WorldWideScience

Sample records for stabilizer lithium inhibits

  1. Corrosion inhibition by lithium zinc phosphate pigment

    International Nuclear Information System (INIS)

    Alibakhshi, E.; Ghasemi, E.; Mahdavian, M.

    2013-01-01

    Highlights: •Synthesis of lithium zinc phosphate (LZP) by chemical co-precipitation method. •Corrosion inhibition activity of pigments compare with zinc phosphate (ZP). •LZP showed superior corrosion inhibition effect in EIS measurements. •Evaluation of adhesion strength and dispersion stability. -- Abstract: Lithium zinc phosphate (LZP) has been synthesized through a co-precipitation process and characterized by XRD and IR spectroscopy. The inhibitive performances of this pigment for corrosion of mild steel have been discussed in comparison with the zinc phosphate (ZP) in the pigment extract solution by means of EIS and in the epoxy coating by means of salt spray. The EIS and salt spray results revealed the superior corrosion inhibitive effect of LZP compared to ZP. Moreover, adhesion strength and dispersion stability of the pigmented epoxy coating showed the advantage of LZP compared to ZP

  2. Long life lithium batteries with stabilized electrodes

    Science.gov (United States)

    Amine, Khalil [Downers Grove, IL; Liu, Jun [Naperville, IL; Vissers, Donald R [Naperville, IL; Lu, Wenquan [Darien, IL

    2009-03-24

    The present invention relates to non-aqueous electrolytes having electrode stabilizing additives, stabilized electrodes, and electrochemical devices containing the same. Thus the present invention provides electrolytes containing an alkali metal salt, a polar aprotic solvent, and an electrode stabilizing additive. In some embodiments the additives include a substituted or unsubstituted cyclic or spirocyclic hydrocarbon containing at least one oxygen atom and at least one alkenyl or alkynyl group. When used in electrochemical devices with, e.g., lithium manganese oxide spinel electrodes or olivine or carbon-coated olivine electrodes, the new electrolytes provide batteries with improved calendar and cycle life.

  3. Jet stability in the lithium fall reactor

    International Nuclear Information System (INIS)

    Kang, S.W.

    1978-01-01

    A preliminary analysis has been made of the various hydrodynamic aspects involved in the stability of a liquid-lithium jet in a laser-fusion reactor, which comprises a part of LLL's laser fusion power-generation concept. Various physical factors that may affect the jet breakup are delineated, and some approximate calculations are performed to determine their relative influences. Areas of uncertainty are pointed out, along with plans for experimental verification or further theoretical analysis

  4. Stabilized Lithium-Metal Surface in a Polysulfide-Rich Environment of Lithium-Sulfur Batteries.

    Science.gov (United States)

    Zu, Chenxi; Manthiram, Arumugam

    2014-08-07

    Lithium-metal anode degradation is one of the major challenges of lithium-sulfur (Li-S) batteries, hindering their practical utility as next-generation rechargeable battery chemistry. The polysulfide migration and shuttling associated with Li-S batteries can induce heterogeneities of the lithium-metal surface because it causes passivation by bulk insulating Li2S particles/electrolyte decomposition products on a lithium-metal surface. This promotes lithium dendrite formation and leads to poor lithium cycling efficiency with complicated lithium surface chemistry. Here, we show copper acetate as a surface stabilizer for lithium metal in a polysulfide-rich environment of Li-S batteries. The lithium surface is protected from parasitic reactions with the organic electrolyte and the migrating polysulfides by an in situ chemical formation of a passivation film consisting of mainly Li2S/Li2S2/CuS/Cu2S and electrolyte decomposition products. This passivation film also suppresses lithium dendrite formation by controlling the lithium deposition sites, leading to a stabilized lithium surface characterized by a dendrite-free morphology and improved surface chemistry.

  5. Lithium inhibits tumorigenic potential of PDA cells through targeting hedgehog-GLI signaling pathway.

    Directory of Open Access Journals (Sweden)

    Zhonglu Peng

    Full Text Available Hedgehog signaling pathway plays a critical role in the initiation and development of pancreatic ductal adenocarcinoma (PDA and represents an attractive target for PDA treatment. Lithium, a clinical mood stabilizer for mental disorders, potently inhibits the activity of glycogen synthase kinase 3β (GSK3β that promotes the ubiquitin-dependent proteasome degradation of GLI1, an important downstream component of hedgehog signaling. Herein, we report that lithium inhibits cell proliferation, blocks G1/S cell-cycle progression, induces cell apoptosis and suppresses tumorigenic potential of PDA cells through down-regulation of the expression and activity of GLI1. Moreover, lithium synergistically enhances the anti-cancer effect of gemcitabine. These findings further our knowledge of mechanisms of action for lithium and provide a potentially new therapeutic strategy for PDA through targeting GLI1.

  6. Problem of the lithium peroxide thermal stability

    International Nuclear Information System (INIS)

    Nefedov, R A; Ferapontov, Yu A; Kozlova, N P

    2016-01-01

    The behavior of lithium peroxide and lithium peroxide monohydrate samples under heating in atmospheric air was studied by the method of thermogravimetric analysis (TGA) and differential thermal analysis (DTA). It was found that in the temperature range of 32°C to 82°C the interaction of lithium peroxides and steam with the formation of lithium peroxide monohydrate occurs, which was confirmed chemically and by X-ray Single-qualitative analysis. It was experimentally found that lithium peroxide starts to decompose into the lithium oxide and oxygen in the temperature range of 340 ÷ 348°C. It was established that the resulting thermal decomposition of lithium oxide, lithium peroxide at the temperature of 422°C melts with lithium carbonate eutecticly. The manifestation of polymorphism was not marked(seen or noticed) under the heating of studied samples of lithium peroxide and lithium peroxide monohydrate in the temperature range of 25°C ÷ 34°C. (paper)

  7. Lanthanum Nitrate As Electrolyte Additive To Stabilize the Surface Morphology of Lithium Anode for Lithium-Sulfur Battery.

    Science.gov (United States)

    Liu, Sheng; Li, Guo-Ran; Gao, Xue-Ping

    2016-03-01

    Lithium-sulfur (Li-S) battery is regarded as one of the most promising candidates beyond conventional lithium ion batteries. However, the instability of the metallic lithium anode during lithium electrochemical dissolution/deposition is still a major barrier for the practical application of Li-S battery. In this work, lanthanum nitrate, as electrolyte additive, is introduced into Li-S battery to stabilize the surface of lithium anode. By introducing lanthanum nitrate into electrolyte, a composite passivation film of lanthanum/lithium sulfides can be formed on metallic lithium anode, which is beneficial to decrease the reducibility of metallic lithium and slow down the electrochemical dissolution/deposition reaction on lithium anode for stabilizing the surface morphology of metallic Li anode in lithium-sulfur battery. Meanwhile, the cycle stability of the fabricated Li-S cell is improved by introducing lanthanum nitrate into electrolyte. Apparently, lanthanum nitrate is an effective additive for the protection of lithium anode and the cycling stability of Li-S battery.

  8. Film packed lithium-ion battery with polymer stabilizer

    Energy Technology Data Exchange (ETDEWEB)

    Satoh, Masaharu; Nakahara, Kentaro [NEC Corp., Environment and Material Research Labs., Kawasaki, Kanagawa (Japan)

    2004-11-30

    The 1600 mAh class of film packed lithium-ion battery has been fabricated with the polymer stabilizer. The adhesive polymer covered with fluorinated polymer beads enables to penetrate into the prismatically wound jerry-roll layers and connects the electrode layers and separator film. The battery demonstrates the improved properties after repeating the charge and discharge processes and should be useful for the various electronic equipment such as notebook type computers. (Author)

  9. Film packed lithium-ion battery with polymer stabilizer

    International Nuclear Information System (INIS)

    Satoh, Masaharu; Nakahara, Kentaro

    2004-01-01

    The 1600 mAh class of film packed lithium-ion battery has been fabricated with the polymer stabilizer. The adhesive polymer covered with fluorinated polymer beads enables to penetrate into the prismatically wounded jerry-roll layers and connects the electrode layers and separator film. The battery demonstrates the improved properties after repeating the charge and discharge processes and should be useful for the various electronics equipment such as notebook type computer

  10. Thermal stability and modeling of lithium ion batteries

    Science.gov (United States)

    Botte, Gerardine Gabriela

    2000-10-01

    First-principles mathematical models were developed to examine the effect of the lithium-lithium ion interactions inside the anode particles on the performance of a lithium foil cell. Two different models were developed: the chemical potential model (CPM) that includes the lithium-lithium ion interactions inside the anode particles and the diffusion model (DIM) that does not include the interactions. Significant differences in the thermal and electrochemical performance of the cell were observed between the two approaches. The temperature of the cell predicted by the DFM is higher than the one predicted by the CPM at a given capacity. The discharge time of the cell predicted by the DFM is shorter than the one predicted by the CPM. The results indicate that the cell needs to be modeled using the CPM approach especially at high discharge rates. An evaluation of the numerical techniques, control volume formulation (CVF) and finite difference method (FDM), used for the models was performed. It is shown that the truncation error is the same for both methods when the boundary conditions are of the Dirichlet type, the system of equations are linear and represented in Cartesian coordinates. A new technique to analyze the accuracy of the methods is presented. The only disadvantage of the FDM is that it failed to conserve mass for a small number of nodes when both boundary conditions include a derivative term whereas the CVF did conserve mass for these cases. However, for a large number of nodes the FDM provides mass conservation. It is important to note that the CVF has only (DeltaX) order of accuracy for a Neumann type boundary condition whereas the FDM has (DeltaX) 2 order. The second topic of this dissertation presents a study of the thermal stability of LiPF6 EC:EMC electrolyte for lithium ion batteries. A differential scanning calorimeter (DSC) was used to perform the study of the electrolyte. For first time, the effect of different variables on its thermal stability

  11. Inhibition of anodic corrosion of aluminium cathode current collector on recharging in lithium imide electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xianming; Yasukawa, Eiki; Mori, Shoichiro [Tsukuba Research Center, Mitsubishi Chemical Corp., Ibaraki (Japan)

    2000-07-01

    Pitting corrosion of aluminum as cathode current collector for lithium rechargeable batteries was found to take place at potential positive of 3.5 V in 1 mol dm {sup -3} LiN(SO{sub 2}CF{sub 3}){sub 2} /EC + DME (1:1) electrolyte. The corrosion mechanism of aluminum in the presence of LiN(SO{sub 2}CF{sub 3}){sub 2} was proposed, and three methods were deduced to inhibit the aluminum corrosion based on this mechanism. As a result, an additive of lithium salts based on perfluorinated inorganic anions, especially LiPF{sub 6}, was found to inhibit the aluminum corrosion to a certain extent by forming a protective film on aluminum surface. The oxidation stability of aluminum in LiN(SO{sub 2}CF{sub 3}){sub 2} -containing electrolytes depended strongly on the solvent structure. The ether solvents such as tetrahydrofuran (THF) and dimethoxyethane (DME) were effective in preventing aluminum corrosion due to their low dielectric constants. Furthermore, LiN(SO{sub 2}C{sub 2}F{sub 5}){sub 2} salt with a larger anion than that of LiN(SO{sub 2}CF{sub 3}){sub 2} was evaluated and good oxidation stability of aluminum was obtained regardless of the kind of solvents. (Author)

  12. Effectiveness of maintenance therapy of lithium vs other mood stabilizers in monotherapy and in combinations

    DEFF Research Database (Denmark)

    Kessing, Lars Vedel; Bauer, Michael; Nolen, Willem A.

    2018-01-01

    Objectives: For the first time to present a systematic review of observational studies on the efficiency of lithium monotherapy in comparison with other maintenance mood stabilizers in monotherapy and in combination. Methods: As part of the International Society for Bipolar Disorders (ISBD) Task...... Force on Lithium Treatment, we undertook a systematic literature search of non-randomized controlled observational studies on (i) lithium monotherapy vs treatment with another maintenance mood stabilizer in monotherapy and (ii) lithium in combination with other mood stabilizers vs monotherapy. Results......: In eight out of nine identified studies including a total of lithium monotherapy was associated with improved outcome compared with another mood stabilizer in monotherapy, including valproate, lamotrigine, olanzapine, quetiapine, unspecified anticonvulsants, carbamazepine...

  13. Materials Compositions for Lithium Ion Batteries with Extended Thermal Stability

    Science.gov (United States)

    Kalaga, Kaushik

    Advancements in portable electronics have generated a pronounced demand for rechargeable energy storage devices with superior capacity and reliability. Lithium ion batteries (LIBs) have evolved as the primary choice of portable power for several such applications. While multiple variations have been developed, safety concerns of commercial technologies limit them to atmospheric temperature operability. With several niche markets such as aerospace, defense and oil & gas demanding energy storage at elevated temperatures, there is a renewed interest in developing rechargeable batteries that could survive temperatures beyond 100°C. Instability of critical battery components towards extreme thermal and electrochemical conditions limit their usability at high temperatures. This study deals with developing material configurations for LIB components to stabilize them at such temperatures. Flammable organic solvent based electrolytes and low melting polymer based separators have been identified as the primary bottleneck for LIBs to survive increasing temperature. Furthermore, thermally activated degradation processes in oxide based electrodes have been identified as the reason for their limited lifetime. A quasi-solid composite comprising of room temperature ionic liquids (RTILs) and Clay was developed as an electrolyte/separator hybrid and tested to be stable up to 120°C. These composites facilitate complete reversible Li intercalation in lithium titanate (LTO) with a stable capacity of 120 mAh g-1 for several cycles of charge and discharge while simultaneously resisting severe thermal conditions. Modified phosphate based electrodes were introduced as a reliable alternative for operability at high temperatures in this study. These systems were shown to deliver stable reversible capacity for numerous charge/discharge cycles at elevated temperatures. Higher lithium intercalation potential of the developed cathode materials makes them interesting candidates for high voltage

  14. Lithium potentiates GSK-3β activity by inhibiting phosphoinositide 3-kinase-mediated Akt phosphorylation

    International Nuclear Information System (INIS)

    Tian, Nie; Kanno, Takeshi; Jin, Yu; Nishizaki, Tomoyuki

    2014-01-01

    Highlights: • Lithium suppresses Akt activity by reducing PI3K-mediated Akt phosphorylation. • Lithium enhances GSK-3β activity by reducing Akt-mediated GSK-3β phosphorylation. • Lithium suppresses GSK-3β activity through its direct inhibition. - Abstract: Accumulating evidence has pointed to the direct inhibitory action of lithium, an anti-depressant, on GSK-3β. The present study investigated further insight into lithium signaling pathways. In the cell-free assay Li 2 CO 3 significantly inhibited phosphoinositide 3-kinase (PI3K)-mediated phosphorylation of Akt1 at Ser473, but Li 2 CO 3 did not affect PI3K-mediated PI(3,4,5)P 3 production and 3-phosphoinositide-dependent protein kinase 1 (PDK1)-mediated phosphorylation of Akt1 at Thr308. This indicates that lithium could enhance GSK-3β activity by suppressing Akt-mediated Ser9 phosphorylation of GSK-3β in association with inhibition of PI3K-mediated Akt activation. There was no direct effect of Li 2 CO 3 on Akt1-induced phosphorylation of GSK-3β at Ser9, but otherwise Li 2 CO 3 significantly reduced GSK-3β-mediated phosphorylation of β-catenin at Ser33/37 and Thr41. This indicates that lithium directly inhibits GSK-3β in an Akt-independent manner. In rat hippocampal slices Li 2 CO 3 significantly inhibited phosphorylation of Akt1/2 at Ser473/474, GSK-3β at Ser9, and β-catenin at Ser33/37 and Thr41. Taken together, these results indicate that lithium exerts its potentiating and inhibiting bidirectional actions on GSK-3β activity

  15. Theory of lithium islands and monolayers: Electronic structure and stability

    International Nuclear Information System (INIS)

    Quassowski, S.; Hermann, K.

    1995-01-01

    Systematic calculations on planar clusters and monolayers of lithium are performed to study geometries and stabilities of the clusters as well as their convergence behavior with increasing cluster size. The calculations are based on ab initio methods using density-functional theory within the local-spin-density approximation for exchange and correlation. The optimized nearest-neighbor distances d NN of the Li n clusters, n=1,...,25, of both hexagonal and square geometry increase with cluster size, converging quite rapidly towards the monolayer results. Further, the cluster cohesive energies E c increase with cluster size and converge towards the respective monolayer values that form upper bounds. Clusters of hexagonal geometry are found to be more stable than square clusters of comparable size, consistent with the monolayer results. The size dependence of the cluster cohesive energies can be described approximately by a coordination model based on the concept of pairwise additive nearest-neighbor binding. This indicates that the average binding in the Li n clusters and their relative stabilities can be explained by simple geometric effects which derive from the nearest-neighbor coordination

  16. Prelithiation of silicon-carbon nanotube anodes for lithium ion batteries by stabilized lithium metal powder (SLMP).

    Science.gov (United States)

    Forney, Michael W; Ganter, Matthew J; Staub, Jason W; Ridgley, Richard D; Landi, Brian J

    2013-09-11

    Stabilized lithium metal powder (SLMP) has been applied during battery assembly to effectively prelithiate high capacity (1500-2500 mAh/g) silicon-carbon nanotube (Si-CNT) anodes, eliminating the 20-40% first cycle irreversible capacity loss. Pressure-activation of SLMP is shown to enhance prelithiation and enable capacity matching between Si-CNT anodes and lithium nickel cobalt aluminum oxide (NCA) cathodes in full batteries with minimal added mass. The prelithiation approach enables high energy density NCA/Si-CNT batteries achieving >1000 cycles at 20% depth-of-discharge.

  17. Stability of lithium in α-rhombohedral boron

    International Nuclear Information System (INIS)

    Hayami, Wataru; Tanaka, Takaho; Otani, Shigeki

    2006-01-01

    The stability of lithium atoms in α-rhombohedral boron was studied by the density functional theory and Car-Parrinello molecular dynamics (MD) simulations. At a low Li concentration (1.03 at%), a Li atom at the center of the icosahedral B 12 site (the I-site) was found to be metastable, and the potential barrier was estimated at 775±25 K (=67±25 meV). Over 800 K, Li atoms began to escape from the B 12 cage and settled at the tetrahedral site (the T-site) or at the octahedral site (the O-site). Li at the T-site was also metastable below 1400 K, and Li at the O-site was energetically the most favorable. At a high Li concentration (7.69 at%), the I-site changed to an unstable saddle point. The T-site was still metastable, and the O-site was the most stable. Regardless of concentration, MD simulations showed that Li atoms at the O-site never jumped to other sites below 1400 K. The migration of Li would be very slow below this temperature

  18. Lithium

    Science.gov (United States)

    Bradley, Dwight C.; Stillings, Lisa L.; Jaskula, Brian W.; Munk, LeeAnn; McCauley, Andrew D.; Schulz, Klaus J.; DeYoung,, John H.; Seal, Robert R.; Bradley, Dwight C.

    2017-12-19

    Lithium, the lightest of all metals, is used in air treatment, batteries, ceramics, glass, metallurgy, pharmaceuticals, and polymers. Rechargeable lithium-ion batteries are particularly important in efforts to reduce global warming because they make it possible to power cars and trucks from renewable sources of energy (for example, hydroelectric, solar, or wind) instead of by burning fossil fuels. Today, lithium is extracted from brines that are pumped from beneath arid sedimentary basins and extracted from granitic pegmatite ores. The leading producer of lithium from brine is Chile, and the leading producer of lithium from pegmatites is Australia. Other potential sources of lithium include clays, geothermal brines, oilfield brines, and zeolites. Worldwide resources of lithium are estimated to be more than 39 million metric tons, which is enough to meet projected demand to the year 2100. The United States is not a major producer at present but has significant lithium resources.

  19. Stability of lithium niobate on irradiation at elevated temperature

    International Nuclear Information System (INIS)

    Primak, W.; Gavin, A.P.; Anderson, T.T.; Monahan, E.

    1977-01-01

    In contrast to results obtained for neutron irradiation in a thermal reactor near room temperature, lithium niobate plates irradiated in the Experimental Breeder Reactor II (EBR-II) did not become metamict. This is attributed to the elevated temperature of the EBR-II. Ion bombardment experiments indicate that to avoid disordering of lithium niobate on irradiation, its temperature should be maintained above 673 K. Evidence for ionic conductivity was found at 873 K, indicating that it would be inadvisable to permit the temperature to rise that high, particularly with voltage across the plate. In reactor application as a microphone transducer, it is tentatively recommended that the lithium niobate be maintained in the middle of this temperature range for a major portion of reactor operating time

  20. Interface and thickness dependent domain switching and stability in Mg doped lithium niobate

    Energy Technology Data Exchange (ETDEWEB)

    Neumayer, Sabine M.; Rodriguez, Brian J., E-mail: gallo@kth.se, E-mail: brian.rodriguez@ucd.ie [School of Physics, University College Dublin, Belfield, Dublin 4 (Ireland); Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4 (Ireland); Ivanov, Ilia N. [Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Manzo, Michele; Gallo, Katia, E-mail: gallo@kth.se, E-mail: brian.rodriguez@ucd.ie [Department of Applied Physics, KTH-Royal Institute of Technology, Roslagstullbacken 21, 10691 Stockholm (Sweden); Kholkin, Andrei L. [Department of Physics and CICECO-Aveiro Institute of Materials, 3810-193 Aveiro (Portugal); Institute of Natural Sciences, Ural Federal University, 620000 Ekaterinburg (Russian Federation)

    2015-12-14

    Controlling ferroelectric switching in Mg doped lithium niobate (Mg:LN) is of fundamental importance for optical device and domain wall electronics applications that require precise domain patterns. Stable ferroelectric switching has been previously observed in undoped LN layers above proton exchanged (PE) phases that exhibit reduced polarization, whereas PE layers have been found to inhibit lateral domain growth. Here, Mg doping, which is known to significantly alter ferroelectric switching properties including coercive field and switching currents, is shown to inhibit domain nucleation and stability in Mg:LN above buried PE phases that allow for precise ferroelectric patterning via domain growth control. Furthermore, piezoresponse force microscopy (PFM) and switching spectroscopy PFM reveal that the voltage at which polarization switches from the “up” to the “down” state increases with increasing thickness in pure Mg:LN, whereas the voltage required for stable back switching to the original “up” state does not exhibit this thickness dependence. This behavior is consistent with the presence of an internal frozen defect field. The inhibition of domain nucleation above PE interfaces, observed in this study, is a phenomenon that occurs in Mg:LN but not in undoped samples and is mainly ascribed to a remaining frozen polarization in the PE phase that opposes polarization reversal. This reduced frozen depolarization field in the PE phase also influences the depolarization field of the Mg:LN layer above due to the presence of uncompensated polarization charge at the PE-Mg:LN boundary. These alterations in internal electric fields within the sample cause long-range lattice distortions in Mg:LN via electromechanical coupling, which were corroborated with complimentary Raman measurements.

  1. Study on lithium/air secondary batteries - Stability of NASICON-type lithium ion conducting glass-ceramics with water

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, Satoshi; Imanishi, Nobuyuki; Zhang, Tao; Xie, Jian; Hirano, Atsushi; Takeda, Yasuo; Yamamoto, Osamu [Department of Chemistry, Faculty of Engineering, Mie University, 1577 Kurimamachiya-cho, Tsu, Mie 514-8507 (Japan)

    2009-04-01

    The water stability of the fast lithium ion conducting glass-ceramic electrolyte, Li{sub 1+x+y}Al{sub x}Ti{sub 2-x}Si{sub y}P{sub 3-y}O{sub 12} (LATP), has been examined in distilled water, and aqueous solutions of LiNO{sub 3}, LiCl, LiOH, and HCl. This glass-ceramics are stable in aqueous LiNO{sub 3} and aqueous LiCl, and unstable in aqueous 0.1 M HCl and 1 M LiOH. In distilled water, the electrical conductivity slightly increases as a function of immersion time in water. The Li-Al/Li{sub 3-x}PO{sub 4-y}N{sub y}/LATP/aqueous 1 M LiCl/Pt cell, where lithium phosphors oxynitrides Li{sub 3-x}PO{sub 4-y}N{sub y} (LiPON) are used to protect the direct reaction of Li and LATP, shows a stable open circuit voltage (OCV) of 3.64 V at 25 C, and no cell resistance change for 1 week. Lithium phosphors oxynitride is effectively used as a protective layer to suppress the reaction between the LATP and Li metal. The water-stable Li/LiPON/LATP system can be used in Li/air secondary batteries with the air electrode containing water. (author)

  2. Formulation, physicochemical characterization and stability study of lithium-loaded microemulsion system.

    Science.gov (United States)

    Mouri, Abdelkader; Legrand, Philippe; El Ghzaoui, Abdeslam; Dorandeu, Christophe; Maurel, Jean Claude; Devoisselle, Jean-Marie

    2016-04-11

    Lithium biocompatible microemulsion based on Peceol(®), lecithin, ethanol and water was studied in attempt to identify the optimal compositions in term of drug content, physicochemical properties and stability. Lithium solubilization in microemulsion was found to be compatible with a drug-surfactant binding model. Lithium ions were predominantly solubilized within lecithin head group altering significantly the interfacial properties of the system. Pseudo-ternary phase diagrams of drug free and drug loaded microemulsions were built at constant ethanol/lecithin weight ratio (40/60). Lithium loaded microemulsion has totally disappeared in the Peceol(®) rich part of phase diagram; critical fractions of lecithin and ethanol were required for the formation of stable microemulsion. The effect of lithium concentration on the properties and physical stability of microemulsions were studied using microscopy, Karl Fischer titrations, rheology analyses, conductivity measurements and centrifugation tests. The investigated microemulsions were found to be stable under accelerated storage conditions. The systems exhibited low viscosity and behaved as Newtonian fluid and no structural transition was shown. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Lithium fall reactor concept: the question of jet stability, with recommendations for further experiments

    International Nuclear Information System (INIS)

    Kang, S.W.

    1978-01-01

    The stability of a liquid-lithium jet flow is of importance in a laser fusion reactor design. In this report we analyze and discuss jet stability with respect to fluid dynamics, delineating physical factors that may affect the jet breakup and performing some simple calculations to determine quantitatively the relative influences of various parameters. We define areas of uncertainty and recommend possible experimental verification, theoretical analysis, or both

  4. Stability of the Gel Electrolyte PAN : EC : PC : LICF3SO3 towards Lithium

    DEFF Research Database (Denmark)

    Perera, Kumudu; Dissanayake, M.A.K.L.; Skaarup, Steen

    2006-01-01

    The stability of the gel electrolyte consisting of polyacrylonitrile (PAN), ethylene carbonate (EC), propylene carbonate (PC) and lithium trifluoromethanesulfonate (LiCF3SO3 – LiTF) towards metallic lithium was investigated using the time evolution of impedance plots. Symmetric cells of the form Li...... / PAN : EC : PC: LiTF / Li were assembled and impedance data were collected at room temperature for one week. A clear indication of growth of a resistive layer could be seen. The electrolyte resistance remained constant. The growth of the passivation layer became constant after first two days...

  5. Microdose lithium treatment stabilized cognitive impairment in patients with Alzheimer's disease.

    Science.gov (United States)

    Nunes, Marielza Andrade; Viel, Tania Araujo; Buck, Hudson Sousa

    2013-01-01

    A lower incidence of dementia in bipolar patients treated with lithium has been described. This metal inhibits the phosphorylation of glycogen-synthase-kinase 3-α and β, which are related to amyloid precursor protein processing and tau hyperphosphorylation in pathological conditions, respectively. Following the same rationale, a group just found that lithium has disease-modifying properties in amnestic mild cognitive impairment with potential clinical implications for the prevention of Alzheimer's Disease (AD) when a dose ranging from 150 to 600 mg is used. As lithium is highly toxic in regular doses, our group evaluated the effect of a microdose of 300 μg, administered once daily on AD patients for 15 months. In the evaluation phase, the treated group showed no decreased performance in the mini-mental state examination test, in opposition to the lower scores observed for the control group during the treatment, with significant differences starting three months after the beginning of the treatment, and increasing progressively. This data suggests the efficacy of a microdose lithium treatment in preventing cognitive loss, reinforcing its therapeutic potential to treat AD using very low doses.

  6. Lithium prevents early cytosolic calcium increase and secondary injurious calcium overload in glycolytically inhibited endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Bosche, Bert, E-mail: bert.bosche@uk-essen.de [Department of Neurology, University of Duisburg-Essen (Germany); Max Planck Institute for Neurological Research with Klaus-Joachim-Zülch Laboratories of the Max Planck Society and the Medical Faculty of the University of Cologne (Germany); Schäfer, Matthias, E-mail: matthias.schaefer@sanofi.com [Institute of Physiology, Justus-Liebig-University Giessen (Germany); Graf, Rudolf, E-mail: rudolf.graf@nf.mpg.de [Max Planck Institute for Neurological Research with Klaus-Joachim-Zülch Laboratories of the Max Planck Society and the Medical Faculty of the University of Cologne (Germany); Härtel, Frauke V., E-mail: frauke.haertel@tu-dresden.de [Institute of Physiology, Medical Faculty Carl Gustav Carus, Technical University Dresden (Germany); Schäfer, Ute, E-mail: ute.schaefer@medunigraz.at [Research Unit for Experimental Neurotraumatology, Medical University of Graz (Austria); Noll, Thomas, E-mail: thomas.noll@tu-dresden.de [Institute of Physiology, Medical Faculty Carl Gustav Carus, Technical University Dresden (Germany)

    2013-05-03

    Highlights: •We investigate free calcium as a central signalling element in endothelial cells. •Inhibition of glycolysis with 2-deoxy-D-glucose reduces cellular ATP. •This manoeuvre leads to a biphasic increase and overload of free calcium. •Pre-treatment with lithium for 24 h abolishes both phases of the calcium increase. •This provides a new strategy to protect endothelial calcium homeostasis and barrier function. -- Abstract: Cytosolic free calcium concentration ([Ca{sup 2+}]{sub i}) is a central signalling element for the maintenance of endothelial barrier function. Under physiological conditions, it is controlled within narrow limits. Metabolic inhibition during ischemia/reperfusion, however, induces [Ca{sup 2+}]{sub i} overload, which results in barrier failure. In a model of cultured porcine aortic endothelial monolayers (EC), we addressed the question of whether [Ca{sup 2+}]{sub i} overload can be prevented by lithium treatment. [Ca{sup 2+}]{sub i} and ATP were analysed using Fura-2 and HPLC, respectively. The combined inhibition of glycolytic and mitochondrial ATP synthesis by 2-desoxy-D-glucose (5 mM; 2-DG) plus sodium cyanide (5 mM; NaCN) caused a significant decrease in cellular ATP content (14 ± 1 nmol/mg protein vs. 18 ± 1 nmol/mg protein in the control, n = 6 culture dishes, P < 0.05), an increase in [Ca{sup 2+}]{sub i} (278 ± 24 nM vs. 71 ± 2 nM in the control, n = 60 cells, P < 0.05), and the formation of gaps between adjacent EC. These observations indicate that there is impaired barrier function at an early state of metabolic inhibition. Glycolytic inhibition alone by 10 mM 2-DG led to a similar decrease in ATP content (14 ± 2 nmol/mg vs. 18 ± 1 nmol/mg in the control, P < 0.05) with a delay of 5 min. The [Ca{sup 2+}]{sub i} response of EC was biphasic with a peak after 1 min (183 ± 6 nM vs. 71 ± 1 nM, n = 60 cells, P < 0.05) followed by a sustained increase in [Ca{sup 2+}]{sub i}. A 24-h pre-treatment with 10 mM of lithium

  7. Stability of the lithium waterfall first wall protection concept for inertial confinement fusion reactors

    International Nuclear Information System (INIS)

    Esser, P.D.; Paul, D.D.; Abdel-Khalik, S.I.

    1981-01-01

    Uncertainties regarding the feasibility of using an annular waterfall of liquid lithium to protect the first wall in inertial confinement fusion (ICF) reactor cavities have prompted a theoretical investigation of annular jet stability. Infinitesimal perturbation techniques are applied to an idealized model of the jet with disturbances acting upon either or both of the free surfaces. Dispersion relations are derived which predict the range of disturbance frequencies leading to instability, as well as the perturbation growth rates and jet breakup length. The results are extended to turbulent annular jets and are evaluated for the lithium waterfall design. It is concluded that inherent instabilities due to turbulent fluctuations will not cause the jet to break up over distances comparable to the height of the reactor cavity

  8. Stability of the lithium ''WATERFALL'' first wall protection concept for inertial confinement fusion reactors

    International Nuclear Information System (INIS)

    Esser, P.D.; Abel-Khalik, S.I.; Paul, D.D.

    1981-01-01

    Uncertainties regarding the feasibility of using an annular ''waterfall'' of liquid lithium to protect the first wall in inertial confinement fusion reactor cavities have prompted a theoretical investigation of annular jet stability. Infinitesimal perturbation techniques are applied to an idealized model of the jet with disturbances acting upon either or both of the free surfaces. Dispersion relations are derived that predict the range of disturbance frequencies leading to instability, as well as the perturbation growth rates and jet breakup length. The results are extended to turbulent annular jets and are evaluated for the lithium waterfall design. It is concluded that inherent instabilities due to turbulent fluctuations will not cause the jet to break up over distances comparable to the height of the reactor cavity

  9. Stability of the lithium 'waterfall' first wall protection concept for inertial confinement fusion reactors

    International Nuclear Information System (INIS)

    Esser, P.D.; Paul, D.D.; Abdel-Khalik, S.I.

    1981-01-01

    Uncertainties regarding the feasibility of using an annular waterfall of liquid lithium to protect the first wall in inertial confinement fusion reactor cavities have prompted a theoretical investigation of annular jet stability. Infinitesimal perturbation techniques are applied to an idealized model of the jet with disturbances acting upon either or both of the free surfaces. Dispersion relations are derived that predict the range of disturbance frequencies leading to instability, as well as the perturbation growth rates and jet break-up length. The results are extended to turbulent annular jets and are evaluated for the lithium waterfall design. It is concluded that inherent instabilities due to turbulent fluctuations will not cause the jet to break up over distances comparable to the height of the reactor cavity

  10. Copper Antimonide Nanowire Array Lithium Ion Anodes Stabilized by Electrolyte Additives.

    Science.gov (United States)

    Jackson, Everett D; Prieto, Amy L

    2016-11-09

    Nanowires of electrochemically active electrode materials for lithium ion batteries represent a unique system that allows for intensive investigations of surface phenomena. In particular, highly ordered nanowire arrays produced by electrodeposition into anodic aluminum oxide templates can lead to new insights into a material's electrochemical performance by providing a high-surface-area electrode with negligible volume expansion induced pulverization. Here we show that for the Li-Cu x Sb ternary system, stabilizing the surface chemistry is the most critical factor for promoting long electrode life. The resulting solid electrolyte interphase is analyzed using a mix of electron microscopy, X-ray photoelectron spectroscopy, and lithium ion battery half-cell testing to provide a better understanding of the importance of electrolyte composition on this multicomponent alloy anode material.

  11. Silicene Flowers: A Dual Stabilized Silicon Building Block for High-Performance Lithium Battery Anodes.

    Science.gov (United States)

    Zhang, Xinghao; Qiu, Xiongying; Kong, Debin; Zhou, Lu; Li, Zihao; Li, Xianglong; Zhi, Linjie

    2017-07-25

    Nanostructuring is a transformative way to improve the structure stability of high capacity silicon for lithium batteries. Yet, the interface instability issue remains and even propagates in the existing nanostructured silicon building blocks. Here we demonstrate an intrinsically dual stabilized silicon building block, namely silicene flowers, to simultaneously address the structure and interface stability issues. These original Si building blocks as lithium battery anodes exhibit extraordinary combined performance including high gravimetric capacity (2000 mAh g -1 at 800 mA g -1 ), high volumetric capacity (1799 mAh cm -3 ), remarkable rate capability (950 mAh g -1 at 8 A g -1 ), and excellent cycling stability (1100 mA h g -1 at 2000 mA g -1 over 600 cycles). Paired with a conventional cathode, the fabricated full cells deliver extraordinarily high specific energy and energy density (543 Wh kg ca -1 and 1257 Wh L ca -1 , respectively) based on the cathode and anode, which are 152% and 239% of their commercial counterparts using graphite anodes. Coupled with a simple, cost-effective, scalable synthesis approach, this silicon building block offers a horizon for the development of high-performance batteries.

  12. Electrical insulation properties of RF-sputtered LiPON layers towards electrochemical stability of lithium batteries

    OpenAIRE

    Vieira, E. M. F.; Ribeiro, J. F.; Silva, Maria Manuela; Barradas, N. P.; Alves, E.; Alves, A.; Correia, M. R.; Gonçalves, L. M.

    2016-01-01

    Electrochemical stability, moderate ionic conductivity and low electronic conductivity make the lithium phosphorous oxynitride (LiPON) electrolyte suitable for micro and nanoscale lithium batteries. The electrical and electrochemical properties of thin-film electrolytes can seriously compromise full battery performance. Here, radio-frequency (RF)-sputtered LiPON thin films were fabricated in nitrogen plasma under different working pressure conditions. With a slight decrease in ...

  13. On anodic stability and decomposition mechanism of sulfolane in high-voltage lithium ion battery

    International Nuclear Information System (INIS)

    Xing, Lidan; Tu, Wenqiang; Vatamanu, Jenel; Liu, Qifeng; Huang, Wenna; Wang, Yating; Zhou, Hebing; Zeng, Ronghua; Li, Weishan

    2014-01-01

    Graphical abstract: - Highlights: • Influence of lithium salts on the anodic stability of sulfolane has been investigated. • Oxidation decomposition mechanisms of LiPF 6 /Sulfolane electrolyte have been well understood by theoretical and experimental methods. • Decomposition products of the electrolyte can be found on the electrode surface and in the interfacial electrolyte. - Abstract: In this work, we investigated the anodic stability and decomposition mechanism of sulfolane (SL). The anodic stability of SL-based electrolyte with different lithium salts on Pt and LiNi 0.5 Mn 1.5 O 4 electrodes was found to decrease as follows: LiPF 6 /SL > LiBF 4 /SL > LiClO 4 /SL. The oxidation potential of 1M LiPF 6 /SL electrolyte on both Pt and electrodes is about 5.0V vs Li/Li + . The presence of PF 6 - and another SL solvent dramatically alters the decomposition mechanism of SL. Oxidation decomposition of SL-SL cluster is the most favorable reaction in LiPF 6 /SL electrolyte. The dimer products with S-O-R group were detected by IR spectra on the charged LiNi 0.5 Mn 1.5 O 4 electrode surface and in the electrolyte near the electrode surface, and were found to increase the interfacial reaction resistance of the LiNi 0.5 Mn 1.5 O 4 electrode

  14. Solid solution lithium alloy cermet anodes

    Science.gov (United States)

    Richardson, Thomas J.

    2013-07-09

    A metal-ceramic composite ("cermet") has been produced by a chemical reaction between a lithium compound and another metal. The cermet has advantageous physical properties, high surface area relative to lithium metal or its alloys, and is easily formed into a desired shape. An example is the formation of a lithium-magnesium nitride cermet by reaction of lithium nitride with magnesium. The reaction results in magnesium nitride grains coated with a layer of lithium. The nitride is inert when used in a battery. It supports the metal in a high surface area form, while stabilizing the electrode with respect to dendrite formation. By using an excess of magnesium metal in the reaction process, a cermet of magnesium nitride is produced, coated with a lithium-magnesium alloy of any desired composition. This alloy inhibits dendrite formation by causing lithium deposited on its surface to diffuse under a chemical potential into the bulk of the alloy.

  15. A novel strategy for high-stability lithium sulfur batteries by in situ formation of polysulfide adsorptive-blocking layer

    Science.gov (United States)

    Jin, Liming; Li, Gaoran; Liu, Binhong; Li, Zhoupeng; Zheng, Junsheng; Zheng, Jim P.

    2017-07-01

    Lithium sulfur (Lisbnd S) batteries are one of the most promising energy storage devices owing to their high energy and power density. However, the shuttle effect as a key barrier hinders its practical application by resulting in low coulombic efficiency and poor cycling performance. Herein, a novel design of in situ formed polysulfide adsorptive-blocking layer (PAL) on the cathode surface was developed to tame the polysulfide shuttling and promote the cycling stability for Lisbnd S batteries. The PAL is consisted of La2S3, which is capable to chemically adsorb polysulfide via the strong interaction of Lasbnd S bond and Ssbnd S bond, and build an effective barrier against sulfur escaping. Moreover, the La2S3 is capable to suppress the crystallization of Li2S and promote the ion transfer, which contributes to the reduced internal resistance of batteries. Furthermore, the by-product LiNO3 simultaneously forms a stable anode solid and electrolyte interface to further inhibit the polysulfide shuttle. By this simple and convenient method, the resultant Lisbnd S batteries achieved exceptional cycling stability with an ultralow decay rate of 0.055% since the 10th cycle.

  16. Lithium Impairs Kidney Development and Inhibits Glycogen Synthase Kinase-3β in Collecting Duct Principal Cells

    DEFF Research Database (Denmark)

    Kjærsgaard, Gitte; Madsen, Kirsten; Marcussen, Niels

    level significantly whereas total GSK-3β abundance was unaltered. Li+ treatment increased α-Smooth Muscle Actin (α-SMA) protein level significantly whereas E-cadherin expression was unaltered. In summary, Li+ treatment impairs postnatal development of the kidney cortex and outer medulla and increases pGSK......The postnatal rat kidney is highly susceptible to Lithium (Li+), which leads to significant tissue injury. We hypothesized that Li+ impairs development of the kidney through entry into epithelial cells of the distal nephron, inhibition of Glycogen Synthase Kinase-3β (GSK-3β) through phosphorylation...... on serine9 (pGSK-3β)and subsequent epithelial to mesenchymal dedifferentiation (EMT). GSK-3β immunoreactive protein was associated with collecting ducts in developing and adult human and rat kidney. Total GSK-3β protein abundance was stable in medulla while it decreased in cortex in the postnatal period...

  17. On the use of voltammetric methods to determine electrochemical stability limits for lithium battery electrolytes

    Science.gov (United States)

    Georén, Peter; Lindbergh, Göran

    In previous studies a novel amphiphilic co-polymer was developed for use in lithium-ion batteries. In order to evaluate the electrochemical stability of that electrolyte and compare it with others, a voltammetric method was applied on a set of electrolytes with different salts, solvents and polymers. However, initially the voltammetric methodology was studied. Platinum was found to be the most suited electrode material, experiencing no significant interfering reactions and a proper diffusion-controlled kinetic behaviour when sweep rate was varied. Furthermore, the influence on the voltammograms of adding water traces to the electrolytes was studied. It could be established that the oxidation peak around 3.8 V versus Li was related to water reactions. It was concluded that quantitative voltage values of the stability limits were difficult to assess using voltammetry. On the other hand, the method seemed well suited for comparison of electrolytes and to investigate the influences of electrolyte components on the stability. The voltammetric results varied little between the different electrolytes evaluated and the anodic and cathodic limits, as defined here, were in the range of 1 and 4.5 V vs. Li, respectively. Although the novel polymer did not affect the stability limit significantly it seemed to promote the breakdown reaction rate in all electrolytes tested. Furthermore, the use of LiTFSI salt reduced the stability window.

  18. Lithium-induced inhibition of Na-K ATPase and Ca ATPase activities in rat brain synaptosome.

    Science.gov (United States)

    Cho, Y. W.

    1995-01-01

    To explore the action mechanism of lithium in the brain, the author investigated the effects of lithium on Na-K ATPase and Ca ATPase in rat brain synaptosomes prepared from forebrains by the method of Booth and Clark. The activities of Na-K ATPase and Ca ATPase were assayed by the level of inorganic phosphate liberated from the hydrolysis of ATP. Lithium at the optimum therapeutic concentration of 1 mM decreased the activity of Na-K ATPase from the control value of 19.08 +/- 0.29 to 18.27 +/- 0.10 micromoles Pi/mg protein/h and also reduced the activity of Ca ATPase from 6.38 +/- 0.12 to 5.64 +/- 0.12 micromoles Pi/mg protein/h. The decreased activity of Na-K ATPase will decrease the rate of Ca2+ efflux, probably via an Na-Ca exchange mechanism and will increase the rate of Ca2+ entry by the depolarization of nerve terminals. The reduced activity of Ca ATPase will result in the decreased efflux of Ca2+. As a Conclusion, it can be speculated that lithium elevates the intrasynaptosomal Ca2+ concentration via inhibition of the activities of Na-K ATPase and Ca ATPase, and this increased [Ca2+]i will cause the release of neurotransmitters and neurological effects of lithium. PMID:7598829

  19. Investigating the stability of cathode materials for rechargeable lithium ion batteries

    Science.gov (United States)

    Huang, Yiqing

    Lithium ion batteries are widely used in portable electronic devices and electric vehicles. However, safety is one of the most important issues for the Li-ion batteries' use. Some cathode materials, such as LiCoO 2, are thermally unstable in the charged state. Upon decomposition these cathode materials release O2, which could react with organic electrolyte, leading to a thermal runaway. Thus understanding the stability of the cathode materials is critical to the safety of lithium ion batteries. Olivine-type LiMnPO4 is a promising cathode material for lithium ion batteries because of its high energy density. We have revealed the critical role of carbon in the stability and thermal behaviour of olivine MnPO 4 obtained by chemical delithiation of LiMnPO4. (Li)MnPO 4 samples with various particle sizes and carbon contents were studied. Carbon-free LiMnPO4 obtained by solid state synthesis in O 2 becomes amorphous upon delithiation. Small amounts of carbon (0.3 wt.%) help to stabilize the olivine structure, so that completely delithiated crystalline olivine MnPO4 can be obtained. Larger amount of carbon (2 wt.%) prevents full delithiation. Heating in air, O2, or N 2 results in structural disorder (cathode materials and the electrolyte. The thermal stability of electrochemically delithiated Li0.1N 0.8C0.15Al0.05O2 (NCA), FePO4 (FP), Mn0.8Fe0.2PO4 (MFP), hydrothermally synthesized VOPO4, LiVOPO4 and electrochemically lithiated Li2VOPO4 is investigated by differential scanning calorimetry (DSC) and thermogravimetric analysis, coupled with mass spectrometry (TGA-MS). The thermal stability is found in the order: NCA< VOPO4< MFP< FP=LiVOPO4=Li2VOPO4. Sealed capsule high pressure experiments show a phase transformation of VOPO4 → HVOPO4 → H2VOPO4 when VOPO4 reacts with electrolyte (1 M LiPF6 in EC: DMC=1:1) between 200 and 300 °C. Finally, we characterize the lithium storage and release mechanism of V2O5 aerogels by x-ray photoelectron spectroscopy (XPS). We study the

  20. Synthesis of hierarchical porous honeycomb carbon for lithium-sulfur battery cathode with high rate capability and long cycling stability

    International Nuclear Information System (INIS)

    Qu, Yaohui; Zhang, Zhian; Zhang, Xiahui; Ren, Guodong; Wang, Xiwen; Lai, Yanqing; Liu, Yexiang; Li, Jie

    2014-01-01

    Highlights: • A novel HPHC was prepared by a simple template process. • The HPHC as matrix to load sulfur for Lithium-Sulfur battery cathodes. • S-HPHC cathode shows high rate capability and long cycling stability. • The sulfur-HPHC composite presents electrochemical stability up to 300 cycles at 1.5 C. - Abstract: Sulfur has a high specific capacity of 1675 mAh g −1 as lithium battery cathode, but its rapid capacity fading due to polysulfides dissolution presents a significant challenge for practical applications. Here we report a novel hierarchical porous honeycomb carbon (HPHC) for lithium-sulfur battery cathode with effective trapping of polysulfides. The HPHC was prepared by a simple template process, and a sulfur-carbon composite based on HPHC was synthesized for lithium-sulfur batteries by a melt-diffusion method. It is found that the elemental sulfur was dispersed inside the three-dimensionally hierarchical pores of HPHC based on the analyses. Electrochemical tests reveal that the sulfur-HPHC composite shows high rate capability and long cycling stability as cathode materials. The sulfur-HPHC composite with sulfur content of 66.3 wt% displays an initial discharge capacity of 923 mAh g −1 and a reversible discharge capacity of 564 mAh g −1 after 100 cycles at 2 C charge-discharge rate. In particular, the sulfur-HPHC composite presents a long term cycling stability up to 300 cycles at 1.5 C. The results illustrate that the electrochemical reaction constrained inside the interconnected macro/meso/micropores of HPHC would be the dominant factor for the excellent high rate capability and long cycling stability of the sulfur cathode, and the three-dimensionally honeycomb carbon network would be a promising carbon matrix structure for lithium-sulfur battery cathode

  1. Investigations of the Electrochemical Stability of Aqueous Electrolytes for Lithium Battery Applications

    KAUST Repository

    Wessells, Colin

    2010-01-01

    The electrolytic stability windows of several aqueous electrolytes were investigated by a constant current method. The electrode potential range depended upon the value of the imposed current. The magnitude of this behavior varied with the salt solution, its concentration, and pH of the electrolyte. At a leakage current density of 50 μA/cm2, a 5 M solution of LiNO3 had an electrolytic window of 2.3 V, spanning from -0.55 to 1.75 V with respect to the standard hydrogen electrode. These results demonstrate the feasibility of operating lithium batteries at voltages appreciably above the theoretical decomposition voltage of water. © 2010 The Electrochemical Society.

  2. Ferroelectric domain inversion and its stability in lithium niobate thin film on insulator with different thicknesses

    Energy Technology Data Exchange (ETDEWEB)

    Shao, Guang-hao; Bai, Yu-hang; Cui, Guo-xin; Li, Chen; Qiu, Xiang-biao; Wu, Di; Lu, Yan-qing, E-mail: yqlu@nju.edu.cn [National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093 (China); Geng, De-qiang [Jinan Jingzheng Electronics Co., Ltd., Jinan 250100 (China)

    2016-07-15

    Ferroelectric domain inversion and its effect on the stability of lithium niobate thin films on insulator (LNOI) are experimentally characterized. Two sets of specimens with different thicknesses varying from submicron to microns are selected. For micron thick samples (∼28 μm), domain structures are achieved by pulsed electric field poling with electrodes patterned via photolithography. No domain structure deterioration has been observed for a month as inspected using polarizing optical microscopy and etching. As for submicron (540 nm) films, large-area domain inversion is realized by scanning a biased conductive tip in a piezoelectric force microscope. A graphic processing method is taken to evaluate the domain retention. A domain life time of 25.0 h is obtained and possible mechanisms are discussed. Our study gives a direct reference for domain structure-related applications of LNOI, including guiding wave nonlinear frequency conversion, nonlinear wavefront tailoring, electro-optic modulation, and piezoelectric devices.

  3. GSK-3β inhibition by lithium confers resistance to chemotherapy-induced apoptosis through the repression of CD95 (Fas/APO-1) expression

    International Nuclear Information System (INIS)

    Beurel, Eleonore; Kornprobst, Michel; Blivet-Van Eggelpoel, Marie-Jose; Ruiz-Ruiz, Carmen; Cadoret, Axelle; Capeau, Jacqueline; Desbois-Mouthon, Christele

    2004-01-01

    Lithium exerts neuroprotective actions that involve the inhibition of glycogen synthase kinase-3β (GSK-3β). Otherwise, recent studies suggest that sustained GSK-3β inhibition is a hallmark of tumorigenesis. In this context, the present study was undertaken to examine whether lithium modulated cancer cell sensitivity to apoptosis induced by chemotherapy agents. We observed that, in different human cancer cell lines, lithium significantly reduced etoposide- and camptothecin-induced apoptosis. In HepG2 cells, lithium repressed drug induction of CD95 expression and clustering at the cell surface as well as caspase-8 activation. Lithium acted through deregulation of GSK-3β signaling since (1) it provoked a rapid and sustained phosphorylation of GSK-3β on the inhibitory serine 9 residue; (2) the GSK-3β inhibitor SB-415286 mimicked lithium effects by repressing drug-induced apoptosis and CD95 membrane expression; and (3) lithium promoted the disruption of nuclear GSK-3β/p53 complexes. Moreover, the overexpression of an inactivated GSK-3β mutant counteracted the stimulatory effects of etoposide and camptothecin on a luciferase reporter plasmid driven by a p53-responsive sequence from the CD95 gene. In conclusion, we provide the first evidence that lithium confers resistance to apoptosis in cancer cells through GSK-3β inhibition and subsequent repression of CD95 gene expression. Our study also highlights the concerted action of GSK-3β and p53 on CD95 gene expression

  4. Present understanding of the stability of Li-stuffed garnets with moisture, carbon dioxide, and metallic lithium

    Science.gov (United States)

    Hofstetter, Kyle; Samson, Alfred Junio; Narayanan, Sumaletha; Thangadurai, Venkataraman

    2018-06-01

    Fast lithium-ion conducting garnet-type metal oxides are promising membranes for next-generation all-solid-state Li batteries and beyond Li-ion batteries, including Li-air and Li-S batteries, due to their high total Li-ion conductivity and excellent chemical stability against reaction with elemental Li. Several studies have been reported on structure-chemical composition-ionic conductivity property in Li-stuffed garnet-type metal oxides. Here, an overview of the chemical and electrochemical stability of lithium-based garnets against moisture/humidity, aqueous solutions, carbon dioxide, sulfur, and metallic lithium are analyzed. Moisture and aqueous stability studies focus on understanding the crystal structure stability, the proton exchange capacity as a function of Li content in Li-stuffed garnets, and how the protonated species affect the crystal structure and mass transport properties. H+/Li+ exchange was found to be in the range of 2-100%. Stability concerning Li-ion conductivity and morphology under carbon dioxide are discussed. Interfacial chemical stability with lithium metal characterized by electrochemical stability window, Li dendrite formation and area specific resistance (ASR) for the reaction Li ⇌ Li+ +e- are presented. Recent attempts to suppress dendrite formation and to reduce ASR via surface modification are also highlighted. Li and Li-stuffed garnet interface ASR values are shown to be as high as >2000 Ω cm2 and as low as 1 Ω cm2 at room temperature for surface modified Li-stuffed samples. Furthermore, recent studies on Li-S battery utilizing chemically stable Li - garnet electrolyte are also discussed.

  5. A Stabilized Demethoxyviridin Derivative Inhibits PI3 kinase

    Science.gov (United States)

    Yuan, Hushan; Pupo, Monica T.; Blois, Joe; Smith, Adam; Weissleder, Ralph; Clardy, Jon; Josephson, Lee

    2009-01-01

    The viridins like demethoxyviridin (Dmv) and wortmannin (Wm) are nanomolar inhibitors of the PI3 kinases, a family of enzymes that play key roles in a host of regulatory processes. Central to the use of these compounds to investigate the role of PI3 kinase in biological systems, or as scaffolds for drug development, are the interrelated issues of stability, chemical reactivity, and bioactivity as inhibitors of PI3 kinase. We found that Dmv was an even more potent inhibitor of PI3 kinase than Wm. However, Dmv was notably less stable than Wm in PBS, with a half-life of 26 min vs Wm’s half-life of 3470 min. Dmv, like Wm, disappeared in culture media with a half-life of less than 1 min. To overcome Dmv’s instability, it was esterified at the C1 position, and then reacted with glycine at the C20 position. The resulting Dmv derivative, termed SA-DmvC20-Gly had a half-life of 218 min in PBS and 64 min in culture media. SA-DmvC20-Gly underwent an exchange reaction at the C20 position with N-acetyl lysine in a manner similar to a WmC20 derivative, WmC20-Proline. SA-DmvC20-Gly inhibited PI3 kinase with an IC50 of 44 nM, compared to Wm’s IC50 of 12 nM. These results indicate that the stability of Dmv can be manipulated by reactions at the C1 and C20 positions, while substantially maintaining its ability to inhibit PI3 kinase. Our results indicate it may be possible to obtain stabilized Dmv derivatives for use as PI3 kinase inhibitors in biological systems. PMID:19523825

  6. Stability of high-speed lithium sheet jets for the neutron source in Boron Neutron Capture Therapy (BNCT)

    International Nuclear Information System (INIS)

    Nakagawa, Masamichi; Takahashi, Minoru; Aritomi, Masanori; Kobayashi, Toru

    2014-01-01

    The stability of high-speed liquid lithium sheet jets was analytically studied for the neutron source in Boron Neutron Capture Therapy (BNCT), which makes cancers and tumors curable with cell-level selections and hence high QOL. The object of our research is to realize the thin and high-speed plane sheet jets of liquid lithium in a high-vacuum as an accelerator target. Linear analysis approach is made to the stability on thin plane sheet jets of liquid lithium in a high-vacuum, and then our analytical results were compared with the previous experimental ones. We proved that the waves of surface tension on thin lithium sheet jets in a high-vacuum are of supercritical flows and neutral stable under about 17.4 m/s in flow velocity and that the fast non-dispersive anti-symmetric waves are more significant than the very slow dispersive symmetric waves. We also formulated the equation of shrinking angle in isosceles-triangularly or isosceles-trapezoidal shrinking sheet jets corresponding to the Mach angle of supersonic gas flows. This formula states universally the physical meaning of Weber number of sheet jets on the wave of surface tension in supercritical flows. We obtained satisfactory prospects (making choice of larger flow velocity U and larger thickness of sheet a) to materialize a liquid target of accelerator in BNCT. (author)

  7. Acquisition of Co metal from spent lithium-ion battery using emulsion liquid membrane technology and emulsion stability test

    Science.gov (United States)

    Yuliusman; Wulandari, P. T.; Amiliana, R. A.; Huda, M.; Kusumadewi, F. A.

    2018-03-01

    Lithium-ion batteries are the most common type to be used as energy source in mobile phone. The amount of lithium-ion battery wastes is approximated by 200 – 500 ton/year. In one lithium-ion battery, there are 5 – 20% of cobalt metal, depend on the manufacturer. One of the way to recover a valuable metal from waste is leaching process then continued with extraction, which is the aim of this study. Spent lithium-ion batteries will be characterized with EDX and AAS, the result will show the amount of cobalt metal with form of LiCoO2 in the cathode. Hydrochloric acid concentration used is 4 M, temperature 80°C, and reaction time 1 hour. This study will discuss the emulsion stability test on emulsion liquid membrane. The purpose of emulsion stability test in this study was to determine optimum concentration of surfactant and extractant to produce a stable emulsion. Surfactant and extractant used were SPAN 80 and Cyanex 272 respectively with both concentrations varied. Membrane and feed phase ratios used in this experiment was 1 : 2. The optimum results of this study were SPAN 80 concentrations of 10% w/v and Cyanex 272 0.7 M.

  8. Lithium chloride increases the production of amyloid-beta peptide independently from its inhibition of glycogen synthase kinase 3.

    Science.gov (United States)

    Feyt, Christine; Kienlen-Campard, Pascal; Leroy, Karelle; N'Kuli, Francisca; Courtoy, Pierre J; Brion, Jean-Pierre; Octave, Jean-Noël

    2005-09-30

    Glycogen synthase kinase 3 (GSK3) is able to phosphorylate tau at many sites that are found to be phosphorylated in paired helical filaments in Alzheimer disease. Lithium chloride (LiCl) efficiently inhibits GSK3 and was recently reported to also decrease the production of amyloid-beta peptide (Abeta) from its precursor, the amyloid precursor protein. Therefore, lithium has been proposed as a combined therapeutic agent, inhibiting both the hyperphosphorylation of tau and the production of Abeta. Here, we demonstrate that the inhibition of GSK3 by LiCl induced the nuclear translocation of beta-catenin in Chinese hamster ovary cells and rat cultured neurons, in which a decrease in tau phosphorylation was observed. In both cellular models, a nontoxic concentration of LiCl increased the production of Abeta by increasing the beta-cleavage of amyloid precursor protein, generating more substrate for an unmodified gamma-secretase activity. SB415286, another GSK3 inhibitor, induced the nuclear translocation of beta-catenin and slightly decreased Abeta production. It is concluded that the LiCl-mediated increase in Abeta production is not related to GSK3 inhibition.

  9. Origin of stabilization and destabilization in solid-state redox reaction of oxide ions for lithium-ion batteries.

    Science.gov (United States)

    Yabuuchi, Naoaki; Nakayama, Masanobu; Takeuchi, Mitsue; Komaba, Shinichi; Hashimoto, Yu; Mukai, Takahiro; Shiiba, Hiromasa; Sato, Kei; Kobayashi, Yuki; Nakao, Aiko; Yonemura, Masao; Yamanaka, Keisuke; Mitsuhara, Kei; Ohta, Toshiaki

    2016-12-23

    Further increase in energy density of lithium batteries is needed for zero emission vehicles. However, energy density is restricted by unavoidable theoretical limits for positive electrodes used in commercial applications. One possibility towards energy densities exceeding these limits is to utilize anion (oxide ion) redox, instead of classical transition metal redox. Nevertheless, origin of activation of the oxide ion and its stabilization mechanism are not fully understood. Here we demonstrate that the suppression of formation of superoxide-like species on lithium extraction results in reversible redox for oxide ions, which is stabilized by the presence of relatively less covalent character of Mn 4+ with oxide ions without the sacrifice of electronic conductivity. On the basis of these findings, we report an electrode material, whose metallic constituents consist only of 3d transition metal elements. The material delivers a reversible capacity of 300 mAh g -1 based on solid-state redox reaction of oxide ions.

  10. Origin of stabilization and destabilization in solid-state redox reaction of oxide ions for lithium-ion batteries

    Science.gov (United States)

    Yabuuchi, Naoaki; Nakayama, Masanobu; Takeuchi, Mitsue; Komaba, Shinichi; Hashimoto, Yu; Mukai, Takahiro; Shiiba, Hiromasa; Sato, Kei; Kobayashi, Yuki; Nakao, Aiko; Yonemura, Masao; Yamanaka, Keisuke; Mitsuhara, Kei; Ohta, Toshiaki

    2016-01-01

    Further increase in energy density of lithium batteries is needed for zero emission vehicles. However, energy density is restricted by unavoidable theoretical limits for positive electrodes used in commercial applications. One possibility towards energy densities exceeding these limits is to utilize anion (oxide ion) redox, instead of classical transition metal redox. Nevertheless, origin of activation of the oxide ion and its stabilization mechanism are not fully understood. Here we demonstrate that the suppression of formation of superoxide-like species on lithium extraction results in reversible redox for oxide ions, which is stabilized by the presence of relatively less covalent character of Mn4+ with oxide ions without the sacrifice of electronic conductivity. On the basis of these findings, we report an electrode material, whose metallic constituents consist only of 3d transition metal elements. The material delivers a reversible capacity of 300 mAh g−1 based on solid-state redox reaction of oxide ions. PMID:28008955

  11. Strategies to curb structural changes of lithium/transition metal oxide cathode materials & the changes’ effects on thermal & cycling stability

    Science.gov (United States)

    Xiqian, Yu; Enyuan, Hu; Seongmin, Bak; Yong-Ning, Zhou; Xiao-Qing, Yang

    2016-01-01

    Structural transformation behaviors of several typical oxide cathode materials during a heating process are reviewed in detail to provide in-depth understanding of the key factors governing the thermal stability of these materials. We also discuss applying the information about heat induced structural evolution in the study of electrochemically induced structural changes. All these discussions are expected to provide valuable insights for designing oxide cathode materials with significantly improved structural stability for safe, long-life lithium ion batteries, as the safety of lithium-ion batteries is a critical issue; it is widely accepted that the thermal instability of the cathodes is one of the most critical factors in thermal runaway and related safety problems. Project supported by the U.S. Department of Energy, the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies (Grant No. DE-SC0012704).

  12. Improvement of high voltage cycling performance and thermal stability of lithium-ion cells by use of a thiophene additive

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ki-Soo; Sun, Yang-Kook; Kim, Dong-Won [Department of Chemical Engineering, Hanyang University, Seungdong-gu, Seoul 133-791 (Korea); Noh, Jaegeun [Department of Chemistry, Hanyang University, Seungdong-gu, Seoul 133-791 (Korea); Song, Kwang Soup [Advanced Medical Device Center, Korea Electrotechnology, Research Institute, Ansan, Gyeonggi-do 426-170 (Korea)

    2009-10-15

    This study demonstrates that the addition of thiophene improves the cycle life of lithium-ion cells at high voltage. Electrochemical impedance spectroscopy results suggest that addition of thiophene significantly suppresses the increase of the charge transfer resistance that occurs during cycling up to high voltage. Differential scanning calorimetric studies showed that the thermal stability of fully charged LiCoO{sub 2} cathode was also enhanced in the presence of thiophene. (author)

  13. Hot corrosion behavior of plasma-sprayed partially stabilized zirconia coatings in a lithium molten salt

    International Nuclear Information System (INIS)

    Cho, Soo Haeng; Hong, Sun Seok; Kang, Dae Seong; Park, Byung Heong; Hur, Jin Mok; Lee, Han Soo

    2008-01-01

    The electrolytic reduction of spent oxide fuel involves the liberation of oxygen in a molten LiCl electrolyte, which results in a chemically aggressive environment that is too corrosive for typical structural materials. It is essential to choose the optimum material for the process equipment handling molten salt. IN713LC is one of the candidate materials proposed for application in electrolytic reduction process. In this study, Yttria-Stabilized Zirconia (YSZ) top coat was applied to a surface of IN713LC with an aluminized metallic bond coat by an optimized plasma spray process, and were investigated the corrosion behavior at 675 .deg. C for 216 hours in the molten salt LiCl-Li 2 O under an oxidizing atmosphere. The as-coated and tested specimens were examined by OM, SEM/EDS and XRD, respectively. The bare superalloy reveals obvious weight loss, and the corrosion layer formed on the surface of the bare superalloy was spalled due to the rapid scale growth and thermal stress. The top coatings showed a much better hot-corrosion resistance in the presence of LiCl-Li 2 O molten salt when compared to those of the uncoated superalloy and the aluminized bond coatings. These coatings have been found to be beneficial for increasing to the hot-corrosion resistance of the structural materials for handling high temperature lithium molten salts

  14. WS_2-Super P nanocomposites anode material with enhanced cycling stability for lithium ion batteries

    International Nuclear Information System (INIS)

    Huang, Jianfeng; Wang, Xin; Li, Jiayin; Cao, Liyun; Xu, Zhanwei; Wei, Hao

    2016-01-01

    WS_2-Super P nanocomposites are prepared for lithium battery anodes by a simple two-step process consisting of hydrothermal and sulfide reduction reactions. The addition of Super P (50 nm) as a conductive addictive is beneficial for decreasing the size of nanocomposites and improving their dispersibility, which could accelerate the insertion/extraction reaction between WS_2-Super P nanocomposite electrode and electrolyte. Compared to the pure WS_2, the WS_2-Super P nanocomposites exhibit highly improved electrochemical performance with initial discharge capacity of 421 mAh g"−"1, high initial Coulombic efficiency (81%), low charge transfer impedance (53 Ω) and good retentive capacity of 389 mAh g"−"1 after 200th cycles. The much improved electrochemical performance can be attributed to the incorporation of Super P, which facilitates the interface charge transfer and Li"+ diffusion. - Graphical abstract: The addition of Super P (50 nm) is beneficial for decreasing the size of WS_2-Super P nanocomposites, improving their dispersibility, accelerating the Li"+ transportation and the insertion/extraction reaction. The WS_2-Super P nanocomposites show higher cycling stability and rate performances than pure WS_2. - Highlights: • WS_2-Super P nanocomposites are prepared for LIBs anodes with good performances. • Super P as a conductive addictive is added into the WS_2 nanosheets. • The incorporation of Super P is beneficial for decreasing the size of composites. • Super P were embedded in WS_2 nanosheets for improving their dispersibility.

  15. The use of lithium compounds for inhibiting alkali-aggregate reaction effects in pavement structures

    Science.gov (United States)

    Zapała-Sławeta, J.; Owsiak, Z.

    2018-05-01

    Internal corrosion of concrete caused by the reaction of reactive aggregate with sodium and potassium hydroxides from cement is a threat to the durability of concrete pavements. Traditional methods for reducing the negative effects of the reaction include the use of unreactive aggregates, low alkali cements, mineral additives or chemical admixtures, incorporated during mixing. Lowering the relative humidity of the concrete below 80% is another measure for limiting the destructive reaction. The incorporation of lithium compounds, in particular lithium nitrate and lithium hydroxide, to the concrete mix is a method of limiting alkali-silica reaction effects. The challenge is to reduce the negative effects of aggregate reactivity in members in which the reaction has occurred because the aggregate happened to be reactive. The paper presents ways of limiting the deterioration of ASR-affected concrete in road pavements and other forms of transportation infrastructure, mainly through the use of lithium compounds, i.e. lithium nitrate. Impregnation methods that allow the penetration of lithium ions into the concrete structure were characterized, as was the effectiveness of the solutions applied.

  16. Regulating Cortical Oscillations in an Inhibition-Stabilized Network.

    Science.gov (United States)

    Jadi, Monika P; Sejnowski, Terrence J

    2014-04-21

    Understanding the anatomical and functional architecture of the brain is essential for designing neurally inspired intelligent systems. Theoretical and empirical studies suggest a role for narrowband oscillations in shaping the functional architecture of the brain through their role in coding and communication of information. Such oscillations are ubiquitous signals in the electrical activity recorded from the brain. In the cortex, oscillations detected in the gamma range (30-80 Hz) are modulated by behavioral states and sensory features in complex ways. How is this regulation achieved? Although several underlying principles for the genesis of these oscillations have been proposed, a unifying account for their regulation has remained elusive. In a network of excitatory and inhibitory neurons operating in an inhibition-stabilized regime, we show that strongly superlinear responses of inhibitory neurons facilitate bidirectional regulation of oscillation frequency and power. In such a network, the balance of drives to the excitatory and inhibitory populations determines how the power and frequency of oscillations are modulated. The model accounts for the puzzling increase in their frequency with the salience of visual stimuli, and a decrease with their size. Oscillations in our model grow stronger as the mean firing level is reduced, accounting for the size dependence of visually evoked gamma rhythms, and suggesting a role for oscillations in improving the signal-to-noise ratio (SNR) of signals in the brain. Empirically testing such predictions is still challenging, and implementing the proposed coding and communication strategies in neuromorphic systems could assist in our understanding of the biological system.

  17. In Situ formation of pentafluorophosphate benzimidazole anion stabilizes high-temperature performance of lithium-ion batteries

    International Nuclear Information System (INIS)

    Pradanawati, Sylvia Ayu; Wang, Fu-Ming; Rick, John

    2014-01-01

    Highlights: • A new pentafluorophosphate benzimidazole anion was formed by Lewis acid-base reaction. • This pentafluorophosphate benzimidazole anion is fabricated with the benzimidazole anion and PF 5 . • This pentafluorophosphate benzimidazole anion avoids the ominous side reactions that PF 5 reacts SEI to form LiF and HF at high temperature. • The additional pentafluorophosphate benzimidazole anion formation well maintains the battery performance at 60 °C measurement compares to the electrolyte only with contains the salt, LiPF 6 . - Abstract: Lithium salts play a critical role in initiating electrochemical reactions in Li-ion batteries. Single Li ions dissociate from bulk-salt and associate with carbonates to form a solid electrolyte interface (SEI) during the first charge-discharge of the battery. SEI formation and the chemical stability of salt must both be controlled and optimized to minimize irreversible reactions in SEI formation and to suppress the decomposition of the salt at high temperatures. This study synthesizes a new benzimidazole-based anion in the electrolyte. This anion, pentafluorophosphate benzimidazole, results from a Lewis acid-base reaction between the benzimidazole anion and PF 5 . The new pentafluorophosphate benzimidazole anion inhibits the decomposition of LiPF 6 by inhibiting PF 5 side reactions, which degrade the SEI, and lead to the formation of LiF and HF at high temperatures. In addition, the use of the pentafluorophosphate benzimidazole anion results in the formation of a modified SEI that is able to modify the battery's performance. Cyclic voltammetry, scanning electron microscopy, differential scanning calorimetry, electrochemical impedance spectroscopy, as well as charge-discharge and X-ray photoelectron spectroscopy measurements have been used to characterize the materials in this study. The formation of the pentafluorophosphate benzimidazole anion in the electrolyte caused a 14% decrease in the activation energy

  18. Effects of Nanofiber Architecture and Antimony Doping on the Performance of Lithium-Rich Layered Oxides: Enhancing Lithium Diffusivity and Lattice Oxygen Stability.

    Science.gov (United States)

    Yu, Ruizhi; Zhang, Zhijuan; Jamil, Sidra; Chen, Jiancheng; Zhang, Xiaohui; Wang, Xianyou; Yang, Zhenhua; Shu, Hongbo; Yang, Xiukang

    2018-05-07

    Li-rich layered oxides (LLOs) with high specific capacities are favorable cathode materials with high-energy density. Unfortunately, the drawbacks of LLOs such as oxygen release, low conductivity, and depressed kinetics for lithium ion transport during cycling can affect the safety and rate capability. Moreover, they suffer severe capacity and voltage fading, which are major challenges for the commercializing development. To cure these issues, herein, the synthesis of high-performance antimony-doped LLO nanofibers by an electrospinning process is put forward. On the basis of the combination of theoretical analyses and experimental approaches, it can be found that the one-dimensional porous micro-/nanomorphology is in favor of lithium-ion diffusion, and the antimony doping can expand the layered phase lattice and further improve the lithium ion diffusion coefficient. Moreover, the antimony doping can decrease the band gap and contribute extra electrons to O within the Li 2 MnO 3 phase, thereby enhancing electronic conductivity and stabilizing lattice oxygen. Benefitting from the unique architecture, reformative electronic structure, and enhanced kinetics, the antimony-doped LLO nanofibers possess a high reversible capacity (272.8 mA h g -1 ) and initial coulombic efficiency (87.8%) at 0.1 C. Moreover, the antimony-doped LLO nanofibers show excellent cycling performance, rate capability, and suppressed voltage fading. The capacity retention can reach 86.9% after 200 cycles at 1 C, and even cycling at a high rate of 10 C, a capacity of 172.3 mA h g -1 can still be obtained. The favorable results can assist in developing the LLO material with outstanding electrochemical properties.

  19. Reaction mechanism and thermal stability study on cathode materials for rechargeable lithium ion batteries

    Science.gov (United States)

    Fang, Jin

    Olivine-type lithium iron phosphate has been a very promising cathode material since it was proposed by Padhi in 1997, low-cost, environmental friendly and stable structure ensure the commercialization of LiFePO 4. In LiFePO4, during charge and discharge process, Li ions are transferred between two phases, Li-poor LialphaFePO 4 and Li-rich Li1-betaFePO4, which implies a significant energy barrier for the new phase nucleation and interface growth, contrary to the fast reaction kinetics experimentally observed. The understanding of the lithiation and delithiation mechanism of this material has spurred a lot of research interests. Many theory models have been proposed to explain the reaction mechanism of LiFePO4, among them, the single phase model claims that the reaction goes through a metastable single phase, and the over potential required to form this single phase is about 30mV, so we studied the driving force to transport lithium ions between Lialpha FePO4 and Li1-betaFePO4 phases and compared the particle sizes effect. Experiment results shows that, the nano-sized (30nm) LiFePO4 has wider solid solution range, lower solid solution formation temperature and faster kinetics than normal LiFePO4 (150nm). Also a 20mV over potential was observed in both samples, either after relaxing the FePO4/LiFePO4 system to equilibrium or transport lithium from one side to the other side, the experiment result is corresponding to theoretical calculation; indicates the reaction might go through single-phase reaction mechanism. The energy and power density of lithium ion battery largely depend on cathode materials. Mn substituted LiFePO4 has a higher voltage than LiFePO4, which results a higher theoretical energy density. Safety issue is one of the most important criterions for batteries, since cathode materials need to maintain stable structure during hundreds of charge and discharge cycles and ranges of application conditions. We have reported that iron-rich compound o-Fe1-yMnyPO4

  20. High pressure stability of lithium metatitanate and metazirconate: Insight from experiments & ab-initio calculations

    Science.gov (United States)

    Chitnis, Abhishek; Chakraborty, B.; Tripathi, B. M.; Tyagi, A. K.; Garg, Nandini

    2018-02-01

    Lithium metatitanate (LTO) and lithium metazirconate (LZO) are lithium rich ceramics which can be used as tritium breeder materials for thermonuclear reactors. In-situ x-ray diffraction and ab-initio studies at high pressure show that LTO has a higher bulk modulus than that of LZO. In fact these studies indicate that they are the least compressible of the known lithium rich ceramics like Li2O or Li4SiO4, which are potential candidates for blanket materials. These studies show that the TiO6 octahedra are responsible for the higher bulk modulus of LTO when compared to that of LZO. It has also been shown that the compressibility and distortion of the softer LiO6 octahedra can be controlled by altering the stacking sequence of the more rigid covalently bonded octahedra. This knowledge can be used by chemists to design new lithium based ceramics with higher bulk modulus. It was observed that LTO was stable upto 34 GPa. Ab initio DFT calculations helped to understand the anisotropy in compressibility of both LZO and LTO. This study also shows, that even though the empirical potentials developed by Vijaykumar et al. successfully determine the ambient pressure structure of lithium metatitanate, they cannot be used at non ambient conditions like high pressure [1].

  1. Lithium chloride ameliorates learning and memory ability and inhibits glycogen synthase kinase-3 beta activity in a mouse model of fragile X syndrome

    Institute of Scientific and Technical Information of China (English)

    Shengqiang Chen; Xuegang Luo; Quan Yang; Weiwen Sun; Kaiyi Cao; Xi Chen; Yueling Huang; Lijun Dai; Yonghong Yi

    2011-01-01

    In the present study, Fmr1 knockout mice (KO mice) were used as the model for fragile X syndrome. The results of step-through and step-down tests demonstrated that Fmr1 KO mice had shorter latencies and more error counts, indicating a learning and memory disorder. After treatment with 30, 60, 90, 120, or 200 mg/kg lithium chloride, the learning and memory abilities of the Fmr1 KO mice were significantly ameliorated, in particular, the 200 mg/kg lithium chloride treatment had the most significant effect. Western blot analysis showed that lithium chloride significantly enhanced the expression of phosphorylated glycogen synthase kinase 3 beta, an inactive form of glycogen synthase kinase 3 beta, in the cerebral cortex and hippocampus of the Fmr1 KO mice. These results indicated that lithium chloride improved learning and memory in the Fmr1 KO mice, possibly by inhibiting glycogen synthase kinase 3 beta activity.

  2. Electrochemical Evaluation of Corrosion Inhibiting Layers Formed in a Defect from Lithium-Leaching Organic Coatings

    NARCIS (Netherlands)

    Visser, P.; Meeusen, M.; Gonzalez Garcia, Y.; Terryn, H.A.; Mol, J.M.C.

    2017-01-01

    This work presents the electrochemical evaluation of protective layers generated in a coating defect from lithium-leaching organic coatings on AA2024-T3 aluminum alloys as a function of neutral salt spray exposure time. Electrochemical impedance spectroscopy was used to study the electrochemical

  3. Spherical nano-SnSb/MCMB/carbon core–shell composite for high stability lithium ion battery anodes

    International Nuclear Information System (INIS)

    Li, Juan; Ru, Qiang; Hu, Shejun; Sun, Dawei; Zhang, Beibei; Hou, Xianhua

    2013-01-01

    A novel multi-step design of spherical nano-SnSb/MCMB/carbon core–shell composite for high stability and long life lithium battery electrodes has been introduced. The core–shell composite was successfully synthesized via co-precipitation and subsequent pyrolysis. The resultant composite sphere consisted of nanosized SnSb alloy and mesophase carbon microbeads (MCMB, 10 μm) embedded in a carbon matrix pyrolyzed from glucose and petroleum pitch, in which the MCMB was treated to be the inner core to offer mechanical support and efficient electron conducting pathway. The composite material exhibited a unique stability with a retention discharge capacity rate of 83.52% with reversible capacity of 422.5 mAh g −1 after 100 cycles and a high initial coulombic efficiency of 83.53%. The enhanced electrochemical performance is attributed to the structural stability of the composite sphere during the charging–discharging process

  4. Spinel-structured surface layers for facile Li ion transport and improved chemical stability of lithium manganese oxide spinel

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hae Ri [Center for Energy Convergence Research, Korea Institute of Science Technology, Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul 136-791 (Korea, Republic of); Department of Chemical and Biological Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 136-701 (Korea, Republic of); Seo, Hyo Ree; Lee, Boeun; Cho, Byung Won [Center for Energy Convergence Research, Korea Institute of Science Technology, Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul 136-791 (Korea, Republic of); Lee, Kwan-Young [Department of Chemical and Biological Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 136-701 (Korea, Republic of); Oh, Si Hyoung, E-mail: sho74@kist.re.kr [Center for Energy Convergence Research, Korea Institute of Science Technology, Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul 136-791 (Korea, Republic of)

    2017-01-15

    Graphical abstract: Strategically-designed spinel-structured nano-scale surface layer, LiM{sub x}Mn{sup IV}{sub 1−x}O{sub 4}, featuring a high Li{sup +} ion conductivity and a good chemical stability was applied on Al-doped LiMn{sub 2}O{sub 4} spinel for the drastic improvement of the electrochemical performance at the elevated temperature as a promising cathode material for lithium rechargeable batteries. - Highlights: • Spinel-structured surface layer with a high Li-ion conductivity and a good chemical stability was prepared. • Simple wet process was developed to apply nano-scale surface layer on aluminum doped lithium manganese oxide spinel. • The properties of nano-scale surface layer were characterized by analytical tools including GITT, HR-TEM and XAS. • Materials with surface coating layer exhibit an excellent electrochemical performance at the elevated temperature. - Abstract: Li-ion conducting spinel-structured oxide layer with a manganese oxidation state close to being tetravalent was prepared on aluminum-doped lithium manganese oxide spinel for improving the electrochemical performances at the elevated temperatures. This nanoscale surface layer provides a good ionic conduction path for lithium ion transport to the core and also serves as an excellent chemical barrier for protecting the high-capacity core material from manganese dissolution into the electrolyte. In this work, a simple wet process was employed to prepare thin LiAlMnO{sub 4} and LiMg{sub 0.5}Mn{sub 1.5}O{sub 4} layers on the surface of LiAl{sub 0.1}Mn{sub 1.9}O{sub 4}. X-ray absorption studies revealed an oxidation state close to tetravalent manganese on the surface layer of coated materials. Materials with these surface coating layers exhibited excellent capacity retentions superior to the bare material, without undermining the lithium ion transport characteristics and the high rate performances.

  5. Role of perfluoropolyether-based electrolytes in lithium metal batteries: Implication for suppressed Al current collector corrosion and the stability of Li metal/electrolytes interfaces

    Science.gov (United States)

    Cong, Lina; Liu, Jia; Armand, Michel; Mauger, Alain; Julien, Christian M.; Xie, Haiming; Sun, Liqun

    2018-03-01

    The development of safe and high performance lithium metal batteries represents a major technological challenge for this new century. Historically, intrinsic instabilities of conventional liquid organic electrolytes induced battery failures and safety issues that hinder the practical utilization of advanced rechargeable lithium metal batteries. Herein, we report a multifunctional perfluoropolyether-based liquid polymer electrolyte (PFPE-MC/LiTFSI), presenting a unique "anion-solvent" interaction. This interaction optimizes the interfacial chemistry of lithium metal batteries, which effectively inhibits the corrosion of aluminum current collectors, suppresses lithium dendrite growth, and also facilitates the formation of a thin and stable SEI layer on Li anode. Even at a high current density of 0.7 mA cm-2, the lithium dendrites do not form after 1360 h of continuous operation. The LiFePO4|PFPE-MC/LiTFSI|Li cell delivers a stable cycling performance with over 99.9% columbic efficiency either at ambient temperature or high temperature, which is significantly superior to those using traditional carbonate electrolytes. In addition, PFPE-MC/LiTFSI electrolyte also possesses eye-catching properties, such as being non-flammable, non-volatile, non-hygroscopic, and existing in the liquid state between -90 °C and 200 °C, which further ensures the high safety of the lithium metal batteries, making this electrolyte promising for the development of high energy lithium metal batteries.

  6. Chemical Stability Investigations of Polyisobutylene as New Binder for Application in Lithium Air-Batteries

    International Nuclear Information System (INIS)

    Heine, Jennifer; Rodehorst, Uta; Badillo, Juan Pablo; Winter, Martin; Bieker, Peter

    2015-01-01

    ABSTRACT: The side reactions of LiO 2 , Li 2 O 2 and Li 2 O, formed during the discharge process at the cathode/electrolyte interphase, are still a main challenge of lithium-air batteries. During these reactions, polyvinylidene difluoride (PVdF), as the commonly used cathode binder material, is decomposing, leading to a shorter lifetime of the battery. In this paper, we introduced and investigated polyisobutylene (PIB), a chemically and electrochemically inert polymeric material, to substitute PVdF as binder for lithium-air batteries. Results obtained by X-ray diffraction and spectroscopic methods showed, that PIB is far more stable in the presence of O 2 − , O 2 2− as well as O 2− species compared to PVdF. This distinct inertness makes PIB a promising binder for lithium-air batteries

  7. Silver nanowires as catalytic cathodes for stabilizing lithium-oxygen batteries

    Science.gov (United States)

    Kwak, Won-Jin; Jung, Hun-Gi; Lee, Seon-Hwa; Park, Jin-Bum; Aurbach, Doron; Sun, Yang-Kook

    2016-04-01

    Silver nanowires have been investigated as a catalytic cathode material for lithium-oxygen batteries. Their high aspect ratio contributes to the formation of a corn-shaped layer structure of the poorly crystalline lithium peroxide (Li2O2) nanoparticles produced by oxygen reduction in poly-ether based electrolyte solutions. The nanowire morphology seems to provide the necessary large contact area and facile electron supply for a very effective oxygen reduction reaction. The unique morphology and structure of the Li2O2 deposits and the catalytic nature of the silver nano-wires promote decomposition of Li2O2 at low potentials (below 3.4 V) upon the oxygen evolution. This situation avoids decomposition of the solution species and oxidation of the electrodes during the anodic (charge) reactions, leading to high electrical efficiently of lithium-oxygen batteries.

  8. Stabilizing effect of resistivity towards ELM-free H-mode discharge in lithium-conditioned NSTX

    Science.gov (United States)

    Banerjee, Debabrata; Zhu, Ping; Maingi, Rajesh

    2017-07-01

    Linear stability analysis of the national spherical torus experiment (NSTX) Li-conditioned ELM-free H-mode equilibria is carried out in the context of the extended magneto-hydrodynamic (MHD) model in NIMROD. The purpose is to investigate the physical cause behind edge localized mode (ELM) suppression in experiment after the Li-coating of the divertor and the first wall of the NSTX tokamak. Besides ideal MHD modeling, including finite-Larmor radius effect and two-fluid Hall and electron diamagnetic drift contributions, a non-ideal resistivity model is employed, taking into account the increase of Z eff after Li-conditioning in ELM-free H-mode. Unlike an earlier conclusion from an eigenvalue code analysis of these equilibria, NIMROD results find that after reduced recycling from divertor plates, profile modification is necessary but insufficient to explain the mechanism behind complete ELMs suppression in ideal two-fluid MHD. After considering the higher plasma resistivity due to higher Z eff, the complete stabilization could be explained. A thorough analysis of both pre-lithium ELMy and with-lithium ELM-free cases using ideal and non-ideal MHD models is presented, after accurately including a vacuum-like cold halo region in NIMROD to investigate ELMs.

  9. Improving cyclic stability of lithium nickel manganese oxide cathode for high voltage lithium ion battery by modifying electrode/electrolyte interface with electrolyte additive

    International Nuclear Information System (INIS)

    Li, Bin; Wang, Yaqiong; Tu, Wenqiang; Wang, Zaisheng; Xu, Mengqing; Xing, Lidan; Li, Weishan

    2014-01-01

    Highlights: • Cyclic stability of LiNi 0.5 Mn 1.5 O 4 is improved significantly by using PES as additive. • A protective SEI is formed on LiNi 0.5 Mn 1.5 O 4 due to the preferential oxidation of PES. • The SEI suppresses electrolyte decomposition and structure destruction of LiNi 0.5 Mn 1.5 O 4 . - Abstract: We report a new approach to improve the cyclic stability of lithium nickel manganese oxide (LiNi 0.5 Mn 1.5 O 4 ) cathode, in which the cathode/electrolyte interface is modified by using prop-1-ene-1, 3-sultone (PES) as an electrolyte additive. The interfacial properties of LiNi 0.5 Mn 1.5 O 4 cathode in PES-containing electrolyte have been investigated by scanning electron spectroscopy (SEM), transmission electron microscopy (TEM), thermal gravimetry (TG), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), cyclic voltammometry (CV), chronoamperometry (CA), and constant current charge/discharge test. It is found that the application of PES improves significantly the cyclic stability of LiNi 0.5 Mn 1.5 O 4 . After 400 cycles at 1C rate (1C=147 mA g −1 ), the capacity retention of LiNi 0.5 Mn 1.5 O 4 is 90% for the cell using 1.0 wt% PES, while only 49% for the cell without the additive. The characterizations from SEM, TEM, TG, XRD, and XPS confirm that the LiNi 0.5 Mn 1.5 O 4 /electrolyte interface is modified and a protective solid electrolyte interface film is formed on LiNi 0.5 Mn 1.5 O 4 particles, which prevents LiNi 0.5 Mn 1.5 O 4 from destruction and suppresses the electrolyte decomposition

  10. Effects of Imide–Orthoborate Dual-Salt Mixtures in Organic Carbonate Electrolytes on the Stability of Lithium Metal Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xing [Energy and Environment; School of Materials Science and Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, China; Zheng, Jianming [Energy and Environment; Engelhard, Mark H. [Environmental Molecular; Mei, Donghai [Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States; Li, Qiuyan [Energy and Environment; Jiao, Shuhong [Energy and Environment; Liu, Ning [Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States; State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China; Zhao, Wengao [Energy and Environment; School of Energy Research, Xiamen University, Xiamen, Fujian 361102, China; Zhang, Ji-Guang [Energy and Environment; Xu, Wu [Energy and Environment

    2018-01-09

    The effects of lithium imide and lithium orthoborate dual-salt electrolytes of different salt chemistries in carbonate solvents on the cycling stability of Li metal batteries were systematically and comparatively investigated. Two imide salts (LiTFSI and LiFSI) and two orthoborate salts (LiBOB and LiDFOB) were chosen for this study and compared with the conventional LiPF6 salt. The cycling stability of the Li metal cells with the electrolytes follows the order from good to poor as LiTFSI-LiBOB > LiTFSI-LiDFOB > LiPF6 > LiFSI-LiBOB > LiFSI-LiDFOB, indicating that LiTFSI behaves better than LiFSI and LiBOB over LiDFOB in these four dual-salt mixtures. The LiTFSI-LiBOB can effectively protect the Al substrate and form a more robust surface film on Li metal anode, while the LiFSI-LiBOB results in serious corrosion to the stainless steel cell case and a thicker and looser surface film on Li anode. Computational calculations indicate that the chemical and electrochemical stabilities also follow the order of LiTFSI-LiBOB > LiTFSI-LiDFOB > LiFSI-LiBOB > LiFSI-LiDFOB. The key findings of this work emphasize that the salt chemistry is critically important for enhancing the interfacial stability of Li metal anode and should be carefully manipulated in the development of high performance Li metal batteries.

  11. Stability of Routine Biochemical Analytes in Whole Blood and Plasma From Lithium Heparin Gel Tubes During 6-hr Storage.

    Science.gov (United States)

    Monneret, Denis; Godmer, Alexandre; Le Guen, Ronan; Bravetti, Clotilde; Emeraud, Cecile; Marteau, Anthony; Alkouri, Rana; Mestari, Fouzi; Dever, Sylvie; Imbert-Bismut, Françoise; Bonnefont-Rousselot, Dominique

    2016-09-01

    The stability of biochemical analytes has already been investigated, but results strongly differ depending on parameters, methodologies, and sample storage times. We investigated the stability for many biochemical parameters after different storage times of both whole blood and plasma, in order to define acceptable pre- and postcentrifugation delays in hospital laboratories. Twenty-four analytes were measured (Modular® Roche analyzer) in plasma obtained from blood collected into lithium heparin gel tubes, after 2-6 hr of storage at room temperature either before (n = 28: stability in whole blood) or after (n = 21: stability in plasma) centrifugation. Variations in concentrations were expressed as mean bias from baseline, using the analytical change limit (ACL%) or the reference change value (RCV%) as acceptance limit. In tubes stored before centrifugation, mean plasma concentrations significantly decreased after 3 hr for phosphorus (-6.1% [95% CI: -7.4 to -4.7%]; ACL 4.62%) and lactate dehydrogenase (LDH; -5.7% [95% CI: -7.4 to -4.1%]; ACL 5.17%), and slightly decreased after 6 hr for potassium (-2.9% [95% CI: -5.3 to -0.5%]; ACL 4.13%). In plasma stored after centrifugation, mean concentrations decreased after 6 hr for bicarbonates (-19.7% [95% CI: -22.9 to -16.5%]; ACL 15.4%), and moderately increased after 4 hr for LDH (+6.0% [95% CI: +4.3 to +7.6%]; ACL 5.17%). Based on RCV, all the analytes can be considered stable up to 6 hr, whether before or after centrifugation. This study proposes acceptable delays for most biochemical tests on lithium heparin gel tubes arriving at the laboratory or needing to be reanalyzed. © 2016 Wiley Periodicals, Inc.

  12. ESTABLISHING SUSTAINABLE US HEV/PHEV MANUFACTURING BASE: STABILIZED LITHIUM METAL POWDER, ENABLING MATERIAL AND REVOLUTIONARY TECHNOLOGY FOR HIGH ENERGY LI-ION BATTERIES

    Energy Technology Data Exchange (ETDEWEB)

    Yakovleva, Marina

    2012-12-31

    FMC Lithium Division has successfully completed the project “Establishing Sustainable US PHEV/EV Manufacturing Base: Stabilized Lithium Metal Powder, Enabling Material and Revolutionary Technology for High Energy Li-ion Batteries”. The project included design, acquisition and process development for the production scale units to 1) produce stabilized lithium dispersions in oil medium, 2) to produce dry stabilized lithium metal powders, 3) to evaluate, design and acquire pilot-scale unit for alternative production technology to further decrease the cost, and 4) to demonstrate concepts for integrating SLMP technology into the Li- ion batteries to increase energy density. It is very difficult to satisfy safety, cost and performance requirements for the PHEV and EV applications. As the initial step in SLMP Technology introduction, industry can use commercially available LiMn2O4 or LiFePO4, for example, that are the only proven safer and cheaper lithium providing cathodes available on the market. Unfortunately, these cathodes alone are inferior to the energy density of the conventional LiCoO2 cathode and, even when paired with the advanced anode materials, such as silicon composite material, the resulting cell will still not meet the energy density requirements. We have demonstrated, however, if SLMP Technology is used to compensate for the irreversible capacity in the anode, the efficiency of the cathode utilization will be improved and the cost of the cell, based on the materials, will decrease.

  13. Lithium ions induce prestalk-associated gene expression and inhibit prespore gene expression in Dictyostelium discoideum

    NARCIS (Netherlands)

    Peters, Dorien J.M.; Lookeren Campagne, Michiel M. van; Haastert, Peter J.M. van; Spek, Wouter; Schaap, Pauline

    1989-01-01

    We investigated the effect of Li+ on two types of cyclic AMP-regulated gene expression and on basal and cyclic AMP-stimulated inositol 1,4,5-trisphosphate (Ins(1,4,5)P3) levels. Li+ effectively inhibits cyclic AMP-induced prespore gene expression, half-maximal inhibition occurring at about 2mM-LiCl.

  14. Layered titanium disilicide stabilized by oxide coating for highly reversible lithium insertion and extraction.

    Science.gov (United States)

    Zhou, Sa; Simpson, Zachary I; Yang, Xiaogang; Wang, Dunwei

    2012-09-25

    The discovery of new materials has played an important role in battery technology development. Among the newly discovered materials, those with layered structures are often of particular interest because many have been found to permit highly repeatable ionic insertion and extraction. Examples include graphite and LiCoO(2) as anode and cathode materials, respectively. Here we report C49 titanium disilicide (TiSi(2)) as a new layered anode material, within which lithium ions can react with the Si-only layers. This result is enabled by the strategy of coating a thin (lithium-ion storage capacity of TiSi(2) is a result of its layered structure is expected to have major fundamental and practical implications.

  15. Li{sub 2}FeSiO{sub 4} nanorod as high stability electrode for lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, Chun-Han; Shen, Yu-Wen; Chien, Li-Hsuan; Kuo, Ping-Lin, E-mail: plkuo@mail.ncku.edu.tw [National Cheng Kung University, Department of Chemical Engineering (China)

    2015-01-15

    Li{sub 2}FeSiO{sub 4} (LFS) nanorods, with a diameter of 80–100 nm and length of 0.8–1.0 μm, were synthesized successfully from a mixture of LiOH, FeSO{sub 4}, and SiO{sub 2} nanoparticles via a simple hydrothermal process. The secondary structure with micro-sized bundles of nanorods was developed with high crystallinity under the hydrothermal condition of 180 °C for 72 h. Then, sucrose, as carbon source, was coated and carbonized on the surface of the LFS nanorods to fabricate LFS/C nanorod composite. The resulting LFS/C nanorod composite was characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, thermogravimetric analysis, and surface area measurements. When used as the cathode materials for lithium-ion battery, the electrochemical performance of the LFS/C nanorod material delivers discharge capacities of 156 mAh g{sup −1} in the voltage window of 1.8−4.7 V and also demonstrates good cycle stability when it is cycled between 1.8 and 4.1 V. In short, superior electrochemical properties could be caused by the short lithium-ion diffusion path of its nanorod structure.

  16. Mechanistic Study of Electrolyte Additives to Stabilize High-Voltage Cathode–Electrolyte Interface in Lithium-Ion Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Han [Chemical; Maglia, Filippo [BMW Group, Munich 80788, Germany; Lamp, Peter [BMW Group, Munich 80788, Germany; Amine, Khalil [Chemical; Chen, Zonghai [Chemical

    2017-12-13

    Current developments of electrolyte additives to stabilize electrode-electrolyte interface in Li-ion batteries highly rely on a trial-and-error search, which involves repetitive testing and intensive amount of resources. The lack of understandings on the fundamental protection mechanisms of the additives significantly increases the difficulty for the transformational development of new additives. In this study, we investigated two types of individual protection routes to build a robust cathode-electrolyte interphase at high potentials: (i) a direct reduction in the catalytic decomposition of the electrolyte solvent; and (ii) formation of a “corrosion inhibitor film” that prevents severely attack and passivation from protons that generated from the solvent oxidation, even the decomposition of solvent cannot not mitigated. Effect of three exemplary electrolyte additives: (i) lithium difluoro(oxalato)borate (LiDFOB); (ii) 3-hexylthiophene (3HT); and (iii) tris(hexafluoro-iso-propyl)phosphate (HFiP), on LiNi0.6Mn0.2Co0.2O2 (NMC 622) cathode were investigated to validate our hypothesis. It is demonstrated that understandings of both electrolyte additives and solvent are essential and careful balance between the cathode protection mechanism of additives and their side effects is critical to obtain optimum results. More importantly, this study opens up new directions of rational design of functional electrolyte additives for the next generation high-energy density lithium-ion chemistries.

  17. Li2FeSiO4 nanorod as high stability electrode for lithium-ion batteries

    International Nuclear Information System (INIS)

    Hsu, Chun-Han; Shen, Yu-Wen; Chien, Li-Hsuan; Kuo, Ping-Lin

    2015-01-01

    Li 2 FeSiO 4 (LFS) nanorods, with a diameter of 80–100 nm and length of 0.8–1.0 μm, were synthesized successfully from a mixture of LiOH, FeSO 4 , and SiO 2 nanoparticles via a simple hydrothermal process. The secondary structure with micro-sized bundles of nanorods was developed with high crystallinity under the hydrothermal condition of 180 °C for 72 h. Then, sucrose, as carbon source, was coated and carbonized on the surface of the LFS nanorods to fabricate LFS/C nanorod composite. The resulting LFS/C nanorod composite was characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, thermogravimetric analysis, and surface area measurements. When used as the cathode materials for lithium-ion battery, the electrochemical performance of the LFS/C nanorod material delivers discharge capacities of 156 mAh g −1 in the voltage window of 1.8−4.7 V and also demonstrates good cycle stability when it is cycled between 1.8 and 4.1 V. In short, superior electrochemical properties could be caused by the short lithium-ion diffusion path of its nanorod structure

  18. Lithium-mediated protection against ethanol neurotoxicity

    Directory of Open Access Journals (Sweden)

    Jia Luo

    2010-06-01

    Full Text Available Lithium has long been used as a mood stabilizer in the treatment of manic-depressive (bipolar disorder. Recent studies suggest that lithium has neuroprotective properties and may be useful in the treatment of acute brain injuries such as ischemia and chronic neurodegenerative diseases such as Alzheimer’s disease, Parkinson’s disease, Huntington’s disease and amyotrophic lateral sclerosis. One of the most important neuroprotective properties of lithium is its anti-apoptotic action. Ethanol is a neuroteratogen and fetal alcohol spectrum disorders (FASD are caused by maternal ethanol exposure during pregnancy. FASD is the leading cause of mental retardation. Ethanol exposure causes neuroapoptosis in the developing brain. Ethanol-induced loss of neurons in the central nervous system underlies many of the behavioral deficits observed in FASD. Excessive alcohol consumption is also associated with Wernicke–Korsakoff syndrome and neurodegeneration in the adult brain. Recent in vivo and in vitro studies indicate that lithium is able to ameliorate ethanol-induced neuroapoptosis. Lithium is an inhibitor of glycogen synthase kinase 3 (GSK3 which has recently been identified as a mediator of ethanol neurotoxicity. Lithium’s neuroprotection may be mediated by its inhibition of GSK3. In addition, lithium also affects many other signaling proteins and pathways that regulate neuronal survival and differentiation. This review discusses the recent evidence of lithium-mediated protection against ethanol neurotoxicity and potential underlying mechanisms.

  19. Lithium-induced neuroprotection in stroke involves increased miR-124 expression, reduced RE1-silencing transcription factor abundance and decreased protein deubiquitination by GSK3β inhibition-independent pathways.

    Science.gov (United States)

    Doeppner, Thorsten R; Kaltwasser, Britta; Sanchez-Mendoza, Eduardo H; Caglayan, Ahmet B; Bähr, Mathias; Hermann, Dirk M

    2017-03-01

    Lithium promotes acute poststroke neuronal survival, which includes mechanisms that are not limited to GSK3β inhibition. However, whether lithium induces long-term neuroprotection and enhanced brain remodeling is unclear. Therefore, mice were exposed to transient middle cerebral artery occlusion and lithium (1 mg/kg bolus followed by 2 mg/kg/day over up to 7 days) was intraperitoneally administered starting 0-9 h after reperfusion onset. Delivery of lithium no later than 6 h reduced infarct volume on day 2 and decreased brain edema, leukocyte infiltration, and microglial activation, as shown by histochemistry and flow cytometry. Lithium-induced neuroprotection persisted throughout the observation period of 56 days and was associated with enhanced neurological recovery. Poststroke angioneurogenesis and axonal plasticity were also enhanced by lithium. On the molecular level, lithium increased miR-124 expression, reduced RE1-silencing transcription factor abundance, and decreased protein deubiquitination in cultivated cortical neurons exposed to oxygen-glucose deprivation and in brains of mice exposed to cerebral ischemia. Notably, this effect was not mimicked by pharmacological GSK3β inhibition. This study for the first time provides efficacy data for lithium in the postacute ischemic phase, reporting a novel mechanism of action, i.e. increased miR-124 expression facilitating REST degradation by which lithium promotes postischemic neuroplasticity and angiogenesis.

  20. Molecular dynamics study of thermodynamic stability and dynamics of [Li(glyme)]+ complex in lithium-glyme solvate ionic liquids

    Science.gov (United States)

    Shinoda, Wataru; Hatanaka, Yuta; Hirakawa, Masashi; Okazaki, Susumu; Tsuzuki, Seiji; Ueno, Kazuhide; Watanabe, Masayoshi

    2018-05-01

    Equimolar mixtures of glymes and organic lithium salts are known to produce solvate ionic liquids, in which the stability of the [Li(glyme)]+ complex plays an important role in determining the ionic dynamics. Since these mixtures have attractive physicochemical properties for application as electrolytes, it is important to understand the dependence of the stability of the [Li(glyme)]+ complex on the ion dynamics. A series of microsecond molecular dynamics simulations has been conducted to investigate the dynamic properties of these solvate ionic liquids. Successful solvate ionic liquids with high stability of the [Li(glyme)]+ complex have been shown to have enhanced ion dynamics. Li-glyme pair exchange rarely occurs: its characteristic time is longer than that of ion diffusion by one or two orders of magnitude. Li-glyme pair exchange most likely occurs through cluster formation involving multiple [Li(glyme)]+ pairs. In this process, multiple exchanges likely take place in a concerted manner without the production of energetically unfavorable free glyme or free Li+ ions.

  1. Stabilization of the Serum Lithium Concentration by Regulation of Sodium Chloride Intake: Case Report.

    Science.gov (United States)

    Tomita, Takashi; Goto, Hidekazu; Sumiya, Kenji; Yoshida, Tadashi; Tanaka, Katsuya; Kohda, Yukinao

    2016-01-01

    To avoid fluctuation of the serum lithium concentration (CLi), sodium chloride (NaCl) intake was regulated in oral alimentation. A 62-year-old woman was hospitalized and orally administered 400 mg of lithium carbonate a day to treat her mania. Her CLi was found to be 0.75-0.81 mEq/L. Vomiting made it difficult for the patient to ingest meals orally, and therefore parenteral nutrition with additional oral intake of protein-fortified food was initiated. On day 22, parenteral nutrition was switched to oral alimentation to enable oral intake of food. The total NaCl equivalent amount was decreased to 1.2 g/d, and the CLi increased to 1.15 mEq/L on day 26. Oral alimentation with semi-solid food blended in a mixer was immediately initiated. Although the total NaCl equivalent amount was increased to 4.5-5.0 g/d, her CLi remained high at 1.14-1.17 mEq/L on days 33 and 49, respectively. We investigated oral administration of NaCl (1.8 g/d) on day 52. The total NaCl equivalent amount was increased to 6.3-6.8 g/d, and the CLi decreased to 1.08-0.97 mEq/L on days 63 and 104, respectively. After the start of the orally administered NaCl, her diet was changed to a completely blended diet on day 125. The total NaCl equivalent amount was increased to 9.0-14.5 g/d, and the CLi decreased to 0.53 mEq/L on day 152; therefore, the oral administration of NaCl was discontinued on day 166. The CLi was found to be 0.70-0.85 mEq/L on days 176 and 220.

  2. Bulk antimony sulfide with excellent cycle stability as next-generation anode for lithium-ion batteries

    Science.gov (United States)

    Yu, Denis Y. W.; Hoster, Harry E.; Batabyal, Sudip K.

    2014-01-01

    Nanomaterials as anode for lithium-ion batteries (LIB) have gained widespread interest in the research community. However, scaling up and processibility are bottlenecks to further commercialization of these materials. Here, we report that bulk antimony sulfide with a size of 10–20 μm exhibits a high capacity and stable cycling of 800 mAh g−1. Mechanical and chemical stabilities of the electrodes are ensured by an optimal electrode-electrolyte system design, with a polyimide-based binder together with fluoroethylene carbonate in the electrolyte. The polyimide binder accommodates the volume expansion during alloying process and fluoroethylene carbonate suppresses the increase in charge transfer resistance of the electrodes. We observed that particle size is not a major factor affecting the charge-discharge capacities, rate capability and stability of the material. Despite the large particle size, bulk antimony sulfide shows excellent rate performance with a capacity of 580 mAh g−1 at a rate of 2000 mA g−1. PMID:24691396

  3. Encapsulating Silica/Antimony into Porous Electrospun Carbon Nanofibers with Robust Structure Stability for High-Efficiency Lithium Storage.

    Science.gov (United States)

    Wang, Hongkang; Yang, Xuming; Wu, Qizhen; Zhang, Qiaobao; Chen, Huixin; Jing, Hongmei; Wang, Jinkai; Mi, Shao-Bo; Rogach, Andrey L; Niu, Chunming

    2018-04-24

    To address the volume-change-induced pulverization problems of electrode materials, we propose a "silica reinforcement" concept, following which silica-reinforced carbon nanofibers with encapsulated Sb nanoparticles (denoted as SiO 2 /Sb@CNFs) are fabricated via an electrospinning method. In this composite structure, insulating silica fillers not only reinforce the overall structure but also contribute to additional lithium storage capacity; encapsulation of Sb nanoparticles into the carbon-silica matrices efficiently buffers the volume changes during Li-Sb alloying-dealloying processes upon cycling and alleviates the mechanical stress; the porous carbon nanofiber framework allows for fast charge transfer and electrolyte diffusion. These advantageous characteristics synergistically contribute to the superior lithium storage performance of SiO 2 /Sb@CNF electrodes, which demonstrate excellent cycling stability and rate capability, delivering reversible discharge capacities of 700 mA h/g at 200 mA/g, 572 mA h/g at 500 mA/g, and 468 mA h/g at 1000 mA/g each after 400 cycles. Ex situ as well as in situ TEM measurements confirm that the structural integrity of silica-reinforced Sb@CNF electrodes can efficiently withstand the mechanical stress induced by the volume changes. Notably, the SiO 2 /Sb@CNF//LiCoO 2 full cell delivers high reversible capacities of ∼400 mA h/g after 800 cycles at 500 mA/g and ∼336 mA h/g after 500 cycles at 1000 mA/g.

  4. High ion conductive Sb2O5-doped β-Li3PS4 with excellent stability against Li for all-solid-state lithium batteries

    Science.gov (United States)

    Xie, Dongjiu; Chen, Shaojie; Zhang, Zhihua; Ren, Jie; Yao, Lili; Wu, Linbin; Yao, Xiayin; Xu, Xiaoxiong

    2018-06-01

    The combination of high conductivity and good stability against Li is not easy to achieve for solid electrolytes, hindering the development of high energy solid-state batteries. In this study, doped electrolytes of Li3P1-xSbxS4-2.5xO2.5x are successfully prepared via the high energy ball milling and subsequent heat treatment. Plenty of techniques like XRD, Raman, SEM, EDS and TEM are utilized to characterize the crystal structures, particle sizes, and morphologies of the glass-ceramic electrolytes. Among them, the Li3P0.98Sb0.02S3.95O0.05 (x = 0.02) exhibits the highest ionic conductivity (∼1.08 mS cm-1) at room temperature with an excellent stability against lithium. In addition, all-solid-state lithium batteries are assembled with LiCoO2 as cathode, Li10GeP2S12/Li3P0.98Sb0.02S3.95O0.05 as the bi-layer electrolyte, and lithium as anode. The constructed solid-state batteries delivers a high initial discharge capacity of 133 mAh g-1 at 0.1C in the range of 3.0-4.3 V vs. Li/Li+ at room temperature, and shows a capacity retention of 78.6% after 50 cycles. Most importantly, the all-solid-state lithium batteries with the Li10GeP2S12/Li3P0.98Sb0.02S3.95O0.05 electrolyte can be workable even at -10 °C. This study provides a promising electrolyte with the improved conductivity and stability against Li for the application of all-solid-state lithium batteries.

  5. Electron beam assisted synthesis of silver nanoparticle in chitosan stabilizer: Preparation, stability and inhibition of building fungi studies

    Science.gov (United States)

    Jannoo, Kanokwan; Teerapatsakul, Churapa; Punyanut, Adisak; Pasanphan, Wanvimol

    2015-07-01

    Silver nanoparticles (AgNPs) in chitosan (CS) stabilizer were successfully synthesized using electron beam irradiation. The effects of irradiation dose, molecular weight (MW) of CS stabilizer, concentration of AgNO3 precursor and addition of tert-butanol on AgNPs production were studied. The stability of the AgNPs under different temperatures and storage times were also investigated. The AgNPs formation in CS was observed using UV-vis, FT-IR and XRD. The characteristic surface plasmon resonance (SPR) of the obtained AgNPs was around 418 nm. The CS stabilizer and its MW, AgNO3 precursor and irradiation doses are important parameters for the synthesis of AgNPs. The optimum addition of 20% v/v tert-butanol could assist the formation of AgNPs. The AgNPs in CS stabilizer were stable over a period of one year when the samples were kept at 5 °C. The AgNPs observed from TEM images were spherical with an average particle size in the range of 5-20 nm depending on the irradiation doses. The AgNPs in CS solution effectively inhibited the growth of several fungi, i.e., Curvularia lunata, Trichoderma sp., Penicillium sp. and Aspergillus niger, which commonly found on the building surface.

  6. Lithium chloride inhibits early stages of foot-and-mouth disease virus (FMDV) replication in vitro.

    Science.gov (United States)

    Zhao, Fu-Rong; Xie, Yin-Li; Liu, Ze-Zhong; Shao, Jun-Jun; Li, Shi-Fang; Zhang, Yong-Guang; Chang, Hui-Yun

    2017-11-01

    Foot-and-mouth disease virus (FMDV) causes an economically important and highly contagious disease of cloven-hoofed animals such as cattle, swine, and sheep. FMD vaccine is the traditional way to protect against the disease, which can greatly reduce its occurrence. However, the use of FMD vaccines to protect early infection is limited. Therefore, the alternative strategy of applying antiviral agents is required to control the spread of FMDV in outbreak situations. As previously reported, LiCl has obviously inhibition effects on a variety of viruses such as transmissible gastroenteritis virus (TGEV), infectious bronchitis coronavirus (IBV), and pseudorabies herpesvirus and EV-A71 virus. In this study, our findings were the first to demonstrate that LiCl inhibition of the FMDV replication. In this study, BHK-21 cell was dose-dependent with LiCl at various stages of FMDV. Virus titration assay was calculated by the 50% tissue culture infected dose (TCID 50 ) with the Reed and Muench method. The cytotoxicity assay of LiCl was performed by the CCK8 kit. The expression level of viral mRNA was measured by RT-qPCR. The results revealed LiCl can inhibit FMDV replication, but it cannot affect FMDV attachment stage and entry stage in the course of FMDV life cycle. Further studies confirmed that the LiCl affect the replication stage of FMDV, especially the early stages of FMDV replication. So LiCl has potential as an effective anti-FMDV drug. Therefore, LiCl may be an effective drug for the control of FMDV. Based on that, the mechanism of the antiviral effect of LiCl on FMDV infection is need to in-depth research in vivo. © 2017 Wiley Periodicals, Inc.

  7. Investigations of the Electrochemical Stability of Aqueous Electrolytes for Lithium Battery Applications

    KAUST Repository

    Wessells, Colin; Ruffο, Riccardo; Huggins, Robert A.; Cui, Yi

    2010-01-01

    The electrolytic stability windows of several aqueous electrolytes were investigated by a constant current method. The electrode potential range depended upon the value of the imposed current. The magnitude of this behavior varied with the salt

  8. Strategies to curb structural changes of lithium/transition metal oxide cathode materials and the changes’ effects on thermal and cycling stability

    International Nuclear Information System (INIS)

    Yu Xiqian; Hu Enyuan; Bak, Seongmin; Zhou Yong-Ning; Yang Xiao-Qing

    2016-01-01

    Structural transformation behaviors of several typical oxide cathode materials during a heating process are reviewed in detail to provide in-depth understanding of the key factors governing the thermal stability of these materials. We also discuss applying the information about heat induced structural evolution in the study of electrochemically induced structural changes. All these discussions are expected to provide valuable insights for designing oxide cathode materials with significantly improved structural stability for safe, long-life lithium ion batteries, as the safety of lithium-ion batteries is a critical issue; it is widely accepted that the thermal instability of the cathodes is one of the most critical factors in thermal runaway and related safety problems. (topical review)

  9. Enhancement of stability for lithium oxygen batteries by employing electrolytes gelled by poly(vinylidene fluoride-co-hexafluoropropylene) and tetraethylene glycol dimethyl ether

    International Nuclear Information System (INIS)

    Zhang, Jinqiang; Sun, Bing; Xie, Xiuqiang; Kretschmer, Katja; Wang, Guoxiu

    2015-01-01

    Free-standing gel polymer electrolytes with poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) matrix plasticized with tetraethylene glycol dimethyl ether (TEGDME) were prepared and investigated. The as-prepared gel polymer electrolytes exhibited large operating window and acceptable ionic conductivity. When applied in lithium oxygen batteries, the gel polymer electrolyte could support a high initial discharge capacity of 2988 mAh g −1 when a carbon black electrode without catalyst was used as cathode. Furthermore, the battery with gel polymer electrolyte can last at least 50 cycles in the fixed capacity cycling, displaying an excellent stability. Detailed study reveals that the gelling process is essential for the cycling stability enhancement. With excellent electrochemical properties, the free-standing gel polymer electrolyte presented in this investigation has great application potentials in long-life lithium oxygen batteries.

  10. Stability and enzyme inhibition activities of au nanoparticles using an aqueous extract of clove as a reducing and stabilizing agent

    International Nuclear Information System (INIS)

    Hameed, A.; Khan, I.; Naz, S.S.; Islam, N.U.

    2014-01-01

    Gold nanoparticles (AuNPs) were synthesized in one pot using aqueous extract of clove buds (CB) to reduce HAuCl/sub 4/ and stabilize gold in its atomic form at room temperature. To determine the potential of gold nanoparticles with clove buds (AuCB) for in vivo applications, the stability of the nanoparticles was explored as a function of temperature, pH and salt concentration. The suspensions were found to be stable for salt concentrations up to 1 mol/L, temperatures of up to 100 degree C and a pH range of 2-13. Our results indicate that CB exhibited comparable activities to standards of urease and carbonic anhydrase, but its conjugation to Au knocks out the enzyme inhibition activity by about two times. In case of xanthine oxidase activity, CB and its gold Au bio-conjugates (AuCB) are found to be absolutely inactive. (author)

  11. Critical evaluation of the stability of highly concentrated LiTFSI - Acetonitrile electrolytes vs. graphite, lithium metal and LiFePO4 electrodes

    Science.gov (United States)

    Nilsson, Viktor; Younesi, Reza; Brandell, Daniel; Edström, Kristina; Johansson, Patrik

    2018-04-01

    Highly concentrated LiTFSI - acetonitrile electrolytes have recently been shown to stabilize graphite electrodes in lithium-ion batteries (LIBs) much better than comparable more dilute systems. Here we revisit this system in order to optimise the salt concentration vs. both graphite and lithium metal electrodes with respect to electrochemical stability. However, we observe an instability regardless of concentration, making lithium metal unsuitable as a counter electrode, and this also affects evaluation of e.g. graphite electrodes. While the highly concentrated electrolytes have much improved electrochemical stabilities, their reductive decomposition below ca. 1.2 V vs. Li+/Li° still makes them less practical vs. graphite electrodes, and the oxidative reaction with Al at ca. 4.1 V vs. Li+/Li° makes them problematic for high voltage LIB cells. The former originates in an insufficiently stable solid electrolyte interphase (SEI) dissolving and continuously reforming - causing self-discharge, as observed by paused galvanostatic cycling, while the latter is likely caused by aluminium current collector corrosion. Yet, we show that medium voltage LiFePO4 positive electrodes can successfully be used as counter and reference electrodes.

  12. Carbon Nanotube-CoF2 Multifunctional Cathode for Lithium Ion Batteries: Effect of Electrolyte on Cycle Stability.

    Science.gov (United States)

    Wang, Xinran; Gu, Wentian; Lee, Jung Tae; Nitta, Naoki; Benson, Jim; Magasinski, Alexandre; Schauer, Mark W; Yushin, Gleb

    2015-10-01

    Transition metal fluorides (MFx ) offer remarkably high theoretical energy density. However, the low cycling stability, low electrical and ionic conductivity of metal fluorides have severely limited their applications as conversion-type cathode materials for lithium ion batteries. Here, a scalable and low-cost strategy is reported on the fabrication of multifunctional cobalt fluoride/carbon nanotube nonwoven fabric nanocomposite, which demonstrates a combination of high capacity (near-theoretical, 550mAhgCoF2-1) and excellent mechanical properties. Its strength and modulus of toughness exceed that of many aluminum alloys, cast iron, and other structural materials, fulfilling the use of MFx -based materials in batteries with load-bearing capabilities. In the course of this study, cathode dissolution in conventional electrolytes has been discovered as the main reason that leads to the rapid growth of the solid electrolyte interphase layer and attributes to rapid cell degradation. And such largely overlooked degradation mechanism is overcome by utilizing electrolyte comprising a fluorinated solvent, which forms a protective ionically conductive layer on the cathode and anode surfaces. With this approach, 93% capacity retention is achieved after 200 cycles at the current density of 100 mA g(-1) and over 50% after 10 000 cycles at the current density of 1000 mA g(-1) . © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Octahedral core–shell cuprous oxide/carbon with enhanced electrochemical activity and stability as anode for lithium ion batteries

    International Nuclear Information System (INIS)

    Xiang, Jiayuan; Chen, Zhewei; Wang, Jianming

    2015-01-01

    Highlights: • Core–shell octahedral Cu 2 O/C is prepared by a one-step method. • Carbon shell is amorphous and uniformly decorated at the Cu 2 O octahedral core. • Core–shell Cu 2 O/C exhibits markedly enhanced capability and reversibility. • Carbon shell provides fast ion/electron transfer channel. • Core–shell structure is stable during cycling. - Abstract: Core–shell Cu 2 O/C octahedrons are synthesized by a simple hydrothermal method with the help of carbonization of glucose, which reduces Cu(II) to Cu(I) at low temperature and further forms carbon shell coating at high temperature. SEM and TEM images indicate that the carbon shell is amorphous with thickness of ∼20 nm wrapping the Cu 2 O octahedral core perfectly. As anode of lithium ion batteries, the core–shell Cu 2 O/C composite exhibits high and stable columbic efficiency (98%) as well as a reversible capacity of 400 mAh g −1 after 80 cycles. The improved electrochemical performance is attributed to the novel core–shell structure, in which the carbon shell reduces the electrode polarization and promotes the charge transfer at active material/electrolyte interface, and also acts as a stabilizer to keep the octahedral structure integrity during discharge–charge processes

  14. Graphene Oxides Used as a New "Dual Role" Binder for Stabilizing Silicon Nanoparticles in Lithium-Ion Battery.

    Science.gov (United States)

    Shan, Changsheng; Wu, Kaifeng; Yen, Hung-Ju; Narvaez Villarrubia, Claudia; Nakotte, Tom; Bo, Xiangjie; Zhou, Ming; Wu, Gang; Wang, Hsing-Lin

    2018-05-09

    For the first time, we report that graphene oxide (GO) can be used as a new "dual-role" binder for Si nanoparticles (SiNPs)-based lithium-ion batteries (LIBs). GO not only provides a graphene-like porous 3D framework for accommodating the volume changes of SiNPs during charging/discharging cycles, but also acts as a polymer-like binder that forms strong chemical bonds with SiNPs through its Si-OH functional groups to trap and stabilize SiNPs inside the electrode. Leveraging this unique dual-role of GO binder, we fabricated GO/SiNPs electrodes with remarkably improved performances as compared to using the conventional polyvinylidene fluoride (PVDF) binder. Specifically, the GO/SiNPs electrode showed a specific capacity of 2400 mA h g -1 at the 50th cycle and 2000 mA h g -1 at the 100th cycle, whereas the SiNPs/PVDF electrode only showed 456 mAh g -1 at the 50th cycle and 100 mAh g -1 at 100th cycle. Moreover, the GO/SiNPs film maintained its structural integrity and formed a stable solid-electrolyte interphase (SEI) film after 100 cycles. These results, combined with the well-established facile synthesis of GO, indicate that GO can be an excellent binder for developing high performance Si-based LIBs.

  15. Enhancement of electron emission and long-term stability of tip-type carbon nanotube field emitters via lithium coating

    International Nuclear Information System (INIS)

    Kim, Jong-Pil; Chang, Han-Beet; Kim, Bu-Jong; Park, Jin-Seok

    2013-01-01

    Carbon nanotubes (CNTs) were deposited on conical tip-type substrates via electrophoresis and coated with lithium (Li) thin films with diverse thicknesses via electroplating. For the as-deposited (i.e., without Li coating) CNT, the turn-on (or triggering) electric field was 0.92 V/μm, and the emission current, which was generated at an applied field of 1.2 V/μm was 56 μA. In the case of the 4.7 nm-thick Li-coated CNT, the turn-on field decreased to 0.65 V/μm and the emission current at the same applied field increased more than ten times to 618 μA. The analysis based on the Kelvin probe measurement and Fowler–Nordheim theory indicated that the coating of Li caused a loss in the structural-aspect-ratio of the CNTs and it reduced their effective work functions from 5.36 eV to 4.90 eV, which led to a great improvement of their electron emission characteristics. The results obtained in this study also showed that the long-term emission stability could be enhanced by the coating of thin Li films on CNTs. - Highlights: ► CNTs are deposited via electrophoretic deposition (EPD). ► Thin films of Li are coated on CNTs via electroplating, without plasma damage. ► Li coating enhanced field emission properties and emission stability of CNTs. ► The effective work functions and field enhancement factors of CNTs are evaluated

  16. Periodic Forcing of Inhibition-Stabilized Networks: Nonlinear Resonances and Phase-Amplitude Coupling

    OpenAIRE

    Veltz, Romain; Sejnowski, Terrence J.

    2015-01-01

    International audience; Inhibition stabilized networks (ISNs) are neural architectures with strong positive feedback among pyramidal neurons balanced by strong negative feedback from in-hibitory interneurons, a circuit element found in the hippocampus and the primary vi-sual cortex. In their working regime, ISNs produce damped oscillations in the γ-range in response to inputs to the inhibitory population. In order to understand the proper-ties of interconnected ISNs, we investigated periodic ...

  17. Propofol effectively inhibits lithium-pilocarpine- induced status epilepticus in rats via downregulation of N-methyl-D-aspartate receptor 2B subunit expression

    Science.gov (United States)

    Wang, Henglin; Wang, Zhuoqiang; Mi, Weidong; Zhao, Cong; Liu, Yanqin; Wang, Yongan; Sun, Haipeng

    2012-01-01

    Status epilepticus was induced via intraperitoneal injection of lithium-pilocarpine. The inhibitory effects of propofol on status epilepticus in rats were judged based on observation of behavior, electroencephalography and 24-hour survival rate. Propofol (12.5–100 mg/kg) improved status epilepticus in a dose-dependent manner, and significantly reduced the number of deaths within 24 hours of lithium-pilocarpine injection. Western blot results showed that, 24 hours after induction of status epilepticus, the levels of N-methyl-D-aspartate receptor 2A and 2B subunits were significantly increased in rat cerebral cortex and hippocampus. Propofol at 50 mg/kg significantly suppressed the increase in N-methyl-D-aspartate receptor 2B subunit levels, but not the increase in N-methyl-D-aspartate receptor 2A subunit levels. The results suggest that propofol can effectively inhibit status epilepticus induced by lithium-pilocarpine. This effect may be associated with downregulation of N-methyl-D-aspartate receptor 2B subunit expression after seizures. PMID:25737709

  18. Ultra-small Fe3O4 nanocrystals decorated on 2D graphene nanosheets with excellent cycling stability as anode materials for lithium ion batteries

    International Nuclear Information System (INIS)

    Ren, Manman; Yang, Mingzhi; Liu, Weiliang; Li, Mei; Su, Liwei; Qiao, Congde; Wu, Xianbin; Ma, Houyi

    2016-01-01

    Graphical abstract: Ultra-small Fe 3 O 4 nanocrystals decorated on 2D graphene nanosheets with excellent cycling stability as anode materials for lithium ion batteries Manman Ren, Mingzhi Yang, Weiliang Liu, Mei Li, Liwei Su, Congde Qiao, Xianbin Wu, Houyi Ma Ultra-small Fe 3 O 4 nanocrystals/graphene nanosheets composites demonstrate excellent long-term cycling stability at high-rate. - Abstract: Ultra-small Fe 3 O 4 nanocrystals (NCs)/garphene nanosheets (GNSs) composites have been synthesized through a facile gel-like film (GF) assisted method in this work. Fe 3 O 4 NCs with particle size ∼10 nm homogeneously dispersed on 2D GNSs. Profiting from the ultra-small Fe 3 O 4 NCs and GNSs, the composites demonstrate superior long-term and high-rate performance as anode materials for lithium ion batteries. Even at the current density of 5 A g −1 , the reversible capacity still maintains 323.4 mAh g −1 after 700 cycles. This work might enlighten us on exploring preferable strategies to develop advanced metal oxides NCs/GNSs composites anode materials for lithium ion batteries or other energy storage devices.

  19. Hot corrosion behavior of magnesia-stabilized ceramic material in a lithium molten salt

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Soo-Haeng, E-mail: nshcho1@kaeri.re.kr [Korea Atomic Energy Research Institute, Daejeon 305-353 (Korea, Republic of); Kim, Sung-Wook [Korea Atomic Energy Research Institute, Daejeon 305-353 (Korea, Republic of); Kim, Dae-Young [Graduate School of Energy Science and Technology, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Lee, Jong-Hyeon, E-mail: jonglee@cnu.ac.kr [Graduate School of Energy Science and Technology, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Graduate School of Advanced Materials Engineering, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Rapidly Solidified Materials Research Center, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Hur, Jin-Mok [Korea Atomic Energy Research Institute, Daejeon 305-353 (Korea, Republic of)

    2017-07-15

    The isothermal and cyclic corrosion behaviors of magnesia-stabilized zirconia in a LiCl-Li{sub 2}O molten salt were investigated at 650 °C in an argon atmosphere. The weights of as-received and corroded specimens were measured and the microstructures, morphologies, and chemical compositions were analyzed by scanning electron microscopy, X-ray energy dispersive spectroscopy, and X-ray diffraction. For processes where Li is formed at the cathode during electrolysis, the corrosion rate was about five times higher than those of isothermal and thermal cycling processes. During isothermal tests, the corrosion product Li{sub 2}ZrO{sub 3} was formed after 216 h. During thermal cycling, Li{sub 2}ZrO{sub 3} was not detected until after the completion of 14 cycles. There was no evidence of cracks, pores, or spallation on the corroded surfaces, except when Li was formed. We demonstrate that magnesia-stabilized zirconia is beneficial for increasing the hot corrosion resistance of structural materials subjected to high temperature molten salts containing Li{sub 2}O. - Highlights: •Corrosion mechanism of MSZin LiCl-Li{sub 2}O molten salt is proposed. •Formation of Li{sub 2}ZrO{sub 3}is main corrosion mechanism. •There were no cracks, pores and spallation after corrosion test. •MSZ shows high corrosion resistance to LiCl-Li{sub 2}O molten salt.

  20. Preconditioning mesenchymal stem cells with the mood stabilizers lithium and valproic acid enhances therapeutic efficacy in a mouse model of Huntington's disease.

    Science.gov (United States)

    Linares, Gabriel R; Chiu, Chi-Tso; Scheuing, Lisa; Leng, Yan; Liao, Hsiao-Mei; Maric, Dragan; Chuang, De-Maw

    2016-07-01

    Huntington's disease (HD) is a fatal neurodegenerative disorder caused by CAG repeat expansions in the huntingtin gene. Although, stem cell-based therapy has emerged as a potential treatment for neurodegenerative diseases, limitations remain, including optimizing delivery to the brain and donor cell loss after transplantation. One strategy to boost cell survival and efficacy is to precondition cells before transplantation. Because the neuroprotective actions of the mood stabilizers lithium and valproic acid (VPA) induce multiple pro-survival signaling pathways, we hypothesized that preconditioning bone marrow-derived mesenchymal stem cells (MSCs) with lithium and VPA prior to intranasal delivery to the brain would enhance their therapeutic efficacy, and thereby facilitate functional recovery in N171-82Q HD transgenic mice. MSCs were treated in the presence or absence of combined lithium and VPA, and were then delivered by brain-targeted single intranasal administration to eight-week old HD mice. Histological analysis confirmed the presence of MSCs in the brain. Open-field test revealed that ambulatory distance and mean velocity were significantly improved in HD mice that received preconditioned MSCs, compared to HD vehicle-control and HD mice transplanted with non-preconditioned MSCs. Greater benefits on motor function were observed in HD mice given preconditioned MSCs, while HD mice treated with non-preconditioned MSCs showed no functional benefits. Moreover, preconditioned MSCs reduced striatal neuronal loss and huntingtin aggregates in HD mice. Gene expression profiling of preconditioned MSCs revealed a robust increase in expression of genes involved in trophic effects, antioxidant, anti-apoptosis, cytokine/chemokine receptor, migration, mitochondrial energy metabolism, and stress response signaling pathways. Consistent with this finding, preconditioned MSCs demonstrated increased survival after transplantation into the brain compared to non-preconditioned cells

  1. Effect of progressively increasing lithium conditioning on edge transport and stability in high triangularity NSTX H-modes

    Energy Technology Data Exchange (ETDEWEB)

    Maingi, R., E-mail: rmaingi@pppl.gov [Princeton Plasma Physics Laboratory, 100 Stellarator Road, Princeton, NJ 08543 (United States); Canik, J.M. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); Bell, R.E. [Princeton Plasma Physics Laboratory, 100 Stellarator Road, Princeton, NJ 08543 (United States); Boyle, D.P. [Princeton University, Princeton, NJ (United States); Diallo, A.; Kaita, R.; Kaye, S.M.; LeBlanc, B.P. [Princeton Plasma Physics Laboratory, 100 Stellarator Road, Princeton, NJ 08543 (United States); Sabbagh, S.A. [Columbia University, New York, NY (United States); Scotti, F.; Soukhanovskii, V.A. [Lawrence Livermore National Laboratory, Livermore, CA (United States)

    2017-04-15

    A sequence of H-mode discharges with increasing levels of pre-discharge lithium evaporation (‘dose’) was conducted in high triangularity and elongation boundary shape in NSTX. Energy confinement increased, and recycling decreased with increasing lithium dose, similar to a previous lithium dose scan in medium triangularity and elongation plasmas. Data-constrained SOLPS interpretive modeling quantified the edge transport change: the electron particle diffusivity decreased by 10–30x. The electron thermal diffusivity decreased by 4x just inside the top of the pedestal, but increased by up to 5x very near the separatrix. These results provide a baseline expectation for lithium benefits in NSTX-U, which is optimized for a boundary shape similar to the one in this experiment.

  2. BACE1 inhibition by microdose lithium formulation NP03 rescues memory loss and early stage amyloid neuropathology.

    Science.gov (United States)

    Wilson, E N; Do Carmo, S; Iulita, M F; Hall, H; Ducatenzeiler, A; Marks, A R; Allard, S; Jia, D T; Windheim, J; Cuello, A C

    2017-08-01

    Lithium is first-line therapy for bipolar affective disorder and has recently been shown to have protective effects in populations at risk for Alzheimer's disease (AD). However, the mechanism underlying this protection is poorly understood and consequently limits its possible therapeutic application in AD. Moreover, conventional lithium formulations have a narrow therapeutic window and are associated with a severe side effect profile. Here we evaluated a novel microdose formulation of lithium, coded NP03, in a well-characterized rat model of progressive AD-like amyloid pathology. This formulation allows microdose lithium delivery to the brain in the absence of negative side effects. We found that NP03 rescued key initiating components of AD pathology, including inactivating GSK-3β, reducing BACE1 expression and activity, and reducing amyloid levels. Notably, NP03 rescued memory loss, impaired CRTC1 promoter binding of synaptic plasticity genes and hippocampal neurogenesis. These results raise the possibility that NP03 be of therapeutic value in the early or preclinical stages of AD.

  3. The use of odd random phase electrochemical impedance spectroscopy to study lithium-based corrosion inhibition by active protective coatings

    NARCIS (Netherlands)

    Meeusen, M.; Visser, P.; Fernández Macía, L.; Hubin, A.; Terryn, H.A.; Mol, J.M.C.

    2018-01-01

    In this work, the study of the time-dependent behaviour of lithium carbonate based inhibitor technology for the active corrosion protection of aluminium alloy 2024-T3 is presented. Odd random phase electrochemical impedance spectroscopy (ORP-EIS) is selected as the electrochemical tool to study

  4. Growth and decomposition of Lithium and Lithium hydride on Nickel

    DEFF Research Database (Denmark)

    Engbæk, Jakob; Nielsen, Gunver; Nielsen, Jane Hvolbæk

    2006-01-01

    In this paper we have investigated the deposition, structure and decomposition of lithium and lithium-hydride films on a nickel substrate. Using surface sensitive techniques it was possible to quantify the deposited Li amount, and to optimize the deposition procedure for synthesizing lithium......-hydride films. By only making thin films of LiH it is possible to study the stability of these hydride layers and compare it directly with the stability of pure Li without having any transport phenomena or adsorbed oxygen to obscure the results. The desorption of metallic lithium takes place at a lower...... temperature than the decomposition of the lithium-hydride, confirming the high stability and sintering problems of lithium-hydride making the storage potential a challenge. (c) 2006 Elsevier B.V. All rights reserved....

  5. High Stability Induced by the TiN/Ti Interlayer in Three-Dimensional Si/Ge Nanorod Arrays as Anode in Micro Lithium Ion Battery.

    Science.gov (United States)

    Yue, Chuang; Yu, Yingjian; Wu, Zhenguo; Sun, Shibo; He, Xu; Li, Juntao; Zhao, Libo; Wu, Suntao; Li, Jing; Kang, Junyong; Lin, Liwei

    2016-03-01

    Three-dimensional (3D) Si/Ge-based micro/nano batteries are promising lab-on-chip power supply sources because of the good process compatibility with integrated circuits and Micro/Nano-Electro-Mechanical System technologies. In this work, the effective interlayer of TiN/Ti thin films were introduced to coat around the 3D Si nanorod (NR) arrays before the amorphous Ge layer deposition as anode in micro/nano lithium ion batteries, thus the superior cycling stability was realized by reason for the restriction of Si activation in this unique 3D matchlike Si/TiN/Ti/Ge NR array electrode. Moreover, the volume expansion properties after the repeated lithium-ion insertion/extraction were experimentally investigated to evidence the superior stability of this unique multilayered Si composite electrode. The demonstration of this wafer-scale, cost-effective, and Si-compatible fabrication for anodes in Li-ion micro/nano batteries provides new routes to configurate more efficient 3D energy storage systems for micro/nano smart semiconductor devices.

  6. Mesoporous electrode material from alumina-stabilized anatase TiO.sub.2./sub. for lithium ion batteries

    Czech Academy of Sciences Publication Activity Database

    Attia, Adel; Zukalová, Markéta; Rathouský, Jiří; Zukal, Arnošt; Kavan, Ladislav

    2005-01-01

    Roč. 9, č. 3 (2005), s. 134-145 ISSN 1432-8488 R&D Projects: GA ČR(CZ) GA203/03/0824 Institutional research plan: CEZ:AV0Z40400503 Keywords : titanium dioxide * alumina * lithium battery * mesoporous materials Subject RIV: CG - Electrochemistry Impact factor: 1.158, year: 2005

  7. Stability of SG1 nitroxide towards unprotected sugar and lithium salts: a preamble to cellulose modification by nitroxide-mediated graft polymerization

    Directory of Open Access Journals (Sweden)

    Guillaume Moreira

    2013-08-01

    Full Text Available The range of applications of cellulose, a glucose-based polysaccharide, is limited by its inherently poor mechanical properties. The grafting of synthetic polymer chains by, for example, a “grafting from” process may provide the means to broaden the range of applications. The nitroxide-mediated polymerization (NMP method is a technique of choice to control the length, the composition and the architecture of the grafted copolymers. Nevertheless, cellulose is difficult to solubilize in organic media because of inter- and intramolecular hydrogen bonds. One possibility to circumvent this limitation is to solubilize cellulose in N,N-dimethylformamide (DMF or N,N-dimethylacetamide (DMA with 5 to 10 wt % of lithium salts (LiCl or LiBr, and carry out grafted polymerization in this medium. The stability of nitroxides such as SG1 has not been studied under these conditions yet, even though these parameters are of crucial importance to perform the graft modification of polysaccharide by NMP. The aim of this work is to offer a model study of the stability of the SG1 nitroxide in organic media in the presence of unprotected glucose or cellobiose (used as a model of cellulose and in the presence of lithium salts (LiBr or LiCl in DMF or DMA.Contrary to TEMPO, SG1 proved to be stable in the presence of unprotected sugar, even with an excess of 100 molar equivalents of glucose. On the other hand, lithium salts in DMF or DMA clearly degrade SG1 nitroxide as proven by electron-spin resonance measurements. The instability of SG1 in these lithium-containing solvents may be explained by the acidification of the medium by the hydrolysis of DMA in the presence of LiCl. This, in turn, enables the disproportionation of the SG1 nitroxide into an unstable hydroxylamine and an oxoammonium ion.Once the conditions to perform an SG1-based nitroxide-mediated graft polymerization from cellobiose have been established, the next stage of this work will be the modification of

  8. Suberoylanilide hydroxamic acid (SAHA) inhibits EGF-induced cell transformation via reduction of cyclin D1 mRNA stability

    International Nuclear Information System (INIS)

    Zhang, Jingjie; Ouyang, Weiming; Li, Jingxia; Zhang, Dongyun; Yu, Yonghui; Wang, York; Li, Xuejun; Huang, Chuanshu

    2012-01-01

    Suberoylanilide hydroxamic acid (SAHA) inhibiting cancer cell growth has been associated with its downregulation of cyclin D1 protein expression at transcription level or translation level. Here, we have demonstrated that SAHA inhibited EGF-induced Cl41 cell transformation via the decrease of cyclin D1 mRNA stability and induction of G0/G1 growth arrest. We found that SAHA treatment resulted in the dramatic inhibition of EGF-induced cell transformation, cyclin D1 protein expression and induction of G0/G1 growth arrest. Further studies showed that SAHA downregulation of cyclin D1 was only observed with endogenous cyclin D1, but not with reconstitutionally expressed cyclin D1 in the same cells, excluding the possibility of SAHA regulating cyclin D1 at level of protein degradation. Moreover, SAHA inhibited EGF-induced cyclin d1 mRNA level, whereas it did not show any inhibitory effect on cyclin D1 promoter-driven luciferase reporter activity under the same experimental conditions, suggesting that SAHA may decrease cyclin D1 mRNA stability. This notion was supported by the results that treatment of cells with SAHA decreased the half-life of cyclin D1 mRNA from 6.95 h to 2.57 h. Consistent with downregulation of cyclin D1 mRNA stability, SAHA treatment also attenuated HuR expression, which has been well-characterized as a positive regulator of cyclin D1 mRNA stability. Thus, our study identifies a novel mechanism responsible for SAHA inhibiting cell transformation via decreasing cyclin D1 mRNA stability and induction of G0/G1 growth arrest in Cl41 cells. -- Highlights: ► SAHA inhibits cell transformation in Cl41 cells. ► SAHA suppresses Cyclin D1 protein expression. ► SAHA decreases cyclin D1 mRNA stability.

  9. The neuroprotective action of the mood stabilizing drugs lithium chloride and sodium valproate is mediated through the up-regulation of the homeodomain protein Six1

    International Nuclear Information System (INIS)

    Plant, Kathryn E.; Anderson, Elizabeth; Simecek, Nicole; Brown, Richard; Forster, Sam; Spinks, Jenny; Toms, Nick; Gibson, G. Gordon; Lyon, Jon; Plant, Nick

    2009-01-01

    The mood stabilizing agents lithium chloride (LiCl) and sodium valproate (VPA) have recently gained interest as potential neuroprotective therapeutics. However, exploitation of these therapeutic applications is hindered by both a lack of molecular understanding of the mode of action, and a number of sub-optimal properties, including a relatively small therapeutic window and variable patient response. Human neuroblastoma cells (SH-SY5Y) were exposed to 1 mM lithium chloride or 1 mM sodium valproate for 6 h or 72 h, and transcriptomes measured by Affymetrix U133A/B microarray. Statistically significant gene expression changes were identified using SAM software, with selected changes confirmed at transcript (TaqMan) and protein (Western blotting) levels. Finally, anti-apoptotic action was measured by an in vitro fluorescent assay. Exposure of SH-SY5Y cells to therapeutically relevant concentrations of either lithium chloride or sodium valproate elicited 936 statistically significant changes in gene expression. Amongst these changes we observed a large (maximal 31.3-fold) increase in the expression of the homeodomain protein Six1, and have characterized the time- and dose-dependent up-regulation of this gene in response to both drugs. In addition, we demonstrate that, like LiCl or VPA treatment, Six1 over-expression protects SH-SY5Y cells from staurosporine-induced apoptosis via the blockade of caspsase-3 activation, whereas removal of Six1 protein via siRNA antagonises the ability of LiCl and VPA to protect SH-SY5Y cells from STS-induced apoptosis. These results provide a novel mechanistic rationale underlying the neuroprotective mechanism of LiCl and VPA, suggesting exciting possibilities for the development of novel therapeutic agents against neurodegenerative diseases such as Alzheimer's or Parkinsonism

  10. The pre-existing population of 5S rRNA effects p53 stabilization during ribosome biogenesis inhibition.

    Science.gov (United States)

    Onofrillo, Carmine; Galbiati, Alice; Montanaro, Lorenzo; Derenzini, Massimo

    2017-01-17

    Pre-ribosomal complex RPL5/RPL11/5S rRNA (5S RNP) is considered the central MDM2 inhibitory complex that control p53 stabilization during ribosome biogenesis inhibition. Despite its role is well defined, the dynamic of 5S RNP assembly still requires further characterization. In the present work, we report that MDM2 inhibition is dependent by a pre-existing population of 5S rRNA.

  11. Engineering 3D bicontinuous hierarchically macro-mesoporous LiFePO4/C nanocomposite for lithium storage with high rate capability and long cycle stability.

    Science.gov (United States)

    Zhang, Qian; Huang, Shao-Zhuan; Jin, Jun; Liu, Jing; Li, Yu; Wang, Hong-En; Chen, Li-Hua; Wang, Bin-Jie; Su, Bao-Lian

    2016-05-16

    A highly crystalline three dimensional (3D) bicontinuous hierarchically macro-mesoporous LiFePO4/C nanocomposite constructed by nanoparticles in the range of 50~100 nm via a rapid microwave assisted solvothermal process followed by carbon coating have been synthesized as cathode material for high performance lithium-ion batteries. The abundant 3D macropores allow better penetration of electrolyte to promote Li(+) diffusion, the mesopores provide more electrochemical reaction sites and the carbon layers outside LiFePO4 nanoparticles increase the electrical conductivity, thus ultimately facilitating reverse reaction of Fe(3+) to Fe(2+) and alleviating electrode polarization. In addition, the particle size in nanoscale can provide short diffusion lengths for the Li(+) intercalation-deintercalation. As a result, the 3D macro-mesoporous nanosized LiFePO4/C electrode exhibits excellent rate capability (129.1 mA h/g at 2 C; 110.9 mA h/g at 10 C) and cycling stability (87.2% capacity retention at 2 C after 1000 cycles, 76.3% at 5 C after 500 cycles and 87.8% at 10 C after 500 cycles, respectively), which are much better than many reported LiFePO4/C structures. Our demonstration here offers the opportunity to develop nanoscaled hierarchically porous LiFePO4/C structures for high performance lithium-ion batteries through microwave assisted solvothermal method.

  12. In-situ grown CNTs modified SiO2/C composites as anode with improved cycling stability and rate capability for lithium storage

    Science.gov (United States)

    Wang, Siqi; Zhao, Naiqin; Shi, Chunsheng; Liu, Enzuo; He, Chunnian; He, Fang; Ma, Liying

    2018-03-01

    Silica (SiO2) is regarded as one of the most promising anode materials for lithium ion batteries owing to its high theoretical specific capacity, relatively low operation potentials, abundance, environmental benignity and low cost. However, the low intrinsic electrical conductivity and large volume change of SiO2 during the discharge/charge cycles usually results in poor electrochemical performance. In this work, carbon nanotubes (CNTs) modified SiO2/C composites have been fabricated through an in-situ chemical vapor deposition method. The results show that the electrical conductivity of the SiO2/C/CNTs is visibly enhanced through a robust connection between the CNTs and SiO2/C particles. Compared with the pristine SiO2 and SiO2/C composites, the SiO2/C/CNTs composites display a high initial capacity of 1267.2 mA h g-1. Besides, an excellent cycling stability with the capacity of 315.7 mA h g-1 is achieved after 1000th cycles at a rate of 1 A g-1. The significantly improved electrochemical properties of the SiO2/C/CNTs composites are mainly attributed to the formation of three dimensional CNT networks in the SiO2/C substrate, which can not only shorten the Li-ion diffusion path but also relieve the volume change during the lithium-ion insertion/extraction processes.

  13. Conducting polyaniline-wrapped lithium vanadium phosphate nanocomposite as high-rate and cycling stability cathode for lithium-ion batteries

    International Nuclear Information System (INIS)

    Yan, Haiyan; Chen, Weixing; Wu, Xinming; Li, Yongfei

    2014-01-01

    Highlights: • Li 3 V 2 (PO 4 ) 3 /polyaniline has been firstly synthesized and investigated. • Conducting polyaniline can remarkably enhance the conductivity of Li 3 V 2 (PO 4 ) 3 . • Polyaniline-coated Li 3 V 2 (PO 4 ) 3 exhibits superior rate capability and cyclability. - Abstract: This work introduces a facile strategy to improve the high-rate capability and cycling stability for carbon-free Li 3 V 2 (PO 4 ) 3 by coating with conducting polymer polyaniline. Core-shell Li 3 V 2 (PO 4 ) 3 /polyaniline nanocomposite with typical sizes of 200 nm has been synthesized via a microwave heating assisted sol-gel method followed by a self-assembly process. The highly conductive and uniform polyaniline layer coated on the surface of Li 3 V 2 (PO 4 ) 3 nanoparticles significantly enhances the electrochemical performance of the electrode, which exhibits better rate capability and excellent cycling stability compared with the pristine Li 3 V 2 (PO 4 ) 3 . The resultant nanocomposite exhibits a high initial discharge capacity of 130.7 mAhg −1 at 0.1 C within a voltage range of 3.0-4.3 V. When cycled at a rate of 10 C the capacity can reach up to 101.5 mAhg −1 , and the capacity retention is 87.3% after 500 cycles. The likely contributing factor to the excellent electrochemical performance of core-shell Li 3 V 2 (PO 4 ) 3 /polyaniline could be related to the uniform conducting polymer layer, which can improve the electrical conductivity of Li 3 V 2 (PO 4 ) 3

  14. Periodic Forcing of Inhibition-Stabilized Networks: Nonlinear Resonances and Phase-Amplitude Coupling

    Science.gov (United States)

    Veltz, Romain; Sejnowski, Terrence J.

    2016-01-01

    Inhibition-stabilized networks (ISNs) are neural architectures with strong positive feedback among pyramidal neurons balanced by strong negative feedback from inhibitory interneurons, a circuit element found in the hippocampus and the primary visual cortex. In their working regime, ISNs produce damped oscillations in the γ-range in response to inputs to the inhibitory population. In order to understand the properties of interconnected ISNs, we investigated periodic forcing of ISNs. We show that ISNs can be excited over a range of frequencies and derive properties of the resonance peaks. In particular, we studied the phase-locked solutions, the torus solutions, and the resonance peaks. Periodically forced ISNs respond with (possibly multistable) phase-locked activity, whereas networks with sustained intrinsic oscillations respond more dynamically to periodic inputs with tori. Hence, the dynamics are surprisingly rich, and phase effects alone do not adequately describe the network response. This strengthens the importance of phaseamplitude coupling as opposed to phase-phase coupling in providing multiple frequencies for multiplexing and routing information. PMID:26496044

  15. Stabilization, not polymerization, of microtubules inhibits the nuclear translocation of STATs in adipocytes

    International Nuclear Information System (INIS)

    Gleason, Evanna L.; Hogan, Jessica C.; Stephens, Jacqueline M.

    2004-01-01

    Signal transducers and activators of transcriptions (STATs) are a family of latent transcription factors which are activated by a variety of growth factors and cytokines in many cell types. However, the mechanism by which these transcription factors translocate to the nucleus is poorly understood. The goal of this study was to determine the requirement of microfilaments and microtubules for cytokine induced STAT activation in cultured adipocytes. We used seven different actin-specific and microtubule-specific agents that are well-established effectors of these cytoskeletal networks. Our results clearly demonstrate that inhibition of microfilaments or the prevention of microtubule polymerization has no effect on the ability of STATs to be tyrosine phosphorylated or to translocate to the nucleus. However, we observed that paclitaxel, a microtubule stabilizer, resulted in a significant decrease in the nuclear translocation of STATs without affecting the cytosolic tyrosine phosphorylation of these transcription factors. In summary, our results demonstrate that the dynamic instability, but not the polymerization, of microtubules contributes to nuclear translocation of STAT proteins in adipocytes

  16. Electrochemical behavior of lithium imide/cyclic ether electrolytes for 4 V lithium metal rechargeable batteries

    Energy Technology Data Exchange (ETDEWEB)

    Wang, X.; Yasukawa, Eiki; Mori, Shoichiro

    1999-11-01

    To develop organic electrolytes for 4 V lithium metal rechargeable batteries, LiN(SO{sub 2}CF{sub 3}){sub 2} electrolytes with five-, six-, and seven-membered cyclic ether solvents were characterized. Among these examined electrolytes, LiN(SO{sub 2}CF{sub 3}){sub 2}/tetrahydropyran (THP) electrolyte was found to possess the most advantages, such as high cycling efficiency, good oxidation stability, and high boiling point. Furthermore, lithium cycling efficiency and conductivity were improved by mixing 50% ethylene carbonate (EC) in 1 mol/dm{sup 3} LiN(SO{sub 2}CF{sub 3}){sub 2}/THP electrolyte. By using LiN(SO{sub 2}C{sub 2}F{sub 5}){sub 2} solute as an alternative to LiN(SO{sub 2}CF{sub 3}){sub 2} in EC + THP (1:1) electrolyte, corrosion of the aluminum current collector was inhibited and therefore, excellent cycling performance of a Li/LiMn{sub 2}O{sub 4} coin cell was realized. It was also found that lithium cycling efficiency increased with decreasing deposition current density or increasing dissolution current density. Especially at deposition/dissolution current densities of 0.2/0.6 mA/cm{sup 2}, the observed lithium cycling efficiency in 1 mol/dm{sup 3} LiN(SO{sub 2}C{sub 2}F{sub 5}){sub 2}/EC + THP (1:1) electrolyte was above 99%. Thermal tests further disclosed that this mixed electrolyte has good thermal stability even in the presence of lithium metal or cathode materials.

  17. Nanostructure Sn-Co-C composite lithium ion battery electrode with unique stability and high electrochemical performance

    International Nuclear Information System (INIS)

    Li Mengyuan; Liu Chunling; Shi Meirong; Dong Wensheng

    2011-01-01

    Nanostructure Sn-Co-C composites with different compositions are synthesized by a simple solution polymerization using inexpensive raw materials followed by pyrolysis in nitrogen atmosphere. The nanostructure Sn-Co-C composites are characterized using various analytic techniques. The results show that the electrochemical performances of the composites are strongly dependent on their structure and composition. Among these composites the Sn-Co-C-1 with a weight composition of Sn 0.31 Co 0.09 C 0.6 exhibits high reversible capacity and excellent cycleability when used as an anode for rechargeable lithium ion batteries. This composite is composed of SnCo 2 , SnCo, Sn and amorphous carbon, and the nanoparticles of SnCo 2 , SnCo and Sn are uniformly dispersed into the amorphous carbon matrix, the average diameter of these metal nanoparticles is 8.44 nm.

  18. Amorphous-silicon@silicon oxide/chromium/carbon as an anode for lithium-ion batteries with excellent cyclic stability

    International Nuclear Information System (INIS)

    Li, Mingqi; Gu, Jingwei; Feng, Xiaofang; He, Hongyan; Zeng, Chunmei

    2015-01-01

    Highlights: • A new amorphous-Si@SiO x /Cr/carbon anode composite for lithium-ion batteries is synthesized by a simple method. • At a current density of 100 mA g −1 , this as-prepared composite exhibit a stable discharge capacity of about 810 mAh g −1 with good capacity retention up to 200 cycles. Even at a current density of 800 mA g −1 , a stable discharge capacity of 570 mAh g −1 can be obtained. • This work creates a new method to improve the electrochemical performance of SiO-based electrode materials. - Abstract: A new amorphous-Si@SiO x /Cr/carbon (a-Si@SiO x /Cr/C) anode composite for lithium-ion batteries is synthesized, using SiO, chromium powder and graphite as starting materials. X-ray diffraction (XRD), X-ray photoelectron spectra (XPS), scanning electron microscope (SEM) and high resolution transmission electron microscope (HRTEM) are employed to characterize the composition, morphology and microstructure of the composite. Coin-type cells are assembled to investigate the electrochemical behaviors of the as-prepared composites by constant current charge–discharge technique, cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The results show that chromium facilitates the crush of Si@SiO x and graphite during milling, and thus improves their mutual dispersion in the composite. When cycled at 100 mA g −1 , the a-Si@SiO x /Cr/C exhibits a stable discharge capacity of about 810 mAh g −1 (calculated on the mass of a-Si@SiO x /Cr/C) with good capacity retention up to 200 cycles. The improved electrochemical performance is attributed to the reduced particle size of a-Si@SiO x and the synergistic effect of carbon and chromium

  19. Embedding Co3O4 nanoparticles into graphene nanoscrolls as anode for lithium ion batteries with superior capacity and outstanding cycling stability

    Directory of Open Access Journals (Sweden)

    Zhigang Zhang

    2018-04-01

    Full Text Available Co3O4 is a promising high-performance anode for lithium ion batteries (LIBs, but suffers from unsatisfied cyclability originating duo to low electrical conductivity and large volume expansion during charge and discharge process. Herein, we successfully constructed the Co3O4 nanoparticles embedded into graphene nanoscrolls (GNSs as advanced anode for high-performance LIBs with large capacity and exceptional cyclability. The one-dimensional (1D Co3O4/GNSs were synthesized via liquid nitrogen cold quenching of large-size graphene oxide nanosheets and sodium citrate (SC modified Co3O4 nanoparticles, followed by freeze drying and annealing at 400 °C for 2 h in nitrogen atmosphere. Benefiting from the interconnected porous network constructed by 1D Co3O4/GNSs for fast electron transfer and rapid ion diffusion, and wrinkled graphene shell for significantly alleviating the huge volume expansion of Co3O4 during lithiation and delithiation. The resultant Co3O4/GNSs exhibited ultrahigh reversible capacity of 1200 mAh g−1 at 0.1 C, outperforming most reported Co3O4 anodes. Moreover, they showed high rate capability of 600 mAh g−1 at 5 C, and outstanding cycling stability with a high capacity retention of 90% after 500 cycles. Therefore, this developed strategy could be extended as an universal and scalable approach for intergrating various metal oxide materials into GNSs for energy storage and conversion applications. Keywords: Graphene nanoscrolls, Co3O4, Anode, Lithium ion batteries, Energy storage

  20. Lithium Suppresses Hedgehog Signaling via Promoting ITCH E3 Ligase Activity and Gli1–SUFU Interaction in PDA Cells

    Directory of Open Access Journals (Sweden)

    Xinshuo Wang

    2017-11-01

    Full Text Available Dysregulation of Hedgehog (Hh signaling pathway is one of the hallmarks of pancreatic ductal adenocarcinoma (PDA. Lithium, a clinical mood stabilizer for the treatment of mental disorders, is known to suppress tumorigenic potential of PDA cells by targeting the Hh/Gli signaling pathway. In this study, we investigated the molecular mechanism of lithium induced down-regulation of Hh/Gli1. Our data show that lithium promotes the poly-ubiquitination and proteasome-mediated degradation of Gli1 through activating E3 ligase ITCH. Additionally, lithium enhances interaction between Gli1 and SUFU via suppressing GSK3β, which phosphorylates SUFU and destabilizes the SUFU-Gli1 inhibitory complex. Our studies illustrate a novel mechanism by which lithium suppresses Hh signaling via simultaneously promoting ITCH-dependent Gli1 ubiquitination/degradation and SUFU-mediated Gli1 inhibition.

  1. Predictors of excellent response to lithium

    DEFF Research Database (Denmark)

    Kessing, Lars Vedel; Hellmund, Gunnar; Andersen, Per Kragh

    2011-01-01

    The aim of this study was to identify sociodemographic and clinical predictors of excellent response, that is, 'cure' of future affective episodes, to lithium in monotherapy. We used nationwide registers to identify all patients with a diagnosis of bipolar disorder in psychiatric hospital settings...... who were prescribed lithium from 1995 to 2006 in Denmark (N=3762). Excellent lithium responders were defined as patients who after a stabilization lithium start-up period of 6 months, continued lithium in monotherapy without getting hospitalized. The rate of excellent response to lithium...... with somatic comorbidity had increased rates of non-response to lithium compared with patients without somatic comorbidity (HR=1.23, 95% CI: 1.00-1.52).It is concluded that the prevalence of excellent response to lithium monotherapy is low and such patients are characterized by few earlier psychiatric...

  2. Dimethylacetamide as a film-forming additive for improving the cyclic stability of high voltage lithium-rich cathode at room and elevated temperature

    International Nuclear Information System (INIS)

    Tu, Wenqiang; Xing, Lidan; Xia, Pan; Xu, Mengqing; Liao, Youhao; Li, Weishan

    2016-01-01

    Highlights: • Addition of 1% DMAc improves the cyclic performances of LLO at room and elevated temperature. • DMAc oxidizes previously to the STD electrolyte and generates a protective film on the LLO surface. • The protective film is thin and uniform. - Abstract: In this work, dimethylacetamide (DMAc) was investigated as an electrolyte film-forming additive to improve the cyclic stability of high voltage Lithium-rich layered nickel manganese cobalt oxide (LLO) cathode at room (25 °C) and elevated (55 °C) temperature. At 0.5C rate, addition of 1% DMAc slightly decreases the initial discharge capacity of LLO from 187 to 179 mAh g −1 at room temperature and 255 to 246 mAh g −1 at elevated temperature, while significantly improves the capacity retention of LLO from 65.8% to 80.2% after 200 cycles at room temperature and from 21.1% to 66.7% after 150 cycles at elevated temperature. The mechanism of DMAc improving the cyclic stability of LLO was investigated via theoretical calculation and experimental characterizations, which demonstrated that DMAc oxidized preferential to the STD (1.0 M LiPF 6 in a mixed solvent of ethylene carbonate/ethyl methyl carbonate/diethyl carbonate) electrolyte, generating a thin and uniform film on the LLO surface. This film effectively suppresses the subsequent decomposition of STD electrolyte and further degradation of spinel phase converted from the layered structure of LLO, resulting in improved cyclic stability of LLO at room and elevated temperature.

  3. Lithium Intoxication

    Directory of Open Access Journals (Sweden)

    Sermin Kesebir

    2011-09-01

    Full Text Available Lithium has been commonly used for the treatment of several mood disorders particularly bipolar disorder in the last 60 years. Increased intake and decreased excretion of lithium are the main causes for the development of lithium intoxication. The influence of lithium intoxication on body is evaluated as two different groups; reversible or irreversible. Irreversible damage is usually related with the length of time passed as intoxicated. Acute lithium intoxication could occur when an overdose of lithium is received mistakenly or for the purpose of suicide. Patients may sometimes take an overdose of lithium for self-medication resulting in acute intoxication during chronic, while others could develop chronic lithium intoxication during a steady dose treatment due to a problem in excretion of drug. In such situations, it is crucial to be aware of risk factors, to recognize early clinical symptoms and to conduct a proper medical monitoring. In order to justify or exclude the diagnosis, quantitative evaluation of lithium in blood and toxicologic screening is necessary. Following the monitoring schedules strictly and urgent intervention in case of intoxication would definitely reduce mortality and sequela related with lithium intoxication. In this article, the etiology, frequency, definition, clinical features and treatment approaches to the lithium intoxication have been briefly reviewed.

  4. A Comparative Study of Structural Stability and Mechanical and Optical Properties of Fluorapatite (Ca5(PO4)3F) and Lithium Disilicate (Li2Si2O5) Components Forming Dental Glass-Ceramics: First Principles Study

    Science.gov (United States)

    Biskri, Z. E.; Rached, H.; Bouchear, M.; Rached, D.; Aida, M. S.

    2016-10-01

    The aim of this paper is a comparative study of structural stability and mechanical and optical properties of fluorapatite (FA) (Ca5(PO4)3F) and lithium disilicate (LD) (Li2Si2O5), using the first principles pseudopotential method based on density functional theory (DFT) within the generalized gradient approximation (GGA). The stability of fluorapatite and lithium disilicate compounds has been evaluated on the basis of their formation enthalpies. The results show that fluorapatite is more energetically stable than lithium disilicate. The independent elastic constants and related mechanical properties, including bulk modulus ( B), shear modulus ( G), Young's modulus ( E) and Poisson's ratio ( ν) as well as the Vickers hardness ( H v), have been calculated for fluorapatite compound and compared with other theoretical and experimental results. The obtained values of the shear modulus, Young's modulus and Vickers hardness are smaller in comparison with those of lithium disilicate compound, implying that lithium disilicate is more rigid than fluorapatite. The brittle and ductile properties were also discussed using B/ G ratio and Poisson's ratio. Optical properties such as refractive index n( ω), extinction coefficient k( ω), absorption coefficient α( ω) and optical reflectivity R( ω) have been determined from the calculations of the complex dielectric function ɛ( ω), and interpreted on the basis of the electronic structures of both compounds. The calculated values of static dielectric constant ɛ 1(0) and static refractive index n(0) show that the Li2Si2O5 compound has larger values compared to those of the Ca5(PO4)3F compound. The results of the extinction coefficient show that Li2Si2O5 compound exhibits a much stronger ultraviolet absorption. According to the absorption and reflectivity spectra, we inferred that both compounds are theoretically the best visible and infrared transparent materials.

  5. High Mass-Loading of Sulfur-Based Cathode Composites and Polysulfides Stabilization for Rechargeable Lithium/Sulfur Batteries

    International Nuclear Information System (INIS)

    Hara, Toru; Konarov, Aishuak; Mentbayeva, Almagul; Kurmanbayeva, Indira; Bakenov, Zhumabay

    2015-01-01

    Although sulfur has a high theoretical gravimetric capacity, 1672 mAh/g, its insulating nature requires a large amount of conducting additives: this tends to result in a low mass-loading of active material (sulfur), and thereby, a lower capacity than expected. Therefore, an optimal choice of conducting agents and of the method for sulfur/conducting-agent integration is critically important. In this paper, we report that the areal capacity of 4.9 mAh/cm 2 was achieved at sulfur mass loading of 4.1 mg/cm 2 by casting sulfur/polyacrylonitrile/ketjenblack (S/PAN/KB) cathode composite into carbon fiber paper. This is the highest value among published/reported ones even though it does not contain expensive nanosized carbon materials such as carbon nanotubes, graphene, or graphene derivatives, and competitive enough with the conventional LiCoO 2 -based cathodes (e.g., LiCoO 2 , <20 mg/cm 2 corresponding to <2.8 mAh/cm 2 ). Furthermore, the combination of sulfur/PAN-based composite and PAN-based carbon fiber paper enabled the sulfur-based composite to be used even in carbonate-based electrolyte solution that many lithium/sulfur battery researchers avoid the use of it because of severer irreversible active material loss than in electrolyte solutions without carbonate-based solutions, and even at the highest mass-loading ever reported (the more sulfur is loaded, the more decomposed sulfides deposit at an anode surface).

  6. The stabilization of hypoxia inducible factor modulates differentiation status and inhibits the proliferation of mouse embryonic stem cells.

    Science.gov (United States)

    Binó, Lucia; Kučera, Jan; Štefková, Kateřina; Švihálková Šindlerová, Lenka; Lánová, Martina; Kudová, Jana; Kubala, Lukáš; Pacherník, Jiří

    2016-01-25

    Hypoxic conditions are suggested to affect the differentiation status of stem cells (SC), including embryonic stem cells (ESC). Hypoxia inducible factor (HIF) is one of the main intracellular molecules responsible for the cellular response to hypoxia. Hypoxia stabilizes HIF by inhibiting the activity of HIF prolyl-hydroxylases (PHD), which are responsible for targeting HIF-alpha subunits for proteosomal degradation. To address the impact of HIF stabilization on the maintenance of the stemness signature of mouse ESC (mESC), we tested the influence of the inhibition of PHDs and hypoxia (1% O2 and 5% O2) on spontaneous ESC differentiation triggered by leukemia inhibitory factor withdrawal for 24 and 48 h. The widely used panhydroxylase inhibitor dimethyloxaloylglycine (DMOG) and PHD inhibitor JNJ-42041935 (JNJ) with suggested higher specificity towards PHDs were employed. Both inhibitors and both levels of hypoxia significantly increased HIF-1alpha and HIF-2alpha protein levels and HIF transcriptional activity in spontaneously differentiating mESC. This was accompanied by significant downregulation of cell proliferation manifested by the complete inhibition of DNA synthesis and partial arrest in the S phase after 48 h. Further, HIF stabilization enhanced downregulation of the expressions of some pluripotency markers (OCT-4, NANOG, ZFP-42, TNAP) in spontaneously differentiating mESC. However, at the same time, there was also a significant decrease in the expression of some genes selected as markers of cell differentiation (e.g. SOX1, BRACH T, ELF5). In conclusion, the short term stabilization of HIF mediated by the PHD inhibitors JNJ and DMOG and hypoxia did not prevent the spontaneous loss of pluripotency markers in mESC. However, it significantly downregulated the proliferation of these cells. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  7. A graphene–SnO{sub 2}–TiO{sub 2} ternary nanocomposite electrode as a high stability lithium-ion anode material

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Jicai [Key Laboratory of Automobile Materials, Ministry of Education, and College of Materials Science and Engineering, Jilin University, Changchun, 130025 (China); Roll Forging Research Institute, Jilin University, Changchun, 130025, Jilin (China); Wang, Juan; Zhou, Meixin; Li, Yi [Key Laboratory of Automobile Materials, Ministry of Education, and College of Materials Science and Engineering, Jilin University, Changchun, 130025 (China); Wang, Xiaofeng [State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012 (China); Yu, Kaifeng, E-mail: yukf@jlu.edu.cn [Key Laboratory of Automobile Materials, Ministry of Education, and College of Materials Science and Engineering, Jilin University, Changchun, 130025 (China)

    2016-07-15

    In this work, a solvothermal method combined with a hydrothermal two-step method is developed to synthesize graphene–SnO{sub 2}–TiO{sub 2} ternary nanocomposite, in which the nanometer-sized TiO{sub 2} and SnO{sub 2} nanoparticles form in situ uniformly anchored on the surface of graphene sheets, as high stability and capacity lithium-ion anode materials. Compared to graphene–TiO{sub 2}, bulk TiO{sub 2} and grapheme–SnO{sub 2} composites, the as-prepared nanocomposite delivers a superior rate performance of 499.3 mAhg{sup −1} at 0.2 C and an outstanding stability cycling capability (1073.4 mAhg{sup −1} at 0.2 C after 50 cycles), due to the synergistic effects contributed from individual components, for example, high specific capacity of SnO{sub 2}, excellent conductivity of 3D graphene networks. - Graphical abstract: Graphene–SnO{sub 2}–TiO{sub 2} nanocomposite is synthesized by a hydrothermal two-step method. The composite exhibits higher reversible capacity and better cycle/rate performance due to the unique structure. - Highlights: • We have synthesized a graphene–SnO{sub 2}–TiO{sub 2} nanocomposite by a two-step method to improve the cycling performance. • Graphene–SnO{sub 2}–TiO{sub 2} nanocomposite is synthesized by a hydrothermal two-step method. • The composite exhibits higher reversible capacity and better cycle/rate performance due to the unique structure.

  8. A graphene–SnO_2–TiO_2 ternary nanocomposite electrode as a high stability lithium-ion anode material

    International Nuclear Information System (INIS)

    Liang, Jicai; Wang, Juan; Zhou, Meixin; Li, Yi; Wang, Xiaofeng; Yu, Kaifeng

    2016-01-01

    In this work, a solvothermal method combined with a hydrothermal two-step method is developed to synthesize graphene–SnO_2–TiO_2 ternary nanocomposite, in which the nanometer-sized TiO_2 and SnO_2 nanoparticles form in situ uniformly anchored on the surface of graphene sheets, as high stability and capacity lithium-ion anode materials. Compared to graphene–TiO_2, bulk TiO_2 and grapheme–SnO_2 composites, the as-prepared nanocomposite delivers a superior rate performance of 499.3 mAhg"−"1 at 0.2 C and an outstanding stability cycling capability (1073.4 mAhg"−"1 at 0.2 C after 50 cycles), due to the synergistic effects contributed from individual components, for example, high specific capacity of SnO_2, excellent conductivity of 3D graphene networks. - Graphical abstract: Graphene–SnO_2–TiO_2 nanocomposite is synthesized by a hydrothermal two-step method. The composite exhibits higher reversible capacity and better cycle/rate performance due to the unique structure. - Highlights: • We have synthesized a graphene–SnO_2–TiO_2 nanocomposite by a two-step method to improve the cycling performance. • Graphene–SnO_2–TiO_2 nanocomposite is synthesized by a hydrothermal two-step method. • The composite exhibits higher reversible capacity and better cycle/rate performance due to the unique structure.

  9. Lithium Poisoning

    DEFF Research Database (Denmark)

    Baird-Gunning, Jonathan; Lea-Henry, Tom; Hoegberg, Lotte C G

    2017-01-01

    Lithium is a commonly prescribed treatment for bipolar affective disorder. However, treatment is complicated by lithium's narrow therapeutic index and the influence of kidney function, both of which increase the risk of toxicity. Therefore, careful attention to dosing, monitoring, and titration...... is required. The cause of lithium poisoning influences treatment and 3 patterns are described: acute, acute-on-chronic, and chronic. Chronic poisoning is the most common etiology, is usually unintentional, and results from lithium intake exceeding elimination. This is most commonly due to impaired kidney...... function caused by volume depletion from lithium-induced nephrogenic diabetes insipidus or intercurrent illnesses and is also drug-induced. Lithium poisoning can affect multiple organs; however, the primary site of toxicity is the central nervous system and clinical manifestations vary from asymptomatic...

  10. In situ preparation of CuS cathode with unique stability and high rate performance for lithium ion batteries

    International Nuclear Information System (INIS)

    Wang Yourong; Zhang Xianwang; Chen Peng; Liao Hantao; Cheng Siqing

    2012-01-01

    A simple approach, for the first time, was presented for in situ preparation of the CuS cathode. The obtained CuS cathodes were investigated by the measurements of X-ray diffraction pattern, scanning electronic microscopy, and electrochemical performance. The results indicate the CuS cathodes are composed of plenty of nano flakes, which construct a large 3-D net structure. Moreover, the CuS cathodes exhibit reversible capacity of 447.4, 414.1, 389.9 and 376.0 mAh g −1 at 0.2 C, 0.5 C, 1 C and 2 C respectively and excellent cycle stability for more than 100 cycles. The possible mechanism of the unique stability of the CuS cathode was discussed.

  11. Shuttle inhibition by chemical adsorption of lithium polysulfides in B and N co-doped graphene for Li-S batteries.

    Science.gov (United States)

    Li, Fen; Su, Yan; Zhao, Jijun

    2016-09-14

    The advance of lithium sulfur batteries is now greatly restricted by the fast capacity fading induced by shuttle effect. Using first-principles calculations, various vacancies, N doping, and B,N co-doping in graphene sheets have been systematically explored for lithium polysufides entrapped in Li-S batteries. The LiS, LiC, LiN and SB bonds and Hirshfeld charges in the Li 2 S 6 adsorbed defective graphene systems have been analyzed to understand the intrinsic mechanism of retaining lithium polysulfides in these systems. Total and local densities of states analyses elucidate the strongest adsorption sites among the N and B-N co-doped graphene systems. The overall electrochemical performance of Li-S batteries varies with the types of defects in graphene. Among the defective graphene systems, only the reconstructed pyrrole-like vacancy is effective for retaining lithium polysulfides. N doping induces a strong LiN interaction in the defective graphene systems, in which the pyrrolic N rather than the pyridinic N plays a dominant role in trapping of lithium polysulfides. The shuttle effect can be further depressed via pyrrolic B,N co-doped defective graphene materials, especially the G-B-N-hex system with extremely strong adsorption of lithium polysulfides (4-5 eV), and simultaneous contribution from the strong LiN and SB interactions.

  12. Improved chemical stability and cyclability in Li2S–P2S5–P2O5–ZnO composite electrolytes for all-solid-state rechargeable lithium batteries

    International Nuclear Information System (INIS)

    Hayashi, Akitoshi; Muramatsu, Hiromasa; Ohtomo, Takamasa; Hama, Sigenori; Tatsumisago, Masahiro

    2014-01-01

    Highlights: • Chemical stability in air of Li 2 S–P 2 S 5 –P 2 O 5 –ZnO composite electrolytes was examined. • A partial substitution of P 2 O 5 for P 2 S 5 decreased the rate of H 2 S generation. • The addition of ZnO to the glasses reduced the amount of H 2 S. • All-solid-state lithium cells using the developed composite electrolytes exhibited good cyclability. -- Abstract: Sulfide glasses with high Li + ion conductivity are promising solid electrolytes for all-solid-state rechargeable lithium batteries. This study specifically examined the chemical stability of Li 2 S–P 2 S 5 -based glass electrolytes in air. Partial substitution of P 2 O 5 for P 2 S 5 decreased the rate of H 2 S generation from glass exposed to air. The addition of ZnO to the Li 2 S–P 2 S 5 –P 2 O 5 glasses as a H 2 S absorbent reduced the H 2 S gas release. A composite electrolyte prepared from 90 mol% of 75Li 2 S⋅21P 2 S 5 ⋅4P 2 O 5 (mol%) glass and 10 mol% ZnO was applied to all-solid-state cells. The all-solid-state In/LiCoO 2 cell with the composite electrolyte showed good cyclability as a lithium secondary battery

  13. Analysis of structural and thermal stability in the positive electrode for sulfide-based all-solid-state lithium batteries

    Science.gov (United States)

    Tsukasaki, Hirofumi; Otoyama, Misae; Mori, Yota; Mori, Shigeo; Morimoto, Hideyuki; Hayashi, Akitoshi; Tatsumisago, Masahiro

    2017-11-01

    Sulfide-based all-solid-state batteries using a non-flammable inorganic solid electrolyte are promising candidates as a next-generation power source owing to their safety and excellent charge-discharge cycle characteristics. In this study, we thus focus on the positive electrode and investigated structural stabilities of the interface between the positive electrode active material LiNi1/3Mn1/3Co1/3O2 (NMC) and the 75Li2S·25P2S5 (LPS) glass electrolyte after charge-discharge cycles via transmission electron microscopy (TEM). To evaluate the thermal stability of the fabricated all-solid-state cell, in-situ TEM observations for the positive electrode during heating are conducted. As a result, structural and morphological changes are detected in the LPS glasses. Thus, exothermal reaction present in the NMC-LPS composite positive electrode after the initial charging is attributable to the crystallization of LPS glasses. On the basis of a comparison with crystallization behavior in single LPS glasses, the origin of exothermal reaction in the NMC-LPS composites is discussed.

  14. Lithium Batteries

    Science.gov (United States)

    National Laboratory, Materials Science and Technology Division Lithium Batteries Resources with Additional thin-film lithium batteries for a variety of technological applications. These batteries have high essentially any size and shape. Recently, Teledyne licensed this technology from ORNL to make batteries for

  15. SBIR reports on the chemistry of lithium battery technology

    Science.gov (United States)

    Kilroy, W. P.

    1989-11-01

    The following contents are included: Identification of an Improved Mixed Solvent Electrolyte for a Lithium Secondary Battery; Catalyzed Cathodes for Lithium-Thionyl Chloride Batteries; Improved Lithium/Thionyl Chloride Cells Using New Electrolyte Salts; Development of Calcium Primary Cells With Improved Anode Stability and Energy Density.

  16. Inhibition of the bioavailability of heavy metals in sewage sludge biochar by adding two stabilizers

    Science.gov (United States)

    Huang, Zhujian; Lu, Qin; Wang, Jun; Chen, Xian; He, Zhenli

    2017-01-01

    Agricultural application of sewage sludge (SS) after carbonization is a plausible way for disposal. Despite its benefits of improving soil fertility and C sequestration, heavy metals contained in sewage sludge biochars (SSB) are still a concern. In this study, two types of heavy metal stabilizers were chosen: fulvic acid (FA) and phosphogypsum (with CaSO4, CS, as the main component). The two stabilizers were incorporated into SS prior to 350°C carbonization for 1 h at the rates of 1%, 2%, or 4%. The obtained SSBs were then analyzed by Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). Total and available concentrations of four heavy metals, i.e., Zn, Pb, Cd, and Ni, in the SSBs were determined. In addition, a series of pot soil culture experiments was conducted to investigate the effects of stabilizers incorporation into SSB on heavy metal bioavailability and the uptake by plants (corn as an indicator) and plant biomass yield, with SS and SSB (no stabilizers) as controls. The results showed that incorporation of both FA and CS increased functional groups such as carboxyl, phenol, hydroxyl, amine and quinine groups in the SSBs. The percentage of heavy metals in sulfuric and oxidizable state and residual state of SSBs were significantly increased after carbonization, and hence the mobility of the heavy metals in SSBs was decreased. The introduction of the stabilizers (i.e., FA or CS) significantly lowered the total and available concentrations of Zn, Pb, Cd, and Ni. The reduction in available heavy metal concentration increased with incorporation rate of the stabilizers from 1% to 4%. In the treatments with FA or CS incorporated SSB, less heavy metals were taken up by plants and more plant biomass yields were obtained. The mitigating effects were more pronounced at higher rates of FA or CS stabilizer. These findings provide a way to lower bioavailability of heavy metals in SS or SSB for land application or horticulture as a

  17. A Novel Acidic Matrix Protein, PfN44, Stabilizes Magnesium Calcite to Inhibit the Crystallization of Aragonite*

    Science.gov (United States)

    Pan, Cong; Fang, Dong; Xu, Guangrui; Liang, Jian; Zhang, Guiyou; Wang, Hongzhong; Xie, Liping; Zhang, Rongqing

    2014-01-01

    Magnesium is widely used to control calcium carbonate deposition in the shell of pearl oysters. Matrix proteins in the shell are responsible for nucleation and growth of calcium carbonate crystals. However, there is no direct evidence supporting a connection between matrix proteins and magnesium. Here, we identified a novel acidic matrix protein named PfN44 that affected aragonite formation in the shell of the pearl oyster Pinctada fucata. Using immunogold labeling assays, we found PfN44 in both the nacreous and prismatic layers. In shell repair, PfN44 was repressed, whereas other matrix proteins were up-regulated. Disturbing the function of PfN44 by RNAi led to the deposition of porous nacreous tablets with overgrowth of crystals in the nacreous layer. By in vitro circular dichroism spectra and fluorescence quenching, we found that PfN44 bound to both calcium and magnesium with a stronger affinity for magnesium. During in vitro calcium carbonate crystallization and calcification of amorphous calcium carbonate, PfN44 regulated the magnesium content of crystalline carbonate polymorphs and stabilized magnesium calcite to inhibit aragonite deposition. Taken together, our results suggested that by stabilizing magnesium calcite to inhibit aragonite deposition, PfN44 participated in P. fucata shell formation. These observations extend our understanding of the connections between matrix proteins and magnesium. PMID:24302723

  18. Copper oxide content dependence of crystallization behavior, glass forming ability, glass stability and fragility of lithium borate glasses

    International Nuclear Information System (INIS)

    Soliman, A.A.; Kashif, I.

    2010-01-01

    Differential thermal analysis (DTA) and X-ray diffraction (XRD) have been employed to investigate the copper oxide content dependence of the glass transition temperatures data, activation energy for the glass transition E t , glass stability GS, fragility index Fi, the glass-forming ability (GFA) and crystallization behavior of {(100-x) mol% Li 2 B 4 O 7 -x mol% CuO} glass samples, where x=0-40 mol% CuO. From the dependence of the glass transition temperature T g on the heating rate β, the fragility, F i , and the activation energy, E t , have been calculated. It is seen that F i and E t are attained their minimum values at 0 x -T g , SCL region and the GS. The GFA has been investigated on the basis of Hruby parameter K H , which is a strong indicator of GFA, and the relaxation time. Results of GFA are in good agreement with the fragility index, F i , calculations indicating that {90Li 2 B 4 O 7 .10CuO} is the best glass former. The stronger glass forming ability has decreasing the fragility index. XRD result indicates that no fully amorphous samples but a mixture of crystalline and amorphous phases are formed in the samples containing x>25 mol% CuO and below it composed of glassy phase. Increasing the CuO content above 25 mol% helps the crystallization process, and thus promotes a distinct SCL region. XRD suggests the presence of micro-crystallites of remaining residual amorphous matrix by increasing the CuO content.

  19. Lithium neurotoxicity.

    Science.gov (United States)

    Suraya, Y; Yoong, K Y

    2001-09-01

    Inspite of the advent of newer antimanic drugs, lithium carbonate remains widely used in the treatment and prevention of manic-depressive illness. However care has to be exercised due to its low therapeutic index. The central nervous system and renal system are predominantly affected in acute lithium intoxication and is potentially lethal. The more common side effect involves the central nervous system. It occurs early and is preventable. We describe three cases of lithium toxicity admitted to Johor Bahru Hospital, with emphasis on its neurological preponderance.

  20. VP24-Karyopherin Alpha Binding Affinities Differ between Ebolavirus Species, Influencing Interferon Inhibition and VP24 Stability.

    Science.gov (United States)

    Schwarz, Toni M; Edwards, Megan R; Diederichs, Audrey; Alinger, Joshua B; Leung, Daisy W; Amarasinghe, Gaya K; Basler, Christopher F

    2017-02-15

    Zaire ebolavirus (EBOV), Bundibugyo ebolavirus (BDBV), and Reston ebolavirus (RESTV) belong to the same genus but exhibit different virulence properties. VP24 protein, a structural protein present in all family members, blocks interferon (IFN) signaling and likely contributes to virulence. Inhibition of IFN signaling by EBOV VP24 (eVP24) involves its interaction with the NPI-1 subfamily of karyopherin alpha (KPNA) nuclear transporters. Here, we evaluated eVP24, BDBV VP24 (bVP24), and RESTV VP24 (rVP24) interactions with three NPI-1 subfamily KPNAs (KPNA1, KPNA5, and KPNA6). Using purified proteins, we demonstrated that each VP24 binds to each of the three NPI-1 KPNAs. bVP24, however, exhibited approximately 10-fold-lower KPNA binding affinity than either eVP24 or rVP24. Cell-based assays also indicate that bVP24 exhibits decreased KPNA interaction, decreased suppression of IFN induced gene expression, and a decreased half-life in transfected cells compared to eVP24 or rVP24. Amino acid sequence alignments between bVP24 and eVP24 also identified residues within and surrounding the previously defined eVP24-KPNA5 binding interface that decrease eVP24-KPNA affinity or bVP24-KPNA affinity. VP24 mutations that lead to reduced KPNA binding affinity also decrease IFN inhibition and shorten VP24 half-lives. These data identify novel functional differences in VP24-KPNA interaction and reveal a novel impact of the VP24-KPNA interaction on VP24 stability. The interaction of Ebola virus (EBOV) VP24 protein with host karyopherin alpha (KPNA) proteins blocks type I interferon (IFN) signaling, which is a central component of the host innate immune response to viral infection. Here, we quantitatively compared the interactions of VP24 proteins from EBOV and two members of the Ebolavirus genus, Bundibugyo virus (BDBV) and Reston virus (RESTV). The data reveal lower binding affinity of the BDBV VP24 (bVP24) for KPNAs and demonstrate that the interaction with KPNA modulates inhibition

  1. Lithium Azide as an Electrolyte Additive for All-Solid-State Lithium-Sulfur Batteries.

    Science.gov (United States)

    Eshetu, Gebrekidan Gebresilassie; Judez, Xabier; Li, Chunmei; Bondarchuk, Oleksandr; Rodriguez-Martinez, Lide M; Zhang, Heng; Armand, Michel

    2017-11-27

    Of the various beyond-lithium-ion battery technologies, lithium-sulfur (Li-S) batteries have an appealing theoretical energy density and are being intensely investigated as next-generation rechargeable lithium-metal batteries. However, the stability of the lithium-metal (Li°) anode is among the most urgent challenges that need to be addressed to ensure the long-term stability of Li-S batteries. Herein, we report lithium azide (LiN 3 ) as a novel electrolyte additive for all-solid-state Li-S batteries (ASSLSBs). It results in the formation of a thin, compact and highly conductive passivation layer on the Li° anode, thereby avoiding dendrite formation, and polysulfide shuttling. It greatly enhances the cycling performance, Coulombic and energy efficiencies of ASSLSBs, outperforming the state-of-the-art additive lithium nitrate (LiNO 3 ). © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Thermodynamic Stabilization of the Folded Domain of Prion Protein Inhibits Prion Infection in Vivo

    Directory of Open Access Journals (Sweden)

    Qingzhong Kong

    2013-07-01

    Full Text Available Prion diseases, or transmissible spongiform encephalopathies (TSEs, are associated with the conformational conversion of the cellular prion protein, PrPC, into a protease-resistant form, PrPSc. Here, we show that mutation-induced thermodynamic stabilization of the folded, α-helical domain of PrPC has a dramatic inhibitory effect on the conformational conversion of prion protein in vitro, as well as on the propagation of TSE disease in vivo. Transgenic mice expressing a human prion protein variant with increased thermodynamic stability were found to be much more resistant to infection with the TSE agent than those expressing wild-type human prion protein, in both the primary passage and three subsequent subpassages. These findings not only provide a line of evidence in support of the protein-only model of TSEs but also yield insight into the molecular nature of the PrPC→PrPSc conformational transition, and they suggest an approach to the treatment of prion diseases.

  3. α-Defensin HD5 Inhibits Human Papillomavirus 16 Infection via Capsid Stabilization and Redirection to the Lysosome

    Directory of Open Access Journals (Sweden)

    Mayim E. Wiens

    2017-01-01

    Full Text Available α-Defensins are an important class of abundant innate immune effectors that are potently antiviral against a number of nonenveloped viral pathogens; however, a common mechanism to explain their ability to block infection by these unrelated viruses is lacking. We previously found that human defensin 5 (HD5 blocks a critical host-mediated proteolytic processing step required for human papillomavirus (HPV infection. Here, we show that bypassing the requirement for this cleavage failed to abrogate HD5 inhibition. Instead, HD5 altered HPV trafficking in the cell. In the presence of an inhibitory concentration of HD5, HPV was internalized and reached the early endosome. The internalized capsid became permeable to antibodies and proteases; however, HD5 prevented dissociation of the viral capsid from the genome, reduced viral trafficking to the trans-Golgi network, redirected the incoming viral particle to the lysosome, and accelerated the degradation of internalized capsid proteins. This mechanism is equivalent to the mechanism by which HD5 inhibits human adenovirus. Thus, our data support capsid stabilization and redirection to the lysosome during infection as a general antiviral mechanism of α-defensins against nonenveloped viruses.

  4. Can Stabilization and Inhibition of Aquaporins Contribute to Future Development of Biomimetic Membranes?

    Science.gov (United States)

    To, Janet; Torres, Jaume

    2015-08-10

    In recent years, the use of biomimetic membranes that incorporate membrane proteins, i.e., biomimetic-hybrid membranes, has increased almost exponentially. Key membrane proteins in these systems have been aquaporins, which selectively permeabilize cellular membranes to water. Aquaporins may be incorporated into synthetic lipid bilayers or to more stable structures made of block copolymers or solid-state nanopores. However, translocation of aquaporins to these alien environments has adverse consequences in terms of performance and stability. Aquaporins incorporated in biomimetic membranes for use in water purification and desalination should also withstand the harsh environment that may prevail in these conditions, such as high pressure, and presence of salt or other chemicals. In this respect, modified aquaporins that can be adapted to these new environments should be developed. Another challenge is that biomimetic membranes that incorporate high densities of aquaporin should be defect-free, and this can only be efficiently ascertained with the availability of completely inactive mutants that behave otherwise like the wild type aquaporin, or with effective non-toxic water channel inhibitors that are so far inexistent. In this review, we describe approaches that can potentially be used to overcome these challenges.

  5. Thermal Stability of siRNA Modulates Aptamer- conjugated siRNA Inhibition

    Directory of Open Access Journals (Sweden)

    Alexey Berezhnoy

    2012-01-01

    Full Text Available Oligonucleotide aptamer-mediated in vivo cell targeting of small interfering RNAs (siRNAs is emerging as a useful approach to enhance the efficacy and reduce the adverse effects resulting from siRNA-mediated genetic interference. A current main impediment in aptamer-mediated siRNA targeting is that the activity of the siRNA is often compromised when conjugated to an aptamer, often requiring labor intensive and time consuming design and testing of multiple configurations to identify a conjugate in which the siRNA activity has not been significantly reduced. Here, we show that the thermal stability of the siRNA is an important parameter of siRNA activity in its conjugated form, and that siRNAs with lower melting temperature (Tm are not or are minimally affected when conjugated to the 3′ end of 2′F-pyrimidine-modified aptamers. In addition, the configuration of the aptamer-siRNA conjugate retains activity comparable with the free siRNA duplex when the passenger strand is co-transcribed with the aptamer and 3′ overhangs on the passenger strand are removed. The approach described in this paper significantly reduces the time and effort necessary to screening siRNA sequences that retain biological activity upon aptamer conjugation, facilitating the process of identifying candidate aptamer-siRNA conjugates suitable for in vivo testing.

  6. Stabilization of a β-hairpin in monomeric Alzheimer's amyloid-β peptide inhibits amyloid formation

    Science.gov (United States)

    Hoyer, Wolfgang; Grönwall, Caroline; Jonsson, Andreas; Ståhl, Stefan; Härd, Torleif

    2008-01-01

    According to the amyloid hypothesis, the pathogenesis of Alzheimer's disease is triggered by the oligomerization and aggregation of the amyloid-β (Aβ) peptide into protein plaques. Formation of the potentially toxic oligomeric and fibrillar Aβ assemblies is accompanied by a conformational change toward a high content of β-structure. Here, we report the solution structure of Aβ(1–40) in complex with the phage-display selected affibody protein ZAβ3, a binding protein of nanomolar affinity. Bound Aβ(1–40) features a β-hairpin comprising residues 17–36, providing the first high-resolution structure of Aβ in β conformation. The positions of the secondary structure elements strongly resemble those observed for fibrillar Aβ. ZAβ3 stabilizes the β-sheet by extending it intermolecularly and by burying both of the mostly nonpolar faces of the Aβ hairpin within a large hydrophobic tunnel-like cavity. Consequently, ZAβ3 acts as a stoichiometric inhibitor of Aβ fibrillation. The selected Aβ conformation allows us to suggest a structural mechanism for amyloid formation based on soluble oligomeric hairpin intermediates. PMID:18375754

  7. Can Stabilization and Inhibition of Aquaporins Contribute to Future Development of Biomimetic Membranes?

    Directory of Open Access Journals (Sweden)

    Janet To

    2015-08-01

    Full Text Available In recent years, the use of biomimetic membranes that incorporate membrane proteins, i.e., biomimetic-hybrid membranes, has increased almost exponentially. Key membrane proteins in these systems have been aquaporins, which selectively permeabilize cellular membranes to water. Aquaporins may be incorporated into synthetic lipid bilayers or to more stable structures made of block copolymers or solid-state nanopores. However, translocation of aquaporins to these alien environments has adverse consequences in terms of performance and stability. Aquaporins incorporated in biomimetic membranes for use in water purification and desalination should also withstand the harsh environment that may prevail in these conditions, such as high pressure, and presence of salt or other chemicals. In this respect, modified aquaporins that can be adapted to these new environments should be developed. Another challenge is that biomimetic membranes that incorporate high densities of aquaporin should be defect-free, and this can only be efficiently ascertained with the availability of completely inactive mutants that behave otherwise like the wild type aquaporin, or with effective non-toxic water channel inhibitors that are so far inexistent. In this review, we describe approaches that can potentially be used to overcome these challenges.

  8. 6-Thioguanine alters the structure and stability of duplex DNA and inhibits quadruplex DNA formation.

    Science.gov (United States)

    Marathias, V M; Sawicki, M J; Bolton, P H

    1999-07-15

    The ability to chemically synthesize biomolecules has opened up the opportunity to observe changes in structure and activity that occur upon single atom substitution. In favorable cases this can provide information about the roles of individual atoms. The substitution of 6-thioguanine (6SG) for guanine is a potentially very useful single atom substitution as 6SG has optical, photocrosslinking, metal ion binding and other properties of potential utility. In addition, 6-mercaptopurine is a clinically important pro-drug that is activated by conversion into 6SG by cells. The results presented here indicate that the presence of 6SG blocks the formation of quadruplex DNA. The presence of 6SG alters the structure and lowers the thermal stability of duplex DNA, but duplex DNA can be formed in the presence of 6SG. These results indicate that some of the cytotoxic activity of 6SG may be due to disruption of the quadruplex structures formed by telomere and other DNAs. This additional mode of action is consistent with the delayed onset of cytotoxicity.

  9. Nickel Network Derived from a Block Copolymer Template for MnO2 Electrodes as Dimensionally Stabilized Lithium-Ion Battery Anodes

    NARCIS (Netherlands)

    Tillmann, Selina D.; Cekic-Laskovic, Isidora; Winter, Martin; Loos, Katja

    To improve lithium-ion batteries further, novel concepts for the reproducible preparation of highly structured bicontinuous battery electrodes are required. With this in mind, the main focus of this work is based on the block copolymer template-directed synthesis of metal nanofoams suitable for the

  10. Stabilization

    Directory of Open Access Journals (Sweden)

    Muhammad H. Al-Malack

    2016-07-01

    Full Text Available Fuel oil flyash (FFA produced in power and water desalination plants firing crude oils in the Kingdom of Saudi Arabia is being disposed in landfills, which increases the burden on the environment, therefore, FFA utilization must be encouraged. In the current research, the effect of adding FFA on the engineering properties of two indigenous soils, namely sand and marl, was investigated. FFA was added at concentrations of 5%, 10% and 15% to both soils with and without the addition of Portland cement. Mixtures of the stabilized soils were thoroughly evaluated using compaction, California Bearing Ratio (CBR, unconfined compressive strength (USC and durability tests. Results of these tests indicated that stabilized sand mixtures could not attain the ACI strength requirements. However, marl was found to satisfy the ACI strength requirement when only 5% of FFA was added together with 5% of cement. When the FFA was increased to 10% and 15%, the mixture’s strength was found to decrease to values below the ACI requirements. Results of the Toxicity Characteristics Leaching Procedure (TCLP, which was performed on samples that passed the ACI requirements, indicated that FFA must be cautiously used in soil stabilization.

  11. VP24-Karyopherin Alpha Binding Affinities Differ between Ebolavirus Species, Influencing Interferon Inhibition and VP24 Stability

    Energy Technology Data Exchange (ETDEWEB)

    Schwarz, Toni M.; Edwards, Megan R.; Diederichs, Audrey; Alinger, Joshua B.; Leung, Daisy W.; Amarasinghe, Gaya K.; Basler, Christopher F.; Lyles, Douglas S.

    2016-12-14

    ABSTRACT

    Zaire ebolavirus(EBOV),Bundibugyo ebolavirus(BDBV), andReston ebolavirus(RESTV) belong to the same genus but exhibit different virulence properties. VP24 protein, a structural protein present in all family members, blocks interferon (IFN) signaling and likely contributes to virulence. Inhibition of IFN signaling by EBOV VP24 (eVP24) involves its interaction with the NPI-1 subfamily of karyopherin alpha (KPNA) nuclear transporters. Here, we evaluated eVP24, BDBV VP24 (bVP24), and RESTV VP24 (rVP24) interactions with three NPI-1 subfamily KPNAs (KPNA1, KPNA5, and KPNA6). Using purified proteins, we demonstrated that each VP24 binds to each of the three NPI-1 KPNAs. bVP24, however, exhibited approximately 10-fold-lower KPNA binding affinity than either eVP24 or rVP24. Cell-based assays also indicate that bVP24 exhibits decreased KPNA interaction, decreased suppression of IFN induced gene expression, and a decreased half-life in transfected cells compared to eVP24 or rVP24. Amino acid sequence alignments between bVP24 and eVP24 also identified residues within and surrounding the previously defined eVP24-KPNA5 binding interface that decrease eVP24-KPNA affinity or bVP24-KPNA affinity. VP24 mutations that lead to reduced KPNA binding affinity also decrease IFN inhibition and shorten VP24 half-lives. These data identify novel functional differences in VP24-KPNA interaction and reveal a novel impact of the VP24-KPNA interaction on VP24 stability.

    IMPORTANCEThe interaction of Ebola virus (EBOV) VP24 protein with host karyopherin alpha (KPNA) proteins blocks type I interferon (IFN) signaling, which is a central component of the host innate immune response to viral infection. Here, we quantitatively compared the

  12. Electrolytes for lithium and lithium-ion batteries

    CERN Document Server

    Jow, T Richard; Borodin, Oleg; Ue, Makoto

    2014-01-01

    Electrolytes for Lithium and Lithium-ion Batteries provides a comprehensive overview of the scientific understanding and technological development of electrolyte materials in the last?several years. This book covers key electrolytes such as LiPF6 salt in mixed-carbonate solvents with additives for the state-of-the-art Li-ion batteries as well as new electrolyte materials developed recently that lay the foundation for future advances.?This book also reviews the characterization of electrolyte materials for their transport properties, structures, phase relationships, stabilities, and impurities.

  13. Capillary Electrophoresis as Analysis Technique for Battery Electrolytes: (i Monitoring Stability of Anions in Ionic Liquids and (ii Determination of Organophosphate-Based Decomposition Products in LiPF6-Based Lithium Ion Battery Electrolytes

    Directory of Open Access Journals (Sweden)

    Marcelina Pyschik

    2017-09-01

    Full Text Available In this work, a method for capillary electrophoresis (CE hyphenated to a high-resolution mass spectrometer was presented for monitoring the stability of anions in ionic liquids (ILs and in commonly used lithium ion battery (LIB electrolytes. The investigated ILs were 1-methyl-1-propylpyrrolidinium bis(trifluoromethanesulfonylimide (PYR13TFSI and 1-methyl-1-propylpyrrolidinium bis(fluorosulfonylimide (PYR13FSI. The method development was conducted by adjusting the following parameters: buffer compositions, buffer concentrations, and the pH value. Also the temperature and the voltage applied on the capillary were optimized. The ILs were aged at room temperature and at 60 °C for 16 months each. At both temperatures, no anionic decomposition products of the FSI− and TFSI− anions were detected. Accordingly, the FSI− and TFSI− anions were thermally stable at these conditions. This method was also applied for the investigation of LIB electrolyte samples, which were aged at 60 °C for one month. The LP30 (50/50 wt. % dimethyl carbonate/ethylene carbonate and 1 M lithium hexafluorophosphate electrolyte was mixed with the additive 1,3-propane sultone (PS and with one of the following organophosphates (OP: dimethyl phosphate (DMP, diethyl phosphate (DEP, and triethyl phosphate (TEP, to investigate the influence of these compounds on the formation of OPs.

  14. 131I therapy of Graves' disease using lithium

    International Nuclear Information System (INIS)

    Sato, Kenshi

    1983-01-01

    Lithium is known to cause goiter and hypothyroidism. In the mechanism of goitrogenesis, there is general agreement that lithium inhibits the release of the thyroid hormones from the thyroid gland without significantly impairing other thyroid functions. The present study was undertaken, therefore, to investigate the usefulness of lithium in the radioiodine treatment of Graves' disease. Nine patients with Graves' disease who were all, except one, previously treated with antithyroid drugs were studied. 600 mg of lithium carbonate were administered daily to investigate the effects on thyroidal 131 I uptake, disappearance rate of 131 I from the prelabeled thyroid and the serum concentrations of thyroid hormones. Lithium showed no significant effect on the thyroidal 131 I uptake when the 24 hour thyroidal 131 I uptakes were determined both before and during lithium treatment in the five cases. On the other hand, lithium clearly prolonged the mean value of effective half-lives of 131 I to approximately 8 days vs. 5.1 days before lithium treatment (p 4 and T 3 levels significantly decreased during lithium treatment, from 21.3 to 12.4μg/dl (n=9, p 131 I for the Graves' disease can be reduced by using lithium, the radiation exposure to the total body is decreased. Moreover, it is possible to perform the 131 I therapy while improving the thyrotoxicosis with lithium. Finally, it is concluded that lithium is a very useful drug to be combined with the 131 I therapy of Graves' disease. (author)

  15. Lithium Pharmacogenetics: Where Do We Stand?

    Science.gov (United States)

    Pisanu, Claudia; Melis, Carla; Squassina, Alessio

    2016-11-01

    Preclinical Research Bipolar disorder (BPD) is a chronic and disabling psychiatric disorder with a prevalence of 0.8-1.2% in the general population. Although lithium is considered the first-line treatment, a large percentage of patients do not respond sufficiently. Moreover, lithium can induce severe side effects and has poor tolerance and a narrow therapeutic index. The genetics of lithium response has been largely investigated, but findings have so far failed to identify reliable biomarkers to predict clinical response. This has been largely determined by the highly complex phenotipic and genetic architecture of lithium response. To this regard, collaborative initiatives hold the promise to provide robust and standardized methods to disantenagle this complexity, as well as the capacity to collect large samples of patietnts, a crucial requirement to study the genetics of complex phenotypes. The International Consortium on Lithium Genetics (ConLiGen) has recently published the largest study so far on lithium response reporting significant associations for two long noncoding RNAs (lncRNAs). This result provides relevant insights into the pharmacogenetics of lithium supporting the involvement of the noncoding portion of the genome in modulating clinical response. Although a vast body of research is engaged in dissecting the genetic bases of response to lithium, the several drawbacks of lithium therapy have also stimulated multiple efforts to identify new safer treatments. A drug repurposing approach identified ebselen as a potential lithium mimetic, as it shares with lithium the ability to inhibit inositol monophosphatase. Ebselen, an antioxidant glutathione peroxidase mimetic, represents a valid and promising example of new potential therapeutic interventions for BD, but the paucity of data warrant further investigation to elucidate its potential efficacy and safety in the management of BPD. Nevertheless, findings provided by the growing field of pharmacogenomic

  16. Glucocorticoids selectively inhibit the transcription of the interleukin 1β gene and decrease the stability of interleukin 1β mRNA

    International Nuclear Information System (INIS)

    Lee, S.W.; Tsou, A.P.; Chan, H.; Thomas, J.; Petrie, K.; Eugui, E.M.; Allison, A.C.

    1988-01-01

    Transcription of the interleukin 1β (IL-1β) gene was studied by mRNA hybridization with a cDNA probe in the human promonocytic cell line U-937. Phorbol ester and lipopolysaccharide increased the steady-state level of Il-1β mRNA. Glucocorticoids markedly decreased IL-1β mRNA levels by two mechanisms. Transcription of the IL-1 gene was inhibited, as shown by in vitro transcription assays with nuclei isolated from glucocorticoid-treated cells. Moreover, kinetic analyses and pulse-labeling of mRNAs showed that glucocorticoids selectively decrease the stability of IL-1β mRNA, without affecting the stability of β-actin and FOS mRNAs. Inhibition of the formation and effects IL-1 is a mechanism by which glucocorticoids can exert antiinflammatory and immunosuppressive effects

  17. Module of lithium divertor for KTM tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Lyublinski, I., E-mail: yublinski@yandex.ru [FSUE ' Red Star' , Moscow (Russian Federation); Vertkov, A.; Evtikhin, V.; Balakirev, V.; Ionov, D.; Zharkov, M. [FSUE ' Red Star' , Moscow (Russian Federation); Tazhibayeva, I. [IAE NNC RK, Kurchatov (Kazakhstan); Mirnov, S. [TRINITI, Troitsk, Moscow Region (Russian Federation); Khomiakov, S.; Mitin, D. [OJSC Dollezhal Institute, Moscow (Russian Federation); Mazzitelli, G. [ENEA RC Frascati (Italy); Agostini, P. [ENEA RC Brasimone (Italy)

    2012-10-15

    steady-state operating lithium divertor module project for Kazakhstan tokamak KTM. At present the lithium divertor module for KTM tokamak is under development in the framework of ISTC project no. K-1561. Initial heating up to 200 Degree-Sign C and lithium surface temperature stabilization during plasma interaction in the range of 350-550 Degree-Sign C will be provided by external system for thermal stabilization due to circulation of the Na-K heat transfer media. Lithium filled tungsten felt is offered as the base plasma facing material of divertor. Development, creation and experimental research of lithium divertor model for KTM will allow to solve existing problems and to fulfill the basic approaches to designing of lithium divertor and in-vessel elements of new fusion reactor generation, to investigate plasma physics aspects of lithium influence, to develop technology of work with lithium in tokamak conditions. Results of this project addresses to the progress in the field of fusion neutrons source and fusion energy source creation.

  18. Building better lithium-sulfur batteries: from LiNO3 to solid oxide catalyst

    Science.gov (United States)

    Ding, Ning; Zhou, Lan; Zhou, Changwei; Geng, Dongsheng; Yang, Jin; Chien, Sheau Wei; Liu, Zhaolin; Ng, Man-Fai; Yu, Aishui; Hor, T. S. Andy; Sullivan, Michael B.; Zong, Yun

    2016-09-01

    Lithium nitrate (LiNO3) is known as an important electrolyte additive in lithium-sulfur (Li-S) batteries. The prevailing understanding is that LiNO3 reacts with metallic lithium anode to form a passivation layer which suppresses redox shuttles of lithium polysulfides, enabling good rechargeability of Li-S batteries. However, this view is seeing more challenges in the recent studies, and above all, the inability of inhibiting polysulfide reduction on Li anode. A closely related issue is the progressive reduction of LiNO3 on Li anode which elevates internal resistance of the cell and compromises its cycling stability. Herein, we systematically investigated the function of LiNO3 in redox-shuttle suppression, and propose the suppression as a result of catalyzed oxidation of polysulfides to sulfur by nitrate anions on or in the proximity of the electrode surface upon cell charging. This hypothesis is supported by both density functional theory calculations and the nitrate anions-suppressed self-discharge rate in Li-S cells. The catalytic mechanism is further validated by the use of ruthenium oxide (RuO2, a good oxygen evolution catalyst) on cathode, which equips the LiNO3-free cell with higher capacity and improved capacity retention over 400 cycles.

  19. Isorhapontigenin (ISO) inhibited cell transformation by inducing G0/G1 phase arrest via increasing MKP-1 mRNA Stability.

    Science.gov (United States)

    Gao, Guangxun; Chen, Liang; Li, Jingxia; Zhang, Dongyun; Fang, Yong; Huang, Haishan; Chen, Xiequn; Huang, Chuanshu

    2014-05-15

    The cancer chemopreventive property of Chinese herb new isolate isorhapontigenin (ISO) and mechanisms underlying its activity have never been explored. Here we demonstrated that ISO treatment with various concentrations for 3 weeks could dramatically inhibit TPA/EGF-induced cell transformation of Cl41 cells in Soft Agar assay, whereas co-incubation of cells with ISO at the same concentrations could elicit G0/G1 cell-cycle arrest without redundant cytotoxic effects on non-transformed cells. Further studies showed that ISO treatment resulted in cyclin D1 downregulation in dose- and time-dependent manner. Our results indicated that ISO regulated cyclin D1 at transcription level via targeting JNK/C-Jun/AP-1 activation. Moreover, we found that ISO-inhibited JNK/C-Jun/AP-1 activation was mediated by both upregulation of MKP-1 expression through increasing its mRNA stability and deactivating MKK7. Most importantly, MKP-1 knockdown could attenuate ISO-mediated suppression of JNK/C-Jun activation and cyclin D1 expression, as well as G0/G1 cell cycle arrest and cell transformation inhibition, while ectopic expression of FLAG-cyclin D1 T286A mutant also reversed ISO-induced G0/G1 cell-cycle arrest and inhibition of cell transformation. Our results demonstrated that ISO is a promising chemopreventive agent via upregulating mkp-1 mRNA stability, which is distinct from its cancer therapeutic effect with downregulation of XIAP and cyclin D1 expression.

  20. Kinetics of liquid lithium reaction with oxygen-nitrogen mixtures

    International Nuclear Information System (INIS)

    Gil, T.K.; Kazimi, M.S.

    1986-01-01

    A series of experiments have been conducted in order to characterize the kinetics of lithium chemical reaction with a mixture of oxygen and nitrogen. Three mixed gas compositions were used; 80% N 2 and 20% O 2 , 90% N 2 and 10% O 2 , and 95% N 2 and 5% O 2 . The reaction rate was obtained as a function of lithium temperature and the oxygen fraction. Liquid lithium temperature varied from 400 to 1100 0 C. By varying the composition, the degree of inhibition of the lithium-nitrogen reaction rate due to the presence of oxygen was observed. The results indicate that the lithium-nitrogen reaction rate depended on both the fraction of oxygen present and lithium temperature. The lithium nitride layer formed from the reaction also had a significant inhibition effect on the lithium-nitrogen reaction rate while the lithium-oxygen reaction rate was not as greatly hindered. LITFIRE, a computer code which simulates temperature and pressure history in a containment building following lithium spills, was modified by including (1) an improved model for the lithium-nitrogen reaction rate and (2) a model for the lithium-CO 2 reaction. LITFIRE was used to simulate HEDL's LC-2 and LA-5 experiments, and the predicted temperatures and pressures were in a reasonable agreement. Furthermore, LITFIRE was applied to a prototypical fusion reactor containment in order to simulate the consequences of a lithium spill accident. The result indicated that if nitrogen was used as containment building gas during the accident, the consequences of the accident would be less severe than those with air. The pressure rise in the building was found to be reduced by 50% and the maximum temperature of the combustion zone was limited to 900 0 C instead of 1200 0 C in the case of air

  1. Inhibition of Tongue Coat and Dental Plaque Formation by Stabilized Chlorine Dioxide Vs Chlorhexidine Mouthrinse: A Randomized, Triple Blinded Study.

    Science.gov (United States)

    Yadav, Seema Roodmal; Kini, Vineet Vaman; Padhye, Ashvini

    2015-09-01

    Chlorine dioxide (ClO2) is an oxidizing agent with known bactericidal, viricidal and fungicidal properties. Its efficacy in reducing the halitosis has been established by previous literature. However, data evaluating its antiplaque property is scarce. Chlorhexidine (CHX) is considered as the gold standard and an effective adjunctive to mechanical plaque removal. However, it is associated with few reversible side effects. Therefore a study was conducted to assess the antiplaque property of ClO2 containing mouthrinse against CHX mouthrinse. To evaluate the efficacy of stabilized chlorine dioxide containing mouthrinse and CHX containing mouthrinse in inhibition of tongue coat accumulation and dental plaque formation using a four day plaque regrowth model clinically and microbiologically in a healthy dental cohort. A Single Center, Randomized, Triple blinded, Microbiological clinical trial was conducted involving 25 healthy dental students volunteers (11 males, 14 females). Two commercially available mouthrinse: Mouthrinse A - Aqueous based ClO2 mouthrinse Freshchlor(®) and Mouthrinse B - Aqueous based 0.2% CHX mouthrinse Hexidine(®) were selected as the test products. Subjects were asked to rinse and gargle for 1 minute with the allocated mouthrinse under supervision after supragingival scaling, polishing and tongue coat removal. After four hours, smears were taken from the buccal mucosa and tooth surface. On the fifth day from baseline of four day non brushing plaque regrowth model the samples were again taken from buccal mucosa and tooth surface followed by recording of plaque scores by Rastogi Modification of Navy Plaque index, extent of tongue coat by Winkel's tongue coating index and measuring tongue coat wet weight in grams. The samples collected were subjected to microbial analysis and the results were expressed as colony forming units (CFUs) per sample. The Data was analysed using SPSS 16.00 and presented using descriptive statistics. Independent t-test was

  2. Optimal Conditions for Fast Charging and Long Cycling Stability of Silicon Microwire Anodes for Lithium Ion Batteries, and Comparison with the Performance of Other Si Anode Concepts

    Directory of Open Access Journals (Sweden)

    Enrique Quiroga-González

    2013-10-01

    Full Text Available Cycling tests under various conditions have been performed for lithium ion battery anodes made from free-standing silicon microwires embedded at one end in a copper current collector. Optimum charging/discharging conditions have been found for which the anode shows negligible fading (< 0.001% over 80 cycles; an outstanding result for this kind of anodes. Several performance parameters of the anode have been compared to the ones of other Si anode concepts, showing that especially the capacity as well as the rates of charge flow per nominal area of anode are the highest for the present anode. With regard to applications, the specific parameters per area are more important than the specific gravimetric parameters like the gravimetric capacity, which is good for comparing the capacity between materials but not enough for comparing between anodes.

  3. Lithium protects ethanol-induced neuronal apoptosis

    International Nuclear Information System (INIS)

    Zhong Jin; Yang Xianlin; Yao Weiguo; Lee Weihua

    2006-01-01

    Lithium is widely used for the treatment of bipolar disorder. Recent studies have demonstrated its neuroprotective effect. Ethanol is a potent neurotoxin that is particularly harmful to the developing nervous system. In this study, we evaluated lithium's neuroprotection against ethanol-induced apoptosis. Transient exposure of infant mice to ethanol caused apoptotic cell death in brain, which was prevented significantly by administering a low dose of lithium 15 min later. In cultured cerebellar granule neurons, ethanol-induced apoptosis and activation of caspase-3/9, both of which were prevented by lithium. However, lithium's protection is not mediated by its commonly known inhibition of glycogen synthase3β, because neither ethanol nor lithium has significant effects on the phosphorylation of Akt (ser473) or GSK3β (ser9). In addition, the selective GSK-3β inhibitor SB-415286 was unable to prevent ethanol-induced apoptosis. These data suggest lithium may be used as a potential preventive measure for ethanol-induced neurological deficits

  4. Effect of mulitivalent cation dopants on lithium manganese spinel cathodes

    CSIR Research Space (South Africa)

    De Kock, A

    1998-02-01

    Full Text Available The aim of this investigation is to determine optimised spinel cathode compositions that can be used in lithium cells. The cycling stability of 4 V LixMn2O4 electrodes in lithium, flooded electrolyte glass cells has been improved by the addition...

  5. Process stability and the recovery control associated with inhibition factors in a UASB-anammox reactor with a long-term operation.

    Science.gov (United States)

    Niu, Qigui; He, Shilong; Zhang, Yanlong; Ma, Haiyuan; Liu, Yuan; Li, Yu-You

    2016-03-01

    A UASB-anammox reactor was operated for 900 days to study its process stability. The negative effects of free ammonia (FA) and free nitrous acid (FNA) were investigated over three separate inhibitions and recoveries. The IC10, IC50 and IC90 (inhibitory concentration/a 10%, 50% and 90% activity loss) of FNA and FA responding to the NH4(+)-N, NO2(-)-N and TN removal efficiency were evaluated. In the 1st inhibition, the average FNA-IC10 observed was 0.67 μg L(-1) and the FA-IC10 for TN removal was 4.85 mg L(-1). In the 2nd inhibition, an FNA-IC10 of 0.44μ g L(-1) and an FA-IC10 of 3.56 were found. In the 3rd inhibition, however, both the FNA-IC10 and FA-IC10 were found to have increased, with values of 0.50 μg L(-1) and 4.42 mg L(-1), respectively. A clear control region was established for multiple inhibitions and the recoveries, which followed (pH 7.5-8.5, FA below 10mg/100mg NH4(+)-N and an FNA below 0.005 mg/100 mg NO2(-)-N) for the purpose of optimizing the operation conditions of the UASB-anammox reactor. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Enantioselective Effect of Flurbiprofen on Lithium Disposition in Rats.

    Science.gov (United States)

    Uwai, Yuichi; Matsumoto, Masashi; Kawasaki, Tatsuya; Nabekura, Tomohiro

    2017-01-01

    Lithium is administered for treating bipolar disorders and is mainly excreted into urine. Nonsteroidal anti-inflammatory drugs inhibit this process. In this study, we examined the enantioselective effect of flurbiprofen on the disposition of lithium in rats. Pharmacokinetic experiments with lithium were performed. Until 60 min after the intravenous administration of lithium chloride at 30 mg/kg as a bolus, 17.8% of lithium injected was recovered into the urine. Its renal clearance was calculated to be 1.62 mL/min/kg. Neither creatinine clearance (Ccr) nor pharmacokinetics of lithium was affected by the simultaneous injection of (R)-flurbiprofen at 20 mg/kg. (S)-flurbiprofen impaired the renal function and interfered with the urinary excretion of lithium. The ratio of renal clearance of lithium to Ccr was decreased by the (S)-enantiomer. This study clarified that the (S)-flurbiprofen but not (R)-flurbiprofen inhibited the renal excretion of lithium in rats. © 2017 S. Karger AG, Basel.

  7. Electrochemical Model for Ionic Liquid Electrolytes in Lithium Batteries

    International Nuclear Information System (INIS)

    Yoo, Kisoo; Deshpande, Anirudh; Banerjee, Soumik; Dutta, Prashanta

    2015-01-01

    ABSTRACT: Room temperature ionic liquids are considered as potential electrolytes for high performance and safe lithium batteries due to their very low vapor pressure and relatively wide electrochemical and thermal stability windows. Unlike organic electrolytes, ionic liquid electrolytes are molten salts at room temperature with dissociated cations and anions. These dissociated ions interfere with the transport of lithium ions in lithium battery. In this study, a mathematical model is developed for transport of ionic components to study the performance of ionic liquid based lithium batteries. The mathematical model is based on a univalent ternary electrolyte frequently encountered in ionic liquid electrolytes of lithium batteries. Owing to the very high concentration of components in ionic liquid, the transport of lithium ions is described by the mutual diffusion phenomena using Maxwell-Stefan diffusivities, which are obtained from atomistic simulation. The model is employed to study a lithium-ion battery where the electrolyte comprises ionic liquid with mppy + (N-methyl-N-propyl pyrrolidinium) cation and TFSI − (bis trifluoromethanesulfonyl imide) anion. For a moderate value of reaction rate constant, the electric performance results predicted by the model are in good agreement with experimental data. We also studied the effect of porosity and thickness of separator on the performance of lithium-ion battery using this model. Numerical results indicate that low rate of lithium ion transport causes lithium depleted zone in the porous cathode regions as the porosity decreases or the length of the separator increases. The lithium depleted region is responsible for lower specific capacity in lithium-ion cells. The model presented in this study can be used for design of optimal ionic liquid electrolytes for lithium-ion and lithium-air batteries

  8. Lithium in Tap Water and Suicide Mortality in Japan

    Directory of Open Access Journals (Sweden)

    Takeshi Terao

    2013-11-01

    Full Text Available Lithium has been used as a mood-stabilizing drug in people with mood disorders. Previous studies have shown that natural levels of lithium in drinking water may protect against suicide. This study evaluated the association between lithium levels in tap water and the suicide standardized mortality ratio (SMR in 40 municipalities of Aomori prefecture, which has the highest levels of suicide mortality rate in Japan. Lithium levels in the tap water supplies of each municipality were measured using inductively coupled plasma-mass spectrometry. After adjusting for confounders, a statistical trend toward significance was found for the relationship between lithium levels and the average SMR among females. These findings indicate that natural levels of lithium in drinking water might have a protective effect on the risk of suicide among females. Future research is warranted to confirm this association.

  9. Enhanced cycling stability of microsized LiCoO2 cathode by Li4Ti5O12 coating for lithium ion battery

    International Nuclear Information System (INIS)

    Yi, Ting-Feng; Shu, J.; Yue, Cai-Bo; Zhu, Xiao-Dong; Zhou, An-Na; Zhu, Yan-Rong; Zhu, Rong-Sun

    2010-01-01

    The effect of Li 4 Ti 5 O 12 (LTO) coating amount on the electrochemical cycling behavior of the LiCoO 2 cathode was investigated at the high upper voltage limit of 4.5 V. Li 4 Ti 5 O 12 (≤5 wt.%) is not incorporated into the host structure and leads to formation of uniform coating. The cycling performance of LiCoO 2 cathode is related with the amount of Li 4 Ti 5 O 12 coating. The initial capacity of the LTO-coated LiCoO 2 decreased with increasing Li 4 Ti 5 O 12 coating amount but showed enhanced cycling properties, compared to those of pristine material. The 3 wt.% LTO-coated LiCoO 2 has the best electrochemical performance, showing capacity retention of 97.3% between 2.5 V and 4.3 V and 85.1% between 2.5 V and 4.5 V after 40 cycles. The coulomb efficiency shows that the surface coating of Li 4 Ti 5 O 12 is beneficial to the reversible intercalation/de-intercalation of Li + . LTO-coated LiCoO 2 provides good prospects for practical application of lithium secondary batteries free from safety issues.

  10. Implications of NSTX lithium results for magnetic fusion research

    Energy Technology Data Exchange (ETDEWEB)

    Ono, M., E-mail: mono@pppl.gov [Princeton Plasma Physics Laboratory, PO Box 451, Princeton, NJ 08543 (United States); Bell, M.G.; Bell, R.E.; Kaita, R.; Kugel, H.W.; LeBlanc, B.P. [Princeton Plasma Physics Laboratory, PO Box 451, Princeton, NJ 08543 (United States); Canik, J.M.; Diem, S. [Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, TN 37831 (United States); Gerhardt, S.P.; Hosea, J.; Kaye, S.; Mansfield, D. [Princeton Plasma Physics Laboratory, PO Box 451, Princeton, NJ 08543 (United States); Maingi, R. [Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, TN 37831 (United States); Menard, J.; Paul, S.F. [Princeton Plasma Physics Laboratory, PO Box 451, Princeton, NJ 08543 (United States); Raman, R. [University of Washington at Seattle, Seattle, WA (United States); Sabbagh, S.A. [Columbia University, New York, NY (United States); Skinner, C.H. [Princeton Plasma Physics Laboratory, PO Box 451, Princeton, NJ 08543 (United States); Soukhanovskii, V. [Lawrence Livermore National Laboratory, Livermore, CA (United States); Taylor, G. [Princeton Plasma Physics Laboratory, PO Box 451, Princeton, NJ 08543 (United States)

    2010-11-15

    Lithium wall coating techniques have been experimentally explored on National Spherical Torus Experiment (NSTX) for the last five years. The lithium experimentation on NSTX started with a few milligrams of lithium injected into the plasma as pellets and it has evolved to a lithium evaporation system which can evaporate up to {approx}100 g of lithium onto the lower divertor plates between lithium re-loadings. The unique feature of the lithium research program on NSTX is that it can investigate the effects of lithium in H-mode divertor plasmas. This lithium evaporation system thus far has produced many intriguing and potentially important results; the latest of these are summarized in a companion paper by H. Kugel. In this paper, we suggest possible implications and applications of the NSTX lithium results on the magnetic fusion research which include electron and global energy confinement improvements, MHD stability enhancement at high beta, edge localized mode (ELM) control, H-mode power threshold reduction, improvements in radio frequency heating and non-inductive plasma start-up performance, innovative divertor solutions and improved operational efficiency.

  11. Implications of NSTX Lithium Results for Magnetic Fusion Research

    International Nuclear Information System (INIS)

    Ono, M.; Bell, M.G.; Bell, R.E.; Kaita, R.; Kugel, H.W.; LeBlanc, B.P.; Canik, J.M.; Diem, S.; Gerhardt, S.P.; Hosea, J.; Kaye, S.; Mansfield, D.; Maingi, R.; Menard, J.; Paul, S.F.; Raman, R.; Sabbagh, S.A.; Skinner, C.H.; Soukhanovskii, V.; Taylor, G.

    2010-01-01

    Lithium wall coating techniques have been experimentally explored on NSTX for the last five years. The lithium experimentation on NSTX started with a few milligrams of lithium injected into the plasma as pellets and it has evolved to a lithium evaporation system which can evaporate up to ∼ 100 g of lithium onto the lower divertor plates between lithium reloadings. The unique feature of the lithium research program on NSTX is that it can investigate the effects of lithium in H-mode divertor plasmas. This lithium evaporation system thus far has produced many intriguing and potentially important results; the latest of these are summarized in a companion paper by H. Kugel. In this paper, we suggest possible implications and applications of the NSTX lithium results on the magnetic fusion research which include electron and global energy confinement improvements, MHD stability enhancement at high beta, ELM control, H-mode power threshold reduction, improvements in radio frequency heating and non-inductive plasma start-up performance, innovative divertor solutions and improved operational efficiency.

  12. Implications of NSTX lithium results for magnetic fusion research

    International Nuclear Information System (INIS)

    Ono, M.; Bell, M.G.; Bell, R.E.; Kaita, R.; Kugel, H.W.; LeBlanc, B.P.; Canik, J.M.; Diem, S.; Gerhardt, S.P.; Hosea, J.; Kaye, S.; Mansfield, D.; Maingi, R.; Menard, J.; Paul, S.F.; Raman, R.; Sabbagh, S.A.; Skinner, C.H.; Soukhanovskii, V.; Taylor, G.

    2010-01-01

    Lithium wall coating techniques have been experimentally explored on National Spherical Torus Experiment (NSTX) for the last five years. The lithium experimentation on NSTX started with a few milligrams of lithium injected into the plasma as pellets and it has evolved to a lithium evaporation system which can evaporate up to ∼100 g of lithium onto the lower divertor plates between lithium re-loadings. The unique feature of the lithium research program on NSTX is that it can investigate the effects of lithium in H-mode divertor plasmas. This lithium evaporation system thus far has produced many intriguing and potentially important results; the latest of these are summarized in a companion paper by H. Kugel. In this paper, we suggest possible implications and applications of the NSTX lithium results on the magnetic fusion research which include electron and global energy confinement improvements, MHD stability enhancement at high beta, edge localized mode (ELM) control, H-mode power threshold reduction, improvements in radio frequency heating and non-inductive plasma start-up performance, innovative divertor solutions and improved operational efficiency.

  13. Aqueous lithium air batteries

    Science.gov (United States)

    Visco, Steven J.; Nimon, Yevgeniy S.; De Jonghe, Lutgard C.; Petrov, Alexei; Goncharenko, Nikolay

    2017-05-23

    Aqueous Li/Air secondary battery cells are configurable to achieve high energy density and prolonged cycle life. The cells include a protected a lithium metal or alloy anode and an aqueous catholyte in a cathode compartment. The aqueous catholyte comprises an evaporative-loss resistant and/or polyprotic active compound or active agent that partakes in the discharge reaction and effectuates cathode capacity for discharge in the acidic region. This leads to improved performance including one or more of increased specific energy, improved stability on open circuit, and prolonged cycle life, as well as various methods, including a method of operating an aqueous Li/Air cell to simultaneously achieve improved energy density and prolonged cycle life.

  14. Correlation between survival, ability to rejoin DNA and stability of DNA after preirradiation inhibition of protein synthesis in a rec- mutant of Escherichia coli K12

    International Nuclear Information System (INIS)

    Pirsel, M.; Slezarikova, V.

    1977-01-01

    A 90 min inhibition of protein synthesis induced by starvation for amino acids (AA - ) or by chloramphenicol (CAP) treatment prior to UV irradiation (2.5 J m -2 ) increased more than tenfold the resistance of the strain Escherichia coli K12 SR19 to UV radiation. Under these conditions, cultures in which protein synthesis was inhibited before the UV irradiation rejoin short regions of DNA synthesized after the irradiation to a normal-size molecule, whereas an exponentially growing culture does not rejoin DNA synthesized after UV irradiation to a molecule of a normal size. In the exponentially growing culture both the parental and the newly synthesized DNA are unstable after the irradiation. In cultures with inhibited protein synthesis only the parental DNA is somewhat unstable. In Escherichia coli K12 SR19 where protein synthesis was inhibited before the irradiation, a correlation between the survival of cells, the ability to rejoin short regions of DNA synthesized after UV irradiation, and a higher stability of both parental and newly synthesized DNAs could be demonstrated. (author)

  15. Polydatin (PD) inhibits IgE-mediated passive cutaneous anaphylaxis in mice by stabilizing mast cells through modulating Ca{sup 2+} mobilization

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Meichun [Department of Pathophysiology, School of Medicine, Shenzhen University, Shenzhen 518060 (China); Department of Physiology, Hubei University of Medicine, Shiyan (China); Li, Jianjie [State Key Laboratory of Respiratory Disease for Allergy at Shengzhen University, Shenzhen 518060 (China); Lv, Jingzhang [Shenzhen Entry-Exit Inspection and Quarantine Bureau, Shenzhen 518045 (China); Mo, Xucheng; Yang, Chengbin [State Key Laboratory of Respiratory Disease for Allergy at Shengzhen University, Shenzhen 518060 (China); Chen, Xiangdong [Department of Pathophysiology, School of Medicine, Shenzhen University, Shenzhen 518060 (China); Liu, Zhigang [State Key Laboratory of Respiratory Disease for Allergy at Shengzhen University, Shenzhen 518060 (China); Liu, Jie, E-mail: ljljz@yahoo.com [Department of Pathophysiology, School of Medicine, Shenzhen University, Shenzhen 518060 (China)

    2012-11-01

    Mast cells play a key role in the pathogenesis of asthma and are a promising target for therapeutic intervention in asthma. This study investigated the effects of polydatin (PD), a resveratrol glucoside, on mast cell degranulation upon cross-linking of the high-affinity IgE receptors (FcεRI), as well as the anti-allergic activity of PD in vivo. Herein, we demonstrated that PD treatment for 30 min suppressed FcεRI-mediated mast cell degranulation in a dose-dependent manner. Concomitantly, PD significantly decreased FcεRI-mediated Ca{sup 2+} increase in mast cells. The suppressive effects of PD on FcεRI-mediated Ca{sup 2+} increase were largely inhibited by using LaCl{sub 3} to block the Ca{sup 2+} release-activated Ca{sup 2+} channels (CRACs). Furthermore, PD significantly inhibited Ca{sup 2+} entry through CRACs evoked by thapsigargin (TG). Knocking down protein expression of Orai1, the pore-forming subunit of CRACs, significantly decreased PD suppression of FcεRI-induced intracellular Ca{sup 2+} influx and mast cell degranulation. In a mouse model of mast cell-dependent passive cutaneous anaphylaxis (PCA), in vivo PD administration suppressed mast cell degranulation and inhibited anaphylaxis. Taken together, our data indicate that PD stabilizes mast cells by suppressing FcεRI-induced Ca{sup 2+} mobilization mainly through inhibiting Ca{sup 2+} entry via CRACs, thus exerting a protective effect against PCA. -- Highlights: ► Polydatin can prevent the pathogenesis of passive cutaneous anaphylaxis in mice. ► Polydatin stabilizes mast cells by decreasing FcεRI-mediated degranulation. ► Polydatin suppresses Ca{sup 2+} entry through CRAC channels in mast cells.

  16. Polydatin (PD) inhibits IgE-mediated passive cutaneous anaphylaxis in mice by stabilizing mast cells through modulating Ca2+ mobilization

    International Nuclear Information System (INIS)

    Yuan, Meichun; Li, Jianjie; Lv, Jingzhang; Mo, Xucheng; Yang, Chengbin; Chen, Xiangdong; Liu, Zhigang; Liu, Jie

    2012-01-01

    Mast cells play a key role in the pathogenesis of asthma and are a promising target for therapeutic intervention in asthma. This study investigated the effects of polydatin (PD), a resveratrol glucoside, on mast cell degranulation upon cross-linking of the high-affinity IgE receptors (FcεRI), as well as the anti-allergic activity of PD in vivo. Herein, we demonstrated that PD treatment for 30 min suppressed FcεRI-mediated mast cell degranulation in a dose-dependent manner. Concomitantly, PD significantly decreased FcεRI-mediated Ca 2+ increase in mast cells. The suppressive effects of PD on FcεRI-mediated Ca 2+ increase were largely inhibited by using LaCl 3 to block the Ca 2+ release-activated Ca 2+ channels (CRACs). Furthermore, PD significantly inhibited Ca 2+ entry through CRACs evoked by thapsigargin (TG). Knocking down protein expression of Orai1, the pore-forming subunit of CRACs, significantly decreased PD suppression of FcεRI-induced intracellular Ca 2+ influx and mast cell degranulation. In a mouse model of mast cell-dependent passive cutaneous anaphylaxis (PCA), in vivo PD administration suppressed mast cell degranulation and inhibited anaphylaxis. Taken together, our data indicate that PD stabilizes mast cells by suppressing FcεRI-induced Ca 2+ mobilization mainly through inhibiting Ca 2+ entry via CRACs, thus exerting a protective effect against PCA. -- Highlights: ► Polydatin can prevent the pathogenesis of passive cutaneous anaphylaxis in mice. ► Polydatin stabilizes mast cells by decreasing FcεRI-mediated degranulation. ► Polydatin suppresses Ca 2+ entry through CRAC channels in mast cells.

  17. Thermal stability and oxidizing properties of mixed alkaline earth-alkali molten carbonates: A focus on the lithium-sodium carbonate eutectic system with magnesium additions

    International Nuclear Information System (INIS)

    Frangini, Stefano; Scaccia, Silvera

    2013-01-01

    Highlights: • TG/DSC analysis was conducted on magnesium-containing eutectic Li/Na eutectic carbonates. • Magnesium influence on the oxygen solubility properties of carbonate was also experimentally determined at 600 °C and 650 °C. • A reproducible partial decarbonation process in premelting region caused formation of magnesium oxycarbonate-like phases. • The acidobase buffering action of magnesium oxycarbonate species could explain the high basic/oxidizing properties of such carbonate melts. • A general correlation between thermal instability in premelting region and basic/oxidizing melt properties was established. - Abstract: A comparative study on thermal behavior and oxygen solubility properties of eutectic 52/48 lithium/sodium carbonate salt containing minor additions of magnesium up to 10 mol% has been made in order to determine whether a general correlation between these two properties can be found or not. Consecutive TG/DSC heating/cooling thermal cycles carried out under alternating CO 2 and N 2 gas flows allowed to assign thermal events observed in the premelting region to a partial decarbonation process of the magnesium-alkali mixed carbonates. The observed decarbonation process at 460 °C is believed to come from initial stage of thermal decomposition of magnesium carbonate resulting in the metastable formation of magnesium oxycarbonate-like phases MgO·2MgCO 3 , in a similar manner as previously reported for lanthanum. Reversible formation and decomposition of the magnesium carbonate phase has been observed under a CO 2 gas atmosphere. The intensity of the decomposition process shows a maximum for a 3 mol% MgO addition that gives also the highest oxygen solubility, suggesting therefore that instability thermal analysis in the premelting region can be considered as providing an effective measure of the basicity/oxidizing properties of alkali carbonate melts with magnesium or, in more general terms, with cations that are strong modifiers of

  18. Experimental study of gaseous lithium deuterides and lithium oxides. Implications for the use of lithium and Li2O as breeding materials in fusion reactor blankets

    International Nuclear Information System (INIS)

    Ihle, H.R.; Wu, C.H.; Kudo, H.

    1980-01-01

    In addition to LiH, which has been studied extensively by optical spectroscopy, the existence of a number of other stable lithium hydrides has been predicted theoretically. By analysis of the saturated vapour over dilute solutions of the hydrogen isotopes in lithium, using Knudsen effusion mass spectrometry, all lithium hydrides predicted to be stable were found. Solutions of deuterium in lithium were used predominantly because of practical advantages for mass spectrometric measurements. The heats of dissociation of LiD, Li 2 D, LiD 2 and Li 2 D 2 , and the binding energies of their singly charged positive ions were determined, and the constants of the gas/liquid equilibria were calculated. The existence of these lithium deuterides in the gas phase over solutions of deuterium in lithium leads to enrichment of deuterium in the gas above 1240 K. The enrichment factor, which increases exponentially with temperature and is independent of concentration for low concentrations of deuterium in the liquid, was determined by Rayleigh distillation experiments. It was found that it is thermodynamically possible to separate deuterium from lithium by distillation. One of the alternatives to the use of lithium in (D,T)-fusion reactors as tritium-breeding blanket material is to employ solid lithium oxide. This has a high melting point, a high lithium density and still favourable tritium-breeding properties. Because of its rather high volatility, an experimental study of the vaporization of Li 2 O was undertaken by mass spectrometry. It vaporizes to give lithium and oxygen, and LiO, Li 2 O, Li 3 O and Li 2 O 2 . The molecule Li 3 O was found as a new species. Heats of dissociation, binding energies of the various ions and the constants of the gas/solid equilibria were determined. The effect of using different materials for the Knudsen cells and the relative thermal stabilities of lithium-aluminium oxides were also studied. (author)

  19. Lithium batteries; Les accumulateurs au lithium

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    This workshop on lithium batteries is divided into 4 sections dealing with: the design and safety aspects, the cycling, the lithium intercalation and its modeling, and the electrolytes. These 4 sections represent 19 papers and are completed by a poster session which corresponds to 17 additional papers. (J.S.)

  20. Lithium batteries; Les accumulateurs au lithium

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    This workshop on lithium batteries is divided into 4 sections dealing with: the design and safety aspects, the cycling, the lithium intercalation and its modeling, and the electrolytes. These 4 sections represent 19 papers and are completed by a poster session which corresponds to 17 additional papers. (J.S.)

  1. Silicon/Wolfram Carbide@Graphene composite: enhancing conductivity and structure stability in amorphous-silicon for high lithium storage performance

    International Nuclear Information System (INIS)

    Sun, Wei; Hu, Renzong; Liu, Hui; Zhang, Hanying; Liu, Jiangwen; Yang, Lichun; Wang, Haihui; Zhu, Min

    2016-01-01

    Highlights: • Two-step ball milling was used to produce an amorphous-Si/WC@Graphene(SW@G) composite. • Concrete-like core-shell structure with high stability was designed. • Multiscale WC particle strengthen the inside structure. • Graphene coating outside much enhanced the cycling stability and conductivity. • The SW@G anode exhibited long cycle life and superior volumetric capacity. - Abstract: Improving the electron conductivity and lithiated structure stability for Si anodes can result in high stable capacity in cells. A Silicon/Wolfram Carbide@Graphene (SW@G) composite anode is designed and produced by a simple two-step ball milling the mixture of coarse-grained Si with good conductive wolfram carbide (WC) and graphite. The SW@G composite consists of multiple-scale WC particles, which are uniformly distributed in amorphous Si matrices, and wrapped by graphene nanosheets (GNs) on the outside. Owing to the unique concrete-like core-shell structure, the wrapping of GNs on the Si improves the conductivity and structural stability of the composite. The inner WC particles which tightly connect the Si and graphene act as the cornerstone to resist large volumetric expansion of Si during charge/discharge, and in particular serve as the high-speed channels of electrons as well as provide more interface paths for Li + to accelerate their transfer inside the Si. These contribute to the excellent electrochemical properties of SW@G composite anode, including high volumetric capacity (three times higher than that of graphite), superior rate capability, and long-life stable cycleability. The synthetic method developed in this work paves the way for large-scale manufacturing of high performance Li storage anodes using commercially available materials and technologies.

  2. Comparative Study of Ether-Based Electrolytes for Application in Lithium-Sulfur Battery.

    Science.gov (United States)

    Carbone, Lorenzo; Gobet, Mallory; Peng, Jing; Devany, Matthew; Scrosati, Bruno; Greenbaum, Steve; Hassoun, Jusef

    2015-07-01

    Herein, we report the characteristics of electrolytes using various ether-solvents with molecular composition CH3O[CH2CH2O]nCH3, differing by chain length, and LiCF3SO3 as the lithium salt. The electrolytes, considered as suitable media for lithium-sulfur batteries, are characterized in terms of thermal properties (TGA, DSC), lithium ion conductivity, lithium interface stability, cyclic voltammetry, self-diffusion properties of the various components, and lithium transference number measured by NMR. Furthermore, the electrolytes are characterized in lithium cells using a sulfur-carbon composite cathode by galvanostatic charge-discharge tests. The results clearly evidence the influence of the solvent chain length on the species mobility within the electrolytes that directly affects the behavior in lithium sulfur cell. The results may effectively contribute to the progress of an efficient, high-energy lithium-sulfur battery.

  3. Lithium use in batteries

    Science.gov (United States)

    Goonan, Thomas G.

    2012-01-01

    Lithium has a number of uses but one of the most valuable is as a component of high energy-density rechargeable lithium-ion batteries. Because of concerns over carbon dioxide footprint and increasing hydrocarbon fuel cost (reduced supply), lithium may become even more important in large batteries for powering all-electric and hybrid vehicles. It would take 1.4 to 3.0 kilograms of lithium equivalent (7.5 to 16.0 kilograms of lithium carbonate) to support a 40-mile trip in an electric vehicle before requiring recharge. This could create a large demand for lithium. Estimates of future lithium demand vary, based on numerous variables. Some of those variables include the potential for recycling, widespread public acceptance of electric vehicles, or the possibility of incentives for converting to lithium-ion-powered engines. Increased electric usage could cause electricity prices to increase. Because of reduced demand, hydrocarbon fuel prices would likely decrease, making hydrocarbon fuel more desirable. In 2009, 13 percent of worldwide lithium reserves, expressed in terms of contained lithium, were reported to be within hard rock mineral deposits, and 87 percent, within brine deposits. Most of the lithium recovered from brine came from Chile, with smaller amounts from China, Argentina, and the United States. Chile also has lithium mineral reserves, as does Australia. Another source of lithium is from recycled batteries. When lithium-ion batteries begin to power vehicles, it is expected that battery recycling rates will increase because vehicle battery recycling systems can be used to produce new lithium-ion batteries.

  4. In-Vitro Inhibition of Pythium ultimum, Fusarium graminearum, and Rhizoctonia solani by a Stabilized Lactoperoxidase System alone and in Combination with Synthetic Fungicides

    Directory of Open Access Journals (Sweden)

    Zachariah R. Hansen

    2017-11-01

    Full Text Available Advances in enzyme stabilization and immobilization make the use of enzymes for industrial applications increasingly feasible. The lactoperoxidase (LPO system is a naturally occurring enzyme system with known antimicrobial activity. Stabilized LPO and glucose oxidase (GOx enzymes were combined with glucose, potassium iodide, and ammonium thiocyanate to create an anti-fungal formulation, which inhibited in-vitro growth of the plant pathogenic oomycete Pythium ultimum, and the plant pathogenic fungi Fusarium graminearum and Rhizoctonia solani. Pythium ultimum was more sensitive than F. graminearum and R. solani, and was killed at LPO and GOx concentrations of 20 nM and 26 nM, respectively. Rhizoctonia solani and F. graminearum were 70% to 80% inhibited by LPO and GOx concentrations of 242 nM and 315 nM, respectively. The enzyme system was tested for compatibility with five commercial fungicides as co-treatments. The majority of enzyme + fungicide co-treatments resulted in additive activity. Synergism ranging from 7% to 36% above the expected additive activity was observed when P. ultimum was exposed to the enzyme system combined with Daconil® (active ingredient (AI: chlorothalonil 29.6%, GardenTech, Lexington, KY, USA, tea tree oil, and mancozeb at select fungicide concentrations. Antagonism was observed when the enzyme system was combined with Tilt® (AI: propiconazole 41.8%, Syngenta, Basel, Switzerland at one fungicide concentration, resulting in activity 24% below the expected additive activity at that concentration.

  5. NCYM, a Cis-antisense gene of MYCN, encodes a de novo evolved protein that inhibits GSK3β resulting in the stabilization of MYCN in human neuroblastomas.

    Directory of Open Access Journals (Sweden)

    Yusuke Suenaga

    2014-01-01

    Full Text Available The rearrangement of pre-existing genes has long been thought of as the major mode of new gene generation. Recently, de novo gene birth from non-genic DNA was found to be an alternative mechanism to generate novel protein-coding genes. However, its functional role in human disease remains largely unknown. Here we show that NCYM, a cis-antisense gene of the MYCN oncogene, initially thought to be a large non-coding RNA, encodes a de novo evolved protein regulating the pathogenesis of human cancers, particularly neuroblastoma. The NCYM gene is evolutionally conserved only in the taxonomic group containing humans and chimpanzees. In primary human neuroblastomas, NCYM is 100% co-amplified and co-expressed with MYCN, and NCYM mRNA expression is associated with poor clinical outcome. MYCN directly transactivates both NCYM and MYCN mRNA, whereas NCYM stabilizes MYCN protein by inhibiting the activity of GSK3β, a kinase that promotes MYCN degradation. In contrast to MYCN transgenic mice, neuroblastomas in MYCN/NCYM double transgenic mice were frequently accompanied by distant metastases, behavior reminiscent of human neuroblastomas with MYCN amplification. The NCYM protein also interacts with GSK3β, thereby stabilizing the MYCN protein in the tumors of the MYCN/NCYM double transgenic mice. Thus, these results suggest that GSK3β inhibition by NCYM stabilizes the MYCN protein both in vitro and in vivo. Furthermore, the survival of MYCN transgenic mice bearing neuroblastoma was improved by treatment with NVP-BEZ235, a dual PI3K/mTOR inhibitor shown to destabilize MYCN via GSK3β activation. In contrast, tumors caused in MYCN/NCYM double transgenic mice showed chemo-resistance to the drug. Collectively, our results show that NCYM is the first de novo evolved protein known to act as an oncopromoting factor in human cancer, and suggest that de novo evolved proteins may functionally characterize human disease.

  6. Development of electrically insulating self-healing coatings in vanadium alloys for lithium fusion reactor

    International Nuclear Information System (INIS)

    1999-01-01

    Problems on electrically insulating self-healing coatings (SHC) on vanadium alloys for lithium fusion reactor systems are considered. In particular, the SHC stability and radiation resistance in lithium and effect of magnetic field on the efficiency of the TNR lithium systems are studied. New technological methods for application of self-healing coatings and study on their properties are developed. The vanadium-lithium materials testing in pile loops for solution of the above problems under conditions of the lithium TNR is described [ru

  7. Acid–base interaction between carbon black and polyurethane molecules with different amine values: Dispersion stability of carbon black suspension for use in lithium ion battery cathodes

    International Nuclear Information System (INIS)

    Kil, Ki Chun; Kim, Gu Yeon; Cho, Chae-Woong; Lim, Myung Duk; Kim, Kijun; Jeong, Kyung-Min; Lee, Jinuk; Paik, Ungyu

    2013-01-01

    The dispersion properties of carbon black (CB) slurries as well as the accompanying electrochemical properties of Li(Ni 1/3 Co 1/3 Mn 1/3 )O 2 (NCM) electrodes were investigated by controlling the amine value of polyurethane-based dispersants. The increase in amine value of dispersants leads to an increase in adsorption level on CB surface due to a strong acid/base interaction between dispersants and CB particles, providing the improvement of steric repulsion between particles at the solid–liquid interface. This results in the enhancement of the dispersion stability of CB and the related microstructure of the electrodes. Electrochemical experiments indicated that the rate capabilities and cycle performance of the electrodes are in good agreement with dispersion properties of CB slurries. However, it was found that the excessive addition of the dispersant was deleterious to electrochemical properties because the non-adsorbed dispersants act as an electronic conduction barrier between solid phases. Therefore, it is suggested that the amine value of dispersant and tailored amount of dispersant addition can be key roles for obtaining the optimized dispersion stability of CB and the corresponding excellent electrochemical properties of the cathode

  8. Enriched lithium collection from lithium plasma flow

    International Nuclear Information System (INIS)

    Karchevsky, A.I.; Laz'ko, V.S.; Muromkin, Y.A.; Pashkovsky, V.G.; Ustinov, A.L.; Dolgolenko, D.A.

    1994-01-01

    In order to understand the physical processes concerned with the selective heating by ion cyclotron resonance and with the subsequent collection of heated particles, experiments were carried out with the extraction of lithium samples, enriched with 6 Li isotopes. Probe and integral extractors allow to collect enriched Li at the end of the selective heating region. Surface density distribution on the collector and local isotopic content of lithium are measured, as a function of the screen height and the retarding potential. Dependence of the collected amount of lithium and of its isotopic content on the value of the magnetic field is also measured. 4 figs., 2 tabs., 5 refs

  9. APTO-253 Stabilizes G-quadruplex DNA, Inhibits MYC Expression, and Induces DNA Damage in Acute Myeloid Leukemia Cells.

    Science.gov (United States)

    Local, Andrea; Zhang, Hongying; Benbatoul, Khalid D; Folger, Peter; Sheng, Xia; Tsai, Cheng-Yu; Howell, Stephen B; Rice, William G

    2018-06-01

    APTO-253 is a phase I clinical stage small molecule that selectively induces CDKN1A (p21), promotes G 0 -G 1 cell-cycle arrest, and triggers apoptosis in acute myeloid leukemia (AML) cells without producing myelosuppression in various animal species and humans. Differential gene expression analysis identified a pharmacodynamic effect on MYC expression, as well as induction of DNA repair and stress response pathways. APTO-253 was found to elicit a concentration- and time-dependent reduction in MYC mRNA expression and protein levels. Gene ontogeny and structural informatic analyses suggested a mechanism involving G-quadruplex (G4) stabilization. Intracellular pharmacokinetic studies in AML cells revealed that APTO-253 is converted intracellularly from a monomer to a ferrous complex [Fe(253) 3 ]. FRET assays demonstrated that both monomeric APTO-253 and Fe(253) 3 stabilize G4 structures from telomeres, MYC, and KIT promoters but do not bind to non-G4 double-stranded DNA. Although APTO-253 exerts a host of mechanistic sequelae, the effect of APTO-253 on MYC expression and its downstream target genes, on cell-cycle arrest, DNA damage, and stress responses can be explained by the action of Fe(253) 3 and APTO-253 on G-quadruplex DNA motifs. Mol Cancer Ther; 17(6); 1177-86. ©2018 AACR . ©2018 American Association for Cancer Research.

  10. Enhanced electrochemical properties of F-doped Li2MnSiO4/C for lithium ion batteries

    Science.gov (United States)

    Wang, Chao; Xu, Youlong; Sun, Xiaofei; Zhang, Baofeng; Chen, Yanjun; He, Shengnan

    2018-02-01

    The Li2MnSiO4 as a novel cathode material for lithium ion batteries, performs high specific capacity, high thermal stability, low cost and etc. However, it suffers from relatively low electronic conductivity and lithium ion diffusion rate. Herein, we successfully introduce fluorine to Li2MnSiO4 (Li2MnSiO4-xFx, x = 0.00, 0.01, 0.03 and 0.05) to overcome these obstacles. The results show that F doping not only enlarges the lattice parameters but also decreases the particle size, synergistically improving the lithium ion diffusion of Li2MnSiO4. Moreover, F doping increase electronic conductivity of Li2MnSiO4/C by inhibiting the formation of C-O bonds in the carbon layers. Meanwhile, F doping improves the crystallinity and stabilizes the crystal structure of Li2MnSiO4. Finally, the Li2MnSiO3.97F0.03/C with the best electrochemical performances delivers the initial specific discharge capacity of 279 mA h g-1 at 25mA g-1 current density from 1.5 V to 4.8 V. Also, it maintains a higher capacity (201 mA h g-1) than F-free Li2MnSiO4 (145 mA h g-1) after 50 cycles.

  11. Experimental results from a flowing-lithium target

    International Nuclear Information System (INIS)

    Annese, C.E.; Schwartz, K.E.

    1982-01-01

    Hydraulic stability of a free surface lithium jet was demonstrated at 260 0 C and from the middle-vacuum region of 0.01 Pa (10 - 4 Torr) up to 124 kPa (18 psia). The jet is formed by flowing lithium at rates to 0.04 m 3 /s (600 GPM) through a precisely defined nozzle which directs the flow along a curved wall where velocities of up to 17 m/s are attained. This nozzle and curved wall configuration form the basis of the Fusion Materials Irradiation Test (FMIT) Facility lithium target. A full-size experimental model of this target is presently under test with flowing lithium in the Experimental Lithium System (ELS). The FMIT is being developed for the Department of Energy by the Westinghouse Hanford Company at the Hanford Engineering Development Laboratory

  12. Advances of aqueous rechargeable lithium-ion battery: A review

    Science.gov (United States)

    Alias, Nurhaswani; Mohamad, Ahmad Azmin

    2015-01-01

    The electrochemical characteristic of the aqueous rechargeable lithium-ion battery has been widely investigated in efforts to design a green and safe technology that can provide a highly specific capacity, high efficiency and long life for high power applications such as the smart grid and electric vehicle. It is believed that the advantages of this battery will overcome the limitations of the rechargeable lithium-ion battery with organic electrolytes that comprise safety and create high fabrication cost issues. This review focuses on the opportunities of the aqueous rechargeable lithium-ion battery compared to the conventional rechargeable lithium-ion battery with organic-based electrolytes. Previously reported studies are briefly summarised, together with the presentation of new findings based on the conductivity, morphology, electrochemical performance and cycling stability results. The factors that influence the electrochemical performance, the challenges and potential of the aqueous rechargeable lithium-ion battery are highlighted in order to understand and maintained the excellent battery performance.

  13. Enhanced post-annealing stability of perpendicular Ta/CoFeB/Mg/MgO multilayers by inhibiting Ta diffusion

    International Nuclear Information System (INIS)

    Li, Xu-Jing; Jiang, Shao-Long; Zhang, Jing-Yan; Liu, Qian-Qian; Liu, Yi-Wei; Zhao, Jian-Cheng; Wu, Zheng-Long; Feng, Chun; Li, Ming-Hua; Yu, Guang-Hua

    2016-01-01

    Graphical abstract: To reveal the underlying mechanism of Mg influence on the enhanced post-annealing stability of perpendicular Ta/CoFeB/Mg/MgO multilayers, the X-ray photoelectron spectroscopy analysis have been performed. It is found that a certain amount of Mg interlayer at the CoFeB/MgO interface could prevent the Ta oxidation to some extent due to the oxygen deficit MgO_x (x < 1), and consequently lower the diffusion motivation of Ta from the bottom layer to the CoFeB/MgO interfaces to some extent during the annealing process. The prevention of Ta diffusion realizes the effective hybridization of Fe and O at the CoFeB/MgO interface and maintains interfacial magnetic anisotropy (K_C_o_F_e_B_/_M_g_O). As a result, the perpendicular magnetic anisotropy at high annealing temperatures was maintained. - Highlights: • High annealing stability of perpendicular Ta/CoFeB/Mg/MgO multilayers was realized. • X-ray photoelectron spectroscopy analysis has been performed to explore the reasons. • The prevention of Ta diffusion was realized by introducing Mg at the CoFeB/MgO interface. - Abstracts: To reveal the underlying mechanism of Mg influence on the enhanced post-annealing stability of perpendicular Ta/CoFeB/Mg/MgO multilayers, the X-ray photoelectron spectroscopy analysis has been performed. It is found that a certain amount of Mg interlayer at the CoFeB/MgO interface could prevent the Ta oxidation, and consequently lower the diffusion motivation of Ta from the bottom layer to the CoFeB/MgO interfaces to some extent in the annealing process. The prevention of Ta diffusion realizes the effective hybridization of Fe and O at the CoFeB/MgO interface and maintains interfacial magnetic anisotropy (KCoFeB/MgO). As a result, the perpendicular magnetic anisotropy at high annealing temperatures is maintained

  14. Enhanced post-annealing stability of perpendicular Ta/CoFeB/Mg/MgO multilayers by inhibiting Ta diffusion

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xu-Jing; Jiang, Shao-Long; Zhang, Jing-Yan; Liu, Qian-Qian; Liu, Yi-Wei; Zhao, Jian-Cheng [Department of Materials Physics and Chemistry, University of Science and Technology Beijing, Beijing 100083 (China); Wu, Zheng-Long [Analytical and Testing Center, Beijing Normal University, Beijing 100875 (China); Feng, Chun, E-mail: fengchun@ustb.edu.cn [Department of Materials Physics and Chemistry, University of Science and Technology Beijing, Beijing 100083 (China); Li, Ming-Hua [Department of Materials Physics and Chemistry, University of Science and Technology Beijing, Beijing 100083 (China); Yu, Guang-Hua, E-mail: ghyu@mater.ustb.edu.cn [Department of Materials Physics and Chemistry, University of Science and Technology Beijing, Beijing 100083 (China)

    2016-03-01

    Graphical abstract: To reveal the underlying mechanism of Mg influence on the enhanced post-annealing stability of perpendicular Ta/CoFeB/Mg/MgO multilayers, the X-ray photoelectron spectroscopy analysis have been performed. It is found that a certain amount of Mg interlayer at the CoFeB/MgO interface could prevent the Ta oxidation to some extent due to the oxygen deficit MgO{sub x} (x < 1), and consequently lower the diffusion motivation of Ta from the bottom layer to the CoFeB/MgO interfaces to some extent during the annealing process. The prevention of Ta diffusion realizes the effective hybridization of Fe and O at the CoFeB/MgO interface and maintains interfacial magnetic anisotropy (K{sub CoFeB/MgO}). As a result, the perpendicular magnetic anisotropy at high annealing temperatures was maintained. - Highlights: • High annealing stability of perpendicular Ta/CoFeB/Mg/MgO multilayers was realized. • X-ray photoelectron spectroscopy analysis has been performed to explore the reasons. • The prevention of Ta diffusion was realized by introducing Mg at the CoFeB/MgO interface. - Abstracts: To reveal the underlying mechanism of Mg influence on the enhanced post-annealing stability of perpendicular Ta/CoFeB/Mg/MgO multilayers, the X-ray photoelectron spectroscopy analysis has been performed. It is found that a certain amount of Mg interlayer at the CoFeB/MgO interface could prevent the Ta oxidation, and consequently lower the diffusion motivation of Ta from the bottom layer to the CoFeB/MgO interfaces to some extent in the annealing process. The prevention of Ta diffusion realizes the effective hybridization of Fe and O at the CoFeB/MgO interface and maintains interfacial magnetic anisotropy (KCoFeB/MgO). As a result, the perpendicular magnetic anisotropy at high annealing temperatures is maintained.

  15. Structural stability and self-healing capability of Er2O3 in situ coating on V-4Cr-4Ti in liquid lithium

    International Nuclear Information System (INIS)

    Yao, Zhenyu; Suzuki, Akihiro; Muroga, Takeo; Nagasaka, Takuya

    2006-01-01

    The in situ Er 2 O 3 insulating coating is under development for the self-cooled Li/V-alloy type fusion blanket. In this study, the structural stability and self-healing capability of the coating are investigated. Since the cracking in the coating was not observed after exposure when Li was removed with a weak lotion (liquid NH 3 ), the cracking observed in the previous studies is not a practical issue in a real blanket. The re-exposure of the coating in pure Li showed that the coating once formed in Li (Er) is thought to be stable in pure Li. Thus, coating has the possibility to be serviced in a Li environment without an Er supply. By prior exposure to Li (Er) at 873 K, the exhaustion of the oxygen storage in V-alloy substrate during exposure at 973 K could be delayed effectively. The self-healing capability of the coating was demonstrated by the examination with the re-exposing cracked coating in Li (Er)

  16. Electrochemical Stability of Li6.5La3Zr1.5M0.5O12 (M = Nb or Ta) against Metallic Lithium

    International Nuclear Information System (INIS)

    Kim, Yunsung; Yoo, Aeri; Schmidt, Robert; Sharafi, Asma; Lee, Heechul; Wolfenstine, Jeff; Sakamoto, Jeff

    2016-01-01

    The electrochemical stability of Li 6.5 La 3 Zr 1.5 Nb 0.5 O 12 (LLZNO) and Li 6.5 La 3 Zr 1.5 Ta 0.5 O 12 (LLZTO) against metallic Li was studied using direct current (DC) and electrochemical impedance spectroscopy (EIS). Dense polycrystalline LLZNO (ρ = 97%) and LLZTO (ρ = 92%) were made using sol–gel synthesis and rapid induction hot-pressing at 1100°C and 15.8 MPa. During DC cycling tests at room temperature (± 0.01 mA/cm 2 for 36 cycles), LLZNO exhibited an increase in Li–LLZNO interface resistance and eventually short-circuiting while the LLZTO was stable. After DC cycling, LLZNO appeared severely discolored while the LLZTO did not change in appearance. We believe the increase in Li–LLZNO interfacial resistance and discoloration are due to reduction of Nb 5+ to Nb 4+ . The negligible change in interfacial resistance and no color change in LLZTO suggest that Ta 5+ may be more stable against reduction than Nb 5+ in cubic garnet versus Li during cycling.

  17. Experimental lithium system experience

    International Nuclear Information System (INIS)

    Atwood, J.M.; Berg, J.D.; Kolowith, R.; Miller, W.C.

    1984-01-01

    The Experimental Lithium System is a test loop built to support design and operation of the Fusion Materials Irradiation Test Facility. ELS has achieved over 15,000 hours of safe and reliable operation. An extensive test program has demonstrated satisfactory performance of the system components, including an electromagnetic pump, lithium jet target, and vacuum system. Data on materials corrosion and behavior of lithium impurities are also presented. (author)

  18. A lithium-oxygen battery based on lithium superoxide.

    Science.gov (United States)

    Lu, Jun; Lee, Yun Jung; Luo, Xiangyi; Lau, Kah Chun; Asadi, Mohammad; Wang, Hsien-Hau; Brombosz, Scott; Wen, Jianguo; Zhai, Dengyun; Chen, Zonghai; Miller, Dean J; Jeong, Yo Sub; Park, Jin-Bum; Fang, Zhigang Zak; Kumar, Bijandra; Salehi-Khojin, Amin; Sun, Yang-Kook; Curtiss, Larry A; Amine, Khalil

    2016-01-21

    Batteries based on sodium superoxide and on potassium superoxide have recently been reported. However, there have been no reports of a battery based on lithium superoxide (LiO2), despite much research into the lithium-oxygen (Li-O2) battery because of its potential high energy density. Several studies of Li-O2 batteries have found evidence of LiO2 being formed as one component of the discharge product along with lithium peroxide (Li2O2). In addition, theoretical calculations have indicated that some forms of LiO2 may have a long lifetime. These studies also suggest that it might be possible to form LiO2 alone for use in a battery. However, solid LiO2 has been difficult to synthesize in pure form because it is thermodynamically unstable with respect to disproportionation, giving Li2O2 (refs 19, 20). Here we show that crystalline LiO2 can be stabilized in a Li-O2 battery by using a suitable graphene-based cathode. Various characterization techniques reveal no evidence for the presence of Li2O2. A novel templating growth mechanism involving the use of iridium nanoparticles on the cathode surface may be responsible for the growth of crystalline LiO2. Our results demonstrate that the LiO2 formed in the Li-O2 battery is stable enough for the battery to be repeatedly charged and discharged with a very low charge potential (about 3.2 volts). We anticipate that this discovery will lead to methods of synthesizing and stabilizing LiO2, which could open the way to high-energy-density batteries based on LiO2 as well as to other possible uses of this compound, such as oxygen storage.

  19. Griseofulvin stabilizes microtubule dynamics, activates p53 and inhibits the proliferation of MCF-7 cells synergistically with vinblastine

    International Nuclear Information System (INIS)

    Rathinasamy, Krishnan; Jindal, Bhavya; Asthana, Jayant; Singh, Parminder; Balaji, Petety V; Panda, Dulal

    2010-01-01

    Griseofulvin, an antifungal drug, has recently been shown to inhibit proliferation of various types of cancer cells and to inhibit tumor growth in athymic mice. Due to its low toxicity, griseofulvin has drawn considerable attention for its potential use in cancer chemotherapy. This work aims to understand how griseofulvin suppresses microtubule dynamics in living cells and sought to elucidate the antimitotic and antiproliferative action of the drug. The effects of griseofulvin on the dynamics of individual microtubules in live MCF-7 cells were measured by confocal microscopy. Immunofluorescence microscopy, western blotting and flow cytometry were used to analyze the effects of griseofulvin on spindle microtubule organization, cell cycle progression and apoptosis. Further, interactions of purified tubulin with griseofulvin were studied in vitro by spectrophotometry and spectrofluorimetry. Docking analysis was performed using autodock4 and LigandFit module of Discovery Studio 2.1. Griseofulvin strongly suppressed the dynamic instability of individual microtubules in live MCF-7 cells by reducing the rate and extent of the growing and shortening phases. At or near half-maximal proliferation inhibitory concentration, griseofulvin dampened the dynamicity of microtubules in MCF-7 cells without significantly disrupting the microtubule network. Griseofulvin-induced mitotic arrest was associated with several mitotic abnormalities like misaligned chromosomes, multipolar spindles, misegregated chromosomes resulting in cells containing fragmented nuclei. These fragmented nuclei were found to contain increased concentration of p53. Using both computational and experimental approaches, we provided evidence suggesting that griseofulvin binds to tubulin in two different sites; one site overlaps with the paclitaxel binding site while the second site is located at the αβ intra-dimer interface. In combination studies, griseofulvin and vinblastine were found to exert synergistic

  20. Ibrutinib Inhibits Platelet Integrin αIIbβ3 Outside-In Signaling and Thrombus Stability But Not Adhesion to Collagen.

    Science.gov (United States)

    Bye, Alexander P; Unsworth, Amanda J; Vaiyapuri, Sakthivel; Stainer, Alexander R; Fry, Michael J; Gibbins, Jonathan M

    2015-11-01

    Ibrutinib is an irreversible Bruton tyrosine kinase inhibitor approved for treatment of Waldenstrom macroglobulinemia, chronic lymphocytic leukemia, and mantle cell lymphoma that increases the risk of bleeding among patients. Platelets from ibrutinib-treated patients exhibit deficiencies in collagen-evoked signaling in suspension; however, the significance of this observation and how it relates to bleeding risk is unclear, as platelets encounter immobile collagen in vivo. We sought to clarify the effects of ibrutinib on platelet function to better understand the mechanism underlying bleeding risk. By comparing signaling in suspension and during adhesion to immobilized ligands, we found that the collagen signaling deficiency caused by ibrutinib is milder during adhesion to immobilized collagen. We also found that platelets in whole blood treated with ibrutinib adhered to collagen under arterial shear but formed unstable thrombi, suggesting that the collagen signaling deficiency caused by ibrutinib may not be the predominant cause of bleeding in vivo. However, clot retraction and signaling evoked by platelet adhesion to immobilized fibrinogen were also inhibited by ibrutinib, indicating that integrin αIIbβ3 outside-in signaling is also effected in addition to GPVI signaling. When ibrutinib was combined with the P2Y12 inhibitor, cangrelor, thrombus formation under arterial shear was inhibited additively. These findings suggest that (1) ibrutinib causes GPVI and integrin αIIbβ3 platelet signaling deficiencies that result in formation of unstable thrombi and may contribute toward bleeding observed in vivo and (2) combining ibrutinib with P2Y12 antagonists, which also inhibit thrombus stability, may have a detrimental effect on hemostasis. © 2015 American Heart Association, Inc.

  1. (99m)Tc-labeled gastrins of varying peptide chain length: Distinct impact of NEP/ACE-inhibition on stability and tumor uptake in mice.

    Science.gov (United States)

    Kaloudi, Aikaterini; Nock, Berthold A; Lymperis, Emmanouil; Krenning, Eric P; de Jong, Marion; Maina, Theodosia

    2016-06-01

    In situ inhibition of neutral endopeptidase (NEP) has been recently shown to impressively increase the bioavailability and tumor uptake of biodegradable gastrin radioligands. Furthermore, angiotensin converting enzyme (ACE) has been previously shown to cleave gastrin analogs in vitro. In the present study, we have assessed the effects induced by single or dual NEP/ACE-inhibition on the pharmacokinetic profile of three (99m)Tc-labeled gastrins of varying peptide chain length: [(99m)Tc]SG6 ([(99m)Tc-N4-Gln(1)]gastrin(1-17)), [(99m)Tc]DG2 ([(99m)Tc-N4-Gly(4),DGlu(5)]gastrin(4-17)) and [(99m)Tc]DG4 ([(99m)Tc-N4-DGlu(10)]gastrin(10-17)). Mouse blood samples were collected 5min after injection of each of [(99m)Tc]SG6/DG2/DG4 together with: a) vehicle, b) the NEP-inhibitor phosphoramidon (PA), c) the ACE-inhibitor lisinopril (Lis), or d) PA plus Lis and were analyzed by RP-HPLC for radiometabolite detection. Biodistribution was studied in SCID mice bearing A431-CCK2R(+/-) xenografts at 4h postinjection (pi). [(99m)Tc]SG6 or [(99m)Tc]DG4 was coinjected with either vehicle or the above described NEP/ACE-inhibitor regimens; for [(99m)Tc]DG2 control and PA animal groups were only included. Treatment of mice with PA induced significant stabilization of (99m)Tc-radiotracers in peripheral blood, while treatment with Lis or Lis+PA affected the stability of des(Glu)5 [(99m)Tc]DG4 only. In line with these findings, PA coinjection led to notable amplification of tumor uptake of radiopeptides compared to controls (PTc]DG4 profited by single Lis (2.06±0.39%ID/g vs 0.99±0.13%ID/g in controls) or combined Lis+PA coinjection (8.91±1.61%ID/g vs 4.89±1.33%ID/g in PA-group). Furthermore, kidney uptake remained favourably low and unaffected by PA and/or Lis coinjection only in the case of [(99m)Tc]DG4 (Tc-radioligands based on different-length gastrins. Truncated [(99m)Tc]DG4 exhibited overall the most attractive profile during combined NEP/ACE-inhibition in mouse models, providing new

  2. miR-322 stabilizes MEK1 expression to inhibit RAF/MEK/ERK pathway activation in cartilage.

    Science.gov (United States)

    Bluhm, Björn; Ehlen, Harald W A; Holzer, Tatjana; Georgieva, Veronika S; Heilig, Juliane; Pitzler, Lena; Etich, Julia; Bortecen, Toman; Frie, Christian; Probst, Kristina; Niehoff, Anja; Belluoccio, Daniele; Van den Bergen, Jocelyn; Brachvogel, Bent

    2017-10-01

    Cartilage originates from mesenchymal cell condensations that differentiate into chondrocytes of transient growth plate cartilage or permanent cartilage of the articular joint surface and trachea. MicroRNAs fine-tune the activation of entire signaling networks and thereby modulate complex cellular responses, but so far only limited data are available on miRNAs that regulate cartilage development. Here, we characterize a miRNA that promotes the biosynthesis of a key component in the RAF/MEK/ERK pathway in cartilage. Specifically, by transcriptome profiling we identified miR-322 to be upregulated during chondrocyte differentiation. Among the various miR-322 target genes in the RAF/MEK/ERK pathway, only Mek1 was identified as a regulated target in chondrocytes. Surprisingly, an increased concentration of miR-322 stabilizes Mek1 mRNA to raise protein levels and dampen ERK1/2 phosphorylation, while cartilage-specific inactivation of miR322 in mice linked the loss of miR-322 to decreased MEK1 levels and to increased RAF/MEK/ERK pathway activation. Such mice died perinatally due to tracheal growth restriction and respiratory failure. Hence, a single miRNA can stimulate the production of an inhibitory component of a central signaling pathway to impair cartilage development. © 2017. Published by The Company of Biologists Ltd.

  3. Persistent inhibition of pore-based cell migration by sub-toxic doses of miuraenamide, an actin filament stabilizer.

    Science.gov (United States)

    Moser, Christina; Rüdiger, Daniel; Förster, Florian; von Blume, Julia; Yu, Peng; Kuster, Bernhard; Kazmaier, Uli; Vollmar, Angelika M; Zahler, Stefan

    2017-11-27

    Opposed to tubulin-binding agents, actin-binding small molecules have not yet become part of clinical tumor treatment, most likely due to the fear of general cytotoxicity. Addressing this problem, we investigated the long-term efficacy of sub-toxic doses of miuraenamide, an actin filament stabilizing natural compound, on tumor cell (SKOV3) migration. No cytotoxic effects or persistent morphological changes occurred at a concentration of miuraenamide of 20 nM. After 72 h treatment with this concentration, nuclear stiffness was increased, causing reduced migration through pores in a Boyden chamber, while cell migration and chemotaxis per se were unaltered. A concomitant time-resolved proteomic approach showed down regulation of a protein cluster after 56 h treatment. This cluster correlated best with the Wnt signaling pathway. A further analysis of the actin associated MRTF/SRF signaling showed a surprising reduction of SRF-regulated proteins. In contrast to acute effects of actin-binding compounds on actin at high concentrations, long-term low-dose treatment elicits much more subtle but still functionally relevant changes beyond simple destruction of the cytoskeleton. These range from biophysical parameters to regulation of protein expression, and may help to better understand the complex biology of actin, as well as to initiate alternative regimes for the testing of actin-targeting drugs.

  4. Non-aqueous electrolyte for lithium-ion battery

    Science.gov (United States)

    Zhang, Lu; Zhang, Zhengcheng; Amine, Khalil

    2014-04-15

    The present technology relates to stabilizing additives and electrolytes containing the same for use in electrochemical devices such as lithium ion batteries and capacitors. The stabilizing additives include triazinane triones and bicyclic compounds comprising succinic anhydride, such as compounds of Formulas I and II described herein.

  5. Lithium Mediated Benzene Adsorption on Graphene and Graphene Nanoribbons

    OpenAIRE

    Krepel, Dana; Hod, Oded

    2013-01-01

    The anchoring of benzene molecules on lithium adsorption sites at the surface of graphene and nanoribbons thereof are investigated. The effects of adsorbate densities, specific adsorption locations, and spin states on the structural stability and electronic properties of the underlying graphene derivatives are revealed. At sufficiently high densities, bare lithium adsorption turns armchair graphene nanoribbons metallic and their zigzag counterparts half-metallic due to charge transfer from th...

  6. Nanoporous Polymer-Ceramic Composite Electrolytes for Lithium Metal Batteries

    KAUST Repository

    Tu, Zhengyuan

    2013-09-16

    A nanoporous composite material that offers the unique combination of high room-temperature ionic conductivity and high mechanical modulus is reported. When used as the separator/electrolyte in lithium batteries employing metallic lithium as anode, the material displays unprecedented cycling stability and excellent ability to prevent premature cell failure by dendrite-induced short circuits © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Lithium and suicide prevention in bipolar disorder.

    Science.gov (United States)

    Benard, V; Vaiva, G; Masson, M; Geoffroy, P A

    2016-06-01

    Bipolar disorder (BD) is a severe and recurrent psychiatric disorder. The severity of prognosis in BD is mainly linked to the high rate of suicide in this population. Indeed, patients with BD commit suicide 20 to 30 times more frequently than the general population, and half of the BD population with an early age of onset have a history of suicide attempt. International therapeutic guidelines recommend lithium (Li) as the first-line treatment in BD for its prophylactic action on depressive or manic episodes. In addition, Li is the only mood stabilizer that has demonstrated efficacy in suicide prevention. This effect of Li is unfortunately often unknown to psychiatrists. Thus, this review aims to highlight evidence about the preventive action of Li on suicide in BD populations. We conducted a literature search between April 1968 and August 2014 in PubMed database using the following terms: "lithium" AND "suicide" OR "suicidality" OR "suicide attempt". As confirmed by a recent meta-analysis, many studies show that Li has a significant effect on the reduction of suicide attempts and deaths by suicide in comparison to antidepressants or other mood-stabilisers in BD populations. Studies have demonstrated that long-term treatment with Li reduces suicide attempts by about 10% and deaths by suicide by about 20%. The combination of Li and an antidepressant could reduce suicidal behaviours by reducing suicidal ideation prior to depressive symptoms. It appears crucial for Li efficacy in suicide prevention to maintain the Li blood concentrations in the efficient therapeutic zone and to instate long-term Li treatment. The "impulsive-aggressive" endophenotype is associated with suicide in BD. The specific action of Li on the 5-HT serotoninergic system could explain the specific anti-suicidal effects of Li via the modulation of impulsiveness and aggressiveness. Furthermore, genetic variants of the glycogen synthase kinase 3α/β (GSK3α and β; proteins inhibited by Li) seem to

  8. Lithium salts as leachable corrosion inhibitors and potential replacement for hexavalent chromium in organic coatings for the protection of aluminum alloys

    NARCIS (Netherlands)

    Visser, P; Liu, Y; Terryn, H.A.; Mol, J.M.C.

    2016-01-01

    Lithium salts are being investigated as leachable corrosion inhibitor and potential replacement for hexavalent chromium in organic coatings. Model coatings loaded with lithium carbonate or lithium oxalate demonstrated active corrosion inhibition and the formation of a protective layer in a

  9. Polymer electrolytes based on aromatic lithium sulfonyl-imide compounds; Electrolytes polymeres a base de sulfonylimidures de lithium aromatiques

    Energy Technology Data Exchange (ETDEWEB)

    Reibel, L.; Bayoudh, S. [Centre National de la Recherche Scientifique (CNRS), 67 - Strasbourg (France). Institut Charles Sadron; Baudry, P. [Electricite de France, 77 - Moret sur Loing (France). Direction des Etudes et Recherches; Majastre, H. [Bollore Technologies, 29 - Quimper (France); Herlem, G. [UFR de Sciences et Techniques, L.E.S., 25 - Besancon (France)

    1996-12-31

    This paper presents ionic conductivity results obtained with polymer electrolytes and also with propylene carbonate solutions. The domain of electrochemical activity of this salt has been determined using cycle volt-amperometry in propylene carbonate. Preliminary experiments on the stability of the polymer electrolyte with respect to the lithium electrode have been carried out for a possible subsequent use in lithium batteries. (J.S.) 4 refs.

  10. Polymer electrolytes based on aromatic lithium sulfonyl-imide compounds; Electrolytes polymeres a base de sulfonylimidures de lithium aromatiques

    Energy Technology Data Exchange (ETDEWEB)

    Reibel, L; Bayoudh, S [Centre National de la Recherche Scientifique (CNRS), 67 - Strasbourg (France). Institut Charles Sadron; Baudry, P [Electricite de France, 77 - Moret sur Loing (France). Direction des Etudes et Recherches; Majastre, H [Bollore Technologies, 29 - Quimper (France); Herlem, G [UFR de Sciences et Techniques, L.E.S., 25 - Besancon (France)

    1997-12-31

    This paper presents ionic conductivity results obtained with polymer electrolytes and also with propylene carbonate solutions. The domain of electrochemical activity of this salt has been determined using cycle volt-amperometry in propylene carbonate. Preliminary experiments on the stability of the polymer electrolyte with respect to the lithium electrode have been carried out for a possible subsequent use in lithium batteries. (J.S.) 4 refs.

  11. E11/Podoplanin Protein Stabilization Through Inhibition of the Proteasome Promotes Osteocyte Differentiation in Murine in Vitro Models.

    Science.gov (United States)

    Staines, Katherine A; Prideaux, Matt; Allen, Steve; Buttle, David J; Pitsillides, Andrew A; Farquharson, Colin

    2016-06-01

    The transmembrane glycoprotein E11 is considered critical in early osteoblast-osteocyte transitions (osteocytogenesis), however its function and regulatory mechanisms are still unknown. Using the late osteoblast MLO-A5 cell line we reveal increased E11 protein/mRNA expression (P < 0.001) concomitant with extensive osteocyte dendrite formation and matrix mineralization (P < 0.001). Transfection with E11 significantly increased mRNA levels (P < 0.001), but immunoblotting failed to detect any correlative increases in E11 protein levels, suggestive of post-translational degradation. We found that exogenous treatment of MLO-A5 and osteocytic IDG-SW3 cells with 10 μM ALLN (calpain and proteasome inhibitor) stabilized E11 protein levels and induced a profound increase in osteocytic dendrite formation (P < 0.001). Treatment with other calpain inhibitors failed to promote similar osteocytogenic changes, suggesting that these effects of ALLN rely upon its proteasome inhibitor actions. Accordingly we found that proteasome-selective inhibitors (MG132/lactacystin/ Bortezomib/Withaferin-A) produced similar dose-dependent increases in E11 protein levels in MLO-A5 and primary osteoblast cells. This proteasomal targeting was confirmed by immunoprecipitation of ubiquitinylated proteins, which included E11, and by increased levels of ubiquitinylated E11 protein upon addition of the proteasome inhibitors MG132/Bortezomib. Activation of RhoA, the small GTPase, was found to be increased concomitant with the peak in E11 levels and its downstream signaling was also observed to promote MLO-A5 cell dendrite formation. Our data indicate that a mechanism reliant upon blockade of proteasome-mediated E11 destabilization contributes to osteocytogenesis and that this may involve downstream targeting of RhoA. This work adds to our mechanistic understanding of the factors regulating bone homeostasis, which may lead to future therapeutic approaches. © 2015 The Authors. Journal of

  12. Lithium Battery Diaper Ulceration.

    Science.gov (United States)

    Maridet, Claire; Taïeb, Alain

    2016-01-01

    We report a case of lithium battery diaper ulceration in a 16-month-old girl. Gastrointestinal and ear, nose, and throat lesions after lithium battery ingestion have been reported, but skin involvement has not been reported to our knowledge. © 2015 Wiley Periodicals, Inc.

  13. Combined adsorption of lithium and oxygen on (111) face of tungsten

    International Nuclear Information System (INIS)

    Lozovoj, Ya.B.; Smereka, T.P.; Babkin, G.V.; Payukh, B.M.

    1986-01-01

    A contact potential difference technique has been employed to study the electron-adsorption properties of lithium films on a (111) face of tungsten, preliminary coated with different doses of oxygen. At all the lithium coverages studied the presence of oxygen on the surface leads to a significant decrease of the work function φ min and an increase of the thermal stability of lithium films. For optimal coverage φ=1.8 eV, q=2.2 eV

  14. Cathode material for lithium batteries

    Science.gov (United States)

    Park, Sang-Ho; Amine, Khalil

    2013-07-23

    A method of manufacture an article of a cathode (positive electrode) material for lithium batteries. The cathode material is a lithium molybdenum composite transition metal oxide material and is prepared by mixing in a solid state an intermediate molybdenum composite transition metal oxide and a lithium source. The mixture is thermally treated to obtain the lithium molybdenum composite transition metal oxide cathode material.

  15. Startup of Experimental Lithium System

    International Nuclear Information System (INIS)

    McCauley, D.L.

    1980-06-01

    The Experimental Lithium System (ELS) is designed for full-scale testing of targets and other lithium system components for the Fusion Materials Irradiation Test (FMIT) Facility. The system also serves as a test bed for development of lithium purification and characterization equipment, provides experience in operation of large lithium systems, and helps guide FMIT design

  16. Lithium purity and characterization

    International Nuclear Information System (INIS)

    Meadows, G.E.; Keough, R.F.

    1981-02-01

    The accurate measurement of impurities in lithium is basic to the study of lithium compatibility with fusion reactor materials. In the last year the Hanford Engineering Development Laboratory (HEDL) has had the opportunity to develop sampling and analytical techniques and to apply them in support of the Experimental Lithium System (ELS) as a part of the Fusion Materials Irradiation Test Project. In this paper we present the analytical results from the fill, start-up and operation of the ELS. In addition, the analysis and purification of navy surplus ingot lithium which is being considered for use in a larger system will be discussed. Finally, the analytical techniques used in our laboratory will be summarized and the results of a recent round robin lithium analysis will be presented

  17. Lithium and Renal Impairment

    DEFF Research Database (Denmark)

    Nielsen, René Ernst; Kessing, Lars Vedel; Nolen, Willem A

    2018-01-01

    INTRODUCTION: Lithium is established as an effective treatment of mania, of depression in bipolar and unipolar disorder, and in maintenance treatment of these disorders. However, due to the necessity of monitoring and concerns about irreversible adverse effects, in particular renal impairment......, after long-term use, lithium might be underutilized. METHODS: This study reviewed 6 large observational studies addressing the risk of impaired renal function associated with lithium treatment and methodological issues impacting interpretation of results. RESULTS: An increased risk of renal impairment...... associated with lithium treatment is suggested. This increased risk may, at least partly, be a result of surveillance bias. Additionally, the earliest studies pointed toward an increased risk of end-stage renal disease associated with lithium treatment, whereas the later and methodologically most sound...

  18. 99mTc-labeled gastrins of varying peptide chain length: Distinct impact of NEP/ACE-inhibition on stability and tumor uptake in mice

    International Nuclear Information System (INIS)

    Kaloudi, Aikaterini; Nock, Berthold A.; Lymperis, Emmanouil; Krenning, Eric P.; Jong, Marion de; Maina, Theodosia

    2016-01-01

    Introduction: In situ inhibition of neutral endopeptidase (NEP) has been recently shown to impressively increase the bioavailability and tumor uptake of biodegradable gastrin radioligands. Furthermore, angiotensin converting enzyme (ACE) has been previously shown to cleave gastrin analogs in vitro. In the present study, we have assessed the effects induced by single or dual NEP/ACE-inhibition on the pharmacokinetic profile of three 99m Tc-labeled gastrins of varying peptide chain length: [ 99m Tc]SG6 ([ 99m Tc-N 4 -Gln 1 ]gastrin(1–17)), [ 99m Tc]DG2 ([ 99m Tc-N 4 -Gly 4 ,DGlu 5 ]gastrin(4–17)) and [ 99m Tc]DG4 ([ 99m Tc-N 4 -DGlu 10 ]gastrin(10–17)). Methods: Mouse blood samples were collected 5 min after injection of each of [ 99m Tc]SG6/DG2/DG4 together with: a) vehicle, b) the NEP-inhibitor phosphoramidon (PA), c) the ACE-inhibitor lisinopril (Lis), or d) PA plus Lis and were analyzed by RP-HPLC for radiometabolite detection. Biodistribution was studied in SCID mice bearing A431-CCK2R(+/−) xenografts at 4 h postinjection (pi). [ 99m Tc]SG6 or [ 99m Tc]DG4 was coinjected with either vehicle or the above described NEP/ACE-inhibitor regimens; for [ 99m Tc]DG2 control and PA animal groups were only included. Results: Treatment of mice with PA induced significant stabilization of 99m Tc-radiotracers in peripheral blood, while treatment with Lis or Lis + PA affected the stability of des(Glu) 5 [ 99m Tc]DG4 only. In line with these findings, PA coinjection led to notable amplification of tumor uptake of radiopeptides compared to controls (P < 0.01). Only [ 99m Tc]DG4 profited by single Lis (2.06 ± 0.39%ID/g vs 0.99 ± 0.13%ID/g in controls) or combined Lis + PA coinjection (8.91 ± 1.61%ID/g vs 4.89 ± 1.33%ID/g in PA-group). Furthermore, kidney uptake remained favourably low and unaffected by PA and/or Lis coinjection only in the case of [ 99m Tc]DG4 (< 1.9%ID/g) resulting in the most optimal tumor-to-kidney ratios. Conclusions: In situ NEP/ACE-inhibition

  19. Raman spectral and electrochemical studies of lithium/electrolyte interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Odziemkowski, M

    1922-01-01

    Cyclic voltammetry, corrosion potential-time transients and Normal Raman spectroscopy have been employed to characterize the lithium-lithium salt, organic solvent, interfacial region. An in-situ cutting technique was developed to expose lithium metal. In-situ optical and ex-situ scanning electron microscopy (SEM) have been used to examine the morphology of the lithium electrode surface during exposure at open circuit and after anodic polarization. The main reaction product detected by in-situ Raman spectroscopy in the system/lithium/LiAsF[sub 6], tetrahydrofuran (THF) electrolyte was polytetrahydrofuran (PTHF). The conditions for the polymerization reaction in the presence of lithium metal have been determined. Tetrahydrofuran (THF) decomposition reaction mechanisms are discussed. Decomposition reaction products have been determined as arsenic (II) oxide, As[sub 2]O[sub 3] (arsenolite) and arsenious oxyfluoride AsF[sub 2]-O-AsF[sub 2]. Potentiodynamic polarization measurements revealed a substantial shift of the corrosion potential towards positive values and only a moderate increase of anodic dissolution current for in-situ cut lithium metal. Corrosion potential-time merits have been measured. The following electrolytes have been investigated: LiAsF[sub 6], LiPF[sub 6], LiClO[sub 4], and Li(CF[sub 3]SO[sub 2])[sub 2]N in THF, 2Me-THF, and propylene carbonate (PC). The transients permit the ranking of the reactivity of the electrolytes. These measurements have shed light on understanding the stability of various stability and and solvents in contact with lithium. Compared to purified electrolytes, small amounts of water shift the corrosion potential towards even more positive values. Intensive anodic cycling of a Li electrode in unpurified LiAsF[sub 6]/THF electrolyte leads to the breakdown of a surface film/films. While at the open circuit potential (OCP), water in this same electrolyte leads to crack formation in the bulk lithium electrode.

  20. Lithium1.3Aluminum0.3Titanium1.7Phosphate as a solid state Li-ion conductor: Issues with microcracking and stability in aqueous solutions

    Science.gov (United States)

    Jackman, Spencer D.

    Lithium aluminum titanium phosphate (LATP) with formula Li1.3Al0.3Ti1.7(PO4)3 was analyzed and tested to better understand its applicability as a solid state ion conducting ceramic material for electrochemical applications. Sintered samples were obtained from Ceramatec, Inc. in Salt Lake City and characterized in terms of density, phase-purity, fracture toughness, Young's modulus, thermal expansion behavior, mechanical strength, a.c. and d.c. ionic conductivity, and susceptibility to static and electrochemical corrosion in aqueous Li salt solutions. It was shown that LATP is prone to microcrack generation because of high thermal expansion anisotropy. A.c. impedance spectra of high-purity LATP of varying grain sizes showed that microcracking had a negative impact on the ionic conduction of Li along grain boundaries, with fine-grained (1.7±0.7 µm) LATP having twice the ionic conductivity of the same purity of coarse-grained (4.8±1.9 µm) LATP at 50°C. LATP with detectible secondary phases had lower ionic conductivity for similar grain sizes, as would be expected. The Young's modulus of fine-grained LATP was measured to be 115 GPa, and the highest biaxial strength was 191±11 MPa when tested in mineral oil, 144±13 MPa as measured in air, and 26±7 MPa after exposure to deionized water, suggesting that LATP undergoes stress-corrosion cracking. After exposure to LiOH, the strength was 76±19 MPa. This decrease in strength was observed despite there being no measureable change in a.c. impedance spectra, X-ray diffraction, or sample mass, suggesting phosphate glasses at grain boundaries. The chemical and electrochemical stability of high-purity LATP in aqueous electrochemical cells was evaluated using LiOH, LiCl, LiNO3, and LiCOOCH3 salts as the Li source. LATP was found to be most stable between pH 8-9, with the longest cell operating continuously at 25 mA cm-2 for 625 hours at 40°C in LiCOOCH3. At pH values outside of the 7-10 range, eventual membrane degradation

  1. Stability and electronic properties of groups IIB to VB metal ions in unusual oxidation states and the 2S /SUB 1/2/ electronic state in lithium borate glasses

    International Nuclear Information System (INIS)

    Aleksandrov, A.I.; Bubnov, N.N.; Kraevskii, S.L.; Prokof'ev, A.I.; Raspertova, Z.I.; Solinov, V.F.

    1986-01-01

    The authors study lithium borate glasses containing groups IIB to VB metal oxides. Chemically pure reagents were used to synthesize the glasses which were subjected to gamma-rays at 77 and 300 K with doses of up to 100 kR. The EST spectra were recorded on a Varian E-12 spectrometer in the 3 cm CW frequency region with a 100 kHz magnetic field modulation. It was established that after gamma-irradiation at 77 and 300 K of the lithium borate glass system containing up to 10% of cadmium, tin, thalium, and lead oxides, additional ESR lines arise in the free electron g factor region. The authors have determined the missing ESR spectra for nonactivated lithium borate glasses by studying glasses with additions of Zn, Ge, and Sb oxides

  2. Electronic properties of lithium titanate ceramic

    International Nuclear Information System (INIS)

    Padilla-Campos, Luis; Buljan, Antonio

    2001-01-01

    Research on tritium breeder material is fundamental to the development of deuterium-tritium type fusion reactors for producing clean, non contaminating, electrical energy, since only energy and helium, a harmless gas, are produced from the fusion reaction. Lithium titanate ceramic is one of the possible candidates for the tritium breeder material. This last material is thought to form part of the first wall of the nucleus of the reactor which will provide the necessary tritium for the fusion and will also serve as a shield. Lithium titanate has advantageous characteristics compared to other materials. Some of these are low activation under the irradiation of neutrons, good thermal stability, high density of lithium atoms and relatively fast tritium release at low temperatures. However, there are still several physical and chemical properties with respect to the tritium release mechanism and mechanical properties that have not been studied at all. This work presents a theoretical study of the electronic properties of lithium titanate ceramic and the corresponding tritiated material. Band calculations using the Extended H kel Tight-Binding approach were carried out. Results show that after substituting lithium for tritium atoms, the electronic states for the latter appear in the middle of prohibited band gap which it is an indication that the tritiated material should behave as a semiconductor, contrary to Li 2 TiO 3 which is a dielectric isolator. A study was also carried out to determine the energetically most favorable sites for the substitution of lithium for tritium atoms. Additionally, we analyzed possible pathways for the diffusion of a tritium atom within the crystalline structure of the Li 2 TiO 3

  3. Low pressure lithium condensation

    International Nuclear Information System (INIS)

    Wadkins, R.P.; Oh, C.H.

    1985-01-01

    A low pressure experiment to evaluate the laminar film condensation coefficients of lithium was conducted. Some thirty-six different heat transfer tests were made at system pressures ranging from 1.3 to 26 Pa. Boiled lithium was condensed on the inside of a 7.6-cm (ID), 409 stainless-steel pipe. Condensed lithium was allowed to reflux back to the pool boiling region below the condensing section. Fourteen chromel/alumel thermocouples were attached in various regions of the condensing section. The thermocouples were initially calibrated with errors of less than one degree Celsius

  4. Toxic effect of lithium in mouse brain

    International Nuclear Information System (INIS)

    Dixit, P.K.; Smithberg, M.

    1988-01-01

    The effect of lithium ion on glucose oxidation in the cerebrum and cerebellum of mice was measured in vitro by the conversion of isotopic glucose into 14 CO 2 /mg wet weight. Glucose utilization is unaffected by lowest lithium dosage but is inhibited by high lithium concentrations (197-295 mM). Chronic administration of lithium to adult mice decreased the DNA content of the cerebrum and cerebellum at concentrations of 80 and 108 mM. The DNA content of selected postnatal stages of cerebrum and cerebellum was measured starting on Day 1 or 2. This served as another parameter to evaluate glucose oxidation studies at these ages. On the basis of wet weight, both brain parts of neonates of ages 1 and 10 days were approximately one-half that of the adult counterparts. On the basis of DNA content, the cerebrum enhanced its glucose utilization twofold from Day 1 to Day 10 and tripled its utilization from Day 10 to Day 20. The glucose utilization by cerebrum at Day 20 is similar to adult values. In contrast, glucose oxidation in the cerebellum remained relatively constant throughout the postnatal growth. The relative susceptibility of the two brain parts is discussed

  5. Adsorption of lithium-lanthanum films on the (100) tungsten face

    International Nuclear Information System (INIS)

    Gupalo, M.S.; Smereka, T.P.; Babkin, G.V.; Palyukh, B.M.

    1982-01-01

    The method of contact potential difference is used to investigate combined adsorption of lithium-lanthanum on the (100) tungsten face. The data on work functions and thermal stability of mixed lithium-lanthanum films are obtained. The presence of lanthanum on the W(100) surface leads to appearance of minimum of work functions unobserved for the Li-W(100) system, minimum work functions and optimum lithium concentration in a mixed film are decreased at initial lanthanum coating increase. The presence of lanthanum on the W(100) face leads to lithium adsorption heat decrease

  6. Antiviral effect of lithium chloride on infection of cells by canine parvovirus.

    Science.gov (United States)

    Zhou, Pei; Fu, Xinliang; Yan, Zhongshan; Fang, Bo; Huang, San; Fu, Cheng; Hong, Malin; Li, Shoujun

    2015-11-01

    Canine parvovirus type 2 causes significant viral disease in dogs, with high morbidity, high infectivity, and high mortality. Lithium chloride is a potential antiviral drug for viruses. We determined the antiviral effect of Lithium Chloride on canine parvovirus type 2 in feline kidney cells. The viral DNA and proteins of canine parvovirus were suppressed in a dose-dependent manner by lithium chloride. Further investigation verified that viral entry into cells was inhibited in a dose-dependent manner by lithium chloride. These results indicated that lithium chloride could be a potential antiviral drug for curing dogs with canine parvovirus infection. The specific steps of canine parvovirus entry into cells that are affected by lithium chloride and its antiviral effect in vivo should be explored in future studies.

  7. The use of lithium carbonate in the treatment of Graves' disease with 131I

    International Nuclear Information System (INIS)

    Kang Yuguo; Chen Miao; Kuang Anren

    2004-01-01

    Lithium carbonate involving radioactive iodine uptake, goiter volume, thyroid hormone and applying range is reviewed briefly. Lithium may elongate the T 1/2 of iodine in thyroid gland, decrease 131 I dosage and enhance curative effect. Lithium carbonate inhibit iodine uptake and thyroid hormone synthesize, blocks the release of iodine and thyroid hormone from the thyroid gland, which lead to reduce the 131 I dosage the patients need and to decrease the surge of serum FT 3 and FT 4 levels caused by 131 I therapy. so lithium carbonate can alleviate the symptoms caused by 131 I treatment. For lithium carbonate can increase leucocyte amount, there are some merits with lithium carbonate in treating Graves' disease by 131 I. (authors)

  8. 200 years of lithium and 100 years of organolithium chemistry

    International Nuclear Information System (INIS)

    Wietelmann, Ulrich; Klett, Jan

    2018-01-01

    The element lithium has been discovered 200 years ago. Due to its unique properties it has emerged to play a vital role in industry, esp. for energy storage, and lithium-based products and processes support sustainable technological developments. In addition to the many uses of lithium in its inorganic forms, lithium has a rich organometallic chemistry. The development of organometallic chemistry has been hindered by synthetic problems from the start. When Wilhelm Schlenk developed the basic principles to handle and synthesize air- and moisture-sensitive compounds, the road was open to further developments. After more information was available about the stability and solubility of such compounds, they started to play an essential role in other fields of chemistry as alkyl or aryl transfer reagents. (copyright 2018 The Authors. Published by Wiley-VCH Verlag GmbH and Co. KGaA.)

  9. Anode Improvement in Rechargeable Lithium-Sulfur Batteries.

    Science.gov (United States)

    Tao, Tao; Lu, Shengguo; Fan, Ye; Lei, Weiwei; Huang, Shaoming; Chen, Ying

    2017-12-01

    Owing to their theoretical energy density of 2600 Wh kg -1 , lithium-sulfur batteries represent a promising future energy storage device to power electric vehicles. However, the practical applications of lithium-sulfur batteries suffer from poor cycle life and low Coulombic efficiency, which is attributed, in part, to the polysulfide shuttle and Li dendrite formation. Suppressing Li dendrite growth, blocking the unfavorable reaction between soluble polysulfides and Li, and improving the safety of Li-S batteries have become very important for the development of high-performance lithium sulfur batteries. A comprehensive review of various strategies is presented for enhancing the stability of the anode of lithium sulfur batteries, including inserting an interlayer, modifying the separator and electrolytes, employing artificial protection layers, and alternative anodes to replace the Li metal anode. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Role of Disorder in Enhancing Lithium-Ion Battery Performance

    DEFF Research Database (Denmark)

    Yue, Yuanzheng; He, W.

    and type of disorder, material performances can be significantly enhanced. Disorder can be tuned by doping, calcination, redox reaction, composition tuning, and so on. Recently we have fabricated a cathode material for lithium ion battery by introducing heterostructure and disorder into the material...... material exhibits the extremely high reversible lithium ion capacity and extraordinary rate capability with high cycling stability at high discharge current. In this presentation we demonstrate that the disorder plays a decisive role in achieving those exceptional electrochemical performances. We describe...... how the disorder affects the migration of both lithium ions and electrons. It is found that both the modified glassy surface and the heterogeneous superlattice structure greatly contribute to the extremely high discharge/charge rates owing to the enhanced storage capacity of lithium ions and ultrafast...

  11. 200 years of lithium and 100 years of organolithium chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Wietelmann, Ulrich [Albemarle Germany GmbH, Synthesis Solutions, Industriepark Hoechst, Frankfurt am Main (Germany); Klett, Jan [Institut fuer Anorganische Chemie und Analytische Chemie, Johannes Gutenberg-Universitaet Mainz (Germany)

    2018-03-01

    The element lithium has been discovered 200 years ago. Due to its unique properties it has emerged to play a vital role in industry, esp. for energy storage, and lithium-based products and processes support sustainable technological developments. In addition to the many uses of lithium in its inorganic forms, lithium has a rich organometallic chemistry. The development of organometallic chemistry has been hindered by synthetic problems from the start. When Wilhelm Schlenk developed the basic principles to handle and synthesize air- and moisture-sensitive compounds, the road was open to further developments. After more information was available about the stability and solubility of such compounds, they started to play an essential role in other fields of chemistry as alkyl or aryl transfer reagents. (copyright 2018 The Authors. Published by Wiley-VCH Verlag GmbH and Co. KGaA.)

  12. APPARATUS FOR THE PRODUCTION OF LITHIUM METAL

    Science.gov (United States)

    Baker, P.S.; Duncan, F.R.; Greene, H.B.

    1961-08-22

    Methods and apparatus for the production of high-purity lithium from lithium halides are described. The apparatus is provided for continuously contacting a molten lithium halide with molten barium, thereby forming lithium metal and a barium halide, establishing separate layers of these reaction products and unreacted barium and lithium halide, and continuously withdrawing lithium and barium halide from the reaction zone. (AEC)

  13. Lithium niobate packaging challenges

    International Nuclear Information System (INIS)

    Murphy, E.J.; Holmes, R.J.; Jander, R.B.; Schelling, A.W.

    1988-01-01

    The use of lithium niobate integrated optic devices outside of the research laboratory is predicated on the development of a sound packaging method. The authors present a discussion of the many issues that face the development of a viable, robust packaging technology. The authors emphasize the interaction of lithium niobate's physical properties with available packaging materials and technologies. The broad range of properties (i.e. electro-optic, piezo-electric, pyro-electric, photorefractive...) that make lithium niobate an interesting material in many device applications also make it a packaging challenge. The package design, materials and packaging technologies must isolate the device from the environment so that lithium niobate's properties do not adversely affect the device performance

  14. [Lithium and anticonvulsants in bipolar depression].

    Science.gov (United States)

    Samalin, L; Nourry, A; Llorca, P-M

    2011-12-01

    For decades, lithium and anticonvulsants have been widely used in the treatment of bipolar disorder. Their efficacy in the treatment of mania is recognized. These drugs have been initially evaluated in old and methodologically heterogeneous studies. Their efficacy in bipolar depression has not always been confirmed in more recent and methodologically more reliable studies. Thus, lithium's efficacy as monotherapy was challenged by the study of Young (2008) that showed a lack of efficacy compared with placebo in the treatment of bipolar depression. In two recent meta-analyses, valproate has shown a modest efficacy in the treatment of bipolar depression. As for lithium, valproate appeared to have a larger antimanic effect for acute phase and prophylaxis of bipolar disorder. In contrast, lamotrigine is more effective on the depressive pole of bipolar disorder with better evidence for the prevention of depressive recurrences. The guidelines include these recent studies and recommend lamotrigine as a first-line treatment of bipolar depression and for maintenance treatment. Because of more discordant data concerning lithium and valproate, these two drugs are placed either as first or as second line treatment of bipolar depression. The different safety/efficacy ratios of mood stabilizers underlie the complementarity and the importance of combination between them, or with some second-generation antipsychotics, in the treatment of patients with bipolar disorder. Copyright © 2011 L’Encéphale. Published by Elsevier Masson SAS.. All rights reserved.

  15. Raman spectra of lithium compounds

    Science.gov (United States)

    Gorelik, V. S.; Bi, Dongxue; Voinov, Y. P.; Vodchits, A. I.; Gorshunov, B. P.; Yurasov, N. I.; Yurasova, I. I.

    2017-11-01

    The paper is devoted to the results of investigating the spontaneous Raman scattering spectra in the lithium compounds crystals in a wide spectral range by the fibre-optic spectroscopy method. We also present the stimulated Raman scattering spectra in the lithium hydroxide and lithium deuteride crystals obtained with the use of powerful laser source. The symmetry properties of the lithium hydroxide, lithium hydroxide monohydrate and lithium deuteride crystals optical modes were analyzed by means of the irreducible representations of the point symmetry groups. We have established the selection rules in the Raman and infrared absorption spectra of LiOH, LiOH·H2O and LiD crystals.

  16. Solid-state lithium battery

    Science.gov (United States)

    Ihlefeld, Jon; Clem, Paul G; Edney, Cynthia; Ingersoll, David; Nagasubramanian, Ganesan; Fenton, Kyle Ross

    2014-11-04

    The present invention is directed to a higher power, thin film lithium-ion electrolyte on a metallic substrate, enabling mass-produced solid-state lithium batteries. High-temperature thermodynamic equilibrium processing enables co-firing of oxides and base metals, providing a means to integrate the crystalline, lithium-stable, fast lithium-ion conductor lanthanum lithium tantalate (La.sub.1/3-xLi.sub.3xTaO.sub.3) directly with a thin metal foil current collector appropriate for a lithium-free solid-state battery.

  17. Characterization lithium mineralized pegmatite

    International Nuclear Information System (INIS)

    Pereira, E.F.S.; Luz Ferreira, O. da; Cancado, R.Z.L.

    1986-01-01

    Lithium economic importance has increased in the last years. In Brazil its reserves, generally pegmatites bodies, are found in Itinga-Aracuai-MG. This study of characterization belongs to a global plan of lithium mineralized bodies research of 'Arqueana de Minerios e Metais Ltda', which purpose is to give subsidies for implementation of pegmatite unit, in order to make better use of them. (F.E.) [pt

  18. Lithium battery management system

    Science.gov (United States)

    Dougherty, Thomas J [Waukesha, WI

    2012-05-08

    Provided is a system for managing a lithium battery system having a plurality of cells. The battery system comprises a variable-resistance element electrically connected to a cell and located proximate a portion of the cell; and a device for determining, utilizing the variable-resistance element, whether the temperature of the cell has exceeded a predetermined threshold. A method of managing the temperature of a lithium battery system is also included.

  19. Na-doped LiMnPO4 as an electrode material for enhanced lithium ...

    Indian Academy of Sciences (India)

    and electrochemical performance. Lithium manganese ... bond enables good thermal and cycling stability [4,5]. The ... Moreover, the surface morphologies are an essential factor ... work, electrochemically inactive cations were replaced par-.

  20. Solid Lithium Ion Conductors (SLIC) for Lithium Solid State Batteries

    Data.gov (United States)

    National Aeronautics and Space Administration — To identify the most lithium-ion conducting solid electrolytes for lithium solid state batteries from the emerging types of solid electrolytes, based on a...

  1. Lithium isotope effect accompanying electrochemical intercalation of lithium into graphite

    CERN Document Server

    Yanase, S; Oi, T

    2003-01-01

    Lithium has been electrochemically intercalated from a 1:2 (v/v) mixed solution of ethylene carbonate (EC) and methylethyl carbonate (MEC) containing 1 M LiClO sub 4 into graphite, and the lithium isotope fractionation accompanying the intercalation was observed. The lighter isotope was preferentially fractionated into graphite. The single-stage lithium isotope separation factor ranged from 1.007 to 1.025 at 25 C and depended little on the mole ratio of lithium to carbon of the lithium-graphite intercalation compounds (Li-GIC) formed. The separation factor increased with the relative content of lithium. This dependence seems consistent with the existence of an equilibrium isotope effect between the solvated lithium ion in the EC/MEC electrolyte solution and the lithium in graphite, and with the formation of a solid electrolyte interfaces on graphite at the early stage of intercalation. (orig.)

  2. Hydrogen Outgassing from Lithium Hydride

    Energy Technology Data Exchange (ETDEWEB)

    Dinh, L N; Schildbach, M A; Smith, R A; Balazs1, B; McLean II, W

    2006-04-20

    Lithium hydride is a nuclear material with a great affinity for moisture. As a result of exposure to water vapor during machining, transportation, storage and assembly, a corrosion layer (oxide and/or hydroxide) always forms on the surface of lithium hydride resulting in the release of hydrogen gas. Thermodynamically, lithium hydride, lithium oxide and lithium hydroxide are all stable. However, lithium hydroxides formed near the lithium hydride substrate (interface hydroxide) and near the sample/vacuum interface (surface hydroxide) are much less thermally stable than their bulk counterpart. In a dry environment, the interface/surface hydroxides slowly degenerate over many years/decades at room temperature into lithium oxide, releasing water vapor and ultimately hydrogen gas through reaction of the water vapor with the lithium hydride substrate. This outgassing can potentially cause metal hydriding and/or compatibility issues elsewhere in the device. In this chapter, the morphology and the chemistry of the corrosion layer grown on lithium hydride (and in some cases, its isotopic cousin, lithium deuteride) as a result of exposure to moisture are investigated. The hydrogen outgassing processes associated with the formation and subsequent degeneration of this corrosion layer are described. Experimental techniques to measure the hydrogen outgassing kinetics from lithium hydride and methods employing the measured kinetics to predict hydrogen outgassing as a function of time and temperature are presented. Finally, practical procedures to mitigate the problem of hydrogen outgassing from lithium hydride are discussed.

  3. Surface modification of spinel λ-MnO2 and its lithium adsorption properties from spent lithium ion batteries

    International Nuclear Information System (INIS)

    Li, Li; Qu, Wenjie; Liu, Fang; Zhao, Taolin; Zhang, Xiaoxiao; Chen, Renjie; Wu, Feng

    2014-01-01

    Highlights: • A method is designed to synthesize a λ-MnO 2 ion-sieve for lithium ions adsorption. • Ultrasonic treatment with acid is highly efficient for lithium ions extraction. • Surface modification by CeO 2 is used to improve the adsorption capacity. • A 0.5 wt.% CeO 2 -coated ion-sieve shows the best adsorption properties. • λ-MnO 2 ion-sieves are promising for recovering scarce lithium resources. - Abstract: Spinel λ-MnO 2 ion-sieves are promising materials because of their high selectivity toward lithium ions, and this can be applied to the recovery of lithium from spent lithium ion batteries. However, manganese dissolution loss during the delithiation of LiMn 2 O 4 causes a decrease in adsorption capacity and poor cycling stability for these ion-sieves. To improve the lithium adsorption properties of λ-MnO 2 ion-sieves, surface modification with a CeO 2 coating was studied using hydrothermal-heterogeneous nucleation. The structure, morphology and composition of the synthesized materials were determined by XRD, SEM, TEM and EDS. The effect of hydrothermal synthesis conditions and the amount of CeO 2 coating on the adsorption performance of λ-MnO 2 were also investigated. A 0.5 wt.% CeO 2 -coated ion-sieve was synthesized by heating at 120 °C for 3 h and it had better adsorption properties than the bare samples. The effect of ultrasonic treatment on the lithium extraction ratio from LiMn 2 O 4 upon acid treatment at various temperatures was studied and the results were compared with conventional mechanical stirring. We found that ultrasonic treatment at lower temperature gave almost the same maximum lithium extraction ratio and was more efficient and economic

  4. Lithium: for harnessing renewable energy

    Science.gov (United States)

    Bradley, Dwight; Jaskula, Brian W.

    2014-01-01

    Lithium, which has the chemical symbol Li and an atomic number of 3, is the first metal in the periodic table. Lithium has many uses, the most prominent being in batteries for cell phones, laptops, and electric and hybrid vehicles. Worldwide sources of lithium are broken down by ore-deposit type as follows: closed-basin brines, 58%; pegmatites and related granites, 26%; lithium-enriched clays, 7%; oilfield brines, 3%; geothermal brines, 3%; and lithium-enriched zeolites, 3% (2013 statistics). There are over 39 million tons of lithium resources worldwide. Of this resource, the USGS estimates there to be approximately 13 million tons of current economically recoverable lithium reserves. To help predict where future lithium supplies might be located, USGS scientists study how and where identified resources are concentrated in the Earth’s crust, and they use that knowledge to assess the likelihood that undiscovered resources also exist.

  5. Effect of calcium on the electrochemical behavior of lithium anode in LiOH aqueous solution used for lithium–water battery

    International Nuclear Information System (INIS)

    Zhang Ziyan; Chen Kanghua; Ni Erfu

    2012-01-01

    The effect of minor addition of calcium to lithium anode on the electrochemical behavior of lithium anode in 4 M LiOH at 30 °C temperature is investigated by hydrogen collection, polarization curves and electrochemical impedance spectroscopy. The results show that the hydrogen evolution rate is marginally reduced with increasing calcium content. Addition of calcium to lithium mainly inhibits the anodic process. Minor addition of calcium to lithium slightly reduced the discharge current of lithium anode. Minor addition of calcium to lithium anode marginally enhances the hydrogen inhibition of lithium by the formation of calcium hydride combined with LiOH and LiOH·H 2 O formed on the anode surface.

  6. Li+-Permeable Film on Lithium Anode for Lithium Sulfur Battery.

    Science.gov (United States)

    Yang, Yan-Bo; Liu, Yun-Xia; Song, Zhiping; Zhou, Yun-Hong; Zhan, Hui

    2017-11-08

    Lithium-sulfur (Li-S) battery is an important candidate for next-generation energy storage. However, the reaction between polysulfide and lithium (Li) anode brings poor cycling stability, low Coulombic efficiency, and Li corrosion. Herein, we report a Li protection technology. Li metal was treated in crown ether containing electrolyte, and thus, treated Li was further used as the anode in Li-S cell. Due to the coordination between Li + and crown ether, a Li + -permeable film can be formed on Li, and the film is proved to be able to block the detrimental reaction between Li anode and polysulfide. By using the Li anode pretreated in 2 wt % B15C5-containing electrolyte, Li-S cell exhibits significantly improved cycling stability, such as∼900 mAh g -1 after 100 cycles, and high Coulombic efficiency of>93%. In addition, such effect is also notable when high S loading condition is applied.

  7. Lithium-induced downbeat nystagmus.

    Science.gov (United States)

    Schein, Flora; Manoli, Pierre; Cathébras, Pascal

    2017-09-01

    We report the case of a 76-year old lady under lithium carbonate for a bipolar disorder who presented with a suspected optic neuritis. A typical lithium-induced downbeat nystagmus was observed. Discontinuation of lithium therapy resulted in frank improvement in visual acuity and disappearance of the nystagmus.

  8. A hybrid lithium oxalate-phosphinate salt.

    Science.gov (United States)

    Shaffer, Andrew R; Deligonul, Nihal; Scherson, Daniel A; Protasiewicz, John D

    2010-12-06

    The novel organophosphorus-containing lithium salt Li(THF)[(C(2)O(4))B(O(2)PPh(2))(2)] (1; THF = tetrahydrofuran) was synthesized and characterized using a variety of spectroscopic techniques. An X-ray structural analysis on crystals of 1 grown from THF reveals a dimeric structure [Li(THF)(C(2)O(4))B(O(2)PPh(2))(2)](2)·THF, whereby the two units of 1 are bridged via P-O···Li interactions. Compound 1 displays high air and water stability and is also thermally robust, properties needed of electrolytes for their possible use as electrolytes and/or additives in lithium-ion battery applications.

  9. Solid lithium ion conductors for battery applications

    Energy Technology Data Exchange (ETDEWEB)

    Weppner, W.

    1985-01-15

    The phase equilibria and conductivities of the LiF-LiH, LiF-LiOH, LiF-Li/sub 2/O, Li/sub 2/S-Li/sub 2/O, Li/sub 2/S-LiCl and Li/sub 2/S-LiBr systems were investigated. All ternary single phases and two-phase mixtures are solid electrolytes which are thermodynamically stable in respect of reaction with elemental lithium (anode) and at practically useful, low lithium activities (cathode). The conductivity normally increases with decreasing thermodynamic stability and vice versa. The conductivity may be optimized in the case of solid solutions by selecting a composition with a decomposition voltage just above the value required by the cathode material employed. All materials are isotropic in structure and no dendrite formation was observed. This allows their use in rechargeable, thin film electrolyte batteries.

  10. Molecular actions and clinical pharmacogenetics of lithium therapy

    Science.gov (United States)

    Can, Adem; Schulze, Thomas G.; Gould, Todd D.

    2014-01-01

    Mood disorders, including bipolar disorder and depression, are relatively common human diseases for which pharmacological treatment options are often not optimal. Among existing pharmacological agents and mood stabilizers used for the treatment of mood disorders, lithium has a unique clinical profile. Lithium has efficacy in the treatment of bipolar disorder generally, and in particular mania, while also being useful in the adjunct treatment of refractory depression. In addition to antimanic and adjunct antidepressant efficacy, lithium is also proven effective in the reduction of suicide and suicidal behaviors. However, only a subset of patients manifests beneficial responses to lithium therapy and the underlying genetic factors of response are not exactly known. Here we discuss preclinical research suggesting mechanisms likely to underlie lithium’s therapeutic actions including direct targets inositol monophosphatase and glycogen synthase kinase-3 (GSK-3) among others, as well as indirect actions including modulation of neurotrophic and neurotransmitter systems and circadian function. We follow with a discussion of current knowledge related to the pharmacogenetic underpinnings of effective lithium therapy in patients within this context. Progress in elucidation of genetic factors that may be involved in human response to lithium pharmacology has been slow, and there is still limited conclusive evidence for the role of a particular genetic factor. However, the development of new approaches such as genome-wide association studies (GWAS), and increased use of genetic testing and improved identification of mood disorder patients sub-groups will lead to improved elucidation of relevant genetic factors in the future. PMID:24534415

  11. Bending-Tolerant Anodes for Lithium-Metal Batteries.

    Science.gov (United States)

    Wang, Aoxuan; Tang, Shan; Kong, Debin; Liu, Shan; Chiou, Kevin; Zhi, Linjie; Huang, Jiaxing; Xia, Yong-Yao; Luo, Jiayan

    2018-01-01

    Bendable energy-storage systems with high energy density are demanded for conformal electronics. Lithium-metal batteries including lithium-sulfur and lithium-oxygen cells have much higher theoretical energy density than lithium-ion batteries. Reckoned as the ideal anode, however, Li has many challenges when directly used, especially its tendency to form dendrite. Under bending conditions, the Li-dendrite growth can be further aggravated due to bending-induced local plastic deformation and Li-filaments pulverization. Here, the Li-metal anodes are made bending tolerant by integrating Li into bendable scaffolds such as reduced graphene oxide (r-GO) films. In the composites, the bending stress is largely dissipated by the scaffolds. The scaffolds have increased available surface for homogeneous Li plating and minimize volume fluctuation of Li electrodes during cycling. Significantly improved cycling performance under bending conditions is achieved. With the bending-tolerant r-GO/Li-metal anode, bendable lithium-sulfur and lithium-oxygen batteries with long cycling stability are realized. A bendable integrated solar cell-battery system charged by light with stable output and a series connected bendable battery pack with higher voltage is also demonstrated. It is anticipated that this bending-tolerant anode can be combined with further electrolytes and cathodes to develop new bendable energy systems. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Testing of the prototype FMIT target with liquid lithium

    International Nuclear Information System (INIS)

    Miller, W.C.; Annese, C.E.; Berg, J.D.; Miles, R.R.

    1984-01-01

    Testing of a molten lithium target was performed to evaluate hydraulic stability, determine surface evaporation rates, and map the detailed contour of the high speed, free surface wall jet. The results confirmed predictions by demonstrating acceptable performance of a prototype target

  13. Low rate of membrane lithium transport during treatment correlates with outcome of maintenance pharmacotherapy in bipolar disorder.

    Science.gov (United States)

    Mallinger, A G; Frank, E; Thase, M E; Dippold, C S; Kupfer, D J

    1997-05-01

    Lithium is transported across cell membranes by an exchange diffusion process (Na(+)-Li+ countertransport) that is inhibited during lithium treatment. We hypothesized that low rates of lithium efflux (a potential manifestation of strong transport inhibition) would be associated with better clinical outcome of maintenance pharmacotherapy. We measured the erythrocyte (RBC) apparent rate constant for lithium efflux (kexch) in 22 patients with bipolar disorder who had been euthymic on lithium for 1 month. Subsequently, clinical mood ratings and in vivo RBC: plasma lithium ratios (LiR) were determined monthly. Outcome was categorized according to whether subjects completed 1 year of successful maintenance treatment (n = 10), experienced a recurrent affective episode (n = 8), or dropped out (n = 4). The kexch at the outset of the study was significantly lower (potentially because of greater transport inhibition) in 1-year completers than in patients with recurrences or those who dropped out (median kexch = 0.09, 0.24, and 0.27 h-1, respectively; P lower were successfully maintained on lithium for 1 year, whereas only 23% of those with a kexch greater than or equal to 0.12 h-1 had a successful treatment outcome. LiR measured during the course of maintenance treatment was significantly higher (suggesting greater transport inhibition) in 1-year completers than in noncompleters (recurrences and dropouts). Measurement of kexch at an early point in treatment may provide a means for prospectively identifying those bipolar patients at greater risk for failure of maintenance lithium therapy.

  14. Stabilized power constant alimentation

    International Nuclear Information System (INIS)

    Roussel, L.

    1968-06-01

    The study and realization of a stabilized power alimentation variable from 5 to 100 watts are described. In order to realize a constant power drift of Lithium compensated diodes, we have searched a 1 per cent precision of regulation and a response time minus than 1 sec. Recent components like Hall multiplicator and integrated amplifiers give this possibility and it is easy to use permutable circuits. (author) [fr

  15. Lithium extractive metallurgy

    International Nuclear Information System (INIS)

    Josa, J.M.; Merino, J.L.

    1985-01-01

    The Nuclear Fusion National Program depends on lithium supplies. Extractive metallurgy development is subordinate to the localization and evaluation of ore resources. Nowadays lithium raw materials usable with present technology consist of pegmatite ore and brine. The Instituto Geologico y Minero Espanol (IGME) found lepidolite, ambligonite and spodrimene in pegmatite ores in different areas of Spain. However, an evaluation of resources has not been made. Different Spanish surface and underground brines are to be sampled and analyzed. If none of these contain significant levels of lithium, the Junta de Energia Nuclear (JEN) will try an agreement with IGME for ENUSA (Empresa Nacional del Uranio, S.A.) to explore pegmatite-ore bodies from different locations. Different work stages, laboratory tests, pilots plants tests and commercial plant, are foreseen, if the deposits are found. (author)

  16. Gallic acid-capped gold nanoparticles inhibit EGF-induced MMP-9 expression through suppression of p300 stabilization and NFκB/c-Jun activation in breast cancer MDA-MB-231 cells

    International Nuclear Information System (INIS)

    Chen, Ying-Jung; Lee, Yuan-Chin; Huang, Chia-Hui; Chang, Long-Sen

    2016-01-01

    Triple-negative breast cancers (TNBCs) are highly invasive and have a higher rate of distant metastasis. Matrix metalloproteinase-9 (MMP-9) plays a crucial role in EGF/EGFR-mediated malignant progression and metastasis of TNBCs. Various studies have revealed that treatment with gallic acid down-regulates MMP-9 expression in cancer cells, and that conjugation of phytochemical compounds with gold nanoparticles (AuNPs) increases the anti-tumor activity of the phytochemical compounds. Thus, the effect of gallic acid-capped AuNPs (GA-AuNPs) on MMP-9 expression in EGF-treated TNBC MDA-MB-231 cells was analyzed in the present study. The so-called green synthesis of AuNPs by means of gallic acid was performed at pH 10, and the resulting GA-AuNPs had spherical shape with an average diameter of approximately 50 nm. GA-AuNPs notably suppressed migration and invasion of EGF-treated cells, and inhibited EGF-induced MMP-9 up-regulation. GA-AuNPs abrogated EGF-induced Akt/p65 and ERK/c-Jun phosphorylation, leading to down-regulation of MMP-9 mRNA and protein expression in EGF-treated cells. Meanwhile, EGF-induced p300 stabilization was found to be involved in MMP-9 expression, whereas GA-AuNPs inhibited the EGF-promoted stability of the p300 protein. Although GA-AuNPs and gallic acid suppressed EGF-induced MMP-9 up-regulation via the same signaling pathway, the effective concentration of gallic acid was approximately 100-fold higher than that of GA-AuNPs for inhibition of MMP-9 expression in EGF-treated cells to a similar extent. Collectively, our data indicate that, in comparison with gallic acid, GA-AuNPs have a superior ability to inhibit EGF/EGFR-mediated MMP-9 expression in TNBC MDA-MB-231 cells. Our findings also point to a way to improve the anti-tumor activity of gallic acid. - Highlights: • Gallic acid-capped gold nanoparticles inhibit EGF-induced MMP-9 expression. • EGF-induced MMP-9 expression via p300 stabilization and NFκB/c-Jun activation. • Gallic acid

  17. Gallic acid-capped gold nanoparticles inhibit EGF-induced MMP-9 expression through suppression of p300 stabilization and NFκB/c-Jun activation in breast cancer MDA-MB-231 cells

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Ying-Jung; Lee, Yuan-Chin; Huang, Chia-Hui [Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan (China); Chang, Long-Sen, E-mail: lschang@mail.nsysu.edu.tw [Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan (China); Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan (China)

    2016-11-01

    Triple-negative breast cancers (TNBCs) are highly invasive and have a higher rate of distant metastasis. Matrix metalloproteinase-9 (MMP-9) plays a crucial role in EGF/EGFR-mediated malignant progression and metastasis of TNBCs. Various studies have revealed that treatment with gallic acid down-regulates MMP-9 expression in cancer cells, and that conjugation of phytochemical compounds with gold nanoparticles (AuNPs) increases the anti-tumor activity of the phytochemical compounds. Thus, the effect of gallic acid-capped AuNPs (GA-AuNPs) on MMP-9 expression in EGF-treated TNBC MDA-MB-231 cells was analyzed in the present study. The so-called green synthesis of AuNPs by means of gallic acid was performed at pH 10, and the resulting GA-AuNPs had spherical shape with an average diameter of approximately 50 nm. GA-AuNPs notably suppressed migration and invasion of EGF-treated cells, and inhibited EGF-induced MMP-9 up-regulation. GA-AuNPs abrogated EGF-induced Akt/p65 and ERK/c-Jun phosphorylation, leading to down-regulation of MMP-9 mRNA and protein expression in EGF-treated cells. Meanwhile, EGF-induced p300 stabilization was found to be involved in MMP-9 expression, whereas GA-AuNPs inhibited the EGF-promoted stability of the p300 protein. Although GA-AuNPs and gallic acid suppressed EGF-induced MMP-9 up-regulation via the same signaling pathway, the effective concentration of gallic acid was approximately 100-fold higher than that of GA-AuNPs for inhibition of MMP-9 expression in EGF-treated cells to a similar extent. Collectively, our data indicate that, in comparison with gallic acid, GA-AuNPs have a superior ability to inhibit EGF/EGFR-mediated MMP-9 expression in TNBC MDA-MB-231 cells. Our findings also point to a way to improve the anti-tumor activity of gallic acid. - Highlights: • Gallic acid-capped gold nanoparticles inhibit EGF-induced MMP-9 expression. • EGF-induced MMP-9 expression via p300 stabilization and NFκB/c-Jun activation. • Gallic acid

  18. High-capacity nanocarbon anodes for lithium-ion batteries

    International Nuclear Information System (INIS)

    Zhang, Haitao; Sun, Xianzhong; Zhang, Xiong; Lin, He; Wang, Kai; Ma, Yanwei

    2015-01-01

    Highlights: • The nanocarbon anodes in lithium-ion batteries deliver a high capacity of ∼1100 mA h g −1 . • The nanocarbon anodes exhibit excellent cyclic stability. • A novel structure of carbon materials, hollow carbon nanoboxes, has potential application in lithium-ion batteries. - Abstract: High energy and power density of secondary cells like lithium-ion batteries become much more important in today’s society. However, lithium-ion battery anodes based on graphite material have theoretical capacity of 372 mA h g −1 and low charging-discharging rate. Here, we report that nanocarbons including mesoporous graphene (MPG), carbon tubular nanostructures (CTN), and hollow carbon nanoboxes (HCB) are good candidate for lithium-ion battery anodes. The nanocarbon anodes have high capacity of ∼1100, ∼600, and ∼500 mA h g −1 at 0.1 A g −1 for MPG, CTN, and HCB, respectively. The capacity of 181, 141, and 139 mA h g −1 at 4 A g −1 for MPG, CTN, and HCB anodes is retained. Besides, nanocarbon anodes show high cycling stability during 1000 cycles, indicating formation of a passivating layer—solid electrolyte interphase, which support long-term cycling. Nanocarbons, constructed with graphene layers which fulfill lithiation/delithiation process, high ratio of graphite edge structure, and high surface area which facilitates capacitive behavior, deliver high capacity and improved rate-capability

  19. Large lithium loop experience

    International Nuclear Information System (INIS)

    Kolowith, R.; Owen, T.J.; Berg, J.D.; Atwood, J.M.

    1981-10-01

    An engineering design and operating experience of a large, isothermal, lithium-coolant test loop are presented. This liquid metal coolant loop is called the Experimental Lithium System (ELS) and has operated safely and reliably for over 6500 hours through September 1981. The loop is used for full-scale testing of components for the Fusion Materials Irradiation Test (FMIT) Facility. Main system parameters include coolant temperatures to 430 0 C and flow to 0.038 m 3 /s (600 gal/min). Performance of the main pump, vacuum system, and control system is discussed. Unique test capabilities of the ELS are also discussed

  20. Lithium Combustion: A Review

    Science.gov (United States)

    1990-12-01

    Rev. 2-89) Precribed by ANSI Std 239.18 298-102 UNCLASSIFIED SECURIT CLASSIRCTIO OF THIS PAGE (Whun Data Entered) Lade Form 296 ledk (Row. 2-49...did not burn spontaneously in water, and the hydrogen formed did not ignite in air. When a pea-sized piece of lithium was dropped into a container of...Lithium metal flowed through the cracks in the coating and started to burn brilliantly. The LiOH coating was initially protective; but, as it became

  1. Dissolution behavior of lithium compounds in ethanol

    Directory of Open Access Journals (Sweden)

    Tomohiro Furukawa

    2016-12-01

    Full Text Available In order to exchange the components which received irradiation damage during the operation at the International Fusion Materials Irradiation Facility, the adhered lithium, which is partially converted to lithium compounds such as lithium oxide and lithium hydroxide, should be removed from the components. In this study, the dissolution experiments of lithium compounds (lithium nitride, lithium hydroxide, and lithium oxide were performed in a candidate solvent, allowing the clarification of time and temperature dependence. Based on the results, a cleaning procedure for adhered lithium on the inner surface of the components was proposed.

  2. Structural Injury after Lithium Treatment in Human and Rat Kidney involves Glycogen Synthase Kinase-3β Positive Epithelium

    DEFF Research Database (Denmark)

    Kjærsgaard, Gitte; Madsen, Kirsten; Marcussen, Niels

    2011-01-01

    Lithium is reabsorbed by distal nephron segments in sodium depleted states. It was hypothesized that lithium causes permanent injury to the developing kidney particularly in the sodium-retaining phase around weaning through entry into epithelial cells of the distal nephron and inhibition of glyco....... Lithium causes proliferation, structural injury and increases inactive pGSK-3β abundance in these segments. The data are compatible with epithelial entry of lithium and a causal role for GSK-3β in postnatal developing cortical collecting duct epithelium....

  3. Preparation and performance characterization of AlF{sub 3} as interface stabilizer coated Li{sub 1.24}Ni{sub 0.12}Co{sub 0.12}Mn{sub 0.56}O{sub 2} cathode for lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Jingjing; Lu, Zhongpei; Wu, Manman; Liu, Cong; Ji, Hongmei; Yang, Gang, E-mail: gyang@cslg.edu.cn

    2017-06-01

    Highlights: • AlF{sub 3} coated LNCM synthesized by self-propagating combustion method. • F element of AlF{sub 3} has weak interaction with LNCM to form stable coating layer. • AlF{sub 3} layer promotes the stability and lithium diffusion ability of LNCM. • LNCM@2(*)%AlF{sub 3} operated at 20 mA g{sup −1} delivers 223 mAh g{sup −1} at the 60th cycle. • LNCM@2%AlF{sub 3} operated at 55 °C delivers 219 mAh g{sup −1} at the 50th cycle. - Abstract: Li{sub 1.24}Ni{sub 0.12}Co{sub 0.12}Mn{sub 0.56}O{sub 2} (LNCM) with high specific capacity is a potential cathode for commercial lithium-ion batteries (LIBs). To improve the high-rate capacity and cyclic stability, LNCM sample is successfully coated by minor AlF{sub 3}. The crystal structure and electrochemical properties of the bare and coated samples are investigated by X-ray diffractometry (XRD), scanning and transmission electron microscopy (SEM, TEM), cyclic voltammetry (CV), galvanostatic intermittent titration technique (GITT), and charge/discharge measurements. The coating layer AlF{sub 3} efficiently plays a positive role in enhancing rate performance and cyclic stability of LNCM. At 0.5 A g{sup −1}, the specific discharge capacity of LNCM@2%AlF{sub 3} is 149 mAh g{sup −1} much higher than 35 mAh g{sup −1} in bare LNCM. At 20 mA g{sup −1}, the specific discharge capacity of LNCM@2%AlF{sub 3} is 223 mAh g{sup −1} at the 60th cycle in comparison with 203 mAh g{sup −1} in bare LNCM. Moreover, a proper AlF{sub 3} coating layer efficiently ensures the stability of LNCM cathode operated at higher temperature. LNCM@2%AlF{sub 3} operated at 55 °C remains 219 mAh g{sup −1} at the 50th cycle, much higher than bare LNCM only remains 99 mAh g{sup −1} at the 40th cycle.

  4. Lithium alloy negative electrodes

    Science.gov (United States)

    Huggins, Robert A.

    The 1996 announcement by Fuji Photo Film of the development of lithium batteries containing convertible metal oxides has caused a great deal of renewed interest in lithium alloys as alternative materials for use in the negative electrode of rechargeable lithium cells. The earlier work on lithium alloys, both at elevated and ambient temperatures is briefly reviewed. Basic principles relating thermodynamics, phase diagrams and electrochemical properties under near-equilibrium conditions are discussed, with the Li-Sn system as an example. Second-phase nucleation, and its hindrance under dynamic conditions plays an important role in determining deviations from equilibrium behavior. Two general types of composite microstructure electrodes, those with a mixed-conducting matrix, and those with a solid electrolyte matrix, are discussed. The Li-Sn-Si system at elevated temperatures, and the Li-Sn-Cd at ambient temperatures are shown to be examples of mixed-conducting matrix microstructures. The convertible oxides are an example of the solid electrolyte matrix type. Although the reversible capacity can be very large in this case, the first cycle irreversible capacity required to convert the oxides to alloys may be a significant handicap.

  5. Lithium thionyl chloride battery

    Energy Technology Data Exchange (ETDEWEB)

    Saathoff, D.J.; Venkatasetty, H.V.

    1982-10-19

    The discharge rate and internal conductivity of electrochemical cell including a lithium anode, and a cathode and an electrolyte including LiAlCl4 and SOC2 is improved by the addition of an amount of a mixture containing AlCl3 and butyl pyridinium chloride.

  6. Synthesis of lithium ceramics

    International Nuclear Information System (INIS)

    Cruz G, D.; Bulbulian, S.

    2001-01-01

    In this work, lithium silicates were synthesised by the combustion technique, the mixtures were prepared with different molar ratios and using urea as fuel. Its characterization was realized by means of X-ray diffraction (XRD) and the percentages of its sizes were determined measuring the area under curve of the peaks in the diffractogram. (Author)

  7. Long-term use of lithium and risk of colorectal adenocarcinoma

    DEFF Research Database (Denmark)

    Pottegård, Anton; Ennis, Zandra Nymand; Hallas, Jesper

    2016-01-01

    BACKGROUND: Lithium accumulates in the colon and inhibits the enzyme GSK-3β that possesses anti-carcinogenic effects. We therefore examined the association between lithium use and colorectal cancer risk in a nationwide study. METHODS: We used the Danish Cancer Registry to identify all patients...... diagnosed with incident colorectal adenocarcinoma during 2000-2012 (n=36 248). Using a matched case-control approach, we estimated the association between long-term use (⩾5 years) of lithium and risk of colorectal adenocarcinoma using conditional logistic regression. RESULTS: Long-term use of lithium......, 0.66-1.55; distal colon: 1.52 (95% CI, 1.05-2.20); and rectum: 0.80 (95% CI, 0.50-1.30). CONCLUSIONS: Lithium use was not associated with an overall increased risk of colorectal adenocarcinoma. The variation by subsite warrants further investigation....

  8. Solubility of lithium deuteride in liquid lithium

    International Nuclear Information System (INIS)

    Veleckis, E.; Yonco, R.M.; Maroni, V.A.

    1977-01-01

    The solubility of LiD in liquid lithium between the eutectic and monotectic temperatures was measured using a direct sampling method. Solubilities were found to range from 0.0154 mol.% LiD at 199 0 C to 3.32 mol.% LiD at 498 0 C. The data were used in the derivation of an expression for the activity coefficient of LiD as a function of temperature and composition and an equation relating deuteride solubility and temperature, thus defining the liquidus curve. Similar equations were also derived for the Li-LiH system using the existing solubility data. Extrapolation of the liquidus curves yielded the eutectic concentrations (0.040 mol.% LiH and 0.035 mol.% LiD) and the freezing point depressions (0.23 0 C for Li-LiH and 0.20 0 C for Li-LiD) at the eutectic point. The results are compared with the literature data for hydrogen and deuterium. The implications of the relatively high solubility of hydrogen isotopes in lithium just above the melting point are discussed with respect to the cold trapping of tritium in fusion reactor blankets. (Auth.)

  9. Thermal property of holmium doped lithium lead borate glasses

    Science.gov (United States)

    Usharani, V. L.; Eraiah, B.

    2018-04-01

    The new glass system of holmium doped lithium lead borate glasses were prepared by conventional melt quenching technique. The thermal stability of the different compositions of Ho3+ ions doped lithium lead borate glasses were studied by using TG-DTA. The Tg values are ranging from 439 to 444 °C with respect to the holmium concentration. Physical parameters like polaron radius(rp), inter-nuclear distance (ri), field strength (F) and polarizability (αm) of oxide ions were calculated using appropriate formulae.

  10. A design strategy of large grain lithium-rich layered oxides for lithium-ion batteries cathode

    International Nuclear Information System (INIS)

    Jiang, Xiong; Wang, Zhenhua; Rooney, David; Zhang, Xiaoxue; Feng, Jie; Qiao, Jinshuo; Sun, Wang; Sun, Kening

    2015-01-01

    Highlights: • Ultrasound-assisted mixing lithium was used to synthesize Lithium-rich layered oxides. • Lithium-rich layered oxides composed of large grain had high capacity and high cycling stability. • This unique large grain overcomes stress-induced structural collapse caused by Li-ion insertion/extraction and reduces dissolution of Mn ions. • A new strategy of large grain could be employed to synthesize the other complex architectures for various applications. - Abstract: Li-rich materials are considered the most promising for Li-ion battery cathodes, as high capacity can be achieved. However, poor cycling stability is a critical drawback that leads to poor capacity retention. Here a strategy is used to synthesize a large-grain lithium-rich layered oxides to overcome this difficulty without sacrificing rate capability. This material is designed with micron scale grain with a width of about 300 nm and length of 1–3 μm. This unique structure has a better ability to overcome stress-induced structural collapse caused by Li-ion insertion/extraction and reduce the dissolution of Mn ions, which enable a reversible and stable capacity. As a result, this cathode material delivered a highest discharge capacity of around 308 mAh g −1 at a current density of 30 mA g −1 with retention of 88.3% (according to the highest discharge capacity) after 100 cycles, 190 mAh g −1 at a current density of 300 mA g −1 and almost no capacity fading after 100 cycles. Therefore, Lithium-rich material of large-grain structure is a promising cathode candidate in Lithium-ion batteries with high capacity and high cycle stability for application. This strategy of large grain may furthermore open the door to synthesize the other complex architectures for various applications

  11. Approach to lithium burn-up effect in lithium ceramics

    International Nuclear Information System (INIS)

    Rasneur, B.

    1994-01-01

    The lithium burn-up in Li 2 ZrO 3 is simulated by removing lithium under Li 2 O form and trapping it in high specific surface area powder while heating during 15 days or 1 month at moderate temperature so that lithium mobility be large enough without causing any sintering neither of the specimens nor of the powder. In a first treatment at 775 deg C during 1 month. 30% of the lithium content could be removed inducing a lithium concentration gradient in the specimen and the formation of a lithium-free monoclinic ZrO 2 skin. Improvements led to similar results at 650 deg C and 600 deg C, the latter temperatures are closer to the operating temperature of the ceramic breeder blanket of a fusion reactor. (author) 4 refs.; 4 figs.; 1 tab

  12. Comparative study of polymer matrices for gelled electrolytes of lithium batteries; Etude comparative de matrices polymeres pour electrolytes gelifies de batteries au lithium

    Energy Technology Data Exchange (ETDEWEB)

    Du Pasquier, A.; Sarrazin, C.; Fauvarque, J.F. [CNAM, 75 - Paris (France); Andrieu, X. [Alcatel Alsthom Recherche, 91 - Marcoussis (France)

    1996-12-31

    A solid electrolyte for lithium batteries requires several properties: a good ionic conductivity of about 10{sup -3} S/cm at 298 deg. K, a high cationic transport number (greater than 0.5), a redox stability window higher than 4.5 V, a good stability of the interface with the lithium electrode, and a sufficient mechanical stability. The family of gelled or hybrid electrolytes seems to meet all these requirements. Thus, a systematic study of the gelling of an ethylene carbonate and lithium bistrifluorosulfonimide (LiTFSI) based electrolyte has been carried out. The polymers used for gel or pseudo-gel synthesis are POE, PMMA and PAN which represent 3 different cases of interaction with the electrolyte. All the properties mentioned above have been studied according to the nature of the polymer and to the concentration of lithium salt, showing the advantages and drawbacks of each polymer. The possibility of using some of these gels in lithium-ion batteries has been tested by lithium intercalation tests in UF2 graphite at the C/10 regime and by the cycling of LiCoO{sub 2}/UF{sub 2} batteries at the C/5 regime. Interesting performances have been obtained on Li/PPy batteries which can operate at the 7.5 C regime. (J.S.)

  13. Comparative study of polymer matrices for gelled electrolytes of lithium batteries; Etude comparative de matrices polymeres pour electrolytes gelifies de batteries au lithium

    Energy Technology Data Exchange (ETDEWEB)

    Du Pasquier, A; Sarrazin, C; Fauvarque, J F [CNAM, 75 - Paris (France); Andrieu, X [Alcatel Alsthom Recherche, 91 - Marcoussis (France)

    1997-12-31

    A solid electrolyte for lithium batteries requires several properties: a good ionic conductivity of about 10{sup -3} S/cm at 298 deg. K, a high cationic transport number (greater than 0.5), a redox stability window higher than 4.5 V, a good stability of the interface with the lithium electrode, and a sufficient mechanical stability. The family of gelled or hybrid electrolytes seems to meet all these requirements. Thus, a systematic study of the gelling of an ethylene carbonate and lithium bistrifluorosulfonimide (LiTFSI) based electrolyte has been carried out. The polymers used for gel or pseudo-gel synthesis are POE, PMMA and PAN which represent 3 different cases of interaction with the electrolyte. All the properties mentioned above have been studied according to the nature of the polymer and to the concentration of lithium salt, showing the advantages and drawbacks of each polymer. The possibility of using some of these gels in lithium-ion batteries has been tested by lithium intercalation tests in UF2 graphite at the C/10 regime and by the cycling of LiCoO{sub 2}/UF{sub 2} batteries at the C/5 regime. Interesting performances have been obtained on Li/PPy batteries which can operate at the 7.5 C regime. (J.S.)

  14. Nanocarbon networks for advanced rechargeable lithium batteries.

    Science.gov (United States)

    Xin, Sen; Guo, Yu-Guo; Wan, Li-Jun

    2012-10-16

    Carbon is one of the essential elements in energy storage. In rechargeable lithium batteries, researchers have considered many types of nanostructured carbons, such as carbon nanoparticles, carbon nanotubes, graphene, and nanoporous carbon, as anode materials and, especially, as key components for building advanced composite electrode materials. Nanocarbons can form efficient three-dimensional conducting networks that improve the performance of electrode materials suffering from the limited kinetics of lithium storage. Although the porous structure guarantees a fast migration of Li ions, the nanocarbon network can serve as an effective matrix for dispersing the active materials to prevent them from agglomerating. The nanocarbon network also affords an efficient electron pathway to provide better electrical contacts. Because of their structural stability and flexibility, nanocarbon networks can alleviate the stress and volume changes that occur in active materials during the Li insertion/extraction process. Through the elegant design of hierarchical electrode materials with nanocarbon networks, researchers can improve both the kinetic performance and the structural stability of the electrode material, which leads to optimal battery capacity, cycling stability, and rate capability. This Account summarizes recent progress in the structural design, chemical synthesis, and characterization of the electrochemical properties of nanocarbon networks for Li-ion batteries. In such systems, storage occurs primarily in the non-carbon components, while carbon acts as the conductor and as the structural buffer. We emphasize representative nanocarbon networks including those that use carbon nanotubes and graphene. We discuss the role of carbon in enhancing the performance of various electrode materials in areas such as Li storage, Li ion and electron transport, and structural stability during cycling. We especially highlight the use of graphene to construct the carbon conducting

  15. Anomalous Lithium Adsorption Propensity of Monolayer ...

    Indian Academy of Sciences (India)

    longer life cycle, thus an ideal candidate to replace the conventional ... tion in the development of lithium ion batteries as they ... interaction of graphene with lithium based on density ... aromatic hydrocarbons.30 Lithium doping increases.

  16. Method of producing spherical lithium aluminate particles

    International Nuclear Information System (INIS)

    Yang, L.; Medico, R.R.; Baugh, W.A.

    1983-01-01

    Spherical particles of lithium aluminate are formed by initially producing aluminium hydroxide spheroids, and immersing the spheroids in a lithium ion-containing solution to infuse lithium ions into the spheroids. The lithium-infused spheroids are rinsed to remove excess lithium ion from the surface, and the rinsed spheroids are soaked for a period of time in a liquid medium, dried and sintered to form lithium aluminate spherical particles. (author)

  17. Process for recovery of lithium from spent lithium batteries

    Energy Technology Data Exchange (ETDEWEB)

    Kunugita, Eiichi; Jonghwa, Kim; Komasawa, Isao [Osaka Univ., Faculty of Engineering Science, Osaka, (Japan)

    1989-07-10

    An experimental study of the recovery and purification of lithium from spent lithium batteries was carried out, taking advantage of the characterisitics of lithium ion and its carbonate. More than 75% of the lithium contained in the whole battery or its anode component can be leached with sulfuric acid where the pH of the final pregnant liquor is 7.7 or higher, the other metals being left in the residue is their hydroxides. The extracted liquor is evaporated/concentrated, added with saturated sodium carbonate solution at around 100{sup 0}C to precipitate lithium as a carbonate. The coprecipitated sodium carbonate is washed/removed with a hotwater to give 99% pure lithium carbonate. Separation of lithium and sodium in the barren liquor is conducted with LIX 51, a chelating/extracting agent, and TOPO, a neutral organic phosphate, which have a synergic effect, to selectively extract lithium; the organic phase is reverse-extracted with a dilute hydrochloric acid to obtain lithium of 99% purity. 9 refs., 4 figs., 5 tabs.

  18. Experimental lithium system. Final report

    International Nuclear Information System (INIS)

    Kolowith, R.; Berg, J.D.; Miller, W.C.

    1985-04-01

    A full-scale mockup of the Fusion Materials Irradiation Test (FMIT) Facility lithium system was built at the Hanford Engineering Development Laboratory (HEDL). This isothermal mockup, called the Experimental Lithium System (ELS), was prototypic of FMIT, excluding the accelerator and dump heat exchanger. This 3.8 m 3 lithium test loop achieved over 16,000 hours of safe and reliable operation. An extensive test program demonstrated satisfactory performance of the system components, including the HEDL-supplied electromagnetic lithium pump, the lithium jet target, the purification and characterization hardware, as well as the auxiliary argon and vacuum systems. Experience with the test loop provided important information on system operation, performance, and reliability. This report presents a complete overview of the entire Experimental Lithium System test program and also includes a summary of such areas as instrumentation, coolant chemistry, vapor/aerosol transport, and corrosion

  19. Lithium clearance in chronic nephropathy

    DEFF Research Database (Denmark)

    Kamper, A L; Holstein-Rathlou, N H; Leyssac, P P

    1989-01-01

    1. Lithium clearance measurements were made in 72 patients with chronic nephropathy of different aetiology and moderate to severely reduced renal function. 2. Lithium clearance was strictly correlated with glomerular filtration rate, and there was no suggestion of distal tubular reabsorption...... of lithium or influence of osmotic diuresis. 3. Fractional reabsorption of lithium was reduced in most patients with glomerular filtration rates below 25 ml/min. 4. Calculated fractional distal reabsorption of sodium was reduced in most patients with glomerular filtration rates below 50 ml/min. 5. Lithium...... that lithium clearance may be a measure of the delivery of sodium and water from the renal proximal tubule. With this assumption it was found that adjustment of the sodium excretion in chronic nephropathy initially takes place in the distal parts of the nephron (loop of Henle, distal tubule and collecting duct...

  20. Lithium-methomyl induced seizures in rats: A new model of status epilepticus?

    Energy Technology Data Exchange (ETDEWEB)

    Kaminski, Rafal M [Department of Toxicology, Institute of Agricultural Medicine, Jaczewskiego 2, 20-950 Lublin (Poland); Blaszczak, Piotr [Department of Toxicology, Institute of Agricultural Medicine, Jaczewskiego 2, 20-950 Lublin (Poland); Dekundy, Andrzej [Department of Toxicology, Institute of Agricultural Medicine, Jaczewskiego 2, 20-950 Lublin (Poland); Parada-Turska, Jolanta [Department of Rheumatology and Connective Tissue Diseases, Medical University, Jaczewskiego 8, 20-090 Lublin (Poland); Calderazzo, Lineu [Department of Neurology and Neurosurgery, Laboratory of Experimental Neurology, Escola Paulista de Medicina, R. Botucatu 862, BR-04023 Sao Paulo, S.P. (Brazil); Cavalheiro, Esper A [Department of Neurology and Neurosurgery, Laboratory of Experimental Neurology, Escola Paulista de Medicina, R. Botucatu 862, BR-04023 Sao Paulo, S.P. (Brazil); Turski, Waldemar A [Department of Toxicology, Institute of Agricultural Medicine, Jaczewskiego 2, 20-950 Lublin (Poland); Department of Experimental and Clinical Pharmacology, Medical University, Jaczewskiego 8, 20-090 Lublin (Poland)

    2007-03-15

    Behavioral, electroencephalographic (EEG) and neuropathological effects of methomyl, a carbamate insecticide reversibly inhibiting acetylcholinesterase activity, were studied in naive or lithium chloride (24 h, 3 mEq/kg, s.c.) pretreated male Wistar rats. In naive animals, methomyl with equal potency produced motor limbic seizures and fatal status epilepticus. Thus, the CD50 values (50% convulsant dose) for these seizure endpoints were almost equal to the LD50 (50% lethal dose) of methomyl (13 mg/kg). Lithium pretreated rats were much more susceptible to convulsant, but not lethal effect of methomyl. CD50 values of methomyl for motor limbic seizures and status epilepticus were reduced by lithium pretreatment to 3.7 mg/kg (a 3.5-fold decrease) and 5.2 mg/kg (a 2.5-fold decrease), respectively. In contrast, lithium pretreatment resulted in only 1.3-fold decrease of LD50 value of methomyl (9.9 mg/kg). Moreover, lithium-methomyl treated animals developed a long-lasting status epilepticus, which was not associated with imminent lethality observed in methomyl-only treated rats. Scopolamine (10 mg/kg) or diazepam (10 mg/kg) protected all lithium-methomyl treated rats from convulsions and lethality. Cortical and hippocampal EEG recordings revealed typical epileptic discharges that were consistent with behavioral seizures observed in lithium-methomyl treated rats. In addition, convulsions induced by lithium-methomyl treatment were associated with widespread neurodegeneration of limbic structures. Our observations indicate that lithium pretreatment results in separation between convulsant and lethal effects of methomyl in rats. As such, seizures induced by lithium-methomyl administration may be an alternative to lithium-pilocarpine model of status epilepticus, which is associated with high lethality.

  1. Lithium-methomyl induced seizures in rats: A new model of status epilepticus?

    International Nuclear Information System (INIS)

    Kaminski, Rafal M.; Blaszczak, Piotr; Dekundy, Andrzej; Parada-Turska, Jolanta; Calderazzo, Lineu; Cavalheiro, Esper A.; Turski, Waldemar A.

    2007-01-01

    Behavioral, electroencephalographic (EEG) and neuropathological effects of methomyl, a carbamate insecticide reversibly inhibiting acetylcholinesterase activity, were studied in naive or lithium chloride (24 h, 3 mEq/kg, s.c.) pretreated male Wistar rats. In naive animals, methomyl with equal potency produced motor limbic seizures and fatal status epilepticus. Thus, the CD50 values (50% convulsant dose) for these seizure endpoints were almost equal to the LD50 (50% lethal dose) of methomyl (13 mg/kg). Lithium pretreated rats were much more susceptible to convulsant, but not lethal effect of methomyl. CD50 values of methomyl for motor limbic seizures and status epilepticus were reduced by lithium pretreatment to 3.7 mg/kg (a 3.5-fold decrease) and 5.2 mg/kg (a 2.5-fold decrease), respectively. In contrast, lithium pretreatment resulted in only 1.3-fold decrease of LD50 value of methomyl (9.9 mg/kg). Moreover, lithium-methomyl treated animals developed a long-lasting status epilepticus, which was not associated with imminent lethality observed in methomyl-only treated rats. Scopolamine (10 mg/kg) or diazepam (10 mg/kg) protected all lithium-methomyl treated rats from convulsions and lethality. Cortical and hippocampal EEG recordings revealed typical epileptic discharges that were consistent with behavioral seizures observed in lithium-methomyl treated rats. In addition, convulsions induced by lithium-methomyl treatment were associated with widespread neurodegeneration of limbic structures. Our observations indicate that lithium pretreatment results in separation between convulsant and lethal effects of methomyl in rats. As such, seizures induced by lithium-methomyl administration may be an alternative to lithium-pilocarpine model of status epilepticus, which is associated with high lethality

  2. Electrode Materials for Lithium/Sodium-Ion Batteries

    DEFF Research Database (Denmark)

    Shen, Yanbin

    2014-01-01

    The synthesis of electrode materials for lithium/sodium ion batteries and their structural stability during lithium/sodium insertion/extraction are the two essential issues that have limited battery application in the fields requiring long cycle life and high safety. During her PhD studies, Yanbin...... Shen systematically investigated the controlled synthesis of electrode materials for lithium/sodium ion batteries. She also investigated their formation mechanisms and structural evolution during the operation of batteries using in situ/operando X-ray diffraction techniques. The research findings...... provide insights into formation mechanisms of Li4Ti5O12 anode material from both hydrothermal and solid-state reaction. The results also contribute to a thorough understanding of the intercalation and decay mechanisms of O3/P2 layered sodium cathode materials in sodium ion batteries....

  3. Suppressing Lithium Dendrite Growth with a Single-Component Coating.

    Science.gov (United States)

    Liu, Haodong; Zhou, Hongyao; Lee, Byoung-Sun; Xing, Xing; Gonzalez, Matthew; Liu, Ping

    2017-09-13

    A single-component coating was formed on lithium (Li) metal in a lithium iodide/organic carbonate [dimethyl carbonate (DMC) and ethylene carbonate (EC)] electrolyte. LiI chemically reacts with DMC to form lithium methyl carbonate (LMC), which precipitates and forms the chemically homogeneous coating layer on the Li surface. This coating layer is shown to enable dendrite-free Li cycling in a symmetric Li∥Li cell even at a current density of 3 mA cm -2 . Adding EC to DMC modulates the formation of LMC, resulting in a stable coating layer that is essential for long-term Li cycling stability. Furthermore, the coating can enable dendrite-free cycling after being transferred to common LiPF 6 /carbonate electrolytes, which are compatible with metal oxide cathodes.

  4. Nonflammable perfluoropolyether-based electrolytes for lithium batteries

    Science.gov (United States)

    Wong, Dominica H. C.; Thelen, Jacob L.; Fu, Yanbao; Devaux, Didier; Pandya, Ashish A.; Battaglia, Vincent S.; Balsara, Nitash P.; DeSimone, Joseph M.

    2014-01-01

    The flammability of conventional alkyl carbonate electrolytes hinders the integration of large-scale lithium-ion batteries in transportation and grid storage applications. In this study, we have prepared a unique nonflammable electrolyte composed of low molecular weight perfluoropolyethers and bis(trifluoromethane)sulfonimide lithium salt. These electrolytes exhibit thermal stability beyond 200 °C and a remarkably high transference number of at least 0.91 (more than double that of conventional electrolytes). Li/LiNi1/3Co1/3Mn1/3O2 cells made with this electrolyte show good performance in galvanostatic cycling, confirming their potential as rechargeable lithium batteries with enhanced safety and longevity. PMID:24516123

  5. Polyether matrices for lithium generators; Matrices polyethers pour generateurs au lithium

    Energy Technology Data Exchange (ETDEWEB)

    Alloin, F.; Sanchez, J.Y. [Laboratoire d`Electrochimie et de Physicochimie des Materiaux et des Interfaces, 38 - Saint-Martin-d`Heres (France)

    1996-12-31

    The use of solvating polymers of polyether type is an interesting solution for the manufacturing of high capacity lithium batteries with lithium metal anodes and which can operate at T > 50 deg. C. These operating conditions are perfectly compatible with electric-powered vehicle and stationary battery applications. In order to improve the ionic conductivity of polymer electrolytes, new aprotic and amorphous polyether lattices have been synthesized having a good conductivity but also good thermal, mechanical and electrochemical stabilities. Two type of 3-D polyether lattices obtained by reticulation of linear pre-polymers have been selected as host polymers: unsaturated poly-condensate and unsaturated co-polyethers. (J.S.) 18 refs.

  6. Polyether matrices for lithium generators; Matrices polyethers pour generateurs au lithium

    Energy Technology Data Exchange (ETDEWEB)

    Alloin, F; Sanchez, J Y [Laboratoire d` Electrochimie et de Physicochimie des Materiaux et des Interfaces, 38 - Saint-Martin-d` Heres (France)

    1997-12-31

    The use of solvating polymers of polyether type is an interesting solution for the manufacturing of high capacity lithium batteries with lithium metal anodes and which can operate at T > 50 deg. C. These operating conditions are perfectly compatible with electric-powered vehicle and stationary battery applications. In order to improve the ionic conductivity of polymer electrolytes, new aprotic and amorphous polyether lattices have been synthesized having a good conductivity but also good thermal, mechanical and electrochemical stabilities. Two type of 3-D polyether lattices obtained by reticulation of linear pre-polymers have been selected as host polymers: unsaturated poly-condensate and unsaturated co-polyethers. (J.S.) 18 refs.

  7. Piperidinium tethered nanoparticle-hybrid electrolyte for lithium metal batteries

    KAUST Repository

    Korf, Kevin S.

    2014-06-23

    We report on the synthesis of novel piperidinium-based ionic liquid tethered nanoparticle hybrid electrolytes and investigate their physical and electrochemical properties. Hybrid electrolytes based on the ionic liquid 1-methyl-1-propylpiperidinium bis(trifluoromethanesulfone) imide covalently tethered to silica nanoparticles (SiO2-PP-TFSI) were blended with propylene carbonate-1 M lithium bis(trifluoromethanesulfone) imide (LiTFSI). We employed NMR analysis to confirm the successful creation of the hybrid material. Dielectric and rheological measurements show that these electrolytes exhibit exceptional room-temperature DC ionic conductivity (10-2 to 10 -3 S cm-1) as well as high shear mechanical moduli (105 to 106 Pa). Lithium transference numbers were found to increase with particle loading and to reach values as high as 0.22 at high particle loadings where the particle jam to form a soft glassy elastic medium. Analysis of lithium electrodeposits obtained in the hybrid electrolytes using SEM and EDX spectra show that the SiO2-PP-TFSI nanoparticles are able to smooth lithium deposition and inhibit lithium dendrite proliferation in Li metal batteries. LTOSiO2-PP-TFSI/PC in 1 M LiTFSILi half-cells based on the SiO2-PP-TFSI hybrid electrolytes exhibit attractive voltage profiles and trouble-free extended cycling behavior over more than 1000 cycles of charge and discharge. This journal is © the Partner Organisations 2014.

  8. Membranes in Lithium Ion Batteries

    Science.gov (United States)

    Yang, Min; Hou, Junbo

    2012-01-01

    Lithium ion batteries have proven themselves the main choice of power sources for portable electronics. Besides consumer electronics, lithium ion batteries are also growing in popularity for military, electric vehicle, and aerospace applications. The present review attempts to summarize the knowledge about some selected membranes in lithium ion batteries. Based on the type of electrolyte used, literature concerning ceramic-glass and polymer solid ion conductors, microporous filter type separators and polymer gel based membranes is reviewed. PMID:24958286

  9. Membranes in Lithium Ion Batteries

    Directory of Open Access Journals (Sweden)

    Junbo Hou

    2012-07-01

    Full Text Available Lithium ion batteries have proven themselves the main choice of power sources for portable electronics. Besides consumer electronics, lithium ion batteries are also growing in popularity for military, electric vehicle, and aerospace applications. The present review attempts to summarize the knowledge about some selected membranes in lithium ion batteries. Based on the type of electrolyte used, literature concerning ceramic-glass and polymer solid ion conductors, microporous filter type separators and polymer gel based membranes is reviewed.

  10. Ebselen has lithium-like effects on central 5-HT2A receptor function.

    Science.gov (United States)

    Antoniadou, I; Kouskou, M; Arsiwala, T; Singh, N; Vasudevan, S R; Fowler, T; Cadirci, E; Churchill, G C; Sharp, T

    2018-02-27

    Lithium's antidepressant action may be mediated by inhibition of inositol monophosphatase (IMPase), a key enzyme in G q protein coupled receptor signalling. Recently, the antioxidant agent ebselen was identified as an IMPase inhibitor. Here we investigated both ebselen and lithium in models of the 5-HT 2A receptor, a G q protein coupled receptor implicated in lithium's actions. 5-HT 2A receptor function was modelled in mice by measuring the behavioural (head-twitches) and cortical immediate early gene (IEG; Arc, c-fos and Erg2 mRNA) responses to 5-HT 2A receptor agonist administration. Ebselen and lithium were administered either acutely or chronically prior to assessment of 5-HT 2A receptor function. Given the SSRI augmenting action of lithium and 5-HT 2A antagonists, ebselen was also tested for this action by co-administration with the SSRI citalopram in microdialysis (extracellular 5-HT) experiments. Acute and repeated administration of ebselen inhibited behavioural and IEG responses to the 5-HT 2A receptor agonist DOI. Repeated lithium also inhibited DOI-evoked behavioural and IEG responses. In comparison, a selective IMPase inhibitor (L-690,330) attenuated the behavioural response to DOI whereas glycogen synthase kinase inhibitor (AR-A014418) did not. Finally, ebselen increased regional brain 5-HT synthesis and enhanced the increase in extracellular 5-HT induced by citalopram. The current data demonstrate lithium-mimetic effects of ebselen in different experimental models of 5-HT 2A receptor function, likely mediated by IMPase inhibition. This evidence of lithium-like neuropharmacological effects of ebselen adds further support for the clinical testing of ebselen in mood disorder, including as an antidepressant augmenting agent. This article is protected by copyright. All rights reserved.

  11. Organic hydrogen peroxide-driven low charge potentials for high-performance lithium-oxygen batteries with carbon cathodes

    Science.gov (United States)

    Wu, Shichao; Qiao, Yu; Yang, Sixie; Ishida, Masayoshi; He, Ping; Zhou, Haoshen

    2017-06-01

    Reducing the high charge potential is a crucial concern in advancing the performance of lithium-oxygen batteries. Here, for water-containing lithium-oxygen batteries with lithium hydroxide products, we find that a hydrogen peroxide aqueous solution added in the electrolyte can effectively promote the decomposition of lithium hydroxide compounds at the ultralow charge potential on a catalyst-free Ketjen Black-based cathode. Furthermore, for non-aqueous lithium-oxygen batteries with lithium peroxide products, we introduce a urea hydrogen peroxide, chelating hydrogen peroxide without any water in the organic, as an electrolyte additive in lithium-oxygen batteries with a lithium metal anode and succeed in the realization of the low charge potential of ~3.26 V, which is among the best levels reported. In addition, the undesired water generally accompanying hydrogen peroxide solutions is circumvented to protect the lithium metal anode and ensure good battery cycling stability. Our results should provide illuminating insights into approaches to enhancing lithium-oxygen batteries.

  12. Recovery of lithium from seawater

    International Nuclear Information System (INIS)

    Ooi, Kenta; Miyai, Yoshitaka; Katoh, Shunsaku; Abe, Mitsuo.

    1989-01-01

    Lithium has been used for air conditioners, aluminum refining, ceramics, organic metal compounds, batteries and many other uses. Besides, attention is paid as the aluminum-lithium alloys as aircraft materials, and the raw materials for large capacity batteries and nuclear fusion reactors for the future. The amount of lithium resources has been estimated as 14 million tons, and is relatively abundant, but when the future increase of demand is considered, it is not necessarily sufficient. Japan lacks lithium resources, and the stable ensuring of the resources has become an important problem. Seawater contains lithium by 170 μg/l, and its total amount reaches 230 billion tons. The process of recovering lithium from seawater, geothermal water and natural gas brine has been actively researched since 10 years ago centering around Japan. At present, the search for the adsorbent that effectively collects lithium is the main subject. Also the recovery by coprecipitation has been investigated basically. The inorganic adsorbent for lithium is classified into aluminum type, compound antimonic acid type, layered compound type, ion sieve oxide type and others. Their lithium adsorption performance and adsorption mechanism are different remarkably, therefore, these of each group are described. (K.I.) 70 refs

  13. Hydrophobic ionic liquids based on the 1-butyl-3-methylimidazolium cation for lithium/seawater batteries

    Science.gov (United States)

    Zhang, Yancheng; Urquidi-Macdonald, Mirna

    Two hydrophobic ionic liquids (room temperature molten salts) based on 1-butyl-3-methylimidazolium cation (BMI +), BMI +PF 6- and BMI +Tf 2N -, were used in developing a highly efficient lithium anode system for lithium/seawater batteries. The lithium anode system was composed of lithium metal/ionic liquid/Celgard membrane. Both BMI +PF 6-and BMI +Tf 2N - maintained high apparent anodic efficiency (up to 100%) under potentiostatic polarization (at +0.5 V versus open-circuit potential (OCP)) in a 3% NaCl solution. Eventually, traces of water contaminated the ionic liquid and a bilayer film (LiH and LiOH) on the lithium surface was formed, decreasing the rate of lithium anodic reaction and hence the discharge current density. BMI +Tf 2N - prevented traces of water from reaching the lithium metal surface longer than BMI +PF 6- (60 h versus 7 h). However, BMI +PF 6- was better than BMI +Tf 2N - in keeping a constant current density (˜0.2 mA cm -2) before the traces of water contaminated the lithium surface due to the non-reactivity of BMI +PF 6- with the lithium metal that kept the bare lithium surface. During the discharge process, BMI +PF 6- and BMI +Tf 2N - acted as ion transport media of Li +, Cl -, OH - and H 2O, but did not react with them because of the excellent chemical stability, high conductivity, and high hydrophobicity of these two ionic liquids. Both BMI +PF 6- and BMI +Tf 2N - gels were tentative approaches used to delay the traces of water coming in contact with the lithium surface.

  14. Lithium in drinking water and incidence of suicide

    DEFF Research Database (Denmark)

    Knudsen, Nikoline N.; Schullehner, Jörg; Hansen, Birgitte

    2017-01-01

    Suicide is a major public health concern. High-dose lithium is used to stabilize mood and prevent suicide in patients with affective disorders. Lithium occurs naturally in drinking water worldwide in much lower doses, but with large geographical variation. Several studies conducted at an aggregate...... level have suggested an association between lithium in drinking water and a reduced risk of suicide; however, a causal relation is uncertain. Individual-level register-based data on the entire Danish adult population (3.7 million individuals) from 1991 to 2012 were linked with a moving five-year time......-weighted average (TWA) lithium exposure level from drinking water hypothesizing an inverse relationship. The mean lithium level was 11.6 µg/L ranging from 0.6 to 30.7 µg/L. The suicide rate decreased from 29.7 per 100,000 person-years at risk in 1991 to 18.4 per 100,000 person-years in 2012. We found...

  15. Press forging and optical properties of lithium fluoride

    Science.gov (United States)

    Ready, J. F.; Vora, H.

    1980-07-01

    Lithium fluoride is an important candidate material for windows on high power, short-pulse ultraviolet and visible lasers. Lithium fluoride crystals were press forged in one step over the temperature range 300 to 600 C to obtain fine grained polycrystalline material with improved mechanical properties. The deformation that can be given to a lithium fluoride crystal during forging is limited by the formation of internal cloudiness (veiling) with the deformation limit increasing with increasing forging temperature from about 40 percent at 400 C to 65 percent at 600 C. To suppress veiling, lithium fluoride crystals were forged in two steps over the temperature range 300 to 600 C, to total deformations of 69 to 76 percent, with intermediate annealing at 700 C. This technique yields a material which has lower scattering with more homogeneous microstructure than that obtained in one step forging. The results of characterization of various optical and mechanical properties of single crystal and forged lithium fluoride, including scattering, optical homogeneity, residual absorption, damage thresholds, environmental stability, and thresholds for microyield are described.

  16. Press forging and optical properties of lithium fluoride

    International Nuclear Information System (INIS)

    Ready, J.F.; Vora, H.

    1979-01-01

    Lithium fluoride is an important candidate material for windows on high-power, short-pulse ultraviolet and visible lasers. Lithium fluoride crystals have been press forged in one step over the temperature range 300 to 600 0 c to obtain fine-grained polycrystalline material with improved mechanical properties. The deformation that can be given to a lithium fluoride crystal during forging is limited by the formation of internal cloudiness (veiling) with the deformation limit increasing with increasing forging temperature from about 40% at 400 0 C to 65% at 600 0 C. To suppress veiling, lithium fluoride crystals were forged in two steps over the temperature range 300 to 600 0 C, to total deformations of 69-76%, with intermediate annealing at 700 0 C. This technique yields a material which has lower scattering with more homogeneous microstructure than that obtained in one-step forging. The results of characterization of various optical and mechanical properties of single-crystal and forged lithium fluoride, including scattering, optical homogeneity, residual absorption, damage thresholds, environmental stability, and thresholds for microyield are described

  17. Lithium in Drinking Water and Incidence of Suicide

    DEFF Research Database (Denmark)

    Knudsen, Nikoline N.; Schullehner, Jörg; Hansen, Birgitte

    2017-01-01

    Suicide is a major public health concern. High-dose lithium is used to stabilize mood and prevent suicide in patients with affective disorders. Lithium occurs naturally in drinking water worldwide in much lower doses, but with large geographical variation. Several studies conducted at an aggregate...... level have suggested an association between lithium in drinking water and a reduced risk of suicide; however, a causal relation is uncertain. Individual-level register-based data on the entire Danish adult population (3.7 million individuals) from 1991 to 2012 were linked with a moving five-year time......-weighted average (TWA) lithium exposure level from drinking water hypothesizing an inverse relationship. The mean lithium level was 11.6 μg/L ranging from 0.6 to 30.7 μg/L. The suicide rate decreased from 29.7 per 100,000 person-years at risk in 1991 to 18.4 per 100,000 person-years in 2012. We found...

  18. Stable lithium electrodeposition in salt-reinforced electrolytes

    KAUST Repository

    Lu, Yingying

    2015-04-01

    © 2015 Elsevier B.V. Development of high-energy lithium-based batteries that are safe remains a challenge due to the non-uniform lithium electrodeposition during repeated charge and discharge cycles. We report on the effectiveness of lithium bromide (LiBr) salt additives in a common liquid electrolyte (i.e. propylene carbonate (PC)) on the stability of lithium electrodeposition. From galvanostatic cycling measurements, we find that the presence of LiBr in PC provides more than 20-fold enhancement in cell lifetime over the control LiTFSI/PC electrolyte. Batteries containing 30 mol% LiBr additive in the electrolytes are able to cycle stably for at least 1.8 months with no observations of cell failure. From galvanostatic polarization measurements, an electrolyte containing 30 mol% LiBr shows a maximum improvement in lifetime. The formation of uneven lithium electrodeposits is significantly suppressed by the Br-containing SEI layers, evidenced by impedance spectra, post-mortem SEM and XPS analyses. The study also concludes that good solubility of halogenated salts is not necessary for achieving the observed improvements in cell lifetime.

  19. Lithium alloy-thionyl chloride cells - Performance and safety aspects

    Science.gov (United States)

    Peled, E.; Lombardi, A.; Schlaikjer, C. R.

    1983-06-01

    It is pointed out that the lithium-thionyl chloride cell has the highest energy density among all the commercially available batteries. The low rate, AA-bobbin cathode cell has been in the marketplace for several years, while the wound or spiral electrode cell is still in the stage of development. The main reason for this are safety problems. These problems are related to the very high reactivity of lithium toward thionyl chloride and the rather low melting point of lithium (180.5 C). The practical stability of the system depends on an LiCl-passivating layer which forms spontaneously on the immersion of the lithium in the electrolyte. This layer serves as a solid electrolyte interphase (SEI). Under certain extreme conditions, however, the SEI can be damaged in such a way that an explosion of the cell occurs. The present investigation is concerned with the reduction of the short-circuit current and the improvement of the safety performance of the cell by the use of special, treated lithium alloys.

  20. Lithium recovery from brine using a λ-MnO2/activated carbon hybrid supercapacitor system.

    Science.gov (United States)

    Kim, Seoni; Lee, Jaehan; Kang, Jin Soo; Jo, Kyusik; Kim, Seonghwan; Sung, Yung-Eun; Yoon, Jeyong

    2015-04-01

    Lithium is one of the most important elements in various fields including energy storage, medicine manufacturing and the glass industry, and demands for lithium are constantly increasing these days. The lime soda evaporation process using brine lake water is the major extraction method for lithium, but this process is not only inefficient and time-consuming but also causes a few environmental problems. Electrochemical recovery processes of lithium ions have been proposed recently, but the better idea for the silver negative electrodes used in these systems is required to reduce its cost or increase long term stability. Here, we report an electrochemical lithium recovery method based on a λ-MnO2/activated carbon hybrid supercapacitor system. In this system, lithium ions and counter anions are effectively captured at each electrode with low energy consumption in a salt solution containing various cationic species or simulated Salar de Atacama brine lake water in Chile. Furthermore, we designed this system as a flow process for practical applications. By experimental analyses, we confirmed that this system has high selectivity and long-term stability, with its performance being retained even after repetitive captures and releases of lithium ions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Polyethylene oxide film coating enhances lithium cycling efficiency of an anode-free lithium-metal battery.

    Science.gov (United States)

    Assegie, Addisu Alemayehu; Cheng, Ju-Hsiang; Kuo, Li-Ming; Su, Wei-Nien; Hwang, Bing-Joe

    2018-03-29

    The practical implementation of an anode-free lithium-metal battery with promising high capacity is hampered by dendrite formation and low coulombic efficiency. Most notably, these challenges stem from non-uniform lithium plating and unstable SEI layer formation on the bare copper electrode. Herein, we revealed the homogeneous deposition of lithium and effective suppression of dendrite formation using a copper electrode coated with a polyethylene oxide (PEO) film in an electrolyte comprising 1 M LiTFSI, DME/DOL (1/1, v/v) and 2 wt% LiNO3. More importantly, the PEO film coating promoted the formation of a thin and robust SEI layer film by hosting lithium and regulating the inevitable reaction of lithium with the electrolyte. The modified electrode exhibited stable cycling of lithium with an average coulombic efficiency of ∼100% over 200 cycles and low voltage hysteresis (∼30 mV) at a current density of 0.5 mA cm-2. Moreover, we tested the anode-free battery experimentally by integrating it with an LiFePO4 cathode into a full-cell configuration (Cu@PEO/LiFePO4). The new cell demonstrated stable cycling with an average coulombic efficiency of 98.6% and capacity retention of 30% in the 200th cycle at a rate of 0.2C. These impressive enhancements in cycle life and capacity retention result from the synergy of the PEO film coating, high electrode-electrolyte interface compatibility, stable polar oligomer formation from the reduction of 1,3-dioxolane and the generation of SEI-stabilizing nitrite and nitride upon lithium nitrate reduction. Our result opens up a new route to realize anode-free batteries by modifying the copper anode with PEO to achieve ever more demanding yet safe interfacial chemistry and control of dendrite formation.

  2. Lithium reserves and resources

    International Nuclear Information System (INIS)

    Evans, R.K.

    1978-01-01

    As a result of accelerating research efforts in the fields of secondary batteries and thermonuclear power generation, concern has been expressed in certain quarters regarding the availability, in sufficient quantities, of lithium. As part of a recent study by the National Research Council on behalf of the Energy Research and Development Administration, a subpanel was formed to consider the outlook for lithium. Principal areas of concern were reserves, resources and the 'surplus' available for energy applications after allowing for the growth in current lithium applications. Reserves and resources were categorized into four classes ranging from fully proved reserves to resources which are probably dependent upon the marketing of co-products to become economically attractive. Because of the proprietary nature of data on beneficiation and processing recoveries, the tonnages of available lithium are expressed in terms of plant feed. However, highly conservative assumptions have been made concerning mining recoveries and these go a considerable way to accounting for total losses. Western World reserves and resources of all classes are estimated at 10.6 million tonnes Li of which 3.5 million tonnes Li are located in the United States. Current United States capacity, virtually equivalent to Western World capacity, is 4700 tonnes Li and production in 1976 approximated to 3500 tonnes Li. Production for current applications is expected to grow to approx. 10,000 tonnes in year 2000 and 13,000 tonnes a decade later. The massive excess of reserves and resources over that necessary to support conventional requirements has limited the amount of justifiable exploration expenditures; on the last occasion, there was a a major increase in demand (by the USAEA) reserves and capacity were increased rapidly. There are no foreseeable reasons why this shouldn't happen again when the need is clear. (author)

  3. Lithium-storage Properties of Gallic Acid-Reduced Graphene Oxide and Silicon-Graphene Composites

    International Nuclear Information System (INIS)

    Xu, Binghui; Zhang, Jintao; Gu, Yi; Zhang, Zhi; Al Abdulla, Wael; Kumar, Nanjundan Ashok; Zhao, X.S.

    2016-01-01

    Graphene oxide (GO) was de-oxygenated using gallic acid under mild conditions to prepare reduced graphene oxide (RGO). The resultant RGO showed a lithium-ion storage capacity of 1280 mA h g −1 at a current density of 200 mA g −1 after 350 cycles when used as an anode for lithium ion batteries. The RGO was further used to stabilize silicon (Si) nanoparticles to prepare silicon-graphene composite electrode materials. Experimental results showed that a composite electrode prepared with a mass ratio of Si:GO = 1:2 exhibited the best lithium ion storage performance.

  4. Silicon oxide based high capacity anode materials for lithium ion batteries

    Science.gov (United States)

    Deng, Haixia; Han, Yongbong; Masarapu, Charan; Anguchamy, Yogesh Kumar; Lopez, Herman A.; Kumar, Sujeet

    2017-03-21

    Silicon oxide based materials, including composites with various electrical conductive compositions, are formulated into desirable anodes. The anodes can be effectively combined into lithium ion batteries with high capacity cathode materials. In some formulations, supplemental lithium can be used to stabilize cycling as well as to reduce effects of first cycle irreversible capacity loss. Batteries are described with surprisingly good cycling properties with good specific capacities with respect to both cathode active weights and anode active weights.

  5. The testing report of the development for the lithium grains and lithium rod automatic machine

    International Nuclear Information System (INIS)

    Qian Zongkui; Kong Xianghong; Huang Yong

    2008-06-01

    With the development of lithium industry, the lithium grains and lithium rod, as additive or catalyzer, having a big comparatively acreage and a strong activated feature, have a broad application. The lithium grains and lithium rod belong to the kind of final machining materials. The principle of the lithium grains and lithium rod that how to take shape through the procedures of extrusion, cutting, anti-conglutination, threshing and so on are analysed, A sort of lithium grains and lithium rod automatic machine is developed. (authors)

  6. Pathway and single gene analyses of inhibited Caco-2 differentiation by ascorbate-stabilized quercetin suggest enhancement of cellular processes associated with development of colon cancer

    NARCIS (Netherlands)

    Dihal, A.A.; Tilburgs, C.; Erk, M.J. van; Rietjens, I.M.C.M.; Woutersen, R.A.; Stierum, R.H.

    2007-01-01

    The aim was to investigate mechanisms contributing to quercetin's previously described effects on cell-proliferation and -differentiation, which contradicted its proposed anticarcinogenic potency. In a 10-day experiment, 40 μM quercetin stabilized by 1 mM ascorbate reduced Caco-2 differentiation up

  7. Laser microstructuring and annealing processes for lithium manganese oxide cathodes

    International Nuclear Information System (INIS)

    Proell, J.; Kohler, R.; Torge, M.; Ulrich, S.; Ziebert, C.; Bruns, M.; Seifert, H.J.; Pfleging, W.

    2011-01-01

    It is expected that cathodes for lithium-ion batteries (LIB) composed out of nano-composite materials lead to an increase in power density of the LIB due to large electrochemically active surface areas but cathodes made of lithium manganese oxides (Li-Mn-O) suffer from structural instabilities due to their sensitivity to the average manganese oxidation state. Therefore, thin films in the Li-Mn-O system were synthesized by non-reactive radiofrequency magnetron sputtering of a spinel lithium manganese oxide target. For the enhancement of the power density and cycle stability, large area direct laser patterning using UV-laser radiation with a wavelength of 248 nm was performed. Subsequent laser annealing processes were investigated in a second step in order to set up a spinel-like phase using 940 nm laser radiation at a temperature of 680 deg. C. The interaction processes between UV-laser radiation and the material was investigated using laser ablation inductively coupled plasma mass spectroscopy. The changes in phase, structure and grain shape of the thin films due to the annealing process were recorded using Raman spectroscopy, X-ray diffraction and scanning electron microscopy. The structured cathodes were cycled using standard electrolyte and a metallic lithium anode. Different surface structures were investigated and a significant increase in cycling stability was found. Surface chemistry of an as-deposited as well as an electrochemically cycled thin film was investigated via X-ray photoelectron spectroscopy.

  8. Mass spectrometric analysis of lithium

    International Nuclear Information System (INIS)

    Chitambar, S.A.; Kavimandan, V.D.; Aggarwal, S.K.; Ramasubramanian, P.A.; Shah, P.M.; Almoula, A.I.; Acharya, S.N.; Parab, A.R.; Jain, H.C.; Mathews, C.K.; Ramaniah, M.V.

    1978-01-01

    The details of investigations carried out on the isotopic analysis of lithium using surface ionisation mass spectrometry are presented. Various parameters affecting the precision in isotopic analysis of lithium are discussed. A precision of 1% is achieved in the relative isotope abundance measurement. (author)

  9. Mitigating Voltage Decay of Li-Rich Cathode Material via Increasing Ni Content for Lithium-Ion Batteries.

    Science.gov (United States)

    Shi, Ji-Lei; Zhang, Jie-Nan; He, Min; Zhang, Xu-Dong; Yin, Ya-Xia; Li, Hong; Guo, Yu-Guo; Gu, Lin; Wan, Li-Jun

    2016-08-10

    Li-rich layered materials have been considered as the most promising cathode materials for future high-energy-density lithium-ion batteries. However, they suffer from severe voltage decay upon cycling, which hinders their further commercialization. Here, we report a Li-rich layered material 0.5Li2MnO3·0.5LiNi0.8Co0.1Mn0.1O2 with high nickel content, which exhibits much slower voltage decay during long-term cycling compared to conventional Li-rich materials. The voltage decay after 200 cycles is 201 mV. Combining in situ X-ray diffraction (XRD), ex situ XRD, ex situ X-ray photoelectron spectroscopy, and scanning transmission electron microscopy, we demonstrate that nickel ions act as stabilizing ions to inhibit the Jahn-Teller effect of active Mn(3+) ions, improving d-p hybridization and supporting the layered structure as a pillar. In addition, nickel ions can migrate between the transition-metal layer and the interlayer, thus avoiding the formation of spinel-like structures and consequently mitigating the voltage decay. Our results provide a simple and effective avenue for developing Li-rich layered materials with mitigated voltage decay and a long lifespan, thereby promoting their further application in lithium-ion batteries with high energy density.

  10. Metabolic Side Effects of Lithium

    Directory of Open Access Journals (Sweden)

    M. Cagdas Eker

    2010-04-01

    Full Text Available Lithium is an alkaline ion being used since 19th century. After its widespread use in psychiatric disorders, observed side effects caused skepticism about its therapeutic efficacy. Despite several disadvantages, lithium is one of the indispensible drugs used in affective disorders, especially in bipolar disorder. It became a necessity for physicians to recognize its side effects since lithium is still accepted as a gold standard in the treatment of bipolar disorder. Adverse effects of chronic administration of lithium on several organ systems are widely known. In this article metabolic effects of lithium on thyroid and parathyroid glands, body mass index and kidneys will be discussed along with their mechanisms, clinical findings, possible risk factors and treatment. One of the most common side effect of lithium is hypothyroidism. It has the same clinical and biochemical properties as primary hypothyroidism and observed as subclinical hypothyroidism in the first place. Hypothyroidism, even its subclinical form, may be associated with non-response or inadequate response and is indicated as a risk factor for development of rapid cycling bipolar disorder. Therefore, hypothyroidism should be screened no matter how severe it is and should be treated with thyroid hormone in the presence of clinical hypothyroidism. Weight gain due to lithium administration disturbs the compliance to treatment and negatively affects the course of the illness. Increased risk for diabetes, hypertension, ischemic heart disease and stroke because of weight gain constitute other centers of problem. Indeed, it is of importance to determine the risk factors before treatment, to follow up the weight, to re-organize nutritional habits and to schedule exercises. Another frequent problematic side effect of lithium treatment is renal dysfunction which clinically present as nephrogenic diabetes insipidus with the common symptoms of polyuria and polydipsia. Nephrogenic diabetes

  11. 77 FR 28259 - Mailings of Lithium Batteries

    Science.gov (United States)

    2012-05-14

    ... POSTAL SERVICE 39 CFR Part 111 Mailings of Lithium Batteries AGENCY: Postal Service TM . ACTION... international mailing of lithium batteries and devices containing lithium batteries. This prohibition also extends to the mailing of lithium batteries to and from an APO, FPO, or DPO location. However, this...

  12. Lithium in the barium stars

    International Nuclear Information System (INIS)

    Pinsonneault, M.H.; Sneden, C.

    1984-01-01

    New high-resolution spectra of the lithium resonance doublet have provided lithium abundances or upper limits for 26 classical and mild barium stars. The lithium lines always are present in the classical barium stars. Lithium abundances in these stars obey a trend with stellar masses consistent with that previously derived for ordinary K giants. This supports the notion that classical barium stars are post-core-He-flash or core-He-burning stars. Lithium contents in the mild barium stars, however, often are much smaller than those of the classical barium stars sometimes only upper limits may be determined. The cause for this difference is not easily understood, but may be related to more extensive mass loss by the mild barium stars. 45 references

  13. Therapeutic Drug Monitoring of Lithium

    DEFF Research Database (Denmark)

    Mose, Tina; Damkier, Per; Petersen, Magnus

    2015-01-01

    BACKGROUND: Serum lithium is monitored to ensure levels within the narrow therapeutic window. This study examines the interlaboratory variation and inaccuracy of lithium monitoring in Denmark. METHODS: In 16 samples consisting of (1) control materials (n = 4), (2) pooled patient serum (n = 5......), and (3) serum from individual patients (n = 7), lithium was measured in 19 laboratories using 20 different instruments. The lithium concentrations were targeted by a reference laboratory. Ion-selective electrode (n = 5), reflective spectrophotometric (RSM, n = 5), and spectrophotometric (n = 10) methods...... of >12%. Seven of these instruments had a systematic positive or negative bias and more so at lower lithium concentrations. Three poorly calibrated instruments were found in the ion-selective electrode group, 3 in the spectrophotometric group, and 2 in the RSM group. The instruments using reflectance...

  14. Solvothermal Synthesis of a Hollow Micro-Sphere LiFePO4/C Composite with a Porous Interior Structure as a Cathode Material for Lithium Ion Batteries

    Science.gov (United States)

    Liu, Yang; Zhang, Jieyu; Li, Ying; Hu, Yemin; Li, Wenxian; Zhu, Mingyuan; Hu, Pengfei; Chou, Shulei; Wang, Guoxiu

    2017-01-01

    To overcome the low lithium ion diffusion and slow electron transfer, a hollow micro sphere LiFePO4/C cathode material with a porous interior structure was synthesized via a solvothermal method by using ethylene glycol (EG) as the solvent medium and cetyltrimethylammonium bromide (CTAB) as the surfactant. In this strategy, the EG solvent inhibits the growth of the crystals and the CTAB surfactant boots the self-assembly of the primary nanoparticles to form hollow spheres. The resultant carbon-coat LiFePO4/C hollow micro-spheres have a ~300 nm thick shell/wall consisting of aggregated nanoparticles and a porous interior. When used as materials for lithium-ion batteries, the hollow micro spherical LiFePO4/C composite exhibits superior discharge capacity (163 mAh g−1 at 0.1 C), good high-rate discharge capacity (118 mAh g−1 at 10 C), and fine cycling stability (99.2% after 200 cycles at 0.1 C). The good electrochemical performances are attributed to a high rate of ionic/electronic conduction and the high structural stability arising from the nanosized primary particles and the micro-sized hollow spherical structure. PMID:29099814

  15. Solvothermal Synthesis of a Hollow Micro-Sphere LiFePO4/C Composite with a Porous Interior Structure as a Cathode Material for Lithium Ion Batteries

    Directory of Open Access Journals (Sweden)

    Yang Liu

    2017-11-01

    Full Text Available To overcome the low lithium ion diffusion and slow electron transfer, a hollow micro sphere LiFePO4/C cathode material with a porous interior structure was synthesized via a solvothermal method by using ethylene glycol (EG as the solvent medium and cetyltrimethylammonium bromide (CTAB as the surfactant. In this strategy, the EG solvent inhibits the growth of the crystals and the CTAB surfactant boots the self-assembly of the primary nanoparticles to form hollow spheres. The resultant carbon-coat LiFePO4/C hollow micro-spheres have a ~300 nm thick shell/wall consisting of aggregated nanoparticles and a porous interior. When used as materials for lithium-ion batteries, the hollow micro spherical LiFePO4/C composite exhibits superior discharge capacity (163 mAh g−1 at 0.1 C, good high-rate discharge capacity (118 mAh g−1 at 10 C, and fine cycling stability (99.2% after 200 cycles at 0.1 C. The good electrochemical performances are attributed to a high rate of ionic/electronic conduction and the high structural stability arising from the nanosized primary particles and the micro-sized hollow spherical structure.

  16. Synthesis and properties of new carboxyborate lithium salts as electrolytes for lithium-ion batteries

    International Nuclear Information System (INIS)

    Gładka, Dorota; Krajewski, Mariusz; Młynarska, Sandra; Galińska, Justyna; Zygadło-Monikowska, Ewa

    2017-01-01

    Bis(carboxytrifluoroborate lithium) salts [R(CH 2 COOBF 3 Li) 2 ] with oxyethylene groups R of oligomeric molar masses [R = O(CH 2 CH 2 O) n , where n = 3 or 11, BCB3 and BCB11, respectively] were synthesized via reaction of carboxylates salts with boron fluoride. The new salts were characterized by spectroscopic analysis. The physical properties of the salts were determined by oxyethylene chain length. For n = 3 the salt was crystalline with m p = 197 °C and for n = 11 it showed properties of an ionic liquid at ambient temperature. Their thermal stability was at least 250 °C. The values of lithium-ion transference numbers (T + ) of the solutions in polar aprotic solvents, determined by a well established steady-state technique, were in the range of 0.2–0.6. Electrochemical impedance spectroscopy analysis of solid polymer electrolytes (SPEs) based on PEO and studied salts with different concentration (from 24 to 94 wt %) was carried out. The ionic conductivity of SPEs was in the order of 10 −8 –10 −7 S cm −1 at room temperature and 10 −4 S cm −1 at 80 °C. A distinguishing feature of SPEs with the studied new salts is the high immobilization of anions, which causes almost a monoconducting character of charge transport. Lithium transference numbers (T + ) exceed 0.9.

  17. Layered lithium transition metal nitrides as novel anodes for lithium secondary batteries

    International Nuclear Information System (INIS)

    Liu Yu; Horikawa, Kumi; Fujiyosi, Minako; Imanishi, Nobuyuki; Hirano, Atsushi; Takeda, Yasuo

    2004-01-01

    We report the approach to overcome the deterrents of the hexagonal Li 2.6 Co 0.4 N as potential insertion anode for lithium ion batteries: the rapid capacity fading upon long cycles and the fully Li-rich state before cycling. Research reveals that the appropriate amount of Co substituted by Cu can greatly improve the cycling performance of Li 2.6 Co 0.4 N. It is attributed to the enhanced electrochemical stability and interfacial comparability. However, doped Cu leads to a slightly decreased capacity. High energy mechanical milling (HEMM) was found to effectively improve the reversible capacity associated with the electrochemical kinetics by modifying the active hosts' morphology characteristics. Moreover, the composite based on mesocarbon microbead (MCMB) and Li 2.6 Co 0.4 N was developed under HEMM. The composite demonstrates a high first cycle efficiency at 100% and a large reversible capacity of ca. 450 mAh g -1 , as well as a stable cycling performance. This work may contribute to a development of the lithium transition metal nitrides as novel anodes for lithium ion batteries

  18. Material modifications in lithium niobate and lithium tantalate crystals by ion irradiation

    International Nuclear Information System (INIS)

    Raeth, Niels Lennart

    2017-01-01

    The artificially produced crystals lithium niobate (LiNbO 3 ) and the closely related lithium tantalate (LiTaO 3 ) are proven starting materials for producing active and passive devices that can guide, amplify, switch and process light. For this purpose, it is often necessary to be able to influence the refractive index of the substrate targeted, which is possible in addition to other methods by irradiation of the materials with fast light ions. In this work, lithium niobate and lithium tantalate crystals are irradiated with alpha particles, 3 He ions, deuterons, and protons at projectile energies of up to 14 MeV / nucleon. Energy and crystal thickness are chosen so that the projectiles penetrate the entire sample and are not implanted. All isotopes responsible for the unwanted nuclear activation of the crystals due to the irradiation are relatively short-lived and overall the activation decreases fast enough to allow the safe handling of the irradiated samples after a storage period of a few days to a few weeks. The refractive index changes produced in lithium niobate and lithium tantalate by irradiation with the different projectiles are determined interferometrically and can also be measured by suitable choice of the sample geometry as a function of the ion penetration depth: In LiNbO 3 the ordinary refractive index decreases, the extraordinary increases equally. In LiTaO 3 , both the ordinary and the extraordinary refractive indices decrease as a result of the irradiation; the ordinary refractive index change is many times stronger than the extraordinary one. There is an enormous long-term stability at room temperature for both crystal systems: Even after eleven (LiNbO 3 ) or three (LiTaO 3 ) years, no decrease in the ion beam-induced refractive index change can be observed. The ion beam-induced refractive index changes are probably the result of atomic displacements such as vacancies, defect clusters or ''latent tracks''. An explanation for

  19. Understanding the molecular mechanism of pulse current charging for stable lithium-metal batteries

    Science.gov (United States)

    Li, Qi; Tan, Shen; Li, Linlin; Lu, Yingying; He, Yi

    2017-01-01

    High energy and safe electrochemical storage are critical components in multiple emerging fields of technologies. Rechargeable lithium-metal batteries are considered to be promising alternatives for current lithium-ion batteries, leading to as much as a 10-fold improvement in anode storage capacity (from 372 to 3860 mAh g−1). One of the major challenges for commercializing lithium-metal batteries is the reliability and safety issue, which is often associated with uneven lithium electrodeposition (lithium dendrites) during the charging stage of the battery cycling process. We report that stable lithium-metal batteries can be achieved by simply charging cells with square-wave pulse current. We investigated the effects of charging period and frequency as well as the mechanisms that govern this process at the molecular level. Molecular simulations were performed to study the diffusion and the solvation structure of lithium cations (Li+) in bulk electrolyte. The model predicts that loose association between cations and anions can enhance the transport of Li+ and eventually stabilize the lithium electrodeposition. We also performed galvanostatic measurements to evaluate the cycling behavior and cell lifetime under pulsed electric field and found that the cell lifetime can be more than doubled using certain pulse current waveforms. Both experimental and simulation results demonstrate that the effectiveness of pulse current charging on dendrite suppression can be optimized by choosing proper time- and frequency-dependent pulses. This work provides a molecular basis for understanding the mechanisms of pulse current charging to mitigating lithium dendrites and designing pulse current waveforms for stable lithium-metal batteries. PMID:28776039

  20. Positive electrode for a lithium battery

    Science.gov (United States)

    Park, Sang-Ho; Amine, Khalil

    2015-04-07

    A method for producing a lithium alkali transition metal oxide for use as a positive electrode material for lithium secondary batteries by a precipitation method. The positive electrode material is a lithium alkali transition metal composite oxide and is prepared by mixing a solid state mixed with alkali and transition metal carbonate and a lithium source. The mixture is thermally treated to obtain a small amount of alkali metal residual in the lithium transition metal composite oxide cathode material.

  1. Novel polymeric systems for lithium-ion batteries gel electrolytes

    International Nuclear Information System (INIS)

    Appetecchi, G.B.; Alessandrini, F.; Passerini, S.; Caporiccio, G.; Boutevin, B.; Guida-Pietrasanta, F.

    2004-01-01

    The investigation of chemically cross-linked, self-supporting gel-type electrolyte membranes, based on hybrid polyfluorosilicone polymers reinforced with nanosized silica, for lithium-ion battery systems is reported. The polyfluorosilicone materials were selected on the basis of their high chemical and thermal stabilities. The precursors were synthesized with functional groups capable to form inter-molecular cross-linking, thus obtaining three-dimensional polymer matrices. The latter were undergone to swelling processes in (non-aqueous, lithium salt containing) electrolytic solutions to obtain gel-type polymer electrolytes. Several kinds of membranes, based on different types of polyfluorosilicone precursor, were prepared and characterized in terms of swelling behavior, ionic conductivity and electrochemical stability. The properties of the swelled matrices were evaluated as a function of dipping time, temperature, kind of electrolytic solution and cross-linking initiator content

  2. Influence of Electrolyte Modulus on the Local Current Density at a Dendrite Tip on a Lithium Metal Electrode

    Energy Technology Data Exchange (ETDEWEB)

    Harry, KJ; Higa, K; Srinivasan, V; Balsara, NP

    2016-08-10

    Understanding and controlling the electrochemical deposition of lithium is imperative for the safe use of rechargeable batteries with a lithium metal anode. Solid block copolymer electrolyte membranes are known to enhance the stability of lithium metal anodes by mechanically suppressing the formation of lithium protrusions during battery charging. Time-resolved hard X-ray microtomography was used to monitor the internal structure of a symmetric lithium-polymer cell during galvanostatic polarization. The microtomography images were used to determine the local rate of lithium deposition, i.e. local current density, in the vicinity of a lithium globule growing through the electrolyte. Measurements of electrolyte displacement enabled estimation of local stresses in the electrolyte. At early times, the current density was maximized at the globule tip, as expected from simple current distribution arguments. At later times, the current density was maximized at the globule perimeter. We show that this phenomenon is related to the local stress fields that arise as the electrolyte is deformed. The local current density, normalized for the radius of curvature, decreases with increasing compressive stresses at the lithium-polymer interface. To our knowledge, our study provides the first direct measurement showing the influence of local mechanical stresses on the deposition kinetics at lithium metal electrodes.

  3. Halo Star Lithium Depletion

    International Nuclear Information System (INIS)

    Pinsonneault, M. H.; Walker, T. P.; Steigman, G.; Narayanan, Vijay K.

    1999-01-01

    The depletion of lithium during the pre-main-sequence and main-sequence phases of stellar evolution plays a crucial role in the comparison of the predictions of big bang nucleosynthesis with the abundances observed in halo stars. Previous work has indicated a wide range of possible depletion factors, ranging from minimal in standard (nonrotating) stellar models to as much as an order of magnitude in models that include rotational mixing. Recent progress in the study of the angular momentum evolution of low-mass stars permits the construction of theoretical models capable of reproducing the angular momentum evolution of low-mass open cluster stars. The distribution of initial angular momenta can be inferred from stellar rotation data in young open clusters. In this paper we report on the application of these models to the study of lithium depletion in main-sequence halo stars. A range of initial angular momenta produces a range of lithium depletion factors on the main sequence. Using the distribution of initial conditions inferred from young open clusters leads to a well-defined halo lithium plateau with modest scatter and a small population of outliers. The mass-dependent angular momentum loss law inferred from open cluster studies produces a nearly flat plateau, unlike previous models that exhibited a downward curvature for hotter temperatures in the 7Li-Teff plane. The overall depletion factor for the plateau stars is sensitive primarily to the solar initial angular momentum used in the calibration for the mixing diffusion coefficients. Uncertainties remain in the treatment of the internal angular momentum transport in the models, and the potential impact of these uncertainties on our results is discussed. The 6Li/7Li depletion ratio is also examined. We find that the dispersion in the plateau and the 6Li/7Li depletion ratio scale with the absolute 7Li depletion in the plateau, and we use observational data to set bounds on the 7Li depletion in main-sequence halo

  4. Examination results on reaction of lithium

    International Nuclear Information System (INIS)

    Asada, Takashi

    2000-12-01

    Before the material corrosion tests in lithium, the reactions of lithium with air and ammonia that will be used for lithium cleaning were examined, and the results were as follows. 1. When lithium put into air, surface of lithium changes to black first but soon to white, and the white layer becomes gradually thick. The first black of lithium surface is nitride (Li 3 N) and it changes to white lithium hydroxide (LiOH) by reaction with water in air, and it grows. The growth rate of the lithium hydroxide is about 1/10 in the desiccator (humidity of about 10%) compare with in air. 2. When lithium put into nitrogen, surface of lithium changes to black, and soon changes to brown and cracks at surface. At the same time with this cracking, weight of lithium piece increases and nitridation progresses respectively rapidly. This nitridation completed during 1-2 days on lithium rod of 10 mm in diameter, and increase in weight stopped. 3. Lithium melts in liquid ammonia and its melting rate is about 2-3 hour to lithium of 1 g. The liquid ammonia after lithium melting showed dark brown. (author)

  5. Enhanced rate capability and cycling stability of core/shell structured CoFe{sub 2}O{sub 4}/onion-like C nanocapsules for lithium-ion battery anodes

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xianguo, E-mail: liuxianguohugh@gmail.com [School of Materials Science and Engineering, Anhui University of Technology, Maanshan 243002 (China); Wu, Niandu; Cui, Caiyun; Zhou, Pingping [School of Materials Science and Engineering, Anhui University of Technology, Maanshan 243002 (China); Sun, Yuping [Center for Engineering Practice and Innovation Education, Anhui University of Technology, Maanshan 243032 (China)

    2015-09-25

    Highlights: • Core/shell-structured CoFe{sub 2}O{sub 4}/onion-like carbon nanocapsules have been prepared. • CoFe{sub 2}O{sub 4}/C nanocapsules possess good reversibility even when the current density is up to 4C. • CoFe{sub 2}O{sub 4}/C nanocapsules obtain a discharge capacity of 914.2 mA h g{sup −1} after 500 cycles at 0.1C. - Abstract: In this work, core/shell structured CoFe{sub 2}O{sub 4}/onion-like C nanocapsules have been successfully fabricated by the arc discharge method and air-annealing process and confirmed by X-ray diffraction and high-resolution transmission electron microscopy. The core/shell structure effectively withstands the volume change of CoFe{sub 2}O{sub 4} nanoparticles during the cycling process. Moreover, the onion-like C shells reduce the charge transfer resistance and facilitate electron and ion transport throughout the electrode. As a result, CoFe{sub 2}O{sub 4}/onion-like C nanocapsules exhibit excellent performance as a potential anode material for lithium ion batteries and deliver a reversible capacity of 914.2 mA h g{sup −1} at 0.1C, even after 500 cycles and recover its original capacity when the rate returns from 4C to the initial 0.1C after 120 cycles.

  6. Potential application of lithium in Parkinson’s and other neurodegenerative diseases

    Directory of Open Access Journals (Sweden)

    Carol A Lazzara

    2015-10-01

    Full Text Available Lithium, the long-standing hallmark treatment for bipolar disorder, has recently been identified as a potential neuroprotective agent in neurodegeneration. Here we focus on introducing numerous in vitro and in vivo studies that have shown lithium treatment to be efficacious in reducing oxidative stress and inflammation, increasing autophagy, inhibiting apoptosis, and decreasing the accumulation of α-synulcein, with an emphasis on Parkinson’s disease. A number of biological pathways have been shown to be involved in causing these neuroprotective effects. The inhibition of GSK-3β has been the mechanism most studied; however, other modes of action include the regulation of apoptotic proteins and glutamate excitotoxicity as well as down-regulation of Calpain-1. This review provides a framework of the neuroprotective effects of lithium in neurodegenerative diseases and the putative mechanisms by which lithium provides the protection. Lithium-only treatment may not be a suitable therapeutic option for neurodegenerative diseases due to inconsistent efficacy and potential side-effects, however, the use of low dose lithium in combination with other potential or existing therapeutic compounds may be a promising approach to reduce symptoms and disease progression in neurodegenerative diseases.

  7. Electrochemically fabricated polypyrrole-cobalt-oxygen coordination complex as high-performance lithium-storage materials.

    Science.gov (United States)

    Guo, Bingkun; Kong, Qingyu; Zhu, Ying; Mao, Ya; Wang, Zhaoxiang; Wan, Meixiang; Chen, Liquan

    2011-12-23

    Current lithium-ion battery (LIB) technologies are all based on inorganic electrode materials, though organic materials have been used as electrodes for years. Disadvantages such as limited thermal stability and low specific capacity hinder their applications. On the other hand, the transition metal oxides that provide high lithium-storage capacity by way of electrochemical conversion reaction suffer from poor cycling stability. Here we report a novel high-performance, organic, lithium-storage material, a polypyrrole-cobalt-oxygen (PPy-Co-O) coordination complex, with high lithium-storage capacity and excellent cycling stability. Extended X-ray absorption fine structure and Raman spectroscopy and other physical and electrochemical characterizations demonstrate that this coordination complex can be electrochemically fabricated by cycling PPy-coated Co(3)O(4) between 0.0 V and 3.0 V versus Li(+)/Li. Density functional theory (DFT) calculations indicate that each cobalt atom coordinates with two nitrogen atoms within the PPy-Co coordination layer and the layers are connected with oxygen atoms between them. Coordination weakens the C-H bonds on PPy and makes the complex a novel lithium-storage material with high capacity and high cycling stability. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Beneficial synergistic effects of microdose lithium with pyrroloquinoline quinone in an Alzheimer's disease mouse model.

    Science.gov (United States)

    Zhao, Lei; Gong, Neng; Liu, Meng; Pan, Xiaoli; Sang, Shaoming; Sun, Xiaojing; Yu, Zhe; Fang, Qi; Zhao, Na; Fei, Guoqiang; Jin, Lirong; Zhong, Chunjiu; Xu, Tianle

    2014-12-01

    Alzheimer's disease (AD) is a complicated, neurodegenerative disorder involving multifactorial pathogeneses and still lacks effective clinical treatment. Recent studies show that lithium exerts disease-modifying effects against AD. However, the intolerant side effects at conventional effective dosage limit the clinical use of lithium in treating AD. To explore a novel AD treatment strategy with microdose lithium, we designed and synthesized a new chemical, tri-lithium pyrroloquinoline quinone (Li3PQQ), to study the synergistic effects of low-dose lithium and pyrroloquinoline quinone, a native compound with powerful antioxidation and mitochondrial amelioration. The results showed that Li3PQQ at a relative low dose (6 and 12 mg/kg) exhibited more powerful effects in restoring the impairment of learning and memory, facilitating hippocampal long-term potentiation, and reducing cerebral amyloid deposition and phosphorylated tau level in APP/PS1 transgenic mice than that of lithium chloride at both low and high dose (5 and 100 mg/kg). We further found that Li3PQQ inhibited the activity of glycogen synthase kinase-3 and increased the activity of β-amyloid-binding alcohol dehydrogenase, which might underlie the beneficial effects of Li3PQQ on APP/PS1 transgenic mice. Our study demonstrated the efficacy of a novel AD therapeutic strategy targeting at multiple disease-causing mechanisms through the synergistic effects of microdose lithium and pyrroloquinoline quinone. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. MCK1 is a novel regulator of myo-inositol phosphate synthase (MIPS that is required for inhibition of inositol synthesis by the mood stabilizer valproate.

    Directory of Open Access Journals (Sweden)

    Wenxi Yu

    Full Text Available Myo-inositol, the precursor of all inositol compounds, is essential for the viability of eukaryotes. Identifying the factors that regulate inositol homeostasis is of obvious importance to understanding cell function and the pathologies underlying neurological and metabolic resulting from perturbation of inositol metabolism. The current study identifies Mck1, a GSK3 homolog, as a novel positive regulator of inositol de novo synthesis in yeast. Mck1 was required for normal activity of myo-inositol phosphate synthase (MIPS, which catalyzes the rate-limiting step of inositol synthesis. mck1Δ cells exhibited a 50% decrease in MIPS activity and a decreased rate of incorporation of [13C6]glucose into [13C6]-inositol-3-phosphate and [13C6]-inositol compared to WT cells. mck1Δ cells also exhibited decreased growth in the presence of the inositol depleting drug valproate (VPA, which was rescued by supplementation of inositol. However, in contrast to wild type cells, which exhibited more than a 40% decrease in MIPS activity in the presence of VPA, the drug did not significantly decrease MIPS activity in mck1Δ cells. These findings indicate that VPA-induced MIPS inhibition is Mck1-dependent, and suggest a model that unifies two current hypotheses of the mechanism of action of VPA-inositol depletion and GSK3 inhibition.

  10. MCK1 is a novel regulator of myo-inositol phosphate synthase (MIPS) that is required for inhibition of inositol synthesis by the mood stabilizer valproate.

    Science.gov (United States)

    Yu, Wenxi; Daniel, Joshua; Mehta, Dhara; Maddipati, Krishna Rao; Greenberg, Miriam L

    2017-01-01

    Myo-inositol, the precursor of all inositol compounds, is essential for the viability of eukaryotes. Identifying the factors that regulate inositol homeostasis is of obvious importance to understanding cell function and the pathologies underlying neurological and metabolic resulting from perturbation of inositol metabolism. The current study identifies Mck1, a GSK3 homolog, as a novel positive regulator of inositol de novo synthesis in yeast. Mck1 was required for normal activity of myo-inositol phosphate synthase (MIPS), which catalyzes the rate-limiting step of inositol synthesis. mck1Δ cells exhibited a 50% decrease in MIPS activity and a decreased rate of incorporation of [13C6]glucose into [13C6]-inositol-3-phosphate and [13C6]-inositol compared to WT cells. mck1Δ cells also exhibited decreased growth in the presence of the inositol depleting drug valproate (VPA), which was rescued by supplementation of inositol. However, in contrast to wild type cells, which exhibited more than a 40% decrease in MIPS activity in the presence of VPA, the drug did not significantly decrease MIPS activity in mck1Δ cells. These findings indicate that VPA-induced MIPS inhibition is Mck1-dependent, and suggest a model that unifies two current hypotheses of the mechanism of action of VPA-inositol depletion and GSK3 inhibition.

  11. Molecular Basis of Inactive B-RAF(WT) and B-RAF(V600E) Ligand Inhibition, Selectivity and Conformational Stability: An in Silico Study

    DEFF Research Database (Denmark)

    Fratev, Filip Filipov; Jonsdottir, Svava Osk; Mihaylova, E.

    2009-01-01

    -PBSA and local-binding energy (LBE) approaches. The conformational stability of the unbounded kinases and in particular the processes of the B-RAF(V600E) mutant activation were analyzed. A unique salt bridge network formed mainly by the catalytic residues was identified in the unbounded B...... effects on B-RAF(V600E) was revealed, which can explain the low mutant selectivity observed for numerous inhibitors. Our results suggest that the interactions between the activation segment and the alpha C-helix, as well as between the residues in the salt bridge network, are the major mechanism of the B...

  12. Gallic acid-capped gold nanoparticles inhibit EGF-induced MMP-9 expression through suppression of p300 stabilization and NFκB/c-Jun activation in breast cancer MDA-MB-231 cells.

    Science.gov (United States)

    Chen, Ying-Jung; Lee, Yuan-Chin; Huang, Chia-Hui; Chang, Long-Sen

    2016-11-01

    Triple-negative breast cancers (TNBCs) are highly invasive and have a higher rate of distant metastasis. Matrix metalloproteinase-9 (MMP-9) plays a crucial role in EGF/EGFR-mediated malignant progression and metastasis of TNBCs. Various studies have revealed that treatment with gallic acid down-regulates MMP-9 expression in cancer cells, and that conjugation of phytochemical compounds with gold nanoparticles (AuNPs) increases the anti-tumor activity of the phytochemical compounds. Thus, the effect of gallic acid-capped AuNPs (GA-AuNPs) on MMP-9 expression in EGF-treated TNBC MDA-MB-231 cells was analyzed in the present study. The so-called green synthesis of AuNPs by means of gallic acid was performed at pH10, and the resulting GA-AuNPs had spherical shape with an average diameter of approximately 50nm. GA-AuNPs notably suppressed migration and invasion of EGF-treated cells, and inhibited EGF-induced MMP-9 up-regulation. GA-AuNPs abrogated EGF-induced Akt/p65 and ERK/c-Jun phosphorylation, leading to down-regulation of MMP-9 mRNA and protein expression in EGF-treated cells. Meanwhile, EGF-induced p300 stabilization was found to be involved in MMP-9 expression, whereas GA-AuNPs inhibited the EGF-promoted stability of the p300 protein. Although GA-AuNPs and gallic acid suppressed EGF-induced MMP-9 up-regulation via the same signaling pathway, the effective concentration of gallic acid was approximately 100-fold higher than that of GA-AuNPs for inhibition of MMP-9 expression in EGF-treated cells to a similar extent. Collectively, our data indicate that, in comparison with gallic acid, GA-AuNPs have a superior ability to inhibit EGF/EGFR-mediated MMP-9 expression in TNBC MDA-MB-231 cells. Our findings also point to a way to improve the anti-tumor activity of gallic acid. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. The effects of lithium hydroxide solution on alkali silica reaction gels created with opal

    International Nuclear Information System (INIS)

    Mitchell, Lyndon D.; Beaudoin, James J.; Grattan-Bellew, Patrick

    2004-01-01

    The reaction of Nevada opal with calcium hydroxide, potassium hydroxide and lithium hydroxide solutions was investigated. In addition, opal was exposed to a combined solution of these three hydroxides. The progress of the three reactions was followed using X-ray diffraction (XRD), 29 Si nuclear magnetic resonance (NMR) and scanning electron microscopy (SEM). The XRD results indicated the presence of a low-angle peak exclusive to the lithium-based reactions. The NMR results suggested a change in the silicate structure in the presence of lithium. These techniques indicated that the reaction of the alkali with the opal starting material is inhibited and perhaps stopped in the presence of lithium hydroxide. SEM revealed that the morphology of the reaction products on the surface of the reacted opal grains is markedly different invariably. It was concluded that evidence to support the theory of a protective layer exists and that the nature of the layer varies with ion type

  14. A highly reversible room-temperature lithium metal battery based on crosslinked hairy nanoparticles.

    KAUST Repository

    Choudhury, Snehashis; Mangal, Rahul; Agrawal, Akanksha; Archer, Lynden A

    2015-01-01

    Rough electrodeposition, uncontrolled parasitic side-reactions with electrolytes and dendrite-induced short-circuits have hindered development of advanced energy storage technologies based on metallic lithium, sodium and aluminium electrodes. Solid polymer electrolytes and nanoparticle-polymer composites have shown promise as candidates to suppress lithium dendrite growth, but the challenge of simultaneously maintaining high mechanical strength and high ionic conductivity at room temperature has so far been unmet in these materials. Here we report a facile and scalable method of fabricating tough, freestanding membranes that combine the best attributes of solid polymers, nanocomposites and gel-polymer electrolytes. Hairy nanoparticles are employed as multifunctional nodes for polymer crosslinking, which produces mechanically robust membranes that are exceptionally effective in inhibiting dendrite growth in a lithium metal battery. The membranes are also reported to enable stable cycling of lithium batteries paired with conventional intercalating cathodes. Our findings appear to provide an important step towards room-temperature dendrite-free batteries.

  15. A highly reversible room-temperature lithium metal battery based on crosslinked hairy nanoparticles.

    KAUST Repository

    Choudhury, Snehashis

    2015-12-04

    Rough electrodeposition, uncontrolled parasitic side-reactions with electrolytes and dendrite-induced short-circuits have hindered development of advanced energy storage technologies based on metallic lithium, sodium and aluminium electrodes. Solid polymer electrolytes and nanoparticle-polymer composites have shown promise as candidates to suppress lithium dendrite growth, but the challenge of simultaneously maintaining high mechanical strength and high ionic conductivity at room temperature has so far been unmet in these materials. Here we report a facile and scalable method of fabricating tough, freestanding membranes that combine the best attributes of solid polymers, nanocomposites and gel-polymer electrolytes. Hairy nanoparticles are employed as multifunctional nodes for polymer crosslinking, which produces mechanically robust membranes that are exceptionally effective in inhibiting dendrite growth in a lithium metal battery. The membranes are also reported to enable stable cycling of lithium batteries paired with conventional intercalating cathodes. Our findings appear to provide an important step towards room-temperature dendrite-free batteries.

  16. Transcriptional, proteomic, and metabolic responses to lithium in galactose-grown yeast cells

    DEFF Research Database (Denmark)

    Bro, Christoffer; Regenberg, Birgitte; Lagniel, G.

    2003-01-01

    Lithium is highly toxic to yeast when grown in galactose medium mainly because phosphoglucomutase, a key enzyme of galactose metabolism, is inhibited. We studied the global protein and gene expression profiles of Saccharomyces cerevisiae grown in galactose in different time intervals after addition...... of lithium. These results were related to physiological studies where both secreted and intracellular metabolites were determined. Microarray analysis showed that 664 open reading frames were down-regulated and 725 up-regulated in response to addition of lithium. Genes involved in transcription, translation......-regulated proteins were also identified as being changed on the mRNA level. Functional clusters obtained from proteome data were coincident with transcriptional clusters. Physiological studies showed that acetate, glycerol, and glycogen accumulate in response to lithium, as reflected in expression data, whereas...

  17. Lithium - no shortage in supply

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    Over the last five years the face of the lithium industry has changed with new sources coming onto the market. The result of developments in supply is a buyers' market and, in the absence of major consumer developments, all things point to an increasing severely overcrowded market through the turn of the decade. As such lithium is likely to maintain charismatic appeal as developments unfold. This article provides an overview of the world's lithium industry and looks at the various market uses and potential. (author)

  18. Tissue injury after lithium treatment in human and rat postnatal kidney involves glycogen synthase kinase 3β-positive epithelium

    DEFF Research Database (Denmark)

    Kjaersgaard, Gitte; Madsen, Kirsten; Marcussen, Niels

    2012-01-01

    plasma lithium concentration of 1.0 mmol/L. Kidneys from lithium-treated rat pups exhibited dilated distal nephron segments with microcysts. Stereological analysis showed reduced cortex and outer medullary volumes. Lithium increased pGSK-3β and the proliferation marker PCNA protein abundances in cortex...... concentration capacity and diminished outer medullary volume. Histological sections of nephrectomy samples and a biopsy from 3 long-term lithium-treated patients showed multiple cortical microcysts that originated from normally appearing tubules. Microcysts were lined by a cuboidal PCNA-, GSK-3β- and pGSK-3β......It was hypothesized that lithium causes accelerated and permanent injury to the postnatally developing kidney through entry into epithelial cells of the distal nephron and inhibition of glycogen synthase kinase-3β (GSK-3β). GSK-3β immunoreactivity was associated with glomeruli, thick ascending limb...

  19. Effect of a novel amphipathic ionic liquid on lithium deposition in gel polymer electrolytes

    International Nuclear Information System (INIS)

    Choi, Nam-Soon; Koo, Bonjae; Yeon, Jin-Tak; Lee, Kyu Tae; Kim, Dong-Won

    2011-01-01

    Highlights: · Synthesis of a dimeric ionic liquid. · Gel polymer electrolytes providing uniform lithium deposit pathway. · An amphipathic ionic liquid locates at the interface between an electrolyte-rich phase and a polymer matrix in a gel polymer electrolyte. · The presence of PDMITFSI ionic liquid leads to the suppression of dendritic lithium formation on a lithium metal electrode. - Abstract: A novel dimeric ionic liquid based on imidazolium cation and bis(trifluoromethanesulfonyl) imide (TFSI) anion has been synthesized through a metathesis reaction. Its chemical shift values and thermal properties are identified via 1 H nuclear magnetic resonance (NMR) imaging and differential scanning calorimetry (DSC). The effect of the synthesized dimeric ionic liquid on the interfacial resistance of gel polymer electrolytes is described. Differences in the SEM images of lithium electrodes after lithium deposition with and without the 1,1'-pentyl-bis(2,3-dimethylimidazolium) bis(trifluoromethane-sulfonyl)imide (PDMITFSI) ionic liquid in gel polymer electrolytes are clearly discernible. This occurs because the PDMITFSI ionic liquid with hydrophobic moieties and polar groups modulates lithium deposit pathways onto the lithium metal anode. Moreover, high anodic stability for a gel polymer electrolyte with the PDMITFSI ionic liquid was clearly observed.

  20. Small scale lithium-lead/water-interaction studies

    International Nuclear Information System (INIS)

    Kranert, O.; Kottowski, H.

    1991-01-01

    One current concept in fusion blanket design is to utilize water as the coolant and liquid lithium-lead as the breeding/neutron multiplier material. Considering the complex design of the blanket module, it is likely that a water leakage into the liquid alloy may occur due to a tube rupture provoking an intolerable pressure increase in the blanket module. The pressure increase is caused by the combined chemical and thermohydraulic reaction of lithium-lead with water. Experiments which simulate such a transient event are necessary to obtain information which is important for the blanket module design. The interaction has been investigated by conducting small-scale experiments at various injection pressures, alloy- and coolant temperatures. Besides using eutectic Li 17 Pb 83 , Li 7 Pb 2 , lithium and lead have been used. Among other results, the experiments indicate increasing chemical reaction with increasing lithium concentration. At the same time, the chemical reaction inhibits violent thermohydaulic reactions due to the attenuating effect of the hydrogen produced. The preliminary epxerimental results from Li 17 Pb 83 and Li 7 Pb 2 reveal that the pressure- and temperature transients caused by the chemical and thermohydraulic reactions lie within technically manageable limits. (orig.)

  1. Instrinsic defect energies of lithium hydride and lithium deuteride crystals

    International Nuclear Information System (INIS)

    Pandey, R.; Stoneham, A.M.

    1985-01-01

    A theoretical study has been made of the defect structure of lithium hydride and lithium deuteride. A potential model is obtained describing the statics and dynamics of these crystals. Intrinsic defect energies are calculated using the Harwell HADES program which is based on a generalised Mott-Littleton method. The results are in good agreement with the experimental data, and suggest that the vacancy and interstitial migration mechanisms of anions and cations are all comparable in their contribution to ionic conduction. (author)

  2. Equilibrium dissociation pressures of lithium hydride and lithium deuteride

    International Nuclear Information System (INIS)

    Smith, H.M.; Webb, R.E.

    1977-12-01

    The equilibrium dissociation pressures of plateau composition lithium hydride and lithium deuteride have been measured from 450 to 750 0 C. These data were used to derive the relationship of dissociation pressure with temperature over this range and to calculate several thermodynamic properties of these materials. Thermodynamic properties determined included the enthalpy, entropy, and free energy of formation; the enthalpy and entropy of fusion; and the melting points

  3. Stability of prepulse inhibition and habituation of the startle reflex in schizophrenia: a 6-year follow-up study of initially antipsychotic-naive, first-episode schizophrenia patients

    DEFF Research Database (Denmark)

    Hammer, Trine Bjørg; Oranje, Bob; Fagerlund, Birgitte

    2011-01-01

    and is regarded as an endophenotype for schizophrenia. However, reports on the stability of PPI over a longer period of time are lacking, both for patients with schizophrenia and for healthy subjects. The current study examined 25 initially drug-naive, first-episode schizophrenia patients and 23 healthy matched...... not change in patients or controls. The present results show that PPI in drug-naive, first-episode schizophrenia patients can improve significantly over time. As PPI increased in patients over the same period that it decreased in controls, it is likely that the increase was caused by disease-related factors......Deficits in information processing appear to be core features in the pathogenesis of schizophrenia. Prepulse inhibition (PPI) and habituation of the startle reflex are operational measures of early information processing. Impaired PPI in schizophrenia has been replicated in many studies...

  4. Lithium ion behavior in lithium oxide by neutron scattering studies

    International Nuclear Information System (INIS)

    Ishii, Yoshinobu; Morii, Yukio; Katano, Susumu; Watanabe, Hitoshi; Funahashi, Satoru; Ohno, Hideo; Nicklow, R.M.

    1992-01-01

    Lithium ion behavior in lithium oxide, Li 2 O, was studied in the temperature range from 293 K to 1120 K by the High-Resolution Powder Diffractometer (HRPD) installed in the JRR-3M. The diffraction patterns were analyzed with the RIETAN program. At room temperature, the thermal parameters related to the mean square of the amplitude of vibration of the lithium and the oxygen ions were 6 x 10 -21 m 2 and 4 x 10 -21 m 2 , respectively. AT 1120 K the thermal parameter of the lithium ion was 34 x 10 -21 m 2 . On the other hand, the parameter of the oxygen ion was 16 x 10 -21 m 2 . Inelastic neutron scattering studies for the lithium oxide single crystal were also carried out on the triple-axis neutron spectrometers installed at the JRR-2 and the HFIR. Although the value of a phonon energy of a transverse acoustic mode (Σ 3 ) at zone boundary was 30.6 meV at room temperature, this value was decreased to 25.1 meV at 700 K. This large softening was caused by anharmonicity of the crystal potential of lithium oxide. (author)

  5. Design and Characterisation of Solid Electrolytes for All-Solid-State Lithium Batteries

    DEFF Research Database (Denmark)

    Sveinbjörnsson, Dadi Þorsteinn

    The development of all-solid-state lithium batteries, in which the currently used liquid electrolytes are substituted for solid electrolyte materials, could lead to safer batteries offering higher energy densities and longer cycle lifetimes. Designing suitable solid electrolytes with sufficient...... chemical and electrochemical stability, high lithium ion conduction and negligible electronic conduction remains a challenge. The highly lithium ion conducting LiBH4-LiI solid solution is a promising solid electrolyte material. Solid solutions with a LiI content of 6.25%-50% were synthesised by planetary......-rich microstructures during ball milling is found to significantly influence the conductivity of the samples. The long-range diffusion of lithium ions was measured using quasi-elastic neutron scattering. The solid solutions are found to exhibit two-dimensional conduction in the hexagonal plane of the crystal structure...

  6. Delirium during the course of electroconvulsive therapy in a patient on lithium carbonate treatment.

    Science.gov (United States)

    Sadananda, Suneetha Karkada; Narayanaswamy, Janardhanan C; Srinivasaraju, Ravindra; Math, Suresh Bada

    2013-01-01

    The safety of concurrent mood stabilizers during the course of electroconvulsive therapy (ECT) is yet to be clearly established. Delirium with concurrent administration of ECT and lithium carbonate is described in this case report. A 30-year-old male with a past history of significant head injury developed delirium during the course of bitemporal ECT. The clinical picture and the details of the cognitive impairment have been discussed in the report with a focus on relationship between the lithium carbonate administration and the concurrent ECT. Patients with preexisting organic brain damage could be prone to develop the cognitive adverse effect while on a combination of lithium and ECT. Possible interactions between lithium and ECT need further systematic evaluation. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Use of Lithium and Anticonvulsants and the Rate of Chronic Kidney Disease

    DEFF Research Database (Denmark)

    Kessing, Lars Vedel; Gerds, Thomas Alexander; Feldt-Rasmussen, Bo

    2015-01-01

    -stage CKD among individuals exposed to successive prescriptions of lithium, anticonvulsants, or other drugs used for bipolar disorder. DESIGN, SETTING, AND PARTICIPANTS: This is a Danish nationwide population-based study of 2 cohorts. Cohort 1 comprised a randomly selected sample of 1.5 million individuals......IMPORTANCE: Lithium is the main mood stabilizing drug for bipolar disorder. However, it is controversial whether long-term maintenance treatment with lithium or other drugs for bipolar disorder causes chronic kidney disease (CKD). OBJECTIVE: To compare rates of CKD and in particular rates of end...... among all persons who were registered in Denmark on January 1, 1995, all patients with a diagnosis of a single manic episode or bipolar disorder between January 1, 1994, and December 31, 2012 (n =10 591), and all patients exposed to either lithium (n = 26 731) or anticonvulsants (n=420 959). Cohort 2...

  8. Reversible Lithium Neurotoxicity: Review of the Literature

    Science.gov (United States)

    Netto, Ivan

    2012-01-01

    Objective: Lithium neurotoxicity may be reversible or irreversible. Reversible lithium neurotoxicity has been defined as cases of lithium neurotoxicity in which patients recovered without any permanent neurologic sequelae, even after 2 months of an episode of lithium toxicity. Cases of reversible lithium neurotoxicity differ in clinical presentation from those of irreversible lithium neurotoxicity and have important implications in clinical practice. This review aims to study the clinical presentation of cases of reversible lithium neurotoxicity. Data Sources: A comprehensive electronic search was conducted in the following databases: MEDLINE (PubMed), 1950 to November 2010; PsycINFO, 1967 to November 2010; and SCOPUS (EMBASE), 1950 to November 2010. MEDLINE and PsycINFO were searched by using the OvidSP interface. Study Selection: A combination of the following search terms was used: lithium AND adverse effects AND central nervous system OR neurologic manifestation. Publications cited include articles concerned with reversible lithium neurotoxicity. Data Extraction: The age, sex, clinical features, diagnostic categories, lithium doses, serum lithium levels, precipitating factors, and preventive measures of 52 cases of reversible lithium neurotoxicity were extracted. Data Synthesis: Among the 52 cases of reversible lithium neurotoxicity, patients ranged in age from 10 to 80 years and a greater number were female (P = .008). Most patients had affective disorders, schizoaffective disorders, and/or depression (P lithium levels were less than or equal to 1.5 mEq/L (P lithium, underlying brain pathology, abnormal tissue levels, specific diagnostic categories, and elderly populations were some of the precipitating factors reported for reversible lithium neurotoxicity. The preventive measures were also described. Conclusions: Reversible lithium neurotoxicity presents with a certain clinical profile and precipitating factors for which there are appropriate

  9. Reversible lithium neurotoxicity: review of the literatur.

    Science.gov (United States)

    Netto, Ivan; Phutane, Vivek H

    2012-01-01

    Lithium neurotoxicity may be reversible or irreversible. Reversible lithium neurotoxicity has been defined as cases of lithium neurotoxicity in which patients recovered without any permanent neurologic sequelae, even after 2 months of an episode of lithium toxicity. Cases of reversible lithium neurotoxicity differ in clinical presentation from those of irreversible lithium neurotoxicity and have important implications in clinical practice. This review aims to study the clinical presentation of cases of reversible lithium neurotoxicity. A comprehensive electronic search was conducted in the following databases: MEDLINE (PubMed), 1950 to November 2010; PsycINFO, 1967 to November 2010; and SCOPUS (EMBASE), 1950 to November 2010. MEDLINE and PsycINFO were searched by using the OvidSP interface. A combination of the following search terms was used: lithium AND adverse effects AND central nervous system OR neurologic manifestation. Publications cited include articles concerned with reversible lithium neurotoxicity. The age, sex, clinical features, diagnostic categories, lithium doses, serum lithium levels, precipitating factors, and preventive measures of 52 cases of reversible lithium neurotoxicity were extracted. Among the 52 cases of reversible lithium neurotoxicity, patients ranged in age from 10 to 80 years and a greater number were female (P = .008). Most patients had affective disorders, schizoaffective disorders, and/or depression (P lithium levels were less than or equal to 1.5 mEq/L (P lithium, underlying brain pathology, abnormal tissue levels, specific diagnostic categories, and elderly populations were some of the precipitating factors reported for reversible lithium neurotoxicity. The preventive measures were also described. Reversible lithium neurotoxicity presents with a certain clinical profile and precipitating factors for which there are appropriate preventive measures. This recognition will help in early diagnosis and prompt treatment of

  10. Protective film formation on AA2024-T3 aluminum alloy by leaching of lithium carbonate from an organic coating

    NARCIS (Netherlands)

    Liu, Y.; Visser, P.; Zhou, X.; Lyon, S.B.; Hashimoto, T.; Curioni, M.; Gholinia, A.; Thompson, G.E.; Smyth, G.; Gibbon, S.R.; Graham, D.; Mol, J.M.C.; Terryn, H.A.

    2015-01-01

    An investigation into corrosion inhibition properties of a primer coating containing lithium carbonate as corrosion inhibitive pigment for AA2024 aluminum alloy was conducted. It was found that, during neutral salt spray exposure, a protective film of about 0.2 to 1.5 ?m thickness formed within the

  11. Precipitation of lithium in germanium

    International Nuclear Information System (INIS)

    Masaik, M.; Furgolle, B.

    1969-01-01

    The precipitation of Lithium in Germanium was studied. Taking account of the interactions Ga LI, LiO, we calculated the oxygen content in germanium samples from the resistivity measurements. (authors)

  12. FTU cooled liquid lithium upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Iafrati, M., E-mail: matteo.iafrati@enea.it [Associazione Euratom-ENEA sulla Fusione, C. R. Frascati, C. P. 65-00044 Frascati, Rome (Italy); Apicella, M.L.; Boncagni, L. [Associazione Euratom-ENEA sulla Fusione, C. R. Frascati, C. P. 65-00044 Frascati, Rome (Italy); Lyublinski, I. [JSC “RED STAR”, Moscow (Russian Federation); Mazzitelli, G. [Associazione Euratom-ENEA sulla Fusione, C. R. Frascati, C. P. 65-00044 Frascati, Rome (Italy); Vertkov, A. [JSC “RED STAR”, Moscow (Russian Federation)

    2017-04-15

    In the framework of the liquid lithium limiter experiment in Frascati a new auxiliary system was developed in order to provide a better control of the energy fluid vector. The cooled liquid lithium system (CLL) was installed for the first time at the end of 2013, it uses overheated water to heat the lithium and to extract, at the same time, the heat from the metal surface when it gets wet by the plasma. A first version of the system, developed and presented in previous papers, has been modified to optimize the heat flux measurement on the liquid lithium surface. The changes include a new power supply logic for the heating system, new sensors and new read-out electronics compatible with the implementation of a real time control system. The prototype was updated with the aim of achieving a low cost and versatile control system.

  13. Probing quantum effects in lithium

    Science.gov (United States)

    Deemyad, Shanti; Zhang, Rong

    2018-05-01

    In periodic table lithium is the first element immediately after helium and the lightest metal. While fascinating quantum nature of condensed helium is suppressed at high densities, lithium is expected to adapt more quantum solid behavior under compression. This is due to the presence of long range interactions in metallic systems for which an increase in the de-Boer parameter (λ/σ, where σ is the minimum interatomic distance and λ is the de-Broglie wavelength) is predicted at higher densities [1,2]. Physics of dense lithium offers a rich playground to look for new emergent quantum phenomena in condensed matter and has been subject of many theoretical and experimental investigations. In this article recent progress in studying the quantum nature of dense lithium will be discussed.

  14. Lithium isotopic separation: preliminary studies

    International Nuclear Information System (INIS)

    Macedo, Sandra Helena Goulart de

    1998-01-01

    In order to get the separation of natural isotopes of lithium by electrolytic amalgamation, an electrolytic cell with a confined mercury cathode was used to obtain data for the design of a separation stage. The initial work was followed by the design of a moving mercury cathode electrolytic cell and three experiments with six batches stages were performed for the determination of the elementary separation factor. The value obtained, 1.053, was ill agreement: with the specialized literature. It was verified in all experiments that the lithium - 6 isotope concentrated in the amalgam phase and that the lithium - 7 isotope concentrated in the aqueous phase. A stainless-steel cathode for the decomposition of the lithium amalgam and the selective desamalgamation were also studied. In view of the results obtained, a five stages continuous scheme was proposed. (author)

  15. Does lithium protect against dementia?

    DEFF Research Database (Denmark)

    Kessing, Lars Vedel; Forman, Julie Lyng; Andersen, Per Kragh

    2010-01-01

    OBJECTIVE: To investigate whether treatment with lithium in patients with mania or bipolar disorder is associated with a decreased rate of subsequent dementia. METHODS: Linkage of register data on prescribed lithium in all patients discharged from psychiatric health care service with a diagnosis...... exposed to lithium (50.4%), 1,781 to anticonvulsants (36.7%), 4,280 to antidepressants (88.1%), and 3,901 to antipsychotics (80.3%) during the study period. A total of 216 patients received a diagnosis of dementia during follow-up (103.6/10,000 person-years). During the period following the second...... prescription of lithium, the rate of dementia was decreased compared to the period following the first prescription. In contrast, the rates of dementia during multiple prescription periods with anticonvulsants, antidepressants, or antipsychotics, respectively, were not significantly decreased compared...

  16. Optimizing lithium dosing in hemodialysis

    DEFF Research Database (Denmark)

    Bjarnason, N H; Munkner, R; Kampmann, J P

    2006-01-01

    We studied a 62-year-old female hemodialysis patient during initiation and maintenance of lithium carbonate therapy. Three different methods were applied to estimate the regimen: a scenario based on volume of distribution (V(d)), a scenario based on glomerular filtration rate (GFR), and a scenario...... estimates. Furthermore, the maintenance dose estimated from the central compartment (V1) led to plasma concentrations within the therapeutic range. Thus, a regimen where 12.2 mmol lithium was given after each hemodialysis session resulted in stable between-dialysis plasma lithium concentrations...... in this patient with no residual kidney function. We did not observe adverse effects related to this regimen, which was monitored from 18 days to 8 months of therapy, and the patient experienced relief from her severe depressive disorder. In conclusion, dialysis patients may be treated with lithium administrated...

  17. Self-pinched lithium beam transport experiments on SABRE

    International Nuclear Information System (INIS)

    Hanson, D.L.; Olson, C.L.; Poukey, J.W.; Shokir, I.; Cuneo, M.E.; Menge, P.R.; Johnston, R.R.; Welch, D.R.

    1996-01-01

    Self-pinched transport of ion beams has many advantages for ion-driven ICF applications involving high yield and energy production. The authors are currently preparing for a self-pinched lithium beam transport experiment on the SABRE accelerator. There are three transport elements that must eventually be demonstrated: (1) efficient lithium beam generation and ballistic transport to a focus at the self-pinched transport channel entrance; (2) self-pinched transport in the channel, requiring optimized injection conditions and gas breakdown; and (3) self-pinched transport of the equilibrated beam from the channel into free space, with associated aiming and stability considerations. In the present experiment, a hollow annular lithium beam from an applied-B extraction ion diode will be focused to small radius (r ≤ 2 cm) in a 60 cm long ballistic focus section containing argon gas at a pressure of a few Torr. The self-pinched transport channel will contain a low pressure background gas of 10--40 mTorr argon to allow sufficient net current to confine the beam for long distance transport. IPROP simulations are in progress to optimize the design of the ballistic and self-pinched transport sections. Progress on preparation of this lithium self-pinched transport experiment, including a discussion of transport system design, important gas breakdown issues, and diagnostics, will be presented

  18. Stimulating retinal blood vessel protection with hypoxia-inducible factor stabilization: identification of novel small-molecule hydrazones to inhibit hypoxia-inducible factor prolyl hydroxylase (an American Ophthalmological Society thesis).

    Science.gov (United States)

    Sears, Jonathan E; Hoppe, George

    2013-09-01

    To discover novel small molecules that inhibit hypoxia-inducible factor (HIF) prolyl hydroxylase (PHD), a key enzyme that regulates the posttranslational stability and hence activity of HIF. NIH3T3 cell line stably transfected with firefly luciferase under a HIF-1-inducible promoter was used to screen a Chembridge library of 34,000 small molecules of molecular weight 250 to 550 Da. Positive hits were considered at 4.5-fold higher luminescence than control. Selected compounds were validated in vitro. The most effective dose was then used to treat mice expressing firefly luciferase fused to the oxygen-dependent degradation domain (lucODD) in order to determine the location of the receptor for systemic treatment with small-molecule HIF PHD inhibitors. Twenty-three novel small molecules were discovered, the majority of which were hydrazones and hydrazines. Of the 23 compounds, each had different selectivity for expression of erythropoietin or vascular endothelial growth factor, two angiogenic, HIF-regulated gene products. In addition, each showed different selectivity for hepatocytes or kidney, or both or neither, when injected intraperitoneally in an in vivo reporter gene assay. The discovery of multiple small molecules that inhibit HIF PHD identifies new reagents to develop strategies to prevent the degradation of HIF by its selective PHD. These molecules are novel hypoxia mimetics that may provide new strategies to protect retinovasculature from hyperoxia.

  19. Kleptomania, mood disorder and lithium

    Directory of Open Access Journals (Sweden)

    Fábio Lopes Rocha

    1992-12-01

    Full Text Available Kleptomania has been found in association with major depression in a fairly large number of reports in recent years. We describe a patient with concurrent DSM-III-R Bipolar Mood Disorder and Kleptomania, whose symptoms remitted completely, apparently in response to lithium therapy, which raised the possibility that pharmacological treatment may benefit kleptomania. Further studies are needed to establish the possible relationship between kleptomania, mood disorders and lithium therapy.

  20. The lithium air battery fundamentals

    CERN Document Server

    Imanishi, Nobuyuki; Bruce, Peter G

    2014-01-01

    Lithium air rechargeable batteries are the best candidate for a power source for electric vehicles, because of their high specific energy density. In this book, the history, scientific background, status and prospects of the lithium air system are introduced by specialists in the field. This book will contain the basics, current statuses, and prospects for new technologies. This book is ideal for those interested in electrochemistry, energy storage, and materials science.

  1. Kleptomania, mood disorder and lithium

    OpenAIRE

    Rocha, Fábio Lopes; Rocha, Maria Elizabete Guimarães

    1992-01-01

    Kleptomania has been found in association with major depression in a fairly large number of reports in recent years. We describe a patient with concurrent DSM-III-R Bipolar Mood Disorder and Kleptomania, whose symptoms remitted completely, apparently in response to lithium therapy, which raised the possibility that pharmacological treatment may benefit kleptomania. Further studies are needed to establish the possible relationship between kleptomania, mood disorders and lithium therapy. Os ...

  2. Kleptomania, mood disorder and lithium

    OpenAIRE

    Rocha,Fábio Lopes; Rocha,Maria Elizabete Guimarães

    1992-01-01

    Kleptomania has been found in association with major depression in a fairly large number of reports in recent years. We describe a patient with concurrent DSM-III-R Bipolar Mood Disorder and Kleptomania, whose symptoms remitted completely, apparently in response to lithium therapy, which raised the possibility that pharmacological treatment may benefit kleptomania. Further studies are needed to establish the possible relationship between kleptomania, mood disorders and lithium therapy.

  3. Modeling the Lithium Ion Battery

    Science.gov (United States)

    Summerfield, John

    2013-01-01

    The lithium ion battery will be a reliable electrical resource for many years to come. A simple model of the lithium ions motion due to changes in concentration and voltage is presented. The battery chosen has LiCoO[subscript 2] as the cathode, LiPF[subscript 6] as the electrolyte, and LiC[subscript 6] as the anode. The concentration gradient and…

  4. Analysis of lithium/thionyl chloride batteries

    Science.gov (United States)

    Jain, Mukul

    The lithium/thionyl chloride battery (Li/SOClsb2) has received considerable attention as a primary energy source due to its high energy density, high operating cell voltage, voltage stability over 95% of the discharge, large operating temperature range (-55sp°C to 70sp°C), long storage life, and low cost of materials. In this dissertation, a one-dimensional mathematical model of a spirally wound lithium/thionyl chloride primary battery has been developed. Mathematical models can be used to tailor a battery design to a specific application, perform accelerated testing, and reduce the amount of experimental data required to yield efficient, yet safe cells. The Model was used in conjunction with the experimental data for parameter estimation and to obtain insights into the fundamental processes occurring in the battery. The diffusion coefficient and the kinetic parameters for the reactions at the anode and the cathode are obtained as a function of temperature by fitting the simulated capacity and average cell voltage to experimental data over a wide range of temperatures (-55 to 49sp°C) and discharge loads (10 to 250 ohms). The experiments were performed on D-sized, cathode-limited, spirally wound lithium/thionyl chloride cells at Sandia National Laboratories. The model is also used to study the effect of cathode thickness and current and temperature pulsing on the cell capacity. Thionyl chloride reduction in the porous cathode is accompanied with a volume reduction. The material balance used previously in one-dimensional mathematical models of porous electrodes is invalid when the volume occupied by the reactants and the products is not equal. It is shown here how the material balance has to be modified to either account for the loss in volume, or to account for the inflow of electrolyte from the header into the active pores. The one-dimensional mathematical model of lithium/thionyl chloride primary battery is used to illustrate the effect of this material balance

  5. Moderate Autophagy Inhibits Vascular Smooth Muscle Cell Senescence to Stabilize Progressed Atherosclerotic Plaque via the mTORC1/ULK1/ATG13 Signal Pathway

    Directory of Open Access Journals (Sweden)

    Zhenli Luo

    2017-01-01

    Full Text Available In order to investigate the effects of autophagy induced by rapamycin in the development of atherosclerosis plaque we established murine atherosclerosis model which was induced in ApoE−/− mice by high fat and cholesterol diet (HFD for 16 weeks. Rapamycin and 3-Methyladenine (MA were used as autophagy inducer and inhibitor respectively. The plaque areas in aortic artery were detected with HE and Oil Red O staining. Immunohistochemical staining were applied to investigate content of plaque respectively. In contrast to control and 3-MA groups, rapamycin could inhibit atherosclerosis progression. Rapamycin was able to increase collagen content and a-SMA distribution relatively, as well as decrease necrotic core area. Then we used MOVAS and culture with ox-LDL for 72 h to induce smooth muscle-derived foam cell model in vitro. Rapamycin and 3-MA were cultured together respectively. Flow cytometry assay and SA-β-Gal staining experiments were performed to detect survival and senescence of VSMCs. Western blot analysis were utilized to analyze the levels of protein expression. We found that rapamycin could promote ox-LDL-induced VSMCs autophagy survival and alleviate cellular senescence, in comparison to control and 3-MA groups. Western blot analysis showed that rapamycin could upregulate ULK1, ATG13 and downregulate mTORC1 and p53 protein expression.

  6. Lithium Oxysilicate Compounds Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Apblett, Christopher A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Coyle, Jaclyn [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-09-01

    In this study, the structure and composition of lithium silicate thin films deposited by RF magnetron co-sputtering is investigated. Five compositions ranging from Li2Si2O5 to Li8SiO6 were confirmed by inductively coupled plasma-optical emission spectroscopy (ICP-OES) and structure analysis on the evolution of non-bridging oxygens in the thin films was conducted with fourier transform infrared (FTIR) spectroscopy. It was found that non-bridging oxygens (NBOs) increased as the silicate network breaks apart with increasing lithium content which agrees with previous studies on lithium silicates. Thin film impurities were examined with x-ray photoelectron spectroscopy (XPS) and time of flight secondary ion mass spectroscopy (TOFSIMS) and traced back to target synthesis. This study utilizes a unique synthesis technique for lithium silicate thin films and can be referred to in future studies on the ionic conductivity of lithium silicates formed on the surface of silicon anodes in lithium ion batteries.

  7. Extracorporeal Treatment for Lithium Poisoning

    DEFF Research Database (Denmark)

    Decker, Brian S; Goldfarb, David S; Dargan, Paul I

    2015-01-01

    The Extracorporeal Treatments in Poisoning Workgroup was created to provide evidence-based recommendations on the use of extracorporeal treatments in poisoning. Here, the EXTRIP workgroup presents its recommendations for lithium poisoning. After a systematic literature search, clinical and toxico......The Extracorporeal Treatments in Poisoning Workgroup was created to provide evidence-based recommendations on the use of extracorporeal treatments in poisoning. Here, the EXTRIP workgroup presents its recommendations for lithium poisoning. After a systematic literature search, clinical...... extraction of patient-level data. The workgroup concluded that lithium is dialyzable (Level of evidence=A) and made the following recommendations: Extracorporeal treatment is recommended in severe lithium poisoning (1D). Extracorporeal treatment is recommended if kidney function is impaired and the [Li...... treatment (1D), but continuous RRT is an acceptable alternative (1D). The workgroup supported the use of extracorporeal treatment in severe lithium poisoning. Clinical decisions on when to use extracorporeal treatment should take into account the [Li(+)], kidney function, pattern of lithium toxicity...

  8. Lithium-Excess Research of Cathode Material Li2MnTiO4 for Lithium-Ion Batteries

    Directory of Open Access Journals (Sweden)

    Xinyi Zhang

    2015-11-01

    Full Text Available Lithium-excess and nano-sized Li2+xMn1−x/2TiO4 (x = 0, 0.2, 0.4 cathode materials were synthesized via a sol-gel method. The X-ray diffraction (XRD experiments indicate that the obtained main phases of Li2.0MnTiO4 and the lithium-excess materials are monoclinic and cubic, respectively. The scanning electron microscope (SEM images show that the as-prepared particles are well distributed and the primary particles have an average size of about 20–30 nm. The further electrochemical tests reveal that the charge-discharge performance of the material improves remarkably with the lithium content increasing. Particularly, the first discharging capacity at the current of 30 mA g−1 increases from 112.2 mAh g−1 of Li2.0MnTiO4 to 187.5 mAh g−1 of Li2.4Mn0.8TiO4. In addition, the ex situ XRD experiments indicate that the monoclinic Li2MnTiO4 tends to transform to an amorphous state with the extraction of lithium ions, while the cubic Li2MnTiO4 phase shows better structural reversibility and stability.

  9. Lithium-Excess Research of Cathode Material Li₂MnTiO₄ for Lithium-Ion Batteries.

    Science.gov (United States)

    Zhang, Xinyi; Yang, Le; Hao, Feng; Chen, Haosen; Yang, Meng; Fang, Daining

    2015-11-20

    Lithium-excess and nano-sized Li 2+x Mn₁ - x /2 TiO₄ ( x = 0, 0.2, 0.4) cathode materials were synthesized via a sol-gel method. The X-ray diffraction (XRD) experiments indicate that the obtained main phases of Li 2.0 MnTiO₄ and the lithium-excess materials are monoclinic and cubic, respectively. The scanning electron microscope (SEM) images show that the as-prepared particles are well distributed and the primary particles have an average size of about 20-30 nm. The further electrochemical tests reveal that the charge-discharge performance of the material improves remarkably with the lithium content increasing. Particularly, the first discharging capacity at the current of 30 mA g -1 increases from 112.2 mAh g -1 of Li 2.0 MnTiO₄ to 187.5 mAh g -1 of Li 2.4 Mn 0.8 TiO₄. In addition, the ex situ XRD experiments indicate that the monoclinic Li₂MnTiO₄ tends to transform to an amorphous state with the extraction of lithium ions, while the cubic Li₂MnTiO₄ phase shows better structural reversibility and stability.

  10. MnO/N–C anode materials for lithium-ion batteries prepared by cotton-templated combustion synthesis

    Directory of Open Access Journals (Sweden)

    Cheng-Gong Han

    2017-10-01

    Full Text Available We herein report a facile one-pot synthesis of MnO/N-doped carbon (N–C composites via a sustainable cotton-template glycine–nitrate combustion synthesis to yield superior anode materials for Li ion batteries. MnO nanoparticles with several nanometers were well-embedded in a porous N-doped carbon matrix. It displays the unique characteristics, including the shortened Li+-ion transport path, increased contact areas with the electrolyte solution, inhibited volume changes and agglomeration of nanoparticles, as well as good conductivity and structural stability during the cycling process, thereby benefiting the superior cycling performance and rate capability. This favorable electrochemical performance of obtained MnO/N–C composites via a one-pot biomass-templated glycine/nitrate combustion synthesis renders the suitability as anode materials for Li-ion batteries. Keywords: Biomass, Cotton, Manganese oxide, Lithium ion battery, Porous carbon

  11. Embedding ultrafine ZnSnO3 nanoparticles into reduced graphene oxide composites as high-performance electrodes for lithium ion batteries

    Science.gov (United States)

    Ma, Yuhang; Jiang, Ranran; Li, Dan; Dong, Yutao; Liu, Yushan; Zhang, Jianmin

    2018-05-01

    Ultrafine ZnSnO3 nanoparticles, with an average diameter of 45 nm, homogeneously grown on reduced graphene oxide (rGO) have been successfully fabricated via methods of low temperature coprecipitation, colloid electrostatic self-assembly, and hydrothermal treatment. The uniformly distributed ZnSnO3 nanocrystals could inhibit the restacking of rGO sheets. In turn, the existence of rGO could hinder the growth and aggregation of ZnSnO3 nanoparticles in the synthesis process, increase the conductivity of the composite, and buffer the volume expansion of the ZnSnO3 nanocrystals upon lithium ion insertion and extraction. The obtained ZnSnO3/rGO exhibited superior cycling stability with a discharge/charge capacity of 718/696 mA h g-1 after 100 cycles at a current density of 0.1 A g-1.

  12. Psychopharmacological treatment with lithium and antiepileptic drugs

    DEFF Research Database (Denmark)

    Licht, R W; Vestergaard, P; Kessing, L V

    2003-01-01

    A subcommittee under the Danish Psychiatric Association and the Child and Adolescent Psychiatric Association in Denmark have recently developed national guidelines for the psychopharmacological treatment with lithium and antiepileptic drugs, and the present translation aims at contributing...... to the international discussion on the development of proper guidelines for the treatment of bipolar disorder. Among the antiepileptic drugs, the report deals with valproate, carbamazepine and lamotrigine and to a lesser extent with oxcarbazepine, gabapentin and topiramate. The various drugs will be reviewed......, outlining the scientific evidence for mood-stabilizing properties and discussing major side effects, the most important interactions with other drugs and practical use. Special considerations during pregnancy and lactation, during treatment of children and adolescents and during treatment of the elderly...

  13. Lithium availability and future production outlooks

    International Nuclear Information System (INIS)

    Vikström, Hanna; Davidsson, Simon; Höök, Mikael

    2013-01-01

    Highlights: • Review of reserves, resources and key properties of 112 lithium deposits. • Discussions of widely diverging results from recent lithium supply estimates. • Forecasting future lithium production by resource-constrained models. • Exploring implications for future deployment of electric cars. - Abstract: Lithium is a highly interesting metal, in part due to the increasing interest in lithium-ion batteries. Several recent studies have used different methods to estimate whether the lithium production can meet an increasing demand, especially from the transport sector, where lithium-ion batteries are the most likely technology for electric cars. The reserve and resource estimates of lithium vary greatly between different studies and the question whether the annual production rates of lithium can meet a growing demand is seldom adequately explained. This study presents a review and compilation of recent estimates of quantities of lithium available for exploitation and discusses the uncertainty and differences between these estimates. Also, mathematical curve fitting models are used to estimate possible future annual production rates. This estimation of possible production rates are compared to a potential increased demand of lithium if the International Energy Agency’s Blue Map Scenarios are fulfilled regarding electrification of the car fleet. We find that the availability of lithium could in fact be a problem for fulfilling this scenario if lithium-ion batteries are to be used. This indicates that other battery technologies might have to be implemented for enabling an electrification of road transports

  14. Wetting properties of liquid lithium on lithium compounds

    Energy Technology Data Exchange (ETDEWEB)

    Krat, S.A., E-mail: stepan.krat@gmail.com [Center for Plasma Material Interactions, Department of Nuclear, Plasma, and Radiological Engineering, University Illinois at Urbana-Champaign, Urbana (United States); National Research Nuclear University MEPhI, Moscow (Russian Federation); Popkov, A.S. [Center for Plasma Material Interactions, Department of Nuclear, Plasma, and Radiological Engineering, University Illinois at Urbana-Champaign, Urbana (United States); National Research Nuclear University MEPhI, Moscow (Russian Federation); Gasparyan, Yu. M.; Pisarev, A.A. [National Research Nuclear University MEPhI, Moscow (Russian Federation); Fiflis, Peter; Szott, Matthew; Christenson, Michael; Kalathiparambil, Kishor; Ruzic, David N. [Center for Plasma Material Interactions, Department of Nuclear, Plasma, and Radiological Engineering, University Illinois at Urbana-Champaign, Urbana (United States)

    2017-04-15

    Highlights: • Contact angles of liquid lithium and Li{sub 3}N, Li{sub 2}O, Li{sub 2}CO{sub 3} were measured. • Liquid lithium wets lithium compounds at relatively low temperatures: Li{sub 3}N at 257 °C, Li{sub 2}O at 259 °C, Li{sub 2}CO{sub 3} at 323 °C. • Li wets Li{sub 2}O and Li{sub 3}N better than previously measured fusion-relevant materials (W, Mo, Ta, TZM, stainless steel). • Li wets Li{sub 2}CO{sub 3} better than most previously measured fusion-relevant materials (W, Mo, Ta). - Abstract: Liquid metal plasma facing components (LMPFC) have shown a potential to supplant solid plasma facing components materials in the high heat flux regions of magnetic confinement fusion reactors due to the reduction or elimination of concerns over melting, wall damage, and erosion. To design a workable LMPFC, one must understand how liquid metal interacts with solid underlying structures. Wetting is an important factor in such interaction, several designs of LMPFC require liquid metal to wet the underlying solid structures. The wetting of lithium compounds (lithium nitride, oxide, and carbonate) by 200 °C liquid lithium at various surface temperature from 230 to 330 °C was studied by means of contact angle measurements. Wetting temperatures, defined as the temperature above which the contact angle is less than 90°, were measured. The wetting temperature was 257 °C for nitride, 259 °C for oxide, and 323 °C for carbonate. Surface tensions of solid lithium compounds were calculated from the contact angle measurements.

  15. Grain Boundary Engineering of Lithium-Ion-Conducting Lithium Lanthanum Titanate for Lithium-Air Batteries

    Science.gov (United States)

    2016-01-01

    Titanate for Lithium-Air Batteries by Victoria L Blair, Claire V Weiss Brennan, and Joseph M Marsico Approved for public...Air Batteries by Victoria L Blair and Claire V Weiss Brennan Weapons and Materials Research Directorate, ARL Joseph M Marsico Rochester...Titanate for Lithium-Air Batteries 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Victoria L Blair, Claire V

  16. Complexing and analysis of cation selectivity of neutral phosphoryl-containing tripodaud of tris((0-diphenyl-phosphinoylmethyl)phenoxyethyl)amine to lithium sodium and potassium, in acetonitrile. Lithium selectivity and polymeclear compleses

    International Nuclear Information System (INIS)

    Baulin, V.E.; Solov'ev, V.P.; Strakhova, N.N.; Kazachenko, V.P.

    1996-01-01

    A new phosphoryl-containing tripodand-tris-[(0-diphenyl-phosphinoylmethyl)phenoxyethyl] amine-was synthesized. Constants of stability, enthalpy and entropy of reactions of tripodond complexing with lithium, sodium, potassium thiocyanates in acetonitrile at 298 k were determined. Investigation of complexing by the methods of calorimetry, 7 Li and 23 Na NMR, mass-spectrometry enabled to conclude that ligand formed polynuclear complexes with lithium thiocyanate of 2/1 and 3/1 composition along with 1/1 complex. High selectivity of podand to lithium cation in acetonitrile was conditioned by formation of polynuclear complexes. Refs. 29, figs. 3

  17. Chronic Microdose Lithium Treatment Prevented Memory Loss and Neurohistopathological Changes in a Transgenic Mouse Model of Alzheimer's Disease.

    Science.gov (United States)

    Nunes, Marielza Andrade; Schöwe, Natalia Mendes; Monteiro-Silva, Karla Cristina; Baraldi-Tornisielo, Ticiana; Souza, Suzzanna Ingryd Gonçalves; Balthazar, Janaina; Albuquerque, Marilia Silva; Caetano, Ariadiny Lima; Viel, Tania Araujo; Buck, Hudson Sousa

    2015-01-01

    The use of lithium is well established in bipolar disorders and the benefits are being demonstrated in neurodegenerative disorders. Recently, our group showed that treatment with microdose lithium stabilized the cognitive deficits observed in Alzheimer's disease (AD) patients. In order to verify the lithium microdose potential in preventing the disease development, the aim of this work was to verify the effects of chronic treatment with microdose lithium given before and after the appearance of symptoms in a mouse model of a disease similar to AD. Transgenic mice (Cg-Tg(PDGFB-APPSwInd)20Lms/2J) and their non-transgenic litter mate genetic controls were treated with lithium carbonate (0.25mg/Kg/day in drinking water) for 16 or 8 months starting at two and ten months of age, respectively [corrected]. Similar groups were treated with water. At the end of treatments, both lithium treated transgenic groups and non-transgenic mice showed no memory disruption, different from what was observed in the water treated transgenic group. Transgenic mice treated with lithium since two months of age showed decreased number of senile plaques, no neuronal loss in cortex and hippocampus and increased BDNF density in cortex, when compared to non-treated transgenic mice. It is suitable to conclude that these data support the use of microdose lithium in the prevention and treatment of Alzheimer's disease, once the neurohistopathological characteristics of the disease were modified and the memory of transgenic animals was maintained.

  18. Chronic Microdose Lithium Treatment Prevented Memory Loss and Neurohistopathological Changes in a Transgenic Mouse Model of Alzheimer's Disease.

    Directory of Open Access Journals (Sweden)

    Marielza Andrade Nunes

    Full Text Available The use of lithium is well established in bipolar disorders and the benefits are being demonstrated in neurodegenerative disorders. Recently, our group showed that treatment with microdose lithium stabilized the cognitive deficits observed in Alzheimer's disease (AD patients. In order to verify the lithium microdose potential in preventing the disease development, the aim of this work was to verify the effects of chronic treatment with microdose lithium given before and after the appearance of symptoms in a mouse model of a disease similar to AD. Transgenic mice (Cg-Tg(PDGFB-APPSwInd20Lms/2J and their non-transgenic litter mate genetic controls were treated with lithium carbonate (0.25mg/Kg/day in drinking water for 16 or 8 months starting at two and ten months of age, respectively [corrected]. Similar groups were treated with water. At the end of treatments, both lithium treated transgenic groups and non-transgenic mice showed no memory disruption, different from what was observed in the water treated transgenic group. Transgenic mice treated with lithium since two months of age showed decreased number of senile plaques, no neuronal loss in cortex and hippocampus and increased BDNF density in cortex, when compared to non-treated transgenic mice. It is suitable to conclude that these data support the use of microdose lithium in the prevention and treatment of Alzheimer's disease, once the neurohistopathological characteristics of the disease were modified and the memory of transgenic animals was maintained.

  19. Prevention of Memory Impairment and Neurotrophic Factors Increased by Lithium in Wistar Rats Submitted to Pneumococcal Meningitis Model

    Directory of Open Access Journals (Sweden)

    Lutiana R. Simões

    2017-01-01

    Full Text Available The aim of this study was to investigate the effects of lithium on brain-derived neurotrophic factor (BDNF, nerve growth factor (NGF, and glial cell line-derived neurotrophic factor (GDNF expression in the hippocampus and on memory in experimental pneumococcal meningitis. The mood-stabilizer lithium is known as a neuroprotective agent with many effects on the brain. In this study, animals received either artificial cerebrospinal fluid or Streptococcus pneumoniae suspension at a concentration of 5 × 109 CFU/mL. Eighteen hours after induction, all animals received ceftriaxone. The animals received saline or lithium (47.5 mg/kg or tamoxifen (1 mg/kg as adjuvant treatment, and they were separated into six groups: control/saline, control/lithium, control/tamoxifen, meningitis/saline, meningitis/lithium, and meningitis/tamoxifen. Ten days after meningitis induction, animals were subjected to open-field habituation and the step-down inhibitory avoidance tasks. Immediately after these tasks, the animals were killed and their hippocampus was removed to evaluate the expression of BDNF, NGF, and GDNF. In the meningitis group, treatment with lithium and tamoxifen resulted in improvement in memory. Meningitis group showed decreased expression of BDNF and GDNF in the hippocampus while lithium reestablished the neurotrophin expression. Lithium was able to prevent memory impairment and reestablishes hippocampal neurotrophin expression in experimental pneumococcal meningitis.

  20. High performance discharges in the Lithium Tokamak eXperiment with liquid lithium walls

    International Nuclear Information System (INIS)

    Schmitt, J. C.; Bell, R. E.; Boyle, D. P.; Esposti, B.; Kaita, R.; Kozub, T.; LeBlanc, B. P.; Lucia, M.; Maingi, R.; Majeski, R.; Merino, E.; Punjabi-Vinoth, S.; Tchilingurian, G.; Capece, A.; Koel, B.; Roszell, J.; Biewer, T. M.; Gray, T. K.; Kubota, S.; Beiersdorfer, P.

    2015-01-01

    The first-ever successful operation of a tokamak with a large area (40% of the total plasma surface area) liquid lithium wall has been achieved in the Lithium Tokamak eXperiment (LTX). These results were obtained with a new, electron beam-based lithium evaporation system, which can deposit a lithium coating on the limiting wall of LTX in a five-minute period. Preliminary analyses of diamagnetic and other data for discharges operated with a liquid lithium wall indicate that confinement times increased by 10× compared to discharges with helium-dispersed solid lithium coatings. Ohmic energy confinement times with fresh lithium walls, solid and liquid, exceed several relevant empirical scaling expressions. Spectroscopic analysis of the discharges indicates that oxygen levels in the discharges limited on liquid lithium walls were significantly reduced compared to discharges limited on solid lithium walls. Tokamak operations with a full liquid lithium wall (85% of the total plasma surface area) have recently started

  1. High performance discharges in the Lithium Tokamak eXperiment with liquid lithium walls

    Energy Technology Data Exchange (ETDEWEB)

    Schmitt, J. C.; Bell, R. E.; Boyle, D. P.; Esposti, B.; Kaita, R.; Kozub, T.; LeBlanc, B. P.; Lucia, M.; Maingi, R.; Majeski, R.; Merino, E.; Punjabi-Vinoth, S.; Tchilingurian, G. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States); Capece, A.; Koel, B.; Roszell, J. [Princeton University, Princeton, New Jersey 08544 (United States); Biewer, T. M.; Gray, T. K. [Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Kubota, S. [University of California at Los Angeles, Los Angeles, California 90095 (United States); Beiersdorfer, P. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); and others

    2015-05-15

    The first-ever successful operation of a tokamak with a large area (40% of the total plasma surface area) liquid lithium wall has been achieved in the Lithium Tokamak eXperiment (LTX). These results were obtained with a new, electron beam-based lithium evaporation system, which can deposit a lithium coating on the limiting wall of LTX in a five-minute period. Preliminary analyses of diamagnetic and other data for discharges operated with a liquid lithium wall indicate that confinement times increased by 10× compared to discharges with helium-dispersed solid lithium coatings. Ohmic energy confinement times with fresh lithium walls, solid and liquid, exceed several relevant empirical scaling expressions. Spectroscopic analysis of the discharges indicates that oxygen levels in the discharges limited on liquid lithium walls were significantly reduced compared to discharges limited on solid lithium walls. Tokamak operations with a full liquid lithium wall (85% of the total plasma surface area) have recently started.

  2. All-solid-state lithium-sulfur battery based on a nanoconfined LiBH4 electrolyte

    DEFF Research Database (Denmark)

    Das, Supti; Ngene, Peter; Norby, Poul

    2016-01-01

    In this work we characterize all-solid-state lithium-sulfur batteries based on nano-confined LiBH4 in mesoporous silica as solid electrolytes. The nano-confined LiBH4 has fast ionic lithium conductivity at room temperature, 0.1 mScm-1, negligible electronic conductivity and its cationic transport...... number (t+ = 0.96), close to unity, demonstrates a purely cationic conductor. The electrolyte has an excellent stability against lithium metal. The behavior of the batteries is studied by cyclic voltammetry and repeated charge/discharge cycles in galvanostatic conditions. The batteries show very good...

  3. Review of the Remaining Useful Life Prognostics of Vehicle Lithium-Ion Batteries Using Data-Driven Methodologies

    Directory of Open Access Journals (Sweden)

    Lifeng Wu

    2016-05-01

    Full Text Available Lithium-ion batteries are the primary power source in electric vehicles, and the prognosis of their remaining useful life is vital for ensuring the safety, stability, and long lifetime of electric vehicles. Accurately establishing a mechanism model of a vehicle lithium-ion battery involves a complex electrochemical process. Remaining useful life (RUL prognostics based on data-driven methods has become a focus of research. Current research on data-driven methodologies is summarized in this paper. By analyzing the problems of vehicle lithium-ion batteries in practical applications, the problems that need to be solved in the future are identified.

  4. Detection of endogenous lithium in neuropsychiatric disorders--a model for biological transmutation.

    Science.gov (United States)

    Kurup, Ravi Kumar; Kurup, Parameswara Achutha

    2002-01-01

    The human hypothalamus produces an endogenous membrane Na(+)-K(+) ATPase inhibitor, digoxin. A digoxin induced model of cellular/neuronal quantal state and perception has been described by the authors. Biological transmutation has been described in microbial systems in the quantal state. The study focuses on the plasma levels of digoxin, RBC membrane Na(+)-K(+) ATPase activity, plasma levels of magnesium and lithium in neuropsychiatric and systemic disorders. Inhibition of RBC membrane Na(+)-K(+) ATPase activity was observed in most cases along with an increase in the levels of serum digoxin and lithium and a decrease in the level of serum Mg(++). The generation of endogenous lithium would obviously occur due to biological transmutation from magnesium. Digoxin and lithium together can produce added membrane Na(+)-K(+) ATPase inhibition. The role of membrane Na(+)-K(+) ATPase inhibition in the pathogenesis of neuropsychiatric and systemic disorders is discussed. The inhibition of membrane Na(+)-K(+) ATPase can contribute to an increase in intracellular calcium and a decrease in magnesium, which can result in a defective neurotransmitter transport mechanism, mitochondrial dysfunction and apoptosis, defective golgi body function and protein processing dysfunction, immune dysfunction and oncogenesis. Copyright 2002 John Wiley & Sons, Ltd.

  5. Nanostructured Electrolytes for Stable Lithium Electrodeposition in Secondary Batteries

    KAUST Repository

    Tu, Zhengyuan

    2015-11-17

    of ceramic electrolytes that meet the modulus and stability requirements have to date proven to be insurmountable obstacles to progress. In this Account, we first review recent advances in continuum theory for dendrite growth and proliferation during metal electrodeposition. We show that the range of options for designing electrolytes and separators that stabilize electrodeposition is now substantially broader than one might imagine from previous literature accounts. In particular, separators designed at the nanoscale to constrain ion transport on length scales below a theory-defined cutoff, and structured electrolytes in which a fraction of anions are permanently immobilized to nanoparticles, to a polymer network or ceramic membrane are considered particularly promising for their ability to stabilize electrodeposition of lithium metal without compromising ionic conductivity or room temperature battery operation. We also review recent progress in designing surface passivation films for metallic lithium that facilitate fast deposition of lithium at the electrolyte/electrode interface and at the same time protect the lithium from parasitic side reactions with liquid electrolytes. A promising finding from both theory and experiment is that simple film-forming halide salt additives in a conventional liquid electrolyte can substantially extend the lifetime and safety of LMBs.

  6. Nanostructured electrolytes for stable lithium electrodeposition in secondary batteries.

    Science.gov (United States)

    Tu, Zhengyuan; Nath, Pooja; Lu, Yingying; Tikekar, Mukul D; Archer, Lynden A

    2015-11-17

    modulus and stability requirements have to date proven to be insurmountable obstacles to progress. In this Account, we first review recent advances in continuum theory for dendrite growth and proliferation during metal electrodeposition. We show that the range of options for designing electrolytes and separators that stabilize electrodeposition is now substantially broader than one might imagine from previous literature accounts. In particular, separators designed at the nanoscale to constrain ion transport on length scales below a theory-defined cutoff, and structured electrolytes in which a fraction of anions are permanently immobilized to nanoparticles, to a polymer network or ceramic membrane are considered particularly promising for their ability to stabilize electrodeposition of lithium metal without compromising ionic conductivity or room temperature battery operation. We also review recent progress in designing surface passivation films for metallic lithium that facilitate fast deposition of lithium at the electrolyte/electrode interface and at the same time protect the lithium from parasitic side reactions with liquid electrolytes. A promising finding from both theory and experiment is that simple film-forming halide salt additives in a conventional liquid electrolyte can substantially extend the lifetime and safety of LMBs.

  7. Experimental study of lithium free-surface flow for IFMIF target design

    International Nuclear Information System (INIS)

    Kondo, H.; Fujisato, A.; Yamaoka, N.; Inoue, S.; Miyamoto, S.; Iida, T.; Nakamura, H.; Ida, M.; Matushita, I.; Muroga, T.; Horiike, H.

    2006-01-01

    Lithium free-surface flow experiments to verify the design of IFMIF target have been carried out at Osaka University. The present report summarizes experimental results of surface phenomena, and cavitation characteristics of the loop, so as to try to apply these results to design parameters. Waves on the lithium flow surface is similar to that on water, and can be predicted by a linear stability theory. The wave amplitude is measured by an electro-contact probe. Surface roughness on a target nozzle, caused for example by attached chemical compounds and/or wastages by erosion and corrosion, can lead to a significant loss of target flow stability as well as surface wakes. The need of a polishing manipulator or exchange of the nozzle may be anticipated. Cavitation characteristic of the loop was measured by an accelerometer. From the results, a friction factor could be estimated fort he lithium flow

  8. Multi-layered, chemically bonded lithium-ion and lithium/air batteries

    Science.gov (United States)

    Narula, Chaitanya Kumar; Nanda, Jagjit; Bischoff, Brian L; Bhave, Ramesh R

    2014-05-13

    Disclosed are multilayer, porous, thin-layered lithium-ion batteries that include an inorganic separator as a thin layer that is chemically bonded to surfaces of positive and negative electrode layers. Thus, in such disclosed lithium-ion batteries, the electrodes and separator are made to form non-discrete (i.e., integral) thin layers. Also disclosed are methods of fabricating integrally connected, thin, multilayer lithium batteries including lithium-ion and lithium/air batteries.

  9. Lithium Ion Battery Anode Aging Mechanisms

    Science.gov (United States)

    Agubra, Victor; Fergus, Jeffrey

    2013-01-01

    Degradation mechanisms such as lithium plating, growth of the passivated surface film layer on the electrodes and loss of both recyclable lithium ions and electrode material adversely affect the longevity of the lithium ion battery. The anode electrode is very vulnerable to these degradation mechanisms. In this paper, the most common aging mechanisms occurring at the anode during the operation of the lithium battery, as well as some approaches for minimizing the degradation are reviewed. PMID:28809211

  10. Solid composite electrolytes for lithium batteries

    Science.gov (United States)

    Kumar, Binod; Scanlon, Jr., Lawrence G.

    2000-01-01

    Solid composite electrolytes are provided for use in lithium batteries which exhibit moderate to high ionic conductivity at ambient temperatures and low activation energies. In one embodiment, a ceramic-ceramic composite electrolyte is provided containing lithium nitride and lithium phosphate. The ceramic-ceramic composite is also preferably annealed and exhibits an activation energy of about 0.1 eV.

  11. Phase transition in a rechargeable lithium battery

    NARCIS (Netherlands)

    Dreyer, W.; Gaberscek, M.; Guhlke, C.; Huth, R.; Jamnik, J.

    We discuss the lithium storage process within a single-particle cathode of a lithium-ion battery. The single storage particle consists of a crystal lattice whose interstitial lattice sites may be empty or reversibly filled with lithium atoms. The resulting evolution equations describe diffusion with

  12. Anode materials for lithium-ion batteries

    Science.gov (United States)

    Sunkara, Mahendra Kumar; Meduri, Praveen; Sumanasekera, Gamini

    2014-12-30

    An anode material for lithium-ion batteries is provided that comprises an elongated core structure capable of forming an alloy with lithium; and a plurality of nanostructures placed on a surface of the core structure, with each nanostructure being capable of forming an alloy with lithium and spaced at a predetermined distance from adjacent nanostructures.

  13. Lithium. Effects on excitable cell membranes

    NARCIS (Netherlands)

    Ploeger, Egbert Johan

    1974-01-01

    LITHIUM: Effects on excitable cell membranes. Lithium salts have been used in the treatment of manic-depressive psychosis for many years but their mechanism of action is not well understood. Many workers assume that the action of lithium on catecholamine metabolism and/or on electrolyte distribution

  14. Lithium alloys and metal oxides as high-capacity anode materials for lithium-ion batteries

    International Nuclear Information System (INIS)

    Liang, Chu; Gao, Mingxia; Pan, Hongge; Liu, Yongfeng; Yan, Mi

    2013-01-01

    Highlights: •Progress in lithium alloys and metal oxides as anode materials for lithium-ion batteries is reviewed. •Electrochemical characteristics and lithium storage mechanisms of lithium alloys and metal oxides are summarized. •Strategies for improving electrochemical lithium storage properties of lithium alloys and metal oxides are discussed. •Challenges in developing lithium alloys and metal oxides as commercial anodes for lithium-ion batteries are pointed out. -- Abstract: Lithium alloys and metal oxides have been widely recognized as the next-generation anode materials for lithium-ion batteries with high energy density and high power density. A variety of lithium alloys and metal oxides have been explored as alternatives to the commercial carbonaceous anodes. The electrochemical characteristics of silicon, tin, tin oxide, iron oxides, cobalt oxides, copper oxides, and so on are systematically summarized. In this review, it is not the scope to retrace the overall studies, but rather to highlight the electrochemical performances, the lithium storage mechanism and the strategies in improving the electrochemical properties of lithium alloys and metal oxides. The challenges and new directions in developing lithium alloys and metal oxides as commercial anodes for the next-generation lithium-ion batteries are also discussed

  15. Lithium blocks ethanol-induced modulation of protein kinases in the developing brain

    International Nuclear Information System (INIS)

    Chakraborty, Goutam; Saito, Mitsuo; Mao, Rui-Fen; Wang, Ray; Vadasz, Csaba; Saito, Mariko

    2008-01-01

    Lithium has been shown to be neuroprotective against various insults including ethanol exposure. We previously reported that ethanol-induced apoptotic neurodegeneration in the postnatal day 7 (P7) mice is associated with decreases in phosphorylation levels of Akt, glycogen synthase kinase-3β (GSK-3β), and AMP-activated protein kinase (AMPK), and alteration in lipid profiles in the brain. Here, P7 mice were injected with ethanol and lithium, and the effects of lithium on ethanol-induced alterations in phosphorylation levels of protein kinases and lipid profiles in the brain were examined. Immunoblot and immunohistochemical analyses showed that lithium significantly blocked ethanol-induced caspase-3 activation and reduction in phosphorylation levels of Akt, GSK-3β, and AMPK. Further, lithium inhibited accumulation of cholesterol ester (ChE) and N-acylphosphatidylethanolamine (NAPE) triggered by ethanol in the brain. These results suggest that Akt, GSK-3β, and AMPK are involved in ethanol-induced neurodegeneration and the neuroprotective effects of lithium by modulating both apoptotic and survival pathways

  16. NMR study of thermal decomposition of lithium tetrahydroaluminate

    International Nuclear Information System (INIS)

    Tarasov, V.P.; Bakum, S.I.; Kuznetsova, S.F.

    1997-01-01

    Pyrolysis of lithium aluminotetrahydrides and deuterides, LiAlH 4 and LiAlD 4 , was studied by 1 H, 7 Li, 27 Al NMR in 20-700 deg C range. 20-30 time constriction of resonance lines of studied nuclei at 170 deg C testifies to melting of the compounds. It is shown that at LiAlD 4 melting point the first stage of pyrolysis is described by two parallel reactions: LiAlD 4 -> LiD + Al + D 2 , LiAlD 4 + LiD -> Li 3 AlD 6 , which proceed with different rates. It was revealed that reactions of lithium hydride (deuteride) with metallic aluminium at temperatures above 400 deg C resulted to formation of intermetallic compounds of LiAl and LiAl 3 composition. LiAl is characterized by higher thermal stability, than LiAl 3 . 20 refs., 6 figs., 2 tabs

  17. Enhancement of porous silicon photoluminescence property by lithium chloride treatment

    Science.gov (United States)

    Azaiez, Khawla; Zaghouani, Rabia Benabderrahmane; Khamlich, Saleh; Meddeb, Hosny; Dimassi, Wissem

    2018-05-01

    Porous silicon (PS) decorated by several nanostructured metal elements has still aroused interests as promising composites in many industrial applications. With the focus mainly on the synthesis, the aspect of stability against optical irradiation of such materials has so far not been thoroughly addressed. This work focuses primarily on the influence of lithium chloride solution (LiCl) treatment on the physical properties of PS. Variations in the structural and optoelectronic properties of PS were observed after immersion in (LiCl), as revealed by the obtained analyses. Moreover, enhanced photoluminescence (PL) property of the PS after passivation by lithium particles was clearly shown, and their presence on the surface of the microporous silicon was confirmed by FTIR spectroscopy and atomic force microscopy. An improvement of the minority carrier lifetime was also obtained, which was attributed to the decrease of the surface recombination velocity after LiCl treatment.

  18. The lithium vapor box divertor

    International Nuclear Information System (INIS)

    Goldston, R J; Schwartz, J; Myers, R

    2016-01-01

    It has long been recognized that volumetric dissipation of the plasma heat flux from a fusion power system is preferable to its localized impingement on a material surface. Volumetric dissipation mitigates both the anticipated very high heat flux and intense particle-induced damage due to sputtering. Recent projections to a tokamak demonstration power plant suggest an immense upstream parallel heat flux, of order 20 GW m −2 , implying that fully detached operation may be a requirement for the success of fusion power. Building on pioneering work on the use of lithium by Nagayama et al and by Ono et al as well as earlier work on the gas box divertor by Watkins and Rebut, we present here a concept for a lithium vapor box divertor, in which lithium vapor extracts momentum and energy from a fusion-power-plant divertor plasma, using fully volumetric processes. At the high powers and pressures that are projected this requires a high density of lithium vapor, which must be isolated from the main plasma in order to avoid lithium build-up on the chamber walls or in the plasma. Isolation is achieved through a powerful multi-box differential pumping scheme available only for condensable vapors. The preliminary box-wise calculations are encouraging, but much more work is required to demonstrate the practical viability of this scheme, taking into account at least 2D plasma and vapor flows within and between the vapor boxes and out of the vapor boxes to the main plasma. (paper)

  19. Research, Development and Fabrication of Lithium Solar Cells, Part 2

    Science.gov (United States)

    Iles, P. A.

    1972-01-01

    The development and fabrication of lithium solar cells are discussed. Several single-step, lithium diffusion schedules using lower temperatures and times are described. A comparison was made using evaporated lithium metal as the lithium source, and greatly improved consistency in lithium concentrations was obtained. It was possible to combine all processing steps to obtain lithium doped cells of high output which also contained adequate lithium to ensure good recoverability.

  20. PC based electrolytes with LiDFOB as an alternative salt for lithium-ion batteries

    Science.gov (United States)

    Knight, Brandon M.

    Lithium-ion batteries (LIBs) have been greatly sought after as a source of renewable energy storage. LIBs have a wide range of applications including but not limited portable electronic devices, electric vehicles, and power tools. As a direct result of their commercial viability an insatiable hunger for knowledge, advancement within the field of LIBs has been omnipresent for the last two decades. However, there are set backs evident within the LIB field; most notably the limitations of standard electrolyte formulations and LiPF6 lithium salt. The standard primary carbonate of ethylene carbonate (EC) has a very limited operating range due to its innate physical properties, and the LiPF6 salt is known to readily decompose to form HF which can further degrade LIB longevity. The goal of our research is to explore the use of a new primary salt LiDFOB in conjunction with a propylene carbonate based electrolyte to establish a more flexible electrolyte formulation by constructing coin cells and cycling them under various conditions to give a clear understanding of each formulation inherent performance capabilities. Our studies show that 1.2M LiDFOB in 3:7 PC/EMC + 1.5% VC is capable of performing comparably to the standard 1.2M LiPF6 in 3:7 EC/EMC at 25°C and the PC electrolyte also illustrates performance superior to the standard at 55°C. The degradation of lithium manganese spinel electrodes, including LiNi 0.5Mn1.5O4, is an area of great concern within the field of lithium ion batteries (LIBs). Manganese containing cathode materials frequently have problems associated with Mn dissolution which significantly reduces the cycle life of LIB. Thus the stability of the cathode material is paramount to the performance of Mn spinel cathode materials in LIBs. In an effort to gain a better understanding of the stability of LiNi0.5 Mn1.5O4 in common LiPF6/carbonate electrolytes, samples were stored at elevated temperature in the presence of electrolyte. Then after storage both

  1. Electrochemical Stability of Li{sub 6.5}La{sub 3}Zr{sub 1.5}M{sub 0.5}O{sub 12} (M = Nb or Ta) against Metallic Lithium

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yunsung [Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI (United States); Yoo, Aeri [Department of Advanced Materials Engineering, Korea Polytechnic University, Siheung (Korea, Republic of); Schmidt, Robert; Sharafi, Asma [Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI (United States); Lee, Heechul [Department of Advanced Materials Engineering, Korea Polytechnic University, Siheung (Korea, Republic of); Wolfenstine, Jeff [Army Research Laboratory, RDRL-SED-C, Adelphi, MD (United States); Sakamoto, Jeff, E-mail: jeffsaka@umich.edu [Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI (United States)

    2016-05-20

    The electrochemical stability of Li{sub 6.5}La{sub 3}Zr{sub 1.5}Nb{sub 0.5}O{sub 12} (LLZNO) and Li{sub 6.5}La{sub 3}Zr{sub 1.5}Ta{sub 0.5}O{sub 12} (LLZTO) against metallic Li was studied using direct current (DC) and electrochemical impedance spectroscopy (EIS). Dense polycrystalline LLZNO (ρ = 97%) and LLZTO (ρ = 92%) were made using sol–gel synthesis and rapid induction hot-pressing at 1100°C and 15.8 MPa. During DC cycling tests at room temperature (± 0.01 mA/cm{sup 2} for 36 cycles), LLZNO exhibited an increase in Li–LLZNO interface resistance and eventually short-circuiting while the LLZTO was stable. After DC cycling, LLZNO appeared severely discolored while the LLZTO did not change in appearance. We believe the increase in Li–LLZNO interfacial resistance and discoloration are due to reduction of Nb{sup 5+} to Nb{sup 4+}. The negligible change in interfacial resistance and no color change in LLZTO suggest that Ta{sup 5+} may be more stable against reduction than Nb{sup 5+} in cubic garnet versus Li during cycling.

  2. The accomplishments of lithium target and test facility validation activities in the IFMIF/EVEDA phase

    Science.gov (United States)

    Arbeiter, Frederik; Baluc, Nadine; Favuzza, Paolo; Gröschel, Friedrich; Heidinger, Roland; Ibarra, Angel; Knaster, Juan; Kanemura, Takuji; Kondo, Hiroo; Massaut, Vincent; Saverio Nitti, Francesco; Miccichè, Gioacchino; O'hira, Shigeru; Rapisarda, David; Sugimoto, Masayoshi; Wakai, Eiichi; Yokomine, Takehiko

    2018-01-01

    As part of the engineering validation and engineering design activities (EVEDA) phase for the international fusion materials irradiation facility IFMIF, major elements of a lithium target facility and the test facility were designed, prototyped and validated. For the lithium target facility, the EVEDA lithium test loop was built at JAEA and used to test the stability (waves and long term) of the lithium flow in the target, work out the startup procedures, and test lithium purification and analysis. It was confirmed by experiments in the Lifus 6 plant at ENEA that lithium corrosion on ferritic martensitic steels is acceptably low. Furthermore, complex remote handling procedures for the remote maintenance of the target in the test cell environment were successfully practiced. For the test facility, two variants of a high flux test module were prototyped and tested in helium loops, demonstrating their good capabilities of maintaining the material specimens at the desired temperature with a low temperature spread. Irradiation tests were performed for heated specimen capsules and irradiation instrumentation in the BR2 reactor at SCK-CEN. The small specimen test technique, essential for obtaining material test results with limited irradiation volume, was advanced by evaluating specimen shape and test technique influences.

  3. Ab initio study of adsorption and diffusion of lithium on transition metal dichalcogenide monolayers

    Directory of Open Access Journals (Sweden)

    Xiaoli Sun

    2017-12-01

    Full Text Available Using first principles calculations, we studied the stability and electronic properties of transition metal dichalcogenide monolayers of the type MX2 (M = Ti, Zr, Hf, V, Nb, Ta, Mo, Cr, W; X= S, Se, Te. The adsorption and diffusion of lithium on the stable MX2 phase was also investigated for potential application as an anode for lithium ion batteries. Some of these compounds were found to be stable in the 2H phase and some are in the 1T or 1T' phase, but only a few of them were stable in both 2H/1T or 2H/1T' phases. The results show that lithium is energetically favourable for adsorption on MX2 monolayers, which can be semiconductors with a narrow bandgap and metallic materials. Lithium cannot be adsorbed onto 2H-WS2 and 2H-WSe2, which have large bandgaps of 1.66 and 1.96 eV, respectively. The diffusion energy barrier is in the range between 0.17 and 0.64 eV for lithium on MX2 monolayers, while for most of the materials it was found to be around 0.25 eV. Therefore, this work illustrated that most of the MX2 monolayers explored in this work can be used as promising anode materials for lithium ion batteries.

  4. Ab initio study of adsorption and diffusion of lithium on transition metal dichalcogenide monolayers.

    Science.gov (United States)

    Sun, Xiaoli; Wang, Zhiguo

    2017-01-01

    Using first principles calculations, we studied the stability and electronic properties of transition metal dichalcogenide monolayers of the type MX 2 (M = Ti, Zr, Hf, V, Nb, Ta, Mo, Cr, W; X= S, Se, Te). The adsorption and diffusion of lithium on the stable MX 2 phase was also investigated for potential application as an anode for lithium ion batteries. Some of these compounds were found to be stable in the 2H phase and some are in the 1T or 1T' phase, but only a few of them were stable in both 2H/1T or 2H/1T' phases. The results show that lithium is energetically favourable for adsorption on MX 2 monolayers, which can be semiconductors with a narrow bandgap and metallic materials. Lithium cannot be adsorbed onto 2H-WS 2 and 2H-WSe 2 , which have large bandgaps of 1.66 and 1.96 eV, respectively. The diffusion energy barrier is in the range between 0.17 and 0.64 eV for lithium on MX 2 monolayers, while for most of the materials it was found to be around 0.25 eV. Therefore, this work illustrated that most of the MX 2 monolayers explored in this work can be used as promising anode materials for lithium ion batteries.

  5. Ion transport properties of lithium ionic liquids and their ion gels

    International Nuclear Information System (INIS)

    Shobukawa, Hitoshi; Tokuda, Hiroyuki; Susan, Md. Abu Bin Hasan; Watanabe, Masayoshi

    2005-01-01

    A new series of lithium ionic liquids were prepared by introducing of two electron-withdrawing trifluoroacetyl groups in borate salts containing two methoxy-oligo(ethylene oxide) groups in the structures. Successive substitution reactions of oligo-ethylene glycol monomethyl ether and trifluroacetic acid from LiBH 4 yielded the lithium salts, which were clear and colorless liquids at room temperature. The fundamental physicochemical properties, such as density, thermal property, viscosity, ionic conductivity, self-diffusion coefficients, and electrochemical stability, were measured. The lithium ionic liquids had self-dissociation ability and conducted ions even in the absence of organic solvents. New polymer electrolytes, named 'ion gels', were prepared by radical cross-linking reactions of a poly(ethylene oxide-co-propylene oxide)tri-acrylate macromonomer in the presence the lithium ionic liquid. An increase in the glass transition temperatures (T g ) of the ion gels was very small even with increasing lithium ionic liquid concentration, and the T g 's were lower than that of the ionic liquid itself. The ionic conductivity of the ion gels surpassed that of the lithium ionic liquid in the bulk at certain compositions

  6. Lithium treatment elongates primary cilia in the mouse brain and in cultured cells

    Energy Technology Data Exchange (ETDEWEB)

    Miyoshi, Ko, E-mail: miyoshi@cc.okayama-u.ac.jp [Department of Brain Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikatacho, Okayama 700-8558 (Japan); Kasahara, Kyosuke; Miyazaki, Ikuko; Asanuma, Masato [Department of Brain Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikatacho, Okayama 700-8558 (Japan)

    2009-10-30

    The molecular mechanisms underlying the therapeutic effects of lithium, a first-line antimanic mood stabilizer, have not yet been fully elucidated. Treatment of the algae Chlamydomonas reinhardtii with lithium has been shown to induce elongation of their flagella, which are analogous structures to vertebrate cilia. In the mouse brain, adenylyl cyclase 3 (AC3) and certain neuropeptide receptors colocalize to the primary cilium of neuronal cells, suggesting a chemosensory function for the primary cilium in the nervous system. Here we show that lithium treatment elongates primary cilia in the mouse brain and in cultured cells. Brain sections from mice chronically fed with Li{sub 2}CO{sub 3} were subjected to immunofluorescence study. Primary cilia carrying both AC3 and the receptor for melanin-concentrating hormone (MCH) were elongated in the dorsal striatum and nucleus accumbens of lithium-fed mice, as compared to those of control animals. Moreover, lithium-treated NIH3T3 cells and cultured striatal neurons exhibited elongation of the primary cilia. The present results provide initial evidence that a psychotropic agent can affect ciliary length in the central nervous system, and furthermore suggest that lithium exerts its therapeutic effects via the upregulation of cilia-mediated MCH sensing. These findings thus contribute novel insights into the pathophysiology of bipolar mood disorder and other psychiatric diseases.

  7. Lithium treatment elongates primary cilia in the mouse brain and in cultured cells

    International Nuclear Information System (INIS)

    Miyoshi, Ko; Kasahara, Kyosuke; Miyazaki, Ikuko; Asanuma, Masato

    2009-01-01

    The molecular mechanisms underlying the therapeutic effects of lithium, a first-line antimanic mood stabilizer, have not yet been fully elucidated. Treatment of the algae Chlamydomonas reinhardtii with lithium has been shown to induce elongation of their flagella, which are analogous structures to vertebrate cilia. In the mouse brain, adenylyl cyclase 3 (AC3) and certain neuropeptide receptors colocalize to the primary cilium of neuronal cells, suggesting a chemosensory function for the primary cilium in the nervous system. Here we show that lithium treatment elongates primary cilia in the mouse brain and in cultured cells. Brain sections from mice chronically fed with Li 2 CO 3 were subjected to immunofluorescence study. Primary cilia carrying both AC3 and the receptor for melanin-concentrating hormone (MCH) were elongated in the dorsal striatum and nucleus accumbens of lithium-fed mice, as compared to those of control animals. Moreover, lithium-treated NIH3T3 cells and cultured striatal neurons exhibited elongation of the primary cilia. The present results provide initial evidence that a psychotropic agent can affect ciliary length in the central nervous system, and furthermore suggest that lithium exerts its therapeutic effects via the upregulation of cilia-mediated MCH sensing. These findings thus contribute novel insights into the pathophysiology of bipolar mood disorder and other psychiatric diseases.

  8. Relevant Features of a Triethylene Glycol Dimethyl Ether-Based Electrolyte for Application in Lithium Battery.

    Science.gov (United States)

    Carbone, Lorenzo; Di Lecce, Daniele; Gobet, Mallory; Munoz, Stephen; Devany, Matthew; Greenbaum, Steve; Hassoun, Jusef

    2017-05-24

    Triethylene glycol dimethyl ether (TREGDME) dissolving lithium trifluoromethanesulfonate (LiCF 3 SO 3 ) is studied as a suitable electrolyte medium for lithium battery. Thermal and rheological characteristics, transport properties of the dissolved species, and the electrochemical behavior in lithium cell represent the most relevant investigated properties of the new electrolyte. The self-diffusion coefficients, the lithium transference numbers, the ionic conductivity, and the ion association degree of the solution are determined by pulse field gradient nuclear magnetic resonance and electrochemical impedance spectroscopy. The study sheds light on the determinant role of the lithium nitrate (LiNO 3 ) addition for allowing cell operation by improving the electrode/electrolyte interfaces and widening the voltage stability window. Accordingly, an electrochemical activation procedure of the Li/LiFePO 4 cell using the upgraded electrolyte leads to the formation of stable interfaces at the electrodes surface as clearly evidenced by cyclic voltammetry, impedance spectroscopy, and ex situ scanning electron microscopy. Therefore, the lithium battery employing the TREGDME-LiCF 3 SO 3 -LiNO 3 solution shows a stable galvanostatic cycling, a high efficiency, and a notable rate capability upon the electrochemical conditions adopted herein.

  9. A Simple Synthesis of Two-Dimensional Ultrathin Nickel Cobaltite Nanosheets for Electrochemical Lithium Storage

    International Nuclear Information System (INIS)

    Zhu, Youqi; Cao, Chuanbao

    2015-01-01

    We report a simple microwave-assisted method to fabricate high-quality two-dimensional (2D) ultrathin NiCo 2 O 4 nanosheets with a geometrically graphene-like architecture. The unique large-area nanostructures represent an ultrahigh surface atomic ratio with almost all active elements exposed outside for surface-dependent electrochemical reaction processes. Experimental results reveal that the as-synthesized ultrathin NiCo 2 O 4 nanosheets show excellent electrochemical performances for lithium storage application. The ultrathin NiCo 2 O 4 nanosheets could deliver a high first discharge capacity (1287.1 mAh g −1 ) with initial Coulombic efficiency of 80.0% at 200 mA g −1 current density. The reversible lithium storage capacity still retains at 804.8 mAh g −1 in the 100th cycle, suggesting a good cycling stability. The excellent electrochemical properties of the as-synthesized NiCo 2 O 4 nanosheets could be ascribed to the unique ultrathin 2D architecture, which could offer large exposed active surface with more lithium-insertion channels and significantly reduce lithium ion diffusion distance. The cost-efficient synthesis and excellent lithium storage properties make the 2D NiCo 2 O 4 nanosheets as a promising anode material for high-performance lithium ion batteries

  10. Calcium Channel Genes Associated with Bipolar Disorder Modulate Lithium's Amplification of Circadian Rhythms

    Science.gov (United States)

    McCarthy, Michael J.; LeRoux, Melissa; Wei, Heather; Beesley, Stephen; Kelsoe, John R.; Welsh, David K.

    2015-01-01

    Bipolar disorder (BD) is associated with mood episodes and low amplitude circadian rhythms. Previously, we demonstrated that fibroblasts grown from BD patients show weaker amplification of circadian rhythms by lithium compared to control cells. Since calcium signals impact upon the circadian clock, and L-type calcium channels (LTCC) have emerged as genetic risk factors for BD, we examined whether loss of function in LTCCs accounts for the attenuated response to lithium in BD cells. We used fluorescent dyes to measure Ca2+ changes in BD and control fibroblasts after lithium treatment, and bioluminescent reporters to measure Per2∷luc rhythms in fibroblasts from BD patients, human controls, and mice while pharmacologically or genetically manipulating calcium channels. Longitudinal expression of LTCC genes (CACNA1C, CACNA1D and CACNB3) was then measured over 12-24 hr in BD and control cells. Our results indicate that independently of LTCCs, lithium stimulated intracellular Ca2+ less effectively in BD vs. control fibroblasts. In longitudinal studies, pharmacological inhibition of LTCCs or knockdown of CACNA1A, CACNA1C, CACNA1D and CACNB3 altered circadian rhythm amplitude. Diltiazem and knockdown of CACNA1C or CACNA1D eliminated lithium's ability to amplify rhythms. Knockdown of CACNA1A or CACNB3 altered baseline rhythms, but did not affect rhythm amplification by lithium. In human fibroblasts, CACNA1C genotype predicted the amplitude response to lithium, and the expression profiles of CACNA1C, CACNA1D and CACNB3 were altered in BD vs. controls. We conclude that in cells from BD patients, calcium signaling is abnormal, and that LTCCs underlie the failure of lithium to amplify circadian rhythms. PMID:26476274

  11. Li4Ti5O12 on graphene for high rate lithium ion batteries

    CSIR Research Space (South Africa)

    Wen, L

    2016-11-01

    Full Text Available Spinel Li(sub4)Ti(sub5)O(sub12) has been considered as a promising anode material to substitute graphite in lithium ion batteries (LIBs) for large scale electrical energy storage due to its high safety and long cycling stability. However...

  12. Lithium ionophore VIII as an extraordinarily effective receptor for the strontium cation: Experimental and theoretical study

    Czech Academy of Sciences Publication Activity Database

    Makrlík, E.; Novák, Vít; Vaňura, P.; Bouř, Petr

    2014-01-01

    Roč. 1061, Mar 5 (2014), s. 110-113 ISSN 0022-2860 Institutional support: RVO:61388963 Keywords : strontium cation * lithium ionophore VIII * complexation * extraction and stability constants * DFT calculations * structures Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.602, year: 2014

  13. Complexation of the cesium cation with lithium ionophore VIII: extraction and DFT study

    Czech Academy of Sciences Publication Activity Database

    Makrlík, E.; Novák, Vít; Vaňura, P.; Bouř, Petr

    2013-01-01

    Roč. 298, č. 3 (2013), s. 2065-2068 ISSN 0236-5731 Institutional support: RVO:61388963 Keywords : cesium cation * lithium ionophore VIII * complexation * extraction and stability constants * water-nitrobenzene system * DFT calculations * structures Subject RIV: CB - Analytical Chemistry , Separation Impact factor: 1.415, year: 2013

  14. Agmatine enhances the antidepressant-like effect of lithium in mouse forced swimming test through NMDA pathway.

    Science.gov (United States)

    Mohseni, Gholmreza; Ostadhadi, Sattar; Imran-Khan, Muhammad; Norouzi-Javidan, Abbas; Zolfaghari, Samira; Haddadi, Nazgol-Sadat; Dehpour, Ahmad-Reza

    2017-04-01

    Depression is one the world leading global burdens leading to various comorbidities. Lithium as a mainstay in the treatment of depression is still considered gold standard treatment. Similar to lithium another agent agmatine has also central protective role against depression. Since, both agmatine and lithium modulate various effects through interaction with NMDA receptor, therefore, in current study we aimed to investigate the synergistic antidepressant-like effect of agmatine with lithium in mouse force swimming test. Also to know whether if such effect is due to interaction with NMDA receptor. In our present study we found that when potent dose of lithium (30mg/kg) was administered, it significantly decreased the immobility time. Also, when subeffective dose of agmatine (0.01mg/kg) was coadministered with subeffective dose of lithium (3mg/kg), it potentiated the antidepressant-like effect of subeffective dose of lithium. For the involvement of NMDA receptor in such effect, we administered NMDA receptor antagonist MK-801 (0.05mg/kg) with a combination of subeffective dose of lithium (3mg/kg) and agmatine (0.001mg/kg). A significant antidepressant-like effect was observed. Furthermore, when subeffective dose (50 and 75mg/kg) of NMDA was given it inhibited the synergistic effect of agmatine (0.01mg/kg) with lithium (3mg/kg). Hence, our finding demonstrate that agmatine have synergistic effect with lithium which is mediated by NMDA receptor pathway. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  15. On the Stability of NaO2 in Na-O2 Batteries.

    Science.gov (United States)

    Liu, Chenjuan; Carboni, Marco; Brant, William R; Pan, Ruijun; Hedman, Jonas; Zhu, Jiefang; Gustafsson, Torbjörn; Younesi, Reza

    2018-04-25

    Na-O 2 batteries are regarded as promising candidates for energy storage. They have higher energy efficiency, rate capability, and chemical reversibility than Li-O 2 batteries; in addition, sodium is cheaper and more abundant compared to lithium. However, inconsistent observations and instability of discharge products have inhibited the understanding of the working mechanism of this technology. In this work, we have investigated a number of factors that influence the stability of the discharge products. By means of in operando powder X-ray diffraction study, the influence of oxygen, sodium anode, salt, solvent, and carbon cathode were investigated. The Na metal anode and an ether-based solvent are the main factors that lead to the instability and decomposition of NaO 2 in the cell environment. This fundamental insight brings new information on the working mechanism of Na-O 2 batteries.

  16. Combined application of arsenic trioxide and lithium chloride augments viability reduction and apoptosis induction in human rhabdomyosarcoma cell lines.

    Directory of Open Access Journals (Sweden)

    Sabine B Schleicher

    Full Text Available Rhabdomyosarcomas (RMS are the most prevalent soft tissue sarcomas affecting children and adolescents. Despite intensive treatment consisting of multimodal chemotherapy and surgery RMS patients diagnosed with metastatic disease expect long term survival rates of only 20%. Often multidrug resistance arises upon initial response emphasizing the need for new therapeutic drugs to improve treatment efficiency. Previously, we demonstrated the efficacy of the FDA approved drug arsenic trioxide (ATO specifically inhibiting viability and clonal growth as well as inducing cell death in human RMS cell lines of different subtypes. In this study, we combined low dose ATO with lithium chloride (LiCl, which is approved as mood stabilizer for the treatment of bipolar disorder, but also inhibits growth and survival of different cancer cell types in pre-clinical research. Indeed, we could show additive effects of LiCl and ATO on viability reduction, decrease of colony formation as well as cell death induction. In the course of this, LiCl induced inhibitory glycogen synthase kinase-3β (GSK-3β serine 9 phosphorylation, whereas glioma associated oncogene family 1 (GLI1 protein expression was particularly reduced by combined ATO and LiCl treatment in RD and RH-30 cell lines, showing high rates of apoptotic cell death. These results imply that combination of ATO with LiCl or another drug targeting GSK-3 is a promising strategy to enforce the treatment efficiency in resistant and recurrent RMS.

  17. Deuterium retention in liquid lithium

    International Nuclear Information System (INIS)

    Baldwin, M.J.; Doerner, R.P.; Luckhardt, S.C.; Conn, R.W.

    2002-01-01

    Measurements of deuterium retention in samples of lithium exposed in the liquid state to deuterium plasma are reported. Retention was measured as a function of plasma ion dose in the range 6x10 19 -4x10 22 D atoms and exposure temperature between 523 and 673 K using thermal desorption spectrometry. The results are consistent with the full uptake of all deuterium ions incident on the liquid metal surface and are found to be independent of the temperature of the liquid lithium over the range explored. Full uptake, consistent with very low recycling, continues until the sample is volumetrically converted to lithium deuteride. This occurs for exposure temperatures where the gas pressure during exposure was both below and slightly above the corresponding decomposition pressure for LiD in Li. (author)

  18. Nuclear spectroscopy with lithium ions

    International Nuclear Information System (INIS)

    Heiser, C.

    1977-02-01

    A survey of the state of nuclear spectroscopy with lithium ions is given. Proceeding from the physical and nuclear properties the specific topics arising by the acceleration of these ions are discussed. The results obtained from measurements of excitation functions of different lithium reactions, particularly of compound reactions, with several target nuclei are summarized. Besides compound reactions direct reactions are important, especially transfer reactions, elastic and inelastic scattering and exchange reactions. The results on high spin states obtained by in-beam gamma-spectroscopy are discussed in detail. Finally the possibilities are considered for accelerating lithium ions in the cyclotron U-120 and in the tandem generator EGP-10 of the ZfK. (author)

  19. Lithium-based neutron detectors

    International Nuclear Information System (INIS)

    Yursova, L.

    1977-01-01

    The problems of using scintillation lithium-based detectors (LiJ(Eu) and 6 LiJ(Eu)), as well as lithium glasses for neutron detection are described. As compared with the glasses the LiJ(Eu) monocrystal possesses substantially higher energy resolution, its luminescence yield is considerably higher (in some cases ten fold), its application makes possible gamma radiation discrimination with the energy approximately four times higher and its higher specific mass ensures better efficiency of gamma radiation counting. The only 6 LiJ(Eu) drawback is its high hydroscopicity as well as its possibility to be used only in a limited temperature range (maximum temperature +35 deg C). The lithium glass can be used (with the exception of spectrometric measurements and radiation mixed regions measurement) with more than 1 MeV gamma radiation energy in a wide temperature range, in agressive, corroding and acid media

  20. Sustainability Impact of Nanomaterial Enhanced Lithium Ion Batteries

    Science.gov (United States)

    Ganter, Matthew

    Energy storage devices are becoming an integral part of sustainable energy technology adoption, particularly, in alternative transportation (electric vehicles) and renewable energy technologies (solar and wind which are intermittent). The most prevalent technology exhibiting near-term impact are lithium ion batteries, especially in portable consumer electronics and initial electric vehicle models like the Chevy Volt and Nissan Leaf. However, new technologies need to consider the full life-cycle impacts from material production and use phase performance to the end-of-life management (EOL). This dissertation investigates the impacts of nanomaterials in lithium ion batteries throughout the life cycle and develops strategies to improve each step in the process. The embodied energy of laser vaporization synthesis and purification of carbon nanotubes (CNTs) was calculated to determine the environmental impact of the novel nanomaterial at beginning of life. CNTs were integrated into lithium ion battery electrodes as conductive additives, current collectors, and active material supports to increase power, energy, and thermal stability in the use phase. A method was developed to uniformly distribute CNT conductive additives in composites. Cathode composites with CNT additives had significant rate improvements (3x the capacity at a 10C rate) and higher thermal stability (40% reduction in exothermic energy released upon overcharge). Similar trends were also measured with CNTs in anode composites. Advanced free-standing anodes incorporating CNTs with high capacity silicon and germanium were measured to have high capacities where surface area reduction improved coulombic efficiencies and thermal stability. A thermal stability plot was developed that compares the safety of traditional composites with free-standing electrodes, relating the results to thermal conductivity and surface area effects. The EOL management of nanomaterials in lithium ion batteries was studied and a novel

  1. Chemical Shuttle Additives in Lithium Ion Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Patterson, Mary

    2013-03-31

    than NMC) and the DDB is useful for lithium ion cells with LFP cathodes (potential that is lower than NMC). A 4.5 V class redox shuttle provided by Argonne National Laboratory was evaluated which provides a few cycles of overcharge protection for lithium ion cells containing NMC cathodes but it is not stable enough for consideration. Thus, a redox shuttle with an appropriate redox potential and sufficient chemical and electrochemical stability for commercial use in larger format lithium ion cells with NMC cathodes was not found. Molecular imprinting of the redox shuttle molecule during solid electrolyte interphase (SEI) layer formation likely contributes to the successful reduction of oxidized redox shuttle species at carbon anodes. This helps to understand how a carbon anode covered with an SEI layer, that is supposed to be electrically insulating, can reduce the oxidized form of a redox shuttle.

  2. A novel class of halogen-free, super-conductive lithium argyrodites: Synthesis and characterization

    Science.gov (United States)

    Schneider, Holger; Du, Hui; Kelley, Tracy; Leitner, Klaus; ter Maat, Johan; Scordilis-Kelley, Chariclea; Sanchez-Carrera, Roel; Kovalev, Igor; Mudalige, Anoma; Kulisch, Jörn; Safont-Sempere, Marina M.; Hartmann, Pascal; Weiβ, Thomas; Schneider, Ling; Hinrichsen, Bernd

    2017-10-01

    Solid electrolytes are the core components for many next generation lithium battery concepts such as all-solid-state batteries (ASSB) or batteries based on metallic lithium anodes protected by a ceramic or composite passivation layer. Therefore, the search for new solid state Li-ion conductors with superior properties and improved electrochemical stabilities remains of high interest. In this work, the synthesis of a new class of silicon-containing, sulfide-based lithium-ion conductors is reported. Very good conductivities of up to ∼2.0-3.0·10-3 S/cm could be achieved for compositions such as Li22SiP2S18, among the highest for silicon sulfide containing materials. Based on the recorded powder XRD diffraction patterns and simulations it could be confirmed that they constitute novel members of the argyrodite family of sulfide lithium-ion conductors. The cubic high-temperature modification of such argyrodites with high lithium-ion conductivity can therefore be stabilized by implementation of silicon into the lattice, while additional doping with halogen atoms is not necessary.

  3. Amorphous boron nanorod as an anode material for lithium-ion batteries at room temperature.

    Science.gov (United States)

    Deng, Changjian; Lau, Miu Lun; Barkholtz, Heather M; Xu, Haiping; Parrish, Riley; Xu, Meiyue Olivia; Xu, Tao; Liu, Yuzi; Wang, Hao; Connell, Justin G; Smith, Kassiopeia A; Xiong, Hui

    2017-08-03

    We report an amorphous boron nanorod anode material for lithium-ion batteries prepared through smelting non-toxic boron oxide in liquid lithium. Boron in theory can provide capacity as high as 3099 mA h g -1 by alloying with Li to form B 4 Li 5 . However, experimental studies of the boron anode have been rarely reported for room temperature lithium-ion batteries. Among the reported studies the electrochemical activity and cycling performance of the bulk crystalline boron anode material are poor at room temperature. In this work, we utilized an amorphous nanostructured one-dimensional (1D) boron material aiming at improving the electrochemical reactivity between boron and lithium ions at room temperature. The amorphous boron nanorod anode exhibited, at room temperature, a reversible capacity of 170 mA h g -1 at a current rate of 10 mA g -1 between 0.01 and 2 V. The anode also demonstrated good rate capability and cycling stability. The lithium storage mechanism was investigated by both sweep voltammetry measurements and galvanostatic intermittent titration techniques (GITTs). The sweep voltammetric analysis suggested that the contributions from lithium ion diffusion into boron and the capacitive process to the overall lithium charge storage are 57% and 43%, respectively. The results from GITT indicated that the discharge capacity at higher potentials (>∼0.2 V vs. Li/Li + ) could be ascribed to a capacitive process and at lower potentials (ions and the amorphous boron nanorod. This work provides new insights into designing nanostructured boron materials for lithium-ion batteries.

  4. Layer-by-Layer Hybrids of MoS2 and Reduced Graphene Oxide for Lithium Ion Batteries

    International Nuclear Information System (INIS)

    Jing, Yu; Ortiz-Quiles, Edwin O.; Cabrera, Carlos R.; Chen, Zhongfang; Zhou, Zhen

    2014-01-01

    Highlights: • Layer-by-layer MoS 2 /rGO hybrids were prepared by rGO involved lithiation-exfoliation method. • This hybrid exhibited enhanced electrochemical performances due to the existence of rGO. • The roles of rGO in different charging/discharging processes were interpreted by computations. - Abstract: Two-dimensional MoS 2 shows great potential for effective Li storage due to its good thermal and chemical stability, high theoretical capacity, and experimental accessibility. However, the poor electrical conductivity and the restacking tendency significantly restrict its applications to lithium ion batteries (LIBs). To overcome these problems, we introduced reduced graphene oxides (rGO) to the intercalation-exfoliation preparation process of few-layered MoS 2 and obtained layer-by-layer MoS 2 /rGO hybrids. With the addition of rGO, the restacking of MoS 2 layers was apparently inhibited, and MoS 2 with 1 ∼ 3 layers was obtained in the composite. Due to the positive role of rGO, MoS 2 /rGO hybrids exhibited highly enhanced cyclic stability and high-rate performances as LIB anodes in comparison with bare MoS 2 layers or bulk MoS 2 . Moreover, the experimental results were well interpreted through density functional theory computations

  5. Magnetic propulsion of intense lithium streams in a tokamak magnetic field

    International Nuclear Information System (INIS)

    Zakharov, Leonid E.

    2003-01-01

    This paper describes the effect and gives the theory of magnetic propulsion which allows driving free surface plasma facing liquid lithium streams in tokamaks. In the approximation of a thin flowing layer the MHD equations are reduced to one integrodifferential equation which takes into account the propulsion effect, viscosity, and the drag force due to magnetic pumping and other interactions with the magnetic field. A stability criterion is obtained for stabilization of the 'sausage' instability of the streams by centrifugal force

  6. 49 CFR 173.185 - Lithium cells and batteries.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Lithium cells and batteries. 173.185 Section 173... Class 7 § 173.185 Lithium cells and batteries. (a) Cells and batteries. A lithium cell or battery, including a lithium polymer cell or battery and a lithium-ion cell or battery, must conform to all of the...

  7. Numerical Investigation of the IFMIF Lithium Target

    International Nuclear Information System (INIS)

    Gordeev, S.; Heinzel, V.; Slobodchuk, V.; Leichtle, D.; Anton Moeslang, A.

    2006-01-01

    The International Fusion Materials Facility (IFMIF) facility uses a high speed (10-20 m/s) Lithium (Li) jet flow as a target for two 40 MeV / 125 mA deuteron beams. The major function of the Li target is to provide a stable Li jet for the production of an intense neutron flux. For the understanding the lithium jet behaviour and elimination of the free-surface flow instabilities a detailed analysis of the Li jet flow is necessary. Numerical investigations of the IFMIF Li - Target have been performed with the CFD code Star-CD. A number of turbulence models were tested on the experimental data obtained at the water jet test facility of the Institute for Physics and Power Engineering (IPPE), Obninsk, Russia. Calculated and measured velocity profiles and thickness of the flow cross sections have been compared. The most suitable turbulence models were used for numerical investigations of the IFMIF Li-jet. For the analysis of the IFMIF Li target 3D models of the nozzle and jet flows have been developed. In the first part of analyses the nozzle flow effects, such as relaminarization of the accelerated flow, secondary motions and their influence on the development of the viscous layer and velocity profile have been investigated. Further evaluation of turbulence models was performed and recommendations for suitable turbulence models are given. Calculations predict the complete laminarization of the flow at the nozzle outlet for velocities less than 10 m/s. Within the transition region of velocities between 10 and 20 m/s calculations show the laminarization only in the first convergent part. In this case the acceleration dose not suppress secondary flows in the straight part near the nozzle exit. The second task is devoted to the stability of the Li jet flow. To this end, the influence of the nozzle outlet boundaries, jet curvature effects, gravity and surface tension on the free surface stability has been analysed. First calculations show, that such factors as gravity and

  8. Superior lithium storage performance of hierarchical porous vanadium pentoxide nanofibers for lithium ion battery cathodes

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Bo [Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083 (China); Energy & Materials Engineering Centre, College of Physics and Materials Science, Tianjin Normal University, Tianjin 300387 (China); National Key Laboratory of Power Sources, Tianjin Institute of Power Sources, Tianjin 300381 (China); Li, Xifei, E-mail: xfli2011@hotmail.com [Energy & Materials Engineering Centre, College of Physics and Materials Science, Tianjin Normal University, Tianjin 300387 (China); Bai, Zhimin, E-mail: zhimibai@cugb.edu.cn [Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083 (China); Li, Minsi [Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026 (China); Dong, Lei; Xiong, Dongbin [Energy & Materials Engineering Centre, College of Physics and Materials Science, Tianjin Normal University, Tianjin 300387 (China); Li, Dejun, E-mail: dejunli@mail.tjnu.edu.cn [Energy & Materials Engineering Centre, College of Physics and Materials Science, Tianjin Normal University, Tianjin 300387 (China)

    2015-06-15

    Highlights: • Hierarchical porous vanadium pentoxide nanofibers were synthesized by electrospinning. • V{sub 2}O{sub 5} nanofibers showed much enhanced lithium storage performance. • Kinetics process of electrospinning V{sub 2}O{sub 5} nanofibers was studied by means of EIS for the first time. • Strategies to enhance the electrochemical performance of V{sub 2}O{sub 5} electrode were concluded. - Abstract: The hierarchical V{sub 2}O{sub 5} nanofibers cathode materials with diameter of 200–400 nm are successfully synthesized via an electrospinning followed by annealing. Powder X-ray diffraction (XRD) pattern confirms the formation of phase-pure product. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) obviously display the hierarchical porous nanofibers constructed by attached tiny vanadium oxide nanoplates. Electrochemical behavior of the as-prepared product is systematically studied using galvanostatic charge/discharge testing, cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). It turns out that in comparison to the commercial V{sub 2}O{sub 5} and other unique nanostructured materials in the literature, our V{sub 2}O{sub 5} nanofibers show much enhanced lithium storage capacity, improved cyclic stability, and higher rate capability. After 100 cycles at a current density of 800 mA g{sup −1}, the specific capacity of the V{sub 2}O{sub 5} nanofibers retain 133.9 mAh g{sup −1}, corresponding to high capacity retention of 96.05%. More importantly, the EIS at various discharge depths clearly reveal the kinetics process of the V{sub 2}O{sub 5} cathode reaction with lithium. Based on our results, the possible approach to improve the specific capacity and rate capability of the V{sub 2}O{sub 5} cathode material is proposed. It is expected that this study could accelerate the development of V{sub 2}O{sub 5} cathode in rechargeable lithium ion batteries.

  9. A stable organic-inorganic hybrid layer protected lithium metal anode for long-cycle lithium-oxygen batteries

    Science.gov (United States)

    Zhu, Jinhui; Yang, Jun; Zhou, Jingjing; Zhang, Tao; Li, Lei; Wang, Jiulin; Nuli, Yanna

    2017-10-01

    A stable organic-inorganic hybrid layer (OIHL) is direct fabricated on lithium metal surface by the interfacial reaction of lithium metal foil with 1-chlorodecane and oxygen/carbon dioxide mixed gas. This favorable OIHL is approximately 30 μm thick and consists of lithium alkyl carbonate and lithium chloride. The lithium-oxygen batteries with OIHL protected lithium metal anode exhibit longer cycle life (340 cycles) than those with bare lithium metal anode (50 cycles). This desirable performance can be ascribed to the robust OIHL which prevents the growth of lithium dendrites and the corrosion of lithium metal.

  10. Synthesis of Lithium Fluoride from Spent Lithium Ion Batteries

    Directory of Open Access Journals (Sweden)

    Daniela S. Suarez

    2017-05-01

    Full Text Available Lithium (Li is considered a strategic element whose use has significantly expanded. Its current high demand is due to its use in lithium ion batteries for portable electronic devices, whose manufacture and market are extensively growing every day. These days there is a great concern about the final disposal of these batteries. Therefore, the possibility of developing new methodologies to recycle their components is of great importance, both commercially and environmentally. This paper presents results regarding important operational variables for the dissolution of the lithium and cobalt mixed-oxide (LiCoO2 cathodes from spent lithium ion batteries (LIBs with hydrofluoric acid. The recovery and synthesis of Co and Li compounds were also investigated. The dissolution parameters studied were: temperature, reaction time, solid-liquid ratio, stirring speed, and concentration of HF. The investigated recovery parameters included: pH, temperature, and time with and without stirring. The final precipitation of lithium fluoride was also examined. The results indicate that an increase in the HF concentration, temperature, and reaction time favors the leaching reaction of the LiCoO2. Dissolutions were close to 60%, at 75 °C and 120 min with a HF concentration of 25% (v/v. The recovery of Co and Li were 98% and 80%, respectively, with purities higher than 94%. Co and Li compounds, such as Co3O4 and LiF, were synthesized. Furthermore, it was possible to almost completely eliminate the F− ions as CaF2.

  11. Solid-state ionics: Studies of lithium-conducting sulfide glasses and a superconducting oxide compound

    International Nuclear Information System (INIS)

    Ahn, Byung Tae.

    1989-01-01

    The first part of this work studies lithium-conducting sulfide glasses for battery applications, while the second part studies the thermodynamic properties of a superconducting oxide compound by using an oxide electrolyte. Lithium conducting glasses based on the SiS 2 -Li 2 S system are possible solid electrolytes for high-energy-density lithium batteries. The foremost requirement for solid electrolytes is that they should have high ionic conductivities. Unfortunately, most crystalline lithium conductors have low ionic conductivities at room temperature. However, glass ionic conductors show higher ionic conductivities than do crystalline forms of the same material. In addition to higher ionic conductivities, glasses appear to have several advantages over crystalline materials. These advantages include isotropic conductivity, absence of grain boundary effects, ease of glass forming, and the potential for a wide range of stability to oxidizing and reducing conditions. Using pyrolitic graphite-coated quartz ampoules, new ternary compounds and glasses in the SiS 2 -Li 2 S system were prepared. Several techniques were used to characterize the materials: powder x-ray diffraction, differential thermal analysis, differential scanning calorimetry, and AC impedance spectroscopy. The measured lithium conductivity of the sulfide glasses was one of the highest among the known solid lithium conductors. Measuring the equilibrium open circuit voltages assisted in determining the electrochemical stabilities of the ternary compounds and glasses with respect to pure Li. A solid-state ionic technique called oxygen coulometric titration was used to measure the thermodynamic stability, the oxygen stoichiometry, and the effects of the oxygen stoichiometry, and the effects of the oxygen stoichiometry and the cooling rate on superconductivity of the YBa 2 Cu 3 O 7-x compound were investigated

  12. Liquid lithium blanket processing studies

    International Nuclear Information System (INIS)

    Talbot, J.B.; Clinton, S.D.

    1979-01-01

    The sorption of tritium on yttrium from flowing molten lithium and the subsequent release of tritium from yttrium for regeneration of the metal sorbent were investigated to evaluate the feasibility of such a tritium-recovery process for a fusion reactor blanket of liquid lithium. In initial experiments with the forced convection loop, yttrium samples were contacted with lithium at 300 0 C. A mass transfer coefficient of 2.5 x 10 - cm/sec, which is more than an order of magnitude less than the value measured in earlier static experiments, was determined for the flowing lithium system. Rates of tritium release from yttrium samples were measured to evaluate possible thermal regeneration of the sorbent. Values for diffusion coefficients at 505, 800, and 900 0 C were estimated to be 1.1 x 10 -13 , 4.9 x 10 -12 , and 9.3 x 10 -10 cm 2 /sec, respectively. Tritium release from yttrium was investigated at higher temperatures and with hydrogen added to the argon sweep gas to provide a reducing atmosphere

  13. Interfacial reactions in lithium batteries

    International Nuclear Information System (INIS)

    Chen, Zonghai; Amine, Khalil; Amine, Rachid; Ma, Zi-Feng

    2017-01-01

    The lithium-ion battery was first commercially introduced by Sony Corporation in 1991 using LiCoO 2 as the cathode material and mesocarbon microbeads (MCMBs) as the anode material. After continuous research and development for 25 years, lithium-ion batteries have been the dominant energy storage device for modern portable electronics, as well as for emerging applications for electric vehicles and smart grids. It is clear that the success of lithium-ion technologies is rooted to the existence of a solid electrolyte interphase (SEI) that kinetically suppresses parasitic reactions between the lithiated graphitic anodes and the carbonate-based non-aqueous electrolytes. Recently, major attention has been paid to the importance of a similar passivation/protection layer on the surface of cathode materials, aiming for a rational design of high-energy-density lithium-ion batteries with extended cycle/calendar life. In this article, the physical model of the SEI, as well as recent research efforts to understand the nature and role of the SEI are summarized, and future perspectives on this important research field will also be presented. (topical review)

  14. Interfacial reactions in lithium batteries

    Science.gov (United States)

    Chen, Zonghai; Amine, Rachid; Ma, Zi-Feng; Amine, Khalil

    2017-08-01

    The lithium-ion battery was first commercially introduced by Sony Corporation in 1991 using LiCoO2 as the cathode material and mesocarbon microbeads (MCMBs) as the anode material. After continuous research and development for 25 years, lithium-ion batteries have been the dominant energy storage device for modern portable electronics, as well as for emerging applications for electric vehicles and smart grids. It is clear that the success of lithium-ion technologies is rooted to the existence of a solid electrolyte interphase (SEI) that kinetically suppresses parasitic reactions between the lithiated graphitic anodes and the carbonate-based non-aqueous electrolytes. Recently, major attention has been paid to the importance of a similar passivation/protection layer on the surface of cathode materials, aiming for a rational design of high-energy-density lithium-ion batteries with extended cycle/calendar life. In this article, the physical model of the SEI, as well as recent research efforts to understand the nature and role of the SEI are summarized, and future perspectives on this important research field will also be presented.

  15. Lithium target simulation in TECHNOFUSION

    International Nuclear Information System (INIS)

    Colomer, C.; Arino, X.; Reig, J.; Aleman, A.

    2010-01-01

    This project aims to build a facility where testing, under neutronic irradiation, the necessary materials for the construction of future fusion reactors. The intention is produced irradiation in a controlled way by deuterons bombing on a high speed lithium surface specially designed for that.

  16. Lithium inputs to subduction zones

    NARCIS (Netherlands)

    Bouman, C.; Elliott, T.R.; Vroon, P.Z.

    2004-01-01

    We have studied the sedimentary and basaltic inputs of lithium to subduction zones. Various sediments from DSDP and ODP drill cores in front of the Mariana, South Sandwich, Banda, East Sunda and Lesser Antilles island arcs have been analysed and show highly variable Li contents and δ

  17. Ab initio study of adsorption and diffusion of lithium on transition metal dichalcogenide monolayers

    OpenAIRE

    Sun, Xiaoli; Wang, Zhiguo

    2017-01-01

    Using first principles calculations, we studied the stability and electronic properties of transition metal dichalcogenide monolayers of the type MX2 (M = Ti, Zr, Hf, V, Nb, Ta, Mo, Cr, W; X= S, Se, Te). The adsorption and diffusion of lithium on the stable MX2 phase was also investigated for potential application as an anode for lithium ion batteries. Some of these compounds were found to be stable in the 2H phase and some are in the 1T or 1T' phase, but only a few of them were stable in bot...

  18. Performance enhancement of spherical natural graphite by phenol resin in lithium ion batteries

    International Nuclear Information System (INIS)

    Wu, Y.-S.; Wang, Y.-H.; Lee, Y.-H.

    2006-01-01

    The capacity of natural graphite in the lithium ion battery anode decays seriously. The phenol resin is used as a reaction material to modify the electrochemical performance of spherical graphite as the anode material in lithium ion batteries. Measuring the reversible capacity indicates change in the surface structure of spherical graphite. A dense layer of methyl groups was thus formed. Some structural imperfections are removed and the stability of the graphite structure is increased. Clearly, reducing the irreversible capacity is beneficial in controlling the uniformity of the spherical graphite surface structure

  19. Synthesis and performances of Li-Rich@AlF3@Graphene as cathode of lithium ion battery

    International Nuclear Information System (INIS)

    Chen, Dongrui; Tu, Wenqiang; Chen, Min; Hong, Pengbo; Zhong, Xiaoxin; Zhu, Yunmin; Yu, Qipeng; Li, Weishan

    2016-01-01

    Highlights: • Li-Rich@AlF 3 @Graphene was developed as cathode of lithium ion battery. • Coating of 2 nm AlF 3 does not cause capacity loss but is beneficial to rate capability. • Concurrent AlF 3 coating and graphene wrapping significantly improve Li-Rich performance. - Abstract: A novel composite of layered lithium-rich oxide with AlF 3 and graphene, Li-Rich@AlF 3 @Graphene, is synthesized as high performance cathode of lithium ion battery in terms of rate capability and cyclic stability. Physical characterizations from X-ray diffraction, scanning electron microscope and transmission electron microscope, demonstrate that the layered lithium-rich oxide in Li-Rich@AlF 3 @Graphene is composed of uniform nanoparticles of 100 nm, which are coated with a layer of 2 nm AlF 3 and wrapped with graphene sheets. Charge/discharge tests indicate that the naked lithium-rich oxide exhibits poor cyclic stability and rate capability as cathode of lithium ion battery, which can be improved to some extent by the only contribution of AlF 3 but significantly by the concurrent contribution of AlF 3 and graphene.

  20. The use of anions with sulfate function in electrolyte for lithium battery. Study of transport mechanism; Utilisation d'anions a fonction sulfate dans des electrolytes pour batterie au lithium. Etude des mecanismes de transport

    Energy Technology Data Exchange (ETDEWEB)

    Chauvin, Ch.

    2005-05-15

    Lithium salts based on oligo-ether sulfate were synthesized and characterised. They incorporate oxy-ethylene units which enable the lithium cation salvation and, potentially, their use as ionic liquids. Their properties as lithium salts dissolved in liquid or polymer electrolytes were evaluated. Their electrochemical and thermal stabilities are sufficient for lithium battery application. Due to their weak dissociation in POE, their conductivities are fairly low. On the other hand, they have high cationic transference numbers. In mixture with usual salts as LiTFSI, they provide a good compromise between conductivities/transference number/cost. The second part of this study deals with the synthesis and characterisation of an ionomer with sulfate function and polyether backbone. The electrochemical, physical and chemical properties of this material show that it could be used as polymer electrolyte. Its potential as cross-linked gelled polymer electrolyte is outstanding. Structural analyses on an ionomeric monocrystal have been corroborated with quantum chemistry calculations. (author)

  1. Multifunctional SA-PProDOT Binder for Lithium Ion Batteries.

    Science.gov (United States)

    Ling, Min; Qiu, Jingxia; Li, Sheng; Yan, Cheng; Kiefel, Milton J; Liu, Gao; Zhang, Shanqing

    2015-07-08

    An environmentally benign, highly conductive, and mechanically strong binder system can overcome the dilemma of low conductivity and insufficient mechanical stability of the electrodes to achieve high performance lithium ion batteries (LIBs) at a low cost and in a sustainable way. In this work, the naturally occurring binder sodium alginate (SA) is functionalized with 3,4-propylenedioxythiophene-2,5-dicarboxylic acid (ProDOT) via a one-step esterification reaction in a cyclohexane/dodecyl benzenesulfonic acid (DBSA)/water microemulsion system, resulting in a multifunctional polymer binder, that is, SA-PProDOT. With the synergetic effects of the functional groups (e.g., carboxyl, hydroxyl, and ester groups), the resultant SA-PProDOT polymer not only maintains the outstanding binding capabilities of sodium alginate but also enhances the mechanical integrity and lithium ion diffusion coefficient in the LiFePO4 (LFP) electrode during the operation of the batteries. Because of the conjugated network of the PProDOT and the lithium doping under the battery environment, the SA-PProDOT becomes conductive and matches the conductivity needed for LiFePO4 LIBs. Without the need of conductive additives such as carbon black, the resultant batteries have achieved the theoretical specific capacity of LiFePO4 cathode (ca. 170 mAh/g) at C/10 and ca. 120 mAh/g at 1C for more than 400 cycles.

  2. Tritium extraction from neutron-irradiated lithium aluminate

    International Nuclear Information System (INIS)

    Garcia H, F.

    1995-01-01

    Lithium aluminate is being strongly considered as a breeder material because of its thermophysical, chemical and mechanical stability at high temperatures and its favorable irradiation behavior. Furthermore, it is compatible with other blanket and structural materials. In this work, the effects of calcination temperature during preparation, extraction temperature and sweep gas composition were observed. Lithium aluminate prepared by four different methods, was neutron irradiated for 30 minutes at a flux of 10 12 -10 13 n/cm 2 s in the TRIGA Mark III reactor at Salazar, Mexico; and the tritium extraction rate was measured. Calcination temperature do not affect the tritium extraction rate. However, using high calcination temperature, gamma lithium aluminate was formed. The tritium extraction at 600 Centigrade degrees was lower than at 800 Centigrade degrees and the tritium amount extracted by distillation of the solid sample was higher. The sweep gas composition showed that tritium extraction was less with Ar plus 0.5 % H 2 that with Ar plus 0.1 % H 2 . This result was contrary to expected, where the tritium extraction rate could be higher when hydrogen is added to the sweep gas. Probably this effect could be attributed to the gas purity. (Author)

  3. [Lithium and anticonvulsants in the treatment of mania and in the prophylaxis of recurrences].

    Science.gov (United States)

    Salvi, Virginio; Cat Berro, Alberto; Bechon, Elisa; Bogetto, Filippo; Maina, Giuseppe

    2011-01-01

    A mood stabilizer is an agent effective in treating both poles of the illness and at the same time being able to prevent both manic and depressive episodes in bipolar disorder. According to a broader definition, a mood stabilizer should be effective in decreasing the frequency or severity of any type of episode in bipolar disorder, without worsening the frequency or severity of episodes of opposite polarity. According to this, anticonvulsants and atypical antipsychotics can be considered as mood stabilizers. In this paper we review the use of lithium and other anticonvulsants that have proved effective in randomized controlled trials of the treatment of manic episodes and prevention of recurrences of bipolar disorder. Lithium and valproate are considered as first-line treatment options for acute mania while evidence regarding carbamazepine is insufficient to consider it as a first-line agent. Patients who fail to respond to first-line treatments may benefit from the adjunct of an atypical antipsychotic such as olanzapine, quetiapine, risperidone or aripiprazole. Lithium retains the strongest evidence of efficacy in the prophylaxis of manic episodes, lamotrigine in the prevention of depressive episodes. Valproate and carbamazepine have no indication for long-term treatment of bipolar disorder. Lithium can still be considered a gold standard in the treatment of manic episodes as well as in the prophylaxis of recurrences. Other anticonvulsants should be employed in particular situations, such as valproic acid in the treatment of mania and lamotrigine in the prevention of depressive recurrences.

  4. Thermal Aging of Anions in Ionic Liquids containing Lithium Salts by IC/ESI-MS

    International Nuclear Information System (INIS)

    Pyschik, Marcelina; Kraft, Vadim; Passerini, Stefano; Winter, Martin; Nowak, Sascha

    2014-01-01

    Highlights: • Thermal aging investigation of TFSI- and FSI- based ionic liquids and their mixtures with Li salts. • PYR 13 FSI shows thermal decomposition when mixed with LiPF 6 and LiClO 4 . • PYR 13 TFSI does not show any decomposition products with the electrolyte salts. • LiPF 6 dissolved in ionic liquids suffers of thermal aging as in conventional Li-ion battery electrolytes. - Abstract: The stability of 1-methyl-1-propylpyrrolidinium bis(trifluoromethanesulfonyl)imide (PYR 13 TFSI) and 1-methyl-1-propylpyrrolidinium bis(fluorosulfonyl)imide (PYR 13 FSI) ionic liquids at elevated temperatures (60 °C) is investigated by ion chromatography. Additionally, the influence of the electrolyte salts, lithium hexafluorophosphate (LiPF 6 ), lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) and lithium perchlorate (LiClO 4 ), on the decomposition of both the ionic liquids was analysed over a long term stability study. It has been found out that TFSI has a much higher thermal stability than FSI. The addition of LiTFSI did not show any effect on the aging of both ionic liquid anions. However, PYR 13 FSI degraded when mixed with the electrolyte salts LiPF 6 and LiClO 4 , while PYR 13 TFSI did not. Finally, LiPF 6 forms the same hydrolysis products in the investigated ionic liquids as in the commonly used electrolytes based on organic solvents in lithium-ion batteries

  5. Preparation and capacitive properties of lithium manganese oxide intercalation compound

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Fang; Xie, Yibing, E-mail: ybxie@seu.edu.cn [Southeast University, School of Chemistry and Chemical Engineering (China)

    2015-12-15

    Lithium manganese oxide intercalation compound (Li{sub 0.7}MnO{sub 2}) supported on titanium nitride nanotube array (TiN NTA) was applied as cathode electrode material for lithium-ion supercapacitor application. Li{sub 0.7}MnO{sub 2}/TiN NTA was fabricated through electrochemical deposition and simultaneous intercalation process using TiN NTA as a substrate, Mn(CH{sub 3}COO){sub 2} as manganese source, and Li{sub 2}SO{sub 4} as lithium source. The morphology and microstructure of the Li{sub 0.7}MnO{sub 2}/TiN NTA were characterized by scanning electron microscopy and X-ray diffraction analysis. The electrochemical performance of the Li{sub 0.7}MnO{sub 2}/TiN NTA was investigated by electrochemical impedance spectroscopy, cyclic voltammetry, and galvanostatic charge/discharge measurements. Li{sub 0.7}MnO{sub 2}/TiN NTA exhibited higher capacitive performance in Li{sub 2}SO{sub 4} electrolyte solution rather than that in Na{sub 2}SO{sub 4} electrolyte solution, which was due to the different intercalation effects of lithium-ion and sodium-ion. The specific capacitance was improved from 503.3 F g{sup −1} for MnO{sub 2}/TiN NTA to 595.0 F g{sup −1} for Li{sub 0.7}MnO{sub 2}/TiN NTA at a current density of 2 A g{sup −1} in 1.0 M Li{sub 2}SO{sub 4} electrolyte solution, which was due to the intercalation of lithium-ion for Li{sub 0.7}MnO{sub 2}. Li{sub 0.7}MnO{sub 2}/TiN NTA also kept 90.4 % capacity retention after 1000 cycles, presenting a good cycling stability. An all-solid-state lithium-ion supercapacitor was fabricated and showed an energy density of 82.5 Wh kg{sup −1} and a power density of 10.0 kW kg{sup −1}.

  6. Recent Developments in Synthesis of xLi2MnO3 · (1 − x)LiMO2 (M = Ni, Co, Mn) Cathode Powders for High-Energy Lithium Rechargeable Batteries

    International Nuclear Information System (INIS)

    Doan, The Nam Long; Yoo, Kimoon; Hoang, Tuan K. A.; Chen, P.

    2014-01-01

    Lithium-rich layered powders, Li 2 MnO 3 -stabilized LiMO 2 (M = Ni, Co, Mn), are attractive cathode candidates for the next generations of high-energy lithium-ion batteries. However, most of the state-of-the-art preparation procedures are complicated and require multiple energy-intensive reaction steps. Thus, elucidating a low-cost synthetic protocol is important for the application of these materials in future lithium-ion batteries. Recent developments in the synthesis procedures of lithium-rich layered powders are discussed and future directions are pointed out in this review.

  7. Metallization of uranium oxide powders by lithium reduction

    International Nuclear Information System (INIS)

    Kim, I. S.; Seo, J. S.; Oh, S. C.; Hong, S. S.; Lee, W. K.

    2002-01-01

    Laboratory scale experiments on the reduction of uranium oxide powders into metal by lithium were performed in order to determine the equipment setup and optimum operation conditions. The method of filtration using the porous magnesia filter was introduced to recover uranium metal powders produced. Based on the laboratory scale experimental results, mock-up scale (20 kg U/batch) metallizer was designed and made. The applicability to the metallization process was estimated with respect to the thermal stability of the porous magnesia filter in the high temperature molten salt, the filtration of the fine uranium metal powders, and the operability of the equipment

  8. Wnt and lithium: a common destiny in the therapy of nervous system pathologies?

    Science.gov (United States)

    Meffre, Delphine; Grenier, Julien; Bernard, Sophie; Courtin, Françoise; Dudev, Todor; Shackleford, Ghjuvan'Ghjacumu; Jafarian-Tehrani, Mehrnaz; Massaad, Charbel

    2014-04-01

    Wnt signaling is required for neurogenesis, the fate of neural progenitors, the formation of neuronal circuits during development, neuron positioning and polarization, axon and dendrite development and finally for synaptogenesis. This signaling pathway is also implicated in the generation and differentiation of glial cells. In this review, we describe the mechanisms of action of Wnt signaling pathways and their implication in the development and correct functioning of the nervous system. We also illustrate how a dysregulated Wnt pathway could lead to psychiatric, neurodegenerative and demyelinating pathologies. Lithium, used for the treatment of bipolar disease, inhibits GSK3β, a central enzyme of the Wnt/β-catenin pathway. Thus, lithium could, to some extent, mimic Wnt pathway. We highlight the possible dialogue between lithium therapy and modulation of Wnt pathway in the treatment of the diseases of the nervous system.

  9. Lithium modulation of the human inositol monophosphatase 2 (IMPA2) promoter

    International Nuclear Information System (INIS)

    Seelan, Ratnam S.; Parthasarathy, Latha K.; Parthasarathy, Ranga N.

    2004-01-01

    The inositol-signaling pathway is a therapeutic target for lithium in the treatment of bipolar disorder. Inositol monophosphatases (IMPases) play a key role in inositol signaling. Lithium's ability to inhibit IMPase 1 is well known, but its effect on IMPase 2 or on the transcriptional regulation of these genes has not been studied. Here, we report the identification and characterization of the minimal promoter of IMPA2 (encoding IMPase 2) in HeLa (epithelial) and SK-N-AS (neuronal) cells. IMPA2 promoter activity appears to be contributed by different elements in the 5' flanking region, suggesting that the gene is differentially regulated in neuronal and non-neuronal cells. Furthermore, IMPA2 promoter activity in both cell lines is downregulated, in a dose-dependent manner, by lithium after treatment for only 24 h. This effect is also observed in vivo. Our results suggest a possible role for IMPA2 in bipolar disorder

  10. Control of Internal and External Short Circuits in Lithium Ion and Lithium Batteries, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA has identified needs for compact high-energy-density primary and secondary batteries. Lithium and Lithium Ion cells, respectively, are meeting these needs for...

  11. Synthesis and Electrochemical Performance of a Lithium Titanium Phosphate Anode for Aqueous Lithium-Ion Batteries

    KAUST Repository

    Wessells, Colin; La Mantia, Fabio; Deshazer, Heather; Huggins, Robert A.; Cui, Yi

    2011-01-01

    Lithium-ion batteries that use aqueous electrolytes offer safety and cost advantages when compared to today's commercial cells that use organic electrolytes. The equilibrium reaction potential of lithium titanium phosphate is -0.5 V with respect

  12. Low risk of suicide and lithium in drinking water: A Danish individual-level cohort study using spatial analysis

    DEFF Research Database (Denmark)

    Knudsen, Nikoline Nygård; Schullehner, Jörg; Jørgensen, Lisbeth Flindt

    Importance of the work and objectives: Lithium occurs naturally in drinking water and may have a positive effect on mental health and suicide. In clinical practice, lithium in high therapeutic doses is used as a mood-stabilizer in the treatment of affective disorders. Previous studies performed...... at an ecological level have found an association between lithium in drinking water and risk of suicide. The present study is the first to investigate this association at an individual level considering long-term exposure. Methodologies: The study population consisted of all 3,724,588 Danish adults (≥20 years......) of which 15,370 committed suicide from 1990-2012. Information on suicides was obtained from the nationwide Danish Register of Causes of Death. Data on lithium concentrations were obtained through a nationwide drinking water campaign from 2013 including 151 measurements from waterworks supplying...

  13. Extraction of lithium Carbonate from Petalite Ore (Momeik District, Myanmar)

    International Nuclear Information System (INIS)

    Tun Tun Moe

    2011-12-01

    The methods for preparing high purity lithium carbonate which can be used for pharmaceutical applications, electronic grade crystals of lithium or to prepare battery-grade lithium metal are disclosed. Lithium carbonate as commercially produced from mineral extraction, lithium containing brines or sea water. One method for the production of pure lithium carbonate from mineral source (petalite ore) obtained from Momeik District, Myanmar is disclosed. Method for mineral processing of ore concentrate is also disclosed.

  14. Measuring nanocurie quantities of tritium bred in metallic lithium and lithium oxide samples

    International Nuclear Information System (INIS)

    Bertone, P.C.

    1985-01-01

    The LBM program requires that nanocurie quantities of tritium, bred in both lithium oxide pellets and lithium samples, be measured with an uncertainty not exceeding + or - 6%. Two methods of accurately measuring nanocurie quantities of tritium bred in LBM lithium oxide pellets and one method of accurately measuring nanocurie quantities of tritium bred in lithium samples are described. Potential errors associated with these tritium measurement techniques are also discussed

  15. Explosion of lithium-thionyl-chloride battery due to presence of lithium nitride

    OpenAIRE

    Hennesø, E.; Hedlund, Frank Huess

    2015-01-01

    An explosion of a lithium–thionyl-chloride (Li–SOCl2) battery during production (assembly) leads to serious worker injury. The accident cell batch had been in a dry-air intermediate storage room for months before being readied with thionyl chloride electrolyte. Metallic lithium can react with atmospheric nitrogen to produce lithium nitride. Nodules of lithium nitride were found to be present on the lithium foil in other cells of the accident batch. The investigation attributed the explosion t...

  16. Recovery and recycling of lithium value from spent lithium titanate (Li{sub 2}TiO{sub 3}) pebbles

    Energy Technology Data Exchange (ETDEWEB)

    Mandal, D., E-mail: dmandal10@gmail.com

    2013-09-15

    Graphical abstract: Effects of various process parameters on the recovery of Li-from spent Li{sub 2}TiO{sub 3} pebbles were investigated. From the experimental results it was observed that the leaching rate increases with speed of stirring till 450 rpm and then above 450 rpm; the increase in speed of stirring does not have any significant effect on the leaching rate as shown in the following figure. Effects of other parameters on the Li-recovery from spent Li{sub 2}TiO{sub 3} pebbles are discussed in this paper. Abstract: In the first generation fusion reactors the fusion of deuterium (D) and tritium (T) is considered to produce energy to meet the future energy demand. Deuterium is available in nature whereas, tritium is not. Lithium-6 (Li{sup 6}) isotope has the ability to produce tritium in the n, α nuclear reaction with neutrons. Thus lithium-based ceramics enriched by Li{sup 6} isotope are considered for the tritium generation for its use in future fusion reactors. Lithium titanate is one such Li-based ceramic material being considered for its some attractive properties viz., high thermal and chemical stability, high thermal conductivity, and low tritium solubility. It is reported in the literature, that the burn up of these pebbles in the fusion reactor will be limited to only 15–17 atomic percentage. At the end of life, the pebbles will contain more than 45% unused Li{sup 6} isotope. Due to the high cost of enriched Li{sup 6} and the waste disposal considerations, it is necessary to recover the unused Li from the spent lithium titanate pebbles. Till date, only the feasibilities of different processes are reported, but no process details are available. Experiments were carried out for the recovery of Li from simulated Li{sub 2}TiO{sub 3} pebbles and to reuse of lithium in lithium titanate pebble fabrication. The details of the experiments and results are discussed in this paper.

  17. Conductivity of liquid lithium electrolytes with dispersed mesoporous silica particles

    International Nuclear Information System (INIS)

    Sann, K.; Roggenbuck, J.; Krawczyk, N.; Buschmann, H.; Luerßen, B.; Fröba, M.; Janek, J.

    2012-01-01

    Highlights: ► The conductivity of disperse lithium electrolytes with mesoporous fillers is studied. ► In contrast to other investigations in literature, no conductivity enhancement could be observed for standard battery electrolytes and typical mesoporous fillers in various combinations. ► Disperse electrolytes can become relevant in terms of battery safety. ► Dispersions of silicas and electrolyte with LiPF 6 as conducting salt are not stable, although the silicas were dried prior to preparation and the electrolyte water content was controlled. Surface modification of the fillers improved the stability. ► The observed conductivity decrease varied considerably for various fillers. - Abstract: The electrical conductivity of disperse electrolytes was systematically measured as a function of temperature (0 °C to 60 °C) and filler content for different types of fillers with a range of pore geometry, pore structure and specific surface area. As fillers mesoporous silicas SBA-15, MCM-41 and KIT-6 with pore ranges between 3 nm and 15 nm were dispersed in commercially available liquid lithium electrolytes. As electrolytes 1 M of lithium hexafluorophosphate (LiPF 6 ) in a mixture of ethylene carbonate (EC) and diethylene carbonate (DEC) at the ratio 3:7 (wt/wt) and the same solvent mixture with 0.96 M lithium bis(trifluoromethanesulfon)imide (LiTFSI) were used. No conductivity enhancement could be observed, but with respect to safety aspects the highly viscous disperse pastes might be useful. The conductivity decrease varied considerably for the different fillers.

  18. Lithium induces microcysts and polyuria in adolescent rat kidney independent of cyclooxygenase‐2

    Science.gov (United States)

    Kjaersgaard, Gitte; Madsen, Kirsten; Marcussen, Niels; Jensen, Boye L.

    2014-01-01

    Abstract In patients, chronic treatment with lithium leads to renal microcysts and nephrogenic diabetes insipidus (NDI). It was hypothesized that renal cyclooxygenase‐2 (COX‐2) activity promotes microcyst formation and NDI. Kidney microcysts were induced in male adolescent rats by feeding dams with lithium (50 mmol/kg chow) from postnatal days 7–34. Lithium treatment induced somatic growth retardation, renal microcysts and dilatations in cortical collecting duct; it increased cortical cell proliferation and inactive pGSK‐3β abundance; it lowered aquaporin‐2 (AQP2) protein abundance and induced polyuria with decreased ability to concentrate the urine; and it increased COX‐2 protein level in thick ascending limb. Concomitant treatment with lithium and a specific COX‐2 inhibitor, parecoxib (5 mg/kg per day, P10–P34), did not prevent lithium‐induced microcysts and polyuria, but improved urine concentrating ability transiently after a 1‐desamino‐8‐D‐arginine vasopressin challenge. COX‐2 inhibition did not reduce cortical lithium‐induced cell proliferation and phosphorylation of glycogen synthase kinase‐3β (GSK‐3β). COX‐1 protein abundance increased in rat kidney cortex in response to lithium. COX‐1 immunoreactivity was found in microcyst epithelium in rat kidney. A human nephrectomy specimen from a patient treated for 28 years with lithium displayed multiple, COX‐1‐immunopositive, microcysts. In chronic lithium‐treated adolescent rats, COX‐2 is not colocalized with microcystic epithelium, mitotic activity, and inactive pGSK‐3β in collecting duct; a blocker of COX‐2 does not prevent cell proliferation, cyst formation, or GSK‐3β inactivation. It is concluded that COX‐2 activity is not the primary cause for microcysts and polyuria in a NaCl‐substituted rat model of lithium nephropathy. COX‐1 is a relevant candidate to affect the injured epithelium. PMID:24744881

  19. Pilot study of lithium to restore intestinal barrier function in severe graft-versus-host disease.

    Directory of Open Access Journals (Sweden)

    Gideon Steinbach

    Full Text Available Severe intestinal graft-vs-host disease (GVHD after allogeneic hematopoietic cell transplantation (HCT causes mucosal ulceration and induces innate and adaptive immune responses that amplify and perpetuate GVHD and the associated barrier dysfunction. Pharmacological agents to target mucosal barrier dysfunction in GVHD are needed. We hypothesized that induction of Wnt signaling by lithium, an inhibitor of glycogen synthase kinase (GSK3, would potentiate intestinal crypt proliferation and mucosal repair and that inhibition of GSK3 in inflammatory cells would attenuate the deregulated inflammatory response to mucosal injury. We conducted an observational pilot study to provide data for the potential design of a randomized study of lithium. Twenty patients with steroid refractory intestinal GVHD meeting enrollment criteria were given oral lithium carbonate. GVHD was otherwise treated per current practice, including 2 mg/kg per day of prednisone equivalent. Seventeen patients had extensive mucosal denudation (extreme endoscopic grade 3 in the duodenum or colon. We observed that 8 of 12 patients (67% had a complete remission (CR of GVHD and survived more than 1 year (median 5 years when lithium administration was started promptly within 3 days of endoscopic diagnosis of denuded mucosa. When lithium was started promptly and less than 7 days from salvage therapy for refractory GVHD, 8 of 10 patients (80% had a CR and survived more than 1 year. In perspective, a review of 1447 consecutive adult HCT patients in the preceding 6 years at our cancer center showed 0% one-year survival in 27 patients with stage 3-4 intestinal GVHD and grade 3 endoscopic appearance in the duodenum or colon. Toxicities included fatigue, somnolence, confusion or blunted affect in 50% of the patients. The favorable outcomes in patients who received prompt lithium therapy appear to support the future conduct of a randomized study of lithium for management of severe GVHD with

  20. Lithium-aluminum-iron electrode composition

    Science.gov (United States)

    Kaun, Thomas D.

    1979-01-01

    A negative electrode composition is presented for use in a secondary electrochemical cell. The cell also includes an electrolyte with lithium ions such as a molten salt of alkali metal halides or alkaline earth metal halides that can be used in high-temperature cells. The cell's positive electrode contains a a chalcogen or a metal chalcogenide as the active electrode material. The negative electrode composition includes up to 50 atom percent lithium as the active electrode constituent in an alloy of aluminum-iron. Various binary and ternary intermetallic phases of lithium, aluminum and iron are formed. The lithium within the intermetallic phase of Al.sub.5 Fe.sub.2 exhibits increased activity over that of lithium within a lithium-aluminum alloy to provide an increased cell potential of up to about 0.25 volt.

  1. Thermal characteristics of Lithium-ion batteries

    Science.gov (United States)

    Hauser, Dan

    2004-01-01

    Lithium-ion batteries have a very promising future for space applications. Currently they are being used on a few GEO satellites, and were used on the two recent Mars rovers Spirit and Opportunity. There are still problem that exist that need to be addressed before these batteries can fully take flight. One of the problems is that the cycle life of these batteries needs to be increased. battery. Research is being focused on the chemistry of the materials inside the battery. This includes the anode, cathode, and the cell electrolyte solution. These components can undergo unwanted chemical reactions inside the cell that deteriorate the materials of the battery. During discharge/ charge cycles there is heat dissipated in the cell, and the battery heats up and its temperature increases. An increase in temperature can speed up any unwanted reactions in the cell. Exothermic reactions cause the temperature to increase; therefore increasing the reaction rate will cause the increase of the temperature inside the cell to occur at a faster rate. If the temperature gets too high thermal runaway will occur, and the cell can explode. The material that separates the electrode from the electrolyte is a non-conducting polymer. At high temperatures the separator will melt and the battery will be destroyed. The separator also contains small pores that allow lithium ions to diffuse through during charge and discharge. High temperatures can cause these pores to close up, permanently damaging the cell. My job at NASA Glenn research center this summer will be to perform thermal characterization tests on an 18650 type lithium-ion battery. High temperatures cause the chemicals inside lithium ion batteries to spontaneously react with each other. My task is to conduct experiments to determine the temperature that the reaction takes place at, what components in the cell are reacting and the mechanism of the reaction. The experiments will be conducted using an accelerating rate calorimeter

  2. Lithium in drinking water and suicide mortality: The interplay with lithium prescriptions

    NARCIS (Netherlands)

    Helbich, M; Leitner, M; Kapusta, N

    Background Little is known about the effects of lithium intake through drinking water on suicide. This intake originates either from natural rock and soil elution and/or accumulation of lithium-based pharmaceuticals in ground water. Aims To examine the interplay between natural lithium in drinking

  3. Direct extraction of negative lithium ions from a lithium plasma

    International Nuclear Information System (INIS)

    Wada, M.; Tsuda, H.; Sasao, M.

    1990-01-01

    Negative lithium ions (Li - ) were directly extracted from a lithium plasma in a multiline cusp plasma container. A pair of permanent magnets mounted near the extractor electrode created the filter magnetic field that separated the extraction region plasma from the main discharge plasma. The plasma electrode facing the extraction region plasma was biased with respect to the other parts of the chamber wall, which acted as discharge anodes. The larger filter magnetic field resulted larger Li - current. When the bias to the plasma electrode was several volts positive against the anode potential, extracted Li - current took the maximum for a fixed strength of the filter field. These dependences of Li - upon the filter magnetic field and the plasma electrode bias are similar to the ones of negative hydrogen ions

  4. Production of intensive negative lithium beam with caesium sputter-type ion source

    Science.gov (United States)

    Lobanov, Nikolai R.

    2018-01-01

    Compounds of lithium oxide, hydroxide and carbonate, mixed with silver, were prepared for use as a cathode in caesium-sputter ion source. The intention was to determine the procedure which would produce the highest intensity negative lithium beams over extended period and with maximum stability. The chemical composition and properties of the samples were analysed using mass-spectrometry, optical microscopy, Scanning Electron Microscopy (SEM), Energy Dispersive X-ray Analyses (EDX) and Raman spectroscopy. These analyses showed that the chemical transformations with components resulted from pressing, storage and bake out were qualitatively in agreement with expectations. Intensive negative lithium ion beams >1 μA were delivered using cathodes fabricated from materials with multicomponent chemical composition when the following conditions were met: (i) use of components with moderate enthalpy of formation; (ii) low moisture content at final stage of cathode production and (iii) small concentration of water molecules in hydrate phase in the cathode mixture.

  5. Study on high speed lithium jet for neutron source of boron neutron capture therapy (BNCT)

    International Nuclear Information System (INIS)

    Takahashi, Minoru; Kobayashi, Tooru; Zhang, Mingguang; Mak, Michael; Stefanica, Jiri; Dostal, Vaclav; Zhao Wei

    2012-01-01

    The feasibility study of a liquid lithium type proton beam target was performed for the neutron source of the boron neutron capture therapy (BNCT). As the candidates of the liquid lithium target, a thin sheet jet and a thin film flow on a concave wall were chosen, and a lithium flow experiment was conducted to investigate the hydrodynamic stability of the targets. The surfaces of the jets and film flows with a thickness of 0.5 mm and a width of 50 mm were observed by means of photography. It has been found that a stable sheet jet and a stable film flow on a concave wall can be formed up to certain velocities by using a straight nozzle and a curved nozzle with the concave wall, respectively. (author)

  6. Synthesis, Characterization and Battery Performance of A Lithium Poly (4-vinylphenol) Phenolate Borate Composite Membrane

    International Nuclear Information System (INIS)

    Xu, Guodong; Zhang, Yunfeng; Rohan, Rupesh; Cai, Weiwei; Cheng, Hansong

    2014-01-01

    We report synthesis of lithium poly (4-vinylphenol) phenolate borate (LiPVPPB) single-ion conductor comprised of boron atoms with sp 3 electronic configuration covalently bonded to a polystyrene backbone with high thermal and electrochemical stability. The highly delocalized anionic charges surrounding the boron atoms in the polymer give rise to weak association with lithium ions in the polymer matrix, resulting in an ion transference number close to unity and remarkably high ionic conductivity. A composite membrane blended with LiPVPPB and poly(vinylidene-fluoride-co-hexafluoropropene) (PVDF-HFP) was fabricated. The battery of the electrolyte displays excellent cyclability with nearly 100% coulombic efficiency over a wide temperature range. The superior membrane performance suggests that single ion polymer electrolyte materials are highly promising for safe and high power applications of lithium ion batteries

  7. Electrochemical studies of calcium-lithium alloys in thionyl chloride electrolyte systems

    Science.gov (United States)

    Gupta, V. K.; Fritts, D. H.

    The corrosion of the calcium anode in the calcium thionyl chloride cell has been a persistent problem, which has kept this otherwise attractive couple from use. Investigations of cells with anodes made from calcium/calcium-lithium alloys are reported. These anodes were chosen in hopes of obtaining synergistic results, namely a stable anode surface film vs. pure calcium, and a higher melting point than lithium anodes. Results indicate that some degree of synergism does exist, but that the surface film is not sufficiently stable to protect the anode from continuous corrosion. It is concluded that the stability problem is one of a mechanical shedding of the film which occurs independent of lithium content. Also, a change in the electrolyte salt is the most promising approach to the calcium corrosion problem.

  8. Rheological Behavior of Carbon Nanotubes as an Additive on Lithium Grease

    Directory of Open Access Journals (Sweden)

    Alaa Mohamed

    2013-01-01

    Full Text Available The rheological behaviors of carbon nanotubes (CNTs as an additive on lithium grease at different concentrations were examined under various settings of shear rate, shear stress, and apparent viscosity. The results indicated that the optimum content of the CNTs was 2%. These experimental investigations were evaluated with a Brookfield Programmable Rheometer DV-III ULTRA. The results indicated that the shear, stress and apparent viscosity increase with the increase of CNTs concentration. The microstructure of CNTs and lithium grease was examined by high resolution transmission electron microscope (HRTEM and scanning electron microscope (SEM. The results indicated that the microscopic structure of the lithium grease presents a more regular and homogeneous network structure, with long fibers, which confirms the rheological stability.

  9. Rheological Behavior of Carbon Nano tubes as an Additive on Lithium Grease

    International Nuclear Information System (INIS)

    Mohamed, A.; Zaki, M.; Mohamed, A.; Khattab, A.A.; Osman, T.A.

    2013-01-01

    The rheological behaviors of carbon nano tubes (CNTs) as an additive on lithium grease at different concentrations were examined under various settings of shear rate, shear stress, and apparent viscosity. The results indicated that the optimum content of the CNTs was 2%. These experimental investigations were evaluated with a Brookfield Programmable Rheometer DV-III ULTRA. The results indicated that the shear, stress and apparent viscosity increase with the increase of CNTs concentration. The microstructure of CNTs and lithium grease was examined by high resolution transmission electron microscope (HRTEM) and scanning electron microscope (SEM). The results indicated that the microscopic structure of the lithium grease presents a more regular and homogeneous network structure, with long fibers, which confirms the rheological stability.

  10. Novel lithium titanate-graphene hybrid containing two graphene conductive frameworks for lithium-ion battery with excellent electrochemical performance

    Energy Technology Data Exchange (ETDEWEB)

    Ruiyi, Li; Tengyuan, Chen; Beibei, Sun [School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122 (China); Zaijun, Li [School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122 (China); Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, Wuxi 214122 (China); Zhiquo, Gu; Guangli, Wang; Junkang, Liu [School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122 (China)

    2015-10-15

    Graphical abstract: We developed a new Novel lithium titanate-graphene nanohybrid containing two graphene conductive frameworks. The unique architecture creates fast electron transfer and rapid mass transport of electrolyte. The hybrid electrode provides excellent electrochemical performances for lithium-ion batteries, including high specific capacity, outstanding rate capability and intriguing cycling stability. - Highlights: • We reported a new LTO-graphene nanohybrid containing two graphene conductive frameworks. • One graphene framework greatly improves the electrical conductivity of LTO crystal. • Another graphene framework enhances electrical conductivity of between LTO crystals and electrolyte transport. • The unique architecture creates big tap density, ultrafast electron transfer and rapid mass transport. • The hybrid electrode provides excellent electrochemical performance for lithium-ion batteries. - ABSTRACT: The paper reported the synthesis of lithium titanate(LTO)-graphene hybrid containing two graphene conductive frameworks (G@LTO@G). Tetrabutyl titanate and graphene were dispersed in tertbutanol and heated to reflux state by microwave irradiation. Followed by adding lithium acetate to produce LTO precursor/graphene (p-LTO/G). The resulting p-LTO/G offers homogeneous morphology and ultra small size. All graphene sheets were buried in the spherical agglomerates composed of primitive particles through the second agglomeration. The p-LTO/G was calcined to LTO@graphene (LTO@G). To obtain G@LTO@G, the LTO@G was further hybridized with graphene. The as-prepared G@LTO@G shows well-defined three-dimensional structure and hierarchical porous distribution. Its unique architecture creates big tap density, fast electron transfer and rapid electrolyte transport. As a result, the G@LTO@G provides high specific capacity (175.2 mA h g{sup −1} and 293.5 mA cm{sup −3}), outstanding rate capability (155.7 mAh g{sup −1} at 10C) and intriguing cycling

  11. Lithium delays the radiation-induced apoptotic process in external granule cells of mouse cerebellum

    International Nuclear Information System (INIS)

    Inouye, Minoru; Yamamura, Hideki; Nakano, Atsuhiro.

    1995-01-01

    Proliferating cells of the external granular layer (EGL) in the developing cerebellum are highly sensitive to ionizing radiation. We examined the effect of lithium, an inhibitor of intracellular signaling, on the manifestation of radiation-induced apoptosis. Newborn mice were exposed to 0.5 Gy gamma-irradiation alone, or first were treated with lithium (10 μmol/g, SC) then given 0.5 Gy irradiation 2 hr later. The EGL was examined histologically for apoptosis at various times after treatment. Apoptotic cells increased rapidly, peaked (about 14%) 6 hr after irradiation, then decreased gradually to the control level by 24 hr. Prior treatment with lithium delayed the manifestation of apoptosis, the peak appearing at 12 hr. The disappearance of dead cells was delayed for about one day. The lithium concentration in the whole brain increased rapidly, being 30 μg/g at the time of irradiation and remaining at more than 40 μg/g for 40 hr. Lithium is reported to inhibit guanine-nucleotide binding to G proteins as well as phosphoinositide turnover. Of the variety of lesions induced by radiation, DNA double strand breaks are the most important source of cell lethality. The present findings, however, suggest that cyclic AMP-mediated and/or phosphoinositide-mediated signaling systems regulate radiation-induced apoptosis. (author)

  12. Lithium delays the radiation-induced apoptotic process in external granule cells of mouse cerebellum.

    Science.gov (United States)

    Inouye, M; Yamamura, H; Nakano, A

    1995-09-01

    Proliferating cells of the external granular layer (EGL) in the developing cerebellum are highly sensitive to ionizing radiation. We examined the effect of lithium, an inhibitor of intracellular signaling, on the manifestation of radiation-induced apoptosis. Newborn mice were exposed to 0.5 Gy gamma-irradiation alone, or first were treated with lithium (10 mumol/g, SC) then given 0.5 Gy irradiation 2 hr later. The EGL was examined histologically for apoptosis at various times after treatment. Apoptotic cells increased rapidly, peaked (about 14%) 6 hr after irradiation, then decreased gradually to the control level by 24 hr. Prior treatment with lithium delayed the manifestation of apoptosis, the peak appearing at 12 hr. The disappearance of dead cells was delayed for about one day. The lithium concentration in the whole brain increased rapidly, being 30 micrograms/g at the time of irradiation and remaining at more than 40 micrograms/g for 40 hr. Lithium is reported to inhibit guanine-nucleotide binding to G proteins as well as phosphoinositide turnover. Of the variety of lesions induced by radiation, DNA double strand breaks are the most important source of cell lethality. The present findings, however, suggest that cyclic AMP-mediated and/or phosphoinositidemediated signaling systems regulate radiation-induced apoptosis.

  13. Lithium delays the radiation-induced apoptotic process in external granule cells of mouse cerebellum

    Energy Technology Data Exchange (ETDEWEB)

    Inouye, Minoru; Yamamura, Hideki [Nagoya Univ. (Japan). Research Inst. of Environmental Medicine; Nakano, Atsuhiro

    1995-09-01

    Proliferating cells of the external granular layer (EGL) in the developing cerebellum are highly sensitive to ionizing radiation. We examined the effect of lithium, an inhibitor of intracellular signaling, on the manifestation of radiation-induced apoptosis. Newborn mice were exposed to 0.5 Gy gamma-irradiation alone, or first were treated with lithium (10 {mu}mol/g, SC) then given 0.5 Gy irradiation 2 hr later. The EGL was examined histologically for apoptosis at various times after treatment. Apoptotic cells increased rapidly, peaked (about 14%) 6 hr after irradiation, then decreased gradually to the control level by 24 hr. Prior treatment with lithium delayed the manifestation of apoptosis, the peak appearing at 12 hr. The disappearance of dead cells was delayed for about one day. The lithium concentration in the whole brain increased rapidly, being 30 {mu}g/g at the time of irradiation and remaining at more than 40 {mu}g/g for 40 hr. Lithium is reported to inhibit guanine-nucleotide binding to G proteins as well as phosphoinositide turnover. Of the variety of lesions induced by radiation, DNA double strand breaks are the most important source of cell lethality. The present findings, however, suggest that cyclic AMP-mediated and/or phosphoinositide-mediated signaling systems regulate radiation-induced apoptosis. (author).

  14. Hot filament technique for measuring the thermal conductivity of molten lithium fluoride

    Science.gov (United States)

    Jaworske, Donald A.; Perry, William D.

    1990-01-01

    Molten salts, such as lithium fluoride, are attractive candidates for thermal energy storage in solar dynamic space power systems because of their high latent heat of fusion. However, these same salts have poor thermal conductivities which inhibit the transfer of heat into the solid phase and out of the liquid phase. One concept for improving the thermal conductivity of the thermal energy storage system is to add a conductive filler material to the molten salt. High thermal conductivity pitch-based graphite fibers are being considered for this application. Although there is some information available on the thermal conductivity of lithium fluoride solid, there is very little information on lithium fluoride liquid, and no information on molten salt graphite fiber composites. This paper describes a hot filament technique for determining the thermal conductivity of molten salts. The hot filament technique was used to find the thermal conductivity of molten lithium fluoride at 930 C, and the thermal conductivity values ranged from 1.2 to 1.6 W/mK. These values are comparable to the slightly larger value of 5.0 W/mK for lithium fluoride solid. In addition, two molten salt graphite fiber composites were characterized with the hot filament technique and these results are also presented.

  15. Electrode materials and lithium battery systems

    Science.gov (United States)

    Amine, Khalil [Downers Grove, IL; Belharouak, Ilias [Westmont, IL; Liu, Jun [Naperville, IL

    2011-06-28

    A material comprising a lithium titanate comprising a plurality of primary particles and secondary particles, wherein the average primary particle size is about 1 nm to about 500 nm and the average secondary particle size is about 1 .mu.m to about 4 .mu.m. In some embodiments the lithium titanate is carbon-coated. Also provided are methods of preparing lithium titanates, and devices using such materials.

  16. Secondary lithium solid polymer electrolyte cells

    International Nuclear Information System (INIS)

    Fix, K.A.; Sammells, A.F.

    1988-01-01

    A strategy for developing morphologically invariant lithium/solid polymer electrolyte interface is being investigated via the use of lithium intercalated electrodes. Emphasis is being placed upon the rutile material Li/sub x/WO/sub 2/ 0.1 < x < 1.0. An absence of shape change at this interface is expected to result in both long cycle life electrochemical cells and the simultaneous maintenance of small interelectrode spacing so that low IR losses can be maintained. During fabrication of cells investigated here both electrochemical and chemical lithium intercalation of WO/sub 2/ was pursued. In the case of larger WO/sub 2/ electrodes initially prepared for fully discharged state cells, electrochemical intercalation during cell charge was found to require significant time, and the reproducible achievement of complete uniform intercalation across the negative electrode became an issue. Emphasis was consequently placed upon cells fabricated using Li/sub x/WO/sub 2/ electrodes initially chemically intercalated by lithium prior to cell assembly. Previous work has demonstrated direct lithium intercalation of metal dichalcogenides using n-BuLi. Lithium activity in n-BuLi is, however, insufficient to achieve lithium intercalation of WO/sub 2//sup 4/. However, recent work has shown that WO/sub 2/ can be directly lithium intercalated upon immersion in lithium naphthalide. Li/sub x/WO/sub 2/ electrodes prepared in this work were intercalated using lithium naphthalide (0.8M) in 2MeTHF. Lithium intercalation was found to readily occur at room temperature, being initially rapid and slowing as bulk intercalation within the electrode proceeded. For electrodes intercalated in this manner, a relationship was identified between the degree of lithium intercalation and initial open-circuit potential in liquid non-aqueous electrolyte

  17. Abundance of lithium in Pleiades F stars

    International Nuclear Information System (INIS)

    Pilachowski, C.A.; Booth, J.; Hobbs, L.M.

    1987-01-01

    The abundance of lithium has been determined for 18 stars in the Pleiades cluster with spectral types from A7V to G0V. The pronounced dip in the lithium abundance among the mid-F stars which has been reported for other, older star clusters is not present in the Pleiades. The removal of lithium from the surfaces of middle-F dwarfs therefore occurs principally after about 100 Myr on the main sequence. 25 references

  18. Impact of lithium alone or in combination with haloperidol on oxidative stress parameters and cell viability in SH-SY5Y cell culture.

    Science.gov (United States)

    Gawlik-Kotelnicka, Oliwia; Mielicki, Wojciech; Rabe-Jabłońska, Jolanta; Lazarek, Jerry; Strzelecki, Dominik

    2016-02-01

    It has been reported that lithium may inhibit lipid peroxidation and protein oxidation. Lithium salts also appear to stimulate cell proliferation, increase neurogenesis, and delay cell death. Oxidative stress and neurodegeneration may play an important role in the pathophysiology of bipolar disorder and the disease course thereof. The aim of this research is to estimate the influence of lithium (alone and in combination with haloperidol) on the parameters of oxidative stress and viability of SH-SY5Y cell lines in neutral and pro-oxidative conditions. The evaluated oxidative stress parameter was lipid peroxidation. The viability of the cell lines was measured utilising the MTT test. In neutral conditions, higher levels of thiobarbituric acid reactive substances were observed in those samples which contained both haloperidol and lithium than in other samples. However, these differences were not statistically significant. Cell viability was significantly higher in therapeutic lithium samples than in the controls; samples of haloperidol alone as well as those of haloperidol with lithium did not differ from controls. The results of our study may indicate that lithium possess neuroprotective properties that may be partly due to antioxidative effects. The combination of lithium and haloperidol may generate increased oxidative stress.

  19. Spectral emission measurements of lithium on the lithium tokamak experiment

    Energy Technology Data Exchange (ETDEWEB)

    Gray, T. K.; Biewer, T. M.; Maingi, R. [Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Boyle, D. P.; Granstedt, E. M.; Kaita, R.; Majeski, R. P. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States)

    2012-10-15

    There has been a long-standing collaboration between ORNL and PPPL on edge and boundary layer physics. As part of this collaboration, ORNL has a large role in the instrumentation and interpretation of edge physics in the lithium tokamak experiment (LTX). In particular, a charge exchange recombination spectroscopy (CHERS) diagnostic is being designed and undergoing staged testing on LTX. Here we present results of passively measured lithium emission at 5166.89 A in LTX in anticipation of active spectroscopy measurements, which will be enabled by the installation of a neutral beam in 2013. Preliminary measurements are made in transient LTX plasmas with plasma current, I{sub p} < 70 kA, ohmic heating power, P{sub oh}{approx} 0.3 MW and discharge lifetimes of 10-15 ms. Measurements are made with a short focal length spectrometer and optics similar to the CHERS diagnostics on NSTX [R. E. Bell, Rev. Sci. Instrum. 68(2), 1273-1280 (1997)]. These preliminary measurements suggest that even without the neutral beam for active spectroscopy, there is sufficient passive lithium emission to allow for line-of-sight profile measurements of ion temperature, T{sub i}; toroidal velocity and v{sub t}. Results show peak T{sub i} = 70 eV and peak v{sub t} = 45 km/s were reached 10 ms into the discharge.

  20. Common effects of lithium and valproate on mitochondrial functions: protection against methamphetamine-induced mitochondrial damage.

    Science.gov (United States)

    Bachmann, Rosilla F; Wang, Yun; Yuan, Peixiong; Zhou, Rulun; Li, Xiaoxia; Alesci, Salvatore; Du, Jing; Manji, Husseini K

    2009-07-01

    Accumulating evidence suggests that mitochondrial dysfunction plays a critical role in the progression of a variety of neurodegenerative and psychiatric disorders. Thus, enhancing mitochondrial function could potentially help ameliorate the impairments of neural plasticity and cellular resilience associated with a variety of neuropsychiatric disorders. A series of studies was undertaken to investigate the effects of mood stabilizers on mitochondrial function, and against mitochondrially mediated neurotoxicity. We found that long-term treatment with lithium and valproate (VPA) enhanced cell respiration rate. Furthermore, chronic treatment with lithium or VPA enhanced mitochondrial function as determined by mitochondrial membrane potential, and mitochondrial oxidation in SH-SY5Y cells. In-vivo studies showed that long-term treatment with lithium or VPA protected against methamphetamine (Meth)-induced toxicity at the mitochondrial level. Furthermore, these agents prevented the Meth-induced reduction of mitochondrial cytochrome c, the mitochondrial anti-apoptotic Bcl-2/Bax ratio, and mitochondrial cytochrome oxidase (COX) activity. Oligoarray analysis demonstrated that the gene expression of several proteins related to the apoptotic pathway and mitochondrial functions were altered by Meth, and these changes were attenuated by treatment with lithium or VPA. One of the genes, Bcl-2, is a common target for lithium and VPA. Knock-down of Bcl-2 with specific Bcl-2 siRNA reduced the lithium- and VPA-induced increases in mitochondrial oxidation. These findings illustrate that lithium and VPA enhance mitochondrial function and protect against mitochondrially mediated toxicity. These agents may have potential clinical utility in the treatment of other diseases associated with impaired mitochondrial function, such as neurodegenerative diseases and schizophrenia.

  1. Electrode nanomaterials for lithium-ion batteries

    International Nuclear Information System (INIS)

    Yaroslavtsev, A B; Kulova, T L; Skundin, A M

    2015-01-01

    The state-of-the-art in the field of cathode and anode nanomaterials for lithium-ion batteries is considered. The use of these nanomaterials provides higher charge and discharge rates, reduces the adverse effect of degradation processes caused by volume variations in electrode materials upon lithium intercalation and deintercalation and enhances the power and working capacity of lithium-ion batteries. In discussing the cathode materials, attention is focused on double phosphates and silicates of lithium and transition metals and also on vanadium oxides. The anode materials based on nanodispersions of carbon, silicon, certain metals, oxides and on nanocomposites are also described. The bibliography includes 714 references

  2. Lithium-ion batteries fundamentals and applications

    CERN Document Server

    Wu, Yuping

    2015-01-01

    Lithium-Ion Batteries: Fundamentals and Applications offers a comprehensive treatment of the principles, background, design, production, and use of lithium-ion batteries. Based on a solid foundation of long-term research work, this authoritative monograph:Introduces the underlying theory and history of lithium-ion batteriesDescribes the key components of lithium-ion batteries, including negative and positive electrode materials, electrolytes, and separatorsDiscusses electronic conductive agents, binders, solvents for slurry preparation, positive thermal coefficient (PTC) materials, current col

  3. Lithium-Oxygen Batteries: At a Crossroads?

    DEFF Research Database (Denmark)

    Vegge, Tejs; García Lastra, Juan Maria; Siegel, Donald Jason

    2017-01-01

    In this current opinion, we critically review and discuss some of the most important recent findings in the field of rechargeable lithium-oxygen batteries. We discuss recent discoveries like the evolution of reactive singlet oxygen and the use of organic additives to bypass reactive LiO2 reaction...... intermediates, and their possible implications on the potential for commercialization of lithium-oxygen batteries. Finally, we perform a critical assessment of lithium-superoxide batteries and the reversibility of lithium-hydroxide batteries....

  4. Directly Formed Alucone on Lithium Metal for High-Performance Li Batteries and Li-S Batteries with High Sulfur Mass Loading.

    Science.gov (United States)

    Chen, Lin; Huang, Zhennan; Shahbazian-Yassar, Reza; Libera, Joseph A; Klavetter, Kyle C; Zavadil, Kevin R; Elam, Jeffrey W

    2018-02-28

    Lithium metal is considered the "holy grail" of next-generation battery anodes. However, severe parasitic reactions at the lithium-electrolyte interface deplete the liquid electrolyte and the uncontrolled formation of high surface area and dendritic lithium during cycling causes rapid capacity fading and battery failure. Engineering a dendrite-free lithium metal anode is therefore critical for the development of long-life batteries using lithium anodes. In this study, we deposit a conformal, organic/inorganic hybrid coating, for the first time, directly on lithium metal using molecular layer deposition (MLD) to alleviate these problems. This hybrid organic/inorganic film with high cross-linking structure can stabilize lithium against dendrite growth and minimize side reactions, as indicated by scanning electron microscopy. We discovered that the alucone coating yielded several times longer cycle life at high current rates compared to the uncoated lithium and achieved a steady Coulombic efficiency of 99.5%, demonstrating that the highly cross-linking structured material with great mechanical properties and good flexibility can effectively suppress dendrite formation. The protected Li was further evaluated in lithium-sulfur (Li-S) batteries with a high sulfur mass loading of ∼5 mg/cm 2 . After 140 cycles at a high current rate of ∼1 mA/cm 2 , alucone-coated Li-S batteries delivered a capacity of 657.7 mAh/g, 39.5% better than that of a bare lithium-sulfur battery. These findings suggest that flexible coating with high cross-linking structure by MLD is effective to enable lithium protection and offers a very promising avenue for improved performance in the real applications of Li-S batteries.

  5. Review: Accuracy of Salivary Lithium Testing in Treatment Monitoring in Mood Disorders

    Directory of Open Access Journals (Sweden)

    Abbas Ali Asadi

    2006-04-01

    Full Text Available Lithium preparations have been used in bipolar mood disorders since 19th Century. Lethal toxic effect of lithium due to it's narrow (therapeutic index had been known from several years ago and is the most problem when is prescribed. Serum level of lithium is accepted for monitoring of toxicity, but frequency of blood testing especially in stabilizing period is stressful for patients, also it is difficult in such psychiatric patients especially in children. Many researchers worked to find a less aggressive method. One of these methods is monitoring based on salivary lithium concentration, which is controversy according to this review articles. All papers from 1949 till now are reviewed in this article and revealed this controversy. According to this review article, three ways are being suggested to solve this problem 1- Stimulation of salivary – serum ratio of lithium based on tree separated paired tests 2- Improving methods and techniques of testing. 3- Modifying of this ratio based on natural markers.

  6. Lithium capillary porous system behavior as PFM in FTU Tokamak experiments

    International Nuclear Information System (INIS)

    Apichela, M.L.; Mazzitelli, G.; Lyublinski, I.E.; Lazarev, V.; Mirnov, S.; Vertkov, A.

    2007-01-01

    Full text of publication follows: Liquid lithium use on the base of capillary porous systems (CPS) application as plasma facing material (PFM) of tokamaks is advanced way to solve the problems of plasma contamination with high Z impurity, PFM degradation and tritium retention. In frame of joint program between ENEA (Italy) and FSUE 'Red Star' and TRINITI (RF) started at the end of 2005 die test of liquid lithium limiter (LLL) with CPS in a high field, medium size, carbon free tokamak FTU have been performed successfully. The LLL has been inserted in ohmic plasma discharges and at additional heating with LH and ECR at power levels in the MW range without any particular problem (BT = 6 T, Ip = 0.5- 0.9 MA, n e = 0.2 -2.6x10 20 m -3 , t = 1.5 s, P∼ 2-5 MW/m 2 at a normal discharge). The behavior of lithium CPS based on stainless steel wire mesh and its surface modification in normal discharges and at disruptions has been studied. Results of microscopic analyses of CPS structure after experimental campaigns are presented. The possibility to withstand heat load exceeding 5 MW/m 2 without damage, lithium surface renewal, mechanical stabilization of liquid lithium against MHD forces have been confirmed. Application of W, Mo as the base material and possible structure types of CPS have been considered for operating parameters improvement of long-living plasma facing components. (authors)

  7. Polypharmacy May Be the Cause of Acute Lithium Intoxication at the Second Day of Treatment

    Directory of Open Access Journals (Sweden)

    Tursun Irfan

    2015-12-01

    Full Text Available Lithium is frequently used as a mood stabilizer in patients with mood disorders. Lithium has a narrow therapeutic index and high toxicity. Predisposing factors for intoxication are advanced age, diet disturbances, comorbid medical conditions affecting heart, kidneys or central nervous system and polypharmacy. CASE REPORT: Here we present a case of a 74-year-old woman with a history of Parkinson’s disease, hypertension and bipolar disorder. She was using quetiapine, valsartan with hydrochlorothiazide and levodopa with carbidopa. She presented with altered mental status and muscle rigidity. The patient was admitted with acute lithium intoxication after her second dose of treatment. Blood lithium level increased to 3.58 mEq/L. The woman was hospitalized in the Internal Medicine Intensive Care Unit. With hydration, her symptoms resolved and her lithium level returned to normal after 118 hours. CONCLUSIONS: Prescribing physicians and emergency room physicians should be aware of conditions which may cause a decreased threshold for intoxication.

  8. SnO2/ZnO composite structure for the lithium-ion battery electrode

    International Nuclear Information System (INIS)

    Ahmad, Mashkoor; Yingying, Shi; Sun, Hongyu; Shen, Wanci; Zhu, Jing

    2012-01-01

    In this article, SnO 2 /ZnO composite structures have been synthesized by two steps hydrothermal method and investigated their lithium storage capacity as compared with pure ZnO. It has been found that these composite structures combining the large specific surface area, stability and catalytic activity of SnO 2 micro-crystals, demonstrate the higher initial discharge capacity of 1540 mA h g −1 with a Coulombic efficiency of 68% at a rate of 120 mA h g −1 between 0.02 and 2 V and found much better than that of any previously reported ZnO based composite anodes. In addition, a significantly enhanced cycling performance, i.e., a reversible capacity of 497 mA h g −1 is retained after 40 cycles. The improved lithium storage capacity and cycle life is attributed to the addition of SnO 2 structure, which act as good electronic conductors and better accommodation of the large volume change during lithiation/delithiation process. - Graphical abstract: SnO 2 /ZnO composite structures demonstrate the improved lithium storage capacity and cycle life as compared with pure ZnO nanostructure. Highlights: ► Synthesis of SnO 2 /ZnO composite structures by two steps hydrothermal approach. ► Investigation of lithium storage capacity. ► Excellent lithium storage capacity and cycle life of SnO 2 /ZnO composite structures.

  9. Characterization of reactive tracers for C-wells field experiments 1: Electrostatic sorption mechanism, lithium

    International Nuclear Information System (INIS)

    Fuentes, H.R.; Polzer, W.L.; Essington, E.H.; Newman, B.D.

    1989-11-01

    Lithium (Li + ) was introduced as lithium bromide (LiBr), as a retarded tracer for experiments in the C-wells complex at Yucca Mountain, Nevada Test Site, Nevada. The objective was to evaluate the potential of lithium to sorb predominately by physical forces. lithium was selected as a candidate tracer on the basis of high solubility, good chemical and biological stability, and relatively low sorptivity; lack of bioaccumulation and exclusion as a priority pollutant in pertinent federal environmental regulations; good analytical detectability and low natural background concentrations; and a low cost Laboratory experiments were performed with suspensions of Prow Pass cuttings from drill hole UE-25p number-sign 1 at depths between 549 and 594 m in J-13 water at a pH of approximately 8 and in the temperature range of 25 degree C to 45 degree C. Batch equilibrium and kinetics experiments were performed; estimated thermodynamic constants, relative behavior between adsorption and desorption, and potentiometric studies provided information to infer the physical nature of lithium sorption

  10. Comprehensive Enhancement of Nanostructured Lithium-Ion Battery Cathode Materials via Conformal Graphene Dispersion.

    Science.gov (United States)

    Chen, Kan-Sheng; Xu, Rui; Luu, Norman S; Secor, Ethan B; Hamamoto, Koichi; Li, Qianqian; Kim, Soo; Sangwan, Vinod K; Balla, Itamar; Guiney, Linda M; Seo, Jung-Woo T; Yu, Xiankai; Liu, Weiwei; Wu, Jinsong; Wolverton, Chris; Dravid, Vinayak P; Barnett, Scott A; Lu, Jun; Amine, Khalil; Hersam, Mark C

    2017-04-12

    Efficient energy storage systems based on lithium-ion batteries represent a critical technology across many sectors including consumer electronics, electrified transportation, and a smart grid accommodating intermittent renewable energy sources. Nanostructured electrode materials present compelling opportunities for high-performance lithium-ion batteries, but inherent problems related to the high surface area to volume ratios at the nanometer-scale have impeded their adoption for commercial applications. Here, we demonstrate a materials and processing platform that realizes high-performance nanostructured lithium manganese oxide (nano-LMO) spinel cathodes with conformal graphene coatings as a conductive additive. The resulting nanostructured composite cathodes concurrently resolve multiple problems that have plagued nanoparticle-based lithium-ion battery electrodes including low packing density, high additive content, and poor cycling stability. Moreover, this strategy enhances the intrinsic advantages of nano-LMO, resulting in extraordinary rate capability and low temperature performance. With 75% capacity retention at a 20C cycling rate at room temperature and nearly full capacity retention at -20 °C, this work advances lithium-ion battery technology into unprecedented regimes of operation.

  11. Single-ion conducting diblock terpolymers for lithium-ion batteries

    Science.gov (United States)

    Morris, Melody; Epps, Thomas H., III

    Block polymer (BP) electrolytes provide an attractive route to overcome the competing constraints of high conductivity and mechanical/thermal stability in lithium-ion batteries through nanoscale self-assembly. For example, macromolecules can be engineered such that one domain conducts lithium ions and the other prevents lithium dendrite formation. Herein, we report on the behavior of a single-ion conducting BP electrolyte that was designed to facilitate the transport of lithium ions. These polymers differ from traditional salt-doped BP electrolytes, which require the addition of a lithium salt to bestow conductivity and typically suffer from substantial counterion motion that reduces efficiency. New single-ion BPs were synthesized, and the nanoscale morphologies were determined using small angle X-ray scattering and transmission electron microscopy. Electrolyte performance was measured using AC impedance spectroscopy and DC polarization, and the results were correlated to nanoscale morphology and ion content. Enhanced physical understanding of single-ion BPs was gained by connecting the ion mobility to the chemistry, chain structure, and ion content of the single-ion BP. These studies can be applied to other charged-neutral block polymers to elucidate the effects of ion content on self-assembly and macroscopic properties.

  12. Satellite Lithium-Ion Battery Remaining Cycle Life Prediction with Novel Indirect Health Indicator Extraction

    Directory of Open Access Journals (Sweden)

    Haitao Liao

    2013-07-01

    Full Text Available Prognostics and remaining useful life (RUL estimation for lithium-ion batteries play an important role in intelligent battery management systems (BMS. The capacity is often used as the fade indicator for estimating the remaining cycle life of a lithium-ion battery. For spacecraft requiring high reliability and long lifetime, in-orbit RUL estimation and reliability verification on ground should be carefully addressed. However, it is quite challenging to monitor and estimate the capacity of a lithium-ion battery on-line in satellite applications. In this work, a novel health indicator (HI is extracted from the operating parameters of a lithium-ion battery to quantify battery degradation. Moreover, the Grey Correlation Analysis (GCA is utilized to evaluate the similarities between the extracted HI and the battery’s capacity. The result illustrates the effectiveness of using this new HI for fading indication. Furthermore, we propose an optimized ensemble monotonic echo state networks (En_MONESN algorithm, in which the monotonic constraint is introduced to improve the adaptivity of degradation trend estimation, and ensemble learning is integrated to achieve high stability and precision of RUL prediction. Experiments with actual testing data show the efficiency of our proposed method in RUL estimation and degradation modeling for the satellite lithium-ion battery application.

  13. Cable Stability

    Energy Technology Data Exchange (ETDEWEB)

    Bottura, L [European Organization for Nuclear Research, Geneva (Switzerland)

    2014-07-01

    Superconductor stability is at the core of the design of any successful cable and magnet application. This chapter reviews the initial understanding of the stability mechanism, and reviews matters of importance for stability such as the nature and magnitude of the perturbation spectrum and the cooling mechanisms. Various stability strategies are studied, providing criteria that depend on the desired design and operating conditions.

  14. General directions and recently test modelling results of lithium capillary-pore systems as plasma facing components for tokamak-reactor

    International Nuclear Information System (INIS)

    Evtikhin, V.A.; Lyublinski, I.E.; Vertkov, A.V.; Azizov, E.A.; Mirnov, S.V.; Lazaret, V.B.; Safronov, V.M.

    2003-01-01

    Full text: At present the most promising principal solution of the divertor problem appears to be the use of liquid metals and primarily of lithium Capillary-Pore Systems (CPS) as of plasma facing material. A solid CPS filled with liquid lithium will have high resistance to surface and volume damage because of neutron radiation effects, melting, splashing and thermal stress induced cracking in steady state and during plasma transitions (disruptions, ELMs, VDEs, runaways) to provide the normal operation of divertor target plates and first wall protection elements. These materials would not be the sources of impurities inducing the raise of Z eff and they will not be collected as dust in the divertor area and in ducts. The key directions of experimental investigation of lithium CPS behaviour in first wall and divertor operation simulating conditions are considered. Experiments with lithium CPS in plasma disruption simulation conditions on the hydrogen plasma accelerator MK-200UG (∼10-15 MJ/m 2 , ∼50 μs) have been performed. Shielding lithium plasma layer formation and high stability of these systems have been shown. The new lithium limiter with a thermal regulation system tests on up graded T-11M tokamak (plasma current up to 100 kA, pulse length ∼0.3 s) have been performed. Sorption and desorption of plasma-forming gas, lithium emission into discharge, lithium erosion, limiter deposited power are investigated in this tests

  15. Sony Co., Ltd.: An outlook is made for merchandising of the manganese acid lithium ion battery; Mangansan richiumuion denchi no shohinka ni medo

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-31

    Sony Co., Ltd. sells the manganese acid lithium ion battery that a battery is 1 by 2 as to the next generation lithium ion during 99 years. It is characteristics that a price is restrained because manganese is used for the proper pole material instead of cobalt of the rare metal. It becomes mass production by Koriyama factory where a lithium ion battery is being manufactured improving an existent production line. It is seen when some percents of manufacture cost goes down more than cobalt acid battery of news file before. A manganese acid lithium ion battery uses manganese acid lithium for the proper pole of the battery. The efficiency of the charge of the usual lithium ion battery is good, and composition is easy, and uses cobalt acid lithium, which is easy to produce. One side where a material fee is cheap, the stability at the high temperature of manganese acid is low, and composition is difficult. Only NEC Moli Energy corporation who is the subsidiary company of NEC succeeds in the mass production. NEC Moli Energy corporation is extending market share by the price competition power. It seems to have the possibility that manganese acid becomes the main force with a battery by two by new entering of Sony Co., Ltd. of the lithium ion battery extreme big enterprises. (translated by NEDO)

  16. Solid polymer electrolyte lithium batteries

    Science.gov (United States)

    Alamgir, Mohamed; Abraham, Kuzhikalail M.

    1993-01-01

    This invention pertains to Lithium batteries using Li ion (Li.sup.+) conductive solid polymer electrolytes composed of solvates of Li salts immobilized in a solid organic polymer matrix. In particular, this invention relates to Li batteries using solid polymer electrolytes derived by immobilizing solvates formed between a Li salt and an aprotic organic solvent (or mixture of such solvents) in poly(vinyl chloride).

  17. Electrolytes for lithium ion batteries

    Science.gov (United States)

    Vaughey, John; Jansen, Andrew N.; Dees, Dennis W.

    2014-08-05

    A family of electrolytes for use in a lithium ion battery. The genus of electrolytes includes ketone-based solvents, such as, 2,4-dimethyl-3-pentanone; 3,3-dimethyl 2-butanone(pinacolone) and 2-butanone. These solvents can be used in combination with non-Lewis Acid salts, such as Li.sub.2[B.sub.12F.sub.12] and LiBOB.

  18. Lithium aluminates and tritium production

    International Nuclear Information System (INIS)

    Carrera G, L.M.; Palacios G, O.; Bosch G, P.

    1997-01-01

    In this work it is studied the crystalline structure of lithium aluminates prepared by three different methods, namely: solid state reaction, humid reaction and sol-gel reaction. The analysis methods are the X-ray diffractometry and the scanning and transmission electron microscopy. This study is realized as in original materials as in irradiated materials at the TRIGA Mark reactor, to correlate the synthesis method with response of these materials to the mixed irradiation of nuclear reactor. (Author)

  19. High energy density lithium batteries

    CERN Document Server

    Aifantis, Katerina E; Kumar, R Vasant

    2010-01-01

    Cell phones, portable computers and other electronic devices crucially depend on reliable, compact yet powerful batteries. Therefore, intensive research is devoted to improving performance and reducing failure rates. Rechargeable lithium-ion batteries promise significant advancement and high application potential for hybrid vehicles, biomedical devices, and everyday appliances. This monograph provides special focus on the methods and approaches for enhancing the performance of next-generation batteries through the use of nanotechnology. Deeper understanding of the mechanisms and strategies is

  20. Lithium ion storage between graphenes

    Directory of Open Access Journals (Sweden)

    Chan Yue

    2011-01-01

    Full Text Available Abstract In this article, we investigate the storage of lithium ions between two parallel graphene sheets using the continuous approximation and the 6-12 Lennard-Jones potential. The continuous approximation assumes that the carbon atoms can be replaced by a uniform distribution across the surface of the graphene sheets so that the total interaction potential can be approximated by performing surface integrations. The number of ion layers determines the major storage characteristics of the battery, and our results show three distinct ionic configurations, namely single, double, and triple ion forming layers between graphenes. The number densities of lithium ions between the two graphenes are estimated from existing semi-empirical molecular orbital calculations, and the graphene sheets giving rise to the triple ion layers admit the largest storage capacity at all temperatures, followed by a marginal decrease of storage capacity for the case of double ion layers. These two configurations exceed the maximum theoretical storage capacity of graphite. Further, on taking into account the charge-discharge property, the double ion layers are the most preferable choice for enhanced lithium storage. Although the single ion layer provides the least charge storage, it turns out to be the most stable configuration at all temperatures. One application of the present study is for the design of future high energy density alkali batteries using graphene sheets as anodes for which an analytical formulation might greatly facilitate rapid computational results.