  6. Use of self-selected postures to regulate multi-joint stiffness during unconstrained tasks.

    Directory of Open Access Journals (Sweden)

    Randy D Trumbower

    Full Text Available The human motor system is highly redundant, having more kinematic degrees of freedom than necessary to complete a given task. Understanding how kinematic redundancies are utilized in different tasks remains a fundamental question in motor control. One possibility is that they can be used to tune the mechanical properties of a limb to the specific requirements of a task. For example, many tasks such as tool usage compromise arm stability along specific directions. These tasks only can be completed if the nervous system adapts the mechanical properties of the arm such that the arm, coupled to the tool, remains stable. The purpose of this study was to determine if posture selection is a critical component of endpoint stiffness regulation during unconstrained tasks.Three-dimensional (3D estimates of endpoint stiffness were used to quantify limb mechanics. Most previous studies examining endpoint stiffness adaptation were completed in 2D using constrained postures to maintain a non-redundant mapping between joint angles and hand location. Our hypothesis was that during unconstrained conditions, subjects would select arm postures that matched endpoint stiffness to the functional requirements of the task. The hypothesis was tested during endpoint tracking tasks in which subjects interacted with unstable haptic environments, simulated using a 3D robotic manipulator. We found that arm posture had a significant effect on endpoint tracking accuracy and that subjects selected postures that improved tracking performance. For environments in which arm posture had a large effect on tracking accuracy, the self-selected postures oriented the direction of maximal endpoint stiffness towards the direction of the unstable haptic environment.These results demonstrate how changes in arm posture can have a dramatic effect on task performance and suggest that postural selection is a fundamental mechanism by which kinematic redundancies can be exploited to regulate arm

  7. Use of self-selected postures to regulate multi-joint stiffness during unconstrained tasks.

    Science.gov (United States)

    Trumbower, Randy D; Krutky, Matthew A; Yang, Bing-Shiang; Perreault, Eric J

    2009-01-01

    The human motor system is highly redundant, having more kinematic degrees of freedom than necessary to complete a given task. Understanding how kinematic redundancies are utilized in different tasks remains a fundamental question in motor control. One possibility is that they can be used to tune the mechanical properties of a limb to the specific requirements of a task. For example, many tasks such as tool usage compromise arm stability along specific directions. These tasks only can be completed if the nervous system adapts the mechanical properties of the arm such that the arm, coupled to the tool, remains stable. The purpose of this study was to determine if posture selection is a critical component of endpoint stiffness regulation during unconstrained tasks. Three-dimensional (3D) estimates of endpoint stiffness were used to quantify limb mechanics. Most previous studies examining endpoint stiffness adaptation were completed in 2D using constrained postures to maintain a non-redundant mapping between joint angles and hand location. Our hypothesis was that during unconstrained conditions, subjects would select arm postures that matched endpoint stiffness to the functional requirements of the task. The hypothesis was tested during endpoint tracking tasks in which subjects interacted with unstable haptic environments, simulated using a 3D robotic manipulator. We found that arm posture had a significant effect on endpoint tracking accuracy and that subjects selected postures that improved tracking performance. For environments in which arm posture had a large effect on tracking accuracy, the self-selected postures oriented the direction of maximal endpoint stiffness towards the direction of the unstable haptic environment. These results demonstrate how changes in arm posture can have a dramatic effect on task performance and suggest that postural selection is a fundamental mechanism by which kinematic redundancies can be exploited to regulate arm stiffness in

  8. Numerical integrators for Stiff and Stiff oscillatory First Order initial ...

    African Journals Online (AJOL)

    Numerical integrators for Stiff and Stiff oscillatory First Order initial value problems. ... Journal of the Nigerian Association of Mathematical Physics ... In this paper, efforts are geared towards the numerical solution of the first order initial value problem (I.V.P) of the form Y\\' = F(X,Y), X∈[ a, b] , Y(a) = Y0, where Y\\' is the total ...

  9. Limit cycles and stiffness control with variable stiffness actuators

    NARCIS (Netherlands)

    Carloni, Raffaella; Marconi, L.

    2012-01-01

    Variable stiffness actuators realize highly dynamic systems, whose inherent mechanical compliance can be properly exploited to obtain a robust and energy-efficient behavior. The paper presents a control strategy for variable stiffness actuators with the primarily goal of tracking a limit cycle

  10. The effect of wood extractives on the thermal stability of different wood species

    Energy Technology Data Exchange (ETDEWEB)

    Shebani, A.N.; Reenen, A.J. van [Department of Chemistry and Polymer Science, University of Stellenbosch, Private Bag X1, Matieland 7602 (South Africa); Meincken, M. [Department of Forest and Wood Science, University of Stellenbosch, Private Bag X1, Matieland 7602 (South Africa)], E-mail: mmein@sun.ac.za

    2008-05-30

    This study compares the thermal stability of different wood species, which is an important factor for the production of wood-polymer composites (WPCs), and investigates the effect of extraction on thermal properties. The chemical composition of four wood species -Quercus alba, Pinus radiata, Eucalyptus grandis and Acacia cyclops - has been determined, as the species is expected to affect the thermal stability of wood. Subsequently, the hot-water (HW) extractives, ethanol/cyclohexane (E/C) extractives and both extractives were eliminated from the wood via Soxhlet extraction and the thermal stability of the wood determined with thermogravimetric analysis (TGA) under identical conditions. The results suggest that a higher cellulose and lignin content leads to better thermal stability of wood in different temperature regimes. In all cases, the removal of extractives improved the thermal stability of the wood. The effect of combined extractions was more pronounced than of an individual extraction and E/C-extraction caused less improvement in the thermal stability of wood than HW extraction. The degradation of the investigated wood extractives occurred at low rates over a broad temperature range. Pure cellulose exhibited superior thermal stability compared to wood, but differences were observed between the investigated wood species.

  11. Comparison between different types of carboxylmethylcellulose and other oenological additives used for white wine tartaric stabilization.

    Science.gov (United States)

    Guise, R; Filipe-Ribeiro, L; Nascimento, D; Bessa, O; Nunes, F M; Cosme, F

    2014-08-01

    Carboxylmethylcellulose (CMC) is authorised to prevent wine tartaric instability. The effect of CMC structural characteristics on their effectiveness is not well understood. The main purpose of this study was to compare the impact of CMC's with different degrees of substitution and molecular weight, on tartaric stability, tartaric acid, mineral concentration, phenolic compounds, chromatic and sensory characteristics in white wines, and compare its effectiveness with other oenological additives. Mini-contact test showed that all CMC's and metatartaric acid stabilized the wines; however, some arabic gums and mannoproteins do not stabilized the wines. CMC's had no significant effect on tartaric acid, potassium, calcium and sensory attributes. Tartaric stabilization effectiveness depends on CMC's degree of substitution, but also on wine matrix, probably its initial potassium content. Results suggest that CMC is a good alternative to white wine tartaric stabilization; nevertheless deeper structure knowledge is necessary in order to choose the appropriate CMC for a given tartaric instability. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. The influence of continuous historical velocity difference information on micro-cooperative driving stability

    Science.gov (United States)

    Yang, Liang-Yi; Sun, Di-Hua; Zhao, Min; Cheng, Sen-Lin; Zhang, Geng; Liu, Hui

    2018-03-01

    In this paper, a new micro-cooperative driving car-following model is proposed to investigate the effect of continuous historical velocity difference information on traffic stability. The linear stability criterion of the new model is derived with linear stability theory and the results show that the unstable region in the headway-sensitivity space will be shrunk by taking the continuous historical velocity difference information into account. Through nonlinear analysis, the mKdV equation is derived to describe the traffic evolution behavior of the new model near the critical point. Via numerical simulations, the theoretical analysis results are verified and the results indicate that the continuous historical velocity difference information can enhance the stability of traffic flow in the micro-cooperative driving process.

  13. Dynamic postural stability differences between male and female players with and without ankle sprain

    NARCIS (Netherlands)

    Dallinga, Joan M.; Does, van der Henrike T. D.; Benjaminse, Anne; Lemmink, Koen A. P. M.

    Objectives: To evaluate dynamic stability index (DSI) differences between males and females for different jump directions. To examine both preseason DSI differences between players with and without a history of ankle sprain, and between players with and without an ankle sprain during the subsequent

  14. An assessment of different atmospheric stability methods for annual atmospheric dispersion factors at a coastal site

    International Nuclear Information System (INIS)

    Bagavathsingh, A.; Rakesh, P.T.; Srinivas, C.V.; Baskaran, R.; Venkatraman, B.

    2018-01-01

    The meteorological data is used for routine radiological release consequence analysis, real time consequence assessments of accidental releases of radiological effluents and design basis accidental analysis in a nuclear plant site. For dispersion estimate, it is often required to specify the type of stability and/or turbulence conditions in which diffusion of pollutants would occur. Stability indicates the degree of turbulence and thus the atmospheric mixing. Intensity of turbulence and dispersion of pollutant releases in to the lower atmosphere are strongly dependent on the local winds as well as resistance of atmosphere to vertical mixing which is called atmospheric stability. Three different methods of atmospheric stability based on Standard deviation of wind direction (σθ), temperature gradient and Bulk Richardson (Rib) number are used to compute stability over Kalpakkam site using hourly meteorological data. All the three methods of estimating atmospheric stability are compared with M-O similarity based method. Different atmospheric stability methods were analyzed to estimate the annual average atmospheric dispersion factors at Kalpakkam coastal site for the year 2016

  15. The Effect of Implant Length and Diameter on the Primary Stability in Different Bone Types

    Directory of Open Access Journals (Sweden)

    Hamidreza Barikani

    2013-01-01

    Full Text Available Objective: The focus of this paper is to evaluate the influence of mechanical characteristics of the implant on primary stability in different bone types, based on resonance frequency analysis (RFA.Materials and Methods: A number of 60 Nobel Biocare Replace Select TiUnit Tapered implants of two different lengths (10 mm and 13 mm and three different widths as 3.4 mm (narrow platform (NP, 4.3 mm (regular platform (RP and 5 mm (wide platform (WP were placed into two different groups of bone blocks. Bone blocks were different in bone quality, but similar to bone types D1 and D3. Immediately, after implant placement, implant stability quotient (ISQ was measured using the Osstell mentor device.Results: ISQ values for implant placements in D1 bone were significantly higher than those for implants placed in D3 bone. In D1 bone, the implant length did not make any significant difference in primary stability; however, in D3 bone, the primary stability of the implant increased when longer implants were utilized. NP implants presented significantly lower ISQ values compared to the two wider implants.Conclusion: In cases of low bone quality, the optimum increase in the implant length and diameter should be taken into account to achieve higher primary stability.

  16. Stabilization

    Directory of Open Access Journals (Sweden)

    Muhammad H. Al-Malack

    2016-07-01

    Full Text Available Fuel oil flyash (FFA produced in power and water desalination plants firing crude oils in the Kingdom of Saudi Arabia is being disposed in landfills, which increases the burden on the environment, therefore, FFA utilization must be encouraged. In the current research, the effect of adding FFA on the engineering properties of two indigenous soils, namely sand and marl, was investigated. FFA was added at concentrations of 5%, 10% and 15% to both soils with and without the addition of Portland cement. Mixtures of the stabilized soils were thoroughly evaluated using compaction, California Bearing Ratio (CBR, unconfined compressive strength (USC and durability tests. Results of these tests indicated that stabilized sand mixtures could not attain the ACI strength requirements. However, marl was found to satisfy the ACI strength requirement when only 5% of FFA was added together with 5% of cement. When the FFA was increased to 10% and 15%, the mixture’s strength was found to decrease to values below the ACI requirements. Results of the Toxicity Characteristics Leaching Procedure (TCLP, which was performed on samples that passed the ACI requirements, indicated that FFA must be cautiously used in soil stabilization.

  17. Optimization of Fracture Resistance and Stiffness of Heat-Polymerized High Impact Acrylic Resin with Localized E-Glass FiBER FORCE® Reinforcement at Different Stress Points.

    Science.gov (United States)

    Agha, Haitham; Flinton, Robert; Vaidyanathan, Tritala

    2016-12-01

    Dentures are subject to fracture through flexural stresses during masticatory function. Distribution of stresses under flexural loading varies from compressive to tensile stress along the thickness of the denture cross section. The goal of this investigation was to evaluate the effect of reinforcing compressive, tensile, and no stress regions of flexurally loaded rectangular bars of heat-cured denture base acrylic resin reinforced with tough E-Glass FiBER FORCE (GFF) on their fracture resistance under flexural loading. Forty rectangular specimens (65 mm long × 10 mm wide × 2.5 mm thick) were prepared and divided into four groups (n = 10). Group FN had no fiber reinforcement, group FM had fiber in the middle at the no-stress neutral axis, group FC had fiber close to the surface on the compressive stress side, and group FT had the fiber close to the surface on the tensile stress side. The effect of GFF reinforcement on flexural strength (FS), flexural toughness (TG), and flexural modulus of elasticity (MOE) was evaluated. The mean and (SD) of the FS, TG, and MOE varied as follows. FS (MPa): group FN: 91.49 (7.88); group FM: 102.83 (13.5); group FC: 107.68 (11.21); group FT: 141.46 (14.77). TG (mJ/mm 3 ): group FN: 0.171 (0.026); group FM: 0.236 (0.033); group FC: 0.156 (0.032); group FT: 0.347 (0.010). MOE (MPa): group FN: 2682 (761); group FM: 2601 (417); group FC: 4188 (1012); group FT: 4215 (674). Statistical analysis showed that reinforcement on the tensile side of the neutral axis yielded improvement in all properties evaluated. Placement of the GFF close to the tensile stress side surface of the bar increased the resistance to elastic deformation (i.e., higher MOE or stiffness) and the stress level needed for flexural fracture (i.e., higher FS). In addition, more energy was absorbed by reinforced specimens before fracture occurred (i.e., higher toughness). Localized reinforcement targeting tensile stress centers is thus a practical way to improve clinical

  18. Comparative numerical solutions of stiff Ordinary differential equations using magnus series expansion method

    Directory of Open Access Journals (Sweden)

    SURE KÖME

    2014-12-01

    Full Text Available In this paper, we investigated the effect of Magnus Series Expansion Method on homogeneous stiff ordinary differential equations with different stiffness ratios. A Magnus type integrator is used to obtain numerical solutions of two different examples of stiff problems and exact and approximate results are tabulated. Furthermore, absolute error graphics are demonstrated in detail.

  19. Single Stance Stability and Proprioceptive Control in Older Adults Living at Home: Gender and Age Differences

    Directory of Open Access Journals (Sweden)

    Dario Riva

    2013-01-01

    Full Text Available In developed countries, falls in older people represent a rising problem. As effective prevention should start before the risk becomes evident, an early predictor is needed. Single stance instability would appear as a major risk factor. Aims of the study were to describe single stance stability, its sensory components, and their correlation with age and gender. A random sample of 597 older adults (319 men, 278 women living at home, aged 65–84, was studied. Stability tests were performed with an electronic postural station. The single stance test showed the impairment of single stance stability in older individuals (75–84 yrs. The significant decline of stability in the older subjects may be explained by the impairment of proprioceptive control together with the decrease in compensatory visual stabilization and emergency responses. Younger subjects (65–74 yrs exhibited better, but still inadequate, proprioceptive control with compensatory visual stabilization. Gender differences appeared in older subjects: women were significantly less stable than men. The measurement of the sensory components of single stance stability could aid in the early detection of a decay in antigravity movements many years before the risk of falling becomes evident. Adequate proprioceptive control could mitigate the effects of all other risks of falling.

  20. On the Stability of the Finite Difference based Lattice Boltzmann Method

    KAUST Repository

    El-Amin, Mohamed

    2013-06-01

    This paper is devoted to determining the stability conditions for the finite difference based lattice Boltzmann method (FDLBM). In the current scheme, the 9-bit two-dimensional (D2Q9) model is used and the collision term of the Bhatnagar- Gross-Krook (BGK) is treated implicitly. The implicitness of the numerical scheme is removed by introducing a new distribution function different from that being used. Therefore, a new explicit finite-difference lattice Boltzmann method is obtained. Stability analysis of the resulted explicit scheme is done using Fourier expansion. Then, stability conditions in terms of time and spatial steps, relaxation time and explicitly-implicitly parameter are determined by calculating the eigenvalues of the given difference system. The determined conditions give the ranges of the parameters that have stable solutions.

  1. Effect of plate working length on plate stiffness and cyclic fatigue life in a cadaveric femoral fracture gap model stabilized with a 12-hole 2.4?mm locking compression plate

    OpenAIRE

    Chao, Peini; Conrad, Bryan P; Lewis, Daniel D; Horodyski, MaryBeth; Pozzi, Antonio

    2013-01-01

    Background There are several factors that can affect the fatigue life of a bone plate, including the mechanical properties of the plate and the complexity of the fracture. The position of the screws can influence construct stiffness, plate strain and cyclic fatigue of the implants. Studies have not investigated these variables in implants utilized for long bone fracture fixation in dogs and cats. The purpose of the present study was to evaluate the effect of plate working length on construct ...

  2. Comparison of Biomechanical Characteristics and Pelvic Ring Stability Using Different Fixation Methods to Treat Pubic Symphysis Diastasis

    Science.gov (United States)

    Yao, Feng; He, Yu; Qian, Hebu; Zhou, Dongsheng; Li, Qinghu

    2015-01-01

    Abstract The intention of this study was to compare the biomechanical characteristics using 5 internal fixation methods used clinically to stabilize a pubic symphysis diastasis (PSD, Tile type B1). A 3-dimensional finite element model of PSD was simulated using 5 implants, including single superior plate (Single-Plate), superior and anterior plate (Dual-Plate), single cannulated screw (Single-Screw), crossed dual cannulated screws (Cross-Screw), and parallel dual cannulated screws (Para-Screw). Three loads were distributed in all models, including dual-leg standing, single-leg stance, and rotation. To evaluate the biomechanical properties, the construct stiffness, the stress distribution, and the von Misses stress were recorded and analyzed. To evaluate pelvic ring stability, the micromotion of the pubic symphysis and iliosacral joint was analyzed. Disruption of pubic symphysis dramatically decreased the pelvic ring stability. Cross-screw and Para-Screw showed higher stiffness than other methods. All implants endured the maximum von Misses stress under single-leg stance. For Plate-Screw system, the maximum stress occurred at a place where it strides over pubic symphysis and adjacent Plate-Screw interface. The single implant and Para-Screw had a tendency to fail. Para-Screw showed the best fixation effect under dual-leg conditions. Cross-screw showed superior antishearing force capacity under single-leg stance. Dual-Plate provided maximum antihorizontal rotation. Para-Screw provided the maximum stabilization for the posterior pelvic ring. This study showed the biomechanical advantages of dual-implant for PSD only from the finite element view. The Para-Screw provided high construct stiffness under 3 load conditions. The single implant and Para-Screw had a tendency to fail. The better anterior and posterior pelvic stabilization were obtained by the dual-implant fixation than other methods. Therefore, the Cross-Screw and Dual-Plate fixation methods should be preferred

  3. Abdominal muscle activation increases lumbar spinal stability: analysis of contributions of different muscle groups.

    Science.gov (United States)

    Stokes, Ian A F; Gardner-Morse, Mack G; Henry, Sharon M

    2011-10-01

    Antagonistic activation of abdominal muscles and increased intra-abdominal pressure are associated with both spinal unloading and spinal stabilization. Rehabilitation regimens have been proposed to improve spinal stability via selective recruitment of certain trunk muscle groups. This biomechanical analytical study addressed whether lumbar spinal stability is increased by such selective activation. The biomechanical model included anatomically realistic three-layers of curved abdominal musculature, rectus abdominis and 77 symmetrical pairs of dorsal muscles. The muscle activations were calculated with the model loaded with either flexion, extension, lateral bending or axial rotation moments up to 60 Nm, along with intra-abdominal pressure up to 5 or 10 kPa (37.5 or 75 mm Hg) and partial bodyweight. After solving for muscle forces, a buckling analysis quantified spinal stability. Subsequently, different patterns of muscle activation were studied by forcing activation of selected abdominal muscles to at least 10% or 20% of maximum. Spinal stability increased by an average factor of 1.8 with doubling of intra-abdominal pressure. Forcing at least 10% activation of obliques or transversus abdominis muscles increased stability slightly for efforts other than flexion, but forcing at least 20% activation generally did not produce further increase in stability. Forced activation of rectus abdominis did not increase stability. Based on analytical predictions, the degree of stability was not substantially influenced by selective forcing of muscle activation. This casts doubt on the supposed mechanism of action of specific abdominal muscle exercise regimens that have been proposed for low back pain rehabilitation. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Analysis of Thermal Stability of Different Counter on 28nm FPGA

    DEFF Research Database (Denmark)

    Gupta, Daizy; Yadav, Amit; Hussain, Dil muhammed Akbar

    2016-01-01

    In this paper we are presenting the power analysis for thermal awareness of different counters. The technique we are using to do the analysis is based on 28 nm FPGA tech-nique. In this work during implementation on FPGA, we are going to analyze thermal stability of different counters in temperature...

  5. The Stability of Same-Sex Cohabitation, Different-Sex Cohabitation, and Marriage

    Science.gov (United States)

    Lau, Charles Q.

    2012-01-01

    This study contributes to the emerging demographic literature on same-sex couples by comparing the level and correlates of union stability among 4 types of couples: (a) male same-sex cohabitation, (b) female same-sex cohabitation, (c) different-sex cohabitation, and (d) different-sex marriage. The author analyzed data from 2 British birth cohort…

  6. On Polynomial Stability of Variational Nonautonomous Difference Equations in Banach Spaces

    Directory of Open Access Journals (Sweden)

    Mihail Megan

    2013-01-01

    Full Text Available Our goal in this paper is to give characterizations for some concepts of polynomial stability for variational nonautonomous difference equations. The obtained results can be considered generalizations for the case of variational nonautonomous difference equations of some theorems proved by Barbashin (1967, Datko (1973, and Lyapunov (1992, for evolution operators.

  7. Stability of Sexual Attractions Across Different Timescales: The Roles of Bisexuality and Gender.

    Science.gov (United States)

    Diamond, Lisa M; Dickenson, Janna A; Blair, Karen L

    2017-01-01

    We examined the stability of same-sex and other-sex attractions among 294 heterosexual, lesbian, gay, and bisexual men and women between the ages of 18 and 40 years. Participants used online daily diaries to report the intensity of each day's strongest same-sex and other-sex attraction, and they also reported on changes they recalled experiencing in their attractions since adolescence. We used multilevel dynamical systems models to examine individual differences in the stability of daily attractions (stability, in these models, denotes the tendency for attractions to "self-correct" toward a person-specific setpoint over time). Women's attractions showed less day-to-day stability than men's, consistent with the notion of female sexual fluidity (i.e., heightened erotic sensitivity to situational and contextual influences). Yet, women did not recollect larger post-adolescent changes in sexual attractions than did men, and larger recollected post-adolescent changes did not predict lower day-to-day stability in the sample as a whole. Bisexually attracted individuals recollected larger post-adolescent changes in their attractions, and they showed lower day-to-day stability in attractions to their "less-preferred" gender, compared to individuals with exclusive same-sex or exclusive other-sex attractions. Our results suggest that both gender and bisexuality have independent influences on sexual fluidity, but these influences vary across short versus long timescales, and they also differ for attractions to one's "more-preferred" versus "less-preferred" gender.

  8. Design and Experimental Development of a Pneumatic Stiffness Adjustable Foot System for Biped Robots Adaptable to Bumps on the Ground

    Directory of Open Access Journals (Sweden)

    Xizhe Zang

    2017-09-01

    Full Text Available Walking on rough terrains still remains a challenge that needs to be addressed for biped robots because the unevenness on the ground can easily disrupt the walking stability. This paper proposes a novel foot system with passively adjustable stiffness for biped robots which is adaptable to small-sized bumps on the ground. The robotic foot is developed by attaching eight pneumatic variable stiffness units to the sole separately and symmetrically. Each variable stiffness unit mainly consists of a pneumatic bladder and a mechanical reversing valve. When walking on rough ground, the pneumatic bladders in contact with bumps are compressed, and the corresponding reversing valves are triggered to expel out the air, enabling the pneumatic bladders to adapt to the bumps with low stiffness; while the other pneumatic bladders remain rigid and maintain stable contact with the ground, providing support to the biped robot. The performances of the proposed foot system, including the variable stiffness mechanism, the adaptability on the bumps of different heights, and the application on a biped robot prototype are demonstrated by various experiments.

  9. Arterial stiffness and cognitive impairment.

    Science.gov (United States)

    Li, Xiaoxuan; Lyu, Peiyuan; Ren, Yanyan; An, Jin; Dong, Yanhong

    2017-09-15

    Arterial stiffness is one of the earliest indicators of changes in vascular wall structure and function and may be assessed using various indicators, such as pulse-wave velocity (PWV), the cardio-ankle vascular index (CAVI), the ankle-brachial index (ABI), pulse pressure (PP), the augmentation index (AI), flow-mediated dilation (FMD), carotid intima media thickness (IMT) and arterial stiffness index-β. Arterial stiffness is generally considered an independent predictor of cardiovascular and cerebrovascular diseases. To date, a significant number of studies have focused on the relationship between arterial stiffness and cognitive impairment. To investigate the relationships between specific arterial stiffness parameters and cognitive impairment, elucidate the pathophysiological mechanisms underlying the relationship between arterial stiffness and cognitive impairment and determine how to interfere with arterial stiffness to prevent cognitive impairment, we searched PUBMED for studies regarding the relationship between arterial stiffness and cognitive impairment that were published from 2000 to 2017. We used the following key words in our search: "arterial stiffness and cognitive impairment" and "arterial stiffness and cognitive impairment mechanism". Studies involving human subjects older than 30years were included in the review, while irrelevant studies (i.e., studies involving subjects with comorbid kidney disease, diabetes and cardiac disease) were excluded from the review. We determined that arterial stiffness severity was positively correlated with cognitive impairment. Of the markers used to assess arterial stiffness, a higher PWV, CAVI, AI, IMT and index-β and a lower ABI and FMD were related to cognitive impairment. However, the relationship between PP and cognitive impairment remained controversial. The potential mechanisms linking arterial stiffness and cognitive impairment may be associated with arterial pulsatility, as greater arterial pulsatility

  10. Stiffness of desiccating insect wings

    Energy Technology Data Exchange (ETDEWEB)

    Mengesha, T E; Vallance, R R [Department of Mechanical Engineering, The George Washington University, 738 Phillips Hall, 801 22nd St NW, Washington, DC 20052 (United States); Mittal, R, E-mail: vallance@gwu.edu [Department of Mechanical Engineering, Johns Hopkins University, 126 Latrobe Hall, 3400 N Charles Street, Baltimore, MD 21218 (United States)

    2011-03-15

    The stiffness of insect wings is typically determined through experimental measurements. Such experiments are performed on wings removed from insects. However, the wings are subject to desiccation which typically leads to an increase in their stiffness. Although this effect of desiccation is well known, a comprehensive study of the rate of change in stiffness of desiccating insect wings would be a significant aid in planning experiments as well as interpreting data from such experiments. This communication presents a comprehensive experimental analysis of the change in mass and stiffness of gradually desiccating forewings of Painted Lady butterflies (Vanessa cardui). Mass and stiffness of the forewings of five butterflies were simultaneously measured every 10 min over a 24 h period. The averaged results show that wing mass declined exponentially by 21.1% over this time period with a time constant of 9.8 h, while wing stiffness increased linearly by 46.2% at a rate of 23.4 {mu}N mm{sup -1} h{sup -1}. For the forewings of a single butterfly, the experiment was performed over a period of 1 week, and the results show that wing mass declined exponentially by 52.2% with a time constant of 30.2 h until it reached a steady-state level of 2.00 mg, while wing stiffness increased exponentially by 90.7% until it reached a steady-state level of 1.70 mN mm{sup -1}. (communication)

  11. Stability and non-standard finite difference method of the generalized Chua's circuit

    KAUST Repository

    Radwan, Ahmed G.

    2011-08-01

    In this paper, we develop a framework to obtain approximate numerical solutions of the fractional-order Chua\\'s circuit with Memristor using a non-standard finite difference method. Chaotic response is obtained with fractional-order elements as well as integer-order elements. Stability analysis and the condition of oscillation for the integer-order system are discussed. In addition, the stability analyses for different fractional-order cases are investigated showing a great sensitivity to small order changes indicating the poles\\' locations inside the physical s-plane. The GrnwaldLetnikov method is used to approximate the fractional derivatives. Numerical results are presented graphically and reveal that the non-standard finite difference scheme is an effective and convenient method to solve fractional-order chaotic systems, and to validate their stability. © 2011 Elsevier Ltd. All rights reserved.

  12. Yield and nutrition of sunflower fertilized with sewage sludge stabilized by different processes

    Directory of Open Access Journals (Sweden)

    Altina Lacerda Nascimento

    2013-10-01

    Full Text Available The different methods of sewage sludge stabilization modify their physical chemical and biological properties, altering its efficiency when applied in agriculture. The objective of this study was to evaluate the nutrient levels in soil and the yield of sunflower fertilized with sewage sludge stabilized by different processes. The experiment was conducted in Cambisol, with the treatments: control (without fertilization, fertilization with sewage sludge solarized, composted, vermicomposted, limed and chemical fertilizer recommended for sunflower crop. The experimental design a randomized block with four replications. The different methods of sewage sludge treatment did not affect the yield; however, the application of sewage sludge, regardless the stabilization process adopted, was more effective than chemical fertilizer and the control treatment. Overall, fertilization with limed sewage sludge provided higher soil nutrients concentrations, while treatments with composted and vermicomposted sewage sludge showed higher levels of nutrients in the plant.

  13. Strategy switching in the stabilization of unstable dynamics.

    Directory of Open Access Journals (Sweden)

    Jacopo Zenzeri

    Full Text Available In order to understand mechanisms of strategy switching in the stabilization of unstable dynamics, this work investigates how human subjects learn to become skilled users of an underactuated bimanual tool in an unstable environment. The tool, which consists of a mass and two hand-held non-linear springs, is affected by a saddle-like force-field. The non-linearity of the springs allows the users to determine size and orientation of the tool stiffness ellipse, by using different patterns of bimanual coordination: minimal stiffness occurs when the two spring terminals are aligned and stiffness size grows by stretching them apart. Tool parameters were set such that minimal stiffness is insufficient to provide stable equilibrium whereas asymptotic stability can be achieved with sufficient stretching, although at the expense of greater effort. As a consequence, tool users have two possible strategies for stabilizing the mass in different regions of the workspace: 1 high stiffness feedforward strategy, aiming at asymptotic stability and 2 low stiffness positional feedback strategy aiming at bounded stability. The tool was simulated by a bimanual haptic robot with direct torque control of the motors. In a previous study we analyzed the behavior of naïve users and we found that they spontaneously clustered into two groups of approximately equal size. In this study we trained subjects to become expert users of both strategies in a discrete reaching task. Then we tested generalization capabilities and mechanism of strategy-switching by means of stabilization tasks which consist of tracking moving targets in the workspace. The uniqueness of the experimental setup is that it addresses the general problem of strategy-switching in an unstable environment, suggesting that complex behaviors cannot be explained in terms of a global optimization criterion but rather require the ability to switch between different sub-optimal mechanisms.

  14. Modeling large offshore wind farms under different atmospheric stability regimes with the Park wake model

    DEFF Research Database (Denmark)

    Peña, Alfredo; Réthoré, Pierre-Elouan; Rathmann, Ole

    2013-01-01

    Here, we evaluate a modified version of the Park wake model against power data from a west-east row in the middle of the Horns Rev I offshore wind farm. The evaluation is performed on data classified in four different atmospheric stability conditions, for a narrow wind speed range, and a wide range...... turbines and those using the WAsP recommended value closer to the data for the first turbines. It is generally seen that under stable and unstable atmospheric conditions the power deficits are the highest and lowest, respectively, but the wind conditions under both stability regimes are different...

  15. Behavior and chronic toxicity of two differently stabilized silver nanoparticles to Daphnia magna

    DEFF Research Database (Denmark)

    Sakka, Yvonne; Skjolding, Lars Michael; Mackevica, Aiga

    2016-01-01

    compared to the detergent-stabilized AgNP (0.046 ± 0.006 μg Ag μg DW−1 and 0.023 ± 0.005 μg Ag μg DW−1, respectively). In accordance with this, the higher reproductive effects and mortality were found for the charge-stabilized than for the sterically-stabilized silver nanoparticles in 21-d tests......NP to Daphnia magna over a 21-day period with two different stabilizers (citrate and detergent), representative for charge and sterical stabilizers, respectively. This was coupled with a series of short-term experiments, such as mass balance and uptake/depuration testing, to investigate the behavior of both...... for chronic toxicity. LOEC was 19.2 μg Ag L−1 for both endpoints for citrate-coated AgNP and >27.5 μg Ag L−1 (highest tested concentration for detergent-stabilized AgNP). This indicates a link between uptake and toxicity. The inclusion of additional short-term experiments on uptake and depuration...

  16. Same-Sex and Different-Sex Cohabiting Couple Relationship Stability.

    Science.gov (United States)

    Manning, Wendy D; Brown, Susan L; Stykes, J Bart

    2016-08-01

    Relationship stability is a key indicator of well-being, but most U.S.-based research has been limited to different-sex couples. The 2008 panel of the Survey of Income and Program Participation (SIPP) provides an untapped data resource to analyze relationship stability of same-sex cohabiting, different-sex cohabiting, and different-sex married couples (n = 5,701). The advantages of the SIPP data include the recent, nationally representative, and longitudinal data collection; a large sample of same-sex cohabitors; respondent and partner socioeconomic characteristics; and identification of a state-level indicator of a policy stating that marriage is between one man and one woman (i.e., DOMA). We tested competing hypotheses about the stability of same-sex versus different-sex cohabiting couples that were guided by incomplete institutionalization, minority stress, relationship investments, and couple homogamy perspectives (predicting that same-sex couples would be less stable) as well as economic resources (predicting that same-sex couples would be more stable). In fact, neither expectation was supported: results indicated that same-sex cohabiting couples typically experience levels of stability that are similar to those of different-sex cohabiting couples. We also found evidence of contextual effects: living in a state with a constitutional ban against same-sex marriage was significantly associated with higher levels of instability for same- and different-sex cohabiting couples. The level of stability in both same-sex and different-sex cohabiting couples is not on par with that of different-sex married couples. The findings contribute to a growing literature on health and well-being of same-sex couples and provide a broader understanding of family life.

  17. Level Classifications of Foundation Stiffness

    DEFF Research Database (Denmark)

    Ibsen, Lars Bo; Liingaard, Morten

    2007-01-01

    This article describes a foundation module developed and implemented in both HAWC and FLEX capable of to simulate the frequency dependent stiffness and damping of foundations e.g. pile, gravitation and bucket foundations....

  18. Effects of different encapsulation agents and drying process on stability of betalains extract

    OpenAIRE

    Ravichandran, Kavitha; Palaniraj, Ravichandran; Saw, Nay Min Min Thaw; Gabr, Ahmed M. M.; Ahmed, Abdelrahman R.; Knorr, Dietrich; Smetanska, Iryna

    2012-01-01

    Red beet plants are rich in betalains that can be used as food natural colorants. Betalains were extracted from red beet and encapsulated with different carrier agents and freeze or spray dried. Effect of different encapsulating agents as maltodextrin, guar gum, gum Arabic, pectin and xanthan gum with different concentration (as encapsulating agents) were studied on the betalain stability. Encapsulated betalains with xanthan gum with maltodextrin showed about 65 % more recovery than the contr...

  19. Stiffness and hysteresis properties of some prosthetic feet

    NARCIS (Netherlands)

    van Jaarsveld, H.W.L.; Grootenboer, H.J.; de Vries, J.; Koopman, Hubertus F.J.M.

    1990-01-01

    A prosthetic foot is an important element of a prosthesis, although it is not always fully recognized that the properties of the foot, along with the prosthetic knee joint and the socket, are in part responsible for the stability and metabolic energy cost during walking. The stiffness and the

  20. Modeling short-range stiffness of feline lower hindlimb muscles

    NARCIS (Netherlands)

    Cui, L.; Perreault, E.J.; Maas, H.; Sandercock, T.G.

    2008-01-01

    The short-range stiffness (SRS) of skeletal muscles is a critical property for understanding muscle contributions to limb stability, since it represents a muscle's capacity to resist external perturbations before reflexes or voluntary actions can intervene. A number of studies have demonstrated that

  1. Saturating Stiffness Control of Robot Manipulators with Bounded Inputs

    Directory of Open Access Journals (Sweden)

    Rodríguez-Liñán María del Carmen

    2017-03-01

    Full Text Available A saturating stiffness control scheme for robot manipulators with bounded torque inputs is proposed. The control law is assumed to be a PD-type controller, and the corresponding Lyapunov stability analysis of the closed-loop equilibrium point is presented. The interaction between the robot manipulator and the environment is modeled as spring-like contact forces.

  2. Impact testing of the residual limb: System response to changes in prosthetic stiffness.

    Science.gov (United States)

    Boutwell, Erin; Stine, Rebecca; Gard, Steven

    2016-01-01

    Currently, it is unknown whether changing prosthetic limb stiffness affects the total limb stiffness and influences the shock absorption of an individual with transtibial amputation. The hypotheses tested within this study are that a decrease in longitudinal prosthetic stiffness will produce (1) a reduced total limb stiffness, and (2) reduced magnitude of peak impact forces and increased time delay to peak force. Fourteen subjects with a transtibial amputation participated in this study. Prosthetic stiffness was modified by means of a shock-absorbing pylon that provides reduced longitudinal stiffness through compression of a helical spring within the pylon. A sudden loading evaluation device was built to examine changes in limb loading mechanics during a sudden impact event. No significant change was found in the peak force magnitude or timing of the peak force between prosthetic limb stiffness conditions. Total limb stiffness estimates ranged from 14.9 to 17.9 kN/m but were not significantly different between conditions. Thus, the prosthetic-side total limb stiffness was unaffected by changes in prosthetic limb stiffness. The insensitivity of the total limb stiffness to prosthetic stiffness may be explained by the mechanical characteristics (i.e., stiffness and damping) of the anatomical tissue within the residual limb.

  3. Linear and nonlinear Stability analysis for finite difference discretizations of higher order Boussinesq equations

    DEFF Research Database (Denmark)

    Fuhrmann, David R.; Bingham, Harry B.; Madsen, Per A.

    2004-01-01

    This paper considers a method of lines stability analysis for finite difference discretizations of a recently published Boussinesq method for the study of highly nonlinear and extremely dispersive water waves. The analysis demonstrates the near-equivalence of classical linear Fourier (von Neumann...

  4. Stability of finite difference schemes for generalized von Foerster equations with renewal

    Directory of Open Access Journals (Sweden)

    Henryk Leszczyński

    2014-01-01

    Full Text Available We consider a von Foerster-type equation describing the dynamics of a population with the production of offsprings given by the renewal condition. We construct a finite difference scheme for this problem and give sufficient conditions for its stability with respect to \\(l^1\\ and \\(l^\\infty\\ norms.

  5. Soil aggregate stability and erodibility in different gully sites in parts ...

    African Journals Online (AJOL)

    This paper assesses soil aggregate stability and erodibility in different gully sites in parts of Zaria, Kaduna State, Nigeria with the aim to provide quantitative information on the variation of some soil properties and their interaction with eroding agents and how this affects soil erosion on the sites. The gullies selected are found ...

  6. The stability of bank efficiency rankings when risk preferences and objectives are different

    NARCIS (Netherlands)

    Koetter, M.

    2008-01-01

    We analyze the stability of efficiency rankings of German universal banks between 1993 and 2004. First, we estimate traditional efficiency scores with stochastic cost and alternative profit frontier analysis. Then, we explicitly allow for different risk preferences and measure efficiency with a

  7. [Membrane-stabilizing preparations in the treatment of patients with heart rhythm disorders of different etiologies].

    Science.gov (United States)

    Vizir, A D; Grigor'eva, Z E; Stepanova, I V; Vizir, V A

    1991-10-01

    Data are reported of a study of the efficacy of membrane-stabilizing antiarrhythmic agents--ethmosin, ethacisin, allapinin. The latter was used in the treatment of 85 patients with arrhythmias of different etiology and proved more effective as compared with ethmosin and ethacisin. In ventricular extrasystole the effect was favourable in 86%, in supraventricular--in 70% of patients.

  8. Gender and the Stability of Same-Sex and Different-Sex Relationships Among Young Adults.

    Science.gov (United States)

    Joyner, Kara; Manning, Wendy; Bogle, Ryan

    2017-12-01

    Most research on the stability of adult relationships has focused on coresidential (cohabiting or married) unions and estimates rates of dissolution for the period of coresidence. Studies examining how the stability of coresidential unions differs by sex composition have typically found that same-sex female couples have higher rates of dissolution than same-sex male couples and different-sex couples. We argue that the more elevated rates of dissolution for same-sex female couples are a by-product of the focus on coresidential unions. We use data from the National Longitudinal Study of Adolescent to Adult Health to compare rates of dissolution based on the total duration of romantic and sexual relationships for same-sex male couples, same-sex female couples, and different-sex couples. Results from hazard models that track the stability of young adult relationships from the time they are formed demonstrate that male couples have substantially higher dissolution rates than female couples and different-sex couples. Results based on models restricted to the period of coresidence corroborate the counterintuitive finding from earlier studies that female couples have the highest rates of dissolving coresidential unions. This study underlines the importance of comparisons between these couple types for a better understanding of the role that institutions and gender play in the stability of contemporary relationships.

  9. Life Contexts Make a Difference : Emotional Stability in Younger and Older Adults

    NARCIS (Netherlands)

    Brose, Annette; Scheibe, Susanne; Schmiedek, Florian

    Emotional stability, as indicated by low affect variability and low affective reactivity to daily events, for example, tends to increase across the adult life span. This study investigated a contextual explanation for such age differences, relating affect variability and affective reactivity to

  10. A result concerning the stability of some difference equations and its ...

    Indian Academy of Sciences (India)

    M. Senthilkumar (Newgen Imaging) 1461 1996 Oct 15 13:05:22

    Ulam stability problem for eq. (1.1). That is, the difference equation (1.1) is stable in the sense of Hyers and Ulam under the conditions subject to. (2.1) and (2.2). Theorem 2.1. Suppose that functions f, ψ : N × N → R and ϕ satisfy the inequality.

  11. Modeling large offshore wind farms under different atmospheric stability regimes with the Park wake model

    DEFF Research Database (Denmark)

    Pena Diaz, Alfredo; Réthoré, Pierre-Elouan; Rathmann, Ole

    2014-01-01

    We evaluate a modified version of the Park wake model against power data from a west-east row in the middle of the Horns Rev I offshore wind farm. The evaluation is performed on data classified in four different atmospheric stability conditions, for a narrow wind speed range, and a wide range...... turbines on the row and those using the WAsP recommended value closer to the data for the first turbines. It is generally seen that under stable and unstable atmospheric conditions the power deficits are the highest and lowest, respectively, but the wind conditions under both stability regimes...

  12. Colloidal stability of suspended and agglomerate structures of settled carbon nanotubes in different aqueous matrices.

    Science.gov (United States)

    Schwyzer, Irène; Kaegi, Ralf; Sigg, Laura; Nowack, Bernd

    2013-08-01

    Carbon nanotubes (CNTs) are often processed in suspended form and therefore a release of CNT-suspensions into the aquatic environment is plausible. In this study, the behaviour of two physico-chemically very different CNT types in the presence of varying, environmentally relevant calcium-containing media was investigated, including the long-term colloidal stability and the sedimentary structures of settled CNTs. Calcium induced CNT flocculation, however, the stability of the CNTs in the medium did not monotonously decrease with increasing calcium concentration. At intermediate calcium concentrations (0.5-1.5 mM Ca) pre-dispersed CNTs were stabilized in humic acid medium to similar, temporarily even to higher degree than in the absence of calcium. Between pH 5 and 8 only at the highest pH an influence on CNT stability was observed by either promoting flocculation or stabilisation depending on the CNT type. Humic acid stabilized CNTs much better than fulvic acid. Generally, the colloidal stability of the long, thick CNTs with higher surface oxygen content was less affected by the media composition. An investigation of the settled CNT material using analytical electron microscopy revealed the presence of spheroidal, bundle-like and net like CNT-agglomerate structures. Calcium possibly acted as bridging agent linking CNTs in a network like manner, temporarily increasing the CNT concentrations stabilized in the supernatants due to the low density of these structures. With increasing settling time the CNTs formed a fluffy sediment layer at the bottom of the reaction vessels. Bundle-like CNT agglomerates were also observed within that layer of settled CNTs, possibly caused by calcium neutralizing the surface charges. Furthermore, the CNT suspensions contained spheroidal CNT agglomerates, most likely residues from the original dry powder that were not disaggregated. The analysis of settled CNT material is a novelty and illustrates CNT agglomerate structures possibly

  13. Real and visually-induced body inclination differently affect the perception of object stability.

    Directory of Open Access Journals (Sweden)

    Rafael Laboissière

    Full Text Available The prediction of object stability on earth requires the establishment of a perceptual frame of reference based on the direction of gravity. Across three experiments, we measured the critical angle (CA at which an object appeared equally likely to fall over or right itself. We investigated whether the internal representation of the gravity direction, biased by either simulated tilt (rotating visual surround or real body tilt situations, influences in a similar fashion the judgment of stability. In the simulated tilt condition, the estimated CA and the perceived gravity are both deviated in the same direction. In the real tilt condition, the orientation of the body affects the perception of gravity direction but has no effect on the estimated CA. Results suggest that people differently weigh gravity direction information provided by visual motion and by visual polarity cues for estimating the stability of objects.

  14. Stabilization of dimeric β-glucosidase from Aspergillus niger via glutaraldehyde immobilization under different conditions.

    Science.gov (United States)

    Vazquez-Ortega, Perla Guadalupe; Alcaraz-Fructuoso, Maria Teresa; Rojas-Contreras, Juan A; López-Miranda, Javier; Fernandez-Lafuente, Roberto

    2018-03-01

    The dimeric enzyme β-glucosidase from Aspergillus niger has been immobilized on different amino-agarose beads at pH 5 and 7, exploiting the versatility of glutaraldehyde. The stability of the free enzyme depended on enzyme concentration. Immobilization via ion exchange improved enzyme stability/activity, depending on the immobilization pH. However, the enzyme was desorbed in 75 mM NaCl at pH 7 and some stability/enzyme concentration dependence still existed. of these biocatalysts with glutaraldehyde increased enzyme stability (e.g. at pH 5, after incubation under conditions where the enzyme just ionically exchanged was fully inactivated, the activity of the glutaraldehyde treated enzyme remained unaltered). Immobilization on glutaraldehyde pre-activated supports yielded a higher increase in enzyme activity, but the stabilization was lower. While when measuring the enzyme activity at pH 4 there were no changes after immobilization, all immobilized enzymes were more active than the free enzyme at pH 6 and 7 (2-3 times). The Ki/Km ratio did not significantly decrease in any immobilized biocatalysts, and in some cases it worsened in a significant way (by a 9 fold factor using preactivated supports). The new biocatalysts are significantly more stable and avoid enzyme subunit desorption, being the immobilization pH a key point in their design. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Stability analysis of oil yield in oil palm (Elaeis guineensis) progenies in different environments.

    Science.gov (United States)

    Rafii, M Y; Jalani, B S; Rajanaidu, N; Kushairi, A; Puteh, A; Latif, M A

    2012-10-04

    We evaluated 38 dura x pisifera (DP) oil palm progenies in four locations in Malaysia for genotype by environment interaction and genotypic stability studies. The DP progenies derived from crosses between pisifera palms of AVROS, Serdang S27B, Serdang 29/36, and Lever Cameroon were chosen to be the males' parent and Deli dura palms designated as females' parent. All the locations differed in terms of soil physical and chemical properties, and the soil types ranged from coastal clay to inland soils. The genotype by environment interaction and stability of the individual genotypes were analyzed for oil yield trait using several stability techniques. A genotype by environment interaction was detected for oil yield and it had a larger variance component than genotypic variance (σ(2)(gl)/σ(2)(g) = 139.7%). Genotype by environment interaction of oil yield was largely explained by a non-linear relationship between genotypic and environmental values. Overall assessment of individual genotypic stability showed that seven genotypes were highly stable and had consistent performance over the environments for the oil yield trait [total individual genotype stability scored more than 10 and mean oil yielded above the average of the environment (genotype means are more than 34.37 kg·palm(-1)·year(-1))]. These genotypes will be useful for oil palm breeding and tissue culture programs for developing high oil yielding planting materials with stable performance.

  16. Stability analysis of feedforward anticipation optimal flux difference in traffic lattice hydrodynamic theory

    Science.gov (United States)

    Sun, Di-Hua; Zhang, Geng; Zhao, Min; Cheng, Sen-Lin; Cao, Jian-Dong

    2018-03-01

    Recently, the influence of driver's individual behaviors on traffic stability is research hotspot with the fasting developing transportation cyber-physical systems. In this paper, a new traffic lattice hydrodynamic model is proposed with consideration of driver's feedforward anticipation optimal flux difference. The neutral stability condition of the new model is obtained through linear stability analysis theory. The results show that the stable region will be enlarged on the phase diagram when the feedforward anticipation optimal flux difference effect is taken into account. In order to depict traffic jamming transition properties theoretically, the mKdV equation near the critical point is derived via nonlinear reductive perturbation method. The propagation behavior of traffic density waves can be described by the kink-antikink solution of the mKdV equation. Numerical simulations are conducted to verify the analytical results and all the results confirms that traffic stability can be enhanced significantly by considering the feedforward anticipation optimal flux difference in traffic lattice hydrodynamic theory.

  17. Effect of liquid density differences on boiling two-phase flow stability

    International Nuclear Information System (INIS)

    Furuya, Masahiro; Manera, Annalisa; Bragt, David D.B.; Hagen, Tim H.J.J. van der; Kruijf, Willy J.M.de

    2002-01-01

    In order to investigate the effect of considering liquid density dependence on local fluid temperature in the thermal-hydraulic stability, a linear stability analysis is performed for a boiling natural circulation loop with an adiabatic riser. Type-I and Type-II instabilities were to investigate according to Fukuda-Kobori's classification. Type-I instability is dominant when the flow quality is low, while Type-II instability is relevant at high flow quality. Type-II instability is well known as the typical density wave oscillation. Neglecting liquid density differences yields estimates of Type-II instability margins that are too small, due to both a change in system-dynamics features and in the operational point. On the other hand, neglecting liquid density differences yields estimates of Type-I stability margins that are too large, especially due to a change in the operational point. Neglecting density differences is thus non-conservative in this case. Therefore, it is highly recommended to include liquid density dependence on the fluid subcooling in the stability analysis if a flow loop with an adiabatic rise is operated under the condition of low flow quality. (author)

  18. The effect of different drinks on the color stability of different restorative materials after one month

    Science.gov (United States)

    Tuncer, Safa; Demirci, Mustafa; Serim, Merve Efe; Baydemir, Canan

    2015-01-01

    Objectives The aim of this study was to evaluate the effect of three different drinks on the color parameters of four different restorative materials. Materials and Methods Three different composites (Filtek Ultimate Universal Restorative, Filtek Ultimate Flowable, and Filtek Silorane, 3M ESPE) and a polyacid-modified composite resin material (Dyract XP, Dentsply DeTrey GmbH) were evaluated. Eighty-four disc-shaped specimens of 8 mm in diameter and 2 mm in thickness were prepared (n = 21 each). Color coordinates (L*a*b*, ΔL*, Δa*, Δb*, and ΔE*) were measured using a VİTA Easyshade Compact (VİTA Zahnfabrik) after 24 hr of storage (baseline) and after 30 day of storage in three different beverages of black tea, Coca cola, or water (control) (n = 7). In each beverage, the specimens were stored three times a day, one hr each, for 30 day. The color changes (ΔE) were calculated and were analyzed by Kruskal-Wallis and Dunn multiple comparison test. Results The color difference (ΔE*) of the resin materials ranged between 1.31 and 15.28 after 30 day of immersion in the staining solutions. Dyract XP in Coca cola (15.28 ± 2.61) and black tea (12.22 ± 2.73) showed the highest mean ΔE* value after 30 day, followed by Filtek Ultimate Universal Restorative (5.99 ± 1.25) and Filtek Ultimate Flowable (4.71 ± 1.40) in black tea (p storative and Filtek Flowable showed similar color changes in all beverages. PMID:26587410

  19. Effects of different encapsulation agents and drying process on stability of betalains extract.

    Science.gov (United States)

    Ravichandran, Kavitha; Palaniraj, Ravichandran; Saw, Nay Min Min Thaw; Gabr, Ahmed M M; Ahmed, Abdelrahman R; Knorr, Dietrich; Smetanska, Iryna

    2014-09-01

    Red beet plants are rich in betalains that can be used as food natural colorants. Betalains were extracted from red beet and encapsulated with different carrier agents and freeze or spray dried. Effect of different encapsulating agents as maltodextrin, guar gum, gum Arabic, pectin and xanthan gum with different concentration (as encapsulating agents) were studied on the betalain stability. Encapsulated betalains with xanthan gum with maltodextrin showed about 65 % more recovery than the control. Encapsulation showed a higher recovery of betalains during freeze drying by 1.3 times than during spray drying. Spray dried samples has L* (lightness) higher than the freeze dried samples. The variations of maltodextrin with xanthan and guar gum freeze dried have highest chroma value of 21. The stabilization of pure betalain pigments may boost the use of these colouring molecules in the food industry and promote their application.

  20. T-mixer operating with water at different temperatures: Simulation and stability analysis

    Science.gov (United States)

    Siconolfi, L.; Camarri, S.; Salvetti, M. V.

    2018-03-01

    In this paper we investigate the transition from the vortex to the engulfment regime in a T-mixer when the two entering flows have different viscosity. In particular we consider as working fluid water entering the two inlet channels of the mixer at two different temperatures. Contrary to the isothermal case, at low Reynolds numbers the vortex regime shows only a single reflectional symmetry, due to the nonhomogeneous distribution of the viscosity. Increasing the Reynolds number, a symmetry-breaking bifurcation drives the system to a new steady flow configuration, usually called the engulfment regime, similar to what it is possible to observe in an isothermal case. This flow regime is associated with an increase of the mixing between the two inlet streams. It is shown by direct numerical simulation (DNS) and by stability analysis that the engulfment regime is promoted by the temperature difference. Starting from the DNSs, the resulting flow fields are analyzed in detail considering different temperature jumps between the two inlet boundaries. Furthermore, dedicated linear stability analyses are carried out to investigate the instability mechanism associated with the occurrence of the engulfment regime. In particular, similarly to the case without temperature differences, the onset of engulfment is driven by the momentum equation, and the temperature field does not lead to any additional instability mechanism. However, the existence of a temperature field leads to quantitative changes of the stability characteristics and of the resulting flow fields via a variation of the viscosity coefficient.

  1. Martial arts training attenuates arterial stiffness in middle aged adults.

    Science.gov (United States)

    Douris, Peter C; Ingenito, Teresa; Piccirillo, Barbara; Herbst, Meredith; Petrizzo, John; Cherian, Vincen; McCutchan, Christopher; Burke, Caitlin; Stamatinos, George; Jung, Min-Kyung

    2013-09-01

    Arterial stiffness increases with age and is related to an increased risk of coronary artery disease. Poor trunk flexibility has been shown to be associated with arterial stiffness in middle-aged subjects. The purpose of our research study was to measure arterial stiffness and flexibility in healthy middle-aged martial artists compared to age and gender matched healthy sedentary controls. Ten martial artists (54.0 ± 2.0 years), who practice Soo Bahk Do (SBD), a Korean martial art, and ten sedentary subjects (54.7 ± 1.8 years) for a total of twenty subjects took part in this cross-sectional study. Arterial stiffness was assessed in all subjects using pulse wave velocity (PWV), a recognized index of arterial stiffness. Flexibility of the trunk and hamstring were also measured. The independent variables were the martial artists and matched sedentary controls. The dependent variables were PWV and flexibility. There were significant differences, between the SBD practitioners and sedentary controls, in PWV (P = 0.004), in trunk flexibility (P= 0.002), and in hamstring length (P= 0.003). The middle-aged martial artists were more flexible in their trunk and hamstrings and had less arterial stiffness compared to the healthy sedentary controls. The flexibility component of martial art training or flexibility exercises in general may be considered as a possible intervention to reduce the effects of aging on arterial stiffness.

  2. Nonlinear Modeling of Cables with Flexural Stiffness

    Directory of Open Access Journals (Sweden)

    Walter Lacarbonara

    2008-01-01

    Full Text Available A geometrically exact formulation of cables suffering axis stretching and flexural curvature is presented. The dynamical formulation is based on nonlinearly viscoelastic constitutive laws for the tension and bending moment with the additional constitutive nonlinearity accounting for the no-compression condition. A continuation method, combined with a mixed finite-difference spatial discretization, is then employed to path-follow the static responses of cables subject to forces or support displacements. These computations, conducted in the quasistatic regime, are based on cables with linearly elastic material behaviors, whereas the nonlinearity is in the geometric stiffness terms and the no-compression behavior. The finite-difference results have been confirmed employing a weak formulation based on quadratic Lagrangian finite elements. The influence of the flexural stiffness on the nonlinear static responses is assessed comparing the results with those obtained for purely extensible cables. The properties of the frequencies of the linear normal modes of cables with flexural stiffness are also investigated and compared with those of purely extensible cables.

  3. [Color stability of ceromer of different thicknesses and resin adhesive materials of different types after accelerated aging].

    Science.gov (United States)

    Likai, Wang; Yanan, Liu; Yan, Zheng; Pingping, Li

    2015-04-01

    This study aims to investigate the color stability of ceromer with different thicknesses and different types of resin adhesive materials after accelerated aging and provide references for clinical application and selections. Nine groups of experimental samples were used, and each group contained five samples. We made joint samples with ceromer having three different thicknesses (1.00, 0.75, 0.50 mm) combined with three different resin adhesive materials (RelyX Veneer, RelyX Unicem, Filtek Z350 Flow), respectively. All samples were placed into Xenon Lamp Aging Instrument to implement accelerated aging. Spectrophotometer was used to measure the lightness (L*), red green color value (a*), and blue yellow color value (b*) of all samples before and after accelerated aging. The change of lightness (ΔL), red green color value (Δa), blue yellow color value (Δb), and color variation (ΔE) were also calculated. We investigated the influence of ceromer veneer thicknesses and resin adhesive material types on color variation by two-factor analysis of variance. The thickness and type factors showed significant influence on ΔE values, and exhibited interactions (P Ceromer veneer thickness and resin adhesive material types could affect the color stability of ceromer veneer and resin adhesive materials. The changes in lightness and color in ceromer veneer and resin adhesive materials are considered clinically acceptable after accelerated aging.

  4. Stability of serum, plasma and urine osmolality in different storage conditions: Relevance of temperature and centrifugation.

    Science.gov (United States)

    Sureda-Vives, Macià; Morell-Garcia, Daniel; Rubio-Alaejos, Ana; Valiña, Laura; Robles, Juan; Bauça, Josep Miquel

    2017-09-01

    Osmolality reflects the concentration of all dissolved particles in a body fluid, and its measurement is routinely performed in clinical laboratories for the differential diagnosis of disorders related with the hydrolytic balance regulation, the renal function and in small-molecule poisonings. The aim of the study was to assess the stability of serum, plasma and urine osmolality through time and under different common storage conditions, including delayed centrifugation. Blood and urine samples were collected, and classified into different groups according to several preanalytical variables: serum or plasma lithium-heparin tubes; spun or unspun; stored at room temperature (RT), at 4°C or frozen at -21°C. Aliquots from each group were assayed over time, for up to 14days. Statistical differences were based on three different international performance criteria. Whole blood stability was higher in the presence of anticoagulant. Serum osmolality was stable for 2days at RT and 8days at 4°C, while plasma was less stable when refrigerated. Urine stability was 5days at RT, 4days at 4°C and >14days when frozen. Osmolality may be of great interest for the management of several conditions, such as in case of a delay in the clinical suspicion, or in case of problems in sample collection or processing. The ability to obtain reliable results for samples kept up to 14days also offers the possibility to retrospectively assess baseline values for patients which may require it. Copyright © 2017. Published by Elsevier Inc.

  5. Influence of different implant materials on the primary stability of orthodontic mini-implants.

    Science.gov (United States)

    Pan, Chin-Yun; Chou, Szu-Ting; Tseng, Yu-Chuan; Yang, Yi-Hsin; Wu, Chao-Yi; Lan, Ting-Hsun; Liu, Pao-Hsin; Chang, Hong-Po

    2012-12-01

    This study evaluates the influence of different implant materials on the primary stability of orthodontic mini-implants by measuring the resonance frequency. Twenty-five orthodontic mini-implants with a diameter of 2 mm were used. The first group contained stainless steel mini-implants with two different lengths (10 and 12 mm). The second group included titanium alloy mini-implants with two different lengths (10 and 12 mm) and stainless steel mini-implants 10 mm in length. The mini-implants were inserted into artificial bones with a 2-mm-thick cortical layer and 40 or 20 lb/ft(3) trabecular bone density at insertion depths of 2, 4, and 6 mm. The resonance frequency of the mini-implants in the artificial bone was detected with the Implomates(®) device. Data were analyzed by two-way analysis of variance followed by the Tukey honestly significant difference test (α = 0.05). Greater insertion depth resulted in higher resonance frequency, whereas longer mini-implants showed lower resonance frequency values. However, resonance frequency was not influenced by the implant materials titanium alloy or stainless steel. Therefore, the primary stability of a mini-implant is influenced by insertion depth and not by implant material. Insertion depth is extremely important for primary implant stability and is critical for treatment success. Copyright © 2012. Published by Elsevier B.V.

  6. Influence of different implant materials on the primary stability of orthodontic mini-implants

    Directory of Open Access Journals (Sweden)

    Chin-Yun Pan

    2012-12-01

    Full Text Available This study evaluates the influence of different implant materials on the primary stability of orthodontic mini-implants by measuring the resonance frequency. Twenty-five orthodontic mini-implants with a diameter of 2 mm were used. The first group contained stainless steel mini-implants with two different lengths (10 and 12 mm. The second group included titanium alloy mini-implants with two different lengths (10 and 12 mm and stainless steel mini-implants 10 mm in length. The mini-implants were inserted into artificial bones with a 2-mm-thick cortical layer and 40 or 20 lb/ft3 trabecular bone density at insertion depths of 2, 4, and 6 mm. The resonance frequency of the mini-implants in the artificial bone was detected with the Implomates® device. Data were analyzed by two-way analysis of variance followed by the Tukey honestly significant difference test (α = 0.05. Greater insertion depth resulted in higher resonance frequency, whereas longer mini-implants showed lower resonance frequency values. However, resonance frequency was not influenced by the implant materials titanium alloy or stainless steel. Therefore, the primary stability of a mini-implant is influenced by insertion depth and not by implant material. Insertion depth is extremely important for primary implant stability and is critical for treatment success.

  7. Long-term monitoring of stream bank stability under different vegetation cover

    Science.gov (United States)

    Krzeminska, Dominika; Skaalsveen, Kamilla; Kerkhof, Tjibbe

    2017-04-01

    Vegetated buffer zones are common environmental measures in many countries, including Norway. The presence of riparian vegetation on stream banks not only provides ecological benefits but also influence bank slope stability, through several complex interactions between riparian vegetation and hydro - mechanical processes. The hydrological processes associated with slope stability are complex and yet difficult to quantify, especially because their transient effects (e.g. changes throughout the vegetation life cycle). Additionally, there is very limited amount of field scale research focusing on investigation of coupled hydrological and mechanical influence of vegetation on stream bank behavior, accounting for both seasonal time scale and different vegetation type, and none dedicated to marine clay soils (typically soil for Norway). In order to fill this gap we established continues, long term hydrogeological monitoring o selected cross - section within stream bank, covered with different types of vegetation, typical for Norwegian agriculture areas (grass, shrubs, and trees). The monitoring involves methods such as spatial and temporal monitoring of soil moisture conditions, ground water level and fluctuation of water level in the stream. Herein we will present first 10 months of monitoring data: observed hydrological trends and differences between three cross - sections. Moreover, we will present first modelling exercises that aims to estimate stream banks stability with accounting on presence of different vegetation types using BSTEM and HYDRUS models. With this presentation, we would like to stimulate the discussion and get feedback that could help us to improve both, our experimental set up and analysis approach.

  8. Comparative performance of collagen nanofibers electrospun from different solvents and stabilized by different crosslinkers.

    Science.gov (United States)

    Fiorani, Andrea; Gualandi, Chiara; Panseri, Silvia; Montesi, Monica; Marcacci, Maurilio; Focarete, Maria Letizia; Bigi, Adriana

    2014-10-01

    Collagen electrospun scaffolds well reproduce the structure of the extracellular matrix (ECM) of natural tissues by coupling high biomimetism of the biological material with the fibrous morphology of the protein. Structural properties of collagen electrospun fibers are still a debated subject and there are conflicting reports in the literature addressing the presence of ultrastructure of collagen in electrospun fibers. In this work collagen type I was successfully electrospun from two different solvents, trifluoroethanol (TFE) and dilute acetic acid (AcOH). Characterization of collagen fibers was performed by means of SEM, ATR-IR, Circular Dichroism and WAXD. We demonstrated that collagen fibers contained a very low amount of triple helix with respect to pristine collagen (18 and 16% in fibers electrospun from AcOH and TFE, respectively) and that triple helix denaturation occurred during polymer dissolution. Collagen scaffolds were crosslinked by using 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC), a commonly employed crosslinker for electrospun collagen, and 1,4-butanediol diglycidyl ether (BDDGE), that was tested for the first time in this work as crosslinking agent for collagen in the form of electrospun fibers. We demonstrated that BDDGE successfully crosslinked collagen and preserved at the same time the scaffold fibrous morphology, while scaffolds crosslinked with EDC completely lost their porous structure. Mesenchymal stem cell experiments demonstrated that collagen scaffolds crosslinked with BDDGE are biocompatible and support cell attachment.

  9. [Stability in drinking and surface water of nine virus species from different genera (author's transl)].

    Science.gov (United States)

    Mahnel, H; Ottis, K; Herlyn, M

    1977-01-01

    The stability of nine viruses, Aujeszky, Sindbis, Vesicular Stomatitis, Newcastle Disease, Vaccinia, FMD, HCC, Reo and Teschen virus in drinking and surface water was investigated comparatively at temperatures of 9 and 15 degrees C as well as the influence of water factors like seasonal difference in temperature, pH value, hardness and sort of water. The results can be summarized as follows: 1. At temperatures of 9 to 15 degrees C the majority of the viruses remained stabil in natural water for an astonishing long time. 2. Starting with virus concentration of about 10(4) infectious units per ml Teschen, Vaccinia, Reo, HCC and ND virus could mostly be demonstrated in water longer than 200 days and FMD, Aujeszky, Vesicular Stomatitis and Sindbis virus for 20 to 50 days on average at 9 degrees C. The stability of the viruses investigated decreased in water in the named turn. 3. Based on these results it can be assumed that under natural conditions with very low virus content of some particles the labile viruses such as Toga, Herpes, Rhabdo and pH labile Picorna remain infectious in water for some days. They should not have any importance as water contaminants. More resistant viruses like Paramyxo may keep infectious for weeks and very stabile viruses such as Entero, Reo, Adeno and Pox viruses several weeks to months. 4. As to factors temperature, pH, hardness and sort of water-within the naturally differing range-only the temperature and only in the case of less resistant viruses showed significant influence on the virus stability in water.

  10. CLINICAL EVALUATION OF THE STABILITY OF IMPLANTS PLACED AT DIFFERENT SUPRACRESTAL LEVELS

    Directory of Open Access Journals (Sweden)

    B. Alper GÜLTEKIN

    2016-10-01

    Full Text Available Purpose: The aim of this study was to evaluate the stability during healing and before loading of implants placed at two different supracrestal levels according to their collar texture. Materials and Methods: This retrospective study included patients who received posterior implants with the same macro design. Implants with a machined collar were placed 0.3 mm above the crestal bone (M group, while those with a laser-microtextured collar were placed 1 mm above the crestal bone (L group. All implants healed in a single stage with healing abutments. Implant stability quotient (ISQ values were determined using resonance frequency analysis immediately after implant placement during surgery and after 1, 4, 8, and 12 weeks after surgery. Other evaluated factors for stability included the implant diameter and length and the site of placement (maxilla or mandible. Results: In total, 103 implants (47 L, 56 M were evaluated. The median ISQ values at baseline and 1 week after placement were significantly higher for the M group than for the L group (p=0.006 and p=0.031, respectively. There were no differences at the subsequent observation points. The ISQ value was higher for wide-diameter than regular diameter (p=0.001 and mandibular implants than maxillary implants (p=0.001 at 0-8. weeks; p=0.012 at 12 weeks at all observation points. When diameter data were neglected, the implant length did not influence the ISQ value at all observation points. Conclusion: Our results suggest that submerging implant more inside bone may only influence primary stability. Moreover, the implant diameter and site of placement influence primary and secondary stability before loading, whereas the implant length does not when its diameter is not accounted for.

  11. Lower Extremity Stiffness Changes following Concussion in Collegiate Football Players

    Science.gov (United States)

    DuBose, Dominique F.; Herman, Daniel C.; Jones, Debi L.; Tillman, Susan M.; Clugston, James R.; Pass, Anthony; Hernandez, Jorge A.; Vasilopoulos, Terrie; Horodyski, MaryBeth; Chmielewski, Terese L.

    2016-01-01

    Purpose Recent research indicates that a concussion increases risk of musculoskeletal injury. Neuromuscular changes following concussion might contribute to the increased risk of injury. Many studies have examined gait post-concussion, but few studies have examined more demanding tasks. This study compared changes in stiffness across the lower extremity, a measure of neuromuscular function, during a jump-landing task in athletes with a concussion (CONC) to uninjured athletes (UNINJ). Methods Division I football players (13 CONC, 26 UNINJ) were tested pre- and post-season. A motion-capture system recorded subjects jumping on one limb from a 25.4 cm step onto a force plate. Hip, knee, and ankle joint stiffness were calculated from initial contact to peak joint flexion using the regression line slopes of the joint moment versus joint angle plots. Leg stiffness was (peak vertical ground reaction force (PVGRF)/lower extremity vertical displacement) from initial contact to PVGRF. All stiffness values were normalized to bodyweight. Values from both limbs were averaged. General linear models compared group (CONC, UNINJ) differences in the changes of pre- and post-season stiffness values. Results Average time from concussion to post-season testing was 49.9 days. The CONC group showed an increase in hip stiffness (p=0.03), a decrease in knee (p=0.03) and leg stiffness (p=0.03), but no change in ankle stiffness (p=0.65) from pre- to post-season. Conclusion Lower extremity stiffness is altered following concussion, which could contribute to an increased risk of lower extremity injury. These data provide further evidence of altered neuromuscular function after concussion. PMID:27501359

  12. Lower Extremity Stiffness Changes after Concussion in Collegiate Football Players.

    Science.gov (United States)

    Dubose, Dominique F; Herman, Daniel C; Jones, Deborah L; Tillman, Susan M; Clugston, James R; Pass, Anthony; Hernandez, Jorge A; Vasilopoulos, Terrie; Horodyski, Marybeth; Chmielewski, Terese L

    2017-01-01

    Recent research indicates that a concussion increases the risk of musculoskeletal injury. Neuromuscular changes after concussion might contribute to the increased risk of injury. Many studies have examined gait postconcussion, but few studies have examined more demanding tasks. This study compared changes in stiffness across the lower extremity, a measure of neuromuscular function, during a jump-landing task in athletes with a concussion (CONC) to uninjured athletes (UNINJ). Division I football players (13 CONC and 26 UNINJ) were tested pre- and postseason. A motion capture system recorded subjects jumping on one limb from a 25.4-cm step onto a force plate. Hip, knee, and ankle joint stiffness were calculated from initial contact to peak joint flexion using the regression line slopes of the joint moment versus the joint angle plots. Leg stiffness was (peak vertical ground reaction force [PVGRF]/lower extremity vertical displacement) from initial contact to peak vertical ground reaction force. All stiffness values were normalized to body weight. Values from both limbs were averaged. General linear models compared group (CONC, UNINJ) differences in the changes of pre- and postseason stiffness values. Average time from concussion to postseason testing was 49.9 d. The CONC group showed an increase in hip stiffness (P = 0.03), a decrease in knee (P = 0.03) and leg stiffness (P = 0.03), but no change in ankle stiffness (P = 0.65) from pre- to postseason. Lower extremity stiffness is altered after concussion, which could contribute to an increased risk of lower extremity injury. These data provide further evidence of altered neuromuscular function after concussion.

  13. Problem of the gyroscopic stabilizer damping

    Directory of Open Access Journals (Sweden)

    Šklíba J.

    2009-06-01

    Full Text Available The gyroscopic stabilization of the vibro-isolation system of an ambulance couch is analyzed. This paper follows several previous papers, which concern the derivation of the complete system of appropriate differential equations and some analyses were provided there, as well. It was supposed that mass matrix, stiffness matrix and gyroscope impulse-moment remain constant and the stability of equilibrium state was solved according to different alternatives of the damping and of the radial correction. Little known theorems of the stability were used there. With respect to these theorems, vibro-isolation systems can be classified according to odd or even number of generalized coordinates.

  14. Influence of different implant materials on the primary stability of orthodontic mini-implants

    OpenAIRE

    Chin-Yun Pan; Szu-Ting Chou; Yu-Chuan Tseng; Yi-Hsin Yang; Chao-Yi Wu; Ting-Hsun Lan; Pao-Hsin Liu; Hong-Po Chang

    2012-01-01

    This study evaluates the influence of different implant materials on the primary stability of orthodontic mini-implants by measuring the resonance frequency. Twenty-five orthodontic mini-implants with a diameter of 2 mm were used. The first group contained stainless steel mini-implants with two different lengths (10 and 12 mm). The second group included titanium alloy mini-implants with two different lengths (10 and 12 mm) and stainless steel mini-implants 10 mm in length. The mini-implants w...

  15. Stability of Nb-Ti Rutherford Cables Exhibiting Different Contact Resistances

    CERN Document Server

    Willering, G P; Kaugerts, J; ten Kate, H H J

    2008-01-01

    Dipole magnets for the so-called SIS-300 heavy-ion synchrotron at GSI are designed to generate 6 T with a field sweep rate of 1 T/s. It is foreseen to wind the magnets with a 36 strands Nb-Ti Rutherford cable. An important issue in the cable design is sufficiently low AC loss and stability as well. In order to keep the AC loss at low level, the contact resistance between crossing strands Rc is kept high by putting a stainless steel core in the cable. The contact resistance between adjacent strands Ra is controlled by oxidation of the Sn-Ag coating of the strands, like in the LHC. In order to investigate the effect of Ra on the stability of the cable, we prepared four samples with different Ra by varying the heat treatment and applying a soldering technique, resulting in values between 1 mW to 9 mW. The stability of each sample against transient point-like heat pulses was measured. The results of the stability experiments and a comparison with calculations using the network model CUDI are presented...

  16. Water stability of soil aggregates in different systems of Chernozem tillage

    Directory of Open Access Journals (Sweden)

    Jaroslava Bartlová

    2011-01-01

    Full Text Available Effects of various agrotechnical measures on macrostructural changes in the ploughing layer and subsoil were studied within the period of 2008–2010. Soil macrostructure was evaluated on the base of water stability of soil aggregates. Altogether three variants of soil tillage were established, viz. ploughing to the depth of 0.22 m (Variant 1, deep soil loosening to the depth of 0.35–0.40 m (Variant 2, and shallow tillage to the depth of 0.15 m (Variant 3. Experiments were established on a field with Modal Chernozem in the locality Hrušovany nad Jevišovkou (maize-growing region, altitude of 210 m, average annual sum of precipitation 461 mm. In the first experimental year, winter rape was the cultivated crop and it was followed by winter wheat, maize and spring wheat in subsequent years. The aim of this study was to evaluate effects of different methods of tillage on water stability of soil aggregates and on yields of individual crops. An overall analysis of results revealed a positive effect of cultivation without ploughing on water stability of soil aggregates. In the variant with ploughing was found out a statistically significant decrease of this stability. At the same time it was also found out that both minimum tillage and deep soil loosening showed a positive effect on yields of crops under study (above all of maize and winter wheat.

  17. Stability of Porcine Epidemic Diarrhea Virus on Fomite Materials at Different Temperatures

    OpenAIRE

    Yonghyan Kim; Venkatramana D. Krishna; Montserrat Torremorell; Sagar M. Goyal; Maxim C.-J. Cheeran

    2018-01-01

    Indirect transmission of porcine epidemic diarrhea virus (PEDV) ensues when susceptible animals contact PEDV-contaminated fomite materials. Although the survival of PEDV under various pHs and temperatures has been studied, virus stability on different fomite surfaces under varying temperature conditions has not been explored. Hence, we evaluated the survival of PEDV on inanimate objects routinely used on swine farms such as styrofoam, rubber, plastic, coveralls, and other equipment. The titer...

  18. A Portable Stiffness Measurement System

    Directory of Open Access Journals (Sweden)

    Onejae Sul

    2017-11-01

    Full Text Available A new stiffness measurement method is proposed that utilizes the lateral deformation profile of an object under indentation. The system consists of a force measurement module between a pair of equidistant touch sensing modules. Unique feature of the method is that by adjusting the touch module separation, indenter protrusion, and spring constant of the force sensing module, one can choose a desired sensing range for the force module. This feature helps to enhance the stiffness differentiation between objects of similar hardness and avoids measurement saturation. We devised a portable measurement system based on the method, and tested its performance with several materials including polymer foams and human skin.

  19. Research on differences and correlation between tensile, compression and flexural moduli of cement stabilized macadam

    Directory of Open Access Journals (Sweden)

    Yi Yang

    2017-07-01

    Full Text Available In order to reveal the differences and conversion relations between the tensile, compressive and flexural moduli of cement stabilized macadam, in this paper, we develop a new test method for measuring three moduli simultaneously. By using the materials testing system, we test three moduli of the cement stabilized macadam under different loading rates, propose a flexural modulus calculation formula which considers the shearing effect, reveal the change rules of the tensile, compression and flexural moduli with the loading rate and establish the conversion relationships between the three moduli. The results indicate that: three moduli become larger with the increase of the loading rate, showing a power function pattern; with the shear effect considered, the flexural modulus is increased by 47% approximately over that in the current test method; the tensile and compression moduli of cement stabilized macadam are significantly different. Therefore, if only the compression modulus is used as the structural design parameter of asphalt pavement, there will be a great deviation in the analysis of the load response. In order to achieve scientific design and calculation, the appropriate design parameters should be chosen based on the actual stress state at each point inside the pavement structure.

  20. Addition of carrageenan at different stages of winemaking for white wine protein stabilization.

    Science.gov (United States)

    Marangon, Matteo; Stockdale, Vanessa J; Munro, Peter; Trethewey, Timra; Schulkin, Alex; Holt, Helen E; Smith, Paul A

    2013-07-03

    Carrageenan added at different stages of winemaking was assessed for its protein removal and impact on wine heat stability and on the chemical and sensorial profile of the wines. Carrageenan was added to a Semillon during fermentation and after fermentation and to finished wines, and the effect of each addition was compared to that of bentonite fining at the same time point. Data on protein concentration, heat stability, and bentonite requirement indicate that when added at the correct dosage carrageenan was very effective in stabilizing wines at dosages at least three times lower than those of bentonite. In addition, carrageenan treatment did not cause an increase in lees volume relative to bentonite and resulted in very similar chemical parameters to the unfined and bentonite-treated wine. Sensorially, although carrageenan-treated wine was significantly different from the unfined wine, the magnitude of difference did not vary significantly when compared to bentonite treatment. The feasibility of carrageenan use in a winery production setting will need to be determined by individual wineries, as technical issues including frothing, slower filterability, and risk of overfining will need to be considered relative to the benefits, particularly when carrageenan is used before or during fermentation.

  1. Differences in Pornography Use Among Couples: Associations with Satisfaction, Stability, and Relationship Processes.

    Science.gov (United States)

    Willoughby, Brian J; Carroll, Jason S; Busby, Dean M; Brown, Cameron C

    2016-01-01

    The present study utilized a sample of 1755 adult couples in heterosexual romantic relationships to examine how different patterns of pornography use between romantic partners may be associated with relationship outcomes. While pornography use has been generally associated with some negative and some positive couple outcomes, no study has yet explored how differences between partners may uniquely be associated with relationship well-being. Results suggested that greater discrepancies between partners in pornography use were related to less relationship satisfaction, less stability, less positive communication, and more relational aggression. Mediation analyses suggested that greater pornography use discrepancies were primarily associated with elevated levels of male relational aggression, lower female sexual desire, and less positive communication for both partners which then predicted lower relational satisfaction and stability for both partners. Results generally suggest that discrepancies in pornography use at the couple level are related to negative couple outcomes. Specifically, pornography differences may alter specific couple interaction processes which, in turn, may influence relationship satisfaction and stability. Implications for scholars and clinicians interested in how pornography use is associated with couple process are discussed.

  2. Music decreases aortic stiffness and wave reflections.

    Science.gov (United States)

    Vlachopoulos, Charalambos; Aggelakas, Angelos; Ioakeimidis, Nikolaos; Xaplanteris, Panagiotis; Terentes-Printzios, Dimitrios; Abdelrasoul, Mahmoud; Lazaros, George; Tousoulis, Dimitris

    2015-05-01

    Music has been related to cardiovascular health and used as adjunct therapy in patients with cardiovascular disease. Aortic stiffness and wave reflections are predictors of cardiovascular risk. We investigated the short-term effect of classical and rock music on arterial stiffness and wave reflections. Twenty healthy individuals (22.5±2.5 years) were studied on three different occasions and listened to a 30-min music track compilation (classical, rock, or no music for the sham procedure). Both classical and rock music resulted in a decrease of carotid-femoral pulse wave velocity (PWV) immediately after the end of music listening (all pclassical or rock music in a more sustained way (nadir by 6.0% and 5.8%, respectively, at time zero post-music listening, all pmusic preference was taken into consideration, both classical and rock music had a more potent effect on PWV in classical aficionados (by 0.20 m/s, p=0.003 and 0.13 m/s, p=0.015, respectively), whereas there was no effect in rock aficionados (all p=NS). Regarding wave reflections, classical music led to a more potent response in classical aficionados (AIx decrease by 9.45%), whereas rock led to a more potent response to rock aficionados (by 10.7%, all pMusic, both classical and rock, decreases aortic stiffness and wave reflections. Effect on aortic stiffness lasts for as long as music is listened to, while classical music has a sustained effect on wave reflections. These findings may have important implications, extending the spectrum of lifestyle modifications that can ameliorate arterial function. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  3. Water retention properties of stiff silt

    Directory of Open Access Journals (Sweden)

    Barbara Likar

    2017-06-01

    Full Text Available Recent research into the behaviour of soils has shown that it is in fact much more complex than can be described by the mechanics of saturated soils. Nowadays the trend of investigations has shifted towards the unsaturated state. Despite the signifiant progress that has been made so far, there are still a lot of unanswered questions related to the behaviour of unsaturated soils. For this reason, in the fild of geotechnics some new concepts are developed, which include the study of soil suction. Most research into soil suction has involved clayey and silty material, whereas up until recently no data have been available about measurements in very stiff preconsolidated sandy silt. Very stiff preconsolidated sandy silt is typical of the Krško Basin, where it is planned that some very important geotechnical structures will be built, so that knowledge about the behaviour of such soils at increased or decreased water content is essential. Several different methods can be used for soil suction measurements. In the paper the results of measurements carried out on very stiff preconsolidated sandy silt in a Bishop - Wesley double-walled triaxial cell are presented and compared with the results of soil suction measurements performed by means of a potentiometer (WP4C. All the measurement results were evaluated taking into account already known results given in the literature, using the three most commonly used mathematical models. Until now a lot of papers dealing with suction measurements in normal consolidated and preconsolidated clay have been published. Measurements on very stiff preconsolidated sandy silt, as presented in this paper were not supported before.

  4. Rotational and peak torque stiffness of rugby shoes.

    Science.gov (United States)

    Ballal, Moez S; Usuelli, Federico Giuseppe; Montrasio, Umberto Alfieri; Molloy, Andy; La Barbera, Luigi; Villa, Tomaso; Banfi, Giuseppe

    2014-09-01

    Sports people always strive to avoid injury. Sports shoe designs in many sports have been shown to affect traction and injury rates. The aim of this study is to demonstrate the differing stiffness and torque in rugby boots that are designed for the same effect. Five different types of rugby shoes commonly worn by scrum forwards were laboratory tested for rotational stiffness and peak torque on a natural playing surface generating force patterns that would be consistent with a rugby scrum. The overall internal rotation peak torque was 57.75±6.26 Nm while that of external rotation was 56.55±4.36 Nm. The Peak internal and external rotational stiffness were 0.696±0.1 and 0.708±0.06 Nm/deg respectively. Our results, when compared to rotational stiffness and peak torques of football shoes published in the literature, show that shoes worn by rugby players exert higher rotational and peak torque stiffness compared to football shoes when tested on the same natural surfaces. There was significant difference between the tested rugby shoes brands. In our opinion, to maximize potential performance and lower the potential of non-contact injury, care should be taken in choosing boots with stiffness appropriate to the players main playing role. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Numerical stability of the Saul'yev finite difference algorithms for electrochemical kinetic simulations: Matrix stability analysis for an example problem involving mixed boundary conditions

    DEFF Research Database (Denmark)

    Bieniasz, Leslaw K.; Østerby, Ole; Britz, Dieter

    1995-01-01

    The stepwise numerical stability of the Saul'yev finite difference discretization of an example diffusional initial boundary value problem from electrochemical kinetics has been investigated using the matrix method of stability analysis. Special attention has been paid to the effect...... of unconditional stability of the Saul'yev algorithms, reported in the literature, the left-right variant of the Saul'yev algorithm becomes unstable for large values of the dimensionless diffusion parameter λ = δt/h2, under mixed boundary conditions. This limitation is not, however, severe for most practical...

  6. Colour Stability and Lipid Oxidation of Beef Longissimus Lumborum under Different Packaging Conditions

    Directory of Open Access Journals (Sweden)

    Bonny Dadji Stéphane Serge

    2017-12-01

    Full Text Available The objective of this study was to investigate the colour stability and lipid oxidation of beef under different packaging methods. The muscles longissimus lumborum were randomly packed in vacuum or modified atmosphere packaging (MAP, 80% O2, 20% CO2. Both packages were aged at 4°C for 7, 14 and 21 days. After each ageing time, samples were displayed in a refrigerator for 2, 4 and 6 days. Colour stability, lipid oxidation and their correlation were determined. Beef under vacuum packaging showed higher a* values on 7, 14, and 21 days of ageing and lower L* values on 14 and 21 days of ageing than beef in MAP (p<0.05. Lower a* values were observed in the samples packed in MAP, then displayed compared to samples packed in vacuum, then displayed after 21 days of ageing time on day 2, 4 and 6 of the display period (p<0.05. Thiobarbituric acid reactive substances (TBARS increased significantly in MAP compared to vacuum during 7, 14, and 21 days of ageing (p<0.05. An increase of TBARS was also observed during display after 14 and 21 days of ageing in samples packed in MAP, then displayed. Furthermore, a significant difference (p<0.05 was observed between samples packed in MAP and vacuum in peroxide value on 14 days of ageing. Lipid oxidation was observed mainly in the samples packed in MAP compared to vacuum, and positively correlated with results on colour stability.

  7. THE EFFECT OF DIFFERENT EXPOSURE CONDITIONS ON THE CHARACTERISTICS OF THE MINERAL MATRICES STABILIZING HAZARDOUS WASTE

    Directory of Open Access Journals (Sweden)

    Anna Król

    2016-05-01

    Full Text Available Mineral binders are more and more often used in the difficult process of disposal of inorganic hazardous waste containing heavy metals. Composites solidifying hazardous waste are deposited in the environment, which exposes them to the interaction of many variable factors. The paper presents the effect of different exposure conditions on physical and mechanical properties of concrete stabilizing galvanic sewage sludge (GO. The effect of the cyclic freezing and thawing, carbon dioxide (carbonation and high temperatures (200 °C, 400 °C, 600 °C on the properties of stabilizing matrices has been described. The results, in most cases, show a loss of durability of composites solidifying sewage sludge (GO by the influence of external conditions.

  8. Gender Differences in Static and Dynamic Postural Stability of Soldiers in the Army's 101st Airborne Division (Air Assault).

    Science.gov (United States)

    Sell, Timothy C; Lovalekar, Mita T; Nagai, Takashi; Wirt, Michael D; Abt, John P; Lephart, Scott M

    2018-03-01

    Postural stability is essential for injury prevention and performance. Differences between genders may affect training focus. To examine static and dynamic postural stability in male and female soldiers. Descriptive laboratory study. Biomechanics laboratory. 25 healthy female soldiers (26.4 ± 5.3 y) and 25 healthy male soldiers (26.4 ± 4.9 y) matched on physical demand rating and years of service from the Army's 101st Airborne Division (Air Assault). Each person underwent static and dynamic postural stability testing. Standard deviation of the ground reaction forces during static postural stability and the dynamic stability index for dynamic postural stability. Female soldiers had significantly better static postural stability than males but no differences were observed in dynamic postural stability. Postural stability is important for injury prevention, performance optimization, and tactical training. The differences observed in the current study may indicate the need for gender-specific training emphasis on postural stability.

  9. Biological and physical factors controlling aggregate stability under different climatic conditions in Southern Spain.

    Science.gov (United States)

    Ángel Gabarrón-Galeote, Miguel; Damián Ruiz-Sinoga, Jose; Francisco Martinez-Murillo, Juan; Lavee, Hanoch

    2013-04-01

    Soil aggregation is a key factor determining the soil structure. The presence of stable aggregates is essential to maintain a good soil structure, that in turn plays an important role in sustaining agricultural productivity and preserving environmental quality. A wide range of physical and biological soil components are involved in the aggregate formation and stabilization, namely clay mineral content; the quantity and quality of organic matter, that can be derived from plants, fungal hyphae, microorganism and soil animals; and the soil water content. Climatic conditions, through their effect on soil water content, vegetation cover and organic matter content, are supposed to affect soil aggregation. Thus the main objective of this research is to analyse the effect of organic matter, clay content and soil water content on aggregate stability along a climatic transect in Southern Spain. This study was conducted in four catchments along a pluviometric gradient in the South of Spain (rainfall depth decreases from west to east from more than 1000 mm year-1 to less than 300 mm year-1) and was based on a methodology approximating the climatic gradient in Mediterranean conditions. The selected sites shared similar conditions of geology, topography and soil use, which allowed making comparisons among them and relating the differences to the pluviometric conditions. In February 2007, 250 disturbed and undisturbed samples from the first 5cm of the soil were collected along the transect. We measured the aggregate stability, organic matter, clay content and bulk density of every sample. In the field we measured rainfall, air temperature, relative humidity, wind speed, wind direction, solar radiation, potential evapotranspiration, soil water content, vegetation cover and presence of litter. Our results suggest that aggregate stability is a property determined by a great number of highly variable factors, which can make extremely difficult to predict its behavior taking in

  10. REAL-TIME STABILITY AND PROFILE COMPARISON MEASUREMENTS BETWEEN TWO DIFFERENT LTPS.

    Energy Technology Data Exchange (ETDEWEB)

    QIAN, S.; WANG, D.J.

    2005-07-31

    The Long Trace Profiler (LTP) is a precise angle measurement instrument, with a sensitivity and accuracy that can be in the sub-micron radian range. LTP characteristics depend on the particular LTP system schematic design, and the quality of components and assembly. The conditions of temperature, alignment, and mirror support during the measurement process vary between different laboratories, which influences significantly the test repeatability and accuracy. In this paper we introduce a direct comparison method to test the same object at the same point in the same environment at the same time by using two LTPs, which significantly increases the reliability of the comparison. A compact, portable LTP (PTLTP), which can be carried to different laboratories around the world, is used for comparison testing. Stability Comparison experiments between the LTP II at the National Synchrotron Radiation Research Center (NSRRC), and the PTLTP of Brookhaven National Laboratory (BNL) reveal significant differences in performance between the instruments. The experiment is set up so that each optical head simultaneously records both its own sample probe beam and also the probe beam from the other optical head. The two probe beams are reflected from same point on the mirror. Tests show that the stability of the PTLTP with a monolithic beam splitter is 10 times better than the stability of the LTP II which has a separated beam splitter unit. A scheme for comparing scanning measurements of a mirror is introduced. Experimental results show a significant difference between the two LTPs due mainly to distortions in the optical components inside the optical head. A new scheme is proposed for further mirror comparison scanning tests.

  11. [From stiff man syndrome to stiff person spectrum disorders].

    Science.gov (United States)

    Meinck, H-M; Balint, B

    2018-02-01

    The identification of new variants of the stiff man syndrome (SMS) and of new, probably pathogenic neuronal autoantibodies has led to the concept of stiff man (or person) spectrum disorders (SPSD). This is an expanding group of rare chronic autoimmune inflammatory diseases of the central nervous system (CNS) that have in common the main symptoms of fluctuating rigidity and spasms with pronounced stimulus sensitivity. These core symptoms are mandatory and can be accompanied by a wide variety of other neurological signs. The SPSDs are associated with autoantibodies directed against neuronal proteins that attenuate excitability. Neither clinical phenotypes nor the course of SPSD correlate closely with the antibody status. The treatment of these diseases aims at maintaining mobility and is pragmatically oriented to the degree of impediment and comprises antispastic, anticonvulsant and immunomodulating or immunosuppressive medication strategies.

  12. Captopril 25 mg tablets stability assessment in different primary packing materials

    Directory of Open Access Journals (Sweden)

    Flávia Costa Mendes Paiva

    2017-11-01

    Full Text Available Introduction: Packaging is used to provide protection and information, from the production to the administration of a formulation. It is essential to define the primary packaging, for keeping the therapeutic efficacy of drugs, safety of users and for protecting drugs from instability. Objectives: The main objective of this study was to assess the stability of captopril 25 mg tablets in different primary packaging materials. Method: The characterization (IR, DSC and physical tests of the packaging materials used for captopril was carried out prior to the manufacture of tablets. Tablets were also characterized by physical-chemical analysis, comparative dissolution profile and stability studies. Results: The characterization of packaging materials was crucial for understanding the behavior of captopril when packed in each material. Materials with significant barrier, as blisters PVC/PVdC 90 g.m-² and hard aluminum and PVC/PE/PVdC and hard aluminum showed satisfactory results in a second stage, S2. On the contrary, lower barrier materials as blisters PVC/PVdC 40 g.m-² and hard aluminum did not present dissolution analysis S2. Conclusions: The aluminum strip presented the best results. And the batch in glass bottle, although packaged in excellent material, was disapproved in accelerated stability.

  13. Dimensional Stability and Acuracy of Silicone - Based Impression Materials Using Different Impression Techniques - A Literature Review.

    Science.gov (United States)

    Naumovski, Borjan; Kapushevska, Biljana

    2017-09-01

    A quality-made dental impression is a prerequisite for successful fixed-prosthodontic fabrication and is directly dependent on the dimensional stability, accuracy and flexibility of the elastomeric impression materials, as well as on the appropriately used impression techniques. The purpose of this paper is to provide a literature review of relevant scientific papers which discuss the use of various silicone impression materials, different impression techniques and to evaluate their impact on the dimensional stability and accuracy of the obtained impressions. Scientific papers and studies were selected according to the materials used, the sample size, impression technique, storage time, type of measurements and use of spacer for the period between 2002 and 2016. In the reviewed literature several factors that influence the dimensional stability and accuracy of silicone impression molds, including the choice of the type of viscosity, impression material thickness, impression technique, retention of the impression material on the tray, storage time before the casting, number of castings, hydrophilicity of the material, release of byproducts, contraction after polymerization, thermal contraction and incomplete elastic recovery were presented. The literature review confirmed the lack of standardization of methodologies applied in the research and their great diversity. All findings point to the superiority of the addition silicone compared to the condensation silicone.

  14. Comparative study of different techniques of composting and their stability evaluation in municipal solid waste

    International Nuclear Information System (INIS)

    Iqbal, M.K.; Khan, R.A.; Nadeem, A.; Hussnain, A.

    2012-01-01

    Spatial differences in the physical and chemical characteristics related to maturity of composted organic matter are strongly influenced by composting methods. For evaluation of compost maturity three locally fabricated composters (aerobic, mixed type, anaerobic) processes were examined at seven days interval up to 91 days by loading MSW along with bulking agent. Gradual changes in physico chemical characteristics (temperature, pH, moisture, CEC, humification) related to stability and maturity of compost were studied and compared. Increase in ammonia nitrogen level due to rise in temperature was maximum in aerobic process. Substantial increase in CEC in aerobic process was earlier which leads to establish the optimal degree of maturity as compared to other processes. FA and HI decrease rapidly as composting progressed. Optimal level in stability and maturity parameters like C:N, HA, DH and HR were attained earlier in aerobic process as compared to mixed type and anaerobic processes due to continuous aeration. The parameters (HR, DH, FA, HA), which indicate the compost stability were correlated among themselves. The parameters defining maturity such as CEC, ammonia nitrate and C:N ratio were also related to above mention parameters. The compost from the aerobic process provided good humus and micro nutrients. Result from this study will assist in method optimization and quality of the compost product. (author)

  15. Effects of gamma irradiation on optical properties of polycarbonate: different formulations with commercial stabilizers

    International Nuclear Information System (INIS)

    Ferreira, Carlas C.; Aquino, Katia Aparecida da S.; Araujo, Elmo S.

    2009-01-01

    Medical plastics are in general sterilized by gamma irradiation in doses of 25 kGy. However, this process often causes discoloration of the product due the formation of color centers during the irradiation. In particular, polycarbonate (PC), a transparent thermoplastic, when gamma-irradiated undergoes main chain scissions with consequent yellowness. This discoloration is attributed the formation of macroradicals type phenoxyl and phenyl produced by irradiation process. PC was prepared in formulations containing different stabilizers in order to investigate its optical properties (transmittance and yellowness index) changed by irradiation process. Among the stabilizers tested, a new commercial stabilizer (high performance phosphite) has presented good results concerning to reduction of the yellowness in irradiated specimen tests. Transmittance (at 420 nm) of irradiated samples at doses of 25 kGy decreases to ∼ 45% of non-irradiated sample value, immediately to the irradiation process. Nevertheless, this transmittance is increased to values of ∼ 70% of non-irradiated sample, after 60 hours under heating into oven (45 deg C). (author)

  16. Stiff muscle fibers in calf muscles of patients with cerebral palsy lead to high passive muscle stiffness.

    Science.gov (United States)

    Mathewson, Margie A; Chambers, Henry G; Girard, Paul J; Tenenhaus, Mayer; Schwartz, Alexandra K; Lieber, Richard L

    2014-12-01

    Cerebral palsy (CP), caused by an injury to the developing brain, can lead to alterations in muscle function. Subsequently, increased muscle stiffness and decreased joint range of motion are often seen in patients with CP. We examined mechanical and biochemical properties of the gastrocnemius and soleus muscles, which are involved in equinus muscle contracture. Passive mechanical testing of single muscle fibers from gastrocnemius and soleus muscle of patients with CP undergoing surgery for equinus deformity showed a significant increase in fiber stiffness (p<0.01). Bundles of fibers that included their surrounding connective tissues showed no stiffness difference (p=0.28).). When in vivo sarcomere lengths were measured and fiber and bundle stiffness compared at these lengths, both fibers and bundles of patients with CP were predicted to be much stiffer in vivo compared to typically developing (TD) individuals. Interestingly, differences in fiber and bundle stiffness were not explained by typical biochemical measures such as titin molecular weight (a giant protein thought to impact fiber stiffness) or collagen content (a proxy for extracellular matrix amount). We suggest that the passive mechanical properties of fibers and bundles are thus poorly understood. © 2014 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  17. Learning to control arm stiffness under static conditions.

    Science.gov (United States)

    Darainy, Mohammad; Malfait, Nicole; Gribble, Paul L; Towhidkhah, Farzad; Ostry, David J

    2004-12-01

    We used a robotic device to test the idea that impedance control involves a process of learning or adaptation that is acquired over time and permits the voluntary control of the pattern of stiffness at the hand. The tests were conducted in statics. Subjects were trained over the course of 3 successive days to resist the effects of one of three different kinds of mechanical loads: single axis loads acting in the lateral direction, single axis loads acting in the forward/backward direction, and isotropic loads that perturbed the limb in eight directions about a circle. We found that subjects in contact with single axis loads voluntarily modified their hand stiffness orientation such that changes to the direction of maximum stiffness mirrored the direction of applied load. In the case of isotropic loads, a uniform increase in endpoint stiffness was observed. Using a physiologically realistic model of two-joint arm movement, the experimentally determined pattern of impedance change could be replicated by assuming that coactivation of elbow and double joint muscles was independent of coactivation of muscles at the shoulder. Moreover, using this pattern of coactivation control we were able to replicate an asymmetric pattern of rotation of the stiffness ellipse that was observed empirically. These findings are consistent with the idea that arm stiffness is controlled through the use of at least two independent co-contraction commands.

  18. Dimensional Stability of Two Polyvinyl Siloxane Impression Materials in Different Time Intervals

    Directory of Open Access Journals (Sweden)

    Aalaei Sh

    2015-12-01

    Full Text Available Statement of the Problem: Dental prosthesis is usually made indirectly; there- fore dimensional stability of the impression material is very important. Every few years, new impression materials with different manufacturers’ claims regarding their better properties are introduced to the dental markets which require more research to evaluate their true dimensional changes. Objectives: The aim of this study was to evaluate dimensional stability of additional silicone impression material (Panasil® and Affinis® in different time intervals. Materials and Methods: In this experimental study, using two additional silicones (Panasil® and Affinis®, we made sixty impressions of standard die in similar conditions of 23 °C and 59% relative humidity by a special tray. The die included three horizontal and two vertical lines that were parallel. The vertical line crossed the horizontal ones at a point that served as reference for measurement. All impressions were poured with high strength dental stone. The dimensions were measured by stereo-microscope by two examiners in three interval storage times (1, 24 and 168 hours.The data were statistically analyzed using t-test and ANOVA. Results: All of the stone casts were larger than the standard die. Dimensional changes of Panasil and Affinis were 0.07%, 0.24%, 0.27% and 0.02%, 0.07%, 0.16% after 1, 24 and 168 hours, respectively. Dimensional change for two impression materials wasn’t significant in the interval time, expect for Panasil after one week (p = 0.004. Conclusions: According to the limitations of this study, Affinis impressions were dimensionally more stable than Panasil ones, but it was not significant. Dimensional change of Panasil impression showed a statistically significant difference after one week. Dimensional changes of both impression materials were based on ADA standard limitation in all time intervals (< 0.5%; therefore, dimensional stability of this impression was accepted at least

  19. Correlation between three-dimentional surface topography and color stability of different nanofilled composites.

    Science.gov (United States)

    Öztürk, Elif; Güder, Gizem

    2015-01-01

    The aim of this study was to evaluate the 3-dimensional (3D) surface topography and color stability of four different resin composites after immersion in different soft-beverages. One hundred sixty disk-shaped specimens (diameter: 10 mm, and thickness: 2 mm) were made from four different resin composites (i.e., Filtek Z550, Tetric N-Ceram, Clearfil Majesty Esthetic, and Cavex Quadrant Universal LC). Each specimen was cured under mylar strips for 20 sec for both top and bottom surfaces. All of the specimens were stored in distilled water for 24 h at 37°C. Surface measurements were carried out using a noncontact 3D-optical-profilometer in terms of surface topography (Ra values). Color measurements of each specimen were performed with Vita Easy Shade system. All the measurements were performed at baseline and after 30 days of immersion in the selected soft-beverages (Redbull, Coca-Cola and Dimes-Lemonade). Control groups were stored in distilled water during the study. Ra values and color changes (ΔE values) of the groups were recorded. The data were statistically analyzed using a one way ANOVA and Tukey's post-hoc tests (SPSS 18.0). The tested soft-beverages in the present study caused color changes at a 30-day evaluation period for the tested resin composites (p topography of resin composites was not influenced by the tested soft-beverages (p > 0.05). There was no significant interaction between the composite and beverage type on the Ra values of the resin composites (p > 0.05). No correlation was found between color stability and 3D surface topography of the resin composites. Color stability of resin composites may be affected by soft beverages. © Wiley Periodicals, Inc.

  20. Effect of dynamic muscular stabilization technique on low back pain of different durations.

    Science.gov (United States)

    Kumar, Suraj; Sharma, Vijai P; Aggarwal, Anoop; Shukla, Rakesh; Dev, Ravi

    2012-01-01

    Low back pain (LBP) has multi-factorial origin and its treatment varies considerably. Multidisciplinary pain programs have shown their effectiveness in the management of LBP but it is not documented whether subjects with difference in chronicity (duration) of pain will respond differently to these regimes. Dynamic muscular stabilization technique (DMST) is an active approach of stabilizing training for lumbar area which involves the training for the co-contraction of the transverse abdominis and multifidus muscles. This study determines the efficacy of Dynamic Muscular Stabilization Technique (DMST) in LBP of different durations. Follow-up, comparative study. Physical medicine and rehabilitation department (PMR) of university. Total 72 patients were categorized in 5 groups on the basis of duration (chronicity) of their low back pain. The documentation of chronicity was done on the basis of subjective questionnaire. All subjects were treated with DMST. Pain was the primary outcome measure while physical strength (back pressure change: BPC, abdominal pressure changes: APC), physical ability (walking, stair climbing, stand ups) and quality of life (QOL) were the secondary. Variables were assessed at baseline (day 0), 3 months (day 90) and at the end of the follow up (day 180). Variables (Pain, BPC, APC, Walking, Stair climbing, Stand ups and QOL) significantly improved on 90th and 180th day while compared to the baseline. Therefore irrespective of the chronicity of pain, all chronic pain patients will respond positively to the DMST treatment. This study concludes that DMST intervention is an effective rehabilitation technique for all chronic low back pain patients irrespective of the duration (chronicity) of their pain.

  1. Which are the cut-off values of 2D-Shear Wave Elastography (2D-SWE) liver stiffness measurements predicting different stages of liver fibrosis, considering Transient Elastography (TE) as the reference method?

    Energy Technology Data Exchange (ETDEWEB)

    Sporea, Ioan, E-mail: isporea@umft.ro; Bota, Simona, E-mail: bota_simona1982@yahoo.com; Gradinaru-Taşcău, Oana, E-mail: bluonmyown@yahoo.com; Şirli, Roxana, E-mail: roxanasirli@gmail.com; Popescu, Alina, E-mail: alinamircea.popescu@gmail.com; Jurchiş, Ana, E-mail: ana.jurchis@yahoo.com

    2014-03-15

    Introduction: To identify liver stiffness (LS) cut-off values assessed by means of 2D-Shear Wave Elastography (2D-SWE) for predicting different stages of liver fibrosis, considering Transient Elastography (TE) as the reference method. Methods: Our prospective study included 383 consecutive subjects, with or without hepatopathies, in which LS was evaluated by means of TE and 2D-SWE. To discriminate between various stages of fibrosis by TE we used the following LS cut-offs (kPa): F1-6, F2-7.2, F3-9.6 and F4-14.5. Results: The rate of reliable LS measurements was similar for TE and 2D-SWE: 73.9% vs. 79.9%, p = 0.06. Older age and higher BMI were associated for both TE and 2D-SWE with the impossibility to obtain reliable LS measurements. Reliable LS measurements by both elastographic methods were obtained in 65.2% of patients. A significant correlation was found between TE and 2D-SWE measurements (r = 0.68). The best LS cut-off values assessed by 2D-SWE for predicting different stages of liver fibrosis were: F ≥ 1: >7.1 kPa (AUROC = 0.825); F ≥ 2: >7.8 kPa (AUROC = 0.859); F ≥ 3: >8 kPa (AUROC = 0.897) and for F = 4: >11.5 kPa (AUROC = 0.914). Conclusions: 2D-SWE is a reliable method for the non-invasive evaluation of liver fibrosis, considering TE as the reference method. The accuracy of 2D-SWE measurements increased with the severity of liver fibrosis.

  2. Effects of topographic data quality on estimates of shallow slope stability using different regolith depth models

    Science.gov (United States)

    Baum, Rex L.

    2017-01-01

    Thickness of colluvium or regolith overlying bedrock or other consolidated materials is a major factor in determining stability of unconsolidated earth materials on steep slopes. Many efforts to model spatially distributed slope stability, for example to assess susceptibility to shallow landslides, have relied on estimates of constant thickness, constant depth, or simple models of thickness (or depth) based on slope and other topographic variables. Assumptions of constant depth or thickness rarely give satisfactory results. Geomorphologists have devised a number of different models to represent the spatial variability of regolith depth and applied them to various settings. I have applied some of these models that can be implemented numerically to different study areas with different types of terrain and tested the results against available depth measurements and landslide inventories. The areas include crystalline rocks of the Colorado Front Range, and gently dipping sedimentary rocks of the Oregon Coast Range. Model performance varies with model, terrain type, and with quality of the input topographic data. Steps in contour-derived 10-m digital elevation models (DEMs) introduce significant errors into the predicted distribution of regolith and landslides. Scan lines, facets, and other artifacts further degrade DEMs and model predictions. Resampling to a lower grid-cell resolution can mitigate effects of facets in lidar DEMs of areas where dense forest severely limits ground returns. Due to its higher accuracy and ability to penetrate vegetation, lidar-derived topography produces more realistic distributions of cover and potential landslides than conventional photogrammetrically derived topographic data.

  3. Shoulder Stiffness : Current Concepts and Concerns

    NARCIS (Netherlands)

    Itoi, Eiji; Arce, Guillermo; Bain, Gregory I.; Diercks, Ronald L.; Guttmann, Dan; Imhoff, Andreas B.; Mazzocca, Augustus D.; Sugaya, Hiroyuki; Yoo, Yon-Sik

    Shoulder stiffness can be caused by various etiologies such as immobilization, trauma, or surgical interventions. The Upper Extremity Committee of ISAKOS defined the term "frozen shoulder" as idiopathic stiff shoulder, that is, without a known cause. Secondary stiff shoulder is a term that should be

  4. Effect of different phytogenic additives on oxidation stability of chicken meat

    Directory of Open Access Journals (Sweden)

    Marek Bobko

    2016-05-01

    Full Text Available The aim of the study was to evaluate the oxidative stability (TBARS method of breast and thigh muscle after application of feed mixtures enriched by phytogenic additives. The experiment started with 150 pieces one-day-old chicks of Cobb 500 hybrid combination. They were divided into one control (C and two experimental groups (1st EG and 2nd EG. Each group included 50 chicks. In experimental groups, feed additives were applied as followed: 100 mg.kg-1 Agolin Poultry (in the 1st EG and 500 mg.kg-1 Agolin Tannin Plus (in the 2nd EG. Experimental broiler chickens were fed during 42 days by ad libitum. Chicken meat samples of breast and thigh muscle were analysed in the 1st day, 1st, 2nd, 3rd, 4th, 5th and 6th month of storage in frozen storage at -18 °C. We recorded positive influence on chicken meat oxidative stability in all experimental groups with application of phytogenic feed additives. Obtained results showed that applied phytogenic additives had positive influence on oxidative stability of breast and thigh muscles. At the end of frozen storage (in 6th month, we found higher malondialdehyde (MDA values and lower oxidative stability (p <0.05 of breast muscle in control group (0.167 mg.kg-1 compared to experimental groups (from 0.150 mg.kg-1 in 1. EG to 0.155 mg.kg-1 in 2. EG. In the thigh muscle, we found similar tendency of oxidative changes as in the breast muscle. At the end of frozen storage (in the 6th month, MDA average values of thigh muscle were higher (p <0.05 in control group (0.181 mg.kg-1 compared to experimental groups (1. EG 0.164 mg.kg-1 and 2. EG 0.169 mg.kg-1. Significant differences (p <0.05 between the control and experimental groups were found from the 5th month of storage in thigh and breast muscle. Obtained results indicate positive influence of phytogenic additives applied in chicken nutrition, namely on stabilization of fatty substance to degradation processes. Normal 0 21 false false false SK X-NONE X-NONE Normal 0

  5. The Effect of Different Perturbations on the Stability Analysis of Light Water Reactors

    International Nuclear Information System (INIS)

    Dykin, Victor

    2010-09-01

    Neutron noise analysis techniques are studied and developed, with primary use of determining the stability of Boiling Water Reactors (BWRs). In particular, the role of a specific perturbation prevailing in Light Water Reactors, the propagating density perturbation, in the stability of BWRs and on the noise field of LWRs in general, is investigated by considering three topics. In the first topics, we investigate how the neutronic response of the reactor, usually described as a second order system driven by a white noise driving force, is affected by a non-white driving force. This latter arises from the reactivity effect of the propagating density perturbations. The investigation is performed by using spectral and correlation analysis. Propagating perturbations with different velocities are analyzed. We investigate how the accuracy of the determination of the so-called decay ratio (DR) of the system, based on the assumption of white noise driving force, deteriorates with deviations from the white noise character of the driving force. In the second topics, the space dependence of the neutron noise, induced by propagating density perturbations, represented through the perturbation of the absorption, is determined and discussed. A full analytical solution was obtained by the use of the Green's function technique. The solution was analyzed for different frequencies and different system sizes. An interesting new interference effect between the point-kinetic and space-dependent components of the induced noise was discovered and interpreted in physical terms. In the last topics, a non-linear stability analysis of a BWR is performed, using so called Reduced Order Model (ROM) techniques. A ROM is usually constructed by reducing the full set of 3D space-time dependent neutron-kinetics, thermal-hydraulics and heat transfer equations to time-dependent ones, by considering space dependence in a lumped parameter model (one or two discrete channels). The main novelty of our work

  6. Hydration Status Is Associated with Aortic Stiffness, but Not with Peripheral Arterial Stiffness, in Chronically Hemodialysed Patients

    Directory of Open Access Journals (Sweden)

    Daniel Bia

    2015-01-01

    Full Text Available Background. Adequate fluid management could be essential to minimize high arterial stiffness observed in chronically hemodialyzed patients (CHP. Aim. To determine the association between body fluid status and central and peripheral arterial stiffness levels. Methods. Arterial stiffness was assessed in 65 CHP by measuring the pulse wave velocity (PWV in a central arterial pathway (carotid-femoral and in a peripheral pathway (carotid-brachial. A blood pressure-independent regional arterial stiffness index was calculated using PWV. Volume status was assessed by whole-body multiple-frequency bioimpedance. Patients were first observed as an entire group and then divided into three different fluid status-related groups: normal, overhydration, and dehydration groups. Results. Only carotid-femoral stiffness was positively associated (P<0.05 with the hydration status evaluated through extracellular/intracellular fluid, extracellular/Total Body Fluid, and absolute and relative overhydration. Conclusion. Volume status and overload are associated with central, but not peripheral, arterial stiffness levels with independence of the blood pressure level, in CHP.

  7. Stiffness and hysteresis properties of some prosthetic feet

    OpenAIRE

    van Jaarsveld, H.W.L.; Grootenboer, H.J.; de Vries, J.; Koopman, Hubertus F.J.M.

    1990-01-01

    A prosthetic foot is an important element of a prosthesis, although it is not always fully recognized that the properties of the foot, along with the prosthetic knee joint and the socket, are in part responsible for the stability and metabolic energy cost during walking. The stiffness and the hysteresis, which are the topics of this paper, are not properly prescribed, but could be adapted to improve the prosthetic walking performance. The shape is strongly related to the cosmetic appearance a...

  8. Estimating the wake deflection downstream of a wind turbine in different atmospheric stabilities: an LES study

    Directory of Open Access Journals (Sweden)

    L. Vollmer

    2016-09-01

    Full Text Available An intentional yaw misalignment of wind turbines is currently discussed as one possibility to increase the overall energy yield of wind farms. The idea behind this control is to decrease wake losses of downstream turbines by altering the wake trajectory of the controlled upwind turbines. For an application of such an operational control, precise knowledge about the inflow wind conditions, the magnitude of wake deflection by a yawed turbine and the propagation of the wake is crucial. The dependency of the wake deflection on the ambient wind conditions as well as the uncertainty of its trajectory are not sufficiently covered in current wind farm control models. In this study we analyze multiple sources that contribute to the uncertainty of the estimation of the wake deflection downstream of yawed wind turbines in different ambient wind conditions. We find that the wake shapes and the magnitude of deflection differ in the three evaluated atmospheric boundary layers of neutral, stable and unstable thermal stability. Uncertainty in the wake deflection estimation increases for smaller temporal averaging intervals. We also consider the choice of the method to define the wake center as a source of uncertainty as it modifies the result. The variance of the wake deflection estimation increases with decreasing atmospheric stability. Control of the wake position in a highly convective environment is therefore not recommended.

  9. Study on antibacterial activity of silver nanoparticles synthesized by gamma irradiation method using different stabilizers

    Science.gov (United States)

    Van Phu, Dang; Quoc, Le Anh; Duy, Nguyen Ngoc; Lan, Nguyen Thi Kim; Du, Bui Duy; Luan, Le Quang; Hien, Nguyen Quoc

    2014-04-01

    Colloidal solutions of silver nanoparticles (AgNPs) were synthesized by gamma Co-60 irradiation using different stabilizers, namely polyvinyl pyrrolidone (PVP), polyvinyl alcohol (PVA), alginate, and sericin. The particle size measured from TEM images was 4.3, 6.1, 7.6, and 10.2 nm for AgNPs/PVP, AgNPs/PVA, AgNPs/alginate, and AgNPs/sericin, respectively. The influence of different stabilizers on the antibacterial activity of AgNPs was investigated. Results showed that AgNPs/alginate exhibited the highest antibacterial activity against Escherichia coli ( E. coli) among the as-synthesized AgNPs. Handwash solution has been prepared using Na lauryl sulfate as surfactant, hydroxyethyl cellulose as binder, and 15 mg/L of AgNPs/alginate as antimicrobial agent. The obtained results on the antibacterial test of handwash for the dilution to 3 mg AgNPs/L showed that the antibacterial efficiency against E. coli was of 74.6%, 89.8%, and 99.0% for the contacted time of 1, 3, and 5 min, respectively. Thus, due to the biocompatibility of alginate extracted from seaweed and highly antimicrobial activity of AgNPs synthesized by gamma Co-60 irradiation, AgNPs/alginate is promising to use as an antimicrobial agent in biomedicine, cosmetic, and in other fields.

  10. Sabot Front Borerider Stiffness vs. Dispersion: Finding the Knee in the Curve

    Directory of Open Access Journals (Sweden)

    Alan F. Hathaway

    2001-01-01

    Full Text Available In the design of armor piercing, fin-stabilized, discarding sabot projectiles, the radial stiffness of the sabot front borerider has a significant impact on the projectile's dispersion and is, therefore, an important design consideration. Whether designing a new projectile or trying to improve an existing design, projectile designers can achieve front borerider stiffness without understanding its affect on dispersion characteristics. There is a knee in the stiffness vs. dispersion curve at which a change in the sabot front borerider stiffness will have a significant impact on dispersion or no impact at all depending on whether the stiffness is increased or decreased. The subject of this paper is an analytical approach to quantitatively determine the knee in the curve. Results from using this approach on the M865 APFSDS projectile are also presented.

  11. Changes in soil aggregate stability under different irrigation doses of waste water

    Science.gov (United States)

    Morugán, Alicia; García-Orenes, Fuensanta; Mataix-Solera, Jorge; Arcenegui, Victoria; Bárcenas, Gema

    2010-05-01

    Freshwater availability and soil degradation are two of the most important environmental problems in the Mediterranean area acerbated by incorrect agricultural use of irrigation in which organic matter is not correctly managed, the use of low quality water for irrigation, and the inefficiency of dose irrigation. For these reasons strategies for saving water and for the restoration of the mean properties of soil are necessary. The use of treated waste water for the irrigation of agricultural land could be a good solution to these problems, as it reduces the utilization of fresh water and could potentially improve key soil properties. In this work we have been studying, for more than three years, the effects on soil properties of different doses of irrigation with waste water. Here we show the results on aggregate stability. The study is located in an agricultural area at Biar (Alicante, SE of Spain), with a crop of grape (Vitis labrusca). Three types of waters are being used in the irrigation of the soil: fresh water (control) (TC), and treated waste water from secondary (T2) and tertiary treatment (T3). Three different doses of irrigation have been applied to fit the efficiency of the irrigation to the crop and soil type: D10 (10 L m-2 every week during 17 months), D50 (50 L m-2 every fifteen days during 14 moths) and D30 (30 L m-2 every week during 6 months up to present day). The results showed a clear decrease of aggregate stability during the period we used the second dose (D50) independent of the type of water used. That dose of irrigation and frequency produced strong wetting and drying cycles (WD) in the soil, and this is suspected to be the main factor responsible for the results. When we changed the dose of irrigation to D30, reducing the quantity per event and increasing the frequency, the soil aggregate stability started to improve. This dose avoids strong drying periods between irrigation events and the aggregate stability is confirmed to be slowly

  12. Stability Analysis of Hydrodynamic Pressure Landslides with Different Permeability Coefficients Affected by Reservoir Water Level Fluctuations and Rainstorms

    Directory of Open Access Journals (Sweden)

    Faming Huang

    2017-06-01

    Full Text Available It is significant to study the variations in the stability coefficients of hydrodynamic pressure landslides with different permeability coefficients affected by reservoir water level fluctuations and rainstorms. The Sifangbei landslide in Three Gorges Reservoir area is used as case study. Its stability coefficients are simulated based on saturated-unsaturated seepage theory and finite element analysis. The operating conditions of stability coefficients calculation are reservoir water level variations between 175 m and 145 m, different rates of reservoir water level fluctuations, and a three-day continuous rainstorm. Results show that the stability coefficient of the hydrodynamic pressure landslide decreases with the drawdown of the reservoir water level, and a rapid drawdown rate leads to a small stability coefficient when the permeability coefficient ranges from 1.16 × 10−6 m/s to 4.64 × 10−5 m/s. Additionally, the landslide stability coefficient increases as the reservoir water level increases, and a rapid increase in the water level leads to a high stability coefficient when the permeability coefficient ranges from 1.16 × 10−6 m/s to 4.64 × 10−5 m/s. The landslide stability coefficient initially decreases and then increases as the reservoir water level declines when the permeability coefficient is greater than 4.64 × 10−5 m/s. Moreover, for structures with the same landslide, the landslide stability coefficient is most sensitive to the change in the rate of reservoir water level drawdown when the permeability coefficient increases from 1.16 × 10−6 m/s to 1.16 × 10−4 m/s. Additionally, the rate of decrease in the stability coefficient increases as the permeability coefficient increases. Finally, the three-day rainstorm leads to a significant reduction in landslide stability, and the rate of decrease in the stability coefficient initially increases and then decreases as the permeability coefficient increases.

  13. Different ELM regimes at ASDEX upgrade and their linear stability analysis

    Energy Technology Data Exchange (ETDEWEB)

    Burckhart, Andreas O.

    2013-12-16

    Edge localised modes (ELMs) are magnetohydrodynamic (MHD) instabilities that occur at the edge of magnetically confined fusion plasmas. They periodically expel particles and energy from the confined region. In addition to limiting the confinement, they cause high heat fluxes to the walls of the tokamak which may not be manageable in larger, next-generation devices. However, the exact nature of the instabilities that drive ELMs is still unknown. The most commonly invoked theory to explain the occurrence of ELMs is the peeling-ballooning model which posits a critical edge pressure gradient and current density. In this thesis, this model is tested against experimental data gathered at the ASDEX Upgrade (AUG) tokamak. For the first time, a broad selection of ELM scenarios is analysed with respect to ideal MHD stability using the same methodology. The comparison of experiment and theory is performed using a stability analysis chain, which consists of combining kinetic and magnetic measurements to generate self-consistent plasma equilibria with the Grad-Shafranov solver CLISTE, refining this equilibrium with the HELENA code, and, finally, determining its stability using ILSA, a linear MHD stability code. In theory the peeling ballooning model should apply to all type-I ELM scenarios. Therefore, the stability of several different type-I ELMy H-mode plasmas is analysed with respect to peeling ballooning modes. While some of them are consistent with the model, in others ELMs occur well below or above the ideal MHD stability limit. The standard type-I ELMy H-mode regime exhibits considerable variations with equilibria both well below and at the stability limit depending on the discharge. In addition, a nitrogen-seeded case in which the edge pressure gradient greatly exceeds the stability limit is identified. In another discharge, the edge pressure gradient and current density, which are on the threshold for marginal stability, relax when edge heating is applied. Contrary to

  14. Comparison of the color stability of provisional restorative materials after storing in different drinks

    Directory of Open Access Journals (Sweden)

    Merve Bankoğlu Güngör

    2016-05-01

    Full Text Available OBJECTIVE: The objective of the present study was to compare the color stability of provisional restorative materials after stroring in different drinks. MATERIALS AND METHOD: Thirty specimens (10 mm in diameter and 2 mm in thickness were prepared from three different materials (Temdent, TRIAD ve TelioCAD. Specimens were divided into six groups according to drinks (distilled water, coffee, tea, cola, red wine and fruit juice; n=5. Specimens were stored in these drinks at 37 °C for 48 hours. The L*, a*, b* values of the specimens were measured with a spectrophometer and recorded before and after storing in drinks. Then ΔE* values were calculated. The data were statistically analyzed using two-way analysis of variance (ANOVA and Tukey’s HSD post hoc tests (α=0.05. RESULTS: Difference between the ΔE* values of specimens stored in different drinks was statistically significant (p<0.05. Color change of TelioCAD specimens was smallest in cola drink and greatest in red wine. Color change of Temdent specimens was smallest in fruit juice and greatest in coffee. For TRIAD specimens, greater color change was observed in coffee, red wine, and tea, in descending order. When the results of storing in the same drink were compared, TRIAD showed the greatest values of color change in coffee and red wine in comparison to the other provisional materials (p<0.05. CONCLUSION: Color stability changed according to the type of the provisional material and the drink. When the drinks were evaluated, greater color changes were observed in coffee, and when the materials were evaluated greater color changes were observed in TRIAD.

  15. Scrutinizing the different pectin types on stability of an Iranian traditional drink "Doogh".

    Science.gov (United States)

    Joudaki, Hassan; Mousavi, Mohammad; Safari, Mohammad; Razavi, Seyed Hadi; Emam-Djomeh, Zahra; Gharibzahedi, Seyed Mohammad Taghi

    2013-09-01

    Doogh is a fermented dairy drink which is highly consumed by Iranian people. Stability of this healthy drink was investigated in terms of sedimentation rate, viscosity, density and particle size characteristics including surface-weighted mean diameter (D32), Span and particle uniformity. Eight treatments were performed as randomized complete block design (RCBD) with three replications. Three types of pectin (high methoxyl pectin (HMP), grapefruit-seed extract pectin (GSEP) and amidated pectin (Ceamsa pectin (CSP)) at a constant concentration (0.35%w/w), three levels of salt (0.50, 0.75 and 1.00%w/w) and two dry matter contents (DMCs, 4 and 5% w/w) were used to produce the Dooghs. The results showed that the maximum stability and viscosity, and the minimum D32 were obtained by application of CSP, GSEP and HMP, respectively (p<0.05). Pectin type had no significant difference on the density values of Dooghs. The lowest sedimentation rate, viscosity, density and D32 were achieved in the minimum concentrations of salt and dry matter. The ANOVA analysis also revealed that the interaction of pectin type, salt concentration and DMC had a significant effect on the Span and particle uniformity. A maximum physical stability was found for the prepared samples with 0.35%w/w CSP, 0.5%w/w salt and 4%w/w dry matter. Evaluation of sensory attributes also confirmed that this formulation had the highest overall acceptability value. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Physicochemical, morphological and cellular uptake properties of lutein nanodispersions prepared by using surfactants with different stabilizing mechanisms.

    Science.gov (United States)

    Tan, Tai Boon; Chu, Wern Cui; Yussof, Nor Shariffa; Abas, Faridah; Mirhosseini, Hamed; Cheah, Yoke Kqueen; Nehdi, Imededdine Arbi; Tan, Chin Ping

    2016-04-01

    In this study, we prepared a series of lutein nanodispersions via the solvent displacement method, by using surfactants with different stabilizing mechanisms. The surfactants used include Tween 80 (steric stabilization), sodium dodecyl sulfate (SDS; electrostatic stabilization), sodium caseinate (electrosteric stabilization) and SDS-Tween 80 (electrostatic-steric stabilization). We then characterized the resulting lutein nanodispersions in terms of their particle size, particle size distribution, zeta potential, lutein content, flow behavior, apparent viscosity, transmittance, color, morphological properties and their effects on cell viability and cellular uptake. The type of surfactant used significantly (p lutein content) remained unaffected. Transmission electron microscopy (TEM) images obtained from this study demonstrated that the solvent displacement method was capable of producing lutein nanodispersions containing spherical particles with sizes ranging from 66.20-125.25 nm, depending on the type of surfactant used. SDS and SDS-Tween 80 surfactants negatively affected the viability of the HT-29 cells used in this study. Thus, for the cellular uptake determination, only Tween 80 and sodium caseinate surfactants were used. The cellular uptake of the lutein nanodispersion stabilized by sodium caseinate was higher than that which was stabilized by Tween 80. All things considered, the type of surfactant with different stabilizing mechanisms did produce lutein nanodispersions with different characteristics. These findings would aid in future selection of surfactants in order to produce nanodispersions with desirable properties.

  17. The effects of ankle Kinesio taping on ankle stiffness and dynamic balance.

    Science.gov (United States)

    Fayson, Shirleeah D; Needle, Alan R; Kaminski, Thomas W

    2013-01-01

    The purpose of this study was to determine the effects of Kinesio® taping on static restraint and dynamic postural control of the ankle joint. Thirty female subjects with no history of ankle injury participated in this study. Subjects were tested for passive ankle laxity and stiffness, and time to stabilization following forward, backward, medial, and lateral hops. Subjects were tested prior to tape application, immediately following application, and following 24 hours of use. Differences between taping conditions were investigated using analyses of variance and pairwise comparisons. Stiffness increased following initial application and 24 hours of Kinesio® tape use (F = 6.99, p = .003), despite no observed changes in ankle laxity (F = 0.77, p = .49); however, no changes were observed in time-to-stabilization (F = 0.03, p = .97). Our results suggest that Kinesio® tape may improve static restraint in the ankle joint without altering peak motion or dynamic postural control. A future investigation into Kinesio® tape efficacy in injury prevention or rehabilitation is warranted.

  18. Influence of Passive Joint Stiffness on Proprioceptive Acuity in Individuals With Functional Instability of the Ankle.

    Science.gov (United States)

    Marinho, Hellen Veloso Rocha; Amaral, Giovanna Mendes; de Souza Moreira, Bruno; Araújo, Vanessa Lara; Souza, Thales Rezende; Ocarino, Juliana Melo; da Fonseca, Sérgio Teixeira

    2017-12-01

    Study Design Controlled laboratory study, cross-sectional. Background Deficits in ankle proprioceptive acuity have been reported in persons with functional instability of the ankle. Passive stiffness has been proposed as a possible mechanism underlying proprioceptive acuity. Objective To compare proprioceptive acuity and passive ankle stiffness in persons with and without functional ankle instability, and to assess the influence of passive joint stiffness on proprioceptive acuity in persons with functional ankle instability. Methods A sample of 18 subjects with and 18 without complaints of functional ankle instability following lateral ankle sprain participated. An isokinetic dynamometer was used to compare motion perception threshold, passive position sense, and passive ankle stiffness between groups. To evaluate the influence of passive stiffness on proprioceptive acuity, individuals in the lateral functional ankle instability group were divided into 2 subgroups: "high" and "low" passive ankle stiffness. Results The functional ankle instability group exhibited increased motion perception threshold when compared with the corresponding limb of the control group. Between-group differences were not found for passive position sense and passive ankle stiffness. Those in the functional ankle instability group with higher passive ankle stiffness had smaller motion perception thresholds than those with lower passive ankle stiffness. Conclusion Unlike motion perception threshold, passive position sense is not affected by the presence of functional ankle instability. Passive ankle stiffness appears to influence proprioceptive acuity in persons with functional ankle instability. J Orthop Sports Phys Ther 2017;47(12):899-905. Epub 7 Oct 2017. doi:10.2519/jospt.2017.7030.

  19. Environmental Stability and Infectivity of Hepatitis C Virus (HCV) in Different Human Body Fluids.

    Science.gov (United States)

    Pfaender, Stephanie; Helfritz, Fabian A; Siddharta, Anindya; Todt, Daniel; Behrendt, Patrick; Heyden, Julia; Riebesehl, Nina; Willmann, Wiebke; Steinmann, Joerg; Münch, Jan; Ciesek, Sandra; Steinmann, Eike

    2018-01-01

    Background: Hepatitis C virus (HCV) is a hepatotropic, blood-borne virus, but in up to one-third of infections of the transmission route remained unidentified. Viral genome copies of HCV have been identified in several body fluids, however, non-parental transmission upon exposure to contaminated body fluids seems to be rare. Several body fluids, e.g., tears and saliva, are renowned for their antimicrobial and antiviral properties, nevertheless, HCV stability has never been systematically analyzed in those fluids. Methods: We used state of the art infectious HCV cell culture techniques to investigate the stability of HCV in different body fluids to estimate the potential risk of transmission via patient body fluid material. In addition, we mimicked a potential contamination of HCV in tear fluid and analyzed which impact commercially available contact lens solutions might have in such a scenario. Results: We could demonstrate that HCV remains infectious over several days in body fluids like tears, saliva, semen, and cerebrospinal fluid. Only hydrogen-peroxide contact lens solutions were able to efficiently inactivate HCV in a suspension test. Conclusion: These results indicate that HCV, once it is present in various body fluids of infected patients, remains infective and could potentially contribute to transmission upon direct contact.

  20. The effects of different extraction methods on composition and storage stability of sturgeon oil.

    Science.gov (United States)

    Hao, Shuxian; Wei, Ya; Li, Laihao; Yang, Xianqing; Cen, Jianwei; Huang, Hui; Lin, Wanling; Yuan, Xiaomin

    2015-04-15

    The objective of this study was to assess the effect of different extraction methods on oil yield, colour attributes, oxidative stability, fatty acids composition and production of volatile compounds in sturgeon oil during storage. The supercritical fluid extraction (SFE) method with carbon dioxide resulted in higher oil yields, better colour attributes, and higher oxidative stability compared to other traditional extraction methods such as enzymatic extraction, amino, and wet reduction. After storage at 4 °C for 33 days, the aldehyde content in oil extracted by the enzymatic extraction and wet reduction methods was twice as high as that obtained by the other methods. There was a significant reduction in the content of total acids in oils extracted by the enzymatic extraction and wet reduction methods (poil extracted by the amino method. The oil extracted by SFE exhibited higher UFA and lower SFA. Significant diffidence among PUFA with C above 20 was observed in oil extracted with SFE. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Analysis of green tea compounds and their stability in dentifrices of different pH levels.

    Science.gov (United States)

    Jang, Jong-Hwa; Park, Yong-Duk; Ahn, Hyo-Kwang; Kim, Seung-Jin; Lee, Joo-Young; Kim, Eun-Cheol; Chang, Yeon-Soo; Song, Yun-Jung; Kwon, Ha-Jeong

    2014-01-01

    In this study, green tea compounds (flavonoids, alkaloids, and phenolic acids) were analyzed in green tea-containing dentifrices, and their stability at different pH levels was evaluated. The compounds were separated under 0.01% phosphoric acid-acetonitrile gradient conditions and detected by photodiode array detector at 210, 280, 300, 335 nm. Column temperature was set at 20°C based on the results of screening various temperatures. Each compound showed good linearity at optimized wavelength as well as showing good precision and accuracy in dentifrices. Using this method, the stability of compounds was investigated in pH 4, 7, 8, and 10 solutions for 96 h, and in pH 7 and pH 10 solutions for 6 months. The green tea compounds were more stable at low pH levels; purine alkaloids were more stable than flavonoids. In particular, gallocatechin (GC), epigallocatechin (EGC), epigallocatechin gallate (EGCG), gallocatechin gallate (GCG), and myricetin almost disappeared in pH 10 solutions after 96 h. In dentifrices, the compounds were gradually decreased until 6 months in both pH types, while gallic acid was increased because of production of galloyl ester of other green tea compounds. Therefore, it is beneficial to adjust to as low a pH as possible when produce green tea-containing dentifrices.

  2. Stability of Porcine Epidemic Diarrhea Virus on Fomite Materials at Different Temperatures.

    Science.gov (United States)

    Kim, Yonghyan; Krishna, Venkatramana D; Torremorell, Montserrat; Goyal, Sagar M; Cheeran, Maxim C-J

    2018-02-13

    Indirect transmission of porcine epidemic diarrhea virus (PEDV) ensues when susceptible animals contact PEDV-contaminated fomite materials. Although the survival of PEDV under various pHs and temperatures has been studied, virus stability on different fomite surfaces under varying temperature conditions has not been explored. Hence, we evaluated the survival of PEDV on inanimate objects routinely used on swine farms such as styrofoam, rubber, plastic, coveralls, and other equipment. The titer of infectious PEDV at 4 °C decreased by only 1 to 2 log during the first 5 days, and the virus was recoverable for up to 15 days on Styrofoam, aluminum, Tyvek ® coverall, cloth, and plastic. However, viral titers decreased precipitously when stored at room temperature; no virus was detectable after one day on all materials tested. A more sensitive immunoplaque assay was able to detect virus from Styrofoam, metal, and plastic at 20 days post application, representing a 3-log loss of input virus on fomite materials. Recovery of infectious PEDV from Tyvek ® coverall and rubber was above detection limit at 20 days. Our findings indicate that the type of fomite material and temperatures impact PEDV stability, which is important in understanding the nuances of indirect transmission and epidemiology of PEDV.

  3. Stability of Porcine Epidemic Diarrhea Virus on Fomite Materials at Different Temperatures

    Directory of Open Access Journals (Sweden)

    Yonghyan Kim

    2018-02-01

    Full Text Available Indirect transmission of porcine epidemic diarrhea virus (PEDV ensues when susceptible animals contact PEDV-contaminated fomite materials. Although the survival of PEDV under various pHs and temperatures has been studied, virus stability on different fomite surfaces under varying temperature conditions has not been explored. Hence, we evaluated the survival of PEDV on inanimate objects routinely used on swine farms such as styrofoam, rubber, plastic, coveralls, and other equipment. The titer of infectious PEDV at 4 °C decreased by only 1 to 2 log during the first 5 days, and the virus was recoverable for up to 15 days on Styrofoam, aluminum, Tyvek® coverall, cloth, and plastic. However, viral titers decreased precipitously when stored at room temperature; no virus was detectable after one day on all materials tested. A more sensitive immunoplaque assay was able to detect virus from Styrofoam, metal, and plastic at 20 days post application, representing a 3-log loss of input virus on fomite materials. Recovery of infectious PEDV from Tyvek® coverall and rubber was above detection limit at 20 days. Our findings indicate that the type of fomite material and temperatures impact PEDV stability, which is important in understanding the nuances of indirect transmission and epidemiology of PEDV.

  4. Effect of different solutions on color stability of acrylic resin-based dentures.

    Science.gov (United States)

    Goiato, Marcelo Coelho; Nóbrega, Adhara Smith; dos Santos, Daniela Micheline; Andreotti, Agda Marobo; Moreno, Amália

    2014-01-01

    The aim of this study was to evaluate the effect of thermocycling and immersion in mouthwash or beverage solutions on the color stability of four different acrylic resin-based dentures (Onda Cryl, OC; QC20, QC; Classico, CL; and Lucitone, LU). The factors evaluated were type of acrylic resin, immersion time, and solution (mouthwash or beverage). A total of 224 denture samples were fabricated. For each type of resin, eight samples were immersed in mouthwashes (Plax-Colgate, PC; Listerine, LI; and Oral-B, OB), beverages (coffee, CP; cola, C; and wine, W), and artificial saliva (AS; control). The color change (DE) was evaluated before (baseline) and after thermocycling (T1), and after immersion in solution for 1 h (T2), 3 h (T3), 24 h (T4), 48 h (T5), and 96 h (T6). The CIE Lab system was used to determine the color changes. The thermocycling test was performed for 5000 cycles. Data were submitted to three-way repeated-measures analysis of variance and Tukey's test (pacrylic resin. Similarly, when the samples were immersed in each beverage, all studied factors influenced the color change values. In general, regardless of the solution, LU exhibited the greatest DE values in the period from T1 to T5; and QC presented the greatest DE values at T6. Thus, thermocycling and immersion in the various solutions influenced the color stability of acrylic resins and QC showed the greatest color alteration.

  5. Stability of lamb loin stored under refrigeration and packed in different modified atmosphere packaging systems.

    Science.gov (United States)

    Fernandes, Rafaella de Paula Paseto; Freire, Maria Teresa de Alvarenga; de Paula, Elisa Silva Maluf; Kanashiro, Ana Livea Sayuri; Catunda, Fernanda Antunes Pinto; Rosa, Alessandra Fernandes; Balieiro, Júlio Cesar de Carvalho; Trindade, Marco Antonio

    2014-01-01

    The aim of the present study was to evaluate the effect of different modified atmosphere packaging (MAP) systems (vacuum, 75% O2+25% CO2 and 100% CO2) on the stability of lamb loins stored at 1±1°C for 28 days. Microbiological (counts of aerobic and anaerobic psychrotrophic microorganisms, coliform at 45°C, coagulase-positive staphylococci and lactic acid bacteria and presence of Salmonella), physical and chemical (thiobarbituric acid reactive substances [TBARS], objective color, pH, water loss from cooking [WLC] and shear force), sensory (acceptance testing using a 9-point hedonic scale) and gas composition analyses were performed. Lamb meat remained stable with respect to the majority of the evaluated physical and chemical indexes and within the standards established by Brazilian legislation for pathogenic microorganisms throughout the storage period in all three packaging systems. However, with respect to psychrotrophic microorganisms, 100% CO2 packaging system provided increased stability despite presenting lower appearance preference. © 2013.

  6. The relationship between passive stiffness and evoked twitch properties: the influence of muscle CSA normalization

    International Nuclear Information System (INIS)

    Ryan, E D; Thompson, B J; Sobolewski, E J; Herda, T J; Costa, P B; Walter, A A; Cramer, J T

    2011-01-01

    Passive stiffness measurements are often used as a clinical tool to examine a muscle's passive lengthening characteristics. The purpose of this study was to examine the relationship between passive stiffness and evoked twitch properties prior to and following normalization of passive stiffness to muscle cross-sectional area (CSA). Ten healthy volunteers (mean ± SD age = 23 ± 3 year) performed passive range of motion, evoked twitch, and muscle CSA assessments of the plantar flexor muscles. Passive stiffness was determined from the slope of the final 5° of the angle–torque curve. Peak twitch torque (PTT) and rate of torque development (RTD) were determined via transcutaneous electrical stimulation, and muscle CSA was assessed using a peripheral quantitative computed tomography scanner. Pearson product moment correlation coefficients (r) were used to assess the relationships between passive stiffness and PTT and RTD and normalized passive stiffness (passive stiffness . muscle CSA −1 ) and PTT and RTD. Significant positive relationships were observed between passive stiffness and PTT (P = 0.003, r = 0.828) and RTD (P = 0.003, r = 0.825). There were no significant relationships between normalized passive stiffness and PTT (P = 0.290, r = 0.372) or RTD (P = 0.353, r = 0.329) demonstrating that stiffness did not account for a significant portion of the variance in twitch properties. Passive stiffness was largely influenced by the amount of muscle tissue in this study. Future studies that examine muscle stiffness and its relationship with performance measures, among different populations, and following various interventions may consider normalizing stiffness measurements to muscle CSA

  7. Efficacy of polishing kits on the surface roughness and color stability of different composite resins.

    Science.gov (United States)

    Kocaagaoglu, H; Aslan, T; Gürbulak, A; Albayrak, H; Taşdemir, Z; Gumus, H

    2017-05-01

    Different polishing kits may have different effects on the composite resin surfaces. The aim of this study was to evaluate the surface roughness and color stability of four different composites which was applied different polishing technique. Thirty specimens were made for each composite resin group (nanohybrid, GrandioSo-GS; nanohybrid, Clearfil Majesty Esthetic-CME; hybrid, Valux Plus-VP; micro-hybrid, Ruby Comp-RC; [15 mm in diameter and 2 mm height]), with the different monomer composition and particle size from a total of 120 specimens. Each composite group was divided into three subgroups (n = 10). The first subgroup of the each composite subgroups served as control (C) and had no surface treatment. The second subgroup of the each composite resin groups was polished with finishing discs (Bisco Finishing Discs; Bisco Inc., Schaumburg, IL, USA). The third subgroup of the each composite resin was polished with polishing wheel (Enhance and PoGo, Dentsply, Konstanz, Germany). The surface roughness and the color differences measurement of the specimens were made and recorded. The data were compared using Kruskal-Wallis test, and regression analysis was used in order to examine the correlation between surface roughness and color differences of the specimens (α = 0.05). The Kruskal-Wallis test indicated significant difference among the composite resins in terms of ΔE (P composite resins in terms of surface roughness (P > 0.05). Result of the regression analysis indicated statistically significant correlation between Ra and ΔE values (P < 0.05, r2 = 0.74). The findings of the present study have clinical relevance in the choice of polishing kits used.

  8. Changes in anteroposterior stability and proprioception after different types of knee arthroplasty.

    Science.gov (United States)

    Wautier, Delphine; Thienpont, Emmanuel

    2017-06-01

    To compare different types of knee arthroplasty, in selected patients with a knee score above 80 points, for their post-operative changes in anteroposterior (AP) laxity and proprioception. Four groups of each ten patients were tested for AP translation after different types of arthroplasty with a KT-1000 device at 30°, 60° and 90° of flexion. Proprioception of the joint was evaluated by joint position sense with three different tests. Clinical outcome of stability and proprioceptive testing was analysed by comparing the results of three (KSS, KOOS and FJS-12) patient-reported outcome measurement scores (PROMS) for each of the different implant types. Anteroposterior laxity was observed at 30° and 90° of flexion for the two PS TKA designs included in this study, but not for the UKA or the medial pivot design. All knee designs, except UKA, had an increased laxity at 60° of flexion. Proprioceptive testing was inconclusive. PROMS were not able to identify differences in clinical outcome among different knee designs in these selected patients, despite observed differences in AP laxity. Increased AP laxity is a result of the surgical procedure in knee arthroplasty. UKA is the only design mimicking native laxity of the knee. A medial pivot design can obtain the same result as UKA at 30° and 90° of flexion, but not at the importantly cited 60° of flexion as tested under non-load-bearing conditions. The clinical relevance of this study is that despite of an important range of AP translations among the different knee designs, good-to-excellent patient-reported outcome was observed within the findings of this study. II.

  9. Effect of Static Soaking Under Different Temperatures on the Lime Stabilized Gypseous Soil

    Directory of Open Access Journals (Sweden)

    Abdulrahman Al-Zubaydi

    2013-04-01

    Full Text Available This study concerns with the effect of long-term soaking on the unconfined compressive strength, loss in weight and gypsum dissolution of gypseous soil stabilized with (4% lime, take into account the following variables: initial water content, water temperature, soaking duration. The results reveals that, the unconfined compressive strength was dropped, and the reduction in values was different according to the initial water content and water temperature, so that the reduction of the unconfined compressive strength of samples soaked in water at low temperatures (50 and 250 C was greater than those soaked in water temperatures  at (490 and 600 C. The results obtained shows that the increase in soaking period decreases the percentage amount of gypsum and loss in weight for all water temperatures and soaking durations.

  10. Ferroelectric domain inversion and its stability in lithium niobate thin film on insulator with different thicknesses

    Energy Technology Data Exchange (ETDEWEB)

    Shao, Guang-hao; Bai, Yu-hang; Cui, Guo-xin; Li, Chen; Qiu, Xiang-biao; Wu, Di; Lu, Yan-qing, E-mail: yqlu@nju.edu.cn [National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093 (China); Geng, De-qiang [Jinan Jingzheng Electronics Co., Ltd., Jinan 250100 (China)

    2016-07-15

    Ferroelectric domain inversion and its effect on the stability of lithium niobate thin films on insulator (LNOI) are experimentally characterized. Two sets of specimens with different thicknesses varying from submicron to microns are selected. For micron thick samples (∼28 μm), domain structures are achieved by pulsed electric field poling with electrodes patterned via photolithography. No domain structure deterioration has been observed for a month as inspected using polarizing optical microscopy and etching. As for submicron (540 nm) films, large-area domain inversion is realized by scanning a biased conductive tip in a piezoelectric force microscope. A graphic processing method is taken to evaluate the domain retention. A domain life time of 25.0 h is obtained and possible mechanisms are discussed. Our study gives a direct reference for domain structure-related applications of LNOI, including guiding wave nonlinear frequency conversion, nonlinear wavefront tailoring, electro-optic modulation, and piezoelectric devices.

  11. Experiment of Laser Pointing Stability on Different Surfaces to validate Micrometric Positioning Sensor

    CERN Document Server

    AUTHOR|(SzGeCERN)721924; Mainaud Durand, Helene; Piedigrossi, Didier; Sandomierski, Jacek; Sosin, Mateusz; Geiger, Alain; Guillaume, Sebastien

    2014-01-01

    CLIC requires 10 μm precision and accuracy over 200m for the pre-alignment of beam related components. A solution based on laser beam as straight line reference is being studied at CERN. It involves camera/shutter assemblies as micrometric positioning sensors. To validate the sensors, it is necessary to determine an appropriate material for the shutter in terms of laser pointing stability. Experiments are carried out with paper, metal and ceramic surfaces. This paper presents the standard deviations of the laser spot coordinates obtained on the different surfaces, as well as the measurement error. Our experiments validate the choice of paper and ceramic for the shutter of the micrometric positioning sensor. It also provides an estimate of the achievable precision and accuracy of the determination of the laser spot centre with respect to the shutter coordinate system defined by reference targets.

  12. Analysis on complex structure stability under different bar angle with BIM technology

    Directory of Open Access Journals (Sweden)

    Wang Xiongjue

    2016-03-01

    Full Text Available Sun Valley, the landmark building of World Expo in Shanghai, which has free surface with single-layer reticulated shell structure, is a typical complex structure. CAD/CAM integrated information system to design is used for the complex structure; however, it is a very rigorous process to be used widely. The relevant technology of the Sun Valley is not open to the public at present, so we try to use BIM technology to model the Sun Valley, including architecture modelling and structure analysis. By analysis of the Sun Valley structure using this method, it is proved that the problems in modelling may be solved by writing some script codes in Rhino software and the stability of the model can also be analyzed. The new approach is viable and effective in combination with different softwares such as Rhino, Revit, and Midas in solution of the complex shaped surfaces’ structure for modelling and calculation.

  13. Nitrogen stabilization in organo-mineral fractions from soils with different land uses

    Science.gov (United States)

    Giannetta, Beatrice; Zaccone, Claudio; Rovira, Pere; Vischetti, Costantino; Plaza, César

    2017-04-01

    Understanding the processes that control quantity and quality of soil organic matter (SOM) interacting with mineral surfaces is of paramount importance. Although several physical fractionation methods have been proposed to date to obtain fractions that mirror SOM degree of stability and protection, a detailed quantification of stabilisation modes through which SOM bounds to the mineral matrix is still lacking. In this research we determined C and N distribution in several soils including coniferous and broadleaved forest soils, grassland soils, technosols and an agricultural soil amended with biochar at rates of 0 and 20 t/ha in a factorial combination with two types of organic amendment (municipal solid waste compost and sewage sludge). We performed a physical size fractionation by ultrasonic dispersion and wet sieving, splitting particles into four different size fractions: coarse sand (2000-200 µm diameter), fine sand (200-50 µm), coarse silt (50-20 µm) and fine silt plus clay (use of sequential extractions with chemical reagents (potassium sulphate, sodium tetraborate, sodium pyrophosphate, sodium hydroxide, sodium hydroxide after weak acid attack, sodium hydroxide after sodium dithionite pretreatment, and sodium hydroxide after hydrofluoric acid pretreatments). Elemental analysis (CHN) was then carried out on SOM pools isolated from different fractions. Preliminary data show that, for all land uses in general, and for grassland soils in particular, most of the total N is found in organo-mineral complexes (fraction soil N content. Although a small N loss was observed during the fractionation procedure, especially in N-rich samples, and data analysis is still ongoing, these preliminary results could already represent a valuable insight into organic N stabilization by mineral matrix.

  14. Effect of Different Irrigation Solutions on the Colour Stability of Three Calcium Silicate-Based Materials.

    Science.gov (United States)

    F, Sobhnamayan; A, Adl; S, Ghanbaran

    2017-06-01

    Previous studies have shown discoloration of mineral trioxide aggregate (MTA) in contact with root canal irrigation solutions. However, there are limited data on colour stability of other calcium silicate-based materials (CSMs). This in vitro study aimed to evaluate the colour stability of three CSMs in contact with different irrigation solutions. Three CSMs including White MTA (wMTA) Angelus, calcium enriched mixture (CEM), and Biodentine were assessed in this study. Forty five samples of each material were mixed according to the manufactures' instructions and then placed in silicone tubes. After 24 hours, the materials were removed from the moulds and 9 samples of each material left dry or immersed in normal saline, 5% sodium hypochlorite (NaOCL), 2% chlorhexidinegluconate (CHX), or 17%EDTA for 24 hours. Colour changes were measured with a spectrophotometer. Data were evaluated with 2-way analysis of variance, one way analysis of variance and Tukey post hoc tests. The highest discoloration of all materials was observed after contact with CHX. In the MTA Angelus and CEM cement groups, significant differences were observed between CHX and NaOCl and also between these two irrigants with the other three irrigants ( p < 0.05). In the Biodentine group, CHX created statistically significant discoloration compared to other irrigants ( p < 0.05). Only wMTA Angelus showed a significantly higher discoloration in contact with EDTA compared to normal saline and dry condition ( p < 0.05). wMTA Angelus showed a significantly higher colour change compared with CEM cement and Biodentine after contact with NaOCl, CHX, and EDTA ( p < 0.05). The contact of wMTA, CEM cement, and Biodentine with CHX should be avoided because this leads to severe discoloration. Contact with sodium hypochlorite also leads to discoloration of wMTA and CEM cements. Among of the three tested materials, wMTA showed the highest discoloration after contact with NaOCl, CHX, and EDTA.

  15. Effect of Different Irrigation Solutions on the Colour Stability of Three Calcium Silicate-Based Materials

    Science.gov (United States)

    F, Sobhnamayan; A, Adl; S, Ghanbaran

    2017-01-01

    Statement of Problem: Previous studies have shown discoloration of mineral trioxide aggregate (MTA) in contact with root canal irrigation solutions. However, there are limited data on colour stability of other calcium silicate-based materials (CSMs). Objectives: This in vitro study aimed to evaluate the colour stability of three CSMs in contact with different irrigation solutions. Materials and Methods: Three CSMs including White MTA (wMTA) Angelus, calcium enriched mixture (CEM), and Biodentine were assessed in this study. Forty five samples of each material were mixed according to the manufactures’ instructions and then placed in silicone tubes. After 24 hours, the materials were removed from the moulds and 9 samples of each material left dry or immersed in normal saline, 5% sodium hypochlorite (NaOCL), 2% chlorhexidinegluconate (CHX), or 17%EDTA for 24 hours. Colour changes were measured with a spectrophotometer. Data were evaluated with 2-way analysis of variance, one way analysis of variance and Tukey post hoc tests. Results: The highest discoloration of all materials was observed after contact with CHX. In the MTA Angelus and CEM cement groups, significant differences were observed between CHX and NaOCl and also between these two irrigants with the other three irrigants (p Biodentine group, CHX created statistically significant discoloration compared to other irrigants (p Biodentine after contact with NaOCl, CHX, and EDTA (p Biodentine with CHX should be avoided because this leads to severe discoloration. Contact with sodium hypochlorite also leads to discoloration of wMTA and CEM cements. Among of the three tested materials, wMTA showed the highest discoloration after contact with NaOCl, CHX, and EDTA. PMID:28959768

  16. Research regarding stiffness optimization of wires used for joints actuation from an elephant's trunk robotic arm

    Science.gov (United States)

    Ciofu, C.; Stan, G.

    2016-11-01

    Elephant's trunk robotic arms driven by wires and pulley mechanisms have issues with wires stiffness because of the entailed elastic deformations that is causing errors of positioning. Static and dynamic loads from each joint of the robotic arm affect the stiffness of driving wires and precision positioning. The influence of wires elastic deformation on precision positioning decreases with the increasing of wires stiffness by using different pre-tensioning devices. In this paper, we analyze the variation of driving wires stiffness particularly to each wire driven joint. We obtain optimum wires stiffness variation by using an analytical method that highlights the efficiency of pre-tensioning mechanism. The analysis of driving wires stiffness is necessary for taking appropriate optimization measures of robotic arm dynamic behavior and, thus, for decreasing positioning errors of the elephant's trunk robotic arm with inner actuation through wires/cables.

  17. Self-reported knee joint instability is related to passive mechanical stiffness in medial knee osteoarthritis

    Science.gov (United States)

    2013-01-01

    Background Self-reported knee joint instability compromises function in individuals with medial knee osteoarthritis and may be related to impaired joint mechanics. The purpose of this study was to evaluate the relationship between self-reported instability and the passive varus-valgus mechanical behaviour of the medial osteoarthritis knee. Methods Passive varus-valgus angular laxity and stiffness were assessed using a modified isokinetic dynamometer in 73 participants with medial tibiofemoral osteoarthritis. All participants self-reported the absence or presence of knee instability symptoms and the degree to which instability affected daily activity on a 6-point likert scale. Results Forward linear regression modelling identified a significant inverse relationship between passive mid-range knee stiffness and symptoms of knee instability (r = 0.27; P  0.05). Conclusions Conceivably, a stiffer passive system may contribute toward greater joint stability during functional activities. Importantly however, net joint stiffness is influenced by both active and passive stiffness, and thus the active neuromuscular system may compensate for reduced passive stiffness in order to maintain joint stability. Future work is merited to examine the role of active stiffness in symptomatic joint stability. PMID:24252592

  18. Influence of Different Tibial Fixation Techniques on Initial Stability in Single-Stage Anterior Cruciate Ligament Revision With Confluent Tibial Tunnels: A Biomechanical Laboratory Study.

    Science.gov (United States)

    Schliemann, Benedikt; Treder, Maximilian; Schulze, Martin; Müller, Viktoria; Vasta, Sebastiano; Zampogna, Biaggio; Herbort, Mirco; Kösters, Clemens; Raschke, Michael J; Lenschow, Simon

    2016-01-01

    To kinematically and biomechanically compare 4 different types of tibial tunnel management in single-stage anterior cruciate ligament (ACL) revision reconstruction with the control: primary ACL reconstruction using a robotic-based knee testing setup. Porcine knees and flexor tendons were used. One hundred specimens were randomly assigned to 5 testing groups: (1) open tibial tunnel, (2) bone plug technique, (3) biodegradable interference screw, (4) dilatation technique, and (5) primary ACL reconstruction. A robotic/universal force-moment sensor testing system was used to simulate the KT-1000 (MEDmetric, San Diego, CA) and pivot-shift tests. Cyclic loading and load-to-failure testing were performed. Anterior tibial translation increased significantly with all of the techniques compared with the intact ACL (P .05). The open tunnel and dilated tunnel techniques showed significantly greater anterior tibial translation (P < .05). The results of the simulated pivot-shift test were in accordance with those of the KT-1000 test. No significant differences could be observed regarding stiffness or maximum load to failure. However, elongation was significantly lower in the primary ACL reconstruction group compared with groups 1 and 3 (P = .02 and P = .03, respectively). Filling an incomplete and incorrect tibial tunnel with a press-fit bone plug or a biodegradable interference screw in a standardized laboratory situation provided initial biomechanical properties and knee stability comparable with those of primary ACL reconstruction. In contrast, the dilatation technique or leaving the malplaced tunnel open did not restore knee kinematics adequately in this model. Backup extracortical fixation should be considered because the load to failure depends on the extracortical fixation when an undersized interference screw is used for aperture fixation. Our biomechanical results could help orthopaedic surgeons to optimize the results of primary ACL revision with incomplete, incorrect

  19. Stability and reliability of anodic biofilms under different feedstock conditions: Towards microbial fuel cell sensors

    Directory of Open Access Journals (Sweden)

    Jiseon You

    2015-12-01

    Full Text Available Stability and reliability of microbial fuel cell anodic biofilms, consisting of mixed cultures, were investigated in a continuously fed system. Two groups of anodic biofilm matured with different substrates, acetate and casein for 20–25 days, reached steady states and produced 80–87 μW and 20–29 μW consistently for 3 weeks, respectively. When the substrates were swapped, the casein-enriched group showed faster response to acetate and higher power output, compared to the acetate-enriched group. Also when the substrates were switched back to their original groups, the power output of both groups returned to the previous levels more quickly than when the substrates were swapped the first time. During the substrate change, both MFC groups showed stable power output once they reached their steady states and the output of each group with different substrates was reproducible within the same group. Community level physiological profiling also revealed the possibility of manipulating anodic biofilm metabolisms through exposure to different feedstock conditions.

  20. Effect of Children's Drinks on Color Stability of Different Dental Composites: An in vitro Study.

    Science.gov (United States)

    Habib, Ahmed Nour El-Din Ahmed; Abdelmoniem, Soad Abdelmoniem; Mahmoud, Sara Ahmed

    To assess the effect of four different children's drinks on color stability of resin dental composites. A total of one hundred and twenty specimens were prepared from Grandio SO, Filtek Z350 XT and Filtek Z250 XT (forty specimens each). Specimens were thermocycled, then each group was further subdivided into four subgroups (n=10) according to the immersion media which were chocolate milk, mango juice, orange fizzy drink, and water (control). The initial color parameters of each specimen were recorded before immersion (baseline) and color change values were recorded three and seven days after immersion in each solution using a digital spectrophotometer. Atomic force microscope was used to measure the surface roughness in randomly selected samples after one week immersion in children's drinks. All the children's drinks produced color changes in the examined resin dental composites, yet there was no statistical significant difference between the effects of tested drinks on the color changes (mean ΔE) of the three different dental composites (P>0.05). All tested children's drinks caused clinically unacceptable color changes of the tested resin dental composites. Immersion in chocolate milk and orange fizzy led to the highest color changes in the tested resin dental composites.

  1. Effect of Different Denture Base Materials and Changed Mouth Temperature on Dimensional Stability of Complete Dentures

    Science.gov (United States)

    Arafa, Khalid A. O.

    2016-01-01

    Background. Type of materials used in fabrication of denture base has an effect on dimension during denture base material processing and other factors related to clinical use. Objective. The study aims were to assess the dimensional stability including thermal changes of three different denture base materials. Methods. Ninety patients were selected to construct complete dentures with different denture base materials. They were randomly divided into three groups: group 1, patients with cobalt chrome metallic base; group 2, patients with heat curing acrylic resin fabricated by injection moulding technique; and group 3, patients with denture bases fabricated by conventional heat curing acrylic resin. The dimensional changes were assessed using digital caliper. Results. After the twelfth month, injection moulding acrylic resin had significantly the highest dimensional change followed by the conventional heat curing acrylic resin. There were no significant differences in the dimensions between the three types of denture base materials at normal mouth temperature, while, after hot tea drinking at 45°C, the dimensional change was significantly the highest in cobalt chrome metallic denture base group. Conclusion. Cobalt chrome metallic denture base has stable dimension compared to denture bases fabricated of acrylic resin but it was more affected by altered mouth temperature. The study was registered in the International Standard Randomized Controlled Trials Number (ISRCTN) registry with study ID (ISRCTN94238244). PMID:27143970

  2. Effect of Different Denture Base Materials and Changed Mouth Temperature on Dimensional Stability of Complete Dentures

    Directory of Open Access Journals (Sweden)

    Khalid A. O. Arafa

    2016-01-01

    Full Text Available Background. Type of materials used in fabrication of denture base has an effect on dimension during denture base material processing and other factors related to clinical use. Objective. The study aims were to assess the dimensional stability including thermal changes of three different denture base materials. Methods. Ninety patients were selected to construct complete dentures with different denture base materials. They were randomly divided into three groups: group 1, patients with cobalt chrome metallic base; group 2, patients with heat curing acrylic resin fabricated by injection moulding technique; and group 3, patients with denture bases fabricated by conventional heat curing acrylic resin. The dimensional changes were assessed using digital caliper. Results. After the twelfth month, injection moulding acrylic resin had significantly the highest dimensional change followed by the conventional heat curing acrylic resin. There were no significant differences in the dimensions between the three types of denture base materials at normal mouth temperature, while, after hot tea drinking at 45°C, the dimensional change was significantly the highest in cobalt chrome metallic denture base group. Conclusion. Cobalt chrome metallic denture base has stable dimension compared to denture bases fabricated of acrylic resin but it was more affected by altered mouth temperature. The study was registered in the International Standard Randomized Controlled Trials Number (ISRCTN registry with study ID (ISRCTN94238244.

  3. Phase change Materials (PCM) microcapsules with different shell compositions: Preparation, characterization and thermal stability

    Energy Technology Data Exchange (ETDEWEB)

    Bayes-Garcia, L.; Ventola, L.; Cordobilla, R.; Benages, R.; Calvet, T.; Cuevas-Diarte, M.A. [Departament de Cristal.lografia, Mineralogia i Diposits Minerals, Facultat de Geologia, Universitat de Barcelona, Marti i Franques s/n, E-08028 Barcelona (Spain)

    2010-07-15

    In this study, phase change materials (Rubitherm registered RT 27) microcapsules were successfully obtained by two different methods. The main difference between them remains on the shell composition, as they are composed of different coacervates (Sterilized Gelatine/Arabic Gum for the SG/AG method and Agar-Agar/Arabic Gum for the AA/AG method). Microcapsules were thermally characterized by thermo-optical microscopy and differential scanning calorimetry. Using scanning electron microscopy, their spherical morphology (sphericity factor of 0.94-0.95) and their particle size distribution were determined, obtaining an average diameter of 12 {mu}m for the SG/AG method and lower values for the AA/AG method, where nanocapsules were also observed (average diameter of 4.3 {mu}m for the microcapsules and 104 nm for the nanocapsules). The thermal stability determination was carried out by Thermogravimetric analyses (TG) and the results show a high decomposition temperature, although the process takes places in four steps for the two mentioned methods. Moreover, the microcapsules obtained by the AA/AG method decompose in a more gradual way, as in the TG results a double step, instead of one, is appreciable. On the whole, the prepared microencapsulated PCM are totally capable of developing their role in thermal energy storage. (author)

  4. Application of dynamic stiffness method in numerical free vibration analysis of stiffened plates

    Directory of Open Access Journals (Sweden)

    Damnjanović Emilija

    2017-01-01

    Full Text Available The free vibration analysis of stiffened plate assemblies has been performed in this paper by using the dynamic stiffness method. Rectangular Mindlin plate dynamic stiffness element has been formulated. Using the rotation matrices, dynamic stiffness matrices of single plates have been derived in global coordinate system. The global dynamic stiffness matrix of plate assembly has been derived by using similar assembly procedure as in the finite element method. The natural frequencies of stiffened plate assemblies with different boundary conditions have been computed and validated against the results obtained by using the commercial software package Abaqus. High accuracy of the results has been demonstrated.

  5. Instantaneous stiffness and hysteresis of dynamic elastic response prosthetic feet.

    Science.gov (United States)

    Webber, Christina M; Kaufman, Kenton

    2017-10-01

    Dynamic elastic response prosthetic feet are designed to mimic the functional characteristics of the native foot/ankle joint. Numerous designs of dynamic elastic response feet exist which make the prescription process difficult, especially because of the lack of empirical evidence describing the objective performance characteristics of the feet. To quantify the mechanical properties of available dynamic elastic response prosthetic feet, specifically the stiffness and hysteresis. Mechanical testing of dynamic elastic response prosthetic feet. Static Proof Testing in accordance with ISO 10328 was conducted on seven dynamic elastic response prosthetic feet. Load-displacement data were used to calculate the instantaneous stiffness in both the heel and forefoot regions, as well as hysteresis associated with each foot. Heel stiffness was greater than forefoot stiffness for all feet. The heel of the glass composite prosthetic foot was stiffer than the carbon fiber feet and it exhibited less hysteresis. Two different carbon fiber feet had the stiffest forefoot regions. Mechanical testing is a reproducible method that can be used to provide objective evidence about dynamic elastic response prosthetic foot performance and aid in the prescription process. Clinical relevance The quantitative stiffness and hysteresis data from this study can be used by prosthetists to aid the prescription process and make it more objective.

  6. Effect of different solutions on color stability of acrylic resin-based dentures

    Directory of Open Access Journals (Sweden)

    Marcelo Coelho Goiato

    2014-01-01

    Full Text Available The aim of this study was to evaluate the effect of thermocycling and immersion in mouthwash or beverage solutions on the color stability of four different acrylic resin-based dentures (Onda Cryl, OC; QC20, QC; Classico, CL; and Lucitone, LU. The factors evaluated were type of acrylic resin, immersion time, and solution (mouthwash or beverage. A total of 224 denture samples were fabricated. For each type of resin, eight samples were immersed in mouthwashes (Plax-Colgate, PC; Listerine, LI; and Oral-B, OB, beverages (coffee, CP; cola, C; and wine, W, and artificial saliva (AS; control. The color change (DE was evaluated before (baseline and after thermocycling (T1, and after immersion in solution for 1 h (T2, 3 h (T3, 24 h (T4, 48 h (T5, and 96 h (T6. The CIE Lab system was used to determine the color changes. The thermocycling test was performed for 5000 cycles. Data were submitted to three-way repeated-measures analysis of variance and Tukey's test (p < 0.05. When the samples were immersed in each mouthwash, all assessed factors, associated or not, significantly influenced the color change values, except there was no association between the mouthwash and acrylic resin. Similarly, when the samples were immersed in each beverage, all studied factors influenced the color change values. In general, regardless of the solution, LU exhibited the greatest DE values in the period from T1 to T5; and QC presented the greatest DE values at T6. Thus, thermocycling and immersion in the various solutions influenced the color stability of acrylic resins and QC showed the greatest color alteration.

  7. The comparison of abdominal muscle activation on unstable surface according to the different trunk stability exercises

    OpenAIRE

    Lee, Jung-seok; Kim, Da-yeon; Kim, Tae-ho

    2016-01-01

    [Purpose] This study aimed to determine the effect of abdominal muscle activities and the activation ratio related to trunk stabilization to compare the effects between the abdominal drawing-in maneuver and lumbar stabilization exercises on an unstable base of support. [Subjects and Methods] Study subjects were 20 male and 10 female adults in their 20s without lumbar pain, who were equally and randomly assigned to either the abdominal drawing-in maneuver group and the lumbar stabilization exe...

  8. Measurement and Treatment of Passive Muscle Stiffness

    DEFF Research Database (Denmark)

    Kirk, Henrik

    This PhD thesis is based on research conducted at the University of Copenhagen and Helene Elsass Center from 2012 to 2015. Measurements and treatment of passive muscle stiffness in people with cerebral palsy (CP) comprise the focus of the thesis. The thesis summarizes the results from four studies......, which aimed to investigate: 1) The development of a clinical method to evaluate and distinguish neural (reflex mediated stiffness) and non-neural (passive muscle stiffness) components of muscle stiffness in adults with CP by objective and reliable measurements. 2) The association between increased...... passive muscle, muscle strength and gait function in adults with CP 3) The effect of resistance training and gait training accordingly on muscle strength, passive muscle stiffness and functional gait in adults with CP. The first part of the thesis defines reflex mediated stiffness and passive muscle...

  9. STABILITY OF ORGANIC MATER OF HAPLIC CHERNOZEM AND HAPLIC LUVISOL OF DIFFERENT ECOSYSTEMS

    Directory of Open Access Journals (Sweden)

    ERIKA TOBIAŠOVÁ

    2013-12-01

    Full Text Available In this study, the changes in soil organic matter (SOM and the possibilities of their monitoring in a shorter period of time by means of carbon parameters were followed. The experiment includes four ecosystems (forest, meadow, urban, and agro-ecosystem on Haplic Chernozem (Močenok, Horná Kráľová, Trnava and Haplic Luvisol (Ludanice, Veľké Zálužie, Lovce of different localities. The objectives of this study were assessment of the differences in the stability of soil organic matter in different ecosystems and in soil types using labile forms of carbon and nitrogen, and also with dependence on particle size distribution. The highest contents of total organic carbon (TOC and labile carbon (CL were in a forest ecosystem, but in case of other ecosystems, the differences were determined only in the contents of CL. After forest ecosystem, the highest content of CL was in agro-ecosystem > meadow ecosystem > urban ecosystem. Based on parameter of lability of carbon (LC, the most labile carbon can be evaluated also in the forest ecosystem (0.209 > agro-ecosystem (0.178 > meadow ecosystem (0.119 and urban ecosystem (0.116. In the case of nitrogen, the differences were observed between the soils. Higher contents of NT and NL were recorded in Haplic Chernozen than in Haplic Luvisol. Contents of TOC (P < 0.05; r = -0.480, CNL (P < 0.05; r = -0.480, and NL (P < 0.01; r = -0.545 were in a negative correlation with the content of sand fraction. The values of studied parameters in meadow and urban ecosystems were relatively balanced, because in both cases, the vegetation cover were grass, pointing to a significant influence of vegetation on the parameters of SOM.

  10. Stiffness Analysis of Above Knee Prosthesis

    OpenAIRE

    Ege, Mücahit; Küçük, Serdar

    2016-01-01

    While a healthy human walks, his or her legs mutually perform good repeatabilitywith high accuracy. This provides an esthetical movement and balance. Peoplewith above knee prosthesis want to perform walking as esthetical as a healthyhuman. Therefore, to achieve a healthy walking, the above knee prosthesis mustprovide a good stiffness performance. Especially stiffness values are requiredwhen adding a second axis movement to the ankle for eversion and inversion. Inthis paper, stiffness analysis...

  11. Numerical stability of finite difference algorithms for electrochemical kinetic simulations: Matrix stability analysis of the classic explicit, fully implicit and Crank-Nicolson methods and typical problems involving mixed boundary conditions

    DEFF Research Database (Denmark)

    Bieniasz, Leslaw K.; Østerby, Ole; Britz, Dieter

    1995-01-01

    The stepwise numerical stability of the classic explicit, fully implicit and Crank-Nicolson finite difference discretizations of example diffusional initial boundary value problems from electrochemical kinetics has been investigated using the matrix method of stability analysis. Special attention...

  12. Axial Dynamic Stiffness of Tubular Piles in Viscoelastic Soil

    DEFF Research Database (Denmark)

    Bayat, Mehdi; Andersen, Lars Vabbersgaard; Ibsen, Lars Bo

    2016-01-01

    Large offshore wind turbines are f0W1ded on jacket structures. In this study, an elastic full-space jacket structure foundation in an elastic and viscoelastic medium is investigated by using boundary integral equations. The jacket structure foundation is modeled as a hollow, long circular cylinder......-resonance are presented .in series of Bessel's function. Important responses, such as dynamic stiffness and phase angle, are compared for different values of the loss factor as the material damping, Y0W1g's modulus and Poisson's ratio in a viscoelastic soil. Results are verified. with known results reported...... in the literature. It is observed that the dynamic stiffness fluctuates with the loss factor, and the turning point is independent of the loss factor while the turning point increases with load frequency. It is seen that the non-dimensional dynamic stiffness is dependent on Young's modulus and Poisson's ratio...

  13. Stability of flavoured phytosterol-enriched drinking yogurts during storage as affected by different packaging materials.

    Science.gov (United States)

    Semeniuc, Cristina Anamaria; Cardenia, Vladimiro; Mandrioli, Mara; Muste, Sevastiţa; Borsari, Andrea; Rodriguez-Estrada, Maria Teresa

    2016-06-01

    The aim of this study was to investigate the influence of different packaging materials on storage stability of flavoured phytosterol-enriched drinking yogurts. White vanilla (WV) and blood orange (BO) phytosterol-enriched drinking yogurts conditioned in mono-layer and triple-layer co-extruded plastic bottles were stored at +6 ± 1 °C for 35 days (under alternating 12 h light and 12 h darkness) to simulate shelf-life conditions. Samples were collected at three different storage times and subjected to determination of total sterol content (TSC), peroxide value (PV) and thiobarbituric acid reactive substances (TBARs). TSC was not significantly affected by packaging material or storage time and met the quantity declared on the label. PV was significantly influenced by yogurt type × packaging material × storage time interaction and TBARs by packaging material × storage time interaction. Between the two packaging materials, the triple-layer plastic mini bottle with black coloured and completely opaque intermediate layer offered the best protection against lipid oxidation. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  14. Influence of Resin Cements on Color Stability of Different Ceramic Systems.

    Science.gov (United States)

    Rodrigues, Renata Borges; Lima, Erick de; Roscoe, Marina Guimarães; Soares, Carlos José; Cesar, Paulo Francisco; Novais, Veridiana Resende

    2017-01-01

    The purpose of this study was to evaluate color stability of two dental ceramics cemented with two resin cements, assessing the color difference (ΔE00) by the measurement of L*, a*, b*, c* and h* of transmittance. The combination of two ceramic system (feldspathic and lithium disilicate) and two resin cements - color A3 (RelyX ARC and Variolink II) resulted in 4 groups (n=5). Ten disks-shaped specimens were fabricated for each ceramic system (10x1.5 mm), etched with hydrofluoric acid (10%) and silanized prior to cementation. The color analysis was performed 24 h after cementation of the samples and after 6 months of storage in relative humidity by means of spectrophotometry. The ΔE00 values were analyzed statistically by two-way ANOVA followed by the Tukey test (p<0.05). One-way ANOVA were calculated for the means of individual color coordinates (L*, a*, b*, c* and h*). Two-way ANOVA showed that only the ceramic factor was significant (p=0.003), but there was no difference for the cement factor (p=0.275) nor for the ceramic/cement interaction (p=0.161). The feldspathic ceramic showed the highest values of ΔE00. Variations in L*, a*, b*, c* and h* were more significant for feldspathic ceramic. In conclusion, storage alters similarly the optical properties of the resin cements and feldspathic porcelain was more susceptible to cement color change after aging.

  15. Muscle activity of leg muscles during unipedal stance on therapy devices with different stability properties.

    Science.gov (United States)

    Wolburg, Thomas; Rapp, Walter; Rieger, Jochen; Horstmann, Thomas

    2016-01-01

    To test the hypotheses that less stable therapy devices require greater muscle activity and that lower leg muscles will have greater increases in muscle activity with less stable therapy devices than upper leg muscles. Cross-sectional laboratory study. Laboratory setting. Twenty-five healthy subjects. Electromyographic activity of four lower (gastrocnemius medialis, soleus, tibialis anterior, peroneus longus) and four upper leg muscles (vastus medialis and lateralis, biceps femoris, semitendinosus) during unipedal quiet barefoot stance on the dominant leg on a flat rigid surface and on five therapy devices with varying stability properties. Muscle activity during unipedal stance differed significantly between therapy devices (P leg) and therapy device (P = 0.985). Magnitudes of additional relative muscle activity for the respective therapy devices differed substantially among lower extremity muscles. The therapy devices offer a progressive increase in training intensity, and thus may be useful for incremental training programs in physiotherapeutic practice and sports training programs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Stability of freeze-dried vaginal Lactobacillus strains in the presence of different lyoprotectors.

    Science.gov (United States)

    Juárez Tomás, María Silvina; Bru, Elena; Martos, Gladys; Nader-Macías, María Elena

    2009-05-01

    The industrial use of lactic acid bacteria as probiotic cultures depends on the preservation techniques employed, which are required to guarantee stable cultures in terms of viability and functional activity. The aim of this study was to evaluate the effects of 12% lactose and 12% sucrose suspended in water or reconstituted skim milk on the survival and expression of beneficial characteristics during freeze-drying and subsequent storage of 6 vaginal lactobacilli strains. A cubic polynomial model was also used for the first time to evaluate the effects of different protectors on survival behavior during storage. Different survival patterns were observed among the strains considered. The presence of both lactose and sucrose in water or in 6% skim milk as the suspension medium proved to be effective in maintaining a high degree of survival and expression of potentially probiotic characteristics (production of antimicrobial substances or auto-aggregation capabilities) of most strains after lyophilization and long-term storage. This study constitutes a valuable step to obtain concentrated cultures with the highest stability of microorganisms for pharmaceutical purposes.

  17. Core muscle activity in a series of balance exercises with different stability conditions.

    Science.gov (United States)

    Calatayud, Joaquin; Borreani, Sebastien; Martin, Julio; Martin, Fernando; Flandez, Jorge; Colado, Juan C

    2015-07-01

    Literature that provides progression models based on core muscle activity and postural manipulations is scarce. The purpose of this study was to investigate the core muscle activity in a series of balance exercises with different stability levels and additional elastic resistance. A descriptive study of electromyography (EMG) was performed with forty-four healthy subjects that completed 12 exercises in a random order. Exercises were performed unipedally or bipedally with or without elastic tubing as resistance on various unstable (uncontrolled multiaxial and uniaxial movement) and stable surfaces. Surface EMG on the lumbar multífidus spinae (LM), thoracic multífidus spinae (TM), lumbar erector spinae (LE), thoracic erector spinae (TE) and gluteus maximus (GM), on the dominant side of the body were collected to quantify the amount of muscle activity and were expressed as a % of the maximum voluntary isometric contraction (MVIC). Significant differences (pcore muscle activity. An adequate exercise progression based on global core EMG could start with seated positions, progressing to bipedal standing stance (i.e., from either multiaxial or stable surface to uniaxial surface). Following this, unipedal standing positions may be performed (i.e., from either multiaxial or stable surface to uniaxial surface) and finally, elastic resistance must be added in order to increase EMG levels (i.e., from stable surface progressing to any of the used unstable surfaces). Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Biomechanical comparison of different stabilization constructs for unstable posterior wall fractures of acetabulum. A cadaveric study.

    Science.gov (United States)

    Zhang, Yuntong; Tang, Yang; Wang, Panfeng; Zhao, Xue; Xu, Shuogui; Zhang, Chuncai

    2013-01-01

    Operative treatment of unstable posterior wall fractures of acetabulum has been widely recommended. This laboratory study was undertaken to evaluate static fixation strength of three common fixation constructs: interfragmentary screws alone, in combination with conventional reconstruction plate, or locking reconstruction plate. Six formalin-preserved cadaveric pelvises were used for this investigation. A posterior wall fracture was created along an arc of 40-90 degree about the acetabular rim. Three groups of different fixation constructs (two interfragmentary screws alone; two interfragmentary screws and a conventional reconstruction plate; two interfragmentary screws and a locking reconstruction) were compared. Pelvises were axial loaded with six cycles of 1500 N. Dislocation of superior and inferior fracture site was analysed with a multidirectional ultrasonic measuring system. No statistically significant difference was found at each of the superior and inferior fracture sites between the three types of fixation. In each group, the vector dislocation at superior fracture site was significantly larger than inferior one. All those three described fixation constructs can provide sufficient stability for posterior acetabular fractures and allow early mobilization under experimental conditions. Higher posterior acetabular fracture line, transecting the weight-bearing surface, may indicate a substantial increase in instability, and need more stable pattern of fixation.

  19. Biomechanical comparison of different stabilization constructs for unstable posterior wall fractures of acetabulum. A cadaveric study.

    Directory of Open Access Journals (Sweden)

    Yuntong Zhang

    Full Text Available PURPOSE: Operative treatment of unstable posterior wall fractures of acetabulum has been widely recommended. This laboratory study was undertaken to evaluate static fixation strength of three common fixation constructs: interfragmentary screws alone, in combination with conventional reconstruction plate, or locking reconstruction plate. METHODS: Six formalin-preserved cadaveric pelvises were used for this investigation. A posterior wall fracture was created along an arc of 40-90 degree about the acetabular rim. Three groups of different fixation constructs (two interfragmentary screws alone; two interfragmentary screws and a conventional reconstruction plate; two interfragmentary screws and a locking reconstruction were compared. Pelvises were axial loaded with six cycles of 1500 N. Dislocation of superior and inferior fracture site was analysed with a multidirectional ultrasonic measuring system. RESULTS: No statistically significant difference was found at each of the superior and inferior fracture sites between the three types of fixation. In each group, the vector dislocation at superior fracture site was significantly larger than inferior one. CONCLUSIONS: All those three described fixation constructs can provide sufficient stability for posterior acetabular fractures and allow early mobilization under experimental conditions. Higher posterior acetabular fracture line, transecting the weight-bearing surface, may indicate a substantial increase in instability, and need more stable pattern of fixation.

  20. Performance analysis of cooling stabilizing burners for different stress boiler unit

    OpenAIRE

    Fialko, N. M.; Prokopov, V. H.; Alyosha, S. A.; Sherenkovskyy, Y.; Meranova, N. A.; Polozenko, N. P.; Malecki, A. E.

    2013-01-01

    The numerical research data of the jet–stabilization burners cooling system of with different baffles are presented of the jet airflow of inside end surface by flat and round jets with different width pylon is presented. The analysis of the load influence on the boiler efficiency cooling system is carried out. Наведено дані числових досліджень систем охолодження струменево- стабілізаторних пальникових пристроїв за схемою із струменевим обдувом внутрішньої торцевої ...

  1. Phycocyanin stability in microcapsules processed by spray drying method using different inlet temperature

    Science.gov (United States)

    Purnamayati, L.; Dewi, EN; Kurniasih, R. A.

    2018-02-01

    Phycocyanin is natural blue colorant which easily damages by heat. The inlet temperature of spray dryer is an important parameter representing the feature of the microcapsules.The aim of this study was to investigate the phycocyanin stability of microcapsules made from Spirulina sp with maltodextrin and κ-Carrageenan as the coating material, processed by spray drying method in different inlet temperature. Microcapsules were processed in three various inlet temperaturei.e. 90°C, 110°C, and 130°C, respectively. The results indicated that phycocyanin microcapsule with 90°C of inlet temperature produced the highest moisture content, phycocyanin concentration and encapsulation efficiency of 3,5%, 1,729% and 29,623%, respectively. On the other hand, the highest encapsulation yield was produced by 130°C of theinlet temperature of 29,48% and not significantly different with 110°C. The results of Scanning Electron Microscopy (SEM) showed that phycocyanin microcapsules with 110°C of inlet temperature produced the most rounded shape. To sum up, 110°C was the best inlet temperature to phycocyanin microencapsulation by the spray dryer.

  2. The effect of different stabilizers on the thermostability of electron beam crosslinked polyethylene in hot water

    International Nuclear Information System (INIS)

    Hassanpour, S.; Khoylou, F.

    2003-01-01

    Plastic pipes owing to their flexibility, great lengths, easier handling and absence of corrosion have been used for hot-water installations. Crosslinked high-density polyethylene is one of the best materials, being used for this purpose. The useful lifetime of unstabilized polyethylene is predicted to vary from a few months in hot water (30-40 deg. C) to almost two years in cool water (0-10 deg. C). Polyethylene was mixed with different types of stabilizers, in order to increase its durability. The samples were irradiated at 100-150 kGy. The amount of gel fraction and the changes in mechanical properties were measured. Irradiated samples were immersed in hot water for 1000 h. The thermostability of the specimens and the existence of antioxidants were measured by the induction time technique using differential scanning calorimetry at different time intervals. Furthermore, the changes in chemical structure and mechanical properties of the samples during their immersion in hot water were determined

  3. Proposal of a new degradation mechanism of enalapril maleate and improvement of enalapril maleate stability in tablet formulation with different stabilizers.

    Science.gov (United States)

    Chen, J; Zhang, L H; Xu, R J; Bu, N J; Zhang, L

    2014-04-01

    Enalapril maleate (EM) is unstable in poorly designed tablet formulations. To improve the stability of EM, the degradation mechanism should be elucidated. In this study, we found that several commonly used excipients promoted the degradants of EM, particularly a diketopiperazine derivative (DKP). We propose two degradation pathways in which both acid and alkali can promote the formation of DKP, although previous reports suggested that DKP is produced mainly in acidic media. Based on the degradation pathways, we believe that subtle control of the microenvironmental pH can inhibit the formation of DKP. This was confirmed by the observation that the degradation rate became slower when certain organic acids were added to the binary mixtures of EM and excipient. The data showed that the stability of EM in the ternary mixtures was much higher than that in binary mixtures. It was further proved that tablets containing these organic acids produced less DKP after the accelerated test. We also found that the formation of DKP in tablets varied with different ratios of tartaric acid, which was used as a model organic acid. This illustrated that an optimum ratio of tartaric acid is required. These results indicated that the stability of EM in tablet formulation is closely associated with microenvironmental pH and the addition of a suitable organic acid based on the reaction mechanism is an effective strategy for improving the stability of EM.

  4. Postural stability does not differ among female sports with high risk of anterior cruciate ligament injury.

    Science.gov (United States)

    Cortes, Nelson; Porter, Larissa D; Ambegaonkar, Jatin P; Caswell, Shane V

    2014-12-01

    Dancers have a lower incidence of anterior cruciate ligament (ACL) injury compared to athletes in sports that involve cutting and landing motions. Balance can impact ACL injury risk and is related to neuromuscular control during movement. The purpose of this study was to investigate whether balance differences exist among female dancers and female soccer and basketball athletes. Fifty-eight female dancers, soccer, and basketball athletes (16.5 ± 1.6 yrs, 1.6 ± 0.2 m, 60.2 ± 14.1 kg) completed the Stability Evaluation Test (SET) on the NeuroCom VSR Sport (NeuroCom International, Clackamas, OR) to measure sway velocity. Video records of the SET test were used for Balance Error Scoring System (BESS) test scoring. A oneway ANCOVA compared composite sway velocity and BESS scores among sports. There was no statistically significant difference for sway velocity or BESS among sports (sway velocity soccer 2.3 ± 0.4, dance 2.2 ± 0.4, and basketball 2.4 ± 0.4; BESS soccer 13.6 ± 5.0, dance 11.9 ± 5.5, and basketball 14.9 ± 5.1, p>0.05). Balance was similar among athletes participating in different sports (dance, basketball, and soccer). Quasi-static balance may not play a significant role in neuromuscular control during movement and not be a significant risk factor to explain the disparity in ACL injury incidence among sports. Future research should examine the effects of dynamic balance and limb asymmetries among sports to elucidate on the existing differences on ACL injury incidence rates.

  5. Different Stability and Proteasome-Mediated Degradation Rate of SMN Protein Isoforms.

    Directory of Open Access Journals (Sweden)

    Denise Locatelli

    Full Text Available The key pathogenic steps leading to spinal muscular atrophy (SMA, a genetic disease characterized by selective motor neuron degeneration, are not fully clarified. The full-length SMN protein (FL-SMN, the main protein product of the disease gene SMN1, plays an established role in the cytoplasm in snRNP biogenesis ultimately leading to mRNA splicing within the nucleus. It is also involved in the mRNA axonal transport. However, to what extent the impairment of these two SMN functions contributes to SMA pathogenesis remains unknown. A shorter SMN isoform, axonal-SMN or a-SMN, with more specific axonal localization, has been discovered, but whether it might act in concert with FL-SMN in SMA pathogenesis is not known. As a first step in defining common or divergent intracellular roles of FL-SMN vs a-SMN proteins, we here characterized the turn-over of both proteins and investigated which pathway contributed to a-SMN degradation. We performed real time western blot and confocal immunofluorescence analysis in easily controllable in vitro settings. We analyzed co-transfected NSC34 and HeLa cells and cell clones stably expressing both a-SMN and FL-SMN proteins after specific blocking of transcript or protein synthesis and inhibition of known intracellular degradation pathways. Our data indicated that whereas the stability of both FL-SMN and a-SMN transcripts was comparable, the a-SMN protein was characterized by a much shorter half-life than FL-SMN. In addition, as already demonstrated for FL-SMN, the Ub/proteasome pathway played a major role in the a-SMN protein degradation. We hypothesize that the faster degradation rate of a-SMN vs FL-SMN is related to the protection provided by the protein complex in which FL-SMN is assembled. The diverse a-SMN vs FL-SMN C-terminus may dictate different protein interactions and complex formation explaining the different localization and role in the neuronal compartment, and the lower expression and stability of a-SMN.

  6. Effect of Different Irrigation Solutions on the Colour Stability of Three Calcium Silicate-Based Materials

    Directory of Open Access Journals (Sweden)

    Sobhnamayan F

    2017-06-01

    Full Text Available Abstract: Statement of Problem: Previous studies have shown discoloration of mineral trioxide aggregate (MTA in contact with root canal irrigation solutions. However, there are limited data on colour stability of other calcium silicate–based materials (CSMs. Objectives: This in vitro study aimed to evaluate the colour stability of three CSMs in contact with different irrigation solutions. Materials and Methods: Three CSMs including White MTA (wMTA Angelus, calcium enriched mixture (CEM, and Biodentine were assessed in this study. Forty five samples of each material were mixed according to the manufactures’ instructions and then placed in silicone tubes. After 24 hours, the materials were removed from the moulds and 9 samples of each material left dry or immersed in normal saline, 5% sodium hypochlorite (NaOCL, 2% chlorhexidinegluconate (CHX, or 17%EDTA for 24 hours. Colour changes were measured with a spectrophotometer. Data were evaluated with 2-way analysis of variance, one way analysis of variance and Tukey post hoc tests. Results: The highest discoloration of all materials was observed after contact with CHX. In the MTA Angelus and CEM cement groups, significant differences were observed between CHX and NaOCl and also between these two irrigants with the other three irrigants (p < 0.05. In the Biodentine group, CHX created statistically significant discoloration compared to other irrigants (p < 0.05. Only wMTA Angelus showed a significantly higher discoloration in contact with EDTA compared to normal saline and dry condition (p < 0.05. wMTA Angelus showed a significantly higher colour change compared with CEM cement and Biodentine after contact with NaOCl, CHX, and EDTA (p < 0.05. Conclusions: The contact of wMTA, CEM cement, and Biodentine with CHX should be avoided because this leads to severe discoloration. Contact with sodium hypochlorite also leads to discoloration of wMTA and CEM cements. Among of the three tested materials, w

  7. The stability of methyl-, ethyl- and fluoroethylesters against carboxylesterases in vitro: there is no difference

    Energy Technology Data Exchange (ETDEWEB)

    Nics, Lukas [Department of Nuclear Medicine, Medical University of Vienna, A-1090 Vienna (Austria); Department of Nutritional Sciences, University of Vienna, A-1090 Vienna (Austria); Haeusler, Daniela [Department of Nuclear Medicine, Medical University of Vienna, A-1090 Vienna (Austria); Department of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, A-1090 Vienna (Austria); Wadsak, Wolfgang [Department of Nuclear Medicine, Medical University of Vienna, A-1090 Vienna (Austria); Department of Inorganic Chemistry, University of Vienna, A-1090 Vienna (Austria); Wagner, Karl-Heinz [Department of Nutritional Sciences, University of Vienna, A-1090 Vienna (Austria); Dudczak, Robert; Kletter, Kurt [Department of Nuclear Medicine, Medical University of Vienna, A-1090 Vienna (Austria); Mitterhauser, Markus, E-mail: markus.mitterhauser@meduniwien.ac.a [Department of Nuclear Medicine, Medical University of Vienna, A-1090 Vienna (Austria); Department of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, A-1090 Vienna (Austria); Hospital Pharmacy of the General Hospital of Vienna, A-1090 Vienna (Austria)

    2011-01-15

    Introduction: Carboxylesterases (CES) play a very important role in the hydrophilic biotransformation of a huge number of structurally diverse drugs and especially play a leading part in the catabolic pathway of carboxylesters or thioesters. Hence, the aim of the present study was the comparison of the in vitro stability of methyl- and ethylesters with fluoroethylesters. Methods: We incubated methyl 3{beta}-(4-iodophenyl)tropane-2{beta}-carboxylate ({beta}-CIT)/2-fluoroethyl 3{beta}-(4-iodophenyl)tropane-2{beta}-carboxylate (FE-CIT), methyl 1-(1-phenylethyl)-1H-imidazole-5-carboxylate (MTO)/ethyl 1-(1-phenylethyl)-1H-imidazole-5-carboxylate (ETO)/2-fluoroethyl 1-(1-phenylethyl)-1H-imidazole-5-carboxylate (FETO), ethyl 8-fluoro-5-methyl-6-oxo-5,6-dihydro-4H-benzo-[f]imidazo[1,5-a]-[1,4] diazepine-3-carboxylate (FMZ)/2-fluoroethyl 8-fluoro-5-methyl-6-oxo-5,6-dihydro-4H-benzo-[f]imidazo[1,5-a]-[1,4] diazepine-3-carboxylate (FFMZ), methyl 1-phenylethyl-4-(N-propanoylanilino)piperidine-4-carboxylate (CFN)/2-fluoroethyl 1-phenylethyl-4-(N-propanoylanilino)piperidine-4-carboxylate ((FE-CF)N) and methyl 2,4-diethyl-3-methylsulfanylcarbonyl-6-phenylpyridine-5-carboxylate [(Me){sup 2}-SUPPY]/2-fluorethyl 2,4-diethyl-3-ethylsulfanylcarbonyl-6-phenylpyridine-5-carboxylate (FE-SUPPY) under physiological conditions. The enzymatic reactions were stopped at different time points and analyzed by a standard protocol. Results: The Michaelis-Menten constants (K{sub M}) and limiting velocities (V{sub max}) are comparable. The statistical K{sub M} values were as follows: {beta}-CIT/FE-CIT, P>.05; MTO/FETO, P>.06; ETO/FETO, P>.09; FMZ/FFMZ, P>.05; CFN/ (FE-CFN), P>.9; (Me){sup 2}-SUPPY/FE-SUPPY, P>.07. Conclusion: We found no statistical difference in stability against CES in vitro. These findings support the strategy to translate C-11-methyl-/ethylesters into their longer-lived F-18-fluoroethyl analogues.

  8. Impact of morning stiffness on working behaviour and performance in people with rheumatoid arthritis.

    Science.gov (United States)

    Mattila, Kalle; Buttgereit, Frank; Tuominen, Risto

    2014-12-01

    Work disability remains a considerable problem for many patients with rheumatoid arthritis (RA). Morning stiffness is a symptom of RA associated with early retirement from work and with impaired functional ability. We aimed to explore the patient's perception of the impact of morning stiffness on the working life of patients with RA. A survey was conducted in 11 European countries. Patients of working age, with RA for ≥6 months and morning stiffness ≥3 mornings a week, were interviewed by telephone using a structured questionnaire. Responses were assessed in the total sample and in subgroups defined by severity and duration of morning stiffness and by country. A total of 1,061 respondents completed the survey, 534 were working, 224 were retired and the rest were, i.e. homemakers and unemployed. Among the 534 working respondents, RA-related morning stiffness affected work performance (47 %), resulted in late arrival at work (33 %) and required sick leave in the past month (15 %). Of the 224 retired respondents, 159 (71 %) stopped working earlier than their expected retirement age, with 64 % giving RA-related morning stiffness as a reason. There was a differential impact of increasing severity and increasing duration of morning stiffness on the various parameters studied. There were notable inter-country differences in the impact of RA-related morning stiffness on ability to work and on retirement. This large survey showed that from the patient's perspective, morning stiffness reduces the ability to work in patients with RA and contributes to early retirement.

  9. Evaluation of stiffness feedback for hard nodule identification on a phantom silicone model

    Science.gov (United States)

    Konstantinova, Jelizaveta; Xu, Guanghua; He, Bo; Aminzadeh, Vahid; Xie, Jun; Wurdemann, Helge; Althoefer, Kaspar

    2017-01-01

    Haptic information in robotic surgery can significantly improve clinical outcomes and help detect hard soft-tissue inclusions that indicate potential abnormalities. Visual representation of tissue stiffness information is a cost-effective technique. Meanwhile, direct force feedback, although considerably more expensive than visual representation, is an intuitive method of conveying information regarding tissue stiffness to surgeons. In this study, real-time visual stiffness feedback by sliding indentation palpation is proposed, validated, and compared with force feedback involving human subjects. In an experimental tele-manipulation environment, a dynamically updated color map depicting the stiffness of probed soft tissue is presented via a graphical interface. The force feedback is provided, aided by a master haptic device. The haptic device uses data acquired from an F/T sensor attached to the end-effector of a tele-manipulated robot. Hard nodule detection performance is evaluated for 2 modes (force feedback and visual stiffness feedback) of stiffness feedback on an artificial organ containing buried stiff nodules. From this artificial organ, a virtual-environment tissue model is generated based on sliding indentation measurements. Employing this virtual-environment tissue model, we compare the performance of human participants in distinguishing differently sized hard nodules by force feedback and visual stiffness feedback. Results indicate that the proposed distributed visual representation of tissue stiffness can be used effectively for hard nodule identification. The representation can also be used as a sufficient substitute for force feedback in tissue palpation. PMID:28248996

  10. Elucidation of stabilizing oil-in-water Pickering emulsion with different modified maize starch-based nanoparticles.

    Science.gov (United States)

    Ye, Fan; Miao, Ming; Jiang, Bo; Campanella, Osvaldo H; Jin, Zhengyu; Zhang, Tao

    2017-08-15

    The aim of present study was to study the medium-chain triacylglycerol-in-water (O/W) Pickering emulsion stabilized using different modified starch-based nanoparticles (octenylsuccinylation treated soluble starch nanoparticle, OSA-SSNP, and insoluble starch nanoparticle, ISNP). The major factors for affecting the system stability, rheological behaviour and microstructure of the emulsions were also investigated. The parameters of the O/W emulsions stabilized by OSA-SSNP or ISNP were selected as follows: 3.0% of starch nanoparticles concentration, 50% of MCT fraction and 7.0 of system pH. The rheological properties indicated that both emulsions displayed shear-thinning behaviour as a non-Newtonian fluid. For OSA-SSNP, the viscosities of the emulsion were higher than those of ISNP throughout shear rate range for the same condition. The plot of droplet size distribution for emulsion stabilized OSA-SSNP appeared as a single narrow peak, whereas a broader droplet size distribution with bimodal pattern was observed for emulsion stabilized ISNP. The microscopy results showed that both OSA-SSNP and ISNP were adsorbed at oil-water interface to form a barrier film and retard the phase separation. When emulsion was stored for 30d, no phase separation was detected for O/W emulsion, revealing high stability of emulsion stabilized by both OSA-SSNP and ISNP. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Variable stiffness actuators: review on design and components

    NARCIS (Netherlands)

    Wolf, Sebastian; Grioli, Giorgio; Eiberger, Oliver; Friedl, Werner; Grebenstein, Markus; Höppner, Hannes; Burdet, Etienne; Caldwell, Darwin G.; Carloni, Raffaella; Catalano, Manuel G.; Lefeber, Dirk; Stramigioli, Stefano; Tsagarakis, Nikos; van Damme, Michaël; van Ham, Ronald; Vanderborght, Bram; Visser, L.C.; Bicchi, Antonio; Albu-Schäffer, Alin

    2016-01-01

    Variable stiffness actuators (VSAs) are complex mechatronic devices that are developed to build pas- sively compliant, robust, and dexterous robots. Numerous different hardware designs have been developed in the past two decades to address various demands on their functionality. This review paper

  12. Influence of wheel configuration on wheelchair basketball performance : Wheel stiffness, tyre type and tyre orientation

    NARCIS (Netherlands)

    Mason, B. S.; Lemstra, M.; van der Woude, L. H. V.; Vegter, R.; Goosey-Tolfrey, V. L.

    The aim of the current investigation was to explore the lateral stiffness of different sports wheelchair wheels available to athletes in 'new' and 'used' conditions and to determine the effect of (a) stiffness, (b) tyre type (clincher vs. tubular) and (c) tyre orientation on the physiological and

  13. A variable stiffness joint with electrospun P(VDF-TrFE-CTFE) variable stiffness springs

    NARCIS (Netherlands)

    Carloni, Raffaella; Lapp, Valerie I.; Cremonese, Andrea; Belcari, Juri; Zucchelli, Andrea

    This letter presents a novel rotational variable stiffness joint that relies on one motor and a set of variable stiffness springs. The variable stiffness springs are leaf springs with a layered design, i.e., an electro-active layer of electrospun aligned nanofibers of poly(vinylidene

  14. Enhancement of thermal stability of multiwalled carbon nanotubes via different silanization routes

    Energy Technology Data Exchange (ETDEWEB)

    Scheibe, B., E-mail: bscheibe@zut.edu.p [Centre of Knowledge Based Nanomaterials and Technologies, Institute of Chemical and Enviroment Engineering, West Pomeranian University of Technology, Szczecin (Poland); Borowiak-Palen, E.; Kalenczuk, R.J. [Centre of Knowledge Based Nanomaterials and Technologies, Institute of Chemical and Enviroment Engineering, West Pomeranian University of Technology, Szczecin (Poland)

    2010-06-18

    This work presents an effect of two different silanization procedures on thermal and structural properties of oxidized and oxidized followed by sodium borohydrate (NaBH{sub 4}) reduction of multiwalled carbon nanotubes (MWCNTs). Purified sample was oxidized in a mixture of nitric and sulfuric acids in a reflux. An oxidized material was divided into two batches. The first batch underwent a silanization procedure directly, while the second batch was reduced by NaBH{sub 4} treatment prior to the silanization. The silanization experiments were performed: (A) with {gamma}-aminopropyltriethoxysilane (APTES) at room temperature in acetone (pH {approx}7) and (B) with condensated {gamma}-aminopropyltriethoxysilane at 40 {sup o}C in water (pH 4). The extent of the functionalization of the samples after each procedure was examined by Raman spectroscopy. The vibrational properties of the materials were studied via Fourier transform infrared spectroscopy. Boehms titration technique was applied to quantify the amount of the functional groups on MWCNTs. The morphology of the pristine and functionalized carbon nanotubes was exposed to high-resolution transmission electron microscopy analysis. The energy dispersive X-ray (EDX) analysis was used to characterize the elemental composition of each sample. The effect of the silanization process on the thermal properties of MWCNTs was investigated by thermogravimetry analysis. Interestingly, the significant increase of the thermal stability of silanized MWCNTs samples in respect to the pristine MWCNTs was observed.

  15. Impact of MSWI Bottom Ash Codisposed with MSW on Landfill Stabilization with Different Operational Modes

    Directory of Open Access Journals (Sweden)

    Wen-Bing Li

    2014-01-01

    Full Text Available The aim of the study was to investigate the impact of municipal solid waste incinerator (MSWI bottom ash (BA codisposed with municipal solid waste (MSW on landfill stabilization according to the leachate quality in terms of organic matter and nitrogen contents. Six simulated landfills, that is, three conventional and three recirculated, were employed with different ratios of MSWI BA to MSW. The results depicted that, after 275-day operation, the ratio of MSWI BA to fresh refuse of 1 : 10 (V : V in the landfill was still not enough to provide sufficient acid-neutralizing capacity for a high organic matter composition of MSW over 45.5% (w/w, while the ratio of MSWI BA to fresh refuse of 1 : 5 (V : V could act on it. Among the six experimental landfills, leachate quality only was improved in the landfill operated with the BA addition (the ratio of MSWI BA to fresh refuse of 1 : 5 (V : V and leachate recirculation.

  16. Impact of MSWI Bottom Ash Codisposed with MSW on Landfill Stabilization with Different Operational Modes

    Science.gov (United States)

    Li, Wen-Bing; Yao, Jun; Zhou, Gen-Di; Dong, Ming; Shen, Dong-Sheng

    2014-01-01

    The aim of the study was to investigate the impact of municipal solid waste incinerator (MSWI) bottom ash (BA) codisposed with municipal solid waste (MSW) on landfill stabilization according to the leachate quality in terms of organic matter and nitrogen contents. Six simulated landfills, that is, three conventional and three recirculated, were employed with different ratios of MSWI BA to MSW. The results depicted that, after 275-day operation, the ratio of MSWI BA to fresh refuse of 1 : 10 (V : V) in the landfill was still not enough to provide sufficient acid-neutralizing capacity for a high organic matter composition of MSW over 45.5% (w/w), while the ratio of MSWI BA to fresh refuse of 1 : 5 (V : V) could act on it. Among the six experimental landfills, leachate quality only was improved in the landfill operated with the BA addition (the ratio of MSWI BA to fresh refuse of 1 : 5 (V : V)) and leachate recirculation. PMID:24779006

  17. Adaptability and stability in rubber tree progenies under different environmental conditions

    Directory of Open Access Journals (Sweden)

    Flávio Cese Arantes

    2013-03-01

    Full Text Available The aim of this work was to select progenies with high adaptability and stability from the dry rubber yield (PBS, of genotypes from a three-year-old rubber tree population, installed in three different locations (Selvíria, MS, Votuporanga, SP and Colina, SP, by the MHPRVG (harmonic average performance relative breeding values method predicted by BLUP. The progenies were installed in a randomized block design with 30 treatments (progenies, three replications and 10 plants per plot, with spacing of 3.00 x 3.00 m (Selvíria, MS and 1.50 x 1.50 m (Colina, SP and Votuporanga, SP. The PBS presented considerable genetic coefficient variability, ranging from 23.03 to 27.82% and average heritability ranging from 0.47 to 0.99, indicating the high value of the progeny tests in rubber tree breeding programs. The MHPRVG method provided a genetic gain ranging from 11 to 38% in 10 progenies to the PBS and allowed the selection of progenies with high predicted yield potential.

  18. Emergence and stability of high-pressure resistance in different food-borne pathogens.

    Science.gov (United States)

    Vanlint, Dietrich; Rutten, Nele; Michiels, Chris W; Aertsen, Abram

    2012-05-01

    High hydrostatic pressure (HHP) processing is becoming a valuable nonthermal food pasteurization technique, although there is reasonable concern that bacterial HHP resistance could compromise the safety and stability of HHP-processed foods. While the degree of natural HHP resistance has already been shown to vary greatly among and within bacterial species, a still unresolved question remains as to what extent different food-borne pathogens can actually develop HHP resistance. In this study, we therefore examined and compared the intrinsic potentials for HHP resistance development among strains of Escherichia coli, Shigella flexneri, Salmonella enterica serovars Typhimurium and Enteritidis, Yersinia enterocolitica, Aeromonas hydrophila, Pseudomonas aeruginosa, and Listeria innocua using a selective enrichment approach. Interestingly, of all strains examined, the acquisition of extreme HHP resistance could be detected in only some of the E. coli strains, indicating that a specific genetic predisposition might be required for resistance development. Furthermore, once acquired, HHP resistance proved to be a very stable trait that was maintained for >80 generations in the absence of HHP exposure. Finally, at the mechanistic level, HHP resistance was not necessarily linked to derepression of the heat shock genes and was not related to the phenomenon of persistence.

  19. Differences in stability of seed-associated microbial assemblages in response to invasion by phytopathogenic microorganisms

    Directory of Open Access Journals (Sweden)

    Samir Rezki

    2016-04-01

    Full Text Available Seeds are involved in the vertical transmission of microorganisms from one plant generation to another and consequently act as reservoirs for the plant microbiota. However, little is known about the structure of seed-associated microbial assemblages and the regulators of assemblage structure. In this work, we have assessed the response of seed-associated microbial assemblages of Raphanus sativus to invading phytopathogenic agents, the bacterial strain Xanthomonas campestris pv. campestris (Xcc 8004 and the fungal strain Alternaria brassicicola Abra43. According to the indicators of bacterial (16S rRNA gene and gyrB sequences and fungal (ITS1 diversity employed in this study, seed transmission of the bacterial strain Xcc 8004 did not change the overall composition of resident microbial assemblages. In contrast seed transmission of Abra43 strongly modified the richness and structure of fungal assemblages without affecting bacterial assemblages. The sensitivity of seed-associated fungal assemblage to Abra43 is mostly related to changes in relative abundance of closely related fungal species that belong to the Alternaria genus. Variation in stability of the seed microbiota in response to Xcc and Abra43 invasions could be explained by differences in seed transmission pathways employed by these micro-organisms, which ultimately results in divergence in spatio-temporal colonization of the seed habitat.

  20. Inviscid linear stability analysis of two fluid columns of different densities subject to gravity

    Science.gov (United States)

    Prathama, Aditya; Pantano, Carlos

    2017-11-01

    We investigate the inviscid linear stability of vertical interface between two fluid columns of different densities under the influence of gravity. In this flow arrangement, the two free streams are continuously accelerating, in contrast to the canonical Kelvin-Helmholtz or Rayleigh-Taylor instabilities whose base flows are stationary (or weakly time dependent). In these classical cases, the temporal evolution of the interface can be expressed as Fourier or Laplace solutions in time. This is not possible in our case; instead, we employ the initial value problem method to solve the equations analytically. The results, expressed in terms of the well-known parabolic cylinder function, indicate that the instability grows as the exponential of a quadratic function of time. The analysis shows that in this accelerating Kelvin-Helmholtz configuration, the interface is unconditionally unstable at all wave modes, despite the presence of surface tension. Department of Energy, National Nuclear Security Administration (Award No. DE-NA0002382) and the California Institute of Technology.

  1. Stability of magnetite nanoparticles with different coatings in a simulated blood plasma

    Energy Technology Data Exchange (ETDEWEB)

    Favela-Camacho, Sarai E.; Pérez-Robles, J. Francisco [Center for Research and Advanced Studies of National Polytechnic Institute, CINVESTAV-Querétaro Unit (Mexico); García-Casillas, Perla E. [Autonomous University of Juarez, Department of Materials Science, Institute of Engineering and Technology (Mexico); Godinez-Garcia, Andrés, E-mail: andgodinez@xanum.uam.mx [Universidad Autónoma Metropolitana, Departamento de Ingeniería de Procesos e Hidráulica (Mexico)

    2016-07-15

    Magnetite nanoparticles (MNPs) have demonstrated to be a potential platform for simultaneous anticancer drug delivery and magnetic resonance imaging (MRI). However, magnetite is unstable at the blood plasma conditions. Therefore, to study their stability in a broad range of particle size, the MNPs were synthesized using two methods, the fast injection co-precipitation method (FIC) and the reflux co-precipitation method (RC). The MNPs obtained by the RC and the FIC methods have an average size of agglomerates of 200 and 45 nm respectively. They were dispersed using sodium citrate as surfactant and were coated with silica and chitosan. A total of four kind of coated MNPs were synthesized: magnetite/sodium citrate, magnetite/silica, magnetite/sodium citrate/silica and magnetite/sodium citrate/silica/chitosan. Different samples of the coated MNPs were immersed in a simulated blood plasma solution (Phosphate-Buffered Saline, PBS, Gibco{sup ®}), for periods of 24, 48 and 72 h. Inductively coupled plasma (ICP) technique was used to analyze the composition of the simulated plasma after those periods of time. The obtained results suggest that the uncoated samples showed an appreciable weight loss, and the iron composition in the simulated plasma increased. This last means that the used coatings avoid iron dissolution from the MNPs.Graphical abstract.

  2. The Stability of G6PD Is Affected by Mutations with Different Clinical Phenotypes

    Science.gov (United States)

    Gómez-Manzo, Saúl; Terrón-Hernández, Jessica; De la Mora-De la Mora, Ignacio; González-Valdez, Abigail; Marcial-Quino, Jaime; García-Torres, Itzhel; Vanoye-Carlo, America; López-Velázquez, Gabriel; Hernández-Alcántara, Gloria; Oria-Hernández, Jesús; Reyes-Vivas, Horacio; Enríquez-Flores, Sergio

    2014-01-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency is the most common enzyme deficiency worldwide, causing a wide spectrum of conditions with severity classified from the mildest (Class IV) to the most severe (Class I). To correlate mutation sites in the G6PD with the resulting phenotypes, we studied four naturally occurring G6PD variants: Yucatan, Nashville, Valladolid and Mexico City. For this purpose, we developed a successful over-expression method that constitutes an easier and more precise method for obtaining and characterizing these enzymes. The kcat (catalytic constant) of all the studied variants was lower than in the wild-type. The structural rigidity might be the cause and the most evident consequence of the mutations is their impact on protein stability and folding, as can be observed from the protein yield, the T50 (temperature where 50% of its original activity is retained) values, and differences on hydrophobic regions. The mutations corresponding to more severe phenotypes are related to the structural NADP+ region. This was clearly observed for the Classes III and II variants, which became more thermostable with increasing NADP+, whereas the Class I variants remained thermolabile. The mutations produce repulsive electric charges that, in the case of the Yucatan variant, promote increased disorder of the C-terminus and consequently affect the binding of NADP+, leading to enzyme instability. PMID:25407525

  3. Comparison of Biomechanical Characteristics and Pelvic Ring Stability Using Different Fixation Methods to Treat Pubic Symphysis Diastasis: A Finite Element Study.

    Science.gov (United States)

    Yao, Feng; He, Yu; Qian, Hebu; Zhou, Dongsheng; Li, Qinghu

    2015-12-01

    The intention of this study was to compare the biomechanical characteristics using 5 internal fixation methods used clinically to stabilize a pubic symphysis diastasis (PSD, Tile type B1).A 3-dimensional finite element model of PSD was simulated using 5 implants, including single superior plate (Single-Plate), superior and anterior plate (Dual-Plate), single cannulated screw (Single-Screw), crossed dual cannulated screws (Cross-Screw), and parallel dual cannulated screws (Para-Screw). Three loads were distributed in all models, including dual-leg standing, single-leg stance, and rotation. To evaluate the biomechanical properties, the construct stiffness, the stress distribution, and the von Misses stress were recorded and analyzed. To evaluate pelvic ring stability, the micromotion of the pubic symphysis and iliosacral joint was analyzed.Disruption of pubic symphysis dramatically decreased the pelvic ring stability. Cross-screw and Para-Screw showed higher stiffness than other methods. All implants endured the maximum von Misses stress under single-leg stance. For Plate-Screw system, the maximum stress occurred at a place where it strides over pubic symphysis and adjacent Plate-Screw interface. The single implant and Para-Screw had a tendency to fail. Para-Screw showed the best fixation effect under dual-leg conditions. Cross-screw showed superior antishearing force capacity under single-leg stance. Dual-Plate provided maximum antihorizontal rotation. Para-Screw provided the maximum stabilization for the posterior pelvic ring.This study showed the biomechanical advantages of dual-implant for PSD only from the finite element view. The Para-Screw provided high construct stiffness under 3 load conditions. The single implant and Para-Screw had a tendency to fail. The better anterior and posterior pelvic stabilization were obtained by the dual-implant fixation than other methods. Therefore, the Cross-Screw and Dual-Plate fixation methods should be preferred in the

  4. Stability and change in alcohol habits of different socio-demographic subgroups--a cohort study.

    Science.gov (United States)

    Sydén, Lovisa; Wennberg, Peter; Forsell, Yvonne; Romelsjö, Anders

    2014-05-29

    Stability in alcohol habits varies over time and in subgroups, but there are few longitudinal studies assessing stability in alcohol habits by socio-demographic subgroups and potential predictors of stability and change. The aim was to study stability and change in alcohol habits by sex, age, and socio-economic position (SEP). Data derived from two longitudinal population based studies in Sweden; the PART study comprising 19 457 individuals aged 20-64 years in 1998-2000, and the Stockholm Public Health Cohort (SPHC) with 50 067 individuals aged 18-84 years in 2002. Both cohorts were followed-up twice; PART 2000-2003 and 2010, and SPHC 2007 and 2010. Alcohol habits were measured with the Alcohol Use Disorders Identification Test (AUDIT), and with normal weekly alcohol consumption (NWAC). Stability in alcohol habits was measured with intraclass correlation. Odds ratios were estimated in multinomial logistic regression analysis to predict stability in alcohol habits. For the two drinking measures there were no consistent patterns of stability in alcohol habits by sex or educational level. The stability was higher for older age groups and self-employed women. To be a man aged 30-39 at baseline predicted both increase and decrease in alcohol habits. The findings illustrate higher stability in alcohol habits with increasing age and among self-employed women with risky alcohol habits. To be a man and the age 30-39 predicted change in alcohol habits. No conclusive pattern of socio-economic position as predictor of change in alcohol habits was found and other studies of potential predictors seem warranted.

  5. Stability Control of Retained Goaf-Side Gateroad under Different Roof Conditions in Deep Underground Y Type Longwall Mining

    Directory of Open Access Journals (Sweden)

    Zhiyi Zhang

    2017-09-01

    Full Text Available Stability of the retained goaf-side gateroad (RGSG is influenced mainly by the movements of the roof strata near coal seam after coalface passes by. To make effective controlling technology for the stability of the RGSG, we analyze the roof structure over the RGSG to illustrate the mechanism causing the RGSG instability under different roof conditions. We then examine the dynamic evolution of the deformation and abutment stress in the rock surrounding the RGSG during coal seam mining, using the FLAC3D numerical software to reveal the instability characteristics of the RGSG under different roof conditions. Next, corresponding stability controlling technologies for the RGSGs are proposed and tested in three typical deep underground coalmines. Results show that: sink and rotation of the roof cantilever over the RGSG impose severer influence on the stability of the RGSG. The RGSG suffers disturbances three times during the coal-seam mining, and the deformation and abutment stress in the rock surrounding the RGSG increase significantly when the main roof becomes thicker and the immediate roof becomes thinner. Staged support technology involving grout cable bolts has better controlling results of the RGSG stability than that composed of conventional rock bolts, when the RGSG is beneath weak immediate roof with large thickness. Roof structure optimizing technology involving pre-split technology can improve the stability of the RGSG effectively when the RGSG is covered by hard main roof with large thickness directly.

  6. Axial Dynamic Stiffness of Tubular Piles in Viscoelastic Soil

    Directory of Open Access Journals (Sweden)

    Mehdi Bayat

    2016-09-01

    Full Text Available Large offshore wind turbines are founded on jacket structures. In this study, an elastic full-space jacket structure foundation in an elastic and viscoelastic medium is investigated by using boundary integral equations. The jacket structure foundation is modeled as a hollow, long circular cylinder when the dynamic vertical excitation is applied. The smooth surface along the entire interface is considered. The Betti reciprocal theorem along with Somigliana’s identity and Green’s function are employed to drive the dynamic stiffness of jacket structures. Modes of the resonance and anti-resonance are presented in series of Bessel’s function. Important responses, such as dynamic stiffness and phase angle, are compared for different values of the loss factor as the material damping, Young’s modulus and Poisson’s ratio in a viscoelastic soil. Results are verified with known results reported in the literature. It is observed that the dynamic stiffness fluctuates with the loss factor, and the turning point is independent of the loss factor while the turning point increases with load frequency. It is seen that the non-dimensional dynamic stiffness is dependent on Young’s modulus and Poisson’s ratio, whilst the phase angle is independent of the properties of the soil. It is shown that the non-dimensional dynamic stiffness changes linearly with high-frequency load. The conclusion from the results of this study is that the material properties of soil are significant parameters in the dynamic stiffness of jacket structures, and the presented approach can unfold the behavior of soil and give an approachable physical meaning for wave propagation.

  7. Key Insights into Hand Biomechanics: Human Grip Stiffness Can Be Decoupled from Force by Cocontraction and Predicted from Electromyography

    Directory of Open Access Journals (Sweden)

    Hannes Höppner

    2017-05-01

    Full Text Available We investigate the relation between grip force and grip stiffness for the human hand with and without voluntary cocontraction. Apart from gaining biomechanical insight, this issue is particularly relevant for variable-stiffness robotic systems, which can independently control the two parameters, but for which no clear methods exist to design or efficiently exploit them. Subjects were asked in one task to produce different levels of force, and stiffness was measured. As expected, this task reveals a linear coupling between force and stiffness. In a second task, subjects were then asked to additionally decouple stiffness from force at these force levels by using cocontraction. We measured the electromyogram from relevant groups of muscles and analyzed the possibility to predict stiffness and force. Optical tracking was used for avoiding wrist movements. We found that subjects were able to decouple grip stiffness from force when using cocontraction on average by about 20% of the maximum measured stiffness over all force levels, while this ability increased with the applied force. This result contradicts the force–stiffness behavior of most variable-stiffness actuators. Moreover, we found the thumb to be on average twice as stiff as the index finger and discovered that intrinsic hand muscles predominate our prediction of stiffness, but not of force. EMG activity and grip force allowed to explain 72 ± 12% of the measured variance in stiffness by simple linear regression, while only 33 ± 18% variance in force. Conclusively the high signal-to-noise ratio and the high correlation to stiffness of these muscles allow for a robust and reliable regression of stiffness, which can be used to continuously teleoperate compliance of modern robotic hands.

  8. Stability of Capsaicinoids and Antioxidants in Dry Hot Peppers under Different Packaging and Storage Temperatures

    Directory of Open Access Journals (Sweden)

    Qumer Iqbal

    2015-03-01

    Full Text Available The maintenance of the quality and storage life of perishable fruits and vegetables is a major challenge for the food industry. In this study, the effects of different temperatures, packaging materials and storage time on the stability of capsaicinoids and antioxidants, such as total carotenoids, ascorbic acid and total phenolic compounds, were studied in three commercially cultivated hot pepper hybrids, namely Sky Red, Maha and Wonder King. For this purpose, dry whole pods were packed in jute bags and low-density polyethylene bags (LDPE, stored for five months under controlled conditions at 20, 25 or 30 ○C and analyzed on Day 0 and at 50-day intervals until Day 150. The three hot pepper hybrids differed significantly with respect to their capsaicinoids and antioxidant concentrations, but the results indicated that with the increase in storage temperature and time, a gradual and steady decrease in these levels was equally observed for all hybrids. Overall, mean concentrations after five months were significantly reduced by 22.6% for ascorbic acid, 19.0% for phenolic compounds, 17% for carotenoids and 12.7% for capsaicinoids. The trends of capsaicinoids and antioxidants evolution were decreasing gradually during storage until Day 150, this effect being more pronounced at higher temperature. Furthermore, the disappearance rates of capsaicinoids and antioxidants were higher in peppers packed in jute bags than in those wrapped with LDPE. In conclusion, despite the sensitivity of capsaicinoids and antioxidants to oxygen, light and moisture, the packaging in natural jute or synthetic LDPE plastic bags, as well as the storage at ambient temperature preserved between 77.4% and 87.3% of the initial amounts of these health- and nutrition-promoting compounds during five months’ storage.

  9. Color stabilities of calcium silicate-based materials in contact with different irrigation solutions.

    Science.gov (United States)

    Keskin, Cangul; Demiryurek, Ebru Ozsezer; Ozyurek, Taha

    2015-03-01

    Mineral trioxide aggregate (MTA) has been reported to cause tooth discoloration when applied in the esthetic zone. A previous study has shown discoloration of MTA in contact with root canal irrigation solutions. Moreover, there are limited data on color stability of novel calcium silicate-based materials. This study aimed to evaluate color changes of 4 calcium silicate-based materials in contact with different irrigation solutions. ProRoot white MTA (Dentsply Tulsa Dental, Johnson City, TN), white MTA Angelus (Angelus Solucoes Odontologicas, Londrina, Brazil), Biodentine (Septodont, Saint Maur des Fosses, France), and BioAggregate (Innovative Bioceramix, Vancouver, BC, Canada) samples were assessed. Materials were mixed according to the manufacturers' instructions. Cylindric samples (10-mm diameter and 2-mm height) were obtained by curing in molds for each material's setting time at 100% humidity and 37°C. Each specimen was immersed in 5% sodium hypochlorite, 2% chlorhexidine gluconate, or distilled water for 24 hours. Color changes were measured with a spectrophotometer. Data were analyzed by using 2-way analysis of variance and post hoc Bonferroni tests. All materials exhibited clinically perceptible discoloration when immersed in sodium hypochlorite and chlorhexidine gluconate. ProRoot white MTA showed a statistically significant difference from Bioaggregate, Biodentine, and white MTA Angelus. Distilled water did not cause clinically perceptible discoloration of any material. In esthetically critical regions, compounds free of bismuth oxide, Biodentine, and BioAggregate can be considered as alternatives to MTA. However, all calcium silicate-based materials exhibited clinically perceptible color changes. Copyright © 2015 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  10. Solution of the Lyapunov matrix equation for a system with a time-dependent stiffness matrix

    DEFF Research Database (Denmark)

    Pommer, Christian; Kliem, Wolfhard

    2004-01-01

    The stability of the linearized model of a rotor system with non-symmetric strain and axial loads is investigated. Since we are using a fixed reference system, the differential equations have the advantage to be free of Coriolis and centrifugal forces. A disadvantage is nevertheless the occurrenc...... of time-dependent periodic terms in the stiffness matrix. However, by solving the Lyapunov matrix equation we can formulate several stability conditions for the rotor system. Hereby the positive definiteness of a certain averaged stiffness matrix plays a crucial role....

  11. Stiffness and damping in mechanical design

    National Research Council Canada - National Science Library

    Rivin, Eugene I

    1999-01-01

    ... important conceptual issues are stiffness of mechanical structures and their components and damping in mechanical systems sensitive to and/or generating vibrations. Stiffness and strength are the most important criteria for many mechanical designs. However, although there are hundreds of books on various aspects of strength, and strength issues ar...

  12. Optimising geometry for maximum supporting stiffnesses

    NARCIS (Netherlands)

    Brouwer, Dannis Michel; Wiersma, Hedzer; Boer, Steven; Aarts, Ronald G.K.M.

    2013-01-01

    Flexure hinges inherently lose stiffness in supporting directions when deflected. This article presents a method for optimising the geometry of flexure hinges, aimed at maximising supporting stiffnesses. In addition, the new -Flexure Hinge design is presented. The considered hinges are subjected to

  13. Stiffness, strength, and failure modes of implant-supported monolithic lithium disilicate crowns: influence of titanium and zirconia abutments.

    Science.gov (United States)

    Joda, Tim; Bürki, Alexander; Bethge, Stefan; Brägger, Urs; Zysset, Philippe

    2015-01-01

    The objective of this study was to evaluate stiffness, strength, and failure modes of monolithic crowns produced using computer-aided design/computer-assisted manufacture, which are connected to diverse titanium and zirconia abutments on an implant system with tapered, internal connections. Twenty monolithic lithium disilicate (LS2) crowns were constructed and loaded on bone level-type implants in a universal testing machine under quasistatic conditions according to DIN ISO 14801. Comparative analysis included a 2 × 2 format: prefabricated titanium abutments using proprietary bonding bases (group A) vs nonproprietary bonding bases (group B), and customized zirconia abutments using proprietary Straumann CARES (group C) vs nonproprietary Astra Atlantis (group D) material. Stiffness and strength were assessed and calculated statistically with the Wilcoxon rank sum test. Cross-sections of each tested group were inspected microscopically. Loaded LS2 crowns, implants, and abutment screws in all tested specimens (groups A, B, C, and D) did not show any visible fractures. For an analysis of titanium abutments (groups A and B), stiffness and strength showed equally high stability. In contrast, proprietary and nonproprietary customized zirconia abutments exhibited statistically significant differences with a mean strength of 366 N (Astra) and 541 N (CARES) (P zirconia abutments (groups C and D) below the implant shoulder. Depending on the abutment design, prefabricated titanium abutment and proprietary customized zirconia implant-abutment connections in conjunction with monolithic LS2 crowns had the best results in this laboratory investigation.

  14. The Effect of Wearing Different Types of Respirators on Postural Stability and Comfort

    OpenAIRE

    Farhang Akbar-Khanzadeh; Sandra M. Woolley; Kent Huang

    2012-01-01

    Respirators are commonly used to protect workers against workplace airborne contaminants, but this equipment may become a safety hazard by creating discomfort, disorientation and postural instability.Although postural stability is critical to workers, especially those working near moving objects or on surfaces where a loss of balance may become life threatening, little attention has been given to the effect of respirators on wearers’ postural stability. The purpose of this study was to examin...

  15. Effect of speed on local dynamic stability of locomotion under different task constraints in running.

    Science.gov (United States)

    Mehdizadeh, Sina; Arshi, Ahmed Reza; Davids, Keith

    2014-01-01

    A number of studies have investigated effects of speed on local dynamic stability of walking, although this relationship has been rarely investigated under changing task constraints, such as during forward and backward running. To rectify this gap in the literature, the aim of this study was to investigate the effect of running speed on local dynamic stability of forward and backward running on a treadmill. Fifteen healthy male participants took part in this study. Participants ran in forward and backward directions at speeds of 80%, 100% and 120% of their preferred running speed. The three-dimensional motion of a C7 marker was recorded using a motion capture system. Local dynamic stability of the marker was quantified using short- and long-term largest finite-time Lyapunov exponents (LyE). Results showed that short-term largest finite-time LyE values increased with participant speed meaning that local dynamic stability decreased with increasing speed. Long-term largest finite-time LyEs, however, remained unaffected as speed increased. Results of this study indicated that, as in walking, slow running is more stable than fast running. These findings improve understanding of how stability is regulated when constraints on the speed of movements is altered. Implications for the design of rehabilitation or sport practice programmes suggest how task constraints could be manipulated to facilitate adaptations in locomotion stability during athletic training.

  16. Pacifier Stiffness Alters the Dynamics of the Suck Central Pattern Generator

    Science.gov (United States)

    Zimmerman, Emily; Barlow, Steven M.

    2008-01-01

    Variation in pacifier stiffness on non-nutritive suck (NNS) dynamics was examined among infants born prematurely with a history of respiratory distress syndrome. Three types of silicone pacifiers used in the NICU were tested for stiffness, revealing the Super Soothie™ nipple is 7 times stiffer than the Wee™ or Soothie™ pacifiers even though shape and displaced volume are identical. Suck dynamics among 20 preterm infants were subsequently sampled using the Soothie™ and Super Soothie™ pacifiers during follow-up at approximately 3 months of age. ANOVA revealed significant differences in NNS cycles/min, NNS amplitude, NNS cycles/burst, and NNS cycle periods as a function of pacifier stiffness. Infants modify the spatiotemporal output of their suck central pattern generator when presented with pacifiers with significantly different mechanical properties. Infants show a non-preference to suck due to high stiffness in the selected pacifier. Therefore, excessive pacifier stiffness may decrease ororhythmic patterning and impact feeding outcomes. PMID:19492006

  17. Comparing the Primary Stability of Three Different Orthodontic Mini-Implants with Various Dimensions on Artificial Bone

    Directory of Open Access Journals (Sweden)

    Haneen I. Mohammed

    2018-01-01

    Full Text Available Background/Purpose: The Development of mini-implant as a mean of maximum anchorage achieved outspread scope for enhancing better orthodontic outcomes, and their success is highly influenced by their primary stability. The aims of this study were the evaluation and comparison the primary stability of three various companies with different shapes and dimensions and to evaluate the effect of the dimensions of the miniscrew on the primary stability. Methods: The study sample of this study consisted of sixty orthodontic mini-implants (self-drilling from three various manufactures (KJ Meditech, Hubit, and Dentos, each sort of these mini-implants was presented in two different lengths, 8 mm and 10 mm, and two different diameters, 1.4 mm and 1.6 mm. All the orthodontic mini-implants were inserted into simulated artificial bone of anterior region of the maxilla manually. Insertion torque (IT, and the pullout strength values were recorded and compared using ANOVA and Tukey honestly significant difference tests. Results: The results showed that the mean values of the pullout strength of KJ Meditech mini-implants were greater than those of Hubit and Dentos mini-implants respectively, and there was highly significant difference among these various manufactures. Furthermore, the mean values of pull out test were higher for mini-implants with dimensions 1.6 mm × 10 mm, and then followed by 1.6 mm × 8 mm, 1.4 mm × 10 mm, and 1.4 mm × 8 mm. Conclusion: The primary stability was greater in KJ Meditech mini-implants than Hubit and Dentos mini-implants respectively. Moreover, the length and the diameter had direct relation with the primary stability, and the diameter achieved higher effect on the primary stability than the length.

  18. Carbamide peroxide gel stability under different temperature conditions: is manipulated formulation an option?

    Directory of Open Access Journals (Sweden)

    Camila de Martini Bonesi

    2011-12-01

    Full Text Available Nowadays the use of gel containing carbamide peroxide (CP prepared in Pharmacy is a normal practice in the population. However, the quality of this product is questionable concerning its stability. The aim of this study is was to synthesize and to analyze this drug alone or associated to Carbopol gel through analytical methodology compatible with the routine of the Pharmacies. The reaction between urea and hydrogen peroxide was carried out at different resting times: 24 hours (CP 24 powder and 48 hours (CP48 powder after the mixture. Both products were associated with Carbopol 940® gel 1.5% (G generating G24 and G48 samples. The stability of powders (CP24 e CP48 and the formulations (G24 and G48 were evaluated as a function of time (15, 40 and 45 days and thermal variation (refrigeration: 8 °C±1; thermal shock 32 °C±1 /8 °C±1; stove: 32 °C±1, using a standard titration method. As a result, only under refrigeration the CP24 and CP48 contents remained stable during the period of 45 days. An interesting finding was that G24 and G48 presented greater stability for at least 45-days under refrigeration and thermal shock conditions, and up to 30 days under stove conditions. The results for the G24 and G48 were slightly higher than those obtained for the control. Therefore, we were able to conclude that association with Carbopol 940® Gel 1.5 % provided greater CP stability and that manipulated formulations containing CP may be viable for use in a period of 45 days under refrigeration conditions. The titration proved to be an effective technique for the analysis of CP with or without Carbopol 940® gel 1.5%.Atualmente, a utilização de gel contendo peróxido de carbamida manipulado em Farmácia é uma prática comum na população. No entanto, a qualidade deste produto é questionada, sobretudo no que se refere à estabilidade deste fármaco. O objetivo deste trabalho consiste na avaliação da viabilidade de sintetizar e analisar

  19. Glassy dynamics of intermediate-chain-stiffness crystallizable polymer melts

    Science.gov (United States)

    Nguyen, Hong; Hoy, Robert

    We contrast the dynamics in model unentangled polymer melts of chains of three different stiffnesses: flexible, intermediate, and rodlike. Flexible and rodlike chains, which readily solidify into close-packed crystals (respectively with randomly oriented and nematically aligned chains), display simple melt dynamics with Arrhenius temperature dependence and a discontinuous change upon solidification. Intermediate-stiffness chains, however, are fragile glass-formers displaying Vogel-Fulcher dynamical arrest, despite the fact that they also possess a nematic-close-packed crystalline ground state. No clear static-structural cause of this dynamical arrest is found. However, we find that the intermediate-stiffness chains display qualitatively different cooperative dynamics. Specifically, their stringlike motion (cooperative rearrangement) is correlated along chain backbones in a way not found for either flexible or rodlike chains. This activated ''crawling'' motion is clearly associated with the dynamical arrest observed in these systems, and illustrates one way in which factors controlling the crystallization vs. glass formation competition in polymers can depend nonmonotonically on chain stiffness. Support from NSF Grant No. DMR-1555242 is gratefully acknowledged.

  20. Characterizations of oil-in-water emulsion stabilized by different hydrophobic maize starches.

    Science.gov (United States)

    Ye, Fan; Miao, Ming; Jiang, Bo; Hamaker, Bruce R; Jin, Zhengyu; Zhang, Tao

    2017-06-15

    The molecular structure, rheological properties, microstructure and physical stability of oil-in-water emulsions using octenyl succinic-sugary maize soluble starch (OS-SMSS) were investigated and compared with two commercial OS-starches (HI-CAP 100 and Purity Gum 2000). The degree of substitution (DS), weight-average molecular weight (Mw) and z-root mean square radius of gyration (Rz) of OS-SMSS, HI-CAP 100 and Purity Gum 2000 were 0.0050, 223.4×10 5 g/mol and 38.8nm, 0.0037, 9.6×10 5 g/mol and 29.3nm, and 0.0031, 31.3×10 5 g/mol and 39.6nm, respectively. FT-IR spectra showed two new absorption bands at 1725 and 1570cm -1 from OS ester linkage in all tested samples. The emulsion with OS-SMSS exhibited a pseudoplastic behavior over the whole shear rate range, whereas other two emulsions showed a similar Newtonian fluid. All hydrophobic starch stabilized emulsions satisfied the Herschel-Bulkley model. All emulsions displayed storage modulus (G') was higher than loss modulus (G″), and only G' and G″ of OS-SMSS stabilized emulsion were independent of frequency. The volume-average droplet size (d 43 ) value of emulsions stabilized by three modified starches was 27.9, 15.2 and 24.4μm, respectively. During 4 weeks storage, lower change in d 43 of emulsion with OS-SMSS was observed. The above results with schematic models of emulsions suggested that an emulsion with high stability could be prepared using 3% of OS-SMSS due to the formation of high density and thick nanoparticle layer at the interface, indicating OS-SMSS was a Pickering emulsion stabilizer for good long-term stability. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Influence of “J”-Curve Spring Stiffness on Running Speeds of Segmented Legs during High-Speed Locomotion

    Directory of Open Access Journals (Sweden)

    Runxiao Wang

    2016-01-01

    Full Text Available Both the linear leg spring model and the two-segment leg model with constant spring stiffness have been broadly used as template models to investigate bouncing gaits for legged robots with compliant legs. In addition to these two models, the other stiffness leg spring models developed using inspiration from biological characteristic have the potential to improve high-speed running capacity of spring-legged robots. In this paper, we investigate the effects of “J”-curve spring stiffness inspired by biological materials on running speeds of segmented legs during high-speed locomotion. Mathematical formulation of the relationship between the virtual leg force and the virtual leg compression is established. When the SLIP model and the two-segment leg model with constant spring stiffness and with “J”-curve spring stiffness have the same dimensionless reference stiffness, the two-segment leg model with “J”-curve spring stiffness reveals that (1 both the largest tolerated range of running speeds and the tolerated maximum running speed are found and (2 at fast running speed from 25 to 40/92 m s−1 both the tolerated range of landing angle and the stability region are the largest. It is suggested that the two-segment leg model with “J”-curve spring stiffness is more advantageous for high-speed running compared with the SLIP model and with constant spring stiffness.

  2. Influence of "J"-Curve Spring Stiffness on Running Speeds of Segmented Legs during High-Speed Locomotion.

    Science.gov (United States)

    Wang, Runxiao; Zhao, Wentao; Li, Shujun; Zhang, Shunqi

    2016-01-01

    Both the linear leg spring model and the two-segment leg model with constant spring stiffness have been broadly used as template models to investigate bouncing gaits for legged robots with compliant legs. In addition to these two models, the other stiffness leg spring models developed using inspiration from biological characteristic have the potential to improve high-speed running capacity of spring-legged robots. In this paper, we investigate the effects of "J"-curve spring stiffness inspired by biological materials on running speeds of segmented legs during high-speed locomotion. Mathematical formulation of the relationship between the virtual leg force and the virtual leg compression is established. When the SLIP model and the two-segment leg model with constant spring stiffness and with "J"-curve spring stiffness have the same dimensionless reference stiffness, the two-segment leg model with "J"-curve spring stiffness reveals that (1) both the largest tolerated range of running speeds and the tolerated maximum running speed are found and (2) at fast running speed from 25 to 40/92 m s -1 both the tolerated range of landing angle and the stability region are the largest. It is suggested that the two-segment leg model with "J"-curve spring stiffness is more advantageous for high-speed running compared with the SLIP model and with constant spring stiffness.

  3. Arthroscopic capsular release for refractory shoulder stiffness

    Directory of Open Access Journals (Sweden)

    Marcos Rassi Fernandes

    2013-08-01

    Full Text Available OBJECTIVE: To evaluate the results of the arthroscopic treatment of refractory adhesive capsulitis of the shoulder with two to nine years of follow-up, comparing the pre-and postoperative range of motion. METHODS: This was an observational study (case series of 18 patients who underwent arthroscopic capsular release for refractory shoulder stiffness. The mean age was of 53.6 years (range: 39 to 68, with female predominance (77.77% and nine cases left shoulders. There were 6 primary (33.33% and 12 secondary cases (66.67%. Arthroscopic capsular release was performed in all patients after a mean of 9.33 months of physical therapy (range: 6 to 20 months with a minimum follow-up of two years (range: 26 to 110 months. RESULTS: The mean active and passive forward flexion, external rotation and internal rotation increased from 94.4º/103.3º, 11.9º/21.9º, and S1/L5 vertebral level, respectively, to 151.1º/153.8º, 57.2º/64.4º, and T12/T10 vertebral level, respectively. There was a significant difference between the pre-and postoperative range of motion (p < 0.001. according to the constant-murley functional score (rom, the value increased from 14 (preoperative mean to 30 points (postoperative mean. postoperatively, all patients showed diminished shoulder pain (none or mild/15 or 10 points in the constant-murley score. CONCLUSION: arthroscopic treatment is an effective treatment for refractory shoulder stiffness.

  4. Finite difference method for inner-layer equations in the resistive MagnetoHydroDynamic stability analysis

    Energy Technology Data Exchange (ETDEWEB)

    Tokuda, Shinji [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment; Watanabe, Tomoko

    1996-08-01

    The matching problem in resistive MagnetoHydroDynamic stability analysis by the asymptotic matching method has been reformulated as an initial-boundary value problem for the inner-layer equations describing the plasma dynamics in the thin layer around a rational surface. The third boundary conditions at boundaries of a finite interval are imposed on the inner layer equations in the formulation instead of asymptotic conditions at infinities. The finite difference method for this problem has been applied to model equations whose solutions are known in a closed form. It has been shown that the initial value problem and the associated eigenvalue problem for the model equations can be solved by the finite difference method with numerical stability. The formulation presented here enables the asymptotic matching method to be a practical method for the resistive MHD stability analysis. (author)

  5. Variable stiffness corrugated composite structure with shape memory polymer for morphing skin applications

    Science.gov (United States)

    Gong, Xiaobo; Liu, Liwu; Scarpa, Fabrizio; Leng, Jinsong; Liu, Yanju

    2017-03-01

    This work presents a variable stiffness corrugated structure based on a shape memory polymer (SMP) composite with corrugated laminates as reinforcement that shows smooth aerodynamic surface, extreme mechanical anisotropy and variable stiffness for potential morphing skin applications. The smart composite corrugated structure shows a low in-plane stiffness to minimize the actuation energy, but also possess high out-of-plane stiffness to transfer the aerodynamic pressure load. The skin provides an external smooth aerodynamic surface because of the one-sided filling with the SMP. Due to variable stiffness of the shape memory polymer the morphing skin exhibits a variable stiffness with a change of temperature, which can help the skin adjust its stiffness according different service environments and also lock the temporary shape without external force. Analytical models related to the transverse and bending stiffness are derived and validated using finite element techniques. The stiffness of the morphing skin is further investigated by performing a parametric analysis against the geometry of the corrugation and various sets of SMP fillers. The theoretical and numerical models show a good agreement and demonstrate the potential of this morphing skin concept for morphing aircraft applications. We also perform a feasibility study of the use of this morphing skin in a variable camber morphing wing baseline. The results show that the morphing skin concept exhibits sufficient bending stiffness to withstand the aerodynamic load at low speed (less than 0.3 Ma), while demonstrating a large transverse stiffness variation (up to 191 times) that helps to create a maximum mechanical efficiency of the structure under varying external conditions.

  6. Nucleic acid aptamers stabilize proteins against different types of stress conditions.

    Science.gov (United States)

    Jetani, Hardik C; Bhadra, Ankan Kumar; Jain, Nishant Kumar; Roy, Ipsita

    2014-01-01

    It has been observed that the same osmolyte cannot provide protection to a protein exposed to more than one stress condition. We wanted to study the effect of nucleic acid aptamers on the stabilization of proteins against a variety of stress conditions. Adjuvanted tetanus toxoid was exposed to thermal, freeze-thawing, and agitation stress. The stability and antigenicity of the toxoid were measured. Using nucleic acid aptamers selected against tetanus toxoid, we show that these specific RNA sequences were able to stabilize alumina-adsorbed tetanus toxoid against thermal-, agitation-, and freeze-thawing-induced stress. Binding affinity of the aptamer-protein complex did not show any significant change at elevated temperature as compared with that at room temperature, indicating that the aptamer protected the protein by remaining bound to it under stress conditions and did not allow either the protein to unfold or to promote protein-protein interaction. Thus, we show that by changing the stabilization strategy from a solvent-centric to a protein-centric approach, the same molecule can be employed as a stabilizer against more than one stress condition and thus probably reduce the cost of the product during its formulation. © 2013 Wiley Periodicals, Inc. and the American Pharmacists Association.

  7. Reliability of difference analogues to preserve stability properties of stochastic Volterra integro-differential equations

    Directory of Open Access Journals (Sweden)

    Roberts Jason A

    2006-01-01

    Full Text Available We consider the reliability of some numerical methods in preserving the stability properties of the linear stochastic functional differential equation , where α, β, σ, τ ≥ 0 are real constants, and W(t is a standard Wiener process. The areas of the regions of asymptotic stability for the class of methods considered, indicated by the sufficient conditions for the discrete system, are shown to be equal in size to each other and we show that an upper bound can be put on the time-step parameter for the numerical method for which the system is asymptotically mean-square stable. We illustrate our results by means of numerical experiments and various stability diagrams. We examine the extent to which the continuous system can tolerate stochastic perturbations before losing its stability properties and we illustrate how one may accurately choose a numerical method to preserve the stability properties of the original problem in the numerical solution. Our numerical experiments also indicate that the quality of the sufficient conditions is very high.

  8. An acoustic startle alters knee joint stiffness and neuromuscular control.

    Science.gov (United States)

    DeAngelis, A I; Needle, A R; Kaminski, T W; Royer, T R; Knight, C A; Swanik, C B

    2015-08-01

    Growing evidence suggests that the nervous system contributes to non-contact knee ligament injury, but limited evidence has measured the effect of extrinsic events on joint stability. Following unanticipated events, the startle reflex leads to universal stiffening of the limbs, but no studies have investigated how an acoustic startle influences knee stiffness and muscle activation during a dynamic knee perturbation. Thirty-six individuals were tested for knee stiffness and muscle activation of the quadriceps and hamstrings. Subjects were seated and instructed to resist a 40-degree knee flexion perturbation from a relaxed state. During some trials, an acoustic startle (50 ms, 1000 Hz, 100 dB) was applied 100 ms prior to the perturbation. Knee stiffness, muscle amplitude, and timing were quantified across time, muscle, and startle conditions. The acoustic startle increased short-range (no startle: 0.044 ± 0.011 N·m/deg/kg; average startle: 0.047 ± 0.01 N·m/deg/kg) and total knee stiffness (no startle: 0.036 ± 0.01 N·m/deg/kg; first startle 0.027 ± 0.02 N·m/deg/kg). Additionally, the startle contributed to decreased [vastus medialis (VM): 13.76 ± 33.6%; vastus lateralis (VL): 6.72 ± 37.4%] but earlier (VM: 0.133 ± 0.17 s; VL: 0.124 ± 0.17 s) activation of the quadriceps muscles. The results of this study indicate that the startle response can significantly disrupt knee stiffness regulation required to maintain joint stability. Further studies should explore the role of unanticipated events on unintentional injury. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. Big bang nucleosynthesis with a stiff fluid

    International Nuclear Information System (INIS)

    Dutta, Sourish; Scherrer, Robert J.

    2010-01-01

    Models that lead to a cosmological stiff fluid component, with a density ρ S that scales as a -6 , where a is the scale factor, have been proposed recently in a variety of contexts. We calculate numerically the effect of such a stiff fluid on the primordial element abundances. Because the stiff fluid energy density decreases with the scale factor more rapidly than radiation, it produces a relatively larger change in the primordial helium-4 abundance than in the other element abundances, relative to the changes produced by an additional radiation component. We show that the helium-4 abundance varies linearly with the density of the stiff fluid at a fixed fiducial temperature. Taking ρ S10 and ρ R10 to be the stiff fluid energy density and the standard density in relativistic particles, respectively, at T=10 MeV, we find that the change in the primordial helium abundance is well-fit by ΔY p =0.00024(ρ S10 /ρ R10 ). The changes in the helium-4 abundance produced by additional radiation or by a stiff fluid are identical when these two components have equal density at a 'pivot temperature', T * , where we find T * =0.55 MeV. Current estimates of the primordial 4 He abundance give the constraint on a stiff fluid energy density of ρ S10 /ρ R10 <30.

  10. Reduced prosthetic stiffness lowers the metabolic cost of running for athletes with bilateral transtibial amputations.

    Science.gov (United States)

    Beck, Owen N; Taboga, Paolo; Grabowski, Alena M

    2017-04-01

    Inspired by the springlike action of biological legs, running-specific prostheses are designed to enable athletes with lower-limb amputations to run. However, manufacturer's recommendations for prosthetic stiffness and height may not optimize running performance. Therefore, we investigated the effects of using different prosthetic configurations on the metabolic cost and biomechanics of running. Five athletes with bilateral transtibial amputations each performed 15 trials on a force-measuring treadmill at 2.5 or 3.0 m/s. Athletes ran using each of 3 different prosthetic models (Freedom Innovations Catapult FX6, Össur Flex-Run, and Ottobock 1E90 Sprinter) with 5 combinations of stiffness categories (manufacturer's recommended and ± 1) and heights (International Paralympic Committee's maximum competition height and ± 2 cm) while we measured metabolic rates and ground reaction forces. Overall, prosthetic stiffness [fixed effect (β) = 0.036; P = 0.008] but not height ( P ≥ 0.089) affected the net metabolic cost of transport; less stiff prostheses reduced metabolic cost. While controlling for prosthetic stiffness (in kilonewtons per meter), using the Flex-Run (β = -0.139; P = 0.044) and 1E90 Sprinter prostheses (β = -0.176; P = 0.009) reduced net metabolic costs by 4.3-4.9% compared with using the Catapult prostheses. The metabolic cost of running improved when athletes used prosthetic configurations that decreased peak horizontal braking ground reaction forces (β = 2.786; P = 0.001), stride frequencies (β = 0.911; P < 0.001), and leg stiffness values (β = 0.053; P = 0.009). Remarkably, athletes did not maintain overall leg stiffness across prosthetic stiffness conditions. Rather, the in-series prosthetic stiffness governed overall leg stiffness. The metabolic cost of running in athletes with bilateral transtibial amputations is influenced by prosthetic model and stiffness but not height. NEW & NOTEWORTHY We measured the

  11. Linear and non-linear stability analysis for finite difference discretizations of high-order Boussinesq equations

    DEFF Research Database (Denmark)

    Fuhrman, David R.; Bingham, Harry B.; Madsen, Per A.

    2004-01-01

    This paper considers a method of lines stability analysis for finite difference discretizations of a recently published Boussinesq method for the study of highly non-linear and extremely dispersive water waves. The analysis demonstrates the near-equivalence of classical linear Fourier (von Neumann...

  12. Linear and non-linear stability analysis for finite difference discretizations of high-order Boussinesq equations

    DEFF Research Database (Denmark)

    Fuhrman, David R.; Bingham, Harry B.; Madsen, Per A.

    2004-01-01

    This paper considers a method of lines stability analysis for finite difference discretizations of a recently published Boussinesq method for the study of highly non-linear and extremely dispersive water waves. The analysis demonstrates the near-equivalence of classical linear Fourier (von Neuman...

  13. Application of force-length curve for determination of leg stiffness during a vertical jump.

    Science.gov (United States)

    Struzik, Artur; Zawadzki, Jerzy

    2016-01-01

    The aim of this study was to present the methodology for estimation of a leg stiffness during a countermovement jump. The question was asked whether leg stiffness in the countermovement and take-off phases are similar to each other as demonstrated in previous reports. It was also examined whether the stiffness in left lower limb is similar to the one in right lower limb. The research was conducted on 35 basketball players. Each participant performed three countermovement jumps with arm swing to the maximum height. Measurements employed a Kistlerforce plate and a BTS SMART system for motion analysis. Leg stiffness (understood as an inclination of the curve of ground reaction forces vs. length) was computed for these parts of countermovement and take-off phases where its value was relatively constant and F(Δl) relationship was similar to linear. Mean value (±SD) of total stiffness of both lower limbs in the countermovement phase was 7.1 ± 2.3 kN/m, whereas this value in the take-off phase was 7.5 ± 1 kN/m. No statistically significant differences were found between the leg stiffness in the countermovement and the take-off phases. No statistically significant differences were found during the comparison of the stiffness in the right and left lower limb. The calculation methodology allows us to estimate the value of leg stiffness based on the actual shape of F(Δl) curve rather than on extreme values of ΔF and Δl. Despite different tasks of the countermovement and the take-off phases, leg stiffness in these phases is very similar. Leg stiffness during a single vertical jump maintains a relatively constant value in the parts with a small value of acceleration.

  14. Substrate stiffness affects skeletal myoblast differentiation in vitro

    Directory of Open Access Journals (Sweden)

    Sara Romanazzo, Giancarlo Forte, Mitsuhiro Ebara, Koichiro Uto, Stefania Pagliari, Takao Aoyagi, Enrico Traversa and Akiyoshi Taniguchi

    2012-01-01

    Full Text Available To maximize the therapeutic efficacy of cardiac muscle constructs produced by stem cells and tissue engineering protocols, suitable scaffolds should be designed to recapitulate all the characteristics of native muscle and mimic the microenvironment encountered by cells in vivo. Moreover, so not to interfere with cardiac contractility, the scaffold should be deformable enough to withstand muscle contraction. Recently, it was suggested that the mechanical properties of scaffolds can interfere with stem/progenitor cell functions, and thus careful consideration is required when choosing polymers for targeted applications. In this study, cross-linked poly-ε-caprolactone membranes having similar chemical composition and controlled stiffness in a supra-physiological range were challenged with two sources of myoblasts to evaluate the suitability of substrates with different stiffness for cell adhesion, proliferation and differentiation. Furthermore, muscle-specific and non-related feeder layers were prepared on stiff surfaces to reveal the contribution of biological and mechanical cues to skeletal muscle progenitor differentiation. We demonstrated that substrate stiffness does affect myogenic differentiation, meaning that softer substrates can promote differentiation and that a muscle-specific feeder layer can improve the degree of maturation in skeletal muscle stem cells.

  15. Nuclear stiffness and chromatin condensation as markers for aggressive prostate cancer

    Science.gov (United States)

    Khan, Zeina; Santos, Julianna; Hussain, Fazle

    Previous studies have demonstrated that nuclear rheology parameters - stiffness and fluidity - depend on expression levels of nuclear membrane proteins lamin A/C and lamin B. No quantitative nuclear rheology has been studied to compare cancers of different aggressiveness. Our nuclear creep experiments using a microfluidic channel with a narrow constriction show that aggressive prostate cancer cell nuclei have a lower stiffness than benign cell nuclei; thus nuclear stiffness can be easily used as a cancer malignancy marker. We also find that nuclear stiffness and fluidity, contrary to prior claims, do not strongly depend on lamin A/C or B expression levels of prostate cancer cells. Rather, we find that nuclear stiffness depends on chromatin condensation.

  16. Dynamic Functional Stiffness Index of the Ankle Joint During Daily Living.

    Science.gov (United States)

    Argunsah Bayram, Hande; Bayram, Mehmed B

    2018-03-30

    Exploring ankle joint physiologic functional stiffness is crucial for improving the design of prosthetic feet that aim to mimic normal gait. We hypothesized that ankle joint stiffness would vary among the different activities of daily living and that the magnitude of the stiffness would indicate the degree of energy storage element sufficiency in terms of harvesting and returning energy. We examined sagittal plane ankle moment versus flexion angle curves from 12 healthy subjects during the daily activities. The slopes of these curves were assessed to find the calculated stiffness during the peak energy return and harvest phases. For the energy return and harvest phases, stiffness varied from 0.016 to 0.283 Nm/kg° and 0.025 and 0.858 Nm/kg°, respectively. The optimum stiffness during the energy return phase was 0.111 ± 0.117 Nm/kg° and during the energy harvest phase was 0.234 ± 0.327 Nm/kg°. Ankle joint stiffness varied significantly during the activities of daily living, indicating that an energy storage unit with a constant stiffness would not be sufficient in providing energy regenerative gait during all activities. The present study was directed toward the development of a complete data set to determine the torque-angle properties of the ankle joint to facilitate a better design process. Copyright © 2017 The American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.

  17. Research on Detection of Machine Stiffness

    Directory of Open Access Journals (Sweden)

    Wang Li-Jie

    2015-01-01

    Full Text Available Machine tool stiffness is a principal factor affecting machine tool precision, traditional methods can only be used to detect limited categories of machine tools. The paper introduces a new scheme to detect machine tool stiffness on the basis of dynamic detection of machine tool stiffness considering its characteristics and stress state during processing. An experiment conducted in turn-milling machining center CH7516GS indicated by comparison that statics analysis of finite elements matched the experimental result well, which provided precise original data for design of improved machine tool precision and access to design of precision detection equipment for other types of machine tools.

  18. Observed variations of monopile foundation stiffness

    DEFF Research Database (Denmark)

    Kallehave, Dan; Thilsted, C.L.; Diaz, Alberto Troya

    2015-01-01

    The soil-structure stiffness of monopile foundations for offshore wind turbines has a high impact on the fatigue loading during normal operating conditions. Thus, a robust design must consider the evolution of pile-soil stiffness over the lifetime of the wind farm. This paper present and discuss ...... events, followed by a complete regain to a pre-storm level when the storm subsided. In additional, no long term variations of the pile-soil stiffness was observed. The wind turbine is located in dense to very dense sand deposits....

  19. Effects of different dairy ingredients on the rheological behaviour and stability of hot cheese emulsions

    DEFF Research Database (Denmark)

    Kelimu, Abulimiti; Felix da Silva, Denise; Geng, Xiaolu

    2017-01-01

    The influence of sodium caseinate (SC), butter milk powder (BMP) and their combinations on particle size, rheological properties, emulsion stability and microstructure of hot cheese emulsions made from mixtures of Cheddar and soft white cheese was studied. All emulsions exhibited shear...

  20. A result concerning the stability of some difference equations and its ...

    Indian Academy of Sciences (India)

    M. Senthilkumar (Newgen Imaging) 1461 1996 Oct 15 13:05:22

    , Ulam [18] raised a question concerning the stability of group homomorphisms: Let G1 be a group and let G2 be a metric group with the metric d(·, ·). Given ε > 0, does there exist a δ > 0 such that if a function h : G1 → G2 satisfies the inequality.

  1. Effect of flat insoles with different shore A values on posture stability in diabetic neuropathy

    NARCIS (Netherlands)

    Van Geffen, J.A.; Dijkstra, P.U.; Hof, A.L.; Halbertsma, J.P.K.; Postema, K.

    The objective of the study was to determine whether insoles with a low Shore A value (15 degrees) as prescribed for patients with a diabetic neuropathy have a negative effect on posture stability because these insoles may reduce somatosensory input under the feet. It was conducted in the Center for

  2. Luminescent Stability of Hybrids Based on Different Borate Glass Matrix’s and Organic Metal Complexes

    Science.gov (United States)

    Petrova, Olga; Avetisov, Roman; Akkuzina, Alina; Anurova, Mariia; Mozhevitina, Elena; Khomyakov, Andrew; Taydakov, Ilya; Avetissov, Igor

    2017-08-01

    The stability of the luminescent properties of new hybrid materials based on 8-oxyquinoline metal (Li, Rb, Sr) complexes and Eu complex with phenanthroline and low-melting Pb-based inorganic glass matrixes under conditions of prolonged exposure under ambient conditions and heating above the glass transition temperature of the matrix’s has been investigated.

  3. STABILITY OF PLASMIDS IN 5 STRAINS OF SALMONELLA MAINTAINED IN STAB CULTURE AT DIFFERENT TEMPERATURES

    DEFF Research Database (Denmark)

    Olsen, J. E.; Brown, D. J.; Baggesen, Dorte Lau

    1994-01-01

    Four strains of Salmonella berta and one of Salm. enteritidis were stored as stab cultures in sugar-free agar at 5 degrees, 22 degrees and 30 degrees C and in 15% glycerol at -80 degrees C. The stability of the plasmid profiles in each of the strains was monitored over a period of 2.5 years. Plas...

  4. Structure-Activity Relationship Analysis of the Thermal Stabilities of Nitroaromatic Compounds Following Different Decomposition Mechanisms.

    Science.gov (United States)

    Li, Jiazhong; Liu, Huanxiang; Huo, Xing; Gramatica, Paola

    2013-02-01

    The decomposition behavior of energetic materials is very important for the safety problems concerning their production, transportation, use and storage, because molecular decomposition is intimately connected to their explosive properties. Nitroaromatic compounds, particularly nitrobenzene derivatives, are often considered as prototypical energetic molecules, and some of them are commonly used as high explosives. Quantitative structure-activity relationship (QSAR) represents a potential tool for predicting the thermal stability properties of energetic materials. But it is reported that constructing general reliable models to predict their stability and their potential explosive properties is a very difficult task. In this work, we make our efforts to investigate the relationship between the molecular structures and corresponding thermal stabilities of 77 nitrobenzene derivatives with various substituent functional groups (in ortho, meta and/or para positions). The proposed best MLR model, developed by the new software QSARINS, based on Genetic Algorithm for variable selection and with various validation tools, is robust, stable and predictive with R(2) of 0.86, QLOO (2) of 0.79 and CCC of 0.90. The results indicated that, though difficult, it is possible to build predictive, externally validated QSAR models to estimate the thermal stability of nitroaromatic compounds. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Effect of different stabilizers on the antibacterial activity of “ginger ...

    African Journals Online (AJOL)

    The effect of five stabilizers i.e. citric acid, sodium metabisulfite, sodium benzoate, olive oil and ascorbic acid mixed in the ginger - garlic paste were evaluated against five pathogens (E.coli, Staphylococcus aureus, Salmonella typhi, Proteus mirabilis and Enterobacter aerogenes). Activity of the control paste decreased ...

  6. Effect of oxygen level on the oxidative stability of two different retail pork products stored using modified atmosphere packaging (MAP)

    DEFF Research Database (Denmark)

    Spanos, Dimitrios; Ann Tørngren, Mari; Christensen, Mette

    2016-01-01

    The characteristics and the oxidative stability of pork steaks and of pork mince were investigated during 2, 5 and 7 days of refrigerated storage using oxygen (O2) levels of 0%, 20%, 50% and 80% in modified atmosphere packaging (MAP). Steaks stored during 7 days were not affected by an increase...... in O2 concentration, as revealed by lipid and protein oxidation markers. In contrast, the mince was characterised by an altered protein profile, loss of free thiol groups and increased protein oxidation, early during storage. The oxidative stability of pork mince was improved by using intermediate (50......%) O2 MAP. The results show that fresh pork products are affected differently by the MAP O2 concentration and strongly indicate that optimisation of MAP based on the retail product type would be of considerable benefit to their oxidative stability....

  7. Effect of oxygen level on the oxidative stability of two different retail pork products stored using modified atmosphere packaging (MAP).

    Science.gov (United States)

    Spanos, Dimitrios; Tørngren, Mari Ann; Christensen, Mette; Baron, Caroline P

    2016-03-01

    The characteristics and the oxidative stability of pork steaks and of pork mince were investigated during 2, 5 and 7days of refrigerated storage using oxygen (O2) levels of 0%, 20%, 50% and 80% in modified atmosphere packaging (MAP). Steaks stored during 7days were not affected by an increase in O2 concentration, as revealed by lipid and protein oxidation markers. In contrast, the mince was characterised by an altered protein profile, loss of free thiol groups and increased protein oxidation, early during storage. The oxidative stability of pork mince was improved by using intermediate (50%) O2 MAP. The results show that fresh pork products are affected differently by the MAP O2 concentration and strongly indicate that optimisation of MAP based on the retail product type would be of considerable benefit to their oxidative stability. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Stability and in vitro release profile of enalapril maleate from different commercially available tablets: possible therapeutic implications.

    Science.gov (United States)

    Lima, Dione Marçal; dos Santos, Leandro Dias; Lima, Eliana Martins

    2008-08-05

    Stability of enalapril maleate formulations can be affected when the product is exposed to higher temperature and humidity, with the formation of two main degradation products: enalaprilat and a diketopiperazine derivative. In this work, stability and drug release profiles of 20 mg enalapril maleate tablets (reference, generic and similar products) were evaluated. After 180 days of the accelerated stability testing, most products did not exhibit the specified amount of drug. Additionally, drug release profiles were markedly different from that of the reference product, mainly due to drug degradation. Changes in drug concentration and drug release profile of enalapril formulations are strong indicators of a compromised bioavailability, with possible interferences on the therapeutic response for this drug.

  9. Leg stiffness during phases of countermovement and take-off in vertical jump.

    Science.gov (United States)

    Struzik, Artur; Zawadzki, Jerzy

    2013-01-01

    With respect to cyclic movements such as human gait, running or hopping, leg stiffness is a little variable parameter. The aim of this study was to investigate changes in leg stiffness during the phase of countermovement and take-off when performing a single maximum counter-movement jump. Kistler force plates and a BTS SMART system for comprehensive motion analysis were employed in the study. The study covered a group of 12 athletes from university basketball teams. Leg stiffness was calculated in those parts of countermovement and take-off phases where its level is relatively constant and the relationship F(Δl) is similar to linear one. Mean total stiffness (±SD) in both legs in the countermovement phase amounted to 6.5 ± 1.5 kN/m, whereas during the take-off phase this value was 6.9 ± 1 kN/m. No statistically significant differences were found between leg stiffness during the countermovement phase and takeoff phase in the study group at the level of significance set at α = 0.05. This suggests that the leg stiffness in phase of countermovement and phase of take-off are much similar to each other, despite different function of both phases. Similar to cyclic movements, leg stiffness turned out relatively constant when performing a single vertical jump. There are also reported statistically significant correlations between body mass, body height, length of lower limbs and leg stiffness. The stiffness analysed by the authors should be understood as quasi-stiffness because the measurements of ΔF(Δl) were made during transient states where inertia and dumping forces are likely to affect the final result.

  10. Greater bilateral deficit in leg press than in handgrip exercise might be linked to differences in postural stability requirements.

    Science.gov (United States)

    Magnus, Charlene R A; Farthing, Jonathan P

    2008-12-01

    Bilateral deficit is defined as the difference in the summed force between contracting muscles alone and contracting contralateral homologous muscles in combination. The purpose of the study was to investigate how postural stability influences bilateral deficit by comparing an exercise requiring more postural stability (the leg press) with an exercise requiring less postural stability (the handgrip). Eight participants volunteered for the study (3 males, 5 females). Maximal strength was determined by a 1-repetition maximum for the leg press (weight machine) and handgrip (dynamometer) exercises. Electromyography was used to measure activation of the effectors (flexor carpi ulnaris for the handgrip and vastus lateralis for the leg press) and the core muscles (rectus abdominis and external obliques). Bilateral deficit was greater in the leg press (-12.08 +/- 10.22%) than the handgrip (-0.677 +/- 5.00%; p < 0.05). Muscle activation of the effectors and core muscles was not significantly different between unilateral and bilateral conditions for either exercise. However, core muscle activation was significantly greater during the leg press (48.30 +/- 19.60 microV) than during the handgrip (16.50 +/- 8.10 microV; p < 0.05) exercise. These results support the hypothesis that an exercise requiring more postural stability (e.g., the leg press) will have a larger deficit and greater activation of core muscles than an exercise requiring less postural stability (e.g., the handgrip). Since the bilateral deficit was only apparent for the leg press exercise, we conclude that postural stability requirements might influence the magnitude of bilateral deficit.

  11. Stability Parameters for Grain Yield and its Component Traits in Maize Hybrids of Different FAO Maturity Groups

    Directory of Open Access Journals (Sweden)

    Dragan Djurovic

    2014-12-01

    Full Text Available An objective evaluation of maize hybrids in intensive cropping systems requires identification not only of yield components and other agronomically important traits but also of stability parameters. Grain yield and its components were assessed in 11 maize hybrids with different lengths of growing season (FAO 300-700 maturity groups using analysis of variance and regression analysis at three different locations in Western Serbia. The test hybrids and locations showed significant differences in grain yield, grain moisture content at maturity, 1,000-kernel weight and ear length. A significant interaction was observed between all traits and the environment. The hybrids with higher mean values of the traits, regardless of maturity group, generally exhibited sensitivity i.e. adaptation to more favourable environmental conditions as compared to those having lower mean values. Regression coefficient (bi values for grain yield mostly suggested no significant differences relative to the mean. The medium-season hybrid gave high yields and less favourable values of stability parameters at most locations and in most years, as compared to mediumlate hybrids. As compared to medium-early hybrids, medium-late hybrids (FAO 600 and 700 mostly exhibited unfavourable values of stability parameters i.e. a specific response and better adaptation to favourable environmental conditions, and gave higher average yields. Apart from producing lower average yields, FAO 300 and 400 hybrids showed higher yield stability as compared to the other hybrids tested. Medium-late hybrids had higher yields and showed a better response to favourable environmental conditions compared to early-maturing hybrids. Therefore, they can be recommended for intensive cultural practices and low-stress environments. Due to their more favourable stability parameter values, medium-early hybrids can be recommended for low-intensity cultural practices and stressful environments.

  12. Comparison of Stability and Adaptability in New Cereal; Primary Tritipyrum, with Iranian Bread Wheat and Triticale Using Different Stability Parameters in Iran

    Directory of Open Access Journals (Sweden)

    S Farokhzadeh

    2014-03-01

    Full Text Available In order to study the genotype-environment interaction for grain yield in eight primary and combined primary tritipyrum lines in comparison with four Iranian bread wheat varieties and five promising triticale lines, an experiment in randomized completely block design with three replication in three locations of Iran (Kerman, Sirjan, Neyriz including 7 separate environment during 2001-2002, 2005-2006 and 2010-2011 were conducted. The results of combined analysis of variance for grain yield showed significant differences between environments and genotype × environment interactions. The results of stability analysis for high yielding lines/cultivars indicated first, in Eberhart and Russell grouping method Based on slope of regression line, grain yield average and also deviation of regression line parameters, combined primary tritipyrum line (Ka/b(Cr/b-5 and triticale 4115, 4108 and M45 lines showed good compatibility in all environments. Second, the results of genotypes category in cluster analysis based on criteria ecovalance and stability variance was exactly the same. Third,, based on ecovalance, stability variance parameters and mean yield, the combined primary tritipyrum line (Ka/b(Cr/b-5 and promising triticales 4108 and M45 Lines indicated low genotype × environment interaction and high growth performance in comparison with all varieties and lines. This tritipyrum line can be introduced as a potential pasture Line in arid and semi arid area of Iran particulary with brackish water and saline soils. The two triticale lines can be registerd as high grain lines in poor lands of Iran for cereal production for the first time.

  13. Post-operative Stability After Bimaxillary Surgery in Patients with Facial Asymmetry: Comparison of Differences Among Different Original Skeletal Class Patterns.

    Science.gov (United States)

    Matsushita, Kazuhiro; Inoue, Nobuo; Yamaguchi, Hiro-O; Mikoya, Tadashi; Tei, Kanchu

    2015-09-01

    When improving jaw deformity by two-jaw surgery, we are of the opinion from our clinical experience that a certain degree of undercorrection is occasionally beneficial from the perspective of stability. Functional deterioration is not always seen with undercorrection. We conducted this retrospective study to assess post-operative stability in patients with facial asymmetry, with the aim of both clarifying differences between the original three skeletal class patterns, and confirming the efficacy of surgery performed on the basis of our concept. All patients received optimal orthognathic treatment before and after surgery. Surgery was performed by our concept that undercorrection is not always bad. Nineteen patients were enrolled, and separated into three skeletal classes according to the ANB angle, because of the difference of the treatment modalities between them. Evaluations were performed by cephalometric measurements taken at least two-year post-operatively. Transverse occlusal cant, chin deviation, point A, point B, overjet and overbite were assessed. In all patients, transverse occlusal cant improved to stability of patients with facial asymmetry was achieved. Undercorrection is thus by no means problematic from the clinical perspective of stability and our concept of approach appears valid.

  14. On the stability of platinum-composite electrocatalysts prepared with different substrate materials

    Directory of Open Access Journals (Sweden)

    Milica G. Košević

    2016-04-01

    Full Text Available Cyclic voltammetry (CV measurements were conducted and analyzed for a preliminary estimation of the stability of composite electrocatalysts based on Pt. The changes in CV currents of platinum nanoparticles supported on TiO2 were compared to the changes of those supported on commercial carbon. TiO2 was synthesized by sol-gel method and Pt was deposited from Pt colloidal dispersion synthesized by microwave-assisted polyol process. It was found that Pt component in both Pt/TiO2 and Pt/C behaves similarly with respect to stability and activity during the cycling. The loss in activity with cycling was linear and strongly depended on sweep rate, i.e., the relative loss is higher at lower sweep rates. The steady state activities for both electrocatalysts were reached at the level of 65 % of initial activity and required more than 100 voltammetric cycles.

  15. Evidence for a role of antagonistic cocontraction in controlling trunk stiffness during lifting

    NARCIS (Netherlands)

    van Dieen, J.H.; Kingma, I.; van der Burg, J.C.E.

    2003-01-01

    Activity of the abdominal muscles during symmetric lifting has been a consistent finding in many studies. It has been hypothesized that this antagonistic coactivation increases trunk stiffness to provide stability to the spine. To test this, we investigated whether abdominal activity in lifting is

  16. Determination of 6 stiffnesses for a press

    DEFF Research Database (Denmark)

    Arentoft, Mogens; Eriksen, Morten; Wanheim, Tarras

    2000-01-01

    The industry is increasingly demanding for better tolerances at cold forged products caused by the tough competition at the market. Near net-shape or net-shape production save resources for machining and reduce therefore also the material costs. During the forming process, the reaction forces from...... in which the press has the highest stiffness. Furthermore, knowledge about the stiffnesses of all presses in a production system makes it possible to choose the press which best fit to a specific process....

  17. ARTHROMETRIC EVALUATION OF STABILIZING EFFECT OF KNEE FUNCTIONAL BRACING AT DIFFERENT FLEXION ANGLES

    Directory of Open Access Journals (Sweden)

    Saeedeh Seyed Mohseni

    2009-06-01

    Full Text Available Previous in-vivo investigations on the stabilizing efficacy of knee bracing for ACL reconstructed patients have been often limited to 20-30 degrees of knee flexion. In this study, the effectiveness of a uniaxial hinged functional brace to improve the knee stability was assessed at 30, 60 and 90 degrees of knee flexion. Arthrometry tests were conducted on 15 healthy subjects before and following wearing the brace and the tibial displacements were measured at up to 150 N anterior forces. Results indicated that functional bracing has a significant stabilizing effect throughout the range of knee flexion examined (p < 0.05. The rate of effectiveness, however, was not consistent across the flexion range, e.g., 50% at 30 degrees and only 4% at 90 degrees. It was suggested that accurate sizing and fitting as well as attention to correct hinge placement relative to the femoral condyles can limit brace migration and improve its effectiveness in mid and deep knee flexion. With using adaptive limb fittings, through flexible pads, and a polycentric joint a more significant improvement of the overall brace performance and efficacy might be obtained

  18. The Stiffness Variation of a Micro-Ring Driven by a Traveling Piecewise-Electrode

    Directory of Open Access Journals (Sweden)

    Yingjie Li

    2014-09-01

    Full Text Available In the practice of electrostatically actuated micro devices; the electrostatic force is implemented by sequentially actuated piecewise-electrodes which result in a traveling distributed electrostatic force. However; such force was modeled as a traveling concentrated electrostatic force in literatures. This article; for the first time; presents an analytical study on the stiffness variation of microstructures driven by a traveling piecewise electrode. The analytical model is based on the theory of shallow shell and uniform electrical field. The traveling electrode not only applies electrostatic force on the circular-ring but also alters its dynamical characteristics via the negative electrostatic stiffness. It is known that; when a structure is subjected to a traveling constant force; its natural mode will be resonated as the traveling speed approaches certain critical speeds; and each natural mode refers to exactly one critical speed. However; for the case of a traveling electrostatic force; the number of critical speeds is more than that of the natural modes. This is due to the fact that the traveling electrostatic force makes the resonant frequencies of the forward and backward traveling waves of the circular-ring different. Furthermore; the resonance and stability can be independently controlled by the length of the traveling electrode; though the driving voltage and traveling speed of the electrostatic force alter the dynamics and stabilities of microstructures. This paper extends the fundamental insights into the electromechanical behavior of microstructures driven by electrostatic forces as well as the future development of MEMS/NEMS devices with electrostatic actuation and sensing.

  19. Stiffness of Railway Soil-Steel Structures

    Directory of Open Access Journals (Sweden)

    Machelski Czesław

    2015-12-01

    Full Text Available The considerable influence of the soil backfill properties and that of the method of compacting it on the stiffness of soil-steel structures is characteristic of the latter. The above factors (exhibiting randomness become apparent in shell deformation measurements conducted during construction and proof test loading. A definition of soil-shell structure stiffness, calculated on the basis of shell deflection under the service load, is proposed in the paper. It is demonstrated that the stiffness is the inverse of the deflection influence function used in structural mechanics. The moving load methodology is shown to be useful for testing, since it makes it possible to map the shell deflection influence line also in the case of group loads (concentrated forces, as in bridges. The analyzed cases show that the shell’s span, geometry (static scheme and the height of earth fill influence the stiffness of the structure. The soil-steel structure’s characteristic parameter in the form of stiffness k is more suitable for assessing the quality of construction works than the proposed in code geometric index ω applied to beam structures. As shown in the given examples, parameter k is more effective than stiffness parameter λ used to estimate the deformation of soil-steel structures under construction. Although the examples concern railway structures, the methodology proposed in the paper is suitable also for road bridges.

  20. Running with a load increases leg stiffness.

    Science.gov (United States)

    Silder, Amy; Besier, Thor; Delp, Scott L

    2015-04-13

    Spring-mass models have been used to characterize running mechanics and leg stiffness in a variety of conditions, yet it remains unknown how running while carrying a load affects running mechanics and leg stiffness. The purpose of this study was to test the hypothesis that running with a load increases leg stiffness. Twenty-seven subjects ran at a constant speed on a force-measuring treadmill while carrying no load, and while wearing weight vests loaded with 10%, 20%, and 30% of body weight. We measured lower extremity motion and created a scaled musculoskeletal model of each subject, which we used to estimate lower extremity joint angles and leg length. We estimated dimensionless leg stiffness as the ratio of the peak vertical ground reaction force (normalized to body weight) and the change in stance phase leg length (normalized to leg length at initial foot contact). Leg length was calculated as the distance from the center of the pelvis to the center-of-pressure under the foot. We found that dimensionless leg stiffness increased when running with load (p=0.001); this resulted from an increase in the peak vertical ground reaction force (pleg length (p=0.025). When running with load, subjects had longer ground contact times (pleg stiffness to accommodate an added load. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Formal Solutions for Polarized Radiative Transfer. III. Stiffness and Instability

    Science.gov (United States)

    Janett, Gioele; Paganini, Alberto

    2018-04-01

    Efficient numerical approximation of the polarized radiative transfer equation is challenging because this system of ordinary differential equations exhibits stiff behavior, which potentially results in numerical instability. This negatively impacts the accuracy of formal solvers, and small step-sizes are often necessary to retrieve physical solutions. This work presents stability analyses of formal solvers for the radiative transfer equation of polarized light, identifies instability issues, and suggests practical remedies. In particular, the assumptions and the limitations of the stability analysis of Runge–Kutta methods play a crucial role. On this basis, a suitable and pragmatic formal solver is outlined and tested. An insightful comparison to the scalar radiative transfer equation is also presented.

  2. Steady-state stiffness of utricular hair cells depends on macular location and hair bundle structure

    Science.gov (United States)

    Spoon, Corrie; Moravec, W. J.; Rowe, M. H.; Grant, J. W.

    2011-01-01

    Spatial and temporal properties of head movement are encoded by vestibular hair cells in the inner ear. One of the most striking features of these receptors is the orderly structural variation in their mechanoreceptive hair bundles, but the functional significance of this diversity is poorly understood. We tested the hypothesis that hair bundle structure is a significant contributor to hair bundle mechanics by comparing structure and steady-state stiffness of 73 hair bundles at varying locations on the utricular macula. Our first major finding is that stiffness of utricular hair bundles varies systematically with macular locus. Stiffness values are highest in the striola, near the line of hair bundle polarity reversal, and decline exponentially toward the medial extrastriola. Striolar bundles are significantly more stiff than those in medial (median: 8.9 μN/m) and lateral (2.0 μN/m) extrastriolae. Within the striola, bundle stiffness is greatest in zone 2 (106.4 μN/m), a band of type II hair cells, and significantly less in zone 3 (30.6 μN/m), which contains the only type I hair cells in the macula. Bathing bundles in media that break interciliary links produced changes in bundle stiffness with predictable time course and magnitude, suggesting that links were intact in our standard media and contributed normally to bundle stiffness during measurements. Our second major finding is that bundle structure is a significant predictor of steady-state stiffness: the heights of kinocilia and the tallest stereocilia are the most important determinants of bundle stiffness. Our results suggest 1) a functional interpretation of bundle height variability in vertebrate vestibular organs, 2) a role for the striola in detecting onset of head movement, and 3) the hypothesis that differences in bundle stiffness contribute to diversity in afferent response dynamics. PMID:21918003

  3. STIFFNESS MODIFICATION OF COTTON IN CHITOSAN TREATMENT

    Directory of Open Access Journals (Sweden)

    CAMPOS Juan

    2017-05-01

    Full Text Available Chitosan is a biopolymer obtained from chitin, and among their most important aspects highlights its applications in a lot of industrial sectors due to its intrinsic properties, especially in the textile sector. In the last years, chitosan is widely used in the cotton and wool finishing processes due to its bond between them and its properties as an antifungical and antimicrobial properties. In this paper three different molecular weight chitosan are used in the finishing process of cotton to evaluate its influence in the surface properties modification. In order to evaluate the effect of the treatment with chitosan, flexural stiffness test is performed in warp and weft direction, and then the total value is calculated. The cotton fabric is treated with 5 g/L of different types of chitosan in an impregnation bath. This study shows the extent of surface properties modification of the cotton provided by three types of chitosan treatment. The results show that all types of chitosan modify the cotton flexural rigidity properties but the one which modifies it in a relevant manner is chitosan originated from shrimps. Chitosan, textile, flexural stiffnes, chitin, cotton.

  4. A novel cell-stiffness-fingerprinting analysis by scanning atomic force microscopy: comparison of fibroblasts and diverse cancer cell lines.

    Science.gov (United States)

    Zoellner, Hans; Paknejad, Navid; Manova, Katia; Moore, Malcolm A S

    2015-12-01

    Differing stimuli affect cell stiffness while cancer metastasis is associated with reduced cell stiffness. Cell stiffness determined by atomic force microscopy has been limited by measurement over nuclei to avoid spurious substratum effects in thin cytoplasmic domains, and we sought to develop a more complete approach including cytoplasmic areas. Ninety μm square fields were recorded from ten separate sites of cultured human dermal fibroblasts (HDF) and three sites each for melanoma (MM39, WM175, and MeIRMu), osteosarcoma (SAOS-2 and U2OS), and ovarian carcinoma (COLO316 and PEO4) cell lines, each site providing 1024 measurements as 32 × 32 square grids. Stiffness recorded below 0.8 μm height was occasionally influenced by substratum, so only stiffness recorded above 0.8 μm was analysed, but all sites were included for height and volume analysis. COLO316 had the lowest cell height and volume, followed by HDF (p < 0.0001) and then PEO4, SAOS-2, MeIRMu, WM175, U2OS, and MM39. HDF were more stiff than all other cells (p < 0.0001), while in descending order of stiffness were PEO4, COLO316, WM175, SAOS-2, U2OS, MM39, and MeIRMu (p < 0.02). Stiffness fingerprints comprised scattergrams of stiffness values plotted against the height at which each stiffness value was recorded and appeared unique for each cell type studied, although in most cases the overall form of fingerprints was similar, with maximum stiffness at low height measurements and a second lower peak occurring at high-height levels. We suggest that our stiffness-fingerprint analytical method provides a more nuanced description than previously reported and will facilitate study of the stiffness response to cell stimulation.

  5. The cellular responses and antibacterial activities of silver nanoparticles stabilized by different polymers

    Science.gov (United States)

    Lin, Jiang-Jen; Lin, Wen-Chun; Dong, Rui-Xuan; Hsu, Shan-hui

    2012-02-01

    Silver nanoparticles (AgNPs) are known for their excellent antibacterial activities. The possible toxicity, however, is a major concern for their applications. Three types of AgNPs were prepared in this study by chemical processes. Each was stabilized by a polymer surfactant, which was expected to reduce the exposure of cells to AgNPs and therefore their cytotoxicity. The polymer stabilizers included poly(oxyethylene)-segmented imide (POEM), poly(styrene-co-maleic anhydride)-grafting poly(oxyalkylene) (SMA) and poly(vinyl alcohol) (PVA). The cytotoxicity of these chemically produced AgNPs to mouse skin fibroblasts (L929), human hepatocarcinoma cells (HepG2), and mouse monocyte macrophages (J774A1) was compared to that of physically produced AgNPs and gold nanoparticles (AuNPs) as well as the standard reference material RM8011 AuNPs. Results showed that SMA-AgNPs were the least cytotoxic among all materials, but cytotoxicity was still observed at higher silver concentrations (>30 ppm). Macrophages demonstrated the inflammatory response with cell size increase and viability decrease upon exposure to 10 ppm of the chemically produced AgNPs. SMA-AgNPs did not induce hemolysis at a silver concentration below 1.5 ppm. Regarding the antibacterial activity, POEM-AgNPs and SMA-AgNPs at 1 ppm silver content showed 99.9% and 99.3% growth inhibition against E. coli, while PVA-AgNPs at the same silver concentration displayed 79.1% inhibition. Overall, SMA-AgNPs demonstrated better safety in vitro and greater antibacterial effects than POEM-AgNPs and PVA-AgNPs. This study suggested that polymer stabilizers may play an important role in determining the toxicity of AgNPs.

  6. Haptic stabilization of posture: changes in arm proprioception and cutaneous feedback for different arm orientations

    Science.gov (United States)

    Rabin, E.; Bortolami, S. B.; DiZio, P.; Lackner, J. R.

    1999-01-01

    Postural sway during quiet stance is attenuated by actively maintained contact of the index finger with a stationary surface, even if the level of applied force (proprioceptive information about the hand and arm can serve as an active sensor of body position relative to the point of contact. A geometric analysis of the relationship between hand and torso displacement during body sway led to the prediction that arm and hand proprioceptive and finger somatosensory information about body sway would be maximized with finger contact in the plane of body sway. Therefore, the most postural stabilization should be possible with such contact. To test this analysis, subjects touched a laterally versus anteriorly placed surface while in each of two stances: the heel-to-toe tandem Romberg stance that reduces medial-lateral stability and the heel-to-heel, toes-outward, knees-bent, "duck stance" that reduces fore-aft stability. Postural sway was always least with finger contact in the unstable plane: for the tandem stance, lateral fingertip contact was significantly more effective than frontal contact, and, for the duck stance, frontal contact was more effective than lateral fingertip contact. Force changes at the fingertip led changes in center of pressure of the feet by approximately 250 ms for both fingertip contact locations for both test stances. These results support the geometric analysis, which showed that 1) arm joint angles change by the largest amount when fingertip contact is maintained in the plane of greatest sway, and 2) the somatosensory cues at the fingertip provide both direction and amplitude information about sway when the finger is contacting a surface in the unstable plane.

  7. Influence of fluid therapy for stabilization of dogs in shock caused with different etiology

    Directory of Open Access Journals (Sweden)

    Novakov Todor

    2009-05-01

    Full Text Available The aim of this work is the portrayal of shock in a small practice and its timely and proper treatment. This study included a total of 8 dogs that are numbered from 1 to 8. In all animals was performed complete general clinical index, the venous route was applyed, and are accompanied by clinical parameters during treatment. Research showing that all animals were received in shock. In all our study patients, fluid therapy was occurred to update and maintain lost volume, exception makes patient number one witch with respect to the diagnosis and classification of shock succumb on other therapy. All patients received fluid therapy in the form of one or multiple bolus colloid fluids Hydroxyethyl Starch 6% (HAES-a dosage of 3-15 ml/kg with a physiological solution in the dosage of 10-50 ml/kg. Our study showed a positive response after applications of bolus HAES and physiological solutions. Dogs 1, 2, 5 and 6 after therapy was stabilize body temperature (TT, CRT, and the frequency. The most relevant example is the dog number 2, who received value of TT 40.9, CRT 4 seconds, and the frequency was 222, which the value for 18 hours changed to TT 38.4, CRT 3 seconds and the frequency was 180th. Dogs (5, 6 gave a positive response to the protocol to stabilize shock. Dogs 3, 4, 7 and 8 have an initial positive reactions in some parameters, but etiological situation has led to deterioration and mortalities. We have concluded that the time of applications and attempt have significant role in the successible treatment to stabilize a patients. Significant results are possible only if treatment is timely and adequately (a combination of colloids and crystalloid. The basis of shock therapy is the correction hipovolemia appropriate liquid, intravenous applied in the fastest possible time.

  8. Photochemical stability and photovoltaic performance of low-band gap polymers based on dithiophene with different bridging atoms

    DEFF Research Database (Denmark)

    Helgesen, Martin; Sørensen, Thomas J.; Manceau, Matthieu

    2011-01-01

    New low-band gap polymers based on dithienylbenzothiadiazole (DBT) and dithiophene with different bridging atoms have been synthesized and explored in a comparative study on the photochemical stability and photovoltaic performance. Two differently modified DBT units were exploited, namely 5,6- bis...... indicating greater interchain packing when the side chains are situated on the thienyl groups compared to on the benzothiadiazole unit. The best photovoltaic devices based on blends of polymer and [6,6]-phenyl C61 butyric acid methyl ester (PCBM) were prepared with polymers based on the DBT1 unit giving...... efficiencies up to 2.3%. The photochemical stability was measured by the amount of absorbed photons under 1 sun versus the ageing time for each polymer, which clearly shows that the two polymers containing a 4,4-bis(2-ethylhexyl)-4H- cyclopenta[1,2-b:5,4-b′]dithiophene (CPDT) unit are by far the most unstable...

  9. Sequestration of maize crop straw C in different soils: role of oxyhydrates in chemical binding and stabilization as recalcitrance.

    Science.gov (United States)

    Song, Xiangyun; Li, Lianqing; Zheng, Jufeng; Pan, Genxing; Zhang, Xuhui; Zheng, Jinwei; Hussain, Qaiser; Han, Xiaojun; Yu, Xinyan

    2012-05-01

    While biophysical controls on the sequestration capacity of soils have been well addressed with physical protection, chemical binding and stabilization processes as well as microbial community changes, the role of chemical binding and stabilization has not yet well characterized for soil organic carbon (SOC) sequestration in rice paddies. In this study, a 6-month laboratory incubation with and without maize straw amendment (MSA) was conducted using topsoil samples from soils with different clay mineralogy and free oxy-hydrate contents collected across Southern China. The increase in SOC under MSA was found coincident with that in Fe- and Al-bound OC (Fe/Al-OC) after incubation for 30 d (R(2)=0.90, P=0.05), and with sodium dithionate-citrate-bicarbonate (DCB) extractable Fe after incubation for 180 d (R(2)=0.99, Phumin (R(2)=0.87, P=0.06) observed after incubation for 180 d may indicate a chemical stabilization of sequestered SOC as humin in the long run. These results improved our understanding of SOC sequestration in China's rice paddies that involves an initial chemical binding of amended C and a final stabilization as recalcitrant C of humin. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Relationship of structure and stiffness in laminated bamboo composites

    OpenAIRE

    Penellum, Matthew; Sharma, Bhavna; Shah, Darshil Upendra; Foster, Robert; Ramage, Michael Hector

    2018-01-01

    Laminated bamboo in structural applications has the potential to change the way buildings are constructed. The fibrous microstructure of bamboo can be modelled as a fibre-reinforced composite. This study compares the results of a fibre volume fraction analysis with previous experimental beam bending results. The link between fibre volume fraction and bending stiffness shows that differences previously attributed to preservation treatment in fact arise due to strip thickness. Composite t...

  11. Oxidative stability of biodiesels produced from vegetable oils having different degrees of unsaturation

    International Nuclear Information System (INIS)

    Pantoja, Samantha Siqueira; Conceição, Leyvison Rafael V. da; Costa, Carlos E.F. da; Zamian, José R.; Rocha Filho, Geraldo N. da

    2013-01-01

    Highlights: • We obtained biodiesel from açai, cupuaçu, passion fruit and linseed oil. • Determined the properties of biodiesel, such as kinematic viscosity, cold filter plugging point and oxidative stability. • Evaluated the influence of antioxidants on biodiesel. • The PG antioxidant was more efficient than BHA and TBHQ for the açaí biodiesel. - Abstract: In the present paper, methyl esters were obtained from the transesterification of cupuaçu fat lipids (Theobroma grandiflorum) (Willd. ex Spreng.) (K. Schum.), açaí (Euterpe oleracea), passion fruit (Passiflora edulis) and linseed (Linum usitatissimum L.) oils, using a basic catalyst. The triglycerides were characterized by their fatty acid composition, and the biodiesels were characterized according to standard methods. The critical properties, such as the cold filter plugging point, kinematic viscosity and oxidative stability, of the biodiesels were studied. The influence of butyl-hydroxyanisole (BHA), propyl gallate (PG) and tert-butyl hydroquinone (TBHQ) antioxidants on the açaí, passion fruit and linseed biodiesels was evaluated at concentrations from 500 to 4000 ppm. PG was found to be the most efficient antioxidant for the studied biodiesels

  12. Stability and diffusion of interstitital and substitutional Mn in GaAs of different doping types

    CERN Document Server

    Pereira, LMC; Decoster, S; Correia, JG; Amorim, LM; da Silva, MR; Araújo, JP; Vantomme, A

    2012-01-01

    We report on the lattice location of Mn impurities (< 0.05%) in undoped (semi-insulating) and heavily $n$-type doped GaAs, by means of $\\beta^{-}$-emission channeling from the decay of $^{56}$Mn produced at ISOLDE/CERN. In addition to the majority substituting for Ga, we locate up to 30% of the Mn impurites on tetrahedral interstitial sites with As nearest neighbors. In line with the recently reported high thermal stability of interstitial Mn in heavily $p$-type doped GaAs [L. M. C. Pereira et al., Appl. Phys. Lett. 98, 201905 (2011)], the interstitial fraction is found to be stable up to 400$^{\\circ}$C, with an activation energy for diffusion of 1.7–2.3 eV. By varying the concentration of potentially trapping defects, without a measurable effect on the migration energy of the interstitial impurities, we conclude that the observed high thermal stability is characteristic of isolated interstitial Mn. Being difficult to reconcile with the general belief that interstitial Mn is the donor defect that out-dif...

  13. On stability and monotonicity requirements of finite difference approximations of stochastic conservation laws with random viscosity

    KAUST Repository

    Pettersson, Per

    2013-05-01

    The stochastic Galerkin and collocation methods are used to solve an advection-diffusion equation with uncertain and spatially varying viscosity. We investigate well-posedness, monotonicity and stability for the extended system resulting from the Galerkin projection of the advection-diffusion equation onto the stochastic basis functions. High-order summation-by-parts operators and weak imposition of boundary conditions are used to prove stability of the semi-discrete system.It is essential that the eigenvalues of the resulting viscosity matrix of the stochastic Galerkin system are positive and we investigate conditions for this to hold. When the viscosity matrix is diagonalizable, stochastic Galerkin and stochastic collocation are similar in terms of computational cost, and for some cases the accuracy is higher for stochastic Galerkin provided that monotonicity requirements are met. We also investigate the total spatial operator of the semi-discretized system and its impact on the convergence to steady-state. © 2013 Elsevier B.V.

  14. Stiffness nanotomography of human epithelial cancer cells

    Science.gov (United States)

    Staunton, Jack R.; Doss, Bryant L.; Gilbert, C. Michael; Kasas, Sandor; Ros, Robert

    2012-02-01

    The mechanical stiffness of individual cells is important in both cancer initiation and metastasis. We present atomic force microscopy (AFM) based nanoindentation experiments on various human mammary and esophagus cell lines covering the spectrum from normal immortalized cells to highly metastatic ones. The combination of an AFM with a confocal fluorescence lifetime imaging microscope (FLIM) in conjunction with the ability to move the sample and objective independently allow for precise alignment of AFM probe and laser focus with an accuracy down to a few nanometers. This enables us to correlate the mechanical properties with the point of indentation in the FLIM image. We are using force-volume measurements as well as force indentation curves on distinct points on the cells to compare the elastic moduli of the nuclei, nucleoli, and the cytoplasm, and how they vary within and between individual cells and cell lines. Further, a detailed analysis of the force-indentation curves allows study of the cells' mechanical properties at different indentation depths and to generate 3D elasticity maps.

  15. Meal ingestion markedly increases liver stiffness suggesting the need for liver stiffness determination in fasting conditions.

    Science.gov (United States)

    Alvarez, Daniel; Orozco, Federico; Mella, José María; Anders, Maria; Antinucci, Florencia; Mastai, Ricardo

    2015-01-01

    The introduction of noninvasive liver stiffness (LS) determination has heralded a new stage in the diagnosis and treatment of liver fibrosis. We evaluated the effect of food intake on LS in patients with different degrees of liver disease. We evaluated 24 patients (F≤1, n=11 and F> 1, n=13). LS (Fibroscan®) and portal blood flow (PBF) (Doppler ultrasound) were studied before and 30min after ingestion of a standard liquid meal. Food intake increased PBF (51±10%, p1). Hemodynamic and LS values returned to baseline pre-meal levels within 2hours. LS increases markedly after ingestion of a standard meal, irrespective of the degree of fibrosis. Our results strongly suggest that LS should be measured in fasting conditions. Copyright © 2015 Elsevier España, S.L.U. and AEEH y AEG. All rights reserved.

  16. Single motor–variable stiffness actuator using bistable switching mechanisms for independent motion and stiffness control

    NARCIS (Netherlands)

    Groothuis, Stefan; Carloni, Raffaella; Stramigioli, Stefano

    This paper presents a proof of concept of a variable stiffness actuator (VSA) that uses only one (high power) input motor. In general, VSAs use two (high power) motors to be able to control both the output position and the output stiffness, which possibly results in a heavy, and bulky system. In

  17. Research on a novel high stiffness axial passive magnetic bearing for DGMSCMG

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Jinji [Key Laboratory of Fundamental Science for National Defense, Novel Inertial Instrument and Navigation System Technology, School of Instrument Science and Opto-electronics Engineering, Beihang University, 100191 (China); Wang, Chun' e [Beijing Institute of Automatic Control Equipment, 100074 (China); Le, Yun [Key Laboratory of Fundamental Science for National Defense, Novel Inertial Instrument and Navigation System Technology, School of Instrument Science and Opto-electronics Engineering, Beihang University, 100191 (China)

    2016-08-15

    To increase the displacement stiffness and decrease power loss of double gimbals magnetically suspended control momentum gyro (DGMSCMG), this paper researches a new structure of axial passive magnetic bearing (APMB). Different from the existing APMB, the proposed APMB is composed of segmented permanent magnets and magnetic rings. The displacement stiffness and angular stiffness expressions are derived by equivalent magnetic circuit method and infinitesimal method based on the end magnetic flux. The relationships are analyzed between stiffness and structure parameters such as length of air gap, length of permanent magnet, height of permanent magnet and end length of magnetic ring. Besides, the axial displacement stiffness measurement method of the APMB is proposed, and it verified the correctness of proposed theoretical method. The DGMSCMG prototype is manufactured and the slow-down characteristic experiment is carried out, and the experimental result reflects the low power loss feature of the APMB. - Highlights: • A novel high stiffness axial passive magnetic bearing for DGMSCMG. • The proposed APMB is composed of segmented permanent magnets and magnetic rings. • The APMB is analyzed by EMCM and infinitesimal method based on the end magnetic flux. • The axial displacement stiffness measurement method of the APMB is proposed. • The DGMSCMG is manufactured and proved the correctness of theoretical analysis.

  18. Extracellular matrix stiffness causes systematic variations in proliferation and chemosensitivity in myeloid leukemias.

    Science.gov (United States)

    Shin, Jae-Won; Mooney, David J

    2016-10-25

    Extracellular matrix stiffness influences biological functions of some tumors. However, it remains unclear how cancer subtypes with different oncogenic mutations respond to matrix stiffness. In addition, the relevance of matrix stiffness to in vivo tumor growth kinetics and drug efficacy remains elusive. Here, we designed 3D hydrogels with physical parameters relevant to hematopoietic tissues and adapted them to a quantitative high-throughput screening format to facilitate mechanistic investigations into the role of matrix stiffness on myeloid leukemias. Matrix stiffness regulates proliferation of some acute myeloid leukemia types, including MLL-AF9 + MOLM-14 cells, in a biphasic manner by autocrine regulation, whereas it decreases that of chronic myeloid leukemia BCR-ABL + K-562 cells. Although Arg-Gly-Asp (RGD) integrin ligand and matrix softening confer resistance to a number of drugs, cells become sensitive to drugs against protein kinase B (PKB or AKT) and rapidly accelerated fibrosarcoma (RAF) proteins regardless of matrix stiffness when MLL-AF9 and BCR-ABL are overexpressed in K-562 and MOLM-14 cells, respectively. By adapting the same hydrogels to a xenograft model of extramedullary leukemias, we confirm the pathological relevance of matrix stiffness in growth kinetics and drug sensitivity against standard chemotherapy in vivo. The results thus demonstrate the importance of incorporating 3D mechanical cues into screening for anticancer drugs.

  19. Improving mechanical stiffness of coated benzocyclobutene (BCB) based neural implant.

    Science.gov (United States)

    Singh, Amarjit; Zhu, Haixin; He, Jiping

    2004-01-01

    We briefly report recent results of a simple alternate method to improve mechanical stiffness of BCB polymer neural implant for surgical insertion into brain tissue, which uses coatings dissolvable in bio-fluids. We have studied three different coating materials such as thermo-reversible gel Poloxamer 407, glucose (C6H12O6) and regular table sugar that were applied by dip coating onto the implant surface. The preliminary results of this study have shown that coating BCB probes with Poloxamer 407 polymer, a thermo-reversible gel, or table sugar significantly improves the buckling strength. However, the table sugar coating provides the greatest increase in stiffness, which is sufficient to penetrate both the preserved and live brain tissues without buckling.

  20. Effects of Different Pediatric Drugs on the Color Stability of Various Restorative Materials Applicable in Pediatric Dentistry.

    Science.gov (United States)

    Tüzüner, Tamer; Turgut, Sedanur; Baygin, Ozgul; Yilmaz, Nagehan; Tuna, Elif Bahar; Ozen, Bugra

    2017-01-01

    Background . The chronic recommendation of pediatric drugs could exhibit erosive and cariogenic problems. Objective . To evaluate the effects of different pediatric drugs on the color stability of various restorative materials. Methods . Five specimens (1 mm × 3 mm) were prepared and immersed in ten different pediatric drugs and agitated every 8 hours daily for 2 min up to 1 week. Between immersion periods, the samples were stored in artificial saliva. After 1-week period, Δ E ⁎ values were calculated. Two-way ANOVA and Fisher's LSD test were used for statistical analysis at a level of p pediatric dentistry.

  1. Predicting χ for polymers with stiffness mismatch from simulations

    Science.gov (United States)

    Kozuch, Daniel; Zhang, Wenlin; Gomez, Enrique; Milner, Scott

    The Flory-Huggins χ parameter describes the excess free energy of mixing and governs phase behavior for polymer blends and block copolymers. For chemically distinct polymers, the value of χ is dominated by the mismatch in cohesive energy densities of the monomers. For blends of chemically similar polymers, the entropic portion of χ, arising from non-ideal local packing, becomes more significant. Using polymer field theory, Fredrickson, Liu, and Bates predict that a difference in backbone stiffness can result in a positive χ for chains consisting of chemically identical monomers. To quantitatively investigate this phenomenon, we perform molecular dynamic (MD) simulations for bead-spring chains which differ only in stiffness. From the simulations, we apply a novel thermodynamic integration to extract χ as low as 10-3 per monomer for blends with mild stiffness mismatch. By introducing a standardized effective monomer, we map real polymers to our bead-spring chains and show that the predicted entropic portion of χ are consistent with experimental data.

  2. Subclinical arterial stiffness in young children after Kawasaki disease.

    Science.gov (United States)

    Oguri, Masato; Nakamura, Tsuneyuki; Tamanuki, Keita; Akita, Chisato; Kitaoka, Chika; Saikawa, Yutaka; Takahashi, Masato

    2014-02-01

    Recent studies have revealed that atherosclerosis progresses faster than expected in young adults with a history of Kawasaki disease. However, it is unclear as to when these arterial changes become measurable. In this study, we evaluated subclinical arterial stiffness in young children with a history of Kawasaki disease using two-dimensional ultrasound speckle tracking. A total of 75 children with a history of Kawasaki disease (mean age, 8.2 ± 2.8 years) and 50 healthy controls (mean age 8.3 ± 3.5 years) were included. The two regions of interest for speckle tracking were manually positioned at the anterior and posterior carotid arterial wall using a Philips iE33 (Philips Medical Systems, Bothell, WA, USA). The peak systolic strain, time to peak systolic strain, early systolic strain rate, and late systolic strain rate were continuously monitored between the two regions of interest. Furthermore, the intimal-medial thickness, stiffness β, and pressure-elastic modulus, as conventional measures of arterial stiffness, were concurrently obtained. The peak systolic strain and late systolic strain rate differed significantly between the patients with Kawasaki disease and controls (6.69% versus 8.60%, p < 0.01, and -0.28/second versus -0.51/second, p < 0.0001, respectively). There was no difference in the time to peak systolic strain, early systolic strain rate, and conventional measures. The arteries of patients with Kawasaki disease appear to develop mild sclerotic changes shortly after the onset of the disease.

  3. Influence of different curing systems on the physico-mechanical properties and stability of SBR and NR rubbers

    CERN Document Server

    Basfar, A A; Mofti, S

    2002-01-01

    The physical properties of radiation, sulfur and peroxide-cured styrene-butadiene rubber (SBR) and natural rubber (NR) were compared. The dependence of the mechanical properties of the radiation-vulcanized SBR and NR on the coagent concentration and radiation dose was studied. The effect of thermal aging on the mechanical properties of the different rubber formulations was discussed. The radiation-cured formulations of SBR have superior mechanical properties and thermal stability compared with those of the chemically vulcanized compounds. Whereas, the radiation-cured formulations of NR have similar mechanical properties but superior thermal stability (based on the % change in E after thermal aging), when compared with those of the sulfur-vulcanized compounds and slightly better than those of the peroxide-vulcanized compounds.

  4. Characterization of Whey Protein Oil-In-Water Emulsions with Different Oil Concentrations Stabilized by Ultra-High Pressure Homogenization

    Directory of Open Access Journals (Sweden)

    Essam Hebishy

    2017-02-01

    Full Text Available In this study, the effect of ultra-high-pressure homogenization (UHPH: 100 or 200 MPa at 25 °C, in comparison to colloid mill (CM: 5000 rpm at 20 °C and conventional homogenization (CH: 15 MPa at 60 °C, on the stability of oil-in-water emulsions with different oil concentrations (10, 30 or 50 g/100 g emulsified by whey protein isolate (4 g/100 g was investigated. Emulsions were characterized for their microstructure, rheological properties, surface protein concentration (SPC, stability to creaming and oxidative stability under light (2000 lux/m2. UHPH produced emulsions containing lipid droplets in the sub-micron range (100–200 nm and with low protein concentrations on droplet surfaces. Droplet size (d3.2, µm was increased in CH and UHPH emulsions by increasing the oil concentration. CM emulsions exhibited Newtonian flow behaviour at all oil concentrations studied; however, the rheological behaviour of CH and UHPH emulsions varied from Newtonian flow (n ≈ 1 to shear-thinning (n ˂ 1 and thixotropic behaviour in emulsions containing 50% oil. This was confirmed by the non-significant differences in the d4.3 (µm value between the top and bottom of emulsions in tubes left at room temperature for nine days and also by a low migration velocity measured with a Turbiscan LAB instrument. UHPH emulsions showed significantly lower oxidation rates during 10 days storage in comparison to CM and CH emulsions as confirmed by hydroperoxides and thiobarbituric acid-reactive substances (TBARS. UHPH emulsions treated at 100 MPa were less oxidized than those treated at 200 MPa. The results from this study suggest that UHPH treatment generates emulsions that have a higher stability to creaming and lipid oxidation compared to colloid mill and conventional treatments.

  5. The Effect of Fluoridated and Non Fluoridated Mouth Washes on Color Stability of Different Aesthetic Arch Wires At Different Time Intervals (An in Vitro Study

    Directory of Open Access Journals (Sweden)

    Lubna Maky Hussein

    2018-01-01

    Full Text Available Background:The color stability of aesthetic arch wires is an important factor in the success of an aesthetic orthodontic treatment, but the color of these arch wires tends to change with time.This study was performed to assess the effect of two types of mouth washes on the color  stability of different types of aesthetic arch wires at different time intervals. Materials and methods:Four brands of nickel titanium coated aesthetic arch wires were used: epoxy coated (Orthotechnology and G&H and Teflon coated (Dany and Hubit.Thirty six samples were prepared, each sample contains ten halves of the aesthetic arch wires. They were divided into three groups according to the immersion media (distilled water as a control media, Listerine with fluoride and Listerine without fluoride and immersed for 30 seconds twice daily according to manufacturer's instructions to measure color change after 1 week, 3 weeks and 6 weeks by using spectrophotometer VITA Easyshade Compact according to Commission Internationale de l’Eclairage L*a*b* color space system. Results:It was found that there were highly significant differences in color change values of aesthetic arch wires among all immersion media at different time intervals and color change value increases as the time of immersion increases.Additionally, Listerine with fluoride mouth wash caused higher color change values of aesthetic arch wires than Listerine without fluoride and Hubit aesthetic arch wires were the least color stable while Orthotechnology aesthetic arch wires were the most color stable. Conclusions: We can conclude that the daily use of Listerine mouth washes could affect on the color stability of aesthetic arch wires. Although all tested aesthetic arch wires revealed color changes at variable degrees but some of these changes were not  visible and the others were clinically acceptable while the remaining were clinically unacceptable.

  6. Stiffness determination of the controlled wheel module of a two-axle vehicle

    Directory of Open Access Journals (Sweden)

    Belevtseva N.V.

    2016-08-01

    Full Text Available The conditions of a secure loss of stability of a two-axle wheel vehicle with absolutely hard steering have been found before. The analytically derived conditions of a secure stability loss in case of torsional stiffness are dependent on the relationship between the slipping resistance coefficients, the transverse clutch coefficients on the axes, and the torsional stiffness of the controlled wheel module. In this case, the trail distance is taken into account in the wheel module control system, the mass of the module being neglected. The approach suggested in the paper does take into account the mass of the controlled wheel module. The slipping forces are presented accurate to a cubic term of expansion in slipping angles. The torsional stiffness intervals have been found that provide a secure loss of stability of a two-axle wheel vehicle model. The intervals have been obtained on the basis of a bifurcation analysis of actual bifurcations of the stationary states in the vicinity of the rectilinear motion of the model. Diagrams that illustrate the fulfillment of secure stability loss conditions and allow using the results obtained in designing a wheel module are presented in the paper. The technique used is alternative to the well-known M. Bautin’s approach to determination of secure-insecure conditions in case of a divergent loss of stability.

  7. Different assessment tasks produce different estimates of handedness stability during the eight to 14 month age period

    Science.gov (United States)

    Campbell, Julie M.; Marcinowski, Emily C.; Latta, Jonathan; Michel, George F.

    2015-01-01

    Using 150 infants (57% males), two common tasks for assessing infant hand-use preferences for acquiring objects were compared for their ability to detect stable preferences during the age period of eight to 14 months. One task assesses the preference using nine presentations of objects; the other uses 32 presentations. Monthly classifications of hand preference for each task were determined by either a commonly used a decision criterion in which one hand is used 50% more often than the other or a criterion based on proportion of hand-use difference that exceeds a conventional alpha probability of 0.05. The seven monthly assessments provided by the two tasks also were examined for latent classes in their developmental trajectories. The two tasks were significantly different for both their identification of latent classes and their monthly classification of the infant’s hand-use preference. The 32 presentations yielded three developmental trajectories (45% right preferring, 5% left preferring, and 50% no clear preference) whereas the nine presentations revealed only two trajectories (70% right, 30% no preference). The nine presentations task, with the 50% proportion decision criterion, was very generous in classifying right and left-preferring infants at each month but produced greater fluctuations across months compared to the 32 presentation task with an alpha decision criterion. Both tasks revealed that a large proportion of infants are still developing a hand-use preference during this age period. Recommendations are made for examining the development of hand-use preferences and their relation to the development of other neuropsychological functions. PMID:25769115

  8. Time dependency of morphological remodeling of endothelial cells in response to substrate stiffness

    Science.gov (United States)

    Goli-Malekabadi, Zahra; Tafazzoli-shadpour, Mohammad; Tamayol, Ali; Seyedjafari, Ehsan

    2017-01-01

    Introduction: Substrate stiffness regulates cellular behavior as cells experience different stiffness values of tissues in the body. For example, endothelial cells (ECs) covering the inner layer of blood vessels are exposed to different stiffness values due to various pathologic and physiologic conditions. Despite numerous studies, cells by time span sense mechanical properties of the substrate, but the response is not well understood. We hypothesized that time is a major determinant influencing the behavior of cells seeded on substrates of varying stiffness. Methods: We monitored cell spreading, internal structure, 3D topography, and the viability of ECs over 24 hours of culture on polydimethylsiloxane (PDMS) substrates with two different degrees of elastic modulus. Results: Despite significant differences in cell spreading after cell seeding, cells showed a similar shape and internal structure after 24 hours of culture on both soft and stiff substrates. However, 3D topographical images confirmed existence of rich lamellipodia and filopodia around the cells cultured on stiffer PDMS substrates. Conclusion: It was concluded that the response of ECs to the substrate stiffness was time dependent with initial enhanced cellular spreading and viability on stiffer substrates. Results can provide a better comprehension of cell mechanotransduction for tissue engineering applications. PMID:28546952

  9. Preparation, physical characterization, and stability of Ferrous-Chitosan microcapsules using different iron sources

    Science.gov (United States)

    Handayani, Noer Abyor; Luthfansyah, M.; Krisanti, Elsa; Kartohardjono, Sutrasno; Mulia, Kamarza

    2017-11-01

    Dietary modification, supplementation and food fortification are common strategies to alleviate iron deficiencies. Fortification of food is an effective long-term approach to improve iron status of populations. Fortification by adding iron directly to food will cause sensory problems and decrease its bioavailability. The purpose of iron encapsulation is: (1) to improve iron bioavailability, by preventing oxidation and contact with inhibitors and competitors; and (2) to disguise the rancid aroma and flavor of iron. A microcapsule formulation of two suitable iron compounds (iron II fumarate and iron II gluconate) using chitosan as a biodegradable polymer will be very important. Freeze dryer was also used for completing the iron microencapsulation process. The main objective of the present study was to prepare and characterize the iron-chitosan microcapsules. Physical characterization, i.e. encapsulation efficiency, iron loading capacity, and SEM, were also discussed in this paper. The stability of microencapsulated iron under simulated gastrointestinal conditions was also investigated, as well. Both iron sources were highly encapsulated, ranging from 71.5% to 98.5%. Furthermore, the highest ferrous fumarate and ferrous gluconate loaded were 1.9% and 4.8%, respectively. About 1.04% to 9.17% and 45.17% to 75.19% of Fe II and total Fe, were released in simulated gastric fluid for two hours and in simulated intestinal fluid for six hours, respectively.

  10. Viability, purity, and genetic stability of entomopathogenic fungi species using different preservation methods.

    Science.gov (United States)

    Ayala-Zermeño, Miguel A; Gallou, Adrien; Berlanga-Padilla, Angélica M; Andrade-Michel, Gilda Y; Rodríguez-Rodríguez, José C; Arredondo-Bernal, Hugo C; Montesinos-Matías, Roberto

    2017-11-01

    Preservation methods for entomopathogenic fungi (EPF) require effective protocols to ensure uniform processes and to avoid alterations during storage. The aim of this study was to preserve Beauveria bassiana, Metarhizium acridum, M. anisopliae, M. rileyi, Isaria javanica, Hirsutella thompsonii, H. citriformis and Lecanicillium lecanii in mineral oil (MO), sterile water (SW), silica gel (SG), lyophilisation (L), ultracold-freezing at -70 °C, and cryopreservation at -196 °C. The viability and purity of the fungi were then verified: phenotypic characteristics were evaluated qualitatively at 6, 12 and 24 m. Genetic stability was tested by amplified fragment length polymorphisms (AFLP) analysis at 24 m. Of the eight species of EPF, three remained viable in SW, five in MO and L, six at -70 °C, seven in SG, and eight at -196 °C. No significant changes were observed in AFLP patterns at 24 m of storage. The most effective preservation methods for EPF were SG, L, -70 and -196 °C. Beauveria bassiana, M. acridum, M. anisopliae, M. rileyi and I. javanica remained stable with all methods, while the remaining species were less compatible. The optimisation of preservation methods for EPF facilitates the development of reliable protocols to ensure their inherent characteristics in culture collections. Copyright © 2017 British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  11. Comparative evaluation of the stability of two different dental implant designs and surgical protocols-a pilot study.

    Science.gov (United States)

    Simmons, David E; Maney, Pooja; Teitelbaum, Austin G; Billiot, Susan; Popat, Lomesh J; Palaiologou, A Archontia

    2017-12-01

    The purpose of this study was to compare a parallel wall design implant to a tapered apex design implant when placed in the posterior maxilla using two different surgical protocols. Twenty-seven patients (30 implants) were divided into three groups. All implants were 4 mm wide in diameter and 8 mm long. Group A received 10 tapered implants (OSPTX) (Astra Tech OsseoSpeed TX™) using the soft bone surgical protocol (TXSoft). Group B received 10 tapered implants (OSPTX) (AstraTech OsseoSpeedTX™) using the standard surgical protocol (TXStd). Group C received 10 parallel wall implants (OSP) (AstraTech OsseoSpeed™) using the standard surgical protocol (OStd). All implants were placed in the posterior maxilla in areas with a minimum of 8-mm crestal bone height. Resonance frequency measurements (implant stability quotient (ISQ)) and torque values were recorded to determine initial implant stability. All implants were uncovered 6 weeks after placement and restored with a functionally loaded resin provisional screw-retained crown. Resonance frequency measurements were recorded at the time of implant placement, at 6 weeks and 6 and 12 months. Twelve months after implant placement, the stability of the implants was recorded and the final restorations were placed using custom CAD/CAM fabricated abutments and cement-retained PFM DSIGN porcelain crowns. After implant restoration, bone levels were measured at 6 and 12 months with standardized radiographs. Radiographic mean bone loss was less than 0.5 mm in all groups, with no statistically significant differences between the groups. Implant survival rate at 1 year was 93.3%, with 2/30 implants failing to integrate prior to functional loading at 6 weeks. No statistically significant difference was found between ISQ measurements between the three groups at all time intervals measured. Strong positive correlations were found between overall bone loss at 6 months and insertion torque at time of placement. A very weak

  12. The contrasting nature of woody plant species in different neotropical forest biomes reflects differences in ecological stability.

    Science.gov (United States)

    Pennington, R Toby; Lavin, Matt

    2016-04-01

    A fundamental premise of this review is that distinctive phylogenetic and biogeographic patterns in clades endemic to different major biomes illuminate the evolutionary process. In seasonally dry tropical forests (SDTFs), phylogenies are geographically structured and multiple individuals representing single species coalesce. This pattern of monophyletic species, coupled with their old species stem ages, is indicative of maintenance of small effective population sizes over evolutionary timescales, which suggests that SDTF is difficult to immigrate into because of persistent resident lineages adapted to a stable, seasonally dry ecology. By contrast, lack of coalescence in conspecific accessions of abundant and often widespread species is more frequent in rain forests and is likely to reflect large effective population sizes maintained over huge areas by effective seed and pollen flow. Species nonmonophyly, young species stem ages and lack of geographical structure in rain forest phylogenies may reflect more widespread disturbance by drought and landscape evolution causing resident mortality that opens up greater opportunities for immigration and speciation. We recommend full species sampling and inclusion of multiple accessions representing individual species in phylogenies to highlight nonmonophyletic species, which we predict will be frequent in rain forest and savanna, and which represent excellent case studies of incipient speciation. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  13. Plant fibre composites - porosity and stiffness

    DEFF Research Database (Denmark)

    Madsen, Bo; Thygesen, Anders; Lilholt, Hans

    2009-01-01

    of the composites with their mechanical properties. The fibre weight fraction is used as an independent parameter to calculate the complete volumetric composition. A maximum obtainable stiffness of the composites is calculated at a certain transition fibre weight fraction, which is characterised by a best possible...... combination of high fibre volume fraction and low porosity. The model is validated with experimental data from the literature on several types of composites. A stiffness diagram is presented to demonstrate that the calculations can be used for tailoring and design of composites with a given profile...... of properties. (C) 2009 Elsevier Ltd. All rights reserved....

  14. Thermal stability of diamond-like carbon–MoS{sub 2} thin films in different environments

    Energy Technology Data Exchange (ETDEWEB)

    Niakan, H., E-mail: hamid.niakan@usask.ca [Department of Mechanical Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9 (Canada); Zhang, C. [Department of Mechanical Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9 (Canada); Hu, Y. [Canadian Light Source, 101 Perimeter Road, Saskatoon, SK S7N 0X4 (Canada); Szpunar, J.A.; Yang, Q. [Department of Mechanical Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9 (Canada)

    2014-07-01

    Diamond-like carbon (DLC) based coatings are ideal for low friction and wear resistant applications. For those tribological applications, the coatings may expose to high temperature environments. Therefore, the thermal stability of the coating is very important for its long-term performance. In this work, DLC–MoS{sub 2} composite thin films were synthesized using biased target ion beam deposition technique in which MoS{sub 2} was produced by sputtering a MoS{sub 2} target using Ar ion beams while DLC was deposited by an ion source with CH{sub 4} gas as carbon source. DLC films without MoS{sub 2} deposited under similar conditions were used as reference samples. After the deposition, DLC and DLC–MoS{sub 2} thin films were heat-treated in ambient air and low pressure environments at different temperatures ranging from 100 to 600 °C for 2 h. The effect of annealing on the structure, mechanical and tribological properties of the resulting films were studied by means of Raman spectroscopy, X-ray absorption near edge structure, scanning electron microscopy, nanoindentation, and ball-on-disk testing. The results showed that the structure, hardness, Young's modulus, friction coefficient and wear coefficient of the DLC films were stable up to 200 °C annealing in air and 300 °C in low pressure. At higher temperature, the annealing led to the transformation of sp{sup 3} to sp{sup 2}, which degraded the mechanical and tribological properties of the thin films. Comparing with the DLC films, the DLC–MoS{sub 2} thin films showed a slower rate of graphitization and higher structure stability throughout the range of annealing temperatures, indicating a relatively higher thermal stability. - Highlights: • Thermal stability of diamond-like carbon (DLC) and DLC–MoS{sub 2} films were evaluated. • DLC–MoS{sub 2} films can be synthesized by biased target ion beam deposition technique. • Comparing with DLC films, the DLC–MoS{sub 2} thin films showed higher

  15. The use of a DNA stabilizer in human dental tissues stored under different temperature conditions and time intervals

    Science.gov (United States)

    TERADA, Andrea Sayuri Silveira Dias; da SILVA, Luiz Antonio Ferreira; GALO, Rodrigo; de AZEVEDO, Aline; GERLACH, Raquel Fernanda; da SILVA, Ricardo Henrique Alves

    2014-01-01

    Objective The present study evaluated the use of a reagent to stabilize the DNA extracted from human dental tissues stored under different temperature conditions and time intervals. Material and Methods A total of 161 teeth were divided into two distinct groups: intact teeth and isolated dental pulp tissue. The samples were stored with or without the product at different time intervals and temperature. After storage, DNA extraction and genomic DNA quantification were performed using real-time PCR; the fragments of the 32 samples that represented each possible condition were analyzed to find the four pre-selected markers in STR analysis. Results The results of the quantification showed values ranging from 0.01 to 10,246.88 ng/μL of DNA. The statistical difference in the quantity of DNA was observed when the factors related to the time and temperature of storage were analyzed. In relation to the use of the specific reagent, its use was relevant in the group of intact teeth when they were at room temperature for 30 and 180 days. The analysis of the fragments in the 32 selected samples was possible irrespective of the amount of DNA, confirming that the STR analysis using an automated method yields good results. Conclusions The use of a specific reagent showed a significant difference in stabilizing DNA in samples of intact human teeth stored at room temperature for 30 and 180 days, while the results showed no justification for using the product under the other conditions tested. PMID:25141206

  16. Stability optimisation of molecular electronic devices based on  nanoelectrode–nanoparticle bridge platform in air and different storage liquids

    International Nuclear Information System (INIS)

    Jafri, S. H. M.; Blom, T.; Wallner, A.; Ottosson, H.; Leifer, K.

    2014-01-01

    The long-term stability of metal nanoparticle–molecule junctions in molecular electronic devices based on nanoelectrodes (NEL) is a major challenge in the effort to bring related molecular electronic devices to application. To optimize the reproducibility of molecular electronic nanodevices, the time-dependent modification of such junctions as exposed to different media needs to be known. Here, we have studied (1) the stability of Au-NEL and (2) the electrical stability of molecule–Au nanoparticle (AuNP) junctions themselves with the molecule being  1,8-octanedithiol (ODT). Both the NELs only and the junctions were exposed to air and liquids such as deionized water, tetrahydrofuran, toluene and tetramethylethylenediamine (TMEDA) over a period of 1 month. The nanogaps remained stable in width when stored in either deionized water or toluene, whereas the current through 1,8-octanedithiol–NP junctions remained most stable when stored in TMEDA as compared to other solvents. Although it is difficult to follow the chemical processes in such devices in the 10-nm range with analytical methods, the behavior can be interpreted from known interactions of solvent molecules with electrodes and ODT

  17. Potential mechanisms of carbon monoxide and high oxygen packaging in maintaining color stability of different bovine muscles.

    Science.gov (United States)

    Liu, Chenglong; Zhang, Yimin; Yang, Xiaoyin; Liang, Rongrong; Mao, Yanwei; Hou, Xu; Lu, Xiao; Luo, Xin

    2014-06-01

    The objectives were to compare the effects of packaging methods on color stability, metmyoglobin-reducing-activity (MRA), total-reducing-activity and NADH concentration of different bovine muscles and to explore potential mechanisms in the enhanced color stability by carbon monoxide modified atmosphere packaging (CO-MAP, 0.4% CO/30% CO2/69.6% N2). Steaks from longissimus lumborum (LL), psoas major (PM) and longissimus thoracis (LT) packaged in CO-MAP, high-oxygen modified atmosphere packaging (HiOx-MAP, 80% O2/20% CO2) or vacuum packaging were stored for 0day, 4days, 9days, and 14days or stored for 9days then displayed in air for 0day, 1day, or 3days. The CO-MAP significantly increased red color stability of all muscles, and especially for PM. The PM and LT were more red than LL in CO-MAP, whereas PM had lowest redness in HiOx-MAP. The content of MetMb in CO-MAP was lower than in HiOx-MAP. Steaks in CO-MAP maintained a higher MRA compared with those in HiOx-MAP during storage. After opening packages, the red color of steaks in CO-MAP deteriorated more slowly compared with that of steaks in HiOx-MAP. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Origami tubes assembled into stiff, yet reconfigurable structures and metamaterials

    Science.gov (United States)

    Filipov, Evgueni T.; Tachi, Tomohiro; Paulino, Glaucio H.

    2015-10-01

    Thin sheets have long been known to experience an increase in stiffness when they are bent, buckled, or assembled into smaller interlocking structures. We introduce a unique orientation for coupling rigidly foldable origami tubes in a "zipper" fashion that substantially increases the system stiffness and permits only one flexible deformation mode through which the structure can deploy. The flexible deployment of the tubular structures is permitted by localized bending of the origami along prescribed fold lines. All other deformation modes, such as global bending and twisting of the structural system, are substantially stiffer because the tubular assemblages are overconstrained and the thin sheets become engaged in tension and compression. The zipper-coupled tubes yield an unusually large eigenvalue bandgap that represents the unique difference in stiffness between deformation modes. Furthermore, we couple compatible origami tubes into a variety of cellular assemblages that can enhance mechanical characteristics and geometric versatility, leading to a potential design paradigm for structures and metamaterials that can be deployed, stiffened, and tuned. The enhanced mechanical properties, versatility, and adaptivity of these thin sheet systems can provide practical solutions of varying geometric scales in science and engineering.

  19. Origami tubes assembled into stiff, yet reconfigurable structures and metamaterials.

    Science.gov (United States)

    Filipov, Evgueni T; Tachi, Tomohiro; Paulino, Glaucio H

    2015-10-06

    Thin sheets have long been known to experience an increase in stiffness when they are bent, buckled, or assembled into smaller interlocking structures. We introduce a unique orientation for coupling rigidly foldable origami tubes in a "zipper" fashion that substantially increases the system stiffness and permits only one flexible deformation mode through which the structure can deploy. The flexible deployment of the tubular structures is permitted by localized bending of the origami along prescribed fold lines. All other deformation modes, such as global bending and twisting of the structural system, are substantially stiffer because the tubular assemblages are overconstrained and the thin sheets become engaged in tension and compression. The zipper-coupled tubes yield an unusually large eigenvalue bandgap that represents the unique difference in stiffness between deformation modes. Furthermore, we couple compatible origami tubes into a variety of cellular assemblages that can enhance mechanical characteristics and geometric versatility, leading to a potential design paradigm for structures and metamaterials that can be deployed, stiffened, and tuned. The enhanced mechanical properties, versatility, and adaptivity of these thin sheet systems can provide practical solutions of varying geometric scales in science and engineering.

  20. Experimental challenges to stiffness as a transport paradigm

    Science.gov (United States)

    Luce, T. C.; Burrell, K. H.; Holland, C.; Marinoni, A.; Petty, C. C.; Smith, S. P.; Austin, M. E.; Grierson, B. A.; Zeng, L.

    2018-02-01

    Two power scans were carried out in H-mode plasmas in DIII-D; one employed standard co-current neutral beam injection (NBI), while the other used a mixture of co-current and counter-current NBI to scan power while holding the torque to a low fixed value. Analysis of the ion and electron heat transport, ion toroidal angular momentum transport, and thermal deuterium transport from these scans is presented. Invariance of the gradients or gradient scalelengths, as might be expected from stiff transport, was not generally observed. When invariance was seen, it was not accompanied by a strong increase in transport, except in the case of the absolute deuterium ion transport. Conduction in the ion channel is the dominant energy loss mechanism. The variation of the ion heat transport with applied power is similar for the co-injection and fixed torque scans, indicating that E  ×  B shearing is not determining the plasma response to additional power. There is however, a quantitative difference in the transport between the two scans, indicating E  ×  B shearing does play a role in the transport. Comparison of these results with a previous experiment that directly probed stiffness at a single radius leads to the following conclusion: while local stiffness as formally defined may hold, invariance of the gradients or normalized scalelengths does not follow from stiff transport in more practical scaling experiments, such as the power scans discussed here. Possible reasons for the lack of correspondence between the local picture and the global expectations are discussed.

  1. Stability of cytokines, chemokines and soluble activation markers in unprocessed blood stored under different conditions.

    Science.gov (United States)

    Aziz, Najib; Detels, Roger; Quint, Joshua J; Li, Qian; Gjertson, David; Butch, Anthony W

    2016-08-01

    Biomarkers such as cytokines, chemokines, and soluble activation markers can be unstable when processing of blood is delayed. The stability of various biomarkers in serum and plasma was investigated when unprocessed blood samples were stored for up to 24h at room and refrigerator temperature. Blood was collected from 16 healthy volunteers. Unprocessed serum, EDTA and heparinized blood was stored at room (20-25°C) and refrigerator temperature (4-8°C) for 0.5, 2, 4, 6, 8, and 24h after collection before centrifugation and separation of serum and plasma. Samples were batch tested for various biomarkers using commercially available immunoassays. Statistically significant changes were determined using the generalized estimating equation. IFN-γ, sIL-2Rα, sTNF-RII and β2-microglobulin were stable in unprocessed serum, EDTA and heparinized blood samples stored at either room or refrigerator temperature for up to 24h. IL-6, TNF-α, MIP-1β and RANTES were unstable in heparinized blood at room temperature; TNF-α, and MIP-1β were unstable in unprocessed serum at room temperature; IL-12 was unstable in unprocessed serum at refrigerator temperature; and neopterin was unstable in unprocessed EDTA blood at room temperature. IL-1ra was stable only in unprocessed serum at room temperature. All the biomarkers studied, with the exception of IL-1ra, were stable in unprocessed EDTA blood stored at refrigerator temperature for 24h. This indicates that blood for these biomarkers should be collected in EDTA and if delays in processing are anticipated the unseparated blood should be stored at refrigerator temperature until processing. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Efficient chemotherapy of rat glioblastoma using doxorubicin-loaded PLGA nanoparticles with different stabilizers.

    Directory of Open Access Journals (Sweden)

    Stefanie Wohlfart

    Full Text Available BACKGROUND: Chemotherapy of glioblastoma is largely ineffective as the blood-brain barrier (BBB prevents entry of most anticancer agents into the brain. For an efficient treatment of glioblastomas it is necessary to deliver anti-cancer drugs across the intact BBB. Poly(lactic-co-glycolic acid (PLGA nanoparticles coated with poloxamer 188 hold great promise as drug carriers for brain delivery after their intravenous injection. In the present study the anti-tumour efficacy of the surfactant-coated doxorubicin-loaded PLGA nanoparticles against rat glioblastoma 101/8 was investigated using histological and immunohistochemical methods. METHODOLOGY: The particles were prepared by a high-pressure solvent evaporation technique using 1% polyvinylalcohol (PLGA/PVA or human serum albumin (PLGA/HSA as stabilizers. Additionally, lecithin-containing PLGA/HSA particles (Dox-Lecithin-PLGA/HSA were prepared. For evaluation of the antitumour efficacy the glioblastoma-bearing rats were treated intravenously with the doxorubicin-loaded nanoparticles coated with poloxamer 188 using the following treatment regimen: 3 × 2.5 mg/kg on day 2, 5 and 8 after tumour implantation; doxorubicin and poloxamer 188 solutions were used as controls. On day 18, the rats were sacrificed and the antitumour effect was determined by measurement of tumour size, necrotic areas, proliferation index, and expression of GFAP and VEGF as well as Isolectin B4, a marker for the vessel density. CONCLUSION: The results reveal a considerable anti-tumour effect of the doxorubicin-loaded nanoparticles. The overall best results were observed for Dox-Lecithin-PLGA/HSA. These data demonstrate that the poloxamer 188-coated PLGA nanoparticles enable delivery of doxorubicin across the blood-brain barrier in the therapeutically effective concentrations.

  3. Load bearing and stiffness tailored NiTi implants produced by additive manufacturing: a simulation study

    Science.gov (United States)

    Rahmanian, Rasool; Shayesteh Moghaddam, Narges; Haberland, Christoph; Dean, David; Miller, Michael; Elahinia, Mohammad

    2014-03-01

    Common metals for stable long-term implants (e.g. stainless steel, Titanium and Titanium alloys) are much stiffer than spongy cancellous and even stiffer than cortical bone. When bone and implant are loaded this stiffness mismatch results in stress shielding and as a consequence, degradation of surrounding bony structure can lead to disassociation of the implant. Due to its lower stiffness and high reversible deformability, which is associated with the superelastic behavior, NiTi is an attractive biomaterial for load bearing implants. However, the stiffness of austenitic Nitinol is closer to that of bone but still too high. Additive manufacturing provides, in addition to the fabrication of patient specific implants, the ability to solve the stiffness mismatch by adding engineered porosity to the implant. This in turn allows for the design of different stiffness profiles in one implant tailored to the physiological load conditions. This work covers a fundamental approach to bring this vision to reality. At first modeling of the mechanical behavior of different scaffold designs are presented as a proof of concept of stiffness tailoring. Based on these results different Nitinol scaffolds can be produced by additive manufacturing.

  4. Adaptive 6-DoF Haptic Contact Stiffness Using the Gauss Map.

    Science.gov (United States)

    Xu, Hongyi; Barbic, Jernej

    2016-04-25

    The penalty method is a popular approach to resolving contact in haptic rendering. In simulations involving complex distributed contact, there are, however, many simultaneous individual contacts. These contacts have normals pointing in several directions, many of which may be parallel, causing the stiffness effectively to add up in a temporally highly-varying and unpredictable way. Consequently, penalty-based simulation suffers from stability problems. Previous methods tackled this problem using implicit integration, or simply by scaling the stiffness down globally by the number of contacts. Although this provides some control over the net stiffness, it leads to large penetrations, as small contacts are effectively ignored when compared to larger contacts. We propose an adaptive stiffness method that employs the Gauss map of the normal distribution to ensure a spatially uniform and controllable stiffness in all the contact directions. Combined with virtual coupling saturation, the penetration can be kept shallow all the while haptic simulation remains stable, even for large-scale complex geometry with complex distributed 6-DoF contact scenarios. Our method is fast and can be applied to any penalty-based formulation between rigid objects. While used primarily for rigid objects, we also apply our method to reduced deformable objects. We demonstrate the effectiveness of our approach on several challenging 6-DoF haptic rendering scenarios, such as car engine and landing gear virtual assembly.

  5. Bone implant sockets made using three different procedures: a stability study in dogs

    OpenAIRE

    Cano Sánchez, Jorge; Campo, Julián

    2012-01-01

    Objective: This study compared the effects of three different methods of preparing bone implant sockets (drilling, osteotomes, and piezoelectric device) on osseointegration using resonance frequency analysis (RFA). Study Design: An experimental prospective study was designed. Material and Methods: Ten adult beagle dogs were studied. After 5 weeks, 23 out of 28 initially placed implants in the iliac crest were evaluated, comparing these three different procedures of bone implant socket. Studen...

  6. Influence of Different Types of Resin Luting Agents on Color Stability of Ceramic Laminate Veneers Subjected to Accelerated Artificial Aging

    OpenAIRE

    Silami,Francisca Daniele Jardilino; Tonani,Rafaella; Alandia-Román,Carla Cecilia; Pires-de-Souza,Fernanda de Carvalho Panzeri

    2016-01-01

    Abstract The aim of this study was to evaluate the influence of accelerated aging (AAA) on the color stability of resin cements for bonding ceramic laminate veneers of different thicknesses. The occlusal surfaces of 80 healthy human molars were flattened. Ceramic laminate veneers (IPS e-max Ceram) of two thicknesses (0.5 and 1.0 mm) were bonded with three types of luting agents: light-cured, conventional dual and self-adhesive dual cement. Teeth without restorations and cement samples (0.5 mm...

  7. Color Stability of the Bulk-Fill Composite Resins with Different Thickness in Response to Coffee/Water Immersion

    OpenAIRE

    Sayna Shamszadeh; Seyedeh Mahsa Sheikh-Al-Eslamian; Elham Hasani; Ahmad Najafi Abrandabadi; Narges Panahandeh

    2016-01-01

    We aimed to evaluate the color stability of bulk-fill and conventional composite resin with respect to thickness and storage media. Twenty specimens of a conventional composite resin (6?mm diameter and 2?mm thick) and 40 specimens of the bulk-fill Tetric EvoCeram composite resin at two different thicknesses (6?mm diameter and 2?mm thick or 4?mm thick, n = 20) were prepared. The specimens were stored in distilled water during the study period (28?d). Half of the specimens were remained in dist...

  8. Stability of sorbents based on hydrated TiO2 with different content of ZrO2

    International Nuclear Information System (INIS)

    Malykh, T.G.; Sharygin, L.M.

    1983-01-01

    The effect of ZrO 2 content in hydrated titanium dioxide on i s hydrothermat stabitity in the 120-350 deg C range, is investigated. It is shown that the specific surface of hydrated titanium dioxide in the process of hydrothermal treatment at different temperatures changes within a number of stages and depends on the zirconium dioxide contents in it. Sorbents are stable under hydrothermal conditions at temperatures not exceeding 300 deg C. The stabilizing effect of zirconiUm dioxide on the properties of hydrated titanium dioxide is most pronounced at 350 deg C

  9. Calculation of the Stiffness in the Roll Tensioning of the Circular Saw Blade

    Directory of Open Access Journals (Sweden)

    Linh Vo Tung

    2016-01-01

    Full Text Available The circular blade has been widely used in some projects such as cutting stone, wood and other projects. Owing to its particularity and wide use, it has an important position in cutting industry. Roll tensioning is considered as an effective method which can be used to improve the stiffness and performance of the circular saw blade. The effect of rolling position and width in the roll tensioning is obvious. In this paper the calculation of the maximum stiffness at different rolling position and width in the rolling were carried out through the finite -element. The results show that three ideal points are found. And when rolling position is Ø950mm and rolling width is 20mm, the maximum stiffness of the circular saw blade whose minimum deformation is 0.028mm is found. The roll tensioning can increase the stiffness of the saw blade. It will provide a theoretical basis and guidance for the actual production.

  10. Gait Selection and Transition of Passivity-Based Bipeds with Adaptable Ankle Stiffness

    Directory of Open Access Journals (Sweden)

    Yan Huang

    2012-10-01

    Full Text Available Stable bipedal walking is one of the most important components of humanoid robot design, which can help us better understand natural human walking. In this paper, to study gait selection and gait transition of efficient bipedal walking, we proposed a dynamic bipedal walking model with an upper body, flat feet and compliant joints. The model can achieve stable cyclic motion with different walking gaits. The hip actuation and ankle stiffness behavior of the model are quite similar to those of human normal walking. In simulation, we studied the influence of hip actuation and ankle stiffness on walking performance of each gait. The effects of ankle stiffness on gait selection are also analyzed. Gait transition is realized by adjusting ankle stiffness during walking.

  11. Specific adaptations of neuromuscular control and knee joint stiffness following sensorimotor training.

    Science.gov (United States)

    Gruber, M; Bruhn, S; Gollhofer, A

    2006-08-01

    The aim of this study was to examine how fixations of the ankle joint during sensorimotor training (SMT) influence adaptations in mechanical stiffness and neuromuscular control of the knee joint. Sixty-three healthy subjects were randomly assigned to three training groups that differed in their degree of ankle joint fixation, which was either barefooted, with an ankle brace or with a ski boot. Mechanical knee joint stiffness and reflex control of m. vastus medialis, m. vastus lateralis, m. biceps femoris, and m. semitendinosus were tested during force controlled anterior tibial displacements. This force was applied as both a fast and a slow stimulus. After the training period the group that trained barefooted showed an increase in mechanical stiffness of the knee joint from 79 +/- 21 (Mean +/- SD) N/mm to 110 +/- 38 N/mm (p boots was able to improve knee joint stiffness from 67 +/- 26 N/mm to 96 +/- 47 N/mm (p knee joint injuries.

  12. A novel mechatronic system for measuring end-point stiffness: mechanical design and preliminary tests.

    Science.gov (United States)

    Masia, L; Sandini, G; Morasso, P G

    2011-01-01

    Measuring arm stiffness is of great interest for many disciplines from biomechanics to medicine especially because modulation of impedance represents one of the main mechanism underlying control of movement and interaction with external environment. Previous works have proposed different methods to identify multijoint hand stiffness by using planar or even tridimensional haptic devices, but the associated computational burden makes them not easy to implement. We present a novel mechanism conceived for measuring multijoint planar stiffness by a single measurement and in a reduced execution time. A novel mechanical rotary device applies cyclic radial perturbation to human arm of a known displacement and the force is acquired by means of a 6-axes commercial load cell. The outcomes suggest that the system is not only reliable but allows obtaining a bi-dimensional estimation of arm stiffness in reduced amount of time and the results are comparable with those reported in previous researches. © 2011 IEEE

  13. Oxidative stability of cereal bars made with fruit peels and baru nuts packaged in different types of packaging

    Directory of Open Access Journals (Sweden)

    Nathalia da Silva Rodrigues Mendes

    2013-12-01

    Full Text Available Food industries have been concerned about managing the waste generated by their production processes in order to minimize environmental impacts and also about the development of formulations with different and innovative ingredients such as fruits from the Brazilian savanna. Seeking to meet the expectations of consumers who desire healthy and practical products, this study aimed to evaluate the oxidative stability and the variations in chemical composition and antioxidant potential of cereal bars made with fruit peels and baru nuts packaged in different types of packaging. The bars formulated were packed in four different types of packaging: laminated without vacuum (LWV, transparent without vacuum (TWV, transparent under vacuum (TV, and laminated under vacuum (LV; they were subsequently analyzed for proximate composition, fatty acid profiles, antioxidant activity, and oxidative capacity. The results showed that the cereal bars made with fruit peel and baru are sources of protein, dietary fiber, and fat, especially unsaturated fatty acids such as oleic and linoleic acids. The cereal bars exhibited oxidative stability up to 120 days of storage, and the type of packaging was not significant for the variables evaluated; therefore, they can be stored in low cost packaging such as transparent packaging without vacuum for a period of 120 days.

  14. Biomechanical comparative study of the stability of injectable pedicle screws with different lateral holes augmented with different volumes of polymethylmethacrylate in osteoporotic lumbar vertebrae.

    Science.gov (United States)

    Liu, Da; Sheng, Jun; Luo, Yang; Huang, Chen; Wu, Hong-Hua; Zhou, Jiang-Jun; Zhang, Xiao-Jun; Zheng, Wei

    2018-03-19

    Polymethylmethacrylate (PMMA) is widely used for pedicle screw augmentation in osteoporosis. Until now, there had been no studies of the relationship between screw stability and the distribution and volume of PMMA. The objective of this study was to analyze the relationship between screw stability and the distribution pattern and injected volume of PMMA. This is a biomechanical comparison of injectable pedicle screws with different lateral holes augmented with different volumes of PMMA in cadaveric osteoporotic lumbar vertebrae. Forty-eight osteoporotic lumbar vertebrae were randomly divided into Groups A, B, and C with different pedicle screws (16 vertebrae in each group), and then each group was randomly divided into Subgroups 0, 1, 2, and 3 with different volumes of PMMA (four vertebra with eight pedicles in each subgroup). A pilot hole was prepared in advance using the same method in all samples. Type A and type B pedicle screws were directly inserted into vertebrae in Groups A and B, respectively, and then different volumes of PMMA (0, 1.0, 1.5, and 2.0 mL) were injected through the screws and into vertebrae in Subgroups 0, 1, 2, and 3. The pilot holes were filled with different volumes of PMMA (0, 1.0, 1.5, and 2.0 mL), and then the screws were inserted in Groups C0, C1, C2, and C3. Screw position and distribution of PMMA were evaluated radiographically, and axial pullout tests were performed to measure maximum axial pullout strength (F max ). Polymethylmethacrylate surrounded the anterior one-third of screws in the vertebral body in Groups A1, A2, and A3; the middle one-third of screws in the junction area of the vertebral body and the pedicle in Groups B1, B2, and B3; and the full length of screws evenly in both the vertebral body and the pedicle in Groups C1, C2, and C3. There was no malpositioning of screws or leakage of PMMA in any sample. Two-way analysis of variance revealed that two factors-distribution and volume of PMMA-significantly influenced

  15. Effect of dual task type on gait and dynamic stability during stair negotiation at different inclinations

    NARCIS (Netherlands)

    Madehkhaksar, F.; Egges, J.

    Stair gait is a common daily activity with great potential risk for falls. Stairs have varying inclinations and people may perform other tasks concurrently with stair gait. This study investigated dual-task interference in the context of complex gait tasks, such as stair gait at different

  16. Response stability and variability induced in humans by different feedback contingenies

    NARCIS (Netherlands)

    Maes, J.H.R.

    2003-01-01

    In two experiments, the behavioral effects of different response-feedback contingencies were examined with a task requiring human subjects to repeatedly type three-key sequences on a computer keyboard. In Experiment 1, the subjects first received positive feedback for response variability, followed

  17. Periodontitis and arterial stiffness: a systematic review and meta-analysis.

    Science.gov (United States)

    Schmitt, Audrey; Carra, Maria Clotilde; Boutouyrie, Pierre; Bouchard, Philippe

    2015-11-01

    Patients with periodontitis have a higher risk of cardiovascular diseases, although a causal relationship between these conditions remains unclear. Arterial stiffness is considered a marker of arteriosclerosis and a risk factor for cardiovascular diseases. A systematic review of the literature on clinical studies using pulse wave velocity (PWV) to assess arterial stiffness in patients with periodontitis was carried out to answer the following questions: (i) Do patients with periodontitis have impaired arterial stiffness compared to non-periodontal diseased subjects? (ii) Is periodontal treatment effective as a means to improve arterial stiffness in patients with periodontitis? Literature search was done on different databases up to September 2014. All clinical studies (excluding case reports) using PWV in patients with periodontitis were retrieved for a full-text evaluation. A total of 10 studies were included. Patients with periodontitis have increased arterial stiffness compared to controls (PWV mean difference 0.85 m/s; 95% confidence interval: 0.53-1.16; pperiodontal treatment on PWV. Patients with periodontitis appear to have higher values of PWV compared to controls. The effect of periodontal treatment on arterial stiffness remains unclear. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. Past matrix stiffness primes epithelial cells and regulates their future collective migration through a mechanical memory.

    Science.gov (United States)

    Nasrollahi, Samila; Walter, Christopher; Loza, Andrew J; Schimizzi, Gregory V; Longmore, Gregory D; Pathak, Amit

    2017-11-01

    During morphogenesis and cancer metastasis, grouped cells migrate through tissues of dissimilar stiffness. Although the influence of matrix stiffness on cellular mechanosensitivity and motility are well-recognized, it remains unknown whether these matrix-dependent cellular features persist after cells move to a new microenvironment. Here, we interrogate whether priming of epithelial cells by a given matrix stiffness influences their future collective migration on a different matrix - a property we refer to as the 'mechanical memory' of migratory cells. To prime cells on a defined matrix and track their collective migration onto an adjoining secondary matrix of dissimilar stiffness, we develop a modular polyacrylamide substrate through step-by-step polymerization of different PA compositions. We report that epithelial cells primed on a stiff matrix migrate faster, display higher actomyosin expression, form larger focal adhesions, and retain nuclear YAP even after arriving onto a soft secondary matrix, as compared to their control behavior on a homogeneously soft matrix. Priming on a soft ECM causes a reverse effect. The depletion of YAP dramatically reduces this memory-dependent migration. Our results present a previously unidentified regulation of mechanosensitive collective cell migration by past matrix stiffness, in which mechanical memory depends on YAP activity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Effect of static foot posture on the dynamic stiffness of foot joints during walking.

    Science.gov (United States)

    Sanchis-Sales, E; Sancho-Bru, J L; Roda-Sales, A; Pascual-Huerta, J

    2018-03-17

    The static foot posture has been related to the development of lower limb injuries. This study aimed to investigate the dynamic stiffness of foot joints during gait in the sagittal plane to understand the role of the static foot posture in the development of injuries. Seventy healthy adult male subjects with different static postures, assessed by the Foot Posture Index (FPI) (30 normal, 20 highly pronated and 20 highly supinated), were recruited. Kinematic and kinetic data were recorded using an optical motion capture system and a pressure platform, and dynamic stiffness at the different stages of the stance was calculated from the slopes of the linear regression on the flexion moment-angle curves. The effect of foot type on dynamic stiffness and on ranges of motion and moments was analysed using ANOVAs and post-hoc tests, and linear correlation between dynamic stiffness and FPI was also tested. Highly pronated feet showed a significantly smaller range of motion at the ankle and metatarsophalangeal joints and also a larger range of moments at the metatarsophalangeal joint than highly supinated feet. Dynamic stiffness during propulsion was significantly greater at all foot joints for highly pronated feet, with positive significant correlations with the squared FPI. Highly supinated feet showed greater dynamic stiffness than normal feet, although to a lesser extent. Highly pronated feet during normal gait experienced the greatest decrease in the dorsiflexor moments during propulsion, normal feet being the most balanced regarding work generated and absorbed. Extreme static foot postures show greater dynamic stiffness during propulsion and greater absorbed work, which increases the risk of developing injuries. The data presented may be used when designing orthotics or prostheses, and also when planning surgery that modifies joint stiffness. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Parametric study of roof diaphragm stiffness requirements

    International Nuclear Information System (INIS)

    Jones, W.D.; Tenbus, M.A.

    1991-01-01

    A common assumption made in performing a dynamic seismic analysis for a building is that the roof/floor system is open-quotes rigidclose quotes. This assumption would appear to be reasonable for many of the structures found in nuclear power plants, since many of these structures are constructed of heavily reinforced concrete having floor/roof slabs at least two feet in thickness, and meet the code requirements for structural detailing for seismic design. The roofs of many Department of Energy (DOE) buildings at the Oak Ridge Y-12 Plant in Oak Ridge, Tennessee, have roofs constructed of either metal, precast concrete or gypsum plank deck overlaid with rigid insulation, tar and gravel. In performing natural phenomena hazard assessments for one such facility, it was assumed that the existing roof performed first as a flexible diaphragm (zero stiffness) and then, rigid (infinitely stiff). For the flexible diaphragm model it was determined that the building began to experience significant damage around 0.09 g's. For the rigid diaphragm model it was determined that no significant damage was observed below 0.20 g's. A Conceptual Design Report has been prepared for upgrading/replacing the roof of this building. The question that needed to be answered here was, open-quotes How stiff should the new roof diaphragm be in order to satisfy the rigid diaphragm assumption and, yet, be cost effective?close quotes. This paper presents a parametric study of a very simple structural system to show that the design of roof diaphragms needs to consider both strength and stiffness (frequency) requirements. This paper shows how the stiffness of a roof system affects the seismically induced loads in the lateral, vertical load resisting elements of a building and provides guidance in determining how open-quotes rigidclose quotes a roof system should be in order to accomplish a cost effective design

  1. The Incorporation of Truncated Fourier Series into Finite Difference Approximations of Structural Stability Equations

    Science.gov (United States)

    Hannah, S. R.; Palazotto, A. N.

    1978-01-01

    A new trigonometric approach to the finite difference calculus was applied to the problem of beam buckling as represented by virtual work and equilibrium equations. The trigonometric functions were varied by adjusting a wavelength parameter in the approximating Fourier series. Values of the critical force obtained from the modified approach for beams with a variety of boundary conditions were compared to results using the conventional finite difference method. The trigonometric approach produced significantly more accurate approximations for the critical force than the conventional approach for a relatively wide range in values of the wavelength parameter; and the optimizing value of the wavelength parameter corresponded to the half-wavelength of the buckled mode shape. It was found from a modal analysis that the most accurate solutions are obtained when the approximating function closely represents the actual displacement function and matches the actual boundary conditions.

  2. Differences in the stability of the plasmids of Yersinia pestis cultures in vitro: impact on virulence

    Directory of Open Access Journals (Sweden)

    TC Leal-Balbino

    2004-11-01

    Full Text Available Plasmid and chromosomal genes encode determinants of virulence for Yersinia pestis, the causative agent of plague. However, in vitro, Y. pestis genome is very plastic and several changes have been described. To evaluate the alterations in the plasmid content of the cultures in vitro and the impact of the alterations to their pathogenicity, three Y. pestis isolates were submitted to serial subculture, analysis of the plasmid content, and testing for the presence of characteristic genes in each plasmid of colonies selected after subculture. Different results were obtained with each strain. The plasmid content of one of them was shown to be stable; no apparent alteration was produced through 32 subcultures. In the other two strains, several alterations were observed. LD50 in mice of the parental strains and the derived cultures with different plasmid content were compared. No changes in the virulence plasmid content could be specifically correlated with changes in the LD50.

  3. Effects of different surface treatments on the color stability of various dental porcelains

    Directory of Open Access Journals (Sweden)

    Isil Sarikaya

    2011-06-01

    Conclusions: Within the limitations of this study, the results suggest that feldspathic and low-fusing porcelain specimens were found to be more color-stable for glazed specimens versus polished specimens regardless of whether they were stained with the coffee solution. Glazed and polished specimens with different polishing materials demonstrated that the ΔE values were at an acceptable level for all of the porcelain materials tested (1 < ΔE < 3.7.

  4. Global stability of periodic orbits of non-autonomous difference equations and population biology

    Science.gov (United States)

    Elaydi, Saber; Sacker, Robert J.

    Elaydi and Yakubu showed that a globally asymptotically stable(GAS) periodic orbit in an autonomous difference equation must in fact be a fixed point whenever the phase space is connected. In this paper we extend this result to periodic nonautonomous difference equations via the concept of skew-product dynamical systems. We show that for a k-periodic difference equation, if a periodic orbit of period r is GAS, then r must be a divisor of k. In particular sub-harmonic, or long periodic, oscillations cannot occur. Moreover, if r divides k we construct a non-autonomous dynamical system having minimum period k and which has a GAS periodic orbit with minimum period r. Our methods are then applied to prove a conjecture by J. Cushing and S. Henson concerning a non-autonomous Beverton-Holt equation which arises in the study of the response of a population to a periodically fluctuating environmental force such as seasonal fluctuations in carrying capacity or demographic parameters like birth or death rates.

  5. The effect of different implant-abutment connection on screw joint stability.

    Science.gov (United States)

    Michalakis, Konstantinos; Calvani, Pasquale; Muftu, Sinan; Pissiotis, Argirios; Hirayama, Hiroshi

    2012-03-06

    Abstract Dental implants with an internal connection have been designed in order to establish a better stress distribution when lateral external forces act on the prosthesis and minimize the forces transmitted to the fastening screw. In the present study, ten externally and ten internally hexed implants were tested with a compressive force applied with an Instron Universal machine. Four cycles of loading-unloading were applied to each specimen, in order to achieve displacements of 0.5, 1, 2 and 2.5 mm. The mean loads for the first cycle were 256.70 N for the external connection and 256 N for the internal connection implants. The independent t test did not reveal any significant differences among the two tested groups (P=.780). For the second cycle, the mean loads needed for a displacement of 1mm were 818.19 N and 780.20 N, for the external connection and the internal connection implants respectively. The independent t test revealed significant differences among the two tested groups (Pimplants. These loads were required for a displacement of 2.5mm. The independent t test revealed significant differences among the two tested groups (Pimplant system could not prevent screw loosening during overloading. No implant or prosthesis failure was noticed in either group.

  6. The effect of different implant-abutment connections on screw joint stability.

    Science.gov (United States)

    Michalakis, Konstantinos X; Calvani, Pasquale Lino; Muftu, Sinan; Pissiotis, Argiris; Hirayama, Hiroshi

    2014-04-01

    Dental implants with an internal connection have been designed to establish a better stress distribution when lateral external forces act on the prosthesis and minimize the forces transmitted to the fastening screw. In the present study, 10 externally and 10 internally hexed implants were tested with a compressive force applied with an Instron Universal machine. Four cycles of loading-unloading were applied to each specimen to achieve displacements of 0.5, 1, 2, and 2.5 mm. The mean loads for the first cycle were 256.70 N for the external connection and 256 N for the internal connection implants. The independent t test did not reveal any significant differences among the 2 tested groups (P = .780). For the second cycle, the mean loads needed for a displacement of 1 mm were 818.19 N and 780.20 N for the external connection and the internal connection implants, respectively. The independent t test revealed significant differences among the 2 tested groups (P implants. These loads were required for a displacement of 2.5 mm. The independent t test revealed significant differences among the 2 tested groups (P implant system could not prevent screw loosening during overloading. No implant or prosthesis failure was noticed in either group.

  7. In vitro antibacterial activity and stability of Avicennia marina against urinary tract infection pathogens at different parameters.

    Science.gov (United States)

    Devi, A Sheela; Rajkumar, Johanna

    2013-10-01

    In this study midstream urine samples were collected from urinary tract infected patients to isolate and identify UTI causing bacterial pathogens by biochemical methods. The identified strains were two gram-positive and five gram-negative bacterium. Out of these we have selected one gram-negative (Staphylococcus aureus) and three gram-positive (Escherichia coli, Pseudomonas aeruginosa and Klebsiella pneumoniae) bacteria for current study. The antibacterial effect of aqueous, hexane, chloroform, ethyl acetate and methanol extracts of Avicennia marina against UTI pathogens were studied. Most effective three extracts of A. marina were treated with charcoal. Out of three extracts methanol was confirmed as tremendous to act against bacterial isolates and it was characterized at two different concentrations and compared with chemical based antibiotics. The stability and antimicrobial efficacy of the extract of A. marina in different parameters such as temperature, pH, enzyme, surfactant, organic solvent was determined. In summary, the extract showed an excellent stability and effectiveness to temperature 50 degrees C, pH 4, enzyme treatment using protease, surfactant (EDTA) and organic solvent (formaldehyde).

  8. Chest Press Exercises With Different Stability Requirements Result in Similar Muscle Damage Recovery in Resistance-Trained Men.

    Science.gov (United States)

    Ferreira, Diogo V; Ferreira-Júnior, João B; Soares, Saulo R S; Cadore, Eduardo L; Izquierdo, Mikel; Brown, Lee E; Bottaro, Martim

    2017-01-01

    Ferreira, DV, Ferreira-Júnior, JB, Soares, SRS, Cadore, EL, Izquierdo, M, Brown, LE, and Bottaro, M. Chest press exercises with different stability requirements result in similar muscle damage recovery in resistance trained men. J Strength Cond Res 31(1): 71-79, 2017-This study investigated the time course of 96 hours of muscle recovery after 3 different chest press exercises with different stability requirements in resistance-trained men. Twenty-seven men (23.5 ± 3.8 years) were randomly assigned to one of the 3 groups: (a) Smith machine bench press; (b) barbell bench press; or (c) dumbbell bench press. Participants performed 8 sets of 10 repetition maximum with 2 minutes rest between sets. Muscle thickness, peak torque (PT), and soreness were measured pre, post, 24, 48, 72, and 96 hours after exercise. There were no differences in the time course of PT or muscle thickness values of the pectoralis major (p = 0.98 and p = 0.91, respectively) or elbow extensors (p = 0.07 and p = 0.86, respectively) between groups. Muscle soreness of the pectoralis major was also not different between groups (p > 0.05). However, the Smith machine and barbell groups recovered from triceps brachii muscle soreness by 72 hours after exercise (p > 0.05), whereas the dumbbell group did not present any triceps brachii muscle soreness after exercise (p > 0.05). In conclusion, resistance-trained men experience similar muscle damage recovery after Smith machine, barbell, and dumbbell chest press exercise. However, muscle soreness of the elbow extensors takes a longer time to recover after using a barbell chest press exercise.

  9. Stability of Balloon-Retention Gastrostomy Tubes with Different Concentrations of Contrast Material: In Vitro Study

    International Nuclear Information System (INIS)

    Lopera, Jorge E.; Alvarez, Alex; Trimmer, Clayton; Josephs, Shellie; Anderson, Matthew; Dolmatch, Bart

    2009-01-01

    The purpose of this study was to determine the performance of two balloon-retention-type gastrostomy tubes when the balloons are inflated with two types of contrast materials at different concentrations. Two commonly used balloon-retention-type tubes (MIC and Tri-Funnel) were inflated to the manufacturer's recommended volumes (4 and 20 cm 3 , respectively) with normal saline or normal saline plus different concentrations of contrast material. Five tubes of each brand were inflated with normal saline and 0%, 25%, 50%, 75%, and 100% contrast material dilutions, using either nonionic hyperosmolar contrast, or nonionic iso-osmolar contrast. The tubes were submerged in a glass basin containing a solution with a pH of 4. Every week the tubes were visually inspected to determine the integrity of the balloons, and the diameter of the balloons was measured with a caliper. The tests were repeated every week for a total of 12 weeks. The MIC balloons deflated slightly faster over time than the Tri-Funnel balloons. The Tri-Funnel balloons remained relatively stable over the study period for the different concentrations of contrast materials. The deflation rates of the MIC balloons were proportionally related to the concentration of saline and inversely related to the concentration of the contrast material. At high contrast material concentrations, solidification of the balloons was observed. In conclusion, this in vitro study confirms that the use of diluted amounts of nonionic contrast materials is safe for inflating the balloons of two types of balloon-retention feeding tubes. High concentrations of contrast could result in solidification of the balloons and should be avoided.

  10. The effect of sex, menstrual cycle phase, and monophasic oral contraceptive pill use on local and central arterial stiffness in young adults.

    Science.gov (United States)

    Priest, Stacey E; Shenouda, Ninette; MacDonald, Maureen J

    2018-04-20

    Arterial stiffness is associated with increased cardiovascular disease risk. Previous sex-based investigations of local and central stiffness report inconsistent findings and have not controlled for menstrual cycle phase in women. There is also evidence that sex hormones influence the vasculature, but their impact on arterial stiffness across a natural menstrual (NAT) or oral contraceptive pill (OCP) cycle has been understudied. This study sought to 1) examine potential sex differences in local and central stiffness, 2) compare stiffness profiles between NAT and OCP cycles, and 3) investigate the relationship between duration of OCP use and arterial stiffness. Fifty-three healthy adults (22{plus minus}3 years; 20 men, 15 NAT, 18 OCP) underwent assessments of sex hormone concentrations, β-stiffness index (local stiffness), and carotid-femoral pulse wave velocity (cfPWV, central stiffness). All participants were tested three times (men: same day and time one week apart; NAT: menstrual, mid-follicular, luteal; OCP: placebo, early and late active pill). Men had higher β-stiffness than NAT and OCP (p0.05 for all) and were not associated with duration of OCP use (β-stiffness: r=0.003, p=0.99; cfPWV: r =-0.26, p=0.30). The apparent sex-differences in local, but not central stiffness highlight the importance of assessing both indices when comparing men and women. Furthermore, fluctuating sex hormones do not appear to influence β-stiffness or cfPWV. Therefore, these stiffness indices may only need to be assessed during one cycle phase in women in future investigations.

  11. Oxidative stability of n-3-enriched chicken patties under different package-atmosphere conditions.

    Science.gov (United States)

    Penko, Ana; Polak, Tomaž; Lušnic Polak, Mateja; Požrl, Tomaž; Kakovič, Damir; Žlender, Božidar; Demšar, Lea

    2015-02-01

    The oxidation processes were studied in chicken patties, enriched with n-3 fatty acids, after 8days of storage at 4°C, under different aerobic conditions, and following heat treatment. Significant effects were seen on lipid and cholesterol oxidation and the sensory qualities for whole flaxseed addition in the chicken feed (i.e., n-3 fatty acid enrichment), and for the different package-atmosphere conditions. For the raw chicken patties, n-3 enrichment increased the colour L(∗) values while, after the heat treatment, there were higher thiobarbituric acid-reactive substances (TBARs) and cholesterol oxidation products (COPs), and the rancidity was more pronounced. In comparison with the low O2 (atmosphere condition, O2 enrichment (80%) increased the instrumentally measured colour values, TBARs, total and individual COPs, and the rancidity became pronounced. The most suitable package-atmosphere condition of these raw n-3-enriched chicken patties is a very low O2 atmosphere, with or without an O2 scavenger. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Who Sees Human? The Stability and Importance of Individual Differences in Anthropomorphism.

    Science.gov (United States)

    Waytz, Adam; Cacioppo, John; Epley, Nicholas

    2010-05-01

    Anthropomorphism is a far-reaching phenomenon that incorporates ideas from social psychology, cognitive psychology, developmental psychology, and the neurosciences. Although commonly considered to be a relatively universal phenomenon with only limited importance in modern industrialized societies-more cute than critical-our research suggests precisely the opposite. In particular, we provide a measure of stable individual differences in anthropomorphism that predicts three important consequences for everyday life. This research demonstrates that individual differences in anthropomorphism predict the degree of moral care and concern afforded to an agent, the amount of responsibility and trust placed on an agent, and the extent to which an agent serves as a source of social influence on the self. These consequences have implications for disciplines outside of psychology including human-computer interaction, business (marketing and finance), and law. Concluding discussion addresses how understanding anthropomorphism not only informs the burgeoning study of nonpersons, but how it informs classic issues underlying person perception as well. © The Author(s) 2010.

  13. Stability Analysis of an Industrial Gas Compressor Supported by Tilting-Pad Bearings Under Different Lubrication Regimes

    DEFF Research Database (Denmark)

    Cerda, Alejandro; Santos, Ilmar

    2012-01-01

    This work is aimed at a theoretical study of the dynamic behavior of a rotor-tilting pad journal bearing (TPJB) system under different lubrication regimes, namely, thermohydrodynamic (THD), elastohydrodynamic (EHD), and hybrid lubrication regime. The rotor modeled corresponds to an industrial...... compressor. Special emphasis is put on analyzing the stability map of the rotor when the different lubrication regimes are included into the TPJB modeling. Results show that, for the studied rotor, the inclusion of a THD model is more relevant when compared to an EHD model, as it implies a reduction...... on the instability onset speed for the rotor. Also, results show the feasibility of extending the stable operating range of the rotor by implementing a hybrid lubrication regime. [DOI: 10.1115/1.4004214]...

  14. Diversity and Stability of Lactic Acid Bacteria in Rye Sourdoughs of Four Bakeries with Different Propagation Parameters.

    Directory of Open Access Journals (Sweden)

    Ene Viiard

    Full Text Available We identified the lactic acid bacteria within rye sourdoughs and starters from four bakeries with different propagation parameters and tracked their dynamics for between 5-28 months after renewal. Evaluation of bacterial communities was performed using plating, denaturing gradient gel electrophoresis, and pyrosequencing of 16S rRNA gene amplicons. Lactobacillus amylovorus and Lactobacillus frumenti or Lactobacillus helveticus, Lactobacillus pontis and Lactobacillus panis prevailed in sourdoughs propagated at higher temperature, while ambient temperature combined with a short fermentation cycle selected for Lactobacillus sanfranciscensis, Lactobacillus pontis, and Lactobacillus zymae or Lactobacillus helveticus, Lactobacillus pontis and Lactobacillus zymae. The ratio of species in bakeries employing room-temperature propagation displayed a seasonal dependence. Introduction of different and controlled propagation parameters at one bakery (higher fermentation temperature, reduced inoculum size, and extended fermentation time resulted in stabilization of the microbial community with an increased proportion of L. helveticus and L. pontis. Despite these new propagation parameters no new species were detected.

  15. Comparison and evaluation of flexible and stiff piping systems

    International Nuclear Information System (INIS)

    Hahn, W.; Tang, H.T.; Tang, Y.K.

    1983-01-01

    An experimental and numerical study was performed on a piping system, with various support configurations, to assess the difference in piping response for flexible and stiff piping systems. Questions have arisen concerning a basic design philosophy employed in present day piping designs. One basic question is, the reliability of a flexible piping system greater than that of a stiff piping system by virtue of the fact that a flexible system has fewer snubber supports. With fewer snubbers, the pipe is less susceptible to inadvertent thermal stresses introduced by snubber malfunction during normal operation. In addition to the technical issue, the matter of cost savings in flexible piping system design is a significant one. The costs associated with construction, in-service inspection and maintenance are all significantly reduced by reducing the number of snubber supports. The evaluation study, sponsored by the Electric Power Research Institute, was performed on a boiler feedwater line at Consolidated Edison's Indian Point Unit 1. In this study, the boiler feedwater line was tested and analyzed with two fundamentally different support systems. The first system was very flexible, employing rod and spring hangers, and represented the 'old' design philosophy. The pipe system was very flexible with this support system, due to the long pipe span lengths between supports and the fact that there was only one lateral support. This support did not provide much restraint since it was near an anchor. The second system employed strut and snubber supports and represented the 'modern' design philosophy. The pipe system was relatively stiff with this support system, primarily due to the increased number of supports, including lateral supports, thereby reducing the pipe span lengths between supports. The second support system was designed with removable supports to facilitate interchange of the supports with different support types (i.e., struts, mechanical snubbers and hydraulic

  16. Does experimental low back pain change posteroanterior lumbar spinal stiffness and trunk muscle activity? A randomized crossover study.

    Science.gov (United States)

    Wong, Arnold Y L; Parent, Eric C; Prasad, Narasimha; Huang, Christopher; Chan, K Ming; Kawchuk, Gregory N

    2016-05-01

    While some patients with low back pain demonstrate increased spinal stiffness that decreases as pain subsides, this observation is inconsistent. Currently, the relation between spinal stiffness and low back pain remains unclear. This study aimed to investigate the effects of experimental low back pain on temporal changes in posteroanterior spinal stiffness and concurrent trunk muscle activity. In separate sessions five days apart, nine asymptomatic participants received equal volume injections of hypertonic or isotonic saline in random order into the L3-L5 interspinous ligaments. Pain intensity, spinal stiffness (global and terminal stiffness) at the L3 level, and the surface electromyographic activity of six trunk muscles were measured before, immediately after, and 25-minute after injections. These outcome measures under different saline conditions were compared by generalized estimating equations. Compared to isotonic saline injections, hypertonic saline injections evoked significantly higher pain intensity (mean difference: 5.7/10), higher global (mean difference: 0.73N/mm) and terminal stiffness (mean difference: 0.58N/mm), and increased activity of four trunk muscles during indentation (Ppain subsided. While previous clinical research reported inconsistent findings regarding the association between spinal stiffness and low back pain, our study revealed that experimental pain caused temporary increases in spinal stiffness and concurrent trunk muscle co-contraction during indentation, which helps explain the temporal relation between spinal stiffness and low back pain observed in some clinical studies. Our results substantiate the role of spinal stiffness assessments in monitoring back pain progression. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Is chronic obstructive pulmonary disease associated with increased arterial stiffness?

    DEFF Research Database (Denmark)

    Janner, Julie H; McAllister, David A; Godtfredsen, Nina S

    2012-01-01

    We hypothesize that airflow limitation is associated with increasing arterial stiffness and that having COPD increases a non-invasive measure of arterial stiffness - the aortic augmentation index (AIx) - independently of other CVD risk factors....

  18. Influence of different carbon nanostructures on the electrocatalytic activity and stability of Pt supported electrocatalysts

    DEFF Research Database (Denmark)

    Stamatin, Serban Nicolae; Borghei, Maryam; Andersen, Shuang Ma

    2014-01-01

    /F-MWCNT. Transmission electron microscopy showed that the Pt particle size is around 3 nm for all samples, which was similar to the crystallite size obtained by X-ray diffraction. The activity towards electrochemical reduction of oxygen has been quantified using the thin-film rotating disk electrode, which has shown......Commercially available graphitized carbon nanofibers and multi-walled carbon nanotubes, two carbon materials with very different structure, have been functionalized in a nitric–sulfuric acid mixture. Further on, the materials have been platinized by a microwave assisted polyol method. The relative...... that all the samples have a better activity than the commercially available electrocatalysts. The trend obtained for the graphitic character maintained for the electrochemical activity, while the reverse trend has been obtained for the accelerated ageing test. Long-term potential cycling has demonstrated...

  19. Trunk response and stability in standing under sagittal-symmetric pull-push forces at different orientations, elevations and magnitudes.

    Science.gov (United States)

    El Ouaaid, Z; Shirazi-Adl, A; Plamondon, A

    2018-03-21

    To reduce lifting and associated low back injuries, manual material handling operations often involve pulling-pushing of carts at different weights, orientations, and heights. The loads on spine and risk of injury however need to be investigated. The aim of this study was to evaluate muscle forces, spinal loads and trunk stability in pull-push tasks in sagittal-symmetric, static upright standing posture. Three hand-held load magnitudes (80, 120 and 160 N) at four elevations (0, 20, 40 and 60 cm to the L5-S1) and 24 force directions covering all pull/push orientations were considered. For this purpose, a musculoskeletal finite element model with kinematics measured earlier were used. Results demonstrated that peak spinal forces occur under inclined pull (lift) at upper elevations but inclined push at the lowermost one. Minimal spinal loads, on the other hand, occurred at and around vertical pull directions. Overall, spinal forces closely followed variations in the net external moment of pull-push forces at the L5-S1. Local lumbar muscles were most active in pulls while global extensor muscles in lifts. The trunk stability margin decreased with load elevation except at and around horizontal push; it peaked under pulls and reached minimum at vertical lifts. It also increased with antagonist activity in muscles and intra-abdominal pressure. Results provide insight into the marked effects of variation in the load orientation and elevation on muscle forces, spinal loads and trunk stability and hence offer help in rehabilitation, performance enhancement training and design of safer workplaces. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Non-Contact Stiffness Measurement of a Suspended Single Walled Carbon Nanotube Device

    Science.gov (United States)

    Zheng, Yun; Su, Chanmin; Getty, Stephanie

    2010-01-01

    A new nanoscale electric field sensor was developed for studying triboelectric charging in terrestrial and Martian dust devils. This sensor is capable to measure the large electric fields for large dust devils without saturation. However, to quantify the electric charges and the field strength it is critical to calibrate the mechanical stiffness of the sensor devices. We performed a technical feasibility study of the Nano E-field Sensor stiffness by a non-contact stiffness measurement method. The measurement is based on laser Doppler vibrometer measurement of the thermal noise due to energy flunctuations in the devices. The experiment method provides a novel approach to acquire data that is essential in analyzing the quantitative performance of the E-field Nano Sensor. To carry out the non-contact stiffness measurement, we fabricated a new Single-Walled Carbon Nanotube (SWCNT) E-field sensor with different SWCNTs suspension conditions. The power spectra of the thermal induced displacement in the nano E-field sensor were measured at the accuracy of picometer. The power spectra were then used to derive the mechanical stiffness of the sensors. Effect of suspension conditions on stiffness and sensor sensitivty was discussed. After combined deformation and resistivity measurement, we can compare with our laboratory testing and field testing results. This new non-contact measurement technology can also help to explore to other nano and MEMS devices in the future.

  1. The stable stiffness triangle - drained sand during deformation cycles

    DEFF Research Database (Denmark)

    Sabaliauskas, Tomas; Ibsen, Lars Bo

    2017-01-01

    Cyclic, drained sand stiffness was observed using the Danish triaxial appa- ratus. New, deformation dependant soil property (the stable stiffness triangle) was detected. Using the the stable stiffness triangle, secant stiffness of drained sand was plausible to predict (and control) even during ir...... findings can find application in off-shore, seismic and other engi- neering practice, or inspire new branches of research and modelling wherever dynamic, cyclic or transient loaded sand is encountered....

  2. EVALUATION OF STABILITY OF EMULSION OIL / WATER FRONT OF THE USE OF DIFFERENT SURFACTANTS

    Directory of Open Access Journals (Sweden)

    Fernanda Cristina Wiedusch Sindelar

    2013-05-01

    Full Text Available The reuse of waste generated by various industrial sectors is a practice that has been increasingly used due to impairment of industries with their social responsibility (environmental protection or the requirements of the protection of the environment, since many residues do not have proper disposal. In the processing industry in the reuse of stones is no different. This study aims to evaluate the reuse of the oil used as a lubricant in the stone processing industry, along with water, surfactants and corrosion. To prepare the emulsions samples were used of diesel oil as a lubricant used in the cutting industry this type of industry, plus the following surfactants: Tween 20, Tween 80, sodium lauryl ether sulphate and Cetiol HE. After completing the pH, viscosity, density and phase separation in these emulsions, the conclusion was reached that the surfactant Sodium Lauryl Ether Sulfate provided the best formulation. Using this result, new emulsions prepared with the surfactant Sodium Lauryl Ether Sulfate and an anticorrosive, in this case, sodium molybdate. In such solutions containing sodium molybdate were analyzed power anticorrosive this substance, using the SAE 1020 steel plates. After these analyzes, it was found that the addition of an anticorrosive may reduce or inhibit oxidation, but in other cases, as in this study, can promote oxidation even greater.

  3. HIV Risk Behaviours Differ by Workplace Stability Among Mexican Female Sex Workers With Truck Driver Clientele.

    Science.gov (United States)

    Chen, Nadine E; Strathdee, Steffanie A; Rangel, Gudelia; Patterson, Thomas L; Uribe-Salas, Felipe J; Rosen, Perth; Villalobos, Jorge; Brouwer, Kimberly C

    2012-12-28

    In a study of female sex workers (FSWs) servicing truck driver clients in Mexican border cities, we evaluated differences in HIV/STI risk behaviours determined by workplace. Our study was cross-sectional and its population comprised 100 FSWs from Nuevo Laredo (US border) and 100 FSWs from Ciudad Hidalgo (Guatemalan border). The main outcome was primary place of sex work defined as unstable (street, vehicle, gas station, etc.) vs stable (bar, brothel, and hotel). Logistic regression was used to identify correlates associated with trading sex at unstable workplaces in the last month. Of the FSWs surveyed, 18% reported an unstable workplace. The majority of FSWs surveyed were young (trend towards lower condom use self-efficacy scores (OR 0.8 per unit increase, 95% CI 0.7-1.0). On multivariate regression, unstable workplace was associated with having majority/all truck driver clientele, being surveyed in Nuevo Laredo, and decreased odds of ever having an HIV test. Among Mexican FSWs with truck driver clients, providing safe indoor spaces for sex work may help facilitate public health interventions that improve HIV/STI prevention and reproductive health outcomes.

  4. HIV risk behaviors differ by workplace stability among Mexican female sex workers with truck driver clientele.

    Science.gov (United States)

    Chen, Nadine E; Strathdee, Steffanie A; Rangel, Gudelia; Patterson, Thomas L; Uribe-Salas, Felipe J; Rosen, Perth; Villalobos, Jorge; Brouwer, Kimberly C

    2012-12-28

    In a study of female sex workers (FSW) servicing truck driver clients in Mexican border cities, we evaluated differences in HIV/STI risk behaviors by workplace. Cross-sectional study of FSW servicing truck drivers in Mexico: 100 from Nuevo Laredo (U.S. border); 100 from Ciudad Hidalgo (Guatemalan border). Main outcome was unstable workplace, defined as primary place of sex work in a public place (street, vehicle, gas station, etc.) vs. stable workplace (bar, brothel, and hotel). Logistic regression was used to identify correlates associated with trading sex at unstable workplaces in the last month. Of the FSW surveyed, 18% reported an unstable workplace. The majority of FSW surveyed were young (trend towards lower condom use self-efficacy scores (OR 0.8 per unit increase, 95%CI 0.7-1.0). On multivariate regression, unstable workplace was associated with having majority/all truck driver clientele, being surveyed in Nuevo Laredo, and decreased odds of ever having an HIV test. Among Mexican FSW with truck driver clients, providing safe indoor spaces for sex work may help facilitate public health interventions that improve HIV/STI and reproductive health outcomes.

  5. Stability of Rosmarinic Acid in Aqueous Extracts from Different Lamiaceae Species after in vitro Digestion with Human Gastrointestinal Enzymes

    OpenAIRE

    Zorić, Zoran; Markić, Joško; Pedisić, Sandra; Bučević-Popović, Viljemka; Generalić-Mekinić, Ivana; Grebenar, Katarina; Kulišić-Bilušić, Tea

    2016-01-01

    The present study compares the gastrointestinal stability of rosmarinic acid in aqueous extracts of thyme, winter savory and lemon balm with the stability of pure rosmarinic acid. The stability of rosmarinic acid was detected after two-phase in vitro digestion process (gastric and duodenal) with human gastrointestinal enzymes. The concentration of rosmarinic acid in undigested and digested samples was detected using HPLC-DAD. Results showed that gastrointestinal stability of pure rosmarinic a...

  6. An electrostatic charge sensor based on micro resonator with sensing scheme of effective stiffness perturbation

    International Nuclear Information System (INIS)

    Chen, Dongyang; Zhao, Jiuxuan; Wang, Yinshen; Xie, Jin

    2017-01-01

    A resonant electrostatic charge sensor with high sensitivity based on micro electromechanical systems (MEMS) technology is proposed to measure electric charge. Input charge produces lateral electrostatic force to change effective stiffness of double-ended tuning forks resonator, and leads to a resonant frequency shift. The sensitivity of the charge sensor is 4.4  ×  10 −4 Hz fC −2 . The proposed sensing scheme of effective stiffness perturbation has higher sensitivity than the traditional axial strain sensing methods. Experimental results show that the frequency modulation has better resolution and stability than the amplitude modulation. The proposed sensing scheme also creates additional energy transmission paths inside the device to improve quality factor and stabilize frequency fluctuation. The instability of resonant frequency induced by mechanical nonlinearity are investigated. (paper)

  7. Color stability of resin used for caries infiltration after exposure to different staining solutions.

    Science.gov (United States)

    Borges, Ab; Caneppele, Tmf; Luz, M; Pucci, Cr; Torres, Crg

    2014-01-01

    PURPOSE : The aim of this study was to investigate the staining behavior of demineralized enamel infiltrated by low-viscosity resin. METHODS AND MATERIALS : Bovine enamel/dentin cylindrical samples (3 × 2 mm) were assigned into four groups (n=45) according to the enamel treatment: sound enamel (control), demineralization + artificial saliva, demineralization + daily application of 0.05% NaF, demineralization + resin infiltration (Icon, DMG). Artificial white spot lesions were produced in groups with demineralization. After the treatments, color was assessed by spectrophotometry, using the CIE L*a*b* system. The specimens (n=15) were then immersed in deionized water, red wine, or coffee for 10 minutes daily for eight days. Color was measured again, and the specimens were repolished with sandpaper discs. The final color was assessed. Data were analyzed by two-way analysis of variance and Tukey tests (α=0.05). A paired t-test was used for comparison between staining and repolishing conditions. RESULTS : There were significant differences for surface treatment and dye after staining and repolishing. Immersion in wine and coffee resulted in significantly increased color alteration (ΔE) compared with water (p=0.001). The resin-infiltrated group exhibited the highest staining values (p=0.001). The repolishing procedures resulted in significantly decreased color change. The exposure of specimens to colored solutions resulted in significant color alteration. The demineralized enamel treated with resin infiltration showed significantly higher staining than all other tested groups; however, the repolishing of the specimens minimized the staining effect.

  8. HIV risk behaviours differ by workplace stability among Mexican female sex workers with truck driver clientele

    Directory of Open Access Journals (Sweden)

    Nadine E. Chen

    2012-12-01

    Full Text Available Background. In a study of female sex workers (FSWs servicing truck driver clients in Mexican border cities, we evaluated differences in HIV/STI risk behaviours determined by workplace. Design and Methods. Our study was cross-sectional and its population comprised 100 FSWs from Nuevo Laredo (US border and 100 FSWs from Ciudad Hidalgo (Guatemalan border. The main outcome was that the primary place of sex work was unstable in a public place (street, vehicle, gas station, etc. intead of stable (bar, brothel, and hotel. Logistic regression was used to identify correlates associated with trading sex at unstable workplaces in the last month. Results. Of the FSWs surveyed, 18% reported an unstable workplace. The majority of FSWs surveyed were young (<30 years, single, had <9th grade education, and had worked in the sex trade for a median of 4.9 years. After controlling for study site, FSWs with unstable vs stable workplaces were more likely to have a majority/all truck driver clientele, but were less likely to have visited a gynaecologist in the last year (OR 0.1, 95% CI 0.03-0.4 or ever had an HIV test (OR 0.1, 95% CI 0.06-0.3, and there was a trend towards lower condom use self-efficacy scores (OR 0.8 per unit increase, 95% CI 0.7-1.0. On multivariate regression, unstable workplace was associated with having majority/all truck driver clientele, being surveyed in Nuevo Laredo, and decreased odds of ever having an HIV test. Conclusions. Among Mexican FSWs with truck driver clients, providing safe indoor spaces for sex work may help facilitate public health interventions that improve HIV/STI prevention and reproductive health outcomes.

  9. Influence of Different Types of Resin Luting Agents on Color Stability of Ceramic Laminate Veneers Subjected to Accelerated Artificial Aging.

    Science.gov (United States)

    Silami, Francisca Daniele Jardilino; Tonani, Rafaella; Alandia-Román, Carla Cecilia; Pires-de-Souza, Fernanda de Carvalho Panzeri

    2016-01-01

    The aim of this study was to evaluate the influence of accelerated aging (AAA) on the color stability of resin cements for bonding ceramic laminate veneers of different thicknesses. The occlusal surfaces of 80 healthy human molars were flattened. Ceramic laminate veneers (IPS e-max Ceram) of two thicknesses (0.5 and 1.0 mm) were bonded with three types of luting agents: light-cured, conventional dual and self-adhesive dual cement. Teeth without restorations and cement samples (0.5 mm) were used as control. After initial color evaluations, the samples were subjected to AAA for 580 h. After this, new color readouts were made, and the color stability (ΔE) and luminosity (ΔL) data were analyzed. The greatest color changes (pveneers were fixed with light-cured cement and the lowest when 1.0 mm veneers were fixed with conventional dual cement. There was no influence of the restoration thickness when the self-adhesive dual cement was used. When veneers were compared with the control groups, it was verified that the cement samples presented the greatest alterations (p<0.05) in comparison with both substrates and restored teeth. Therefore, it was concluded that the thickness of the restoration influences color and luminosity changes for conventional dual and light-cured cements. The changes in self-adhesive cement do not depend on restoration thickness.

  10. Microencapsulation of H. pluvialis oleoresins with different fatty acid composition: Kinetic stability of astaxanthin and alpha-tocopherol.

    Science.gov (United States)

    Bustamante, Andrés; Masson, Lilia; Velasco, Joaquín; Del Valle, José Manuel; Robert, Paz

    2016-01-01

    Haematococcus pluvialis is a natural source of astaxanthin (AX). However, AX loses its natural protection when extracted from this microalga. In this study, a supercritical fluid extract (SFE) of H. pluvialis was obtained and added to oils with different fatty acid compositions (sunflower oil (SO) or high oleic sunflower oil (HOSO)). The oleoresins of H. pluvialis ((SO+SFE) and (HOSO+SFE)) were encapsulated with Capsul by spray drying. The stability of the oleoresins and powders were studied at 40, 50 and 70° C. AX and alpha-tocopherol (AT) degradation followed a zero-order and first-order kinetic model, respectively, for all systems. The encapsulation of oleoresins improved the stability of AX and AT to a greater extent in oleoresins with a monounsaturated fatty acid profile, as shown by the significantly lowest degradation rate constants and longest half-lives. Therefore, the encapsulation of H. pluvialis oleoresins is an alternative to developing a functional ingredient for healthy food design. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Designing a Fuzzy Logic Controller to Enhance Directional Stability of Vehicles under Difficult Maneuvers

    OpenAIRE

    Mehrdad N. Khajavi; Golamhassan Paygane; Ali Hakima

    2009-01-01

    Vehicle which are turning or maneuvering at high speeds are susceptible to sliding and subsequently deviate from desired path. In this paper the dynamics governing the Yaw/Roll behavior of a vehicle has been simulated. Two different simulations have been used one for the real vehicle, for which a fuzzy controller is designed to increase its directional stability property. The other simulation is for a hypothetical vehicle with much higher tire cornering stiffness which is ca...

  12. How Crouch Gait Can Dynamically Induce Stiff-Knee Gait

    NARCIS (Netherlands)

    Van der Krogt, M.M.; Bregman, D.J.J.; Wisse, M.; Doorenbosch, C.A.M.; Harlaar, J.; Collins, S.H.

    Children with cerebral palsy frequently experience foot dragging and tripping during walking due to a lack of adequate knee flexion in swing (stiff-knee gait). Stiff-knee gait is often accompanied by an overly flexed knee during stance (crouch gait). Studies on stiff-knee gait have mostly focused on

  13. How Crouch Gait Can Dynamically Induce Stiff-Knee Gait

    NARCIS (Netherlands)

    van der Krogt, M.M.; Bregman, D.J.J.; Wisse, M.; Doorenbosch, C.A.M.; Harlaar, J.

    2010-01-01

    Children with cerebral palsy frequently experience foot dragging and tripping during walking due to a lack of adequate knee flexion in swing (stiff-knee gait). Stiff-knee gait is often accompanied by an overly flexed knee during stance (crouch gait). Studies on stiff-knee gait have mostly focused on

  14. Primary stability of three different iliosacral screw fixation techniques in osteoporotic cadaver specimens-a biomechanical investigation.

    Science.gov (United States)

    Oberkircher, Ludwig; Masaeli, Adrian; Bliemel, Christopher; Debus, Florian; Ruchholtz, Steffen; Krüger, Antonio

    2016-02-01

    The incidence of osteoporotic and insufficiency fractures of the pelvic ring is increasing. Closed reduction and percutaneous fixation with cannulated sacroiliac screws is well-established in the operative treatment of osteoporotic posterior pelvic ring fractures. However, osteoporotic bone quality might lead to the risk of screw loosening. For this reason, cement augmentation of the iliosacral screws is more frequently performed and recommended. The aim of the present biomechanical study was to evaluate the primary stability of three methods of iliosacral screw fixation in human osteoporotic sacrum specimens. This study used methodical cadaver study. A total of 15 fresh frozen human cadaveric specimens with osteoporosis were used (os sacrum). After matched pair randomization regarding bone quality (T-score), three operation technique groups were generated: screw fixation (cannulated screws) without cement augmentation (Group A); screw fixation with cement augmentation before screw placement (cannulated screws) (Group B); and screw fixation with perforated screws and cement augmentation after screw placement (Group C). In all specimens both sides of the os sacrum were used for operative treatment, resulting in a group size of 10 specimens per group. One operation technique was used on each side of the sacral bone to compare biomechanical properties in the same bone quality. Pull-out tests were performed with a rate of 6 mm/min. A load versus displacement curve was generated. Subgroup 1 (Group A vs. Group B): Screw fixation without cement augmentation: 594.4 N±463.7 and screw fixation with cement augmentation before screw placement: 1,020.8 N±333.3; values were significantly different (p=.025). Subgroup 2 (Group A vs. Group C): Screw fixation without cement augmentation: 641.8 N±242.0 and perforated screw fixation with cement augmentation after screw placement: 1,029.6 N±326.5; values were significantly different (p=.048). Subgroup 3 (Group B vs. Group C): Screw

  15. Systematic study of the spin stiffness dependence on phosphorus alloying in the ferromagnetic semiconductor (Ga,Mn)As

    International Nuclear Information System (INIS)

    Shihab, S.; Thevenard, L.; Bardeleben, H. J. von; Gourdon, C.; Riahi, H.; Lemaître, A.

    2015-01-01

    We study the dependence of the spin stiffness constant on the phosphorus concentration in the ferromagnetic semiconductor (Ga,Mn)(As,P) with the aim of determining whether alloying with phosphorus is detrimental, neutral, or advantageous to the spin stiffness. Time-resolved magneto-optical experiments are carried out in thin epilayers. Laser pulses excite two perpendicular standing spin wave modes, which are exchange related. We show that the first mode is spatially uniform across the layer corresponding to a k≈0 wavevector. From the two frequencies and k-vector spacings we obtain the spin stiffness constant for different phosphorus concentrations using weak surface pinning conditions. The mode assessment is checked by comparison to the spin stiffness obtained from domain pattern analysis for samples with out-of-plane magnetization. The spin stiffness is found to exhibit little variation with phosphorus concentration in contradiction with ab-initio predictions

  16. The Stress and Stiffness Analysis of Diaphragm

    Directory of Open Access Journals (Sweden)

    Qu Dongyue

    2017-01-01

    Full Text Available Diaphragm coupling with its simple structure, small size, high reliability, which can compensate for its input and output displacement deviation by its elastic deformation, is widely used in aerospace, marine, and chemical etc. This paper uses the ANSYS software and its APDL language to analysis the stress distribution when the diaphragm under the load of torque, axial deviation, centrifugal force, angular deviation and multiple loads. We find that the value of maximum stress usually appears in the outer or inner transition region and the axial deviation has a greater influence to the distribution of the stress. Based on above, we got three kinds of stiffness for axial, angular and torque, which the stiffness of diaphragm is nearly invariable. The results can be regard as an important reference for design and optimization of diaphragm coupling.

  17. Contact stiffness of randomly rough surfaces.

    Science.gov (United States)

    Pohrt, Roman; Popov, Valentin L

    2013-11-21

    We investigate the contact stiffness of an elastic half-space and a rigid indenter with randomly rough surface having a power spectrum C2D(q)proportional q(-2H-2), where q is the wave vector. The range of H[symbol: see text] is studied covering a wide range of roughness types from white noise to smooth single asperities. At low forces, the contact stiffness is in all cases a power law function of the normal force with an exponent α. For H > 2, the simple Hertzian behavior is observed . In the range of 0 dimensional contact mechanics and the method of dimensionality reduction (MDR). The influence of the long wavelength roll-off is investigated and discussed.

  18. Lipedema is associated with increased aortic stiffness.

    Science.gov (United States)

    Szolnoky, G; Nemes, A; Gavallér, H; Forster, T; Kemény, L

    2012-06-01

    Lipedema is a disproportional obesity due to unknown pathomechanism. Its major hallmark is frequent hematoma formation related to increased capillary fragility and reduced venoarterial reflex. Beyond microangiopathy, both venous and lymphatic dysfunction have also been documented. However, arterial circulation in lipedema has not been examined, and therefore we explored aortic elastic properties by echocardiography. Fourteen women with and 14 without lipedema were included in the study. Each subject consented to blood pressure measurement, physical examination, and transthoracic echocardiography. Aortic stiffness index (beta), distensibility, and strain were evaluated from aortic diameter and blood pressure data. Mean systolic (30.0 +/- 3.2 vs. 25.5 +/- 3.6, P lipedema is characterized with increased aortic stiffness.

  19. Electrothermally Actuated Microbeams With Varying Stiffness

    KAUST Repository

    Tella, Sherif Adekunle

    2017-11-03

    We present axially loaded clamped-guided microbeams that can be used as resonators and actuators of variable stiffness, actuation, and anchor conditions. The applied axial load is implemented by U-shaped electrothermal actuators stacked at one of the beams edges. These can be configured and wired in various ways, which serve as mechanical stiffness elements that control the operating resonance frequency of the structures and their static displacement. The experimental results have shown considerable increase in the resonance frequency and mid-point deflection of the microbeam upon changing the end conditions of the beam. These results can be promising for applications requiring large deflection and high frequency tunability, such as filters, memory devices, and switches. The experimental results are compared to multi-physics finite-element simulations showing good agreement among them.

  20. Optimization of the bending stiffness of beam-to-column and column-to-foundation connections in precast concrete structures

    Directory of Open Access Journals (Sweden)

    R. R. R. COSTA

    Full Text Available Abstract This work involved the structural optimization of precast concrete rigid frames with semi-rigid beam-to-column connections. To this end, several frames were simulated numerically using the Finite Element Method. Beams and columns were modeled using bar elements and their connections were modeled using spring elements, with variable bending stiffness. The objective function was based on the search of the least stiff connection able to ensure the global stability of the building. Lastly, a connection model with optimal stiffness was adopted to design the frame. Semi-rigid beam-to-column connections with a constraint factors of 0.33 sufficed to ensure the maximum allowable horizontal displacement and bending moment of the connection, with a global stability parameter of 1.12. This confirms that even connections with low constraints generate significant gains from the structural standpoint, without affecting construction and assembly-related aspects.

  1. Design of the uniaxial shaker with variable stiffness

    Directory of Open Access Journals (Sweden)

    Chlebo Ondrej

    2017-01-01

    Full Text Available During the vibration testing, various types of vibration drivers of different structures are used. Electrodynamic drivers are generally used for smaller excitation forces whereas for bigger excitation forces hydraulic drivers are used. The main disadvantage of drivers can be found in their size. One of the possibilities for size reduction may be a suitable engineering design. The paper deals with the design of a small uniaxial driver which uses an inertial driver as a source of the excitation force. The structure considers the requirements for stiffness changes of the whole system with the aim of available frequency range tuning.

  2. Stiffness of serial and quasi-serial manipulators: comparison analysis

    Directory of Open Access Journals (Sweden)

    Klimchik Alexandr

    2016-01-01

    Full Text Available The paper deals with comparison analysis of serial and quasi-serial manipulators. It shows a difference between stiffness behaviours of corresponding industrial robots under external loading, which is caused by machining process. The analysis is based on the estimation of compliance errors induced by cutting forces that are applied to the manipulator end-effector. We demonstrate that the quasi-seral manipulators are preferable for large-dimensional tasks while the quasi-serial ones better suit small size tasks.

  3. Cross-Linking in Collagen by Nonenzymatic Glycation Increases the Matrix Stiffness in Rabbit Achilles Tendon

    OpenAIRE

    Reddy, G. Kesava

    2004-01-01

    Nonenzymatic glycation of connective tissue matrix proteins is a major contributor to the pathology of diabetes and aging. Previously the author and colleagues have shown that nonenzymatic glycation significantly enhances the matrix stability in the Achilles tendon (Reddy et al., 2002, Arch. Biochem. Biophys., 399, 174–180). The present study was designed to gain further insight into glycation-induced collagen cross-linking and its relationship to matrix stiffness in the rabbit Achilles tendo...

  4. Arterial Stiffness: Pathophysiological and Genetic Aspects

    OpenAIRE

    Alvim, Rafael de Oliveira; Santos, Paulo Caleb Junior Lima; Bortolotto, Luiz Aparecido; Mill, José Geraldo; Pereira, Alexandre da Costa

    2017-01-01

    Abstract Cardiovascular diseases (CVD) are the main cause of mortality and it represents a significant percentage of hospitalizations. In the scenario of minimization of costs of the health system, methods that identify subclinical CVD would be important. Some guidelines include the measures of aortic stiffness and intima-media thickness of the carotid artery as methods to identify subclinical CVD in hypertensive patients. The pulse wave velocity (PWV) is the gold standard for the evaluation ...

  5. On the elastic stiffness of grain boundaries

    International Nuclear Information System (INIS)

    Zhang Tongyi; Hack, J.E.

    1992-01-01

    The elastic softening of grain boundaries is evaluated from the starting point of grain boundary energy. Several examples are given to illustrate the relationship between boundary energy and the extent of softening. In general, a high grain boundary energy is associated with a large excess atomic volume in the boundary region. The consequent reduction in grain boundary stiffness can represent a significant fraction of that observed in bulk crystals. (orig.)

  6. Environmental Stability of Seed Carbohydrate Profiles in Soybeans Containing Different Alleles of the Raffinose Synthase 2 (RS2) Gene.

    Science.gov (United States)

    Bilyeu, Kristin D; Wiebold, William J

    2016-02-10

    Soybean [Glycine max (L.) Merr.] is important for the high protein meal used for livestock feed formulations. Carbohydrates contribute positively or negatively to the potential metabolizable energy in soybean meal. The positive carbohydrate present in soybean meal consists primarily of sucrose, whereas the negative carbohydrate components are the raffinose family of oligosaccharides (RFOs), raffinose and stachyose. Increasing sucrose and decreasing raffinose and stachyose are critical targets to improve soybean. In three recently characterized lines, variant alleles of the soybean raffinose synthase 2 (RS2) gene were associated with increased sucrose and decreased RFOs. The objective of this research was to compare the environmental stability of seed carbohydrates in soybean lines containing wild-type or variant alleles of RS2 utilizing a field location study and a date of planting study. The results define the carbohydrate variation in distinct regional and temporal environments using soybean lines with different alleles of the RS2 gene.

  7. Expression stabilities of candidate reference genes for RT-qPCR under different stress conditions in soybean.

    Directory of Open Access Journals (Sweden)

    Shuhua Ma

    Full Text Available Due to its accuracy, sensitivity and high throughput, real time quantitative PCR (RT-qPCR has been widely used in analysing gene expression. The quality of data from such analyses is affected by the quality of reference genes used. Expression stabilities for nine candidate reference genes widely used in soybean were evaluated under different stresses in this study. Our results showed that EF1A and ACT11 were the best under salinity stress, TUB4, TUA5 and EF1A were the best under drought stress, ACT11 and UKN2 were the best under dark treatment, and EF1B and UKN2 were the best under virus infection. EF1B and UKN2 were the top two genes which can be reliably used in all of the stress conditions assessed.

  8. Conditions for stability of different valence states of manganese impurity in α-Al2O3

    International Nuclear Information System (INIS)

    Kulagin, N.A.; Apanasenko, A.L.; Kazakov, N.A.

    1983-01-01

    The influence of crystal growth conditions on valence change of a Mn ion at γ-irradiation of corUndum has been studied. The results were obtained on an ESR-spectrome-- ter at 300 K. The crystals (except Mn ions) contained different impurities (Fe 3+ , Cr 3+ , Ti) and depending on the impurities on γ-irradiation, the transition of Mn 3+ both into Mn 3+ and Mn 4+ state or into one of them was observed. For several crystals (with Ti impOrity), the delta-like decrease of Csub(Mnsup(2+)) concentration is observed at 750+800 K and a full decrease of Csub(Mnsup(2+)) was obtained at 1100-1200 K.The results allow the conclusion of the possible mechanisms underlying the stabilization of Mn 2+ and Mn 4+ ions in corundum

  9. Influence of different staining beverages on color stability, surface roughness and microhardness of silorane and methacrylate-based composite resins.

    Science.gov (United States)

    Karaman, Emel; Tuncer, Duygu; Firat, Esra; Ozdemir, Oguz Suleyman; Karahan, Sevilay

    2014-05-01

    To investigate the influence of different staining beverages on color stability, surface roughness and microhardness of silorane and methacrylate-based composite resins. Three different composite resins (Filtek Silorane, Filtek P60, Filtek Supreme XT) were tested. Thirty cylindrical specimens (10 × 2 mm) per material were prepared and polished with a series of aluminum-oxide polishing disks. Each group was then randomly subdivided into three groups according to the test beverages: distilled water (control), cola and coffee. The samples were immersed into different beverages for 15 days. Color, surface roughness and microhardness values were measured by a spectrophotometer, prophylometer and Vickers hardness device respectively, at baseline and after 15 days. The data were subjected to statistical analysis. Immersion in coffee resulted in a significant discoloration for all the composites tested, although the color change was lower in Filtek Silorane than that of MBCs (p composites tested showed similar surface roughness changes after immersion in different beverages (p > 0.05). Besides coffee caused more roughness change than others. Immersion in coffee caused highest microhardness change in Filtek Supreme XT (p resin composites, depending on the characteristics of the materials.

  10. Static stiffness modeling of a novel hybrid redundant robot machine

    Energy Technology Data Exchange (ETDEWEB)

    Li Ming, E-mail: hackingming@gmail.com [Laboratory of Intelligent Machines, Lappeenranta University of Technology (Finland); Wu Huapeng; Handroos, Heikki [Laboratory of Intelligent Machines, Lappeenranta University of Technology (Finland)

    2011-10-15

    This paper presents a modeling method to study the stiffness of a hybrid serial-parallel robot IWR (Intersector Welding Robot) for the assembly of ITER vacuum vessel. The stiffness matrix of the basic element in the robot is evaluated using matrix structural analysis (MSA); the stiffness of the parallel mechanism is investigated by taking account of the deformations of both hydraulic limbs and joints; the stiffness of the whole integrated robot is evaluated by employing the virtual joint method and the principle of virtual work. The obtained stiffness model of the hybrid robot is analytical and the deformation results of the robot workspace under certain external load are presented.

  11. Static stiffness modeling of a novel hybrid redundant robot machine

    International Nuclear Information System (INIS)

    Li Ming; Wu Huapeng; Handroos, Heikki

    2011-01-01

    This paper presents a modeling method to study the stiffness of a hybrid serial-parallel robot IWR (Intersector Welding Robot) for the assembly of ITER vacuum vessel. The stiffness matrix of the basic element in the robot is evaluated using matrix structural analysis (MSA); the stiffness of the parallel mechanism is investigated by taking account of the deformations of both hydraulic limbs and joints; the stiffness of the whole integrated robot is evaluated by employing the virtual joint method and the principle of virtual work. The obtained stiffness model of the hybrid robot is analytical and the deformation results of the robot workspace under certain external load are presented.

  12. Effect of waste plastic bottles on the stiffness and fatigue properties of modified asphalt mixes

    International Nuclear Information System (INIS)

    Modarres, Amir; Hamedi, Hamidreza

    2014-01-01

    Highlights: • PET reduced the mix stiffness at both temperatures of 5 and 25 °C. • PET improved the fatigue behavior at both testing temperatures. • At more than 210 microstrain, adding temperature resulted in higher fatigue life. • SBS modified mixes showed better fatigue behavior than PET modified ones. • Overall PET had comparable effects to SBS on the stiffness and fatigue behavior. - Abstract: Nowadays, the use of recycled waste materials as modifier additives in asphalt mixes could have several economic and environmental benefits. The main purpose of this research was to investigate the effect of waste plastic bottles (Polyethylene Terephthalate (PET)) on the stiffness and specially fatigue properties of asphalt mixes at two different temperatures of 5 and 20 °C. Likewise, the effect of PET was compared to styrene butadiene styrene (SBS) which is a conventional polymer additive which has been vastly used to modify asphalt mixes. Different PET contents (2–10% by weight of bitumen) were added directly to mixture as the method of dry process. Then the resilient modulus and fatigue tests were performed on cylindrical specimens with indirect tensile loading procedure. Overall, the mix stiffness reduced by increasing the PET content. Although stiffness of asphalt mix initially increased by adding lower amount of PET. Based on the results of resilient modulus test, the stiffness of PET modified mix was acceptable and warranted the proper deformation characteristics of these mixes at heavy loading conditions. At both temperatures, PET improved the fatigue behavior of studied mixes. PET modified mixes revealed comparable stiffness and fatigue behavior to SBS at 20 °C. However, at 5 °C the fatigue life of SBS modified mixes was to some extent higher than that of PET modified ones especially at higher strain levels of 200 microstrain

  13. Regional brain stiffness changes across the Alzheimer's disease spectrum

    Directory of Open Access Journals (Sweden)

    Matthew C. Murphy

    2016-01-01

    Full Text Available Magnetic resonance elastography (MRE is an MRI-based technique to noninvasively measure tissue stiffness. Currently well established for clinical use in the liver, MRE is increasingly being investigated to measure brain stiffness as a novel biomarker of a variety of neurological diseases. The purpose of this work was to apply a recently developed MRE pipeline to measure regional brain stiffness changes in human subjects across the Alzheimer's disease (AD spectrum, and to gain insights into the biological processes underlying those stiffness changes by correlating stiffness with existing biomarkers of AD. The results indicate that stiffness changes occur mostly in the frontal, parietal and temporal lobes, in accordance with the known topography of AD pathology. Furthermore, stiffness in those areas correlates with existing imaging biomarkers of AD including hippocampal volumes and amyloid PET. Additional analysis revealed preliminary but significant evidence that the relationship between brain stiffness and AD severity is nonlinear and non-monotonic. Given that similar relationships have been observed in functional MRI experiments, we used task-free fMRI data to test the hypothesis that brain stiffness was sensitive to structural changes associated with altered functional connectivity. The analysis revealed that brain stiffness is significantly and positively correlated with default mode network connectivity. Therefore, brain stiffness as measured by MRE has potential to provide new and essential insights into the temporal dynamics of AD, as well as the relationship between functional and structural plasticity as it relates to AD pathophysiology.

  14. Endoscopic add-on stiffness probe for real-time soft surface characterisation in MIS.

    Science.gov (United States)

    Faragasso, A; Stilli, A; Bimbo, J; Noh, Y; Liu, H; Nanayakkara, T; Dasgupta, P; Wurdemann, H A; Althoefer, K

    2014-01-01

    This paper explores a novel stiffness sensor which is mounted on the tip of a laparoscopic camera. The proposed device is able to compute stiffness when interacting with soft surfaces. The sensor can be used in Minimally Invasive Surgery, for instance, to localise tumor tissue which commonly has a higher stiffness when compared to healthy tissue. The purely mechanical sensor structure utilizes the functionality of an endoscopic camera to the maximum by visually analyzing the behavior of trackers within the field of view. Two pairs of spheres (used as easily identifiable features in the camera images) are connected to two springs with known but different spring constants. Four individual indenters attached to the spheres are used to palpate the surface. During palpation, the spheres move linearly towards the objective lens (i.e. the distance between lens and spheres is changing) resulting in variations of their diameters in the camera images. Relating the measured diameters to the different spring constants, a developed mathematical model is able to determine the surface stiffness in real-time. Tests were performed using a surgical endoscope to palpate silicon phantoms presenting different stiffness. Results show that the accuracy of the sensing system developed increases with the softness of the examined tissue.

  15. Biomechanical investigation of a minimally invasive posterior spine stabilization system in comparison to the Universal Spinal System (USS).

    Science.gov (United States)

    Kubosch, D; Kubosch, E J; Gueorguiev, B; Zderic, I; Windolf, M; Izadpanah, K; Südkamp, N P; Strohm, P C

    2016-03-22

    Although minimally invasive posterior spine implant systems have been introduced, clinical studies reported on reduced quality of spinal column realignment due to correction loss. The aim of this study was to compare biomechanically two minimally invasive spine stabilization systems versus the Universal Spine Stabilization system (USS). Three groups with 5 specimens each and 2 foam bars per specimen were instrumented with USS (Group 1) or a minimally invasive posterior spine stabilization system with either polyaxial (Group 2) or monoaxial (Group 3) screws. Mechanical testing was performed under quasi-static ramp loading in axial compression and torsion, followed by destructive cyclic loading run under axial compression at constant amplitude and then with progressively increasing amplitude until construct failure. Bending construct stiffness, torsional stiffness and cycles to failure were investigated. Initial bending stiffness was highest in Group 3, followed by Group 2 and Group 1, without any significant differences between the groups. A significant increase in bending stiffness after 20'000 cycles was observed in Group 1 (p = 0.002) and Group 2 (p = 0.001), but not in Group 3, though the secondary bending stiffness showed no significant differences between the groups. Initial and secondary torsional stiffness was highest in Group 1, followed by Group 3 and Group 2, with significant differences between all groups (p ≤ 0.047). A significant increase in initial torsional stiffness after 20'000 cycles was observed in Group 2 (p = 0.017) and 3 (p = 0.013), but not in Group 1. The highest number of cycles to failure was detected in Group 1, followed by Group 3 and Group 2. This parameter was significantly different between Group 1 and Group 2 (p = 0.001), between Group 2 and Group 3 (p = 0.002), but not between Group 1 and Group 3. These findings quantify the correction loss for minimally invasive spine implant systems and imply that

  16. Measurement of the UH-60A Hub Large Rotor Test Apparatus Control System Stiffness

    Science.gov (United States)

    Kufeld, Robert M.

    2014-01-01

    This purpose of this report is to provides details of the measurement of the control system stiffness of the UH-60A rotor hub mounted on the Large Rotor Test Apparatus (UH-60A/LRTA). The UH-60A/LRTA was used in the 40- by 80-Foot Wind Tunnel to complete the full-scale wind tunnel test portion of the NASA / ARMY UH-60A Airloads Program. This report describes the LRTA control system and highlights the differences between the LRTA and UH-60A aircraft. The test hardware, test setup, and test procedures are also described. Sample results are shown, including the azimuthal variation of the measured control system stiffness for three different loadings and two different dynamic actuator settings. Finally, the azimuthal stiffness is converted to fixed system values using multi-blade transformations for input to comprehensive rotorcraft prediction codes.

  17. Non-invasive evaluation of liver stiffness after splenectomy in rabbits with CCl4-induced liver fibrosis.

    Science.gov (United States)

    Wang, Ming-Jun; Ling, Wen-Wu; Wang, Hong; Meng, Ling-Wei; Cai, He; Peng, Bing

    2016-12-14

    To investigate the diagnostic performance of liver stiffness measurement (LSM) by elastography point quantification (ElastPQ) in animal models and determine the longitudinal changes in liver stiffness by ElastPQ after splenectomy at different stages of fibrosis. Liver stiffness was measured in sixty-eight rabbits with CCl 4 -induced liver fibrosis at different stages and eight healthy control rabbits by ElastPQ. Liver biopsies and blood samples were obtained at scheduled time points to assess liver function and degree of fibrosis. Thirty-one rabbits with complete data that underwent splenectomy at different stages of liver fibrosis were then included for dynamic monitoring of changes in liver stiffness by ElastPQ and liver function according to blood tests. LSM by ElastPQ was significantly correlated with histologic fibrosis stage ( r = 0.85, P splenectomy (especially F1) may delay liver fibrosis progression. ElastPQ is an available, convenient, objective and non-invasive technique for assessing liver stiffness in rabbits with CCl 4 -induced liver fibrosis. In addition, liver stiffness measurements using ElastPQ can dynamically monitor the changes in liver stiffness in rabbit models, and in patients, after splenectomy.

  18. Arterial stiffness and functional outcome in acute ischemic stroke.

    Science.gov (United States)

    Lee, Yeong-Bae; Park, Joo-Hwan; Kim, Eunja; Kang, Chang-Ki; Park, Hyeon-Mi

    2014-03-01

    Arterial stiffness is a common change associated with aging and can be evaluated by measuring pulse wave velocity (PWV) between sites in the arterial tree, with the stiffer artery having the higher PWV. Arterial stiffness is associated with the risk of stroke in the general population and of fatal stroke in hypertensive patients. This study is to clarify whether PWV value predicts functional outcome of acute ischemic stroke. ONE HUNDRED PATIENTS WERE ENROLLED WITH A DIAGNOSIS OF ACUTE ISCHEMIC STROKE AND CATEGORIZED INTO TWO GROUPS: large-artery atherosclerosis (LAAS) or small vessel disease (SVD) subtype of Trial of Org 10172 in Acute Stroke Treatment (TOAST) classification. Each group was divided into two sub-groups based on the functional outcome of acute ischemic stroke, indicated by modified Rankin Scale (mRS) at discharge. Poor functional outcome group was defined as a mRS ≥ 3 at discharge. Student's t-test or Mann-Whitney U-test were used to compare maximal brachial-ankle PWV (baPWV) values. Twenty-four patients whose state was inadequate to assess baPWV or mRS were excluded. There were 38 patients with good functional outcome (mRS vs. 1,789.80 ± 421.91, p = 0.022), while there was no significant difference of baPWV among patients with LAAS subtype (2,071.76 ± 618.42 vs. 1,878.00 ± 365.35, p = 0.579). Arterial stiffness indicated by baPWV is associated with the functional outcome of acute ischemic stroke. This finding suggests that measurement of baPWV predicts functional outcome in patients with stroke especially those whose TOAST classification was confirmed as SVD subtype.

  19. Correlation study of spleen stiffness measured by FibroTouch with esophageal and gastric varices in patients with liver cirrhosis

    Directory of Open Access Journals (Sweden)

    WEI Yutong

    2015-03-01

    Full Text Available ObjectiveTo explore the correlation of spleen stiffness measured by FibroScan with esophageal and gastric varices in patients with liver cirrhosis. MethodsSpleen and liver stiffness was measured by FibroScan in 72 patients with liver cirrhosis who received gastroscopy in our hospital from December 2012 to December 2013. Categorical data were analyzed by χ2 test, and continuous data were analyzed by t test. Pearson's correlation analysis was used to investigate the correlation between the degree of esophageal varices and spleen stiffness. ResultsWith the increase in the Child-Pugh score in patients, the measurements of liver and spleen stiffness showed a rising trend. Correlation was found between the measurements of spleen and liver stiffness (r=0.367, P<0.05. The differences in measurements of spleen stiffness between patients with Child-Pugh classes A, B, and C were all significant (t=5.149, 7.231, and 6.119, respectively; P=0031, 0.025, and 0.037, respectively. The measurements of spleen and liver stiffness showed marked increases in patients with moderate and severe esophageal and gastric varices. The receiver operating characteristic (ROC curve analysis showed that the area under the ROC curve, sensitivity, and specificity for spleen stiffness were significantly higher than those for liver stiffness and platelet count/spleen thickness. ConclusionThe spleen stiffness measurement by FibroScan shows a good correlation with the esophageal and gastric varices in patients with liver cirrhosis. FibroScan is safe and noninvasive, and especially useful for those who are not suitable for gastroscopy.

  20. Stability, Intracellular Delivery, and Release of siRNA from Chitosan Nanoparticles Using Different Cross-Linkers.

    Directory of Open Access Journals (Sweden)

    Maria Abdul Ghafoor Raja

    Full Text Available Chitosan (CS nanoparticles have been extensively studied for siRNA delivery; however, their stability and efficacy are highly dependent on the types of cross-linker used. To address this issue, three common cross-linkers; tripolyphosphate (TPP, dextran sulphate (DS and poly-D-glutamic acid (PGA were used to prepare siRNA loaded CS-TPP/DS/PGA nanoparticles by ionic gelation method. The resulting nanoparticles were compared with regard to their physicochemical properties including particle size, zeta potential, morphology, binding and encapsulation efficiencies. Among all the formulations prepared with different cross linkers, CS-TPP-siRNA had the smallest particle size (ranged from 127 ± 9.7 to 455 ± 12.9 nm with zeta potential ranged from +25.1 ± 1.5 to +39.4 ± 0.5 mV, and high entrapment (>95% and binding efficiencies. Similarly, CS-TPP nanoparticles showed better siRNA protection during storage at 4˚C and as determined by serum protection assay. TEM micrographs revealed the assorted morphology of CS-TPP-siRNA nanoparticles in contrast to irregular morphology displayed by CS-DS-siRNA and CS-PGA-siRNA nanoparticles. All siRNA loaded CS-TPP/DS/PGA nanoparticles showed initial burst release followed by sustained release of siRNA. Moreover, all the formulations showed low and concentration-dependent cytotoxicity with human colorectal cancer cells (DLD-1, in vitro. The cellular uptake studies with CS-TPP-siRNA nanoparticles showed successful delivery of siRNA within cytoplasm of DLD-1 cells. The results demonstrate that ionically cross-linked CS-TPP nanoparticles are biocompatible non-viral gene delivery system and generate a solid ground for further optimization studies, for example with regard to steric stabilization and targeting.

  1. Thermal stability and hot-stage Raman spectroscopic study of Ca-montmorillonite modified with different surfactants: A comparative study

    International Nuclear Information System (INIS)

    Sun, Zhiming; Park, Yuri; Zheng, Shuilin; Ayoko, Godwin A.; Frost, Ray L.

    2013-01-01

    Highlights: • A typical Ca-montmorillonite was modified with three surfactants through ion exchange. • The organoclays were characterized by XRD, TG and hot stage Raman. • The structural geometry and thermal properties of organoclays were analyzed. • The prepared organoclays show potential prospects in the environmental remediation. - Abstract: Three long chain cationic surfactants were intercalated into Ca-montmorillonite through ion exchange and the obtained organoclays were characterized by X-ray diffraction (XRD), high resolution thermogravimetric analysis (TG) and Raman spectroscopy. The intercalation of surfactants not only changes the surface properties of clay from hydrophilic to hydrophobic but also greatly increases the basal spacing of the interlayers based on XRD analysis. The thermal stability of organoclays intercalated with three surfactants (TTAB, DTAB and CTAB) and the different arrangements of the surfactant molecules intercalated into Ca-montmorillonite were determined by TG-DTG analysis. A Raman spectroscopic study on the Ca-montmorillonite modified by three surfactants prepared at different concentrations provided the detailed conformational ordering of different intercalated long-chain surfactants under different conditions. The wavenumber of the antisymmetric stretching mode is more sensitive than that of the symmetric stretching mode to the mobility of the tail of the amine chain. At room temperature, the conformational ordering is more easily affected by the packing density in the lateral model. With the increase of the temperature, the positions of both the antisymmetric and symmetric stretching bands shift to higher wavenumbers, which indicates a decrease of conformational ordering. This study offers new insights into the structure and properties of Ca-montmorillonite modified with different long chain surfactants. Moreover, the experimental results confirm the potential applications of organic Ca-montmorillonites for the removal

  2. Intelligent passively stabilized quadrotor

    Science.gov (United States)

    Sayfeddine, D.; Bulgakov, A. G.; Kruglova, T. N.

    2017-10-01

    Quadrotor stability is one of the most topical researches worldwide. It is due to the simplicity, availability and cost of such platform. This miniature aerial vehicle is highly manoeuvrable, straight forward to use and to maintain. It can be deployed to perform wide variety of tasks. On the other hand, the quadrotor suffers from non-stability, which makes it unreliable, especially when flying on low speed, high altitude and in windy circumstances. This paper discusses the improvement of the quadrotor by adding a stabilizing mechanism working as a passive breaking system in sharp and spontaneous turns. The mechanism is described and simulated as a standalone module. The end result represents the determination of the stiffness coefficient of the stabilizing actuator using fuzzy logic controller.

  3. VP24-Karyopherin Alpha Binding Affinities Differ between Ebolavirus Species, Influencing Interferon Inhibition and VP24 Stability

    Energy Technology Data Exchange (ETDEWEB)

    Schwarz, Toni M.; Edwards, Megan R.; Diederichs, Audrey; Alinger, Joshua B.; Leung, Daisy W.; Amarasinghe, Gaya K.; Basler, Christopher F.; Lyles, Douglas S.

    2016-12-14

    ABSTRACT

    Zaire ebolavirus(EBOV),Bundibugyo ebolavirus(BDBV), andReston ebolavirus(RESTV) belong to the same genus but exhibit different virulence properties. VP24 protein, a structural protein present in all family members, blocks interferon (IFN) signaling and likely contributes to virulence. Inhibition of IFN signaling by EBOV VP24 (eVP24) involves its interaction with the NPI-1 subfamily of karyopherin alpha (KPNA) nuclear transporters. Here, we evaluated eVP24, BDBV VP24 (bVP24), and RESTV VP24 (rVP24) interactions with three NPI-1 subfamily KPNAs (KPNA1, KPNA5, and KPNA6). Using purified proteins, we demonstrated that each VP24 binds to each of the three NPI-1 KPNAs. bVP24, however, exhibited approximately 10-fold-lower KPNA binding affinity than either eVP24 or rVP24. Cell-based assays also indicate that bVP24 exhibits decreased KPNA interaction, decreased suppression of IFN induced gene expression, and a decreased half-life in transfected cells compared to eVP24 or rVP24. Amino acid sequence alignments between bVP24 and eVP24 also identified residues within and surrounding the previously defined eVP24-KPNA5 binding interface that decrease eVP24-KPNA affinity or bVP24-KPNA affinity. VP24 mutations that lead to reduced KPNA binding affinity also decrease IFN inhibition and shorten VP24 half-lives. These data identify novel functional differences in VP24-KPNA interaction and reveal a novel impact of the VP24-KPNA interaction on VP24 stability.

    IMPORTANCEThe interaction of Ebola virus (EBOV) VP24 protein with host karyopherin alpha (KPNA) proteins blocks type I interferon (IFN) signaling, which is a central component of the host innate immune response to viral infection. Here, we quantitatively compared the

  4. Active Stiffness Tuning of a Spring-based Continuum Robot for MRI-Guided Neurosurgery.

    Science.gov (United States)

    Kim, Yeongjin; Cheng, Shing Shin; Desai, Jaydev P

    2018-02-01

    Deep intracranial tumor removal can be achieved if the neurosurgical robot has sufficient flexibility and stability. Towards achieving this goal, we have developed a spring-based continuum robot, namely a Minimally Invasive Neurosurgical Intracranial Robot (MINIR-II) with novel tendon routing and tunable stiffness for use in a magnetic resonance imaging (MRI) environment. The robot consists of a pair of springs in parallel, i.e., an inner inter-connected spring that promotes flexibility with decoupled segment motion and an outer spring that maintains its smooth curved shape during its interaction with the tissue. We propose a shape memory alloy (SMA) spring backbone that provides local stiffness control and a tendon routing configuration that enables independent segment locking. In this work, we also present a detailed local stiffness analysis of the SMA backbone and model the relationship between the resistive force at the robot tip and the tension in the tendon. We also demonstrate through experiments, the validity of our local stiffness model of the SMA backbone and the correlation between the tendon tension and the resistive force. We also performed MRI compatibility studies of the 3-segment MINIR-II robot by attaching it to a robotic platform that consists of SMA spring actuators with integrated water cooling modules.

  5. Design and evaluation of a variable stiffness manual operating platform for laparoendoscopic single site surgery (LESS).

    Science.gov (United States)

    Li, Jinhua; Li, Xuejie; Wang, Jianchen; Xing, Yuan; Wang, Shuxin; Ren, Xiangyun

    2017-12-01

    Most of the existing robotic platforms for LESS have workspace and load capacity weaknesses, because of the limitation of one single incision. We have developed a LESS manual operating platform of which the stiffness of the insertion tube is controllable. The system included two dexterous tool manipulators, a stereo-vision module and a variable stiffness insertion tube (VSIT), which was designed using phase-change material (mixed indium, gallium and stannum). Experiments to evaluate the effectiveness of the VSIT were set up. Peg transfer tasks and trajectory tracking tasks were conducted to assess the initial performance of the overall system. The experimental results for stiffness characteristic suggested that the rigidity of the VSIT with a straight-forward pose was considerably increased by about four times in the rigid mode. Peg transfer tasks and trajectory tracking tasks were performed successfully with an average time of 97 s and 52 s, respectively. The experimental results for stiffness characteristic showed that the manual operating platform had great promise for solving large workspace, high manipulation force and stability problems in LESS. The tool manipulators had the ability to achieve basic operations. Copyright © 2017 John Wiley & Sons, Ltd.

  6. On stress/strain shielding and the material stiffness paradigm for dental implants.

    Science.gov (United States)

    Korabi, Raoof; Shemtov-Yona, Keren; Rittel, Daniel

    2017-10-01

    Stress shielding considerations suggest that the dental implant material's compliance should be matched to that of the host bone. However, this belief has not been confirmed from a general perspective, either clinically or numerically. To characterize the influence of the implant stiffness on its functionality using the failure envelope concept that examines all possible combinations of mechanical load and application angle for selected stress, strain and displacement-based bone failure criteria. Those criteria represent bone yielding, remodeling, and implant primary stability, respectively MATERIALS AND METHODS: We performed numerical simulations to generate failure envelopes for all possible loading configurations of dental implants, with stiffness ranging from very low (polymer) to extremely high, through that of bone, titanium, and ceramics. Irrespective of the failure criterion, stiffer implants allow for improved implant functionality. The latter reduces with increasing compliance, while the trabecular bone experiences higher strains, albeit of an overall small level. Micromotions remain quite small irrespective of the implant's stiffness. The current paradigm favoring reduced implant material's stiffness out of concern for stress or strain shielding, or even excessive micromotions, is not supported by the present calculations, that point exactly to the opposite. © 2017 Wiley Periodicals, Inc.

  7. The effect of toothbrush bristle stiffness on nanohybrid surface roughness

    Science.gov (United States)

    Zairani, O.; Irawan, B.; Damiyanti, M.

    2017-08-01

    The surface of a restoration can be affected by toothpaste containing abrasive agents and the stiffness of toothbrush bristles. Objective: To identify the effect of toothbrush bristle stiffness on nanohybrid surface roughness. Methods: Sixteen nanohybrid specimens were separated into two groups. The first group was brushed using soft-bristle toothbrushes, and the second group was brushed using medium-bristle toothbrushes. Media such as aqua bides was used for brushing in both groups. Brushing was done 3 times for 5 minutes. Surface roughness was measured initially and at 5, 10, and 15 minutes using a surface roughness tester. Results: The results, tested with One-Way ANOVA and Independent Samples t Test, demonstrated that after brushing for 15 minutes, the soft-bristle toothbrush group showed a significantly different value (p toothbrushes showed the value of nano hybrid surface roughness significant difference after brushing for 10 minutes. Conclusion: Roughness occurs more rapidly when brushing with medium-bristle tooth brushes than when brushing with soft-bristle toothbrushes.

  8. Dynamic stiffness of suction caissons - torsion, sliding and rocking

    Energy Technology Data Exchange (ETDEWEB)

    Ibsen, Lars Bo; Liingaard, M.; Andersen, Lars

    2006-12-15

    This report concerns the dynamic soil-structure interaction of steel suction caissons applied as foundations for offshore wind turbines. An emphasis is put on torsional vibrations and coupled sliding/rocking motion, and the influence of the foundation geometry and the properties of the surrounding soil is examined. The soil is simplified as a homogenous linear viscoelastic material and the dynamic stiffness of the suction caisson is expressed in terms of dimensionless frequency-dependent coefficients corresponding to the different degrees of freedom. The dynamic stiffness coefficients for the skirted foundation are evaluated by means of a three-dimensional coupled boundary element/finite element model. Comparisons with known analytical and numerical solutions indicate that the static and dynamic behaviour of the foundation are predicted accurately with the applied model. The analysis has been carried out for different combinations of the skirt length and the Poisson's ratio of the subsoil. Finally, the high-frequency impedance has been determined for future use in lumped-parameter models of wind turbine foundations in aero-elastic codes. (au)

  9. No significant difference in clinical outcome and knee stability between patellar tendon and semitendinosus tendon in anterior cruciate ligament reconstruction.

    Science.gov (United States)

    Konrads, Christian; Reppenhagen, Stephan; Plumhoff, Piet; Hoberg, Maik; Rudert, Maximilian; Barthel, Thomas

    2016-04-01

    ACL reconstruction with either patellar tendon or semitendinosus tendon autografts are standard procedures. Between these two grafts might be differences in stability, morbidity, or long-term changes. This study investigates outcomes of ACL reconstruction with patellar tendon versus semitendinosus tendon autografts. We hypothesize no significant differences in clinical outcome and knee stability between both groups. In a randomized prospective trial, we operated 62 ACL-deficient patients, 45 males and 17 females with a mean age of 29.8 years (min. 18, max. 44). We reconstructed the ligament using either autologous patellar tendon (n = 31) or semitendinosus tendon (n = 31). After 10 years of follow-up, we investigated 47 patients of the study. For evaluation we used a standard clinical examination including one-leg jump test and KT-1000 instrumental translation measure, visual analog pain scale, IKDC subjective knee form, Lysholm score, Tegner activity scale, and standard X-rays of the knee. The data did not show any significant differences between the two groups. Between 5 and 10 years after ACL reconstruction both groups started to develop degenerative arthritic changes, which were detectable in standard radiographs of the knee. At 10-year follow-up mean IKDC for the BPTB group was 1.8 (min. 1, max. 3) and for the ST group it was 2.2 (min 1, max. 4), p = 0.35. Regarding Tegner activity scale after 10 years, the BPTB group showed a mean score of 5.9 (min. 4, max. 9) versus 5.1 (min. 3, max. 7) in the ST group, p = 0.53. For the Lysholm score the BPTB group reached a mean of 92.0 (min. 63, max. 98) and the ST group 91.8 (min. 62, max. 98) points, p = 0.66. There is a tendency for higher donor site morbidity in the BPTB group than in the ST group, p = 0.07. Both, patellar tendon and semitendinosus tendon are safe autografts for ACL reconstruction. Regarding graft selection, individual patient-dependent factors should be considered. ACL reconstruction

  10. Forms of Friendship: A Person-Centered Assessment of the Quality, Stability, and Outcomes of Different Types of Adolescent Friends.

    Science.gov (United States)

    Hiatt, Cody; Laursen, Brett; Mooney, Karen S; Rubin, Kenneth H

    2015-04-01

    Friendships differ in terms of their quality and participants may or may not agree as to their perceptions of relationship quality. Two studies ( N = 230 and 242) were conducted to identify distinct and replicable categories of friendship among young adolescents ( M = 11.6 years old) using self and partner reports of relationship quality. Same-sex friendships were identified from reciprocated friend nominations. Each friend described perceptions of negativity and social support in the relationship. Cluster analyses based on reports from both friends yielded 4 friendship types in each study: a high quality group, a low quality group, and two groups in which friends disagreed about the quality of the relationship. High quality friendships were most apt to be stable from the 6 th to the 7 th grade. Participants in high quality friendships reported the highest levels of global self-worth and perceived behavioral conduct and the lowest levels of problem behaviors. Dyads reporting discrepant perceptions of quality differed from dyads who agreed that the friendship was high quality in terms of stability and individual adjustment, underscoring the advantages of person-centered strategies that incorporate perceptions of both partners in categorizations of relationships.

  11. Preparation and stability investigation of tamsulosin hydrochloride sustained release pellets containing acrylic resin polymers with two different techniques

    Directory of Open Access Journals (Sweden)

    Rui Fan

    2017-03-01

    Full Text Available The objective of this study was to prepare tamsulosin hydrochloride-sustained release (TSH-SR pellets which showed good release stability with frame-controlled method. TSH was added to Eudragit®NE30D and Eudragit®L30D-55 polymers to form drug-loaded inner core. Afterwards, enteric Eudragit®L30D-55 polymer was modified on the surface of it to the final product. Dissolution studies showed that TSH-SR pellets were more stable during the coating process, different curing temperatures and storage conditions compared with TSH pellets produced by film-controlled technique. Appearances and glass transition temperatures (Tgs of free films and surface morphologies observed by scanning electron microscopy (SEM of blank sustained release pellets prepared by different ratios of Eudragit®NE30D and Eudragit®L30D-55 further indicated that temperature and relative humidity (RH were the key factors when Eudragit®NE30D blended with Eudragit®L30D-55 were applied to sustained/controlled release preparations. In addition, SEM identified the surface morphologies of TSH-SR pellets before and after dissolution, which showed intact surface structure and great correlation with release curve respectively.

  12. Complexation of trivalent lanthanide cations by different chelation sites of malic and tartric acid (composition, stability and probable structure

    Directory of Open Access Journals (Sweden)

    Mohammed Riri

    2016-11-01

    Full Text Available The formation of colorless gadolinium complexes (x,y,z between x gadolinium ions, y ligands and z protons of some organic acids has been studied in aqueous solution. In this work we shall present the results of investigations on the interaction of the gadolinium ion (Gd3+ with different chelation sites of malic and tartric acid formed in dilute solution for pH values between 5.50 and 7.50. The structures of these new organometallic complexes are Gd3(C4H4O52·(NO33·nH2O and Gd3(C4H4O62·(NO33·nH2O (C4H4O52-: malate ions and C4H4O62-: tartrate ions. These colorless gadolinium complexes of malate and tartrate ions have no absorption band UV–visible, the indirect photometry detection (IPD study; have identified major tri-nuclear complexes of these dicarboxylic acids, giving for these colorless complexes a (3,2,2 and (3,2,3, respectively. Composition and apparent stability constant depends on the acidity of the medium. To complement previous results and to propose probable structures for these new complexes detected in solution FT-IR and FT-Raman spectroscopy have been conducted to identify the different chelation sites for both ligands.

  13. Forms of Friendship: A Person-Centered Assessment of the Quality, Stability, and Outcomes of Different Types of Adolescent Friends

    Science.gov (United States)

    Hiatt, Cody; Laursen, Brett; Mooney, Karen S.; Rubin, Kenneth H.

    2015-01-01

    Friendships differ in terms of their quality and participants may or may not agree as to their perceptions of relationship quality. Two studies (N = 230 and 242) were conducted to identify distinct and replicable categories of friendship among young adolescents (M = 11.6 years old) using self and partner reports of relationship quality. Same-sex friendships were identified from reciprocated friend nominations. Each friend described perceptions of negativity and social support in the relationship. Cluster analyses based on reports from both friends yielded 4 friendship types in each study: a high quality group, a low quality group, and two groups in which friends disagreed about the quality of the relationship. High quality friendships were most apt to be stable from the 6th to the 7th grade. Participants in high quality friendships reported the highest levels of global self-worth and perceived behavioral conduct and the lowest levels of problem behaviors. Dyads reporting discrepant perceptions of quality differed from dyads who agreed that the friendship was high quality in terms of stability and individual adjustment, underscoring the advantages of person-centered strategies that incorporate perceptions of both partners in categorizations of relationships. PMID:25620829

  14. Dynamic stiffness testing-based flutter analysis of a fin with an actuator

    Directory of Open Access Journals (Sweden)

    Zhang Renjia

    2015-10-01

    Full Text Available Engineering-oriented modeling and synthesized modeling of the fin-actuator system of a missile fin are introduced, including mathematical modeling of the fin, motor and multi-stage gear reducer. The fin-actuator model is verified using dynamic stiffness testing. Good agreement is achieved between the test and theoretical results. The parameter-variable analysis indicates that the inertia of the motor rotor, reduction ratio of the reducer, connection stiffness and damping between the actuator and fin shaft have significant impacts on the dynamic stiffness characteristics. In flutter analysis, test data are directly used in the frequency domain method and indirectly used in the time domain method through the updated fin-actuator model. The two methods play different roles in engineering applications but are of equal importance. The results indicate that dynamic stiffness and constant stiffness treatments may lead to completely different flutter characteristics. Attention should be paid to the design of the fin-actuator system of a missile.

  15. Neural control of leg stiffness during hopping in boys and men.

    Science.gov (United States)

    Oliver, J L; Smith, P M

    2010-10-01

    The purpose of the study was to investigate whether boys and men utilise different control strategies whilst hopping. Eleven boys (11-12yr old) and ten men completed hopping at 1.5Hz, 3.0Hz and at their preferred frequency. A footswitch measured contact and flight times, from which leg stiffness was calculated. Simultaneously, surface electromyograms (EMGs) of selected lower limb muscles were recorded and quantified for each 30ms period during the first 120ms post-ground contact. At 1.5Hz there were no differences between the groups in relative stiffness or muscle activity. At 3.0Hz men had significantly shorter contact times (P=0.013), longer flight times (P=0.002), greater relative stiffness