WorldWideScience

Sample records for stabilizing non-equilibrium crystal

  1. Stability of equilibrium states in finite samples of smectic C* liquid crystals

    International Nuclear Information System (INIS)

    Stewart, I W

    2005-01-01

    Equilibrium solutions for a sample of ferroelectric smectic C (SmC*) liquid crystal in the 'bookshelf' geometry under the influence of a tilted electric field will be presented. A linear stability criterion is identified and used to confirm stability for typical materials possessing either positive or negative dielectric anisotropy. The theoretical response times for perturbations to the equilibrium solutions are calculated numerically and found to be consistent with estimates for response times in ferroelectric smectic C liquid crystals reported elsewhere in the literature for non-tilted fields

  2. Stability of equilibrium states in finite samples of smectic C* liquid crystals

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, I W [Department of Mathematics, University of Strathclyde, Livingstone Tower, 26 Richmond Street, Glasgow G1 1XH (United Kingdom)

    2005-03-04

    Equilibrium solutions for a sample of ferroelectric smectic C (SmC*) liquid crystal in the 'bookshelf' geometry under the influence of a tilted electric field will be presented. A linear stability criterion is identified and used to confirm stability for typical materials possessing either positive or negative dielectric anisotropy. The theoretical response times for perturbations to the equilibrium solutions are calculated numerically and found to be consistent with estimates for response times in ferroelectric smectic C liquid crystals reported elsewhere in the literature for non-tilted fields.

  3. Self-organized crystallization mechanism of non-equilibrium 2:1 type phyllosilicate systems

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The crystallization mechanism of 2:1 type regular interstratified minerals is investigated in views of non-equilibrium thermodynamics. The structural chemistry of relative layers and their interstratified combinations is analyzed and six kinds of non-equilibrium chemical systems have been induced. The universal laws of chemical reactions which happened in the interface region of these non-equilibrium systems have been summarized. From these laws, two reaction systems crystallizing out Tosudite and Rectorite respectively have been recovered. The kinetic model of chemical reactions has been developed by means of the mass conservation law. The oscillatory solution showing regular interstratified features has also been obtained numerically. These results indicate that the difference in original chemical composition among systems can affect the chemical connotation of reactants, intermediate products and resultants, and the flow chart of chemical reaction, but cannot change their crystallization behavior of network-forming cations, bigger and smaller network-modifying cations during crystallization. Hence, their kinetic model reflecting the universal crystallization law of these cations is just the same. These systems will crystallize out regular interstratified minerals at suitable parameters, which always exist as domain with nanometer-sized in thickness and can be called the self-organized ordering structure.

  4. Influence of pre-strain on thermal stability of non-equilibrium microstructures in a low alloy steel

    International Nuclear Information System (INIS)

    Sun, Chao; Yang, Shanwu; Wang, Xian; Zhang, Rui; He, Xinlai

    2013-01-01

    Highlights: ► High pre-strain and low pre-strain influence differently on thermal stability of non-equilibrium microstructures. ► High pre-strain, in which dislocation sources can be actuated and dislocation density is increased excessively, will markedly promote recrystallization. ► Low pre-strain, in which dislocations are induced to redistribute into a low-energy structure, can slow down microstructure evolution. -- Abstract: Non-equilibrium microstructures in steels including martensite and bainite, which are main phases in current high strength steels, possess high strength and hardness. However, these microstructures are metastable due to their high density of crystal defects. In the present investigation, hardness test, optical microscopy and electron microscopy have been carried out to detect microstructure evolution in a low alloy steel, which was reheated and held isothermally at 550 °C. Special emphasis was put on influence of pre-strain on thermal stability of non-equilibrium microstructures. It is found that high pre-strain, in which dislocation sources can be actuated and dislocation density is increased excessively, will markedly promote recrystallization of non-equilibrium microstructures at 550 °C, while low pre-strain, in which only can mono-glide of dislocations can be operated in each grain and dislocations are induced to redistribute into a low-energy structure, can slow down microstructure evolution

  5. Potential and flux field landscape theory. I. Global stability and dynamics of spatially dependent non-equilibrium systems.

    Science.gov (United States)

    Wu, Wei; Wang, Jin

    2013-09-28

    We established a potential and flux field landscape theory to quantify the global stability and dynamics of general spatially dependent non-equilibrium deterministic and stochastic systems. We extended our potential and flux landscape theory for spatially independent non-equilibrium stochastic systems described by Fokker-Planck equations to spatially dependent stochastic systems governed by general functional Fokker-Planck equations as well as functional Kramers-Moyal equations derived from master equations. Our general theory is applied to reaction-diffusion systems. For equilibrium spatially dependent systems with detailed balance, the potential field landscape alone, defined in terms of the steady state probability distribution functional, determines the global stability and dynamics of the system. The global stability of the system is closely related to the topography of the potential field landscape in terms of the basins of attraction and barrier heights in the field configuration state space. The effective driving force of the system is generated by the functional gradient of the potential field alone. For non-equilibrium spatially dependent systems, the curl probability flux field is indispensable in breaking detailed balance and creating non-equilibrium condition for the system. A complete characterization of the non-equilibrium dynamics of the spatially dependent system requires both the potential field and the curl probability flux field. While the non-equilibrium potential field landscape attracts the system down along the functional gradient similar to an electron moving in an electric field, the non-equilibrium flux field drives the system in a curly way similar to an electron moving in a magnetic field. In the small fluctuation limit, the intrinsic potential field as the small fluctuation limit of the potential field for spatially dependent non-equilibrium systems, which is closely related to the steady state probability distribution functional, is

  6. Emergence of an enslaved phononic bandgap in a non-equilibrium pseudo-crystal

    Science.gov (United States)

    Bachelard, Nicolas; Ropp, Chad; Dubois, Marc; Zhao, Rongkuo; Wang, Yuan; Zhang, Xiang

    2017-08-01

    Material systems that reside far from thermodynamic equilibrium have the potential to exhibit dynamic properties and behaviours resembling those of living organisms. Here we realize a non-equilibrium material characterized by a bandgap whose edge is enslaved to the wavelength of an external coherent drive. The structure dynamically self-assembles into an unconventional pseudo-crystal geometry that equally distributes momentum across elements. The emergent bandgap is bestowed with lifelike properties, such as the ability to self-heal to perturbations and adapt to sudden changes in the drive. We derive an exact analytical solution for both the spatial organization and the bandgap features, revealing the mechanism for enslavement. This work presents a framework for conceiving lifelike non-equilibrium materials and emphasizes the potential for the dynamic imprinting of material properties through external degrees of freedom.

  7. Emergence of an enslaved phononic bandgap in a non-equilibrium pseudo-crystal.

    Science.gov (United States)

    Bachelard, Nicolas; Ropp, Chad; Dubois, Marc; Zhao, Rongkuo; Wang, Yuan; Zhang, Xiang

    2017-08-01

    Material systems that reside far from thermodynamic equilibrium have the potential to exhibit dynamic properties and behaviours resembling those of living organisms. Here we realize a non-equilibrium material characterized by a bandgap whose edge is enslaved to the wavelength of an external coherent drive. The structure dynamically self-assembles into an unconventional pseudo-crystal geometry that equally distributes momentum across elements. The emergent bandgap is bestowed with lifelike properties, such as the ability to self-heal to perturbations and adapt to sudden changes in the drive. We derive an exact analytical solution for both the spatial organization and the bandgap features, revealing the mechanism for enslavement. This work presents a framework for conceiving lifelike non-equilibrium materials and emphasizes the potential for the dynamic imprinting of material properties through external degrees of freedom.

  8. Kinetics of non-equilibrium processes in non-linear crystals of lithium borates excited with synchrotron radiation

    CERN Document Server

    Ogorodnikov, I N; Isaenko, L I; Zinin, E I; Kruzhalov, A V

    2000-01-01

    The paper presents the results of a study of the LiB sub 3 O sub 5 and Li sub 2 B sub 4 O sub 7 crystals by the use of the luminescent spectroscopy with the sub-nanosecond time resolution under excitation of the high-power synchrotron radiation. The commonness in the origin of the non-equilibrium processes in these crystals as well as the observed differences in the luminescence manifestations is discussed.

  9. Kinetics of non-equilibrium processes in non-linear crystals of lithium borates excited with synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Ogorodnikov, I.N. E-mail: ogo@dpt.ustu.ru; Pustovarov, V.A.; Isaenko, L.I.; Zinin, E.I.; Kruzhalov, A.V

    2000-06-21

    The paper presents the results of a study of the LiB{sub 3}O{sub 5} and Li{sub 2}B{sub 4}O{sub 7} crystals by the use of the luminescent spectroscopy with the sub-nanosecond time resolution under excitation of the high-power synchrotron radiation. The commonness in the origin of the non-equilibrium processes in these crystals as well as the observed differences in the luminescence manifestations is discussed.

  10. Non-equilibrium Economics

    Directory of Open Access Journals (Sweden)

    Katalin Martinás

    2007-02-01

    Full Text Available A microeconomic, agent based framework to dynamic economics is formulated in a materialist approach. An axiomatic foundation of a non-equilibrium microeconomics is outlined. Economic activity is modelled as transformation and transport of commodities (materials owned by the agents. Rate of transformations (production intensity, and the rate of transport (trade are defined by the agents. Economic decision rules are derived from the observed economic behaviour. The non-linear equations are solved numerically for a model economy. Numerical solutions for simple model economies suggest that the some of the results of general equilibrium economics are consequences only of the equilibrium hypothesis. We show that perfect competition of selfish agents does not guarantee the stability of economic equilibrium, but cooperativity is needed, too.

  11. The equilibrium crystal shape of nickel

    International Nuclear Information System (INIS)

    Meltzman, Hila; Chatain, Dominique; Avizemer, Dan; Besmann, Theodore M.; Kaplan, Wayne D.

    2011-01-01

    Highlights: → The ECS of pure Ni is completely facetted with both dense and high-index planes. → The partial pressure of oxygen has a significant effect on the surface anisotropy. → The addition of Fe decreased the anisotropy and de-stabilized high-index planes. → During solid dewetting nucleation barriers prevent equilibration of the top facet. - Abstract: The crystal shape of Ni particles, dewetted in the solid state on sapphire substrates, was examined as a function of the partial pressure of oxygen (P(O 2 )) and iron content using scanning and transmission electron microscopy. The chemical composition of the surface was characterized by atom-probe tomography. Unlike other face-centered cubic (fcc) equilibrium crystal shapes, the Ni crystals containing little or no impurities exhibited a faceted shape, indicating large surface anisotropy. In addition to the {1 1 1}, {1 0 0} and {1 1 0} facets, which are usually present in the equilibrium crystal shape of fcc metals, high-index facets were identified such as {1 3 5} and {1 3 8} at low P(O 2 ), and {0 1 2} and {0 1 3} at higher P(O 2 ). The presence of iron altered the crystal shape into a truncated sphere with only facets parallel to denser planes. The issue of particle equilibration is discussed specifically for the case of solid-state dewetting.

  12. Taxol crystals can masquerade as stabilized microtubules.

    Directory of Open Access Journals (Sweden)

    Margit Foss

    Full Text Available Taxol is a potent anti-mitotic drug used in chemotherapy, angioplastic stents, and cell biology research. By binding and stabilizing microtubules, Taxol inhibits their dynamics, crucial for cell division, motility, and survival. The drug has also been reported to induce formation of asters and bundles composed of stabilized microtubules. Surprisingly, at commonly used concentrations, Taxol forms crystals that rapidly bind fluorescent tubulin subunits, generating structures with an uncanny resemblance to microtubule asters and bundles. Kinetic and topological considerations suggest that tubulin subunits, rather than microtubules, bind the crystals. This sequestration of tubulin from the subunit pool would be expected to shift the equilibrium of free to polymerized tubulin to disfavor assembly. Our results imply that some previously reported Taxol-induced asters or bundles could include or be composed of tubulin-decorated Taxol crystals. Thus, reevaluation of certain morphological, chemical, and physical properties of Taxol-treated microtubules may be necessary. Moreover, our findings suggest a novel mechanism for chemotherapy-induced cytotoxicity in non-dividing cells, with far-reaching medical implications.

  13. Non-isothermal Crystallization, Thermal Stability, and Mechanical Performance of Poly(L-lactic acid/Barium Phenylphosphonate Systems

    Directory of Open Access Journals (Sweden)

    Cai Yan-Hua

    2017-11-01

    Full Text Available The introduction of a nucleating agent in semi-crystalline polymers is a frequently utilized way to improve the crystallization performance, and the use of a nucleating agent has a very great effect on the performance of the polymer in other areas including thermal stability and mechanical properties. In this investigation, barium phenylphosphonate (BaP was prepared as a crystallization accelerator for Poly(L-lactic acid (PLLA, and the non-isothermal crystallization behavior, thermal stability, and mechanical properties of PLLA modified by BaP were investigated using differential scanning calorimetry (DSC, X-ray diffraction (XRD, thermogravimetric analysis (TGA, and electronic tensile testing. Non-isothermal crystallization analysis showed that the BaP could significantly accelerate the crystallization of PLLA, and the non-isothermal crystallization peak shifted to a higher temperature with increasing concentration of BaP, however, the corresponding crystallization peak became wider. XRD results after non-isothermal crystallization confirmed the non-isothermal crystallization DSC results. Additionally, the addition of BaP did not change the crystal form of PLLA. A comparative study on thermal stability indicated that BaP decreased the onset decomposition temperature of PLLA, resulting from the formation of more tiny and imperfect crystals. Whereas the influence of BaP on the thermal decomposition profile of PLLA was negligible. In terms of mechanical properties, the tensile strength and elastic modulus of PLLA/BaP increased compared to the virgin PLLA, unfortunately, the elongation at break decreased.

  14. Stability and equilibrium in quantum statistical mechanics

    International Nuclear Information System (INIS)

    Kastler, Daniel.

    1975-01-01

    A derivation of the Gibbs Ansatz, base of the equilibrium statistical mechanics is provided from a stability requirements, in technical connection with the harmonic analysis of non-commutative dynamical systems. By the same token a relation is established between stability and the positivity of Hamiltonian in the zero temperature case [fr

  15. The stability of second sound waves in a rotating Darcy–Brinkman porous layer in local thermal non-equilibrium

    Energy Technology Data Exchange (ETDEWEB)

    Eltayeb, I A; Elbashir, T B A, E-mail: ieltayeb@squ.edu.om, E-mail: elbashir@squ.edu.om [Department of Mathematics and Statistics, College of Science, Sultan Qaboos University, Muscat 123 (Oman)

    2017-08-15

    The linear and nonlinear stabilities of second sound waves in a rotating porous Darcy–Brinkman layer in local thermal non-equilibrium are studied when the heat flux in the solid obeys the Cattaneo law. The simultaneous action of the Brinkman effect (effective viscosity) and rotation is shown to destabilise the layer, as compared to either of them acting alone, for both stationary and overstable modes. The effective viscosity tends to favour overstable modes while rotation tends to favour stationary convection. Rapid rotation invokes a negative viscosity effect that suppresses the stabilising effect of porosity so that the stability characteristics resemble those of the classical rotating Benard layer. A formal weakly nonlinear analysis yields evolution equations of the Landau–Stuart type governing the slow time development of the amplitudes of the unstable waves. The equilibrium points of the evolution equations are analysed and the overall development of the amplitudes is examined. Both overstable and stationary modes can exhibit supercritical stability; supercritical instability, subcritical instability and stability are not possible. The dependence of the supercritical stability on the relative values of the six dimensionless parameters representing thermal non-equilibrium, rotation, porosity, relaxation time, thermal diffusivities and Brinkman effect is illustrated as regions in regime diagrams in the parameter space. The dependence of the heat transfer and the mean heat flux on the parameters of the problem is also discussed. (paper)

  16. Non-Equilibrium Solidification of Undercooled Metallic Melts

    Directory of Open Access Journals (Sweden)

    Dieter M. Herlach

    2014-06-01

    Full Text Available If a liquid is undercooled below its equilibrium melting temperature an excess Gibbs free energy is created. This gives access to solidification of metastable solids under non-equilibrium conditions. In the present work, techniques of containerless processing are applied. Electromagnetic and electrostatic levitation enable to freely suspend a liquid drop of a few millimeters in diameter. Heterogeneous nucleation on container walls is completely avoided leading to large undercoolings. The freely suspended drop is accessible for direct observation of rapid solidification under conditions far away from equilibrium by applying proper diagnostic means. Nucleation of metastable crystalline phases is monitored by X-ray diffraction using synchrotron radiation during non-equilibrium solidification. While nucleation preselects the crystallographic phase, subsequent crystal growth controls the microstructure evolution. Metastable microstructures are obtained from deeply undercooled melts as supersaturated solid solutions, disordered superlattice structures of intermetallics. Nucleation and crystal growth take place by heat and mass transport. Comparative experiments in reduced gravity allow for investigations on how forced convection can be used to alter the transport processes and design materials by using undercooling and convection as process parameters.

  17. Foundations of atmospheric pressure non-equilibrium plasmas

    Science.gov (United States)

    Bruggeman, Peter J.; Iza, Felipe; Brandenburg, Ronny

    2017-12-01

    Non-equilibrium plasmas have been intensively studied over the past century in the context of material processing, environmental remediation, ozone generation, excimer lamps and plasma display panels. Research on atmospheric pressure non-equilibrium plasmas intensified over the last two decades leading to a large variety of plasma sources that have been developed for an extended application range including chemical conversion, medicine, chemical analysis and disinfection. The fundamental understanding of these discharges is emerging but there remain a lot of unexplained phenomena in these intrinsically complex plasmas. The properties of non-equilibrium plasmas at atmospheric pressure span over a huge range of electron densities as well as heavy particle and electron temperatures. This paper provides an overview of the key underlying processes that are important for the generation and stabilization of atmospheric pressure non-equilibrium plasmas. The unique physical and chemical properties of theses discharges are also summarized.

  18. Phase coexistence in thin liquid films stabilized by colloidal particles: equilibrium and non-equilibrium properties

    International Nuclear Information System (INIS)

    Blawzdziewicz, J.; Wajnryb, E.

    2005-01-01

    Phase equilibria between regions of different thickness in thin liquid films stabilized by colloidal particles are investigated using a quasi-two-dimensional thermodynamic formalism. Appropriate equilibrium conditions for the film tension, normal pressure, and chemical potential of the particles in the film are formulated, and it is shown that the relaxation of these parameters occurs consecutively on three distinct time scales. Film stratification is described quantitatively for a hard-sphere suspension using a Monte-Carlo method to evaluate thermodynamic equations of state. Coexisting phases are determined for systems in constrained- and full-equilibrium states that correspond to different stages of film relaxation. We also evaluated the effective viscosity coefficients for two-dimensional compressional and shear flows of a film and the self and collective mobility coefficients of the stabilizing particles. The hydrodynamic calculations were performed using a multiple-reflection representation of Stokes flow between two free surfaces. In this approach, the particle-laden film is equivalent to a periodic system of spheres with a unit cell that is much smaller in the transverse direction than in the lateral direction. (author)

  19. Thermodynamic versus non-equilibrium stability of palmitic acid monolayers in calcium-enriched sea spray aerosol proxy systems.

    Science.gov (United States)

    Wellen Rudd, Bethany A; Vidalis, Andrew S; Allen, Heather C

    2018-04-16

    Of the major cations in seawater (Na+, Mg2+, Ca2+, K+), Ca2+ is found to be the most enriched in fine sea spray aerosols (SSA). In this work, we investigate the binding of Ca2+ to the carboxylic acid headgroup of palmitic acid (PA), a marine-abundant fatty acid, and the impact such binding has on the stability of PA monolayers in both equilibrium and non-equilibrium systems. A range of Ca2+ conditions from 10 μM to 300 mM was utilized to represent the relative concentration of Ca2+ in high and low relative humidity aerosol environments. The CO2- stretching modes of PA detected by surface-sensitive infrared reflection-absorption spectroscopy (IRRAS) reveal ionic binding motifs of the Ca2+ ion to the carboxylate group with varying degrees of hydration. Surface tensiometry was used to determine the thermodynamic equilibrium spreading pressure (ESP) of PA on the various aqueous CaCl2 subphases. Up to concentrations of 1 mM Ca2+, each system reached equilibrium, and Ca2+:PA surface complexation gave rise to a lower energy state revealed by elevated surface pressures relative to water. We show that PA films are not thermodynamically stable at marine aerosol-relevant Ca2+ concentrations ([Ca2+] ≥ 10 mM). IRRAS and vibrational sum frequency generation (VSFG) spectroscopy were used to investigate the surface presence of PA on high concentration Ca2+ aqueous subphases. Non-equilibrium relaxation (NER) experiments were also conducted and monitored by Brewster angle microscopy (BAM) to determine the effect of the Ca2+ ions on PA stability. At high surface pressures, the relaxation mechanisms of PA varied among the systems and were dependent on Ca2+ concentration.

  20. Non-equilibrium supramolecular polymerization.

    Science.gov (United States)

    Sorrenti, Alessandro; Leira-Iglesias, Jorge; Markvoort, Albert J; de Greef, Tom F A; Hermans, Thomas M

    2017-09-18

    Supramolecular polymerization has been traditionally focused on the thermodynamic equilibrium state, where one-dimensional assemblies reside at the global minimum of the Gibbs free energy. The pathway and rate to reach the equilibrium state are irrelevant, and the resulting assemblies remain unchanged over time. In the past decade, the focus has shifted to kinetically trapped (non-dissipative non-equilibrium) structures that heavily depend on the method of preparation (i.e., pathway complexity), and where the assembly rates are of key importance. Kinetic models have greatly improved our understanding of competing pathways, and shown how to steer supramolecular polymerization in the desired direction (i.e., pathway selection). The most recent innovation in the field relies on energy or mass input that is dissipated to keep the system away from the thermodynamic equilibrium (or from other non-dissipative states). This tutorial review aims to provide the reader with a set of tools to identify different types of self-assembled states that have been explored so far. In particular, we aim to clarify the often unclear use of the term "non-equilibrium self-assembly" by subdividing systems into dissipative, and non-dissipative non-equilibrium states. Examples are given for each of the states, with a focus on non-dissipative non-equilibrium states found in one-dimensional supramolecular polymerization.

  1. Plasma equilibrium and stability in stellarators

    International Nuclear Information System (INIS)

    Pustovitov, V.D.; Shafranov, V.D.

    1987-01-01

    A review of theoretical methods of investigating plasma equilibrium and stability in stellarators is given. Principles forming the basis of toroidal plasma equilibrium and its stabilization, and the main results of analytical theory and numerical calculations are presented. Configurations with spiral symmetry and usual stellarators with plane axis and spiral fields are considered in detail. Derivation of scalar two-dimensional equations, describing equilibrium in these systems is given. These equations were used to obtain one-dimensional equations for displacement and ellipticity of magnetic surfaces. The model of weak-elliptic displaced surfaces was used to consider the evolution of plasma equilibrium in stellarators after elevation of its pressure: change of profile of rotational transformation after change of plasma pressure, current generation during its fast heating and its successive damping due to finite plasma conductivity were described. The derivation of equations of small oscillations in the form, suitable for local disturbance investigation is presented. These equations were used to obtain Mercier criteria and ballon model equations. General sufficient conditions of plasma stability in systems with magnetic confinement were derived

  2. Beyond the second law entropy production and non-equilibrium systems

    CERN Document Server

    Lineweaver, Charles; Niven, Robert; Regenauer-Lieb, Klaus

    2014-01-01

    The Second Law, a cornerstone of thermodynamics, governs the average direction of dissipative, non-equilibrium processes. But it says nothing about their actual rates or the probability of fluctuations about the average. This interdisciplinary book, written and peer-reviewed by international experts, presents recent advances in the search for new non-equilibrium principles beyond the Second Law, and their applications to a wide range of systems across physics, chemistry and biology. Beyond The Second Law brings together traditionally isolated areas of non-equilibrium research and highlights potentially fruitful connections between them, with entropy production playing the unifying role. Key theoretical concepts include the Maximum Entropy Production principle, the Fluctuation Theorem, and the Maximum Entropy method of statistical inference. Applications of these principles are illustrated in such diverse fields as climatology, cosmology, crystal growth morphology, Earth system science, environmental physics, ...

  3. Non-equilibrium fluctuation-induced interactions

    International Nuclear Information System (INIS)

    Dean, David S

    2012-01-01

    We discuss non-equilibrium aspects of fluctuation-induced interactions. While the equilibrium behavior of such interactions has been extensively studied and is relatively well understood, the study of these interactions out of equilibrium is relatively new. We discuss recent results on the non-equilibrium behavior of systems whose dynamics is of the dissipative stochastic type and identify a number of outstanding problems concerning non-equilibrium fluctuation-induced interactions.

  4. Equilibrium and non-equilibrium phenomena in arcs and torches

    NARCIS (Netherlands)

    Mullen, van der J.J.A.M.

    2000-01-01

    A general treatment of non-equilibrium plasma aspects is obtained by relating transport fluxes to equilibrium restoring processes in so-called disturbed Bilateral Relations. The (non) equilibrium stage of a small microwave induced plasma serves as case study.

  5. Equilibrium shape of (4)He crystal under zero gravity below 200 mK.

    Science.gov (United States)

    Takahashi, Takuya; Ohuchi, Haruka; Nomura, Ryuji; Okuda, Yuichi

    2015-10-01

    Equilibrium crystal shape is the lowest energy crystal shape that is hardly realized in ordinary crystals because of their slow relaxation. (4)He quantum crystals in a superfluid have been expected as unique exceptions that grow extremely fast at very low temperatures. However, on the ground, gravity considerably deforms the crystals and conceals the equilibrium crystal shape, and thus, gravity-free environment is needed to observe the equilibrium shape of (4)He. We report the relaxation processes of macroscopic (4)He crystals in a superfluid below 200 mK under zero gravity using a parabolic flight of a jet plane. When gravity was removed from a gravity-flattened (4)He crystal, the crystal rapidly transformed into a shape with flat surfaces. Although the relaxation processes were highly dependent on the initial condition, the crystals relaxed to a nearly homothetic shape in the end, indicating that they were truly in an equilibrium shape minimizing the interfacial free energy. Thanks to the equilibrium shape, we were able to determine the Wulff's origin and the size of the c-facet together with the vicinal surface profile next to the c-facet. The c-facet size was extremely small in the quantum crystals, and the facet-like flat surfaces were found to be the vicinal surfaces. At the same time, the interfacial free energy of the a-facet and s-facet was also obtained.

  6. The stability of Z-pinches with equilibrium flows

    International Nuclear Information System (INIS)

    Howell, D.F.

    1999-01-01

    According to Ideal Magnetohydrodynamic (MHD) theory the Z-pinch is an inherently unstable magnetic configuration. However it is possible that there exist regimes of operation whereby the predicted instabilities may be reduced or even eliminated. We must look to effects normally ignored in the Ideal MHD model in order to predict such regimes. In this thesis various non-ideal effects will be studied, namely the inclusion of equilibrium flow and finite Larmor radius effects. Astrophysical jets, for example those seen to be emitted from active galactic nuclei, are seen to persist for a greater time than suggested by Ideal MHD before the onset of instabilities. It is postulated that one of the contributing factors to this enhanced stability is the presence of a sheared axial flow. In this thesis we study the stability properties of the Z-pinch where flow is present in the equilibrium. It is found that a sheared axial flow generally has a stabilising effect, the degree of which is determined by the equilibrium and flow profiles, but that absolute stability cannot be achieved due to the onset of the Kelvin-Helmholtz instability. The effect of adding rotation has also been studied. It is found that adding rotation changes the equilibrium density profiles from the static case, and that it always has a destabilising effect. Another postulated method of stabilising the Z-pinch is by increasing the ratio of the ion Larmor radius to the pinch radius, and it is seen to have a stabilising effect for some equilibria in the collisionless regime. In this thesis we study the effects of increasing the Larmor radius in the collisional regime using the Hall fluid model. It is found that for free boundary modes the stability properties are unchanged for experimentally realistic values of the Larmor radius, but for fixed boundary modes a small stabilising effect is noted for some equilibria. (author)

  7. Non-equilibrium effects in the plasmas

    International Nuclear Information System (INIS)

    Einfeld, D.

    1975-01-01

    Radial dependences of non-equilibrium effects of a He plasma were studied in a wall-stabilized short-time discharge. The electron density (nsub(e) = 2.5 x 10 22 m -3 ), the electron temperature and the equilibrium shift were determined by calculations of the continuum beam density and the beam densities of one He-I and one He-II line, respectively. In the discharge axis, the overpopulation factors of the ground state of He-I and He-II are about 75. As the distance to the axis increases, they increase for He-I and decrease for He-II. Except for the usual errors of measurement, the overpopulation factors found here correspond to those calculated from the balance equations (Drawin). (orig./AK) [de

  8. Non-equilibrium phase transitions

    CERN Document Server

    Henkel, Malte; Lübeck, Sven

    2009-01-01

    This book describes two main classes of non-equilibrium phase-transitions: (a) static and dynamics of transitions into an absorbing state, and (b) dynamical scaling in far-from-equilibrium relaxation behaviour and ageing. The first volume begins with an introductory chapter which recalls the main concepts of phase-transitions, set for the convenience of the reader in an equilibrium context. The extension to non-equilibrium systems is made by using directed percolation as the main paradigm of absorbing phase transitions and in view of the richness of the known results an entire chapter is devoted to it, including a discussion of recent experimental results. Scaling theories and a large set of both numerical and analytical methods for the study of non-equilibrium phase transitions are thoroughly discussed. The techniques used for directed percolation are then extended to other universality classes and many important results on model parameters are provided for easy reference.

  9. Asymptotic stability estimates near an equilibrium point

    Science.gov (United States)

    Dumas, H. Scott; Meyer, Kenneth R.; Palacián, Jesús F.; Yanguas, Patricia

    2017-07-01

    We use the error bounds for adiabatic invariants found in the work of Chartier, Murua and Sanz-Serna [3] to bound the solutions of a Hamiltonian system near an equilibrium over exponentially long times. Our estimates depend only on the linearized system and not on the higher order terms as in KAM theory, nor do we require any steepness or convexity conditions as in Nekhoroshev theory. We require that the equilibrium point where our estimate applies satisfy a type of formal stability called Lie stability.

  10. Thermodynamic chemical energy transfer mechanisms of non-equilibrium, quasi-equilibrium, and equilibrium chemical reactions

    International Nuclear Information System (INIS)

    Roh, Heui-Seol

    2015-01-01

    Chemical energy transfer mechanisms at finite temperature are explored by a chemical energy transfer theory which is capable of investigating various chemical mechanisms of non-equilibrium, quasi-equilibrium, and equilibrium. Gibbs energy fluxes are obtained as a function of chemical potential, time, and displacement. Diffusion, convection, internal convection, and internal equilibrium chemical energy fluxes are demonstrated. The theory reveals that there are chemical energy flux gaps and broken discrete symmetries at the activation chemical potential, time, and displacement. The statistical, thermodynamic theory is the unification of diffusion and internal convection chemical reactions which reduces to the non-equilibrium generalization beyond the quasi-equilibrium theories of migration and diffusion processes. The relationship between kinetic theories of chemical and electrochemical reactions is also explored. The theory is applied to explore non-equilibrium chemical reactions as an illustration. Three variable separation constants indicate particle number constants and play key roles in describing the distinct chemical reaction mechanisms. The kinetics of chemical energy transfer accounts for the four control mechanisms of chemical reactions such as activation, concentration, transition, and film chemical reactions. - Highlights: • Chemical energy transfer theory is proposed for non-, quasi-, and equilibrium. • Gibbs energy fluxes are expressed by chemical potential, time, and displacement. • Relationship between chemical and electrochemical reactions is discussed. • Theory is applied to explore nonequilibrium energy transfer in chemical reactions. • Kinetics of non-equilibrium chemical reactions shows the four control mechanisms

  11. Thermal equilibrium, stability and burn control

    International Nuclear Information System (INIS)

    Cohn, D.

    1982-01-01

    A number of aspects of the thermal stability and equilibrium control of ignited tokamak plasma have been investigated. Examined approaches were passive control (the effect of radial motion, the effect of radial motion and small additional transport loss), active control (the compression and decompression of plasma, subignited operation with small amount of variable external heating, and density control), and thermal equilibrium control (additional power loss from impurity radiation and enhanced transport from increased ripple). One-D calculation has been made on thermal instability eigen-modes. It was found that for electron thermal induction loss given by Alcator scaling and for neoclassical ion transport, there was at most one unstable mode with a temperature profile which maintains the temperature profile at thermal equilibrium. The effect of the coupling of temperature fluctuation and the fluctuation in major radius was investigated. Temperature driven radial motion combined with a small amount of ripple transport loss was found to be a very effective mechanism for passive thermal stability control. (Kato, T.)

  12. Open problems in non-equilibrium physics

    International Nuclear Information System (INIS)

    Kusnezov, D.

    1997-01-01

    The report contains viewgraphs on the following: approaches to non-equilibrium statistical mechanics; classical and quantum processes in chaotic environments; classical fields in non-equilibrium situations: real time dynamics at finite temperature; and phase transitions in non-equilibrium conditions

  13. Open problems in non-equilibrium physics

    Energy Technology Data Exchange (ETDEWEB)

    Kusnezov, D.

    1997-09-22

    The report contains viewgraphs on the following: approaches to non-equilibrium statistical mechanics; classical and quantum processes in chaotic environments; classical fields in non-equilibrium situations: real time dynamics at finite temperature; and phase transitions in non-equilibrium conditions.

  14. Equilibrium and stability of a rotating plasma

    International Nuclear Information System (INIS)

    Janssen, P.A.E.M.

    1979-01-01

    The author considers the equilibrium and stability of a rotating plasma. The kinetic equations for ions and electrons supplemented with the Maxwell equations and the appropriate boundary conditions are used. Two different models for the rotating plasma are considered: the equilibrium of a 'fast' rotating plasma (Magneto Hydrodynamic ordering) and the stability of a slowly rotating, 'weakly' unstable plasma (Finite Larmor Radius ordering). A striking difference between these orderings is the fact that, regarding the stability of the plasma, for a F.L.R. plasma viscosity effects due to the finite Larmor radius are important, whereas in a M.H.D. plasma they are negligible (at least to the required order). (Auth.)

  15. Stability of plasma in static equilibrium

    Energy Technology Data Exchange (ETDEWEB)

    Krusiial, M D; Oberman, N R [Project Matterhorn, Princeton University, Princeton, NJ (United States)

    1958-07-01

    Our purpose is to derive from the Boltzmann equation in the small m/e limit, criteria useful in the discussion of stability of plasmas in static equilibrium. At first we ignore collisions but later show their effects may be taken into account. Our approach yields a generalization of the usual energy principles for investigating the stability of hydromagnetic systems to situations where the effect of heat flow along magnetic lines is not negligible, and hence to situations where the strictly hydrodynamic approach is inapplicable. In the first two sections we characterize our general method of approach and delineate the properties of the small m/e limit which we use to determine the constants of the motion and the condition for static equilibrium. In the next two sections we calculate the first and second variations of the energy and conclude with a statement of the general stability criterion. In the final three sections we state several theorems which relate our stability criterion to those of ordinary hydromagnetic theory, we show how to take into account the effect of collisions, and briefly discuss the remaining problem of incorporating the charge neutrality condition into the present stability theory. (author)

  16. On the definition of equilibrium and non-equilibrium states in dynamical systems

    OpenAIRE

    Akimoto, Takuma

    2008-01-01

    We propose a definition of equilibrium and non-equilibrium states in dynamical systems on the basis of the time average. We show numerically that there exists a non-equilibrium non-stationary state in the coupled modified Bernoulli map lattice.

  17. Non equilibrium atomic processes and plasma spectroscopy

    International Nuclear Information System (INIS)

    Kato, Takako

    2003-01-01

    Along with the technical progress in plasma spectroscopy, non equilibrium ionization processes have been recently observed. We study non local thermodynamic equilibrium and non ionization equilibrium for various kinds of plasmas. Specifically we discuss non equilibrium atomic processes in magnetically confined plasmas, solar flares and laser produced plasmas using a collisional radiative model based on plasma spectroscopic data. (author)

  18. Shape characteristics of equilibrium and non-equilibrium fractal clusters.

    Science.gov (United States)

    Mansfield, Marc L; Douglas, Jack F

    2013-07-28

    It is often difficult in practice to discriminate between equilibrium and non-equilibrium nanoparticle or colloidal-particle clusters that form through aggregation in gas or solution phases. Scattering studies often permit the determination of an apparent fractal dimension, but both equilibrium and non-equilibrium clusters in three dimensions frequently have fractal dimensions near 2, so that it is often not possible to discriminate on the basis of this geometrical property. A survey of the anisotropy of a wide variety of polymeric structures (linear and ring random and self-avoiding random walks, percolation clusters, lattice animals, diffusion-limited aggregates, and Eden clusters) based on the principal components of both the radius of gyration and electric polarizability tensor indicates, perhaps counter-intuitively, that self-similar equilibrium clusters tend to be intrinsically anisotropic at all sizes, while non-equilibrium processes such as diffusion-limited aggregation or Eden growth tend to be isotropic in the large-mass limit, providing a potential means of discriminating these clusters experimentally if anisotropy could be determined along with the fractal dimension. Equilibrium polymer structures, such as flexible polymer chains, are normally self-similar due to the existence of only a single relevant length scale, and are thus anisotropic at all length scales, while non-equilibrium polymer structures that grow irreversibly in time eventually become isotropic if there is no difference in the average growth rates in different directions. There is apparently no proof of these general trends and little theoretical insight into what controls the universal anisotropy in equilibrium polymer structures of various kinds. This is an obvious topic of theoretical investigation, as well as a matter of practical interest. To address this general problem, we consider two experimentally accessible ratios, one between the hydrodynamic and gyration radii, the other

  19. Physical phenomena in a low-temperature non-equilibrium plasma and in MHD generators with non-equilibrium conductivity

    International Nuclear Information System (INIS)

    Velikhov, E.P.; Golubev, V.S.; Dykhne, A.M.

    1976-01-01

    The paper assesses the position in 1975 of theoretical and experimental work on the physics of a magnetohydrodynamic generator with non-equilibrium plasma conductivity. This research started at the beginning of the 1960s; as work on the properties of thermally non-equilibrium plasma in magnetic fields and also in MHD generator ducts progressed, a number of phenomena were discovered and investigated that had either been unknown in plasma physics or had remained uninvestigated until that time: ionization instability and ionization turbulence of plasma in a magnetic field, acoustic instability of a plasma with anisotropic conductivity, the non-equilibrium ionization wave and the energy balance of a non-equilibrium plasma. At the same time, it was discovered what physical requirements an MHD generator with non-equilibrium conductivity must satisfy to achieve high efficiency in converting the thermal or kinetic energy of the gas flow into electric energy. The experiments on MHD power generation with thermally non-equilibrium plasma carried out up to 1975 indicated that it should be possible to achieve conversion efficiencies of up to 20-30%. (author)

  20. Near equilibrium dynamics and one-dimensional spatial—temporal structures of polar active liquid crystals

    International Nuclear Information System (INIS)

    Yang Xiao-Gang; Wang Qi; Forest, M. Gregory

    2014-01-01

    We systematically explore near equilibrium, flow-driven, and flow-activity coupled dynamics of polar active liquid crystals using a continuum model. Firstly, we re-derive the hydrodynamic model to ensure the thermodynamic laws are obeyed and elastic stresses and forces are consistently accounted. We then carry out a linear stability analysis about constant steady states to study near equilibrium dynamics around the steady states, revealing long-wave instability inherent in this model system and how active parameters in the model affect the instability. We then study model predictions for one-dimensional (1D) spatial—temporal structures of active liquid crystals in a channel subject to physical boundary conditions. We discuss the model prediction in two selected regimes, one is the viscous stress dominated regime, also known as the flow-driven regime, while the other is the full regime, in which all active mechanisms are included. In the viscous stress dominated regime, the polarity vector is driven by the prescribed flow field. Dynamics depend sensitively on the physical boundary condition and the type of the driven flow field. Bulk-dominated temporal periodic states and spatially homogeneous states are possible under weak anchoring conditions while spatially inhomogeneous states exist under strong anchoring conditions. In the full model, flow-orientation interaction generates a host of planar as well as out-of-plane spatial—temporal structures related to the spontaneous flows due to the molecular self-propelled motion. These results provide contact with the recent literature on active nematic suspensions. In addition, symmetry breaking patterns emerge as the additional active viscous stress due to the polarity vector is included in the force balance. The inertia effect is found to limit the long-time survival of spatial structures to those with small wave numbers, i.e., an asymptotic coarsening to long wave structures. A rich set of mechanisms for generating

  1. Non-equilibrium spectroscopy of high-Tc superconductors

    International Nuclear Information System (INIS)

    Krasnov, V M

    2009-01-01

    In superconductors, recombination of two non-equilibrium quasiparticles into a Cooper pair results in emission of excitation that mediates superconductivity. This is the basis of the proposed new type of 'non-equilibrium' spectroscopy of high T c superconductors, which may open a possibility for direct and unambiguous determination of the coupling mechanism of high T c superconductivity. In case of low T c superconductors, the feasibility of such the non-equilibrium spectroscopy was demonstrated in classical phonon generation-detection experiments almost four decades ago. Recently it was demonstrated that a similar technique can be used for high T c superconductors, using natural intrinsic Josephson junctions both for injection of non-equilibrium quasiparticles and for detection of the non-equilibrium radiation. Here I analyze theoretically non-equilibrium phenomena in intrinsic Josephson junctions. It is shown that extreme non-equilibrium state can be achieved at bias equal to integer number of the gap voltage, which can lead to laser-like emission from the stack. I argue that identification of the boson type, constituting this non-equilibrium radiation would unambiguously reveal the coupling mechanism of high Tc superconductors.

  2. Non-equilibrium phase stabilization versus bubble nucleation at a nanoscale-curved Interface

    Science.gov (United States)

    Schiffbauer, Jarrod; Luo, Tengfei

    Using continuum dynamic van der Waals theory in a radial 1D geometry with a Lennard-Jones fluid model, we investigate the nature of vapor bubble nucleation near a heated, nanoscale-curved convex interface. Vapor bubble nucleation and growth are observed for interfaces with sufficiently large radius of curvature while phase stabilization of a superheated fluid layer occurs at interfaces with smaller radius. The hypothesis that the high Laplace pressure required for stable equilibrium of very small bubbles is responsible for phase stability is tested by effectively varying the parameter which controls liquid-vapor surface tension. In doing so, the liquid-vapor surface tension- hence Laplace pressure-is shown to have limited effect on phase stabilization vs. bubble nucleation. However, the strong dependence of nucleation on leading-order momentum transport, i.e. viscous dissipation, near the heated inner surface is demonstrated. We gratefully acknowledge ND Energy for support through the ND Energy Postdoctoral Fellowship program and the Army Research Office, Grant No. W911NF-16-1-0267, managed by Dr. Chakrapani Venanasi.

  3. Non-equilibrium dynamics from RPMD and CMD.

    Science.gov (United States)

    Welsch, Ralph; Song, Kai; Shi, Qiang; Althorpe, Stuart C; Miller, Thomas F

    2016-11-28

    We investigate the calculation of approximate non-equilibrium quantum time correlation functions (TCFs) using two popular path-integral-based molecular dynamics methods, ring-polymer molecular dynamics (RPMD) and centroid molecular dynamics (CMD). It is shown that for the cases of a sudden vertical excitation and an initial momentum impulse, both RPMD and CMD yield non-equilibrium TCFs for linear operators that are exact for high temperatures, in the t = 0 limit, and for harmonic potentials; the subset of these conditions that are preserved for non-equilibrium TCFs of non-linear operators is also discussed. Furthermore, it is shown that for these non-equilibrium initial conditions, both methods retain the connection to Matsubara dynamics that has previously been established for equilibrium initial conditions. Comparison of non-equilibrium TCFs from RPMD and CMD to Matsubara dynamics at short times reveals the orders in time to which the methods agree. Specifically, for the position-autocorrelation function associated with sudden vertical excitation, RPMD and CMD agree with Matsubara dynamics up to O(t 4 ) and O(t 1 ), respectively; for the position-autocorrelation function associated with an initial momentum impulse, RPMD and CMD agree with Matsubara dynamics up to O(t 5 ) and O(t 2 ), respectively. Numerical tests using model potentials for a wide range of non-equilibrium initial conditions show that RPMD and CMD yield non-equilibrium TCFs with an accuracy that is comparable to that for equilibrium TCFs. RPMD is also used to investigate excited-state proton transfer in a system-bath model, and it is compared to numerically exact calculations performed using a recently developed version of the Liouville space hierarchical equation of motion approach; again, similar accuracy is observed for non-equilibrium and equilibrium initial conditions.

  4. A theorem for non-linear stability to tearing modes

    International Nuclear Information System (INIS)

    Avinash, K.

    1992-12-01

    Within the reduced MHD approximation it is shown that dJ z /dΨ≤0 [J z is z component of the current density and Ψ is the helical flux] is a sufficient condition for the equilibrium to be non-linearly stable to tearing mode. It is further shown that this is also a sufficient condition for an equilibrium to be axisymmetric, hence helical equilibrium consistent with this condition cannot be constructed. However a class of axisymmetric equilibrium with hollow current profile is shown to satisfy the stability criterion. (author). 16 refs, 2 figs

  5. Nonideal plasmas as non-equilibrium media

    International Nuclear Information System (INIS)

    Morozov, I V; Norman, G E; Valuev, A A; Valuev, I A

    2003-01-01

    Various aspects of the collective behaviour of non-equilibrium nonideal plasmas are studied. The relaxation of kinetic energy to the equilibrium state is simulated by the molecular dynamics (MD) method for two-component non-degenerate strongly non-equilibrium plasmas. The initial non-exponential stage, its duration and the subsequent exponential stage of the relaxation process are studied for a wide range of ion charge, nonideality parameter and ion mass. A simulation model of the nonideal plasma excited by an electron beam is proposed. An approach is developed to calculate the dynamic structure factor in non-stationary conditions. Instability increment is obtained from MD simulations

  6. X-ray scattering studies of non-equilibrium ordering processes

    International Nuclear Information System (INIS)

    Nagler, S.E.

    1991-01-01

    We report on the progress of the project entitled ''X-ray Scattering Studies of Non-Equilibrium Ordering Processes.'' The past year has seen continued progress in the study of kinetic effects in metallic binary alloys and polymers. In addition, work has begun on a low dimensional CDW system: blue bronze. A sample chamber has been constructed to perform small angle neutron scattering measurements on a model quantum system with phase separation: solid He3/He4. Work is continuing on magnetic systems. Planned future experiments include an investigation of crystallization in Rubidium

  7. Non-equilibrium dog-flea model

    Science.gov (United States)

    Ackerson, Bruce J.

    2017-11-01

    We develop the open dog-flea model to serve as a check of proposed non-equilibrium theories of statistical mechanics. The model is developed in detail. Then it is applied to four recent models for non-equilibrium statistical mechanics. Comparison of the dog-flea solution with these different models allows checking claims and giving a concrete example of the theoretical models.

  8. Aerospace Applications of Non-Equilibrium Plasma

    Science.gov (United States)

    Blankson, Isaiah M.

    2016-01-01

    Nonequilibrium plasma/non-thermal plasma/cold plasmas are being used in a wide range of new applications in aeronautics, active flow control, heat transfer reduction, plasma-assisted ignition and combustion, noise suppression, and power generation. Industrial applications may be found in pollution control, materials surface treatment, and water purification. In order for these plasma processes to become practical, efficient means of ionization are necessary. A primary challenge for these applications is to create a desired non-equilibrium plasma in air by preventing the discharge from transitioning into an arc. Of particular interest is the impact on simulations and experimental data with and without detailed consideration of non-equilibrium effects, and the consequences of neglecting non-equilibrium. This presentation will provide an assessment of the presence and influence of non-equilibrium phenomena for various aerospace needs and applications. Specific examples to be considered will include the forward energy deposition of laser-induced non-equilibrium plasmoids for sonic boom mitigation, weakly ionized flows obtained from pulsed nanosecond discharges for an annular Hall type MHD generator duct for turbojet energy bypass, and fundamental mechanisms affecting the design and operation of novel plasma-assisted reactive systems in dielectric liquids (water purification, in-pipe modification of fuels, etc.).

  9. Non-equilibrium versus equilibrium emission of complex fragments from hot nuclei

    International Nuclear Information System (INIS)

    Viola, V.E.; Kwiatkowski, K.; Yennello, S.; Fields, D.E.

    1989-01-01

    The relative contributions of equilibrium and non-equilibrium mechanisms for intermediate-mass fragment emission have been deduced for Z=3-14 fragments formed in 3 He- and 14 N-induced reactions on Ag and Au targets. Complete inclusive excitation function measurements have been performed for 3 He projectiles from E/A=67 to 1,200 MeV and for 14 N from E/A=20 to 50 MeV. The data are consistent with a picture in which equilibrated emission is important at the lowest energies, but with increasing bombarding energy the cross sections are increasingly dominated by non-equilibrium processes. Non-equilibrium emission is also shown to be favored for light fragments relative to heavy fragments. These results are supported by coincidence studies of intermediate-mass fragments tagged by linear momentum transfer measurements

  10. Enhancement of Combustion and Flame Stabilization Using Transient Non-Equilibrium Plasma

    Science.gov (United States)

    2007-03-31

    Plasma Chemistry, Taormina, Italy, ISPC-564, 22-27 June 2003. 8Ozlem, M.Y., Saveliev A.V., Porshnev, P.I., Fridman, A., Kennedy, L.A., "Non-Equilibrium...Kennedy, L.A., Saveliev , A. and Yardimci, O.M., "Gliding Arc Gas Discharge," Progress in Energy and Combustion Science, Vol. 25,1999, pp. 211-231...34Optical Diagnostics of Atmospheric Pressure Air Plasmas,"Plasma Sources Science and Technology, Vol. 12, May 2003, pp. 125-138.31Ozlem, M.Y., Saveliev

  11. Stability of Equilibrium Points of Fractional Difference Equations with Stochastic Perturbations

    Directory of Open Access Journals (Sweden)

    Shaikhet Leonid

    2008-01-01

    Full Text Available It is supposed that the fractional difference equation , has an equilibrium point and is exposed to additive stochastic perturbations type of that are directly proportional to the deviation of the system state from the equilibrium point . It is shown that known results in the theory of stability of stochastic difference equations that were obtained via V. Kolmanovskii and L. Shaikhet general method of Lyapunov functionals construction can be successfully used for getting of sufficient conditions for stability in probability of equilibrium points of the considered stochastic fractional difference equation. Numerous graphical illustrations of stability regions and trajectories of solutions are plotted.

  12. Non-equilibrium synergistic effects in atmospheric pressure plasmas.

    Science.gov (United States)

    Guo, Heng; Zhang, Xiao-Ning; Chen, Jian; Li, He-Ping; Ostrikov, Kostya Ken

    2018-03-19

    Non-equilibrium is one of the important features of an atmospheric gas discharge plasma. It involves complicated physical-chemical processes and plays a key role in various actual plasma processing. In this report, a novel complete non-equilibrium model is developed to reveal the non-equilibrium synergistic effects for the atmospheric-pressure low-temperature plasmas (AP-LTPs). It combines a thermal-chemical non-equilibrium fluid model for the quasi-neutral plasma region and a simplified sheath model for the electrode sheath region. The free-burning argon arc is selected as a model system because both the electrical-thermal-chemical equilibrium and non-equilibrium regions are involved simultaneously in this arc plasma system. The modeling results indicate for the first time that it is the strong and synergistic interactions among the mass, momentum and energy transfer processes that determine the self-consistent non-equilibrium characteristics of the AP-LTPs. An energy transfer process related to the non-uniform spatial distributions of the electron-to-heavy-particle temperature ratio has also been discovered for the first time. It has a significant influence for self-consistently predicting the transition region between the "hot" and "cold" equilibrium regions of an AP-LTP system. The modeling results would provide an instructive guidance for predicting and possibly controlling the non-equilibrium particle-energy transportation process in various AP-LTPs in future.

  13. Non-Equilibrium Thermodynamics of Self-Replicating Protocells

    DEFF Research Database (Denmark)

    Fellermann, Harold; Corominas-Murtra, Bernat; Hansen, Per Lyngs

    2018-01-01

    We provide a non-equilibrium thermodynamic description of the life-cycle of a droplet based, chemically feasible, system of protocells. By coupling the protocells metabolic kinetics with its thermodynamics, we demonstrate how the system can be driven out of equilibrium to ensure protocell growth...... and replication. This coupling allows us to derive the equations of evolution and to rigorously demonstrate how growth and replication life-cycle can be understood as a non-equilibrium thermodynamic cycle. The process does not appeal to genetic information or inheritance, and is based only on non......-equilibrium physics considerations. Our non-equilibrium thermodynamic description of simple, yet realistic, processes of protocell growth and replication, represents an advance in our physical understanding of a central biological phenomenon both in connection to the origin of life and for modern biology....

  14. Students' Understanding of Equilibrium and Stability: The Case of Dynamic Systems

    Science.gov (United States)

    Canu, Michaël; de Hosson, Cécile; Duque, Mauricio

    2016-01-01

    Engineering students in control courses have been observed to lack an understanding of equilibrium and stability, both of which are crucial concepts in this discipline. The introduction of these concepts is generally based on the study of classical examples from Newtonian mechanics supplemented with a control system. Equilibrium and stability are…

  15. Advancing non-equilibrium ARPES experiments by a 9.3 eV coherent ultrafast photon source

    Energy Technology Data Exchange (ETDEWEB)

    Cilento, F., E-mail: federico.cilento@elettra.eu [Elettra – Sincrotrone Trieste S.C.p.A., Strada Statale 14, km 163.5, Trieste 34149 (Italy); C.N.R. – I.O.M., Strada Statale 14, km 163.5, Trieste 34149 (Italy); Crepaldi, A. [Elettra – Sincrotrone Trieste S.C.p.A., Strada Statale 14, km 163.5, Trieste 34149 (Italy); Manzoni, G.; Sterzi, A. [Universitá degli Studi di Trieste, Via A. Valerio 2, Trieste 34127 (Italy); Zacchigna, M. [C.N.R. – I.O.M., Strada Statale 14, km 163.5, Trieste 34149 (Italy); Bugnon, Ph.; Berger, H. [Institute of Condensed Matter Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne (Switzerland); Parmigiani, F. [Elettra – Sincrotrone Trieste S.C.p.A., Strada Statale 14, km 163.5, Trieste 34149 (Italy); Universitá degli Studi di Trieste, Via A. Valerio 2, Trieste 34127 (Italy); International Faculty, University of Köln, 50937 Köln (Germany)

    2016-02-15

    The quest for investigating the non-equilibrium dynamics of the band structure of strongly-correlated materials over their entire Brillouin zone is a primary objective. However, the actual ultrafast UV light sources are not suitable for addressing several critical questions in the field. Here we report on a novel light source generating sub-250 fs, 9.3 eV photon energy light pulses at 250 kHz repetition rate, obtained via third-harmonic generation in Xe of frequency-doubled 50 fs laser pulses at 1.55 eV. By reporting the measured band dispersion of a Cu(111) crystal and the non-equilibrium dynamics of the Bi{sub 2}Se{sub 3} topological insulator, we prove that this source is suitable for studying the non-equilibrium dynamics of the entire Fermi surface of several complex materials, with high signal statistics and limited space-charge effect.

  16. Non-equilibrium theory of arrested spinodal decomposition

    Energy Technology Data Exchange (ETDEWEB)

    Olais-Govea, José Manuel; López-Flores, Leticia; Medina-Noyola, Magdaleno [Instituto de Física “Manuel Sandoval Vallarta,” Universidad Autónoma de San Luis Potosí, Álvaro Obregón 64, 78000 San Luis Potosí, SLP (Mexico)

    2015-11-07

    The non-equilibrium self-consistent generalized Langevin equation theory of irreversible relaxation [P. E. Ramŕez-González and M. Medina-Noyola, Phys. Rev. E 82, 061503 (2010); 82, 061504 (2010)] is applied to the description of the non-equilibrium processes involved in the spinodal decomposition of suddenly and deeply quenched simple liquids. For model liquids with hard-sphere plus attractive (Yukawa or square well) pair potential, the theory predicts that the spinodal curve, besides being the threshold of the thermodynamic stability of homogeneous states, is also the borderline between the regions of ergodic and non-ergodic homogeneous states. It also predicts that the high-density liquid-glass transition line, whose high-temperature limit corresponds to the well-known hard-sphere glass transition, at lower temperature intersects the spinodal curve and continues inside the spinodal region as a glass-glass transition line. Within the region bounded from below by this low-temperature glass-glass transition and from above by the spinodal dynamic arrest line, we can recognize two distinct domains with qualitatively different temperature dependence of various physical properties. We interpret these two domains as corresponding to full gas-liquid phase separation conditions and to the formation of physical gels by arrested spinodal decomposition. The resulting theoretical scenario is consistent with the corresponding experimental observations in a specific colloidal model system.

  17. PREFACE: International Symposium on Non-Equilibrium Soft Matter 2010 International Symposium on Non-Equilibrium Soft Matter 2010

    Science.gov (United States)

    Kawakatsu, T.; Matsuyama, A.; Ohta, T.; Tanaka, H.; Tanaka, S.

    2011-07-01

    Soft matter is a rapidly growing interdisciplinary research field covering a range of subject areas including physics, chemistry, biology, mathematics and engineering. Some of the important universal features of these materials are their mesoscopic structures and their dynamics. Due to the existence of such large-scale structures, which nevertheless exhibit interactions of the order of the thermal energy, soft matter can readily be taken out of equilibrium by imposing a weak external field such as an electric field, a mechanical stress or a shear flow. The importance of the coexistence of microscopic molecular dynamics and the mesoscopic/macroscopic structures and flows requires us to develop hierarchical approaches to understand the nonlinear and nonequilibrium phenomena, which is one of the central issues of current soft matter research. This special section presents selected contributions from the 'International Symposium on Non-Equilibrium Soft Matter 2010' held from 17-20 August 2010 in Nara, Japan, which aimed to describe recent advances in soft matter research focusing especially on its nonequilibrium aspects. The topics discussed cover statics and dynamics of a wide variety of materials ranging from traditional soft matter like polymers, gels, emulsions, liquid crystals and colloids to biomaterials such as biopolymers and biomembranes. Among these studies, we highlighted the physics of biomembranes and vesicles, which has attracted great attention during the last decade; we organized a special session for this active field. The work presented in this issue deals with (1) structure formation in biomembranes and vesicles, (2) rheology of polymers and gels, (3) mesophases in block copolymers, (4) mesoscopic structures in liquid crystals and ionic liquids, and (5) nonequilibrium dynamics. This symposium was organized as part of a research project supported by the Grant-in-Aid for the priority area 'Soft Matter Physics' (2006-2010) from the Ministry of Education

  18. Isospin equilibrium and non-equilibrium in heavy-ion collisions at intermediate energies

    International Nuclear Information System (INIS)

    Chen Liewen; Ge Lingxiao; Zhang Xiaodong; Zhang Fengshou

    1997-01-01

    The equilibrium and non-equilibrium of the isospin degree of freedom are studied in terms of an isospin-dependent QMD model, which includes isospin-dependent symmetry energy, Coulomb energy, N-N cross sections and Pauli blocking. It is shown that there exists a transition from the isospin equilibrium to non-equilibrium as the incident energy from below to above a threshold energy in central, asymmetric heavy-ion collisions. Meanwhile, it is found that the phenomenon results from the co-existence and competition of different reaction mechanisms, namely, the isospin degree of freedom reaches an equilibrium if the incomplete fusion (ICF) component is dominant and does not reach equilibrium if the fragmentation component is dominant. Moreover, it is also found that the isospin-dependent N-N cross sections and symmetry energy are crucial for the equilibrium of the isospin degree of freedom in heavy-ion collisions around the Fermi energy. (author)

  19. Non-equilibrium oxidation states of zirconium during early stages of metal oxidation

    International Nuclear Information System (INIS)

    Ma, Wen; Yildiz, Bilge; Herbert, F. William; Senanayake, Sanjaya D.

    2015-01-01

    The chemical state of Zr during the initial, self-limiting stage of oxidation on single crystal zirconium (0001), with oxide thickness on the order of 1 nm, was probed by synchrotron x-ray photoelectron spectroscopy. Quantitative analysis of the Zr 3d spectrum by the spectrum reconstruction method demonstrated the formation of Zr 1+ , Zr 2+ , and Zr 3+ as non-equilibrium oxidation states, in addition to Zr 4+ in the stoichiometric ZrO 2 . This finding resolves the long-debated question of whether it is possible to form any valence states between Zr 0 and Zr 4+ at the metal-oxide interface. The presence of local strong electric fields and the minimization of interfacial energy are assessed and demonstrated as mechanisms that can drive the formation of these non-equilibrium valence states of Zr

  20. The role of equilibrium volume and magnetism on the stability of iron phases at high pressures.

    Science.gov (United States)

    Alnemrat, S; Hooper, J P; Vasiliev, I; Kiefer, B

    2014-01-29

    The present study provides new insights into the pressure dependence of magnetism by tracking the hybridization between crystal orbitals for pressures up to 600 GPa in the known hcp, bcc and fcc iron. The Birch-Murnaghan equation of state parameters are; bcc: V0 = 11.759 A(3)/atom, K0 = 177.72 GPa; hcp: V0 = 10.525 A(3)/atom, K0 = 295.16 GPa; and fcc: V0 = 10.682 A(3)/atom, K0 = 274.57 GPa. These parameters compare favorably with previous studies. Consistent with previous studies we find that the close-packed hcp and fcc phases are non-magnetic at pressures above 50 GPa and 60 GPa, respectively. The principal features of magnetism in iron are predicted to be invariant, at least up to ∼6% overextension of the equilibrium volume. Our results predict that magnetism for overextended fcc iron disappears via an intermediate spin state. This feature suggests that overextended lattices can be used to stabilize particular magnetic states. The analysis of the orbital hybridization shows that the magnetic bcc structure at high pressures is stabilized by splitting the majority and minority spin bands. The bcc phase is found to be magnetic at least up to 600 GPa; however, magnetism is insufficient to stabilize the bcc phase itself, at least at low temperatures. Finally, the analysis of the orbital contributions to the total energy provides evidence that non-magnetic hcp and fcc phases are likely more stable than bcc at core earth pressures.

  1. User's manual for the FLORA equilibrium and stability code

    International Nuclear Information System (INIS)

    Freis, R.P.; Cohen, B.I.

    1985-01-01

    This document provides a user's guide to the content and use of the two-dimensional axisymmetric equilibrium and stability code FLORA. FLORA addresses the low-frequency MHD stability of long-thin axisymmetric tandem mirror systems with finite pressure and finite-larmor-radius effects. FLORA solves an initial-value problem for interchange, rotational, and ballooning stability

  2. Warm-fluid description of intense beam equilibrium and electrostatic stability properties

    International Nuclear Information System (INIS)

    Lund, S.M.; Davidson, R.C.

    1998-01-01

    A nonrelativistic warm-fluid model is employed in the electrostatic approximation to investigate the equilibrium and stability properties of an unbunched, continuously focused intense ion beam. A closed macroscopic model is obtained by truncating the hierarchy of moment equations by the assumption of negligible heat flow. Equations describing self-consistent fluid equilibria are derived and elucidated with examples corresponding to thermal equilibrium, the Kapchinskij endash Vladimirskij (KV) equilibrium, and the waterbag equilibrium. Linearized fluid equations are derived that describe the evolution of small-amplitude perturbations about an arbitrary equilibrium. Electrostatic stability properties are analyzed in detail for a cold beam with step-function density profile, and then for axisymmetric flute perturbations with ∂/∂θ=0 and ∂/∂z=0 about a warm-fluid KV beam equilibrium. The radial eigenfunction describing axisymmetric flute perturbations about the KV equilibrium is found to be identical to the eigenfunction derived in a full kinetic treatment. However, in contrast to the kinetic treatment, the warm-fluid model predicts stable oscillations. None of the instabilities that are present in a kinetic description are obtained in the fluid model. A careful comparison of the mode oscillation frequencies associated with the fluid and kinetic models is made in order to delineate which stability features of a KV beam are model-dependent and which may have general applicability. copyright 1998 American Institute of Physics

  3. Non-equilibrium modelling of distillation

    NARCIS (Netherlands)

    Wesselingh, JA; Darton, R

    1997-01-01

    There are nasty conceptual problems in the classical way of describing distillation columns via equilibrium stages, and efficiencies or HETP's. We can nowadays avoid these problems by simulating the behaviour of a complete column in one go using a non-equilibrium model. Such a model has phase

  4. Amplitude oscillations in a non-equilibrium polariton condensate

    Science.gov (United States)

    Brierley, Richard; Littlewood, Peter; Eastham, Paul

    2011-03-01

    Like cold atomic gases, semiconductor nanostructures provide new opportunities for exploring non-equilibrium quantum dynamics. In semiconductor microcavities the strong coupling between trapped photons and excitons produces new quasiparticles, polaritons, which can undergo Bose-Einstein condensation. Quantum quenches can be realised by rapidly creating cold exciton populations with a laser [Eastham and Phillips, PRB 79 165303 (2009)]. The mean field theory of non-equilibrium polariton condensates predicts oscillations in the condensate amplitude due to the excitation of a Higgs mode. These oscillations are the analogs of those predicted in quenched cold atomic gases and may occur in the polariton system after performing a quench or by direct excitation of the amplitude mode. We have studied the stability of these oscillations beyond mean field theory. We show that homogeneous amplitude oscillations are unstable to decay into lower energy phase modes at finite wavevectors, suggesting the onset of chaotic behaviour. The resulting hierarchy of decay processes can be understood by analogy to optical parametric oscillators in microcavities. Polariton systems thus provide an interesting opportunity to study the dynamics of Higgs-like modes in a solid state system.

  5. Exploring Chemical and Thermal Non-equilibrium in Nitrogen Arcs

    International Nuclear Information System (INIS)

    Ghorui, S; Das, A K

    2012-01-01

    Plasma torches operating with nitrogen are of special importance as they can operate with usual tungsten based refractory electrodes and offer radical rich non-oxidizing high temperature environment for plasma chemistry. Strong gradients in temperature as well as species densities and huge convective fluxes lead to varying degrees of chemical non-equilibrium in associated regions. An axi-symmetric two-temperature chemical non-equilibrium model of a nitrogen plasma torch has been developed to understand the effects of thermal and chemical non-equilibrium in arcs. A 2-D finite volume CFD code in association with a non-equilibrium property routine enabled extraction of steady state self-consistent distributions of various plasma quantities inside the torch under various thermal and chemical non-equilibrium conditions. Chemical non-equilibrium has been incorporated through computation of diffusive and convective fluxes in each finite volume cell in every iteration and associating corresponding thermodynamic and transport properties through the scheme of 'chemical non-equilibrium parameter' introduced by Ghorui et. al. Recombination coefficient data from Nahar et. al. and radiation data from Krey and Morris have been used in the simulation. Results are presented for distributions of temperature, pressure, velocity, current density, electric potential, species densities and chemical non-equilibrium effects. Obtained results are compared with similar results under LTE.

  6. Composition and partition functions of partially ionized hydrogen plasma in Non-Local Thermal Equilibrium (Non-LThE) and Non-Local Chemical Equilibrium (Non-LChE)

    International Nuclear Information System (INIS)

    Chen Kuan; Eddy, T.L.

    1993-01-01

    A GTME (Generalized MultiThermodynamic Equilibrium) plasma model is developed for plasmas in both Non-LThE (Non-Local Thermal Equilibrium) and Non-LChE (Non-Local Chemical Equilibrium). The model uses multitemperatures for thermal nonequilibrium and non-zero chemical affinities as a measure of the deviation from chemical equilibrium. The plasma is treated as an ideal gas with the Debye-Hueckel approximation employed for pressure correction. The proration method is used when the cutoff energy level is between two discrete levels. The composition and internal partition functions of a hydrogen plasma are presented for electron temperatures ranging from 5000 to 35000 K and pressures from 0.1 to 1000 kPa. Number densities of 7 different species of hydrogen plasma and internal partition functions of different energy modes (rotational, vibrational, and electronic excitation) are computed for three affinity values. The results differ from other plasma properties in that they 1) are not based on equilibrium properties; and 2) are expressed as a function of different energy distribution parameters (temperatures) within each energy mode of each species as appropriate. The computed number densities and partition functions are applicable to calculating the thermodynamic, transport, and radiation properties of a hydrogen plasma not in thermal and chemical equilibria. The nonequilibrium plasma model and plasma compositions presented in this paper are very useful to the diagnosis of high-speed and/or low-pressure plasma flows in which the assumptions of local thermal and chemical equilibrium are invalid. (orig.)

  7. Small angle neutron scattering (SANS) under non-equilibrium conditions

    International Nuclear Information System (INIS)

    Oberthur, R.C.

    1984-01-01

    The use of small angle neutron scattering (SANS) for the study of systems under non-equilibrium conditions is illustrated by three types of experiments in the field of polymer research: - the relaxation of a system from an initial non-equilibrium state towards equilibrium, - the cyclic or repetitive installation of a series of non-equilibrium states in a system, - the steady non-equilibrium state maintained by a constant dissipation of energy within the system. Characteristic times obtained in these experiments with SANS are compared with the times obtained from quasi-elastic neutron and light scattering, which yield information about the equilibrium dynamics of the system. The limits of SANS applied to non-equilibrium systems for the measurement of relaxation times at different length scales are shown and compared to the limits of quasielastic neutron and light scattering

  8. Achieving Radiation Tolerance through Non-Equilibrium Grain Boundary Structures.

    Science.gov (United States)

    Vetterick, Gregory A; Gruber, Jacob; Suri, Pranav K; Baldwin, Jon K; Kirk, Marquis A; Baldo, Pete; Wang, Yong Q; Misra, Amit; Tucker, Garritt J; Taheri, Mitra L

    2017-09-25

    Many methods used to produce nanocrystalline (NC) materials leave behind non-equilibrium grain boundaries (GBs) containing excess free volume and higher energy than their equilibrium counterparts with identical 5 degrees of freedom. Since non-equilibrium GBs have increased amounts of both strain and free volume, these boundaries may act as more efficient sinks for the excess interstitials and vacancies produced in a material under irradiation as compared to equilibrium GBs. The relative sink strengths of equilibrium and non-equilibrium GBs were explored by comparing the behavior of annealed (equilibrium) and as-deposited (non-equilibrium) NC iron films on irradiation. These results were coupled with atomistic simulations to better reveal the underlying processes occurring on timescales too short to capture using in situ TEM. After irradiation, NC iron with non-equilibrium GBs contains both a smaller number density of defect clusters and a smaller average defect cluster size. Simulations showed that excess free volume contribute to a decreased survival rate of point defects in cascades occurring adjacent to the GB and that these boundaries undergo less dramatic changes in structure upon irradiation. These results suggest that non-equilibrium GBs act as more efficient sinks for defects and could be utilized to create more radiation tolerant materials in future.

  9. Equilibrium and stability MHD in the magnetic confinement for thermonuclear fusion

    International Nuclear Information System (INIS)

    Otero, Dino; Proto, A.N.

    1979-08-01

    A survey of the mayor systems for magnetic confinement of plasmas is made. The basic concepts are reviewed briefly. The equilibrium and stability conditions for open systems (mirrors, magnetic wells, Z and Theta-pinches), for toroidal axisymmetric (Z-Pinch, Screw-Pinch, Belt-Pinch and Tokamak) and toroidal non-axisymmetric systems (High-β Stellarator and low-β Theta-Pinch) are discussed. A comparative analysis between the diferent systems is made. In the conclusions, the author's opinions about future developments in the field are included. (author) [es

  10. Equilibrium and stability studies for an iron-core tokamak with a poloidal divertor

    International Nuclear Information System (INIS)

    Solano, E.R.; Neilson, G.H.; Lao, L.L.

    1989-01-01

    A study of plasma equilibrium and stability in a tokamak with an unsaturated iron core is presented. A spool model is developed for the iron. Both, a simplified force balance code and a Grad-Shafranov solver are used to study the plasma equilibrium. It is observed that the iron can strongly modify the conditions for equilibrium and stability, and in some cases an infinite cylinder model for the iron core is not adequate. New criteria for plasma position stability in the presence of an iron core are introduced. 17 refs., 4 figs., 3 tabs

  11. Two-proton correlation functions for equilibrium and non-equilibrium emission

    International Nuclear Information System (INIS)

    Gong, W.G.; Gelbke, C.K.; Carlin, N.; De Souza, R.T.; Kim, Y.D.; Lynch, W.G.; Murakami, T.; Poggi, G.; Sanderson, D.; Tsang, M.B.; Xu, H.M.; Michigan State Univ., East Lansing; Fields, D.E.; Kwiatkowski, K.; Planeta, R.; Viola, V.E. Jr.; Yennello, S.J.; Indiana Univ., Bloomington; Indiana Univ., Bloomington; Pratt, S.

    1990-01-01

    Two-proton correlation functions are compared for equilibrium and non-equilibrium emission processes investigated, respectively, in ''reverse kinematics'' for the reactions 129 Xe+ 27 Al and 129 Xe+ 122 Sn at E/A=31 MeV and in ''forward kinematics'' for the reaction 14 N+ 197 Au at E/A=75 MeV. Observed differences in the shapes of the correlation functions are understood in terms of the different time scales for equilibrium and preequilibrium emission. Transverse and longitudinal correlation functions are very similar. (orig.)

  12. Equilibrium and non equilibrium in fragmentation

    International Nuclear Information System (INIS)

    Dorso, C.O.; Chernomoretz, A.; Lopez, J.A.

    2001-01-01

    Full text: In this communication we present recent results regarding the interplay of equilibrium and non equilibrium in the process of fragmentation of excited finite Lennard Jones drops. Because the general features of such a potential resemble the ones of the nuclear interaction (fact that is reinforced by the similarity between the EOS of both systems) these studies are not only relevant from a fundamental point of view but also shed light on the problem of nuclear multifragmentation. We focus on the microscopic analysis of the state of the fragmenting system at fragmentation time. We show that the Caloric Curve (i e. the functional relationship between the temperature of the system and the excitation energy) is of the type rise plateau with no vapor branch. The usual rise plateau rise pattern is only recovered when equilibrium is artificially imposed. This result puts a serious question on the validity of the freeze out hypothesis. This feature is independent of the dimensionality or excitation mechanism. Moreover we explore the behavior of magnitudes which can help us determine the degree of the assumed phase transition. It is found that no clear cut criteria is presently available. (Author)

  13. Local effect of equilibrium current on tearing mode stability

    International Nuclear Information System (INIS)

    Cozzani, F.

    1985-12-01

    The local effect of the equilibrium current on the linear stability of low poloidal number tearing modes in tokamaks is investigated analytically. The plasma response inside the tearing layer is derived from fluid theory and the local equilibrium current is shown to couple to the mode dynamics through its gradient, which is proportional to the local electron temperature gradient under the approximations used in the analysis. The relevant eigenmode equations, expressing Ampere's law and the plasma quasineutrality condition, respectively, are suitably combined in a single integral equation, from which a variational principle is formulated to derive the mode dispersion relations for several cases of interest. The local equilibrium current is treated as a small perturbation of the known results for the m greater than or equal to 2 and the m = 1 tearing modes in the collisional regime, and the m greater than or equal to 2 tearing mode in the semicollisional regime; its effect is found to enhance stabilization for the m greater than or equal to 2 drift-tearing mode in the collisional regime, whereas the m = 1 growth rate is very slightly increased and the stabilizing effect of the parallel thermal conduction on the m greater than or equal to 2 mode in the semicollisional regime is slightly reduced

  14. Equilibrium and stability properties of relativistic electron rings and E-layers

    International Nuclear Information System (INIS)

    Uhm, H.

    1976-01-01

    Equilibrium and stability properties of magnetically confined partially-neutralized thin electron ring and E-layer are investigated using the Vlasov-Maxwell equations. The analysis is carried out within the context of the assumption that the minor dimensions (a,b) of the system are much less than the collisionless skin depth (c/antiω/sub p/). The equilibrium configuration of the E-layer is assumed to be an infinitely long, azimuthally symmetric hollow electron beam which is aligned parallel to a uniform axial magnetic field. On the other hand, the electron ring is located at the midplane of an externally imposed mirror field which acts to confine the ring both axially and radially. The equilibrium properties of the E-layer and electron ring are obtained self-consistently for several choices of equilibrium electron distribution function. The negative-mass instability analysis is carried out for the relativistic E-layer equilibrium in which all of the electrons have the same transverse energy and a spread in canonical angular momentum, assuming a fixed ion background. The ion resonance instability properties are investigated for a relativistic nonneutral E-layer aligned parallel to a uniform magnetic field and located between two ground coaxial cylindrical conductors. The stability properties of a nonrelativistic electron ring is investigated within the framework of the linearized Vlasov-Poisson equations. The dispersion relation is obtained for the self-consistent electron distribution function in which all electrons have the same value of energy an the same value of canonical angular momentum. The positive ions in the electron ring are assumed to form an immobile partially neutralizing background. The stability criteria as well as the instability growth rates are derived and discussed including the effect of geometrical configuration of the system. Equilibrium space-charge effects play a significant role in stability behavior

  15. Existence and Stability of Solutions for Implicit Multivalued Vector Equilibrium Problems

    Directory of Open Access Journals (Sweden)

    Li Qiuying

    2011-01-01

    Full Text Available A class of implicit multivalued vector equilibrium problems is studied. By using the generalized Fan-Browder fixed point theorem, some existence results of solutions for the implicit multivalued vector equilibrium problems are obtained under some suitable assumptions. Moreover, a stability result of solutions for the implicit multivalued vector equilibrium problems is derived. These results extend and unify some recent results for implicit vector equilibrium problems, multivalued vector variational inequality problems, and vector variational inequality problems.

  16. Examples of equilibrium and non-equilibrium behavior in evolutionary systems

    Science.gov (United States)

    Soulier, Arne

    With this thesis, we want to shed some light into the darkness of our understanding of simply defined statistical mechanics systems and the surprisingly complex dynamical behavior they exhibit. We will do so by presenting in turn one equilibrium and then one non-equilibrium system with evolutionary dynamics. In part 1, we will present the seceder-model, a newly developed system that cannot equilibrate. We will then study several properties of the system and obtain an idea of the richness of the dynamics of the seceder model, which is particular impressive given the minimal amount of modeling necessary in its setup. In part 2, we will present extensions to the directed polymer in random media problem on a hypercube and its connection to the Eigen model of evolution. Our main interest will be the influence of time-dependent and time-independent changes in the fitness landscape viewed by an evolving population. This part contains the equilibrium dynamics. The stochastic models and the topic of evolution and non-equilibrium in general will allow us to point out similarities to the various lines of thought in game theory.

  17. A phase-field model for non-equilibrium solidification of intermetallics

    International Nuclear Information System (INIS)

    Assadi, H.

    2007-01-01

    Intermetallics may exhibit unique solidification behaviour-including slow growth kinetics, anomalous partitioning and formation of unusual growth morphologies-because of departure from local equilibrium. A phase-field model is developed and used to illustrate these non-equilibrium effects in solidification of a prototype B2 intermetallic phase. The model takes sublattice compositions as primary field variables, from which chemical long-range order is derived. The diffusive reactions between the two sublattices, and those between each sublattice and the liquid phase are taken as 'internal' kinetic processes, which take place within control volumes of the system. The model can thus capture solute and disorder trapping effects, which are consistent-over a wide range of the solid/liquid interface thickness-with the predictions of the sharp-interface theory of solute and disorder trapping. The present model can also take account of solid-state ordering and thus illustrate the effects of chemical ordering on microstructure formation and crystal growth kinetics

  18. Polymer Stabilization of Liquid-Crystal Blue Phase II toward Photonic Crystals.

    Science.gov (United States)

    Jo, Seong-Yong; Jeon, Sung-Wook; Kim, Byeong-Cheon; Bae, Jae-Hyun; Araoka, Fumito; Choi, Suk-Won

    2017-03-15

    The temperature ranges where a pure simple-cubic blue phase (BPII) emerges are quite narrow compared to the body-centered-cubic BP (BPI) such that the polymer stabilization of BPII is much more difficult. Hence, a polymer-stabilized BPII possessing a wide temperature range has been scarcely reported. Here, we fabricate a polymer-stabilized BPII over a temperature range of 50 °C including room temperature. The fabricated polymer-stabilized BPII is confirmed via polarized optical microscopy, Bragg reflection, and Kossel diagram observations. Furthermore, we demonstrate reflective BP liquid-crystal devices utilizing the reflectance-voltage performance as a potential application of the polymer-stabilized BPII. Our work demonstrates the possibility of practical application of the polymer-stabilized BPII to photonic crystals.

  19. Transition from equilibrium ignition to non-equilibrium burn for ICF capsules surrounded by a high-Z pusher

    International Nuclear Information System (INIS)

    Li, Ji W.; Chang, Lei; Li, Yun S.; Li, Jing H.

    2011-01-01

    For the ICF capsule surrounded by a high-Z pusher which traps the radiation and confines the hot fuel, the fuel will first be ignited in thermal equilibrium with radiation at a much lower temperature than hot-spot ignition, which is also the low temperature ignition. Because of the lower areal density for ICF capsules, the equilibrium ignition must be developed into a non-equilibrium burn to shorten the reaction time and lower the drive energy. In this paper, the transition from the equilibrium ignition to non-equilibrium burn is discussed and the energy deposited by α particles required for the equilibrium ignition and non-equilibrium burn to occur is estimated.

  20. Non-equilibrium Quasi-Chemical Nucleation Model

    Science.gov (United States)

    Gorbachev, Yuriy E.

    2018-04-01

    Quasi-chemical model, which is widely used for nucleation description, is revised on the basis of recent results in studying of non-equilibrium effects in reacting gas mixtures (Kolesnichenko and Gorbachev in Appl Math Model 34:3778-3790, 2010; Shock Waves 23:635-648, 2013; Shock Waves 27:333-374, 2017). Non-equilibrium effects in chemical reactions are caused by the chemical reactions themselves and therefore these contributions should be taken into account in the corresponding expressions for reaction rates. Corrections to quasi-equilibrium reaction rates are of two types: (a) spatially homogeneous (caused by physical-chemical processes) and (b) spatially inhomogeneous (caused by gas expansion/compression processes and proportional to the velocity divergency). Both of these processes play an important role during the nucleation and are included into the proposed model. The method developed for solving the generalized Boltzmann equation for chemically reactive gases is applied for solving the set of equations of the revised quasi-chemical model. It is shown that non-equilibrium processes lead to essential deviation of the quasi-stationary distribution and therefore the nucleation rate from its traditional form.

  1. Isotope effects in the equilibrium and non-equilibrium vaporization of tritiated water and ice

    International Nuclear Information System (INIS)

    Baumgaertner, F.; Kim, M.-A.

    1990-01-01

    The vaporization isotope effect of the HTO/H 2 O system has been measured at various temperatures and pressures under equilibrium as well as non-equilibrium conditions. The isotope effect values measured in equilibrium sublimation or distillation are in good agreement with the theoretical values based on the harmonic oscillator model. In non-equilibrium vaporization at low temperatures ( 0 C), the isotope effect decreases rapidly with decreasing system pressure and becomes negligible when the system pressure is lowered more than one tenth of the equilibrium vapor pressure. At higher temperatures, the isotope effect decreases very slowly with decreasing system pressure. Discussion is extended for the application of the present results to the study of biological enrichment of tritium. (author)

  2. Kapitza thermal conductance at the interface between Lennard-Jones crystals using non-equilibrium molecular dynamics simulations

    International Nuclear Information System (INIS)

    Merabia, Samy; Termentzidis, Konstantinos

    2012-01-01

    We characterize the thermal Kapitza conductance between Lennard-Jones solids using non-equilibrium molecular dynamics simulations. We consider a series of perfect interfaces between mass-mismatched solids. We show that both the acoustic mismatch model (AMM) and the diffuse mismatch model (DMM) fail to predict the interfacial conductance even for large acoustic mismatched solids. This poor agreement may be explained by the use of equilibrium distributions of phonons in the expression of the conductance. On the other hand, we show that an extension of AMM taking into account the out-of-equilibrium phonon distribution on both sides of the interface leads to a good agreement with the simulation results, even for interfaces between almost similar materials. This opens the way to understand interfacial heat transport across real semi-conductors and dielectrics.

  3. Standardization of 125 Sb in equilibrium non-equilibrium situations with 125m Te

    International Nuclear Information System (INIS)

    Rodriguez Barquero, L.; Jimenez de Mingo, A.; Grau Carles, A.

    1997-10-01

    We study the stability of ''125 Sb in the following scintillators: HiSafeIII''TM, Insta- Gel reg s ign Plus and '' Ultima-Gold'' TM. Since ''125 m Te requires more than one year to reach the secular equilibrium with ''125 Sb, we cannot be sure, for a given sample, whether equilibrium is reached or not. In this report we present a new procedure that permits one calibrate mixtures of ''125 Sb+''125 m Te out of the equilibrium. The steps required for the radiochemical separation of the components are indicated. Finally, we study the evolution of counting rate when column yields are less than 100%. (Author)

  4. An equilibrium point stabilization strategy for the Chen system

    International Nuclear Information System (INIS)

    Alvarez-Ramirez, Jose; Cevantes, Ilse; Femat, Ricardo

    2004-01-01

    The aim of this Letter is to address the equilibrium point stabilization problem of the Chen system by employing a simple linear feedback controller derived from time-scaling the dynamics of a single variable. The controller has the advantage of being easy to implement and a rigorous stability proof is provided based on singular perturbation arguments. Results are illustrated via numerical simulations

  5. Non-Equilibrium Thermodynamics in Multiphase Flows

    CERN Document Server

    Mauri, Roberto

    2013-01-01

    Non-equilibrium thermodynamics is a general framework that allows the macroscopic description of irreversible processes. This book introduces non-equilibrium thermodynamics and its applications to the rheology of multiphase flows. The subject is relevant to graduate students in chemical and mechanical engineering, physics and material science. This book is divided into two parts. The first part presents the theory of non-equilibrium thermodynamics, reviewing its essential features and showing, when possible, some applications. The second part of this book deals with how the general theory can be applied to model multiphase flows and, in particular, how to determine their constitutive relations. Each chapter contains problems at the end, the solutions of which are given at the end of the book. No prior knowledge of statistical mechanics is required; the necessary prerequisites are elements of transport phenomena and on thermodynamics. “The style of the book is mathematical, but nonetheless it remains very re...

  6. Conformational stability and self-association equilibrium in biologics.

    Science.gov (United States)

    Clarkson, Benjamin R; Schön, Arne; Freire, Ernesto

    2016-02-01

    Biologics exist in equilibrium between native, partially denatured, and denatured conformational states. The population of any of these states is dictated by their Gibbs energy and can be altered by changes in physical and solution conditions. Some conformations have a tendency to self-associate and aggregate, an undesirable phenomenon in protein therapeutics. Conformational equilibrium and self-association are linked thermodynamic functions. Given that any associative reaction is concentration dependent, conformational stability studies performed at different protein concentrations can provide early clues to future aggregation problems. This analysis can be applied to the selection of protein variants or the identification of better formulation solutions. In this review, we discuss three different aggregation situations and their manifestation in the observed conformational equilibrium of a protein. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Non-equilibrium transport in the quantum dot: quench dynamics and non-equilibrium steady state

    Science.gov (United States)

    Culver, Adrian; Andrei, Natan

    We present an exact method of calculating the non-equilibrium current driven by a voltage drop across a quantum dot. The system is described by the two lead Anderson model at zero temperature with on-site Coulomb repulsion and non-interacting, linearized leads. We prepare the system in an initial state consisting of a free Fermi sea in each lead with the voltage drop given as the difference between the two Fermi levels. We quench the system by coupling the dot to the leads at t = 0 and following the time evolution of the wavefunction. In the long time limit a new type of Bethe Ansatz wavefunction emerges, which satisfies the Lippmann-Schwinger equation with the two Fermi seas serving as the boundary conditions. This exact, non-perturbative solution describes the non-equilibrium steady state of the system. We describe how to use this solution to compute the infinite time limit of the expectation value of the current operator at a given voltage, which would yield the I-V characteristic of the dot. Research supported by NSF Grant DMR 1410583.

  8. Paths to equilibrium in non-conformal collisions

    Directory of Open Access Journals (Sweden)

    Attems Maximilian

    2018-01-01

    Full Text Available Ever since fast hydrodynamization has been observed in heavy ion collisions the understanding of the hot early out-of-equilibrium stage of such collisions has been a topic of intense research. We use the gauge/gravity duality to model the creation of a strongly coupled Quark-Gluon plasma in a non-conformal gauge theory. This numerical relativity study is the first non-conformal holographic simulation of a heavy ion collision and reveals the existence of new relaxation channels due to the presence of non-vanishing bulk viscosity. We study shock wave collisions at different energies in gauge theories with different degrees of non-conformality and compare three relaxation times which can occur in different orderings: the hydrodynamization time (when hydrodynamics becomes applicable, the EoSization time (when the average pressure approaches its equilibrium value and the condensate relaxation time (when the expectation value of a scalar operator approaches its equilibrium value. We find that these processes can occur in several different orderings. In particular, the condensate can remain far from equilibrium even long after the plasma has hydrodynamized and EoSized.

  9. The phenotypic equilibrium of cancer cells: From average-level stability to path-wise convergence.

    Science.gov (United States)

    Niu, Yuanling; Wang, Yue; Zhou, Da

    2015-12-07

    The phenotypic equilibrium, i.e. heterogeneous population of cancer cells tending to a fixed equilibrium of phenotypic proportions, has received much attention in cancer biology very recently. In the previous literature, some theoretical models were used to predict the experimental phenomena of the phenotypic equilibrium, which were often explained by different concepts of stabilities of the models. Here we present a stochastic multi-phenotype branching model by integrating conventional cellular hierarchy with phenotypic plasticity mechanisms of cancer cells. Based on our model, it is shown that: (i) our model can serve as a framework to unify the previous models for the phenotypic equilibrium, and then harmonizes the different kinds of average-level stabilities proposed in these models; and (ii) path-wise convergence of our model provides a deeper understanding to the phenotypic equilibrium from stochastic point of view. That is, the emergence of the phenotypic equilibrium is rooted in the stochastic nature of (almost) every sample path, the average-level stability just follows from it by averaging stochastic samples. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Anomalous non-equilibrium electron transport in one-dimensional quantum nano wire at half-filling: time dependent density renormalization group study

    Energy Technology Data Exchange (ETDEWEB)

    Okumura, M; Onishi, H; Yamada, S; Machida, M, E-mail: okumura@riken.j

    2010-11-01

    We study non-equilibrium properties of one-dimensional Hubbard model by the density-matrix renormalization-group method. First, we demonstrate stability of 'doublon', which characterized by double occupation on a site due to the integrability of the model. Next, we present a kind of anomalous transport caused by the doublons created under strong non-equilibrium conditions in an optical lattice system regarded as an ideal testbed to investigate fundamental properties of the Hubbard model. Finally, we give a result on development of the pair correlation function in a strong non-equilibrium condition. This can be understood as a development of coherence among many excited doublons.

  11. Non-equilibrium effects upon the non-Markovian Caldeira-Leggett quantum master equation

    International Nuclear Information System (INIS)

    Bolivar, A.O.

    2011-01-01

    Highlights: → Classical Brownian motion described by a non-Markovian Fokker-Planck equation. → Quantization process. → Quantum Brownian motion described by a non-Markovian Caldeira-Leggett equation. → A non-equilibrium quantum thermal force is predicted. - Abstract: We obtain a non-Markovian quantum master equation directly from the quantization of a non-Markovian Fokker-Planck equation describing the Brownian motion of a particle immersed in a generic environment (e.g. a non-thermal fluid). As far as the especial case of a heat bath comprising of quantum harmonic oscillators is concerned, we derive a non-Markovian Caldeira-Leggett master equation on the basis of which we work out the concept of non-equilibrium quantum thermal force exerted by the harmonic heat bath upon the Brownian motion of a free particle. The classical limit (or dequantization process) of this sort of non-equilibrium quantum effect is scrutinized, as well.

  12. Non-equilibrium phase transition

    International Nuclear Information System (INIS)

    Mottola, E.; Cooper, F.M.; Bishop, A.R.; Habib, S.; Kluger, Y.; Jensen, N.G.

    1998-01-01

    This is the final report of a one-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). Non-equilibrium phase transitions play a central role in a very broad range of scientific areas, ranging from nuclear, particle, and astrophysics to condensed matter physics and the material and biological sciences. The aim of this project was to explore the path to a deeper and more fundamental understanding of the common physical principles underlying the complex real time dynamics of phase transitions. The main emphasis was on the development of general theoretical tools to deal with non-equilibrium processes, and of numerical methods robust enough to capture the time-evolving structures that occur in actual experimental situations. Specific applications to Laboratory multidivisional efforts in relativistic heavy-ion physics (transition to a new phase of nuclear matter consisting of a quark-gluon plasma) and layered high-temperature superconductors (critical currents and flux flow at the National High Magnetic Field Laboratory) were undertaken

  13. Non-equilibrium phase transitions in complex plasma

    International Nuclear Information System (INIS)

    Suetterlin, K R; Raeth, C; Ivlev, A V; Thomas, H M; Khrapak, S; Zhdanov, S; Rubin-Zuzic, M; Morfill, G E; Wysocki, A; Loewen, H; Goedheer, W J; Fortov, V E; Lipaev, A M; Molotkov, V I; Petrov, O F

    2010-01-01

    Complex plasma being the 'plasma state of soft matter' is especially suitable for investigations of non-equilibrium phase transitions. Non-equilibrium phase transitions can manifest in dissipative structures or self-organization. Two specific examples are lane formation and phase separation. Using the permanent microgravity laboratory PK-3 Plus, operating onboard the International Space Station, we performed unique experiments with binary mixtures of complex plasmas that showed both lane formation and phase separation. These observations have been augmented by comprehensive numerical and theoretical studies. In this paper we present an overview of our most important results. In addition we put our results in context with research of complex plasmas, binary systems and non-equilibrium phase transitions. Necessary and promising future complex plasma experiments on phase separation and lane formation are briefly discussed.

  14. Compact torus theory: MHD equilibrium and stability

    International Nuclear Information System (INIS)

    Barnes, D.C.; Seyler, C.E.; Anderson, D.V.

    1979-01-01

    Field reversed theta pinches have demonstrated the production and confinement of compact toroidal configurations with surprisingly good MHD stability. In these observations, the plasma is either lost by diffusion or by the loss of the applied field or is disrupted by an n = 2 (where n is the toroidal mode number) rotating instability only after 30 to 100 MHD times, when the configuration begins to rotate rigidly above a critical speed. These experiments have led one to investigate the equilibrium, stability, and rotation of a very elongated, toroidally axisymmetric configuration with no toroidal field. Many of the above observations are explained by recent results of these investigations which are summarized

  15. Structural Stability of Tokamak Equilibrium: Transport Barriers

    Energy Technology Data Exchange (ETDEWEB)

    Solano, E. R.

    2001-07-01

    A generalised theory of structural stability of differential equations is introduced and applied to the Grad-Shafranov equation. It is discussed how the formation and loss of transport barrier could be associated with the appearance/disappearance of equilibria. The equilibrium conjecture is presented: transport barriers are associated with locally diamagnetic regions in the plasma, and affected by the paramagnetism of the bootstrap current. (Author) 18 refs.

  16. The onset of double diffusive convection in a viscoelastic fluid-saturated porous layer with non-equilibrium model.

    Directory of Open Access Journals (Sweden)

    Zhixin Yang

    Full Text Available The onset of double diffusive convection in a viscoelastic fluid-saturated porous layer is studied when the fluid and solid phase are not in local thermal equilibrium. The modified Darcy model is used for the momentum equation and a two-field model is used for energy equation each representing the fluid and solid phases separately. The effect of thermal non-equilibrium on the onset of double diffusive convection is discussed. The critical Rayleigh number and the corresponding wave number for the exchange of stability and over-stability are obtained, and the onset criterion for stationary and oscillatory convection is derived analytically and discussed numerically.

  17. Field reversal experiments (FRX). [Equilibrium, confinement, and stability

    Energy Technology Data Exchange (ETDEWEB)

    Linford, R.K.; Armstrong, W.T.; Platts, D.A.; Sherwood, E.G.

    1978-01-01

    The equilibrium, confinement, and stability properties of the reversed-field configuration (RFC) are being studied in two theta-pinch facilities. The RFC is an elongated toroidal plasma confined in a purely poloidal field geometry. The open field lines of the linear theta pinch support the closed-field RFC much like the vertical field centers the toroidal plasma in a tokamak. Depending on stability and confinement properties, the RFC might be used to greatly reduce the axial losses in linear fusion devices such as mirrors, theta pinches, and liners. The FRX systems produce RFC's with a major radius R = 2-6 cm, minor radius a approximately 2 cm, and a total length l approximately 35 cm. The observed temperatures are T/sub e/ approximately 100 eV and T/sub i/ = 150-350 eV with a peak density n approximately 2 x 10/sup 15/ cm/sup -3/. After the plasma reaches equilibrium, the RFC remains stable for up to 30 ..mu..s followed by the rapid growth of the rotational m = 2 instability, which terminates the confinement. During the stable equilibrium, the particle and energy confinement times are more than 10 times longer than in an open-field system. The behavior of the m = 2 mode qualitatively agrees with the theoretically predicted instability for rotational velocities exceeding some critical value.

  18. Non-grey benchmark results for two temperature non-equilibrium radiative transfer

    International Nuclear Information System (INIS)

    Su, B.; Olson, G.L.

    1999-01-01

    Benchmark solutions to time-dependent radiative transfer problems involving non-equilibrium coupling to the material temperature field are crucial for validating time-dependent radiation transport codes. Previous efforts on generating analytical solutions to non-equilibrium radiative transfer problems were all restricted to the one-group grey model. In this paper, a non-grey model, namely the picket-fence model, is considered for a two temperature non-equilibrium radiative transfer problem in an infinite medium. The analytical solutions, as functions of space and time, are constructed in the form of infinite integrals for both the diffusion description and transport description. These expressions are evaluated numerically and the benchmark results are generated. The asymptotic solutions for large and small times are also derived in terms of elementary functions and are compared with the exact results. Comparisons are given between the transport and diffusion solutions and between the grey and non-grey solutions. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  19. Limiting processes in non-equilibrium classical statistical mechanics

    International Nuclear Information System (INIS)

    Jancel, R.

    1983-01-01

    After a recall of the basic principles of the statistical mechanics, the results of ergodic theory, the transient at the thermodynamic limit and his link with the transport theory near the equilibrium are analyzed. The fundamental problems put by the description of non-equilibrium macroscopic systems are investigated and the kinetic methods are stated. The problems of the non-equilibrium statistical mechanics are analyzed: irreversibility and coarse-graining, macroscopic variables and kinetic description, autonomous reduced descriptions, limit processes, BBGKY hierarchy, limit theorems [fr

  20. Aspects of the equilibrium and stability of counterstreaming-ion tokamaks

    International Nuclear Information System (INIS)

    Cordey, J.G.; Haas, F.A.

    1976-01-01

    An anisotropic high-β equilibrium is derived for the counterstreaming-beam tokamak (CBT). The critical β of the CBT is found to be of comparable magnitude to that occurring in a similar model of a scalar-pressure tokamak. It is shown that the toroidal current which is essential for equilibrium can be maintained by the counterstreaming ions. Finally, a brief discussion of the stability of the device is given. (author)

  1. Non-equilibrium quantum heat machines

    Science.gov (United States)

    Alicki, Robert; Gelbwaser-Klimovsky, David

    2015-11-01

    Standard heat machines (engine, heat pump, refrigerator) are composed of a system (working fluid) coupled to at least two equilibrium baths at different temperatures and periodically driven by an external device (piston or rotor) sometimes called the work reservoir. The aim of this paper is to go beyond this scheme by considering environments which are stationary but cannot be decomposed into a few baths at thermal equilibrium. Such situations are important, for example in solar cells, chemical machines in biology, various realizations of laser cooling or nanoscopic machines driven by laser radiation. We classify non-equilibrium baths depending on their thermodynamic behavior and show that the efficiency of heat machines powered by them is limited by the generalized Carnot bound.

  2. Non-equilibrium quantum heat machines

    International Nuclear Information System (INIS)

    Alicki, Robert; Gelbwaser-Klimovsky, David

    2015-01-01

    Standard heat machines (engine, heat pump, refrigerator) are composed of a system (working fluid) coupled to at least two equilibrium baths at different temperatures and periodically driven by an external device (piston or rotor) sometimes called the work reservoir. The aim of this paper is to go beyond this scheme by considering environments which are stationary but cannot be decomposed into a few baths at thermal equilibrium. Such situations are important, for example in solar cells, chemical machines in biology, various realizations of laser cooling or nanoscopic machines driven by laser radiation. We classify non-equilibrium baths depending on their thermodynamic behavior and show that the efficiency of heat machines powered by them is limited by the generalized Carnot bound. (paper)

  3. Neutron scattering on equilibrium and nonequilibrium phonons, excitons and polaritons

    International Nuclear Information System (INIS)

    Broude, V.L.; Sheka, E.F.

    1978-01-01

    A number of problems of solid-state physics representing interest for neutron spectroscopy of future is considered. The development of the neutron inelastic scattering spectroscopy (neutron spectroscopy of equilibrium phonons) is discussed with application to nuclear dynamics of crystals in the thermodynamic equilibrium. The results of high-flux neutron source experiments on molecular crystals are presented. The advantages of neutron inelastic scattering over optical spectroscopy are discussed. The spectroscopy of quasi-equilibrium and non-equilibrium quasi-particles is discussed. In particular, the neutron scattering on polaritons, excitons in thermal equilibrium and production of light-excitons are considered. The problem of the possibility of such experiments is elucidated

  4. Ice crystallization in ultrafine water-salt aerosols: nucleation, ice-solution equilibrium, and internal structure.

    Science.gov (United States)

    Hudait, Arpa; Molinero, Valeria

    2014-06-04

    Atmospheric aerosols have a strong influence on Earth's climate. Elucidating the physical state and internal structure of atmospheric aqueous aerosols is essential to predict their gas and water uptake, and the locus and rate of atmospherically important heterogeneous reactions. Ultrafine aerosols with sizes between 3 and 15 nm have been detected in large numbers in the troposphere and tropopause. Nanoscopic aerosols arising from bubble bursting of natural and artificial seawater have been identified in laboratory and field experiments. The internal structure and phase state of these aerosols, however, cannot yet be determined in experiments. Here we use molecular simulations to investigate the phase behavior and internal structure of liquid, vitrified, and crystallized water-salt ultrafine aerosols with radii from 2.5 to 9.5 nm and with up to 10% moles of ions. We find that both ice crystallization and vitrification of the nanodroplets lead to demixing of pure water from the solutions. Vitrification of aqueous nanodroplets yields nanodomains of pure low-density amorphous ice in coexistence with vitrified solute rich aqueous glass. The melting temperature of ice in the aerosols decreases monotonically with an increase of solute fraction and decrease of radius. The simulations reveal that nucleation of ice occurs homogeneously at the subsurface of the water-salt nanoparticles. Subsequent ice growth yields phase-segregated, internally mixed, aerosols with two phases in equilibrium: a concentrated water-salt amorphous mixture and a spherical cap-like ice nanophase. The surface of the crystallized aerosols is heterogeneous, with ice and solution exposed to the vapor. Free energy calculations indicate that as the concentration of salt in the particles, the advance of the crystallization, or the size of the particles increase, the stability of the spherical cap structure increases with respect to the alternative structure in which a core of ice is fully surrounded by

  5. Equilibrium and non-equilibrium extraction separation of rare earth metals in presence of diethylenetriaminepentaacetic acid in aqueous phase

    International Nuclear Information System (INIS)

    Azis, Abdul; Teramoto, Masaaki; Matsuyama, Hideto.

    1995-01-01

    Equilibrium and non-equilibrium extraction separations of rare earth metals were carried out in the presence of chelating agent in the aqueous phase. The separation systems of the rare earth metal mixtures used were Y/Dy, Y/Ho, Y/Er and Y/Tm, and the chelating agent and the extractant were diethylenetriaminepentaacetic acid (DTPA) and bis (2,4,4-trimethylpentyl) phosphinic acid (CYANEXR 272), respectively. For Y/Dy and Y/Ho systems, higher selectivities were obtained in equilibrium separation compared with those in non-equilibrium separation. On the other hand, the selectivities in non-equilibrium separation were higher for Y/Er and Y/Tm systems. In the separation condition suitable to each system, the addition of DTPA to the aqueous phase was found to be very effective for obtaining higher selectivities. The distribution ratios of the rare earth metals and the selectivities in the equilibrium separations obtained experimentally were thoroughly analyzed by considering various equilibria such as the extraction equilibrium and the complex formation equilibrium between rare earth metals and DTPA in the aqueous phase. Moreover, the extraction rates and the selectivities in the non-equilibrium separations were also analyzed by the extraction model considering the dissociation reactions of the rare earth metal-DTPA complexes in the aqueous stagnant layer. Based on these analyses, we presented an index which is useful for selecting the optimum operation mode. Using this index, we can predict that the selectivities under equilibrium conditions are higher than those under non-equilibrium conditions for Y/Dy and Y/Ho systems, while for Y/Er and Y/Tm systems, higher selectivities are obtained under non-equilibrium conditions. The experimental results were in agreement with predictions by this index. Further, the selectivities in various systems including other chelating agents and extractants were discussed based on this index. (J.P.N.)

  6. Phase stability analysis of liquid-liquid equilibrium with stochastic methods

    Directory of Open Access Journals (Sweden)

    G. Nagatani

    2008-09-01

    Full Text Available Minimization of Gibbs free energy using activity coefficient models and nonlinear equation solution techniques is commonly applied to phase stability problems. However, when conventional techniques, such as the Newton-Raphson method, are employed, serious convergence problems may arise. Due to the existence of multiple solutions, several problems can be found in modeling liquid-liquid equilibrium of multicomponent systems, which are highly dependent on the initial guess. In this work phase stability analysis of liquid-liquid equilibrium is investigated using the NRTL model. For this purpose, two distinct stochastic numerical algorithms are employed to minimize the tangent plane distance of Gibbs free energy: a subdivision algorithm that can find all roots of nonlinear equations for liquid-liquid stability analysis and the Simulated Annealing method. Results obtained in this work for the two stochastic algorithms are compared with those of the Interval Newton method from the literature. Several different binary and multicomponent systems from the literature were successfully investigated.

  7. Dynamics of unstable sound waves in a non-equilibrium medium at the nonlinear stage

    Science.gov (United States)

    Khrapov, Sergey; Khoperskov, Alexander

    2018-03-01

    A new dispersion equation is obtained for a non-equilibrium medium with an exponential relaxation model of a vibrationally excited gas. We have researched the dependencies of the pump source and the heat removal on the medium thermodynamic parameters. The boundaries of sound waves stability regions in a non-equilibrium gas have been determined. The nonlinear stage of sound waves instability development in a vibrationally excited gas has been investigated within CSPH-TVD and MUSCL numerical schemes using parallel technologies OpenMP-CUDA. We have obtained a good agreement of numerical simulation results with the linear perturbations dynamics at the initial stage of the sound waves growth caused by instability. At the nonlinear stage, the sound waves amplitude reaches the maximum value that leads to the formation of shock waves system.

  8. Quantum mechanics gives stability to a Nash equilibrium

    International Nuclear Information System (INIS)

    Iqbal, A.; Toor, A.H.

    2002-01-01

    We consider a slightly modified version of the rock-scissors-paper (RSP) game from the point of view of evolutionary stability. In its classical version the game has a mixed Nash equilibrium (NE) not stable against mutants appearing in small numbers. We find a quantized version of the RSP game for which the classical mixed NE becomes stable

  9. Combined equilibrium and non-equilibrium phosphorus segregation to grain boundaries in a 2.25Cr1Mo steel

    International Nuclear Information System (INIS)

    Song, S.-H.; Shen, D.-D.; Yuan, Z.-X.; Liu, J.; Xu, T.-D.; Weng, L.-Q.

    2003-01-01

    Grain boundary segregation of phosphorus in a P-doped 2.25Cr1Mo steel during ageing at 540 deg. C after quenching from 980 deg. C is examined by Auger electron spectroscopy. The segregation is a combined effect of equilibrium segregation and non-equilibrium segregation. The effect of phosphorus non-equilibrium segregation is to enhance the kinetics of its equilibrium segregation

  10. Understanding Non-equilibrium Thermodynamics Foundations, Applications, Frontiers

    CERN Document Server

    Jou, David; Lebon, Georgy

    2007-01-01

    This book offers a homogeneous presentation of the many faces of non-equilibrium thermodynamics. The first part is devoted to a description of the nowadays thermodynamic formalism recognized as the classical theory of non-equilibrium processes. This part of the book may serve as a basis to an introductory course dedicated to first-year graduate students in sciences and engineering. The classical description can however not be complete, as it rests on the hypothesis of local equilibrium. This has fostered the development of many theories going beyond local equilibrium and which cannot be put aside. The second part of the book is concerned with these different approaches, and will be of special interest for PhD students and researchers. For the sake of homogeneity, the authors have used the general structure and methods presented in the first part. Indeed, besides their differences, all these formalisms are not closed boxes but present some overlappings and parallelisms which are emphasized in this book. For pe...

  11. Temperature control in molecular dynamic simulations of non-equilibrium processes

    International Nuclear Information System (INIS)

    Toton, Dawid; Lorenz, Christian D; Rompotis, Nikolaos; Martsinovich, Natalia; Kantorovich, Lev

    2010-01-01

    Thermostats are often used in various condensed matter problems, e.g. when a biological molecule undergoes a transformation in a solution, a crystal surface is irradiated with energetic particles, a crack propagates in a solid upon applied stress, two surfaces slide with respect to each other, an excited local phonon dissipates its energy into a crystal bulk, and so on. In all of these problems, as well as in many others, there is an energy transfer between different local parts of the entire system kept at a constant temperature. Very often, when modelling such processes using molecular dynamics simulations, thermostatting is done using strictly equilibrium approaches serving to describe the NVT ensemble. In this paper we critically discuss the applicability of such approaches to non-equilibrium problems, including those mentioned above, and stress that the correct temperature control can only be achieved if the method is based on the generalized Langevin equation (GLE). Specifically, we emphasize that a meaningful compromise between computational efficiency and a physically appropriate implementation of the NVT thermostat can be achieved, at least for solid state and surface problems, if the so-called stochastic boundary conditions (SBC), recently derived from the GLE (Kantorovich and Rompotis 2008 Phys. Rev. B 78 094305), are used. For SBC, the Langevin thermostat is only applied to the outer part of the simulated fragment of the entire system which borders the surrounding environment (not considered explicitly) serving as a heat bath. This point is illustrated by comparing the performance of the SBC and some of the equilibrium thermostats in two problems: (i) irradiation of the Si(001) surface with an energetic CaF 2 molecule using an ab initio density functional theory based method, and (ii) the tribology of two amorphous SiO 2 surfaces coated with self-assembled monolayers of methyl-terminated hydrocarbon alkoxylsilane molecules using a classical atomistic

  12. "Non-equilibrium" block copolymer micelles with glassy cores: a predictive approach based on theory of equilibrium micelles.

    Science.gov (United States)

    Nagarajan, Ramanathan

    2015-07-01

    Micelles generated in water from most amphiphilic block copolymers are widely recognized to be non-equilibrium structures. Typically, the micelles are prepared by a kinetic process, first allowing molecular scale dissolution of the block copolymer in a common solvent that likes both the blocks and then gradually replacing the common solvent by water to promote the hydrophobic blocks to aggregate and create the micelles. The non-equilibrium nature of the micelle originates from the fact that dynamic exchange between the block copolymer molecules in the micelle and the singly dispersed block copolymer molecules in water is suppressed, because of the glassy nature of the core forming polymer block and/or its very large hydrophobicity. Although most amphiphilic block copolymers generate such non-equilibrium micelles, no theoretical approach to a priori predict the micelle characteristics currently exists. In this work, we propose a predictive approach for non-equilibrium micelles with glassy cores by applying the equilibrium theory of micelles in two steps. In the first, we calculate the properties of micelles formed in the mixed solvent while true equilibrium prevails, until the micelle core becomes glassy. In the second step, we freeze the micelle aggregation number at this glassy state and calculate the corona dimension from the equilibrium theory of micelles. The condition when the micelle core becomes glassy is independently determined from a statistical thermodynamic treatment of diluent effect on polymer glass transition temperature. The predictions based on this "non-equilibrium" model compare reasonably well with experimental data for polystyrene-polyethylene oxide diblock copolymer, which is the most extensively studied system in the literature. In contrast, the application of the equilibrium model to describe such a system significantly overpredicts the micelle core and corona dimensions and the aggregation number. The non-equilibrium model suggests ways to

  13. Stability Analysis of Landslide on the R1 Expressway by Limit Equilibrium and Finite Element Methods

    Science.gov (United States)

    Janták, Viktor

    2017-12-01

    The most difficult problem by designing the superior infrastructure is tracing the expressways and higways in an environment of Quaternary and Neogene complexes of finegrained cohesive and non-cohesive soils. At the last time the typical examples are stability problems on the R1 Nitra - Tekovské Nemce Expressway. The article is focused on the description of reasons of stability loss in the deep earth cut in the 79,000 km of expressway R1, the course of the landslide, slide correction and especially slope-stability assessment before and after the occurrence of slope failures by limit equilibrium and finite elements methods by comparing the behaviour of the slope in the various model situations.

  14. Controlling Non-Equilibrium Structure Formation on the Nanoscale.

    Science.gov (United States)

    Buchmann, Benedikt; Hecht, Fabian Manfred; Pernpeintner, Carla; Lohmueller, Theobald; Bausch, Andreas R

    2017-12-06

    Controlling the structure formation of gold nanoparticle aggregates is a promising approach towards novel applications in many fields, ranging from (bio)sensing to (bio)imaging to medical diagnostics and therapeutics. To steer structure formation, the DNA-DNA interactions of DNA strands that are coated on the surface of the particles have become a valuable tool to achieve precise control over the interparticle potentials. In equilibrium approaches, this technique is commonly used to study particle crystallization and ligand binding. However, regulating the structural growth processes from the nano- to the micro- and mesoscale remains elusive. Here, we show that the non-equilibrium structure formation of gold nanoparticles can be stirred in a binary heterocoagulation process to generate nanoparticle clusters of different sizes. The gold nanoparticles are coated with sticky single stranded DNA and mixed at different stoichiometries and sizes. This not only allows for structural control but also yields access to the optical properties of the nanoparticle suspensions. As a result, we were able to reliably control the kinetic structure formation process to produce cluster sizes between tens of nanometers up to micrometers. Consequently, the intricate optical properties of the gold nanoparticles could be utilized to control the maximum of the nanoparticle suspension extinction spectra between 525 nm and 600 nm. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Modelling non-equilibrium thermodynamic systems from the speed-gradient principle.

    Science.gov (United States)

    Khantuleva, Tatiana A; Shalymov, Dmitry S

    2017-03-06

    The application of the speed-gradient (SG) principle to the non-equilibrium distribution systems far away from thermodynamic equilibrium is investigated. The options for applying the SG principle to describe the non-equilibrium transport processes in real-world environments are discussed. Investigation of a non-equilibrium system's evolution at different scale levels via the SG principle allows for a fresh look at the thermodynamics problems associated with the behaviour of the system entropy. Generalized dynamic equations for finite and infinite number of constraints are proposed. It is shown that the stationary solution to the equations, resulting from the SG principle, entirely coincides with the locally equilibrium distribution function obtained by Zubarev. A new approach to describe time evolution of systems far from equilibrium is proposed based on application of the SG principle at the intermediate scale level of the system's internal structure. The problem of the high-rate shear flow of viscous fluid near the rigid plane plate is discussed. It is shown that the SG principle allows closed mathematical models of non-equilibrium processes to be constructed.This article is part of the themed issue 'Horizons of cybernetical physics'. © 2017 The Author(s).

  16. The crystal structure and stability of molybdenum at ultrahigh pressures

    International Nuclear Information System (INIS)

    Jona, F; Marcus, P M

    2005-01-01

    Crystal structures and their stabilities for molybdenum under increasing hydrostatic pressures are investigated by first-principles calculations of the Gibbs free energy. Three structures are considered: body-centred cubic (bcc, the ground state at zero pressure), hexagonal close-packed (hcp) and face-centred cubic (fcc). For each structure and each pressure (up to 8 Mbar) the equilibrium states are found from minima of the Gibbs free energy at zero temperature. The stability is tested by calculating the elastic constants and checking whether they satisfy the appropriate stability conditions. The bcc structure is confirmed to be stable at zero pressure and at 6 Mbar. At and above 6.2 M-bar the ground-state structure changes to hcp, which is found to be stable at 7 M-bar. At 7.7 Mbar another transition occurs, and the ground-state structure changes from hcp to fcc. The fcc structure, which is unstable at zero pressure, becomes metastable over the range from 3 to 7.7 M-bar and becomes the ground state at higher pressures (at least up to 8 Mbar). Direct confirmation of these calculated transition pressures with experiment is not now possible, as the maximum static pressure currently reached experimentally is 5.6 Mbar, where Mo is found to be still in the bcc phase

  17. Non-equilibrium thermodynamics

    CERN Document Server

    De Groot, Sybren Ruurds

    1984-01-01

    The study of thermodynamics is especially timely today, as its concepts are being applied to problems in biology, biochemistry, electrochemistry, and engineering. This book treats irreversible processes and phenomena - non-equilibrium thermodynamics.S. R. de Groot and P. Mazur, Professors of Theoretical Physics, present a comprehensive and insightful survey of the foundations of the field, providing the only complete discussion of the fluctuating linear theory of irreversible thermodynamics. The application covers a wide range of topics: the theory of diffusion and heat conduction, fluid dyn

  18. Evolution and non-equilibrium physics

    DEFF Research Database (Denmark)

    Becker, Nikolaj; Sibani, Paolo

    2014-01-01

    We argue that the stochastic dynamics of interacting agents which replicate, mutate and die constitutes a non-equilibrium physical process akin to aging in complex materials. Specifically, our study uses extensive computer simulations of the Tangled Nature Model (TNM) of biological evolution...

  19. Equilibrium vapor-liquid-crystal in Sn-In-P system

    International Nuclear Information System (INIS)

    Ermilin, V.N.; Selin, A.A.; Khukhryanskij, Yu.P.

    1991-01-01

    Using flow method the dependence of phosphorus vapor pressure was investigated on the composition of equilibrium with indium phosphide crystal of Sn-In-P system melt (x P l ≤x In l ) and temperature (in the range 918 to 978 K). Its multiplicative character conditioned by change in phosphorus solubility in liquid phase and reconstruction of internal structure of the melt was established. It is revealed that in the considered melts phosphorus is in atomic form (possible as In n P complexes)

  20. Melting temperature evolution of non-reorganized crystals. Poly(3-hydroxybutyrate)

    International Nuclear Information System (INIS)

    Righetti, Maria Cristina; Di Lorenzo, Maria Laura

    2011-01-01

    In the present study the correlation between the melting behaviour of poly(3-hydroxybutyrate) (PHB) original, non-reorganized crystals and the crystallinity increase during isothermal crystallization is presented and discussed. Since the reorganization processes modify the melting curve of original crystals, it is necessary to prevent and hinder all the processes that influence and increase the lamellar thickness. PHB exhibits melting/recrystallization on heating, the occurring of lamellar thickening in the solid state being excluded. The first step of the study was the identification of the scanning rate which inhibits PHB recrystallization at sufficiently high T c . For the extrapolated onset and peak temperatures of the main melting endotherm, which is connected to fusion of dominant lamellae, a double dependence on the crystallization time was found. The crystallization time at which T onset and T peak change their trends was found to correspond to the spherulite impingement time, so that the two different dependencies were put in relation with primary and secondary crystallizations respectively. The increase of both T onset and T peak at high crystallization times after spherulite impingement was considered an effect due to crystal superheating and an indication of a stabilization process of the crystalline phase. Such stabilization, which produces an increase of the melting temperature, is probably connected with the volume filling that occurs after spherulite impingement.

  1. Equilibrium and stability studies for high beta plasmas in torsatron/heliotron devices

    International Nuclear Information System (INIS)

    Carreras, B.A.; Cooper, W.A.; Charlton, L.A.

    1983-01-01

    The equilibrium and stability properties of high β plasmas in torsatron/heliotron devices have been investigated. Three numerical approaches have been used to study plasma equilibria for a range of coil configurations. The method of averaging permits fast equilibrium and stability calculations. Two fully 3-D codes, namely the Chodura-Schluter code, and the NEAR code recently developed at ORNL, are used to explore selected regions of parameter space. The resulting equilibria calculated with different methods are in good agreement. This validates the average method approach and enhances its usefulness. Results are presented for configurations with different aspect ratios and number of field periods. The role of the vertical field has also been studied in detail. The main conclusion is that for moderate aspect ratios (Asub(p) <= 8), the self-stabilizing effect of the magnetic axis shift is large enough to open a direct path to the second stability regime. (author)

  2. Investigation of Non-Equilibrium Radiation for Earth Entry

    Science.gov (United States)

    Brandis, A. M.; Johnston, C. O.; Cruden, B. A.

    2016-01-01

    For Earth re-entry at velocities between 8 and 11.5 km/s, the accuracy of NASA's computational uid dynamic and radiative simulations of non-equilibrium shock layer radiation is assessed through comparisons with measurements. These measurements were obtained in the NASA Ames Research Center's Electric Arc Shock Tube (EAST) facility. The experiments were aimed at measuring the spatially and spectrally resolved radiance at relevant entry conditions for both an approximate Earth atmosphere (79% N2 : 21% O2 by mole) as well as a more accurate composition featuring the trace species Ar and CO2 (78.08% N2 : 20.95% O2 : 0.04% CO2 : 0.93% Ar by mole). The experiments were configured to target a wide range of conditions, of which shots from 8 to 11.5 km/s at 0.2 Torr (26.7 Pa) are examined in this paper. The non-equilibrium component was chosen to be the focus of this study as it can account for a significant percentage of the emitted radiation for Earth re-entry, and more importantly, non-equilibrium has traditionally been assigned a large uncertainty for vehicle design. The main goals of this study are to present the shock tube data in the form of a non-equilibrium metric, evaluate the level of agreement between the experiment and simulations, identify key discrepancies and to examine critical aspects of modeling non-equilibrium radiating flows. Radiance pro les integrated over discreet wavelength regions, ranging from the Vacuum Ultra Violet (VUV) through to the Near Infra-Red (NIR), were compared in order to maximize both the spectral coverage and the number of experiments that could be used in the analysis. A previously defined non-equilibrium metric has been used to allow comparisons with several shots and reveal trends in the data. Overall, LAURA/HARA is shown to under-predict EAST by as much as 40% and over-predict by as much as 12% depending on the shock speed. DPLR/NEQAIR is shown to under-predict EAST by as much as 50% and over-predict by as much as 20% depending

  3. Bifurcation and Stability Analysis of the Equilibrium States in Thermodynamic Systems in a Small Vicinity of the Equilibrium Values of Parameters

    Science.gov (United States)

    Barsuk, Alexandr A.; Paladi, Florentin

    2018-04-01

    The dynamic behavior of thermodynamic system, described by one order parameter and one control parameter, in a small neighborhood of ordinary and bifurcation equilibrium values of the system parameters is studied. Using the general methods of investigating the branching (bifurcations) of solutions for nonlinear equations, we performed an exhaustive analysis of the order parameter dependences on the control parameter in a small vicinity of the equilibrium values of parameters, including the stability analysis of the equilibrium states, and the asymptotic behavior of the order parameter dependences on the control parameter (bifurcation diagrams). The peculiarities of the transition to an unstable state of the system are discussed, and the estimates of the transition time to the unstable state in the neighborhood of ordinary and bifurcation equilibrium values of parameters are given. The influence of an external field on the dynamic behavior of thermodynamic system is analyzed, and the peculiarities of the system dynamic behavior are discussed near the ordinary and bifurcation equilibrium values of parameters in the presence of external field. The dynamic process of magnetization of a ferromagnet is discussed by using the general methods of bifurcation and stability analysis presented in the paper.

  4. On non-equilibrium states in QFT model with boundary interaction

    International Nuclear Information System (INIS)

    Bazhanov, Vladimir V.; Lukyanov, Sergei L.; Zamolodchikov, Alexander B.

    1999-01-01

    We prove that certain non-equilibrium expectation values in the boundary sine-Gordon model coincide with associated equilibrium-state expectation values in the systems which differ from the boundary sine-Gordon in that certain extra boundary degrees of freedom (q-oscillators) are added. Applications of this result to actual calculation of non-equilibrium characteristics of the boundary sine-Gordon model are also discussed

  5. Non-Equilibrium Properties from Equilibrium Free Energy Calculations

    Science.gov (United States)

    Pohorille, Andrew; Wilson, Michael A.

    2012-01-01

    Calculating free energy in computer simulations is of central importance in statistical mechanics of condensed media and its applications to chemistry and biology not only because it is the most comprehensive and informative quantity that characterizes the eqUilibrium state, but also because it often provides an efficient route to access dynamic and kinetic properties of a system. Most of applications of equilibrium free energy calculations to non-equilibrium processes rely on a description in which a molecule or an ion diffuses in the potential of mean force. In general case this description is a simplification, but it might be satisfactorily accurate in many instances of practical interest. This hypothesis has been tested in the example of the electrodiffusion equation . Conductance of model ion channels has been calculated directly through counting the number of ion crossing events observed during long molecular dynamics simulations and has been compared with the conductance obtained from solving the generalized Nernst-Plank equation. It has been shown that under relatively modest conditions the agreement between these two approaches is excellent, thus demonstrating the assumptions underlying the diffusion equation are fulfilled. Under these conditions the electrodiffusion equation provides an efficient approach to calculating the full voltage-current dependence routinely measured in electrophysiological experiments.

  6. Equilibrium and stability studies for high-beta plasmas in torsatron/heliotron devices

    International Nuclear Information System (INIS)

    Carreras, B.A.; Charlton, L.A.; Cooper, W.A.

    1983-01-01

    The equilibrium and stability properties of high-#betta# plasmas in torsatron/heliotron devices have been investigated. Three numerical approaches have been used to study plasma equilibria for a range of coil configurations. The method of averaging permits fast equilibrium and stability calculations. Two fully 3-D codes, namely the Chodura-Schluter code, and the NEAR code recently developed at ORNL, are used to explore selected regions of parameter space. The resulting equilibria calculated with different methods are in good agreement. This validates the average method approach and enhances its usefulness. Results are presented for configurations with different aspect ratios and number of field periods. The role of the vertical field has also been studied in detail. The main conclusion is that for moderate aspect ratios (A/sub p/ less than or equal to 8), the self-stabilizing effect of the magnetic-axis shift is large enough to open a direct path to the second-stability regime

  7. Non-equilibrium mean-field theories on scale-free networks

    International Nuclear Information System (INIS)

    Caccioli, Fabio; Dall'Asta, Luca

    2009-01-01

    Many non-equilibrium processes on scale-free networks present anomalous critical behavior that is not explained by standard mean-field theories. We propose a systematic method to derive stochastic equations for mean-field order parameters that implicitly account for the degree heterogeneity. The method is used to correctly predict the dynamical critical behavior of some binary spin models and reaction–diffusion processes. The validity of our non-equilibrium theory is further supported by showing its relation with the generalized Landau theory of equilibrium critical phenomena on networks

  8. On the forces and fluxes in non-equilibrium thermodynamics

    International Nuclear Information System (INIS)

    Kitahara, Kazuo

    1986-01-01

    A formulation of non-equilibrium thermodynamics of continuum systems based on local equilibrium assumption is reported. Thermodynamic forces are defined from a generalized local entropy and irreversible fluxes are defined as non-advective parts of fluxes of conservative quantities. The validity of the general evolution criterion and its generalization is discussed. (author)

  9. Wall ablation of heated compound-materials into non-equilibrium discharge plasmas

    Science.gov (United States)

    Wang, Weizong; Kong, Linghan; Geng, Jinyue; Wei, Fuzhi; Xia, Guangqing

    2017-02-01

    The discharge properties of the plasma bulk flow near the surface of heated compound-materials strongly affects the kinetic layer parameters modeled and manifested in the Knudsen layer. This paper extends the widely used two-layer kinetic ablation model to the ablation controlled non-equilibrium discharge due to the fact that the local thermodynamic equilibrium (LTE) approximation is often violated as a result of the interaction between the plasma and solid walls. Modifications to the governing set of equations, to account for this effect, are derived and presented by assuming that the temperature of the electrons deviates from that of the heavy particles. The ablation characteristics of one typical material, polytetrafluoroethylene (PTFE) are calculated with this improved model. The internal degrees of freedom as well as the average particle mass and specific heat ratio of the polyatomic vapor, which strongly depends on the temperature, pressure and plasma non-equilibrium degree and plays a crucial role in the accurate determination of the ablation behavior by this model, are also taken into account. Our assessment showed the significance of including such modifications related to the non-equilibrium effect in the study of vaporization of heated compound materials in ablation controlled arcs. Additionally, a two-temperature magneto-hydrodynamic (MHD) model accounting for the thermal non-equilibrium occurring near the wall surface is developed and applied into an ablation-dominated discharge for an electro-thermal chemical launch device. Special attention is paid to the interaction between the non-equilibrium plasma and the solid propellant surface. Both the mass exchange process caused by the wall ablation and plasma species deposition as well as the associated momentum and energy exchange processes are taken into account. A detailed comparison of the results of the non-equilibrium model with those of an equilibrium model is presented. The non-equilibrium results

  10. On the stability of the Cournot equilibrium: An evolutionary approach

    NARCIS (Netherlands)

    Hommes, C.H.; Ochea, M.I.; Tuinstra, J.

    2011-01-01

    We construct an evolutionary version of Theocharis (1960)'s seminal work on the stability of equilibrium in multi-player quantity-setting oligopolies. Two sets of behavioral heuristics are investigated under fixed and endogenously evolving fractions: (myopic) Cournot firms vs. Nash firms and Cournot

  11. Non-Equilibrium Heavy Flavored Hadron Yields from Chemical Equilibrium Strangeness-Rich QGP

    OpenAIRE

    Kuznetsova, Inga; Rafelski, Johann

    2008-01-01

    The yields of heavy flavored hadrons emitted from strangeness-rich QGP are evaluated within chemical non-equilibrium statistical hadronization model, conserving strangeness, charm, and entropy yields at hadronization.

  12. Convective plasma stability consistent with MHD equilibrium in magnetic confinement systems with a decreasing field

    International Nuclear Information System (INIS)

    Tsventoukh, M. M.

    2010-01-01

    A study is made of the convective (interchange, or flute) plasma stability consistent with equilibrium in magnetic confinement systems with a magnetic field decreasing outward and large curvature of magnetic field lines. Algorithms are developed which calculate convective plasma stability from the Kruskal-Oberman kinetic criterion and in which the convective stability is iteratively consistent with MHD equilibrium for a given pressure and a given type of anisotropy in actual magnetic geometry. Vacuum and equilibrium convectively stable configurations in systems with a decreasing, highly curved magnetic field are calculated. It is shown that, in convectively stable equilibrium, the possibility of achieving high plasma pressures in the central region is restricted either by the expansion of the separatrix (when there are large regions of a weak magnetic field) or by the filamentation of the gradient plasma current (when there are small regions of a weak magnetic field, in which case the pressure drops mainly near the separatrix). It is found that, from the standpoint of equilibrium and of the onset of nonpotential ballooning modes, a kinetic description of convective stability yields better plasma confinement parameters in systems with a decreasing, highly curved magnetic field than a simpler MHD model and makes it possible to substantially improve the confinement parameters for a given type of anisotropy. For the Magnetor experimental compact device, the maximum central pressure consistent with equilibrium and stability is calculated to be as high as β ∼ 30%. It is shown that, for the anisotropy of the distribution function that is typical of a background ECR plasma, the limiting pressure gradient is about two times steeper than that for an isotropic plasma. From a practical point of view, the possibility is demonstrated of achieving better confinement parameters of a hot collisionless plasma in systems with a decreasing, highly curved magnetic field than those

  13. Stochastic linearization of turbulent dynamics of dispersive waves in equilibrium and non-equilibrium state

    International Nuclear Information System (INIS)

    Jiang, Shixiao W; Lu, Haihao; Zhou, Douglas; Cai, David

    2016-01-01

    Characterizing dispersive wave turbulence in the long time dynamics is central to understanding of many natural phenomena, e.g., in atmosphere ocean dynamics, nonlinear optics, and plasma physics. Using the β -Fermi–Pasta–Ulam nonlinear system as a prototypical example, we show that in thermal equilibrium and non-equilibrium steady state the turbulent state even in the strongly nonlinear regime possesses an effective linear stochastic structure in renormalized normal variables. In this framework, we can well characterize the spatiotemporal dynamics, which are dominated by long-wavelength renormalized waves. We further demonstrate that the energy flux is nearly saturated by the long-wavelength renormalized waves in non-equilibrium steady state. The scenario of such effective linear stochastic dynamics can be extended to study turbulent states in other nonlinear wave systems. (paper)

  14. Spectral non-equilibrium property in homogeneous isotropic turbulence and its implication in subgrid-scale modeling

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Le [Laboratory of Mathematics and Physics, Ecole Centrale de Pékin, Beihang University, Beijing 100191 (China); Zhu, Ying [Laboratory of Mathematics and Physics, Ecole Centrale de Pékin, Beihang University, Beijing 100191 (China); National Key Laboratory of Science and Technology on Aero-Engine Aero-Thermodynamics, School of Energy and Power Engineering, Beihang University, Beijing 100191 (China); Liu, Yangwei, E-mail: liuyangwei@126.com [National Key Laboratory of Science and Technology on Aero-Engine Aero-Thermodynamics, School of Energy and Power Engineering, Beihang University, Beijing 100191 (China); Lu, Lipeng [National Key Laboratory of Science and Technology on Aero-Engine Aero-Thermodynamics, School of Energy and Power Engineering, Beihang University, Beijing 100191 (China)

    2015-10-09

    The non-equilibrium property in turbulence is a non-negligible problem in large-eddy simulation but has not yet been systematically considered. The generalization from equilibrium turbulence to non-equilibrium turbulence requires a clear recognition of the non-equilibrium property. As a preliminary step of this recognition, the present letter defines a typical non-equilibrium process, that is, the spectral non-equilibrium process, in homogeneous isotropic turbulence. It is then theoretically investigated by employing the skewness of grid-scale velocity gradient, which permits the decomposition of resolved velocity field into an equilibrium one and a time-reversed one. Based on this decomposition, an improved Smagorinsky model is proposed to correct the non-equilibrium behavior of the traditional Smagorinsky model. The present study is expected to shed light on the future studies of more generalized non-equilibrium turbulent flows. - Highlights: • A spectral non-equilibrium process in isotropic turbulence is defined theoretically. • A decomposition method is proposed to divide a non-equilibrium turbulence field. • An improved Smagorinsky model is proposed to correct the non-equilibrium behavior.

  15. Non-equilibrium concentration fluctuations in binary liquids with realistic boundary conditions.

    Science.gov (United States)

    Ortiz de Zárate, J M; Kirkpatrick, T R; Sengers, J V

    2015-09-01

    Because of the spatially long-ranged nature of spontaneous fluctuations in thermal non-equilibrium systems, they are affected by boundary conditions for the fluctuating hydrodynamic variables. In this paper we consider a liquid mixture between two rigid and impervious plates with a stationary concentration gradient resulting from a temperature gradient through the Soret effect. For liquid mixtures with large Lewis and Schmidt numbers, we are able to obtain explicit analytical expressions for the intensity of the non-equilibrium concentration fluctuations as a function of the frequency ω and the wave number q of the fluctuations. In addition we elucidate the spatial dependence of the intensity of the non-equilibrium fluctuations responsible for a non-equilibrium Casimir effect.

  16. Equilibrium and stability of a toroidal-sector plasma discharge in an EXTRAP configuration

    International Nuclear Information System (INIS)

    Drake, J.R.

    1982-02-01

    Experimental studies of the equilibrium and stability of a sector of a toroidal EXTRAP plasma discharge have been studied. The high β plasma discharge, which had an Alfven transit time about 0.5 μsec, could be positioned in a stable equilibrium for the 300μsec time scale of the experiment. (author)

  17. The entropy concept for non-equilibrium states.

    Science.gov (United States)

    Lieb, Elliott H; Yngvason, Jakob

    2013-10-08

    In earlier work, we presented a foundation for the second law of classical thermodynamics in terms of the entropy principle. More precisely, we provided an empirically accessible axiomatic derivation of an entropy function defined on all equilibrium states of all systems that has the appropriate additivity and scaling properties, and whose increase is a necessary and sufficient condition for an adiabatic process between two states to be possible. Here, after a brief review of this approach, we address the question of defining entropy for non-equilibrium states. Our conclusion is that it is generally not possible to find a unique entropy that has all relevant physical properties. We do show, however, that one can define two entropy functions, called S - and S + , which, taken together, delimit the range of adiabatic processes that can occur between non-equilibrium states. The concept of comparability of states with respect to adiabatic changes plays an important role in our reasoning.

  18. Equilibrium configurations of fluids and their stability in higher dimensions

    International Nuclear Information System (INIS)

    Cardoso, Vitor; Gualtieri, Leonardo

    2006-01-01

    We study equilibrium shapes, stability and possible bifurcation diagrams of fluids in higher dimensions, held together by either surface tension or self-gravity. We consider the equilibrium shape and stability problem of self-gravitating spheroids, establishing the formalism to generalize the MacLaurin sequence to higher dimensions. We show that such simple models, of interest on their own, also provide accurate descriptions of their general relativistic relatives with event horizons. The examples worked out here hint at some model-independent dynamics, and thus at some universality: smooth objects seem always to be well described by both 'replicas' (either self-gravity or surface tension). As an example, we exhibit an instability afflicting self-gravitating (Newtonian) fluid cylinders. This instability is the exact analogue, within Newtonian gravity, of the Gregory-Laflamme instability in general relativity. Another example considered is a self-gravitating Newtonian torus made of a homogeneous incompressible fluid. We recover the features of the black ring in general relativity

  19. Force-dominated non-equilibrium oxidation kinetics of tantalum

    International Nuclear Information System (INIS)

    Kar, Prasenjit; Wang, Ke; Liang, Hong

    2008-01-01

    Using a combined electrochemical and mechanical manipulation technique, we compared the equilibrium and non-equilibrium oxidation processes and states of tantalum. Experimentally, a setup was developed with an electrochemical system attached to a sliding mechanical configuration capable of friction force measurement. The surface chemistry of a sliding surface, i.e., tantalum, was modified through the electrolyte. The mechanically applied force was fixed and the dynamics of the surface was monitored in situ through a force sensor. The formation of non-equilibrium oxidation states of tantalum was found in oxidation limiting environment of acetic acid. An oxidative environment of deionized water saturated with KCl was used as comparison. We proposed a modified Arrhenius-Eyring equation in which the mechanical factor was considered. We found that the mechanical energy induced the non-stable-state reactions leading to metastable oxidation states of tantalum. This equation can be used to predict mechanochemical reactions that are important in many industrial applications

  20. Relation between absorbed dose, charged particle equilibrium and nuclear transformations: A non-equilibrium thermodynamics point of view

    International Nuclear Information System (INIS)

    Alvarez-Romero, J. T.

    2006-01-01

    We present a discussion to show that the absorbed dose D is a time-dependent function. This time dependence is demonstrated based on the concepts of charged particle equilibrium and on radiation equilibrium within the context of thermodynamic non-equilibrium. In the latter, the time dependence is due to changes of the rest mass energy of the nuclei and elementary particles involved in the terms ΣQ and Q that appear in the definitions of energy imparted ε and energy deposit ε i , respectively. In fact, nothing is said about the averaging operation of the non-stochastic quantity mean energy imparted ε-bar, which is used in the definition of D according to ICRU 60. It is shown in this research that the averaging operation necessary to define the ε-bar employed to get D cannot be performed with an equilibrium statistical operator ρ(r) as could be expected. Rather, the operation has to be defined with a time-dependent non-equilibrium statistical operator (r, t) therefore, D is a time-dependent function D(r, t). (authors)

  1. Non-equilibrium many body dynamics

    International Nuclear Information System (INIS)

    Creutz, M.; Gyulassy, M.

    1997-01-01

    This Riken BNL Research Center Symposium on Non-Equilibrium Many Body Physics was held on September 23-25, 1997 as part of the official opening ceremony of the Center at Brookhaven National Lab. A major objective of theoretical work at the center is to elaborate on the full spectrum of strong interaction physics based on QCD, including the physics of confinement and chiral symmetry breaking, the parton structure of hadrons and nuclei, and the phenomenology of ultra-relativistic nuclear collisions related to the up-coming experiments at RHIC. The opportunities and challenges of nuclear and particle physics in this area naturally involve aspects of the many body problem common to many other fields. The aim of this symposium was to find common theoretical threads in the area of non-equilibrium physics and modern transport theories. The program consisted of invited talks on a variety topics from the fields of atomic, condensed matter, plasma, astrophysics, cosmology, and chemistry, in addition to nuclear and particle physics. Separate abstracts have been indexed into the database for contributions to this workshop

  2. Non-equilibrium many body dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Creutz, M.; Gyulassy, M.

    1997-09-22

    This Riken BNL Research Center Symposium on Non-Equilibrium Many Body Physics was held on September 23-25, 1997 as part of the official opening ceremony of the Center at Brookhaven National Lab. A major objective of theoretical work at the center is to elaborate on the full spectrum of strong interaction physics based on QCD, including the physics of confinement and chiral symmetry breaking, the parton structure of hadrons and nuclei, and the phenomenology of ultra-relativistic nuclear collisions related to the up-coming experiments at RHIC. The opportunities and challenges of nuclear and particle physics in this area naturally involve aspects of the many body problem common to many other fields. The aim of this symposium was to find common theoretical threads in the area of non-equilibrium physics and modern transport theories. The program consisted of invited talks on a variety topics from the fields of atomic, condensed matter, plasma, astrophysics, cosmology, and chemistry, in addition to nuclear and particle physics. Separate abstracts have been indexed into the database for contributions to this workshop.

  3. Equilibrium and stability of high-β plasmas in W7-AS

    International Nuclear Information System (INIS)

    Geiger, J.; Weller, A.; Nuehrenberg, C.; Werner, A.; Zarnstorff, M.; Kolesnichenko, Ya.I.

    2003-01-01

    In this paper the optimization of equilibrium and stability of high-β plasmas by means of the reduction of the Pfirsch-Schlueter currents is described. Furthermore the Alfven modes driven by neutral-beam injection are considered. (HSI)

  4. Stability limit of liquid water in metastable equilibrium with subsaturated vapors.

    Science.gov (United States)

    Wheeler, Tobias D; Stroock, Abraham D

    2009-07-07

    A pure liquid can reach metastable equilibrium with its subsaturated vapor across an appropriate membrane. This situation is analogous to osmotic equilibrium: the reduced chemical potential of the dilute phase (the subsaturated vapor) is compensated by a difference in pressure between the phases. To equilibrate with subsaturated vapor, the liquid phase assumes a pressure that is lower than its standard vapor pressure, such that the liquid phase is metastable with respect to the vapor phase. For sufficiently subsaturated vapors, the liquid phase can even assume negative pressures. The appropriate membrane for this metastable equilibrium must provide the necessary mechanical support to sustain the difference in pressure between the two phases, limit nonhomogeneous mechanisms of cavitation, and resist the entry of the dilutant (gases) into the pure phase (liquid). In this article, we present a study of the limit of stability of liquid water--the degree of subsaturation at which the liquid cavitates--in this metastable state within microscale voids embedded in hydrogel membranes. We refer to these structures as vapor-coupled voids (VCVs). In these VCVs, we observed that liquid water cavitated when placed in equilibrium with vapors of activity aw,vapairhumiditynucleation theory or molecular simulations (Pcav=-140 to -180 MPa). To determine the cause of the disparity between the observed and predicted stability limit, we examine experimentally the likelihood of several nonhomogeneous mechanisms of nucleation: (i) heterogeneous nucleation caused by hydrophobic patches on void walls, (ii) nucleation caused by the presence of dissolved solute, (iii) nucleation caused by the presence of pre-existing vapor nuclei, and (iv) invasion of air through the hydrogel membrane into the voids. We conclude that, of these possibilities, (i) and (ii) cannot be discounted, whereas (iii) and (iv) are unlikely to play a role in determining the stability limit.

  5. Decay of non-equilibrium polariton condensate in semiconductors

    International Nuclear Information System (INIS)

    Beloussov, I.V.; Shvera, Y.M.

    1993-08-01

    Excitation dynamics of polariton quantum fluctuations arising in direct-gap semi-conductor as a result of parametric decay of non-equilibrium polariton condensate with non-zero wave vector is studied. The predominant mechanism of polariton scattering is supposed to be exciton-exciton interaction. Steady state which corresponds to the case of dynamic equilibrium between the polariton condensate and quantum fluctuations is obtained. Distribution functions of non-condensate polaritons are localized in the resonant regions, corresponding to two-particle excitation of polaritons from the condensate. The spectrum of elementary excitations in steady state coincides with usual polariton energy with the shift proportional to initial density of polariton condensate. (author). 25 refs

  6. Existence and globally exponential stability of equilibrium for BAM neural networks with impulses

    International Nuclear Information System (INIS)

    Xia Yonghui; Huang Zhenkun; Han Maoan

    2008-01-01

    In this paper, a class of two-layer heteroassociative networks called bidirectional associative memory (BAM) networks with impulses is studied. Some new sufficient conditions are established for the existence and globally exponential stability of a unique equilibrium, which generalize and improve the previously known results. The sufficient conditions are easy to verify and when the impulsive jumps are absent the results reduce to those of the non-impulsive systems. The approaches are based on employing Banach's fixed point theorem, matrix theory and its spectral theory. Our results generalize and significantly improve the previous known results due to this method. Examples are given to show the feasibility and effectiveness of our results

  7. Non-equilibrium scaling analysis of the Kondo model with voltage bias

    International Nuclear Information System (INIS)

    Fritsch, Peter; Kehrein, Stefan

    2009-01-01

    The quintessential description of Kondo physics in equilibrium is obtained within a scaling picture that shows the buildup of Kondo screening at low temperature. For the non-equilibrium Kondo model with a voltage bias, the key new feature are decoherence effects due to the current across the impurity. In the present paper, we show how one can develop a consistent framework for studying the non-equilibrium Kondo model within a scaling picture of infinitesimal unitary transformations (flow equations). Decoherence effects appear naturally in third order of the β-function and dominate the Hamiltonian flow for sufficiently large voltage bias. We work out the spin dynamics in non-equilibrium and compare it with finite temperature equilibrium results. In particular, we report on the behavior of the static spin susceptibility including leading logarithmic corrections and compare it with the celebrated equilibrium result as a function of temperature.

  8. Non-equilibrium dynamics of one-dimensional Bose gases

    International Nuclear Information System (INIS)

    Langen, T.

    2013-01-01

    Understanding the non-equilibrium dynamics of isolated quantum many-body systems is an open problem on vastly different energy, length, and time scales. Examples range from the dynamics of the early universe and heavy-ion collisions to the subtle coherence and transport properties in condensed matter physics. However, realizations of such quantum many-body systems, which are both well isolated from the environment and accessible to experimental study are scarce. This thesis presents a series of experiments with ultracold one-dimensional Bose gases. These gases combine a nearly perfect isolation from the environment with many well-established methods to manipulate and probe their quantum states. This makes them an ideal model system to explore the physics of quantum many body systems out of equilibrium. In the experiments, a well-defined non-equilibrium state is created by splitting a single one-dimensional gas coherently into two parts. The relaxation of this state is probed using matter-wave interferometry. The Observations reveal the emergence of a prethermalized steady state which differs strongly from thermal equilibrium. Such thermal-like states had previously been predicted for a large variety of systems, but never been observed directly. Studying the relaxation process in further detail shows that the thermal correlations of the prethermalized state emerge locally in their final form and propagate through the system in a light-cone-like evolution. This provides first experimental evidence for the local relaxation conjecture, which links relaxation processes in quantum many-body systems to the propagation of correlations. Furthermore, engineering the initial state of the evolution demonstrates that the prethermalized state is described by a generalized Gibbs ensemble, an observation which substantiates the importance of this ensemble as an extension of standard statistical mechanics. Finally, an experiment is presented, where pairs of gases with an atom

  9. Non-equilibrium work distribution for interacting colloidal particles under friction

    International Nuclear Information System (INIS)

    Gomez-Solano, Juan Ruben; July, Christoph; Mehl, Jakob; Bechinger, Clemens

    2015-01-01

    We experimentally investigate the non-equilibrium steady-state distribution of the work done by an external force on a mesoscopic system with many coupled degrees of freedom: a colloidal crystal mechanically driven across a commensurate periodic light field. Since this system mimics the spatiotemporal dynamics of a crystalline surface moving on a corrugated substrate, our results show general properties of the work distribution for atomically flat surfaces undergoing friction. We address the role of several parameters which can influence the shape of the work distribution, e.g. the number of particles used to locally probe the properties of the system and the time interval to measure the work. We find that, when tuning the control parameters to induce particle depinning from the substrate, there is an abrupt change of the shape of the work distribution. While in the completely static and sliding friction regimes the work distribution is Gaussian, non-Gaussian tails show up due to the spatiotemporal heterogeneity of the particle dynamics during the transition between these two regimes. (paper)

  10. Equilibrium, stability and transport in L=1 compact helical axis configuration

    International Nuclear Information System (INIS)

    Kikuchi, Hitoshi; Ueno, Hikaru; Aizawa, Masamitsu; Suzuki, Kiyomitsu; Gesso, Hirokazu; Saito, Katsunori; Kawakami, Ichiro; Shiina, Shoichi

    1990-01-01

    The L=1 torsatron is modified by two methods to improve the plasma stability. First one is the negative pitch modulation of coil winding. Second is the superposition of a relatively weak L=-1 torsatron field. These modification give rise to a local magnetic well keeping a positive magnetic shear. The equilibrium, stability and transport of plasma in these modified L=1 torsatrons are described and discussed. (author)

  11. Morphological instability of a non-equilibrium ice-colloid interface

    KAUST Repository

    Peppin, S. S. L.

    2009-10-02

    We assess the morphological stability of a non-equilibrium ice-colloidal suspension interface, and apply the theory to bentonite clay. An experimentally convenient scaling is employed that takes advantage of the vanishing segregation coefficient at low freezing velocities, and when anisotropic kinetic effects are included, the interface is shown to be unstable to travelling waves. The potential for travelling-wave modes reveals a possible mechanism for the polygonal and spiral ice lenses observed in frozen clays. A weakly nonlinear analysis yields a long-wave evolution equation for the interface shape containing a new parameter related to the highly nonlinear liquidus curve in colloidal systems. We discuss the implications of these results for the frost susceptibility of soils and the fabrication of microtailored porous materials. © 2009 The Royal Society.

  12. A two-temperature chemical non-equilibrium modeling of DC arc plasma

    International Nuclear Information System (INIS)

    Qian Haiyang; Wu Bin

    2011-01-01

    To a better understanding of non-equilibrium characteristics of DC arc plasma,a two-dimensional axisymmetric two-temperature chemical non-equilibrium (2T-NCE) model is applied for direct current arc argon plasma generator with water-cooled constrictor at atmospheric pressure. The results show that the electron temperature and heavy particle temperature has a relationship under different working parameters, indicating that DC arc plasma has a strong non-equilibrium characteristic, and the variation is obvious. (authors)

  13. The Kibble-Zurek mechanism in phase transitions of non-equilibrium systems

    Science.gov (United States)

    Cheung, Hil F. H.; Patil, Yogesh S.; Date, Aditya G.; Vengalattore, Mukund

    2017-04-01

    We experimentally realize a driven-dissipative phase transition using a mechanical parametric amplifier to demonstrate key signatures of a second order phase transition, including a point where the susceptibilities and relaxation time scales diverge, and where the system exhibits a spontaneous breaking of symmetry. Though reminiscent of conventional equilibrium phase transitions, it is unclear if such driven-dissipative phase transitions are amenable to the conventional Landau-Ginsburg-Wilson paradigm, which relies on concepts of scale invariance and universality, and recent work has shown that such phase transitions can indeed lie beyond such conventional universality classes. By quenching the system past the critical point, we investigate the dynamics of the emergent ordered phase and find that our measurements are in excellent agreement with the Kibble-Zurek mechanism. In addition to verifying the Kibble-Zurek hypothesis in driven-dissipative phase transitions for the first time, we also demonstrate that the measured critical exponents accurately reflect the interplay between intrinsic coherent dynamics and environmental correlations, showing a clear departure from mean field exponents in the case of non-Markovian system-bath interactions. We further discuss how reservoir engineering and the imposition of artificial environmental correlations can result in the stabilization of novel many-body quantum phases and aid in the creation of exotic non-equilibrium states of matter.

  14. Equilibrium Kinetics Studies and Crystallization Aboard the International Space Station (ISS) Using the Protein Crystallization Apparatus for Microgravity (PCAM)

    Science.gov (United States)

    Achari, Aniruddha; Roeber, Dana F.; Barnes, Cindy L.; Kundrot, Craig E.; Stinson, Thomas N. (Technical Monitor)

    2002-01-01

    Protein Crystallization Apparatus in Microgravity (PCAM) trays have been used in Shuttle missions to crystallize proteins in a microgravity environment. The crystallization experiments are 'sitting drops' similar to that in Cryschem trays, but the reservoir solution is soaked in a wick. From early 2001, crystallization experiments are conducted on the International Space Station using mission durations of months rather than two weeks on previous shuttle missions. Experiments were set up in April 2001 on Flight 6A to characterize the time crystallization experiments will take to reach equilibrium in a microgravity environment using salts, polyethylene glycols and an organic solvent as precipitants. The experiments were set up to gather data for a series of days of activation with different droplet volumes and precipitants. The experimental set up on ISS and results of this study will be presented. These results will help future users of PCAM to choose precipitants to optimize crystallization conditions for their target macromolecules for a particular mission with known mission duration. Changes in crystal morphology and size between the ground and space grown crystals of a protein and a protein -DNA complex flown on the same mission will also be presented.

  15. Error suppression and error correction in adiabatic quantum computation: non-equilibrium dynamics

    International Nuclear Information System (INIS)

    Sarovar, Mohan; Young, Kevin C

    2013-01-01

    While adiabatic quantum computing (AQC) has some robustness to noise and decoherence, it is widely believed that encoding, error suppression and error correction will be required to scale AQC to large problem sizes. Previous works have established at least two different techniques for error suppression in AQC. In this paper we derive a model for describing the dynamics of encoded AQC and show that previous constructions for error suppression can be unified with this dynamical model. In addition, the model clarifies the mechanisms of error suppression and allows the identification of its weaknesses. In the second half of the paper, we utilize our description of non-equilibrium dynamics in encoded AQC to construct methods for error correction in AQC by cooling local degrees of freedom (qubits). While this is shown to be possible in principle, we also identify the key challenge to this approach: the requirement of high-weight Hamiltonians. Finally, we use our dynamical model to perform a simplified thermal stability analysis of concatenated-stabilizer-code encoded many-body systems for AQC or quantum memories. This work is a companion paper to ‘Error suppression and error correction in adiabatic quantum computation: techniques and challenges (2013 Phys. Rev. X 3 041013)’, which provides a quantum information perspective on the techniques and limitations of error suppression and correction in AQC. In this paper we couch the same results within a dynamical framework, which allows for a detailed analysis of the non-equilibrium dynamics of error suppression and correction in encoded AQC. (paper)

  16. Non-equilibrium Dynamics, Thermalization and Entropy Production

    International Nuclear Information System (INIS)

    Hinrichsen, Haye; Janotta, Peter; Gogolin, Christian

    2011-01-01

    This paper addresses fundamental aspects of statistical mechanics such as the motivation of a classical state space with spontaneous transitions, the meaning of non-equilibrium in the context of thermalization, and the justification of these concepts from the quantum-mechanical point of view. After an introductory part we focus on the problem of entropy production in non-equilibrium systems. In particular, the generally accepted formula for entropy production in the environment is analyzed from a critical perspective. It is shown that this formula is only valid in the limit of separated time scales of the system's and the environmental degrees of freedom. Finally, we present an alternative simple proof of the fluctuation theorem.

  17. Post-CHF heat transfer: a non-equilibrium, relaxation model

    International Nuclear Information System (INIS)

    Jones, O.C. Jr.; Zuber, N.

    1977-01-01

    Existing phenomenological models of heat transfer in the non-equilibrium, liquid-deficient, dispersed flow regime can sometimes predict the thermal behavior fairly well but are quite complex, requiring coupled simultaneous differential equations to describe the axial gradients of mass and energy along with those of droplet acceleration and size. In addition, empirical relations are required to express the droplet breakup and increased effective heat transfer due to holdup. This report describes the development of a different approach to the problem. It is shown that the non-equilibrium component of the total energy can be expressed as a first order, inhomogeneous relaxation equation in terms of one variable coefficient termed the Superheat Relaxation number. A demonstration is provided to show that this relaxation number can be correlated using local variables in such a manner to allow the single non-equilibrium equation to accurately calculate the effects of mass velocity and heat flux along with tube length, diameter, and critical quality for equilibrium qualities from 0.13 to over 3.0

  18. Modelling Thomson scattering for systems with non-equilibrium electron distributions

    Directory of Open Access Journals (Sweden)

    Chapman D.A.

    2013-11-01

    Full Text Available We investigate the effect of non-equilibrium electron distributions in the analysis of Thomson scattering for a range of conditions of interest to inertial confinement fusion experiments. Firstly, a generalised one-component model based on quantum statistical theory is given in the random phase approximation (RPA. The Chihara expression for electron-ion plasmas is then adapted to include the new non-equilibrium electron physics. The theoretical scattering spectra for both diffuse and dense plasmas in which non-equilibrium electron distributions are expected to arise are considered. We find that such distributions strongly influence the spectra and are hence an important consideration for accurately determining the plasma conditions.

  19. Non-equilibrium plasma chemistry at high pressure and its applications

    International Nuclear Information System (INIS)

    Bai Xiyao; Zhang Zhitao; Bai Mindong; Zhu Qiaoying

    2000-01-01

    A review is presented of research and development of gas discharge and non-equilibrium plasma including, new ideas of non-equilibrium plasma at high gas pressure. With special technology, strong electric fields (>400 Td) can be achieved by which electrons are accelerated suddenly, becoming high energy electrons (> 10 eV) at high pressure. On impact with the electrons, the gas molecules dissociate into ions, atomic ions, atoms and free radicals, and new substances or molecules can be synthesized through custom design. Chemical reaction difficult to achieve by conventional method can be realized or accelerated. Non-equilibrium plasma chemistry at high pressure has wide application prospects

  20. X-ray scattering studies of non-equilibrium ordering processes

    International Nuclear Information System (INIS)

    Nagler, S.E.

    1990-01-01

    We report on the progress of our project entitled ''X-ray Scattering of Non-Equilibrium Ordering Processes.'' During the past year we have made the first synchrotron measurements of ordering in Cu 3 Au have revealed the presence of an intermediate, non-equilibrium ordered state. Preliminary work involving x-ray magnetic scattering has been carried out. Work is continuing in these areas as well as on related problems. 5 refs

  1. Enzyme Stability and Activity in Non-Aqueous Reaction Systems: A Mini Review

    Directory of Open Access Journals (Sweden)

    Shihui Wang

    2016-02-01

    Full Text Available Enormous interest in biocatalysis in non-aqueous phase has recently been triggered due to the merits of good enantioselectivity, reverse thermodynamic equilibrium, and no water-dependent side reactions. It has been demonstrated that enzyme has high activity and stability in non-aqueous media, and the variation of enzyme activity is attributed to its conformational modifications. This review comprehensively addresses the stability and activity of the intact enzymes in various non-aqueous systems, such as organic solvents, ionic liquids, sub-/super-critical fluids and their combined mixtures. It has been revealed that critical factors such as Log P, functional groups and the molecular structures of the solvents define the microenvironment surrounding the enzyme molecule and affect enzyme tertiary and secondary structure, influencing enzyme catalytic properties. Therefore, it is of high importance for biocatalysis in non-aqueous media to elucidate the links between the microenvironment surrounding enzyme surface and its stability and activity. In fact, a better understanding of the correlation between different non-aqueous environments and enzyme structure, stability and activity can contribute to identifying the most suitable reaction medium for a given biotransformation.

  2. Analysis of non-equilibrium phenomena in inductively coupled plasma generators

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, W.; Panesi, M., E-mail: mpanesi@illinois.edu [University of Illinois at Urbana-Champaign, Urbana, Illinois 61822 (United States); Lani, A. [Von Karman Institute for Fluid Dynamics, Rhode-Saint-Genèse (Belgium)

    2016-07-15

    This work addresses the modeling of non-equilibrium phenomena in inductively coupled plasma discharges. In the proposed computational model, the electromagnetic induction equation is solved together with the set of Navier-Stokes equations in order to compute the electromagnetic and flow fields, accounting for their mutual interaction. Semi-classical statistical thermodynamics is used to determine the plasma thermodynamic properties, while transport properties are obtained from kinetic principles, with the method of Chapman and Enskog. Particle ambipolar diffusive fluxes are found by solving the Stefan-Maxwell equations with a simple iterative method. Two physico-mathematical formulations are used to model the chemical reaction processes: (1) A Local Thermodynamics Equilibrium (LTE) formulation and (2) a thermo-chemical non-equilibrium (TCNEQ) formulation. In the TCNEQ model, thermal non-equilibrium between the translational energy mode of the gas and the vibrational energy mode of individual molecules is accounted for. The electronic states of the chemical species are assumed in equilibrium with the vibrational temperature, whereas the rotational energy mode is assumed to be equilibrated with translation. Three different physical models are used to account for the coupling of chemistry and energy transfer processes. Numerical simulations obtained with the LTE and TCNEQ formulations are used to characterize the extent of non-equilibrium of the flow inside the Plasmatron facility at the von Karman Institute. Each model was tested using different kinetic mechanisms to assess the sensitivity of the results to variations in the reaction parameters. A comparison of temperatures and composition profiles at the outlet of the torch demonstrates that the flow is in non-equilibrium for operating conditions characterized by pressures below 30 000 Pa, frequency 0.37 MHz, input power 80 kW, and mass flow 8 g/s.

  3. Influence of arc current and pressure on non-chemical equilibrium air arc behavior

    Science.gov (United States)

    Yi, WU; Yufei, CUI; Jiawei, DUAN; Hao, SUN; Chunlin, WANG; Chunping, NIU

    2018-01-01

    The influence of arc current and pressure on the non-chemical equilibrium (non-CE) air arc behavior of a nozzle structure was investigated based on the self-consistent non-chemical equilibrium model. The arc behavior during both the arc burning and arc decay phases were discussed at different currents and different pressures. We also devised the concept of a non-equilibrium parameter for a better understanding of non-CE effects. During the arc burning phase, the increasing current leads to a decrease of the non-equilibrium parameter of the particles in the arc core, while the increasing pressure leads to an increase of the non-equilibrium parameter of the particles in the arc core. During the arc decay phase, the non-CE effect will decrease by increasing the arc burning current and the nozzle pressure. Three factors together—convection, diffusion and chemical reactions—influence non-CE behavior.

  4. Evaluating equilibrium and non-equilibrium transport of bromide and isoproturon in disturbed and undisturbed soil columns

    Science.gov (United States)

    Dousset, S.; Thevenot, M.; Pot, V.; Šimunek, J.; Andreux, F.

    2007-12-01

    In this study, displacement experiments of isoproturon were conducted in disturbed and undisturbed columns of a silty clay loam soil under similar rainfall intensities. Solute transport occurred under saturated conditions in the undisturbed soil and under unsaturated conditions in the sieved soil because of a greater bulk density of the compacted undisturbed soil compared to the sieved soil. The objective of this work was to determine transport characteristics of isoproturon relative to bromide tracer. Triplicate column experiments were performed with sieved (structure partially destroyed to simulate conventional tillage) and undisturbed (structure preserved) soils. Bromide experimental breakthrough curves were analyzed using convective-dispersive and dual-permeability (DP) models (HYDRUS-1D). Isoproturon breakthrough curves (BTCs) were analyzed using the DP model that considered either chemical equilibrium or non-equilibrium transport. The DP model described the bromide elution curves of the sieved soil columns well, whereas it overestimated the tailing of the bromide BTCs of the undisturbed soil columns. A higher degree of physical non-equilibrium was found in the undisturbed soil, where 56% of total water was contained in the slow-flow matrix, compared to 26% in the sieved soil. Isoproturon BTCs were best described in both sieved and undisturbed soil columns using the DP model combined with the chemical non-equilibrium. Higher degradation rates were obtained in the transport experiments than in batch studies, for both soils. This was likely caused by hysteresis in sorption of isoproturon. However, it cannot be ruled out that higher degradation rates were due, at least in part, to the adopted first-order model. Results showed that for similar rainfall intensity, physical and chemical non-equilibrium were greater in the saturated undisturbed soil than in the unsaturated sieved soil. Results also suggested faster transport of isoproturon in the undisturbed soil due

  5. Light-induced electronic non-equilibrium in plasmonic particles.

    Science.gov (United States)

    Kornbluth, Mordechai; Nitzan, Abraham; Seideman, Tamar

    2013-05-07

    We consider the transient non-equilibrium electronic distribution that is created in a metal nanoparticle upon plasmon excitation. Following light absorption, the created plasmons decohere within a few femtoseconds, producing uncorrelated electron-hole pairs. The corresponding non-thermal electronic distribution evolves in response to the photo-exciting pulse and to subsequent relaxation processes. First, on the femtosecond timescale, the electronic subsystem relaxes to a Fermi-Dirac distribution characterized by an electronic temperature. Next, within picoseconds, thermalization with the underlying lattice phonons leads to a hot particle in internal equilibrium that subsequently equilibrates with the environment. Here we focus on the early stage of this multistep relaxation process, and on the properties of the ensuing non-equilibrium electronic distribution. We consider the form of this distribution as derived from the balance between the optical absorption and the subsequent relaxation processes, and discuss its implication for (a) heating of illuminated plasmonic particles, (b) the possibility to optically induce current in junctions, and (c) the prospect for experimental observation of such light-driven transport phenomena.

  6. NON-EQUILIBRIUM HELIUM IONIZATION IN AN MHD SIMULATION OF THE SOLAR ATMOSPHERE

    International Nuclear Information System (INIS)

    Golding, Thomas Peter; Carlsson, Mats; Leenaarts, Jorrit

    2016-01-01

    The ionization state of the gas in the dynamic solar chromosphere can depart strongly from the instantaneous statistical equilibrium commonly assumed in numerical modeling. We improve on earlier simulations of the solar atmosphere that only included non-equilibrium hydrogen ionization by performing a 2D radiation-magnetohydrodynamics simulation featuring non-equilibrium ionization of both hydrogen and helium. The simulation includes the effect of hydrogen Lyα and the EUV radiation from the corona on the ionization and heating of the atmosphere. Details on code implementation are given. We obtain helium ion fractions that are far from their equilibrium values. Comparison with models with local thermodynamic equilibrium (LTE) ionization shows that non-equilibrium helium ionization leads to higher temperatures in wavefronts and lower temperatures in the gas between shocks. Assuming LTE ionization results in a thermostat-like behavior with matter accumulating around the temperatures where the LTE ionization fractions change rapidly. Comparison of DEM curves computed from our models shows that non-equilibrium ionization leads to more radiating material in the temperature range 11–18 kK, compared to models with LTE helium ionization. We conclude that non-equilibrium helium ionization is important for the dynamics and thermal structure of the upper chromosphere and transition region. It might also help resolve the problem that intensities of chromospheric lines computed from current models are smaller than those observed

  7. Equilibrium and non-equilibrium metal-ceramic interfaces

    International Nuclear Information System (INIS)

    Gao, Y.; Merkle, K.L.

    1992-01-01

    Metal-ceramic interfaces in thermodynamic equilibrium (Au/ZrO 2 ) and non-equilibrium (Au/MgO) have been studied by TEM and HREM. In the Au/ZrO 2 system, ZrO 2 precipitates formed by internal oxidation of a 7%Zr-Au alloy show a cubic ZrO 2 phase. It appears that formation of the cubic ZrO 2 is facilitated by alignment with the Au matrix. Most of the ZrO 2 precipitates have a perfect cube-on-cube orientation relationship with the Au matrix. The large number of interfacial steps observed in a short-time annealing experiment indicate that the precipitates are formed by the ledge growth mechanism. The lowest interfacial energy is indicated by the dominance of closed-packed [111] Au/ZrO 2 interfaces. In the Au/MgO system, composite films with small MgO smoke particles embedded in a Au matrix were prepared by a thin film technique. HREM observations show that most of the Au/MgO interfaces have a strong tendency to maintain a dense lattice structure across the interfaces irrespective of whether the interfaces are incoherent or semi-coherent. This paper reports that this indicates that there may be a relatively strong bond between MgO and Au

  8. Fragmentation function in non-equilibrium QCD using closed-time path integral formalism

    International Nuclear Information System (INIS)

    Nayak, Gouranga C.

    2009-01-01

    In this paper we implement the Schwinger-Keldysh closed-time path integral formalism in non-equilibrium QCD in accordance to the definition of the Collins-Soper fragmentation function. We consider a high-p T parton in QCD medium at initial time τ 0 with an arbitrary non-equilibrium (non-isotropic) distribution function f(vector (p)) fragmenting to a hadron. We formulate the parton-to-hadron fragmentation function in non-equilibrium QCD in the light-cone quantization formalism. It may be possible to include final-state interactions with the medium via a modification of the Wilson lines in this definition of the non-equilibrium fragmentation function. This may be relevant to the study of hadron production from a quark-gluon plasma at RHIC and LHC. (orig.)

  9. Electrolytes: transport properties and non-equilibrium thermodynamics

    International Nuclear Information System (INIS)

    Miller, D.G.

    1980-12-01

    This paper presents a review on the application of non-equilibrium thermodynamics to transport in electrolyte solutions, and some recent experimental work and results for mutual diffusion in electrolyte solutions

  10. Investigation on non-equilibrium performance of composite adsorbent for resorption refrigeration

    International Nuclear Information System (INIS)

    Jiang, L.; Wang, L.W.; Zhou, Z.S.; Zhu, F.Q.; Wang, R.Z.

    2016-01-01

    Highlights: • Performance of resorption refrigeration is analyzed based on non-equilibrium reaction process. • The porous matrix improves the heat and mass performance of composite adsorbent. • The actual desorption process has the significant hysteresis phenomenon. • The highest energy efficiency of Manganese and Calcium chloride working pair is 0.272. - Abstract: The aims of this paper is to indicate that the non-equilibrium adsorption testing results is more suitable for prediction of real refrigeration performance than equilibrium data. Therefore, a test unit is constructed to test the non-equilibrium performance of different composite adsorbents. The adsorption and desorption quantity are measured and calculated by smart differential pressure transmitter. The non-equilibrium adsorption performances of working pair of Manganese chloride–ammonia, Calcium chloride–ammonia and Ammonium chloride–ammonia are investigated respectively. Results show that hysteresis phenomena happens obviously in non-equilibrium desorption process, which is related with dual variables rather than single variable. Based on the testing results, resorption refrigeration performance is analyzed, in which Manganese chloride is used as high temperature salt (HTS), and Calcium chloride, Ammonium chloride are selected as low temperature salt (LTS) for comparison. Results show that the highest COP and SCP for resorption refrigeration are about 0.272 and 45.6 W/kg, respectively. Performance of Manganese chloride–Calcium chloride and Manganese chloride–Ammonium chloride working pairs are much lower when compared with theoretical data.

  11. Initial conditions of non-equilibrium quark-gluon plasma evolution

    International Nuclear Information System (INIS)

    Shmatov, S.V.

    2002-01-01

    In accordance with the hydrodynamic Bjorken limit, the initial energy density and temperature for a chemical non-equilibrium quark-gluon system formed in the heavy ion collisions at the LHC are computed. The dependence of this value on the type of colliding nuclei and the collision impact parameter is studied. The principle possibility of the non-equilibrium quark-gluon plasma (QGP) formation in the light nuclei collisions is shown. The life time of QGP is calculated. (author)

  12. Non-Equilibrium Liouville and Wigner Equations: Moment Methods and Long-Time Approximations

    Directory of Open Access Journals (Sweden)

    Ramon F. Álvarez-Estrada

    2014-03-01

    Full Text Available We treat the non-equilibrium evolution of an open one-particle statistical system, subject to a potential and to an external “heat bath” (hb with negligible dissipation. For the classical equilibrium Boltzmann distribution, Wc,eq, a non-equilibrium three-term hierarchy for moments fulfills Hermiticity, which allows one to justify an approximate long-time thermalization. That gives partial dynamical support to Boltzmann’s Wc,eq, out of the set of classical stationary distributions, Wc;st, also investigated here, for which neither Hermiticity nor that thermalization hold, in general. For closed classical many-particle systems without hb (by using Wc,eq, the long-time approximate thermalization for three-term hierarchies is justified and yields an approximate Lyapunov function and an arrow of time. The largest part of the work treats an open quantum one-particle system through the non-equilibrium Wigner function, W. Weq for a repulsive finite square well is reported. W’s (< 0 in various cases are assumed to be quasi-definite functionals regarding their dependences on momentum (q. That yields orthogonal polynomials, HQ,n(q, for Weq (and for stationary Wst, non-equilibrium moments, Wn, of W and hierarchies. For the first excited state of the harmonic oscillator, its stationary Wst is a quasi-definite functional, and the orthogonal polynomials and three-term hierarchy are studied. In general, the non-equilibrium quantum hierarchies (associated with Weq for the Wn’s are not three-term ones. As an illustration, we outline a non-equilibrium four-term hierarchy and its solution in terms of generalized operator continued fractions. Such structures also allow one to formulate long-time approximations, but make it more difficult to justify thermalization. For large thermal and de Broglie wavelengths, the dominant Weq and a non-equilibrium equation for W are reported: the non-equilibrium hierarchy could plausibly be a three-term one and possibly not

  13. Self-assembly and transformation of hybrid nano-objects and nanostructures under equilibrium and non-equilibrium conditions

    Science.gov (United States)

    Mann, Stephen

    2009-10-01

    Understanding how chemically derived processes control the construction and organization of matter across extended and multiple length scales is of growing interest in many areas of materials research. Here we review present equilibrium and non-equilibrium self-assembly approaches to the synthetic construction of discrete hybrid (inorganic-organic) nano-objects and higher-level nanostructured networks. We examine a range of synthetic modalities under equilibrium conditions that give rise to integrative self-assembly (supramolecular wrapping, nanoscale incarceration and nanostructure templating) or higher-order self-assembly (programmed/directed aggregation). We contrast these strategies with processes of transformative self-assembly that use self-organizing media, reaction-diffusion systems and coupled mesophases to produce higher-level hybrid structures under non-equilibrium conditions. Key elements of the constructional codes associated with these processes are identified with regard to existing theoretical knowledge, and presented as a heuristic guideline for the rational design of hybrid nano-objects and nanomaterials.

  14. Existence and Linear Stability of Equilibrium Points in the Robe’s Restricted Three-Body Problem with Oblateness

    Directory of Open Access Journals (Sweden)

    Jagadish Singh

    2012-01-01

    Full Text Available This paper investigates the positions and linear stability of an infinitesimal body around the equilibrium points in the framework of the Robe’s circular restricted three-body problem, with assumptions that the hydrostatic equilibrium figure of the first primary is an oblate spheroid and the second primary is an oblate body as well. It is found that equilibrium point exists near the centre of the first primary. Further, there can be one more equilibrium point on the line joining the centers of both primaries. Points on the circle within the first primary are also equilibrium points under certain conditions and the existence of two out-of-plane points is also observed. The linear stability of this configuration is examined and it is found that points near the center of the first primary are conditionally stable, while the circular and out of plane equilibrium points are unstable.

  15. Non-equilibrium umbrella sampling applied to force spectroscopy of soft matter.

    Science.gov (United States)

    Gao, Y X; Wang, G M; Williams, D R M; Williams, Stephen R; Evans, Denis J; Sevick, E M

    2012-02-07

    Physical systems often respond on a timescale which is longer than that of the measurement. This is particularly true in soft matter where direct experimental measurement, for example in force spectroscopy, drives the soft system out of equilibrium and provides a non-equilibrium measure. Here we demonstrate experimentally for the first time that equilibrium physical quantities (such as the mean square displacement) can be obtained from non-equilibrium measurements via umbrella sampling. Our model experimental system is a bead fluctuating in a time-varying optical trap. We also show this for simulated force spectroscopy on a complex soft molecule--a piston-rotaxane.

  16. Tearing-mode stability in a cylindrical plasma with equilibrium flows

    International Nuclear Information System (INIS)

    Wessen, K.P.; Persson, M.; Australian National Univ., Canberra

    1991-01-01

    The effect of a sheared equilibrium mass flow on the resistive tearing mode is studied numerically by calculating Δ. Both stabilizing and destabilizing effects are found, depending on the velocity and magnetic field profiles. Specifically, when q o ''varies as'' 1, the flow is strongly stabilizing for centrally peaked current profiles, whereas the flow has a strongly destabilizing effect for flatter current profiles. While the extreme effects are more pronounced for larger flows, a smaller flow may have more influence on marginal stability. The case where the flow speed becomes comparable to the Alfven speed is also examined. It is found that this may lead to the equations being singular at points other than a rational surface, drastically changing the behaviour of the mode. (author)

  17. Numerical analysis of a non equilibrium two-component two-compressible flow in porous media

    KAUST Repository

    Saad, Bilal Mohammed

    2013-09-01

    We propose and analyze a finite volume scheme to simulate a non equilibrium two components (water and hydrogen) two phase flow (liquid and gas) model. In this model, the assumption of local mass non equilibrium is ensured and thus the velocity of the mass exchange between dissolved hydrogen and hydrogen in the gas phase is supposed finite. The proposed finite volume scheme is fully implicit in time together with a phase-by-phase upwind approach in space and it is discretize the equations in their general form with gravity and capillary terms We show that the proposed scheme satisfies the maximum principle for the saturation and the concentration of the dissolved hydrogen. We establish stability results on the velocity of each phase and on the discrete gradient of the concentration. We show the convergence of a subsequence to a weak solution of the continuous equations as the size of the discretization tends to zero. At our knowledge, this is the first convergence result of finite volume scheme in the case of two component two phase compressible flow in several space dimensions.

  18. Non-equilibrium coherence dynamics in one-dimensional Bose gases

    DEFF Research Database (Denmark)

    Hofferberth, S.; Lesanovsky, Igor; Fischer, B.

    2007-01-01

    Low-dimensional systems provide beautiful examples of many-body quantum physics. For one-dimensional (1D) systems, the Luttinger liquid approach provides insight into universal properties. Much is known of the equilibrium state, both in the weakly and strongly interacting regimes. However......, the coherence factor is observed to approach a non-zero equilibrium value, as predicted by a Bogoliubov approach. This coupled-system decay to finite coherence is the matter wave equivalent of phase-locking two lasers by injection. The non-equilibrium dynamics of superfluids has an important role in a wide...... range of physical systems, such as superconductors, quantum Hall systems, superfluid helium and spin systems. Our experiments studying coherence dynamics show that 1D Bose gases are ideally suited for investigating this class of phenomena....

  19. Non-equilibrium thermodynamics, maximum entropy production and Earth-system evolution.

    Science.gov (United States)

    Kleidon, Axel

    2010-01-13

    The present-day atmosphere is in a unique state far from thermodynamic equilibrium. This uniqueness is for instance reflected in the high concentration of molecular oxygen and the low relative humidity in the atmosphere. Given that the concentration of atmospheric oxygen has likely increased throughout Earth-system history, we can ask whether this trend can be generalized to a trend of Earth-system evolution that is directed away from thermodynamic equilibrium, why we would expect such a trend to take place and what it would imply for Earth-system evolution as a whole. The justification for such a trend could be found in the proposed general principle of maximum entropy production (MEP), which states that non-equilibrium thermodynamic systems maintain steady states at which entropy production is maximized. Here, I justify and demonstrate this application of MEP to the Earth at the planetary scale. I first describe the non-equilibrium thermodynamic nature of Earth-system processes and distinguish processes that drive the system's state away from equilibrium from those that are directed towards equilibrium. I formulate the interactions among these processes from a thermodynamic perspective and then connect them to a holistic view of the planetary thermodynamic state of the Earth system. In conclusion, non-equilibrium thermodynamics and MEP have the potential to provide a simple and holistic theory of Earth-system functioning. This theory can be used to derive overall evolutionary trends of the Earth's past, identify the role that life plays in driving thermodynamic states far from equilibrium, identify habitability in other planetary environments and evaluate human impacts on Earth-system functioning. This journal is © 2010 The Royal Society

  20. What Can Reinforcement Learning Teach Us About Non-Equilibrium Quantum Dynamics

    Science.gov (United States)

    Bukov, Marin; Day, Alexandre; Sels, Dries; Weinberg, Phillip; Polkovnikov, Anatoli; Mehta, Pankaj

    Equilibrium thermodynamics and statistical physics are the building blocks of modern science and technology. Yet, our understanding of thermodynamic processes away from equilibrium is largely missing. In this talk, I will reveal the potential of what artificial intelligence can teach us about the complex behaviour of non-equilibrium systems. Specifically, I will discuss the problem of finding optimal drive protocols to prepare a desired target state in quantum mechanical systems by applying ideas from Reinforcement Learning [one can think of Reinforcement Learning as the study of how an agent (e.g. a robot) can learn and perfect a given policy through interactions with an environment.]. The driving protocols learnt by our agent suggest that the non-equilibrium world features possibilities easily defying intuition based on equilibrium physics.

  1. Non-equilibrium thermodynamics and physical kinetics

    CERN Document Server

    Bikkin, Halid

    2014-01-01

    This graduate textbook covers contemporary directions of non-equilibrium statistical mechanics as well as classical methods of kinetics. With one of the main propositions being to avoid terms such as "obviously" and "it is easy to show", this treatise is an easy-to-read introduction into this traditional, yet vibrant field.

  2. Equilibrium and surface stability of liquid dielectric interface in electrical and gravitational fields

    Energy Technology Data Exchange (ETDEWEB)

    Ievlev, I I; Isers, A B

    1976-01-01

    An examination is made of the problem of locating the stable equilibrium surface shape of the interface between two liquid, uniform, isotropic, ideal dielectrics subject to the force of gravity, surface tension, and electrical forces. The conditions for the equilibrium and surface stability of the interface were obtained from the minimum free energy principle. These conditions are used for solving problems on locating the stable equilibrium interface boundary between two dielectrics positioned between infinite charged vertical plates, between infinite vertical coaxial cylinders, between infinite grounded plates and two horizontal charged thin cylinders placed between them. 8 references, 4 figures.

  3. Stability analysis of the endemic equilibrium state of an infection age ...

    African Journals Online (AJOL)

    In this work we present an infection-age-structured mathematical model of AIDS disease dynamics and examine the endemic equilibrium state for stability. An explicit formula for the basic reproduction number R0 was obtained in terms of the demographic and epidemiological parameters of the model. The endemic ...

  4. Simulations of NMR pulse sequences during equilibrium and non-equilibrium chemical exchange

    International Nuclear Information System (INIS)

    Helgstrand, Magnus; Haerd, Torleif; Allard, Peter

    2000-01-01

    The McConnell equations combine the differential equations for a simple two-state chemical exchange process with the Bloch differential equations for a classical description of the behavior of nuclear spins in a magnetic field. This equation system provides a useful starting point for the analysis of slow, intermediate and fast chemical exchange studied using a variety of NMR experiments. The McConnell equations are in the mathematical form of an inhomogeneous system of first-order differential equations. Here we rewrite the McConnell equations in a homogeneous form in order to facilitate fast and simple numerical calculation of the solution to the equation system. The McConnell equations can only treat equilibrium chemical exchange. We therefore also present a homogeneous equation system that can handle both equilibrium and non-equilibrium chemical processes correctly, as long as the kinetics is of first-order. Finally, the same method of rewriting the inhomogeneous form of the McConnell equations into a homogeneous form is applied to a quantum mechanical treatment of a spin system in chemical exchange. In order to illustrate the homogeneous McConnell equations, we have simulated pulse sequences useful for measuring exchange rates in slow, intermediate and fast chemical exchange processes. A stopped-flow NMR experiment was simulated using the equations for non-equilibrium chemical exchange. The quantum mechanical treatment was tested by the simulation of a sensitivity enhanced 15 N-HSQC with pulsed field gradients during slow chemical exchange and by the simulation of the transfer efficiency of a two-dimensional heteronuclear cross-polarization based experiment as a function of both chemical shift difference and exchange rate constants

  5. Note: Local thermal conductivities from boundary driven non-equilibrium molecular dynamics simulations

    International Nuclear Information System (INIS)

    Bresme, F.; Armstrong, J.

    2014-01-01

    We report non-equilibrium molecular dynamics simulations of heat transport in models of molecular fluids. We show that the “local” thermal conductivities obtained from non-equilibrium molecular dynamics simulations agree within numerical accuracy with equilibrium Green-Kubo computations. Our results support the local equilibrium hypothesis for transport properties. We show how to use the local dependence of the thermal gradients to quantify the thermal conductivity of molecular fluids for a wide range of thermodynamic states using a single simulation

  6. Supersymmetric Field Theory of Non-Equilibrium Thermodynamic System

    OpenAIRE

    Olemskoi, Alexander I.; Brazhnyi, Valerii A.

    1998-01-01

    On the basis of Langevin equation the optimal SUSY field scheme is formulated to discribe a non-equilibrium thermodynamic system with quenched disorder and non-ergodicity effects. Thermodynamic and isothermal susceptibilities, memory parameter and irreversible response are determined at different temperatures and quenched disorder intensities.

  7. Temperature in non-equilibrium states: a review of open problems and current proposals

    International Nuclear Information System (INIS)

    Casas-Vazquez, J; Jou, D

    2003-01-01

    The conceptual problems arising in the definition and measurement of temperature in non-equilibrium states are discussed in this paper in situations where the local-equilibrium hypothesis is no longer satisfactory. This is a necessary and urgent discussion because of the increasing interest in thermodynamic theories beyond local equilibrium, in computer simulations, in non-linear statistical mechanics, in new experiments, and in technological applications of nanoscale systems and material sciences. First, we briefly review the concept of temperature from the perspectives of equilibrium thermodynamics and statistical mechanics. Afterwards, we explore which of the equilibrium concepts may be extrapolated beyond local equilibrium and which of them should be modified, then we review several attempts to define temperature in non-equilibrium situations from macroscopic and microscopic bases. A wide review of proposals is offered on effective non-equilibrium temperatures and their application to ideal and real gases, electromagnetic radiation, nuclear collisions, granular systems, glasses, sheared fluids, amorphous semiconductors and turbulent fluids. The consistency between the different relativistic transformation laws for temperature is discussed in the new light gained from this perspective. A wide bibliography is provided in order to foster further research in this field

  8. Modeling of two-phase flow with thermal and mechanical non-equilibrium

    International Nuclear Information System (INIS)

    Houdayer, G.; Pinet, B.; Le Coq, G.; Reocreux, M.; Rousseau, J.C.

    1977-01-01

    To improve two-phase flow modeling by taking into account thermal and mechanical non-equilibrium a joint effort on analytical experiment and physical modeling has been undertaken. A model describing thermal non-equilibrium effects is first presented. A correlation of mass transfer has been developed using steam water critical flow tests. This model has been used to predict in a satisfactory manner blowdown tests. It has been incorporated in CLYSTERE system code. To take into account mechanical non-equilibrium, a six equations model is written. To get information on the momentum transfers special nitrogen-water tests have been undertaken. The first results of these studies are presented

  9. Two-temperature chemically non-equilibrium modelling of an air supersonic ICP

    Energy Technology Data Exchange (ETDEWEB)

    El Morsli, Mbark; Proulx, Pierre [Laboratoire de Modelisation de Procedes Chimiques par Ordinateur Oppus, Departement de Genie Chimique, Universite de Sherbrooke (Ciheam) J1K 2R1 (Canada)

    2007-08-21

    In this work, a non-equilibrium mathematical model for an air inductively coupled plasma torch with a supersonic nozzle is developed without making thermal and chemical equilibrium assumptions. Reaction rate equations are written, and two coupled energy equations are used, one for the calculation of the translational-rotational temperature T{sub hr} and one for the calculation of the electro-vibrational temperature T{sub ev}. The viscous dissipation is taken into account in the translational-rotational energy equation. The electro-vibrational energy equation also includes the pressure work of the electrons, the Ohmic heating power and the exchange due to elastic collision. Higher order approximations of the Chapman-Enskog method are used to obtain better accuracy for transport properties, taking advantage of the most recent sets of collisions integrals available in the literature. The results obtained are compared with those obtained using a chemical equilibrium model and a one-temperature chemical non-equilibrium model. The influence of the power and the pressure chamber on the chemical and thermal non-equilibrium is investigated.

  10. Forces and energy dissipation in inhomogeneous non-equilibrium superconductors

    International Nuclear Information System (INIS)

    Poluehktov, Yu.M.; Slezov, V.V.

    1987-01-01

    The phenomenological theory of volume forces and dissipation processes in inhomogeneous non-equilibrium superconductors near temperature transition from the normal to superconducting state is constructed. The approach is based on application of dynamic equations of superconductivity formulated on the basis of the Lagrangian formalism. These equations are generalized the Ginzburg-Landau theory in the nonstationary non-equilibrium case for ''foul'' superconductors. The value estimations of volume forces arising in inhomogeneities during relaxation of an order parameter and when the electrical field is penetrated into the superconductor, are given

  11. Equilibrium and non-equilibrium dynamics simultaneously operate in the Galápagos islands.

    Science.gov (United States)

    Valente, Luis M; Phillimore, Albert B; Etienne, Rampal S

    2015-08-01

    Island biotas emerge from the interplay between colonisation, speciation and extinction and are often the scene of spectacular adaptive radiations. A common assumption is that insular diversity is at a dynamic equilibrium, but for remote islands, such as Hawaii or Galápagos, this idea remains untested. Here, we reconstruct the temporal accumulation of terrestrial bird species of the Galápagos using a novel phylogenetic method that estimates rates of biota assembly for an entire community. We show that species richness on the archipelago is in an ascending phase and does not tend towards equilibrium. The majority of the avifauna diversifies at a slow rate, without detectable ecological limits. However, Darwin's finches form an exception: they rapidly reach a carrying capacity and subsequently follow a coalescent-like diversification process. Together, these results suggest that avian diversity of remote islands is rising, and challenge the mutual exclusivity of the non-equilibrium and equilibrium ecological paradigms. © 2015 The Authors Ecology Letters published by John Wiley & Sons Ltd and CNRS.

  12. Hot electron plasma equilibrium and stability in the Constance B mirror experiment

    International Nuclear Information System (INIS)

    Chen, Xing.

    1988-04-01

    An experimental study of the equilibrium and macroscopic stability property of an electron cyclotron resonance heating (ECRH) generated plasma in a minimum-B mirror is presented. The Constance B mirror is a single cell quadrupole magnetic mirror in which high beta (β ≤ 0.3) hot electron plasmas (T/sub e/≅400 keV) are created with up to 4 kW of ECRH power. The plasma equilibrium profile is hollow and resembles the baseball seam geometry of the magnet which provides the confining magnetic field. This configuration coincides with the drift orbit of deeply trapped particles. The on-axis hollowness of the hot electron density profile is 50 /+-/ 10%, and the pressure profile is at least as hollow as, if not more than, the hot electron density profile. The hollow plasma equilibrium is macroscopically stable and generated in all the experimental conditions in which the machine has been operated. Small macroscopic plasma fluctuations in the range of the hot electron curvature drift frequency sometimes occur but their growth rate is small (ω/sub i//ω/sub r/ ≤ 10 -2 ) and saturate at very low level (δB//bar B/ ≤ 10 -3 ). Particle drift reversal is predicted to occur for the model pressure profile which best fits the experimental data under the typical operating conditions. No strong instability is observed when the plasma is near the drift reversal parameter regime, despite a theoretical prediction of instability under such conditions. The experiment shows that the cold electron population has no stabilizing effect to the hot electrons, which disagrees with current hot electron stability theories and results of previous maximum-B experiments. A theoretical analysis using MHD theory shows that the compressibility can stabilize a plasma with a hollowness of 20--30% in the Constance B mirror well. 57 refs

  13. Phase equilibrium and physical properties of biobased ionic liquid mixtures.

    Science.gov (United States)

    Toledo Hijo, Ariel A C; Maximo, Guilherme J; Cunha, Rosiane L; Fonseca, Felipe H S; Cardoso, Lisandro P; Pereira, Jorge F B; Costa, Mariana C; Batista, Eduardo A C; Meirelles, Antonio J A

    2018-02-28

    Protic ionic liquid crystals (PILCs) obtained from natural sources are promising compounds due to their peculiar properties and sustainable appeal. However, obtaining PILCs with higher thermal and mechanical stabilities for product and process design is in demand and studies on such approaches using this new IL generation are still scarce. In this context, this work discloses an alternative way for tuning the physicochemical properties of ILCs by mixing PILs. New binary mixtures of PILs derived from fatty acids and 2-hydroxy ethylamines have been synthesized here and investigated through the characterization of the solid-solid-[liquid crystal]-liquid thermodynamic equilibrium and their rheological and critical micellar concentration profiles. The mixtures presented a marked nonideal melting profile with the formation of solid solutions. This work revealed an improvement of the PILCs' properties based on a significant increase in the ILC temperature domain and the obtainment of more stable mesophases at high temperatures when compared to pure PILs. In addition, mixtures of PILs also showed significant changes in their non-Newtonian and viscosity profile up to 100 s -1 , as well as mechanical stability over a wide temperature range. The enhancement of the physicochemical properties of PILs here disclosed by such an approach leads to more new possibilities of their industrial application at high temperatures.

  14. Non-equilibrium plasma reactor for natrual gas processing

    International Nuclear Information System (INIS)

    Shair, F.H.; Ravimohan, A.L.

    1974-01-01

    A non-equilibrium plasma reactor for natural gas processing into ethane and ethylene comprising means of producing a non-equilibrium chemical plasma wherein selective conversion of the methane in natural gas to desired products of ethane and ethylene at a pre-determined ethane/ethylene ratio in the chemical process may be intimately controlled and optimized at a high electrical power efficiency rate by mixing with a recycling gas inert to the chemical process such as argon, helium, or hydrogen, reducing the residence time of the methane in the chemical plasma, selecting the gas pressure in the chemical plasma from a wide range of pressures, and utilizing pulsed electrical discharge producing the chemical plasma. (author)

  15. Non-equilibrium dynamics of open systems and fluctuation-dissipation theorems

    Czech Academy of Sciences Publication Activity Database

    Špička, Václav; Velický, B.; Kalvová, Anděla

    2017-01-01

    Roč. 65, 6-8 (2017), s. 1-23, č. článku 1700032. ISSN 0015-8208 Institutional support: RVO:68378271 Keywords : non-equilibrium * fluctuation-dissipation theorems * non-equilibrium Greens function * transient and steady state magnetic current * molecular bridge Subject RIV: BE - Theoretical Physics OBOR OECD: Atomic, molecular and chemical physics ( physics of atoms and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect) Impact factor: 2.434, year: 2016

  16. Memory loss process and non-Gibbsian equilibrium solutions of master equations

    International Nuclear Information System (INIS)

    Cataldo, H.M.; Hernandez, E.S.

    1988-01-01

    The phonon dynamics of a harmonic oscillator coupled to a steady reservoir is studied. In the Markovian limit, the equilibrium is reached through a progressive loss of memory process which involves the moments of the initial distribution. The relationship to the non-Markovian equations of motion and its resolvent poles is settled. As a particular model of the coupling mechanism is adopted, the possibility of non-Gibbsian equilibrium distribution arises, which is analyzed focusing upon the dependence of various parameters of the system on an effective equilibrium temperature

  17. Thermodynamic evolution far from equilibrium

    Science.gov (United States)

    Khantuleva, Tatiana A.

    2018-05-01

    The presented model of thermodynamic evolution of an open system far from equilibrium is based on the modern results of nonequilibrium statistical mechanics, the nonlocal theory of nonequilibrium transport developed by the author and the Speed Gradient principle introduced in the theory of adaptive control. Transition to a description of the system internal structure evolution at the mesoscopic level allows a new insight at the stability problem of non-equilibrium processes. The new model is used in a number of specific tasks.

  18. Near-equilibrium chemical vapor deposition of high-quality single-crystal graphene directly on various dielectric substrates.

    Science.gov (United States)

    Chen, Jianyi; Guo, Yunlong; Jiang, Lili; Xu, Zhiping; Huang, Liping; Xue, Yunzhou; Geng, Dechao; Wu, Bin; Hu, Wenping; Yu, Gui; Liu, Yunqi

    2014-03-05

    By using near-equilibrium chemical vapor deposition, it is demonstrated that high-quality single-crystal graphene can be grown on dielectric substrates. The maximum size is about 11 μm. The carrier mobility can reach about 5650 cm(2) V(-1) s(-1) , which is comparable to those of some metal-catalyzed graphene crystals, reflecting the good quality of the graphene lattice. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Convection with local thermal non-equilibrium and microfluidic effects

    CERN Document Server

    Straughan, Brian

    2015-01-01

    This book is one of the first devoted to an account of theories of thermal convection which involve local thermal non-equilibrium effects, including a concentration on microfluidic effects. The text introduces convection with local thermal non-equilibrium effects in extraordinary detail, making it easy for readers newer to the subject area to understand. This book is unique in the fact that it addresses a large number of convection theories and provides many new results which are not available elsewhere. This book will be useful to researchers from engineering, fluid mechanics, and applied mathematics, particularly those interested in microfluidics and porous media.

  20. Information theory explanation of the fluctuation theorem, maximum entropy production and self-organized criticality in non-equilibrium stationary states

    CERN Document Server

    Dewar, R

    2003-01-01

    Jaynes' information theory formalism of statistical mechanics is applied to the stationary states of open, non-equilibrium systems. First, it is shown that the probability distribution p subGAMMA of the underlying microscopic phase space trajectories GAMMA over a time interval of length tau satisfies p subGAMMA propor to exp(tau sigma subGAMMA/2k sub B) where sigma subGAMMA is the time-averaged rate of entropy production of GAMMA. Three consequences of this result are then derived: (1) the fluctuation theorem, which describes the exponentially declining probability of deviations from the second law of thermodynamics as tau -> infinity; (2) the selection principle of maximum entropy production for non-equilibrium stationary states, empirical support for which has been found in studies of phenomena as diverse as the Earth's climate and crystal growth morphology; and (3) the emergence of self-organized criticality for flux-driven systems in the slowly-driven limit. The explanation of these results on general inf...

  1. Replacing leads by self-energies using non-equilibrium Green's functions

    International Nuclear Information System (INIS)

    Michael, Fredrick; Johnson, M.D.

    2003-01-01

    Open quantum systems consist of semi-infinite leads which transport electrons to and from the device of interest. We show here that within the non-equilibrium Green's function technique for continuum systems, the leads can be replaced by simple c-number self-energies. Our starting point is an approach for continuum systems developed by Feuchtwang. The reformulation developed here is simpler to understand and carry out than the somewhat unwieldly manipulations typical in the Feuchtwang method. The self-energies turn out to have a limited variability: the retarded self-energy Σ r depends on the arbitrary choice of internal boundary conditions, but the non-equilibrium self-energy or scattering function Σ which determines transport is invariant for a broad class of boundary conditions. Expressed in terms of these self-energies, continuum non-equilibrium transport calculations take a particularly simple form similar to that developed for discrete systems

  2. Continuum model of non-equilibrium solvation and solvent effect on ultra-fast processes

    International Nuclear Information System (INIS)

    Li Xiangyuan; Fu Kexiang; Zhu Quan

    2006-01-01

    In the past 50 years, non-equilibrium solvation theory for ultra-fast processes such as electron transfer and light absorption/emission has attracted particular interest. A great deal of research efforts was made in this area and various models which give reasonable qualitative descriptions for such as solvent reorganization energy in electron transfer and spectral shift in solution, were developed within the framework of continuous medium theory. In a series of publications by the authors, we clarified that the expression of the non-equilibrium electrostatic free energy that is at the dominant position of non-equilibrium solvation and serves as the basis of various models, however, was incorrectly formulated. In this work, the authors argue that reversible charging work integration was inappropriately applied in the past to an irreversible path linking the equilibrium or the non-equilibrium state. Because the step from the equilibrium state to the nonequilibrium state is factually thermodynamically irreversible, the conventional expression for non-equilibrium free energy that was deduced in different ways is unreasonable. Here the authors derive the non-equilibrium free energy to a quite different form according to Jackson integral formula. Such a difference throws doubts to the models including the famous Marcus two-sphere model for solvent reorganization energy of electron transfer and the Lippert-Mataga equation for spectral shift. By introducing the concept of 'spring energy' arising from medium polarizations, the energy constitution of the non-equilibrium state is highlighted. For a solute-solvent system, the authors separate the total electrostatic energy into different components: the self-energies of solute charge and polarized charge, the interaction energy between them and the 'spring energy' of the solvent polarization. With detailed reasoning and derivation, our formula for non-equilibrium free energy can be reached through different ways. Based on the

  3. Non-equilibrium reaction rates in chemical kinetic equations

    Science.gov (United States)

    Gorbachev, Yuriy

    2018-05-01

    Within the recently proposed asymptotic method for solving the Boltzmann equation for chemically reacting gas mixture, the chemical kinetic equations has been derived. Corresponding one-temperature non-equilibrium reaction rates are expressed in terms of specific heat capacities of the species participate in the chemical reactions, bracket integrals connected with the internal energy transfer in inelastic non-reactive collisions and energy transfer coefficients. Reactions of dissociation/recombination of homonuclear and heteronuclear diatomic molecules are considered. It is shown that all reaction rates are the complex functions of the species densities, similarly to the unimolecular reaction rates. For determining the rate coefficients it is recommended to tabulate corresponding bracket integrals, additionally to the equilibrium rate constants. Correlation of the obtained results with the irreversible thermodynamics is established.

  4. Demonstration of the Kibble-Zurek mechanism in a non-equilibrium phase transition

    Science.gov (United States)

    Patil, Yogesh S.; Cheung, Hil F. H.; Date, Aditya G.; Vengalattore, Mukund

    2017-04-01

    We describe the experimental realization of a driven-dissipative phase transition (DPT) in a mechanical parametric amplifier and demonstrate key signatures of a critical point in the system, where the susceptibilities and relaxation time scales diverge and coincide with the spontaneous breaking of symmetry and the emergence of macroscopic order. While these observations are reminiscent of equilibrium phase transitions, it is presently an open question whether such DPTs are amenable to the conventional Landau-Ginsburg-Wilson paradigm that relies on concepts of scale invariance and universality - Indeed, recent theoretical work has predicted that DPTs can exhibit phenomenology that departs from these conventional paradigms. By quenching the system past the critical point, we measure the dynamics of the emergent ordered phase and its departure from adiabaticity, and find that our measurements are in excellent agreement with the Kibble-Zurek hypothesis. In addition to validating the KZ mechanism in a DPT for the first time, we also uniquely show that the measured critical exponents accurately reflect the interplay between the intrinsic coherent dynamics and the environmental correlations, with a clear departure from mean field exponents in the case of non-Markovian system-bath interactions. We also discuss how the techniques of reservoir engineering and the imposition of artificial environmental correlations can result in the stabilization of novel many-body quantum phases and exotic non-equilibrium states of matter.

  5. Dynamical Cooper pairing in non-equilibrium electron-phonon systems

    Energy Technology Data Exchange (ETDEWEB)

    Knap, Michael [Technical University of Munich (Germany); Harvard University (United States); Babadi, Mehrtash; Refael, Gil [Caltech (United States); Martin, Ivar [Argonne National Laboratory (United States); Demler, Eugene [Harvard University (United States)

    2016-07-01

    Ultrafast laser pulses have been used to manipulate complex quantum materials and to induce dynamical phase transitions. One of the most striking examples is the transient enhancement of superconductivity in several classes of materials upon irradiating them with high intensity pulses of terahertz light. Motivated by these experiments we analyze the Cooper pairing instabilities in non-equilibrium electron-phonon systems. We demonstrate that the light induced non-equilibrium state of phonons results in a simultaneous increase of the superconducting coupling constant and the electron scattering. We analyze the competition between these effects and show that in a broad range of parameters the dynamic enhancement of Cooper pair formation dominates over the increase in the scattering rate. This opens the possibility of transient light induced superconductivity at temperatures that are considerably higher than the equilibrium transition temperatures. Our results pave new pathways for engineering high-temperature light-induced superconducting states.

  6. Non-equilibrium Microwave Plasma for Efficient High Temperature Chemistry.

    Science.gov (United States)

    van den Bekerom, Dirk; den Harder, Niek; Minea, Teofil; Gatti, Nicola; Linares, Jose Palomares; Bongers, Waldo; van de Sanden, Richard; van Rooij, Gerard

    2017-08-01

    A flowing microwave plasma based methodology for converting electric energy into internal and/or translational modes of stable molecules with the purpose of efficiently driving non-equilibrium chemistry is discussed. The advantage of a flowing plasma reactor is that continuous chemical processes can be driven with the flexibility of startup times in the seconds timescale. The plasma approach is generically suitable for conversion/activation of stable molecules such as CO2, N2 and CH4. Here the reduction of CO2 to CO is used as a model system: the complementary diagnostics illustrate how a baseline thermodynamic equilibrium conversion can be exceeded by the intrinsic non-equilibrium from high vibrational excitation. Laser (Rayleigh) scattering is used to measure the reactor temperature and Fourier Transform Infrared Spectroscopy (FTIR) to characterize in situ internal (vibrational) excitation as well as the effluent composition to monitor conversion and selectivity.

  7. Non-equilibrium thermodynamical description of rhythmic motion patterns of active systems: a canonical-dissipative approach.

    Science.gov (United States)

    Dotov, D G; Kim, S; Frank, T D

    2015-02-01

    We derive explicit expressions for the non-equilibrium thermodynamical variables of a canonical-dissipative limit cycle oscillator describing rhythmic motion patterns of active systems. These variables are statistical entropy, non-equilibrium internal energy, and non-equilibrium free energy. In particular, the expression for the non-equilibrium free energy is derived as a function of a suitable control parameter. The control parameter determines the Hopf bifurcation point of the deterministic active system and describes the effective pumping of the oscillator. In analogy to the equilibrium free energy of the Landau theory, it is shown that the non-equilibrium free energy decays as a function of the control parameter. In doing so, a similarity between certain equilibrium and non-equilibrium phase transitions is pointed out. Data from an experiment on human rhythmic movements is presented. Estimates for pumping intensity as well as the thermodynamical variables are reported. It is shown that in the experiment the non-equilibrium free energy decayed when pumping intensity was increased, which is consistent with the theory. Moreover, pumping intensities close to zero could be observed at relatively slow intended rhythmic movements. In view of the Hopf bifurcation underlying the limit cycle oscillator model, this observation suggests that the intended limit cycle movements were actually more similar to trajectories of a randomly perturbed stable focus. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  8. Equilibrium stability of strained epitaxial layers on a rigid substrate

    International Nuclear Information System (INIS)

    Granato, E.; Kosterlitz, J.M.; Ying, S.C.

    1987-07-01

    A simple theory of the equilibrium stability of an strained epitaxial layer on a rigid substrate is presented. We generalise the Frankvan der Merwe model of a single layer and consider N layers of adsorbate on a substrate. Continuum elasticity theory is used to describe each layer, but the coupling between layers is treated ina discrete fashion. Our method interpolates between a few layers and the thick film limit of standard dislocation theory, and in this limit the standard results are obtained. In addition, we developed a variational approach which agrees well with our exact calculations. The advantage of our method over previous ores is that it allows to perform stability analyses of arbitrary superlattice configurations. (author) [pt

  9. One-loop calculation in time-dependent non-equilibrium thermo field dynamics

    International Nuclear Information System (INIS)

    Umezawa, H.; Yamanaka, Y.

    1989-01-01

    This paper is a review on the structure of thermo field dynamics (TFD) in which the basic concepts such as the thermal doublets, the quasi-particles and the self-consistent renormalization are presented in detail. A strong emphasis is put on the computational scheme. A detailed structure of this scheme is illustrated by the one-loop calculation in a non-equilibrium time-dependent process. A detailed account of the one-loop calculation has never been reported anywhere. The role of the self-consistent renormalization is explained. The equilibrium TFD is obtained as the long-time limit of non-equilibrium TFD. (author)

  10. Far from the equilibrium crystallization of oxide quantum dots in dried inorganic gels

    Science.gov (United States)

    Costille, B.; Dumoulin, M.; Ntsame Abagha, A. M.; Thune, E.; Guinebretière, R.

    2018-06-01

    We synthesized, through the sol-gel process, far from the equilibrium amorphous materials in which heterogeneous crystallization allowed the formation of oxide quantum dots. The isothermal evolutions of the mean size of the nanocrystals and the crystallinity of the materials were determined through x-ray diffraction experiments. The heterogeneous crystallization is characterized by a kinetic behavior that is far from that expected, according to the classical nucleation theory. We demonstrate that the evolution of the crystallinity is characterized by an Avrami exponent largely smaller than 1. Finally, nanocrystals exhibiting a size significantly below their Bohr radius are obtained and the number of these nanocrystals increases during isothermal treatment, whereas their mean size remains quasi-constant.

  11. Coherent application of a contact structure to formulate Classical Non-Equilibrium Thermodynamics

    NARCIS (Netherlands)

    Knobbe, E; Roekaerts, D.J.E.M.

    2017-01-01

    This contribution presents an outline of a new mathematical formulation for
    Classical Non-Equilibrium Thermodynamics (CNET) based on a contact
    structure in differential geometry. First a non-equilibrium state space is introduced as the third key element besides the first and second law of

  12. Non-equilibrium reactive flux: A unified framework for slow and fast reaction kinetics.

    Science.gov (United States)

    Bose, Amartya; Makri, Nancy

    2017-10-21

    The flux formulation of reaction rate theory is recast in terms of the expectation value of the reactive flux with an initial condition that corresponds to a non-equilibrium, factorized reactant density. In the common case of slow reactive processes, the non-equilibrium expression reaches the plateau regime only slightly slower than the equilibrium flux form. When the reactants are described by a single quantum state, as in the case of electron transfer reactions, the factorized reactant density describes the true initial condition of the reactive process. In such cases, the time integral of the non-equilibrium flux expression yields the reactant population as a function of time, allowing characterization of the dynamics in cases where there is no clear separation of time scales and thus a plateau regime cannot be identified. The non-equilibrium flux offers a unified approach to the kinetics of slow and fast chemical reactions and is ideally suited to mixed quantum-classical methods.

  13. Stability Analysis of Anchored Soil Slope Based on Finite Element Limit Equilibrium Method

    Directory of Open Access Journals (Sweden)

    Rui Zhang

    2016-01-01

    Full Text Available Under the condition of the plane strain, finite element limit equilibrium method is used to study some key problems of stability analysis for anchored slope. The definition of safe factor in slices method is generalized into FEM. The “true” stress field in the whole structure can be obtained by elastic-plastic finite element analysis. Then, the optimal search for the most dangerous sliding surface with Hooke-Jeeves optimized searching method is introduced. Three cases of stability analysis of natural slope, anchored slope with seepage, and excavation anchored slope are conducted. The differences in safety factor quantity, shape and location of slip surface, anchoring effect among slices method, finite element strength reduction method (SRM, and finite element limit equilibrium method are comparatively analyzed. The results show that the safety factor given by the FEM is greater and the unfavorable slip surface is deeper than that by the slice method. The finite element limit equilibrium method has high calculation accuracy, and to some extent the slice method underestimates the effect of anchor, and the effect of anchor is overrated in the SRM.

  14. Nakedly singular non-vacuum gravitating equilibrium states

    Science.gov (United States)

    Woszczyna, Andrzej; Kutschera, Marek; Kubis, Sebastian; Czaja, Wojciech; Plaszczyk, Piotr; Golda, Zdzisław A.

    2016-01-01

    Non-vacuum static spherically symmetric spacetimes with central point-like repulsive gravity sources are investigated. Both the symmetries of spacetime and the degree of irregularity of curvature invariants, are the same as for the Schwarzschild case. The equilibrium configurations are modelled using the neutron star polytrope equation of state.

  15. Experimental approaches for studying non-equilibrium atmospheric plasma jets

    Energy Technology Data Exchange (ETDEWEB)

    Shashurin, A., E-mail: ashashur@purdue.edu [School of Aeronautics & Astronautics, Purdue University, West Lafayette, Indiana 47907 (United States); Keidar, M. [Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, District of Columbia 20052 (United States)

    2015-12-15

    This work reviews recent research efforts undertaken in the area non-equilibrium atmospheric plasma jets with special focus on experimental approaches. Physics of small non-equilibrium atmospheric plasma jets operating in kHz frequency range at powers around few Watts will be analyzed, including mechanism of breakdown, process of ionization front propagation, electrical coupling of the ionization front with the discharge electrodes, distributions of excited and ionized species, discharge current spreading, transient dynamics of various plasma parameters, etc. Experimental diagnostic approaches utilized in the field will be considered, including Rayleigh microwave scattering, Thomson laser scattering, electrostatic streamer scatterers, optical emission spectroscopy, fast photographing, etc.

  16. Non-equilibrium magnetic interactions in strongly correlated systems

    Energy Technology Data Exchange (ETDEWEB)

    Secchi, A., E-mail: a.secchi@science.ru.nl [Institute for Molecules and Materials, Radboud University Nijmegen, 6525 AJ Nijmegen (Netherlands); Brener, S.; Lichtenstein, A.I. [Institut für Theoretische Physik, Universitat Hamburg, Jungiusstraße 9, D-20355 Hamburg (Germany); Katsnelson, M.I. [Institute for Molecules and Materials, Radboud University Nijmegen, 6525 AJ Nijmegen (Netherlands)

    2013-06-15

    We formulate a low-energy theory for the magnetic interactions between electrons in the multi-band Hubbard model under non-equilibrium conditions determined by an external time-dependent electric field which simulates laser-induced spin dynamics. We derive expressions for dynamical exchange parameters in terms of non-equilibrium electronic Green functions and self-energies, which can be computed, e.g., with the methods of time-dependent dynamical mean-field theory. Moreover, we find that a correct description of the system requires, in addition to exchange, a new kind of magnetic interaction, that we name twist exchange, which formally resembles Dzyaloshinskii–Moriya coupling, but is not due to spin–orbit, and is actually due to an effective three-spin interaction. Our theory allows the evaluation of the related time-dependent parameters as well. -- Highlights: •We develop a theory for magnetism of strongly correlated systems out of equilibrium. •Our theory is suitable for laser-induced ultrafast magnetization dynamics. •We write time-dependent exchange parameters in terms of electronic Green functions. •We find a new magnetic interaction, a “twist exchange”. •We give general expressions for magnetic noise in itinerant-electron systems.

  17. Equilibrium and stability of high-beta plasma in a finite l=+-1 toroidal system

    International Nuclear Information System (INIS)

    Shiina, S.; Saito, K.; Todoroki, J.; Hamada, S.; Gesso, H.; Nogi, Y.; Osanai, Y.; Yoshimura, H.

    1983-01-01

    The equilibrium and stability are theoretically and experimentally investigated of high-beta plasma in the Modified Bumpy Torus, which is an asymmetric closed-line system with fairly large l=0 and l=+-1 field components. The finiteness of the l=+-1 component induces significant stabilizing effects due both to self formation of a magnetic well and to the conducting wall. (author)

  18. A stability investigation of two-dimensional surface waves on evaporating, isothermal or condensing liquid films - Part I, Thermal non-equilibrium effects on wave velocity

    International Nuclear Information System (INIS)

    Chunxi, L.; Xuemin, Y.

    2004-01-01

    The temporal stability equation of the two-dimensional traveling waves of evaporating or condensing liquid films falling down on an inclined wall is established based on the Prandtl boundary layer theory and complete boundary conditions. The model indicates that the wave velocity is related to the effects of evaporating, isothermal and condensing states, thermo-capillarity, Reynolds number, fluid property and inclined angle, and the effects of above factors are distinctly different under different Reynolds numbers. The theoretical studies show that evaporation process induces the wave velocity to increase slightly compared with the isothermal case, and condensation process induces the wave velocity to decrease slightly. Furthermore, the wave velocity decreases because of the effects of thermo-capillarity under evaporation and increases because of the effects of thermo-capillarity under condensation. The effects of thermal non-equilibrium conditions have relatively obvious effects under lower Reynolds numbers and little effects under higher Reynolds numbers

  19. Effects of centrifugal modification of magnetohydrodynamic equilibrium on resistive wall mode stability

    International Nuclear Information System (INIS)

    Shiraishi, J.; Aiba, N.; Miyato, N.; Yagi, M.

    2014-01-01

    Toroidal rotation effects are self-consistently taken into account not only in the linear magnetohydrodynamic (MHD) stability analysis but also in the equilibrium calculation. The MHD equilibrium computation is affected by centrifugal force due to the toroidal rotation. To study the toroidal rotation effects on resistive wall modes (RWMs), a new code has been developed. The RWMaC modules, which solve the electromagnetic dynamics in vacuum and the resistive wall, have been implemented in the MINERVA code, which solves the Frieman–Rotenberg equation that describes the linear ideal MHD dynamics in a rotating plasma. It is shown that modification of MHD equilibrium by the centrifugal force significantly reduces growth rates of RWMs with fast rotation in the order of M 2  = 0.1 where M is the Mach number. Moreover, it can open a stable window which does not exist under the assumption that the rotation affects only the linear dynamics. The rotation modifies the equilibrium pressure gradient and current density profiles, which results in the change of potential energy including rotational effects. (paper)

  20. Phenomena of non-thermal electrons from the X-ray imaging crystal spectrometer on J-TEXT tokamak

    International Nuclear Information System (INIS)

    Yan, W.; Chen, Z.Y.; Jin, W.; Huang, D.W.; Lee, S.G.; Shi, Y.J.; Tong, R.H.; Wang, S.Y.; Wei, Y.N.; Ma, T.K.; Zhuang, G.

    2016-01-01

    Highlights: • Some lines from X-ray imaging crystal spectrometer (XICS) can be enhanced by non-thermal electrons, such as q, r satellite lines and z lines. • Analyze the non-thermal phenomena can reduce the error of electron temperature deduced from the intensity ratio of different lines of the He-like argon spectra from XICS. • XICS can be a tool to measure the non-thermal phenomena from these enhanced lines. - Abstract: A high spectra resolution X-ray imaging crystal spectrometer has been implemented on J-TEXT Tokamak for the measurements of K_α spectra of helium-like argon and its satellite lines. The wavelength range of K_α spectra of helium-like argon is from 3.9494 Å to 3.9944 Å that includes the resonance line w, intercombination lines x and y, forbidden line z and numerous satellite lines, referenced using standard Gabriel notation. In low-density discharge, the intensity of q, r satellite lines and z lines can be significantly enhanced by non-thermal electrons. Non-thermal electrons are produced due to the low plasma density. The high hard X-ray flux from NaI detector and significant downshift electron cyclotron emissions from energetic runaway electrons also indicated that there is a large population of runaway electrons in the low-density discharge. The non-thermal part of electrons can affect the excitation/transition equilibrium or ionization/recombination equilibrium. The q line is mainly produced by inner-shell excitation of lithium-like argon, and the r line is partially produced by inner-shell excitation of lithium-like argon and dielectronic recombination of helium-like argon.

  1. Phenomena of non-thermal electrons from the X-ray imaging crystal spectrometer on J-TEXT tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Yan, W. [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan (China); Chen, Z.Y., E-mail: zychen@hust.edu.cn [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan (China); Jin, W. [Center of Interface Dynamics for Sustainability, China Academy of Engineering Physics, Chengdu 610200, Sichuan (China); Huang, D.W. [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan (China); Lee, S.G.; Shi, Y.J. [National Fusion Research Institute, Daejeon 305-333 (Korea, Republic of); Tong, R.H.; Wang, S.Y.; Wei, Y.N.; Ma, T.K.; Zhuang, G. [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan (China)

    2016-11-01

    Highlights: • Some lines from X-ray imaging crystal spectrometer (XICS) can be enhanced by non-thermal electrons, such as q, r satellite lines and z lines. • Analyze the non-thermal phenomena can reduce the error of electron temperature deduced from the intensity ratio of different lines of the He-like argon spectra from XICS. • XICS can be a tool to measure the non-thermal phenomena from these enhanced lines. - Abstract: A high spectra resolution X-ray imaging crystal spectrometer has been implemented on J-TEXT Tokamak for the measurements of K{sub α} spectra of helium-like argon and its satellite lines. The wavelength range of K{sub α} spectra of helium-like argon is from 3.9494 Å to 3.9944 Å that includes the resonance line w, intercombination lines x and y, forbidden line z and numerous satellite lines, referenced using standard Gabriel notation. In low-density discharge, the intensity of q, r satellite lines and z lines can be significantly enhanced by non-thermal electrons. Non-thermal electrons are produced due to the low plasma density. The high hard X-ray flux from NaI detector and significant downshift electron cyclotron emissions from energetic runaway electrons also indicated that there is a large population of runaway electrons in the low-density discharge. The non-thermal part of electrons can affect the excitation/transition equilibrium or ionization/recombination equilibrium. The q line is mainly produced by inner-shell excitation of lithium-like argon, and the r line is partially produced by inner-shell excitation of lithium-like argon and dielectronic recombination of helium-like argon.

  2. Non-equilibrium condensation process in holographic superconductor with nonlinear electrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yunqi; Gong, Yungui [School of Physics, Huazhong University of Science and Technology,Wuhan, Hubei 430074 (China); Wang, Bin [IFSA Collaborative Innovation Center, Department of Physics and Astronomy, Shanghai Jiao Tong University,Shanghai 200240 (China)

    2016-02-17

    We study the non-equilibrium condensation process in a holographic superconductor with nonlinear corrections to the U(1) gauge field. We start with an asymptotic Anti-de-Sitter(AdS) black hole against a complex scalar perturbation at the initial time, and solve the dynamics of the gravitational systems in the bulk. When the black hole temperature T is smaller than a critical value T{sub c}, the scalar perturbation grows exponentially till saturation, the final state of spacetime approaches to a hairy black hole. In the bulk theory, we find the clue of the influence of nonlinear corrections in the gauge filed on the process of the scalar field condensation. We show that the bulk dynamics in the non-equilibrium process is completely consistent with the observations on the boundary order parameter. Furthermore we examine the time evolution of horizons in the bulk non-equilibrium transformation process from the bald AdS black hole to the AdS hairy hole. Both the evolution of apparent and event horizons show that the original AdS black hole configuration requires more time to finish the transformation to become a hairy black hole if there is nonlinear correction to the electromagnetic field. We generalize our non-equilibrium discussions to the holographic entanglement entropy and find that the holographic entanglement entropy can give us further understanding of the influence of the nonlinearity in the gauge field on the scalar condensation.

  3. Equilibrium and stability in strongly inhomogeneous plasmas

    International Nuclear Information System (INIS)

    Mynick, H.E.

    1978-10-01

    The equilibrium of strongly inhomogeneous, collisionless, slab plasmas, is studied using a generalized version of a formalism previously developed, which permits the generation of self-consistent equilibria, for plasmas with arbitrary magnetic shear, and variation of magnetic field strength. A systematic procedure is developed for deriving the form of the guiding-center Hamiltonian K, for finite eta, in an axisymmetric geometry. In the process of obtaining K, an expression for the first adiabatic invariant (the gyroaction) is obtained, which generalizes the usual expression 1/2 mv/sub perpendicular/ 2 /Ω/sub c/ (Ω/sub c/ = eB/mc), to finite eta and magnetic shear. A formalism is developed for the study of the stability of strongly-inhomogeneous, magnetized slab plasmas; it is then applied to the ion-drift-cyclotron instability

  4. A model for non-equilibrium, non-homogeneous two-phase critical flow

    International Nuclear Information System (INIS)

    Bassel, Wageeh Sidrak; Ting, Daniel Kao Sun

    1999-01-01

    Critical two phase flow is a very important phenomena in nuclear reactor technology for the analysis of loss of coolant accident. Several recent papers, Lee and Shrock (1990), Dagan (1993) and Downar (1996) , among others, treat the phenomena using complex models which require heuristic parameters such as relaxation constants or interfacial transfer models. In this paper a mathematical model for one dimensional non equilibrium and non homogeneous two phase flow in constant area duct is developed. The model is constituted of three conservation equations type mass ,momentum and energy. Two important variables are defined in the model: equilibrium constant in the energy equation and the impulse function in the momentum equation. In the energy equation, the enthalpy of the liquid phase is determined by a linear interpolation function between the liquid phase enthalpy at inlet condition and the saturated liquid enthalpy at local pressure. The interpolation coefficient is the equilibrium constant. The momentum equation is expressed in terms of the impulse function. It is considered that there is slip between the liquid and vapor phases, the liquid phase is in metastable state and the vapor phase is in saturated stable state. The model is not heuristic in nature and does not require complex interface transfer models. It is proved numerically that for the critical condition the partial derivative of two phase pressure drop with respect to the local pressure or to phase velocity must be zero.This criteria is demonstrated by numerical examples. The experimental work of Fauske (1962) and Jeandey (1982) were analyzed resulting in estimated numerical values for important parameters like slip ratio, equilibrium constant and two phase frictional drop. (author)

  5. X-ray scattering studies of non-equilibrium ordering processes: Progress report, November 1, 1988--October 31, 1989

    International Nuclear Information System (INIS)

    Nagler, S.E.

    1989-01-01

    We report on the progress of our project entitled ''X-ray Scattering Studies of Non-Equilibrium Ordering Processes.'' In-house time-resolved x-ray scattering has been used to investigate ordering kinetics in single crystal thin films of Cu 3 Au. Scaling analysis of the results shows that two dimensional kinetic behavior is observed in 260 /angstrom/ thick films. Significant improvements have been made in the local capabilities for fast time resolved measurements and data analysis. Measurements of microphase separation and ordering kinetics have been made in block-co-polymers, and experiments on Au-Cd martensitic material are continuing. 15 refs., 7 figs

  6. Extension of CE/SE method to non-equilibrium dissociating flows

    KAUST Repository

    Wen, C.Y.

    2017-12-08

    In this study, the hypersonic non-equilibrium flows over rounded nose geometries are numerically investigated by a robust conservation element and solution element (CE/SE) code, which is based on hybrid meshes consisting of triangular and quadrilateral elements. The dissociating and recombination chemical reactions as well as the vibrational energy relaxation are taken into account. The stiff source terms are solved by an implicit trapezoidal method of integration. Comparison with laboratory and numerical cases are provided to demonstrate the accuracy and reliability of the present CE/SE code in simulating hypersonic non-equilibrium flows.

  7. A Comparison of the Computation Times of Thermal Equilibrium and Non-equilibrium Models of Droplet Field in a Two-Fluid Three-Field Model

    Energy Technology Data Exchange (ETDEWEB)

    Park, Ik Kyu; Cho, Heong Kyu; Kim, Jong Tae; Yoon, Han Young; Jeong, Jae Jun

    2007-12-15

    A computational model for transient, 3 dimensional 2 phase flows was developed by using 'unstructured-FVM-based, non-staggered, semi-implicit numerical scheme' considering the thermally non-equilibrium droplets. The assumption of the thermally equilibrium between liquid and droplets of previous studies was not used any more, and three energy conservation equations for vapor, liquid, liquid droplets were set up. Thus, 9 conservation equations for mass, momentum, and energy were established to simulate 2 phase flows. In this report, the governing equations and a semi-implicit numerical sheme for a transient 1 dimensional 2 phase flows was described considering the thermally non-equilibrium between liquid and liquid droplets. The comparison with the previous model considering the thermally non-equilibrium between liquid and liquid droplets was also reported.

  8. Developing industries in cooperative interaction: equilibrium and stability in processes with lag

    Directory of Open Access Journals (Sweden)

    Aleksandr Kirjanen

    2017-11-01

    Full Text Available A mathematical model of dynamic interaction between mining and processing industries is formalized and studied in the paper. The process of interaction is described by a system of two delay dierential equations. The criterion for asymptotic stability of nontrivial equilibrium point is obtained when both industries co-work steadily. The problem is reduced to nding stability criterion for quasi-polynomial of second order. Time intervals between deliveries of raw materials which make it possible to preserve stable interaction between the two industries are found.

  9. The mathematics of instabilities in smectic C liquid crystals

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, D.A

    2001-07-01

    The theoretical effects of applying a magnetic or electric field to samples of smectic A and smectic C{sup *} liquid crystals are studied in this thesis. In Chapter 2 general background material on liquid crystals is introduced as well as the continuum theory which we shall use in subsequent chapters. We consider a planar sample of ferroelectric smectic C{sup *} liquid crystal in Chapter 3, where an electric field is applied perpendicular to the smectic layers. In particular, we obtain an exact solution to a dynamic equation which governs director reorientation (within a sample which is bounded in the z direction) which appears in the literature. We then consider the linear stability of this solution by applying a perturbation, in both space and time, and examine its growth. In Chapter 4 we again consider the stability of a planar sample of ferroelectric smectic C{sup *} when an electric field is applied perpendicular to the smectic planes. However, unlike in Chapter 3, we derive the relevant governing equation. After having introduced the relevant theory, the linear and nonlinear stability of a constant equilibrium state in both finite and infinite domains is examined. We then obtain information upon the relaxation times for each of these cases. The relaxation time gives an indication of how quickly the director relaxes back to equilibrium. The dynamic equation which is derived in Chapter 4 is extended in Chapter 5 to include the effects of lilting the applied electric field. The equilibrium equation which we then obtain is not tractable explicitly due to the form of the sinusoidal nonlinearity which appears in it. We therefore solve a simplified approximating dynamic equation as well as the full sinusoidal nonlinearity case numerically. In both cases the linear stability of the equilibrium solution is examined. Finally, in Chapter 6 we consider the layer deformations in a cylindrical sample of smectic A liquid crystal when a magnetic field is applied across the

  10. The mathematics of instabilities in smectic C liquid crystals

    International Nuclear Information System (INIS)

    Anderson, D.A.

    2001-01-01

    The theoretical effects of applying a magnetic or electric field to samples of smectic A and smectic C * liquid crystals are studied in this thesis. In Chapter 2 general background material on liquid crystals is introduced as well as the continuum theory which we shall use in subsequent chapters. We consider a planar sample of ferroelectric smectic C * liquid crystal in Chapter 3, where an electric field is applied perpendicular to the smectic layers. In particular, we obtain an exact solution to a dynamic equation which governs director reorientation (within a sample which is bounded in the z direction) which appears in the literature. We then consider the linear stability of this solution by applying a perturbation, in both space and time, and examine its growth. In Chapter 4 we again consider the stability of a planar sample of ferroelectric smectic C * when an electric field is applied perpendicular to the smectic planes. However, unlike in Chapter 3, we derive the relevant governing equation. After having introduced the relevant theory, the linear and nonlinear stability of a constant equilibrium state in both finite and infinite domains is examined. We then obtain information upon the relaxation times for each of these cases. The relaxation time gives an indication of how quickly the director relaxes back to equilibrium. The dynamic equation which is derived in Chapter 4 is extended in Chapter 5 to include the effects of lilting the applied electric field. The equilibrium equation which we then obtain is not tractable explicitly due to the form of the sinusoidal nonlinearity which appears in it. We therefore solve a simplified approximating dynamic equation as well as the full sinusoidal nonlinearity case numerically. In both cases the linear stability of the equilibrium solution is examined. Finally, in Chapter 6 we consider the layer deformations in a cylindrical sample of smectic A liquid crystal when a magnetic field is applied across the circular cross

  11. Comparing two non-equilibrium approaches to modelling of a free-burning arc

    International Nuclear Information System (INIS)

    Baeva, M; Uhrlandt, D; Benilov, M S; Cunha, M D

    2013-01-01

    Two models of high-pressure arc discharges are compared with each other and with experimental data for an atmospheric-pressure free-burning arc in argon for arc currents of 20–200 A. The models account for space-charge effects and thermal and ionization non-equilibrium in somewhat different ways. One model considers space-charge effects, thermal and ionization non-equilibrium in the near-cathode region and thermal non-equilibrium in the bulk plasma. The other model considers thermal and ionization non-equilibrium in the entire arc plasma and space-charge effects in the near-cathode region. Both models are capable of predicting the arc voltage in fair agreement with experimental data. Differences are observed in the arc attachment to the cathode, which do not strongly affect the near-cathode voltage drop and the total arc voltage for arc currents exceeding 75 A. For lower arc currents the difference is significant but the arc column structure is quite similar and the predicted bulk plasma characteristics are relatively close to each other. (paper)

  12. Non-equilibrium assembly of microtubules: from molecules to autonomous chemical robots.

    Science.gov (United States)

    Hess, H; Ross, Jennifer L

    2017-09-18

    Biological systems have evolved to harness non-equilibrium processes from the molecular to the macro scale. It is currently a grand challenge of chemistry, materials science, and engineering to understand and mimic biological systems that have the ability to autonomously sense stimuli, process these inputs, and respond by performing mechanical work. New chemical systems are responding to the challenge and form the basis for future responsive, adaptive, and active materials. In this article, we describe a particular biochemical-biomechanical network based on the microtubule cytoskeletal filament - itself a non-equilibrium chemical system. We trace the non-equilibrium aspects of the system from molecules to networks and describe how the cell uses this system to perform active work in essential processes. Finally, we discuss how microtubule-based engineered systems can serve as testbeds for autonomous chemical robots composed of biological and synthetic components.

  13. Thermal non-equilibrium in porous medium adjacent to vertical plate: ANN approach

    Science.gov (United States)

    Ahmed, N. J. Salman; Ahamed, K. S. Nazim; Al-Rashed, Abdullah A. A. A.; Kamangar, Sarfaraz; Athani, Abdulgaphur

    2018-05-01

    Thermal non-equilibrium in porous medium is a condition that refers to temperature discrepancy in solid matrix and fluid of porous medium. This type of flow is complex flow requiring complex set of partial differential equations that govern the flow behavior. The current work is undertaken to predict the thermal non-equilibrium behavior of porous medium adjacent to vertical plate using artificial neural network. A set of neurons in 3 layers are trained to predict the heat transfer characteristics. It is found that the thermal non-equilibrium heat transfer behavior in terms of Nusselt number of fluid as well as solid phase can be predicted accurately by using well-trained neural network.

  14. Some recent developments in non-equilibrium statistical physics

    Indian Academy of Sciences (India)

    : ... This canonical prescription is the starting point for studying a system in ... abilistic approach to non-equilibrium dynamics by treating the case of Markovian ..... equation in this network between the incoming flux and the outgoing flux at each.

  15. Equilibrium and stability of relativistic stars in extended theories of gravity

    Energy Technology Data Exchange (ETDEWEB)

    Wojnar, Aneta [Maria Curie-Sklodowska University, Institute of Physics, Lublin (Poland); Univ. di Monte S. Angelo, Napoli (Italy); Universita' di Napoli Federico II, Complesso Universitario di Monte S. Angelo, Dipartimento di Fisica ' ' E. Pancini' ' , Naples (Italy); INFN, Napoli (Italy); Velten, Hermano [Universidade Federal do Espirito Santo (UFES), Vitoria (Brazil)

    2016-12-15

    We study static, spherically symmetric equilibrium configurations in extended theories of gravity (ETG) following the notation introduced by Capozziello et al. We calculate the differential equations for the stellar structure in such theories in a very generic form i.e., the Tolman-Oppenheimer-Volkoff generalization for any ETG is introduced. Stability analysis is also investigated with special focus on the particular example of scalar-tensor gravity. (orig.)

  16. Elements of non-equilibrium (ℎ, k)-dynamics at zero and finite temperatures

    International Nuclear Information System (INIS)

    Golubeva, O.N.; Sukhanov, A.D.

    2011-01-01

    We suggest a method which allows developing some elements of non-equilibrium (ℎ, k)-dynamics without use of Schroedinger equation. It is based on the generalization pf Fokker-Planck and Hamilton-Jacobi equations. Sequential considering of stochastic influence of vacuum is realized in the quantum heat bath model. We show that at the presence of quantum-thermal diffusion non-equilibrium wave functions describe the process of nearing to generalized state of thermal equilibrium at zero and finite temperatures. They can be used as a ground for universal description of transport phenomena

  17. Non-equilibrium properties of Josephson critical current in Nb-based three terminal superconducting tunnel devices

    International Nuclear Information System (INIS)

    Ammendola, G.; Parlato, L.; Peluso, G.; Pepe, G.

    1998-01-01

    Tunnel quasi-particle injection into a superconducting film provides useful information on the non-equilibrium state inside the perturbed superconductor as well as on the potential application to electronic devices. Three terminal injector-detector superconducting devices have a long history in non-equilibrium superconductivity. In the recent past non-equilibrium phenomena have attracted again considerable attention because of many superconducting based detectors involve processes substantially non-equilibrium in nature. The possibility of using a stacked double tunnel junction to study the influence of non-equilibrium superconductivity on the Josephson critical current is now considered. An experimental study of the effect of quasi-particle injection on the Josephson current both in steady-state and pulsed experiments down to T=1.2 K is presented using 3 terminal Nb-based stacked double tunnel devices. The feasibility of a new class of particle detectors based on the direct measurement of the change in the Josephson current following the absorption of a X-ray quantum is also discussed in terms of non-equilibrium theories. (orig.)

  18. High temperature defect equilibrium in ZnS:Cu single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Lott, K.; Shinkarenko, S.; Tuern, L.; Nirk, T.; Oepik, A. [Department of Materials Science, Tallinn University of Technology, Tallinn (Estonia); Kallavus, U. [Centre for Materials Research, Tallinn University of Technology, Tallinn (Estonia); Gorokhova, E. [Scientific Research and Technological Institute of Optical Material Science, S. I. Vavilov State Optical Institute, All-Russia Science Center, St. Petersburg (Russian Federation); Grebennik, A.; Vishnjakov, A. [Department of Physical Chemistry, D. Mendelejev University of Chemical Technology of Russia, Moscow (Russian Federation)

    2010-07-15

    High temperature investigations in ZnS:Cu crystals were performed under defined conditions. High temperature electrical conductivity and copper solubility data were obtained under different component vapour pressures and under different sample temperatures. The experimental data at sulphur vapour pressure can be explained by the inclusion of abnormal site occupation i.e. by antistructural disorder. Compensating association of copper with this antistructure defect may occur. Antistructure disorder disappears with increasing of zinc vapour pressure and with increasing role of holes in bipolar conductivity. The method for solving the system of quasichemical reactions without approximation was used to model high temperature defect equilibrium. This model contains antistructure disorder and copper solubility limitation. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  19. A field-theoretic approach to non-equilibrium work identities

    International Nuclear Information System (INIS)

    Mallick, Kirone; Orland, Henri; Moshe, Moshe

    2011-01-01

    We study non-equilibrium work relations for a space-dependent field with stochastic dynamics (model A). Jarzynski's equality is obtained through symmetries of the dynamical action in the path-integral representation. We derive a set of exact identities that generalize the fluctuation-dissipation relations to non-stationary and far-from-equilibrium situations. These identities are prone to experimental verification. Furthermore, we show that a well-studied invariance of the Langevin equation under supersymmetry, which is known to be broken when the external potential is time dependent, can be partially restored by adding to the action a term which is precisely Jarzynski's work. The work identities can then be retrieved as consequences of the associated Ward-Takahashi identities.

  20. Classical and Quantum Models in Non-Equilibrium Statistical Mechanics: Moment Methods and Long-Time Approximations

    Directory of Open Access Journals (Sweden)

    Ramon F. Alvarez-Estrada

    2012-02-01

    Full Text Available We consider non-equilibrium open statistical systems, subject to potentials and to external “heat baths” (hb at thermal equilibrium at temperature T (either with ab initio dissipation or without it. Boltzmann’s classical equilibrium distributions generate, as Gaussian weight functions in momenta, orthogonal polynomials in momenta (the position-independent Hermite polynomialsHn’s. The moments of non-equilibrium classical distributions, implied by the Hn’s, fulfill a hierarchy: for long times, the lowest moment dominates the evolution towards thermal equilibrium, either with dissipation or without it (but under certain approximation. We revisit that hierarchy, whose solution depends on operator continued fractions. We review our generalization of that moment method to classical closed many-particle interacting systems with neither a hb nor ab initio dissipation: with initial states describing thermal equilibrium at T at large distances but non-equilibrium at finite distances, the moment method yields, approximately, irreversible thermalization of the whole system at T, for long times. Generalizations to non-equilibrium quantum interacting systems meet additional difficulties. Three of them are: (i equilibrium distributions (represented through Wigner functions are neither Gaussian in momenta nor known in closed form; (ii they may depend on dissipation; and (iii the orthogonal polynomials in momenta generated by them depend also on positions. We generalize the moment method, dealing with (i, (ii and (iii, to some non-equilibrium one-particle quantum interacting systems. Open problems are discussed briefly.

  1. Partition Function and Configurational Entropy in Non-Equilibrium States: A New Theoretical Model

    Directory of Open Access Journals (Sweden)

    Akira Takada

    2018-03-01

    Full Text Available A new model of non-equilibrium thermodynamic states has been investigated on the basis of the fact that all thermodynamic variables can be derived from partition functions. We have thus attempted to define partition functions for non-equilibrium conditions by introducing the concept of pseudo-temperature distributions. These pseudo-temperatures are configurational in origin and distinct from kinetic (phonon temperatures because they refer to the particular fragments of the system with specific energies. This definition allows thermodynamic states to be described either for equilibrium or non-equilibrium conditions. In addition; a new formulation of an extended canonical partition function; internal energy and entropy are derived from this new temperature definition. With this new model; computational experiments are performed on simple non-interacting systems to investigate cooling and two distinct relaxational effects in terms of the time profiles of the partition function; internal energy and configurational entropy.

  2. Choking flow modeling with mechanical and thermal non-equilibrium

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, H.J.; Ishii, M.; Revankar, S.T. [School of Nuclear Engineering, Purdue University, West Lafayette, IN 47907 (United States)

    2006-01-15

    The mechanistic model, which considers the mechanical and thermal non-equilibrium, is described for two-phase choking flow. The choking mass flux is obtained from the momentum equation with the definition of choking. The key parameter for the mechanical non-equilibrium is a slip ratio. The dependent parameters for the slip ratio are identified. In this research, the slip ratio which is defined in the drift flux model is used to identify the impact parameters on the slip ratio. Because the slip ratio in the drift flux model is related to the distribution parameter and drift velocity, the adequate correlations depending on the flow regime are introduced in this study. For the thermal non-equilibrium, the model is developed with bubble conduction time and Bernoulli choking model. In case of highly subcooled water compared to the inlet pressure, the Bernoulli choking model using the pressure undershoot is used because there is no bubble generation in the test section. When the phase change happens inside the test section, two-phase choking model with relaxation time calculates the choking mass flux. According to the comparison of model prediction with experimental data shows good agreement. The developed model shows good prediction in both low and high pressure ranges. (author)

  3. Non-equilibrium and band tailing in organic conductors

    Indian Academy of Sciences (India)

    . Non-equilibrium ... Introduction. Study of organic conductors and semiconductors continues to generate interest with the ... Band tailing reduces band gap or the acti- ..... (9), we can identify Eg(0) with the focal point and is proportional to P2. 1 .

  4. Calculating zeros: Non-equilibrium free energy calculations

    International Nuclear Information System (INIS)

    Oostenbrink, Chris; Gunsteren, Wilfred F. van

    2006-01-01

    Free energy calculations on three model processes with theoretically known free energy changes have been performed using short simulation times. A comparison between equilibrium (thermodynamic integration) and non-equilibrium (fast growth) methods has been made in order to assess the accuracy and precision of these methods. The three processes have been chosen to represent processes often observed in biomolecular free energy calculations. They involve a redistribution of charges, the creation and annihilation of neutral particles and conformational changes. At very short overall simulation times, the thermodynamic integration approach using discrete steps is most accurate. More importantly, reasonable accuracy can be obtained using this method which seems independent of the overall simulation time. In cases where slow conformational changes play a role, fast growth simulations might have an advantage over discrete thermodynamic integration where sufficient sampling needs to be obtained at every λ-point, but only if the initial conformations do properly represent an equilibrium ensemble. From these three test cases practical lessons can be learned that will be applicable to biomolecular free energy calculations

  5. Non-Equilibrium Turbulence and Two-Equation Modeling

    Science.gov (United States)

    Rubinstein, Robert

    2011-01-01

    Two-equation turbulence models are analyzed from the perspective of spectral closure theories. Kolmogorov theory provides useful information for models, but it is limited to equilibrium conditions in which the energy spectrum has relaxed to a steady state consistent with the forcing at large scales; it does not describe transient evolution between such states. Transient evolution is necessarily through nonequilibrium states, which can only be found from a theory of turbulence evolution, such as one provided by a spectral closure. When the departure from equilibrium is small, perturbation theory can be used to approximate the evolution by a two-equation model. The perturbation theory also gives explicit conditions under which this model can be valid, and when it will fail. Implications of the non-equilibrium corrections for the classic Tennekes-Lumley balance in the dissipation rate equation are drawn: it is possible to establish both the cancellation of the leading order Re1/2 divergent contributions to vortex stretching and enstrophy destruction, and the existence of a nonzero difference which is finite in the limit of infinite Reynolds number.

  6. Non-equilibrium between ions and electrons inside hot spots from National Ignition Facility experiments

    Directory of Open Access Journals (Sweden)

    Zhengfeng Fan

    2017-01-01

    Full Text Available The non-equilibrium between ions and electrons in the hot spot can relax the ignition conditions in inertial confinement fusion [Fan et al., Phys. Plasmas 23, 010703 (2016], and obvious ion-electron non-equilibrium could be observed by our simulations of high-foot implosions when the ion-electron relaxation is enlarged by a factor of 2. On the other hand, in many shots of high-foot implosions on the National Ignition Facility, the observed X-ray enhancement factors due to ablator mixing into the hot spot are less than unity assuming electrons and ions have the same temperature [Meezan et al., Phys. Plasmas 22, 062703 (2015], which is not self-consistent because it can lead to negative ablator mixing into the hot spot. Actually, this non-consistency implies ion-electron non-equilibrium within the hot spot. From our study, we can infer that ion-electron non-equilibrium exists in high-foot implosions and the ion temperature could be ∼9% larger than the equilibrium temperature in some NIF shots.

  7. Lateral interactions and non-equilibrium in surface kinetics

    Science.gov (United States)

    Menzel, Dietrich

    2016-08-01

    Work modelling reactions between surface species frequently use Langmuir kinetics, assuming that the layer is in internal equilibrium, and that the chemical potential of adsorbates corresponds to that of an ideal gas. Coverage dependences of reacting species and of site blocking are usually treated with simple power law coverage dependences (linear in the simplest case), neglecting that lateral interactions are strong in adsorbate and co-adsorbate layers which may influence kinetics considerably. My research group has in the past investigated many co-adsorbate systems and simple reactions in them. We have collected a number of examples where strong deviations from simple coverage dependences exist, in blocking, promoting, and selecting reactions. Interactions can range from those between next neighbors to larger distances, and can be quite complex. In addition, internal equilibrium in the layer as well as equilibrium distributions over product degrees of freedom can be violated. The latter effect leads to non-equipartition of energy over molecular degrees of freedom (for products) or non-equal response to those of reactants. While such behavior can usually be described by dynamic or kinetic models, the deeper reasons require detailed theoretical analysis. Here, a selection of such cases is reviewed to exemplify these points.

  8. Two-temperature chemically non-equilibrium modelling of transferred arcs

    International Nuclear Information System (INIS)

    Baeva, M; Kozakov, R; Gorchakov, S; Uhrlandt, D

    2012-01-01

    A two-temperature chemically non-equilibrium model describing in a self-consistent manner the heat transfer, the plasma chemistry, the electric and magnetic field in a high-current free-burning arc in argon has been developed. The model is aimed at unifying the description of a thermionic tungsten cathode, a flat copper anode, and the arc plasma including the electrode sheath regions. The heat transfer in the electrodes is coupled to the plasma heat transfer considering the energy fluxes onto the electrode boundaries with the plasma. The results of the non-equilibrium model for an arc current of 200 A and an argon flow rate of 12 slpm are presented along with results obtained from a model based on the assumption of local thermodynamic equilibrium (LTE) and from optical emission spectroscopy. The plasma shows a near-LTE behaviour along the arc axis and in a region surrounding the axis which becomes wider towards the anode. In the near-electrode regions, a large deviation from LTE is observed. The results are in good agreement with experimental findings from optical emission spectroscopy. (paper)

  9. Ward identity for non-equilibrium Fermi systems

    Czech Academy of Sciences Publication Activity Database

    Velický, B.; Kalvová, Anděla; Špička, Václav

    2008-01-01

    Roč. 77, č. 4 (2008), 041201/1-041201/4 ISSN 1098-0121 R&D Projects: GA ČR GC202/07/J051 Institutional research plan: CEZ:AV0Z10100520; CEZ:AV0Z10100521 Keywords : non-equilibrium * Green’s functions * quantum transport equations * Ward identity Subject RIV: BE - Theoretical Physics Impact factor: 3.322, year: 2008

  10. Protein surface shielding agents in protein crystallization

    International Nuclear Information System (INIS)

    Hašek, J.

    2011-01-01

    The crystallization process can be controlled by protein surface shielding agents blocking undesirable competitive adhesion modes during non-equilibrium processes of deposition of protein molecules on the surface of growing crystalline blocks. The hypothesis is based on a number of experimental proofs from diffraction experiments and also retrieved from the Protein Data Bank. The molecules adhering temporarily on the surface of protein molecules change the propensity of protein molecules to deposit on the crystal surface in a definite position and orientation. The concepts of competitive adhesion modes and protein surface shielding agents acting on the surface of molecules in a non-equilibrium process of protein crystallization provide a useful platform for the control of crystallization. The desirable goal, i.e. a transient preference of a single dominating adhesion mode between protein molecules during crystallization, leads to uniform deposition of proteins in a crystal. This condition is the most important factor for diffraction quality and thus also for the accuracy of protein structure determination. The presented hypothesis is a generalization of the experimentally well proven behaviour of hydrophilic polymers on the surface of protein molecules of other compounds

  11. Equilibrium and stability of high-beta plasma in Modified Bumpy Torus (MBT)

    International Nuclear Information System (INIS)

    Todoroki, J.; Shiina, S.; Saito, K.; Osanai, Y.; Nogi, Y.; Gesso, H.; Yagi, I.; Yokoyama, K.; Yoshimura, H.; Nihon Univ., Tokyo. Atomic Energy Research Inst.)

    1977-01-01

    The equilibrium and stability properties of the plasma in Modified Bumpy Torus, which is an asymmetric system with closed magnetic lines of force, is reported. For small beta value, the growth rate of m=1 mode instability in MBT can be smaller than that of Scyllac configuration. The results of 1/4 toroidal sector experiment are reported. (author)

  12. Slope stability analysis using limit equilibrium method in nonlinear criterion.

    Science.gov (United States)

    Lin, Hang; Zhong, Wenwen; Xiong, Wei; Tang, Wenyu

    2014-01-01

    In slope stability analysis, the limit equilibrium method is usually used to calculate the safety factor of slope based on Mohr-Coulomb criterion. However, Mohr-Coulomb criterion is restricted to the description of rock mass. To overcome its shortcomings, this paper combined Hoek-Brown criterion and limit equilibrium method and proposed an equation for calculating the safety factor of slope with limit equilibrium method in Hoek-Brown criterion through equivalent cohesive strength and the friction angle. Moreover, this paper investigates the impact of Hoek-Brown parameters on the safety factor of slope, which reveals that there is linear relation between equivalent cohesive strength and weakening factor D. However, there are nonlinear relations between equivalent cohesive strength and Geological Strength Index (GSI), the uniaxial compressive strength of intact rock σ ci , and the parameter of intact rock m i . There is nonlinear relation between the friction angle and all Hoek-Brown parameters. With the increase of D, the safety factor of slope F decreases linearly; with the increase of GSI, F increases nonlinearly; when σ ci is relatively small, the relation between F and σ ci is nonlinear, but when σ ci is relatively large, the relation is linear; with the increase of m i , F decreases first and then increases.

  13. Non-equilibrium coherence dynamics in one-dimensional Bose gases.

    Science.gov (United States)

    Hofferberth, S; Lesanovsky, I; Fischer, B; Schumm, T; Schmiedmayer, J

    2007-09-20

    Low-dimensional systems provide beautiful examples of many-body quantum physics. For one-dimensional (1D) systems, the Luttinger liquid approach provides insight into universal properties. Much is known of the equilibrium state, both in the weakly and strongly interacting regimes. However, it remains a challenge to probe the dynamics by which this equilibrium state is reached. Here we present a direct experimental study of the coherence dynamics in both isolated and coupled degenerate 1D Bose gases. Dynamic splitting is used to create two 1D systems in a phase coherent state. The time evolution of the coherence is revealed through local phase shifts of the subsequently observed interference patterns. Completely isolated 1D Bose gases are observed to exhibit universal sub-exponential coherence decay, in excellent agreement with recent predictions. For two coupled 1D Bose gases, the coherence factor is observed to approach a non-zero equilibrium value, as predicted by a Bogoliubov approach. This coupled-system decay to finite coherence is the matter wave equivalent of phase-locking two lasers by injection. The non-equilibrium dynamics of superfluids has an important role in a wide range of physical systems, such as superconductors, quantum Hall systems, superfluid helium and spin systems. Our experiments studying coherence dynamics show that 1D Bose gases are ideally suited for investigating this class of phenomena.

  14. Adaptive Chemical Networks under Non-Equilibrium Conditions: The Evaporating Droplet.

    Science.gov (United States)

    Armao, Joseph J; Lehn, Jean-Marie

    2016-10-17

    Non-volatile solutes in an evaporating drop experience an out-of-equilibrium state due to non-linear concentration effects and complex flow patterns. Here, we demonstrate a small molecule chemical reaction network that undergoes a rapid adaptation response to the out-of-equilibrium conditions inside the droplet leading to control over the molecular constitution and spatial arrangement of the deposition pattern. Adaptation results in a pronounced coffee stain effect and coupling to chemical concentration gradients within the drop is demonstrated. Amplification and suppression of network species are readily identifiable with confocal fluorescence microscopy. We anticipate that these observations will contribute to the design and exploration of out-of-equilibrium chemical systems, as well as be useful towards the development of point-of-care medical diagnostics and controlled deposition of small molecules through inkjet printing. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Modelling of three dimensional equilibrium and stability of MAST plasmas with magnetic perturbations using VMEC and COBRA

    Energy Technology Data Exchange (ETDEWEB)

    Ham, C. J., E-mail: christopher.ham@ccfe.ac.uk; Chapman, I. T.; Kirk, A.; Saarelma, S. [CCFE, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom)

    2014-10-15

    It is known that magnetic perturbations can mitigate edge localized modes (ELMs) in experiments, for example, MAST [Kirk et al., Nucl. Fusion 53, 043007 (2013)]. One hypothesis is that the magnetic perturbations cause a three dimensional corrugation of the plasma and this corrugated plasma has different stability properties to peeling-ballooning modes compared to an axisymmetric plasma. It has been shown in an up-down symmetric plasma that magnetic perturbations in tokamaks will break the usual axisymmetry of the plasma causing three dimensional displacements [Chapman et al., Plasma Phys. Controlled Fusion 54, 105013 (2012)]. We produce a free boundary three-dimensional equilibrium of a lower single null MAST relevant plasma using VMEC [S. P. Hirshman and J. C. Whitson, Phys. Fluids 26, 3553 (1983)]. The safety factor and pressure profiles used for the modelling are similar to those deduced from axisymmetric analysis of experimental data with ELMs. We focus on the effect of applying n = 3 and n = 6 magnetic perturbations using the resonant magnetic perturbation (RMP) coils. A midplane displacement of over ±1 cm is seen when the full current is applied. The current in the coils is scanned and a linear relationship between coil current and midplane displacement is found. The pressure gradient in real space in different toroidal locations is shown to change when RMPs are applied. This effect should be taken into account when diagnosing plasmas with RMPs applied. The helical Pfirsch-Schlüter currents which arise as a result of the assumption of nested flux surfaces are estimated for this equilibrium. The effect of this non-axisymmetric equilibrium on infinite n ballooning stability is investigated using COBRA [Sanchez et al., J. Comput. Phys. 161, 576–588 (2000)]. The infinite n ballooning stability is analysed for two reasons; it may give an indication of the effect of non-axisymmetry on finite n peeling-ballooning modes, responsible for ELMs; and

  16. Stochastic pumping of non-equilibrium steady-states: how molecules adapt to a fluctuating environment.

    Science.gov (United States)

    Astumian, R D

    2018-01-11

    In the absence of input energy, a chemical reaction in a closed system ineluctably relaxes toward an equilibrium state governed by a Boltzmann distribution. The addition of a catalyst to the system provides a way for more rapid equilibration toward this distribution, but the catalyst can never, in and of itself, drive the system away from equilibrium. In the presence of external fluctuations, however, a macromolecular catalyst (e.g., an enzyme) can absorb energy and drive the formation of a steady state between reactant and product that is not determined solely by their relative energies. Due to the ubiquity of non-equilibrium steady states in living systems, the development of a theory for the effects of external fluctuations on chemical systems has been a longstanding focus of non-equilibrium thermodynamics. The theory of stochastic pumping has provided insight into how a non-equilibrium steady-state can be formed and maintained in the presence of dissipation and kinetic asymmetry. This effort has been greatly enhanced by a confluence of experimental and theoretical work on synthetic molecular machines designed explicitly to harness external energy to drive non-equilibrium transport and self-assembly.

  17. Stabilization of emission of CO2: A computable general equilibrium assessment

    International Nuclear Information System (INIS)

    Glomsroed, S.; Vennemo, H.; Johnsen, T.

    1992-01-01

    A multisector computable general equilibrium model is used to study economic development perspectives in Norway if CO 2 emissions were stabilized. The effects discussed include impacts on main macroeconomic indicators and economic growth, sectoral allocation of production, and effects on the market for energy. The impact of other pollutants than CO 2 on emissions is assessed along with the related impact on noneconomic welfare. The results indicate that CO 2 emissions might be stabilized in Norway without dramatically reducing economic growth. Sectoral allocation effects are much larger. A substantial reduction in emissions to air other than CO 2 is found, yielding considerable gains in noneconomic welfare. 25 refs., 6 tabs., 2 figs

  18. Non-equilibrium thermodynamics of radiation-induced processes in solids

    International Nuclear Information System (INIS)

    Yurov, V.M.; Eshchanov, A.N.; Kuketaev, A.T.; Sidorenya, Yu.S.

    2005-01-01

    In the paper an item about a defect system response in solids on external action (temperature, pressure, light, etc.) from the point of view of non-equilibrium statistical thermodynamics is considered

  19. Active Learning Session Based on Didactical Engineering Framework for Conceptual Change in Students' Equilibrium and Stability Understanding

    Science.gov (United States)

    Canu, Michael; Duque, Mauricio; de Hosson, Cécile

    2017-01-01

    Engineering students on control courses lack a deep understanding of equilibrium and stability that are crucial concepts in this discipline. Several studies have shown that students find it difficult to understand simple familiar or academic static equilibrium cases as well as dynamic ones from mechanics even if they know the discipline's criteria…

  20. EQUILIBRIUM AND KINETIC PARAMETERS FOR THE SEDIMENTATION OF TARTARIC SALTS IN YOUNG WINES

    Directory of Open Access Journals (Sweden)

    Ecaterina Covaci

    2015-06-01

    Full Text Available In young wines potassium hydrogen tartrate is always present in supersaturating concentration and crystallizes spontaneously. The aim of this study is to obtain kinetic parameters, which explain the stability of young wines during the stabilization treatments. The kinetic and equilibrium parameters were evaluated and discussed. The heating factor has a decisive influence on the reaction rate of potassium hydrogen tartrate precipitation in young wines. An increase of temperature leads to a decrease in efficiency of stabilization process and to an enhancement of the activation energy of the system. According to the obtained experimental results, the optimal regime for production and stabilization of young wines has been established.

  1. Citrate effects on amorphous calcium carbonate (ACC) structure, stability, and crystallization

    DEFF Research Database (Denmark)

    Tobler, Dominique Jeanette; Rodriguez Blanco, Juan Diego; Dideriksen, Knud

    2015-01-01

    Understanding the role of citrate in the crystallization kinetics of amorphous calcium carbonate (ACC) is essential to explain the formation mechanisms, stabilities, surface properties, and morphologies of CaCO3 biominerals. It also contributes to deeper insight into fluid-mineral inte......Understanding the role of citrate in the crystallization kinetics of amorphous calcium carbonate (ACC) is essential to explain the formation mechanisms, stabilities, surface properties, and morphologies of CaCO3 biominerals. It also contributes to deeper insight into fluid...

  2. Discussions on the non-equilibrium effects in the quantitative phase field model of binary alloys

    International Nuclear Information System (INIS)

    Zhi-Jun, Wang; Jin-Cheng, Wang; Gen-Cang, Yang

    2010-01-01

    All the quantitative phase field models try to get rid of the artificial factors of solutal drag, interface diffusion and interface stretch in the diffuse interface. These artificial non-equilibrium effects due to the introducing of diffuse interface are analysed based on the thermodynamic status across the diffuse interface in the quantitative phase field model of binary alloys. Results indicate that the non-equilibrium effects are related to the negative driving force in the local region of solid side across the diffuse interface. The negative driving force results from the fact that the phase field model is derived from equilibrium condition but used to simulate the non-equilibrium solidification process. The interface thickness dependence of the non-equilibrium effects and its restriction on the large scale simulation are also discussed. (cross-disciplinary physics and related areas of science and technology)

  3. X-RAY SIGNATURES OF NON-EQUILIBRIUM IONIZATION EFFECTS IN GALAXY CLUSTER ACCRETION SHOCK REGIONS

    International Nuclear Information System (INIS)

    Wong, Ka-Wah; Sarazin, Craig L.; Ji Li

    2011-01-01

    The densities in the outer regions of clusters of galaxies are very low, and the collisional timescales are very long. As a result, heavy elements will be under-ionized after they have passed through the accretion shock. We have studied systematically the effects of non-equilibrium ionization for relaxed clusters in the ΛCDM cosmology using one-dimensional hydrodynamic simulations. We found that non-equilibrium ionization effects do not depend on cluster mass, but depend strongly on redshift which can be understood by self-similar scaling arguments. The effects are stronger for clusters at lower redshifts. We present X-ray signatures such as surface brightness profiles and emission lines in detail for a massive cluster at low redshift. In general, soft emission (0.3-1.0 keV) is enhanced significantly by under-ionization, and the enhancement can be nearly an order of magnitude near the shock radius. The most prominent non-equilibrium ionization signature we found is the O VII and O VIII line ratio. The ratios for non-equilibrium ionization and collisional ionization equilibrium models are different by more than an order of magnitude at radii beyond half of the shock radius. These non-equilibrium ionization signatures are equally strong for models with different non-adiabatic shock electron heating efficiencies. We have also calculated the detectability of the O VII and O VIII lines with the future International X-ray Observatory (IXO). Depending on the line ratio measured, we conclude that an exposure of ∼130-380 ks on a moderate-redshift, massive regular cluster with the X-ray Microcalorimeter Spectrometer (XMS) on the IXO will be sufficient to provide a strong test for the non-equilibrium ionization model.

  4. Critical dynamics a field theory approach to equilibrium and non-equilibrium scaling behavior

    CERN Document Server

    Täuber, Uwe C

    2014-01-01

    Introducing a unified framework for describing and understanding complex interacting systems common in physics, chemistry, biology, ecology, and the social sciences, this comprehensive overview of dynamic critical phenomena covers the description of systems at thermal equilibrium, quantum systems, and non-equilibrium systems. Powerful mathematical techniques for dealing with complex dynamic systems are carefully introduced, including field-theoretic tools and the perturbative dynamical renormalization group approach, rapidly building up a mathematical toolbox of relevant skills. Heuristic and qualitative arguments outlining the essential theory behind each type of system are introduced at the start of each chapter, alongside real-world numerical and experimental data, firmly linking new mathematical techniques to their practical applications. Each chapter is supported by carefully tailored problems for solution, and comprehensive suggestions for further reading, making this an excellent introduction to critic...

  5. Non-equilibrium flow and sediment transport distribution over mobile river dunes

    Science.gov (United States)

    Hoitink, T.; Naqshband, S.; McElroy, B. J.

    2017-12-01

    Flow and sediment transport are key processes in the morphodynamics of river dunes. During floods in several rivers (e.g., the Elkhorn, Missouri, Niobrara, and Rio Grande), dunes are observed to grow rapidly as flow strength increases, undergoing an unstable transition regime, after which they are washed out in what is called upper stage plane bed. This morphological evolution of dunes to upper stage plane bed is the strongest bed-form adjustment during non-equilibrium flows and is associated with a significant change in hydraulic roughness and water levels. Detailed experimental investigations, however, have mostly focused on fixed dunes limited to equilibrium flow and bed conditions that are rare in natural channels. Our understanding of the underlying sedimentary processes that result into the washing out of dunes is therefore very limited. In the present study, using the Acoustic Concentration and Velocity Profiler (ACVP), we were able to quantify flow structure and sediment transport distribution over mobile non-equilibrium dunes. Under these non-equilibrium flow conditions average dune heights were decreasing while dune lengths were increasing. Preliminary results suggest that this morphological behaviour is due to a positive phase lag between sediment transport maximum and topographic maximum leading to a larger erosion on the dune stoss side compared to deposition on dune lee side.

  6. 3D equilibrium crystal shapes in the new light of STM and AFM

    International Nuclear Information System (INIS)

    Bonzel, H.P.

    2003-01-01

    A systematic study of 3D equilibrium crystal shapes (ECS) can yield important surface energetic quantities, such as step, kink, surface and step-step interaction free energies. Observations of the ECS, especially of flat facets and adjacent vicinal regions, will provide primarily relative step and surface free energies. An advanced goal is to determine absolute step free energies, kink formation and step interaction energies. Absolute values of these energies are important in governing crystal growth morphologies, high temperature phase changes and kinetic processes associated with shape changes. Furthermore, absolute step and kink energies are the key to absolute surface free energies of well defined low-index orientations. We review new experiments where sections of the ECS are monitored as a function of temperature to extract characteristic morphological parameters, yielding absolute surface energetic quantities. Attention will be paid to the question of attaining true 3D equilibrium of an ensemble of crystallites. The special role of scanning tunneling and atomic force microscopies will be stressed. New ways of overcoming the problem of the activation barrier for facet growth (or shrinkage) through the study of dislocated crystallites will be demonstrated. In the general context of 3D crystallites, the study of 2D nano-crystals, in the form of adatom or vacancy islands on extended flat surfaces, will be discussed. In particular, the connection between the temperature dependent shape of 2D islands and the absolute step and kink formation energies of the bounding steps, complementary to facet shape changes of 3D crystallites, has emerged as an important topic of recent research. Finally, high temperature phase changes, such as surface roughening and surface melting, as they have been observed by scanning electron microscopy on 3D crystallites, will be briefly reviewed

  7. Crystal-free Formation of Non-Oxide Optical Fiber

    Science.gov (United States)

    Nabors, Sammy A.

    2015-01-01

    Researchers at NASA Marshall Space Flight Center have devised a method for the creation of crystal-free nonoxide optical fiber preforms. Non-oxide fiber optics are extensively used in infrared transmitting applications such as communication systems, chemical sensors, and laser fiber guides for cutting, welding and medical surgery. However, some of these glasses are very susceptible to crystallization. Even small crystals can lead to light scatter and a high attenuation coefficient, limiting their usefulness. NASA has developed a new method of non-oxide fiber formation that uses axial magnetic fields to suppress crystallization. The resulting non-oxide fibers are crystal free and have lower signal attenuation rates than silica based optical fibers.

  8. The Stability of Tidal Equilibrium for Hierarchical Star-Planet-Moon Systems

    Science.gov (United States)

    Adams, Fred C.

    2018-04-01

    Motivated by the current search for exomoons, this talk considers the stability of tidal equilibrium for hierarchical three-body systems containing a star, a planet, and a moon. In this treatment, the energy and angular momentum budgets include contributions from the planetary orbit, lunar orbit, stellar spin, planetary spin, and lunar spin. The goal is to determine the optimized energy state of the system subject to the constraint of constant angular momentum. Due to the lack of a closed form solution for the full three-body problem, however, we must use use an approximate description of the orbits. We first consider the Keplerian limit and find that the critical energy states are saddle points, rather than minima, so that these hierarchical systems have no stable tidal equilibrium states. We then generalize the calculation so that the lunar orbit is described by a time-averaged version of the circular restricted three-body problem. In this latter case, the critical energy state is a shallow minimum, so that a tidal equilibrium state exists. In both cases, however, the lunar orbit for the critical point lies outside the boundary (roughly half the Hill radius) where (previous) numerical simulations indicate dynamical instability.

  9. MAGNETIC RECONNECTION IN NON-EQUILIBRIUM IONIZATION PLASMA

    International Nuclear Information System (INIS)

    Imada, S.; Shimizu, T.; Murakami, I.; Watanabe, T.; Hara, H.

    2011-01-01

    We have studied the effect of time-dependent ionization and the recombination processes on magnetic reconnection in the solar corona. Petschek-type steady reconnection, in which the magnetic energy is mainly converted at the slow-mode shocks, was assumed. We carried out the time-dependent ionization calculation in the magnetic reconnection structure. We only calculated the transient ionization of iron; the other species were assumed to be in ionization equilibrium. The intensity of line emissions at specific wavelengths was also calculated for comparison with Hinode or other observations in future. We found the following: (1) iron is mostly in non-equilibrium ionization in the reconnection region; (2) the intensity of line emission estimated by the time-dependent ionization calculation is significantly different from that determined from the ionization equilibrium assumption; (3) the effect of time-dependent ionization is sensitive to the electron density in the case where the electron density is less than 10 10 cm –3 ; (4) the effect of thermal conduction lessens the time-dependent ionization effect; and (5) the effect of radiative cooling is negligibly small even if we take into account time-dependent ionization.

  10. Lower bounds for ballistic current and noise in non-equilibrium quantum steady states

    Directory of Open Access Journals (Sweden)

    Benjamin Doyon

    2015-03-01

    Full Text Available Let an infinite, homogeneous, many-body quantum system be unitarily evolved for a long time from a state where two halves are independently thermalized. One says that a non-equilibrium steady state emerges if there are nonzero steady currents in the central region. In particular, their presence is a signature of ballistic transport. We analyze the consequences of the current observable being a conserved density; near equilibrium this is known to give rise to linear wave propagation and a nonzero Drude peak. Using the Lieb–Robinson bound, we derive, under a certain regularity condition, a lower bound for the non-equilibrium steady-state current determined by equilibrium averages. This shows and quantifies the presence of ballistic transport far from equilibrium. The inequality suggests the definition of “nonlinear sound velocities”, which specialize to the sound velocity near equilibrium in non-integrable models, and “generalized sound velocities”, which encode generalized Gibbs thermalization in integrable models. These are bounded by the Lieb–Robinson velocity. The inequality also gives rise to a bound on the energy current noise in the case of pure energy transport. We show that the inequality is satisfied in many models where exact results are available, and that it is saturated at one-dimensional criticality.

  11. Self-organization of dissipative and coherent vortex structures in non-equilibrium magnetized two-dimensional plasmas

    International Nuclear Information System (INIS)

    Bystrenko, O; Bystrenko, T

    2010-01-01

    The properties of non-equilibrium magnetized plasmas confined in planar geometry are studied on the basis of first-principle microscopic Langevin dynamics computer simulations. The non-equilibrium state of plasmas is maintained due to the recombination and generation of charges. The intrinsic microscopic structure of non-equilibrium steady-state magnetized plasmas, in particular the inter-particle correlations and self-organization of vortex structures, are examined. The simulations have been performed for a wide range of parameters including strong plasma coupling, high charge recombination and generation rates and intense magnetic field. As is shown in simulations, the non-equilibrium recombination and generation processes trigger the formation of ordered dissipative or coherent drift vortex states in 2D plasmas with distinctly spatially separated components, which are far from thermal equilibrium. This is evident from the unusual properties of binary distributions and behavior of the Coulomb energy of the system, which turn out to be quite different from the ones typical for the equilibrium state of plasmas under the same conditions.

  12. Broken detailed balance and non-equilibrium dynamics in living systems: a review

    Science.gov (United States)

    Gnesotto, F. S.; Mura, F.; Gladrow, J.; Broedersz, C. P.

    2018-06-01

    Living systems operate far from thermodynamic equilibrium. Enzymatic activity can induce broken detailed balance at the molecular scale. This molecular scale breaking of detailed balance is crucial to achieve biological functions such as high-fidelity transcription and translation, sensing, adaptation, biochemical patterning, and force generation. While biological systems such as motor enzymes violate detailed balance at the molecular scale, it remains unclear how non-equilibrium dynamics manifests at the mesoscale in systems that are driven through the collective activity of many motors. Indeed, in several cellular systems the presence of non-equilibrium dynamics is not always evident at large scales. For example, in the cytoskeleton or in chromosomes one can observe stationary stochastic processes that appear at first glance thermally driven. This raises the question how non-equilibrium fluctuations can be discerned from thermal noise. We discuss approaches that have recently been developed to address this question, including methods based on measuring the extent to which the system violates the fluctuation-dissipation theorem. We also review applications of this approach to reconstituted cytoskeletal networks, the cytoplasm of living cells, and cell membranes. Furthermore, we discuss a more recent approach to detect actively driven dynamics, which is based on inferring broken detailed balance. This constitutes a non-invasive method that uses time-lapse microscopy data, and can be applied to a broad range of systems in cells and tissue. We discuss the ideas underlying this method and its application to several examples including flagella, primary cilia, and cytoskeletal networks. Finally, we briefly discuss recent developments in stochastic thermodynamics and non-equilibrium statistical mechanics, which offer new perspectives to understand the physics of living systems.

  13. Broken detailed balance and non-equilibrium dynamics in living systems: a review.

    Science.gov (United States)

    Gnesotto, F S; Mura, F; Gladrow, J; Broedersz, C P

    2018-03-05

    Living systems operate far from thermodynamic equilibrium. Enzymatic activity can induce broken detailed balance at the molecular scale. This molecular scale breaking of detailed balance is crucial to achieve biological functions such as high-fidelity transcription and translation, sensing, adaptation, biochemical patterning, and force generation. While biological systems such as motor enzymes violate detailed balance at the molecular scale, it remains unclear how non-equilibrium dynamics manifests at the mesoscale in systems that are driven through the collective activity of many motors. Indeed, in several cellular systems the presence of non-equilibrium dynamics is not always evident at large scales. For example, in the cytoskeleton or in chromosomes one can observe stationary stochastic processes that appear at first glance thermally driven. This raises the question how non-equilibrium fluctuations can be discerned from thermal noise. We discuss approaches that have recently been developed to address this question, including methods based on measuring the extent to which the system violates the fluctuation-dissipation theorem. We also review applications of this approach to reconstituted cytoskeletal networks, the cytoplasm of living cells, and cell membranes. Furthermore, we discuss a more recent approach to detect actively driven dynamics, which is based on inferring broken detailed balance. This constitutes a non-invasive method that uses time-lapse microscopy data, and can be applied to a broad range of systems in cells and tissue. We discuss the ideas underlying this method and its application to several examples including flagella, primary cilia, and cytoskeletal networks. Finally, we briefly discuss recent developments in stochastic thermodynamics and non-equilibrium statistical mechanics, which offer new perspectives to understand the physics of living systems.

  14. Blue Shifting Tuning of the Selective Reflection of Polymer Stabilized Cholesteric Liquid Crystals (Postprint)

    Science.gov (United States)

    2017-08-08

    crystal (MLC-2079, Merck). The polymer stabi- lizing network was formed within the samples by photoinitiated polymerization with 50–700 mW cm2 of 365...AFRL-RX-WP-JA-2017-0347 BLUE-SHIFTING TUNING OF THE SELECTIVE REFLECTION OF POLYMER STABILIZED CHOLESTERIC LIQUID CRYSTALS (POSTPRINT...BLUE-SHIFTING TUNING OF THE SELECTIVE REFLECTION OF POLYMER STABILIZED CHOLESTERIC LIQUID CRYSTALS (POSTPRINT) 5a. CONTRACT NUMBER FA8650-16-F

  15. MHD Kelvin-Helmholtz instability in non-hydrostatic equilibrium

    International Nuclear Information System (INIS)

    Laghouati, Y; Bouabdallah, A; Zizi, M; Alemany, A

    2007-01-01

    The present work deals with the linear stability of a magnetohydrodynamic shear flow so that a stratified inviscid fluid rotating about a vertical axis when a uniform magnetic field is applied in the direction of the streaming or zonal flow. In geophysical flow, the stability of the flow is determined by taking into account the nonhydrostatic condition depending on Richardson number R i and the deviation δ from hydrostatic equilibrium. According to Stone (Stone P H 1971 J. Fluid. Mech. 45 659), it is shown that such deviation δ decreases the growth rates of three kinds of instability which can appear as geostrophic (G), symmetric (S) and Kelvin-Helmholtz (K-H) instabilities. To be specific, the evolution of the flow is therefore considered in the light of the influence of magnetic field, particularly, on K-H instability. The results of this study are presented by the linear stability of a magnetohydrodynamic, with horizontal free-shear flow of stratified fluid, subject to rotation about the vertical axis and uniform magnetic field in the zonal direction. Results are discussed and compared to previous works as Chandrasekhar (Chandrasekhar S 1961 Hydrodynamic and hydromagnetic stability (Oxford: Clarendon Press) chapter 11 pp 481-513) and Stone

  16. Monte Carlo estimates of interfacial tension in the two-dimensional Ising model from non-equilibrium methods

    International Nuclear Information System (INIS)

    Híjar, Humberto; Sutmann, Godehard

    2008-01-01

    Non-equilibrium methods for estimating free energy differences are used in order to calculate the interfacial tension between domains with opposite magnetizations in two-dimensional Ising lattices. Non-equilibrium processes are driven by changing the boundary conditions for two opposite sides of the lattice from periodic to antiperiodic and vice versa. This mechanism, which promotes the appearance and disappearance of the interface, is studied by means of Monte Carlo simulations performed at different rates and using different algorithms, thus allowing for testing the applicability of non-equilibrium methods for processes driven far from or close to equilibrium. Interfaces in lattices with different widths and heights are studied and the interface tension as a function of these quantities is obtained. It is found that the estimates of the interfacial tension from non-equilibrium procedures are in good agreement with previous reports as well as with exact results. The efficiency of the different procedures used is analyzed and the dynamics of the interface under these perturbations is briefly discussed. A method for determining the efficiency of non-equilibrium methods as regards thermodynamic perturbation is also presented. It is found that for all cases studied, the Crooks non-equilibrium method for estimating free energy differences is the most efficient one

  17. Dynamical Symmetries and Causality in Non-Equilibrium Phase Transitions

    Directory of Open Access Journals (Sweden)

    Malte Henkel

    2015-11-01

    Full Text Available Dynamical symmetries are of considerable importance in elucidating the complex behaviour of strongly interacting systems with many degrees of freedom. Paradigmatic examples are cooperative phenomena as they arise in phase transitions, where conformal invariance has led to enormous progress in equilibrium phase transitions, especially in two dimensions. Non-equilibrium phase transitions can arise in much larger portions of the parameter space than equilibrium phase transitions. The state of the art of recent attempts to generalise conformal invariance to a new generic symmetry, taking into account the different scaling behaviour of space and time, will be reviewed. Particular attention will be given to the causality properties as they follow for co-variant n-point functions. These are important for the physical identification of n-point functions as responses or correlators.

  18. Non-equilibrium dynamics and floral trait interactions shape extant angiosperm diversity.

    Science.gov (United States)

    O'Meara, Brian C; Smith, Stacey D; Armbruster, W Scott; Harder, Lawrence D; Hardy, Christopher R; Hileman, Lena C; Hufford, Larry; Litt, Amy; Magallón, Susana; Smith, Stephen A; Stevens, Peter F; Fenster, Charles B; Diggle, Pamela K

    2016-05-11

    Why are some traits and trait combinations exceptionally common across the tree of life, whereas others are vanishingly rare? The distribution of trait diversity across a clade at any time depends on the ancestral state of the clade, the rate at which new phenotypes evolve, the differences in speciation and extinction rates across lineages, and whether an equilibrium has been reached. Here we examine the role of transition rates, differential diversification (speciation minus extinction) and non-equilibrium dynamics on the evolutionary history of angiosperms, a clade well known for the abundance of some trait combinations and the rarity of others. Our analysis reveals that three character states (corolla present, bilateral symmetry, reduced stamen number) act synergistically as a key innovation, doubling diversification rates for lineages in which this combination occurs. However, this combination is currently less common than predicted at equilibrium because the individual characters evolve infrequently. Simulations suggest that angiosperms will remain far from the equilibrium frequencies of character states well into the future. Such non-equilibrium dynamics may be common when major innovations evolve rarely, allowing lineages with ancestral forms to persist, and even outnumber those with diversification-enhancing states, for tens of millions of years. © 2016 The Author(s).

  19. Non-axisymmetric equilibrium reconstruction and suppression of density limit disruptions in a current-carrying stellarator

    Science.gov (United States)

    Ma, Xinxing; Ennis, D. A.; Hanson, J. D.; Hartwell, G. J.; Knowlton, S. F.; Maurer, D. A.

    2017-10-01

    Non-axisymmetric equilibrium reconstructions have been routinely performed with the V3FIT code in the Compact Toroidal Hybrid (CTH), a stellarator/tokamak hybrid. In addition to 50 external magnetic measurements, 160 SXR emissivity measurements are incorporated into V3FIT to reconstruct the magnetic flux surface geometry and infer the current distribution within the plasma. Improved reconstructions of current and q profiles provide insight into understanding the physics of density limit disruptions observed in current-carrying discharges in CTH. It is confirmed that the final scenario of the density limit of CTH plasmas is consistent with classic observations in tokamaks: current profile shrinkage leads to growing MHD instabilities (tearing modes) followed by a loss of MHD equilibrium. It is also observed that the density limit at a given current linearly increases with increasing amounts of 3D shaping fields. Consequently, plasmas with densities up to two times the Greenwald limit are attained. Equilibrium reconstructions show that addition of 3D fields effectively moves resonance surfaces towards the edge of the plasma where the current profile gradient is less, providing a stabilizing effect. This work is supported by US Department of Energy Grant No. DE-FG02-00ER54610.

  20. Instability Versus Equilibrium Propagation of Laser Beam in Plasma

    OpenAIRE

    Lushnikov, Pavel M.; Rose, Harvey A.

    2003-01-01

    We obtain, for the first time, an analytic theory of the forward stimulated Brillouin scattering instability of a spatially and temporally incoherent laser beam, that controls the transition between statistical equilibrium and non-equilibrium (unstable) self-focusing regimes of beam propagation. The stability boundary may be used as a comprehensive guide for inertial confinement fusion designs. Well into the stable regime, an analytic expression for the angular diffusion coefficient is obtain...

  1. Non-equilibrium hydrogen ionization in 2D simulations of the solar atmosphere

    Science.gov (United States)

    Leenaarts, J.; Carlsson, M.; Hansteen, V.; Rutten, R. J.

    2007-10-01

    Context: The ionization of hydrogen in the solar chromosphere and transition region does not obey LTE or instantaneous statistical equilibrium because the timescale is long compared with important hydrodynamical timescales, especially of magneto-acoustic shocks. Since the pressure, temperature, and electron density depend sensitively on hydrogen ionization, numerical simulation of the solar atmosphere requires non-equilibrium treatment of all pertinent hydrogen transitions. The same holds for any diagnostic application employing hydrogen lines. Aims: To demonstrate the importance and to quantify the effects of non-equilibrium hydrogen ionization, both on the dynamical structure of the solar atmosphere and on hydrogen line formation, in particular Hα. Methods: We implement an algorithm to compute non-equilibrium hydrogen ionization and its coupling into the MHD equations within an existing radiation MHD code, and perform a two-dimensional simulation of the solar atmosphere from the convection zone to the corona. Results: Analysis of the simulation results and comparison to a companion simulation assuming LTE shows that: a) non-equilibrium computation delivers much smaller variations of the chromospheric hydrogen ionization than for LTE. The ionization is smaller within shocks but subsequently remains high in the cool intershock phases. As a result, the chromospheric temperature variations are much larger than for LTE because in non-equilibrium, hydrogen ionization is a less effective internal energy buffer. The actual shock temperatures are therefore higher and the intershock temperatures lower. b) The chromospheric populations of the hydrogen n = 2 level, which governs the opacity of Hα, are coupled to the ion populations. They are set by the high temperature in shocks and subsequently remain high in the cool intershock phases. c) The temperature structure and the hydrogen level populations differ much between the chromosphere above photospheric magnetic elements

  2. A relation between Liapunov stability, non-wanderingness and Poisson stability

    International Nuclear Information System (INIS)

    Ahmad, K.H.

    1985-07-01

    In this work, some of the relations among Liapunov stability, non-wanderingness and Poisson stability are considered. In particular it is shown that for a non-wandering point in a set, positive (resp. negative) Liapunov stability in that set implies positive (resp. negative) Poisson stability in the same set. (author)

  3. Non-equilibrium phase transition in a spreading process on a timeline

    International Nuclear Information System (INIS)

    Barato, Andre C; Hinrichsen, Haye

    2009-01-01

    We consider a non-equilibrium process on a timeline with discrete sites which evolves following a non-Markovian update rule in such a way that an active site at time t activates one or several sites in the future at time t+Δt. The time intervals Δt are distributed algebraically as (Δt) −1−κ , where 0<κ<1 is a control parameter. Depending on the activation rate, the system displays a non-equilibrium phase transition which may be interpreted as directed percolation transition driven by temporal Lévy flights in the limit of zero space dimensions. The critical properties are investigated by means of extensive numerical simulations and compared with field-theoretic predictions

  4. Ignition conditions relaxation for central hot-spot ignition with an ion-electron non-equilibrium model

    Science.gov (United States)

    Fan, Zhengfeng; Liu, Jie

    2016-10-01

    We present an ion-electron non-equilibrium model, in which the hot-spot ion temperature is higher than its electron temperature so that the hot-spot nuclear reactions are enhanced while energy leaks are considerably reduced. Theoretical analysis shows that the ignition region would be significantly enlarged in the hot-spot rhoR-T space as compared with the commonly used equilibrium model. Simulations show that shocks could be utilized to create and maintain non-equilibrium conditions within the hot spot, and the hot-spot rhoR requirement is remarkably reduced for achieving self-heating. In NIF high-foot implosions, it is observed that the x-ray enhancement factors are less than unity, which is not self-consistent and is caused by assuming Te =Ti. And from this non-consistency, we could infer that ion-electron non-equilibrium exists in the high-foot implosions and the ion temperature could be 9% larger than the equilibrium temperature.

  5. Asymptotic analysis of discrete schemes for non-equilibrium radiation diffusion

    International Nuclear Information System (INIS)

    Cui, Xia; Yuan, Guang-wei; Shen, Zhi-jun

    2016-01-01

    Motivated by providing well-behaved fully discrete schemes in practice, this paper extends the asymptotic analysis on time integration methods for non-equilibrium radiation diffusion in [2] to space discretizations. Therein studies were carried out on a two-temperature model with Larsen's flux-limited diffusion operator, both the implicitly balanced (IB) and linearly implicit (LI) methods were shown asymptotic-preserving. In this paper, we focus on asymptotic analysis for space discrete schemes in dimensions one and two. First, in construction of the schemes, in contrast to traditional first-order approximations, asymmetric second-order accurate spatial approximations are devised for flux-limiters on boundary, and discrete schemes with second-order accuracy on global spatial domain are acquired consequently. Then by employing formal asymptotic analysis, the first-order asymptotic-preserving property for these schemes and furthermore for the fully discrete schemes is shown. Finally, with the help of manufactured solutions, numerical tests are performed, which demonstrate quantitatively the fully discrete schemes with IB time evolution indeed have the accuracy and asymptotic convergence as theory predicts, hence are well qualified for both non-equilibrium and equilibrium radiation diffusion. - Highlights: • Provide AP fully discrete schemes for non-equilibrium radiation diffusion. • Propose second order accurate schemes by asymmetric approach for boundary flux-limiter. • Show first order AP property of spatially and fully discrete schemes with IB evolution. • Devise subtle artificial solutions; verify accuracy and AP property quantitatively. • Ideas can be generalized to 3-dimensional problems and higher order implicit schemes.

  6. Potential and flux field landscape theory. II. Non-equilibrium thermodynamics of spatially inhomogeneous stochastic dynamical systems

    International Nuclear Information System (INIS)

    Wu, Wei; Wang, Jin

    2014-01-01

    We have established a general non-equilibrium thermodynamic formalism consistently applicable to both spatially homogeneous and, more importantly, spatially inhomogeneous systems, governed by the Langevin and Fokker-Planck stochastic dynamics with multiple state transition mechanisms, using the potential-flux landscape framework as a bridge connecting stochastic dynamics with non-equilibrium thermodynamics. A set of non-equilibrium thermodynamic equations, quantifying the relations of the non-equilibrium entropy, entropy flow, entropy production, and other thermodynamic quantities, together with their specific expressions, is constructed from a set of dynamical decomposition equations associated with the potential-flux landscape framework. The flux velocity plays a pivotal role on both the dynamic and thermodynamic levels. On the dynamic level, it represents a dynamic force breaking detailed balance, entailing the dynamical decomposition equations. On the thermodynamic level, it represents a thermodynamic force generating entropy production, manifested in the non-equilibrium thermodynamic equations. The Ornstein-Uhlenbeck process and more specific examples, the spatial stochastic neuronal model, in particular, are studied to test and illustrate the general theory. This theoretical framework is particularly suitable to study the non-equilibrium (thermo)dynamics of spatially inhomogeneous systems abundant in nature. This paper is the second of a series

  7. Energy flow in non-equilibrium conformal field theory

    Science.gov (United States)

    Bernard, Denis; Doyon, Benjamin

    2012-09-01

    We study the energy current and its fluctuations in quantum gapless 1d systems far from equilibrium modeled by conformal field theory, where two separated halves are prepared at distinct temperatures and glued together at a point contact. We prove that these systems converge towards steady states, and give a general description of such non-equilibrium steady states in terms of quantum field theory data. We compute the large deviation function, also called the full counting statistics, of energy transfer through the contact. These are universal and satisfy fluctuation relations. We provide a simple representation of these quantum fluctuations in terms of classical Poisson processes whose intensities are proportional to Boltzmann weights.

  8. Modeling chromatographic columns. Non-equilibrium packed-bed adsorption with non-linear adsorption isotherms

    NARCIS (Netherlands)

    Özdural, A.R.; Alkan, A.; Kerkhof, P.J.A.M.

    2004-01-01

    In this work a new mathematical model, based on non-equilibrium conditions, describing the dynamic adsorption of proteins in columns packed with spherical adsorbent particles is used to study the performance of chromatographic systems. Simulations of frontal chromatography, including axial

  9. Infinite-mode squeezed coherent states and non-equilibrium statistical mechanics (phase-space-picture approach)

    International Nuclear Information System (INIS)

    Yeh, L.

    1992-01-01

    The phase-space-picture approach to quantum non-equilibrium statistical mechanics via the characteristic function of infinite- mode squeezed coherent states is introduced. We use quantum Brownian motion as an example to show how this approach provides an interesting geometrical interpretation of quantum non-equilibrium phenomena

  10. A Tightly Coupled Non-Equilibrium Magneto-Hydrodynamic Model for Inductively Coupled RF Plasmas

    Science.gov (United States)

    2016-02-29

    development a tightly coupled magneto-hydrodynamic model for Inductively Coupled Radio- Frequency (RF) Plasmas. Non Local Thermodynamic Equilibrium (NLTE...for Inductively Coupled Radio-Frequency (RF) Plasmas. Non Local Thermodynamic Equilibrium (NLTE) effects are described based on a hybrid State-to-State...Inductively Coupled Plasma (ICP) torches have wide range of possible applications which include deposition of metal coatings, synthesis of ultra-fine powders

  11. Separating NaCl and AlCl3·6H2O Crystals from Acidic Solution Assisted by the Non-Equilibrium Phase Diagram of AlCl3-NaCl-H2O(-HCl Salt-Water System at 353.15 K

    Directory of Open Access Journals (Sweden)

    Huaigang Cheng

    2017-08-01

    Full Text Available Extracting AlCl3·6H2O from acid leaching solution through crystallization is one of the key processes to extracting aluminum from fly ash, coal gangue and other industrial solid wastes. However, the obtained products usually have low purity and a key problem is the lack of accurate data for phase equilibrium. This paper presented the non-equilibrium phase diagrams of AlCl3-NaCl-H2O (HCl salt-water systems under continuous heating and evaporation conditions, which were the main components of the acid leaching solution obtained through a sodium-assisted activation hydrochloric acid leaching process. The ternary system was of a simple eutonic type under different acidities. There were three crystalline regions; the crystalline regions of AlCl3·6H2O, NaCl and the mixture AlCl3·6H2O/NaCl, respectively. The phase diagram was used to optimize the crystallization process of AlCl3·6H2O and NaCl. A process was designed to evaporate and remove NaCl at the first stage of the evaporation process, and then continue to evaporate and crystallize AlCl3·6H2O after solid-liquid separation. The purities of the final salt products were 99.12% for NaCl and up to 97.35% for AlCl3·6H2O, respectively.

  12. Teaching at the edge of knowledge: Non-equilibrium statistical physics

    Science.gov (United States)

    Schmittmann, Beate

    2007-03-01

    As physicists become increasingly interested in biological problems, we frequently find ourselves confronted with complex open systems, involving many interacting constituents and characterized by non-vanishing fluxes of mass or energy. Faced with the task of predicting macroscopic behaviors from microscopic information for these non-equilibrium systems, the familiar Gibbs-Boltzmann framework fails. The development of a comprehensive theoretical characterization of non-equilibrium behavior is one of the key challenges of modern condensed matter physics. In its absence, several approaches have been developed, from master equations to thermostatted molecular dynamics, which provide key insights into the rich and often surprising phenomenology of systems far from equilibrium. In my talk, I will address some of these methods, selecting those that are most relevant for a broad range of interdisciplinary problems from biology to traffic, finance, and sociology. The ``portability'' of these methods makes them valuable for graduate students from a variety of disciplines. To illustrate how different methods can complement each other when probing a problem from, e.g., the life sciences, I will discuss some recent attempts at modeling translation, i.e., the process by which the genetic information encoded on an mRNA is translated into the corresponding protein.

  13. A Novel Derivation of the Time Evolution of the Entropy for Macroscopic Systems in Thermal Non-Equilibrium

    Directory of Open Access Journals (Sweden)

    Enrico Sciubba

    2017-11-01

    Full Text Available The paper discusses how the two thermodynamic properties, energy (U and exergy (E, can be used to solve the problem of quantifying the entropy of non-equilibrium systems. Both energy and exergy are a priori concepts, and their formal dependence on thermodynamic state variables at equilibrium is known. Exploiting the results of a previous study, we first calculate the non-equilibrium exergy En-eq can be calculated for an arbitrary temperature distributions across a macroscopic body with an accuracy that depends only on the available information about the initial distribution: the analytical results confirm that En-eq exponentially relaxes to its equilibrium value. Using the Gyftopoulos-Beretta formalism, a non-equilibrium entropy Sn-eq(x,t is then derived from En-eq(x,t and U(x,t. It is finally shown that the non-equilibrium entropy generation between two states is always larger than its equilibrium (herein referred to as “classical” counterpart. We conclude that every iso-energetic non-equilibrium state corresponds to an infinite set of non-equivalent states that can be ranked in terms of increasing entropy. Therefore, each point of the Gibbs plane corresponds therefore to a set of possible initial distributions: the non-equilibrium entropy is a multi-valued function that depends on the initial mass and energy distribution within the body. Though the concept cannot be directly extended to microscopic systems, it is argued that the present formulation is compatible with a possible reinterpretation of the existing non-equilibrium formulations, namely those of Tsallis and Grmela, and answers at least in part one of the objections set forth by Lieb and Yngvason. A systematic application of this paradigm is very convenient from a theoretical point of view and may be beneficial for meaningful future applications in the fields of nano-engineering and biological sciences.

  14. Kinetic equations within the formalism of non-equilibrium thermo field dynamics

    International Nuclear Information System (INIS)

    Arimitsu, Toshihico

    1988-01-01

    After reviewing the real-time formalism of dissipative quantum field theory, i.e. non-equilibrium thermo field dynamics (NETFD), a kinetic equation, a self-consistent equation for the dissipation coefficient and a ''mass'' or ''chemical potential'' renormalization equation for non-equilibrium transient situations are extracted out of the two-point Green's function of the Heisenberg field, in their most general forms upon the basic requirements of NETFD. The formulation is applied to the electron-phonon system, as an example, where the gradient expansion and the quasi-particle approximation are performed. The formalism of NETFD is reinvestigated in connection with the kinetic equations. (orig.)

  15. Effect of γ-(Fe,Ni) crystal-size stabilization in Fe-Ni-B amorphous ribbon

    Science.gov (United States)

    Gorshenkov, M. V.; Glezer, A. M.; Korchuganova, O. A.; Aleev, A. A.; Shurygina, N. A.

    2017-02-01

    The effect of stabilizing crystal size in a melt-quenched amorphous Fe50Ni33B17 ribbon is described upon crystallization in a temperature range of 360-400°C. The shape, size, volume fraction, and volume density have been investigated by transmission electron microscopy and X-ray diffraction methods. The formation of an amorphous layer of the Fe50Ni29B21 compound was found by means of atomic-probe tomography at the boundary of the crystallite-amorphous phase. The stabilization of crystal sizes during annealing is due to the formation of a barrier amorphous layer that has a crystallization temperature that exceeds the crystallization temperature of the matrix amorphous alloy.

  16. Homogeneous non-equilibrium two-phase critical flow model

    International Nuclear Information System (INIS)

    Schroeder, J.J.; Vuxuan, N.

    1987-01-01

    An important aspect of nuclear and chemical reactor safety is the ability to predict the maximum or critical mass flow rate from a break or leak in a pipe system. At the beginning of such a blowdown, if the stagnation condition of the fluid is subcooled or slightly saturated thermodynamic non-equilibrium exists in the downstream, e.g. the fluid becomes superheated to a degree determined by the liquid pressure. A simplified non-equilibrium model, explained in this report, is valid for rapidly decreasing pressure along the flow path. It presumes that fluid has to be superheated by an amount governed by physical principles before it starts to flash into steam. The flow is assumed to be homogeneous, i.e. the steam and liquid velocities are equal. An adiabatic flow calculation mode (Fanno lines) is employed to evaluate the critical flow rate for long pipes. The model is found to satisfactorily describe critical flow tests. Good agreement is obtained with the large scale Marviken tests as well as with small scale experiments. (orig.)

  17. Consequences of Molecular-Scale Non-Equilibrium Activity on the Dynamics and Mechanics of Self-Assembled Actin-Based Structures and Materials

    Science.gov (United States)

    Marshall Mccall, Patrick

    Living cells are hierarchically self-organized forms of active soft matter: molecules on the nanometer scale form functional structures and organelles on the micron scale, which then compose cells on the scale of 10s of microns. While the biological functions of intracellular organelles are defined by the composition and properties of the structures themselves, how those bulk properties emerge from the properties and interactions of individual molecules remains poorly understood. Actin, a globular protein which self-assembles into dynamic semi-flexible polymers, is the basic structural material of cells and the major component of many functional organelles. In this thesis, I have used purified actin as a model system to explore the interplay between molecular-scale dynamics and organelle-scale functionality, with particular focus on the role of molecular-scale non-equilibrium activity. One of the most canonical forms of molecular-scale non-equilibrium activity is that of mechanoenzymes, also called motor proteins. These proteins utilized the free energy liberated by hydrolysis of ATP to perform mechanical work, thereby introducing non-equilibrium "active" stresses on the molecular scale. Combining experiments with mathematical modeling, we demonstrate in this thesis that non-equilibrium motor activity is sufficient to drive self-organization and pattern formation of the multimeric actin-binding motor protein Myosin II on 1D reconstituted actomyosin bundles. Like myosin, actin is itself an ATPase. However, nono-equilibrium ATP hydrolysis on actin is known to regulate the stability and assembly kinetics of actin filaments rather than generate active stresses per se. At the level of single actin filaments, the inhomogeneous nucleotide composition generated along the filament length by hydrolysis directs binding of regulatory proteins like cofilin, which mediate filament disassembly and thereby accelerate actin filament turnover. The concequences of this non-equilibrium

  18. Equilibrium and non-equilibrium charge-state distributions of 2.0 MeV/u carbon ions passing through carbon foils

    International Nuclear Information System (INIS)

    Imai, M.; Sataka, M.; Matsuda, M.; Okayasu, S.; Kawatsura, K.; Takahiro, K.; Komaki, K.; Shibata, H.; Nishio, K.

    2015-01-01

    Both equilibrium and non-equilibrium charge-state distributions were studied experimentally for 2.0 MeV/u carbon ions after passing through carbon foils. Measured charge-state distribution established the equilibrium at a target thickness of 10 μg/cm 2 and this remained unchanged until a maximum target thickness of 98 μg/cm 2 . The equilibrium charge-state distribution, the equilibrium mean charge-state, and the width and skewness of the equilibrium distribution were compared with predictions using existing semi-empirical formulae as well as simulation results, including the ETACHA code. It was found that charge-state distributions, mean charge states, and distribution widths for C 2+ , C 3+ , and C 4+ incident ions merged into quasi-equilibrium values at a target thickness of 5.7 μg/cm 2 in the pre-equilibrium region and evolved simultaneously to the ‘real equilibrium’ values for all of the initial charge states, including C 5+ and C 6+ ions, as previously demonstrated for sulfur projectile ions at the same velocity (Imai et al., 2009). Two kinds of simulation, ETACHA and solution of rate equations taking only single electron transfers into account, were used, and both of them reproduced the measured charge evolution qualitatively. The quasi-equilibrium behavior could be reproduced with the ETACHA code, but not with solution of elementary rate equations

  19. Applications of non-equilibrium plasma in chemical processes

    International Nuclear Information System (INIS)

    Patino, P.; Castro, A.

    2003-01-01

    By means of optical emission spectroscopy the population of O( 3 P) in a non-equilibrium, high voltage, oxygen plasma, and O( 3 P), H and OH in another of steam in radio frequency, have been followed. Reactions of both plasmas with liquid hydrocarbons have produced oxidation and/or hydrogenation, depending on the conditions of each one. (Author)

  20. Combined effect of non-equilibrium solidification and thermal annealing on microstructure evolution and hardness behavior of AZ91 magnesium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Z.Z.; Yang, W., E-mail: weiyang@mail.nwpu.edu.cn; Chen, S.H.; Yu, H.; Xu, Z.F.

    2014-06-15

    Non-equilibrium solidification of commercial AZ91 magnesium alloy was performed by copper mold spray-casting technique and the thermal stability property of as-formed meta-stable microstructure was investigated by subsequent annealing at different temperatures and times. Remarkable grain refinement appears with increasing cooling rate during solidification process, which is accompanied by a visible cellular/dendrite transition for the grain morphology of primary phase. Moreover, the non-equilibrium solidified alloy exhibits obvious precipitation hardening effect upon annealing at 200 °C, and the precipitation mode of β-Mg{sub 17}Al{sub 12} phase changes from discontinuous to continuous with extending isothermal time from 4 h to 16 h, which generates an increase of resultant micro-hardness value. After solid solution treatment at the elevated temperature of 420 °C, the volume fraction of β-Mg{sub 17}Al{sub 12} phase decreases and a notable grain growth phenomenon occurs, which give rise to a reduction of hardness in comparison with that of as-quenched alloy.

  1. Non-equilibrium statistical physics with application to disordered systems

    CERN Document Server

    Cáceres, Manuel Osvaldo

    2017-01-01

    This textbook is the result of the enhancement of several courses on non-equilibrium statistics, stochastic processes, stochastic differential equations, anomalous diffusion and disorder. The target audience includes students of physics, mathematics, biology, chemistry, and engineering at undergraduate and graduate level with a grasp of the basic elements of mathematics and physics of the fourth year of a typical undergraduate course. The little-known physical and mathematical concepts are described in sections and specific exercises throughout the text, as well as in appendices. Physical-mathematical motivation is the main driving force for the development of this text. It presents the academic topics of probability theory and stochastic processes as well as new educational aspects in the presentation of non-equilibrium statistical theory and stochastic differential equations.. In particular it discusses the problem of irreversibility in that context and the dynamics of Fokker-Planck. An introduction on fluc...

  2. Ordered phase and non-equilibrium fluctuation in stock market

    Science.gov (United States)

    Maskawa, Jun-ichi

    2002-08-01

    We analyze the statistics of daily price change of stock market in the framework of a statistical physics model for the collective fluctuation of stock portfolio. In this model the time series of price changes are coded into the sequences of up and down spins, and the Hamiltonian of the system is expressed by spin-spin interactions as in spin glass models of disordered magnetic systems. Through the analysis of Dow-Jones industrial portfolio consisting of 30 stock issues by this model, we find a non-equilibrium fluctuation mode on the point slightly below the boundary between ordered and disordered phases. The remaining 29 modes are still in disordered phase and well described by Gibbs distribution. The variance of the fluctuation is outlined by the theoretical curve and peculiarly large in the non-equilibrium mode compared with those in the other modes remaining in ordinary phase.

  3. Stability of Coulomb crystals in a linear Paul trap with storage-ring-like confinement

    DEFF Research Database (Denmark)

    Kjærgaard, Niels; Mølhave, Kristian; Drewsen, Michael

    2002-01-01

    We report experiments on the stability of ion Coulomb crystals in a linear Paul trap with storage-ring-like confinement. The transverse dynamics of charged particles in a trap of this type is analogous to that of a fast beam traveling through a channel with periodic, magnetic alternating gradient...... confinement. The experimentally observed stability conditions for stationary crystals comply remarkably well with current theory of crystalline plasmas and beams.......We report experiments on the stability of ion Coulomb crystals in a linear Paul trap with storage-ring-like confinement. The transverse dynamics of charged particles in a trap of this type is analogous to that of a fast beam traveling through a channel with periodic, magnetic alternating gradient...

  4. Phase stability limit of c-BN under hydrostatic and non-hydrostatic pressure conditions

    International Nuclear Information System (INIS)

    Xiao, Jianwei; Du, Jinglian; Wen, Bin; Zhang, Xiangyi; Melnik, Roderick; Kawazoe, Yoshiyuki

    2014-01-01

    Phase stability limit of cubic boron nitride (c-BN) has been investigated by the crystal structure search technique. It indicated that this limit is ∼1000 GPa at hydrostatic pressure condition. Above this pressure, c-BN turns into a metastable phase with respect to rocksalt type boron nitride (rs-BN). However, rs-BN cannot be retained at 0 GPa owing to its instability at pressure below 250 GPa. For non-hydrostatic pressure conditions, the phase stability limit of c-BN is substantially lower than that under hydrostatic pressure conditions and it is also dramatically different for other pressure mode

  5. The effect of non-equilibrium metal cooling on the interstellar medium

    Science.gov (United States)

    Capelo, Pedro R.; Bovino, Stefano; Lupi, Alessandro; Schleicher, Dominik R. G.; Grassi, Tommaso

    2018-04-01

    By using a novel interface between the modern smoothed particle hydrodynamics code GASOLINE2 and the chemistry package KROME, we follow the hydrodynamical and chemical evolution of an isolated galaxy. In order to assess the relevance of different physical parameters and prescriptions, we constructed a suite of 10 simulations, in which we vary the chemical network (primordial and metal species), how metal cooling is modelled (non-equilibrium versus equilibrium; optically thin versus thick approximation), the initial gas metallicity (from 10 to 100 per cent solar), and how molecular hydrogen forms on dust. This is the first work in which metal injection from supernovae, turbulent metal diffusion, and a metal network with non-equilibrium metal cooling are self-consistently included in a galaxy simulation. We find that properly modelling the chemical evolution of several metal species and the corresponding non-equilibrium metal cooling has important effects on the thermodynamics of the gas, the chemical abundances, and the appearance of the galaxy: the gas is typically warmer, has a larger molecular-gas mass fraction, and has a smoother disc. We also conclude that, at relatively high metallicity, the choice of molecular-hydrogen formation rates on dust is not crucial. Moreover, we confirm that a higher initial metallicity produces a colder gas and a larger fraction of molecular gas, with the low-metallicity simulation best matching the observed molecular Kennicutt-Schmidt relation. Finally, our simulations agree quite well with observations that link star formation rate to metal emission lines.

  6. State-to-state modeling of non-equilibrium air nozzle flows

    Science.gov (United States)

    Nagnibeda, E.; Papina, K.; Kunova, O.

    2018-05-01

    One-dimensional non-equilibrium air flows in nozzles are studied on the basis of the state-to-state description of vibrational-chemical kinetics. Five-component mixture N2/O2/NO/N/O is considered taking into account Zeldovich exchange reactions of NO formation, dissociation, recombination and vibrational energy transitions. The equations for vibrational and chem-ical kinetics in a flow are coupled to the conservation equations of momentum and total energy and solved numerically for different conditions in a nozzle throat. The vibrational distributions of nitrogen and oxygen molecules, number densities of species as well as the gas temperature and flow velocity along a nozzle axis are analysed using the detailed state-to-state flow description and in the frame of the simplified one-temperature thermal equilibrium kinetic model. The comparison of the results showed the influence of non-equilibrium kinetics on macroscopic nozzle flow parameters. In the state-to-state approach, non-Boltzmann vibrational dis-tributions of N2 and O2 molecules with a plateau part at intermediate levels are found. The results are found with the use of the complete and simplified schemes of reactions and the impact of exchange reactions, dissociation and recombination on variation of vibrational level populations, mixture composition, gas velocity and temperature along a nozzle axis is shown.

  7. Characterization of non equilibrium effects on high quality critical flows

    International Nuclear Information System (INIS)

    Camelo, E.; Lemonnier, H.; Ochterbeck, J.

    1995-01-01

    The appropriate design of various pieces of safety equipment such as relief systems, relies on the accurate description of critical flow phenomena. Most of the systems of industrial interest are willing to be described by one-dimensional area-averaged models and a large fraction of them involves multi-component high gas quality flows. Within these circumstances, the flow is very likely to be of an annular dispersed nature and its description by two-fluid models requires various closure relations. Among the most sensitive closures, there is the interfacial area and the liquid entrained fraction. The critical flowrate depends tremendously on the accurate description of the non equilibrium which results from the correctness of the closure equations. In this study, two-component flows are emphasized and non equilibrium results mainly form the differences in the phase velocities. It is therefore of the utmost importance to have reliable data to characterize non equilibrium phenomena and to assess the validity of the closure models. A comprehensive description of air-water nozzle flows, with emphasis on the effect of the nozzle geometry, has been undertaken and some of the results are presented here which helps understanding the overall flow dynamics. Besides the critical flowrate, the presented material includes pressure profiles, droplet size and velocity, liquid film flowrate and liquid film thickness

  8. Characterization of non equilibrium effects on high quality critical flows

    Energy Technology Data Exchange (ETDEWEB)

    Camelo, E.; Lemonnier, H.; Ochterbeck, J. [Commissariat a l Energie Atomique, Grenoble (France)] [and others

    1995-09-01

    The appropriate design of various pieces of safety equipment such as relief systems, relies on the accurate description of critical flow phenomena. Most of the systems of industrial interest are willing to be described by one-dimensional area-averaged models and a large fraction of them involves multi-component high gas quality flows. Within these circumstances, the flow is very likely to be of an annular dispersed nature and its description by two-fluid models requires various closure relations. Among the most sensitive closures, there is the interfacial area and the liquid entrained fraction. The critical flowrate depends tremendously on the accurate description of the non equilibrium which results from the correctness of the closure equations. In this study, two-component flows are emphasized and non equilibrium results mainly form the differences in the phase velocities. It is therefore of the utmost importance to have reliable data to characterize non equilibrium phenomena and to assess the validity of the closure models. A comprehensive description of air-water nozzle flows, with emphasis on the effect of the nozzle geometry, has been undertaken and some of the results are presented here which helps understanding the overall flow dynamics. Besides the critical flowrate, the presented material includes pressure profiles, droplet size and velocity, liquid film flowrate and liquid film thickness.

  9. Fast non-linear extraction of plasma equilibrium parameters using a neural network mapping

    International Nuclear Information System (INIS)

    Lister, J.B.; Schnurrenberger, H.

    1990-07-01

    The shaping of non-circular plasmas requires a non-linear mapping between the measured diagnostic signals and selected equilibrium parameters. The particular configuration of Neural Network known as the multi-layer perceptron provides a powerful and general technique for formulating an arbitrary continuous non-linear multi-dimensional mapping. This technique has been successfully applied to the extraction of equilibrium parameters from measurements of single-null diverted plasmas in the DIII-D tokamak; the results are compared with a purely linear mapping. The method is promising, and hardware implementation is straightforward. (author) 15 refs., 7 figs

  10. Development of a Thermo-chemical Non-equilibrium Solver for Hypervelocity Flows

    Science.gov (United States)

    Balasubramanian, R.; Anandhanarayanan, K.

    2015-04-01

    In the present study, a three dimensional flowsolver is indigenously developed to numerically simulate hypervelocity thermal and chemical non equilibrium reactive air flow past flight vehicles. The two-temperature, five species, seventeen reactions, thermo-chemical non equilibrium, non-ionizing, air-chemistry model of Park is implemented in a compressible viscous code CERANS and solved in the finite volume framework. The energy relaxation is addressed by a conservation equation for the vibrational energy of the gas mixture resulting in the evaluation of its vibrational temperature. The AUSM-PW+ numerical flux function has been used for modeling the convective fluxes and a central differencing approximation is used for modeling the diffusive fluxes. The flowsolver had been validated for specifically chosen test cases with inherent flow complexities of non-ionizing hypervelocity thermochemical nonequilibrium flows and results obtained are in good agreement with results available in open literature.

  11. Non-equilibrium mass transfer absorption model for the design of boron isotopes chemical exchange column

    International Nuclear Information System (INIS)

    Bai, Peng; Fan, Kaigong; Guo, Xianghai; Zhang, Haocui

    2016-01-01

    Highlights: • We propose a non-equilibrium mass transfer absorption model instead of a distillation equilibrium model to calculate boron isotopes separation. • We apply the model to calculate the needed column height to meet prescribed separation requirements. - Abstract: To interpret the phenomenon of chemical exchange in boron isotopes separation accurately, the process is specified as an absorption–reaction–desorption hybrid process instead of a distillation equilibrium model, the non-equilibrium mass transfer absorption model is put forward and a mass transfer enhancement factor E is introduced to find the packing height needed to meet the specified separation requirements with MATLAB.

  12. Nonlinear Equilibrium and Stability Analysis of Axially Loaded Piles Under Bilateral Contact Constraints

    Directory of Open Access Journals (Sweden)

    Ricardo A. da Mota Silveira

    Full Text Available AbstractThis paper presents a nonlinear stability analysis of piles under bilateral contact constraints imposed by a geological medium (soil or rock. To solve this contact problem, the paper proposes a general numerical methodology, based on the finite element method (FEM. In this context, a geometrically nonlinear beam-column element is used to model the pile while the geological medium can be idealized as discrete (spring or continuum (Winkler and Pasternak foundation elements. Foundation elements are supposed to react under tension and compression, so during the deformation process the structural elements are subjected to bilateral contact constraints. The errors along the equilibrium paths are minimized and the convoluted nonlinear equilibrium paths are made traceable through the use of an updated Lagrangian formulation and a Newton-Raphson scheme working with the generalized displacement technique. The study offers stability analyses of three problems involving piles under bilateral contact constraints. The analyses show that in the evaluation of critical loads a great influence is wielded by the instability modes. Also, the structural system stiffness can be highly influenced by the representative model of the soil.

  13. Non-local thermodynamic equilibrium effects on isentropic coefficient in argon and helium thermal plasmas

    International Nuclear Information System (INIS)

    Sharma, Rohit; Singh, Kuldip

    2014-01-01

    In the present work, two cases of thermal plasma have been considered; the ground state plasma in which all the atoms and ions are assumed to be in the ground state and the excited state plasma in which atoms and ions are distributed over various possible excited states. The variation of Zγ, frozen isentropic coefficient and the isentropic coefficient with degree of ionization and non-equilibrium parameter θ(= T e /T h ) has been investigated for the ground and excited state helium and argon plasmas at pressures 1 atm, 10 atm, and 100 atm in the temperature range from 6000 K to 60 000 K. For a given value of non-equilibrium parameter, the relationship of Zγ with degree of ionization does not show any dependence on electronically excited states in helium plasma whereas in case of argon plasma this dependence is not appreciable till degree of ionization approaches 2. The minima of frozen isentropic coefficient shifts toward lower temperature with increase of non-equilibrium parameter for both the helium and argon plasmas. The lowering of non-equilibrium parameter decreases the frozen isentropic coefficient more emphatically in helium plasma at high pressures in comparison to argon plasma. The increase of pressure slightly reduces the ionization range over which isentropic coefficient almost remains constant and it does not affect appreciably the dependence of isentropic coefficient on non-equilibrium parameter

  14. Non-equilibrium QCD of high-energy multi-gluon dynamics

    International Nuclear Information System (INIS)

    Geiger, K.

    1996-01-01

    A non-equilibrium QCD description of multiparticle dynamics in space-time is of both fundamental and phenomenological interest. Here the authors discusses an attempt to derive from first principles, a real-time formalism to study the dynamical interplay of quantum and statistical-kinetic properties of non-equilibrium multi-parton systems produced in high-energy QCD processes. The ultimate goal (from which one is still far away) is to have a practically applicable description of the space-time evolution of a general initial system of gluons and quarks, characterized by some large energy or momentum scale, that expands, diffuses and dissipates according to the self- and mutual-interactions, and eventually converts dynamically into final state hadrons. For example, the evolution of parton showers in the mechanism of parton-hadron conversion in high-energy hadronic collisions, or, the description of formation, evolution and freezeout of a quark-gluon plasma, in ultra-relativistic heavy-ion collisions

  15. Stabilization of liquid crystal dispersions with acrylamide copolymers

    Energy Technology Data Exchange (ETDEWEB)

    Park, S.J.; Kim, M.H.; Lee, J.R. [Korea Research Institute of Chemical Technology, Taejon (Korea, Republic of)

    1999-03-01

    The effects of hydrophobic moieties(styrene and methyl methacrylate) on the stability of a liquid crystal(LC, E-7)-in-water dispersion stabilized by copolymers of hydrophilic acrylamide with hydrophobic monomers have been studied in terms of nematic curvilinear aligned phase(NCAP) system. It was observed that the preferential adsorption hydrophobic moieties onto LC droplet surface resulted in steric stabilization of the dispersion, due to increasing the interfacial tension of LC and reducing the LC droplet size. According to the interfacial tension, coalescence time, and sedimented layer thickness measurements, it was proposed that the presence of hydrophobic moieties allows to form the apolar microenvironment in the round of LC droplet and finally reduces the anchoring effect between LC and the polymeric wall. 16 refs., 10 figs.

  16. Simulation and experimental investigation of mechanical and thermal non-equilibrium effect on choking flow at low pressure

    International Nuclear Information System (INIS)

    Yoon, H.J.; Ishii, M.; Revankar, S.T.

    2004-01-01

    The prediction of two-phase choking flow at low pressure (<1MPa) is much more difficult than at relatively higher pressure due to the large density ratio and relatively large thermal and mechanical non-equilibrium between the phases. At low pressure currently available choking flow models are not reliable and satisfactory. In view of this, separate effect tests were conducted to systematically investigate the effects of mechanical and thermal non-equilibrium on the two-phase choking flow in a pipe. The systematic studies is not available in literature, therefore no clear understanding of these effects has been attained until now. A scaled integral facility called PUMA was used for these tests with specific boundary condition with several unique in-;line instruments. The mechanical non-equilibrium effect was studied with air-water choking flow. Subcooled water two-phase choking flow was studied to identify the effects of mechanical and thermal non-equilibrium. A typical nozzle and orifice were used as the choking flow section to evaluate the degree of non-equilibrium due to geometry. The slip ratio, which is a key parameter to express the mechanical non-equilibrium, is obtained upstream of the choking section in the air-water test. The measured choking mass flux for the nozzle was higher than the orifice at low flow quality (<0.05) for the same upstream flow quality indicating that there is a strong mechanical non-equilibrium at the choking plane. The thermal non-equilibrium effect was very strong at low pressure, however, no major influence of the geometry on this effect was observed. Experimental data were compared with RELAP5/MOD3.2.1.2, MOD3.3 beta and TRAC-M code predictions. The code predictions in general were not in agreement with the air-water choking flow test data. This indicated that the mechanical non-equilibrium effects were not properly modeled in the codes. The test data for subcooled water showed moderate decrease of choking mass flux with decrease

  17. Generation and extinction of crystal nuclei in an extremely non-equilibrium glassy state of salol

    CERN Document Server

    Paladi, F

    2003-01-01

    Strange generation and subsequent extinction of crystal nuclei were observed in the glassy state of salol (phenyl salicylate) during the course of ageing at very low constant-temperatures. The presence/absence of crystal nuclei within the glass were judged, by using a differential scanning calorimeter (DSC), from whether the crystal growth and fusion phenomena were observed in the following heating process or not. The liquid sample was cooled rapidly at 200 K min sup - sup 1 from 333 K above the fusion temperature down to a desired ageing temperature (T sub a) below the glass transition temperature (T sub g = 220 K), aged there for different periods (t sub a), and then heated up to 213 K at 200 K min sup - sup 1. The DSC measurement was carried out at 10 K min sup - sup 1 from 213 to 333 K. The ageing periods were taken in a range between 30 s and 316 min. At T sub a = 213 K, crystal nucleation was found to proceed for ageing longer than 100 min. No crystal nucleation was found at T sub a in between 123 and 1...

  18. Passive Temperature Stabilization of Silicon Photonic Devices Using Liquid Crystals

    Directory of Open Access Journals (Sweden)

    Joanna Ptasinski

    2014-03-01

    Full Text Available In this work we explore the negative thermo-optic properties of liquid crystal claddings for passive temperature stabilization of silicon photonic integrated circuits. Photonic circuits are playing an increasing role in communications and computing, but they suffer from temperature dependent performance variation. Most existing techniques aimed at compensation of thermal effects rely on power hungry Joule heating. We show that integrating a liquid crystal cladding helps to minimize the effects of a temperature dependent drift. The advantage of liquid crystals lies in their high negative thermo-optic coefficients in addition to low absorption at the infrared wavelengths.

  19. Corrosion of cast and non equilibrium magnesium alloys

    International Nuclear Information System (INIS)

    Mathieu, S.; Rapin, C.; Steinmetz, P.; Hazan, J.

    1999-01-01

    Due to their low density, magnesium alloys arc very promising as regards applications in the automotive or aeronautical industry. Their corrosion resistance has however to be increased, particularly for cast alloys which are very often two-phased and thus suffer from internal galvanic corrosion. With use of sputtering methods of elaboration, homogeneous magnesium alloys containing far from equilibrium Al, Zr or valve metals contents can be prepared. Corrosion data for Mg-Al-Zn-Sn alloys and MgZr alloys obtained by sputtering, have been determined and compared to those of cast and thixocast AZ91 alloy. Electrochemical tests have evidenced a significantly better behaviour of non equilibrium alloys which, thanks to XPS measurements, could be correlated to the composition of the superficial oxide scale formed on these alloys. (author)

  20. Non-equilibrium blunt body flows in ionized gases

    International Nuclear Information System (INIS)

    Nishida, Michio

    1981-01-01

    The behaviors of electrons and electronically excited atoms in non-equilibrium and partially ionized blunt-body-flows are described. Formulation has been made separately in a shock layer and in a free stream, and then the free stream solution has been connected with the shock layer solution by matching the two solutions at the shock layer edge. The method of this matching is described here. The partially ionized gas is considered to be composed of neutral atoms, ions and electrons. Furthermore, the neutral atoms are divided into atoms in excited levels. Therefore, it is considered that electron energy released due to excitation, and that gained due to de-excitation, contribute to electron energy. Thus, the electron energy equation including these contributions is solved, coupled with the continuity equations of the excited atoms and the electrons. An electron temperature distribution from a free stream to a blunt body wall has been investigated for a case when the electrons are in thermal non-equilibrium with heavy particles in the free stream. In addition, the distributions of the excited atom density are discussed in the present analysis. (author)

  1. Physical mechanism for biopolymers to aggregate and maintain in non-equilibrium states.

    Science.gov (United States)

    Ma, Wen-Jong; Hu, Chin-Kun

    2017-06-08

    Many human or animal diseases are related to aggregation of proteins. A viable biological organism should maintain in non-equilibrium states. How protein aggregate and why biological organisms can maintain in non-equilibrium states are not well understood. As a first step to understand such complex systems problems, we consider simple model systems containing polymer chains and solvent particles. The strength of the spring to connect two neighboring monomers in a polymer chain is controlled by a parameter s with s → ∞ for rigid-bond. The strengths of bending and torsion angle dependent interactions are controlled by a parameter s A with s A  → -∞ corresponding to no bending and torsion angle dependent interactions. We find that for very small s A , polymer chains tend to aggregate spontaneously and the trend is independent of the strength of spring. For strong springs, the speed distribution of monomers in the parallel (along the direction of the spring to connect two neighboring monomers) and perpendicular directions have different effective temperatures and such systems are in non-equilibrium states.

  2. Stability of the thermodynamic equilibrium - A test of the validity of dynamic models as applied to gyroviscous perpendicular magnetohydrodynamics

    Science.gov (United States)

    Faghihi, Mustafa; Scheffel, Jan; Spies, Guenther O.

    1988-05-01

    Stability of the thermodynamic equilibrium is put forward as a simple test of the validity of dynamic equations, and is applied to perpendicular gyroviscous magnetohydrodynamics (i.e., perpendicular magnetohydrodynamics with gyroviscosity added). This model turns out to be invalid because it predicts exponentially growing Alfven waves in a spatially homogeneous static equilibrium with scalar pressure.

  3. Stability of the thermodynamic equilibrium: A test of the validity of dynamic models as applied to gyroviscous perpendicular magnetohydrodynamics

    International Nuclear Information System (INIS)

    Faghihi, M.; Scheffel, J.; Spies, G.O.

    1988-01-01

    Stability of the thermodynamic equilibrium is put forward as a simple test of the validity of dynamic equations, and is applied to perpendicular gyroviscous magnetohydrodynamics (i.e., perpendicular magnetohydrodynamics with gyroviscosity added). This model turns out to be invalid because it predicts exponentially growing Alfven waves in a spatially homogeneous static equilibrium with scalar pressure

  4. NON-EQUILIBRIUM IONIZATION MODELING OF THE CURRENT SHEET IN A SIMULATED SOLAR ERUPTION

    International Nuclear Information System (INIS)

    Shen Chengcai; Reeves, Katharine K.; Raymond, John C.; Murphy, Nicholas A.; Ko, Yuan-Kuen; Lin Jun; Mikić, Zoran; Linker, Jon A.

    2013-01-01

    The current sheet that extends from the top of flare loops and connects to an associated flux rope is a common structure in models of coronal mass ejections (CMEs). To understand the observational properties of CME current sheets, we generated predictions from a flare/CME model to be compared with observations. We use a simulation of a large-scale CME current sheet previously reported by Reeves et al. This simulation includes ohmic and coronal heating, thermal conduction, and radiative cooling in the energy equation. Using the results of this simulation, we perform time-dependent ionization calculations of the flow in a CME current sheet and construct two-dimensional spatial distributions of ionic charge states for multiple chemical elements. We use the filter responses from the Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory and the predicted intensities of emission lines to compute the count rates for each of the AIA bands. The results show differences in the emission line intensities between equilibrium and non-equilibrium ionization. The current sheet plasma is underionized at low heights and overionized at large heights. At low heights in the current sheet, the intensities of the AIA 94 Å and 131 Å channels are lower for non-equilibrium ionization than for equilibrium ionization. At large heights, these intensities are higher for non-equilibrium ionization than for equilibrium ionization inside the current sheet. The assumption of ionization equilibrium would lead to a significant underestimate of the temperature low in the current sheet and overestimate at larger heights. We also calculate the intensities of ultraviolet lines and predict emission features to be compared with events from the Ultraviolet Coronagraph Spectrometer on the Solar and Heliospheric Observatory, including a low-intensity region around the current sheet corresponding to this model

  5. Design of a high-resolution high-stability positioning mechanism for crystal optics

    International Nuclear Information System (INIS)

    Shu, D.; Toellner, T. S.; Alp, E. E.

    1999-01-01

    The authors present a novel miniature multi-axis driving structure that will allow positioning of two crystals with better than 50-nrad angular resolution and nanometer linear driving sensitivity.The precision and stability of this structure allow the user to align or adjust an assembly of crystals to achieve the same performance as does a single channel-cut crystal, so they call it an artificial channel-cut crystal. In this paper, the particular designs and specifications, as well as the test results,for a two-axis driving structure for a high-energy-resolution artificial channel-cut crystal monochromator are presented

  6. The existence and the stability of solutions for equilibrium problems with lower and upper bounds

    Directory of Open Access Journals (Sweden)

    Congjun Zhang

    2012-12-01

    Full Text Available In this paper, we study a class of equilibrium problems with lower and upper bounds. We obtain some existence results of solutions for equilibrium problems with lower and upper bounds by employing some classical fixed-point theorems. We investigate the stability of the solution sets for the problems, and establish sufficient conditions for the upper semicontinuity, lower semicontinuity and continuity of the solution set mapping $S:Lambda_1imesLambda_2o2^{X}$ in a Hausdorff topological vector space, in the case where a set $K$ and a mapping $f$ are perturbed respectively by parameters $lambda$ and $mu.$

  7. Fast non-linear extraction of plasma equilibrium parameters using a neural network mapping

    International Nuclear Information System (INIS)

    Lister, J.B.; Schnurrenberger, H.

    1991-01-01

    The shaping of non-circular plasmas requires a non-linear mapping between the measured diagnostic signals and selected equilibrium parameters. The particular configuration of neural network known as the multilayer perceptron provides a powerful and general technique for formulating an arbitrary continuous non-linear multi-dimensional mapping. This technique has been successfully applied to the extraction of equilibrium parameters from measurements of single-null diverted plasmas in the DIII-D tokamak; the results are compared with a purely linear mapping. The method is promising, and hardware implementation is straightforward. (author). 17 refs, 8 figs, 2 tab

  8. Non-equilibrium Green's functions method: Non-trivial and disordered leads

    Science.gov (United States)

    He, Yu; Wang, Yu; Klimeck, Gerhard; Kubis, Tillmann

    2014-11-01

    The non-equilibrium Green's function algorithm requires contact self-energies to model charge injection and extraction. All existing approaches assume infinitely periodic leads attached to a possibly quite complex device. This contradicts today's realistic devices in which contacts are spatially inhomogeneous, chemically disordered, and impacting the overall device characteristics. This work extends the complex absorbing potentials method for arbitrary, ideal, or non-ideal leads in atomistic tight binding representation. The algorithm is demonstrated on a Si nanowire with periodic leads, a graphene nanoribbon with trumpet shape leads, and devices with leads of randomly alloyed Si0.5Ge0.5. It is found that alloy randomness in the leads can reduce the predicted ON-state current of Si0.5Ge0.5 transistors by 45% compared to conventional lead methods.

  9. Non-equilibrium microwave plasma for efficient high temperature chemistry

    NARCIS (Netherlands)

    van den Bekerom, D.C.M.; den Harder, N.; Minea, T.; Palomares Linares, J.M.; Bongers, W.; van de Sanden, M.C.M.; van Rooij, G.J.

    2017-01-01

    This article describes a flowing microwave reactor that is used to drive efficient non-equilibrium chemistry for the application of conversion/activation of stable molecules such as CO2, N2 and CH4. The goal of the procedure described here is to measure the in situ gas temperature and gas

  10. Path-space variational inference for non-equilibrium coarse-grained systems

    International Nuclear Information System (INIS)

    Harmandaris, Vagelis; Kalligiannaki, Evangelia; Katsoulakis, Markos; Plecháč, Petr

    2016-01-01

    In this paper we discuss information-theoretic tools for obtaining optimized coarse-grained molecular models for both equilibrium and non-equilibrium molecular simulations. The latter are ubiquitous in physicochemical and biological applications, where they are typically associated with coupling mechanisms, multi-physics and/or boundary conditions. In general the non-equilibrium steady states are not known explicitly as they do not necessarily have a Gibbs structure. The presented approach can compare microscopic behavior of molecular systems to parametric and non-parametric coarse-grained models using the relative entropy between distributions on the path space and setting up a corresponding path-space variational inference problem. The methods can become entirely data-driven when the microscopic dynamics are replaced with corresponding correlated data in the form of time series. Furthermore, we present connections and generalizations of force matching methods in coarse-graining with path-space information methods. We demonstrate the enhanced transferability of information-based parameterizations to different observables, at a specific thermodynamic point, due to information inequalities. We discuss methodological connections between information-based coarse-graining of molecular systems and variational inference methods primarily developed in the machine learning community. However, we note that the work presented here addresses variational inference for correlated time series due to the focus on dynamics. The applicability of the proposed methods is demonstrated on high-dimensional stochastic processes given by overdamped and driven Langevin dynamics of interacting particles.

  11. Path-space variational inference for non-equilibrium coarse-grained systems

    Energy Technology Data Exchange (ETDEWEB)

    Harmandaris, Vagelis, E-mail: harman@uoc.gr [Department of Mathematics and Applied Mathematics, University of Crete (Greece); Institute of Applied and Computational Mathematics (IACM), Foundation for Research and Technology Hellas (FORTH), IACM/FORTH, GR-71110 Heraklion (Greece); Kalligiannaki, Evangelia, E-mail: ekalligian@tem.uoc.gr [Department of Mathematics and Applied Mathematics, University of Crete (Greece); Katsoulakis, Markos, E-mail: markos@math.umass.edu [Department of Mathematics and Statistics, University of Massachusetts at Amherst (United States); Plecháč, Petr, E-mail: plechac@math.udel.edu [Department of Mathematical Sciences, University of Delaware, Newark, Delaware (United States)

    2016-06-01

    In this paper we discuss information-theoretic tools for obtaining optimized coarse-grained molecular models for both equilibrium and non-equilibrium molecular simulations. The latter are ubiquitous in physicochemical and biological applications, where they are typically associated with coupling mechanisms, multi-physics and/or boundary conditions. In general the non-equilibrium steady states are not known explicitly as they do not necessarily have a Gibbs structure. The presented approach can compare microscopic behavior of molecular systems to parametric and non-parametric coarse-grained models using the relative entropy between distributions on the path space and setting up a corresponding path-space variational inference problem. The methods can become entirely data-driven when the microscopic dynamics are replaced with corresponding correlated data in the form of time series. Furthermore, we present connections and generalizations of force matching methods in coarse-graining with path-space information methods. We demonstrate the enhanced transferability of information-based parameterizations to different observables, at a specific thermodynamic point, due to information inequalities. We discuss methodological connections between information-based coarse-graining of molecular systems and variational inference methods primarily developed in the machine learning community. However, we note that the work presented here addresses variational inference for correlated time series due to the focus on dynamics. The applicability of the proposed methods is demonstrated on high-dimensional stochastic processes given by overdamped and driven Langevin dynamics of interacting particles.

  12. Non-equilibrium effects of core-cooling and time-dependent internal heating on mantle flush events

    Directory of Open Access Journals (Sweden)

    D. A. Yuen

    1995-01-01

    Full Text Available We have examined the non-equilibrium effects of core-cooling and time-dependent internal-heating on the thermal evolution of the Earth's mantle and on mantle flush events caused by the two major phase transitions. Both two- and three-dimensional models have been employed. The mantle viscosity responds to the secular cooling through changes in the averaged temperature field. A viscosity which decreases algebraically with the average temperature has been considered. The time-dependent internal-heating is prescribed to decrease exponentially with a single decay time. We have studied the thermal histories with initial Rayleigh numbers between 2 x 107 and 108 . Flush events, driven by the non-equilibrium forcings, are much more dramatic than those produced by the equilibrium boundary conditions and constant internal heating. Multiple flush events are found under non-equilibrium conditions in which there is very little internal heating or very fast decay rates of internal-heating. Otherwise, the flush events take place in a relatively continuous fashion. Prior to massive flush events small-scale percolative structures appear in the 3D temperature fields. Time-dependent signatures, such as the surface heat flux, also exhibits high frequency oscillatory patterns prior to massive flush events. These two observations suggest that the flush event may be a self-organized critical phenomenon. The Nusselt number as a function of the time-varying Ra does not follow the Nusselt vs. Rayleigh number power-law relationship based on equilibrium (constant temperature boundary conditions. Instead Nu(t may vary non-monotonically with time because of the mantle flush events. Convective processes in the mantle operate quite differently under non-equilibrium conditions from its behaviour under the usual equilibrium situations.

  13. Leaching from MSWI bottom ash: Evaluation of non-equilibrium in column percolation experiments

    DEFF Research Database (Denmark)

    Hyks, Jiri; Astrup, Thomas; Christensen, Thomas Højlund

    2009-01-01

    -equilibrium-induced changes in the solubility control. Despite both physical and chemical non-equilibrium, the Columns were found to provide adequate information for readily soluble compounds (i.e., Na, Cl-, and K) and solubility-controlled elements (i.e., Ca, SO42-, Ba, Si, Al, Zn, and Pb). The leaching Of Cu and Ni...... was shown to depend strongly on DOC leaching, which was likely affected by physical non-equilibrium during flow interruptions. Consequently, the leaching of Cu and Ni in the undisturbed Columns Was shown to be by about one order of magnitude lower compared with the interrupted column. The results indicate...... in turn appeared to be controlled by diffusion from the stagnant zone: no Mo controlling minerals were predicted by the geochemical modeling....

  14. Equilibrium and Stability Properties of Low Aspect Ratio Mirror Systems: from Neutron Source Design to the Parker Spiral

    Science.gov (United States)

    Peterson, Ethan; Anderson, Jay; Clark, Mike; Egedal, Jan; Endrizzi, Douglass; Flanagan, Ken; Harvey, Robert; Lynn, Jacob; Milhone, Jason; Wallace, John; Waleffe, Roger; Mirnov, Vladimir; Forest, Cary

    2017-10-01

    Equilibrium reconstructions of rotating magnetospheres in the lab are computed using a user-friendly extended Grad-Shafranov solver written in Python and various magnetic and kinetic measurements. The stability of these equilibria are investigated using the NIMROD code with two goals: understand the onset of the classic ``wobble'' in the heliospheric current sheet and demonstrating proof-of-principle for a laboratory source of high- β turbulence. Using the same extended Grad-Shafranov solver, equilibria for an axisymmetric, non-paraxial magnetic mirror are used as a design foundation for a high-field magnetic mirror neutron source. These equilibria are numerically shown to be stable to the m=1 flute instability, with higher modes likely stabilized by FLR effects; this provides stability to gross MHD modes in an axisymmetric configuration. Numerical results of RF heating and neutral beam injection (NBI) from the GENRAY/CQL3D code suite show neutron fluxes promising for medical radioisotope production as well as materials testing. Synergistic effects between NBI and high-harmonic fast wave heating show large increases in neutron yield for a modest increase in RF power. work funded by DOE, NSF, NASA.

  15. Hydration Effects on the Stability of Calcium Carbonate Pre-Nucleation Species

    Directory of Open Access Journals (Sweden)

    Alejandro Burgos-Cara

    2017-07-01

    Full Text Available Recent experimental evidence and computer modeling have shown that the crystallization of a range of minerals does not necessarily follow classical models and theories. In several systems, liquid precursors, stable pre-nucleation clusters and amorphous phases precede the nucleation and growth of stable mineral phases. However, little is known on the effect of background ionic species on the formation and stability of pre-nucleation species formed in aqueous solutions. Here, we present a systematic study on the effect of a range of background ions on the crystallization of solid phases in the CaCO3-H2O system, which has been thoroughly studied due to its technical and mineralogical importance, and is known to undergo non-classical crystallization pathways. The induction time for the onset of calcium carbonate nucleation and effective critical supersaturation are systematically higher in the presence of background ions with decreasing ionic radii. We propose that the stabilization of water molecules in the pre-nucleation clusters by background ions can explain these results. The stabilization of solvation water hinders cluster dehydration, which is an essential step for precipitation. This hypothesis is corroborated by the observed correlation between parameters such as the macroscopic equilibrium constant for the formation of calcium/carbonate ion associates, the induction time, and the ionic radius of the background ions in the solution. Overall, these results provide new evidence supporting the hypothesis that pre-nucleation cluster dehydration is the rate-controlling step for calcium carbonate precipitation.

  16. A tightly coupled non-equilibrium model for inductively coupled radio-frequency plasmas

    International Nuclear Information System (INIS)

    Munafò, A.; Alfuhaid, S. A.; Panesi, M.; Cambier, J.-L.

    2015-01-01

    The objective of the present work is the development of a tightly coupled magneto-hydrodynamic model for inductively coupled radio-frequency plasmas. Non Local Thermodynamic Equilibrium (NLTE) effects are described based on a hybrid State-to-State approach. A multi-temperature formulation is used to account for thermal non-equilibrium between translation of heavy-particles and vibration of molecules. Excited electronic states of atoms are instead treated as separate pseudo-species, allowing for non-Boltzmann distributions of their populations. Free-electrons are assumed Maxwellian at their own temperature. The governing equations for the electro-magnetic field and the gas properties (e.g., chemical composition and temperatures) are written as a coupled system of time-dependent conservation laws. Steady-state solutions are obtained by means of an implicit Finite Volume method. The results obtained in both LTE and NLTE conditions over a broad spectrum of operating conditions demonstrate the robustness of the proposed coupled numerical method. The analysis of chemical composition and temperature distributions along the torch radius shows that: (i) the use of the LTE assumption may lead to an inaccurate prediction of the thermo-chemical state of the gas, and (ii) non-equilibrium phenomena play a significant role close the walls, due to the combined effects of Ohmic heating and macroscopic gradients

  17. Coupling of Higgs and Leggett modes in non-equilibrium superconductors.

    Science.gov (United States)

    Krull, H; Bittner, N; Uhrig, G S; Manske, D; Schnyder, A P

    2016-06-21

    In equilibrium systems amplitude and phase collective modes are decoupled, as they are mutually orthogonal excitations. The direct detection of these Higgs and Leggett collective modes by linear-response measurements is not possible, because they do not couple directly to the electromagnetic field. In this work, using numerical exact simulations we show for the case of two-gap superconductors, that optical pump-probe experiments excite both Higgs and Leggett modes out of equilibrium. We find that this non-adiabatic excitation process introduces a strong interaction between the collective modes, which is absent in equilibrium. Moreover, we propose a type of pump-probe experiment, which allows to probe and coherently control the Higgs and Leggett modes, and thus the order parameter directly. These findings go beyond two-band superconductors and apply to general collective modes in quantum materials.

  18. Comparison of a model vapor deposited glass films to equilibrium glass films

    Science.gov (United States)

    Flenner, Elijah; Berthier, Ludovic; Charbonneau, Patrick; Zamponi, Francesco

    Vapor deposition of particles onto a substrate held at around 85% of the glass transition temperature can create glasses with increased density, enthalpy, kinetic stability, and mechanical stability compared to an ordinary glass created by cooling. It is estimated that an ordinary glass would need to age thousands of years to reach the kinetic stability of a vapor deposited glass, and a natural question is how close to the equilibrium is the vapor deposited glass. To understand the process, algorithms akin to vapor deposition are used to create simulated glasses that have a higher kinetic stability than their annealed counterpart, although these glasses may not be well equilibrated either. Here we use novel models optimized for a swap Monte Carlo algorithm in order to create equilibrium glass films and compare their properties with those of glasses obtained from vapor deposition algorithms. This approach allows us to directly assess the non-equilibrium nature of vapor-deposited ultrastable glasses. Simons Collaboration on Cracking the Glass Problem and NSF Grant No. DMR 1608086.

  19. Non-Equilibrium Relations for Bounded Rational Decision-Making in Changing Environments

    Directory of Open Access Journals (Sweden)

    Jordi Grau-Moya

    2017-12-01

    Full Text Available Living organisms from single cells to humans need to adapt continuously to respond to changes in their environment. The process of behavioural adaptation can be thought of as improving decision-making performance according to some utility function. Here, we consider an abstract model of organisms as decision-makers with limited information-processing resources that trade off between maximization of utility and computational costs measured by a relative entropy, in a similar fashion to thermodynamic systems undergoing isothermal transformations. Such systems minimize the free energy to reach equilibrium states that balance internal energy and entropic cost. When there is a fast change in the environment, these systems evolve in a non-equilibrium fashion because they are unable to follow the path of equilibrium distributions. Here, we apply concepts from non-equilibrium thermodynamics to characterize decision-makers that adapt to changing environments under the assumption that the temporal evolution of the utility function is externally driven and does not depend on the decision-maker’s action. This allows one to quantify performance loss due to imperfect adaptation in a general manner and, additionally, to find relations for decision-making similar to Crooks’ fluctuation theorem and Jarzynski’s equality. We provide simulations of several exemplary decision and inference problems in the discrete and continuous domains to illustrate the new relations.

  20. Extended irreversible thermodynamics and non-equilibrium temperature

    Directory of Open Access Journals (Sweden)

    Casas-Vazquez, Jose'

    2008-02-01

    Full Text Available We briefly review the concept of non-equilibrium temperature from the perspectives of extended irreversible thermodynamics, fluctuation theory, and statistical mechanics. The relations between different proposals are explicitly examined in two especially simple systems: an ideal gas in steady shear flow and a forced harmonic oscillator in a thermal bath. We examine with special detail temperatures related to the average molecular kinetic energy along different spatial directions, to the average configurational energy, to the derivative of the entropy with respect to internal energy, to fluctuation-dissipation relation and discuss their measurement.

  1. Non-equilibrium turbulence scalings in turbulent planar jets

    Science.gov (United States)

    Cafiero, Gioacchino; Vassilicos, John Christos; Turbulence, Mixing; Flow Control Group Team

    2017-11-01

    A revised version of the Townsend George theory, as proposed by Dairay et al. 2015, is applied to the study of turbulent planar jets (Cafiero and Vassilicos 2017). Requiring the self-similarity of only few quantities along with the non-equilibrium dissipation scaling law (Vassilicos 2015), it implies new mean flow and jet width scalings. In particular, the ratio of characteristic cross-stream to centreline streamwise velocities decays as the -1/3 power of streamwise distance in the region where the non-equilibrium dissipation scaling holds. In the definition of Cɛ both in Dairay et al. 2015 and in Cafiero and Vassilicos 2017 the local Reynolds number is based on the local flow width rather than on the integral lengthscale. We verify that the ratio of the integral lengthscale to the flow width is constant, thus enabling the use of the integral flow width in place of the integral lengthscale for defining Cɛ. The importance of this result is twofold: firstly it further strengthens the scalings obtained in the works of Dairay et al. 2015 and Cafiero and Vassilicos 2017; secondly the flow width is immediately accessible by any mean flow measurement, whereas the estimation of the integral lengthscale often requires an additional hypothesis. ERC Advanced Grant 320560.

  2. Validation of vibration-dissociation coupling models in hypersonic non-equilibrium separated flows

    Science.gov (United States)

    Shoev, G.; Oblapenko, G.; Kunova, O.; Mekhonoshina, M.; Kustova, E.

    2018-03-01

    The validation of recently developed models of vibration-dissociation coupling is discussed in application to numerical solutions of the Navier-Stokes equations in a two-temperature approximation for a binary N2/N flow. Vibrational-translational relaxation rates are computed using the Landau-Teller formula generalized for strongly non-equilibrium flows obtained in the framework of the Chapman-Enskog method. Dissociation rates are calculated using the modified Treanor-Marrone model taking into account the dependence of the model parameter on the vibrational state. The solutions are compared to those obtained using traditional Landau-Teller and Treanor-Marrone models, and it is shown that for high-enthalpy flows, the traditional and recently developed models can give significantly different results. The computed heat flux and pressure on the surface of a double cone are in a good agreement with experimental data available in the literature on low-enthalpy flow with strong thermal non-equilibrium. The computed heat flux on a double wedge qualitatively agrees with available data for high-enthalpy non-equilibrium flows. Different contributions to the heat flux calculated using rigorous kinetic theory methods are evaluated. Quantitative discrepancy of numerical and experimental data is discussed.

  3. Stability and servo-control of the crystal pulling process

    International Nuclear Information System (INIS)

    Johansen, T.H.

    1990-11-01

    The paper analyzes why the crystal pulling process needs servo-control, and how it can be implemented. Special emphasis is put on the fundamental question of inherent stability, and how to interpret the signal from a balance when the weighing method is used for cystal diameter detection. 15 refs., 13 figs

  4. Vlasov equilibrium and nonlocal stability properties of an inhomogeneous plasma column

    International Nuclear Information System (INIS)

    Davidson, R.C.

    1976-01-01

    A fully kinetic, nonlocal, matrix dispersion equation is derived for electrostatic perturbations about a spatially nonuniform cylindrical plasma equilibrium. The analysis is carried out for the class of radially confined rigid-rotor equilibria described by f 0 /subj/(x,v) = (n/subj/m/subj//2πT/subj/) F (H/sub perpendicular//T/subj/- ω/subj/P/sub theta//T/subj/,v/subz/), where P/sub theta/ is the canonical angular momentum, v/subz/ is the axial velocity, H/sub perpendicular/ is the perpendicular energy, and n/subj/, T/subj/, and ω/subj/ are constants. Assuming equilibrium charge neutrality and negligible spatial variation in the axial magnetic field B 0 e/subz/, it is shown that the particle trajectories (in the equilibrium electric and magnetic fields) and the orbit integrals required in the stability analysis can be evaluated in closed form. Expanding the perturbed electrostatic potential in terms of the vacuum eigenfunctions ]J/subl/(lambda/subn/r) closing-brace for the conducting cylinder leads to a matrix dispersion equation of the form det[delta/subn//sub prime//subn+ Σ/subj/chi/subj//subn//sub prime//subn(ω)]=0, where the susceptibility chi/subj//subn//sub prime//subn(ω) is expressed as a phase-space integral over f 0 /subj/(x,v) and known functions of ω, r lambda/subn/, etc. The limiting case of strongly magnetized electrons and unmagnetized ions is considered together with a preliminary application to the lower-hyprid-drift instability

  5. Non-Equilibrium Thermodynamic Chemistry and the Composition of the Atmosphere of Mars

    Science.gov (United States)

    Levine, J. S.; Summers, M. E.

    2003-01-01

    A high priority objective of the Mars Exploration Program is to Determine if life exists today (MEPAG Goal I, Objective A). The measurement of gases of biogenic origin may be an approach to detect the presence of microbial life on the surface or subsurface of Mars. Chemical thermodynamic calculations indicate that on both Earth and Mars, certain gases should exist in extremely low concentrations, if at all. Microbial metabolic activity is an important non-equilibrium chemistry process on Earth, and if microbial life exists on Mars, may be an important nonequilibrium chemistry process on Mars. The non-equilibrium chemistry of the atmosphere of Mars is discussed in this paper.

  6. Optical orientation of the homogeneous non-equilibrium Bose-Einstein condensate of bright excitons (polaritons)

    OpenAIRE

    Korenev, V. L.

    2011-01-01

    A simple model, describing the dynamics of the non-equilibrium pseudospin of a homogeneous Bose-Einstein condensate of exciton polaritons, has been formulated. It explains the suppression of spin splitting of a non-equilibrium polariton condensate in an external magnetic field, the optical alignment, and the conversion of alignment into orientation of polaritons. It has been shown that inverse effects are possible, to wit, the spontaneous circular polarization and the enhancement of spin spli...

  7. Using Controlled Landslide Initiation Experiments to Test Limit-Equilibrium Analyses of Slope Stability

    Science.gov (United States)

    Reid, M. E.; Iverson, R. M.; Brien, D. L.; Iverson, N. R.; Lahusen, R. G.; Logan, M.

    2004-12-01

    Most studies of landslide initiation employ limit equilibrium analyses of slope stability. Owing to a lack of detailed data, however, few studies have tested limit-equilibrium predictions against physical measurements of slope failure. We have conducted a series of field-scale, highly controlled landslide initiation experiments at the USGS debris-flow flume in Oregon; these experiments provide exceptional data to test limit equilibrium methods. In each of seven experiments, we attempted to induce failure in a 0.65m thick, 2m wide, 6m3 prism of loamy sand placed behind a retaining wall in the 31° sloping flume. We systematically investigated triggering of sliding by groundwater injection, by prolonged moderate-intensity sprinkling, and by bursts of high intensity sprinkling. We also used vibratory compaction to control soil porosity and thereby investigate differences in failure behavior of dense and loose soils. About 50 sensors were monitored at 20 Hz during the experiments, including nests of tiltmeters buried at 7 cm spacing to define subsurface failure geometry, and nests of tensiometers and pore-pressure sensors to define evolving pore-pressure fields. In addition, we performed ancillary laboratory tests to measure soil porosity, shear strength, hydraulic conductivity, and compressibility. In loose soils (porosity of 0.52 to 0.55), abrupt failure typically occurred along the flume bed after substantial soil deformation. In denser soils (porosity of 0.41 to 0.44), gradual failure occurred within the soil prism. All failure surfaces had a maximum length to depth ratio of about 7. In even denser soil (porosity of 0.39), we could not induce failure by sprinkling. The internal friction angle of the soils varied from 28° to 40° with decreasing porosity. We analyzed stability at failure, given the observed pore-pressure conditions just prior to large movement, using a 1-D infinite-slope method and a more complete 2-D Janbu method. Each method provides a static

  8. Equilibrium and ballooning mode stability of an axisymmetric tensor pressure tokamak

    International Nuclear Information System (INIS)

    Cooper, W.A.; Bateman, G.; Nelson, D.B.; Kammash, T.

    1980-08-01

    A force balance relation, a representation for the poloidal beta (β/sub p/), and expressions for the current densities are derived from the MHD equilibrium relations for an axisymmetric tensor pressure tokamak. Perpendicular and parallel beam pressure components are evaluated from a distribution function that models high energy neutral particle injection. A double adiabatic energy principle is derived from that of Kruskal and Oberman, with correction terms added. The energy principle is then applied to an arbitrary cross-section axisymmetric tokamak to examine ballooning instabilities of large toroidal mode number. The resulting Euler equation is remarkably similar to that of ideal MHD. Although the field-bending term is virtually unaltered, the driving term is modified because the pressures are no longer constant on a flux surface. Either a necessary or a sufficient marginal stability criterion for a guiding center plasma can be derived from this equation whenever an additional stabilizing element unique to the double adiabatic theory is either kept or neglected, respectively

  9. Non-equilibrium quasiparticle processes in superconductor tunneling structures

    International Nuclear Information System (INIS)

    Perold, W.J.

    1990-01-01

    A broad overview is presented of the phenomenon of superconductivity. The tunneling of quasiparticles in superconducter-insulator structures is described. Related non-equilibrium processes, such as superconductor bandgap suppresion, quasiparticle diffusion and recombination, and excess quasiparticle collection are discussed. The processes are illustrated with numerical computer simulation data. The importance of the inter-relationship between these processes in practical multiple tunneling junction superconducting device structures is also emphasized. 14 refs., 8 figs

  10. Non-equilibrium thermionic electron emission for metals at high temperatures

    Science.gov (United States)

    Domenech-Garret, J. L.; Tierno, S. P.; Conde, L.

    2015-08-01

    Stationary thermionic electron emission currents from heated metals are compared against an analytical expression derived using a non-equilibrium quantum kappa energy distribution for the electrons. The latter depends on the temperature decreasing parameter κ ( T ) , which decreases with increasing temperature and can be estimated from raw experimental data and characterizes the departure of the electron energy spectrum from equilibrium Fermi-Dirac statistics. The calculations accurately predict the measured thermionic emission currents for both high and moderate temperature ranges. The Richardson-Dushman law governs electron emission for large values of kappa or equivalently, moderate metal temperatures. The high energy tail in the electron energy distribution function that develops at higher temperatures or lower kappa values increases the emission currents well over the predictions of the classical expression. This also permits the quantitative estimation of the departure of the metal electrons from the equilibrium Fermi-Dirac statistics.

  11. Non-equilibrium dynamics of single polymer adsorption to solid surfaces

    NARCIS (Netherlands)

    Panja, D.; Barkema, G.T.; Kolomeisky, A.B.

    2009-01-01

    The adsorption of polymers to surfaces is crucial for understanding many fundamental processes in nature. Recent experimental studies indicate that the adsorption dynamics is dominated by non-equilibrium effects. We investigate the adsorption of a single polymer of length N to a planar solid surface

  12. Basic researches on thermo-hydraulic non-equilibrium phenomena related to nuclear reactor safety

    International Nuclear Information System (INIS)

    Sakurai, Akira; Kataoka, Isao; Aritomi, Masanori.

    1989-01-01

    A review was made of recent developments of fundamental researches on thermo-hydraulic non-equilibrium phenomena related to light water reactor safety, in relation to problems to be solved for the improvement of safety analysis codes. As for the problems related to flow con ditions, fundamental researches on basic conservation equations and constitutive equations for transient two-phase flow were reviewed. Regarding to the problems related to thermal non-equilibrium phenomena, fundamental researches on film boiling in pool and forced convection, transient boiling heat transfer and flow behavior caused by pressure transients were reviewed. (author)

  13. Cumulants in perturbation expansions for non-equilibrium field theory

    International Nuclear Information System (INIS)

    Fauser, R.

    1995-11-01

    The formulation of perturbation expansions for a quantum field theory of strongly interacting systems in a general non-equilibrium state is discussed. Non-vanishing initial correlations are included in the formulation of the perturbation expansion in terms of cumulants. The cumulants are shown to be the suitable candidate for summing up the perturbation expansion. Also a linked-cluster theorem for the perturbation series with cumulants is presented. Finally a generating functional of the perturbation series with initial correlations is studied. We apply the methods to a simple model of a fermion-boson system. (orig.)

  14. Equilibrium Crystal Shape of BaZrO{sub 3} and Space Charge Formation in the (011) Surface by Using Ab-Initio Thermodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ji-Su; Kim, Yeong-Cheol [Korea University of Technology and Education, Cheonan (Korea, Republic of)

    2017-01-15

    We investigated the equilibrium crystal shape of BaZrO{sub 3} and the space charge formation in an O-terminated (011) surface by using ab-initio thermodynamics. Twenty-two low-indexed (001), (011), and (111) surfaces were calculated to analyze their surface Gibbs-free energy under the stable condition of BaZrO{sub 3}. Based on the Gibbs-Wulff theorem, the equilibrium crystal shape of BaZrO{sub 3} changed from cubic to decaoctahedral with decreasing Ba chemical potential. The dominant facets of BaZrO{sub 3} were {001} and {011}, which were well consistent with experimental observations. The space charge formation in the (011) surface was evaluated using the space-charge model. We found that the (011) surface was even more resistive than the (001) surface.

  15. Equilibrium leaching of toxic elements from cement stabilized soil.

    Science.gov (United States)

    Voglar, Grega E; Leštan, Domen

    2013-02-15

    The toxicity characteristics leaching procedure (TCLP) is commonly used to assess the efficiency of solidification/stabilization (S/S) of pollutants in wastes, despite recent objections to this method. In this study, formulations of 7, 10, 15 and 20% (w/w) of calcium aluminate cement (CAC) and sulfate resistant Portland cement (SRC) were used for S/S of soil from brownfield contaminated with 43,149, 10,115, 7631, 6130, 90, 82 mg kg(-1) of Zn, Pb, Cu, As, Cd and Ni, respectively. CAC produced S/S soil monoliths of higher mechanical strength (up to 7.65 N mm(-2)). Mass-transfer analysis indicated surface wash-off as a mechanism of toxic elements release, and equilibrium leaching as a crucial parameter of S/S efficiency assessment. In the expected range of field soil pH after S/S (pH 7-9), the TCLP gave markedly different results than the multi-point pH equilibrium leaching method (using nine targeted pH values): up to 2953-, 94-, 483-, 1.3-, 27- and 1.5-times more Zn, Pb, Cu, As, Cd and Ni, respectively, was determined in the TCLP leachate. S/S with CAC reduced leachability of toxic elements more effectively than SRC. Our results indicate that, under given field conditions, the TCLP significantly underrates the efficiency of S/S of contaminated soil with cementitious binders. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Non-equilibrium dynamics of 2D liquid crystals driven by transmembrane gas flow.

    Science.gov (United States)

    Seki, Kazuyoshi; Ueda, Ken; Okumura, Yu-ichi; Tabe, Yuka

    2011-07-20

    Free-standing films composed of several layers of chiral smectic liquid crystals (SmC*) exhibited unidirectional director precession under various vapor transfers across the films. When the transferred vapors were general organic solvents, the precession speed linearly depended on the momentum of the transmembrane vapors, where the proportional constant was independent of the kind of vapor. In contrast, the same SmC* films under water transfer exhibited precession in the opposite direction. As a possible reason for the rotational inversion, we suggest the competition of two origins for the torques, one of which is microscopic and the other macroscopic. Next, we tried to move an external object by making use of the liquid crystal (LC) motion. When a solid or a liquid particle was set on a film under vapor transfer, the particle was rotated in the same direction as the LC molecules. Using home-made laser tweezers, we measured the force transmitted from the film to the particle, which we found to be several pN.

  17. CRYSTAL CHEMISTRY OF THREE-COMPONENT WHITE DWARFS AND NEUTRON STAR CRUSTS: PHASE STABILITY, PHASE STRATIFICATION, AND PHYSICAL PROPERTIES

    Energy Technology Data Exchange (ETDEWEB)

    Engstrom, T. A.; Yoder, N. C.; Crespi, V. H., E-mail: tae146@psu.edu, E-mail: ncy5007@psu.edu, E-mail: vhc2@psu.edu [Department of Physics, The Pennsylvania State University, University Park, PA 16802 (United States)

    2016-02-20

    A systematic search for multicomponent crystal structures is carried out for five different ternary systems of nuclei in a polarizable background of electrons, representative of accreted neutron star crusts and some white dwarfs. Candidate structures are “bred” by a genetic algorithm and optimized at constant pressure under the assumption of linear response (Thomas–Fermi) charge screening. Subsequent phase equilibria calculations reveal eight distinct crystal structures in the T = 0 bulk phase diagrams, five of which are complicated multinary structures not previously predicted in the context of compact object astrophysics. Frequent instances of geometrically similar but compositionally distinct phases give insight into structural preferences of systems with pairwise Yukawa interactions, including and extending to the regime of low-density colloidal suspensions made in a laboratory. As an application of these main results, we self-consistently couple the phase stability problem to the equations for a self-gravitating, hydrostatically stable white dwarf, with fixed overall composition. To our knowledge, this is the first attempt to incorporate complex multinary phases into the equilibrium phase-layering diagram and mass–radius-composition dependence, both of which are reported for He–C–O and C–O–Ne white dwarfs. Finite thickness interfacial phases (“interphases”) show up at the boundaries between single-component body-centered cubic (bcc) crystalline regions, some of which have lower lattice symmetry than cubic. A second application—quasi-static settling of heavy nuclei in white dwarfs—builds on our equilibrium phase-layering method. Tests of this nonequilibrium method reveal extra phases that play the role of transient host phases for the settling species.

  18. Weighted Traffic Equilibrium Problem in Non Pivot Hilbert Spaces with Long Term Memory

    International Nuclear Information System (INIS)

    Giuffre, Sofia; Pia, Stephane

    2010-01-01

    In the paper we consider a weighted traffic equilibrium problem in a non-pivot Hilbert space and prove the equivalence between a weighted Wardrop condition and a variational inequality with long term memory. As an application we show, using recent results of the Senseable Laboratory at MIT, how wireless devices can be used to optimize the traffic equilibrium problem.

  19. Equilibrium and stability of theta-pinch plasma in modified toroidal multiple mirror field

    International Nuclear Information System (INIS)

    Shiina, S.; Saito, K.; Osanai, Y.; Itagaki, T.; Karakizawa, T.; Gesso, H.; Todoroki, J.; Kawakami, I.; Yoshimura, H.

    1976-01-01

    To confine a high-beta plasma a new toroidal magnetic configuration with closed lines of force has been proposed [1]. The configuration is an appropriate superposition of l = 0, l = +- 1, l = +- 2,sup(...), helical fields. In this experiment, it is generated by modifying the multiple mirror field by enclosing the discharge tube in a copper shell which has longitudinal gap. This configuration is preferred for the wall stabilizing effect to that with the separated helical windings. The characteristics of the equilibrium conditions are examined based on the near-axis approximation theory and compared with the experimental results. The stability of plasma in the configurations with l = 0 field and with superposition of l = 0, l = +- 2 fields is investigated in linear geometry. (author)

  20. Exciton correlations and input–output relations in non-equilibrium exciton superfluids

    International Nuclear Information System (INIS)

    Ye, Jinwu; Sun, Fadi; Yu, Yi-Xiang; Liu, Wuming

    2013-01-01

    The photoluminescence (PL) measurements on photons and the transport measurements on excitons are the two types of independent and complementary detection tools to search for possible exciton superfluids in electron–hole semi-conductor bilayer systems. In fact, it was believed that the transport measurements can provide more direct evidences on superfluids than the spectroscopic measurements. It is important to establish the relations between the two kinds of measurements. In this paper, using quantum Heisenberg–Langevin equations, we establish such a connection by calculating various exciton correlation functions in the putative exciton superfluids. These correlation functions include both normal and anomalous greater, lesser, advanced, retarded, and time-ordered exciton Green functions and also various two exciton correlation functions. We also evaluate the corresponding normal and anomalous spectral weights and the Keldysh distribution functions. We stress the violations of the fluctuation and dissipation theorem among these various exciton correlation functions in the non-equilibrium exciton superfluids. We also explore the input–output relations between various exciton correlation functions and those of emitted photons such as the angle resolved photon power spectrum, phase sensitive two mode squeezing spectrum and two photon correlations. Applications to possible superfluids in the exciton–polariton systems are also mentioned. For a comparison, using conventional imaginary time formalism, we also calculate all the exciton correlation functions in an equilibrium dissipative exciton superfluid in the electron–electron coupled semi-conductor bilayers at the quantum Hall regime at the total filling factor ν T =1. We stress the analogies and also important differences between the correlations functions in the two exciton superfluid systems. - Highlights: ► Establish the relations between photoluminescence and transport measurements. ► Stress the

  1. Non-equilibrium dynamics of single polymer adsorption to solid surfaces

    International Nuclear Information System (INIS)

    Panja, Debabrata; Barkema, Gerard T; Kolomeisky, Anatoly B

    2009-01-01

    The adsorption of polymers to surfaces is crucial for understanding many fundamental processes in nature. Recent experimental studies indicate that the adsorption dynamics is dominated by non-equilibrium effects. We investigate the adsorption of a single polymer of length N to a planar solid surface in the absence of hydrodynamic interactions. We find that for weak adsorption energies the adsorption timescales ∼N (1+2ν)/(1+ν) , where ν is the Flory exponent for the polymer. We argue that in this regime the single chain adsorption is closely related to a field-driven polymer translocation through narrow pores. Surprisingly, for high adsorption energies the adsorption time becomes longer, as it scales as ∼N 1+ν , which is explained by strong stretching of the unadsorbed part of the polymer close to the adsorbing surface. These two dynamic regimes are separated by an energy scale that is characterized by non-equilibrium contributions during the adsorption process. (fast track communication)

  2. Time-dependent non-equilibrium dielectric response in QM/continuum approaches

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Feizhi; Lingerfelt, David B.; Li, Xiaosong, E-mail: benedetta.mennucci@unipi.it, E-mail: li@chem.washington.edu [Department of Chemistry, University of Washington, Seattle, Washington 98195 (United States); Mennucci, Benedetta, E-mail: benedetta.mennucci@unipi.it, E-mail: li@chem.washington.edu [Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Risorgimento 35, 56126 Pisa (Italy)

    2015-01-21

    The Polarizable Continuum Models (PCMs) are some of the most inexpensive yet successful methods for including the effects of solvation in quantum-mechanical calculations of molecular systems. However, when applied to the electronic excitation process, these methods are restricted to dichotomously assuming either that the solvent has completely equilibrated with the excited solute charge density (infinite-time limit), or that it retains the configuration that was in equilibrium with the solute prior to excitation (zero-time limit). This renders the traditional PCMs inappropriate for resolving time-dependent solvent effects on non-equilibrium solute electron dynamics like those implicated in the instants following photoexcitation of a solvated molecular species. To extend the existing methods to this non-equilibrium regime, we herein derive and apply a new formalism for a general time-dependent continuum embedding method designed to be propagated alongside the solute’s electronic degrees of freedom in the time domain. Given the frequency-dependent dielectric constant of the solvent, an equation of motion for the dielectric polarization is derived within the PCM framework and numerically integrated simultaneously with the time-dependent Hartree fock/density functional theory equations. Results for small molecular systems show the anticipated dipole quenching and electronic state dephasing/relaxation resulting from out-of-phase charge fluctuations in the dielectric and embedded quantum system.

  3. Role of non-equilibrium conformations on driven polymer translocation.

    Science.gov (United States)

    Katkar, H H; Muthukumar, M

    2018-01-14

    One of the major theoretical methods in understanding polymer translocation through a nanopore is the Fokker-Planck formalism based on the assumption of quasi-equilibrium of polymer conformations. The criterion for applicability of the quasi-equilibrium approximation for polymer translocation is that the average translocation time per Kuhn segment, ⟨τ⟩/N K , is longer than the relaxation time τ 0 of the polymer. Toward an understanding of conditions that would satisfy this criterion, we have performed coarse-grained three dimensional Langevin dynamics and multi-particle collision dynamics simulations. We have studied the role of initial conformations of a polyelectrolyte chain (which were artificially generated with a flow field) on the kinetics of its translocation across a nanopore under the action of an externally applied transmembrane voltage V (in the absence of the initial flow field). Stretched (out-of-equilibrium) polyelectrolyte chain conformations are deliberately and systematically generated and used as initial conformations in translocation simulations. Independent simulations are performed to study the relaxation behavior of these stretched chains, and a comparison is made between the relaxation time scale and the mean translocation time (⟨τ⟩). For such artificially stretched initial states, ⟨τ⟩/N K polymers including single stranded DNA (ssDNA), double stranded DNA (dsDNA), and synthetic polymers. Even when these data are rescaled assuming a constant effective velocity of translocation, it is found that for flexible (ssDNA and synthetic) polymers with N K Kuhn segments, the condition ⟨τ⟩/N K polymers such as ssDNA, a crossover from quasi-equilibrium to non-equilibrium behavior would occur at N K ∼ O(1000).

  4. More accurate determination of the quantity of ice crystallized at low cooling rates in the glycerol and 1,2-propanediol aqueous solutions: comparison with equilibrium.

    Science.gov (United States)

    Boutron, P

    1984-04-01

    It is generally assumed that when cells are cooled at rates close to those corresponding to the maximum of survival, once supercooling has ceased, above the eutectic melting temperature the extracellular ice is in equilibrium with the residual solution. This did not seem evident to us due to the difficulty of ice crystallization in cryoprotective solutions. The maximum quantities of ice crystallized in glycerol and 1,2-propanediol solutions have been calculated from the area of the solidification and fusion peaks obtained with a Perkin-Elmer DSC-2 differential scanning calorimeter. The accuracy has been improved by several corrections: better defined baseline, thermal variation of the heat of fusion of the ice, heat of solution of the water from its melting with the residual solution. More ice crystallizes in the glycerol than in the 1,2-propanediol solutions, of which the amorphous residue contains about 40 to 55% 1,2-propanediol. The equilibrium values are unknown in the presence of 1,2-propanediol. With glycerol, in our experiments, the maximum is first lower than the equilibrium but approaches it as the concentration increases. It is not completely determined by the colligative properties of the solutes.

  5. Non-equilibrium synthesis of alloys using lasers

    International Nuclear Information System (INIS)

    Mazumder, J.; Choi, J.; Ribaudo, C.; Wang, A.; Kar, A.

    1993-01-01

    This paper discusses microstructure and properties of alloys, produced by laser alloying and cladding technique, for various applications. These include Fe-Cr-W-C alloys for wear resistance, Ni-Cr-Al-Hf alloys for high temperature oxidation resistance and Mg-Al alloys for corrosion resistance. Also a mathematical model will be presented for the prediction of the composition of the metastable phases produced by laser synthesis. Microstructure was characterized using various electron optical techniques such as Transmission Electron Microscopy (TEM), Scanning Electron Microscopy (SEM), Auger Electron Spectroscopy (AES) and Energy Dispersive X-Ray Analysis (EDAX). Wear properties were characterized by a line contact Block on Cylinder method. High temperature oxidation properties were characterized by using Perkin-Elmer Thermo-Gravimetric Analyzer (TGA) where dynamic weight change were monitored at 1,200 C. Corrosion properties were evaluated by a potentio-dynamic method using a computer controlled Potentiostat manufactured by EG ampersand G. A non-equilibrium M 6 C type carbide was found to be responsible for the improved wear resistance. Increased solid-solubility of Hf was found to be a major factor in improving the high temperature oxidation resistance of the Ni-Cr-Al-Hf alloys. Micro-Crystalline phases were observed in Mg-Al alloys. The rapid solidification was modeled using heat transfer in the liquid pool and the solid substrate and mass transfer in the liquid pool. Non-equilibrium partition coefficient was introduced through the boundary condition at the liquid-solid interface. A good correlation was observed between the prediction and the experimental data. 54 refs

  6. Non-Equilibrium Modeling of Inductively Coupled RF Plasmas

    Science.gov (United States)

    2015-01-01

    wall can be approximated with the expression for an infinite solenoid , B(r = R) = µ0NIc, where quan- tities N and Ic are the number of turns per unit...Modeling of non-equilibrium plasmas in an induc- tively coupled plasma facility. AIAA Paper 2014– 2235, 2014. 45th AIAA Plasmadynamics and Lasers ...1993. 24th Plas- madynamics and Laser Conference, Orlando, FL. [22] M. Capitelli, I. Armenise, D. Bruno, M. Caccia- tore, R. Celiberto, G. Colonna, O

  7. A Strategic-Equilibrium Based

    Directory of Open Access Journals (Sweden)

    Gabriel J. Turbay

    2011-03-01

    Full Text Available The strategic equilibrium of an N-person cooperative game with transferable utility is a system composed of a cover collection of subsets of N and a set of extended imputations attainable through such equilibrium cover. The system describes a state of coalitional bargaining stability where every player has a bargaining alternative against any other player to support his corresponding equilibrium claim. Any coalition in the sable system may form and divide the characteristic value function of the coalition as prescribed by the equilibrium payoffs. If syndicates are allowed to form, a formed coalition may become a syndicate using the equilibrium payoffs as disagreement values in bargaining for a part of the complementary coalition incremental value to the grand coalition when formed. The emergent well known-constant sum derived game in partition function is described in terms of parameters that result from incumbent binding agreements. The strategic-equilibrium corresponding to the derived game gives an equal value claim to all players.  This surprising result is alternatively explained in terms of strategic-equilibrium based possible outcomes by a sequence of bargaining stages that when the binding agreements are in the right sequential order, von Neumann and Morgenstern (vN-M non-discriminatory solutions emerge. In these solutions a preferred branch by a sufficient number of players is identified: the weaker players syndicate against the stronger player. This condition is referred to as the stronger player paradox.  A strategic alternative available to the stronger players to overcome the anticipated not desirable results is to voluntarily lower his bargaining equilibrium claim. In doing the original strategic equilibrium is modified and vN-M discriminatory solutions may occur, but also a different stronger player may emerge that has eventually will have to lower his equilibrium claim. A sequence of such measures converges to the equal

  8. The efficiency of driving chemical reactions by a physical non-equilibrium is kinetically controlled.

    Science.gov (United States)

    Göppel, Tobias; Palyulin, Vladimir V; Gerland, Ulrich

    2016-07-27

    An out-of-equilibrium physical environment can drive chemical reactions into thermodynamically unfavorable regimes. Under prebiotic conditions such a coupling between physical and chemical non-equilibria may have enabled the spontaneous emergence of primitive evolutionary processes. Here, we study the coupling efficiency within a theoretical model that is inspired by recent laboratory experiments, but focuses on generic effects arising whenever reactant and product molecules have different transport coefficients in a flow-through system. In our model, the physical non-equilibrium is represented by a drift-diffusion process, which is a valid coarse-grained description for the interplay between thermophoresis and convection, as well as for many other molecular transport processes. As a simple chemical reaction, we consider a reversible dimerization process, which is coupled to the transport process by different drift velocities for monomers and dimers. Within this minimal model, the coupling efficiency between the non-equilibrium transport process and the chemical reaction can be analyzed in all parameter regimes. The analysis shows that the efficiency depends strongly on the Damköhler number, a parameter that measures the relative timescales associated with the transport and reaction kinetics. Our model and results will be useful for a better understanding of the conditions for which non-equilibrium environments can provide a significant driving force for chemical reactions in a prebiotic setting.

  9. A thermodynamic analysis of non-equilibrium heat conduction in a semi-infinite medium subjected to a step change in temperature

    Energy Technology Data Exchange (ETDEWEB)

    Hussain, A.K.; Hussain, T.A.; Shahad, Haroun A.K. [Babylon Univ., Dept. of Mechanical Engineering, Babylon (Iraq)

    2003-05-01

    The problem of non-equilibrium heat conduction in a semi-infinite medium subjected to a step change in temperature is analyzed thermodynamically using the extended irreversible thermodynamic approach. The results show clearly the wave nature of the dimensionless temperature distribution, Stanton number and the dimensionless entropy change profiles. The non-equilibrium profiles approach the equilibrium profiles as the speed of wave propagation is increased. The results also show that the non-equilibrium temperature is higher than the equilibrium temperature but the difference decreases as the wave propagation speed increases. (Author)

  10. Experimental studies of the MHD stability of non-circular Extrap Z-pinches

    International Nuclear Information System (INIS)

    Drake, J.R.

    1985-01-01

    Extrap Z-pinches, which can be sustained for many Alfven times, can be characterized as non-circular Z-pinch discharges bounded by a magnetic separatrix acting somewhat like a limiter. The magnetic separatrix is produced when a vacuum magnetic field, generated by currents in external conductors, combines with the self-magnetic field produced by the discharge current. The separatrix deforms the pinch cross-section and affects the equilibrium at the pinch boundary; both effects improve stability. Experiments have been performed which indicate that both effects are necessary for the successful generation of sustained Extrap discharges. In one experiment, the importance of the non-circularity of the cross-section was investigated. The deformation provided by the vacuum field can provide regions in the discharge where field lines have good curvature, which improves the stability of the configuration against internal modes. In configurations apparently lacking good curvature, discharges could not be sustained. In a second experiment, the dependence of the amplitude of global kink instabilities on the discharge current density profile were studied. The behaviour of the modes was consistent with that which would be expected for surface current-driven modes. (orig.)

  11. Experimental studies of the MHD stability of non-circular extrap Z-pinches

    International Nuclear Information System (INIS)

    Drake, J.R.

    1984-12-01

    Extrap Z-pinches, which can be sustained for many Alfven times, can be characterized as non-circular Z-pinch discharges bounded by a magnetic separatrix acting somewhat like a limiter. The magnetic separatrix is produced when a vacuum magnetic field, generated by currents in external conductors, combines with the self-magnetic field produced by the discharge current. The separatrix deforms the pinch cross-section and affects the equilibrium at the pinch boundary; both effects improve stability. Experiments have been performed which indicate that both effects are necessary for the successful generation of sustained Extrap discharges. In one experiment, the importance of the non-circularity of the cross-section was investigated. The deformation provided by the vacuum field can provide regions in the discharge where field lines have good curvature, which improves the stability of the configuration against internal modes. In configurations apparently lacking good curvature, discharges could not be sustained. In a second experiment, the dependence of the amplitude of global kink instabilities on the discharge current density profile were studied. The behaviour of the modes was consistent with that which would be expected for surface current-driven modes. (Author)

  12. The non-equilibrium nature of culinary evolution

    Science.gov (United States)

    Kinouchi, Osame; Diez-Garcia, Rosa W.; Holanda, Adriano J.; Zambianchi, Pedro; Roque, Antonio C.

    2008-07-01

    Food is an essential part of civilization, with a scope that ranges from the biological to the economic and cultural levels. Here, we study the statistics of ingredients and recipes taken from Brazilian, British, French and Medieval cookery books. We find universal distributions with scale invariant behaviour. We propose a copy-mutate process to model culinary evolution that fits our empirical data very well. We find a cultural 'founder effect' produced by the non-equilibrium dynamics of the model. Both the invariant and idiosyncratic aspects of culture are accounted for by our model, which may have applications in other kinds of evolutionary processes.

  13. The role of non-equilibrium fluxes in the relaxation processes of the linear chemical master equation.

    Science.gov (United States)

    de Oliveira, Luciana Renata; Bazzani, Armando; Giampieri, Enrico; Castellani, Gastone C

    2014-08-14

    We propose a non-equilibrium thermodynamical description in terms of the Chemical Master Equation (CME) to characterize the dynamics of a chemical cycle chain reaction among m different species. These systems can be closed or open for energy and molecules exchange with the environment, which determines how they relax to the stationary state. Closed systems reach an equilibrium state (characterized by the detailed balance condition (D.B.)), while open systems will reach a non-equilibrium steady state (NESS). The principal difference between D.B. and NESS is due to the presence of chemical fluxes. In the D.B. condition the fluxes are absent while for the NESS case, the chemical fluxes are necessary for the state maintaining. All the biological systems are characterized by their "far from equilibrium behavior," hence the NESS is a good candidate for a realistic description of the dynamical and thermodynamical properties of living organisms. In this work we consider a CME written in terms of a discrete Kolmogorov forward equation, which lead us to write explicitly the non-equilibrium chemical fluxes. For systems in NESS, we show that there is a non-conservative "external vector field" whose is linearly proportional to the chemical fluxes. We also demonstrate that the modulation of these external fields does not change their stationary distributions, which ensure us to study the same system and outline the differences in the system's behavior when it switches from the D.B. regime to NESS. We were interested to see how the non-equilibrium fluxes influence the relaxation process during the reaching of the stationary distribution. By performing analytical and numerical analysis, our central result is that the presence of the non-equilibrium chemical fluxes reduces the characteristic relaxation time with respect to the D.B. condition. Within a biochemical and biological perspective, this result can be related to the "plasticity property" of biological systems and to their

  14. The role of non-equilibrium fluxes in the relaxation processes of the linear chemical master equation

    International Nuclear Information System (INIS)

    Oliveira, Luciana Renata de; Bazzani, Armando; Giampieri, Enrico; Castellani, Gastone C.

    2014-01-01

    We propose a non-equilibrium thermodynamical description in terms of the Chemical Master Equation (CME) to characterize the dynamics of a chemical cycle chain reaction among m different species. These systems can be closed or open for energy and molecules exchange with the environment, which determines how they relax to the stationary state. Closed systems reach an equilibrium state (characterized by the detailed balance condition (D.B.)), while open systems will reach a non-equilibrium steady state (NESS). The principal difference between D.B. and NESS is due to the presence of chemical fluxes. In the D.B. condition the fluxes are absent while for the NESS case, the chemical fluxes are necessary for the state maintaining. All the biological systems are characterized by their “far from equilibrium behavior,” hence the NESS is a good candidate for a realistic description of the dynamical and thermodynamical properties of living organisms. In this work we consider a CME written in terms of a discrete Kolmogorov forward equation, which lead us to write explicitly the non-equilibrium chemical fluxes. For systems in NESS, we show that there is a non-conservative “external vector field” whose is linearly proportional to the chemical fluxes. We also demonstrate that the modulation of these external fields does not change their stationary distributions, which ensure us to study the same system and outline the differences in the system's behavior when it switches from the D.B. regime to NESS. We were interested to see how the non-equilibrium fluxes influence the relaxation process during the reaching of the stationary distribution. By performing analytical and numerical analysis, our central result is that the presence of the non-equilibrium chemical fluxes reduces the characteristic relaxation time with respect to the D.B. condition. Within a biochemical and biological perspective, this result can be related to the “plasticity property” of biological

  15. Crystallization behaviour and thermal stability of two aluminium-based metallic glass powder materials

    Energy Technology Data Exchange (ETDEWEB)

    Li, X.P.; Yan, M. [University of Queensland, School of Mechanical and Mining Engineering, ARC Centre of Excellence for Design in Light Metals, Brisbane, QLD 4072 (Australia); Yang, B.J. [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Wang, J.Q., E-mail: jqwang@imr.ac.cn [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Schaffer, G.B. [University of Queensland, School of Mechanical and Mining Engineering, ARC Centre of Excellence for Design in Light Metals, Brisbane, QLD 4072 (Australia); Qian, M., E-mail: ma.qian@uq.edu.au [University of Queensland, School of Mechanical and Mining Engineering, ARC Centre of Excellence for Design in Light Metals, Brisbane, QLD 4072 (Australia)

    2011-12-15

    Highlights: Black-Right-Pointing-Pointer The crystallization paths and products of Al{sub 86}Ni{sub 7}Y{sub 4.5}Co{sub 1}La{sub 1.5} powder have been identified. Black-Right-Pointing-Pointer The thermal stability of Al{sub 86}Ni{sub 7}Y{sub 4.5}Co{sub 1}La{sub 1.5} powder has been assessed. Black-Right-Pointing-Pointer The Al{sub 86}Ni{sub 7}Y{sub 4.5}Co{sub 1}La{sub 1.5} powder shows a wide processing window of 75 K. Black-Right-Pointing-Pointer The powder has the potential to be consolidated into thick BMG components based on the findings. Black-Right-Pointing-Pointer The Al{sub 85}Ni{sub 5}Y{sub 6}Co{sub 2}Fe{sub 2} powder shows similar characteristics but inferior thermal stability. - Abstract: The crystallization behaviour and thermal stability of two Al-based metallic glass powder materials, Al{sub 85}Ni{sub 5}Y{sub 6}Co{sub 2}Fe{sub 2} and Al{sub 86}Ni{sub 6}Y{sub 4.5}Co{sub 2}La{sub 1.5}, have been investigated using differential scanning calorimetry (DSC), X-ray diffraction (XRD) and electron microscopy. Both alloy powders show a distinct three-stage crystallization process with a similar gap of {approx}75 K between the onset crystallization temperature (T{sub x}) and the second crystallization temperature. Crystallization occurs by the precipitation and growth of fcc-Al, without intermetallic formation. The apparent activation energy for each stage of crystallization was determined from DSC analyses and the phases resulting from each crystallization stage were identified by XRD and electron microscopy. The critical cooling rate for each alloy powder was calculated from the DSC data. These results are necessary to inform the consolidation of amorphous powder particles of Al{sub 85}Ni{sub 5}Y{sub 6}Co{sub 2}Fe{sub 2} or Al{sub 86}Ni{sub 6}Y{sub 4.5}Co{sub 2}La{sub 1.5} into thick (>1 mm) metallic glass components.

  16. Frontier of plasma physics. 'Research network on non-equilibrium and extreme state plasmas'

    International Nuclear Information System (INIS)

    Itoh, Sanae-I.; Fujisawa, Akihide; Kodama, Ryosuke; Sato, Motoyasu; Tanaka, Kazuo A.; Hatakeyama, Rikizo; Itoh, Kimitaka

    2011-01-01

    Plasma physics and fusion science have been applied to a wide variety of plasmas such as nuclear fusion plasmas, high-energy-density plasmas, processing plasmas and nanobio- plasmas. They are pioneering science and technology frontiers such as new energy sources and new functional materials. A large project 'research network on non-equilibrium and extreme state plasmas' is being proposed to reassess individual plasma researches from a common view of the non-equilibrium extreme plasma and to promote collaboration among plasma researchers all over the country. In the present review, recent collaborative works related to this project are being introduced. (T.I.)

  17. Crystal nucleation and dendrite growth of metastable phases in undercooled melts

    International Nuclear Information System (INIS)

    Herlach, Dieter

    2011-01-01

    Research highlights: → Homogenous nucleation. → Effects of convection on dendrite growth kinetics. → Description of disorder trapping validated by experiment. - Abstract: An undercooled melt possesses an enhanced free enthalpy that opens up the possibility to crystallize metastable crystalline solids in competition with their stable counterparts. Crystal nucleation selects the crystallographic phase whereas the growth dynamics controls microstructure evolution. We apply containerless processing techniques such as electromagnetic and electrostatic levitation to containerlesss undercool and solidify metallic melts. Owing to the complete avoidance of heterogeneous nucleation on container-walls a large undercooling range becomes accessible with the extra benefit that the freely suspended drop is direct accessible for in situ observation of crystallization far away from equilibrium. Results of investigations of maximum undercoolability on pure zirconium are presented showing the limit of maximum undercoolability set by the onset of homogeneous nucleation. Rapid dendrite growth is measured as a function of undercooling by a high-speed camera and analysed within extended theories of non-equilibrium solidification. In such both supersaturated solid solutions and disordered superlattice structure of intermetallics are formed at high growth velocities. A sharp interface theory of dendrite growth is capable to describe the non-equilibrium solidification phenomena during rapid crystallization of deeply undercooled melts. Eventually, anomalous growth behaviour of Al-rich Al-Ni alloys is presented, which may be caused by forced convection.

  18. Non-equilibrium in flowing atmospheric plasmas

    International Nuclear Information System (INIS)

    Haas, J.C.M. de.

    1986-01-01

    This thesis deals with the fundamental aspects of two different plasmas applied in technological processes. The first one is the cesium seeded argon plasma in a closed cycle Magnetohydrodynamic (MHD) generator, the second is the thermal argon plasma in a cascade arc with an imposed flow. In Chapter 2 the influence of non-equilibrium on the mass and energy balances of a plasma is worked out. The general theory presented there can be applied to both the plasma in an MHD generator and to the cascade arc with imposed flow. Introductions to these plasmas are given in the Chapters 3 and 6 respectively. These chapters are both followed by two chapters which treat the theoretical and the experimental investigations. The results are summarized in Chapter 9. (Auth.)

  19. A Local Probe for Universal Non-equilibrium Dynamics

    Science.gov (United States)

    2015-06-01

    shown are polarizing beam splitters . About 700µW are superimposed with a reference laser on a glass plate and coupled into an optical fiber to detect...A Local Probe for Universal Non -equilibrium Dynamics We report on the results obtained across a nine-month ARO-sponsored project, whose purpose was...to implement a local probe for a gas of ultracold atoms. We used a phase plate with a spiral phase gradient to create a hollow-core laser beam . This

  20. Cold-fluid theory of equilibrium and stability of a high-intensity periodically twisted ellipse-shaped charged-particle beam

    Directory of Open Access Journals (Sweden)

    Jing Zhou

    2006-03-01

    Full Text Available It is shown that there exists an exact paraxial cold-fluid equilibrium of a high-intensity, space-charge-dominated charged-particle beam with a periodically twisted elliptic cross section in a nonaxisymmetric periodic magnetic field. Generalized envelope equations, which determine the beam envelopes, ellipse orientation, density, and internal flow velocity profiles, are derived. Nonrelativistic and relativistic examples of such beam equilibria are presented. The equilibrium and stability of such beams are demonstrated by self-consistent particle-in-cell (PIC simulations.

  1. Identifying apparent local stable isotope equilibrium in a complex non-equilibrium system.

    Science.gov (United States)

    He, Yuyang; Cao, Xiaobin; Wang, Jianwei; Bao, Huiming

    2018-02-28

    Although being out of equilibrium, biomolecules in organisms have the potential to approach isotope equilibrium locally because enzymatic reactions are intrinsically reversible. A rigorous approach that can describe isotope distribution among biomolecules and their apparent deviation from equilibrium state is lacking, however. Applying the concept of distance matrix in graph theory, we propose that apparent local isotope equilibrium among a subset of biomolecules can be assessed using an apparent fractionation difference (|Δα|) matrix, in which the differences between the observed isotope composition (δ') and the calculated equilibrium fractionation factor (1000lnβ) can be more rigorously evaluated than by using a previous approach for multiple biomolecules. We tested our |Δα| matrix approach by re-analyzing published data of different amino acids (AAs) in potato and in green alga. Our re-analysis shows that biosynthesis pathways could be the reason for an apparently close-to-equilibrium relationship inside AA families in potato leaves. Different biosynthesis/degradation pathways in tubers may have led to the observed isotope distribution difference between potato leaves and tubers. The analysis of data from green algae does not support the conclusion that AAs are further from equilibrium in glucose-cultured green algae than in the autotrophic ones. Application of the |Δα| matrix can help us to locate potential reversible reactions or reaction networks in a complex system such as a metabolic system. The same approach can be broadly applied to all complex systems that have multiple components, e.g. geochemical or atmospheric systems of early Earth or other planets. Copyright © 2017 John Wiley & Sons, Ltd.

  2. Nonlinear convective analysis of a rotating Oldroyd-B nanofluid layer under thermal non-equilibrium utilizing Al2O3-EG colloidal suspension

    Science.gov (United States)

    Agarwal, Shilpi; Rana, Puneet

    2016-04-01

    In this paper, we examine a layer of Oldroyd-B nanofluid for linear and nonlinear regimes under local thermal non-equilibrium conditions for the classical Rayleigh-Bénard problem. The free-free boundary condition has been implemented with the flux for nanoparticle concentration being zero at edges. The Oberbeck-Boussinesq approximation holds good and for the rotational effect Coriolis term is included in the momentum equation. A two-temperature model explains the effect of local thermal non-equilibrium among the particle and fluid phases. The criteria for onset of stationary convection has been derived as a function of the non-dimensionalized parameters involved including the Taylor number. The assumed boundary conditions negate the possibility of overstability due to the absence of opposing forces responsible for it. The thermal Nusselt number has been obtained utilizing a weak nonlinear theory in terms of various pertinent parameters in the steady and transient mode, and has been depicted graphically. The main findings signify that the rotation has a stabilizing effect on the system. The stress relaxation parameter λ_1 inhibits whereas the strain retardation parameter λ_2 exhibits heat transfer utilizing Al2O3 nanofluids.

  3. Non-equilibrium between ions and electrons inside hot spots from National Ignition Facility experiments

    OpenAIRE

    Zhengfeng Fan; Yuanyuan Liu; Bin Liu; Chengxin Yu; Ke Lan; Jie Liu

    2017-01-01

    The non-equilibrium between ions and electrons in the hot spot can relax the ignition conditions in inertial confinement fusion [Fan et al., Phys. Plasmas 23, 010703 (2016)], and obvious ion-electron non-equilibrium could be observed by our simulations of high-foot implosions when the ion-electron relaxation is enlarged by a factor of 2. On the other hand, in many shots of high-foot implosions on the National Ignition Facility, the observed X-ray enhancement factors due to ablator mixing into...

  4. Non-uniformity measurements of PbWO4 crystals

    International Nuclear Information System (INIS)

    Depasse, P.; Ernenwein, J.P.; Ille, B.; Martin, F.; Rosset, C.; Zach, F.

    1998-11-01

    Two independent methods have been used to measure the longitudinal non-uniformity scintillation response of 3 different (23-cm long) PbWO 4 crystals. The first one is the classical 60 Co source method. The source is collimated along the crystal, each 1,5-cm, and the scintillation signal is measured with a photomultiplier (a hybrid photomultiplier in our case). The second one is the use of cosmic particles (Minimum Ionizing Particles). A cosmic bench allows reconstructing the track of the MIP's and thus the energy deposit with the help of a full GEANT simulation of the setup. Variations of E along the crystal artificially cut in 1,5-cm divisions, leads to determine the non-uniformity. The conclusion is that both methods agree quite well. Furthermore, a good estimation of crystal light yield can be obtained. (author)

  5. Equilibrium prices supported by dual price functions in markets with non-convexities

    International Nuclear Information System (INIS)

    Bjoerndal, Mette; Joernsten, Kurt

    2004-06-01

    The issue of finding market clearing prices in markets with non-convexities has had a renewed interest due to the deregulation of the electricity sector. In the day-ahead electricity market, equilibrium prices are calculated based on bids from generators and consumers. In most of the existing markets, several generation technologies are present, some of which have considerable non-convexities, such as capacity limitations and large start up costs. In this paper we present equilibrium prices composed of a commodity price and an uplift charge. The prices are based on the generation of a separating valid inequality that supports the optimal resource allocation. In the case when the sub-problem generated as the integer variables are held fixed to their optimal values possess the integrality property, the generated prices are also supported by non-linear price-functions that are the basis for integer programming duality. (Author)

  6. Modeling Inflation Using a Non-Equilibrium Equation of Exchange

    Science.gov (United States)

    Chamberlain, Robert G.

    2013-01-01

    Inflation is a change in the prices of goods that takes place without changes in the actual values of those goods. The Equation of Exchange, formulated clearly in a seminal paper by Irving Fisher in 1911, establishes an equilibrium relationship between the price index P (also known as "inflation"), the economy's aggregate output Q (also known as "the real gross domestic product"), the amount of money available for spending M (also known as "the money supply"), and the rate at which money is reused V (also known as "the velocity of circulation of money"). This paper offers first a qualitative discussion of what can cause these factors to change and how those causes might be controlled, then develops a quantitative model of inflation based on a non-equilibrium version of the Equation of Exchange. Causal relationships are different from equations in that the effects of changes in the causal variables take time to play out-often significant amounts of time. In the model described here, wages track prices, but only after a distributed lag. Prices change whenever the money supply, aggregate output, or the velocity of circulation of money change, but only after a distributed lag. Similarly, the money supply depends on the supplies of domestic and foreign money, which depend on the monetary base and a variety of foreign transactions, respectively. The spreading of delays mitigates the shocks of sudden changes to important inputs, but the most important aspect of this model is that delays, which often have dramatic consequences in dynamic systems, are explicitly incorporated.macroeconomics, inflation, equation of exchange, non-equilibrium, Athena Project

  7. Lyapunov Functions, Stationary Distributions, and Non-equilibrium Potential for Reaction Networks

    DEFF Research Database (Denmark)

    Anderson, David F; Craciun, Gheorghe; Gopalkrishnan, Manoj

    2015-01-01

    We consider the relationship between stationary distributions for stochastic models of reaction systems and Lyapunov functions for their deterministic counterparts. Specifically, we derive the well-known Lyapunov function of reaction network theory as a scaling limit of the non-equilibrium potent...

  8. Non-equilibrium phenomena in confined soft matter irreversible adsorption, physical aging and glass transition at the nanoscale

    CERN Document Server

    2015-01-01

    This book presents cutting-edge experimental and computational results and provides comprehensive coverage on the impact of non-equilibrium structure and dynamics on the properties of soft matter confined to the nanoscale. The book is organized into three main sections: ·         Equilibration and physical aging: by treating non-equilibrium phenomena with the formal methodology of statistical physics in bulk, the analysis of the kinetics of equilibration sheds new light on the physical origin of the non-equilibrium character of thin polymer films. Both the impact of sample preparation and that of interfacial interactions are analyzed using a large set of experiments. A historical overview of the investigation of the non-equilibrium character of thin polymer films is also presented. Furthermore, the discussion focuses on how interfaces and geometrical confinement perturb the pathways and kinetics of equilibrations of soft glasses (a process of tremendous technological interest). ·         Irr...

  9. Existence and Globally Asymptotic Stability of Equilibrium Solution for Fractional-Order Hybrid BAM Neural Networks with Distributed Delays and Impulses

    Directory of Open Access Journals (Sweden)

    Hai Zhang

    2017-01-01

    Full Text Available This paper investigates the existence and globally asymptotic stability of equilibrium solution for Riemann-Liouville fractional-order hybrid BAM neural networks with distributed delays and impulses. The factors of such network systems including the distributed delays, impulsive effects, and two different fractional-order derivatives between the U-layer and V-layer are taken into account synchronously. Based on the contraction mapping principle, the sufficient conditions are derived to ensure the existence and uniqueness of the equilibrium solution for such network systems. By constructing a novel Lyapunov functional composed of fractional integral and definite integral terms, the globally asymptotic stability criteria of the equilibrium solution are obtained, which are dependent on the order of fractional derivative and network parameters. The advantage of our constructed method is that one may directly calculate integer-order derivative of the Lyapunov functional. A numerical example is also presented to show the validity and feasibility of the theoretical results.

  10. A numerical model for simulating electroosmotic micro- and nanochannel flows under non-Boltzmann equilibrium

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyoungjin; Kwak, Ho Sang [School of Mechanical Engineering, Kumoh National Institute of Technology, 1 Yangho, Gumi, Gyeongbuk 730-701 (Korea, Republic of); Song, Tae-Ho, E-mail: kimkj@kumoh.ac.kr, E-mail: hskwak@kumoh.ac.kr, E-mail: thsong@kaist.ac.kr [Department of Mechanical, Aerospace and Systems Engineering, Korea Advanced Institute of Science and Technology, 373-1 Guseong, Yuseong, Daejeon 305-701 (Korea, Republic of)

    2011-08-15

    This paper describes a numerical model for simulating electroosmotic flows (EOFs) under non-Boltzmann equilibrium in a micro- and nanochannel. The transport of ionic species is represented by employing the Nernst-Planck equation. Modeling issues related to numerical difficulties are discussed, which include the handling of boundary conditions based on surface charge density, the associated treatment of electric potential and the evasion of nonlinearity due to the electric body force. The EOF in the entrance region of a straight channel is examined. The numerical results show that the present model is useful for the prediction of the EOFs requiring a fine resolution of the electric double layer under either the Boltzmann equilibrium or non-equilibrium. Based on the numerical results, the correlation between the surface charge density and the zeta potential is investigated.

  11. A development of the direct Lyapunov method for the analysis of transient stability of a system of synchronous generators based on the determination of non- stable equilibria on a multidimensional sphere

    Directory of Open Access Journals (Sweden)

    A. V. Stepanov

    2014-01-01

    Full Text Available A development of the direct Lyapunov method for the analysis of transient stability of a system of synchronous generators based on the determination of non- stable equilibria on a multidimensional sphere.We consider the problem of transient stability analysis for a system of synchronous generators under the action of strong perturbations. The aim of our work is to develop methods to analyze a transient stability of the system of synchronous generators, which allow getting trustworthy results on reserve transient stability under different perturbations. For the analysis of transient stability, we use the direct Lyapunov method.One of the problems for this method application is to find the Lypunov function that well reflects the properties of a parallel system of synchronous generators. The most reliable results were obtained when the analysis of transient stability was performed with a Lyapunov function of energy type. Another problem for application of the direct Lyapunov method is to determine the critical value of the Lyapunov function, which requires finding the non-stable equilibria of the system. Determination of the non-stable equilibria requires studying the Lyapunov function in a multidimensional space in a neighborhood of a stable equilibrium for the post-breakdown system; this is a complicated non-linear problem.In the paper, we propose a method for determination of the non-stable equilibria on a multidimensional sphere. The method is based on a search of a minimum of the Lyapunov function on a multidimensional sphere the center of which is a stable equilibrium. Our method allows, comparing with the other, e.g., gradient methods, reliable finding a non-stable equilibrium and calculating the critical value. The reliability of our method is proved by numerical experiments. The developed methods and a program realized in a MATLAB package can be recommended for design of a post-breakdown control system of synchronous generators or as a

  12. Non-linear neutron star oscillations viewed as deviations from an equilibrium state

    International Nuclear Information System (INIS)

    Sperhake, U

    2002-01-01

    A numerical technique is presented which facilitates the evolution of non-linear neutron star oscillations with a high accuracy essentially independent of the oscillation amplitude. We apply this technique to radial neutron star oscillations in a Lagrangian formulation and demonstrate the superior performance of the new scheme compared with 'conventional' techniques. The key feature of our approach is to describe the evolution in terms of deviations from an equilibrium configuration. In contrast to standard perturbation analysis we keep all higher order terms in the evolution equations and thus obtain a fully non-linear description. The advantage of our scheme lies in the elimination of background terms from the equations and the associated numerical errors. The improvements thus achieved will be particularly significant in the study of mildly non-linear effects where the amplitude of the dynamic signal is small compared with the equilibrium values but large enough to warrant non-linear effects. We apply the new technique to the study of non-linear coupling of Eigenmodes and non-linear effects in the oscillations of marginally stable neutron stars. We find non-linear effects in low amplitude oscillations to be particularly pronounced in the range of modes with vanishing frequency which typically mark the onset of instability. (author)

  13. The effect of time-dependent coupling on non-equilibrium steady states

    DEFF Research Database (Denmark)

    Cornean, Horia; Neidhardt, Hagen; Zagrebnov, Valentin

    Consider (for simplicity) two one-dimensional semi-infinite leads coupled to a quantum well via time dependent point interactions. In the remote past the system is decoupled, and each of its components is at thermal equilibrium. In the remote future the system is fully coupled. We define...... and compute the non equilibrium steady state (NESS) generated by this evolution. We show that when restricted to the subspace of absolute continuity of the fully coupled system, the state does not depend at all on the switching. Moreover, we show that the stationary charge current has the same invariant...

  14. The effect of time-dependent coupling on non-equilibrium steady states

    DEFF Research Database (Denmark)

    Cornean, Horia; Neidhardt, Hagen; Zagrebnov, Valentin A.

    2009-01-01

    Consider (for simplicity) two one-dimensional semi-infinite leads coupled to a quantum well via time dependent point interactions. In the remote past the system is decoupled, and each of its components is at thermal equilibrium. In the remote future the system is fully coupled. We define...... and compute the non equilibrium steady state (NESS) generated by this evolution. We show that when restricted to the subspace of absolute continuity of the fully coupled system, the state does not depend at all on the switching. Moreover, we show that the stationary charge current has the same invariant...

  15. Study of alloy crystallization in systems undergoing peritectic transformations

    International Nuclear Information System (INIS)

    Psarev, V.I.; Kirij, V.G.; Kuznetsov, A.V.; Psareva, I.V.; Ivanov, A.L.

    1982-01-01

    Studies into Ge-Te, In-Te, Al-Mn, Sb-Zn, Sn-Au systems are carried out at melt cooling rates from 50 deg/h to 10 5 deg/h to establish regularities in stable and metastable crystallization of alloys undergoing peritectic transformations. Methods of metallographic, X-ray phase and X-ray diffraction analyses are used. Differentiation in types of peritectic transformations is made through their mechanisms under equilibrium and non-equilibrium crystallization conditions for various alloy systems. It is found out that ability to supercooling even at low or moderate cooling rates for Te-Ge and Te-In system melts can be one of the main indication of the possibility of amorphous alloy formation [ru

  16. Unifying the criteria of elastic stability of solids

    International Nuclear Information System (INIS)

    Wang Hao; Li Mo

    2012-01-01

    The elastic stability criterion formulated by Born is based on the convexity requirement of the equilibrium free energy F of a stress-free crystal under small strain fluctuation, that demands the elastic constant tensor C to be positive definite, |C| > 0. For a crystal subject to an external stress, Hill specifies that for the crystal to be stable, the difference between its internal energy change δE and the work done to the system δW must be positive, i.e. δE - δW > 0. Polanyi, Frenkel, and Orowan proposed a different stability criterion based on stress increment for a loaded system, τ(ε + Δε) - τ(ε) > 0 until the limit is reached at dτ/dε = 0. Although known empirically, the formal connection between the different criteria has not been established rigorously. Using finite deformation theory, we show quite simply that the different formulations of the stability criteria originate from the same necessary condition for the convexity of the free energy of the system subject to external loading, f = F - W. However, in practice caution must be taken in implementation of the different criteria; they may lead to quite different results, especially when stability bifurcation occurs. (paper)

  17. Linear, non-linear and thermal properties of single crystal of LHMHCl

    Science.gov (United States)

    Kulshrestha, Shobha; Shrivastava, A. K.

    2018-05-01

    The single crystal of amino acid of L-histidine monohydrochloride was grown by slow evaporation technique at room temperature. High optical quality and appropriate size of crystals were grown under optimized growth conditions. The grown crystals were transparent. Crystals are characterized with different characterizations such as Solubility test, UV-Visible, optical band gap (Eg). With the help of optical data to be calculate absorption coefficient (α), extinction coefficient (k), refractive index (n), dielectric constant (ɛ). These optical constants are shows favorable conditions for photonics devices. Second harmonic generation (NLO) test show the green light emission which is confirm that crystal have properties for laser application. Thermal stability of grown crystal is confirmed by TG/DTA.

  18. A non-equilibrium phase transition in a dissipative forest model

    International Nuclear Information System (INIS)

    Messer, Joachim A.

    2009-01-01

    The shape of the biostress force for a stressed Lotka-Volterra network is for the first time derived from Lindblad's dissipative dynamics. Numerical solutions for stressed prey-predator systems with limited resources show a threshold. A non-equilibrium phase transition to a phase with ecosystem dying after a few enforced oscillations (waldsterben phase) occurs.

  19. The new physics of non-equilibrium condensates: insights from classical dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Eastham, P R [Theory of Condensed Matter, Cavendish Laboratory, Cambridge CB3 0HE (United Kingdom)

    2007-07-25

    We discuss the dynamics of classical Dicke-type models, aiming to clarify the mechanisms by which coherent states could develop in potentially non-equilibrium systems such as semiconductor microcavities. We present simulations of an undamped model which show spontaneous coherent states with persistent oscillations in the magnitude of the order parameter. These states are generalizations of superradiant ringing to the case of inhomogeneous broadening. They correspond to the persistent gap oscillations proposed in fermionic atomic condensates, and arise from a variety of initial conditions. We show that introducing randomness into the couplings can suppress the oscillations, leading to a limiting dynamics with a time-independent order parameter. This demonstrates that non-equilibrium generalizations of polariton condensates can be created even without dissipation. We explain the dynamical origins of the coherence in terms of instabilities of the normal state, and consider how it can additionally develop through scattering and dissipation.

  20. The new physics of non-equilibrium condensates: insights from classical dynamics

    International Nuclear Information System (INIS)

    Eastham, P R

    2007-01-01

    We discuss the dynamics of classical Dicke-type models, aiming to clarify the mechanisms by which coherent states could develop in potentially non-equilibrium systems such as semiconductor microcavities. We present simulations of an undamped model which show spontaneous coherent states with persistent oscillations in the magnitude of the order parameter. These states are generalizations of superradiant ringing to the case of inhomogeneous broadening. They correspond to the persistent gap oscillations proposed in fermionic atomic condensates, and arise from a variety of initial conditions. We show that introducing randomness into the couplings can suppress the oscillations, leading to a limiting dynamics with a time-independent order parameter. This demonstrates that non-equilibrium generalizations of polariton condensates can be created even without dissipation. We explain the dynamical origins of the coherence in terms of instabilities of the normal state, and consider how it can additionally develop through scattering and dissipation

  1. Solid dispersions of Myricetin with enhanced solubility: Formulation, characterization and crystal structure of stability-impeding Myricetin monohydrate crystals

    Science.gov (United States)

    Mureşan-Pop, M.; Pop, M. M.; Borodi, G.; Todea, M.; Nagy-Simon, T.; Simon, S.

    2017-08-01

    Three solid dispersion forms of Myricetin combined with the Polyvinylpyrrolidone were successfully prepared by spray drying method, and characterized by X-ray powder diffraction, thermal analysis, infrared spectroscopy and optical microscopy. Zeta potential measurements provided indications on solid dispersions stability in aqueous suspension related to their storage at elevated temperature and relative humidity, which depends on the Myricetin load. By increase of Myricetin load, the stability of the solid dispersion is impeded due to growth of Myricetin monohydrate crystals. The amorphous dispersions with 10% and 50% Myricetin load are stable and, compared to pure Myricetin, their aqueous solubility is enhanced by a factor of 47 and 13, respectively. The dispersion with 80% Myricetin load is unstable on storage, and this behavior acts in conjunction with the development of Myricetin monohydrate crystals. Single-crystal X-ray diffraction results obtained for Myricetin monohydrate reveal a structure of an infinite 2D network of hydrogen-bonded molecules involving all six hydroxyl groups of Myricetin. The water molecules are positioned in between the infinite chains, and contribute via H-bonds to robust crystal packing. The calculated needle-like morphology of monohydrate form is in agreement with the optical microscopy results. The study shows that the solid amorphous dispersions with up to 50% Myricetin load are a viable option for achieving substantial solubility improvement of Myricetin, and supports their potential use in pharmaceutical applications.

  2. Non-linear quantum critical dynamics and fluctuation-dissipation ratios far from equilibrium

    Energy Technology Data Exchange (ETDEWEB)

    Zamani, Farzaneh [Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Str. 38, 01187 Dresden (Germany); Max Planck Institute for Chemical Physics of Solids, Nöthnitzer Str. 40, 01187 Dresden (Germany); Ribeiro, Pedro [CeFEMA, Instituto Superior Tcnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Russian Quantum Center, Novaya Street 100 A, Skolkovo, Moscow Area, 143025 (Russian Federation); Kirchner, Stefan, E-mail: stefan.kirchner@correlated-matter.com [Center for Correlated Matter, Zhejiang University, Hangzhou, Zhejiang 310058 (China)

    2016-02-15

    Non-thermal correlations of strongly correlated electron systems and the far-from-equilibrium properties of phases of condensed matter have become a topical research area. Here, an overview of the non-linear dynamics found near continuous zero-temperature phase transitions within the context of effective temperatures is presented. In particular, we focus on models of critical Kondo destruction. Such a quantum critical state, where Kondo screening is destroyed in a critical fashion, is realized in a number of rare earth intermetallics. This raises the possibility of experimentally testing for the existence of fluctuation-dissipation relations far from equilibrium in terms of effective temperatures. Finally, we present an analysis of a non-interacting, critical reference system, the pseudogap resonant level model, in terms of effective temperatures and contrast these results with those obtained near interacting quantum critical points. - Highlights: • Critical Kondo destruction explains the unusual properties of quantum critical heavy fermion compounds. • We review the concept of effective temperatures in models of critical Kondo destruction. • We compare effective temperatures found near non-interacting and fully interacting fixed points. • A comparison with non-interacting quantum impurity models is presented.

  3. Acid-base equilibrium. A thermodynamic study of formation and stability of the Bi-2223 phase

    International Nuclear Information System (INIS)

    Xi, Z.; Zhou, L.

    1993-01-01

    A general acid-base equilibrium theory was proposed to explain the formation and stability of the Bi-2223 phase based on the Lewis acid base theory and principle of metallurgical physical chemistry. The acid-base nature of oxide was defined according to the electrostatic force between cation and oxygen anion. A series of experimental facts were systematically explained based on the theory: substitution of Bi for Ca in the Pb-free 2223 phase, and the effect of substitution of the high-valent cation for Bi 3+ ; oxygen-pressure atmosphere, and the heat-schocking technique on the formation and stability of the 2223 phase. 14 refs., 2 tabs

  4. Molecular-dynamics study of propane-hydrate dissociation: Fluctuation-dissipation and non-equilibrium analysis.

    Science.gov (United States)

    Ghaani, Mohammad Reza; English, Niall J

    2018-03-21

    Equilibrium and non-equilibrium molecular-dynamics (MD) simulations have been performed to investigate thermal-driven break-up of planar propane-hydrate interfaces in contact with liquid water over the 260-320 K range. Two types of hydrate-surface water-lattice molecular termination were adopted, at the hydrate edge with water, for comparison: a 001-direct surface cleavage and one with completed cages. Statistically significant differences in melting temperatures and initial break-up rates were observed between both interface types. Dissociation rates were observed to be strongly dependent on temperature, with higher rates at larger over-temperatures vis-à-vis melting. A simple coupled mass and heat transfer model, developed previously, was applied to fit the observed dissociation profiles, and this helps us to identify clearly two distinct hydrate-decomposition régimes; following a highly temperature-dependent break-up phase, a second well-defined stage is essentially independent of temperature, in which the remaining nanoscale, de facto two-dimensional system's lattice framework is intrinsically unstable. Further equilibrium MD-analysis of the two-phase systems at their melting point, with consideration of the relaxation times gleaned from the auto-correlation functions of fluctuations in a number of enclathrated guest molecules, led to statistically significant differences between the two surface-termination cases; a consistent correlation emerged in both cases between the underlying, non-equilibrium, thermal-driven dissociation rates sampled directly from melting with that from an equilibrium-MD fluctuation-dissipation approach.

  5. Phenomenological model for non-equilibrium deuteron emission in nucleon induced reactions

    International Nuclear Information System (INIS)

    Broeders, C.H.M.; Konobeyev, A.Yu.

    2005-01-01

    A new approach is proposed for the calculation of non-equilibrium deuteron energy distributions in nuclear reactions induced by nucleons of intermediate energies. It combines the model of the nucleon pick-up, the coalescence and the deuteron knock-out. Emission and absorption rates for excited particles are described by the pre-equilibrium hybrid model. The model of Sato, Iwamoto, Harada is used to describe the nucleon pick-up and the coalescence of nucleons from the exciton configurations starting from (2p, 1h). The model of deuteron knock-out is formulated taking into account the Pauli principle for the nucleon-deuteron interaction inside a nucleus. The contribution of the direct nucleon pick-up is described phenomenologically. The multiple pre-equilibrium emission of particles is taken into account. The calculated deuteron energy distributions are compared with experimental data from 12 C to 209 Bi. (orig.)

  6. The crystallization of a solid solution in a solvent and the stability of a growth interface

    International Nuclear Information System (INIS)

    Malmejac, Yves

    1971-03-01

    The potential uses of germanium-silicon alloys as thermoelectric generators in hitherto unexploited temperature ranges initiated the present study. Many delicate problems are encountered in the classical methods of preparation. An original technique was sought for crystallization in a metallic solvent. The thermodynamic equilibria between the various phases of the ternary System used were studied in order to justify the method used. The conditions (temperature and composition) were determined in which the cooling of a ternary liquid mixture induces the precipitation of a binary solid solution with the desired composition. If large crystals are to be obtained from the solid solution, metallic solvent precipitation must be replaced by a mono-directional solvent crystallization. The combined effect of a certain number of simple physical phenomena on the stability of a crystal liquid interface was studied: the morphological stability of the crystal growth interface is the first step towards obtaining perfect crystals. (author) [fr

  7. Non-equilibrium phenomena near vapor-liquid interfaces

    CERN Document Server

    Kryukov, Alexei; Puzina, Yulia

    2013-01-01

    This book presents information on the development of a non-equilibrium approach to the study of heat and mass transfer problems using vapor-liquid interfaces, and demonstrates its application to a broad range of problems. In the process, the following peculiarities become apparent: 1. At vapor condensation on the interface from gas-vapor mixture, non-condensable components can lock up the interface surface and condensation stops completely. 2. At the evolution of vapor film on the heater in superfluid helium (He-II), the boiling mass flux density from the vapor-liquid interface is effectively zero at the macroscopic scale. 3. In problems concerning the motion of He-II bridges inside capillaries filled by vapor, in the presence of axial heat flux the He-II bridge cannot move from the heater as would a traditional liquid, but in the opposite direction instead. Thus the heater attracts the superfluid helium bridge. 4. The shape of liquid-vapor interface at film boiling on the axis-symmetric heaters immersed in l...

  8. Measurement and Prediction of Radiative Non-Equilibrium for Air Shocks Between 7-9 km/s

    Science.gov (United States)

    Cruden, Brett A.; Brandis, Aaron M.

    2017-01-01

    The present paper describes a recent characterization of thermochemical non-equilibrium for shock speeds between 7 and 9 km/s in the NASA Ames Electric Arc Shock Tube (EAST) Facility. Data are spectrally resolved from 190-1450 nm and spatially resolved behind the shock front. The data are analyzed in terms of a spectral non-equilibrium metric, defined as the average radiance within +/- 2 cm of the peak. Simulations with DPLR/NEQAIR using different rate chemistries show these conditions to be poorly replicated. The sources of discrepancy are examined, leading to an update to the NEQAIR non-Boltzmann model and DPLR rate chemistry. New parameters for the rate chemistry and non-Boltzmann modeling are reported.

  9. Equilibrium Transitions from Non Renewable Energy to Renewable Energy under Capacity Constraints

    OpenAIRE

    Amigues, Jean-Pierre; Ayong Le Kama, Alain; Moreaux, Michel

    2013-01-01

    We study the transition between non-renewable and renewable energy sources with adjustment costs over the production capacity of renewable energy. Assuming constant variable marginal costs for both energy sources, convex adjustment costs and a more expensive renewable energy, we show the following. With sufficiently abundant non-renewable energy endowments, the dynamic equilibrium path is composed of a first time phase of only non-renewable energy use followed by a transition phase substituti...

  10. On radial stationary solutions to a model of non-equilibrium growth

    Czech Academy of Sciences Publication Activity Database

    Escudero, C.; Hakl, Robert; Peral, I.; Torres, P.J.

    2013-01-01

    Roč. 24, č. 3 (2013), s. 437-453 ISSN 0956-7925 Institutional support: RVO:67985840 Keywords : non-equilibrium growth * radial solutions * variational methods Subject RIV: BA - General Mathematics Impact factor: 1.081, year: 2013 http://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=8897362

  11. Shot noise enhancement from non-equilibrium plasmons in Luttinger liquid junctions

    International Nuclear Information System (INIS)

    Kim, Jaeuk U; Kinaret, Jari M; Choi, Mahn-Soo

    2005-01-01

    We consider a quantum wire double junction system with each wire segment described by a spinless Luttinger model, and study theoretically shot noise in this system in the sequential tunnelling regime. We find that the non-equilibrium plasmonic excitations in the central wire segment give rise to qualitatively different behaviour compared to the case with equilibrium plasmons. In particular, shot noise is greatly enhanced by them, and exceeds the Poisson limit. We show that the enhancement can be explained by the emergence of several current-carrying processes, and that the effect disappears if the channels effectively collapse to one because of fast plasmon relaxation processes, for example

  12. Theoretical investigation of shock stand-off distance for non-equilibrium flows over spheres

    KAUST Repository

    Shen, Hua

    2018-02-20

    We derived a theoretical solution of the shock stand-off distance for a non-equilibrium flow over spheres based on Wen and Hornung’s solution and Olivier’s solution. Compared with previous approaches, the main advantage of the present approach is allowing an analytic solution without involving any semi-empirical parameter for the whole non-equilibrium flow regimes. The effects of some important physical quantities therefore can be fully revealed via the analytic solution. By combining the current solution with Ideal Dissociating Gas (IDG) model, we investigate the effects of free stream kinetic energy and free stream dissociation level (which can be very different between different facilities) on the shock stand-off distance.

  13. Helium crystals

    International Nuclear Information System (INIS)

    Lipson, S.G.

    1987-01-01

    Hexagonal close-packed helium crystals in equilibrium with superfluid have been found to be one of the few systems in which an anisotropic solid comes into true thermodynamic equilibrium with its melt. The discovery of roughening transitions at the liquid-solid interface have shown this system to be ideal for the study of the statistical mechanics of interface structures. We describe the effect of roughening on the shape and growth of macroscopic crystals from both the theoretical and experimental points of view. (author)

  14. Review of aragonite and calcite crystal morphogenesis in thermal spring systems

    Science.gov (United States)

    Jones, Brian

    2017-06-01

    Aragonite and calcite crystals are the fundamental building blocks of calcareous thermal spring deposits. The diverse array of crystal morphologies found in these deposits, which includes monocrystals, mesocrystals, skeletal crystals, dendrites, and spherulites, are commonly precipitated under far-from-equilibrium conditions. Such crystals form through both abiotic and biotic processes. Many crystals develop through non-classical crystal growth models that involve the arrangement of nanocrystals in a precisely controlled crystallographic register. Calcite crystal morphogenesis has commonly been linked to a ;driving force;, which is a conceptual measure of the distance of the growth conditions from equilibrium conditions. Essentially, this scheme indicates that increasing levels of supersaturation and various other parameters that produce a progressive change from monocrystals and mesocrystals to skeletal crystals to crystallographic and non-crystallographic dendrites, to dumbbells, to spherulites. Despite the vast amount of information available from laboratory experiments and natural spring systems, the precise factors that control the driving force are open to debate. The fact that calcite crystal morphogenesis is still poorly understood is largely a reflection of the complexity of the factors that influence aragonite and calcite precipitation. Available information indicates that variations in calcite crystal morphogenesis can be attributed to physical and chemical parameters of the parent water, the presence of impurities, the addition of organic or inorganic additives to the water, the rate of crystal growth, and/or the presence of microbes and their associated biofilms. The problems in trying to relate crystal morphogenesis to specific environmental parameters arise because it is generally impossible to disentangle the controlling factor(s) from the vast array of potential parameters that may act alone or in unison with each other.

  15. Non-equilibrium Green's functions method: Non-trivial and disordered leads

    International Nuclear Information System (INIS)

    He, Yu; Wang, Yu; Klimeck, Gerhard; Kubis, Tillmann

    2014-01-01

    The non-equilibrium Green's function algorithm requires contact self-energies to model charge injection and extraction. All existing approaches assume infinitely periodic leads attached to a possibly quite complex device. This contradicts today's realistic devices in which contacts are spatially inhomogeneous, chemically disordered, and impacting the overall device characteristics. This work extends the complex absorbing potentials method for arbitrary, ideal, or non-ideal leads in atomistic tight binding representation. The algorithm is demonstrated on a Si nanowire with periodic leads, a graphene nanoribbon with trumpet shape leads, and devices with leads of randomly alloyed Si 0.5 Ge 0.5 . It is found that alloy randomness in the leads can reduce the predicted ON-state current of Si 0.5 Ge 0.5 transistors by 45% compared to conventional lead methods

  16. Crystallization of glass-forming liquids: Specific surface energy

    International Nuclear Information System (INIS)

    Schmelzer, Jürn W. P.; Abyzov, Alexander S.

    2016-01-01

    A generalization of the Stefan-Skapski-Turnbull relation for the melt-crystal specific interfacial energy is developed in terms of the generalized Gibbs approach extending its standard formulation to thermodynamic non-equilibrium states. With respect to crystal nucleation, this relation is required in order to determine the parameters of the critical crystal clusters being a prerequisite for the computation of the work of critical cluster formation. As one of its consequences, a relation for the dependence of the specific surface energy of critical clusters on temperature and pressure is derived applicable for small and moderate deviations from liquid-crystal macroscopic equilibrium states. Employing the Stefan-Skapski-Turnbull relation, general expressions for the size and the work of formation of critical crystal clusters are formulated. The resulting expressions are much more complex as compared to the respective relations obtained via the classical Gibbs theory. Latter relations are retained as limiting cases of these more general expressions for moderate undercoolings. By this reason, the formulated, here, general relations for the specification of the critical cluster size and the work of critical cluster formation give a key for an appropriate interpretation of a variety of crystallization phenomena occurring at large undercoolings which cannot be understood in terms of the Gibbs’ classical treatment.

  17. Calculation of simultaneous chemical and phase equilibrium by the methodof Lagrange multipliers

    DEFF Research Database (Denmark)

    Tsanas, Christos; Stenby, Erling Halfdan; Yan, Wei

    2017-01-01

    iteration in the inner loop and non-ideality updated in the outer loop, thus giving an overall linear convergence rate. Stability analysis is used to introduce additional phases sequentially so as to obtain the final multiphase solution. The procedure was successfully tested on vapor-liquid equilibrium (VLE...

  18. Non-equilibrium solid-to-plasma transition dynamics using XANES diagnostic

    Energy Technology Data Exchange (ETDEWEB)

    Dorchies, F., E-mail: dorchies@celia.u-bordeaux1.fr [Univ. Bordeaux, CNRS, CEA, CELIA (Centre Lasers Intenses et Applications), UMR 5107, F-33400 Talence (France); Recoules, V. [CEA-DAM-DIF, F-91297 Arpajon (France)

    2016-10-31

    The advent of femtosecond lasers has shed new light on non-equilibrium high energy density physics. The ultrafast energy absorption by electrons and the finite rate of their energy transfer to the lattice creates non-equilibrium states of matter, triggering a new class of non-thermal processes from the ambient solid up to extreme conditions of temperature and pressure, referred as the warm dense matter regime. The dynamical interplay between electron and atomic structures is the key issue that drives the ultrafast phase transitions dynamics. Bond weakening or bond hardening are predicted, but strongly depends on the material considered. Many studies have been conducted but this physics is still poorly understood. The experimental tools used up-to-now have provided an incomplete insight. Pure optical techniques measure only indirectly atomic motion through changes in the dielectric function whereas X-ray or electron diffraction only probes the average long-range order. This review is dedicated to recent developments in time-resolved X-ray absorption near-edge spectroscopy, which is expected to give a more complete picture by probing simultaneously the modifications of the near-continuum electron and local atomic structures. Results are reported for three different types of metals (simple, transition and noble metals) in which a confrontation has been carried out between measurements and ab initio simulations.

  19. Dramatically decreased magnetoresistance in non-stoichiometric WTe2 crystals.

    Science.gov (United States)

    Lv, Yang-Yang; Zhang, Bin-Bin; Li, Xiao; Pang, Bin; Zhang, Fan; Lin, Da-Jun; Zhou, Jian; Yao, Shu-Hua; Chen, Y B; Zhang, Shan-Tao; Lu, Minghui; Liu, Zhongkai; Chen, Yulin; Chen, Yan-Feng

    2016-05-27

    Recently, the layered semimetal WTe2 has attracted renewed interest owing to the observation of a non-saturating and giant positive magnetoresistance (~10(5)%), which can be useful for magnetic memory and spintronic devices. However, the underlying mechanisms of the giant magnetoresistance are still under hot debate. Herein, we grew the stoichiometric and non-stoichiometric WTe2 crystals to test the robustness of giant magnetoresistance. The stoichiometric WTe2 crystals have magnetoresistance as large as 3100% at 2 K and 9-Tesla magnetic field. However, only 71% and 13% magnetoresistance in the most non-stoichiometry (WTe1.80) and the highest Mo isovalent substitution samples (W0.7Mo0.3Te2) are observed, respectively. Analysis of the magnetic-field dependent magnetoresistance of non-stoichiometric WTe2 crystals substantiates that both the large electron-hole concentration asymmetry and decreased carrier mobility, induced by non-stoichiometry, synergistically lead to the decreased magnetoresistance. This work sheds more light on the origin of giant magnetoresistance observed in WTe2.

  20. Crystals in light.

    Science.gov (United States)

    Kahr, Bart; Freudenthal, John; Gunn, Erica

    2010-05-18

    We have made images of crystals illuminated with polarized light for almost two decades. Early on, we abandoned photosensitive chemicals in favor of digital electrophotometry with all of the attendant advantages of quantitative intensity data. Accurate intensities are a boon because they can be used to analytically discriminate small effects in the presence of larger ones. The change in the form of our data followed camera technology that transformed picture taking the world over. Ironically, exposures in early photographs were presumed to correlate simply with light intensity, raising the hope that photography would replace sensorial interpretation with mechanical objectivity and supplant the art of visual photometry. This was only true in part. Quantitative imaging accurate enough to render the separation of crystalloptical quantities had to await the invention of the solid-state camera. Many pioneers in crystal optics were also major figures in the early history of photography. We draw out the union of optical crystallography and photography because the tree that connects the inventors of photography is a structure unmatched for organizing our work during the past 20 years, not to mention that silver halide crystallites used in chemical photography are among the most consequential "crystals in light", underscoring our title. We emphasize crystals that have acquired optical properties such as linear birefringence, linear dichroism, circular birefringence, and circular dichroism, during growth from solution. Other crystalloptical effects were discovered that are unique to curiously dissymmetric crystals containing embedded oscillators. In the aggregate, dyed crystals constitute a generalization of single crystal matrix isolation. Simple crystals provided kinetic stability to include guests such as proteins or molecules in excited states. Molecular lifetimes were extended for the preparation of laser gain media and for the study of the photodynamics of single

  1. Specific non-monotonous interactions increase persistence of ecological networks.

    Science.gov (United States)

    Yan, Chuan; Zhang, Zhibin

    2014-03-22

    The relationship between stability and biodiversity has long been debated in ecology due to opposing empirical observations and theoretical predictions. Species interaction strength is often assumed to be monotonically related to population density, but the effects on stability of ecological networks of non-monotonous interactions that change signs have not been investigated previously. We demonstrate that for four kinds of non-monotonous interactions, shifting signs to negative or neutral interactions at high population density increases persistence (a measure of stability) of ecological networks, while for the other two kinds of non-monotonous interactions shifting signs to positive interactions at high population density decreases persistence of networks. Our results reveal a novel mechanism of network stabilization caused by specific non-monotonous interaction types through either increasing stable equilibrium points or reducing unstable equilibrium points (or both). These specific non-monotonous interactions may be important in maintaining stable and complex ecological networks, as well as other networks such as genes, neurons, the internet and human societies.

  2. Crystal shapes on striped surface domains

    International Nuclear Information System (INIS)

    Valencia, Antoni

    2004-01-01

    The equilibrium shapes of a simple cubic crystal in contact with a planar chemically patterned substrate are studied theoretically using an effective interface model. The substrate is primarily made of lyophobic material and is patterned with a lyophilic (easily wettable) stripe domain. Three regimes can be distinguished for the equilibrium shapes of the crystal. The transitions between these regimes as the volume of the crystal is changed are continuous or discontinuous depending on the strength of the couplings between the crystal and the lyophilic and lyophobic surface domains. If the crystal grows through a series of states close to equilibrium, the discontinuous transitions correspond to growth instabilities. These transitions are compared with similar results that have been obtained for a volume of liquid wetting a lyophilic stripe domain

  3. Non-isothermal crystallization of PET/PLA blends

    International Nuclear Information System (INIS)

    Chen, Huipeng; Pyda, Marek; Cebe, Peggy

    2009-01-01

    Binary blends of poly(ethylene terephthalate) with poly(lactic acid), PET/PLA, were studied by differential scanning calorimetry and X-ray scattering. The PET/PLA blends, prepared by solution casting, were found to be miscible in the melt over the entire composition range. Both quenched amorphous and semicrystalline blends exhibit a single, composition dependent glass transition temperature. We report the non-isothermal crystallization of (a) PET, with and without the presence of PLA crystals and (b) PLA, with and without the presence of PET crystals. PET can crystallize in all blends, regardless of whether PLA is amorphous or crystalline, and degree of crystallinity of PET decreases as PLA content increases. In contrast, PLA crystallization is strongly affected by the mobility of the PET fraction. When PET is wholly amorphous, PLA can crystallize even in 70/30 blends, albeit weakly. But when PET is crystalline, PLA cannot crystallize when its own content drops below 0.90. These different behaviors may possibly be related to the tendency of each polymer to form constrained chains, i.e., to form the rigid amorphous fraction, or RAF. PET is capable of forming a large amount of RAF, whereas relatively smaller amount of RAF forms in PLA. Like the crystals, the rigid amorphous fraction of one polymer component may inhibit the growth of crystals of the other blend partner.

  4. Non-binary Entanglement-assisted Stabilizer Quantum Codes

    OpenAIRE

    Riguang, Leng; Zhi, Ma

    2011-01-01

    In this paper, we show how to construct non-binary entanglement-assisted stabilizer quantum codes by using pre-shared entanglement between the sender and receiver. We also give an algorithm to determine the circuit for non-binary entanglement-assisted stabilizer quantum codes and some illustrated examples. The codes we constructed do not require the dual-containing constraint, and many non-binary classical codes, like non-binary LDPC codes, which do not satisfy the condition, can be used to c...

  5. Non-equilibrium reacting gas flows kinetic theory of transport and relaxation processes

    CERN Document Server

    Nagnibeda, Ekaterina; Nagnibeda, Ekaterina

    2009-01-01

    This volume develops the kinetic theory of transport phenomena and relaxation processes in the flows of reacting gas mixtures. The theory is applied to the modeling of non-equilibrium flows behind strong shock waves, in the boundary layer, and in nozzles.

  6. Effect of magnetic field on charge imbalance relaxation of non-equilibrium superconductivity

    International Nuclear Information System (INIS)

    Tsuboi, Kazuki; Yagi, Ryuta

    2010-01-01

    We have studied relaxation of charge imbalance of non-equilibrium superconductivity in magnetic field. We found that excess current due to charge imbalance showed striking dependence on magnitude of magnetic field and its orientation. We discussed origin of the relaxation.

  7. A corrected NEGF + DFT approach for calculating electronic transport through molecular devices: Filling bound states and patching the non-equilibrium integration

    International Nuclear Information System (INIS)

    Li Rui; Zhang Jiaxing; Hou Shimin; Qian Zekan; Shen Ziyong; Zhao Xingyu; Xue Zengquan

    2007-01-01

    We discuss two problems in the conventional approach for studying charge transport in molecular electronic devices that is based on the non-equilibrium Green's function formalism and density functional theory, i.e., the bound states and the numerical integration of the non-equilibrium density matrix. A scheme of filling the bound states in the bias window and a method of patching the non-equilibrium integration are proposed, both of which are referred to as the non-equilibrium correction. The discussion is illustrated by means of calculations on a model system consisting of a 4,4 bipyridine molecule connected to two semi-infinite gold monatomic chains

  8. Simulation and optimization of fractional crystallization processes

    DEFF Research Database (Denmark)

    Thomsen, Kaj; Rasmussen, Peter; Gani, Rafiqul

    1998-01-01

    A general method for the calculation of various types of phase diagrams for aqueous electrolyte mixtures is outlined. It is shown how the thermodynamic equilibrium precipitation process can be used to satisfy the operational needs of industrial crystallizer/centrifuge units. Examples of simulation...... and optimization of fractional crystallization processes are shown. In one of these examples, a process with multiple steady states is analyzed. The thermodynamic model applied for describing the highly non-ideal aqueous electrolyte systems is the Extended UNIQUAC model. (C) 1998 Published by Elsevier Science Ltd...

  9. Non-equilibrium Green's functions method: Non-trivial and disordered leads

    Energy Technology Data Exchange (ETDEWEB)

    He, Yu, E-mail: heyuyhe@gmail.com; Wang, Yu; Klimeck, Gerhard; Kubis, Tillmann [Network for Computational Nanotechnology, Purdue University, West Lafayette, Indiana 47907 (United States)

    2014-11-24

    The non-equilibrium Green's function algorithm requires contact self-energies to model charge injection and extraction. All existing approaches assume infinitely periodic leads attached to a possibly quite complex device. This contradicts today's realistic devices in which contacts are spatially inhomogeneous, chemically disordered, and impacting the overall device characteristics. This work extends the complex absorbing potentials method for arbitrary, ideal, or non-ideal leads in atomistic tight binding representation. The algorithm is demonstrated on a Si nanowire with periodic leads, a graphene nanoribbon with trumpet shape leads, and devices with leads of randomly alloyed Si{sub 0.5}Ge{sub 0.5}. It is found that alloy randomness in the leads can reduce the predicted ON-state current of Si{sub 0.5}Ge{sub 0.5} transistors by 45% compared to conventional lead methods.

  10. Noise-Induced Modulation of the Relaxation Kinetics around a Non-Equilibrium Steady State of Non-Linear Chemical Reaction Networks

    OpenAIRE

    Ramaswamy, Rajesh; Sbalzarini, Ivo F; González-Segredo, Nélido

    2011-01-01

    Stochastic effects from correlated noise non-trivially modulate the kinetics of non-linear chemical reaction networks. This is especially important in systems where reactions are confined to small volumes and reactants are delivered in bursts. We characterise how the two noise sources confinement and burst modulate the relaxation kinetics of a non-linear reaction network around a non-equilibrium steady state. We find that the lifetimes of species change with burst input and confinement. Confi...

  11. A general theory of non-equilibrium dynamics of lipid-protein fluid membranes

    DEFF Research Database (Denmark)

    Lomholt, Michael Andersen; Hansen, Per Lyngs; Miao, L.

    2005-01-01

    We present a general and systematic theory of non-equilibrium dynamics of multi-component fluid membranes, in general, and membranes containing transmembrane proteins, in particular. Developed based on a minimal number of principles of statistical physics and designed to be a meso...

  12. Thermal Non-equilibrium Consistent with Widespread Cooling

    Science.gov (United States)

    Winebarger, A.; Lionello, R.; Mikic, Z.; Linker, J.; Mok, Y.

    2014-01-01

    Time correlation analysis has been used to show widespread cooling in the solar corona; this cooling has been interpreted as a result of impulsive (nanoflare) heating. In this work, we investigate wide-spread cooling using a 3D model for a solar active region which has been heated with highly stratified heating. This type of heating drives thermal non-equilibrium solutions, meaning that though the heating is effectively steady, the density and temperature in the solution are not. We simulate the expected observations in narrowband EUV images and apply the time correlation analysis. We find that the results of this analysis are qualitatively similar to the observed data. We discuss additional diagnostics that may be applied to differentiate between these two heating scenarios.

  13. Crystal structure optimisation using an auxiliary equation of state

    Science.gov (United States)

    Jackson, Adam J.; Skelton, Jonathan M.; Hendon, Christopher H.; Butler, Keith T.; Walsh, Aron

    2015-11-01

    Standard procedures for local crystal-structure optimisation involve numerous energy and force calculations. It is common to calculate an energy-volume curve, fitting an equation of state around the equilibrium cell volume. This is a computationally intensive process, in particular, for low-symmetry crystal structures where each isochoric optimisation involves energy minimisation over many degrees of freedom. Such procedures can be prohibitive for non-local exchange-correlation functionals or other "beyond" density functional theory electronic structure techniques, particularly where analytical gradients are not available. We present a simple approach for efficient optimisation of crystal structures based on a known equation of state. The equilibrium volume can be predicted from one single-point calculation and refined with successive calculations if required. The approach is validated for PbS, PbTe, ZnS, and ZnTe using nine density functionals and applied to the quaternary semiconductor Cu2ZnSnS4 and the magnetic metal-organic framework HKUST-1.

  14. Crystal structure optimisation using an auxiliary equation of state

    International Nuclear Information System (INIS)

    Jackson, Adam J.; Skelton, Jonathan M.; Hendon, Christopher H.; Butler, Keith T.; 3 Institute and Department of Materials Science and Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of))" data-affiliation=" (Centre for Sustainable Chemical Technologies and Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY (United Kingdom); Global E3 Institute and Department of Materials Science and Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of))" >Walsh, Aron

    2015-01-01

    Standard procedures for local crystal-structure optimisation involve numerous energy and force calculations. It is common to calculate an energy–volume curve, fitting an equation of state around the equilibrium cell volume. This is a computationally intensive process, in particular, for low-symmetry crystal structures where each isochoric optimisation involves energy minimisation over many degrees of freedom. Such procedures can be prohibitive for non-local exchange-correlation functionals or other “beyond” density functional theory electronic structure techniques, particularly where analytical gradients are not available. We present a simple approach for efficient optimisation of crystal structures based on a known equation of state. The equilibrium volume can be predicted from one single-point calculation and refined with successive calculations if required. The approach is validated for PbS, PbTe, ZnS, and ZnTe using nine density functionals and applied to the quaternary semiconductor Cu 2 ZnSnS 4 and the magnetic metal-organic framework HKUST-1

  15. Crystal structure optimisation using an auxiliary equation of state

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, Adam J.; Skelton, Jonathan M.; Hendon, Christopher H.; Butler, Keith T. [Centre for Sustainable Chemical Technologies and Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY (United Kingdom); Walsh, Aron, E-mail: a.walsh@bath.ac.uk [Centre for Sustainable Chemical Technologies and Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY (United Kingdom); Global E" 3 Institute and Department of Materials Science and Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of)

    2015-11-14

    Standard procedures for local crystal-structure optimisation involve numerous energy and force calculations. It is common to calculate an energy–volume curve, fitting an equation of state around the equilibrium cell volume. This is a computationally intensive process, in particular, for low-symmetry crystal structures where each isochoric optimisation involves energy minimisation over many degrees of freedom. Such procedures can be prohibitive for non-local exchange-correlation functionals or other “beyond” density functional theory electronic structure techniques, particularly where analytical gradients are not available. We present a simple approach for efficient optimisation of crystal structures based on a known equation of state. The equilibrium volume can be predicted from one single-point calculation and refined with successive calculations if required. The approach is validated for PbS, PbTe, ZnS, and ZnTe using nine density functionals and applied to the quaternary semiconductor Cu{sub 2}ZnSnS{sub 4} and the magnetic metal-organic framework HKUST-1.

  16. Behavior of Triple Langmuir Probes in Non-Equilibrium Plasmas

    Science.gov (United States)

    Polzin, Kurt A.; Ratcliffe, Alicia C.

    2018-01-01

    The triple Langmuir probe is an electrostatic probe in which three probe tips collect current when inserted into a plasma. The triple probe differs from a simple single Langmuir probe in the nature of the voltage applied to the probe tips. In the single probe, a swept voltage is applied to the probe tip to acquire a waveform showing the collected current as a function of applied voltage (I-V curve). In a triple probe three probe tips are electrically coupled to each other with constant voltages applied between each of the tips. The voltages are selected such that they would represent three points on the single Langmuir probe I-V curve. Elimination of the voltage sweep makes it possible to measure time-varying plasma properties in transient plasmas. Under the assumption of a Maxwellian plasma, one can determine the time-varying plasma temperature T(sub e)(t) and number density n(sub e)(t) from the applied voltage levels and the time-histories of the collected currents. In the present paper we examine the theory of triple probe operation, specifically focusing on the assumption of a Maxwellian plasma. Triple probe measurements have been widely employed for a number of pulsed and timevarying plasmas, including pulsed plasma thrusters (PPTs), dense plasma focus devices, plasma flows, and fusion experiments. While the equilibrium assumption may be justified for some applications, it is unlikely that it is fully justifiable for all pulsed and time-varying plasmas or for all times during the pulse of a plasma device. To examine a simple non-equilibrium plasma case, we return to basic governing equations of probe current collection and compute the current to the probes for a distribution function consisting of two Maxwellian distributions with different temperatures (the two-temperature Maxwellian). A variation of this method is also employed, where one of the Maxwellians is offset from zero (in velocity space) to add a suprathermal beam of electrons to the tail of the

  17. Magnetohydrodynamic theory of plasma equilibrium and stability in stellarators: Survey of results

    International Nuclear Information System (INIS)

    Shafranov, V.D.

    1983-01-01

    The main advantage of a stellarator is its capability of steady-state operation. It can be exploited as a reactor if stable plasma confinement can be achieved with #betta#approx.10%. Therefore, this limiting pressure value is a key factor in stellarator development. This paper contains a survey of current ideas on the magnetohydrodynamic equilibrium and stability properties of stellarators with sufficiently high pressure. Here, any system of nested toroidal magnetic surfaces generated by external currents is considered a stellarator. Systems produced by helical or equivalent windings, including torsatrons and heliotrons, will be called ordinary stellarators, in contrast to those with spatial axes. It is shown that adequate confinement can be achieved

  18. Water adsorbate phases on ZnO and impact of vapor pressure on the equilibrium shape of nanoparticles

    Science.gov (United States)

    Kenmoe, Stephane; Biedermann, P. Ulrich

    2018-02-01

    ZnO nanoparticles are used as catalysts and have potential applications in gas-sensing and solar energy conversion. A fundamental understanding of the exposed crystal facets, their surface chemistry, and stability as a function of environmental conditions is essential for rational design and improvement of synthesis and properties. We study the stability of water adsorbate phases on the non-polar low-index (10 1 ¯ 0 ) and (11 2 ¯ 0 ) surfaces from low coverage to multilayers using ab initio thermodynamics. We show that phonon contributions and the entropies due to a 2D lattice gas at low coverage and multiple adsorbate configurations at higher coverage have an important impact on the stability range of water adsorbate phases in the (T,p) phase diagram. Based on this insight, we compute and analyze the possible growth mode of water films for pressures ranging from UHV via ambient conditions to high pressures and the impact of water adsorption on the equilibrium shape of nanoparticles in a humid environment. A 2D variant of the Wulff construction shows that the (10 1 ¯ 0 ) and (11 2 ¯ 0 ) surfaces coexist on 12-faceted prismatic ZnO nanoparticles in dry conditions, while in humid environment, the (10 1 ¯ 0 ) surface is selectively stabilized by water adsorption resulting in hexagonal prisms.

  19. A framework for modelling gene regulation which accommodates non-equilibrium mechanisms.

    Science.gov (United States)

    Ahsendorf, Tobias; Wong, Felix; Eils, Roland; Gunawardena, Jeremy

    2014-12-05

    Gene regulation has, for the most part, been quantitatively analysed by assuming that regulatory mechanisms operate at thermodynamic equilibrium. This formalism was originally developed to analyse the binding and unbinding of transcription factors from naked DNA in eubacteria. Although widely used, it has made it difficult to understand the role of energy-dissipating, epigenetic mechanisms, such as DNA methylation, nucleosome remodelling and post-translational modification of histones and co-regulators, which act together with transcription factors to regulate gene expression in eukaryotes. Here, we introduce a graph-based framework that can accommodate non-equilibrium mechanisms. A gene-regulatory system is described as a graph, which specifies the DNA microstates (vertices), the transitions between microstates (edges) and the transition rates (edge labels). The graph yields a stochastic master equation for how microstate probabilities change over time. We show that this framework has broad scope by providing new insights into three very different ad hoc models, of steroid-hormone responsive genes, of inherently bounded chromatin domains and of the yeast PHO5 gene. We find, moreover, surprising complexity in the regulation of PHO5, which has not yet been experimentally explored, and we show that this complexity is an inherent feature of being away from equilibrium. At equilibrium, microstate probabilities do not depend on how a microstate is reached but, away from equilibrium, each path to a microstate can contribute to its steady-state probability. Systems that are far from equilibrium thereby become dependent on history and the resulting complexity is a fundamental challenge. To begin addressing this, we introduce a graph-based concept of independence, which can be applied to sub-systems that are far from equilibrium, and prove that history-dependent complexity can be circumvented when sub-systems operate independently. As epigenomic data become increasingly

  20. First principles modeling of hydrocarbons conversion in non-equilibrium plasma

    Energy Technology Data Exchange (ETDEWEB)

    Deminsky, M.A.; Strelkova, M.I.; Durov, S.G.; Jivotov, V.K.; Rusanov, V.D.; Potapkin, B.V. [Russian Research Centre Kurchatov Inst., Moscow (Russian Federation)

    2001-07-01

    Theoretical justification of catalytic activity of non-equilibrium plasma in hydrocarbons conversion process is presented in this paper. The detailed model of highest hydrocarbons conversion includes the gas-phase reactions, chemistry of the growth of polycyclic aromatic hydrocarbons (PAHs), precursor of soot particles formation, neutral, charged clusters and soot particle formation, ion-molecular gas-phase and heterogeneous chemistry. The results of theoretical analysis are compared with experimental results. (authors)

  1. A Study of the Polycondensation of (Tetrahydroxy(TetraarylCyclotetrasiloxanes under Equilibrium and Non-Equilibrium Conditions in the Presence and Absence of Montmorillonite

    Directory of Open Access Journals (Sweden)

    Nataliya N. Makarova

    2018-04-01

    Full Text Available Oligo- and polycyclosiloxanes were obtained by the polycondensation of (tetrahydroxy(tetraarylcyclotetrasiloxanes in equilibrium and non-equilibrium conditions in the presence and absence of montmorillonite (MMT. Their composition and the structures of their components were investigated by infrared (IR spectroscopy, 29Si nuclear magnetic resonance (NMR spectroscopy, atmospheric pressure chemical ionization (APCI mass spectrometry, powder X-ray diffraction (XRD, and gel-penetrating chromatography (GPC. Also, a comparison of polymers formed in the presence of MMT and via anionic polymerization was performed showing differences in their structures.

  2. Molecular dynamics study of CO2 hydrate dissociation: Fluctuation-dissipation and non-equilibrium analysis.

    Science.gov (United States)

    English, Niall J; Clarke, Elaine T

    2013-09-07

    Equilibrium and non-equilibrium molecular dynamics (MD) simulations have been performed to investigate thermal-driven break-up of planar CO2 hydrate interfaces in liquid water at 300-320 K. Different guest compositions, at 85%, 95%, and 100% of maximum theoretical occupation, led to statistically-significant differences in the observed initial dissociation rates. The melting temperatures of each interface were estimated, and dissociation rates were observed to be strongly dependent on temperature, with higher dissociation rates at larger over-temperatures vis-à-vis melting. A simple coupled mass and heat transfer model developed previously was applied to fit the observed dissociation profiles, and this helps to identify clearly two distinct régimes of break-up; a second well-defined region is essentially independent of composition and temperature, in which the remaining nanoscale, de facto two-dimensional system's lattice framework is intrinsically unstable. From equilibrium MD of the two-phase systems at their melting point, the relaxation times of the auto-correlation functions of fluctuations in number of enclathrated guest molecules were used as a basis for comparison of the variation in the underlying, non-equilibrium, thermal-driven dissociation rates via Onsager's hypothesis, and statistically significant differences were found, confirming the value of a fluctuation-dissipation approach in this case.

  3. Mechanical measurement of hydrogen bonded host-guest systems under non-equilibrium, near-physiological conditions.

    Science.gov (United States)

    Naranjo, Teresa; Cerrón, Fernando; Nieto-Ortega, Belén; Latorre, Alfonso; Somoza, Álvaro; Ibarra, Borja; Pérez, Emilio M

    2017-09-01

    Decades after the birth of supramolecular chemistry, there are many techniques to measure noncovalent interactions, such as hydrogen bonding, under equilibrium conditions. As ensembles of molecules rapidly lose coherence, we cannot extrapolate bulk data to single-molecule events under non-equilibrium conditions, more relevant to the dynamics of biological systems. We present a new method that exploits the high force resolution of optical tweezers to measure at the single molecule level the mechanical strength of a hydrogen bonded host-guest pair out of equilibrium and under near-physiological conditions. We utilize a DNA reporter to unambiguously isolate single binding events. The Hamilton receptor-cyanuric acid host-guest system is used as a test bed. The force required to dissociate the host-guest system is ∼17 pN and increases with the pulling rate as expected for a system under non-equilibrium conditions. Blocking one of the hydrogen bonding sites results in a significant decrease of the force-to-break by 1-2 pN, pointing out the ability of the method to resolve subtle changes in the mechanical strength of the binding due to the individual H-bonding components. We believe the method will prove to be a versatile tool to address important questions in supramolecular chemistry.

  4. The Non-Equilibrium Statistical Distribution Function for Electrons and Holes in Semiconductor Heterostructures in Steady-State Conditions

    Directory of Open Access Journals (Sweden)

    Krzysztof Jόzwikowska

    2015-06-01

    Full Text Available The main goal of this work is to determine a statistical non-equilibrium distribution function for the electron and holes in semiconductor heterostructures in steady-state conditions. Based on the postulates of local equilibrium, as well as on the integral form of the weighted Gyarmati’s variational principle in the force representation, using an alternative method, we have derived general expressions, which have the form of the Fermi–Dirac distribution function with four additional components. The physical interpretation of these components has been carried out in this paper. Some numerical results of a non-equilibrium distribution function for an electron in HgCdTe structures are also presented.

  5. Saturation and stability of nonlinear photonic crystals

    International Nuclear Information System (INIS)

    Franco-Ortiz, M; Corella-Madueño, A; Rosas-Burgos, R A; Adrian Reyes, J; Avendaño, Carlos G

    2017-01-01

    We consider a one-dimensional photonic crystal made by an infinite set of nonlinear nematic films immersed in a linear dielectric medium. The thickness of each equidistant film is negligible and its refraction index depends continuously on the electric field intensity, giving rise to all the involved nonlinear terms, which joints from a starting linear index for negligible amplitudes to a final saturation index for extremely large field intensities. We show that the nonlinear exact solutions of this system form an intensity-dependent band structure which we calculate and analyze. Next, we ponder a finite version of this system; that is, we take a finite array of linear dielectric stacks of the same size separated by the same nonlinear extremely thin nematic slabs and find the reflection coefficients for this arrangement and obtain the dependence on the wave number and intensity of the incident wave. As a final step we analyze the stability of the analytical solutions of the nonlinear crystal by following the evolution of an additive amplitude to the analytical nonlinear solution we have found here. We discuss our results and state our conclusions. (paper)

  6. Measurement of use value and non-use value of environmental quality consistent with general equilibrium approach

    OpenAIRE

    Naoki Sakamoto; Kazunori Nakajima

    2014-01-01

    This paper proposes the consistent method with general equilibrium models to measure use value and non-use value of large-scale change in environmental quality. First, we develop a general equilibrium model that parameters of the utility function with environmental quality as a dependent variable can be estimated on the basis of the travel cost method and the contingent variation method. Second, we examine to identify the general equilibrium impact of environmental quality by a comparative st...

  7. Point defects and atomic transport in crystals

    International Nuclear Information System (INIS)

    Lidiard, A.B.

    1981-02-01

    There are two principle aspects to the theory of atomic transport in crystals as caused by the action of point defects, namely (1) the calculation of relevant properties of the point defects (energies and other thermodynamic characteristics of the different possible defects, activation energies and other mobility parameters) and (2) the statistical mechanics of assemblies of defects, both equilibrium and non-equilibrium assemblies. In the five lectures given here both these aspects are touched on. The first two lectures are concerned with the calculation of relevant point defect properties, particularly in ionic crystals. The first lecture is more general, the second is concerned particularly with some recent calculations of the free volumes of formation of defects in various ionic solids; these solve a rather long-standing problem in this area. The remaining three lectures are concerned with the kinetic theory of defects mainly in relaxation, drift and diffusion situations

  8. Thermal stability of radiation-induced free radicals in γ-irradiated l-alanine single crystals

    International Nuclear Information System (INIS)

    Maltar-Strmecki, N.; Rakvin, B.

    2005-01-01

    Decay of the radiation-induced stable free radicals in l-alanine single crystals and powders at the temperatures from 379 to 476K was examined by electron paramagnetic resonance. For single crystals, the calculated activation energy of the radical decay is 104.3±1.7kJ/mol (i.e. 12 538+/-202K) and the frequency factor lnν 0 is 24.1±0.4min -1 . The lifetime of the radical in single crystals at 296K is 162 years. The results confirm the long-term stability of the radicals, but the decay was found to be faster in large crystals than in powders

  9. The Matrix model, a driven state variables approach to non-equilibrium thermodynamics

    NARCIS (Netherlands)

    Jongschaap, R.J.J.

    2001-01-01

    One of the new approaches in non-equilibrium thermodynamics is the so-called matrix model of Jongschaap. In this paper some features of this model are discussed. We indicate the differences with the more common approach based upon internal variables and the more sophisticated Hamiltonian and GENERIC

  10. Controlling competing electronic orders via non-equilibrium acoustic phonons

    Science.gov (United States)

    Schuett, Michael; Orth, Peter; Levchenko, Alex; Fernandes, Rafael

    The interplay between multiple electronic orders is a hallmark of strongly correlated systems displaying unconventional superconductivity. While doping, pressure, and magnetic field are the standard knobs employed to assess these different phases, ultrafast pump-and-probe techniques opened a new window to probe these systems. Recent examples include the ultrafast excitation of coherent optical phonons coupling to electronic states in cuprates and iron pnictides. In this work, we demonstrate theoretically that non-equilibrium acoustic phonons provide a promising framework to manipulate competing electronic phases and favor unconventional superconductivity over other states. In particular, we show that electrons coupled to out-of-equilibrium anisotropic acoustic phonons enter a steady state in which the effective electronic temperature varies around the Fermi surface. Such a momentum-dependent temperature can then be used to selectively heat electronic states that contribute primarily to density-wave instabilities, reducing their competition with superconductivity. We illustrate this phenomenon by computing the microscopic steady-state phase diagram of the iron pnictides, showing that superconductivity is enhanced with respect to the competing antiferromagnetic phase.

  11. Dynamic scaling for the growth of non-equilibrium fluctuations during thermophoretic diffusion in microgravity.

    Science.gov (United States)

    Cerbino, Roberto; Sun, Yifei; Donev, Aleksandar; Vailati, Alberto

    2015-09-30

    Diffusion processes are widespread in biological and chemical systems, where they play a fundamental role in the exchange of substances at the cellular level and in determining the rate of chemical reactions. Recently, the classical picture that portrays diffusion as random uncorrelated motion of molecules has been revised, when it was shown that giant non-equilibrium fluctuations develop during diffusion processes. Under microgravity conditions and at steady-state, non-equilibrium fluctuations exhibit scale invariance and their size is only limited by the boundaries of the system. In this work, we investigate the onset of non-equilibrium concentration fluctuations induced by thermophoretic diffusion in microgravity, a regime not accessible to analytical calculations but of great relevance for the understanding of several natural and technological processes. A combination of state of the art simulations and experiments allows us to attain a fully quantitative description of the development of fluctuations during transient diffusion in microgravity. Both experiments and simulations show that during the onset the fluctuations exhibit scale invariance at large wave vectors. In a broader range of wave vectors simulations predict a spinodal-like growth of fluctuations, where the amplitude and length-scale of the dominant mode are determined by the thickness of the diffuse layer.

  12. Precipitation in as-solidified undercooled Ni-Si hypoeutectic alloy: Effect of non-equilibrium solidification

    Energy Technology Data Exchange (ETDEWEB)

    Fan Kai [State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi' an, Shaanxi 710072 (China); Liu Feng, E-mail: liufeng@nwpu.edu.cn [State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi' an, Shaanxi 710072 (China); Yang Gencang; Zhou Yaohe [State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi' an, Shaanxi 710072 (China)

    2011-08-25

    Highlights: {yields} The solid solubility of Si atom in {alpha}-Ni matrix increased with undercooling in the as-solidified sample. {yields} The effect of non-equilibrium solidification on precipitation has been theoretically described. {yields} The nucleation density, the real-time particle size and the precipitation rate are all increased upon annealing. {yields} The precipitate process can be artificially controlled by modifying the initial melt undercooling and the annealing time. - Abstract: Applying glass fluxing and cyclic superheating, high undercooling up to {approx}350 K was achieved for Ni-Si hypoeutectic alloy melt. By isothermally annealing the as-solidified alloy subjected to different undercoolings, precipitation behavior of Ni{sub 3}Si particle, at 973 K, was systematically studied. It was found that, the nucleation density and the real-time particle size, as well as the precipitation rate, were all increased, provided the sample was solidified subjected to higher undercooling. This was ascribed mainly to the increased solid solubility of Si atom in {alpha}-Ni matrix upon non-equilibrium solidification. On this basis, the non-equilibrium dendrite growth upon solidification and the soft impingement prevailing upon solid-state precipitation have been quantitatively connected. As such, the effect of liquid/solid transformation on subsequent precipitation was described.

  13. Precipitation in as-solidified undercooled Ni-Si hypoeutectic alloy: Effect of non-equilibrium solidification

    International Nuclear Information System (INIS)

    Fan Kai; Liu Feng; Yang Gencang; Zhou Yaohe

    2011-01-01

    Highlights: → The solid solubility of Si atom in α-Ni matrix increased with undercooling in the as-solidified sample. → The effect of non-equilibrium solidification on precipitation has been theoretically described. → The nucleation density, the real-time particle size and the precipitation rate are all increased upon annealing. → The precipitate process can be artificially controlled by modifying the initial melt undercooling and the annealing time. - Abstract: Applying glass fluxing and cyclic superheating, high undercooling up to ∼350 K was achieved for Ni-Si hypoeutectic alloy melt. By isothermally annealing the as-solidified alloy subjected to different undercoolings, precipitation behavior of Ni 3 Si particle, at 973 K, was systematically studied. It was found that, the nucleation density and the real-time particle size, as well as the precipitation rate, were all increased, provided the sample was solidified subjected to higher undercooling. This was ascribed mainly to the increased solid solubility of Si atom in α-Ni matrix upon non-equilibrium solidification. On this basis, the non-equilibrium dendrite growth upon solidification and the soft impingement prevailing upon solid-state precipitation have been quantitatively connected. As such, the effect of liquid/solid transformation on subsequent precipitation was described.

  14. Application of the 3D Iced-Ale method to equilibrium and stability problems of a magnetically confined plasma

    International Nuclear Information System (INIS)

    Barnes, D.C.; Brackbill, J.U.

    1977-01-01

    A numerical study of the equilibrium and stability properties of the Scyllac experiment at Los Alamos is described. The formulation of the numerical method, which is an extension of the ICED-ALE method to magnetohydrodynamic flow in three dimensions, is given. The properties of the method are discussed, including low computational diffusion, local conservation, and implicit formulation in the time variable. Also discussed are the problems encountered in applying boundary conditions and computing equilibria. The results of numerical computations of equilibria indicate that the helical field amplitudes must be doubled from their design values to produce equilibrium in the Scyllac experiment. This is consistent with other theoretical and experimental results

  15. Electron density measurement of non-equilibrium atmospheric pressure plasma using dispersion interferometer

    Science.gov (United States)

    Yoshimura, Shinji; Kasahara, Hiroshi; Akiyama, Tsuyoshi

    2017-10-01

    Medical applications of non-equilibrium atmospheric plasmas have recently been attracting a great deal of attention, where many types of plasma sources have been developed to meet the purposes. For example, plasma-activated medium (PAM), which is now being studied for cancer treatment, has been produced by irradiating non-equilibrium atmospheric pressure plasma with ultrahigh electron density to a culture medium. Meanwhile, in order to measure electron density in magnetic confinement plasmas, a CO2 laser dispersion interferometer has been developed and installed on the Large Helical Device (LHD) at the National Institute for Fusion Science, Japan. The dispersion interferometer has advantages that the measurement is insensitive to mechanical vibrations and changes in neutral gas density. Taking advantage of these properties, we applied the dispersion interferometer to electron density diagnostics of atmospheric pressure plasmas produced by the NU-Global HUMAP-WSAP-50 device, which is used for producing PAM. This study was supported by the Grant of Joint Research by the National Institutes of Natural Sciences (NINS).

  16. Non-equilibrium relaxation and near-arrest dynamics in colloidal suspensions

    International Nuclear Information System (INIS)

    Medina-Noyola, M; RamIrez-Gonzalez, Pedro

    2009-01-01

    In this work we propose a theory to describe the irreversible diffusive relaxation of the local concentration of a colloidal dispersion that proceeds toward its stable thermodynamic equilibrium state, but which may in the process be trapped in metastable or dynamically arrested states. The central assumption of this theory is that the irreversible relaxation of the macroscopically observed mean value n-bar(r,t) of the local concentration of colloidal particles is described by a diffusion equation involving a local mobility b*(r,t) that depends not only on the mean value n-bar(r,t) but also on the covariance σ(r,r';t)≡δn(r,t)δn(r',t)-bar of the fluctuations δn(r,t)≡n(r,t)-n-bar(r,t). This diffusion equation must hence be solved simultaneously with the relaxation equation for the covariance σ(r,r';t), and here we also derive the corresponding relaxation equation. The dependence of the local mobility b*(r,t) on the mean value and the covariance is determined by a self-consistent set of equations involving now the spatially and temporally non-local time-dependent correlation functions, which in a uniform system in equilibrium reduces to the self-consistent generalized Langevin equation (SCGLE) theory of colloid dynamics. The resulting general theory considers the possibility that these relaxation processes occur under the influence of external fields, such as gravitational forces acting in the process of sedimentation. In this paper, however, we describe a simpler application, in which the system remains spatially uniform during the irreversible relaxation process, and discuss the general features of the glass transition scenario predicted by this non-equilibrium theory.

  17. The effect of exchange-correlation on change and stability of crystal structure

    International Nuclear Information System (INIS)

    Yazdani, A.; Niazi, M.; Alimardan, V.

    2007-01-01

    Since exchange interaction energy has effect on band structure via polarization of spin of free electron, then can directly effects formation crystal structure. Therefore exchange-correlation is able to have an effect on determination of crystal structure or its change and stability. This energy is subject to fluctuation range of electrons between conduction band and valance band or density of electrons which due to increase the entropy of system, via Gibss Energy .We investigated these factors: 1) Size of ions 2) Density of States 3) Range of inter atomic and pair-potential.

  18. Atomistic-level non-equilibrium model for chemically reactive systems based on steepest-entropy-ascent quantum thermodynamics

    International Nuclear Information System (INIS)

    Li, Guanchen; Al-Abbasi, Omar; Von Spakovsky, Michael R

    2014-01-01

    This paper outlines an atomistic-level framework for modeling the non-equilibrium behavior of chemically reactive systems. The framework called steepest- entropy-ascent quantum thermodynamics (SEA-QT) is based on the paradigm of intrinsic quantum thermodynamic (IQT), which is a theory that unifies quantum mechanics and thermodynamics into a single discipline with wide applications to the study of non-equilibrium phenomena at the atomistic level. SEA-QT is a novel approach for describing the state of chemically reactive systems as well as the kinetic and dynamic features of the reaction process without any assumptions of near-equilibrium states or weak-interactions with a reservoir or bath. Entropy generation is the basis of the dissipation which takes place internal to the system and is, thus, the driving force of the chemical reaction(s). The SEA-QT non-equilibrium model is able to provide detailed information during the reaction process, providing a picture of the changes occurring in key thermodynamic properties (e.g., the instantaneous species concentrations, entropy and entropy generation, reaction coordinate, chemical affinities, reaction rate, etc). As an illustration, the SEA-QT framework is applied to an atomistic-level chemically reactive system governed by the reaction mechanism F + H 2 ↔ FH + H

  19. The second-order description of rotational non-equilibrium effects in polyatomic gases

    Science.gov (United States)

    Myong, Rho Shin

    2017-11-01

    The conventional description of gases is based on the physical laws of conservation (mass, momentum, and energy) in conjunction with the first-order constitutive laws, the two-century old so-called Navier-Stokes-Fourier (NSF) equation based on a critical assumption made by Stokes in 1845 that the bulk viscosity vanishes. While the Stokes' assumption is certainly legitimate in the case of dilute monatomic gases, ever increasing evidences, however, now indicate that such is not the case, in particular, in the case of polyatomic gases-like nitrogen and carbon dioxide-far-from local thermal equilibrium. It should be noted that, from room temperature acoustic attenuation data, the bulk viscosity for carbon dioxide is three orders of magnitude larger than its shear viscosity. In this study, this fundamental issue in compressible gas dynamics is revisited and the second-order constitutive laws are derived by starting from the Boltzmann-Curtiss kinetic equation. Then the topology of the second-order nonlinear coupled constitutive relations in phase space is investigated. Finally, the shock-vortex interaction problem where the strong interaction of two important thermal (translational and rotational) non-equilibrium phenomena occurs is considered in order to highlight the rotational non-equilibrium effects in polyatomic gases. This work was supported by the National Research Foundation of South Korea (NRF 2017-R1A2B2-007634).

  20. Modeling and Control of an Ornithopter for Non-Equilibrium Maneuvers

    OpenAIRE

    Rose, Cameron Jarrel

    2015-01-01

    Flapping-winged flight is very complex, and it is difficult to efficiently model the unsteady airflow and nonlinear dynamics for online control. While steady state flight is well understood, transitions between flight regimes are not readily modeled or controlled. Maneuverability in non-equilibrium flight, which birds and insects readily exhibit in nature, is necessary to operate in the types of cluttered environments that small-scale flapping-winged robots are best suited for. The advantages...

  1. Non-equilibrium carrier efect in the optical properties of semiconductors

    International Nuclear Information System (INIS)

    Teschke, O.

    1980-01-01

    The time-resolved reflectivity of picosecond pulses from optically excited carrier distributions can provide important information about the energy relaxation rates of hot electrons and holes in semiconductors. the basic optical properties of non-equilibrium carrier distributions of GaAs are discussed. A semi-empirical analysis of the reflectivity spectrum is presented and the contributions of different effects are estimated. The results are in qualitative agreement with recent experiments employing dye lasers. (Author) [pt

  2. Chemical kinetics and relaxation of non-equilibrium air plasma generated by energetic photon and electron beams

    International Nuclear Information System (INIS)

    Maulois, Melissa; Ribière, Maxime; Eichwald, Olivier; Yousfi, Mohammed; Azaïs, Bruno

    2016-01-01

    The comprehension of electromagnetic perturbations of electronic devices, due to air plasma-induced electromagnetic field, requires a thorough study on air plasma. In the aim to understand the phenomena at the origin of the formation of non-equilibrium air plasma, we simulate, using a volume average chemical kinetics model (0D model), the time evolution of a non-equilibrium air plasma generated by an energetic X-ray flash. The simulation is undertaken in synthetic air (80% N_2 and 20% O_2) at ambient temperature and atmospheric pressure. When the X-ray flash crosses the gas, non-relativistic Compton electrons (low energy) and a relativistic Compton electron beam (high energy) are simultaneously generated and interact with the gas. The considered chemical kinetics scheme involves 26 influent species (electrons, positive ions, negative ions, and neutral atoms and molecules in their ground or metastable excited states) reacting following 164 selected reactions. The kinetics model describing the plasma chemistry was coupled to the conservation equation of the electron mean energy, in order to calculate at each time step of the non-equilibrium plasma evolution, the coefficients of reactions involving electrons while the energy of the heavy species (positive and negative ions and neutral atoms and molecules) is assumed remaining close to ambient temperature. It has been shown that it is the relativistic Compton electron beam directly created by the X-ray flash which is mainly responsible for the non-equilibrium plasma formation. Indeed, the low energy electrons (i.e., the non-relativistic ones) directly ejected from molecules by Compton collisions contribute to less than 1% on the creation of electrons in the plasma. In our simulation conditions, a non-equilibrium plasma with a low electron mean energy close to 1 eV and a concentration of charged species close to 10"1"3" cm"−"3 is formed a few nanoseconds after the peak of X-ray flash intensity. 200 ns after the

  3. Integer channels in nonuniform non-equilibrium 2D systems

    Science.gov (United States)

    Shikin, V.

    2018-01-01

    We discuss the non-equilibrium properties of integer channels in nonuniform 2D electron (hole) systems in the presence of a strong magnetic field. The results are applied to a qualitative explanation of the Corbino disk current-voltage characteristics (IVC) in the quantum Hall effect (QHE) regime. Special consideration is paid to the so-called "QHE breakdown" effect, which is readily observed in both the Hall bar and Corbino geometries of the tested cells. The QHE breakdown is especially evident in the Corbino samples, allowing for a more in-depth study of these effects.

  4. 46 CFR 42.20-12 - Conditions of equilibrium.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Conditions of equilibrium. 42.20-12 Section 42.20-12... BY SEA Freeboards § 42.20-12 Conditions of equilibrium. The following conditions of equilibrium are... stability. Through an angle of 20 degrees beyond its position of equilibrium, the vessel must meet the...

  5. I. Dissociation free energies of drug-receptor systems via non-equilibrium alchemical simulations: a theoretical framework.

    Science.gov (United States)

    Procacci, Piero

    2016-06-01

    In this contribution I critically revise the alchemical reversible approach in the context of the statistical mechanics theory of non-covalent bonding in drug-receptor systems. I show that most of the pitfalls and entanglements for the binding free energy evaluation in computer simulations are rooted in the equilibrium assumption that is implicit in the reversible method. These critical issues can be resolved by using a non-equilibrium variant of the alchemical method in molecular dynamics simulations, relying on the production of many independent trajectories with a continuous dynamical evolution of an externally driven alchemical coordinate, completing the decoupling of the ligand in a matter of a few tens of picoseconds rather than nanoseconds. The absolute binding free energy can be recovered from the annihilation work distributions by applying an unbiased unidirectional free energy estimate, on the assumption that any observed work distribution is given by a mixture of normal distributions, whose components are identical in either direction of the non-equilibrium process, with weights regulated by the Crooks theorem. I finally show that the inherent reliability and accuracy of the unidirectional estimate of the decoupling free energies, based on the production of a few hundreds of non-equilibrium independent sub-nanosecond unrestrained alchemical annihilation processes, is a direct consequence of the funnel-like shape of the free energy surface in molecular recognition. An application of the technique to a real drug-receptor system is presented in the companion paper.

  6. Non-equilibrium spin and charge transport in superconducting heterojunctions

    Energy Technology Data Exchange (ETDEWEB)

    Thalmann, Marcel; Rudolf, Marcel; Braun, Julian; Pietsch, Torsten; Scheer, Elke [Department of Physics, University of Konstanz, Universitaetsstrasse 10, 78464 Konstanz (Germany)

    2015-07-01

    Ferromagnet Superconductance (F/S) junctions are rich in exciting quantum-physical-phenomena, which are still poorly understood but may provide bright prospects for new applications. In contrast to conventional normal-metal proximity systems, Andreev reflection is suppressed for singlet cooper pairs in F/S heterostructures. However, long-range triplet pairing may be observed in S/F systems with non-collinear magnetization or spin-active interfaces. Herein, we investigate non-equilibrium transport properties of lateral S/F heterojunctions, defined via electron beam lithography. In particular we focus microwave- and magneto-transport spectroscopy on conventional type-I (Al, Pb, Zn) and type-II (Nb) superconductors in combination with strong transition metal ferromagnets (Ni, Co, Fe). A cryogenic HF readout platform and advanced electronic filtering is developed and results on Al-based heterojunctions are shown.

  7. Thermal and Mechanical Non-Equilibrium Effects on Turbulent Flows: Fundamental Studies of Energy Exchanges Through Direct Numerical Simulations, Molecular Simulations and Experiments

    Science.gov (United States)

    2016-02-26

    photochemical TNE generation, and chemistry of non- equilibrium phenomena. We have investigated a new concept to generate turbulence using photo-initiated...AFRL-AFOSR-VA-TR-2016-0104 Thermal and mechanical non- equilibrium effects on turbulent flows:fundamental studies of energy exchanges through direct...Performance 3. DATES COVERED (From - To) 15-09-2012 to 14-11-2015 4. TITLE AND SUBTITLE Thermal and mechanical non- equilibrium effects on turbulent

  8. Proceedings of RIKEN BNL research center workshop, equilibrium and non-equilibrium aspects of hot, dense QCD, Vol. 28

    International Nuclear Information System (INIS)

    De Vega, H.J.; Boyanovsky, D.

    2000-01-01

    The Relativistic Heavy Ion Collider (RHIC) at Brookhaven, beginning operation this year, and the Large Hadron Collider (LHC) at CERN, beginning operation ∼2005, will provide an unprecedented range of energies and luminosities that will allow us to probe the Gluon-Quark plasma. At RHIC and LHC, at central rapidity typical estimates of energy densities and temperatures are e * 1-10 GeV/fm3 and T0 * 300 - 900 MeV. Such energies are well above current estimates for the GQ plasma. Initially, this hot, dense plasma is far from local thermal equilibrium, making the theoretical study of transport phenomena, kinetic and chemical equilibration in dense and hot plasmas, and related issues a matter of fundamental importance. During the last few years a consistent framework to study collective effects in the Gluon-Quark plasma, and a microscopic description of transport in terms of the hard thermal (and dense) loops resummation program has emerged. This approach has the potential of providing a microscopic formulation of transport, in the regime of temperatures and densities to be achieved at RHIC and LHC. A parallel development over the last few years has provided a consistent formulation of non-equilibrium quantum field theory that provides a real-time description of phenomena out of equilibrium. Novel techniques including non-perturbative approaches and the dynamical renormalization group techniques lead to new insights into transport and relaxation. A deeper understanding of collective.excitations and transport phenomena in the GQ plasma could lead to recognize novel potential experimental signatures. New insights into small-c physics reveals a striking similarity between small-c and hard thermal loops, and novel real-time numerical simulations have recently studied the parton distributions and their thermalizations in the initial stages of a heavy ion collision

  9. Cross-coupling effects in chemically non-equilibrium viscous compressible flows

    International Nuclear Information System (INIS)

    Kustova, E.V.; Giordano, D.

    2011-01-01

    Graphical abstract: Self-cosistent kinetic-theory description of chemical-reaction rates and mean normal stress in one-temperature viscous compressible gas flows. Reaearch highlights: → In chemically non-equilibrium viscous compressible flows, the rate of each reaction depends on the velocity divergence and rates of all other reactions. → Cross effects between the rates of chemical reactions and normal mean stress can be found in the symmetric form and expressed in terms of the reaction affinities. → In the case of small affinities, the entropy production is unconditionally non-negative; in the case of finite affinities, the entropy production related to the scalar forces has no definite sign. - Abstract: A closed self-consistent description of a one-temperature non-equilibrium reacting flow is presented on the basis of the kinetic theory methods. A general case including internal degrees of freedom, dissociation-recombination and exchange reactions, and arbitrary values of affinities of chemical reactions is considered. Chemical-reaction rates and mean normal stress in viscous compressible flows are studied and a symmetric cross coupling between these terms is found. It is shown that the rate of each chemical reaction and the mean normal stress depend on velocity divergence and affinities of all chemical reactions; the law of mass action is violated in viscous flows. The results obtained in the frame of linear irreversible thermodynamics can be deduced from the proposed model for the particular case of small affinities. The reciprocal Onsager-Casimir relations are verified, the symmetry of kinetic coefficients is demonstrated, and the entropy production in a viscous flow is studied.

  10. HUBBLE-BUBBLE 1. A computer program for the analysis of non-equilibrium flows of water

    International Nuclear Information System (INIS)

    Mather, D.J.

    1978-02-01

    A description is given of the computer program HUBBLE-BUBBLE I which simulates the non-equilibrium flow of water and steam in a pipe. The code is designed to examine the transient flow developing in a pipe containing hot compressed water following the rupture of a retaining diaphragm. Allowance is made for an area change in the pipe. Particular attention is paid to the non-equilibrium development of vapour bubbles and to the transition from a bubble-liquid regime to a droplet-vapour regime. The mathematical and computational model is described together with a summary of the FORTRAN subroutines and listing of data input. (UK)

  11. Theoretical investigation of shock stand-off distance for non-equilibrium flows over spheres

    KAUST Repository

    Shen, Hua; WEN, Chih-Yung

    2018-01-01

    We derived a theoretical solution of the shock stand-off distance for a non-equilibrium flow over spheres based on Wen and Hornung’s solution and Olivier’s solution. Compared with previous approaches, the main advantage of the present approach

  12. Microcavity quantum-dot systems for non-equilibrium Bose-Einstein condensation

    International Nuclear Information System (INIS)

    Piper, I M; Ediger, M; Wilson, A M; Wu, Y; Phillips, R T; Eastham, P R; Hugues, M; Hopkinson, M

    2010-01-01

    We review the practical conditions required to achieve a non-equilibrium BEC driven by quantum dynamics in a system comprising a microcavity field mode and a distribution of localised two-level systems driven to a step-like population inversion profile. A candidate system based on eight 3.8nm layers of In 0.23 Ga 0.77 As in GaAs shows promising characteristics with regard to the total dipole strength which can be coupled to the field mode.

  13. Ion acceleration in non-equilibrium plasmas driven by fast drifting electron

    Energy Technology Data Exchange (ETDEWEB)

    Castro, G. [INFN- Laboratori Nazionali del Sud, via S.Sofia 62, 95123 Catania (Italy); Università degli Studi di Catania, Dipartimento di Fisica e Astronomia, V. S.Sofia 64, 95123 Catania (Italy); Di Bartolo, F., E-mail: fdibartolo@unime.it [Università di Messina, V.le F. Stagno D’Alcontres 31, 98166, Messina (Italy); Gambino, N. [INFN- Laboratori Nazionali del Sud, via S.Sofia 62, 95123 Catania (Italy); Università degli Studi di Catania, Dipartimento di Metodologie Fisiche e Chimiche per L’ingegneria, Viale A.Doria 6, 95125 Catania (Italy); Mascali, D. [INFN- Laboratori Nazionali del Sud, via S.Sofia 62, 95123 Catania (Italy); CSFNSM, Viale A. Doria 6, 95125 Catania (Italy); Romano, F.P. [INFN- Laboratori Nazionali del Sud, via S.Sofia 62, 95123 Catania (Italy); CNR-IBAM Via Biblioteca 4, 95124 Catania (Italy); Anzalone, A.; Celona, L.; Gammino, S. [INFN- Laboratori Nazionali del Sud, via S.Sofia 62, 95123 Catania (Italy); Di Giugno, R. [INFN- Laboratori Nazionali del Sud, via S.Sofia 62, 95123 Catania (Italy); Università degli Studi di Catania, Dipartimento di Fisica e Astronomia, V. S.Sofia 64, 95123 Catania (Italy); Lanaia, D. [INFN- Laboratori Nazionali del Sud, via S.Sofia 62, 95123 Catania (Italy); Miracoli, R. [INFN- Laboratori Nazionali del Sud, via S.Sofia 62, 95123 Catania (Italy); Università degli Studi di Catania, Dipartimento di Fisica e Astronomia, V. S.Sofia 64, 95123 Catania (Italy); Serafino, T. [CSFNSM, Viale A. Doria 6, 95125 Catania (Italy); Tudisco, S. [INFN- Laboratori Nazionali del Sud, via S.Sofia 62, 95123 Catania (Italy); CSFNSM, Viale A. Doria 6, 95125 Catania (Italy)

    2013-05-01

    We hereby present results on ion acceleration mechanisms in non equilibrium plasmas generated by microwaves or high intensity laser pulses. Experiments point out that in magnetized plasmas X–B conversion takes place for under resonance values of the magnetic field, i.e. an electromagnetic mode is converted into an electrostatic wave. The strong self-generated electric field, of the order of 10{sup 7} V/m, causes a E × B drift which accelerates both ions and electrons, as it is evident by localized sputtering in the plasma chamber. These fields are similar (in magnitude) to the ones obtainable in laser generated plasmas at intensity of 10{sup 12} W/cm{sup 2}. In this latter case, we observe that the acceleration mechanism is driven by electrons drifting much faster than plasma bulk, thus generating an extremely strong electric field ∼10{sup 7} V/m. The two experiments confirm that ions acceleration at low energy is possible with table-top devices and following complementary techniques: i.e. by using microwave-driven (producing CW beams) plasmas, or non-equilibrium laser-driven plasmas (producing pulsed beams). Possible applications involve ion implantation, materials surface modifications, ion beam assisted lithography, etc.

  14. Novel non-equilibrium modelling of a DC electric arc in argon

    Science.gov (United States)

    Baeva, M.; Benilov, M. S.; Almeida, N. A.; Uhrlandt, D.

    2016-06-01

    A novel non-equilibrium model has been developed to describe the interplay of heat and mass transfer and electric and magnetic fields in a DC electric arc. A complete diffusion treatment of particle fluxes, a generalized form of Ohm’s law, and numerical matching of the arc plasma with the space-charge sheaths adjacent to the electrodes are applied to analyze in detail the plasma parameters and the phenomena occurring in the plasma column and the near-electrode regions of a DC arc generated in atmospheric pressure argon for current levels from 20 A up to 200 A. Results comprising electric field and potential, current density, heating of the electrodes, and effects of thermal and chemical non-equilibrium are presented and discussed. The current-voltage characteristic obtained is in fair agreement with known experimental data. It indicates a minimum for arc current of about 80 A. For all current levels, a field reversal in front of the anode accompanied by a voltage drop of (0.7-2.6) V is observed. Another field reversal is observed near the cathode for arc currents below 80 A.

  15. Novel non-equilibrium modelling of a DC electric arc in argon

    International Nuclear Information System (INIS)

    Baeva, M; Uhrlandt, D; Benilov, M S; Almeida, N A

    2016-01-01

    A novel non-equilibrium model has been developed to describe the interplay of heat and mass transfer and electric and magnetic fields in a DC electric arc. A complete diffusion treatment of particle fluxes, a generalized form of Ohm’s law, and numerical matching of the arc plasma with the space-charge sheaths adjacent to the electrodes are applied to analyze in detail the plasma parameters and the phenomena occurring in the plasma column and the near-electrode regions of a DC arc generated in atmospheric pressure argon for current levels from 20 A up to 200 A. Results comprising electric field and potential, current density, heating of the electrodes, and effects of thermal and chemical non-equilibrium are presented and discussed. The current–voltage characteristic obtained is in fair agreement with known experimental data. It indicates a minimum for arc current of about 80 A. For all current levels, a field reversal in front of the anode accompanied by a voltage drop of (0.7–2.6) V is observed. Another field reversal is observed near the cathode for arc currents below 80 A. (paper)

  16. Overshoot in biological systems modelled by Markov chains: a non-equilibrium dynamic phenomenon.

    Science.gov (United States)

    Jia, Chen; Qian, Minping; Jiang, Daquan

    2014-08-01

    A number of biological systems can be modelled by Markov chains. Recently, there has been an increasing concern about when biological systems modelled by Markov chains will perform a dynamic phenomenon called overshoot. In this study, the authors found that the steady-state behaviour of the system will have a great effect on the occurrence of overshoot. They showed that overshoot in general cannot occur in systems that will finally approach an equilibrium steady state. They further classified overshoot into two types, named as simple overshoot and oscillating overshoot. They showed that except for extreme cases, oscillating overshoot will occur if the system is far from equilibrium. All these results clearly show that overshoot is a non-equilibrium dynamic phenomenon with energy consumption. In addition, the main result in this study is validated with real experimental data.

  17. Fluctuation relations for equilibrium states with broken discrete or continuous symmetries

    International Nuclear Information System (INIS)

    Lacoste, D; Gaspard, P

    2015-01-01

    Isometric fluctuation relations are deduced for the fluctuations of the order parameter in equilibrium systems of condensed-matter physics with broken discrete or continuous symmetries. These relations are similar to their analogues obtained for non-equilibrium systems where the broken symmetry is time reversal. At equilibrium, these relations show that the ratio of the probabilities of opposite fluctuations goes exponentially with the symmetry-breaking external field and the magnitude of the fluctuations. These relations are applied to the Curie–Weiss, Heisenberg, and XY models of magnetism where the continuous rotational symmetry is broken, as well as to the q-state Potts model and the p-state clock model where discrete symmetries are broken. Broken symmetries are also considered in the anisotropic Curie–Weiss model. For infinite systems, the results are calculated using large-deviation theory. The relations are also applied to mean-field models of nematic liquid crystals where the order parameter is tensorial. Moreover, their extension to quantum systems is also deduced. (paper)

  18. Stability analysis of a model equilibrium for a gravito-electrostatic sheath in a colloidal plasma under external gravity effect

    International Nuclear Information System (INIS)

    Rajkhowa, Kavita Rani; Bujarbarua, S.; Dwivedi, C.B.

    1999-01-01

    The present contribution tries to find a scientific answer to the question of stability of an equilibrium plasma sheath in a colloidal plasma system under external gravity effect. A model equilibrium of hydrodynamical character has been discussed on the basis of quasi-hydrostatic approximation of levitational condition. It is found that such an equilibrium is highly unstable to a modified-ion acoustic wave with a conditional likelihood of linear driving of the so-called acoustic mode too. Thus, it is reported (within fluid treatment) that a plasma-sheath edge in a colloidal plasma under external gravity effect could be highly sensitive to the acoustic turbulence. Its consequential role on possible physical mechanism of Coulomb phase transition has been conjectured. However, more rigorous calculations as future course of work are required to corroborate our phenomenological suggestions. (author)

  19. Chemical reaction rates and non-equilibrium pressure of reacting gas mixtures in the state-to-state approach

    International Nuclear Information System (INIS)

    Kustova, Elena V.; Kremer, Gilberto M.

    2014-01-01

    Highlights: • State-to-state approach for coupled vibrational relaxation and chemical reactions. • Self-consistent model for rates of non-equilibrium reactions and energy transitions. • In viscous flows mass action law is violated. • Cross coupling between reaction rates and non-equilibrium pressure in viscous flow. • Results allow implementing the state-to-state approach for viscous flow simulations. - Abstract: Viscous gas flows with vibrational relaxation and chemical reactions in the state-to-state approach are analyzed. A modified Chapman–Enskog method is used for the determination of chemical reaction and vibrational transition rates and non-equilibrium pressure. Constitutive equations depend on the thermodynamic forces: velocity divergence and chemical reaction/transition affinity. As an application, N 2 flow with vibrational relaxation across a shock wave is investigated. Two distinct processes occur behind the shock: for small values of the distance the affinity is large and vibrational relaxation is in its initial stage; for large distances the affinity is small and the chemical reaction is in its final stage. The affinity contributes more to the transition rate than the velocity divergence and the effect of these two contributions are more important for small distances from the shock front. For the non-equilibrium pressure, the term associated with the bulk viscosity increases by a small amount the hydrostatic pressure

  20. Chemical reaction rates and non-equilibrium pressure of reacting gas mixtures in the state-to-state approach

    Energy Technology Data Exchange (ETDEWEB)

    Kustova, Elena V., E-mail: e.kustova@spbu.ru [Department of Mathematics and Mechanics, Saint Petersburg State University, 198504 Universitetskiy pr. 28, Saint Petersburg (Russian Federation); Kremer, Gilberto M., E-mail: kremer@fisica.ufpr.br [Departamento de Física, Universidade Federal do Paraná, Caixa Postal 19044, 81531-980 Curitiba (Brazil)

    2014-12-05

    Highlights: • State-to-state approach for coupled vibrational relaxation and chemical reactions. • Self-consistent model for rates of non-equilibrium reactions and energy transitions. • In viscous flows mass action law is violated. • Cross coupling between reaction rates and non-equilibrium pressure in viscous flow. • Results allow implementing the state-to-state approach for viscous flow simulations. - Abstract: Viscous gas flows with vibrational relaxation and chemical reactions in the state-to-state approach are analyzed. A modified Chapman–Enskog method is used for the determination of chemical reaction and vibrational transition rates and non-equilibrium pressure. Constitutive equations depend on the thermodynamic forces: velocity divergence and chemical reaction/transition affinity. As an application, N{sub 2} flow with vibrational relaxation across a shock wave is investigated. Two distinct processes occur behind the shock: for small values of the distance the affinity is large and vibrational relaxation is in its initial stage; for large distances the affinity is small and the chemical reaction is in its final stage. The affinity contributes more to the transition rate than the velocity divergence and the effect of these two contributions are more important for small distances from the shock front. For the non-equilibrium pressure, the term associated with the bulk viscosity increases by a small amount the hydrostatic pressure.

  1. Electron paramagnetic resonance study of Ce doped partially stabilized ZrO2 crystals

    Directory of Open Access Journals (Sweden)

    Mikhail А. Borik

    2017-09-01

    Full Text Available ZrO2 (PSZ solid solutions crystals stabilized with yttrium and cerium oxides have been studied using electron paramagnetic resonance (EPR in the X and Q ranges. Zr3+ have been observed centers in the as-annealed ZrO2 crystals stabilized only by yttrium oxide (2.8 mol% Y2O3. Another type of paramagnetic-O-centers appear as a result of CeO2 addition to ZrO2 crystals along with yttrium oxide. To estimate the concentration of Ce3+ ions in PZS crystals, we recorded the EPR spectra in the presence of a reference at 7 K. Paramagnetic Ce3+ ions have been identified and their relative amount in the PSZ crystals before and after high-temperature heat treatment has been assessed. Annealing in air leads decreases the concentration of Ce3+ ions for all the test compositions and changes the color of the crystals from red to white. After annealing of the sample 2.0Y0.8Ce3Zr, the amount of paramagnetic Ce3+ ions decreased approximately twofold. Paramagnetic centers from Ce3+ have not been detected in the specimen with a low cerium content of 0.1 mol% after annealing which indicates the complete transition of Ce3+ to the Ce4+ state. We show that the forming cerium paramagnetic centers are bound by strong exchange interactions. No angular dependence of the EPR lines of the paramagnetic Ce3+ cations on the applied external magnetic field has been observed. Probable origin of the absence of angular dependence is that the impurity rare-earth ions are located close to one another, forming impurity clusters with an effective spin of Seff=1/2.

  2. A data acquisition system for real-time magnetic equilibrium reconstruction on ASDEX Upgrade and its application to NTM stabilization experiments

    Energy Technology Data Exchange (ETDEWEB)

    Giannone, L., E-mail: Louis.Giannone@ipp.mpg.de [Max Planck Institute for Plasma Physics, EURATOM Association, 85748 Garching (Germany); Reich, M.; Maraschek, M.; Poli, E.; Rapson, C.; Barrera, L.; McDermott, R.; Mlynek, A. [Max Planck Institute for Plasma Physics, EURATOM Association, 85748 Garching (Germany); Ruan, Q. [National Instruments, Austin, TX 78759-3504 (United States); Treutterer, W. [Max Planck Institute for Plasma Physics, EURATOM Association, 85748 Garching (Germany); Wenzel, L. [National Instruments, Austin, TX 78759-3504 (United States); Bock, A.; Conway, G.; Fischer, R.; Fuchs, J.C.; Lackner, K. [Max Planck Institute for Plasma Physics, EURATOM Association, 85748 Garching (Germany); McCarthy, P.J. [Department of Physics, University College Cork, Association EURATOM-DCU, Cork (Ireland); Preuss, R. [Max Planck Institute for Plasma Physics, EURATOM Association, 85748 Garching (Germany); Rampp, M. [Computing Centre (RZG) of the Max Planck Society and the Max Planck Institute for Plasma Physics, 85748 Garching (Germany); Schuhbeck, K.H. [Max Planck Institute for Plasma Physics, EURATOM Association, 85748 Garching (Germany); and others

    2013-12-15

    Highlights: • Calculation of real-time tokamak magnetic equilibrium with constraints from magnetic probes. • Parallel equilibrium calculation including the Motional Stark Effect diagnostic as additional constraints. • Feedback control of mirror for pre-emptive ECCD stabilization of neo-classical tearing modes. • Probe calibration by individual poloidal field coil currents. • Optimized parameters for poloidal field coil location, integrator gains and the location and orientation of magnetic probes. -- Abstract: The pre-emptive stabilization of a neoclassical tearing mode, NTM, requires the calculation of the tokamak magnetic equilibrium in real-time. A launcher mirror is positioned to deposit electron cyclotron current drive on the rational surface where the NTM should appear. A real-time Grad–Shafranov solver using constraints from magnetic probe, flux loop and Motional Stark Effect measurements has been developed to locate these rational surfaces and deliver this information to the mirror controller in real-time. A novel algorithm significantly reduces the number of operations required in the first and second step of the solver. Contour integrals are carried out to calculate the q profile as a function of normalized radius and the rational surfaces are found by spline interpolation. A cycle time of 0.6 ms for calculating two tokamak equilibria in parallel using four current basis functions with magnetic constraints only and using six current basis functions with magnetic and MSE constraints has been achieved. Using these tools, pre-emptive stabilization of a m/n = 3/2 NTM mode in ASDEX Upgrade could be demonstrated.

  3. Equilibrium and non-equilibrium controls on the abundances of clumped isotopologues of methane during thermogenic formation in laboratory experiments: Implications for the chemistry of pyrolysis and the origins of natural gases

    Science.gov (United States)

    Shuai, Yanhua; Douglas, Peter M. J.; Zhang, Shuichang; Stolper, Daniel A.; Ellis, Geoffrey S.; Lawson, Michael; Lewan, Michael D.; Formolo, Michael; Mi, Jingkui; He, Kun; Hu, Guoyi; Eiler, John M.

    2018-02-01

    Multiply isotopically substituted molecules ('clumped' isotopologues) can be used as geothermometers because their proportions at isotopic equilibrium relative to a random distribution of isotopes amongst all isotopologues are functions of temperature. This has allowed measurements of clumped-isotope abundances to be used to constrain formation temperatures of several natural materials. However, kinetic processes during generation, modification, or transport of natural materials can also affect their clumped-isotope compositions. Herein, we show that methane generated experimentally by closed-system hydrous pyrolysis of shale or nonhydrous pyrolysis of coal yields clumped-isotope compositions consistent with an equilibrium distribution of isotopologues under some experimental conditions (temperature-time conditions corresponding to 'low,' 'mature,' and 'over-mature' stages of catagenesis), but can have non-equilibrium (i.e., kinetically controlled) distributions under other experimental conditions ('high' to 'over-mature' stages), particularly for pyrolysis of coal. Non-equilibrium compositions, when present, lead the measured proportions of clumped species to be lower than expected for equilibrium at the experimental temperature, and in some cases to be lower than a random distribution of isotopes (i.e., negative Δ18 values). We propose that the consistency with equilibrium for methane formed by relatively low temperature pyrolysis reflects local reversibility of isotope exchange reactions involving a reactant or transition state species during demethylation of one or more components of kerogen. Non-equilibrium clumped-isotope compositions occur under conditions where 'secondary' cracking of retained oil in shale or wet gas hydrocarbons (C2-5, especially ethane) in coal is prominent. We suggest these non-equilibrium isotopic compositions are the result of the expression of kinetic isotope effects during the irreversible generation of methane from an alkyl

  4. Non-additive dissipation in open quantum networks out of equilibrium

    Science.gov (United States)

    Mitchison, Mark T.; Plenio, Martin B.

    2018-03-01

    We theoretically study a simple non-equilibrium quantum network whose dynamics can be expressed and exactly solved in terms of a time-local master equation. Specifically, we consider a pair of coupled fermionic modes, each one locally exchanging energy and particles with an independent, macroscopic thermal reservoir. We show that the generator of the asymptotic master equation is not additive, i.e. it cannot be expressed as a sum of contributions describing the action of each reservoir alone. Instead, we identify an additional interference term that generates coherences in the energy eigenbasis, associated with the current of conserved particles flowing in the steady state. Notably, non-additivity arises even for wide-band reservoirs coupled arbitrarily weakly to the system. Our results shed light on the non-trivial interplay between multiple thermal noise sources in modular open quantum systems.

  5. Crystallization kinetics, glass transition kinetics, and thermal stability of Se70-xGa30Inx (x=5, 10, 15, and 20) semiconducting glasses

    International Nuclear Information System (INIS)

    Imran, Mousa M.A.

    2011-01-01

    Crystallization and glass transition kinetics of Se 70-x Ga 30 In x (x=5, 10, 15, and 20) semiconducting chalcogenide glasses were studied under non-isothermal condition using a Differential Scanning Calorimeter (DSC). DSC thermograms of the samples were recorded at four different heating rates 5, 10, 15, and 20 K/min. The variation of the glass transition temperature (T g ) with the heating rate (β) was used to calculate the glass transition activation energy (E t ) using two different models. Meanwhile, the variation of the peak temperature of crystallization (T p ) with β was utilized to deduce the crystallization activation energy (E c ) using Kissinger, Augis-Bennet, and Takhor models. Results reveal that E t decreases with increasing In content, while both T g and E c exhibit the opposite behavior, and the crystal growth occurs in one dimension. The variation of these thermal parameters with the average coordination number was also discussed, and the results were interpreted in terms of the type of bonding that In makes with Se. Assessment of thermal stability and glass forming ability (GFA) was carried out on the basis of some quantitative criteria and the results indicate that thermal stability is enhanced while the crystallization rate is reduced with the addition of In to Se-Ga glass. -- Research highlights: → Addition of In to Se-Ga glass decreases the glass transition activation energy. → The crystallization rate in Se-Ga-In glass is reduced as In content increases. → The crystal growth in Se-Ga-In glass occurs in one dimension. → Thermal properties of Se-Ga-In glass indicate a shift in Phillips-Thorpe threshold.

  6. Trait diversity promotes stability of community dynamics

    DEFF Research Database (Denmark)

    Zhang, Lai; Thygesen, Uffe Høgsbro; Knudsen, Kim

    2013-01-01

    body size. The dynamic properties of the models are described by a stability analysis of equilibrium solutions and by the non-equilibrium dynamics. We find that the introduction of trait diversity expands the set of parameters for which the equilibrium is stable and, if the community is unstable, makes....... The analysis is performed by comparing the properties of two size spectrum models. The first model considers all individuals as belonging to the same “average” species, i.e., without a description of diversity. The second model introduces diversity by further considering individuals by a trait, here asymptotic...

  7. Acceptability of inversely-modelled parameters for non-equilibrium sorption of pesticides in soil

    NARCIS (Netherlands)

    Horst, ter M.M.S.; Boesten, J.J.T.I.; Beinum, van W.; Beulke, S.

    2013-01-01

    Simulation of the increase of sorption in time is one of the options in higher tiers of pesticide regulatory leaching assessments to obtain more realistic leaching estimates. Therefore, accurate estimates of non-equilibrium sorption parameters are required as input for the pesticide leaching

  8. Model of opacity and emissivity of non-equilibrium plasma

    International Nuclear Information System (INIS)

    Politov V Y

    2008-01-01

    In this work the model describing absorption and emission properties of the non-equilibrium plasma is presented. It is based on the kinetics equations for populations of the ground, singly and doubly excited states of multi-charged ions. After solving these equations, the states populations together with the spectroscopic data, supplied in the special database for a lot ionization stages, are used for building the spectral distributions of plasma opacity and emissivity in STA approximation. Results of kinetics simulation are performed for such important X-ray converter as gold, which is investigated intensively in ICF-experiments

  9. Physics of far-from-equilibrium systems and self-organization

    International Nuclear Information System (INIS)

    Nicolis, G.

    1993-01-01

    The status of self-organization phenomena from the stand point of the physical sciences are analyzed. Non linear dynamics and the presence of constraints maintaining the system far from equilibrium are shown to be the basic mechanism involved in the emergence of these phenomena. Some particularly representative experiments are first presented: thermal conversion, chemical reactions (Benard problem), biological systems, and their explanation through order, disorder, non-linearity, irreversibility, stability, bifurcation, symmetry breaking, etc., concepts. Then it is shown how the self-organization paradigm allows to model problems outside the traditional realm of the physical sciences. 29 figs., 27 refs

  10. Microcavity quantum-dot systems for non-equilibrium Bose-Einstein condensation

    Energy Technology Data Exchange (ETDEWEB)

    Piper, I M; Ediger, M; Wilson, A M; Wu, Y; Phillips, R T [Cavendish Laboratory, University of Cambridge, J J Thomson Avenue, Cambridge CB3 0HE (United Kingdom); Eastham, P R [School of Physics, Trinity College Dublin, Dublin 2 (Ireland); Hugues, M; Hopkinson, M, E-mail: imp24@cam.ac.u [Department of Electronic and Electrical Engineering, University of Sheffield, Mappin Street, Sheffield, S1 3JD (United Kingdom)

    2010-09-01

    We review the practical conditions required to achieve a non-equilibrium BEC driven by quantum dynamics in a system comprising a microcavity field mode and a distribution of localised two-level systems driven to a step-like population inversion profile. A candidate system based on eight 3.8nm layers of In{sub 0.23}Ga{sub 0.77}As in GaAs shows promising characteristics with regard to the total dipole strength which can be coupled to the field mode.

  11. Disassembly of Faceted Macrosteps in the Step Droplet Zone in Non-Equilibrium Steady State

    Directory of Open Access Journals (Sweden)

    Noriko Akutsu

    2017-02-01

    Full Text Available A Wulff figure—the polar graph of the surface tension of a crystal—with a discontinuity was calculated by applying the density matrix renormalization group method to the p-RSOS model, a restricted solid-on-solid model with a point-contact-type step–step attraction. In the step droplet zone in this model, the surface tension is discontinuous around the (111 surface and continuous around the (001 surface. The vicinal surface of 4H-SiC crystal in a Si–Cr–C solution is thought to be in the step droplet zone. The dependence of the vicinal surface growth rate and the macrostep size 〈 n 〉 on the driving force Δ μ for a typical state in the step droplet zone in non-equilibrium steady state was calculated using the Monte Carlo method. In contrast to the known step bunching phenomenon, the size of the macrostep was found to decrease with increasing driving force. The detachment of elementary steps from a macrostep was investigated, and it was found that 〈 n 〉 satisfies a scaling function. Moreover, kinetic roughening was observed for | Δ μ | > Δ μ R , where Δ μ R is the crossover driving force above which the macrostep disappears.

  12. Strong magnetic fields and non equilibrium dynamics in QCD

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Niklas

    2017-06-21

    and topology is intriguing and often mysterious, yet central to many of the fundamental mechanisms of nature. As the anomalous violation of classical symmetries in the earliest stages of the universe is conjectured to be responsible for the dominance of matter over anti-matter, researchers attempt to recreate the dynamics of matter under extreme conditions at heavy ion collider experiments and thus understand these challenging mechanisms. In the early universe as well as in present day experiments the emergence of quantum anomalies is tied to out-of-equilibrium systems. In this thesis we focus on a comprehensive attempt at establishing the theoretical foundations of the non-equilibrium description of anomalous and topological dynamics. To this end we present a selection of different techniques and approximation schemes, which are motivated by the properties of the space-time evolution of QCD matter in ultra-relativistic heavy ion collisions. Most importantly we aim to illustrate that the techniques, which are presented here, are applicable to a number of systems in nature, starting from strong-field laser physics to cosmology. The nature of topological effects is much richer in out-of-equilibrium systems and in accord with present progress in the experimental study of anomalous effects, we hope to contribute to the establishment of a novel view on anomalies and topology beyond the previous equilibrium paradigm.

  13. The Influence of Non-Equilibrium Excitation on the Electron Density in One-Dimensional MFD Channel Flow

    Energy Technology Data Exchange (ETDEWEB)

    Eichert, K.; Kaeppeler, H. J. [Institut fuer Plasmaforschung der Technischen Hochschule Stuttgart, Federal Republic of Germany (Germany)

    1966-10-15

    In previous publications, a system of equations was derived from the gas-kinetic description of a multi-component reacting plasma and employed for the calculation of one-dimensional subsonic flows. This system is now extended to include non-equilibrium excitation. No thermal or chemical equilibrium between the various components of the plasma is assumed. The components of the plasma considered are a non-reacting working fluid, an alkali metal vapour as a seeding material, ions of this seeding substance, and electrons. Three levels for the excited states are introduced. The reactions considered are excitation and ionization by electron collisions, and photo-ionization, as well as the corresponding reverse processes. For the reaction velocities, analytical equations are introduced permitting insertion of any excitation or ionization cross-sections of either experimental or theoretical origin. The method employed had been previously suggested by one of the authors. As examples, the degrees of excitation and ionization in the flow of a helium working fluid with 1% caesium seeding through a channel against transverse magnetic fields of 15 and 40 kg at Mach numbers of 0.7 and 0.8, respectively, were calculated. The results of the calculations show that for relatively small magnetic fields there is no rapid rise of the ionization to Saha-equilibrium as a function of electron temperature. A comparison with the results of a calculation neglecting excitation shows that especially for relatively large magnetic fields non-equilibrium excitation has an essential influence on the electron density and its approach to equilibrium. Neglecting excitation, there results a nearly frozen behaviour of the degree of ionization within channel lengths of technical interest for small magnetic fields. (author)

  14. Stability of the Supply Chain Using System Dynamics Simulation and the Accumulated Deviations from Equilibrium

    Directory of Open Access Journals (Sweden)

    Luis Rabelo

    2011-01-01

    Full Text Available We propose and demonstrate a new methodology to stabilize systems with complex dynamics like the supply chain. This method is based on the accumulated deviations from equilibrium (ADE. It is most beneficial for controlling system dynamic models characterized by multiple types of delays, many interacting variables, and feedback processes. We employ the classical version of particle swarm optimization as the optimization approach due to its performance in multidimensional space, stochastic properties, and global reach. We demonstrate the effectiveness of our method based on ADE using a manufacturing-supply-chain case study.

  15. On the stability of non-linear systems

    International Nuclear Information System (INIS)

    Guelman, M.

    1968-09-01

    A study is made of the absolute stability of nonlinear systems, using Liapounov's second method and taking into account the results obtained from V.M. Popov's work. The results already established are first presented, in particular concerning the frequency domain criterions for absolute stability of automatic control systems containing one single non linearity. The results have been extended to show the existence of a limiting parabola. New use is then made of the methods studied for deriving absolute stability criterions for a system containing a different type of non linearity. Finally, the results obtained are considered from the point of view of Aizerman's conjecture. (author) [fr

  16. On local thermal equilibrium and potential gradient vs current characteristic in wall-stabilized argon plasma arc at 0.1 atm pressure

    International Nuclear Information System (INIS)

    Shindo, Haruo; Imazu, Shingo; Inaba, Tsuginori.

    1979-01-01

    In wall-stabilized arc which is a very useful means for determining the transport characteristics of high temperature gases, it is the premise that the inside of arc column is in complete local thermal equilibrium (LTE). In general, the higher the gas pressure, the easier the establishment of LTE, accordingly the experimental investigations on the characteristics of arc discharge as well as the transport characteristics so far were limited to the region of relatively high pressure. However, the authors have found that the theoretical potential vs. current characteristic obtained by the transport characteristic was greatly different from the actually measured one in low pressure region, as the fundamental characteristic of wall-stabilized argon plasma arc below atmospheric pressure. This time, they have clarified this discrepancy at 0.1 atm using the plasma parameters obtained through the spectroscopic measurements. The spectroscopic measurements have been performed through the side observation window at the position 5.5 cm away from the cathode, when arc was ignited vertically at the electrodes distant by 11 cm. Arc radius was 0.5 cm. Electron density and temperature, gas temperature and the excitation density of argon neutral atoms have been experimentally measured. The investigations showed that, in the region of low arc current, where the ratio of current to arc radius is less than 200 A/cm, the fall of gas temperature affected greatly on the decrease of axial electric field of arc column. The non-equilibrium between electron temperature and gas temperature decreased with the increase of arc current, and it was concluded that LTE has been formed at the center portion of arc column above I/R = 300 A/cm. (Wakatsuki, Y.)

  17. Toward a Multi-scale Phase Transition Kinetics Methodology: From Non-Equilibrium Statistical Mechanics to Hydrodynamics

    Science.gov (United States)

    Belof, Jonathan; Orlikowski, Daniel; Wu, Christine; McLaughlin, Keith

    2013-06-01

    Shock and ramp compression experiments are allowing us to probe condensed matter under extreme conditions where phase transitions and other non-equilibrium aspects can now be directly observed, but first principles simulation of kinetics remains a challenge. A multi-scale approach is presented here, with non-equilibrium statistical mechanical quantities calculated by molecular dynamics (MD) and then leveraged to inform a classical nucleation and growth kinetics model at the hydrodynamic scale. Of central interest is the free energy barrier for the formation of a critical nucleus, with direct NEMD presenting the challenge of relatively long timescales necessary to resolve nucleation. Rather than attempt to resolve the time-dependent nucleation sequence directly, the methodology derived here is built upon the non-equilibrium work theorem in order to bias the formation of a critical nucleus and thus construct the nucleation and growth rates. Having determined these kinetic terms from MD, a hydrodynamics implementation of Kolmogorov-Johnson-Mehl-Avrami (KJMA) kinetics and metastabilty is applied to the dynamic compressive freezing of water and compared with recent ramp compression experiments [Dolan et al., Nature (2007)] Lawrence Livermore National Laboratory is operated by Lawrence Livermore National Security, LLC, for the U.S. Department of Energy, National Nuclear Security Administration under Contract DE-AC52-07NA27344.

  18. Photonic Crystal Polarizing and Non-Polarizing Beam Splitters

    International Nuclear Information System (INIS)

    Chun-Ying, Guan; Jin-Hui, Shi; Li-Boo, Yuan

    2008-01-01

    A polarizing beam splitter (PBS) and a non-polarizing beam splitter (NPBS) based on a photonic crystal (PC) directional coupler are demonstrated. The photonic crystal directional coupler consists of a hexagonal lattice of dielectric pillars in air and has a complete photonic band gap. The photonic band structure and the band gap map are calculated using the plane wave expansion (PWE) method. The splitting properties of the splitter are investigated numerically using the finite difference time domain (FDTD) method

  19. Dynamics and non-equilibrium steady state in a system of coupled harmonic oscillators

    Energy Technology Data Exchange (ETDEWEB)

    Ghesquière, Anne, E-mail: Anne.Ghesquiere@nithep.ac.za; Sinayskiy, Ilya, E-mail: sinayskiy@ukzn.ac.za; Petruccione, Francesco, E-mail: petruccione@ukzn.ac.za

    2013-10-15

    A system of two coupled oscillators, each of them coupled to an independent reservoir, is analysed. The analytical solution of the non-rotating wave master equation is obtained in the high-temperature and weak coupling limits. No thermal entanglement is found in the high-temperature limit. In the weak coupling limit the system converges to an entangled non-equilibrium steady state. A critical temperature for the appearance of quantum correlations is found.

  20. Comparison of the Marcus and Pekar partitions in the context of non-equilibrium, polarizable-continuum solvation models

    International Nuclear Information System (INIS)

    You, Zhi-Qiang; Herbert, John M.; Mewes, Jan-Michael; Dreuw, Andreas

    2015-01-01

    The Marcus and Pekar partitions are common, alternative models to describe the non-equilibrium dielectric polarization response that accompanies instantaneous perturbation of a solute embedded in a dielectric continuum. Examples of such a perturbation include vertical electronic excitation and vertical ionization of a solution-phase molecule. Here, we provide a general derivation of the accompanying polarization response, for a quantum-mechanical solute described within the framework of a polarizable continuum model (PCM) of electrostatic solvation. Although the non-equilibrium free energy is formally equivalent within the two partitions, albeit partitioned differently into “fast” versus “slow” polarization contributions, discretization of the PCM integral equations fails to preserve certain symmetries contained in these equations (except in the case of the conductor-like models or when the solute cavity is spherical), leading to alternative, non-equivalent matrix equations. Unlike the total equilibrium solvation energy, however, which can differ dramatically between different formulations, we demonstrate that the equivalence of the Marcus and Pekar partitions for the non-equilibrium solvation correction is preserved to high accuracy. Differences in vertical excitation and ionization energies are <0.2 eV (and often <0.01 eV), even for systems specifically selected to afford a large polarization response. Numerical results therefore support the interchangeability of the Marcus and Pekar partitions, but also caution against relying too much on the fast PCM charges for interpretive value, as these charges differ greatly between the two partitions, especially in polar solvents