WorldWideScience

Sample records for stabilized synchronous satellites

  1. New GOES satellite synchronized time code generation

    Science.gov (United States)

    Fossler, D. E.; Olson, R. K.

    1984-01-01

    The TRAK Systems' GOES Satellite Synchronized Time Code Generator is described. TRAK Systems has developed this timing instrument to supply improved accuracy over most existing GOES receiver clocks. A classical time code generator is integrated with a GOES receiver.

  2. The synchronization method for distributed small satellite SAR

    Science.gov (United States)

    Xing, Lei; Gong, Xiaochun; Qiu, Wenxun; Sun, Zhaowei

    2007-11-01

    One of critical requirement for distributed small satellite SAR is the trigger time precision when all satellites turning on radar loads. This trigger operation is controlled by a dedicated communication tool or GPS system. In this paper a hardware platform is proposed which has integrated navigation, attitude control, and data handling system together. Based on it, a probabilistic synchronization method is proposed for SAR time precision requirement with ring architecture. To simplify design of transceiver, half-duplex communication way is used in this method. Research shows that time precision is relevant to relative frequency drift rate, satellite number, retry times, read error and round delay length. Installed with crystal oscillator short-term stability 10 -11 magnitude, this platform can achieve and maintain nanosecond order time error with a typical three satellites formation experiment during whole operating process.

  3. Fuzzy stability and synchronization of hyperchaos systems

    International Nuclear Information System (INIS)

    Wang Junwei; Xiong Xiaohua; Zhao Meichun; Zhang Yanbin

    2008-01-01

    This paper studies stability and synchronization of hyperchaos systems via a fuzzy-model-based control design methodology. First, we utilize a Takagi-Sugeno fuzzy model to represent a hyperchaos system. Second, we design fuzzy-model-based controllers for stability and synchronization of the system, based on so-called 'parallel distributed compensation (PDC)'. Third, we reduce a question of stabilizing and synchronizing hyperchaos systems to linear matrix inequalities (LMI) so that convex programming techniques can solve these LMIs efficiently. Finally, the generalized Lorenz hyperchaos system is employed to illustrate the effectiveness of our designing controller

  4. Remote atomic clock synchronization via satellites and optical fibers

    OpenAIRE

    Piester, D.; Rost, M.; Fujieda, M.; Feldmann, T.; Bauch, A.

    2011-01-01

    In the global network of institutions engaged with the realization of International Atomic Time (TAI), atomic clocks and time scales are compared by means of the Global Positioning System (GPS) and by employing telecommunication satellites for two-way satellite time and frequency transfer (TWSTFT). The frequencies of the state-of-the-art primary caesium fountain clocks can be compared at the level of 10−15 (relative, 1 day averaging) and time scales can be synchronized...

  5. Synchronous municipal sewerage-sludge stabilization.

    Science.gov (United States)

    Bukuru, Godefroid; Jian, Yang

    2005-01-01

    A study on a pilot plant accomplishing synchronous municipal sewerage-sludge stabilization was conducted at a municipal sewerage treatment plant. Stabilization of sewerage and sludge is achieved in three-step process: anaerobic reactor, roughing filter and a microbial-earthworm-ecofilter. The integrated ecofilter utilizes an artificial ecosystem to degrade and stabilize the sewerage and sludge. When the hydraulic retention time(HRT) of the anaerobic reactor is 6 h, the hydraulic load(HL) of the bio-filter is 16 m3/(m2 x d), the HL of the eco-filter is 5 m3/(m2 x d), the recycle ratio of nitrified liquor is 1.5, the removal efficiency is 83%-89% for COD(Cr), 94%-96% for BOD5, 96%-98% for SS, and 76%-95% for NH3-N. The whole system realizes the zero emission of sludge, and has the characteristics of saving energy consumption and operational costs.

  6. Stability of a dual-spin satellite with two dampers

    Science.gov (United States)

    Alfriend, K. T.; Hubert, C. H.

    1974-01-01

    The rotational stability of a dual-spin satellite consisting of a main body and a symmetric rotor, both spinning about a common axis, is investigated. The main body is equipped with a spring-mass damper, while a partially filled viscous ring damper is mounted on the rapidly spinning rotor. The effect of fluid motion on the rotational stability of the satellite is calculated, considering the fluid as a single particle moving in a tube with viscous damping. Time constants are obtained by solving approximate equations of motion for the nutation-synchronous and the spin-synchronous modes, and the results are found to agree well with the numerical integrations of the exact equations. A limit cycle may exist for some configurations; the nutation angle tends to increase in such cases.

  7. Synchronous atmospheric radiation correction of GF-2 satellite multispectral image

    Science.gov (United States)

    Bian, Fuqiang; Fan, Dongdong; Zhang, Yan; Wang, Dandan

    2018-02-01

    GF-2 remote sensing products have been widely used in many fields for its high-quality information, which provides technical support for the the macroeconomic decisions. Atmospheric correction is the necessary part in the data preprocessing of the quantitative high resolution remote sensing, which can eliminate the signal interference in the radiation path caused by atmospheric scattering and absorption, and reducting apparent reflectance into real reflectance of the surface targets. Aiming at the problem that current research lack of atmospheric date which are synchronization and region matching of the surface observation image, this research utilize the MODIS Level 1B synchronous data to simulate synchronized atmospheric condition, and write programs to implementation process of aerosol retrieval and atmospheric correction, then generate a lookup table of the remote sensing image based on the radioactive transfer model of 6S (second simulation of a satellite signal in the solar spectrum) to correct the atmospheric effect of multispectral image from GF-2 satellite PMS-1 payload. According to the correction results, this paper analyzes the pixel histogram of the reflectance spectrum of the 4 spectral bands of PMS-1, and evaluates the correction results of different spectral bands. Then conducted a comparison experiment on the same GF-2 image based on the QUAC. According to the different targets respectively statistics the average value of NDVI, implement a comparative study of NDVI from two different results. The degree of influence was discussed by whether to adopt synchronous atmospheric date. The study shows that the result of the synchronous atmospheric parameters have significantly improved the quantitative application of the GF-2 remote sensing data.

  8. Micelle-stabilized room-temperature phosphorescence with synchronous scanning

    International Nuclear Information System (INIS)

    Femia, R.A.; Love, L.J.C.

    1984-01-01

    The experimental requirements for synchronous wavelength scanning micelle-stabilized room temperature phosphorescence and the factors affecting peak resolution are presented and compared with those for synchronous wavelength scanning fluorescence. Identification of individual compounds in a four-component mixture is illustrated, and criteria to identify and minimize triplet state energy transfer are given. Considerable improvement in resolution of the synchronous peaks is obtained via second derivative spectra. 20 references, 7 figures, 2 tables

  9. Preservation of stability and synchronization in nonlinear systems

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez-Anaya, G. [Departamento de Fisica y Matematicas, Universidad Iberoamericana, Prol. Paseo de la Reforma 880, Lomas de Santa Fe, Mexico, D.F. 01210 (Mexico)], E-mail: guillermo.fernandez@uia.mx; Flores-Godoy, J.J. [Departamento de Fisica y Matematicas, Universidad Iberoamericana, Prol. Paseo de la Reforma 880, Lomas de Santa Fe, Mexico, D.F. 01210 (Mexico)], E-mail: job.flores@uia.mx; Femat, R. [Division de Matematicas Aplicadas y Sistemas Computacionales, IPICyT, Camino a la Presa San Jose 2055, Col. Lomas 4a. seccion, San Luis Potosi, San Luis Potosi 78216 (Mexico)], E-mail: rfemat@ipicyt.edu.mx; Alvarez-Ramirez, J.J. [Ingenieria de Procesos e Hidraulica, Universidad Autonoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186, Col. Vicentina, Mexico, D.F. 09340 (Mexico)], E-mail: jjar@xanum.uam.mx

    2007-11-12

    Preservation of stability in the presence of structural and/or parametric changes is an important issue in the study of dynamical systems. A specific case is the synchronization of chaos in complex networks where synchronization should be preserved in spite of changes in the network parameters and connectivity. In this work, a methodology to establish conditions for preservation of stability in a class of dynamical system is given in terms of Lyapunov methods. The idea is to construct a group of dynamical transformations under which stability is retained along certain manifolds. Some synchronization examples illustrate the results.

  10. Preservation of stability and synchronization in nonlinear systems

    International Nuclear Information System (INIS)

    Fernandez-Anaya, G.; Flores-Godoy, J.J.; Femat, R.; Alvarez-Ramirez, J.J.

    2007-01-01

    Preservation of stability in the presence of structural and/or parametric changes is an important issue in the study of dynamical systems. A specific case is the synchronization of chaos in complex networks where synchronization should be preserved in spite of changes in the network parameters and connectivity. In this work, a methodology to establish conditions for preservation of stability in a class of dynamical system is given in terms of Lyapunov methods. The idea is to construct a group of dynamical transformations under which stability is retained along certain manifolds. Some synchronization examples illustrate the results

  11. Synchronized stability in a reaction–diffusion neural network model

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ling; Zhao, Hongyong, E-mail: hongyongz@126.com

    2014-11-14

    The reaction–diffusion neural network consisting of a pair of identical tri-neuron loops is considered. We present detailed discussions about the synchronized stability and Hopf bifurcation, deducing the non-trivial role that delay plays in different locations. The corresponding numerical simulations are used to illustrate the effectiveness of the obtained results. In addition, the numerical results about the effects of diffusion reveal that diffusion may speed up the tendency to synchronization and induce the synchronized equilibrium point to be stable. Furthermore, if the parameters are located in appropriate regions, multiple unstability and bistability or unstability and bistability may coexist. - Highlights: • Point to non-trivial role that τ plays in different positions. • Diffusion speeds up the tendency to synchronization. • Diffusion induces the synchronized equilibrium point to be stable. • The coexistence of multiple unstability and bistability or unstability and bistability.

  12. Synchronized stability in a reaction–diffusion neural network model

    International Nuclear Information System (INIS)

    Wang, Ling; Zhao, Hongyong

    2014-01-01

    The reaction–diffusion neural network consisting of a pair of identical tri-neuron loops is considered. We present detailed discussions about the synchronized stability and Hopf bifurcation, deducing the non-trivial role that delay plays in different locations. The corresponding numerical simulations are used to illustrate the effectiveness of the obtained results. In addition, the numerical results about the effects of diffusion reveal that diffusion may speed up the tendency to synchronization and induce the synchronized equilibrium point to be stable. Furthermore, if the parameters are located in appropriate regions, multiple unstability and bistability or unstability and bistability may coexist. - Highlights: • Point to non-trivial role that τ plays in different positions. • Diffusion speeds up the tendency to synchronization. • Diffusion induces the synchronized equilibrium point to be stable. • The coexistence of multiple unstability and bistability or unstability and bistability

  13. Stabilization and Synchronization of Memristive Chaotic Circuits by Impulsive Control

    Directory of Open Access Journals (Sweden)

    Limin Zou

    2017-01-01

    Full Text Available The purpose of this note is to study impulsive control and synchronization of memristor based chaotic circuits shown by Muthuswamy. We first establish a less conservative sufficient condition for the stability of memristor based chaotic circuits. After that, we discuss the effect of errors on stability. Meanwhile, we also discuss impulsive synchronization of two memristor based chaotic systems. Our results are more general and more applicable than the ones shown by Yang, Li, and Huang. Finally, several numerical examples are given to show the effectiveness of our methods.

  14. Dynamics and Stability of Permanent-Magnet Synchronous Motor

    OpenAIRE

    He, Ren; Han, Qingzhen

    2017-01-01

    The aim of this article is to explore the dynamic characteristics and stability of the permanent-magnet synchronous motor (PMSM). PMSM equilibrium local stability condition and Hopf  bifurcation condition, pitchfork bifurcation condition, and fold bifurcation condition have been derived by using the Routh-Hurwitz criterion and the bifurcation theory, respectively. Bifurcation curves of the equilibrium with single and double parameters are obtained by continuation method. Numerical simulations...

  15. Synchronization stability and pattern selection in a memristive neuronal network.

    Science.gov (United States)

    Wang, Chunni; Lv, Mi; Alsaedi, Ahmed; Ma, Jun

    2017-11-01

    Spatial pattern formation and selection depend on the intrinsic self-organization and cooperation between nodes in spatiotemporal systems. Based on a memory neuron model, a regular network with electromagnetic induction is proposed to investigate the synchronization and pattern selection. In our model, the memristor is used to bridge the coupling between the magnetic flux and the membrane potential, and the induction current results from the time-varying electromagnetic field contributed by the exchange of ion currents and the distribution of charged ions. The statistical factor of synchronization predicts the transition of synchronization and pattern stability. The bifurcation analysis of the sampled time series for the membrane potential reveals the mode transition in electrical activity and pattern selection. A formation mechanism is outlined to account for the emergence of target waves. Although an external stimulus is imposed on each neuron uniformly, the diversity in the magnetic flux and the induction current leads to emergence of target waves in the studied network.

  16. Synchronization stability and pattern selection in a memristive neuronal network

    Science.gov (United States)

    Wang, Chunni; Lv, Mi; Alsaedi, Ahmed; Ma, Jun

    2017-11-01

    Spatial pattern formation and selection depend on the intrinsic self-organization and cooperation between nodes in spatiotemporal systems. Based on a memory neuron model, a regular network with electromagnetic induction is proposed to investigate the synchronization and pattern selection. In our model, the memristor is used to bridge the coupling between the magnetic flux and the membrane potential, and the induction current results from the time-varying electromagnetic field contributed by the exchange of ion currents and the distribution of charged ions. The statistical factor of synchronization predicts the transition of synchronization and pattern stability. The bifurcation analysis of the sampled time series for the membrane potential reveals the mode transition in electrical activity and pattern selection. A formation mechanism is outlined to account for the emergence of target waves. Although an external stimulus is imposed on each neuron uniformly, the diversity in the magnetic flux and the induction current leads to emergence of target waves in the studied network.

  17. Frequency Stability Improvement of Low Inertia Systems Using Synchronous Condensers

    DEFF Research Database (Denmark)

    Nguyen, Ha Thi; Yang, Guangya; Nielsen, Arne Hejde

    2016-01-01

    of converter interfaced components (wind turbine, HVDC, and Photovoltaic) may have negative effects on the stability of the power system. These components do not have enough inertia response to control frequency excursion, so the power grid can depend on few synchronous machines for frequency regulation...... and reduce the system inertia. Consequently, the frequency stability of the system will be easily jeopardized. To address these issues, the paper studies frequency characteristics of future Western Danish renewable-based system that uses a majority of wind turbine generators. Different scenarios of wind...

  18. Self-stabilizing Synchronization in Mobile Sensor Networks with Covering

    Science.gov (United States)

    Beauquier, Joffroy; Burman, Janna

    Synchronization is widely considered as an important service in distributed systems which may simplify protocol design. Phase clock is a general synchronization tool that provides a form of a logical time. This paper presents a self-stabilizing (a tolerating state-corrupting transient faults) phase clock algorithm suited to the model of population protocols with covering. This model has been proposed recently for sensor networks with a very large, possibly unknown number of anonymous mobile agents having small memory. Agents interact in pairs in an asynchronous way subject to the constraints expressed in terms of the cover times of agents. The cover time expresses the "frequency" of an agent to communicate with all the others and abstracts agent's communication characteristics (e.g. moving speed/patterns, transmitting/receiving capabilities). We show that a phase clock is impossible in the model with only constant-state agents. Hence, we assume an existence of resource-unlimited agent - the base station.

  19. Fixed-Time Stability Analysis of Permanent Magnet Synchronous Motors with Novel Adaptive Control

    Directory of Open Access Journals (Sweden)

    Maoxing Liu

    2017-01-01

    Full Text Available We firstly investigate the fixed-time stability analysis of uncertain permanent magnet synchronous motors with novel control. Compared with finite-time stability where the convergence rate relies on the initial permanent magnet synchronous motors state, the settling time of fixed-time stability can be adjusted to desired values regardless of initial conditions. Novel adaptive stability control strategy for the permanent magnet synchronous motors is proposed, with which we can stabilize permanent magnet synchronous motors within fixed time based on the Lyapunov stability theory. Finally, some simulation and comparison results are given to illustrate the validity of the theoretical results.

  20. Attitude stability analyses for small artificial satellites

    International Nuclear Information System (INIS)

    Silva, W R; Zanardi, M C; Formiga, J K S; Cabette, R E S; Stuchi, T J

    2013-01-01

    The objective of this paper is to analyze the stability of the rotational motion of a symmetrical spacecraft, in a circular orbit. The equilibrium points and regions of stability are established when components of the gravity gradient torque acting on the spacecraft are included in the equations of rotational motion, which are described by the Andoyer's variables. The nonlinear stability of the equilibrium points of the rotational motion is analysed here by the Kovalev-Savchenko theorem. With the application of the Kovalev-Savchenko theorem, it is possible to verify if they remain stable under the influence of the terms of higher order of the normal Hamiltonian. In this paper, numerical simulations are made for a small hypothetical artificial satellite. Several stable equilibrium points were determined and regions around these points have been established by variations in the orbital inclination and in the spacecraft principal moment of inertia. The present analysis can directly contribute in the maintenance of the spacecraft's attitude

  1. Stability and synchronization control of stochastic neural networks

    CERN Document Server

    Zhou, Wuneng; Zhou, Liuwei; Tong, Dongbing

    2016-01-01

    This book reports on the latest findings in the study of Stochastic Neural Networks (SNN). The book collects the novel model of the disturbance driven by Levy process, the research method of M-matrix, and the adaptive control method of the SNN in the context of stability and synchronization control. The book will be of interest to university researchers, graduate students in control science and engineering and neural networks who wish to learn the core principles, methods, algorithms and applications of SNN.

  2. Dynamics and Stability of Permanent-Magnet Synchronous Motor

    Directory of Open Access Journals (Sweden)

    Ren He

    2017-01-01

    Full Text Available The aim of this article is to explore the dynamic characteristics and stability of the permanent-magnet synchronous motor (PMSM. PMSM equilibrium local stability condition and Hopf  bifurcation condition, pitchfork bifurcation condition, and fold bifurcation condition have been derived by using the Routh-Hurwitz criterion and the bifurcation theory, respectively. Bifurcation curves of the equilibrium with single and double parameters are obtained by continuation method. Numerical simulations not only confirm the theoretical analysis results but also show one kind of codimension-two-bifurcation points of the equilibrium. PMSM, with or without external load, can exhibit rich dynamic behaviors in different parameters regions. It is shown that if unstable equilibrium appears in the parameters regions, the PMSM may not be able to work stably. To ensure the PMSMs work stably, the inherent parameters should be designed in the region which has only one stable equilibrium.

  3. A Self-Stabilizing Synchronization Protocol for Arbitrary Digraphs

    Science.gov (United States)

    Malekpour, Mahyar R.

    2011-01-01

    This paper presents a self-stabilizing distributed clock synchronization protocol in the absence of faults in the system. It is focused on the distributed clock synchronization of an arbitrary, non-partitioned digraph ranging from fully connected to 1-connected networks of nodes while allowing for differences in the network elements. This protocol does not rely on assumptions about the initial state of the system, other than the presence of at least one node, and no central clock or a centrally generated signal, pulse, or message is used. Nodes are anonymous, i.e., they do not have unique identities. There is no theoretical limit on the maximum number of participating nodes. The only constraint on the behavior of the node is that the interactions with other nodes are restricted to defined links and interfaces. This protocol deterministically converges within a time bound that is a linear function of the self-stabilization period. We present an outline of a deductive proof of the correctness of the protocol. A bounded model of the protocol was mechanically verified for a variety of topologies. Results of the mechanical proof of the correctness of the protocol are provided. The model checking results have verified the correctness of the protocol as they apply to the networks with unidirectional and bidirectional links. In addition, the results confirm the claims of determinism and linear convergence. As a result, we conjecture that the protocol solves the general case of this problem. We also present several variations of the protocol and discuss that this synchronization protocol is indeed an emergent system.

  4. Byzantine-fault tolerant self-stabilizing protocol for distributed clock synchronization systems

    Science.gov (United States)

    Malekpour, Mahyar R. (Inventor)

    2010-01-01

    A rapid Byzantine self-stabilizing clock synchronization protocol that self-stabilizes from any state, tolerates bursts of transient failures, and deterministically converges within a linear convergence time with respect to the self-stabilization period. Upon self-stabilization, all good clocks proceed synchronously. The Byzantine self-stabilizing clock synchronization protocol does not rely on any assumptions about the initial state of the clocks. Furthermore, there is neither a central clock nor an externally generated pulse system. The protocol converges deterministically, is scalable, and self-stabilizes in a short amount of time. The convergence time is linear with respect to the self-stabilization period.

  5. Approximation methods for the stability analysis of complete synchronization on duplex networks

    Science.gov (United States)

    Han, Wenchen; Yang, Junzhong

    2018-01-01

    Recently, the synchronization on multi-layer networks has drawn a lot of attention. In this work, we study the stability of the complete synchronization on duplex networks. We investigate effects of coupling function on the complete synchronization on duplex networks. We propose two approximation methods to deal with the stability of the complete synchronization on duplex networks. In the first method, we introduce a modified master stability function and, in the second method, we only take into consideration the contributions of a few most unstable transverse modes to the stability of the complete synchronization. We find that both methods work well for predicting the stability of the complete synchronization for small networks. For large networks, the second method still works pretty well.

  6. Synchronization of delay-coupled nonlinear oscillators: an approach based on the stability analysis of synchronized equilibria.

    Science.gov (United States)

    Michiels, Wim; Nijmeijer, Henk

    2009-09-01

    We consider the synchronization problem of an arbitrary number of coupled nonlinear oscillators with delays in the interconnections. The network topology is described by a directed graph. Unlike the conventional approach of deriving directly sufficient synchronization conditions, the approach of the paper starts from an exact stability analysis in a (gain, delay) parameter space of a synchronized equilibrium and extracts insights from an analysis of its bifurcations and from the corresponding emerging behavior. Instrumental to this analysis a factorization of the characteristic equation is employed that not only facilitates the analysis and reduces computational cost but also allows to determine the precise role of the individual agents and the topology of the network in the (in)stability mechanisms. The study provides an algorithm to perform a stability and bifurcation analysis of synchronized equilibria. Furthermore, it reveals fundamental limitations to synchronization and it explains under which conditions on the topology of the network and on the characteristics of the coupling the systems are expected to synchronize. In the second part of the paper the results are applied to coupled Lorenz systems. The main results show that for sufficiently large coupling gains, delay-coupled Lorenz systems exhibit a generic behavior that does not depend on the number of systems and the topology of the network, as long as some basic assumptions are satisfied, including the strong connectivity of the graph. Here the linearized stability analysis is strengthened by a nonlinear stability analysis which confirms the predictions based on the linearized stability and bifurcation analysis. This illustrates the usefulness of the exact linearized analysis in a situation where a direct nonlinear stability analysis is not possible or where it yields conservative conditions from which it is hard to get qualitative insights in the synchronization mechanisms and their scaling properties

  7. Conceptual design of a synchronous Mars telecommunications satellite

    Science.gov (United States)

    Badi, Deborah M.; Farmer, Jeffrey T.; Garn, Paul A.; Martin, Gary L.

    1989-01-01

    Future missions to Mars will require a communications system to link activities on the Martian surface with each other and with mission controllers on Earth. A conceptual design is presented for an aerosynchronous communications satellite to provide these links. The satellite provides the capability for voice, data/command, and video transmissions. The mission scenario assumed for the design is described, and a description of a single aerosynchronous satellite is explained. A viable spacecraft design is then presented. Communication band selection and channel allocation are discussed. The communications system conceptual design is presented along with the trades used in sizing each of the required antennas. Also, the analyses used to develop the supporting subsystem designs are described as is the communications impact on each subsystem design.

  8. Establishing and maintaining a satellite campus connected by synchronous video conferencing.

    Science.gov (United States)

    Fox, Brent I; McDonough, Sharon L; McConatha, Barry J; Marlowe, Karen F

    2011-06-10

    Pharmacy education has experienced substantial growth in the number of new schools and existing schools establishing satellite campuses. Several models have previously been used to connect primary and satellite campuses. We describe the Auburn University Harrison School of Pharmacy's (AUHSOP's) experiences using synchronous video conferencing between the Auburn University campus in Auburn and a satellite campus in Mobile, Alabama. We focus on the technology considerations related to planning, construction, implementation, and continued use of the various resources that support our program. Students' perceptions of their experiences related to technology also are described.

  9. A Criterion for Stability of Synchronization and Application to Coupled Chua's Systems

    International Nuclear Information System (INIS)

    Wang Haixia; Lu Qishao; Wang Qingyun

    2009-01-01

    We investigate synchronization in an array network of nearest-neighbor coupled chaotic oscillators. By using of the Lyapunov stability theory and matrix theory, a criterion for stability of complete synchronization is deduced. Meanwhile, an estimate of the critical coupling strength is obtained to ensure achieving chaos synchronization. As an example application, a model of coupled Chua's circuits with linearly bidirectional coupling is studied to verify the validity of the criterion. (general)

  10. Impact of Model Detail of Synchronous Machines on Real-time Transient Stability Assessment

    DEFF Research Database (Denmark)

    Weckesser, Johannes Tilman Gabriel; Jóhannsson, Hjörtur; Østergaard, Jacob

    2013-01-01

    In this paper, it is investigated how detailed the model of a synchronous machine needs to be in order to assess transient stability using a Single Machine Equivalent (SIME). The results will show how the stability mechanism and the stability assessment are affected by the model detail. In order...... of the machine models is varied. Analyses of the results suggest that a 4th-order model may be sufficient to represent synchronous machines in transient stability studies....

  11. Simulation and Analysis of Autonomous Time Synchronization Based on Asynchronism Two-way Inter-satellite Link

    Science.gov (United States)

    Fang, L.; Yang, X. H.; Sun, B. Q.; Qin, W. J.; Kong, Y.

    2013-09-01

    The measurement of the inter-satellite link is one of the key techniques in the autonomous operation of satellite navigation system. Based on the asynchronism inter-satellite two-way measurement mode in GPS constellation, the reduction formula of the inter-satellite time synchronization is built in this paper. Moreover, the corrective method of main systematic errors is proposed. Inter-satellite two-way time synchronization is simulated on the basis of IGS (International GNSS Service) precise ephemeris. The impacts of the epoch domestication of asynchronism inter-satellite link pseudo-range, the initial orbit, and the main systematic errors on satellite time synchronization are analyzed. Furthermore, the broadcast clock error of each satellite is calculated by the ``centralized'' inter-satellite autonomous time synchronization. Simulation results show that the epoch domestication of asynchronism inter-satellite link pseudo-range and the initial orbit have little impact on the satellite clock errors, and thus they needn't be taken into account. The errors caused by the relativistic effect and the asymmetry of path travel have large impact on the satellite clock errors. These should be corrected with theoretical formula. Compared with the IGS precise clock error, the root mean square of the broadcast clock error of each satellite is about 0.4 ns.

  12. An Autonomous Satellite Time Synchronization System Using Remotely Disciplined VC-OCXOs

    Directory of Open Access Journals (Sweden)

    Xiaobo Gu

    2015-07-01

    Full Text Available An autonomous remote clock control system is proposed to provide time synchronization and frequency syntonization for satellite to satellite or ground to satellite time transfer, with the system comprising on-board voltage controlled oven controlled crystal oscillators (VC-OCXOs that are disciplined to a remote master atomic clock or oscillator. The synchronization loop aims to provide autonomous operation over extended periods, be widely applicable to a variety of scenarios and robust. A new architecture comprising the use of frequency division duplex (FDD, synchronous time division (STDD duplex and code division multiple access (CDMA with a centralized topology is employed. This new design utilizes dual one-way ranging methods to precisely measure the clock error, adopts least square (LS methods to predict the clock error and employs a third-order phase lock loop (PLL to generate the voltage control signal. A general functional model for this system is proposed and the error sources and delays that affect the time synchronization are discussed. Related algorithms for estimating and correcting these errors are also proposed. The performance of the proposed system is simulated and guidance for selecting the clock is provided.

  13. A Self-Stabilizing Hybrid-Fault Tolerant Synchronization Protocol

    Science.gov (United States)

    Malekpour, Mahyar R.

    2014-01-01

    In this report we present a strategy for solving the Byzantine general problem for self-stabilizing a fully connected network from an arbitrary state and in the presence of any number of faults with various severities including any number of arbitrary (Byzantine) faulty nodes. Our solution applies to realizable systems, while allowing for differences in the network elements, provided that the number of arbitrary faults is not more than a third of the network size. The only constraint on the behavior of a node is that the interactions with other nodes are restricted to defined links and interfaces. Our solution does not rely on assumptions about the initial state of the system and no central clock nor centrally generated signal, pulse, or message is used. Nodes are anonymous, i.e., they do not have unique identities. We also present a mechanical verification of a proposed protocol. A bounded model of the protocol is verified using the Symbolic Model Verifier (SMV). The model checking effort is focused on verifying correctness of the bounded model of the protocol as well as confirming claims of determinism and linear convergence with respect to the self-stabilization period. We believe that our proposed solution solves the general case of the clock synchronization problem.

  14. Stabilization and synchronization of Genesio-Tesi system via single variable feedback controller

    International Nuclear Information System (INIS)

    Wang Guangming

    2010-01-01

    This Letter investigates the stabilization and synchronization of Genesio-Tesi systems. Firstly, modifying the previous method, we stabilize the Genesio-Tesi system. Then, we synchronize two identical Genesio chaotic system by extending the obtained stabilization results. To the best of our knowledge, the above controllers obtained in this Letter are simpler than those obtained in the existing results. Finally, numerical simulations verify the effectiveness and the validity of the above theoretical results.

  15. The Orbital Dynamics of Synchronous Satellites: Irregular Motions in the 2 : 1 Resonance

    Directory of Open Access Journals (Sweden)

    Jarbas Cordeiro Sampaio

    2012-01-01

    Full Text Available The orbital dynamics of synchronous satellites is studied. The 2 : 1 resonance is considered; in other words, the satellite completes two revolutions while the Earth completes one. In the development of the geopotential, the zonal harmonics J20 and J40 and the tesseral harmonics J22 and J42 are considered. The order of the dynamical system is reduced through successive Mathieu transformations, and the final system is solved by numerical integration. The Lyapunov exponents are used as tool to analyze the chaotic orbits.

  16. Midterm Stability Evaluation of Wide-area Power System by using Synchronized Phasor Measurements

    Science.gov (United States)

    Ota, Yutaka; Ukai, Hiroyuki; Nakamura, Koichi; Fujita, Hideki

    In recent years, the PMU (Phasor Measurement Unit) receives a great deal of attention as a synchronized measurement system of power systems. Synchronized phasor angles obtained by the PMU provide the effective information for evaluating the stability of a bulk power system. The aspect of instability phenomena during midterm tends to be more complicated, and the stability analysis using the synchronized phasor measurements is significant in order to keep a complicated power system stable. This paper proposes a midterm stability evaluation method of the wide-area power system by using the synchronized phasor measurements. By clustering and aggregating the power system to some coherent groups, the step-out is effectively predicted on the basis of the two-machine equivalent power system model. The midterm stability of a longitudinal power system model of Japanese 60Hz systems constructed by the PSA, which is a hybrid-type power system simulator, is practically evaluated using the proposed method.

  17. Enhancement of Frequency Stability Using Synchronization of a Cantilever Array for MEMS-Based Sensors

    Directory of Open Access Journals (Sweden)

    Francesc Torres

    2016-10-01

    Full Text Available Micro and nano electromechanical resonators have been widely used as single or multiple-mass detection sensors. Smaller devices with higher resonance frequencies and lower masses offer higher mass responsivities but suffer from lower frequency stability. Synchronization phenomena in multiple MEMS resonators have become an important issue because they allow frequency stability improvement, thereby preserving mass responsivity. The authors present an array of five cantilevers (CMOS-MEMS system that are forced to vibrate synchronously to enhance their frequency stability. The frequency stability has been determined in closed-loop configuration for long periods of time by calculating the Allan deviation. An Allan deviation of 0.013 ppm (@ 1 s averaging time for a 1 MHz cantilever array MEMS system was obtained at the synchronized mode, which represents a 23-fold improvement in comparison with the non-synchronized operation mode (0.3 ppm.

  18. Impulsive stabilization and impulsive synchronization of discrete-time delayed neural networks.

    Science.gov (United States)

    Chen, Wu-Hua; Lu, Xiaomei; Zheng, Wei Xing

    2015-04-01

    This paper investigates the problems of impulsive stabilization and impulsive synchronization of discrete-time delayed neural networks (DDNNs). Two types of DDNNs with stabilizing impulses are studied. By introducing the time-varying Lyapunov functional to capture the dynamical characteristics of discrete-time impulsive delayed neural networks (DIDNNs) and by using a convex combination technique, new exponential stability criteria are derived in terms of linear matrix inequalities. The stability criteria for DIDNNs are independent of the size of time delay but rely on the lengths of impulsive intervals. With the newly obtained stability results, sufficient conditions on the existence of linear-state feedback impulsive controllers are derived. Moreover, a novel impulsive synchronization scheme for two identical DDNNs is proposed. The novel impulsive synchronization scheme allows synchronizing two identical DDNNs with unknown delays. Simulation results are given to validate the effectiveness of the proposed criteria of impulsive stabilization and impulsive synchronization of DDNNs. Finally, an application of the obtained impulsive synchronization result for two identical chaotic DDNNs to a secure communication scheme is presented.

  19. STABILITY OF SATELLITES IN CLOSELY PACKED PLANETARY SYSTEMS

    International Nuclear Information System (INIS)

    Payne, Matthew J.; Holman, Matthew J.; Deck, Katherine M.; Perets, Hagai B.

    2013-01-01

    We perform numerical integrations of four-body (star, planet, planet, satellite) systems to investigate the stability of satellites in planetary systems with tightly packed inner planets (STIPs). We find that the majority of closely spaced stable two-planet systems can stably support satellites across a range of parameter-space which is only slightly decreased compared to that seen for the single-planet case. In particular, circular prograde satellites remain stable out to ∼0.4 R H (where R H is the Hill radius) as opposed to 0.5 R H in the single-planet case. A similarly small restriction in the stable parameter-space for retrograde satellites is observed, where planetary close approaches in the range 2.5-4.5 mutual Hill radii destabilize most satellites orbits only if a ∼ 0.65 R H . In very close planetary pairs (e.g., the 12:11 resonance) the addition of a satellite frequently destabilizes the entire system, causing extreme close approaches and the loss of satellites over a range of circumplanetary semi-major axes. The majority of systems investigated stably harbored satellites over a wide parameter-space, suggesting that STIPs can generally offer a dynamically stable home for satellites, albeit with a slightly smaller stable parameter-space than the single-planet case. As we demonstrate that multi-planet systems are not a priori poor candidates for hosting satellites, future measurements of satellite occurrence rates in multi-planet systems versus single-planet systems could be used to constrain either satellite formation or past periods of strong dynamical interaction between planets

  20. Stability regions for synchronized τ-periodic orbits of coupled maps with coupling delay τ

    Energy Technology Data Exchange (ETDEWEB)

    Karabacak, Özkan, E-mail: ozkan2917@gmail.com [Department of Electronics and Communication Engineering, Istanbul Technical University, 34469 Istanbul (Turkey); Department of Electronic Systems, Aalborg University, 9220 Aalborg East (Denmark); Alikoç, Baran, E-mail: alikoc@itu.edu.tr [Department of Control and Automation Engineering, Istanbul Technical University, 34469 Istanbul (Turkey); Atay, Fatihcan M., E-mail: atay@member.ams.org [Department of Mathematics, Bilkent University, 06800 Ankara (Turkey)

    2016-09-15

    Motivated by the chaos suppression methods based on stabilizing an unstable periodic orbit, we study the stability of synchronized periodic orbits of coupled map systems when the period of the orbit is the same as the delay in the information transmission between coupled units. We show that the stability region of a synchronized periodic orbit is determined by the Floquet multiplier of the periodic orbit for the uncoupled map, the coupling constant, the smallest and the largest Laplacian eigenvalue of the adjacency matrix. We prove that the stabilization of an unstable τ-periodic orbit via coupling with delay τ is possible only when the Floquet multiplier of the orbit is negative and the connection structure is not bipartite. For a given coupling structure, it is possible to find the values of the coupling strength that stabilizes unstable periodic orbits. The most suitable connection topology for stabilization is found to be the all-to-all coupling. On the other hand, a negative coupling constant may lead to destabilization of τ-periodic orbits that are stable for the uncoupled map. We provide examples of coupled logistic maps demonstrating the stabilization and destabilization of synchronized τ-periodic orbits as well as chaos suppression via stabilization of a synchronized τ-periodic orbit.

  1. Direct Drive Synchronous Machine Models for Stability Assessment of Wind Farms

    Energy Technology Data Exchange (ETDEWEB)

    Poeller, Markus; Achilles, Sebastian [DIgSILENT GmbH, Gomaringen (Germany)

    2003-11-01

    The increasing size of wind farms requires power system stability analysis including dynamic wind generator models. For turbines above 1MW doubly-fed induction machines are the most widely used concept. However, especially in Germany, direct-drive wind generators based on converter-driven synchronous generator concepts have reached considerable market penetration. This paper presents converter driven synchronous generator models of various order that can be used for simulating transients and dynamics in a very wide time range.

  2. A Lie algebraic condition for exponential stability of discrete hybrid systems and application to hybrid synchronization.

    Science.gov (United States)

    Zhao, Shouwei

    2011-06-01

    A Lie algebraic condition for global exponential stability of linear discrete switched impulsive systems is presented in this paper. By considering a Lie algebra generated by all subsystem matrices and impulsive matrices, when not all of these matrices are Schur stable, we derive new criteria for global exponential stability of linear discrete switched impulsive systems. Moreover, simple sufficient conditions in terms of Lie algebra are established for the synchronization of nonlinear discrete systems using a hybrid switching and impulsive control. As an application, discrete chaotic system's synchronization is investigated by the proposed method.

  3. Exponential stabilization and synchronization for fuzzy model of memristive neural networks by periodically intermittent control.

    Science.gov (United States)

    Yang, Shiju; Li, Chuandong; Huang, Tingwen

    2016-03-01

    The problem of exponential stabilization and synchronization for fuzzy model of memristive neural networks (MNNs) is investigated by using periodically intermittent control in this paper. Based on the knowledge of memristor and recurrent neural network, the model of MNNs is formulated. Some novel and useful stabilization criteria and synchronization conditions are then derived by using the Lyapunov functional and differential inequality techniques. It is worth noting that the methods used in this paper are also applied to fuzzy model for complex networks and general neural networks. Numerical simulations are also provided to verify the effectiveness of theoretical results. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Stability of the Markov operator and synchronization of Markovian random products

    Science.gov (United States)

    Díaz, Lorenzo J.; Matias, Edgar

    2018-05-01

    We study Markovian random products on a large class of ‘m-dimensional’ connected compact metric spaces (including products of closed intervals and trees). We introduce a splitting condition, generalizing the classical one by Dubins and Freedman, and prove that this condition implies the asymptotic stability of the corresponding Markov operator and (exponentially fast) synchronization.

  5. A satellite mobile communication system based on Band-Limited Quasi-Synchronous Code Division Multiple Access (BLQS-CDMA)

    Science.gov (United States)

    Degaudenzi, R.; Elia, C.; Viola, R.

    1990-01-01

    Discussed here is a new approach to code division multiple access applied to a mobile system for voice (and data) services based on Band Limited Quasi Synchronous Code Division Multiple Access (BLQS-CDMA). The system requires users to be chip synchronized to reduce the contribution of self-interference and to make use of voice activation in order to increase the satellite power efficiency. In order to achieve spectral efficiency, Nyquist chip pulse shaping is used with no detection performance impairment. The synchronization problems are solved in the forward link by distributing a master code, whereas carrier forced activation and closed loop control techniques have been adopted in the return link. System performance sensitivity to nonlinear amplification and timing/frequency synchronization errors are analyzed.

  6. The stability of a class of synchronous generator damping model

    Science.gov (United States)

    Liu, Jun

    2018-03-01

    Electricity is indispensable to modern society and the most convenient energy, it can be easily transformed into other forms of energy, has been widely used in engineering, transportation and so on, this paper studied the generator model with damping machine, using the Lyapunov function method, we obtain sufficient conditions for the asymptotic stability of the model.

  7. A Self-Stabilizing Hybrid Fault-Tolerant Synchronization Protocol

    Science.gov (United States)

    Malekpour, Mahyar R.

    2015-01-01

    This paper presents a strategy for solving the Byzantine general problem for self-stabilizing a fully connected network from an arbitrary state and in the presence of any number of faults with various severities including any number of arbitrary (Byzantine) faulty nodes. The strategy consists of two parts: first, converting Byzantine faults into symmetric faults, and second, using a proven symmetric-fault tolerant algorithm to solve the general case of the problem. A protocol (algorithm) is also present that tolerates symmetric faults, provided that there are more good nodes than faulty ones. The solution applies to realizable systems, while allowing for differences in the network elements, provided that the number of arbitrary faults is not more than a third of the network size. The only constraint on the behavior of a node is that the interactions with other nodes are restricted to defined links and interfaces. The solution does not rely on assumptions about the initial state of the system and no central clock nor centrally generated signal, pulse, or message is used. Nodes are anonymous, i.e., they do not have unique identities. A mechanical verification of a proposed protocol is also present. A bounded model of the protocol is verified using the Symbolic Model Verifier (SMV). The model checking effort is focused on verifying correctness of the bounded model of the protocol as well as confirming claims of determinism and linear convergence with respect to the self-stabilization period.

  8. Effects of nuclear electromagnetic pulse (EMP) on synchronous stability of the electric power system

    International Nuclear Information System (INIS)

    Manweiler, R.W.

    1975-11-01

    The effects of a nuclear electromagnetic pulse (EMP) on the synchronous stability of the electric power transmission and distribution systems are evaluated. The various modes of coupling of EMP to the power system are briefly discussed, with particular emphasis on those perturbations affecting the synchronous stability of the transmission system. A brief review of the fundamental concepts of the stability problem is given, with a discussion of the general characteristics of transient analysis. A model is developed to represent single sets as well as repetitive sets of multiple faults on the distribution systems, as might be produced by EMP. The results of many numerical stability calculations are presented to illustrate the transmission system's response from different types of perturbations. The important parameters of both multiple and repetitive faults are studied, including the dependence of the response on the size of the perturbed area, the fault density, and the effective impedance between the fault location and the transmission system. Both major load reduction and the effect of the opening of tie lines at the time of perturbation are also studied. We conclude that there is a high probability that EMP can induce perturbations on the distribution networks causing a large portion of the transmission network in the perturbed area to lose synchronism. The result would be an immediate and massive power failure

  9. Stability of The Synchronization Manifold in An All-To-All Time LAG- Diffusively Coupled Oscillators

    Directory of Open Access Journals (Sweden)

    Adu A.M. Wasike

    2009-06-01

    Full Text Available we consider a lattice system of identical oscillators that are all coupled to one another with a diffusive coupling that has a time lag. We use the natural splitting of the system into synchronized manifold and transversal manifold to estimate the value of the time lag for which the stability of the system follows from that without a time lag. Each oscillator has a unique periodic solution that is attracting.

  10. Towards attosecond synchronization of remote mode-locked lasers using stabilized transmission of optical comb frequencies

    Science.gov (United States)

    Wilcox, R. B.; Byrd, J. M.; Doolittle, L. R.; Holzwarth, R.; Huang, G.

    2011-09-01

    We propose a method of synchronizing mode-locked lasers separated by hundreds of meters with the possibility of achieving sub-fs performance by locking the phases of corresponding lines in the optical comb spectrum. The optical phase from one comb line is transmitted to the remote laser over an interferometrically stabilized link by locking a single frequency laser to a comb line with high phase stability. We describe how these elements are integrated into a complete system and estimate the potential performance.

  11. How long do satellites need to overlap? Evaluation of climate data stability from overlapping satellite records

    Science.gov (United States)

    Weatherhead, Elizabeth C.; Harder, Jerald; Araujo-Pradere, Eduardo A.; Bodeker, Greg; English, Jason M.; Flynn, Lawrence E.; Frith, Stacey M.; Lazo, Jeffrey K.; Pilewskie, Peter; Weber, Mark; Woods, Thomas N.

    2017-12-01

    Sensors on satellites provide unprecedented understanding of the Earth's climate system by measuring incoming solar radiation, as well as both passive and active observations of the entire Earth with outstanding spatial and temporal coverage. A common challenge with satellite observations is to quantify their ability to provide well-calibrated, long-term, stable records of the parameters they measure. Ground-based intercomparisons offer some insight, while reference observations and internal calibrations give further assistance for understanding long-term stability. A valuable tool for evaluating and developing long-term records from satellites is the examination of data from overlapping satellite missions. This paper addresses how the length of overlap affects the ability to identify an offset or a drift in the overlap of data between two sensors. Ozone and temperature data sets are used as examples showing that overlap data can differ by latitude and can change over time. New results are presented for the general case of sensor overlap by using Solar Radiation and Climate Experiment (SORCE) Spectral Irradiance Monitor (SIM) and Solar Stellar Irradiance Comparison Experiment (SOLSTICE) solar irradiance data as an example. To achieve a 1 % uncertainty in estimating the offset for these two instruments' measurement of the Mg II core (280 nm) requires approximately 5 months of overlap. For relative drift to be identified within 0.1 % yr-1 uncertainty (0.00008 W m-2 nm-1 yr-1), the overlap for these two satellites would need to be 2.5 years. Additional overlap of satellite measurements is needed if, as is the case for solar monitoring, unexpected jumps occur adding uncertainty to both offsets and drifts; the additional length of time needed to account for a single jump in the overlap data may be as large as 50 % of the original overlap period in order to achieve the same desired confidence in the stability of the merged data set. Results presented here are directly

  12. Fault-Tolerant Self-Stabilizing Distributed Clock Synchronization Protocol for Arbitrary Digraphs

    Science.gov (United States)

    Malekpour, Mahyar R. (Inventor)

    2014-01-01

    A self-stabilizing network in the form of an arbitrary, non-partitioned digraph includes K nodes having a synchronizer executing a protocol. K-1 monitors of each node may receive a Sync message transmitted from a directly connected node. When the Sync message is received, the logical clock value for the receiving node is set to between 0 and a communication latency value (gamma) if the clock value is less than a minimum event-response delay (D). A new Sync message is also transmitted to any directly connected nodes if the clock value is greater than or equal to both D and a graph threshold (T(sub S)). When the Sync message is not received the synchronizer increments the clock value if the clock value is less than a resynchronization period (P), and resets the clock value and transmits a new Sync message to all directly connected nodes when the clock value equals or exceeds P.

  13. Synchronization of delay-coupled nonlinear oscillators : an approach based on the stability analysis of synchronized equilibria

    NARCIS (Netherlands)

    Michiels, W.; Nijmeijer, H.

    2009-01-01

    We consider the synchronization problem of an arbitrary number of coupled nonlinear oscillators with delays in the interconnections. The network topology is described by a directed graph. Unlike the conventional approach of deriving directly sufficient synchronization conditions, the approach of the

  14. Insert Tidal Here: Finding Stability of Galilean Satellite Interiors

    Science.gov (United States)

    Walker, M.; Bills, B. G.; Mitchell, J.; Rhoden, A.

    2017-12-01

    The tidal environment is often hypothesized as a cause of surface expression in the satellites of the outer solar system. In two notable cases, Io's volcanism is thought to be driven by tidal heating of its mantle while the shattered surface of Europa's ice shell is said to be generated by tidal stresses in that ice. Being adjacent moons of Jupiter, these satellites give us a unique opportunity to apply a single set of general coupled models at each body to predict how one model can predict the heat generation and flow, strain and stress states, and structural parameters for each body. We include the effects of interior evolution into the tidal environment in addition to an evolving orbit. We find that the interiors of Io and Europa will evolve, as a consequence of the heat transfer from interior to surface, and stable structural and heat flow conditions are found. Then as their orbits evolve, perturbed by the mutual interactions of the Laplace mean motion resonance, those conditions of structural and heat stability also change. In particular, we find that at current orbital conditions there is sufficient heat to completely melt Io models for which a convecting interior is capped by a conducting lid. This argues for the presence of a non dissipating (or barely dissipating) core below the mantle, which future Io structure models should include. For the Europa model at current orbit, we use a silicate interior under an ocean capped by a two layer ice; convecting below with a conducting surface. We find stability in heat and structure occurs when the lower ice melts and recedes until the shell is roughly 50km thick. We present a variety of plausible structures for these bodies, and track how the stability of those structures trend as the orbit (in particular the orbital eccentricity, mean motion, and obliquity) change. We show how the Love numbers, layer thicknesses, surface heat flow, and orbital parameters are all linked. For Europa, upcoming measurements from

  15. An input-to-state stability approach to verify almost global stability of a synchronous-machine-infinite-bus system.

    Science.gov (United States)

    Schiffer, Johannes; Efimov, Denis; Ortega, Romeo; Barabanov, Nikita

    2017-08-13

    Conditions for almost global stability of an operating point of a realistic model of a synchronous generator with constant field current connected to an infinite bus are derived. The analysis is conducted by employing the recently proposed concept of input-to-state stability (ISS)-Leonov functions, which is an extension of the powerful cell structure principle developed by Leonov and Noldus to the ISS framework. Compared with the original ideas of Leonov and Noldus, the ISS-Leonov approach has the advantage of providing additional robustness guarantees. The efficiency of the derived sufficient conditions is illustrated via numerical experiments.This article is part of the themed issue 'Energy management: flexibility, risk and optimization'. © 2017 The Author(s).

  16. Numerical assessment of efficiency and control stability of an HTS synchronous motor

    Energy Technology Data Exchange (ETDEWEB)

    Xian Wei; Yuan Weijia; Coombs, T A, E-mail: wx210@cam.ac.u [Electronic, Power and Energy Conversion Group, Engineering Department, Cambridge University, 9 JJ Thomson Avenue, Cambridge CB3 0FA (United Kingdom)

    2010-06-01

    A high temperature superconducting (HTS) permanent magnet synchronous motor (PMSM) is designed and developed in Cambridge University. It is expected to become cost competitive with the conventional PMSM owing to its high efficiency, high power density, high torque density, etc. The structure and parameters of HTS PMSM are detailed. Both AC losses by transport current and applied filed in stator armature winding of HTS PMSM are also analyzed. Computed and simulated results of the characteristics of the HTS PMSM and conventional PMSM are compared. The improvement on stability of direct torque control (DTC) on the HTS PMSM is estimated, and proved by simulation on Matlab/Simulink.

  17. Controlling chaos in permanent magnet synchronous motor based on finite-time stability theory

    International Nuclear Information System (INIS)

    Du-Qu, Wei; Bo, Zhang

    2009-01-01

    This paper reports that the performance of permanent magnet synchronous motor (PMSM) degrades due to chaos when its systemic parameters fall into a certain area. To control the undesirable chaos in PMSM, a nonlinear controller, which is simple and easy to be constructed, is presented to achieve finite-time chaos control based on the finite-time stability theory. Computer simulation results show that the proposed controller is very effective. The obtained results may help to maintain the industrial servo driven system's security operation. (general)

  18. A Self-Stabilizing Distributed Clock Synchronization Protocol for Arbitrary Digraphs

    Science.gov (United States)

    Malekpour, Mahyar R.

    2011-01-01

    This report presents a self-stabilizing distributed clock synchronization protocol in the absence of faults in the system. It is focused on the distributed clock synchronization of an arbitrary, non-partitioned digraph ranging from fully connected to 1-connected networks of nodes while allowing for differences in the network elements. This protocol does not rely on assumptions about the initial state of the system, other than the presence of at least one node, and no central clock or a centrally generated signal, pulse, or message is used. Nodes are anonymous, i.e., they do not have unique identities. There is no theoretical limit on the maximum number of participating nodes. The only constraint on the behavior of the node is that the interactions with other nodes are restricted to defined links and interfaces. We present an outline of a deductive proof of the correctness of the protocol. A model of the protocol was mechanically verified using the Symbolic Model Verifier (SMV) for a variety of topologies. Results of the mechanical proof of the correctness of the protocol are provided. The model checking results have verified the correctness of the protocol as they apply to the networks with unidirectional and bidirectional links. In addition, the results confirm the claims of determinism and linear convergence. As a result, we conjecture that the protocol solves the general case of this problem. We also present several variations of the protocol and discuss that this synchronization protocol is indeed an emergent system.

  19. Stability Augmentation of Wind Farm using Variable Speed Permanent Magnet Synchronous Generator

    Science.gov (United States)

    Rosyadi, Marwan; Muyeen, S. M.; Takahashi, Rion; Tamura, Junji

    This paper presents a new control strategy of variable speed permanent magnet wind generator for stability augmentation of wind farm including fixed speed wind turbine with Induction Generator (IG). A new control scheme is developed for two levels back-to-back converters of Permanent Magnet Synchronous Generator (PMSG), by which both active and reactive powers delivered to the grid can be controlled easily. To avoid the converter damage, the DC link protection controller is also proposed in order to protect the dc link circuit during fault condition. To evaluate the control capability of the proposed controllers, simulations are performed on two model systems composed of wind farms connected to an infinite bus. From transient and steady state analyses by using PSCAD/EMTDC, it is concluded that the proposed control scheme is very effective to improve the stability of wind farm for severe network disturbance and randomly fluctuating wind speed.

  20. Model Checking a Self-Stabilizing Distributed Clock Synchronization Protocol for Arbitrary Digraphs

    Science.gov (United States)

    Malekpour, Mahyar R.

    2011-01-01

    This report presents the mechanical verification of a self-stabilizing distributed clock synchronization protocol for arbitrary digraphs in the absence of faults. This protocol does not rely on assumptions about the initial state of the system, other than the presence of at least one node, and no central clock or a centrally generated signal, pulse, or message is used. The system under study is an arbitrary, non-partitioned digraph ranging from fully connected to 1-connected networks of nodes while allowing for differences in the network elements. Nodes are anonymous, i.e., they do not have unique identities. There is no theoretical limit on the maximum number of participating nodes. The only constraint on the behavior of the node is that the interactions with other nodes are restricted to defined links and interfaces. This protocol deterministically converges within a time bound that is a linear function of the self-stabilization period.

  1. Effect of PID Power System Stabilizer for a Synchronous Machine in Simulink Environment

    International Nuclear Information System (INIS)

    Yi, Tan Qian; Kasilingam, Gowrishankar; Raguraman, Raman

    2013-01-01

    This paper presents the use of Proportional-Integral-Derivative (PID) Controller with power system stabilizer (PSS) in a single machine infinite bus system. A PSS is used to generate supplementary damping control signals for an excitation system in order to damp out low frequency oscillations (LFO) of an electric power system. The paper is modelled in the MATLAB Simulink Environment to analyze the performance of a synchronous machine under a wide range of operating conditions. The functional blocks of PID controller with PSS are generated and the simulation studies are conducted based on different test cases to observe the dynamic performance of the power system. Analysis in this paper reveals that the PID-PSS gives better dynamic performance as compared to that of conventional power system stabilizer and also the optimal gain settings of PID PSS obtained at normal operating condition works well to other operating condition without much deterioration of the dynamic responses.

  2. On transverse exponential stability and its use in incremental stability, observer and synchronization

    NARCIS (Netherlands)

    Andrieu, Vincent; Jayawardhana, Bayu; Praly, Laurent

    2013-01-01

    We study the relation between the exponential stability of an invariant manifold and the existence of a Riemannian metric for which the flow is “transversally” contracting. More precisely, we investigate how the following properties are related to each other: i). A manifold is “transversally”

  3. Finite-time stability and synchronization of memristor-based fractional-order fuzzy cellular neural networks

    Science.gov (United States)

    Zheng, Mingwen; Li, Lixiang; Peng, Haipeng; Xiao, Jinghua; Yang, Yixian; Zhang, Yanping; Zhao, Hui

    2018-06-01

    This paper mainly studies the finite-time stability and synchronization problems of memristor-based fractional-order fuzzy cellular neural network (MFFCNN). Firstly, we discuss the existence and uniqueness of the Filippov solution of the MFFCNN according to the Banach fixed point theorem and give a sufficient condition for the existence and uniqueness of the solution. Secondly, a sufficient condition to ensure the finite-time stability of the MFFCNN is obtained based on the definition of finite-time stability of the MFFCNN and Gronwall-Bellman inequality. Thirdly, by designing a simple linear feedback controller, the finite-time synchronization criterion for drive-response MFFCNN systems is derived according to the definition of finite-time synchronization. These sufficient conditions are easy to verify. Finally, two examples are given to show the effectiveness of the proposed results.

  4. Influencing Power Flow and Transient Stability by Static Synchronous Series Compensator

    Directory of Open Access Journals (Sweden)

    Md. Imran Azim

    2015-04-01

    Full Text Available In the present world, modern power system networks, being a complicated combination of generators, transmission lines, transformers, circuit breakers and other devices, are more vulnerable to various types of faults causing stability problems. Among these faults, transient fault is believed to be a major disturbance as it causes large damage to a sound system within a certain period of time. Therefore, the protection against transient faults, better known as transient stability control is one of the major considerations for the power system engineers. This paper presents the control approach in the transmission line during transient faults by means of Static Synchronous Series Compensator (SSSC in order to stabilize Single Machine Infinite Bus (SMIB system.  In this paper, SSSC is represented by variable voltage injection associated with the transformer leakage reactance and the voltage source. The comparative results depict that the swing curve of a system increases monotonically after the occurrence of transient faults However, SSSC is effective enough to make it stable after a while.

  5. Model Checking A Self-Stabilizing Synchronization Protocol for Arbitrary Digraphs

    Science.gov (United States)

    Malekpour, Mahyar R.

    2012-01-01

    This report presents the mechanical verification of a self-stabilizing distributed clock synchronization protocol for arbitrary digraphs in the absence of faults. This protocol does not rely on assumptions about the initial state of the system, other than the presence of at least one node, and no central clock or a centrally generated signal, pulse, or message is used. The system under study is an arbitrary, non-partitioned digraph ranging from fully connected to 1-connected networks of nodes while allowing for differences in the network elements. Nodes are anonymous, i.e., they do not have unique identities. There is no theoretical limit on the maximum number of participating nodes. The only constraint on the behavior of the node is that the interactions with other nodes are restricted to defined links and interfaces. This protocol deterministically converges within a time bound that is a linear function of the self-stabilization period. A bounded model of the protocol is verified using the Symbolic Model Verifier (SMV) for a subset of digraphs. Modeling challenges of the protocol and the system are addressed. The model checking effort is focused on verifying correctness of the bounded model of the protocol as well as confirmation of claims of determinism and linear convergence with respect to the self-stabilization period.

  6. Synchronized Position and Hold Reorient Experimental Satellites - International Space Station (SPHERES-ISS), Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Payload Systems Inc. (PSI) and the MIT Space Systems Laboratory (MIT-SSL) propose an innovative research program entitled SPHERES-ISS that uses their satellite...

  7. Fixed-time stability of dynamical systems and fixed-time synchronization of coupled discontinuous neural networks.

    Science.gov (United States)

    Hu, Cheng; Yu, Juan; Chen, Zhanheng; Jiang, Haijun; Huang, Tingwen

    2017-05-01

    In this paper, the fixed-time stability of dynamical systems and the fixed-time synchronization of coupled discontinuous neural networks are investigated under the framework of Filippov solution. Firstly, by means of reduction to absurdity, a theorem of fixed-time stability is established and a high-precision estimation of the settling-time is given. It is shown by theoretic proof that the estimation bound of the settling time given in this paper is less conservative and more accurate compared with the classical results. Besides, as an important application, the fixed-time synchronization of coupled neural networks with discontinuous activation functions is proposed. By designing a discontinuous control law and using the theory of differential inclusions, some new criteria are derived to ensure the fixed-time synchronization of the addressed coupled networks. Finally, two numerical examples are provided to show the effectiveness and validity of the theoretical results. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Analytical Prediction of the Spin Stabilized Satellite's Attitude Using The Solar Radiation Torque

    International Nuclear Information System (INIS)

    Motta, G B; Carvalho, M V; Zanardi, M C

    2013-01-01

    The aim of this paper is to present an analytical solution for the spin motion equations of spin-stabilized satellite considering only the influence of solar radiation torque. The theory uses a cylindrical satellite on a circular orbit and considers that the satellite is always illuminated. The average components of this torque were determined over an orbital period. These components are substituted in the spin motion equations in order to get an analytical solution for the right ascension and declination of the satellite spin axis. The time evolution for the pointing deviation of the spin axis was also analyzed. These solutions were numerically implemented and compared with real data of the Brazilian Satellite of Data Collection – SCD1 an SCD2. The results show that the theory has consistency and can be applied to predict the spin motion of spin-stabilized artificial satellites

  9. Prototype Design and Mission Analysis for a Small Satellite Exploiting Environmental Disturbances for Attitude Stabilization

    Science.gov (United States)

    2016-03-01

    AND MISSION ANALYSIS FOR A SMALL SATELLITE EXPLOITING ENVIRONMENTAL DISTURBANCES FOR ATTITUDE STABILIZATION by Halis C. Polat March 2016...FOR A SMALL SATELLITE EXPLOITING ENVIRONMENTAL DISTURBANCES FOR ATTITUDE STABILIZATION 5. FUNDING NUMBERS 6. AUTHOR(S) Halis C. Polat 7...need a robust and accurate attitude control system. Due to the mass- and volume-constrained design environment of CubeSat, conventional methods are

  10. METHOD OF ESTIMATION INFLUENCE OF MASS AND SIZE INDEXES OF SYNCHRONOUS GENERATORS ON THEIR DYNAMIC STABILITY AT EXTERNAL INDIGNATIONS

    OpenAIRE

    Chernyuk, Artem Mikhaylovich; Egorov, Оleksii Borisovich; Budanov, Pavlo Feofanovch; Bykova, Viktoriya Sergeyevna

    2015-01-01

    The analysis of methods of decline of mass and size indexes of synchronous generators and increase of their tecnik and economic descriptions is conducted in the article. Possible changes are certain in the modes of operations of machine as a result of change of its массо-габаритных indexes. Dependence of dynamic stability of work of machine as function of moment of inertia of its rotor is shown. Descriptions of speed of change of corner of ä of synchronous generator are got depending on the m...

  11. Analysis and control of excitation, field weakening and stability in direct torque controlled electrically excited synchronous motor drives

    Energy Technology Data Exchange (ETDEWEB)

    Pyrhoenen, O

    1999-12-31

    Direct torque control (DTC) is a new control method for rotating field electrical machines. DTC controls directly the motor stator flux linkage with the stator voltage, and no stator current controllers are used. With the DTC method very good torque dynamics can be achieved. Until now, DTC has been applied to asynchronous motor drives. The purpose of this work is to analyse the applicability of DTC to electrically excited synchronous motor drives. Compared with asynchronous motor drives, electrically excited synchronous motor drives require an additional control for the rotor field current. The field current control is called excitation control in this study. The dependence of the static and dynamic performance of DTC synchronous motor drives on the excitation control has been analysed and a straightforward excitation control method has been developed and tested. In the field weakening range the stator flux linkage modulus must be reduced in order to keep the electro motive force of the synchronous motor smaller than the stator voltage and in order to maintain a sufficient voltage reserve. The dynamic performance of the DTC synchronous motor drive depends on the stator flux linkage modulus. Another important factor for the dynamic performance in the field weakening range is the excitation control. The field weakening analysis considers both dependencies. A modified excitation control method, which maximises the dynamic performance in the field weakening range, has been developed. In synchronous motor drives the load angle must be kept in a stabile working area in order to avoid loss of synchronism. The traditional vector control methods allow to adjust the load angle of the synchronous motor directly by the stator current control. In the DTC synchronous motor drive the load angle is not a directly controllable variable, but it is formed freely according to the motor`s electromagnetic state and load. The load angle can be limited indirectly by limiting the torque

  12. Analysis and control of excitation, field weakening and stability in direct torque controlled electrically excited synchronous motor drives

    Energy Technology Data Exchange (ETDEWEB)

    Pyrhoenen, O.

    1998-12-31

    Direct torque control (DTC) is a new control method for rotating field electrical machines. DTC controls directly the motor stator flux linkage with the stator voltage, and no stator current controllers are used. With the DTC method very good torque dynamics can be achieved. Until now, DTC has been applied to asynchronous motor drives. The purpose of this work is to analyse the applicability of DTC to electrically excited synchronous motor drives. Compared with asynchronous motor drives, electrically excited synchronous motor drives require an additional control for the rotor field current. The field current control is called excitation control in this study. The dependence of the static and dynamic performance of DTC synchronous motor drives on the excitation control has been analysed and a straightforward excitation control method has been developed and tested. In the field weakening range the stator flux linkage modulus must be reduced in order to keep the electro motive force of the synchronous motor smaller than the stator voltage and in order to maintain a sufficient voltage reserve. The dynamic performance of the DTC synchronous motor drive depends on the stator flux linkage modulus. Another important factor for the dynamic performance in the field weakening range is the excitation control. The field weakening analysis considers both dependencies. A modified excitation control method, which maximises the dynamic performance in the field weakening range, has been developed. In synchronous motor drives the load angle must be kept in a stabile working area in order to avoid loss of synchronism. The traditional vector control methods allow to adjust the load angle of the synchronous motor directly by the stator current control. In the DTC synchronous motor drive the load angle is not a directly controllable variable, but it is formed freely according to the motor`s electromagnetic state and load. The load angle can be limited indirectly by limiting the torque

  13. Global exponential stability and lag synchronization for delayed memristive fuzzy Cohen-Grossberg BAM neural networks with impulses.

    Science.gov (United States)

    Yang, Wengui; Yu, Wenwu; Cao, Jinde; Alsaadi, Fuad E; Hayat, Tasawar

    2018-02-01

    This paper investigates the stability and lag synchronization for memristor-based fuzzy Cohen-Grossberg bidirectional associative memory (BAM) neural networks with mixed delays (asynchronous time delays and continuously distributed delays) and impulses. By applying the inequality analysis technique, homeomorphism theory and some suitable Lyapunov-Krasovskii functionals, some new sufficient conditions for the uniqueness and global exponential stability of equilibrium point are established. Furthermore, we obtain several sufficient criteria concerning globally exponential lag synchronization for the proposed system based on the framework of Filippov solution, differential inclusion theory and control theory. In addition, some examples with numerical simulations are given to illustrate the feasibility and validity of obtained results. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Some new results on stability and synchronization for delayed inertial neural networks based on non-reduced order method.

    Science.gov (United States)

    Li, Xuanying; Li, Xiaotong; Hu, Cheng

    2017-12-01

    In this paper, without transforming the second order inertial neural networks into the first order differential systems by some variable substitutions, asymptotic stability and synchronization for a class of delayed inertial neural networks are investigated. Firstly, a new Lyapunov functional is constructed to directly propose the asymptotic stability of the inertial neural networks, and some new stability criteria are derived by means of Barbalat Lemma. Additionally, by designing a new feedback control strategy, the asymptotic synchronization of the addressed inertial networks is studied and some effective conditions are obtained. To reduce the control cost, an adaptive control scheme is designed to realize the asymptotic synchronization. It is noted that the dynamical behaviors of inertial neural networks are directly analyzed in this paper by constructing some new Lyapunov functionals, this is totally different from the traditional reduced-order variable substitution method. Finally, some numerical simulations are given to demonstrate the effectiveness of the derived theoretical results. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Local time dependences of electron flux changes during substorms derived from mulit-satellite observation at synchronous orbit

    International Nuclear Information System (INIS)

    Nagai, T.

    1982-01-01

    Energetic electron (energy higher than 2 MeV) observation by a synchronous satellite chain (which consists of GOES 2, GOES 3, and GMS covering the local time extent of approximately 10 hr) have been used to study the large-scale characteristics of the dynamic behavior in the near-earth magnetosphere for substorms, in which low-latitude positive bay aspects are clearly seen in the ground magnetic data. Simultaneous multi-satellite observations have clearly demonstrated the local time dependence of electron flux changes during substorms and the longitudinal extent of electron flux variations. Before a ground substorm onset the energetic electron flux decreases in a wide longitudinal region of the nighttime and the flux decrease is seen even on the afternoonside. For the flux behavior associated with the onset of the substorm expansion phase, there exists a demarcation line, the LT position of which can be represented as LT = 24.3-1.5 K/sub p/. The flux shows a recovery to a normal level east of the demarcation line, and it shows a decrease west of the demarcation line. The region of the flux decrease during the expansion phase is restricted, and it is observed mainly on the afternoonside. The afternoonside flux decrease has a different characteristic from the nightside flux decrease preceding the expansion phase. The nighside flux decrease-recovery sequence is observed in a wide region of more than 6 hr in the nighttime and the center of this variation exists in the premidnight region. It should be noted that the afternoonside flux decrease is not observed for every substorm and the nightside signature noted that the afternoonside flux sometimes becomes a dominent feature even on the afternoonside

  16. Assessing Temporal Stability for Coarse Scale Satellite Moisture Validation in the Maqu Area, Tibet

    Science.gov (United States)

    Bhatti, Haris Akram; Rientjes, Tom; Verhoef, Wouter; Yaseen, Muhammad

    2013-01-01

    This study evaluates if the temporal stability concept is applicable to a time series of satellite soil moisture images so to extend the common procedure of satellite image validation. The area of study is the Maqu area, which is located in the northeastern part of the Tibetan plateau. The network serves validation purposes of coarse scale (25–50 km) satellite soil moisture products and comprises 20 stations with probes installed at depths of 5, 10, 20, 40, 80 cm. The study period is 2009. The temporal stability concept is applied to all five depths of the soil moisture measuring network and to a time series of satellite-based moisture products from the Advance Microwave Scanning Radiometer (AMSR-E). The in-situ network is also assessed by Pearsons's correlation analysis. Assessments by the temporal stability concept proved to be useful and results suggest that probe measurements at 10 cm depth best match to the satellite observations. The Mean Relative Difference plot for satellite pixels shows that a RMSM pixel can be identified but in our case this pixel does not overlay any in-situ station. Also, the RMSM pixel does not overlay any of the Representative Mean Soil Moisture (RMSM) stations of the five probe depths. Pearson's correlation analysis on in-situ measurements suggests that moisture patterns over time are more persistent than over space. Since this study presents first results on the application of the temporal stability concept to a series of satellite images, we recommend further tests to become more conclusive on effectiveness to broaden the procedure of satellite validation. PMID:23959237

  17. Satellites

    International Nuclear Information System (INIS)

    Burns, J.A.; Matthews, M.S.

    1986-01-01

    The present work is based on a conference: Natural Satellites, Colloquium 77 of the IAU, held at Cornell University from July 5 to 9, 1983. Attention is given to the background and origins of satellites, protosatellite swarms, the tectonics of icy satellites, the physical characteristics of satellite surfaces, and the interactions of planetary magnetospheres with icy satellite surfaces. Other topics include the surface composition of natural satellites, the cratering of planetary satellites, the moon, Io, and Europa. Consideration is also given to Ganymede and Callisto, the satellites of Saturn, small satellites, satellites of Uranus and Neptune, and the Pluto-Charon system

  18. Semi-analytical study of the rotational motion stability of artificial satellites using quaternions

    International Nuclear Information System (INIS)

    Dos Santos, Josué C; Zanardi, Maria Cecília; Matos, Nicholas

    2013-01-01

    This study at aims performing the stability analysis of the rotational motion to artificial satellites using quaternions to describe the satellite attitude (orientation on the space). In the system of rotational motion equations, which is composed by four kinematic equations of the quaternions and by the three Euler equations in terms of the rotational spin components. The influence of the gravity gradient and the direct solar radiation pressure torques have been considered. Equilibrium points were obtained through numerical simulations using the softwares Matlab and Octave, which are then analyzed by the Routh-Hurwitz Stability Criterion

  19. Conditions and Linear Stability Analysis at the Transition to Synchronization of Three Coupled Phase Oscillators in a Ring

    Science.gov (United States)

    El-Nashar, Hassan F.

    2017-06-01

    We consider a system of three nonidentical coupled phase oscillators in a ring topology. We explore the conditions that must be satisfied in order to obtain the phases at the transition to a synchrony state. These conditions lead to the correct mathematical expressions of phases that aid to find a simple analytic formula for critical coupling when the oscillators transit to a synchronization state having a common frequency value. The finding of a simple expression for the critical coupling allows us to perform a linear stability analysis at the transition to the synchronization stage. The obtained analytic forms of the eigenvalues show that the three coupled phase oscillators with periodic boundary conditions transit to a synchrony state when a saddle-node bifurcation occurs.

  20. Stability analysis and synchronization in discrete-time complex networks with delayed coupling

    Science.gov (United States)

    Cheng, Ranran; Peng, Mingshu; Yu, Weibin; Sun, Bo; Yu, Jinchen

    2013-12-01

    A new network of coupled maps is proposed in which the connections between units involve no delays but the intra-neural communication does, whereas in the work of Atay et al. [Phys. Rev. Lett. 92, 144101 (2004)], the focus is on information processing delayed by the inter-neural communication. We show that the synchronization of the network depends on not only the intrinsic dynamical features and inter-connection topology (characterized by the spectrum of the graph Laplacian) but also the delays and the coupling strength. There are two main findings: (i) the more neighbours, the easier to be synchronized; (ii) odd delays are easier to be synchronized than even ones. In addition, compared with those discussed by Atay et al. [Phys. Rev. Lett. 92, 144101 (2004)], our model has a better synchronizability for regular networks and small-world variants.

  1. Effect of Electrodynamic Forces on the Attitude Stabilization of a Satellite in Ecliptic orbits

    Science.gov (United States)

    Abdel-Aziz, Yehia

    This work is based on the previous paper of the author [1]. The present paper is devoted to the investigation of the attitude dynamics of an ecliptic satellite moving in the magnetic field of the Earth. Eelectrodynamic forces result from the motion of a charged satelite relative to the magnetic field of the Earth. The torque due to electrodynamic effect of the Lorentz forces on the attitude stabilization of the satellite is studied with the detailed model of the Earth's magnetic field. A method for estimating the stable and unstable regions of the equilibrium positions based on Euler's equation is also discussed. The results show that Lorentz forces can affect the stablization of the satellite, in particular for highly eccentric orbits and also for large satellte. [1] Abdel-Aziz, Y. A. Attitude Stabilization of a Rigid Spacecraft in the Geomagnetic Field. AdSpR 40, 18-24, 2007.

  2. Long-term stability of TES satellite radiance measurements

    Directory of Open Access Journals (Sweden)

    T. C. Connor

    2011-07-01

    Full Text Available The utilization of Tropospheric Emission Spectrometer (TES Level 2 (L2 retrieval products for the purpose of assessing long term changes in atmospheric trace gas composition requires knowledge of the overall radiometric stability of the Level 1B (L1B radiances. The purpose of this study is to evaluate the stability of the radiometric calibration of the TES instrument by analyzing the difference between measured and calculated brightness temperatures in selected window regions of the spectrum. The Global Modeling and Assimilation Office (GMAO profiles for temperature and water vapor and the Real-Time Global Sea Surface Temperature (RTGSST are used as input to the Optimal Spectral Sampling (OSS radiative transfer model to calculate the simulated spectra. The TES reference measurements selected cover a 4-year period of time from mid 2005 through mid 2009 with the selection criteria being; observation latitudes greater than −30° and less than 30°, over ocean, Global Survey mode (nadir view and retrieved cloud optical depth of less than or equal to 0.01. The TES cloud optical depth retrievals are used only for screening purposes and no effects of clouds on the radiances are included in the forward model. This initial screening results in over 55 000 potential reference spectra spanning the four year period. Presented is a trend analysis of the time series of the residuals (observation minus calculations in the TES 2B1, 1B2, 2A1, and 1A1 bands, with the standard deviation of the residuals being approximately equal to 0.6 K for bands 2B1, 1B2, 2A1, and 0.9 K for band 1A1. The analysis demonstrates that the trend in the residuals is not significantly different from zero over the 4-year period. This is one method used to demonstrate that the relative radiometric calibration is stable over time, which is very important for any longer term analysis of TES retrieved products (L2, particularly well-mixed species such as carbon dioxide and methane.

  3. Anticipation from sensation: using anticipating synchronization to stabilize a system with inherent sensory delay.

    Science.gov (United States)

    Eberle, Henry; Nasuto, Slawomir J; Hayashi, Yoshikatsu

    2018-03-01

    We present a novel way of using a dynamical model for predictive tracking control that can adapt to a wide range of delays without parameter update. This is achieved by incorporating the paradigm of anticipating synchronization (AS), where a 'slave' system predicts a 'master' via delayed self-feedback. By treating the delayed output of the plant as one half of a 'sensory' AS coupling, the plant and an internal dynamical model can be synchronized such that the plant consistently leads the target's motion. We use two simulated robotic systems with differing arrangements of the plant and internal model ('parallel' and 'serial') to demonstrate that this form of control adapts to a wide range of delays without requiring the parameters of the controller to be changed.

  4. Linear Approach for Synchronous State Stability in Fully Connected PLL Networks

    Directory of Open Access Journals (Sweden)

    José R. C. Piqueira

    2008-01-01

    Full Text Available Synchronization is an essential feature for the use of digital systems in telecommunication networks, integrated circuits, and manufacturing automation. Formerly, master-slave (MS architectures, with precise master clock generators sending signals to phase-locked loops (PLLs working as slave oscillators, were considered the best solution. Nowadays, the development of wireless networks with dynamical connectivity and the increase of the size and the operation frequency of integrated circuits suggest that the distribution of clock signals could be more efficient if distributed solutions with fully connected oscillators are used. Here, fully connected networks with second-order PLLs as nodes are considered. In previous work, how the synchronous state frequency for this type of network depends on the node parameters and delays was studied and an expression for the long-term frequency was derived (Piqueira, 2006. Here, by taking the first term of the Taylor series expansion for the dynamical system description, it is shown that for a generic network with N nodes, the synchronous state is locally asymptotically stable.

  5. Control for stabilizing the alignment position of the rotor of the synchronous motor

    Science.gov (United States)

    Donley, L.I.

    1985-03-12

    A method and apparatus is described for damping oscillations in the rotor load angle of a synchronous motor to provide stable rotational alignment in high precision applications. The damping method includes sensing the angular position of the rotor and utilizing the position signal to generate an error signal in response to changes in the period of rotation of the rotor. The error signal is coupled to phase shift amplifiers which shift the phase of the motor drive signal in a direction to damp out the oscillations in the rotor load angle.

  6. Modeling and Stability Assessment of Single-Phase Grid Synchronization Techniques

    DEFF Research Database (Denmark)

    Golestan, Saeed; Guerrero, Josep M.; Vasquez, Juan

    2018-01-01

    (GSTs) is of vital importance. This task is most often based on obtaining a linear time-invariant (LTI) model for the GST and applying standard stability tests to it. Another option is modeling and dynamics/stability assessment of GSTs in the linear time-periodic (LTP) framework, which has received...... a very little attention. In this letter, the procedure of deriving the LTP model for single-phase GSTs is first demonstrated. The accuracy of the LTP model in predicting the GST dynamic behavior and stability is then evaluated and compared with that of the LTI one. Two well-known single-phase GSTs, i...

  7. The Amalgamation of SVR and ANFIS Models with Synchronized Phasor Measurements for On-Line Voltage Stability Assessment

    Directory of Open Access Journals (Sweden)

    Mohammed Amroune

    2017-10-01

    Full Text Available This paper presents the application of support vector regression (SVR and adaptive neuro-fuzzy inference system (ANFIS models that are amalgamated with synchronized phasor measurements for on-line voltage stability assessment. As the performance of SVR model extremely depends on the good selection of its parameters, the recently developed ant lion optimizer (ALO is adapted to seek for the SVR’s optimal parameters. In particular, the input vector of ALO-SVR and ANFIS soft computing models is provided in the form of voltage magnitudes provided by the phasor measurement units (PMUs. In order to investigate the effectiveness of ALO-SVR and ANFIS models towards performing the on-line voltage stability assessment, in-depth analyses on the results have been carried out on the IEEE 30-bus and IEEE 118-bus test systems considering different topologies and operating conditions. Two statistical performance criteria of root mean square error (RMSE and correlation coefficient (R were considered as metrics to further assess both of the modeling performances in contrast with the power flow equations. The results have demonstrated that the ALO-SVR model is able to predict the voltage stability margin with greater accuracy compared to the ANFIS model.

  8. Synchronization stability of memristor-based complex-valued neural networks with time delays.

    Science.gov (United States)

    Liu, Dan; Zhu, Song; Ye, Er

    2017-12-01

    This paper focuses on the dynamical property of a class of memristor-based complex-valued neural networks (MCVNNs) with time delays. By constructing the appropriate Lyapunov functional and utilizing the inequality technique, sufficient conditions are proposed to guarantee exponential synchronization of the coupled systems based on drive-response concept. The proposed results are very easy to verify, and they also extend some previous related works on memristor-based real-valued neural networks. Meanwhile, the obtained sufficient conditions of this paper may be conducive to qualitative analysis of some complex-valued nonlinear delayed systems. A numerical example is given to demonstrate the effectiveness of our theoretical results. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. The Lyapunov-Krasovskii theorem and a sufficient criterion for local stability of isochronal synchronization in networks of delay-coupled oscillators

    Science.gov (United States)

    Grzybowski, J. M. V.; Macau, E. E. N.; Yoneyama, T.

    2017-05-01

    This paper presents a self-contained framework for the stability assessment of isochronal synchronization in networks of chaotic and limit-cycle oscillators. The results were based on the Lyapunov-Krasovskii theorem and they establish a sufficient condition for local synchronization stability of as a function of the system and network parameters. With this in mind, a network of mutually delay-coupled oscillators subject to direct self-coupling is considered and then the resulting error equations are block-diagonalized for the purpose of studying their stability. These error equations are evaluated by means of analytical stability results derived from the Lyapunov-Krasovskii theorem. The proposed approach is shown to be a feasible option for the investigation of local stability of isochronal synchronization for a variety of oscillators coupled through linear functions of the state variables under a given undirected graph structure. This ultimately permits the systematic identification of stability regions within the high-dimensionality of the network parameter space. Examples of applications of the results to a number of networks of delay-coupled chaotic and limit-cycle oscillators are provided, such as Lorenz, Rössler, Cubic Chua's circuit, Van der Pol oscillator and the Hindmarsh-Rose neuron.

  10. Conventional and first derivative synchronous fluorometric determination of ethamsylate in pharmaceutical preparations and biological fluids. Application to stability studies.

    Science.gov (United States)

    Belal, Fathalla; El-Brashy, Amina; El-Enany, Nahed; Tolba, Manar

    2011-07-01

    Two simple, accurate and highly sensitive spectrofluorometric methods were developed for the determination of ethamsylate (ETM). Method I is based on measuring the native fluorescence of ethamsylate in water at 354 nm after excitation at 302 nm. The calibration plot was rectilinear over the range of 0.05-1 μg/mL for ETM with limits of detection and quantitation of 7.9 and 26 ng/mL, respectively. Method II involved synchronous and first derivative synchronous fluorometric methods for the simultaneous determination of ethamsylate (ETM) and hydroquinone (HQ) which is considered as an impurity and/or acidic degradation product. The synchronous fluorescence of both the drug and its impurity were measured in methanol at Δ λ of 40 nm. The peak amplitudes ((1)D) were estimated at 293.85 or 334.17 nm for ETM and at 309.05 nm for HQ. Good linearity was obtained for ETM over the ranges 0.1-1.4 μg/mL and 0.1-1.0 μg/mL at 293.85 and 334.17 nm, respectively. For HQ, the calibration plot was rectilinear over the range of 0.01-0.14 μg/mL at 309.05 nm. Limits of detection were 20, 2.01 ng/mL and limits of quantitation were 60, 6.7 ng/mL for ETM and HQ by method II, respectively. Both methods were successfully applied to commercial ampoules and tablets. The results were in good agreement with those obtained by the reference method. Method I was utilized to study the stability of ETM and its degradation kinetics using peroxide. The apparent first-order rate constant, half-life times and activation energy of the degradation process were calculated. Method I was further extended to the in-vitro and in-vivo determination of ETM in spiked and real plasma samples. The mean% recoveries were 99.57 ± 3.85 and 89.39 ± 5.93 for spiked and real human plasma, respectively. © Springer Science+Business Media, LLC 2011

  11. Coordinated setting of stabilizers for synchronous generators and static var compensators in multimachine systems

    Energy Technology Data Exchange (ETDEWEB)

    Simoes Costa, A J.A.; Silva, A S; Freitas, F D [Santa Catarina Univ., Florianopolis, SC (Brazil). Dept. de Engenharia Eletrica

    1994-12-31

    Two distinct approaches for the coordinated setting of multimachine power system controllers are presented. The first strategy is based on the re-allocation of the poles related to the electromechanical modes of the system through decentralized control. The second method is a coordinated global procedure based on structurally constrained optimal control. Both approaches considered power system stabilizers and supplementary signals for static var compensators as the controllers to be adjusted. Other types of controllers, such as FACTS devices, can also be tuned by using the proposed techniques. A 13-machine, 77-bus power system which is based on the Brazilian South-Southeast interconnected network is employed to assess the performance of the proposed methods. (author) 14 refs., 1 fig., 7 tabs.

  12. Synchronous observations of long-periodic geomagnetic pulsations on the ATS-6 satellite and on the Earth surface

    International Nuclear Information System (INIS)

    Barfild, Dzh.N.; Bondarenko, N.M.; Buloshnikov, A.M.; Gokhberg, M.B.; Kalisher, A.L.; Mak-Ferron, R.L.; Troitskaya, V.A.

    1977-01-01

    Geomagnetic pulsations of the Pi2 and Pc4 types recorded by the ATS-6 geostationary satellite and by observatories located near the geomagnetic longitude of the space satellite from the 24th of May, 1974 to the 1st of September, 1976 are compared. The periods of the Pi2 pulsations measured by the space satellite and on the Earth practically coincide, dynamic spectra and spectral densities are similar. The amplitude of the Pi2 pulsations recorded in auroral latitudes is several times wider than the amplitude measured by the ATS-6 while in middle latitudes the amplitude is much smaller than on the satellite. The Pc4 pulsations are not practically observed on the Earth for they are probably excited in narrow local areas of the magnitosphere. In order to arrive to the single-valued solution of the problem of the mechanism of the generation and localization of the pulsation source it is necessary to carry out simultaneous observations on the Earth and in the magnitosphere

  13. Synchronicity from Synchronized Chaos

    Directory of Open Access Journals (Sweden)

    Gregory S. Duane

    2015-03-01

    Full Text Available The synchronization of loosely-coupled chaotic oscillators, a phenomenon investigated intensively for the last two decades, may realize the philosophical concept of “synchronicity”—the commonplace notion that related eventsmysteriously occur at the same time. When extended to continuous media and/or large discrete arrays, and when general (non-identical correspondences are considered between states, intermittent synchronous relationships indeed become ubiquitous. Meaningful synchronicity follows naturally if meaningful events are identified with coherent structures, defined by internal synchronization between remote degrees of freedom; a condition that has been posited as necessary for synchronizability with an external system. The important case of synchronization between mind and matter is realized if mind is analogized to a computer model, synchronizing with a sporadically observed system, as in meteorological data assimilation. Evidence for the ubiquity of synchronization is reviewed along with recent proposals that: (1 synchronization of different models of the same objective process may be an expeditious route to improved computational modeling and may also describe the functioning of conscious brains; and (2 the nonlocality in quantum phenomena implied by Bell’s theorem may be explained in a variety of deterministic (hidden variable interpretations if the quantum world resides on a generalized synchronization “manifold”.

  14. Satellite Communications

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Satellite Communications. Arthur C Clarke wrote a seminal paper in 1945 in wireless world. Use three satellites in geo-synchronous orbit to enable intercontinental communications. System could be realised in '50 to 100 years'

  15. Pulsed plasma solid propellant microthruster for the synchronous meteorological satellite. Task 4: Engineering model fabrication and test report

    Science.gov (United States)

    Guman, W. J. (Editor)

    1972-01-01

    Two flight prototype solid propellant pulsed plasma microthruster propulsion systems for the SMS satellite were fabricated, assembled and tested. The propulsion system is a completely self contained system requiring only three electrical inputs to operate: a 29.4 volt power source, a 28 volt enable signal and a 50 millsec long command fire signal that can be applied at any rate from 50 ppm to 110 ppm. The thrust level can be varied over a range 2.2 to 1 at constant impulse bit amplitude. By controlling the duration of the 28 volt enable either steady state thrust or a series of discrete impulse bits can be generated. A new technique of capacitor charging was implemented to reduce high voltage stress on energy storage capacitors.

  16. DIFFRACTION SYNCHRONIZATION OF LASERS,

    Science.gov (United States)

    semiconductor lasers while suppressing parasitic generation in the plane of the mirror. The diffraction coupling coefficient of open resonators is calculated, and the stability conditions of the synchronized system is determined.

  17. Enhancement of load frequency stabilization effect of superconducting magnetic energy storage by static synchronous series compensator based on H ∞ control

    International Nuclear Information System (INIS)

    Ngamroo, Issarachai; Taeratanachai, Chanin; Dechanupaprittha, Sanchai; Mitani, Yasunori

    2007-01-01

    It is well known that the load frequency stabilization effect of superconducting magnetic energy storage (SMES) in an interconnected power system is restricted to its located area. The SMES almost has no frequency stabilization effect in another interconnected area. To enhance the frequency stabilization effect of SMES, the static synchronous series compensator (SSSC) can be applied as an auxiliary device. The SSSC can be used as an energy transfer device of the SMES to stabilize the frequency in another interconnected area. The proposed technique not only introduces a sophisticated frequency stabilization in deregulated power systems but also offers a smart energy management control of SMES. In addition, to take the robust stability of the controlled power system against system uncertainties into account, the H ∞ control is used to design robust frequency stabilizers of the SMES and SSSC. Simulation results in a two area interconnected power system confirm the high robustness of the frequency stabilizers SMES and SSSC against load disturbances and system uncertainties

  18. Stability of orbits around planetary satellites considering a disturbing body in an elliptical orbit: Applications to Europa and Ganymede

    Science.gov (United States)

    Cardoso dos Santos, Josué; Carvalho, Jean Paulo; Vilhena de Moraes, Rodolpho

    Europa and Ganymede are two of the four Jupiter’s moons which compose the Galilean satellite. These ones are planetary satellites of greater interest at the present moment among the scientific community. There are some missions being planned to visit them and and the Jovian system. One of them is the cooperation between NASA and ESA for the Europa Jupiter System Mission (EJSM). In this mission are planned the insertion of the spacecrafts JEO (Jupiter Europa Orbiter) and JGO (Jupiter Ganymede Orbiter) into Europa and Ganymede’s orbit. Thus, there is a great necessity for having a better comprehension of the dynamics of the orbits around this planetary satellite. This comprehension is essential for the success of this type of mission. In this context, this work aims to perform a search for low-altitude orbits around these planetary satellites. An emphasis is given in polar orbits. These orbits can be useful in the planning of aerospace activities to be conducted around this planetary satellite, with respect to the stability of orbits of artificial satellites. The study considers orbits of an artificial satellite around Europa and Ganymede under the influence of the third-body perturbation (the gravitational attraction of Jupiter) and the polygenic perturbations. These last ones occur due to forces such as the non-uniform distribution of mass (J2 and J3) of the main (central) body. A simplified dynamic model for polygenic perturbations is used. A new model for the third-body disturbance is presented considering it in an elliptical orbit. The Lagrange planetary equations, which compose a system of nonlinear differential equations, are used to describe the orbital motion of the artificial satellite around Ganymede. The equations showed here are developed in closed form to avoid expansions in inclination and eccentricity.

  19. Synchronization on effective networks

    International Nuclear Information System (INIS)

    Zhou Tao; Zhao Ming; Zhou Changsong

    2010-01-01

    The study of network synchronization has attracted increasing attentionrecently. In this paper, we strictly define a class of networks, namely effective networks, which are synchronizable and orientable networks. We can prove that all the effective networks with the same size have the same spectra, and are of the best synchronizability according to the master stability analysis. However, it is found that the synchronization time for different effective networks can be quite different. Further analysis shows that the key ingredient affecting the synchronization time is the maximal depth of an effective network: the larger depth results in a longer synchronization time. The secondary factor is the number of links. The increasing number of links connecting nodes in the same layer (horizontal links) will lead to longer synchronization time, whereas the increasing number of links connecting nodes in neighboring layers (vertical links) will accelerate the synchronization. Our analysis of the relationship between the structure and synchronization properties of the original and effective networks shows that the purely directed effective network can provide an approximation of the original weighted network with normalized input strength. Our findings provide insights into the roles of depth, horizontal and vertical links in the synchronizing process, and suggest that the spectral analysis is helpful yet insufficient for the comprehensive understanding of network synchronization.

  20. Synchronization on effective networks

    Energy Technology Data Exchange (ETDEWEB)

    Zhou Tao [Web Sciences Center, University of Electronic Science and Technology of China, Chengdu 610054 (China); Zhao Ming [Department of Modern Physics, University of Science and Technology of China, Hefei 230026 (China); Zhou Changsong, E-mail: cszhou@hkbu.edu.h [Department of Physics, Hong Kong Baptist University, Kowloon Tong (Hong Kong)

    2010-04-15

    The study of network synchronization has attracted increasing attentionrecently. In this paper, we strictly define a class of networks, namely effective networks, which are synchronizable and orientable networks. We can prove that all the effective networks with the same size have the same spectra, and are of the best synchronizability according to the master stability analysis. However, it is found that the synchronization time for different effective networks can be quite different. Further analysis shows that the key ingredient affecting the synchronization time is the maximal depth of an effective network: the larger depth results in a longer synchronization time. The secondary factor is the number of links. The increasing number of links connecting nodes in the same layer (horizontal links) will lead to longer synchronization time, whereas the increasing number of links connecting nodes in neighboring layers (vertical links) will accelerate the synchronization. Our analysis of the relationship between the structure and synchronization properties of the original and effective networks shows that the purely directed effective network can provide an approximation of the original weighted network with normalized input strength. Our findings provide insights into the roles of depth, horizontal and vertical links in the synchronizing process, and suggest that the spectral analysis is helpful yet insufficient for the comprehensive understanding of network synchronization.

  1. Synchronization and anti-synchronization coexist in Chen-Lee chaotic systems

    International Nuclear Information System (INIS)

    Chen, J.-H.; Chen, H.-K.; Lin, Y.-K.

    2009-01-01

    This study demonstrates that synchronization and anti-synchronization can coexist in Chen-Lee chaotic systems by direct linear coupling. Based on Lyapunov's direct method, a linear controller was designed to assure that two different types of synchronization can simultaneously be achieved. Further, the hybrid projective synchronization of Chen-Lee chaotic systems was studied using a nonlinear control scheme. The nonlinear controller was designed according to the Lyapunov stability theory to guarantee the hybrid projective synchronization, including synchronization, anti-synchronization, and projective synchronization. Finally, numerical examples are presented in order to illustrate the proposed synchronization approach.

  2. Global chaos synchronization of coupled parametrically excited ...

    Indian Academy of Sciences (India)

    In this paper, we study the synchronization behaviour of two linearly coupled parametrically excited chaotic pendula. The stability of the synchronized state is examined using Lyapunov stability theory and linear matrix inequality (LMI); and some sufficient criteria for global asymptotic synchronization are derived from which ...

  3. Positional stabilization of communications satellites - The RITA ion propulsion system is ready for commercial use

    Science.gov (United States)

    The radiofrequency ion thruster assembly (RITA) intended for service aboard the new Artemis communications satellite will operate for three hours twice a day, in order to furnish orbital position adjustments that keep antennas accurately pointed toward the earth. These engines are, despite such frequent and sustained use, projected to eject no more than 30 kG of Xe over the course of a decade. RITA operation is also extremely reliable and, due to its very low propellant consumption, is the basis of a long satellite service life. RITA will be among the 15 experiments that are to be performed by ESA's Eureca research satellite.

  4. A development of the direct Lyapunov method for the analysis of transient stability of a system of synchronous generators based on the determination of non- stable equilibria on a multidimensional sphere

    Directory of Open Access Journals (Sweden)

    A. V. Stepanov

    2014-01-01

    Full Text Available A development of the direct Lyapunov method for the analysis of transient stability of a system of synchronous generators based on the determination of non- stable equilibria on a multidimensional sphere.We consider the problem of transient stability analysis for a system of synchronous generators under the action of strong perturbations. The aim of our work is to develop methods to analyze a transient stability of the system of synchronous generators, which allow getting trustworthy results on reserve transient stability under different perturbations. For the analysis of transient stability, we use the direct Lyapunov method.One of the problems for this method application is to find the Lypunov function that well reflects the properties of a parallel system of synchronous generators. The most reliable results were obtained when the analysis of transient stability was performed with a Lyapunov function of energy type. Another problem for application of the direct Lyapunov method is to determine the critical value of the Lyapunov function, which requires finding the non-stable equilibria of the system. Determination of the non-stable equilibria requires studying the Lyapunov function in a multidimensional space in a neighborhood of a stable equilibrium for the post-breakdown system; this is a complicated non-linear problem.In the paper, we propose a method for determination of the non-stable equilibria on a multidimensional sphere. The method is based on a search of a minimum of the Lyapunov function on a multidimensional sphere the center of which is a stable equilibrium. Our method allows, comparing with the other, e.g., gradient methods, reliable finding a non-stable equilibrium and calculating the critical value. The reliability of our method is proved by numerical experiments. The developed methods and a program realized in a MATLAB package can be recommended for design of a post-breakdown control system of synchronous generators or as a

  5. Evaluating a slope-stability model for shallow rain-induced landslides using gage and satellite data

    Science.gov (United States)

    Yatheendradas, S.; Kirschbaum, D.; Baum, Rex L.; Godt, Jonathan W.

    2014-01-01

    Improving prediction of landslide early warning systems requires accurate estimation of the conditions that trigger slope failures. This study tested a slope-stability model for shallow rainfall-induced landslides by utilizing rainfall information from gauge and satellite records. We used the TRIGRS model (Transient Rainfall Infiltration and Grid-based Regional Slope-stability analysis) for simulating the evolution of the factor of safety due to rainfall infiltration. Using a spatial subset of a well-characterized digital landscape from an earlier study, we considered shallow failure on a slope adjoining an urban transportation roadway near the Seattle area in Washington, USA.We ran the TRIGRS model using high-quality rain gage and satellite-based rainfall data from the Tropical Rainfall Measuring Mission (TRMM). Preliminary results with parameterized soil depth values suggest that the steeper slope values in this spatial domain have factor of safety values that are extremely close to the failure limit within an extremely narrow range of values, providing multiple false alarms. When the soil depths were constrained using a back analysis procedure to ensure that slopes were stable under initial condtions, the model accurately predicted the timing and location of the landslide observation without false alarms over time for gage rain data. The TRMM satellite rainfall data did not show adequately retreived rainfall peak magnitudes and accumulation over the study period, and as a result failed to predict the landslide event. These preliminary results indicate that more accurate and higher-resolution rain data (e.g., the upcoming Global Precipitation Measurement (GPM) mission) are required to provide accurate and reliable landslide predictions in ungaged basins.

  6. Stabilization of periodic solutions in a tethered satellite system by damping injection

    DEFF Research Database (Denmark)

    Larsen, Martin Birkelund; Blanke, Mogens

    2009-01-01

    presents a control design for stabilizing these periodic solutions. The design consists of a control law for stabilizing the open-loop equilibrium and a bias term which forces the system trajectory away from the equilibrium. The tether needs to be positioned away from open-loop equilibrium for the tether...... to affect the orbit parameters. An approximation of the periodic solutions of the closed loop system is found as a series expansion in the parameter plane spanned by the controller gain and the bias term. The stability of the solutions is investigated using linear Floquet analysis of the variational...

  7. Synchronization of networks

    Indian Academy of Sciences (India)

    We study the synchronization of coupled dynamical systems on networks. The dynamics is governed by a local nonlinear oscillator for each node of the network and interactions connecting different nodes via the links of the network. We consider existence and stability conditions for both single- and multi-cluster ...

  8. Chaos synchronization of coupled hyperchaotic system

    International Nuclear Information System (INIS)

    Yang Lixin; Chu Yandong; Zhang Jiangang; Li Xianfeng

    2009-01-01

    Chaos synchronization, as an important topic, has become an active research subject in nonlinear science. Over the past two decades, chaos synchronization between nonlinear systems has been extensively studied, and many types of synchronization have been announced. This paper introduces synchronization of coupled hyperchaotic system, based on the Lapunov stability theory, asymptotic stability of the system is guaranteed by means of Lapunov function. The numerical simulation was provided in order to show the effectiveness of this method for the synchronization of the chaotic hyperchaotic Chen system and Rossler system.

  9. Robust Fault-Tolerant Control for Satellite Attitude Stabilization Based on Active Disturbance Rejection Approach with Artificial Bee Colony Algorithm

    Directory of Open Access Journals (Sweden)

    Fei Song

    2014-01-01

    Full Text Available This paper proposed a robust fault-tolerant control algorithm for satellite stabilization based on active disturbance rejection approach with artificial bee colony algorithm. The actuating mechanism of attitude control system consists of three working reaction flywheels and one spare reaction flywheel. The speed measurement of reaction flywheel is adopted for fault detection. If any reaction flywheel fault is detected, the corresponding fault flywheel is isolated and the spare reaction flywheel is activated to counteract the fault effect and ensure that the satellite is working safely and reliably. The active disturbance rejection approach is employed to design the controller, which handles input information with tracking differentiator, estimates system uncertainties with extended state observer, and generates control variables by state feedback and compensation. The designed active disturbance rejection controller is robust to both internal dynamics and external disturbances. The bandwidth parameter of extended state observer is optimized by the artificial bee colony algorithm so as to improve the performance of attitude control system. A series of simulation experiment results demonstrate the performance superiorities of the proposed robust fault-tolerant control algorithm.

  10. New type of chaos synchronization in discrete-time systems: the F-M synchronization

    Directory of Open Access Journals (Sweden)

    Ouannas Adel

    2018-04-01

    Full Text Available In this paper, a new type of synchronization for chaotic (hyperchaotic maps with different dimensions is proposed. The novel scheme is called F – M synchronization, since it combines the inverse generalized synchronization (based on a functional relationship F with the matrix projective synchronization (based on a matrix M. In particular, the proposed approach enables F – M synchronization with index d to be achieved between n-dimensional drive system map and m-dimensional response system map, where the synchronization index d corresponds to the dimension of the synchronization error. The technique, which exploits nonlinear controllers and Lyapunov stability theory, proves to be effective in achieving the F – M synchronization not only when the synchronization index d equals n or m, but even if the synchronization index d is larger than the map dimensions n and m. Finally, simulation results are reported, with the aim to illustrate the capabilities of the novel scheme proposed herein.

  11. New type of chaos synchronization in discrete-time systems: the F-M synchronization

    Science.gov (United States)

    Ouannas, Adel; Grassi, Giuseppe; Karouma, Abdulrahman; Ziar, Toufik; Wang, Xiong; Pham, Viet-Thanh

    2018-04-01

    In this paper, a new type of synchronization for chaotic (hyperchaotic) maps with different dimensions is proposed. The novel scheme is called F - M synchronization, since it combines the inverse generalized synchronization (based on a functional relationship F) with the matrix projective synchronization (based on a matrix M). In particular, the proposed approach enables F - M synchronization with index d to be achieved between n-dimensional drive system map and m-dimensional response system map, where the synchronization index d corresponds to the dimension of the synchronization error. The technique, which exploits nonlinear controllers and Lyapunov stability theory, proves to be effective in achieving the F - M synchronization not only when the synchronization index d equals n or m, but even if the synchronization index d is larger than the map dimensions n and m. Finally, simulation results are reported, with the aim to illustrate the capabilities of the novel scheme proposed herein.

  12. The integration of temporally shifted visual feedback in a synchronization task: The role of perceptual stability in a visuo-proprioceptive conflict situation.

    Science.gov (United States)

    Ceux, Tanja; Montagne, Gilles; Buekers, Martinus J

    2010-12-01

    The present study examined whether the beneficial role of coherently grouped visual motion structures for performing complex (interlimb) coordination patterns can be generalized to synchronization behavior in a visuo-proprioceptive conflict situation. To achieve this goal, 17 participants had to synchronize a self-moved circle, representing the arm movement, with a visual target signal corresponding to five temporally shifted visual feedback conditions (0%, 25%, 50%, 75%, and 100% of the target cycle duration) in three synchronization modes (in-phase, anti-phase, and intermediate). The results showed that the perception of a newly generated perceptual Gestalt between the visual feedback of the arm and the target signal facilitated the synchronization performance in the preferred in-phase synchronization mode in contrast to the less stable anti-phase and intermediate mode. Our findings suggest that the complexity of the synchronization mode defines to what extent the visual and/or proprioceptive information source affects the synchronization performance in the present unimanual synchronization task. Copyright © 2010 Elsevier B.V. All rights reserved.

  13. Full state hybrid projective synchronization in hyperchaotic systems

    International Nuclear Information System (INIS)

    Chu Yandong; Chang Yingxiang; Zhang Jiangang; Li Xianfeng; An Xinlei

    2009-01-01

    In this letter, we investigate the full state hybrid projective synchronization (FSHPS) which includes complete synchronization, anti-synchronization and projective synchronization as its special items. Based on Lyapunov stability theory a controller can be designed for achieving the FSHPS of hyperchaotic systems. Numerical simulations are provided to verify the effectiveness of the proposed scheme.

  14. Modeling and stability analysis for the upper atmosphere research satellite auxiliary array switch component

    Science.gov (United States)

    Wolfgang, R.; Natarajan, T.; Day, J.

    1987-01-01

    A feedback control system, called an auxiliary array switch, was designed to connect or disconnect auxiliary solar panel segments from a spacecraft electrical bus to meet fluctuating demand for power. A simulation of the control system was used to carry out a number of design and analysis tasks that could not economically be performed with a breadboard of the hardware. These tasks included: (1) the diagnosis of a stability problem, (2) identification of parameters to which the performance of the control system was particularly sensitive, (3) verification that the response of the control system to anticipated fluctuations in the electrical load of the spacecraft was satisfactory, and (4) specification of limitations on the frequency and amplitude of the load fluctuations.

  15. Targeting engineering synchronization in chaotic systems

    Science.gov (United States)

    Bhowmick, Sourav K.; Ghosh, Dibakar

    2016-07-01

    A method of targeting engineering synchronization states in two identical and mismatch chaotic systems is explained in detail. The method is proposed using linear feedback controller coupling for engineering synchronization such as mixed synchronization, linear and nonlinear generalized synchronization and targeting fixed point. The general form of coupling design to target any desire synchronization state under unidirectional coupling with the help of Lyapunov function stability theory is derived analytically. A scaling factor is introduced in the coupling definition to smooth control without any loss of synchrony. Numerical results are done on two mismatch Lorenz systems and two identical Sprott oscillators.

  16. Integrated satellite InSAR and slope stability modeling to support hazard assessment at the Safuna Alta glacial lake, Peru

    Science.gov (United States)

    Cochachin, Alejo; Frey, Holger; Huggel, Christian; Strozzi, Tazio; Büechi, Emanuel; Cui, Fanpeng; Flores, Andrés; Saito, Carlos

    2017-04-01

    The Safuna glacial lakes (77˚ 37' W, 08˚ 50' S) are located in the headwater of the Tayapampa catchment, in the northernmost part of the Cordillera Blanca, Peru. The upper lake, Laguna Safuna Alta at 4354 m asl has formed in the 1960s behind a terminal moraine of the retreating Pucajirca Glacier, named after the peak south of the lakes. Safuna Alta currently has a volume of 15 x 106 m3. In 2002 a rock fall of several million m3 from the proximal left lateral moraine hit the Safuna Alta lake and triggered an impact wave which overtopped the moraine dam and passed into the lower lake, Laguna Safuna Baja, which absorbed most of the outburst flood from the upper lake, but nevertheless causing loss in cattle, degradation of agricultural land downstream and damages to a hydroelectric power station in Quitaracsa gorge. Event reconstructions showed that the impact wave in the Safuna Alta lake had a runup height of 100 m or more, and weakened the moraine dam of Safuna Alta. This fact, in combination with the large lake volumes and the continued possibility for landslides from the left proximal moraine pose a considerable risk for the downstream settlements as well as the recently completed Quitaracsa hydroelectric power plant. In the framework of a project funded by the European Space Agency (ESA), the hazard situation at the Safuna Alta lake is assessed by a combination of satellite radar data analysis, field investigations, and slope stability modeling. Interferometric analyses of the Synthetic Aperture Radar (InSAR) of ALOS-1 Palsar-1, ALOS-2 Palsar-2 and Sentinel-1 data from 2016 reveal terrain displacements of 2 cm y-1 in the detachment zone of the 2002 rock avalanche. More detailed insights into the characteristics of these terrain deformations are gained by repeat surveys with differential GPS (DGPS) and tachymetric measurements. A drone flight provides the information for the generation of a high-resolution digital elevation model (DEM), which is used for the

  17. Chaos synchronizations of chaotic systems via active nonlinear control

    International Nuclear Information System (INIS)

    Huang, J; Xiao, T J

    2008-01-01

    This paper not only investigates the chaos synchronization between two LCC chaotic systems, but also discusses the chaos synchronization between LCC system and Genesio system. Some novel active nonlinear controllers are designed to achieve synchronizations between drive and response systems effectively. Moreover, the sufficient conditions of synchronizations are derived by using Lyapunov stability theorem. Numerical simulations are presented to verify the theoretical analysis, which shows that the synchronization schemes are global effective

  18. Analysis of synchronization in a supermarket refrigeration system

    DEFF Research Database (Denmark)

    Wisniewski, Rafal; Leth, John-Josef; Rasmussen, Jakob Gulddahl

    2014-01-01

    increases both the energy consumption and the wear of components. Besides this practical importance, from the theoretical point of view, synchronization, likewise stability, Zeno phenomenon, and chaos, is an interesting dynamical phenomenon. The study of synchronization in the supermarket refrigeration...

  19. Research in Application of Geodetic GPS Receivers in Time Synchronization

    Science.gov (United States)

    Zhang, Q.; Zhang, P.; Sun, Z.; Wang, F.; Wang, X.

    2018-04-01

    In recent years, with the development of satellite orbit and clock parameters accurately determining technology and the popularity of geodetic GPS receivers, Common-View (CV) which proposed in 1980 by Allan has gained widespread application and achieved higher accuracy time synchronization results. GPS Common View (GPS CV) is the technology that based on multi-channel geodetic GPS receivers located in different place and under the same common-view schedule to receiving same GPS satellite signal at the same time, and then calculating the time difference between respective local receiver time and GPST by weighted theory, we will obtain the difference between above local time of receivers that installed in different station with external atomic clock. Multi-channel geodetic GPS receivers have significant advantages such as higher stability, higher accuracy and more common-view satellites in long baseline time synchronization application over the single-channel geodetic GPS receivers. At present, receiver hardware delay and surrounding environment influence are main error factors that affect the accuracy of GPS common-view result. But most error factors will be suppressed by observation data smoothing and using of observation data from different satellites in multi-channel geodetic GPS receiver. After the SA (Selective Availability) cancellation, using a combination of precise satellite ephemeris, ionospheric-free dual-frequency P-code observations and accurately measuring of receiver hardware delay, we can achieve time synchronization result on the order of nanoseconds (ns). In this paper, 6 days observation data of two IGS core stations with external atomic clock (PTB, USNO distance of two stations about 6000 km) were used to verify the GPS common-view theory. Through GPS observation data analysis, there are at least 2-4 common-view satellites and 5 satellites in a few tracking periods between two stations when the elevation angle is 15°, even there will be at least

  20. RESEARCH IN APPLICATION OF GEODETIC GPS RECEIVERS IN TIME SYNCHRONIZATION

    Directory of Open Access Journals (Sweden)

    Q. Zhang

    2018-04-01

    Full Text Available In recent years, with the development of satellite orbit and clock parameters accurately determining technology and the popularity of geodetic GPS receivers, Common-View (CV which proposed in 1980 by Allan has gained widespread application and achieved higher accuracy time synchronization results. GPS Common View (GPS CV is the technology that based on multi-channel geodetic GPS receivers located in different place and under the same common-view schedule to receiving same GPS satellite signal at the same time, and then calculating the time difference between respective local receiver time and GPST by weighted theory, we will obtain the difference between above local time of receivers that installed in different station with external atomic clock. Multi-channel geodetic GPS receivers have significant advantages such as higher stability, higher accuracy and more common-view satellites in long baseline time synchronization application over the single-channel geodetic GPS receivers. At present, receiver hardware delay and surrounding environment influence are main error factors that affect the accuracy of GPS common-view result. But most error factors will be suppressed by observation data smoothing and using of observation data from different satellites in multi-channel geodetic GPS receiver. After the SA (Selective Availability cancellation, using a combination of precise satellite ephemeris, ionospheric-free dual-frequency P-code observations and accurately measuring of receiver hardware delay, we can achieve time synchronization result on the order of nanoseconds (ns. In this paper, 6 days observation data of two IGS core stations with external atomic clock (PTB, USNO distance of two stations about 6000 km were used to verify the GPS common-view theory. Through GPS observation data analysis, there are at least 2–4 common-view satellites and 5 satellites in a few tracking periods between two stations when the elevation angle is 15°, even

  1. On analytical justification of phase synchronization in different chaotic systems

    International Nuclear Information System (INIS)

    Erjaee, G.H.

    2009-01-01

    In analytical or numerical synchronizations studies of coupled chaotic systems the phase synchronizations have less considered in the leading literatures. This article is an attempt to find a sufficient analytical condition for stability of phase synchronization in some coupled chaotic systems. The method of nonlinear feedback function and the scheme of matrix measure have been used to justify this analytical stability, and tested numerically for the existence of the phase synchronization in some coupled chaotic systems.

  2. On synchronized regions of discrete-time complex dynamical networks

    International Nuclear Information System (INIS)

    Duan Zhisheng; Chen Guanrong

    2011-01-01

    In this paper, the local synchronization of discrete-time complex networks is studied. First, it is shown that for any natural number n, there exists a discrete-time network which has at least left floor n/2 right floor +1 disconnected synchronized regions for local synchronization, which implies the possibility of intermittent synchronization behaviors. Different from the continuous-time networks, the existence of an unbounded synchronized region is impossible for discrete-time networks. The convexity of the synchronized regions is also characterized based on the stability of a class of matrix pencils, which is useful for enlarging the stability region so as to improve the network synchronizability.

  3. The synchronization of three fractional differential systems

    International Nuclear Information System (INIS)

    Li Changpin; Yan Jianping

    2007-01-01

    In this paper, a new method is proposed and applied to the synchronization of fractional differential systems (or 'differential systems with fractional orders'), where both drive and response systems have the same dimensionality and are coupled by the driving signal. The present technique is based on the stability criterion of linear fractional systems. This method is implemented in (chaos) synchronization of the fractional Lorenz system, Chen system and Chua circuit. Numerical simulations show the present synchronization method works well

  4. Synchronizing a class of uncertain chaotic systems

    International Nuclear Information System (INIS)

    Chen Maoyin; Zhou Donghua; Shang Yun

    2005-01-01

    This Letter deals with the synchronization of a class of uncertain chaotic systems in the drive-response framework. A robust adaptive observer based response system is designed to synchronize a given chaotic system with unknown parameters and external disturbances. Lyapunov stability ensures the global synchronization between the drive and response systems even if Lipschitz constants on function matrices and bounds on uncertainties are unknown. Numerical simulation of Genesio-Tesi system verifies the effectiveness of this scheme

  5. Identical synchronization of coupled Rossler systems

    DEFF Research Database (Denmark)

    Yanchuk, S.; Maistrenko, Y.; Mosekilde, Erik

    1999-01-01

    Analyzing the transverse stability of low periodic orbits embedded in the synchronized chaotic state for a system of two coupled Rössler oscillators, we obtain the conditions for synchronization and determine the coupling parameters for which riddled basins of attraction may arise. It is shown how...

  6. Chaos synchronization of nonlinear Bloch equations

    International Nuclear Information System (INIS)

    Park, Ju H.

    2006-01-01

    In this paper, the problem of chaos synchronization of Bloch equations is considered. A novel nonlinear controller is designed based on the Lyapunov stability theory. The proposed controller ensures that the states of the controlled chaotic slave system asymptotically synchronizes the states of the master system. A numerical example is given to illuminate the design procedure and advantage of the result derived

  7. Theory of geostationary satellites

    CERN Document Server

    Zee, Chong-Hung

    1989-01-01

    Geostationary or equatorial synchronous satellites are a daily reminder of our space efforts during the past two decades. The nightly television satellite weather picture, the intercontinental telecommunications of television transmissions and telephone conversations, and the establishrnent of educational programs in remote regions on Earth are constant reminders of the presence of these satellites. As used here, the term 'geo­ stationary' must be taken loosely because, in the long run, the satellites will not remain 'stationary' with respect to an Earth-fixed reference frame. This results from the fact that these satellites, as is true for all satellites, are incessantly subject to perturbations other than the central-body attraction of the Earth. Among the more predominant pertur­ bations are: the ellipticity of the Earth's equator, the Sun and Moon, and solar radiation pressure. Higher harmonics of the Earth's potential and tidal effects also influence satellite motion, but they are of second­ order whe...

  8. On Synchronization Primitive Systems.

    Science.gov (United States)

    The report studies the question: what synchronization primitive should be used to handle inter-process communication. A formal model is presented...between these synchronization primitives. Although only four synchronization primitives are compared, the general methods can be used to compare other... synchronization primitives. Moreover, in the definitions of these synchronization primitives, conditional branches are explicitly allowed. In addition

  9. Determination of Pole and Rotation Period of not Stabilized Artificial Satellite by Use of Model "diffuse Cylinder"

    Science.gov (United States)

    Kolesnik, S. Ya.; Dobrovolsky, A. V.; Paltsev, N. G.

    The algorithm of determination of orientation of rotation axis (pole) and rotation period of satellite, simulated by a cylinder, which is precessing around of vector of angular moment of pulse with constant nutation angle is offered. The Lambert's law of light reflection is accepted. Simultaneously, dependence of light reflection coefficient versus phase angle is determined. The model's simulation confirm applicability of this method. Results of the calculations for artificial satellite No 28506 are carried out.

  10. Adaptive synchronization of a new hyperchaotic system with uncertain parameters

    International Nuclear Information System (INIS)

    Gao Tiegang; Chen Zengqiang; Yuan Zhuzhi; Yu Dongchuan

    2007-01-01

    This paper discusses control for the master-slave synchronization of a new hyperchaos with five uncertain parameters. An adaptive control law is derived to make the states of two identical hyperchaotic systems asymptotically synchronized based on the Lyapunov stability theory. Finally, a numerical simulation is presented to verify the effectiveness of the proposed synchronization scheme

  11. Partial synchronization in diffusively time-delay coupled oscillator networks

    NARCIS (Netherlands)

    Steur, E.; Oguchi, T.; Leeuwen, van C.; Nijmeijer, H.

    2012-01-01

    We study networks of diffusively time-delay coupled oscillatory units and we show that networks with certain symmetries can exhibit a form of incomplete synchronization called partial synchronization. We present conditions for the existence and stability of partial synchronization modes in networks

  12. Partial synchronization and spontaneous spatial ordering in coupled chaotic systems

    International Nuclear Information System (INIS)

    Ying Zhang; Gang Hu; Cerdeira, Hilda A.; Shigang Chen; Braun, Thomas; Yugui Yao

    2000-11-01

    A model of many symmetrically and locally coupled chaotic oscillators is studied. Partial chaotic synchronizations associated with spontaneous spatial ordering are demonstrated. Very rich patterns of the system are revealed, based on partial synchronization analysis. The stabilities of different partially synchronous spatiotemporal structures and some novel dynamical behaviors of these states are discussed both numerically and analytically. (author)

  13. Adaptive synchronization of Rossler system with uncertain parameters

    International Nuclear Information System (INIS)

    Park, Ju H.

    2005-01-01

    This article addresses control for the chaos synchronization of Rossler systems with three uncertain parameters. Based on the Lyapunov stability theory, an adaptive control law is derived to make the states of two identical Rossler systems asymptotically synchronized. A numerical simulations is presented to show the effectiveness of the proposed chaos synchronization scheme

  14. Synchronous Control Method and Realization of Automated Pharmacy Elevator

    Science.gov (United States)

    Liu, Xiang-Quan

    Firstly, the control method of elevator's synchronous motion is provided, the synchronous control structure of double servo motor based on PMAC is accomplished. Secondly, synchronous control program of elevator is implemented by using PMAC linear interpolation motion model and position error compensation method. Finally, the PID parameters of servo motor were adjusted. The experiment proves the control method has high stability and reliability.

  15. Adaptive synchronization of hyperchaotic Chen system with uncertain parameters

    International Nuclear Information System (INIS)

    Park, Ju H.

    2005-01-01

    This article addresses control for the chaos synchronization of hyperchaotic Chen system with five uncertain parameters. Based on the Lyapunov stability theory, an adaptive control law is derived to make the states of two identical hyperchaotic Chen systems asymptotically synchronized. Finally, a numerical simulations is presented to show the effectiveness of the proposed chaos synchronization scheme

  16. Synchronizing noisy nonidentical oscillators by transient uncoupling

    Energy Technology Data Exchange (ETDEWEB)

    Tandon, Aditya, E-mail: adityat@iitk.ac.in; Mannattil, Manu, E-mail: mmanu@iitk.ac.in [Department of Physics, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016 (India); Schröder, Malte, E-mail: malte@nld.ds.mpg.de [Network Dynamics, Max Planck Institute for Dynamics and Self-Organization (MPIDS), 37077 Göttingen (Germany); Timme, Marc, E-mail: timme@nld.ds.mpg.de [Network Dynamics, Max Planck Institute for Dynamics and Self-Organization (MPIDS), 37077 Göttingen (Germany); Department of Physics, Technical University of Darmstadt, 64289 Darmstadt (Germany); Chakraborty, Sagar, E-mail: sagarc@iitk.ac.in [Department of Physics, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016 (India); Mechanics and Applied Mathematics Group, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016 (India)

    2016-09-15

    Synchronization is the process of achieving identical dynamics among coupled identical units. If the units are different from each other, their dynamics cannot become identical; yet, after transients, there may emerge a functional relationship between them—a phenomenon termed “generalized synchronization.” Here, we show that the concept of transient uncoupling, recently introduced for synchronizing identical units, also supports generalized synchronization among nonidentical chaotic units. Generalized synchronization can be achieved by transient uncoupling even when it is impossible by regular coupling. We furthermore demonstrate that transient uncoupling stabilizes synchronization in the presence of common noise. Transient uncoupling works best if the units stay uncoupled whenever the driven orbit visits regions that are locally diverging in its phase space. Thus, to select a favorable uncoupling region, we propose an intuitive method that measures the local divergence at the phase points of the driven unit's trajectory by linearizing the flow and subsequently suppresses the divergence by uncoupling.

  17. Synchronization in networks with heterogeneous coupling delays

    Science.gov (United States)

    Otto, Andreas; Radons, Günter; Bachrathy, Dániel; Orosz, Gábor

    2018-01-01

    Synchronization in networks of identical oscillators with heterogeneous coupling delays is studied. A decomposition of the network dynamics is obtained by block diagonalizing a newly introduced adjacency lag operator which contains the topology of the network as well as the corresponding coupling delays. This generalizes the master stability function approach, which was developed for homogenous delays. As a result the network dynamics can be analyzed by delay differential equations with distributed delay, where different delay distributions emerge for different network modes. Frequency domain methods are used for the stability analysis of synchronized equilibria and synchronized periodic orbits. As an example, the synchronization behavior in a system of delay-coupled Hodgkin-Huxley neurons is investigated. It is shown that the parameter regions where synchronized periodic spiking is unstable expand when increasing the delay heterogeneity.

  18. Research and Realization of the HJ-1C Real-time Software Frame Synchronization Algorithm

    OpenAIRE

    Hou Yang-shuan; Shi Tao; Hu Yu-xin

    2014-01-01

    Conventional software frame synchronization methods are inefficient in processing huge continuous data without synchronization words. To improve the processing speed, a real-time synchronization algorithm is proposed based on reverse searching. Satellite data are grouped and searched in the reverse direction to avoid searching for synchronization words in huge continuous invalid data; thus, the frame synchronization speed is improved enormously. The fastest processing speed is up to 15445.9 M...

  19. Synchronization of metronomes

    Science.gov (United States)

    Pantaleone, James

    2002-10-01

    Synchronization is a common phenomenon in physical and biological systems. We examine the synchronization of two (and more) metronomes placed on a freely moving base. The small motion of the base couples the pendulums causing synchronization. The synchronization is generally in-phase, with antiphase synchronization occurring only under special conditions. The metronome system provides a mechanical realization of the popular Kuramoto model for synchronization of biological oscillators, and is excellent for classroom demonstrations and an undergraduate physics lab.

  20. Chaos synchronization of the energy resource system

    International Nuclear Information System (INIS)

    Li Xiuchun; Xu Wei; Li Ruihong

    2009-01-01

    This paper presents the chaos synchronization problem for new dynamical system (that is, energy resource demand-supply system), where the controller is designed using two different control methods. Firstly, based on stability criterion of linear system, chaotic synchronization is achieved with the help of the active theory, and accordingly, the simulation results are given for verifying the feasibility of the method. Secondly, based on Lyapunov stability theory, on the assumption that all the parameters of the system are unknown, adaptive control approach is proposed to make the states of two chaotic systems asymptotic synchronization. In the end, numerical simulations are used to show the effectiveness of the proposed control method.

  1. Review of available synchronization and time distribution techniques

    Science.gov (United States)

    Hall, R. G.; Lieberman, T. N.; Stone, R. R.

    1974-01-01

    The methods of synchronizing precision clocks will be reviewed placing particular attention to the simpler techniques, their accuracies, and the approximate cost of equipment. The more exotic methods of synchronization are discussed in lesser detail. The synchronization techniques that will be covered will include satellite dissemination, communication and navigation transmissions via VLF, LF, HF, UHF and microwave as well as commercial and armed forces television. Portable clock trips will also be discussed.

  2. Bifurcation behaviors of synchronized regions in logistic map networks with coupling delay

    International Nuclear Information System (INIS)

    Tang, Longkun; Wu, Xiaoqun; Lu, Jun-an; Lü, Jinhu

    2015-01-01

    Network synchronized regions play an extremely important role in network synchronization according to the master stability function framework. This paper focuses on network synchronous state stability via studying the effects of nodal dynamics, coupling delay, and coupling way on synchronized regions in Logistic map networks. Theoretical and numerical investigations show that (1) network synchronization is closely associated with its nodal dynamics. Particularly, the synchronized region bifurcation points through which the synchronized region switches from one type to another are in good agreement with those of the uncoupled node system, and chaotic nodal dynamics can greatly impede network synchronization. (2) The coupling delay generally impairs the synchronizability of Logistic map networks, which is also dominated by the parity of delay for some nodal parameters. (3) A simple nonlinear coupling facilitates network synchronization more than the linear one does. The results found in this paper will help to intensify our understanding for the synchronous state stability in discrete-time networks with coupling delay

  3. Synchronization of complex chaotic systems in series expansion form

    International Nuclear Information System (INIS)

    Ge Zhengming; Yang Chenghsiung

    2007-01-01

    This paper studies the synchronization of complex chaotic systems in series expansion form by Lyapunov asymptotical stability theorem. A sufficient condition is given for the asymptotical stability of an error dynamics, and is applied to guiding the design of the secure communication. Finally, numerical results are studied for the Quantum-CNN oscillators synchronizing with unidirectional/bidirectional linear coupling to show the effectiveness of the proposed synchronization strategy

  4. Overview of Cell Synchronization.

    Science.gov (United States)

    Banfalvi, Gaspar

    2017-01-01

    The widespread interest in cell synchronization is maintained by the studies of control mechanism involved in cell cycle regulation. During the synchronization distinct subpopulations of cells are obtained representing different stages of the cell cycle. These subpopulations are then used to study regulatory mechanisms of the cycle at the level of macromolecular biosynthesis (DNA synthesis, gene expression, protein synthesis), protein phosphorylation, development of new drugs, etc. Although several synchronization methods have been described, it is of general interest that scientists get a compilation and an updated view of these synchronization techniques. This introductory chapter summarizes: (1) the basic concepts and principal criteria of cell cycle synchronizations, (2) the most frequently used synchronization methods, such as physical fractionation (flow cytometry, dielectrophoresis, cytofluorometric purification), chemical blockade, (3) synchronization of embryonic cells, (4) synchronization at low temperature, (5) comparison of cell synchrony techniques, (6) synchronization of unicellular organisms, and (7) the effect of synchronization on transfection.

  5. Attitude Control and Orbital Dynamics Challenges of Removing the First 3-Axis Stabilized Tracking and Data Relay Satellite from the Geosynchronous ARC

    Science.gov (United States)

    Benet, Charles A.; Hofman, Henry; Williams, Thomas E.; Olney, Dave; Zaleski, Ronald

    2011-01-01

    Launched on April 4, 1983 onboard STS 6 (Space Shuttle Challenger), the First Tracking and Data Relay Satellite (TDRS 1) was retired above the Geosynchronous Orbit (GEO) on June 27, 2010 after having provided real-time communications with a variety of low-orbiting spacecraft over a 26-year period. To meet NASA requirements limiting orbital debris 1, a team of experts was assembled to conduct an End-Of-Mission (EOM) procedure to raise the satellite 350 km above the GEO orbit. Following the orbit raising via conventional station change maneuvers, the team was confronted with having to deplete the remaining propellant and passivate all energy storage or generation sources. To accomplish these tasks within the time window, communications (telemetry and control links), electrical power, propulsion, and thermal constraints, a spacecraft originally designed as a three-axis stabilized satellite was turned into a spinner. This paper (a companion paper to Innovative Approach Enabled the Retirement of TDRS 1, paper # 1699, IEEE 2011 Aerospace Conference, March 5-12, 2011 sup 2) focuses on the challenges of maintaining an acceptable spinning dynamics, while repetitively firing thrusters. Also addressed are the effects of thruster firings on the orbit characteristics and how they were mitigated by a careful scheduling of the fuel depletion operations. Periodic thruster firings for spin rate adjustment, nutation damping, and precession of the momentum vector were also required in order to maintain effective communications with the satellite. All operations were thoroughly rehearsed and supported by simulations thus lending a high level of confidence in meeting the NASA EOM goals.

  6. Complete synchronization on multi-layer center dynamical networks

    International Nuclear Information System (INIS)

    Liu Meng; Shao Yingying; Fu Xinchu

    2009-01-01

    In this paper, complete synchronization of three-layer center networks is studied. By using linear stability analysis approach, several different coupling schemes of three-layer center networks with the Logistic map local dynamics are discussed, and the stability conditions for synchronization are illustrated via some examples.

  7. Defense Meteorological Satellite Program (DMSP) - Space Weather Sensors

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Defense Meteorological Satellite Program (DMSP) maintains a constellation of sun-synchronous, near-polar orbiting satellites. The orbital period is 101 minutes...

  8. Communicating via robust synchronization of chaotic lasers

    International Nuclear Information System (INIS)

    Lopez-Gutierrez, R.M.; Posadas-Castillo, C.; Lopez-Mancilla, D.; Cruz-Hernandez, C.

    2009-01-01

    In this paper, the robust synchronization problem for coupled chaotic Nd:YAG lasers is addressed. We resort to complex systems theory to achieve chaos synchronization. Based on stability theory, it is shown that the state trajectories of the perturbed error synchronization are ultimately bounded, provided the unperturbed synchronization error system is exponentially stable, and some conditions on the bounds of the perturbation terms are satisfied. So that, encoding, transmission, and decoding in chaotic optical communications are presented. We analyze the transmission and recovery of encrypted information when parameter mismatches are considered. Computer simulations are provided to show the effectiveness of this robustness synchronization property, we present the encrypted transmission of image messages, and we show that, the transmitted image is faithfully recovered.

  9. Communicating via robust synchronization of chaotic lasers

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Gutierrez, R.M. [Engineering Faculty, Baja California Autonomous University (UABC), Km. 103 Carret. Tij-Ens., 22860 Ensenada, B.C. (Mexico); Posadas-Castillo, C. [Engineering Faculty, Baja California Autonomous University (UABC), Km. 103 Carret. Tij-Ens., 22860 Ensenada, B.C. (Mexico); FIME, Autonomous University of Nuevo Leon (UANL), Pedro de Alba, S.N., Cd. Universitaria, San Nicolas de los Garza, NL (Mexico); Lopez-Mancilla, D. [Departamento de Ciencias Exactas y Tecnologicas, Centro Universitario de los Lagos, Universidad de Guadalajara (CULagos-UdeG), Enrique Diaz de Leon s/n, 47460 Lagos de Moreno, Jal. (Mexico); Cruz-Hernandez, C. [Electronics and Telecommunications Department, Scientific Research and Advanced Studies of Ensenada (CICESE), Km. 107 Carret. Tij-Ens., 22860 Ensenada, B.C. (Mexico)], E-mail: ccruz@cicese.mx

    2009-10-15

    In this paper, the robust synchronization problem for coupled chaotic Nd:YAG lasers is addressed. We resort to complex systems theory to achieve chaos synchronization. Based on stability theory, it is shown that the state trajectories of the perturbed error synchronization are ultimately bounded, provided the unperturbed synchronization error system is exponentially stable, and some conditions on the bounds of the perturbation terms are satisfied. So that, encoding, transmission, and decoding in chaotic optical communications are presented. We analyze the transmission and recovery of encrypted information when parameter mismatches are considered. Computer simulations are provided to show the effectiveness of this robustness synchronization property, we present the encrypted transmission of image messages, and we show that, the transmitted image is faithfully recovered.

  10. Stabilization

    Directory of Open Access Journals (Sweden)

    Muhammad H. Al-Malack

    2016-07-01

    Full Text Available Fuel oil flyash (FFA produced in power and water desalination plants firing crude oils in the Kingdom of Saudi Arabia is being disposed in landfills, which increases the burden on the environment, therefore, FFA utilization must be encouraged. In the current research, the effect of adding FFA on the engineering properties of two indigenous soils, namely sand and marl, was investigated. FFA was added at concentrations of 5%, 10% and 15% to both soils with and without the addition of Portland cement. Mixtures of the stabilized soils were thoroughly evaluated using compaction, California Bearing Ratio (CBR, unconfined compressive strength (USC and durability tests. Results of these tests indicated that stabilized sand mixtures could not attain the ACI strength requirements. However, marl was found to satisfy the ACI strength requirement when only 5% of FFA was added together with 5% of cement. When the FFA was increased to 10% and 15%, the mixture’s strength was found to decrease to values below the ACI requirements. Results of the Toxicity Characteristics Leaching Procedure (TCLP, which was performed on samples that passed the ACI requirements, indicated that FFA must be cautiously used in soil stabilization.

  11. Nonlinear Dynamics of Controlled Synchronizations of Manipulator System

    Directory of Open Access Journals (Sweden)

    Qingkai Han

    2014-01-01

    Full Text Available The nonlinear dynamics of the manipulator system which is controlled to achieve the synchronization motions is investigated in the paper. Firstly, the control strategies and modeling approaches of the manipulator system are given, in which the synchronization goal is defined by both synchronization errors and its derivatives. The synchronization controllers applied on the manipulator system include neuron synchronization controller, improved OPCL synchronization controller, and MRAC-PD synchronization controller. Then, an improved adaptive synchronized control strategy is proposed in order to estimate online the unknown structure parameters and state variables of the manipulator system and to realize the needed synchronous compensation. Furthermore, a robust adaptive synchronization controller is also researched to guarantee the dynamic stability of the system. Finally, the stability of motion synchronizations of the manipulator system possessing nonlinear component is discussed, together with the effect of control parameters and joint friction and others. Some typical motions such as motion bifurcations and the loss of synchronization of it are obtained and illustrated as periodic, multiperiodic, and/or chaotic motion patterns.

  12. Research and Realization of the HJ-1C Real-time Software Frame Synchronization Algorithm

    Directory of Open Access Journals (Sweden)

    Hou Yang-shuan

    2014-06-01

    Full Text Available Conventional software frame synchronization methods are inefficient in processing huge continuous data without synchronization words. To improve the processing speed, a real-time synchronization algorithm is proposed based on reverse searching. Satellite data are grouped and searched in the reverse direction to avoid searching for synchronization words in huge continuous invalid data; thus, the frame synchronization speed is improved enormously. The fastest processing speed is up to 15445.9 Mbps when HJ-1C data are tested. This method is presently applied to the HJ-1C quick-look system in remote sensing satellite ground stations.

  13. Stages of chaotic synchronization.

    Science.gov (United States)

    Tang, D. Y.; Dykstra, R.; Hamilton, M. W.; Heckenberg, N. R.

    1998-09-01

    In an experimental investigation of the response of a chaotic system to a chaotic driving force, we have observed synchronization of chaos of the response system in the forms of generalized synchronization, phase synchronization, and lag synchronization to the driving signal. In this paper we compare the features of these forms of synchronized chaos and study their relations and physical origins. We found that different forms of chaotic synchronization could be interpreted as different stages of nonlinear interaction between the coupled chaotic systems. (c) 1998 American Institute of Physics.

  14. Anti-Synchronization of Chaotic Systems via Adaptive Sliding Mode Control

    International Nuclear Information System (INIS)

    Jawaada, Wafaa; Noorani, M. S. M.; Al-Sawalha, M. Mossa

    2012-01-01

    An anti-synchronization scheme is proposed to achieve the anti-synchronization behavior between chaotic systems with fully unknown parameters. A sliding surface and an adaptive sliding mode controller are designed to gain the anti-synchronization. The stability of the error dynamics is proven theoretically using the Lyapunov stability theory. Finally numerical results are presented to justify the theoretical analysis

  15. Role of multistability in the transition to chaotic phase synchronization

    DEFF Research Database (Denmark)

    Postnov, D.E.; Vadivasova, T.E.; Sosnovtseva, Olga

    1999-01-01

    In this paper we describe the transition to phase synchronization for systems of coupled nonlinear oscillators that individually follow the Feigenbaum route to chaos. A nested structure of phase synchronized regions of different attractor families is observed. With this structure, the transition...... to nonsynchronous behavior is determined by the loss of stability for the most stable synchronous mode. It is shown that the appearance of hyperchaos and the transition from lag synchronization to phase synchronization are related to the merging of chaotic attractors from different families. Numerical examples...

  16. Impulsive Cluster Synchronization in Community Network with Nonidentical Nodes

    International Nuclear Information System (INIS)

    Deng Liping; Wu Zhaoyan

    2012-01-01

    In this paper, cluster synchronization in community network with nonidentical nodes and impulsive effects is investigated. Community networks with two kinds of topological structure are investigated. Positive weighted network is considered first and external pinning controllers are designed for achieving cluster synchronization. Cooperative and competitive network under some assumptions is investigated as well and can achieve cluster synchronization with only impulsive controllers. Based on the stability analysis of impulsive differential equation and the Lyapunov stability theory, several simple and useful synchronization criteria are derived. Finally, numerical simulations are provided to verify the effectiveness of the derived results.

  17. A note on synchronization between two different chaotic systems

    International Nuclear Information System (INIS)

    Park, Ju H.

    2009-01-01

    In this paper, a new control method based on the Lyapunov method and linear matrix inequality framework is proposed to design a stabilizing controller for synchronizing two different chaotic systems. The feedback controller is consisted of two parts: linear dynamic control law and nonlinear control one. By this control law, the exponential stability for synchronization between two different chaotic systems is guaranteed. As applications of proposed method, synchronization problem between Genesio-Tesi system and Chen system has been investigated, and then the similar approach is applied to the synchronization problem between Roessler system and Lorenz system.

  18. STUDYING BUSINESS CYCLES SYNCHRONIZATION

    Directory of Open Access Journals (Sweden)

    N. Servetnyk

    2014-06-01

    Full Text Available The paper researches business cycles synchronization. The fluctuations in post-Soviet countries are considered. The study examines different measures of synchronization in groups of countries according to some criteria.

  19. Clock synchronization and dispersion

    International Nuclear Information System (INIS)

    Giovannetti, Vittorio; Lloyd, Seth; Maccone, Lorenzo; Wong, Franco N C

    2002-01-01

    We present a method to defeat effects of dispersion of timing signals when synchronizing clocks. It is based on the recently proposed 'conveyor belt synchronization' scheme and on the quantum dispersion cancellation effect

  20. Cell Division Synchronization

    Science.gov (United States)

    The report summarizes the progress in the design and construction of automatic equipment for synchronizing cell division in culture by periodic...Concurrent experiments in hypothermic synchronization of algal cell division are reported.

  1. Synchronization of Multipoint Hoists

    Science.gov (United States)

    A contractor has conceived an electrohydraulic feedback system that will provide position synchronization of four aircraft cargo hoists. To... synchronized hoist system. Test results show that the feedback system concept provides adequate synchronization control; i.e., the platform pitch and roll

  2. Directional Networking in GPS Denied Environments - Time Synchronization

    Science.gov (United States)

    2016-03-14

    RF-based measurements to synchronize time and measure node range.  Satellite Doppler: Using Doppler measurements from multiple satellites along...with satellite catalog data to determine time and position.  LTE : Use existing LTE base-stations for time and position.  Differential GPS: A...Opportunistic Signals: Opportunistically take advantage of existing RF signals (i.e., FM radio, DTV, LTE , etc.) transmitted from known locations

  3. Linear Matrix Inequality Based Fuzzy Synchronization for Fractional Order Chaos

    Directory of Open Access Journals (Sweden)

    Bin Wang

    2015-01-01

    Full Text Available This paper investigates fuzzy synchronization for fractional order chaos via linear matrix inequality. Based on generalized Takagi-Sugeno fuzzy model, one efficient stability condition for fractional order chaos synchronization or antisynchronization is given. The fractional order stability condition is transformed into a set of linear matrix inequalities and the rigorous proof details are presented. Furthermore, through fractional order linear time-invariant (LTI interval theory, the approach is developed for fractional order chaos synchronization regardless of the system with uncertain parameters. Three typical examples, including synchronization between an integer order three-dimensional (3D chaos and a fractional order 3D chaos, anti-synchronization of two fractional order hyperchaos, and the synchronization between an integer order 3D chaos and a fractional order 4D chaos, are employed to verify the theoretical results.

  4. Synchronization of chaotic systems

    International Nuclear Information System (INIS)

    Pecora, Louis M.; Carroll, Thomas L.

    2015-01-01

    We review some of the history and early work in the area of synchronization in chaotic systems. We start with our own discovery of the phenomenon, but go on to establish the historical timeline of this topic back to the earliest known paper. The topic of synchronization of chaotic systems has always been intriguing, since chaotic systems are known to resist synchronization because of their positive Lyapunov exponents. The convergence of the two systems to identical trajectories is a surprise. We show how people originally thought about this process and how the concept of synchronization changed over the years to a more geometric view using synchronization manifolds. We also show that building synchronizing systems leads naturally to engineering more complex systems whose constituents are chaotic, but which can be tuned to output various chaotic signals. We finally end up at a topic that is still in very active exploration today and that is synchronization of dynamical systems in networks of oscillators

  5. Synchronization of mobile chaotic oscillator networks

    Energy Technology Data Exchange (ETDEWEB)

    Fujiwara, Naoya, E-mail: fujiwara@csis.u-tokyo.ac.jp [Center for Spatial Information Science, The University of Tokyo, 277-8568 Chiba (Japan); Kurths, Jürgen [Potsdam Institute for Climate Impact Research (PIK), 14473 Potsdam, Germany and Institute for Complex Systems and Mathematical Biology, University of Aberdeen, Aberdeen (United Kingdom); Díaz-Guilera, Albert [Departament de Física de la Matèria Condensada, Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain and Universitat de Barcelona Institute of Complex Systems (UBICS), Universitat de Barcelona, Barcelona (Spain)

    2016-09-15

    We study synchronization of systems in which agents holding chaotic oscillators move in a two-dimensional plane and interact with nearby ones forming a time dependent network. Due to the uncertainty in observing other agents' states, we assume that the interaction contains a certain amount of noise that turns out to be relevant for chaotic dynamics. We find that a synchronization transition takes place by changing a control parameter. But this transition depends on the relative dynamic scale of motion and interaction. When the topology change is slow, we observe an intermittent switching between laminar and burst states close to the transition due to small noise. This novel type of synchronization transition and intermittency can happen even when complete synchronization is linearly stable in the absence of noise. We show that the linear stability of the synchronized state is not a sufficient condition for its stability due to strong fluctuations of the transverse Lyapunov exponent associated with a slow network topology change. Since this effect can be observed within the linearized dynamics, we can expect such an effect in the temporal networks with noisy chaotic oscillators, irrespective of the details of the oscillator dynamics. When the topology change is fast, a linearized approximation describes well the dynamics towards synchrony. These results imply that the fluctuations of the finite-time transverse Lyapunov exponent should also be taken into account to estimate synchronization of the mobile contact networks.

  6. Synchronization of mobile chaotic oscillator networks

    International Nuclear Information System (INIS)

    Fujiwara, Naoya; Kurths, Jürgen; Díaz-Guilera, Albert

    2016-01-01

    We study synchronization of systems in which agents holding chaotic oscillators move in a two-dimensional plane and interact with nearby ones forming a time dependent network. Due to the uncertainty in observing other agents' states, we assume that the interaction contains a certain amount of noise that turns out to be relevant for chaotic dynamics. We find that a synchronization transition takes place by changing a control parameter. But this transition depends on the relative dynamic scale of motion and interaction. When the topology change is slow, we observe an intermittent switching between laminar and burst states close to the transition due to small noise. This novel type of synchronization transition and intermittency can happen even when complete synchronization is linearly stable in the absence of noise. We show that the linear stability of the synchronized state is not a sufficient condition for its stability due to strong fluctuations of the transverse Lyapunov exponent associated with a slow network topology change. Since this effect can be observed within the linearized dynamics, we can expect such an effect in the temporal networks with noisy chaotic oscillators, irrespective of the details of the oscillator dynamics. When the topology change is fast, a linearized approximation describes well the dynamics towards synchrony. These results imply that the fluctuations of the finite-time transverse Lyapunov exponent should also be taken into account to estimate synchronization of the mobile contact networks.

  7. Synchronization of mobile chaotic oscillator networks.

    Science.gov (United States)

    Fujiwara, Naoya; Kurths, Jürgen; Díaz-Guilera, Albert

    2016-09-01

    We study synchronization of systems in which agents holding chaotic oscillators move in a two-dimensional plane and interact with nearby ones forming a time dependent network. Due to the uncertainty in observing other agents' states, we assume that the interaction contains a certain amount of noise that turns out to be relevant for chaotic dynamics. We find that a synchronization transition takes place by changing a control parameter. But this transition depends on the relative dynamic scale of motion and interaction. When the topology change is slow, we observe an intermittent switching between laminar and burst states close to the transition due to small noise. This novel type of synchronization transition and intermittency can happen even when complete synchronization is linearly stable in the absence of noise. We show that the linear stability of the synchronized state is not a sufficient condition for its stability due to strong fluctuations of the transverse Lyapunov exponent associated with a slow network topology change. Since this effect can be observed within the linearized dynamics, we can expect such an effect in the temporal networks with noisy chaotic oscillators, irrespective of the details of the oscillator dynamics. When the topology change is fast, a linearized approximation describes well the dynamics towards synchrony. These results imply that the fluctuations of the finite-time transverse Lyapunov exponent should also be taken into account to estimate synchronization of the mobile contact networks.

  8. Synchronization in complex networks with adaptive coupling

    International Nuclear Information System (INIS)

    Zhang Rong; Hu Manfeng; Xu Zhenyuan

    2007-01-01

    Generally it is very difficult to realized synchronization for some complex networks. In order to synchronize, the coupling coefficient of networks has to be very large, especially when the number of coupled nodes is larger. In this Letter, we consider the problem of synchronization in complex networks with adaptive coupling. A new concept about asymptotic stability is presented, then we proved by using the well-known LaSalle invariance principle, that the state of such a complex network can synchronize an arbitrary assigned state of an isolated node of the network as long as the feedback gain is positive. Unified system is simulated as the nodes of adaptive coupling complex networks with different topologies

  9. Active synchronization between two different chaotic dynamical system

    International Nuclear Information System (INIS)

    Maheri, M.; Arifin, N. Md; Ismail, F.

    2015-01-01

    In this paper we investigate on the synchronization problem between two different chaotic dynamical system based on the Lyapunov stability theorem by using nonlinear control functions. Active control schemes are used for synchronization Liu system as drive and Rossler system as response. Numerical simulation by using Maple software are used to show effectiveness of the proposed schemes

  10. Lag synchronization of chaotic systems with time-delayed linear

    Indian Academy of Sciences (India)

    In this paper, the lag synchronization of chaotic systems with time-delayed linear terms via impulsive control is investigated. Based on the stability theory of impulsive delayed differential equations, some sufficient conditions are obtained guaranteeing the synchronized behaviours between two delayed chaotic systems.

  11. Active synchronization between two different chaotic dynamical system

    Energy Technology Data Exchange (ETDEWEB)

    Maheri, M. [Institute for Mathematical Research, 43400 UPM, Serdang, Selengor (Malaysia); Arifin, N. Md; Ismail, F. [Department of Mathematics, 43400 UPM, Serdang, Selengor (Malaysia)

    2015-05-15

    In this paper we investigate on the synchronization problem between two different chaotic dynamical system based on the Lyapunov stability theorem by using nonlinear control functions. Active control schemes are used for synchronization Liu system as drive and Rossler system as response. Numerical simulation by using Maple software are used to show effectiveness of the proposed schemes.

  12. Gigabit Satellite Network for NASA's Advanced Communication Technology Satellite (ACTS)

    Science.gov (United States)

    Hoder, Douglas; Bergamo, Marcos

    1996-01-01

    The advanced communication technology satellite (ACTS) gigabit satellite network provides long-haul point-to-point and point-to-multipoint full-duplex SONET services over NASA's ACTS. at rates up to 622 Mbit/s (SONET OC-12), with signal quality comparable to that obtained with terrestrial fiber networks. Data multiplexing over the satellite is accomplished using time-division multiple access (TDMA) techniques coordinated with the switching and beam hopping facilities provided by ACTS. Transmissions through the satellite are protected with Reed-Solomon encoding. providing virtually error-free transmission under most weather conditions. Unique to the system are a TDMA frame structure and satellite synchronization mechanism that allow: (a) very efficient utilization of the satellite capacity: (b) over-the-satellite dosed-loop synchronization of the network in configurations with up to 64 ground stations: and (c) ground station initial acquisition without collisions with existing signalling or data traffic. The user interfaces are compatible with SONET standards, performing the function of conventional SONET multiplexers and. as such. can be: readily integrated with standard SONET fiber-based terrestrial networks. Management of the network is based upon the simple network management protocol (SNMP). and includes an over-the-satellite signalling network and backup terrestrial internet (IP-based) connectivity. A description of the ground stations is also included.

  13. Suppression of synchronous resonance for VSGs

    DEFF Research Database (Denmark)

    Yang, Dongsheng; Wu, Heng; Wang, Xiongfei

    2017-01-01

    The virtual synchronous generator (VSG) is an attractive interfacing technique for high-penetration renewable generation. By incorporating the inertia control, the grid-connected voltage-source converter can behave in a similar way with the SGs, which is helpful to enhance the stability of the po......The virtual synchronous generator (VSG) is an attractive interfacing technique for high-penetration renewable generation. By incorporating the inertia control, the grid-connected voltage-source converter can behave in a similar way with the SGs, which is helpful to enhance the stability...... of the power system. However, it is reported that the synchronous frequency resonance (SFR) can be aroused in the VSG due to the resonance peaks in the power control loops at the fundamental frequency. By modelling the power control loop in the dq domain, the mechanism underlying the SFR is studied. It reveals...

  14. Relative drifts and stability of satellite and ground-based stratospheric ozone profiles at NDACC lidar stations

    Directory of Open Access Journals (Sweden)

    P. J. Nair

    2012-06-01

    Full Text Available The long-term evolution of stratospheric ozone at different stations in the low and mid-latitudes is investigated. The analysis is performed by comparing the collocated profiles of ozone lidars, at the northern mid-latitudes (Meteorological Observatory Hohenpeißenberg, Haute-Provence Observatory, Tsukuba and Table Mountain Facility, tropics (Mauna Loa Observatory and southern mid-latitudes (Lauder, with ozonesondes and space-borne sensors (SBUV(/2, SAGE II, HALOE, UARS MLS and Aura MLS, extracted around the stations. Relative differences are calculated to find biases and temporal drifts in the measurements. All measurement techniques show their best agreement with respect to the lidar at 20–40 km, where the differences and drifts are generally within ±5% and ±0.5% yr−1, respectively, at most stations. In addition, the stability of the long-term ozone observations (lidar, SBUV(/2, SAGE II and HALOE is evaluated by the cross-comparison of each data set. In general, all lidars and SBUV(/2 exhibit near-zero drifts and the comparison between SAGE II and HALOE shows larger, but insignificant drifts. The RMS of the drifts of lidar and SBUV(/2 is 0.22 and 0.27% yr−1, respectively at 20–40 km. The average drifts of the long-term data sets, derived from various comparisons, are less than ±0.3% yr−1 in the 20–40 km altitude at all stations. A combined time series of the relative differences between SAGE II, HALOE and Aura MLS with respect to lidar data at six sites is constructed, to obtain long-term data sets lasting up to 27 years. The relative drifts derived from these combined data are very small, within ±0.2% yr−1.

  15. Synchronization of Concurrent Processes

    Science.gov (United States)

    1975-07-01

    Pettersen Stanford Ur.iversity Artificial Intelligence Laboratory ABSTRACT Th oaoer gives an overview of commonly used synchronization primitives and...wr.ters . ut.l.z.ng the DroDo4d synchronization primitive . The solution is simpler and shorter than other known S’ms The first sections of the paper...un reicr»» side il nrcttaary and Identity by block number) Scheduling, process scheduling, synchronization , mutual exclusion, semaphores , critical

  16. Adaptive Backoff Synchronization Techniques

    Science.gov (United States)

    1989-07-01

    Percentage of synchronization and non- synchronisation references that cause invalidations in directory schemes with 2, 3, 4, 5, and 64 pointers...processors to arrive. The slight relative increase of synchronisation overhead in all cases when going from two to five pointers is because synchronization ...MASSACHUSETTS INSTITUTE OF TECHNOLOGY VLSI PUBLICATIONS q~JU VLSI Memo No. 89-547 It July 1989 Adaptive Backoff Synchronization Techniques Anant

  17. One- and two-cluster synchronized dynamics of non-diffusively coupled Tchebycheff map networks

    International Nuclear Information System (INIS)

    Schäfer, Mirko; Greiner, Martin

    2012-01-01

    We use the master stability formalism to discuss one- and two-cluster synchronization of coupled Tchebycheff map networks. For diffusively coupled map systems, the one-cluster synchronized dynamics is given by the behaviour of the individual maps, and the coupling only determines the stability of the coherent state. For the case of non-diffusive coupling and for two-cluster synchronization, the synchronized dynamics on networks is different from the behaviour of the single individual map. Depending on the coupling, we study numerically the characteristics of various forms of the resulting synchronized dynamics. The stability properties of the respective one-cluster synchronized states are discussed for arbitrary network structures. For the case of two-cluster synchronization on bipartite networks we also present analytical expressions for fixed points and zig-zag patterns, and explicitly determine the linear stability of these orbits for the special case of ring-networks.

  18. OMEGA SYSTEM SYNCHRONIZATION.

    Science.gov (United States)

    TIME SIGNALS, * SYNCHRONIZATION (ELECTRONICS)), NETWORKS, FREQUENCY, STANDARDS, RADIO SIGNALS, ERRORS, VERY LOW FREQUENCY, PROPAGATION, ACCURACY, ATOMIC CLOCKS, CESIUM, RADIO STATIONS, NAVAL SHORE FACILITIES

  19. Robust adaptive synchronization of general dynamical networks ...

    Indian Academy of Sciences (India)

    Home; Journals; Pramana – Journal of Physics; Volume 86; Issue 6. Robust ... A robust adaptive synchronization scheme for these general complex networks with multiple delays and uncertainties is established and raised by employing the robust adaptive control principle and the Lyapunov stability theory. We choose ...

  20. Synchronization of Time-Continuous Chaotic Oscillators

    DEFF Research Database (Denmark)

    Yanchuk, S.; Maistrenko, Yuri; Mosekilde, Erik

    2003-01-01

    Considering a system of two coupled identical chaotic oscillators, the paper first establishes the conditions of transverse stability for the fully synchronized chaotic state. Periodic orbit threshold theory is applied to determine the bifurcations through which low-periodic orbits embedded...

  1. Method for emulation of synchronous machine

    DEFF Research Database (Denmark)

    2011-01-01

    The present invention relates to electric energy sources, such as a single wind power turbine or wind power plant, that are interfaced with the utility grid through power electronic converters. In particular, the present invention relates to specific techniques and methodologies for power...... electronic converters for stabilizing the utility grid during transient conditions and for providing similar stability mechanisms that are inherently present in electric synchronous generators while maintaining the possibility for fast and decoupled following of set points for generated active and...

  2. Cluster synchronization modes in an ensemble of coupled chaotic oscillators

    DEFF Research Database (Denmark)

    Belykh, Vladimir N.; Belykh, Igor V.; Mosekilde, Erik

    2001-01-01

    Considering systems of diffusively coupled identical chaotic oscillators, an effective method to determine the possible states of cluster synchronization and ensure their stability is presented. The method, which may find applications in communication engineering and other fields of science...

  3. Lag synchronization of chaotic systems with time-delayed linear ...

    Indian Academy of Sciences (India)

    delayed linear terms via impulsive control is investigated. Based on the stability theory of impulsive delayed differen- tial equations, some sufficient conditions are obtained guaranteeing the synchronized behaviours between two delayed chaotic ...

  4. Function projective lag synchronization of fractional-order chaotic systems

    International Nuclear Information System (INIS)

    Wang Sha; Yu Yong-Guang; Wang Hu; Rahmani Ahmed

    2014-01-01

    Function projective lag synchronization of different structural fractional-order chaotic systems is investigated. It is shown that the slave system can be synchronized with the past states of the driver up to a scaling function matrix. According to the stability theorem of linear fractional-order systems, a nonlinear fractional-order controller is designed for the synchronization of systems with the same and different dimensions. Especially, for two different dimensional systems, the synchronization is achieved in both reduced and increased dimensions. Three kinds of numerical examples are presented to illustrate the effectiveness of the scheme. (general)

  5. Simultaneously precise frequency transfer and time synchronization using feed-forward compensation technique via 120 km fiber link.

    Science.gov (United States)

    Chen, Xing; Lu, Jinlong; Cui, Yifan; Zhang, Jian; Lu, Xing; Tian, Xusheng; Ci, Cheng; Liu, Bo; Wu, Hong; Tang, Tingsong; Shi, Kebin; Zhang, Zhigang

    2015-12-22

    Precision time synchronization between two remote sites is desired in many applications such as global positioning satellite systems, long-baseline interferometry, coherent radar detection and fundamental physics constant measurements. The recently developed frequency dissemination technologies based on optical fiber link have improved the transfer instability to the level of 10(-19)/day at remote location. Therefore it is possible to keep clock oscillation at remote locations continuously corrected, or to reproduce a "virtual" clock on the remote location. However the initial alignment and the correction of 1 pps timing signal from time to time are still required, besides the highly stabilized clock frequency transfer between distant locations. Here we demonstrate a time synchronization based on an ultra-stable frequency transfer system via 120-km commercial fiber link by transferring an optical frequency comb. Both the phase noise compensation in frequency dissemination and temporal basis alignment in time synchronization were implemented by a feed-forward digital compensation (FFDC) technique. The fractional frequency instability was measured to be 6.18 × 10(-20) at 2000 s. The timing deviation of time synchronization was measured to be 0.6 ps in 1500 s. This technique also can be applied in multi-node fiber network topology.

  6. Adaptive Control Algorithm of the Synchronous Generator

    Directory of Open Access Journals (Sweden)

    Shevchenko Victor

    2017-01-01

    Full Text Available The article discusses the the problem of controlling a synchronous generator, namely, maintaining the stability of the control object in the conditions of occurrence of noise and disturbances in the regulatory process. The model of a synchronous generator is represented by a system of differential equations of Park-Gorev, where state variables are computed relative to synchronously rotating d, q-axis. Management of synchronous generator is proposed to organize on the basis of the position-path control using algorithms to adapt with the reference model. Basic control law directed on the stabilizing indicators the frequency generated by the current and the required power level, which is achieved by controlling the mechanical torque on the shaft of the turbine and the value of the excitation voltage of the synchronous generator. Modification of the classic adaptation algorithm using the reference model, allowing to minimize the error of the reference regulation and the model under investigation within the prescribed limits, produced by means of the introduction of additional variables controller adaptation in the model. Сarried out the mathematical modeling of control provided influence on the studied model of continuous nonlinear and unmeasured the disturbance. Simulation results confirm the high level accuracy of tracking and adaptation investigated model with respect to the reference, and the present value of the loop error depends on parameters performance of regulator.

  7. Synchronicity and Leadership

    NARCIS (Netherlands)

    Merry, Philip

    2017-01-01

    LAY SUMMARY SYNCHRONICITY AND LEADERSHIP TILBURG PHD DISSERTATION, PHILIP MERRY World’s First PhD to Research Synchronicity And Leadership Using Grounded Theory OUT OF THE BLUE COINCIDENCES: research topic Most people have had the experience of thinking of someone and then, almost magically have

  8. Synchronization of hyperchaotic oscillators

    DEFF Research Database (Denmark)

    Tamasevicius, A.; Cenys, A.; Mykolaitis, G.

    1997-01-01

    Synchronization of chaotic oscillators is believed to have promising applications in secure communications. Hyperchaotic systems with multiple positive Lyapunov exponents (LEs) have an advantage over common chaotic systems with only one positive LE. Three different types of hyperchaotic electronic...... oscillators are investigated demonstrating synchronization by means of only one properly selected variable....

  9. RUN LENGTH SYNCHRONIZATION TECHNIQUES

    Science.gov (United States)

    An important aspect of digital communications is the problem of determining efficient methods for acquiring block synchronization . In this paper we...utilizes an N-digit sync sequence as prefix to the data blocks. The results of this study show that this technique is a practical method for acquiring block synchronization .

  10. Complete synchronization of the global coupled dynamical network induced by Poisson noises.

    Science.gov (United States)

    Guo, Qing; Wan, Fangyi

    2017-01-01

    The different Poisson noise-induced complete synchronization of the global coupled dynamical network is investigated. Based on the stability theory of stochastic differential equations driven by Poisson process, we can prove that Poisson noises can induce synchronization and sufficient conditions are established to achieve complete synchronization with probability 1. Furthermore, numerical examples are provided to show the agreement between theoretical and numerical analysis.

  11. Mixed synchronization in chaotic oscillators using scalar coupling

    Energy Technology Data Exchange (ETDEWEB)

    Bhowmick, Sourav K.; Hens, Chittaranjan [CSIR – Indian Institute of Chemical Biology, Jadavpur, Kolkata 700032 (India); Ghosh, Dibakar, E-mail: drghosh_math@yahoo.co.in [Department of Mathematics, University of Kalyani, West Bengal 741235 (India); Dana, Syamal K. [CSIR – Indian Institute of Chemical Biology, Jadavpur, Kolkata 700032 (India)

    2012-07-23

    We report experimental evidence of mixed synchronization in two unidirectionally coupled chaotic oscillators using a scalar coupling. In this synchronization regime, some of the state variables may be in complete synchronization while others may be in anti-synchronization state. We extended the theory by using an adaptive controller with an updating law based on Lyapunov function stability to include parameter fluctuation. Using the scheme, we implemented a cryptographic encoding for digital signal through parameter modulation. -- Highlights: ► We provided experimental evidence of the mixed synchronization scheme while other methods are mostly theoretical nature. ► We numerically studied adaptive mixed synchronization when the parameters are not completely known using scalar coupling. ► We proposed a secure communication system where three digital messages are transmitted using parameter modulation.

  12. Synchronization of ;light-sensitive; Hindmarsh-Rose neurons

    Science.gov (United States)

    Castanedo-Guerra, Isaac; Steur, Erik; Nijmeijer, Henk

    2018-04-01

    The suprachiasmatic nucleus is a network of synchronized neurons whose electrical activity follows a 24 h cycle. The synchronization phenomenon (among these neurons) is not completely understood. In this work we study, via experiments and numerical simulations, the phenomenon in which the synchronization threshold changes under the influence of an external (bifurcation) parameter in coupled Hindmarsh-Rose neurons. This parameter ;shapes; the activity of the individual neurons the same way as some neurons in the brain react to light. We corroborate this experimental finding with numerical simulations by quantifying the amount of synchronization using Pearson's correlation coefficient. In order to address the local stability problem of the synchronous state, Floquet theory is applied in the case where the dynamic systems show continuous periodic solutions. These results show how the sufficient coupling strength for synchronization between these neurons is affected by an external cue (e.g. light).

  13. Robust Timing Synchronization in Aeronautical Mobile Communication Systems

    Science.gov (United States)

    Xiong, Fu-Qin; Pinchak, Stanley

    2004-01-01

    This work details a study of robust synchronization schemes suitable for satellite to mobile aeronautical applications. A new scheme, the Modified Sliding Window Synchronizer (MSWS), is devised and compared with existing schemes, including the traditional Early-Late Gate Synchronizer (ELGS), the Gardner Zero-Crossing Detector (GZCD), and the Sliding Window Synchronizer (SWS). Performance of the synchronization schemes is evaluated by a set of metrics that indicate performance in digital communications systems. The metrics are convergence time, mean square phase error (or root mean-square phase error), lowest SNR for locking, initial frequency offset performance, midstream frequency offset performance, and system complexity. The performance of the synchronizers is evaluated by means of Matlab simulation models. A simulation platform is devised to model the satellite to mobile aeronautical channel, consisting of a Quadrature Phase Shift Keying modulator, an additive white Gaussian noise channel, and a demodulator front end. Simulation results show that the MSWS provides the most robust performance at the cost of system complexity. The GZCD provides a good tradeoff between robustness and system complexity for communication systems that require high symbol rates or low overall system costs. The ELGS has a high system complexity despite its average performance. Overall, the SWS, originally designed for multi-carrier systems, performs very poorly in single-carrier communications systems. Table 5.1 in Section 5 provides a ranking of each of the synchronization schemes in terms of the metrics set forth in Section 4.1. Details of comparison are given in Section 5. Based on the results presented in Table 5, it is safe to say that the most robust synchronization scheme examined in this work is the high-sample-rate Modified Sliding Window Synchronizer. A close second is its low-sample-rate cousin. The tradeoff between complexity and lowest mean-square phase error determines

  14. Synchronization of Harb-Zohdy Chaotic System via Back-Stepping Design

    Directory of Open Access Journals (Sweden)

    M. R. Shamsyeh Zahedi∗

    2015-12-01

    Full Text Available This paper is concerned with the problem of synchronization of the Harb-Zohdy chaotic system using the back-stepping. Based on the stability theory, the control for the synchronization of chaotic systems Harb-Zohdy is considered without unknown parameters. Next, an adaptive back-stepping control law is derived to generate an error signal between the drive and response systems Harb-Zohdy with an uncertain parameter asymptotically synchronized. Finally, this method is extended to synchronize the system with two unknown parameters. Note that the method presented here needs only one controller to realize the synchronization. Numerical simulations indicate the effectiveness of the proposed chaos synchronization scheme

  15. Small-world networks exhibit pronounced intermittent synchronization

    Science.gov (United States)

    Choudhary, Anshul; Mitra, Chiranjit; Kohar, Vivek; Sinha, Sudeshna; Kurths, Jürgen

    2017-11-01

    We report the phenomenon of temporally intermittently synchronized and desynchronized dynamics in Watts-Strogatz networks of chaotic Rössler oscillators. We consider topologies for which the master stability function (MSF) predicts stable synchronized behaviour, as the rewiring probability (p) is tuned from 0 to 1. MSF essentially utilizes the largest non-zero Lyapunov exponent transversal to the synchronization manifold in making stability considerations, thereby ignoring the other Lyapunov exponents. However, for an N-node networked dynamical system, we observe that the difference in its Lyapunov spectra (corresponding to the N - 1 directions transversal to the synchronization manifold) is crucial and serves as an indicator of the presence of intermittently synchronized behaviour. In addition to the linear stability-based (MSF) analysis, we further provide global stability estimate in terms of the fraction of state-space volume shared by the intermittently synchronized state, as p is varied from 0 to 1. This fraction becomes appreciably large in the small-world regime, which is surprising, since this limit has been otherwise considered optimal for synchronized dynamics. Finally, we characterize the nature of the observed intermittency and its dominance in state-space as network rewiring probability (p) is varied.

  16. Synthesis for robust synchronization of chaotic systems under output feedback control with multiple random delays

    International Nuclear Information System (INIS)

    Wen Guilin; Wang Qingguo; Lin Chong; Han Xu; Li Guangyao

    2006-01-01

    Synchronization under output feedback control with multiple random time delays is studied, using the paradigm in nonlinear physics-Chua's circuit. Compared with other synchronization control methods, output feedback control with multiple random delay is superior for a realistic synchronization application to secure communications. Sufficient condition for global stability of delay-dependent synchronization is established based on the LMI technique. Numerical simulations fully support the analytical approach, in spite of the random delays

  17. The impulsive control synchronization of the drive-response complex system

    International Nuclear Information System (INIS)

    Zhao Yanhong; Yang Yongqing

    2008-01-01

    This Letter investigates projective synchronization between the drive system and response complex dynamical system. An impulsive control scheme is adapted to synchronize the drive-response dynamical system to a desired scalar factor. By using the stability theory of the impulsive differential equation, the criteria for the projective synchronization are derived. The feasibility of the impulsive control of the projective synchronization is demonstrated in the drive-response dynamical system

  18. Synchronization of linearly coupled unified chaotic systems based on linear balanced feedback scheme with constraints

    International Nuclear Information System (INIS)

    Chen, H.-H.; Chen, C.-S.; Lee, C.-I

    2009-01-01

    This paper investigates the synchronization of unidirectional and bidirectional coupled unified chaotic systems. A balanced coupling coefficient control method is presented for global asymptotic synchronization using the Lyapunov stability theorem and a minimum scheme with no constraints/constraints. By using the result of the above analysis, the balanced coupling coefficients are then designed to achieve the chaos synchronization of linearly coupled unified chaotic systems. The feasibility and effectiveness of the proposed chaos synchronization scheme are verified via numerical simulations.

  19. Switched generalized function projective synchronization of two identical/different hyperchaotic systems with uncertain parameters

    International Nuclear Information System (INIS)

    Li Hongmin; Li Chunlai

    2012-01-01

    In this paper, we investigate two switched synchronization schemes, namely partial and complete switched generalized function projective synchronization, by using the adaptive control method. Partial switched synchronization of chaotic systems means that the state variables of the drive system synchronize with partial different state variables of the response system, whereas complete switched synchronization of chaotic systems means that all the state variables of the drive system synchronize with complete different state variables of the response system. Because the switched synchronization scheme exists in many combinations, it is a promising type of synchronization as it provides greater security in secure communications. Based on the Lyapunov stability theory, the adaptive control laws and the parameter update laws are derived to make the states of two identical/different hyperchaotic systems asymptotically synchronized up to a desired scaling function. Finally, numerical simulations are performed to verify and illustrate the analytical results.

  20. Efficient Synchronization Stability Metrics for Fault Clearing

    Energy Technology Data Exchange (ETDEWEB)

    Backhaus, Scott N. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Chertkov, Michael [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Bent, Russell Whitford [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Bienstock, Daniel [Columbia Univ., New York, NY (United States); Krishnamurthy, Dvijotham [Univ. of Washington, Seattle, WA (United States)

    2015-02-12

    Direct methods can provide rapid screening of the dynamical security of large numbers fault and contingency scenarios by avoiding extensive time simulation. We introduce a computationally-efficient direct method based on optimization that leverages efficient cutting plane techniques. The method considers both unstable equilibrium points and the effects of additional relay tripping on dynamical security[1]. Similar to other direct methods, our approach yields conservative results for dynamical security, however, the optimization formulation potentially lends itself to the inclusion of additional constraints to reduce this conservatism.

  1. Asynchronized synchronous machines

    CERN Document Server

    Botvinnik, M M

    1964-01-01

    Asynchronized Synchronous Machines focuses on the theoretical research on asynchronized synchronous (AS) machines, which are "hybrids” of synchronous and induction machines that can operate with slip. Topics covered in this book include the initial equations; vector diagram of an AS machine; regulation in cases of deviation from the law of full compensation; parameters of the excitation system; and schematic diagram of an excitation regulator. The possible applications of AS machines and its calculations in certain cases are also discussed. This publication is beneficial for students and indiv

  2. Synchronization of networks

    Indian Academy of Sciences (India)

    We study the synchronization of coupled dynamical systems on networks. The dynamics is .... Such a time-varying topology can occur in social networks, computer networks, WWW ... This has the effect of reducing the spread of the transverse ...

  3. Synchronization in complex networks

    Energy Technology Data Exchange (ETDEWEB)

    Arenas, A.; Diaz-Guilera, A.; Moreno, Y.; Zhou, C.; Kurths, J.

    2007-12-12

    Synchronization processes in populations of locally interacting elements are in the focus of intense research in physical, biological, chemical, technological and social systems. The many efforts devoted to understand synchronization phenomena in natural systems take now advantage of the recent theory of complex networks. In this review, we report the advances in the comprehension of synchronization phenomena when oscillating elements are constrained to interact in a complex network topology. We also overview the new emergent features coming out from the interplay between the structure and the function of the underlying pattern of connections. Extensive numerical work as well as analytical approaches to the problem are presented. Finally, we review several applications of synchronization in complex networks to different disciplines: biological systems and neuroscience, engineering and computer science, and economy and social sciences.

  4. Strange attractors and synchronization dynamics of coupled Van der Pol-Duffing oscillators

    International Nuclear Information System (INIS)

    Yamapi, R.; Filatrella, G.

    2006-07-01

    We consider in this paper the dynamics and synchronization of coupled chaotic Van der Pol-Duffing systems. The stability of the synchronization process between two coupled autonomous Van der Pol model is first analyzed analytically and numerically, before following the problem of synchronizing chaos both on the same and different chaotic orbits of two coupled Van der Pol-Duffing systems. The stability boundaries of the synchronization process are derived and the effects of the amplitude of the periodic perturbation of the coupling parameter on these boundaries are analyzed. The results are provided on the stability map in the (q, K) plane. (author)

  5. Traffic signal synchronization.

    Science.gov (United States)

    Huang, Ding-wei; Huang, Wei-neng

    2003-05-01

    The benefits of traffic signal synchronization are examined within the cellular automata approach. The microsimulations of traffic flow are obtained with different settings of signal period T and time delay delta. Both numerical results and analytical approximations are presented. For undersaturated traffic, the green-light wave solutions can be realized. For saturated traffic, the correlation among the traffic signals has no effect on the throughput. For oversaturated traffic, the benefits of synchronization are manifest only when stochastic noise is suppressed.

  6. Neural Synchronization and Cryptography

    Science.gov (United States)

    Ruttor, Andreas

    2007-11-01

    Neural networks can synchronize by learning from each other. In the case of discrete weights full synchronization is achieved in a finite number of steps. Additional networks can be trained by using the inputs and outputs generated during this process as examples. Several learning rules for both tasks are presented and analyzed. In the case of Tree Parity Machines synchronization is much faster than learning. Scaling laws for the number of steps needed for full synchronization and successful learning are derived using analytical models. They indicate that the difference between both processes can be controlled by changing the synaptic depth. In the case of bidirectional interaction the synchronization time increases proportional to the square of this parameter, but it grows exponentially, if information is transmitted in one direction only. Because of this effect neural synchronization can be used to construct a cryptographic key-exchange protocol. Here the partners benefit from mutual interaction, so that a passive attacker is usually unable to learn the generated key in time. The success probabilities of different attack methods are determined by numerical simulations and scaling laws are derived from the data. They show that the partners can reach any desired level of security by just increasing the synaptic depth. Then the complexity of a successful attack grows exponentially, but there is only a polynomial increase of the effort needed to generate a key. Further improvements of security are possible by replacing the random inputs with queries generated by the partners.

  7. Adaptive controller design for modified projective synchronization of Genesio-Tesi chaotic system with uncertain parameters

    International Nuclear Information System (INIS)

    Park, Ju H.

    2007-01-01

    The paper addresses control problem for the modified projective synchronization of the Genesio-Tesi chaotic systems with three uncertain parameters. An adaptive control law is derived to make the states of two identical Genesio-Tesi systems asymptotically synchronized up to specific ratios. The stability analysis in the paper is proved using a well-known Lyapunov stability theory. A numerical simulation is presented to show the effectiveness of the proposed chaos synchronization scheme

  8. Necessary and Sufficient Condition for Local Exponential Synchronization of Nonlinear Systems

    NARCIS (Netherlands)

    Andrieu, Vincent; Jayawardhana, Bayu; Tarbouriech, Sophie

    2015-01-01

    Based on recent works on transverse exponential stability, some necessary and sufficient conditions for the existence of a (locally) exponential synchronizer are established. We show that the existence of a structured synchronizer is equivalent to the existence of a stabilizer for the individual

  9. Chaos synchronization in time-delayed systems with parameter mismatches and variable delay times

    International Nuclear Information System (INIS)

    Shahverdiev, E.M.; Nuriev, R.A.; Hashimov, R.H.; Shore, K.A.

    2004-06-01

    We investigate synchronization between two undirectionally linearly coupled chaotic nonidentical time-delayed systems and show that parameter mismatches are of crucial importance to achieve synchronization. We establish that independent of the relation between the delay time in the coupled systems and the coupling delay time, only retarded synchronization with the coupling delay time is obtained. We show that with parameter mismatch or without it neither complete nor anticipating synchronization occurs. We derive existence and stability conditions for the retarded synchronization manifold. We demonstrate our approach using examples of the Ikeda and Mackey Glass models. Also for the first time we investigate chaos synchronization in time-delayed systems with variable delay time and find both existence and sufficient stability conditions for the retarded synchronization manifold with the coupling-delay lag time. (author)

  10. Infrared Astronomy Satellite

    Science.gov (United States)

    Ferrera, G. A.

    1981-09-01

    In 1982, the Infrared Astronomy Satellite (IRAS) will be launched into a 900-km sun-synchronous (twilight) orbit to perform an unbiased, all-sky survey of the far-infrared spectrum from 8 to 120 microns. Observations telemetered to ground stations will be compiled into an IR astronomy catalog. Attention is given the cryogenically cooled, 60-cm Ritchey-Chretien telescope carried by the satellite, whose primary and secondary mirrors are fabricated from beryllium by means of 'Cryo-Null Figuring'. This technique anticipates the mirror distortions that will result from cryogenic cooling of the telescope and introduces dimensional compensations for them during machining and polishing. Consideration is also given to the interferometric characterization of telescope performance and Cryo/Thermal/Vacuum simulated space environment testing.

  11. Global chaos synchronization of new chaotic systems via nonlinear control

    International Nuclear Information System (INIS)

    Chen, H.-K.

    2005-01-01

    Nonlinear control is an effective method for making two identical chaotic systems or two different chaotic systems be synchronized. However, this method assumes that the Lyapunov function of error dynamic (e) of synchronization is always formed as V (e) = 1/2e T e. In this paper, modification based on Lyapunov stability theory to design a controller is proposed in order to overcome this limitation. The method has been applied successfully to make two identical new systems and two different chaotic systems (new system and Lorenz system) globally asymptotically synchronized. Since the Lyapunov exponents are not required for the calculation, this method is effective and convenient to synchronize two identical systems and two different chaotic systems. Numerical simulations are also given to validate the proposed synchronization approach

  12. Synchronization-optimized networks for coupled nearly identical ...

    Indian Academy of Sciences (India)

    2014-01-24

    Jan 24, 2014 ... The extension of the master stability function (MSF) to analyse stability of generalized synchronization for coupled nearly identical oscillators is discussed. The nearly identical nature of the coupled oscillators is due to some parameter mismatch while the dynamical equations are the same for all the ...

  13. The adaptive synchronization of fractional-order Liu chaotic system ...

    Indian Academy of Sciences (India)

    In this paper, the chaos control and the synchronization of two fractional-order Liu chaotic systems with unknown parameters are studied. According to the Lyapunov stabilization theory and the adaptive control theorem, the adaptive control rule is obtained for the described error dynamic stabilization. Using the adaptive rule ...

  14. Clock synchronisation experiment in India using symphonie satellite

    Science.gov (United States)

    Somayajulu, Y. V.; Mathur, B. S.; Banerjee, P.; Garg, S. C.; Singh, L.; Sood, P. C.; Tyagi, T. R.; Jain, C. L.; Kumar, K.

    1979-01-01

    A recent clock synchronization experiment between the National Physical Laboratory (NPL), New Delhi and Space Applications Center (SAC), Ahemedabad, in India via geostationary satellite symphonie 2, stationed at 49 E longitude, is reported. A two-way transmission using a microwave transponder considered to provide the greatest precision in synchronization of two remote clocks is described.

  15. Composite synchronization of three eccentric rotors driven by induction motors in a vibrating system

    Science.gov (United States)

    Kong, Xiangxi; Chen, Changzheng; Wen, Bangchun

    2018-03-01

    This paper addresses the problem of composite synchronization of three eccentric rotors (ERs) driven by induction motors in a vibrating system. The composite synchronous motion of three ERs is composed of the controlled synchronous motion of two ERs and the self-synchronous motion of the third ER. Combining an adaptive sliding mode control (ASMC) algorithm with a modified master-slave control structure, the controllers are designed to implement controlled synchronous motion of two ERs with zero phase difference. Based on Lyapunov stability theorem and Barbalat's lemma, the stability of the designed controllers is verified. On basis of controlled synchronization of two ERs, self-synchronization of the third ER is introduced to implement composite synchronous motion of three ERs. The feasibility of the proposed composite synchronization method is analyzed by numerical method. The effects of motor and structure parameters on composite synchronous motion are discussed. Experiments on a vibrating test bench driven by three ERs are operated to validate the effectiveness of the proposed composite synchronization method, including a comparison with self-synchronization method.

  16. Chaos synchronization of coupled neurons with gap junctions

    International Nuclear Information System (INIS)

    Wang Qingyun; Lu Qishao; Chen Guanrong; Guo Dinghui

    2006-01-01

    Based on the asymptotic stability theory of dynamical systems and matrix theory, a general criterion of synchronization stability of N coupled neurons with symmetric configurations is established in this Letter. Especially, three types of connection styles (that is, chain, ring and global connections) are considered. As an illustration, complete synchronization of four coupled identical chaotic Chay neurons is investigated. The maximal conditional Lyapunov exponent is calculated and used to determine complete synchronization. As a result, complete synchronization of four coupled identical chaotic Chay neurons can be achieved when the coupling strength is above a critical value, which is dependent on the specific connection style. Numerical simulation is in good agreement with the theoretical analysis

  17. Synchronization of Two Asymmetric Exciters in a Vibrating System

    Directory of Open Access Journals (Sweden)

    Zhaohui Ren

    2011-01-01

    Full Text Available We investigate synchronization of two asymmetric exciters in a vibrating system. Using the modified average method of small parameters, we deduce the non-dimensional coupling differential equations of the two exciters (NDDETE. By using the condition of existence for the zero solutions of the NDDETE, the condition of implementing synchronization is deduced: the torque of frequency capture is equal to or greater than the difference in the output electromagnetic torque between the two motors. Using the Routh-Hurwitz criterion, we deduce the condition of stability of synchronization that the inertia coupling matrix of the two exciters is positive definite. A numeric result shows that the structural parameters can meet the need of synchronization stability.

  18. Pinning Synchronization of Linear Complex Coupling Synchronous Generators Network of Hydroelectric Generating Set

    Directory of Open Access Journals (Sweden)

    Xuefei Wu

    2014-01-01

    Full Text Available A novel linear complex system for hydroturbine-generator sets in multimachine power systems is suggested in this paper and synchronization of the power-grid networks is studied. The advanced graph theory and stability theory are combined to solve the problem. Here we derive a sufficient condition under which the synchronous state of power-grid networks is stable in disturbance attenuation. Finally, numerical simulations are provided to illustrate the effectiveness of the results by the IEEE 39 bus system.

  19. Low energy plasma observations at synchronous orbit

    International Nuclear Information System (INIS)

    Reasoner, D.L.; Lennartsson, W.

    1977-08-01

    The University of California at San Diego Auroral Particles Experiment on the ATS-6 Satellite in synchronous orbit has detected a low-energy plasma population which is separate and distinct from both the ring current and plasma sheet populations. These observations suggest that this plasma is the outer zone of the plasmasphere. During magnetically active periods, this low energy plasma is often observed flowing sunward. In the dusk sector, enhanced plasma flow is often observed for 1-2 hours prior to the onset of a substorm-associated particle injection. (author)

  20. Synchronization in networks with multiple interaction layers

    Science.gov (United States)

    del Genio, Charo I.; Gómez-Gardeñes, Jesús; Bonamassa, Ivan; Boccaletti, Stefano

    2016-01-01

    The structure of many real-world systems is best captured by networks consisting of several interaction layers. Understanding how a multilayered structure of connections affects the synchronization properties of dynamical systems evolving on top of it is a highly relevant endeavor in mathematics and physics and has potential applications in several socially relevant topics, such as power grid engineering and neural dynamics. We propose a general framework to assess the stability of the synchronized state in networks with multiple interaction layers, deriving a necessary condition that generalizes the master stability function approach. We validate our method by applying it to a network of Rössler oscillators with a double layer of interactions and show that highly rich phenomenology emerges from this. This includes cases where the stability of synchronization can be induced even if both layers would have individually induced unstable synchrony, an effect genuinely arising from the true multilayer structure of the interactions among the units in the network. PMID:28138540

  1. A Semantics of Synchronization.

    Science.gov (United States)

    1980-09-01

    suggestion of having very hungry philosophers. One can easily imagine the complexity of the equivalent implementation using semaphores . Synchronization types...Edinburgh, July 1978. [STAR79] Stark, E.W., " Semaphore Primitives and Fair Mutual Exclusion," TM-158, Laboratory for Computer Science, M.I.T., Cambridge...AD-AQ91 015 MASSACHUSETTS INST OF TECH CAMBRIDGE LAB FOR COMPUTE--ETC F/S 9/2 A SEMANTICS OF SYNCHRONIZATION .(U) .C SEP 80 C A SEAQUIST N00015-75

  2. Pulse Synchronization System (PSS)

    International Nuclear Information System (INIS)

    1977-06-01

    This document is intended to serve as an operations manual, as well as a documentation of the backup analyses pertinent to the design as delivered. A history of earlier unsuccessful versions of the Pulse Synchronization System (PSS) is not included. The function of the PSS is to synchronize the time of arrival at the fusion target of laser pulses that are propagated through the 20 amplifier chains of the SHIVA laser. The positional accuracy requirement is +-1.5 mm (+-5 psec), and is obtained by the PSS with a wide margin factor

  3. Global synchronization for time-delay of WINDMI System

    International Nuclear Information System (INIS)

    Wang Junxa; Lu Dianchen; Tian Lixin

    2006-01-01

    Considering a time-delay in the receiver as compared with the transmitter, we addresses a practical issue in chaos synchronization of WINDMI system which is based on the Lyapunov stabilization theory and matrix measure, such that the state of the slave system at time t is asymptotically synchronizing with the master at time t - τ. The Mathematical software is used to prove the effectiveness of this method

  4. Synchronization of chaos in non-identical parametrically excited systems

    International Nuclear Information System (INIS)

    Idowu, B.A.; Vincent, U.E.; Njah, A.N.

    2009-01-01

    In this paper, we investigate the synchronization of chaotic systems consisting of non-identical parametrically excited oscillators. The active control technique is employed to design control functions based on Lyapunov stability theory and Routh-Hurwitz criteria so as to achieve global chaos synchronization between a parametrically excited gyroscope and each of the parametrically excited pendulum and Duffing oscillator. Numerical simulations are implemented to verify the results.

  5. Chaos synchronization of a chaotic system via nonlinear control

    International Nuclear Information System (INIS)

    Park, Ju H.

    2005-01-01

    In this letter, the problem of chaos synchronization of a chaotic system which is proposed by Lue et al. [Int J Bifurcat Chaos 2004;14:1507] is considered. A novel nonlinear controller is designed based on the Lyapunov stability theory. The proposed controller ensures that the states of the controlled chaotic slave system asymptotically synchronizes the states of the master system. A numerical example is given to illuminate the design procedure and advantage of the result derived

  6. Chaos synchronization of the fractional-order Chen's system

    International Nuclear Information System (INIS)

    Zhu Hao; Zhou Shangbo; He Zhongshi

    2009-01-01

    In this paper, based on the stability theorem of linear fractional systems, a necessary condition is given to check the chaos synchronization of fractional systems with incommensurate order. Chaos synchronization is studied by utilizing the Pecora-Carroll (PC) method and the coupling method. The necessary condition can also be used as a tool to confirm results of a numerical simulation. Numerical simulation results show the effectiveness of the necessary condition.

  7. An adaptive chaos synchronization scheme applied to secure communication

    International Nuclear Information System (INIS)

    Feki, Moez

    2003-01-01

    This paper deals with the problem of synchronization of a class of continuous-time chaotic systems using the drive-response concept. An adaptive observer-based response system is designed to synchronize with a given chaotic drive system whose dynamical model is subjected to unknown parameters. Using the Lyapunov stability theory an adaptation law is derived to estimate the unknown parameters. We show that synchronization is achieved asymptotically. The approach is next applied to chaos-based secure communication. To demonstrate the efficiency of the proposed scheme numerical simulations are presented

  8. Stochastic synchronization of coupled neural networks with intermittent control

    International Nuclear Information System (INIS)

    Yang Xinsong; Cao Jinde

    2009-01-01

    In this Letter, we study the exponential stochastic synchronization problem for coupled neural networks with stochastic noise perturbations. Based on Lyapunov stability theory, inequality techniques, the properties of Weiner process, and adding different intermittent controllers, several sufficient conditions are obtained to ensure exponential stochastic synchronization of coupled neural networks with or without coupling delays under stochastic perturbations. These stochastic synchronization criteria are expressed in terms of several lower-dimensional linear matrix inequalities (LMIs) and can be easily verified. Moreover, the results of this Letter are applicable to both directed and undirected weighted networks. A numerical example and its simulations are offered to show the effectiveness of our new results.

  9. Exponential Synchronization of Uncertain Complex Dynamical Networks with Delay Coupling

    International Nuclear Information System (INIS)

    Wang Lifu; Kong Zhi; Jing Yuanwei

    2010-01-01

    This paper studies the global exponential synchronization of uncertain complex delayed dynamical networks. The network model considered is general dynamical delay networks with unknown network structure and unknown coupling functions but bounded. Novel delay-dependent linear controllers are designed via the Lyapunov stability theory. Especially, it is shown that the controlled networks are globally exponentially synchronized with a given convergence rate. An example of typical dynamical network of this class, having the Lorenz system at each node, has been used to demonstrate and verify the novel design proposed. And, the numerical simulation results show the effectiveness of proposed synchronization approaches. (general)

  10. Chaos synchronization of a new chaotic system via nonlinear control

    International Nuclear Information System (INIS)

    Zhang Qunjiao; Lu Junan

    2008-01-01

    This paper investigates chaos synchronization of a new chaotic system [Lue J, Chen G, Cheng D. A new chaotic system and beyond: the generalized Lorenz-like system. Int J Bifurcat Chaos 2004;14:1507-37]. Two kinds of novel nonlinear controllers are designed based on the Lyapunov stability theory. It can be viewed as an improvement to the existing results of reference [Park JH. Chaos synchronization of a chaotic system via nonlinear control. Chaos, Solitons and Fractals 2005;25:579-84] because we use less controllers but realize a global and exponential asymptotical synchronization. Numerical simulations are provided to show the effectiveness and advantage of this method

  11. Adaptive synchronization between two different order and topology dynamical systems

    International Nuclear Information System (INIS)

    Bowong, S.; Moukam Kakmeni, F.M.; Yamapi, R.

    2006-07-01

    This contribution studies adaptive synchronization between two dynamical systems of different order whose topological structure is also different. By order we mean the number of first order differential equations. The problem is closely related to the synchronization of strictly different systems. The master system is given by a sixth order equation with chaotic behavior whereas the slave system is a fourth-order nonautonomous with rational nonlinear terms. Based on the Lyapunov stability theory, sufficient conditions for the synchronization have been analyzed theoretically and numerically. (author)

  12. Handbook of satellite applications

    CERN Document Server

    Madry, Scott; Camacho-Lara, Sergio

    2013-01-01

    Top space experts from around the world have collaborated to produce this comprehensive, authoritative, and clearly illustrated reference guide to the fast growing, multi-billion dollar field of satellite applications and space communications. This handbook, done under the auspices of the International Space University based in France, addresses not only system technologies but also examines market dynamics, technical standards and regulatory constraints. The handbook is a completely multi-disciplinary reference book that covers, in an in-depth fashion, the fields of satellite telecommunications, Earth observation, remote sensing, satellite navigation, geographical information systems, and geosynchronous meteorological systems. It covers current practices and designs as well as advanced concepts and future systems. It provides a comparative analysis of the common technologies and design elements for satellite application bus structures, thermal controls, power systems, stabilization techniques, telemetry, com...

  13. Symplectic Synchronization of Lorenz-Stenflo System with Uncertain Chaotic Parameters via Adaptive Control

    Directory of Open Access Journals (Sweden)

    Cheng-Hsiung Yang

    2013-01-01

    Full Text Available A new symplectic chaos synchronization of chaotic systems with uncertain chaotic parameters is studied. The traditional chaos synchronizations are special cases of the symplectic chaos synchronization. A sufficient condition is given for the asymptotical stability of the null solution of error dynamics and a parameter difference. The symplectic chaos synchronization with uncertain chaotic parameters may be applied to the design of secure communication systems. Finally, numerical results are studied for symplectic chaos synchronized from two identical Lorenz-Stenflo systems in three different cases.

  14. Synchronization in complex networks with a modular structure.

    Science.gov (United States)

    Park, Kwangho; Lai, Ying-Cheng; Gupte, Saurabh; Kim, Jong-Won

    2006-03-01

    Networks with a community (or modular) structure arise in social and biological sciences. In such a network individuals tend to form local communities, each having dense internal connections. The linkage among the communities is, however, much more sparse. The dynamics on modular networks, for instance synchronization, may be of great social or biological interest. (Here by synchronization we mean some synchronous behavior among the nodes in the network, not, for example, partially synchronous behavior in the network or the synchronizability of the network with some external dynamics.) By using a recent theoretical framework, the master-stability approach originally introduced by Pecora and Carroll in the context of synchronization in coupled nonlinear oscillators, we address synchronization in complex modular networks. We use a prototype model and develop scaling relations for the network synchronizability with respect to variations of some key network structural parameters. Our results indicate that random, long-range links among distant modules is the key to synchronization. As an application we suggest a viable strategy to achieve synchronous behavior in social networks.

  15. Time-varying multiplex network: Intralayer and interlayer synchronization

    Science.gov (United States)

    Rakshit, Sarbendu; Majhi, Soumen; Bera, Bidesh K.; Sinha, Sudeshna; Ghosh, Dibakar

    2017-12-01

    A large class of engineered and natural systems, ranging from transportation networks to neuronal networks, are best represented by multiplex network architectures, namely a network composed of two or more different layers where the mutual interaction in each layer may differ from other layers. Here we consider a multiplex network where the intralayer coupling interactions are switched stochastically with a characteristic frequency. We explore the intralayer and interlayer synchronization of such a time-varying multiplex network. We find that the analytically derived necessary condition for intralayer and interlayer synchronization, obtained by the master stability function approach, is in excellent agreement with our numerical results. Interestingly, we clearly find that the higher frequency of switching links in the layers enhances both intralayer and interlayer synchrony, yielding larger windows of synchronization. Further, we quantify the resilience of synchronous states against random perturbations, using a global stability measure based on the concept of basin stability, and this reveals that intralayer coupling strength is most crucial for determining both intralayer and interlayer synchrony. Lastly, we investigate the robustness of interlayer synchronization against a progressive demultiplexing of the multiplex structure, and we find that for rapid switching of intralayer links, the interlayer synchronization persists even when a large number of interlayer nodes are disconnected.

  16. Synchronization of generalized Henon map using polynomial controller

    International Nuclear Information System (INIS)

    Lam, H.K.

    2010-01-01

    This Letter presents the chaos synchronization of two discrete-time generalized Henon map, namely the drive and response systems. A polynomial controller is proposed to drive the system states of the response system to follow those of the drive system. The system stability of the error system formed by the drive and response systems and the synthesis of the polynomial controller are investigated using the sum-of-squares (SOS) technique. Based on the Lyapunov stability theory, stability conditions in terms of SOS are derived to guarantee the system stability and facilitate the controller synthesis. By satisfying the SOS-based stability conditions, chaotic synchronization is achieved. The solution of the SOS-based stability conditions can be found numerically using the third-party Matlab toolbox SOSTOOLS. A simulation example is given to illustrate the merits of the proposed polynomial control approach.

  17. Hybrid dislocated control and general hybrid projective dislocated synchronization for the modified Lue chaotic system

    International Nuclear Information System (INIS)

    Xu Yuhua; Zhou Wuneng; Fang Jianan

    2009-01-01

    This paper introduces a modified Lue chaotic system, and some basic dynamical properties are studied. Based on these properties, we present hybrid dislocated control method for stabilizing chaos to unstable equilibrium and limit cycle. In addition, based on the Lyapunov stability theorem, general hybrid projective dislocated synchronization (GHPDS) is proposed, which includes complete dislocated synchronization, dislocated anti-synchronization and projective dislocated synchronization as its special item. The drive and response systems discussed in this paper can be strictly different dynamical systems (including different dimensional systems). As examples, the modified Lue chaotic system, Chen chaotic system and hyperchaotic Chen system are discussed. Numerical simulations are given to show the effectiveness of these methods.

  18. Dual-anticipating, dual and dual-lag synchronization in modulated time-delayed systems

    International Nuclear Information System (INIS)

    Ghosh, Dibakar; Chowdhury, A. Roy

    2010-01-01

    In this Letter, dual synchronization in modulated time delay system using delay feedback controller is proposed. Based on Lyapunov stability theory, we suggest a general method to achieve the dual-anticipating, dual, dual-lag synchronization of time-delayed chaotic systems and we find both its existing and sufficient stability conditions. Numerically it is shown that the dual synchronization is also possible when driving system contain two completely different systems. Effect of parameter mismatch on dual synchronization is also discussed. As an example, numerical simulations for the Mackey-Glass and Ikeda systems are conducted, which is in good agreement with the theoretical analysis.

  19. Hybrid dislocated control and general hybrid projective dislocated synchronization for the modified Lue chaotic system

    Energy Technology Data Exchange (ETDEWEB)

    Xu Yuhua [College of Information Science and Technology, Donghua University, Shanghai 201620 (China) and Department of Maths, Yunyang Teacher' s College, Hubei 442000 (China)], E-mail: yuhuaxu2004@163.com; Zhou Wuneng [College of Information Science and Technology, Donghua University, Shanghai 201620 (China)], E-mail: wnzhou@163.com; Fang Jianan [College of Information Science and Technology, Donghua University, Shanghai 201620 (China)

    2009-11-15

    This paper introduces a modified Lue chaotic system, and some basic dynamical properties are studied. Based on these properties, we present hybrid dislocated control method for stabilizing chaos to unstable equilibrium and limit cycle. In addition, based on the Lyapunov stability theorem, general hybrid projective dislocated synchronization (GHPDS) is proposed, which includes complete dislocated synchronization, dislocated anti-synchronization and projective dislocated synchronization as its special item. The drive and response systems discussed in this paper can be strictly different dynamical systems (including different dimensional systems). As examples, the modified Lue chaotic system, Chen chaotic system and hyperchaotic Chen system are discussed. Numerical simulations are given to show the effectiveness of these methods.

  20. THE STUDY OF THE AUTONOMOUS SYNCHRONOUS GENERATOR MODES

    Directory of Open Access Journals (Sweden)

    V. S. Safaryan

    2017-01-01

    Full Text Available The importance of the problem of the static stability of the stationary mode of the power system for its operation is extremely high. The investigation of the static stability of the power system is a subject of a number of works, but the problems of static stability of the stationary points of an autonomous synchronous generator are given little attention. The article considers transient and resonant (stationary modes of the generator under active-inductive and active-capacitive loads. Mathematical model of transients in a natural form and in the coordinate system d, q are plotted. It is discovered that the mathematical model of the transition process of an autonomous synchronous generator is identical to the mathematical model of the transition process of the synchronous machine under three-phase short circuit. Electromagnetic transients of an autonomous synchronous generator are described by a system of linear autonomous differential equations with constant coefficients. However, the equivalent circuit of a generator contains dependent sources. We investigated the stability of stationary motion of an autonomous synchronous generator at a given angular velocity of rotation of the rotor. The condition for the existence and stability of stationary points of an autonomous synchronous generator is derived. The condition for the existence of stationary points of such a generator does not depend on the active load resistance and stator windings, and inductance of the rotor. The determining of stationary points of the generator is reduced to finding roots of a polynomial of the fourth degree. The graphs of electromagnetic torque dependencies on the angular velocity of rotation of the rotor (mechanical characteristics are plotted. The equivalent circuits, corresponding to the equations of the transition process of an autonomous synchronous generator, are featured as well.

  1. Robust finite-time chaos synchronization of uncertain permanent magnet synchronous motors.

    Science.gov (United States)

    Chen, Qiang; Ren, Xuemei; Na, Jing

    2015-09-01

    In this paper, a robust finite-time chaos synchronization scheme is proposed for two uncertain third-order permanent magnet synchronous motors (PMSMs). The whole synchronization error system is divided into two cascaded subsystems: a first-order subsystem and a second-order subsystem. For the first subsystem, we design a finite-time controller based on the finite-time Lyapunov stability theory. Then, according to the backstepping idea and the adding a power integrator technique, a second finite-time controller is constructed recursively for the second subsystem. No exogenous forces are required in the controllers design but only the direct-axis (d-axis) and the quadrature-axis (q-axis) stator voltages are used as manipulated variables. Comparative simulations are provided to show the effectiveness and superior performance of the proposed method. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  2. Design and Testing of Three-Axis Satellite Attitude Determination and Stabilization Systems That Are Based on Magnetic Sensing and Actuation

    Science.gov (United States)

    2002-11-27

    than a liability. It stabilizes yaw and pitch by using a badminton -birdie type configuration, one like that pictured in Fig. 2. The basic principal...of metal or Kevlar that resemble the tape in a carpenter’s retractable tape measure. Fig. 2. Badminton -birdie-type spacecraft pitch-yaw stabilization...A second design uses a new passive aerodynamic pitch-yaw stabilization system. This latter system is based on the concept of a badminton birdie and

  3. Heartbeat synchronized with ventilation

    Science.gov (United States)

    Schäfer, Carsten; Rosenblum, Michael G.; Kurths, Jürgen; Abel, Hans-Henning

    1998-03-01

    It is widely accepted that cardiac and respiratory rhythms in humans are unsynchronised. However, a newly developed data analysis technique allows any interaction that does occur in even weakly coupled complex systems to be observed. Using this technique, we found long periods of hidden cardiorespiratory synchronization, lasting up to 20 minutes, during spontaneous breathing at rest.

  4. Synchronous, bilateral tonsillar carcinomas

    DEFF Research Database (Denmark)

    Nami Saber, Camelia; Grønhøj, Christian; Jensen, David Hebbelstrup

    2017-01-01

    INTRODUCTION: The incidence of oropharyngeal squamous cell carcinoma (OPSCC) is increasing, but data on the incidence of synchronous, bilateral tonsillar squamous cell carcinomas (BiTSCCs) is sparse. In this study, we report the incidence and tumour characteristics of BiTSCCs in a population-base...

  5. Injuries in synchronized skating.

    Science.gov (United States)

    Dubravcic-Simunjak, S; Kuipers, H; Moran, J; Simunjak, B; Pecina, M

    2006-06-01

    Synchronized skating is a relatively new competitive sport and data about injuries in this discipline are lacking. Therefore the purpose of this study was to investigate the frequency and pattern of acute and overuse injuries in synchronized skaters. Before and during the World Synchronized Skating Championship 2004, a questionnaire inquiring about the frequency of injuries in this skating discipline was given to 23 participating teams. A total of 514 women and 14 men senior skaters completed the questionnaires (100 % response). Two hundred and eighteen (42.4 %) female and 6 (42.9 %) male skaters had suffered from acute injuries during their synchronized skating career. As some skaters had suffered from more than one injury, the total number of acute injuries in females was 398 and in males 14. In female skaters 19.8 % of acute injuries were head injuries, 7.1 % trunk, 33.2 % upper, and 39.9 % lower extremity injuries. In male skaters 14.3 % were head injuries, 28.6 % upper, and 57.1 % lower extremity injuries, with no report of trunk injuries. Sixty-nine female and 2 male skaters had low back problems and 112 female and 2 male skaters had one or more overuse syndromes during their skating career. Of 155 overuse injuries in female skaters, 102 (65.8 %) occurred during their figure skating career, while 53 injuries (34.2 %) only occurred when they skated in synchronized skating teams. In male skaters, out of 5 overuse injuries, 4 (80 %) occurred in their figure skating career, while 1 (20 %) occurred during their synchronized skating career. Out of the total of 412 injuries, 338 (82 %) occurred during on-ice practice, while 74 (18 %) happened during off-ice training. Ninety-one (26.9 %) acute injures occurred while practicing individual elements, and 247 (73.1 %) on-ice injuries occurred while practicing different team elements. We conclude that injuries in synchronized skating should be of medical concern due to an increasing number of acute injuries, especially

  6. Instructor's guide : - synchronized skating school

    OpenAIRE

    Mokkila, Eveliina

    2011-01-01

    The starting point to the Instructor’s guide for synchronized skating school was the situation that Turun Riennon Taitoluistelu figure skating club constantly struggles to get enough skaters to the Beginner team in synchronized skating. The guidebook was written to guide the skating school instructors towards providing more synchronized skating teaching in their lessons. As a result from introducing synchronized skating more in the skating school, it is expected to have more children conti...

  7. Absence of satellites of asteroids

    International Nuclear Information System (INIS)

    Gehrels, T.; Drummond, J.D.; Levenson, N.A.

    1987-01-01

    The absence of satellites within 0.1-7.0 arcmin of minor planets noted in the present CCD imaging survey is judged consistent with previous theoretical studies of collisions in which it is held that satellites would have to be larger than about 30 km in order to be collisionally stable. In view of tidal stability, the only main belt asteroid satellites which could conceivably possess stability over eons are near-contact binaries. Any recent collisional debris would be chaotic and collisionally unstable. 15 references

  8. Saturn satellites

    International Nuclear Information System (INIS)

    Ruskol, E.L.

    1981-01-01

    The characteristics of the Saturn satellites are discussed. The satellites close to Saturn - Janus, Mimas, Enceladus, Tethys, Dione and Rhea - rotate along the circular orbits. High reflectivity is attributed to them, and the density of the satellites is 1 g/cm 3 . Titan is one of the biggest Saturn satellites. Titan has atmosphere many times more powerful than that of Mars. The Titan atmosphere is a peculiar medium with a unique methane and hydrogen distribution in the whole Solar system. The external satellites - Hyperion, Japetus and Phoebe - are poorly investigated. Neither satellite substance density, nor their composition are known. The experimental data on the Saturn rings obtained on the ''Pioneer-11'' and ''Voyager-1'' satellites are presented [ru

  9. Parameter study of global and cluster synchronization in arrays of dry friction oscillators

    Energy Technology Data Exchange (ETDEWEB)

    Marszal, Michał, E-mail: michal.marszal@p.lodz.pl; Stefański, Andrzej

    2017-04-18

    Highlights: • Synchronization properties in arrays of coupled dry friction oscillators are investigated. • Master stability function in form of two-oscillator probe is used for predicting synchronization thresholds. • Two network topologies are checked: open and closed nearest neighbor coupling. • Regions of complete and cluster synchronization are found in parameter space. - Abstract: We investigate synchronization thresholds in arrays of identical classic stick-slip dry friction oscillators connected in a nearest neighbor fashion in closed and open ring network. Friction force is modeled by smoothened Stribeck model. Arrays of different length are checked in two parameter space (i.e., coupling coefficient vs. excitation frequency) for complete synchronization as well as cluster synchronization. Synchronization thresholds obtained by brute force numerical integration are compared with possible synchronization regions using the concept called master stability function in the form of two-oscillator reference probe. The results show existence of both complete synchronization and cluster synchronization regions in the investigated systems and confirm that two-oscillator probe can be applied for prediction of synchronization thresholds in systems with stick-slip phenomenon.

  10. Sustained Satellite Missions for Climate Data Records

    Science.gov (United States)

    Halpern, David

    2012-01-01

    Satellite CDRs possess the accuracy, longevity, and stability for sustained moni toring of critical variables to enhance understanding of the global integrated Earth system and predict future conditions. center dot Satellite CDRs are a critical element of a global climate observing system. center dot Satellite CDRs are a difficult challenge and require high - level managerial commitment, extensive intellectual capital, and adequate funding.

  11. Contraction theory based adaptive synchronization of chaotic systems

    International Nuclear Information System (INIS)

    Sharma, B.B.; Kar, I.N.

    2009-01-01

    Contraction theory based stability analysis exploits the incremental behavior of trajectories of a system with respect to each other. Application of contraction theory provides an alternative way for stability analysis of nonlinear systems. This paper considers the design of a control law for synchronization of certain class of chaotic systems based on backstepping technique. The controller is selected so as to make the error dynamics between the two systems contracting. Synchronization problem with and without uncertainty in system parameters is discussed and necessary stability proofs are worked out using contraction theory. Suitable adaptation laws for unknown parameters are proposed based on the contraction principle. The numerical simulations verify the synchronization of the chaotic systems. Also parameter estimates converge to their true values with the proposed adaptation laws.

  12. Synchronizing Strategies under Partial Observability

    DEFF Research Database (Denmark)

    Larsen, Kim Guldstrand; Laursen, Simon; Srba, Jiri

    2014-01-01

    Embedded devices usually share only partial information about their current configurations as the communication bandwidth can be restricted. Despite this, we may wish to bring a failed device into a given predetermined configuration. This problem, also known as resetting or synchronizing words, has...... been intensively studied for systems that do not provide any information about their configurations. In order to capture more general scenarios, we extend the existing theory of synchronizing words to synchronizing strategies, and study the synchronization, short-synchronization and subset...

  13. Femtosecond Synchronization of Laser Systems for the LCLS

    International Nuclear Information System (INIS)

    Byrd, John; Doolittle, Lawrence; Huang, Gang; Staples, John; Wilcox, Russell; Arthur, John; Frisch, Josef; White, William

    2012-01-01

    The scientific potential of femtosecond x-ray pulses at linac-driven free-electron lasers such as the Linac Coherent Light Source is tremendous. Time-resolved pump-probe experiments require a measure of the relative arrival time of each x-ray pulse with respect to the experimental pump laser. An optical timing system based on stabilized fiber links has been developed for the LCLS to provide this synchronization. Preliminary results show synchronization of the installed stabilized links at the sub-20-femtosecond level. We present details of the implementation at LCLS and potential for future development.

  14. Inter-comb synchronization by mode-to-mode locking

    Science.gov (United States)

    Chun, Byung Jae; Kim, Young-Jin; Kim, Seung-Woo

    2016-08-01

    Two combs of fiber femtosecond lasers are synchronized through the optical frequency reference created by injection-locking of a diode laser to a single comb mode. Maintaining a mHz-level narrow linewidth, the optical frequency reference permits two combs to be stabilized by mode-to-mode locking with a relative stability of 1.52  ×  10-16 at 10 s with a frequency slip of 2.46 mHz. This inter-comb synchronization can be utilized for applications such as dual-comb spectroscopy or ultra-short pulse synthesis without extra narrow-linewidth lasers.

  15. Testing a Firefly-Inspired Synchronization Algorithm in a Complex Wireless Sensor Network.

    Science.gov (United States)

    Hao, Chuangbo; Song, Ping; Yang, Cheng; Liu, Xiongjun

    2017-03-08

    Data acquisition is the foundation of soft sensor and data fusion. Distributed data acquisition and its synchronization are the important technologies to ensure the accuracy of soft sensors. As a research topic in bionic science, the firefly-inspired algorithm has attracted widespread attention as a new synchronization method. Aiming at reducing the design difficulty of firefly-inspired synchronization algorithms for Wireless Sensor Networks (WSNs) with complex topologies, this paper presents a firefly-inspired synchronization algorithm based on a multiscale discrete phase model that can optimize the performance tradeoff between the network scalability and synchronization capability in a complex wireless sensor network. The synchronization process can be regarded as a Markov state transition, which ensures the stability of this algorithm. Compared with the Miroll and Steven model and Reachback Firefly Algorithm, the proposed algorithm obtains better stability and performance. Finally, its practicality has been experimentally confirmed using 30 nodes in a real multi-hop topology with low quality links.

  16. Synchronizing XPath Views

    DEFF Research Database (Denmark)

    Pedersen, Dennis; Pedersen, Torben Bach

    2004-01-01

    The increasing availability of XML-based data sources, e.g., for publishing data on the WWW, means that more and more applications (data consumers) rely on accessing and using XML data. Typically, the access is achieved by defining views over the XML data, and accessing data through these views....... However, the XML data sources are often independent of the data consumers and may change their schemas without notification, invalidating the XML views defined by the data consumers. This requires the view definitions to be updated to reflect the new structure of the data sources, a process termed view...... synchronization. XPath is the most commonly used language for retrieving parts of XML documents, and is thus an important cornerstone for XML view definitions. This paper presents techniques for discovering schema changes in XML data sources and synchronizing XPath-based views to reflect these schema changes...

  17. LHC synchronization test successful

    CERN Multimedia

    The synchronization of the LHC's clockwise beam transfer system and the rest of CERN's accelerator chain was successfully achieved last weekend. Tests began on Friday 8 August when a single bunch of a few particles was taken down the transfer line from the SPS accelerator to the LHC. After a period of optimization, one bunch was kicked up from the transfer line into the LHC beam pipe and steered about 3 kilometres around the LHC itself on the first attempt. On Saturday, the test was repeated several times to optimize the transfer before the operations group handed the machine back for hardware commissioning to resume on Sunday. The anti-clockwise synchronization systems will be tested over the weekend of 22 August.Picture:http://lhc-injection-test.web.cern.ch/lhc-injection-test/

  18. Switched modified function projective synchronization of hyperchaotic Qi system with uncertain parameters

    Science.gov (United States)

    Sebastian Sudheer, K.; Sabir, M.

    2010-12-01

    This work is involved with switched modified function projective synchronization of two identical Qi hyperchaotic systems using adaptive control method. Switched synchronization of chaotic systems in which a state variable of the drive system synchronize with a different state variable of the response system is a promising type of synchronization as it provides greater security in secure communication. Modified function projective synchronization with the unpredictability of scaling functions can enhance security. Recently formulated hyperchaotic Qi system in the hyperchaotic mode has an extremely broad frequency bandwidth of high magnitudes, verifying its unusual random nature and indicating its great potential for some relevant engineering applications such as secure communications. By Lyapunove stability theory, the adaptive control law and the parameter update law are derived to make the state of two chaotic systems modified function projective synchronized. Synchronization under the effect of noise is also considered. Numerical simulations are presented to demonstrate the effectiveness of the proposed adaptive controllers.

  19. Robust fixed-time synchronization of delayed Cohen-Grossberg neural networks.

    Science.gov (United States)

    Wan, Ying; Cao, Jinde; Wen, Guanghui; Yu, Wenwu

    2016-01-01

    The fixed-time master-slave synchronization of Cohen-Grossberg neural networks with parameter uncertainties and time-varying delays is investigated. Compared with finite-time synchronization where the convergence time relies on the initial synchronization errors, the settling time of fixed-time synchronization can be adjusted to desired values regardless of initial conditions. Novel synchronization control strategy for the slave neural network is proposed. By utilizing the Filippov discontinuous theory and Lyapunov stability theory, some sufficient schemes are provided for selecting the control parameters to ensure synchronization with required convergence time and in the presence of parameter uncertainties. Corresponding criteria for tuning control inputs are also derived for the finite-time synchronization. Finally, two numerical examples are given to illustrate the validity of the theoretical results. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Programmable synchronous communications module

    International Nuclear Information System (INIS)

    Horelick, D.

    1979-10-01

    The functional characteristics of a programmable, synchronous serial communications CAMAC module with buffering in block format are described. Both bit and byte oriented protocols can be handled in full duplex depending on the program implemented. The main elements of the module are a Signetics 2652 Multi-Protocol Communications Controller, a Zilog Z-808 8 bit microprocessor with PROM and RAM, and FIFOs for buffering

  1. Centriolar satellites

    DEFF Research Database (Denmark)

    Tollenaere, Maxim A X; Mailand, Niels; Bekker-Jensen, Simon

    2015-01-01

    Centriolar satellites are small, microscopically visible granules that cluster around centrosomes. These structures, which contain numerous proteins directly involved in centrosome maintenance, ciliogenesis, and neurogenesis, have traditionally been viewed as vehicles for protein trafficking...... highlight newly discovered regulatory mechanisms targeting centriolar satellites and their functional status, and we discuss how defects in centriolar satellite components are intimately linked to a wide spectrum of human diseases....

  2. Influence of Internal and External Noise on Spontaneous Visuomotor Synchronization.

    Science.gov (United States)

    Varlet, Manuel; Schmidt, R C; Richardson, Michael J

    2016-01-01

    Historically, movement noise or variability is considered to be an undesirable property of biological motor systems. In particular, noise is typically assumed to degrade the emergence and stability of rhythmic motor synchronization. Recently, however, it has been suggested that small levels of noise might actually improve the functioning of motor systems and facilitate their adaptation to environmental events. Here, the authors investigated whether noise can facilitate spontaneous rhythmic visuomotor synchronization. They examined the influence of internal noise in the rhythmic limb movements of participants and external noise in the movement of an oscillating visual stimulus on the occurrence of spontaneous synchronization. By indexing the natural frequency variability of participants and manipulating the frequency variability of the visual stimulus, the authors demonstrated that both internal and external noise degrade synchronization when the participants' and stimulus movement frequencies are similar, but can actually facilitate synchronization when the frequencies are different. Furthermore, the two kinds of noise interact with each other. Internal noise facilitates synchronization only when external noise is minimal and vice versa. Too much internal and external noise together degrades synchronization. These findings open new perspectives for better understanding the role of noise in human rhythmic coordination.

  3. Finite-Time Adaptive Synchronization of a New Hyperchaotic System with Uncertain Parameters

    Directory of Open Access Journals (Sweden)

    Ma Yongguang

    2014-01-01

    Full Text Available This paper presents a finite-time adaptive synchronization strategy for a class of new hyperchaotic systems with unknown slave system’s parameters. Based on the finite-time stability theory, an adaptive control law is derived to make the states of the new hyperchaotic systems synchronized in finite-time. Numerical simulations are presented to show the effectiveness of the proposed finite time synchronization scheme.

  4. Sector-condition-based results for adaptive control and synchronization of chaotic systems under input saturation

    International Nuclear Information System (INIS)

    Iqbal, Muhammad; Rehan, Muhammad; Hong, Keum-Shik; Khaliq, Abdul; Saeed-ur-Rehman

    2015-01-01

    This paper addresses the design of adaptive feedback controllers for two problems (namely, stabilization and synchronization) of chaotic systems with unknown parameters by considering input saturation constraints. A novel generalized sector condition is developed to deal with the saturation nonlinearities for synthesizing the nonlinear and the adaptive controllers for the stabilization and synchronization control objectives. By application of the proposed sector condition and rigorous regional stability analysis, control and adaptation laws are formulated to guarantee local stabilization of a nonlinear system under actuator saturation. Further, simple control and adaptation laws are developed to synchronize two chaotic systems under uncertain parameters and input saturation nonlinearity. Numerical simulation results for Rössler and FitzHugh–Nagumo models are provided to demonstrate the effectiveness of the proposed adaptive stabilization and synchronization control methodologies

  5. Advanced satellite servicing facility studies

    Science.gov (United States)

    Qualls, Garry D.; Ferebee, Melvin J., Jr.

    1988-01-01

    A NASA-sponsored systems analysis designed to identify and recommend advanced subsystems and technologies specifically for a manned Sun-synchronous platform for satellite management is discussed. An overview of system design, manned and unmanned servicing facilities, and representative mission scenarios are given. Mission areas discussed include facility based satellite assembly, checkout, deployment, refueling, repair, and systems upgrade. The ferrying of materials and consumables to and from manufacturing platforms, deorbit, removal, repositioning, or salvage of satellites and debris, and crew rescue of any other manned vehicles are also examined. Impacted subsytems discussed include guidance navigation and control, propulsion, data management, power, thermal control, structures, life support, and radiation management. In addition, technology issues which would have significant impacts on the system design are discussed.

  6. Very Long Baseline Interferometry: Dependencies on Frequency Stability

    Science.gov (United States)

    Nothnagel, Axel; Nilsson, Tobias; Schuh, Harald

    2018-04-01

    Very Long Baseline Interferometry (VLBI) is a differential technique observing radiation of compact extra-galactic radio sources with pairs of radio telescopes. For these observations, the frequency standards at the telescopes need to have very high stability. In this article we discuss why this is, and we investigate exactly how precise the frequency standards need to be. Four areas where good clock performance is needed are considered: coherence, geodetic parameter estimation, correlator synchronization, and UT1 determination. We show that in order to ensure the highest accuracy of VLBI, stability similar to that of a hydrogen maser is needed for time-scales up to a few hours. In the article, we are considering both traditional VLBI where extra-galactic radio sources are observed, as well as observation of man-made artificial radio sources emitted by satellites or spacecrafts.

  7. Synchronization of bursting neurons with a slowly varying d. c. current

    International Nuclear Information System (INIS)

    Upadhyay, Ranjit Kumar; Mondal, Argha

    2017-01-01

    Highlights: • To examine synchronization, noisy chemical and electrical coupling have been considered for a coupled bursting M-L neurons. • Bursting presents the precursor to spike synchronization and coupling strength increases the locking between neurons (anti phase and in phase). • The stability of synchronization is established via similarity function. • The necessary condition to occur CS state is observed using master stability function. • A network of four M-L neurons is considered to observe the synchronization. - Abstract: Bursting of neuronal firing is an interesting dynamical consequences depending on fast/slow dynamics. Certain cells in different brain regions produce spike-burst activity. We study such firing activity and its transitions to synchronization using identical as well as non-identical coupled bursting Morris-Lecar (M-L) neurons. Synchronization of different firing activity is a multi-time-scale phenomenon and burst synchronization presents the precursor to spike synchronization. Chemical synapses are one of the dynamical means of information processing between neurons. Electrical synapses play a major role for synchronous activity in a certain network of neurons. Synaptically coupled neural cells exhibit different types of synchronization such as in phase or anti-phase depending on the nature and strength of coupling functions and the synchronization regimes are analyzed by similarity functions. The sequential transitions to synchronization regime are examined by the maximum transverse Lyapunov exponents. Synchronization of voltage traces of two types of planar bursting mechanisms is explored for both kind of synapses under realistic conditions. The noisy influence effects on the transmission of signals and strongly acts to the firing activity (such as periodic firing and bursting) and integration of signals for a network. It has been examined using the mean interspike interval analysis. The transition to synchronization states of

  8. Global synchronization of general delayed complex networks with stochastic disturbances

    International Nuclear Information System (INIS)

    Tu Li-Lan

    2011-01-01

    In this paper, global synchronization of general delayed complex networks with stochastic disturbances, which is a zero-mean real scalar Wiener process, is investigated. The networks under consideration are continuous-time networks with time-varying delay. Based on the stochastic Lyapunov stability theory, Ito's differential rule and the linear matrix inequality (LMI) optimization technique, several delay-dependent synchronous criteria are established, which guarantee the asymptotical mean-square synchronization of drive networks and response networks with stochastic disturbances. The criteria are expressed in terms of LMI, which can be easily solved using the Matlab LMI Control Toolbox. Finally, two examples show the effectiveness and feasibility of the proposed synchronous conditions. (general)

  9. Anti-synchronization between different chaotic complex systems

    International Nuclear Information System (INIS)

    Liu Ping; Liu Shutang

    2011-01-01

    Many studies on the anti-synchronization of nonlinear real dynamic systems have been carried out, whereas the anti-synchronization of chaotic complex systems has not been studied extensively. In this work, the anti-synchronization between a new chaotic complex system and a complex Lorenz system and that between a new chaotic complex system and a complex Lue system were separately investigated by active control and nonlinear control methods, and explicit expressions were derived for the controllers that are used to achieve the anti-synchronization of chaotic complex systems. These expressions were tested numerically and excellent agreement was found. Concerning the new chaotic complex system, we discuss its dynamical properties including dissipation, chaotic behavior, fixed points, and their stability and invariance.

  10. Synchronization of complex delayed dynamical networks with nonlinearly coupled nodes

    International Nuclear Information System (INIS)

    Liu Tao; Zhao Jun; Hill, David J.

    2009-01-01

    In this paper, we study the global synchronization of nonlinearly coupled complex delayed dynamical networks with both directed and undirected graphs. Via Lyapunov-Krasovskii stability theory and the network topology, we investigate the global synchronization of such networks. Under the assumption that coupling coefficients are known, a family of delay-independent decentralized nonlinear feedback controllers are designed to globally synchronize the networks. When coupling coefficients are unavailable, an adaptive mechanism is introduced to synthesize a family of delay-independent decentralized adaptive controllers which guarantee the global synchronization of the uncertain networks. Two numerical examples of directed and undirected delayed dynamical network are given, respectively, using the Lorenz system as the nodes of the networks, which demonstrate the effectiveness of proposed results.

  11. Competition for synchronization in a phase oscillator system

    Science.gov (United States)

    Kazanovich, Yakov; Burylko, Oleksandr; Borisyuk, Roman

    2013-10-01

    A system of phase oscillators with a Central Oscillator (CO) and a set of n Peripheral Oscillators (POs) is considered. Feed-forward and feedback connections between the CO and POs are determined by two interaction functions which are assumed to be smooth, odd, and periodic. To describe the competition of POs for synchronization with the CO, we study the asymptotic stability of fixed points corresponding to in-phase synchronization of a group of k POs, while other POs are in anti-phase with the CO. It is shown that stability conditions can be formulated in terms of four parameters that describe the slopes of the interaction functions at zero and half-period points. Analytical description of stability in terms of the regions in 4-dimensional parameter space is given. Combining stability analysis with the detailed study of geometry of invariant manifolds, the bifurcations of fixed points are investigated. We show that various dynamical regimes such as multistability, heteroclinic orbits, and chaos are possible. Analytical stability conditions for global synchronization of POs with the CO are formulated for the systems with local connections between POs. It is shown that synchronization in a large system with local connections becomes unstable even under weak desynchronizing influence from the CO. The application of the results to modeling in neuroscience and, in particular, for modeling visual attention is discussed.

  12. Fiber laser master oscillators for optical synchronization systems

    Energy Technology Data Exchange (ETDEWEB)

    Winter, A.

    2008-04-15

    New X-ray free electron lasers (e.g. the European XFEL) require a new generation of synchronization system to achieve a stability of the FEL pulse, such that pump-probe experiments can fully utilize the ultra-short pulse duration (50 fs). An optical synchronization system has been developed based on the distribution of sub-ps optical pulses in length-stabilized fiber links. The synchronization information is contained in the precise repetition frequency of the optical pulses. In this thesis, the design and characterization of the laser serving as laser master oscillator is presented. An erbium-doped mode-locked fiber laser was chosen. Amplitude and phase noise were measured and record-low values of 0.03 % and 10 fs for the frequency range of 1 kHz to the Nyquist frequency were obtained. Furthermore, an initial proof-of-principle experiment for the optical synchronization system was performed in an accelerator environment. In this experiment, the fiber laser wase phase-locked to a microwave reference oscillator and a 500 meter long fiber link was stabilized to 12 fs rms over a range of 0.1 Hz to 20 kHz. RF signals were obtained from a photodetector without significant degradation at the end of the link. Furthermore, the laser master oscillator for FLASH was designed and is presently in fabrication and the initial infrastructure for the optical synchronization system was setup. (orig.)

  13. Fiber laser master oscillators for optical synchronization systems

    International Nuclear Information System (INIS)

    Winter, A.

    2008-04-01

    New X-ray free electron lasers (e.g. the European XFEL) require a new generation of synchronization system to achieve a stability of the FEL pulse, such that pump-probe experiments can fully utilize the ultra-short pulse duration (50 fs). An optical synchronization system has been developed based on the distribution of sub-ps optical pulses in length-stabilized fiber links. The synchronization information is contained in the precise repetition frequency of the optical pulses. In this thesis, the design and characterization of the laser serving as laser master oscillator is presented. An erbium-doped mode-locked fiber laser was chosen. Amplitude and phase noise were measured and record-low values of 0.03 % and 10 fs for the frequency range of 1 kHz to the Nyquist frequency were obtained. Furthermore, an initial proof-of-principle experiment for the optical synchronization system was performed in an accelerator environment. In this experiment, the fiber laser wase phase-locked to a microwave reference oscillator and a 500 meter long fiber link was stabilized to 12 fs rms over a range of 0.1 Hz to 20 kHz. RF signals were obtained from a photodetector without significant degradation at the end of the link. Furthermore, the laser master oscillator for FLASH was designed and is presently in fabrication and the initial infrastructure for the optical synchronization system was setup. (orig.)

  14. Plasma waves and electric discharges induced by a beam from a high-latitude satellite

    International Nuclear Information System (INIS)

    Kuns, G.; Koen, G.

    1985-01-01

    Using P78-2 satellite measurements of characteristics of space probe charging in synchronous orbit are carried out. A particle beam generation system including electron and ion guns was part of the satellite equipment. Electric charge analyser placed aboard the satellite in course of electron and ion beam generation recorded plasma waves and electric discharges

  15. On the synchronization of uncertain master-slave chaotic systems with disturbance

    International Nuclear Information System (INIS)

    Wang Bo; Wen Guangjun

    2009-01-01

    This paper focuses on the synchronization of a class of master-slave chaotic systems with uncertainty and disturbance. A sliding surface is adopted newly to ensure the stability of the error dynamics in sliding mode and a dynamic variable structure controller (DVSC) is derived to realize chaos synchronization better. The typical numerical example is given to demonstrate the effectiveness of the result obtained.

  16. Adaptive function project synchronization of Roessler hyperchaotic system with uncertain parameters

    International Nuclear Information System (INIS)

    Luo Runzi

    2008-01-01

    This Letter addresses the function project synchronization problem of two Roessler hyperchaotic in the presence of unknown system parameters. Based on Lyapunov stability theory an adaptive control law is proposed to make the states of two identical Roessler hyperchaotic systems asymptotically synchronized. Numerical simulations are presented to show the effectiveness of the proposed schemes

  17. Adaptive modified projective synchronization of a unified chaotic system with an uncertain parameter

    International Nuclear Information System (INIS)

    Park, Ju H.

    2007-01-01

    An adaptive modified projective synchronization (AMPS) is proposed to acquire a general kind of proportional relationship between the drive and response systems. Based on the Lyapunov stability theory, a nonlinear control scheme for the synchronization has been presented. The control performances are verified by numerical simulations

  18. Inverse chaos synchronization in linearly and nonlinearly coupled systems with multiple time-delays

    International Nuclear Information System (INIS)

    Shahverdiev, E.M.; Hashimov, R.H.; Nuriev, R.A.; Hashimova, L.H.; Huseynova, E.M.; Shore, K.A.

    2005-04-01

    We report on inverse chaos synchronization between two unidirectionally linearly and nonlinearly coupled chaotic systems with multiple time-delays and find the existence and stability conditions for different synchronization regimes. We also study the effect of parameter mismatches on synchonization regimes. The method is tested on the famous Ikeda model. Numerical simulations fully support the analytical approach. (author)

  19. Robust function projective synchronization of a class of uncertain chaotic systems

    International Nuclear Information System (INIS)

    Shen Liqun; Liu Wanyu; Ma Jianwei

    2009-01-01

    In this paper, the function projective synchronization problem of chaotic systems is investigated, where parameter mismatch exists between the drive system and the response system. Based on Lyapunov stability theory, a novel robust function projective synchronization scheme is proposed. And the parameter mismatch problem is also solved. Simulation results of Lorenz system and Chen system verify the effectiveness of the proposed control scheme.

  20. Finite-time synchronization of a class of autonomous chaotic systems

    Indian Academy of Sciences (India)

    Some criteria for achieving the finite-time synchronization of a class of autonomous chaotic systems are derived by the finite-time stability theory and Gerschgorin disc theorem. Numerical simulations are shown to illustrate the effectiveness of the proposed method. Keywords. Finite-time synchronization; autonomous chaotic ...

  1. Exploiting Schemas in Data Synchronization

    DEFF Research Database (Denmark)

    Foster, J. Nathan; Greenwald, Michael B.; Kirkegaard, Christian

    2005-01-01

    Increased reliance on optimistic data replication has led to burgeoning interest in tools and frameworks for disconnected updates to replicated data.We have implemented a generic synchronization framework, called HARMONY, that can be used to build state-based synchronizers for a wide variety...... of tree-structureddata formats. A novel feature of this framework is that the synchronization process - in particular, the recognition of conflicts - is driven by the schema of the structures being synchronized.We formalize HARMONY's synchronization algorithm, state a simple and intuitive specification......, and illustrate, using simple address books as a case study, how it can be used to synchronize trees representing a variety of specific forms of applicationdata, including sets, records, tuples, and relations....

  2. Content-based intermedia synchronization

    Science.gov (United States)

    Oh, Dong-Young; Sampath-Kumar, Srihari; Rangan, P. Venkat

    1995-03-01

    Inter-media synchronization methods developed until now have been based on syntactic timestamping of video frames and audio samples. These methods are not fully appropriate for the synchronization of multimedia objects which may have to be accessed individually by their contents, e.g. content-base data retrieval. We propose a content-based multimedia synchronization scheme in which a media stream is viewed as hierarchial composition of smaller objects which are logically structured based on the contents, and the synchronization is achieved by deriving temporal relations among logical units of media object. content-based synchronization offers several advantages such as, elimination of the need for time stamping, freedom from limitations of jitter, synchronization of independently captured media objects in video editing, and compensation for inherent asynchronies in capture times of video and audio.

  3. Synchronization and Control of Linearly Coupled Singular Systems

    Directory of Open Access Journals (Sweden)

    Fang Qingxiang

    2013-01-01

    Full Text Available The synchronization and control problem of linearly coupled singular systems is investigated. The uncoupled dynamical behavior at each node is general and can be chaotic or, otherwise the coupling matrix is not assumed to be symmetrical. Some sufficient conditions for globally exponential synchronization are derived based on Lyapunov stability theory. These criteria, which are in terms of linear matrix inequality (LMI, indicate that the left and right eigenvectors corresponding to eigenvalue zero of the coupling matrix play key roles in the stability analysis of the synchronization manifold. The controllers are designed for state feedback control and pinning control, respectively. Finally, a numerical example is provided to illustrate the effectiveness of the proposed conditions.

  4. Physical Layer Ethernet Clock Synchronization

    Science.gov (United States)

    2010-11-01

    42 nd Annual Precise Time and Time Interval (PTTI) Meeting 77 PHYSICAL LAYER ETHERNET CLOCK SYNCHRONIZATION Reinhard Exel, Georg...oeaw.ac.at Nikolaus Kerö Oregano Systems, Mohsgasse 1, 1030 Wien, Austria E-mail: nikolaus.keroe@oregano.at Abstract Clock synchronization ...is a service widely used in distributed networks to coordinate data acquisition and actions. As the requirement to achieve tighter synchronization

  5. Radio beacon synchronization in coherent receivers for nanosatellite applications

    OpenAIRE

    Camps Llorente, Daniel; Piera González, Joan

    2017-01-01

    This document presents a study about the Radio beacon synchronization in coherent receivers for nanosatellite applications. First of all, it is studied the history of these nanosatellites and their actual role in the Aerospace industry, considering their low cost compared to bigger satellites and also because of their availability for all types of companies and people (as universities). These nanosatellites have a wide range of applications, and lots of them depend on the imagination of the u...

  6. The Synchronic Fallacy

    DEFF Research Database (Denmark)

    Hansen, Erik W.

    , to exist, in order to underline the cognitive basis of man's (comprehension of) existence. A theory of history (existence) is set up on the basis of the traditional dualistic sign function, and the traditional sound-law concept and sound development are reinterpreted in terms of the theory's system...... of definitions. Historical linguistics ('change') is not dependent on an arbitrary synchronic theory. The two language universals polysemy and synonymy are reinterpreted and defined in accordance with the advanced definitions. Louis Hjelmslev's glossematic theory is the general horizon of the argument...

  7. Control of synchronous motors

    CERN Document Server

    Louis, Jean-Paul

    2013-01-01

    Synchronous motors are indubitably the most effective device to drive industrial production systems and robots with precision and rapidity. Their control law is thus critical for combining at the same time high productivity to reduced energy consummation. As far as possible, the control algorithms must exploit the properties of these actuators. Therefore, this work draws on well adapted models resulting from the Park's transformation, for both the most traditional machines with sinusoidal field distribution and for machines with non-sinusoidal field distribution which are more and more used in

  8. Psychic energy and synchronicity.

    Science.gov (United States)

    Zabriskie, Beverley

    2014-04-01

    Given Jung's interest in physics' formulations of psychic energy and the concept of time, overlaps and convergences in the themes addressed in analytical psychology and in quantum physics are to be expected. These are informed by the active intersections between the matter of mind and mindfulness re matter. In 1911, Jung initiated dinners with Einstein. Jung's definition of libido in the pivotal 1912 Fordham Lectures reveals the influence of these conversations. Twenty years later, a significant period in physics, Wolfgang Pauli contacted Jung. Their collaboration led to the theory of synchronicity. © 2014, The Society of Analytical Psychology.

  9. Laser Megajoule synchronization system

    International Nuclear Information System (INIS)

    Luttmann, M.; Pastor, J.F; Drouet, V.; Prat, M.; Raimbourg, J.; Adolf, A.

    2011-01-01

    This paper describes the synchronisation system under development on the Laser Megajoule (LMJ) in order to synchronize the laser quads on the target to better than 40 ps rms. Our architecture is based on a Timing System (TS) which delivers trigger signals with jitter down to 15 ps rms coupled with an ultra precision timing system with 5 ps rms jitter. In addition to TS, a sensor placed at the target chamber center measures the arrival times of the 3 omega nano joule laser pulses generated by front end shots. (authors)

  10. Synchronization of hypernetworks of coupled dynamical systems

    International Nuclear Information System (INIS)

    Sorrentino, Francesco

    2012-01-01

    We consider the synchronization of coupled dynamical systems when different types of interactions are simultaneously present. We assume that a set of dynamical systems is coupled through the connections of two or more distinct networks (each of which corresponds to a distinct type of interaction), and we refer to such a system as a dynamical hypernetwork. Applications include neural networks made up of both electrical gap junctions and chemical synapses, the coordinated motion of shoals of fish communicating through both vision and flow sensing, and hypernetworks of coupled chaotic oscillators. We first analyze the case of a hypernetwork made up of m = 2 networks. We look for the necessary and sufficient conditions for synchronization. We attempt to reduce the linear stability problem to a master stability function (MSF) form, i.e. decoupling the effects of the coupling functions from the structure of the networks. Unfortunately, we are unable to obtain a reduction in an MSF form for the general case. However, we show that such a reduction is possible in three cases of interest: (i) the Laplacian matrices associated with the two networks commute; (ii) one of the two networks is unweighted and fully connected; and (iii) one of the two networks is such that the coupling strength from node i to node j is a function of j but not of i. Furthermore, we define a class of networks such that if either one of the two coupling networks belongs to this class, the reduction can be obtained independently of the other network. As an example of interest, we study synchronization of a neural hypernetwork for which the connections can be either chemical synapses or electrical gap junctions. We propose a generalization of our stability results to the case of hypernetworks formed of m ⩾ 2 networks. (paper)

  11. Accelerated testing for synchronous orbits

    Science.gov (United States)

    Mcdermott, P.

    1981-01-01

    Degradation of batteries during synchronous orbits is analyzed. Discharge and recharge rates are evaluated. The functional relationship between charge rate and degradation is mathematically determined.

  12. Medical issues in synchronized skating.

    Science.gov (United States)

    Abbott, Kristin; Hecht, Suzanne

    2013-01-01

    Synchronized skating is a unique sport of team skating and currently represents the largest competitive discipline in U.S. Figure Skating. Synchronized skating allows skaters to compete as part of a team with opportunities to represent their country in international competitions. As the popularity of the sport continues to grow, more of these athletes will present to sports medicine clinics with injuries and illnesses related to participation in synchronized skating. The purpose of this article is to review the common injuries and medical conditions affecting synchronized skaters.

  13. Applications of Geostationary Satellite Data to Aviation

    Science.gov (United States)

    Ellrod, Gary P.; Pryor, Kenneth

    2018-03-01

    Weather is by far the most important factor in air traffic delays in the United States' National Airspace System (NAS) according to the Federal Aviation Administration (FAA). Geostationary satellites have been an effective tool for the monitoring of meteorological conditions that affect aviation operations since the launch of the first Synchronous Meteorological Satellite (SMS) in the United States in 1974. This paper will review the global use of geostationary satellites in support of aviation weather since their inception, with an emphasis on the latest generation of satellites, such as Geostationary Operational Environmental Satellite (GOES)-R (16) with its Advanced Baseline Imager (ABI) and Geostationary Lightning Mapper (GLM). Specific applications discussed in this paper include monitoring of convective storms and their associated hazards, fog and low stratus, turbulence, volcanic hazards, and aircraft icing.

  14. Finite-time analysis of global projective synchronization on coloured ...

    Indian Academy of Sciences (India)

    A novel finite-time analysis is given to investigate the global projective synchronization on coloured networks. Some less conservative conditions are derived by utilizing finite-time control techniques and Lyapunov stability theorem. In addition, two illustrative numerical simulations are provided to verify the effectiveness of ...

  15. Satellite Communications

    CERN Document Server

    Pelton, Joseph N

    2012-01-01

    The field of satellite communications represents the world's largest space industry. Those who are interested in space need to understand the fundamentals of satellite communications, its technology, operation, business, economic, and regulatory aspects. This book explains all this along with key insights into the field's future growth trends and current strategic challenges. Fundamentals of Satellite Communications is a concise book that gives all of the key facts and figures as well as a strategic view of where this dynamic industry is going. Author Joseph N. Pelton, PhD, former Dean of the International Space University and former Director of Strategic Policy at Intelstat, presents a r

  16. Synchronized dynamic dose reconstruction

    International Nuclear Information System (INIS)

    Litzenberg, Dale W.; Hadley, Scott W.; Tyagi, Neelam; Balter, James M.; Ten Haken, Randall K.; Chetty, Indrin J.

    2007-01-01

    Variations in target volume position between and during treatment fractions can lead to measurable differences in the dose distribution delivered to each patient. Current methods to estimate the ongoing cumulative delivered dose distribution make idealized assumptions about individual patient motion based on average motions observed in a population of patients. In the delivery of intensity modulated radiation therapy (IMRT) with a multi-leaf collimator (MLC), errors are introduced in both the implementation and delivery processes. In addition, target motion and MLC motion can lead to dosimetric errors from interplay effects. All of these effects may be of clinical importance. Here we present a method to compute delivered dose distributions for each treatment beam and fraction, which explicitly incorporates synchronized real-time patient motion data and real-time fluence and machine configuration data. This synchronized dynamic dose reconstruction method properly accounts for the two primary classes of errors that arise from delivering IMRT with an MLC: (a) Interplay errors between target volume motion and MLC motion, and (b) Implementation errors, such as dropped segments, dose over/under shoot, faulty leaf motors, tongue-and-groove effect, rounded leaf ends, and communications delays. These reconstructed dose fractions can then be combined to produce high-quality determinations of the dose distribution actually received to date, from which individualized adaptive treatment strategies can be determined

  17. SLAC synchronous condenser

    International Nuclear Information System (INIS)

    Corvin, C.

    1995-06-01

    A synchronous condenser is a synchronous machine that generates reactive power that leads real power by 90 degrees in phase. The leading reactive power generated by the condenser offsets or cancels the normal lagging reactive power consumed by inductive and nonlinear loads at the accelerator complex. The quality of SLAC's utility power is improved with the addition of the condenser. The inertia of the condenser's 35,000 pound rotor damps and smoothes voltage excursions on two 12 kilovolt master substation buses, improving voltage regulation site wide. The condenser absorbs high frequency transients and noise in effect ''scrubbing'' the electric system power at its primary distribution source. In addition, the condenser produces a substantial savings in power costs. Federal and investor owned utilities that supply electric power to SLAC levy a monthly penalty for lagging reactive power delivered to the site. For the 1993 fiscal year this totaled over $285,000 in added costs for the year. By generating leading reactive power on site, thereby reducing total lagging reactive power requirements, a substantial savings in electric utility bills is achieved. Actual savings of $150,000 or more a year are possible depending on experimental operations

  18. FPGA based fast synchronous serial multi-wire links synchronization

    Science.gov (United States)

    Pozniak, Krzysztof T.

    2013-10-01

    The paper debates synchronization method of multi-wire, serial link of constant latency, by means of pseudo-random numbers generators. The solution was designed for various families of FPGA circuits. There were debated synchronization algorithm and functional structure of parameterized transmitter and receiver modules. The modules were realized in VHDL language in a behavioral form.

  19. How single node dynamics enhances synchronization in neural networks with electrical coupling

    International Nuclear Information System (INIS)

    Bonacini, E.; Burioni, R.; Di Volo, M.; Groppi, M.; Soresina, C.; Vezzani, A.

    2016-01-01

    The stability of the completely synchronous state in neural networks with electrical coupling is analytically investigated applying both the Master Stability Function approach (MSF), developed by Pecora and Carroll (1998), and the Connection Graph Stability method (CGS) proposed by Belykh et al. (2004). The local dynamics is described by Morris–Lecar model for spiking neurons and by Hindmarsh–Rose model in spike, burst, irregular spike and irregular burst regimes. The combined application of both CGS and MSF methods provides an efficient estimate of the synchronization thresholds, namely bounds for the coupling strength ranges in which the synchronous state is stable. In all the considered cases, we observe that high values of coupling strength tend to synchronize the system. Furthermore, we observe a correlation between the single node attractor and the local stability properties given by MSF. The analytical results are compared with numerical simulations on a sample network, with excellent agreement.

  20. Adaptive H∞ synchronization of chaotic systems via linear and nonlinear feedback control

    International Nuclear Information System (INIS)

    Fu Shi-Hui; Lu Qi-Shao; Du Ying

    2012-01-01

    Adaptive H ∞ synchronization of chaotic systems via linear and nonlinear feedback control is investigated. The chaotic systems are redesigned by using the generalized Hamiltonian systems and observer approach. Based on Lyapunov's stability theory, linear and nonlinear feedback control of adaptive H ∞ synchronization is established in order to not only guarantee stable synchronization of both master and slave systems but also reduce the effect of external disturbance on an H ∞ -norm constraint. Adaptive H ∞ synchronization of chaotic systems via three kinds of control is investigated with applications to Lorenz and Chen systems. Numerical simulations are also given to identify the effectiveness of the theoretical analysis. (general)

  1. Adaptive exponential synchronization of delayed neural networks with reaction-diffusion terms

    International Nuclear Information System (INIS)

    Sheng Li; Yang Huizhong; Lou Xuyang

    2009-01-01

    This paper presents an exponential synchronization scheme for a class of neural networks with time-varying and distributed delays and reaction-diffusion terms. An adaptive synchronization controller is derived to achieve the exponential synchronization of the drive-response structure of neural networks by using the Lyapunov stability theory. At the same time, the update laws of parameters are proposed to guarantee the synchronization of delayed neural networks with all parameters unknown. It is shown that the approaches developed here extend and improve the ideas presented in recent literatures.

  2. Satellite myths

    Science.gov (United States)

    Easton, Roger L.; Hall, David

    2008-01-01

    Richard Corfield's article “Sputnik's legacy” (October 2007 pp23-27) states that the satellite on board the US Vanguard rocket, which exploded during launch on 6 December 1957 two months after Sputnik's successful take-off, was “a hastily put together contraption of wires and circuitry designed only to send a radio signal back to Earth”. In fact, the Vanguard satellite was developed over a period of several years and put together carefully using the best techniques and equipment available at the time - such as transistors from Bell Laboratories/Western Electric. The satellite contained not one but two transmitters, in which the crystal-controlled oscillators had been designed to measure both the temperature of the satellite shell and of the internal package.

  3. Satellite Geomagnetism

    DEFF Research Database (Denmark)

    Olsen, Nils; Stolle, Claudia

    2012-01-01

    Observations of Earth’s magnetic field from space began more than 50 years ago. A continuous monitoring of the field using low Earth orbit (LEO) satellites, however, started only in 1999, and three satellites have taken highprecision measurements of the geomagnetic field during the past decade....... The unprecedented time-space coverage of their data opened revolutionary new possibilities for monitoring, understanding, and exploring Earth’s magnetic field. In the near future, the three-satellite constellation Swarm will ensure continuity of such measurement and provide enhanced possibilities to improve our...... ability to characterize and understand the many sources that contribute to Earth’s magnetic field. In this review, we summarize investigations of Earth’s interior and environment that have been possible through the analysis of high-precision magnetic field observations taken by LEO satellites....

  4. Projective Synchronization of N-Dimensional Chaotic Fractional-Order Systems via Linear State Error Feedback Control

    Directory of Open Access Journals (Sweden)

    Baogui Xin

    2012-01-01

    Full Text Available Based on linear feedback control technique, a projective synchronization scheme of N-dimensional chaotic fractional-order systems is proposed, which consists of master and slave fractional-order financial systems coupled by linear state error variables. It is shown that the slave system can be projectively synchronized with the master system constructed by state transformation. Based on the stability theory of linear fractional order systems, a suitable controller for achieving synchronization is designed. The given scheme is applied to achieve projective synchronization of chaotic fractional-order financial systems. Numerical simulations are given to verify the effectiveness of the proposed projective synchronization scheme.

  5. Finite-time and fixed-time synchronization analysis of inertial memristive neural networks with time-varying delays.

    Science.gov (United States)

    Wei, Ruoyu; Cao, Jinde; Alsaedi, Ahmed

    2018-02-01

    This paper investigates the finite-time synchronization and fixed-time synchronization problems of inertial memristive neural networks with time-varying delays. By utilizing the Filippov discontinuous theory and Lyapunov stability theory, several sufficient conditions are derived to ensure finite-time synchronization of inertial memristive neural networks. Then, for the purpose of making the setting time independent of initial condition, we consider the fixed-time synchronization. A novel criterion guaranteeing the fixed-time synchronization of inertial memristive neural networks is derived. Finally, three examples are provided to demonstrate the effectiveness of our main results.

  6. Partial Finite-Time Synchronization of Switched Stochastic Chua's Circuits via Sliding-Mode Control

    Directory of Open Access Journals (Sweden)

    Zhang-Lin Wan

    2011-01-01

    Full Text Available This paper considers the problem of partial finite-time synchronization between switched stochastic Chua's circuits accompanied by a time-driven switching law. Based on the Ito formula and Lyapunov stability theory, a sliding-mode controller is developed to guarantee the synchronization of switched stochastic master-slave Chua's circuits and for the mean of error states to obtain the partial finite-time stability. Numerical simulations demonstrate the effectiveness of the proposed methods.

  7. Synchronization in slowly switching networks of coupled oscillators

    Science.gov (United States)

    Zhou, Jie; Zou, Yong; Guan, Shuguang; Liu, Zonghua; Boccaletti, S.

    2016-01-01

    Networks whose structure of connections evolves in time constitute a big challenge in the study of synchronization, in particular when the time scales for the evolution of the graph topology are comparable with (or even longer than) those pertinent to the units’ dynamics. We here focus on networks with a slow-switching structure, and show that the necessary conditions for synchronization, i.e. the conditions for which synchronization is locally stable, are determined by the time average of the largest Lyapunov exponents of transverse modes of the switching topologies. Comparison between fast- and slow-switching networks allows elucidating that slow-switching processes prompt synchronization in the cases where the Master Stability Function is concave, whereas fast-switching schemes facilitate synchronization for convex curves. Moreover, the condition of slow-switching enables the introduction of a control strategy for inducing synchronization in networks with arbitrary structure and coupling strength, which is of evident relevance for broad applications in real world systems. PMID:27779253

  8. A Novel Method of Clock Synchronization in Distributed Systems

    Science.gov (United States)

    Li, Gun; Niu, Meng-jie; Chai, Yang-shun; Chen, Xin; Ren, Yan-qiu

    2017-04-01

    Time synchronization plays an important role in the spacecraft formation flight and constellation autonomous navigation, etc. For the application of clock synchronization in a network system, it is not always true that all the observed nodes in the network are interconnected, therefore, it is difficult to achieve the high-precision time synchronization of a network system in the condition that a certain node can only obtain the measurement information of clock from a single neighboring node, but cannot obtain it from other nodes. Aiming at this problem, a novel method of high-precision time synchronization in a network system is proposed. In this paper, each clock is regarded as a node in the network system, and based on the definition of different topological structures of a distributed system, the three control algorithms of time synchronization under the following three cases are designed: without a master clock (reference clock), with a master clock (reference clock), and with a fixed communication delay in the network system. And the validity of the designed clock synchronization protocol is proved by both stability analysis and numerical simulation.

  9. Boomerang Satellites

    Science.gov (United States)

    Hesselbrock, Andrew; Minton, David A.

    2017-10-01

    We recently reported that the orbital architecture of the Martian environment allows for material in orbit around the planet to ``cycle'' between orbiting the planet as a ring, or as coherent satellites. Here we generalize our previous analysis to examine several factors that determine whether satellites accreting at the edge of planetary rings will cycle. In order for the orbiting material to cycle, tidal evolution must decrease the semi-major axis of any accreting satellites. In some systems, the density of the ring/satellite material, the surface mass density of the ring, the tidal parameters of the system, and the rotation rate of the primary body contribute to a competition between resonant ring torques and tidal dissipation that prevent this from occurring, either permanently or temporarily. Analyzing these criteria, we examine various bodies in our solar system (such as Saturn, Uranus, and Eris) to identify systems where cycling may occur. We find that a ring-satellite cycle may give rise to the current Uranian ring-satellite system, and suggest that Miranda may have formed from an early, more massive Uranian ring.

  10. Asymptotic Behavior of an Elastic Satellite with Internal Friction

    International Nuclear Information System (INIS)

    Haus, E.; Bambusi, D.

    2015-01-01

    We study the dynamics of an elastic body whose shape and position evolve due to the gravitational forces exerted by a pointlike planet. The main result is that, if all the deformations of the satellite dissipate some energy, then under a suitable nondegeneracy condition there are only three possible outcomes for the dynamics: (i) the orbit of the satellite is unbounded, (ii) the satellite falls on the planet, (iii) the satellite is captured in synchronous resonance i.e. its orbit is asymptotic to a motion in which the barycenter moves on a circular orbit, and the satellite moves rigidly, always showing the same face to the planet. The result is obtained by making use of LaSalle’s invariance principle and by a careful kinematic analysis showing that energy stops dissipating only on synchronous orbits. We also use in quite an extensive way the fact that conservative elastodynamics is a Hamiltonian system invariant under the action of the rotation group

  11. Synchronization dynamics of two different dynamical systems

    International Nuclear Information System (INIS)

    Luo, Albert C.J.; Min Fuhong

    2011-01-01

    Highlights: → Synchronization dynamics of two distinct dynamical systems. → Synchronization, de-synchronization and instantaneous synchronization. → A controlled pendulum synchronizing with the Duffing oscillator. → Synchronization invariant set. → Synchronization parameter map. - Abstract: In this paper, synchronization dynamics of two different dynamical systems is investigated through the theory of discontinuous dynamical systems. The necessary and sufficient conditions for the synchronization, de-synchronization and instantaneous synchronization (penetration or grazing) are presented. Using such a synchronization theory, the synchronization of a controlled pendulum with the Duffing oscillator is systematically discussed as a sampled problem, and the corresponding analytical conditions for the synchronization are presented. The synchronization parameter study is carried out for a better understanding of synchronization characteristics of the controlled pendulum and the Duffing oscillator. Finally, the partial and full synchronizations of the controlled pendulum with periodic and chaotic motions are presented to illustrate the analytical conditions. The synchronization of the Duffing oscillator and pendulum are investigated in order to show the usefulness and efficiency of the methodology in this paper. The synchronization invariant domain is obtained. The technique presented in this paper should have a wide spectrum of applications in engineering. For example, this technique can be applied to the maneuvering target tracking, and the others.

  12. Business cycle synchronization in Europe

    DEFF Research Database (Denmark)

    Bergman, Ulf Michael; Jonung, Lars

    2011-01-01

    In this paper we study business cycle synchronization in the three Scandinavian countries Denmark, Norway and Sweden prior to, during and after the Scandinavian Currency Union 1873–1913. We find that the degree of synchronization tended to increase during the currency union, thus supporting earlier...

  13. Biologically Inspired Intercellular Slot Synchronization

    Directory of Open Access Journals (Sweden)

    Alexander Tyrrell

    2009-01-01

    Full Text Available The present article develops a decentralized interbase station slot synchronization algorithm suitable for cellular mobile communication systems. The proposed cellular firefly synchronization (CelFSync algorithm is derived from the theory of pulse-coupled oscillators, common to describe synchronization phenomena in biological systems, such as the spontaneous synchronization of fireflies. In order to maintain synchronization among base stations (BSs, even when there is no direct link between adjacent BSs, some selected user terminals (UTs participate in the network synchronization process. Synchronization emerges by exchanging two distinct synchronization words, one transmitted by BSs and the other by active UTs, without any a priori assumption on the initial timing misalignments of BSs and UTs. In large-scale networks with inter-BS site distances up to a few kilometers, propagation delays severely affect the attainable timing accuracy of CelFSync. We show that by an appropriate combination of CelFSync with the timing advance procedure, which aligns uplink transmission of UTs to arrive simultaneously at the BS, a timing accuracy within a fraction of the inter-BS propagation delay is retained.

  14. Introduction to media synchronization (Mediasync)

    NARCIS (Netherlands)

    M.A. Montagud Climent (Mario); P.S. Cesar Garcia (Pablo Santiago); F. Boronat (Fernando); A.J. Jansen (Jack)

    2018-01-01

    textabstractMedia synchronization is a core research area in multimedia systems. This chapter introduces the area by providing key definitions, classifications, and examples. It also discusses the relevance of different types of media synchronization to ensure satisfactory Quality of Experience

  15. Distributed Synchronization in Communication Networks

    Science.gov (United States)

    2018-01-24

    synchronization. Secondly, it is known that identical oscillators with sin() coupling functions are guaranteed to synchronize in phase on a complete...provide sufficient conditions for phase- locking , i.e., convergence to a stable equilibrium almost surely. We additionally find conditions when the

  16. [Synchronous sigmoideum- and caecum volvulus].

    Science.gov (United States)

    Berg, Anna Korsgaard; Perdawood, Sharaf Karim

    2015-09-21

    This case presents a synchronous sigmoid- and caecum volvulus in a 69-year old man with Parkinson's disease, hypertension and previous history of colonic volvulus. On admission the patient had abdominal pain, nausea, vomiting and constipation. The CT scan showed a sigmoid volvulus with a dilated caecum. The synchronous sigmoideum- and caecum volvulus was diagnosed intraoperatively. Total colectomy and ileostomy was performed.

  17. Digital synchronization and communication techniques

    Science.gov (United States)

    Lindsey, William C.

    1992-01-01

    Information on digital synchronization and communication techniques is given in viewgraph form. Topics covered include phase shift keying, modems, characteristics of open loop digital synchronizers, an open loop phase and frequency estimator, and a digital receiver structure using an open loop estimator in a decision directed architecture.

  18. Analysis of synchronous digital-modulation schemes for satellite communication

    Science.gov (United States)

    Takhar, G. S.; Gupta, S. C.

    1975-01-01

    The multipath communication channel for space communications is modeled as a multiplicative channel. This paper discusses the effects of multiplicative channel processes on the symbol error rate for quadrature modulation (QM) digital modulation schemes. An expression for the upper bound on the probability of error is derived and numerically evaluated. The results are compared with those obtained for additive channels.

  19. A New 4D Hyperchaotic System and Its Generalized Function Projective Synchronization

    Directory of Open Access Journals (Sweden)

    Yuan Gao

    2013-01-01

    Full Text Available A new four-dimensional hyperchaotic system is investigated. Numerical and analytical studies are carried out on its basic dynamical properties, such as equilibrium point, Lyapunov exponents, Poincaré maps, and chaotic dynamical behaviors. We verify the realizability of the new system via an electronic circuit by using Multisim software. Furthermore, a generalized function projective synchronization scheme of two different hyperchaotic systems with uncertain parameters is proposed, which includes some existing projective synchronization schemes, such as generalized projection synchronization and function projective synchronization. Based on the Lyapunov stability theory, a controller with parameters update laws is designed to realize synchronization. Using this controller, we realize the synchronization between Chen hyperchaotic system and the new system to verify the validity and feasibility of our method.

  20. Generalized projective synchronization of two coupled complex networks of different sizes

    International Nuclear Information System (INIS)

    Li Ke-Zan; He En; Zeng Zhao-Rong; Chi, K. Tse

    2013-01-01

    We investigate a new generalized projective synchronization between two complex dynamical networks of different sizes. To the best of our knowledge, most of the current studies on projective synchronization have dealt with coupled networks of the same size. By generalized projective synchronization, we mean that the states of the nodes in each network can realize complete synchronization, and the states of a pair of nodes from both networks can achieve projective synchronization. Using the stability theory of the dynamical system, several sufficient conditions for guaranteeing the existence of the generalized projective synchronization under feedback control and adaptive control are obtained. As an example, we use Chua's circuits to demonstrate the effectiveness of our proposed approach

  1. A novel mixed-synchronization phenomenon in coupled Chua's circuits via non-fragile linear control

    International Nuclear Information System (INIS)

    Wang Jun-Wei; Ma Qing-Hua; Zeng Li

    2011-01-01

    Dynamical variables of coupled nonlinear oscillators can exhibit different synchronization patterns depending on the designed coupling scheme. In this paper, a non-fragile linear feedback control strategy with multiplicative controller gain uncertainties is proposed for realizing the mixed-synchronization of Chua's circuits connected in a drive-response configuration. In particular, in the mixed-synchronization regime, different state variables of the response system can evolve into complete synchronization, anti-synchronization and even amplitude death simultaneously with the drive variables for an appropriate choice of scaling matrix. Using Lyapunov stability theory, we derive some sufficient criteria for achieving global mixed-synchronization. It is shown that the desired non-fragile state feedback controller can be constructed by solving a set of linear matrix inequalities (LMIs). Numerical simulations are also provided to demonstrate the effectiveness of the proposed control approach. (general)

  2. Development of sub-100 femtosecond timing and synchronization system.

    Science.gov (United States)

    Lin, Zhenyang; Du, Yingchao; Yang, Jin; Xu, Yilun; Yan, Lixin; Huang, Wenhui; Tang, Chuanxiang; Huang, Gang; Du, Qiang; Doolittle, Lawrence; Wilcox, Russell; Byrd, John

    2018-01-01

    The precise timing and synchronization system is an essential part for the ultra-fast electron and X-ray sources based on the photocathode injector where strict synchronization among RF, laser, and beams are required. In this paper, we present an integrated sub-100 femtosecond timing and synchronization system developed and demonstrated recently in Tsinghua University based on the collaboration with Lawrence Berkeley National Lab. The timing and synchronization system includes the fiber-based CW carrier phase reference distribution system for delivering stabilized RF phase reference to multiple receiver clients, the Low Level RF (LLRF) control system to monitor and generate the phase and amplitude controllable pulse RF signal, and the laser-RF synchronization system for high precision synchronization between optical and RF signals. Each subsystem is characterized by its blocking structure and is also expansible. A novel asymmetric calibration sideband signal method was proposed for eliminating the non-linear distortion in the optical synchronization process. According to offline and online tests, the system can deliver a stable signal to each client and suppress the drift and jitter of the RF signal for the accelerator and the laser oscillator to less than 100 fs RMS (∼0.1° in 2856 MHz frequency). Moreover, a demo system with a LLRF client and a laser-RF synchronization client is deployed and operated successfully at the Tsinghua Thomson scattering X-ray source. The beam-based jitter measurement experiments have been conducted to evaluate the overall performance of the system, and the jitter sources are discussed.

  3. Finite-Time and Fixed-Time Cluster Synchronization With or Without Pinning Control.

    Science.gov (United States)

    Liu, Xiwei; Chen, Tianping

    2018-01-01

    In this paper, the finite-time and fixed-time cluster synchronization problem for complex networks with or without pinning control are discussed. Finite-time (or fixed-time) synchronization has been a hot topic in recent years, which means that the network can achieve synchronization in finite-time, and the settling time depends on the initial values for finite-time synchronization (or the settling time is bounded by a constant for any initial values for fixed-time synchronization). To realize the finite-time and fixed-time cluster synchronization, some simple distributed protocols with or without pinning control are designed and the effectiveness is rigorously proved. Several sufficient criteria are also obtained to clarify the effects of coupling terms for finite-time and fixed-time cluster synchronization. Especially, when the cluster number is one, the cluster synchronization becomes the complete synchronization problem; when the network has only one node, the coupling term between nodes will disappear, and the synchronization problem becomes the simplest master-slave case, which also includes the stability problem for nonlinear systems like neural networks. All these cases are also discussed. Finally, numerical simulations are presented to demonstrate the correctness of obtained theoretical results.

  4. Novel criteria for exponential synchronization of inner time-varying complex networks with coupling delay

    International Nuclear Information System (INIS)

    Zhang Qun-Jiao; Zhao Jun-Chan

    2012-01-01

    This paper mainly investigates the exponential synchronization of an inner time-varying complex network with coupling delay. Firstly, the synchronization of complex networks is decoupled into the stability of the corresponding dynamical systems. Based on the Lyapunov function theory, some sufficient conditions to guarantee its stability with any given convergence rate are derived, thus the synchronization of the networks is achieved. Finally, the results are illustrated by a simple time-varying network model with a coupling delay. All involved numerical simulations verify the correctness of the theoretical analysis. (general)

  5. Exponential synchronization of the Genesio-Tesi chaotic system via a novel feedback control

    International Nuclear Information System (INIS)

    Park, Ju H

    2007-01-01

    A novel feedback control scheme is proposed for exponential synchronization of the Genesio-Tesi chaotic system. The feedback controller consists of two parts: a linear dynamic control law and a nonlinear control one. For exponential synchronization between the drive and response Genesio-Tesi systems, the Lyapunov stability analysis is used. Then an existence criterion for the stabilizing controller is presented in terms of linear matrix inequalities (LMIs). The LMIs can be solved easily by various convex optimization algorithms. Finally, a numerical simulation is illustrated to show the effectiveness of the proposed chaos synchronization scheme

  6. On adaptive modified projective synchronization of a supply chain management system

    Science.gov (United States)

    Tirandaz, Hamed

    2017-12-01

    In this paper, the synchronization problem of a chaotic supply chain management system is studied. A novel adaptive modified projective synchronization method is introduced to control the behaviour of the leader supply chain system by a follower chaotic system and to adjust the leader system parameters until the measurable errors of the system parameters converge to zero. The stability evaluation and convergence analysis are carried out by the Lyapanov stability theorem. The proposed synchronization and antisynchronization techniques are studied for identical supply chain chaotic systems. Finally, some numerical simulations are presented to verify the effectiveness of the theoretical discussions.

  7. Controlling chaos and synchronization for new chaotic system using linear feedback control

    International Nuclear Information System (INIS)

    Yassen, M.T.

    2005-01-01

    This paper is devoted to study the problem of controlling chaos for new chaotic dynamical system (four-scroll dynamical system). Linear feedback control is used to suppress chaos to unstable equilibria and to achieve chaos synchronization of two identical four-scroll systems. Routh-Hurwitz criteria is used to study the conditions of the asymptotic stability of the equilibrium points of the controlled system. The sufficient conditions for achieving synchronization of two identical four-scroll systems are derived by using Lyapunov stability theorem. Numerical simulations are presented to demonstrate the effectiveness of the proposed chaos control and synchronization schemes

  8. Impulsive synchronization and parameter mismatch of the three-variable autocatalator model

    International Nuclear Information System (INIS)

    Li, Yang; Liao, Xiaofeng; Li, Chuandong; Huang, Tingwen; Yang, Degang

    2007-01-01

    The synchronization problems of the three-variable autocatalator model via impulsive control approach are investigated; several theorems on the stability of impulsive control systems are also investigated. These theorems are then used to find the conditions under which the three-variable autocatalator model can be asymptotically controlled to the equilibrium point. This Letter derives some sufficient conditions for the stabilization and synchronization of a three-variable autocatalator model via impulsive control with varying impulsive intervals. Furthermore, we address the chaos quasi-synchronization in the presence of single-parameter mismatch. To illustrate the effectiveness of the new scheme, several numerical examples are given

  9. Pinning impulsive synchronization of stochastic delayed coupled networks

    International Nuclear Information System (INIS)

    Tang Yang; Fang Jian-An; Wong W K; Miao Qing-Ying

    2011-01-01

    In this paper, the pinning synchronization problem of stochastic delayed complex network (SDCN) is investigated by using a novel hybrid pinning controller. The proposed hybrid pinning controller is composed of adaptive controller and impulsive controller, where the two controllers are both added to a fraction of nodes in the network. Using the Lyapunov stability theory and the novel hybrid pinning controller, some sufficient conditions are derived for the exponential synchronization of such dynamical networks in mean square. Two numerical simulation examples are provided to verify the effectiveness of the proposed approach. The simulation results show that the proposed control scheme has a fast convergence rate compared with the conventional adaptive pinning method. (general)

  10. Synchronization of chaotic and nonchaotic oscillators: Application to bipolar disorder

    Energy Technology Data Exchange (ETDEWEB)

    Nono Dueyou Buckjohn, C., E-mail: bucknono@yahoo.f [Laboratoire de Mecanique, Departement de Physique, Faculte des Sciences, Universite de Yaounde I, B.P. 812 Yaounde (Cameroon); Siewe Siewe, M., E-mail: martinsiewesiewe@yahoo.f [Laboratoire de Mecanique, Departement de Physique, Faculte des Sciences, Universite de Yaounde I, B.P. 812 Yaounde (Cameroon); Tchawoua, C., E-mail: ctchawa@yahoo.f [Laboratoire de Mecanique, Departement de Physique, Faculte des Sciences, Universite de Yaounde I, B.P. 812 Yaounde (Cameroon); Kofane, T.C., E-mail: tckofane@yahoo.co [Laboratoire de Mecanique, Departement de Physique, Faculte des Sciences, Universite de Yaounde I, B.P. 812 Yaounde (Cameroon)

    2010-08-02

    In this Letter, we use a synchronization scheme on two bipolar disorder models consisting of a strong nonlinear system with multiplicative excitation and a nonlinear oscillator without parametric harmonic forcing. The stability condition following our control function is analytically demonstrated using the Lyapunov theory and Routh-Hurwitz criteria, we then have the condition for the existence of a feedback gain matrix. A convenient demonstration of the accuracy of the method is complemented by the numerical simulations from which we illustrate the synchronized dynamics between the two non-identical bipolar disorder patients.

  11. Synchronization of chaotic and nonchaotic oscillators: Application to bipolar disorder

    International Nuclear Information System (INIS)

    Nono Dueyou Buckjohn, C.; Siewe Siewe, M.; Tchawoua, C.; Kofane, T.C.

    2010-01-01

    In this Letter, we use a synchronization scheme on two bipolar disorder models consisting of a strong nonlinear system with multiplicative excitation and a nonlinear oscillator without parametric harmonic forcing. The stability condition following our control function is analytically demonstrated using the Lyapunov theory and Routh-Hurwitz criteria, we then have the condition for the existence of a feedback gain matrix. A convenient demonstration of the accuracy of the method is complemented by the numerical simulations from which we illustrate the synchronized dynamics between the two non-identical bipolar disorder patients.

  12. Synchronization of chaotic and nonchaotic oscillators: Application to bipolar disorder

    Science.gov (United States)

    Nono Dueyou Buckjohn, C.; Siewe Siewe, M.; Tchawoua, C.; Kofane, T. C.

    2010-08-01

    In this Letter, we use a synchronization scheme on two bipolar disorder models consisting of a strong nonlinear system with multiplicative excitation and a nonlinear oscillator without parametric harmonic forcing. The stability condition following our control function is analytically demonstrated using the Lyapunov theory and Routh-Hurwitz criteria, we then have the condition for the existence of a feedback gain matrix. A convenient demonstration of the accuracy of the method is complemented by the numerical simulations from which we illustrate the synchronized dynamics between the two non-identical bipolar disorder patients.

  13. Mode decomposition for a synchronous state and its applications

    International Nuclear Information System (INIS)

    Xiong Xiaohua; Wang Junwei; Zhang Yanbin; Zhou Tianshou

    2007-01-01

    Synchronization of coupled dynamical systems including periodic and chaotic systems is investigated both anlaytically and numerically. A novel method, mode decomposition, of treating the stability of a synchronous state is proposed based on the Floquet theory. A rigorous criterion is then derived, which can be applied to arbitrary coupled systems. Two typical numerical examples: coupled Van der Pol systems (corresponding to the case of coupled periodic oscillators) and coupled Lorenz systems (corresponding to the case of chaotic systems) are used to demonstrate the theoretical analysis

  14. Generalized synchronization between chimera states

    Science.gov (United States)

    Andrzejak, Ralph G.; Ruzzene, Giulia; Malvestio, Irene

    2017-05-01

    Networks of coupled oscillators in chimera states are characterized by an intriguing interplay of synchronous and asynchronous motion. While chimera states were initially discovered in mathematical model systems, there is growing experimental and conceptual evidence that they manifest themselves also in natural and man-made networks. In real-world systems, however, synchronization and desynchronization are not only important within individual networks but also across different interacting networks. It is therefore essential to investigate if chimera states can be synchronized across networks. To address this open problem, we use the classical setting of ring networks of non-locally coupled identical phase oscillators. We apply diffusive drive-response couplings between pairs of such networks that individually show chimera states when there is no coupling between them. The drive and response networks are either identical or they differ by a variable mismatch in their phase lag parameters. In both cases, already for weak couplings, the coherent domain of the response network aligns its position to the one of the driver networks. For identical networks, a sufficiently strong coupling leads to identical synchronization between the drive and response. For non-identical networks, we use the auxiliary system approach to demonstrate that generalized synchronization is established instead. In this case, the response network continues to show a chimera dynamics which however remains distinct from the one of the driver. Hence, segregated synchronized and desynchronized domains in individual networks congregate in generalized synchronization across networks.

  15. Three types of generalized synchronization

    Energy Technology Data Exchange (ETDEWEB)

    Yang Junzhong [School of Science, Beijing University of Posts and Telecomunications, Beijing 100876 (China)]. E-mail: jzyang@bupt.edu.cn; Hu Gang [China Center for Advanced Science and Technology (CCAST) (World Laboratory), PO Box 8730, Beijing 100080 (China) and Department of Physics, Beijing Normal University, Beijing 100875 (China)]. E-mail: ganghu@bnu.edu.cn

    2007-02-05

    The roles played by drive and response systems on generalized chaos synchronization (GS) are studied. And the generalized synchronization is classified, based on these roles, to three distinctive types: the passive GS which is mainly determined by the response system and insensitive to the driving signal; the resonant GS where phase synchronization between the drive and response systems is preceding GS; and the interacting GS where both the drive and response have influences on the status of GS. The features of these GS types and the possible changes from one types to others are investigated.

  16. Three types of generalized synchronization

    International Nuclear Information System (INIS)

    Yang Junzhong; Hu Gang

    2007-01-01

    The roles played by drive and response systems on generalized chaos synchronization (GS) are studied. And the generalized synchronization is classified, based on these roles, to three distinctive types: the passive GS which is mainly determined by the response system and insensitive to the driving signal; the resonant GS where phase synchronization between the drive and response systems is preceding GS; and the interacting GS where both the drive and response have influences on the status of GS. The features of these GS types and the possible changes from one types to others are investigated

  17. Satellite Control Laboratory

    DEFF Research Database (Denmark)

    Wisniewski, Rafal; Bak, Thomas

    2001-01-01

    The Satellite Laboratory at the Department of Control Engineering of Aalborg University (SatLab) is a dynamic motion facility designed for analysis and test of micro spacecraft. A unique feature of the laboratory is that it provides a completely gravity-free environment. A test spacecraft......-axis magnetometer, three piezoelectric gyros, and four reaction wheels in a tetrahedron configuration. The operation of the spacecraft is fully autonomous. The data flow between the transducers and the onboard computer placed physically outside the satellite is provided by a radio link. The purpose...... can be implemented in the laboratory, e.g. three-axis attitude control, slew manoeuvres, spins stabilization using magnetic actuation and/or reaction wheels. The spacecraft attitude can be determined applying magnetometer measurements....

  18. Synchronization of computers

    Czech Academy of Sciences Publication Activity Database

    Čermák, Jan

    1997-01-01

    Roč. 1, č. 2 (1997), s. 63-69 ISSN 0188-8048 R&D Projects: GA AV ČR IAA2067608 Keywords : frequency measurement * frequency stability * synchronisation * computerised control Subject RIV: JW - Navigation, Links, Detection ; Counter-Measures

  19. (statcom) in synchronous compensator

    African Journals Online (AJOL)

    eobe

    with fast response and low cost for stabilizing electricity grid power and voltage. ... The conventional and modified Newton-Raphson-based power flow equations .... The control of the reactive power exchange between .... because of its faster rate of convergence and accuracy ..... compensator, North American Power System.

  20. Noncoherent Symbol Synchronization Techniques

    Science.gov (United States)

    Simon, Marvin

    2005-01-01

    Traditional methods for establishing symbol synchronization (sync) in digital communication receivers assume that carrier sync has already been established, i.e., the problem is addressed at the baseband level assuming that a 'perfect' estimate of carrier phase is available. We refer to this approach as coherent symbol sync. Since, for NRZ signaling, a suppressed carrier sync loop such as an I-Q Costas loop includes integrate-and-dump (I and D) filters in its in-phase (1) and quadrature (Q) arms, the traditional approach is to first track the carrier in the absence of symbol sync information, then feed back the symbol sync estimate to these filters, and then iterate between the two to a desirable operating level In this paper, we revisit the symbol sync problem by examining methods for obtaining such sync in the absence of carrier phase information, i.e., so-called noncoherent symbol sync loops. We compare the performance of these loops with that of a well-known coherent symbol sync loop and examine the conditions under which one is preferable over the other.

  1. Event-based cluster synchronization of coupled genetic regulatory networks

    Science.gov (United States)

    Yue, Dandan; Guan, Zhi-Hong; Li, Tao; Liao, Rui-Quan; Liu, Feng; Lai, Qiang

    2017-09-01

    In this paper, the cluster synchronization of coupled genetic regulatory networks with a directed topology is studied by using the event-based strategy and pinning control. An event-triggered condition with a threshold consisting of the neighbors' discrete states at their own event time instants and a state-independent exponential decay function is proposed. The intra-cluster states information and extra-cluster states information are involved in the threshold in different ways. By using the Lyapunov function approach and the theories of matrices and inequalities, we establish the cluster synchronization criterion. It is shown that both the avoidance of continuous transmission of information and the exclusion of the Zeno behavior are ensured under the presented triggering condition. Explicit conditions on the parameters in the threshold are obtained for synchronization. The stability criterion of a single GRN is also given under the reduced triggering condition. Numerical examples are provided to validate the theoretical results.

  2. A study on synchronously whirling motion of hydrodynamic journal bearings

    International Nuclear Information System (INIS)

    Rho, Byoung Hoo; Kim, Kyung Woong

    2001-01-01

    In this paper, a control algorithm which is synchronously excitation the bearing with whirl speed of rotor is employed to suppress the whirl instability and unbalance response of the rotor-bearing system. Also, the cavitation algorithm implementing the Jakobsson-Floberg-Olsson boundary condition is adopted to predict cavitation regions in the fluid film more accurately than a conventional analysis with the Renolds condition. The stabilities and unbalance responses of the rotor-bearing system are investigated for various control gains and phase differences between the bearing and journal motion. It is shown that the unbalance response of the system can be greatly improved by synchronous control of the bearing, and there is an optimum phase difference, which gives the minimum unbalance response of the system, for given operating condition. It is also found that the onset speed of the instability can be greatly increased by synchronous control of the bearing

  3. A study on synchronously whirling motion of hydrodynamic journal bearings

    Energy Technology Data Exchange (ETDEWEB)

    Rho, Byoung Hoo; Kim, Kyung Woong [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    2001-09-01

    In this paper, a control algorithm which is synchronously excitation the bearing with whirl speed of rotor is employed to suppress the whirl instability and unbalance response of the rotor-bearing system. Also, the cavitation algorithm implementing the Jakobsson-Floberg-Olsson boundary condition is adopted to predict cavitation regions in the fluid film more accurately than a conventional analysis with the Renolds condition. The stabilities and unbalance responses of the rotor-bearing system are investigated for various control gains and phase differences between the bearing and journal motion. It is shown that the unbalance response of the system can be greatly improved by synchronous control of the bearing, and there is an optimum phase difference, which gives the minimum unbalance response of the system, for given operating condition. It is also found that the onset speed of the instability can be greatly increased by synchronous control of the bearing.

  4. Satellite Radio

    Indian Academy of Sciences (India)

    Satellites have been a highly effective platform for multi- form broadcasts. This has led to a ... diversity offormats, languages, genre, and a universal reach that cannot be met by .... programs can be delivered to whom it is intended. In the case of.

  5. Cross-spectrum symbol synchronization

    Science.gov (United States)

    Mccallister, R. D.; Simon, M. K.

    1981-01-01

    A popular method of symbol synchronization exploits one aspect of generalized harmonic analysis, normally referred to as the cross-spectrum. Utilizing nonlinear techniques, the input symbol energy is effectively concentrated onto multiples of the symbol clock frequency, facilitating application of conventional phase lock synchronization techniques. A general treatment of the cross-spectrum technique is developed and shown to be applicable across a broad class of symbol modulation formats. An important specific symbol synchronization application is then treated, focusing the general development to provide both insight and quantitative measure of the performance impact associated with variation in these key synchronization parameters: symbol modulation format, symbol transition probability, symbol energy to noise density ratio, and symbol rate to filter bandwidth ratio.

  6. Principles of synchronous digital hierarchy

    CERN Document Server

    Jain, Rajesh Kumar

    2012-01-01

    The book presents the current standards of digital multiplexing, called synchronous digital hierarchy, including analog multiplexing technologies. It is aimed at telecommunication professionals who want to develop an understanding of digital multiplexing and synchronous digital hierarchy in particular and the functioning of practical telecommunication systems in general. The text includes all relevant fundamentals and provides a handy reference for problem solving or defining operations and maintenance strategies. The author covers digital conversion and TDM principles, line coding and digital

  7. Synchronous Half-Wave Rectifier

    Science.gov (United States)

    Rippel, Wally E.

    1989-01-01

    Synchronous rectifying circuit behaves like diode having unusually low voltage drop during forward-voltage half cycles. Circuit particularly useful in power supplies with potentials of 5 Vdc or less, where normal forward-voltage drops in ordinary diodes unacceptably large. Fabricated as monolithic assembly or as hybrid. Synchronous half-wave rectifier includes active circuits to attain low forward voltage drop and high rectification efficiency.

  8. Hybrid synchronization of hyperchaotic Lu system

    Indian Academy of Sciences (India)

    In this paper, we study the hybrid synchronization between two identical hyperchaotic Lu systems. Hybrid synchronization of hyperchaotic Lu system is achieved through synchronization of two pairs of states and anti-synchronization of the other two pairs of states. Active controls are designed to achieve hybrid ...

  9. Synchronization of a new fractional-order hyperchaotic system

    International Nuclear Information System (INIS)

    Wu Xiangjun; Lu Hongtao; Shen Shilei

    2009-01-01

    In this letter, a new fractional-order hyperchaotic system is proposed. By utilizing the fractional calculus theory and computer simulations, it is found that hyperchaos exists in the new fractional-order four-dimensional system with order less than 4. The lowest order to have hyperchaos in this system is 2.88. The results are validated by the existence of two positive Lyapunov exponents. Using the pole placement technique, a nonlinear state observer is designed to synchronize a class of nonlinear fractional-order systems. The observer method is used to synchronize two identical fractional-order hyperchaotic systems. In addition, the active control technique is applied to synchronize the new fractional-order hyperchaotic system and the fractional-order Chen hyperchaotic system. The two schemes, based on the stability theory of the fractional-order system, are rather simple, theoretically rigorous and convenient to realize synchronization. They do not require the computation of the conditional Lyapunov exponents. Numerical results are performed to verify the effectiveness of the proposed synchronization schemes.

  10. Windows of opportunity for synchronization in stochastically coupled maps

    Science.gov (United States)

    Golovneva, Olga; Jeter, Russell; Belykh, Igor; Porfiri, Maurizio

    2017-02-01

    Several complex systems across science and engineering display on-off intermittent coupling among their units. Most of the current understanding of synchronization in switching networks relies on the fast switching hypothesis, where the network dynamics evolves at a much faster time scale than the individual units. Recent numerical evidence has demonstrated the existence of windows of opportunity, where synchronization may be induced through non-fast switching. Here, we study synchronization of coupled maps whose coupling gains stochastically switch with an arbitrary switching period. We determine the role of the switching period on synchronization through a detailed analytical treatment of the Lyapunov exponent of the stochastic dynamics. Through closed-form expressions and numerical findings, we demonstrate the emergence of windows of opportunity and elucidate their nontrivial relationship with the stability of synchronization under static coupling. Our results are expected to provide a rigorous basis for understanding the dynamic mechanisms underlying the emergence of windows of opportunity and leverage non-fast switching in the design of evolving networks.

  11. Precise Time Synchronisation and Ranging in Nano-Satellite Swarms

    Science.gov (United States)

    Laabs, Martin; Plettemeier, Dirk

    2015-04-01

    Precise time synchronization and ranging is very important for a variety of scientific experiments with more than two nano-satellites: For synthetic aperture radar (SAR) applications, for example, the radar signal phase (which corresponds to a synchronized time) as well as the location must be known on each satellite forming synthetic antenna. Also multi-static radar systems, MIMO radar systems or radio tomography applications will take advantage from highly accurate synchronization and position determination. We propose a method for synchronizing the time as well as measuring the distance between nano-satellites very precisely by utilizing mm-wave radio links. This approach can also be used for time synchronization of more than two satellites and accordingly determinating the precise relative location of nano-satellites in space. The time synchronization signal is modulated onto a mm-wave carrier. In the simplest form it is a harmonic sinusoidal signal with a frequency in the MHz range. The distance is measured with a frequency sweep or short pulse modulated onto a different carrier frequency. The sweep or pulse transmission start is synchronized to the received time synchronization. The time synchronization transmitter receives the pulse/sweep signal and can calculate the (double) time of flight for both signals. This measurement can be easily converted to the distance. The use of a mm-wave carrier leads to small antennas and the free space loss linked to the high frequency reduces non line of sight echoes. It also allows a high sweep/pulse bandwidth enabling superior ranging accuracy. Additionally, there is also less electromagnetic interference probability since telemetry and scientific applications typically do not use mm-wavefrequencies. Since the system is working full-duplex the time synchronization can be performed continuously and coherently. Up to now the required semiconductor processes did not achieve enough gain/bandwidth to realize this concept at

  12. Outer Synchronization of Complex Networks by Impulse

    International Nuclear Information System (INIS)

    Sun Wen; Yan Zizong; Chen Shihua; Lü Jinhu

    2011-01-01

    This paper investigates outer synchronization of complex networks, especially, outer complete synchronization and outer anti-synchronization between the driving network and the response network. Employing the impulsive control method which is uncontinuous, simple, efficient, low-cost and easy to implement in practical applications, we obtain some sufficient conditions of outer complete synchronization and outer anti-synchronization between two complex networks. Numerical simulations demonstrate the effectiveness of the proposed impulsive control scheme. (general)

  13. Unidirectional synchronization of Hodgkin-Huxley neurons

    Energy Technology Data Exchange (ETDEWEB)

    Cornejo-Perez, Octavio [Division de Matematicas Aplicadas y Sistemas, Computacionales, IPICYT, Apdo. Postal 3-74 Tangamanga, 78231 San Luis Potosi (Mexico)]. E-mail: octavio@ipicyt.edu.mx; Femat, Ricardo [Division de Matematicas Aplicadas y Sistemas, Computacionales, IPICYT, Apdo. Postal 3-74 Tangamanga, 78231 San Luis Potosi (Mexico)]. E-mail: rfemat@ipicyt.edu.mx

    2005-07-01

    Synchronization dynamics of two noiseless Hodgkin-Huxley (HH) neurons under the action of feedback control is studied. The spiking patterns of the action potentials evoked by periodic external modulations attain synchronization states under the feedback action. Numerical simulations for the synchronization dynamics of regular-irregular desynchronized spiking sequences are displayed. The results are discussed in context of generalized synchronization. It is also shown that the HH neurons can be synchronized in face of unmeasured states.

  14. Continuous reorientation of synchronous terrestrial planets due to mantle convection

    Science.gov (United States)

    Leconte, Jérémy

    2018-02-01

    Many known rocky exoplanets are thought to have been spun down by tidal interactions to a state of synchronous rotation, in which a planet's period of rotation is equal to that of its orbit around its host star. Investigations into atmospheric and surface processes occurring on such exoplanets thus commonly assume that day and night sides are fixed with respect to the surface over geological timescales. Here we use an analytical model to show that true polar wander—where a planetary body's spin axis shifts relative to its surface because of changes in mass distribution—can continuously reorient a synchronous rocky exoplanet. As occurs on Earth, we find that even weak mantle convection in a rocky exoplanet can produce density heterogeneities within the mantle sufficient to reorient the planet. Moreover, we show that this reorientation is made very efficient by the slower rotation rate of a synchronous planet when compared with Earth, which limits the stabilizing effect of rotational and tidal deformations. Furthermore, a relatively weak lithosphere limits its ability to support remnant loads and stabilize against reorientation. Although uncertainties exist regarding the mantle and lithospheric evolution of these worlds, we suggest that the axes of smallest and largest moment of inertia of synchronous exoplanets with active mantle convection change continuously over time, but remain closely aligned with the star-planet and orbital axes, respectively.

  15. Selection of the signal synchronization method in software GPS receivers

    Directory of Open Access Journals (Sweden)

    Vlada S. Sokolović

    2011-04-01

    Full Text Available Introduction This paper presents a critical analysis of the signal processing flow carried out in a software GPS receiver and a critical comparison of different architectures for signal processing within the GPS receiver. A model of software receivers is shown. Based on the displayed model, a receiver has been realized in the MATLAB software package, in which the simulations of signal processing were carried out. The aim of this paper is to demonstrate the advantages and disadvantages of different methods of the synchronization of signals in the receiver, and to propose a solution acceptable for possible implementation. The signal processing flow was observed from the input circuit to the extraction of the bits of the navigation message. The entire signal processing was performed on the L1 signal and the data collected by the input circuit SE4110. A radio signal from the satellite was accepted with the input circuit, filtered and translated into a digital form. The input circuit ends with the hardware of the receiver. A digital signal from the input circuit is brought into the PC Pentium 4 (AMD 3000 + where the receiver is realized in Matlab. Model of software GPS receiver The first level of processing is signal acquisition. Signal acquisition was realized using the cyclic convolution. The acquisition process was carried out by measuring signals from satellites, and these parameters are passed to the next level of processing. The next level was done by monitoring the synchronization signal and extracting the navigation message bits. On the basis of the detection of the navigation message the receiver calculates the position of a satellite and then, based on the position of the satellite, its own position. Tracking of GPS signal synchronization In order to select the most acceptable method of signal synchronization in the receiver, different methods of signal synchronization are compared. The early-late-DLL (Delay Lock Loop, TDL (Tau Dither Loop

  16. Scientific Satellites

    Science.gov (United States)

    1967-01-01

    noise signal level exceeds 10 times the normal background. EXPERIMENTS FOR SATELLITE ASTRONOMY 615 ANTENNA MONOPOLE -., PREAMPLFE = BANDPASS-FILTER...OUTPUT TO AND DETECTOR TELEMETRYCHANNELS (18) CALIBRATION NOISE MATRIX CLOCK NOISE SOURCE ’ON’ SOURCE COMMAND F ROM PROGRAMERP ANTENNA MONOPOLE FIGURE 13...Animal Tempera- ture Sensing for Studying the Effect of Prolonged Orbital Flight on the Circadian Rhythms of Pocket Mice . Unmanned Spacecraft Meeting

  17. One Adaptive Synchronization Approach for Fractional-Order Chaotic System with Fractional-Order 1 < q < 2

    Science.gov (United States)

    Zhou, Ping; Bai, Rongji

    2014-01-01

    Based on a new stability result of equilibrium point in nonlinear fractional-order systems for fractional-order lying in 1 < q < 2, one adaptive synchronization approach is established. The adaptive synchronization for the fractional-order Lorenz chaotic system with fractional-order 1 < q < 2 is considered. Numerical simulations show the validity and feasibility of the proposed scheme. PMID:25247207

  18. One Adaptive Synchronization Approach for Fractional-Order Chaotic System with Fractional-Order 1

    Directory of Open Access Journals (Sweden)

    Ping Zhou

    2014-01-01

    Full Text Available Based on a new stability result of equilibrium point in nonlinear fractional-order systems for fractional-order lying in 1synchronization approach is established. The adaptive synchronization for the fractional-order Lorenz chaotic system with fractional-order 1

  19. Solar satellites

    Energy Technology Data Exchange (ETDEWEB)

    Poher, C.

    1982-01-01

    A reference system design, projected costs, and the functional concepts of a satellite solar power system (SSPS) for converting sunlight falling on solar panels of a satellite in GEO to a multi-GW beam which could be received by a rectenna on earth are outlined. Electricity transmission by microwaves has been demonstrated, and a reference design system for supplying 5 GW dc to earth was devised. The system will use either monocrystalline Si or concentrator GaAs solar cells for energy collection in GEO. Development is still needed to improve the lifespan of the cells. Currently, the cell performance degrades 50 percent in efficiency after 7-8 yr in space. Each SSPS satellite would weigh either 34,000 tons (Si) or 51,000 tons (GaAs), thereby requiring the fabrication of a heavy lift launch vehicle or a single-stage-to-orbit transport in order to minimize launch costs. Costs for the solar panels have been estimated at $500/kW using the GaAs technology, with transport costs for materials to GEO being $40/kg.

  20. Solar satellites

    Science.gov (United States)

    Poher, C.

    A reference system design, projected costs, and the functional concepts of a satellite solar power system (SSPS) for converting sunlight falling on solar panels of a satellite in GEO to a multi-GW beam which could be received by a rectenna on earth are outlined. Electricity transmission by microwaves has been demonstrated, and a reference design system for supplying 5 GW dc to earth was devised. The system will use either monocrystalline Si or concentrator GaAs solar cells for energy collection in GEO. Development is still needed to improve the lifespan of the cells. Currently, the cell performance degrades 50 percent in efficiency after 7-8 yr in space. Each SSPS satellite would weigh either 34,000 tons (Si) or 51,000 tons (GaAs), thereby requiring the fabrication of a heavy lift launch vehicle or a single-stage-to-orbit transport in order to minimize launch costs. Costs for the solar panels have been estimated at $500/kW using the GaAs technology, with transport costs for materials to GEO being $40/kg.

  1. A fiber optic synchronization system for LUX

    International Nuclear Information System (INIS)

    Wilcox, R.B.; Staples, J.W.; Doolittle, L.R.

    2004-01-01

    The LUX femtosecond light source concept would support pump-probe experiments that need to synchronize laser light pulses with electron-beam-generated X-ray pulses to less than 50 fs at the experimenter endstations. To synchronize multiple endstation lasers with the X-ray pulse, we are developing a fiber-distributed optical timing network. A high frequency clock signal is distributed via fiber to RF cavities (controlling X-ray probe pulse timing) and mode-locked lasers at endstations (controlling pump pulse timing). The superconducting cavities are actively locked to the optical clock phase. Most of the RF timing error is contained within a 10 kHz bandwidth, so these errors and any others affecting X-ray pulse timing (such as RF gun phase) can be detected and transmitted digitally to correct laser timing at the endstations. Time delay through the fibers will be stabilized by comparing a retro-reflected pulse from the experimenter endstation end with a reference pulse from the sending en d, and actively controlling the fiber length

  2. Outer synchronization between two different fractional-order general complex dynamical networks

    International Nuclear Information System (INIS)

    Xiang-Jun, Wu; Hong-Tao, Lu

    2010-01-01

    Outer synchronization between two different fractional-order general complex dynamical networks is investigated in this paper. Based on the stability theory of the fractional-order system, the sufficient criteria for outer synchronization are derived analytically by applying the nonlinear control and the bidirectional coupling methods. The proposed synchronization method is applicable to almost all kinds of coupled fractional-order general complex dynamical networks. Neither a symmetric nor irreducible coupling configuration matrix is required. In addition, no constraint is imposed on the inner-coupling matrix. Numerical examples are also provided to demonstrate the validity of the presented synchronization scheme. Numeric evidence shows that both the feedback strength k and the fractional order α can be chosen appropriately to adjust the synchronization effect effectively. (general)

  3. Parameter Identification and Synchronization of Uncertain Chaotic Systems Based on Sliding Mode Observer

    Directory of Open Access Journals (Sweden)

    Li-lian Huang

    2013-01-01

    Full Text Available The synchronization of nonlinear uncertain chaotic systems is investigated. We propose a sliding mode state observer scheme which combines the sliding mode control with observer theory and apply it into the uncertain chaotic system with unknown parameters and bounded interference. Based on Lyapunov stability theory, the constraints of synchronization and proof are given. This method not only can realize the synchronization of chaotic systems, but also identify the unknown parameters and obtain the correct parameter estimation. Otherwise, the synchronization of chaotic systems with unknown parameters and bounded external disturbances is robust by the design of the sliding surface. Finally, numerical simulations on Liu chaotic system with unknown parameters and disturbances are carried out. Simulation results show that this synchronization and parameter identification has been totally achieved and the effectiveness is verified very well.

  4. Hybrid Chaos Synchronization of Four-Scroll Systems via Active Control

    Science.gov (United States)

    Karthikeyan, Rajagopal; Sundarapandian, Vaidyanathan

    2014-03-01

    This paper investigates the hybrid chaos synchronization of identical Wang four-scroll systems (Wang, 2009), identical Liu-Chen four-scroll systems (Liu and Chen, 2004) and non-identical Wang and Liu-Chen four-scroll systems. Active control method is the method adopted to achieve the hybrid chaos synchronization of the four-scroll chaotic systems addressed in this paper and our synchronization results are established using Lyapunov stability theory. Since the Lyapunov exponents are not required for these calculations, the active control method is effective and convenient to hybrid synchronize identical and different Wang and Liu-Chen four-scroll chaotic systems. Numerical simulations are also shown to illustrate and validate the hybrid synchronization results derived in this paper.

  5. Complete synchronization condition in a network of piezoelectric micro-beam

    International Nuclear Information System (INIS)

    Taffoti Yolong, V.Y.; Woafo, P.

    2007-10-01

    This work deals with the dynamics of a network of piezoelectric micro-beams. The complete synchronization condition for this class of chaotic nonlinear electromechanical systems devices with nearest-neighbor diffusive coupling is studied. The nonlinearities on the device studied here are both on the electrical component and on the mechanical one. The investigation is made for the case of a large number of discrete piezoelectric disks coupled. The problem of chaos synchronization is described and converted into the analysis of stability of the system via its differential equations. We show that the complete synchronization of N identical coupled nonlinear chaotic systems having the shift invariant coupling schemes can be calculated from the synchronization of two of them coupled in both directions. According to analytical, semi-analytical predictions and numerical calculations, the transition boundaries for chaos synchronization state in the coupled system are determined as a function of the increasing number of oscillators. (author)

  6. Exponential synchronization of complex networks with nonidentical time-delayed dynamical nodes

    International Nuclear Information System (INIS)

    Cai Shuiming; He Qinbin; Hao Junjun; Liu Zengrong

    2010-01-01

    In this Letter, exponential synchronization of a complex network with nonidentical time-delayed dynamical nodes is considered. Two effective control schemes are proposed to drive the network to synchronize globally exponentially onto any smooth goal dynamics. By applying open-loop control to all nodes and adding some intermittent controllers to partial nodes, some simple criteria for exponential synchronization of such network are established. Meanwhile, a pinning scheme deciding which nodes need to be pinned and a simply approximate formula for estimating the least number of pinned nodes are also provided. By introducing impulsive effects to the open-loop controlled network, another synchronization scheme is developed for the network with nonidentical time-delayed dynamical nodes, and an estimate of the upper bound of impulsive intervals ensuring global exponential stability of the synchronization process is also given. Numerical simulations are presented finally to demonstrate the effectiveness of the theoretical results.

  7. Complete and phase synchronization in a heterogeneous small-world neuronal network

    International Nuclear Information System (INIS)

    Fang, Han; Qi-Shao, Lu; Quan-Bao, Ji; Marian, Wiercigroch

    2009-01-01

    Synchronous firing of neurons is thought to be important for information communication in neuronal networks. This paper investigates the complete and phase synchronization in a heterogeneous small-world chaotic Hindmarsh–Rose neuronal network. The effects of various network parameters on synchronization behaviour are discussed with some biological explanations. Complete synchronization of small-world neuronal networks is studied theoretically by the master stability function method. It is shown that the coupling strength necessary for complete or phase synchronization decreases with the neuron number, the node degree and the connection density are increased. The effect of heterogeneity of neuronal networks is also considered and it is found that the network heterogeneity has an adverse effect on synchrony. (general)

  8. Investigation for Synchronization of a Rotor-Pendulum System considering the Multi-DOF Vibration

    Directory of Open Access Journals (Sweden)

    Yongjun Hou

    2016-01-01

    Full Text Available This work is a continuation for our published literature for vibration synchronization. A new mechanism, two rotors coupled with a pendulum rod in a multi-DOF vibration system, is proposed to implement coupling synchronization, and the dynamics equation of mechanism is derived by Lagrange equation. In addition, the coupling relationship between the vibrobody and the pendulum rod is ascertained with the Laplace transformation method, based on the dimensionless equation of the dynamics system. The Poincare method is employed to study the synchronization state between the two unbalanced rotors, which is converted into that of existence and the stability of solutions for synchronization-balance equations. The obtained results are supported by computer simulations. It is demonstrated that the values of the spring stiffness coefficient, the length of the pendulum, and the angular installation of the pendulum are important parameters with respect to the synchronous behavior in the rotor-pendulum system.

  9. Use of Synchronized Phasor Measurements for Model Validation in ERCOT

    Science.gov (United States)

    Nuthalapati, Sarma; Chen, Jian; Shrestha, Prakash; Huang, Shun-Hsien; Adams, John; Obadina, Diran; Mortensen, Tim; Blevins, Bill

    2013-05-01

    This paper discusses experiences in the use of synchronized phasor measurement technology in Electric Reliability Council of Texas (ERCOT) interconnection, USA. Implementation of synchronized phasor measurement technology in the region is a collaborative effort involving ERCOT, ONCOR, AEP, SHARYLAND, EPG, CCET, and UT-Arlington. As several phasor measurement units (PMU) have been installed in ERCOT grid in recent years, phasor data with the resolution of 30 samples per second is being used to monitor power system status and record system events. Post-event analyses using recorded phasor data have successfully verified ERCOT dynamic stability simulation studies. Real time monitoring software "RTDMS"® enables ERCOT to analyze small signal stability conditions by monitoring the phase angles and oscillations. The recorded phasor data enables ERCOT to validate the existing dynamic models of conventional and/or wind generator.

  10. Bodily Synchronization Underlying Joke Telling

    Directory of Open Access Journals (Sweden)

    R. C. Schmidt

    2014-08-01

    Full Text Available Advances in video and time series analysis have greatly enhanced our ability to study the bodily synchronization that occurs in natural interactions. Past research has demonstrated that the behavioral synchronization involved in social interactions is similar to dynamical synchronization found generically in nature. The present study investigated how the bodily synchronization in a joke telling task is spread across different nested temporal scales. Pairs of participants enacted knock-knock jokes and times series of their bodily activity were recorded. Coherence and relative phase analyses were used to evaluate the synchronization of bodily rhythms for the whole trial as well as at the subsidiary time scales of the whole joke, the setup of the punch line, the two-person exchange and the utterance. The analyses revealed greater than chance entrainment of the joke teller’s and joke responder’s movements at all time scales and that the relative phasing of the teller’s movements led those of the responder at the longer time scales. Moreover, this entrainment was greater when visual information about the partner’s movements was present but was decreased particularly at the shorter time scales when explicit gesturing in telling the joke was performed. In short, the results demonstrate that a complex interpersonal bodily dance occurs during structured conversation interactions and that this dance is constructed from a set of rhythms associated with the nested behavioral structure of the interaction.

  11. Vestibular hearing and neural synchronization.

    Science.gov (United States)

    Emami, Seyede Faranak; Daneshi, Ahmad

    2012-01-01

    Objectives. Vestibular hearing as an auditory sensitivity of the saccule in the human ear is revealed by cervical vestibular evoked myogenic potentials (cVEMPs). The range of the vestibular hearing lies in the low frequency. Also, the amplitude of an auditory brainstem response component depends on the amount of synchronized neural activity, and the auditory nerve fibers' responses have the best synchronization with the low frequency. Thus, the aim of this study was to investigate correlation between vestibular hearing using cVEMPs and neural synchronization via slow wave Auditory Brainstem Responses (sABR). Study Design. This case-control survey was consisted of twenty-two dizzy patients, compared to twenty healthy controls. Methods. Intervention comprised of Pure Tone Audiometry (PTA), Impedance acoustic metry (IA), Videonystagmography (VNG), fast wave ABR (fABR), sABR, and cVEMPs. Results. The affected ears of the dizzy patients had the abnormal findings of cVEMPs (insecure vestibular hearing) and the abnormal findings of sABR (decreased neural synchronization). Comparison of the cVEMPs at affected ears versus unaffected ears and the normal persons revealed significant differences (P < 0.05). Conclusion. Safe vestibular hearing was effective in the improvement of the neural synchronization.

  12. Coarse graining for synchronization in directed networks

    Science.gov (United States)

    Zeng, An; Lü, Linyuan

    2011-05-01

    Coarse-graining model is a promising way to analyze and visualize large-scale networks. The coarse-grained networks are required to preserve statistical properties as well as the dynamic behaviors of the initial networks. Some methods have been proposed and found effective in undirected networks, while the study on coarse-graining directed networks lacks of consideration. In this paper we proposed a path-based coarse-graining (PCG) method to coarse grain the directed networks. Performing the linear stability analysis of synchronization and numerical simulation of the Kuramoto model on four kinds of directed networks, including tree networks and variants of Barabási-Albert networks, Watts-Strogatz networks, and Erdös-Rényi networks, we find our method can effectively preserve the network synchronizability.

  13. Successive lag synchronization on dynamical networks with communication delay

    International Nuclear Information System (INIS)

    Zhang Xin-Jian; Wei Ai-Ju; Li Ke-Zan

    2016-01-01

    In this paper, successive lag synchronization (SLS) on a dynamical network with communication delay is investigated. In order to achieve SLS on the dynamical network with communication delay, we design linear feedback control and adaptive control, respectively. By using the Lyapunov function method, we obtain some sufficient conditions for global stability of SLS. To verify these results, some numerical examples are further presented. This work may find potential applications in consensus of multi-agent systems. (paper)

  14. Global impulsive exponential synchronization of stochastic perturbed chaotic delayed neural networks

    International Nuclear Information System (INIS)

    Hua-Guang, Zhang; Tie-Dong, Ma; Jie, Fu; Shao-Cheng, Tong

    2009-01-01

    In this paper, the global impulsive exponential synchronization problem of a class of chaotic delayed neural networks (DNNs) with stochastic perturbation is studied. Based on the Lyapunov stability theory, stochastic analysis approach and an efficient impulsive delay differential inequality, some new exponential synchronization criteria expressed in the form of the linear matrix inequality (LMI) are derived. The designed impulsive controller not only can globally exponentially stabilize the error dynamics in mean square, but also can control the exponential synchronization rate. Furthermore, to estimate the stable region of the synchronization error dynamics, a novel optimization control algorithm is proposed, which can deal with the minimum problem with two nonlinear terms coexisting in LMIs effectively. Simulation results finally demonstrate the effectiveness of the proposed method

  15. A novel robust proportional-integral (PI) adaptive observer design for chaos synchronization

    International Nuclear Information System (INIS)

    Pourgholi Mahdi; Majd Vahid Johari

    2011-01-01

    In this paper, chaos synchronization in the presence of parameter uncertainty, observer gain perturbation and exogenous input disturbance is considered. A nonlinear non-fragile proportional-integral (PI) adaptive observer is designed for the synchronization of chaotic systems; its stability conditions based on the Lyapunov technique are derived. The observer proportional and integral gains, by converting the conditions into linear matrix inequality (LMI), are optimally selected from solutions that satisfy the observer stability conditions such that the effect of disturbance on the synchronization error becomes minimized. To show the effectiveness of the proposed method, simulation results for the synchronization of a Lorenz chaotic system with unknown parameters in the presence of an exogenous input disturbance and abrupt gain perturbation are reported. (general)

  16. Exponential networked synchronization of master-slave chaotic systems with time-varying communication topologies

    International Nuclear Information System (INIS)

    Yang Dong-Sheng; Liu Zhen-Wei; Liu Zhao-Bing; Zhao Yan

    2012-01-01

    The networked synchronization problem of a class of master-slave chaotic systems with time-varying communication topologies is investigated in this paper. Based on algebraic graph theory and matrix theory, a simple linear state feedback controller is designed to synchronize the master chaotic system and the slave chaotic systems with a time-varying communication topology connection. The exponential stability of the closed-loop networked synchronization error system is guaranteed by applying Lyapunov stability theory. The derived novel criteria are in the form of linear matrix inequalities (LMIs), which are easy to examine and tremendously reduce the computation burden from the feedback matrices. This paper provides an alternative networked secure communication scheme which can be extended conveniently. An illustrative example is given to demonstrate the effectiveness of the proposed networked synchronization method. (general)

  17. Vibratory synchronization transmission of a cylindrical roller in a vibrating mechanical system excited by two exciters

    Science.gov (United States)

    Zhang, Xueliang; Wen, Bangchun; Zhao, Chunyu

    2017-11-01

    In present work vibratory synchronization transmission (VST) of a cylindrical roller with dry friction in a vibrating mechanical system excited by two exciters, is studied. Using the average method, the criterion of implementing synchronization of two exciters and that of ensuring VST of a roller, are achieved. The criterion of stability of the synchronous states satisfies the Routh-Hurwitz principle. The influences of the structural parameters of the system to synchronization and stability, are discussed numerically, which can be served as the theoretical foundation for engineering designs. An experiment is carried out, which approximately verify the validity of the theoretical and numerical results, as well as the feasibility of the method used. Utilizing the VST theory of a roller, some types of vibrating crushing or grinding equipments, etc., can be designed.

  18. Synchronization criterion for Lur'e type complex dynamical networks with time-varying delay

    International Nuclear Information System (INIS)

    Ji, D.H.; Park, Ju H.; Yoo, W.J.; Won, S.C.; Lee, S.M.

    2010-01-01

    In this Letter, the synchronization problem for a class of complex dynamical networks in which every identical node is a Lur'e system with time-varying delay is considered. A delay-dependent synchronization criterion is derived for the synchronization of complex dynamical network that represented by Lur'e system with sector restricted nonlinearities. The derived criterion is a sufficient condition for absolute stability of error dynamics between the each nodes and the isolated node. Using a convex representation of the nonlinearity for error dynamics, the stability condition based on the discretized Lyapunov-Krasovskii functional is obtained via LMI formulation. The proposed delay-dependent synchronization criterion is less conservative than the existing ones. The effectiveness of our work is verified through numerical examples.

  19. Linear Synchronous Motor Repeatability Tests

    International Nuclear Information System (INIS)

    Ward, C.R.

    2002-01-01

    A cart system using linear synchronous motors was being considered for the Plutonium Immobilization Plant (PIP). One of the applications in the PIP was the movement of a stack of furnace trays, filled with the waste form (pucks) from a stacking/unstacking station to several bottom loaded furnaces. A system was ordered to perform this function in the PIP Ceramic Prototype Test Facility (CPTF). This system was installed and started up in SRTC prior to being installed in the CPTF. The PIP was suspended and then canceled after the linear synchronous motor system was started up. This system was used to determine repeatability of a linear synchronous motor cart system for the Modern Pit Facility

  20. Chaos anti-synchronization of two non-identical chaotic systems with known or fully unknown parameters

    International Nuclear Information System (INIS)

    Al-Sawalha, Ayman

    2009-01-01

    This work is devoted to investigating the anti-synchronization between two novel different chaotic systems. Two different anti-synchronization methods are proposed. Active control is applied when system parameters are known and adaptive control is employed when system parameters are uncertain or unknown. Controllers and update laws of parameters are designed based on Lyapunov stability theory. In both cases, sufficient conditions for the anti-synchronization are obtained analytically. Finally, a numerical simulations is presented to show the effectiveness of the proposed chaos anti-synchronization schemes.

  1. A synchronous game for binary constraint systems

    Science.gov (United States)

    Kim, Se-Jin; Paulsen, Vern; Schafhauser, Christopher

    2018-03-01

    Recently, Slofstra proved that the set of quantum correlations is not closed. We prove that the set of synchronous quantum correlations is not closed, which implies his result, by giving an example of a synchronous game that has a perfect quantum approximate strategy but no perfect quantum strategy. We also exhibit a graph for which the quantum independence number and the quantum approximate independence number are different. We prove new characterisations of synchronous quantum approximate correlations and synchronous quantum spatial correlations. We solve the synchronous approximation problem of Dykema and the second author, which yields a new equivalence of Connes' embedding problem in terms of synchronous correlations.

  2. Control of non-conventional synchronous motors

    CERN Document Server

    Louis, Jean-Paul

    2013-01-01

    Classical synchronous motors are the most effective device to drive industrial production systems and robots with precision and rapidity. However, numerous applications require efficient controls in non-conventional situations. Firstly, this is the case with synchronous motors supplied by thyristor line-commutated inverters, or with synchronous motors with faults on one or several phases. Secondly, many drive systems use non-conventional motors such as polyphase (more than three phases) synchronous motors, synchronous motors with double excitation, permanent magnet linear synchronous motors,

  3. Simulating synchronization in neuronal networks

    Science.gov (United States)

    Fink, Christian G.

    2016-06-01

    We discuss several techniques used in simulating neuronal networks by exploring how a network's connectivity structure affects its propensity for synchronous spiking. Network connectivity is generated using the Watts-Strogatz small-world algorithm, and two key measures of network structure are described. These measures quantify structural characteristics that influence collective neuronal spiking, which is simulated using the leaky integrate-and-fire model. Simulations show that adding a small number of random connections to an otherwise lattice-like connectivity structure leads to a dramatic increase in neuronal synchronization.

  4. Synchronous-flux-generator (SFG)

    Energy Technology Data Exchange (ETDEWEB)

    Zweygbergk, S.V.; Ljungstroem, O. (ed.)

    1976-01-01

    The synchronous machine is the most common rotating electric machine for producing electric energy in a large scale, but it is also used for other purposes. One well known everyday example is its use as driving motor in the electric synchronous clock. One has in this connection made full use of one of the main qualities of this kind of machine--its rotating speed is bound to the frequency of the feeding voltage, either if it is working as a motor or as a generator. Characteristics are discussed.

  5. Modular approach for satellite communication ground terminals

    Science.gov (United States)

    Gould, G. R.

    1984-01-01

    The trend in satellite communications is toward completely digital, time division multiple access (TDMA) systems with uplink and downlink data rates dictated by the type of service offered. Trunking terminals will operate in the 550 MBPS (megabit per second) region uplink and downlink, whereas customer premise service (CPS) terminals will operate in the 25 to 10 MBPS region uplink and in the 200 MBPS region downlink. Additional criteria for the ground terminals will be to maintain clock sychronization with the system and burst time integrity to within a matter of nanoseconds, to process required order-fire information, to provide adaptive data scrambing, and to compensate for variations in the user input output data rates, and for changes in range in the satellite communications links resulting from satellite perturbations in orbit. To achieve the required adaptability of a ground terminal to the above mentioned variables, programmable building blocks can be developed that will meet all of these requirements. To maintain system synchronization, i.e., all bursted data arriving at the satellite within assigned TDMA windows, ground terminal transmit data rates and burst timing must be maintained within tight tolerances. With a programmable synchronizer as the heart of the terminal timing generation, variable data rates and burst timing tolerances are achievable. In essence, the unit inputs microprocessor generated timing words and outputs discrete timing pulses.

  6. Synchronization and symmetry-breaking bifurcations in constructive networks of coupled chaotic oscillators

    International Nuclear Information System (INIS)

    Jiang Yu; Lozada-Cassou, M.; Vinet, A.

    2003-01-01

    The spatiotemporal dynamics of networks based on a ring of coupled oscillators with regular shortcuts beyond the nearest-neighbor couplings is studied by using master stability equations and numerical simulations. The generic criterion for dynamic synchronization has been extended to arbitrary network topologies with zero row-sum. The symmetry-breaking oscillation patterns that resulted from the Hopf bifurcation from synchronous states are analyzed by the symmetry group theory

  7. Control and Synchronization of the Fractional-Order Lorenz Chaotic System via Fractional-Order Derivative

    Directory of Open Access Journals (Sweden)

    Ping Zhou

    2012-01-01

    Full Text Available The unstable equilibrium points of the fractional-order Lorenz chaotic system can be controlled via fractional-order derivative, and chaos synchronization for the fractional-order Lorenz chaotic system can be achieved via fractional-order derivative. The control and synchronization technique, based on stability theory of fractional-order systems, is simple and theoretically rigorous. The numerical simulations demonstrate the validity and feasibility of the proposed method.

  8. Chaos synchronization and parameter identification of three time scales brushless DC motor system

    International Nuclear Information System (INIS)

    Ge, Z.-M.; Cheng, J.-W.

    2005-01-01

    Chaotic anticontrol and chaos synchronization of brushless DC motor system are studied in this paper. Nondimensional dynamic equations of three time scale brushless DC motor system are presented. Using numerical results, such as phase diagram, bifurcation diagram, and Lyapunov exponent, periodic and chaotic motions can be observed. Then, chaos synchronization of two identical systems via additional inputs and Lyapunov stability theory are studied. And further, the parameter of the system is traced via adaptive control and random optimization method

  9. Multivariable PD controller design for fast chaos synchronization of Lur'e systems

    International Nuclear Information System (INIS)

    Wen, Guilin; Wang, Qing-Guo; He, Yong; Ye, Zhen

    2007-01-01

    In this Letter, a strategy for fast master-slave synchronization is proposed for Lur'e systems under PD control based on the free-weighting matrix approach and the S-procedure. The purpose of the derivative action is to improve the closed-loop stability and speed synchronization response. The proposed strategy covers the existing result for the proportional control alone as a special case. This approach is illustrated by the Chua's chaotic circuit system

  10. Adaptive function projective synchronization of two-cell Quantum-CNN chaotic oscillators with uncertain parameters

    International Nuclear Information System (INIS)

    Sudheer, K. Sebastian; Sabir, M.

    2009-01-01

    This work investigates function projective synchronization of two-cell Quantum-CNN chaotic oscillators using adaptive method. Quantum-CNN oscillators produce nano scale chaotic oscillations under certain conditions. By Lyapunove stability theory, the adaptive control law and the parameter update law are derived to make the state of two chaotic systems function projective synchronized. Numerical simulations are presented to demonstrate the effectiveness of the proposed adaptive controllers.

  11. Finite-time synchronization of Lorenz chaotic systems: theory and circuits

    International Nuclear Information System (INIS)

    Louodop, Patrick; Fotsin, Hilaire; Kountchou, Michaux; Bowong, Samuel

    2013-01-01

    This paper addresses the problem of finite-time master–slave synchronization of Lorenz chaotic systems from a control theoretic point of view. We propose a family of feedback couplings which accomplish the synchronization of Lorenz chaotic systems based on Lyapunov stability theory. These feedback couplings are based on non-periodic functions. A finite horizon can be arbitrarily established by ensuring that chaos synchronization is achieved at established time. An advantage is that some of the proposed feedback couplings are simple and easy to implement. Both mathematical investigations and numerical simulations followed by a Pspice experiment are presented to show the feasibility of the proposed method. (paper)

  12. Exponential synchronization of two nonlinearly non-delayed and delayed coupled complex dynamical networks

    International Nuclear Information System (INIS)

    Zheng Song

    2012-01-01

    In this paper, the exponential synchronization between two nonlinearly coupled complex networks with non-delayed and delayed coupling is investigated with Lyapunov-Krasovskii-type functionals. Based on the stability analysis of the impulsive differential equation and the linear matrix inequality, sufficient delay-dependent conditions for exponential synchronization are derived, and a linear impulsive controller and simple updated laws are also designed. Furthermore, the coupling matrices need not be symmetric or irreducible. Numerical examples are presented to verify the effectiveness and correctness of the synchronization criteria obtained.

  13. Synchronization of a coupled Hodgkin-Huxley neurons via high order sliding-mode feedback

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar-Lopez, R. [Division de Ciencias Basicas e Ingenieria, Universidad Autonoma Metropolitana, Av. San Pablo No. 180, Reynosa-Tamaulipas, 02200 Azcapotzalco, Mexico, D.F. (Mexico)], E-mail: raguilar@correo.azc.uam.mx; Martinez-Guerra, R. [Departamento de Control Automatico, CINVESTAV-IPN, Apartado Postal 14-740, Mexico, D.F. C.P. 07360 (Mexico)], E-mail: rguerra@ctrl.cinvestav.mx

    2008-07-15

    This work deals with the synchronizations of two both coupled Hodgkin-Huxley (H-H) neurons, where the master neuron posses inner noise and the slave neuron is considered in a resting state, (without inner noise) and an exciting state (with inner noise). The synchronization procedure is done via a feedback control, considering a class of high order sliding-mode controller which provides chattering reduction and finite time synchronization convergence, with a satisfactory performance. Theoretical analysis is done in order to show the closed-loop stability of the proposed controller and the calculated finite time for convergence. The main results are illustrated via numerical experiments.

  14. Control of chaotic oscillators via a class of model free active controller: Suppresion and synchronization

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar-Lopez, Ricardo [Division de Ciencias Basicas e Ingenieria, Universidad Autonoma Metropolitana, Av. San Pablo No. 180, Reynosa-Tamaulipas, 02200, Azcapotzalco, Mexico D.F. (Mexico)], E-mail: raguilar@correo.azc.uam.mx; Martinez-Guerra, Rafael [Departamento de Control Automatico, CINVESTAV-IPN, Apartado Postal 14-740, 07360 Mexico D.F. (Mexico)], E-mail: rguerra@ctrl.cinvestav.mx

    2008-10-15

    The goal of this work is related with the control of chaotic oscillators for chaos suppression and synchronization purposes. The proposed methodology is related with a class of robust active control (RAC) law, where the stabilizing part of the control structure is related with an integral high order sliding-mode and proportional form of the so-called control error. The proposed controller is applied to chaos suppression, synchronization and anti-synchronization tasks for nonlinear oscillators with different order and structure. Numerical experiments illustrate the satisfactory performance of the proposed methodology, when it is applied to Duffing and Chen oscillators.

  15. Synchronization of a coupled Hodgkin-Huxley neurons via high order sliding-mode feedback

    International Nuclear Information System (INIS)

    Aguilar-Lopez, R.; Martinez-Guerra, R.

    2008-01-01

    This work deals with the synchronizations of two both coupled Hodgkin-Huxley (H-H) neurons, where the master neuron posses inner noise and the slave neuron is considered in a resting state, (without inner noise) and an exciting state (with inner noise). The synchronization procedure is done via a feedback control, considering a class of high order sliding-mode controller which provides chattering reduction and finite time synchronization convergence, with a satisfactory performance. Theoretical analysis is done in order to show the closed-loop stability of the proposed controller and the calculated finite time for convergence. The main results are illustrated via numerical experiments

  16. Control of chaotic oscillators via a class of model free active controller: Suppresion and synchronization

    International Nuclear Information System (INIS)

    Aguilar-Lopez, Ricardo; Martinez-Guerra, Rafael

    2008-01-01

    The goal of this work is related with the control of chaotic oscillators for chaos suppression and synchronization purposes. The proposed methodology is related with a class of robust active control (RAC) law, where the stabilizing part of the control structure is related with an integral high order sliding-mode and proportional form of the so-called control error. The proposed controller is applied to chaos suppression, synchronization and anti-synchronization tasks for nonlinear oscillators with different order and structure. Numerical experiments illustrate the satisfactory performance of the proposed methodology, when it is applied to Duffing and Chen oscillators

  17. From lag synchronization to pattern formation in one-dimensional open flow models

    International Nuclear Information System (INIS)

    Liu Zengrong; Luo Jigui

    2006-01-01

    In this paper, the relation between synchronization and pattern formation in one-dimensional discrete and continuous open flow models is investigated in detail. Firstly a sufficient condition for globally asymptotical stability of lag/anticipating synchronization among lattices of these models is proved by analytic method. Then, by analyzing and simulating lag/anticipating synchronization in discrete case, three kinds of pattern of wave (it is called wave pattern) travelling in the lattices are discovered. Finally, a proper definition for these kinds of pattern is proposed

  18. Impulsive synchronization of Roessler systems with parameter driven by an external signal

    International Nuclear Information System (INIS)

    Zhang Rong; Hu Manfeng; Xu Zhenyuan

    2007-01-01

    In this Letter, an impulsive control scheme is presented to control two uncoupled identical Roessler systems. By driving the parameter of Roessler systems using external chaotic signal or periodic signal, chaotic synchronization and periodic synchronization can be implemented. This is a special impulsive control, but by using the existing results of impulsive control theory, a less conservative estimation of the upper bound of the impulse interval is given, which can guarantee the global asymptotical stability for the impulsive synchronization of Roessler systems. Numerical results are in accord with our estimation

  19. Lag Synchronization Between Two Coupled Networks via Open-Plus-Closed-Loop and Adaptive Controls

    International Nuclear Information System (INIS)

    Tong-Chun Hu; Yong-Qing Wu; Shi-Xing Li

    2016-01-01

    In this paper, we study lag synchronization between two coupled networks and apply two types of control schemes, including the open-plus-closed-loop (OPCL) and adaptive controls. We then design the corresponding control algorithms according to the OPCL and adaptive feedback schemes. With the designed controllers, we obtain two theorems on the lag synchronization based on Lyapunov stability theory and Barbalat's lemma. Finally we provide numerical examples to show the effectiveness of the obtained controllers and see that the adaptive control is stronger than the OPCL control when realizing the lag synchronization between two coupled networks with different coupling structures. (paper)

  20. Adaptive Synchronization of Chaotic Systems considering Performance Parameters of Operational Amplifiers

    Directory of Open Access Journals (Sweden)

    Sergio Ruíz-Hernández

    2015-01-01

    Full Text Available This paper addresses an adaptive control approach for synchronizing two chaotic oscillators with saturated nonlinear function series as nonlinear functions. Mathematical models to characterize the behavior of the transmitter and receiver circuit were derived, including in the latter the adaptive control and taking into account, for both chaotic oscillators, the most influential performance parameters associated with operational amplifiers. Asymptotic stability of the full synchronization system is studied by using Lyapunov direct method. Theoretical derivations and related results are experimentally validated through implementations from commercially available devices. Finally, the full synchronization system can easily be reproducible at a low cost.

  1. Adaptive observer based synchronization of a class of uncertain chaotic systems

    International Nuclear Information System (INIS)

    Bowong, S.; Yamapi, R.

    2005-05-01

    This study addresses the adaptive synchronization of a class of uncertain chaotic systems in the drive-response framework. For a class of uncertain chaotic systems with unknown parameters and external disturbances, a robust adaptive observer based response system is constructed to synchronize the uncertain chaotic system. Lyapunov stability theory and Barbalat lemma ensure the global synchronization between the drive and response systems even if Lipschitz constants on function matrices and bounds on uncertainties are unknown. Numerical simulation of the Genesio-Tesi system verifies the effectiveness of the proposed method. (author)

  2. Generalized Combination Complex Synchronization for Fractional-Order Chaotic Complex Systems

    Directory of Open Access Journals (Sweden)

    Cuimei Jiang

    2015-07-01

    Full Text Available Based on two fractional-order chaotic complex drive systems and one fractional-order chaotic complex response system with different dimensions, we propose generalized combination complex synchronization. In this new synchronization scheme, there are two complex scaling matrices that are non-square matrices. On the basis of the stability theory of fractional-order linear systems, we design a general controller via active control. Additionally, by virtue of two complex scaling matrices, generalized combination complex synchronization between fractional-order chaotic complex systems and real systems is investigated. Finally, three typical examples are given to demonstrate the effectiveness and feasibility of the schemes.

  3. Projective Synchronization in Modulated Time-Delayed Chaotic Systems Using an Active Control Approach

    International Nuclear Information System (INIS)

    Feng Cun-Fang; Wang Ying-Hai

    2011-01-01

    Projective synchronization in modulated time-delayed systems is studied by applying an active control method. Based on the Lyapunov asymptotical stability theorem, the controller and sufficient condition for projective synchronization are calculated analytically. We give a general method with which we can achieve projective synchronization in modulated time-delayed chaotic systems. This method allows us to adjust the desired scaling factor arbitrarily. The effectiveness of our method is confirmed by using the famous delay-differential equations related to optical bistable or hybrid optical bistable devices. Numerical simulations fully support the analytical approach. (general)

  4. Projective Synchronization of Chaotic Discrete Dynamical Systems via Linear State Error Feedback Control

    Directory of Open Access Journals (Sweden)

    Baogui Xin

    2015-04-01

    Full Text Available A projective synchronization scheme for a kind of n-dimensional discrete dynamical system is proposed by means of a linear feedback control technique. The scheme consists of master and slave discrete dynamical systems coupled by linear state error variables. A kind of novel 3-D chaotic discrete system is constructed, to which the test for chaos is applied. By using the stability principles of an upper or lower triangular matrix, two controllers for achieving projective synchronization are designed and illustrated with the novel systems. Lastly some numerical simulations are employed to validate the effectiveness of the proposed projective synchronization scheme.

  5. Complete synchronization of uncertain chaotic systems via a single proportional adaptive controller: A comparative study

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Israr, E-mail: iak-2000plus@yahoo.com; Saaban, Azizan Bin, E-mail: azizan.s@uum.edu.my; Ibrahim, Adyda Binti, E-mail: adyda@uum.edu.my [School of Quantitative Sciences, College of Arts & Sciences, UUM (Malaysia); Shahzad, Mohammad, E-mail: dmsinfinite@gmail.com [College of Applied Sciences Nizwa, Ministry of Higher Education, Sultanate of Oman (Oman)

    2015-12-11

    This paper addresses a comparative computational study on the synchronization quality, cost and converging speed for two pairs of identical chaotic and hyperchaotic systems with unknown time-varying parameters. It is assumed that the unknown time-varying parameters are bounded. Based on the Lyapunov stability theory and using the adaptive control method, a single proportional controller is proposed to achieve the goal of complete synchronizations. Accordingly, appropriate adaptive laws are designed to identify the unknown time-varying parameters. The designed control strategy is easy to implement in practice. Numerical simulations results are provided to verify the effectiveness of the proposed synchronization scheme.

  6. Global synchronization criteria with channel time-delay for chaotic time-delay system

    International Nuclear Information System (INIS)

    Sun Jitao

    2004-01-01

    Based on the Lyapunov stabilization theory, matrix measure, and linear matrix inequality (LMIs), this paper studies the chaos synchronization of time-delay system using the unidirectional linear error feedback coupling with time-delay. Some generic conditions of chaos synchronization with time-delay in the transmission channel is established. The chaotic Chua's circuit is used for illustration, where the coupling parameters are determined according to the criteria under which the global chaos synchronization of the time-delay coupled systems is achieved

  7. An approach of partial control design for system control and synchronization

    International Nuclear Information System (INIS)

    Hu Wuhua; Wang Jiang; Li Xiumin

    2009-01-01

    In this paper, a general approach of partial control design for system control and synchronization is proposed. It turns control problems into simpler ones by reducing their control variables. This is realized by utilizing the dynamical relations between variables, which are described by the dynamical relation matrix and the dependence-influence matrix. By adopting partial control theory, the presented approach provides a simple and general way to stabilize systems to their partial or whole equilibriums, or to synchronize systems with their partial or whole states. Further, based on this approach, the controllers can be simplified. Two examples of synchronizing chaotic systems are given to illustrate its effectiveness.

  8. Adaptive synchronization of fractional Lorenz systems using a reduced number of control signals and parameters

    International Nuclear Information System (INIS)

    Aguila-Camacho, Norelys; Duarte-Mermoud, Manuel A.; Delgado-Aguilera, Efredy

    2016-01-01

    This paper analyzes the synchronization of two fractional Lorenz systems in two cases: the first one considering fractional Lorenz systems with unknown parameters, and the second one considering known upper bounds on some of the fractional Lorenz systems parameters. The proposed control strategies use a reduced number of control signals and control parameters, employing mild assumptions. The stability of the synchronization errors is analytically demonstrated in all cases, and the convergence to zero of the synchronization errors is analytically proved in the case when the upper bounds on some system parameters are assumed to be known. Simulation studies are presented, which allows verifying the effectiveness of the proposed control strategies.

  9. On the synchronization of neural networks containing time-varying delays and sector nonlinearity

    International Nuclear Information System (INIS)

    Yan, J.-J.; Lin, J.-S.; Hung, M.-L.; Liao, T.-L.

    2007-01-01

    We present a systematic design procedure for synchronization of neural networks subject to time-varying delays and sector nonlinearity in the control input. Based on the drive-response concept and the Lyapunov stability theorem, a memoryless decentralized control law is proposed which guarantees exponential synchronization even when input nonlinearity is present. The supplementary requirement that the time-derivative of time-varying delays must be smaller than one is released for the proposed control scheme. A four-dimensional Hopfield neural network with time-varying delays is presented as the illustrative example to demonstrate the effectiveness of the proposed synchronization scheme

  10. Adaptive fuzzy bilinear observer based synchronization design for generalized Lorenz system

    International Nuclear Information System (INIS)

    Baek, Jaeho; Lee, Heejin; Kim, Seungwoo; Park, Mignon

    2009-01-01

    This Letter proposes an adaptive fuzzy bilinear observer (FBO) based synchronization design for generalized Lorenz system (GLS). The GLS can be described to TS fuzzy bilinear generalized Lorenz model (FBGLM) with their states immeasurable and their parameters unknown. We design an adaptive FBO based on TS FBGLM for synchronization. Lyapunov theory is employed to guarantee the stability of error dynamic system via linear matrix equalities (LMIs) and to derive the adaptive laws to estimate unknown parameters. Numerical example is given to demonstrate the validity of our proposed adaptive FBO approach for synchronization.

  11. Synchronization controller design of HIRFL-CSR based on ACEX1K50

    International Nuclear Information System (INIS)

    Li Guihua; Qiao Weimin; Jing Lan

    2011-01-01

    The synchronization controller is the core component of Lanzhou HIRFL-CSR synchronous system. As the highest instruction unit and timing unit of HIRFL-CSR control system, it directs the entire system to do the proper thing at the proper time and requires the timing accuracy of nanosecond and very high stability of running. The methods of realizing the main function modules of synchronization processor and the key technologies by using hardware description language (VHDL) on ACEX1K50 chip were introduced. The test results and the actual applications were given. (authors)

  12. Impulsive control of permanent magnet synchronous motors with parameters uncertainties

    International Nuclear Information System (INIS)

    Li Dong; Zhang Xiaohong; Wang Shilong; Yan Dan; Wang Hui

    2008-01-01

    The permanent magnet synchronous motors (PMSMs) may have chaotic behaviours for the uncertain values of parameters or under certain working conditions, which threatens the secure and stable operation of motor-driven. It is important to study methods of controlling or suppressing chaos in PMSMs. In this paper, robust stabilities of PMSM with parameter uncertainties are investigated. After the uncertain matrices which represent the variable system parameters are formulated through matrix analysis, a novel asymptotical stability criterion is established. Some illustrated examples are also given to show the effectiveness of the obtained results

  13. A combined video and synchronous VSAT data network

    Science.gov (United States)

    Rowse, William

    Private Satellite Network currently operates Business Television networks for Fortune 500 companies. Several of these satellite-based networks, using VSAT technology, are combining the transmission of video with the broadcast of one-way data. This is made possible by use of the PSN Business Television Terminal which incorporates Scientific Atlanta's B-MAC system. In addition to providing high quality video, B-MAC can provide six channels of 204.5 kbs audio. Four of the six channels may be used to directly carry up to 19.2 kbs of asynchronous data or up to 56 kbs of synchronous data using circuitry jointly developed by PSN and Scientific Atlanta. The approach PSN has taken to provide one network customer in the financial industry with both video and broadcast data is described herein.

  14. Pinning Synchronization of Switched Complex Dynamical Networks

    Directory of Open Access Journals (Sweden)

    Liming Du

    2015-01-01

    Full Text Available Network topology and node dynamics play a key role in forming synchronization of complex networks. Unfortunately there is no effective synchronization criterion for pinning synchronization of complex dynamical networks with switching topology. In this paper, pinning synchronization of complex dynamical networks with switching topology is studied. Two basic problems are considered: one is pinning synchronization of switched complex networks under arbitrary switching; the other is pinning synchronization of switched complex networks by design of switching when synchronization cannot achieved by using any individual connection topology alone. For the two problems, common Lyapunov function method and single Lyapunov function method are used respectively, some global synchronization criteria are proposed and the designed switching law is given. Finally, simulation results verify the validity of the results.

  15. Fermi Timing and Synchronization System

    International Nuclear Information System (INIS)

    Wilcox, R.; Staples, J.; Doolittle, L.; Byrd, J.; Ratti, A.; Kaertner, F.X.; Kim, J.; Chen, J.; Ilday, F.O.; Ludwig, F.; Winter, A.; Ferianis, M.; Danailov, M.; D'Auria, G.

    2006-01-01

    The Fermi FEL will depend critically on precise timing of its RF, laser and diagnostic subsystems. The timing subsystem to coordinate these functions will need to reliably maintain sub-100fs synchronicity between distant points up to 300m apart in the Fermi facility. The technology to do this is not commercially available, and has not been experimentally demonstrated in a working facility. Therefore, new technology must be developed to meet these needs. Two approaches have been researched by different groups working with the Fermi staff. At MIT, a pulse transmission scheme has been developed for synchronization of RF and laser devices. And at LBL, a CW transmission scheme has been developed for RF and laser synchronization. These respective schemes have advantages and disadvantages that will become better understood in coming years. This document presents the work done by both teams, and suggests a possible system design which integrates them both. The integrated system design provides an example of how choices can be made between the different approaches without significantly changing the basic infrastructure of the system. Overall system issues common to any synchronization scheme are also discussed

  16. Epidemic Synchronization in Robotic Swarms

    DEFF Research Database (Denmark)

    Schiøler, Henrik; Nielsen, Jens Frederik Dalsgaard; Ngo, Trung Dung

    2009-01-01

    Clock synchronization in swarms of networked mobile robots is studied in a probabilistic, epidemic framework. In this setting communication and synchonization is considered to be a randomized process, taking place at unplanned instants of geographical rendezvous between robots. In combination...... as an infinite-dimensional optimal controlproblem. Illustrative numerical examples are given and commented....

  17. Fermi Timing and Synchronization System

    Energy Technology Data Exchange (ETDEWEB)

    Wilcox, R.; Staples, J.; Doolittle, L.; Byrd, J.; Ratti, A.; Kaertner, F.X.; Kim, J.; Chen, J.; Ilday, F.O.; Ludwig, F.; Winter, A.; Ferianis, M.; Danailov, M.; D' Auria, G.

    2006-07-19

    The Fermi FEL will depend critically on precise timing of its RF, laser and diagnostic subsystems. The timing subsystem to coordinate these functions will need to reliably maintain sub-100fs synchronicity between distant points up to 300m apart in the Fermi facility. The technology to do this is not commercially available, and has not been experimentally demonstrated in a working facility. Therefore, new technology must be developed to meet these needs. Two approaches have been researched by different groups working with the Fermi staff. At MIT, a pulse transmission scheme has been developed for synchronization of RF and laser devices. And at LBL, a CW transmission scheme has been developed for RF and laser synchronization. These respective schemes have advantages and disadvantages that will become better understood in coming years. This document presents the work done by both teams, and suggests a possible system design which integrates them both. The integrated system design provides an example of how choices can be made between the different approaches without significantly changing the basic infrastructure of the system. Overall system issues common to any synchronization scheme are also discussed.

  18. Main injector synchronous timing system

    International Nuclear Information System (INIS)

    Blokland, W.; Steimel, J.

    1998-01-01

    The Synchronous Timing System is designed to provide sub-nanosecond timing to instrumentation during the acceleration of particles in the Main Injector. Increased energy of the beam particles leads to a small but significant increase in speed, reducing the time it takes to complete a full turn of the ring by 61 nanoseconds (or more than 3 rf buckets). In contrast, the reference signal, used to trigger instrumentation and transmitted over a cable, has a constant group delay. This difference leads to a phase slip during the ramp and prevents instrumentation such as dampers from properly operating without additional measures. The Synchronous Timing System corrects for this phase slip as well as signal propagation time changes due to temperature variations. A module at the LLRF system uses a 1.2 Gbit/s G-Link chip to transmit the rf clock and digital data (e.g. the current frequency) over a single mode fiber around the ring. Fiber optic couplers at service buildings split off part of this signal for a local module which reconstructs a synchronous beam reference signal. This paper describes the background, design and expected performance of the Synchronous Timing System. copyright 1998 American Institute of Physics

  19. Main injector synchronous timing system

    International Nuclear Information System (INIS)

    Blokland, Willem; Steimel, James

    1998-01-01

    The Synchronous Timing System is designed to provide sub-nanosecond timing to instrumentation during the acceleration of particles in the Main Injector. Increased energy of the beam particles leads to a small but significant increase in speed, reducing the time it takes to complete a full turn of the ring by 61 nanoseconds (or more than 3 rf buckets). In contrast, the reference signal, used to trigger instrumentation and transmitted over a cable, has a constant group delay. This difference leads to a phase slip during the ramp and prevents instrumentation such as dampers from properly operating without additional measures. The Synchronous Timing System corrects for this phase slip as well as signal propagation time changes due to temperature variations. A module at the LLRF system uses a 1.2 Gbit/s G-Link chip to transmit the rf clock and digital data (e.g. the current frequency) over a single mode fiber around the ring. Fiber optic couplers at service buildings split off part of this signal for a local module which reconstructs a synchronous beam reference signal. This paper describes the background, design and expected performance of the Synchronous Timing System

  20. Generalized synchronization via impulsive control

    International Nuclear Information System (INIS)

    Zhang Rong; Xu Zhenyuan; Yang, Simon X.; He Xueming

    2008-01-01

    This paper demonstrates theoretically that two completely different systems can implement GS via impulsive control, moreover by using impulsive control, for a given manifold y = H(x) we construct a response system to achieve GS with drive system and the synchronization manifold is y = H(x). Our theoretical results are supported by numerical examples

  1. Learning through synchronous electronic discussion

    NARCIS (Netherlands)

    Kanselaar, G.; Veerman, A.L.; Andriessen, J.E.B.

    2000-01-01

    This article reports a study examining university student pairs carrying out an electronic discussion task in a synchronous computer mediated communication (CMC) system (NetMeeting). The purpose of the assignment was to raise students' awareness concerning conceptions that characterise effective

  2. Epidemic Synchronization in Robotic Swarms

    DEFF Research Database (Denmark)

    Schiøler, Henrik; Nielsen, Jens Frederik Dalsgaard; Ngo, Trung Dung

    2009-01-01

    Clock synchronization in swarms of networked mobile robots is studied in a probabilistic, epidemic framework. In this setting communication and synchonization is considered to be a randomized process, taking place at unplanned instants of geographical rendezvous between robots. In combination wit...

  3. Digital device for synchronous storage

    International Nuclear Information System (INIS)

    Kobzar', Yu.M.; Kovtun, V.G.; Pashechko, N.I.

    1991-01-01

    Synchronous storage digital device for IR electron-photon emission spectrometer operating with analogue-to-digital converter F4223 or monocrystal converter K572PV1 is described. The device accomplished deduction of noise-background in each storage cycle. Summation and deduction operational time equals 90 ns, device output code discharge - 20, number of storages -2 23

  4. Neural synchronization via potassium signaling

    DEFF Research Database (Denmark)

    Postnov, Dmitry E; Ryazanova, Ludmila S; Mosekilde, Erik

    2006-01-01

    Using a relatively simple model we examine how variations of the extracellular potassium concentration can give rise to synchronization of two nearby pacemaker cells. With the volume of the extracellular space and the rate of potassium diffusion as control parameters, the dual nature of this reso...

  5. Anti-synchronization of chaotic oscillators

    International Nuclear Information System (INIS)

    Kim, Chil-Min; Rim, Sunghwan; Kye, Won-Ho; Ryu, Jung-Wan; Park, Young-Jai

    2003-01-01

    We have observed anti-synchronization phenomena in coupled identical chaotic oscillators. Anti-synchronization can be characterized by the vanishing of the sum of relevant variables. We have qualitatively analyzed its base mechanism by using the dynamics of the difference and the sum of the relevant variables in coupled chaotic oscillators. Near the threshold of the synchronization and anti-synchronization transition, we have obtained the novel characteristic relation

  6. Robust synchronization of chaotic systems via feedback

    Energy Technology Data Exchange (ETDEWEB)

    Femat, Ricardo [IPICYT, San Luis Potosi (Mexico). Dept. de Matematicas Aplicadas; Solis-Perales, Gualberto [Universidad de Guadalajara, Centro Univ. de Ciencias Exactas e Ingenierias (Mexico). Div. de Electronica y Computacion

    2008-07-01

    This volume includes the results derived during last ten years about both suppression and synchronization of chaotic -continuous time- systems. Along this time, the concept was to study how the intrinsic properties of dynamical systems can be exploited to suppress and to synchronize the chaotic behaviour and what synchronization phenomena can be found under feedback interconnection. A compilation of these findings is described in this book. This book shows a perspective on synchronization of chaotic systems. (orig.)

  7. Optical Synchronization Systems for Femtosecond X-Ray Sources

    CERN Document Server

    Wilcox, Russell; Staples, John W

    2005-01-01

    In femtosecond pump/probe experiments using short x-ray and optical pulses, precise synchronization must be maintained between widely separated lasers in a synchrotron or FEL facility. We are developing synchronization systems using optical signals for applications requiring different ranges of timing error. For the sub-100fs range we use an amplitude modulated CW laser at 1GHz to transmit RF phase information, and control the delay through a 100m fiber by observing the retroreflected signal. Initial results show 40fs peak-to-peak error above 10Hz, and 200fs long term drift, mainly due to amplitude sensitivity in the analog mixers. For the sub-10fs range we will lock two single-frequency lasers separated by several teraHertz to a master modelocked fiber laser, transmit the two frequencies over fiber, and lock two comb lines of a slave laser to these frequencies, thus synchronizing the two modelocked laser envelopes. For attosecond synchronization we propose a stabilized, free space link using bulk lens wavegu...

  8. The pace of Holocene vegetation change - testing for synchronous developments

    Science.gov (United States)

    Giesecke, Thomas; Bennett, K. D.; Birks, H. John B.; Bjune, Anne E.; Bozilova, Elisaveta; Feurdean, Angelica; Finsinger, Walter; Froyd, Cynthia; Pokorný, Petr; Rösch, Manfred; Seppä, Heikki; Tonkov, Spasimir; Valsecchi, Verushka; Wolters, Steffen

    2011-09-01

    Mid to high latitude forest ecosystems have undergone several major compositional changes during the Holocene. The temporal and spatial patterns of these vegetation changes hold potential information to their causes and triggers. Here we test the hypothesis that the timing of vegetation change was synchronous on a sub-continental scale, which implies a common trigger or a step-like change in climate parameters. Pollen diagrams from selected European regions were statistically divided into assemblage zones and the temporal pattern of the zone boundaries analysed. The results show that the temporal pattern of vegetation change was significantly different from random. Times of change cluster around 8.2, 4.8, 3.7, and 1.2 ka, while times of higher than average stability were found around 2.1 and 5.1 ka. Compositional changes linked to the expansion of Corylus avellana and Alnus glutinosa centre around 10.6 and 9.5 ka, respectively. A climatic trigger initiating these changes may have occurred 0.5 to 1 ka earlier, respectively. The synchronous expansion of C. avellana and A. glutinosa exemplify that dispersal is not necessarily followed by population expansion. The partly synchronous, partly random expansion of A. glutinosa in adjacent European regions exemplifies that sudden synchronous population expansions are not species specific traits but vary regionally.

  9. Two novel synchronization criterions for a unified chaotic system

    International Nuclear Information System (INIS)

    Tao Chaohai; Xiong Hongxia; Hu Feng

    2006-01-01

    Two novel synchronization criterions are proposed in this paper. It includes drive-response synchronization and adaptive synchronization schemes. Moreover, these synchronization criterions can be applied to a large class of chaotic systems and are very useful for secure communication

  10. 40 CFR 93.128 - Traffic signal synchronization projects.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Traffic signal synchronization... synchronization projects. Traffic signal synchronization projects may be approved, funded, and implemented without... include such regionally significant traffic signal synchronization projects. ...

  11. Synchronization of indirectly coupled Lorenz oscillators

    Indian Academy of Sciences (India)

    Synchronization of indirectly coupled Lorenz oscillators: An experimental study. Amit Sharma Manish Dev Shrimali. Synchronization, Coupled Systems and Networks Volume 77 Issue 5 November 2011 pp 881-889 ... The in-phase and anti-phase synchronization of indirectly coupled chaotic oscillators reported in Phys. Rev ...

  12. Control synchronization of differential mobile robots

    NARCIS (Netherlands)

    Nijmeijer, H.; Rodriguez Angeles, A.; Allgoewer, F.

    2004-01-01

    In this paper a synchronization controller for differential mobile robots is proposed. The synchronization goal is to control the angular position of each wheel to a desired trajectory and at the same time the differential (or synchronization) error between the angular positions of the two wheels.

  13. Chaos synchronization based on contraction principle

    International Nuclear Information System (INIS)

    Wang Junwei; Zhou Tianshou

    2007-01-01

    This paper introduces contraction principle. Based on such a principle, a novel scheme is proposed to synchronize coupled systems with global diffusive coupling. A rigorous sufficient condition on chaos synchronization is derived. As an example, coupled Lorenz systems with nearest-neighbor diffusive coupling are investigated, and numerical simulations are given to validate the proposed synchronization approach

  14. Synchronization of coupled nonidentical multidelay feedback systems

    International Nuclear Information System (INIS)

    Hoang, Thang Manh; Nakagawa, Masahiro

    2007-01-01

    We present the lag synchronization of coupled nonidentical multidelay feedback systems, in which the synchronization signal is the sum of nonlinearly transformed components of delayed state variable. The sufficient condition for synchronization is considered by the Krasovskii-Lyapunov theory. The specific examples will demonstrate and verify the effectiveness of the proposed model

  15. Synchronization and comparison of Lifelog audio recordings

    DEFF Research Database (Denmark)

    Nielsen, Andreas Brinch; Hansen, Lars Kai

    2008-01-01

    as a preprocessing step to select and synchronize recordings before further processing. The two methods perform similarly in classification, but fingerprinting scales better with the number of recordings, while cross-correlation can offer sample resolution synchronization. We propose and investigate the benefits...... of combining the two. In particular we show that the combination allows sample resolution synchronization and scalability....

  16. Geostationary Satellite (GOES) Images

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Visible and Infrared satellite imagery taken from radiometer instruments on SMS (ATS) and GOES satellites in geostationary orbit. These satellites produced...

  17. Adaptive feedback synchronization of Lue system

    International Nuclear Information System (INIS)

    Han, X.; Lu, J.-A.; Wu, X.

    2004-01-01

    This letter further improves and extends the works of Chen and Lue [Chaos, Solitons and Fractals 14 (2002) 643] and Wang et al. [Phys. Lett. A 312 (2003) 34]. In detail, the linear feedback synchronization and adaptive feedback synchronization for Lue system are discussed. And the lower bound of the feedback gain in linear feedback synchronization is presented. The adaptive feedback synchronization with only one controller is designed, which improves the proof in the work by Wang et al. The adaptive synchronization with two controllers for completely uncertain Lue system is also discussed, which extends the work of Chen and Lue. Also, numerical simulations show the effectiveness of these methods

  18. Dynamic synchronization of a time-evolving optical network of chaotic oscillators.

    Science.gov (United States)

    Cohen, Adam B; Ravoori, Bhargava; Sorrentino, Francesco; Murphy, Thomas E; Ott, Edward; Roy, Rajarshi

    2010-12-01

    We present and experimentally demonstrate a technique for achieving and maintaining a global state of identical synchrony of an arbitrary network of chaotic oscillators even when the coupling strengths are unknown and time-varying. At each node an adaptive synchronization algorithm dynamically estimates the current strength of the net coupling signal to that node. We experimentally demonstrate this scheme in a network of three bidirectionally coupled chaotic optoelectronic feedback loops and we present numerical simulations showing its application in larger networks. The stability of the synchronous state for arbitrary coupling topologies is analyzed via a master stability function approach. © 2010 American Institute of Physics.

  19. Projective synchronization of a complex network with different fractional order chaos nodes

    International Nuclear Information System (INIS)

    Wang Ming-Jun; Wang Xing-Yuan; Niu Yu-Jun

    2011-01-01

    Based on the stability theory of the linear fractional order system, projective synchronization of a complex network is studied in the paper, and the coupling functions of the connected nodes are identified. With this method, the projective synchronization of the network with different fractional order chaos nodes can be achieved, besides, the number of the nodes does not affect the stability of the whole network. In the numerical simulations, the chaotic fractional order Lü system, Liu system and Coullet system are chosen as examples to show the effectiveness of the scheme. (general)

  20. Feedback control and adaptive synchronization of chaotic forced Bonhoeffer-van der Pol oscillators

    Energy Technology Data Exchange (ETDEWEB)

    Kontchou, E W Chimi; Fotsin, H B [Laboratoire d' Electronique, Departement de Physique, Faculte des Sciences, Universite de Dschang, B P 67 Dschang (Cameroon); Woafo, P [Laboratory of Modelling and Simulation in Engineering and Biological Physics, Faculty of Science, University of Yaounde I, Box 812, Yaounde (Cameroon)], E-mail: hbfotsin@yahoo.fr

    2008-04-15

    This paper deals with chaos control and synchronization in forced Bonhoeffer-van der Pol (FBVP) oscillators. The state equations of the model are first established and the stability is analysed. A feedback control strategy for stabilizing the chaotic dynamics on a periodic orbit of the phase space is investigated. Adaptive synchronization of two FBVP oscillators, based on parameter estimation and a nonlinear observer approach, is also investigated. It appears that a particular unknown parameter of the model can be estimated, which gives the possibility of recovering information through chaotic masking. An application in secure communications is presented.

  1. Feedback control and adaptive synchronization of chaotic forced Bonhoeffer-van der Pol oscillators

    International Nuclear Information System (INIS)

    Kontchou, E W Chimi; Fotsin, H B; Woafo, P

    2008-01-01

    This paper deals with chaos control and synchronization in forced Bonhoeffer-van der Pol (FBVP) oscillators. The state equations of the model are first established and the stability is analysed. A feedback control strategy for stabilizing the chaotic dynamics on a periodic orbit of the phase space is investigated. Adaptive synchronization of two FBVP oscillators, based on parameter estimation and a nonlinear observer approach, is also investigated. It appears that a particular unknown parameter of the model can be estimated, which gives the possibility of recovering information through chaotic masking. An application in secure communications is presented

  2. Design and Synchronization of Master-Slave Electronic Horizontal Platform System

    Directory of Open Access Journals (Sweden)

    Hang-Hong Kuo

    2012-01-01

    Full Text Available Horizontal platform system (HPS is one of the mechanical systems with rich behavior and has extensively been applied in offshore and earthquake engineering. A corresponding electronic HPS is proposed in this paper to reduce the research cost and time when studying dynamics of the mechanical HPS. Furthermore, an output feedback controller is proposed for global synchronization between coupled electronic HPS systems and its stability condition is also derived by employing the Lyapunov stability theory. The experimental simulations verify the dynamics of the proposed electronic HPS and the synchronization effectiveness of the proposed control scheme.

  3. Satellite Control Laboratory

    DEFF Research Database (Denmark)

    Wisniewski, Rafal; Bak, Thomas

    2001-01-01

    The Satellite Laboratory at the Department of Control Engineering of Aalborg University (SatLab) is a dynamic motion facility designed for analysis and test of micro spacecraft. A unique feature of the laboratory is that it provides a completely gravity-free environment. A test spacecraft...... of the laboratory is to conduct dynamic tests of the control and attitude determination algorithms during nominal operation and in abnormal conditions. Further it is intended to use SatLab for validation of various algorithms for fault detection, accommodation and supervisory control. Different mission objectives...... can be implemented in the laboratory, e.g. three-axis attitude control, slew manoeuvres, spins stabilization using magnetic actuation and/or reaction wheels. The spacecraft attitude can be determined applying magnetometer measurements...

  4. Robust pre-specified time synchronization of chaotic systems by employing time-varying switching surfaces in the sliding mode control scheme

    International Nuclear Information System (INIS)

    Khanzadeh, Alireza; Pourgholi, Mahdi

    2016-01-01

    In the conventional chaos synchronization methods, the time at which two chaotic systems are synchronized, is usually unknown and depends on initial conditions. In this work based on Lyapunov stability theory a sliding mode controller with time-varying switching surfaces is proposed to achieve chaos synchronization at a pre-specified time for the first time. The proposed controller is able to synchronize chaotic systems precisely at any time when we want. Moreover, by choosing the time-varying switching surfaces in a way that the reaching phase is eliminated, the synchronization becomes robust to uncertainties and exogenous disturbances. Simulation results are presented to show the effectiveness of the proposed method of stabilizing and synchronizing chaotic systems with complete robustness to uncertainty and disturbances exactly at a pre-specified time. (paper)

  5. Robust pre-specified time synchronization of chaotic systems by employing time-varying switching surfaces in the sliding mode control scheme

    Science.gov (United States)

    Khanzadeh, Alireza; Pourgholi, Mahdi

    2016-08-01

    In the conventional chaos synchronization methods, the time at which two chaotic systems are synchronized, is usually unknown and depends on initial conditions. In this work based on Lyapunov stability theory a sliding mode controller with time-varying switching surfaces is proposed to achieve chaos synchronization at a pre-specified time for the first time. The proposed controller is able to synchronize chaotic systems precisely at any time when we want. Moreover, by choosing the time-varying switching surfaces in a way that the reaching phase is eliminated, the synchronization becomes robust to uncertainties and exogenous disturbances. Simulation results are presented to show the effectiveness of the proposed method of stabilizing and synchronizing chaotic systems with complete robustness to uncertainty and disturbances exactly at a pre-specified time.

  6. Analysis of remote synchronization in complex networks

    Science.gov (United States)

    Gambuzza, Lucia Valentina; Cardillo, Alessio; Fiasconaro, Alessandro; Fortuna, Luigi; Gómez-Gardeñes, Jesus; Frasca, Mattia

    2013-12-01

    A novel regime of synchronization, called remote synchronization, where the peripheral nodes form a phase synchronized cluster not including the hub, was recently observed in star motifs [Bergner et al., Phys. Rev. E 85, 026208 (2012)]. We show the existence of a more general dynamical state of remote synchronization in arbitrary networks of coupled oscillators. This state is characterized by the synchronization of pairs of nodes that are not directly connected via a physical link or any sequence of synchronized nodes. This phenomenon is almost negligible in networks of phase oscillators as its underlying mechanism is the modulation of the amplitude of those intermediary nodes between the remotely synchronized units. Our findings thus show the ubiquity and robustness of these states and bridge the gap from their recent observation in simple toy graphs to complex networks.

  7. Producing Newborn Synchronous Mammalian Cells

    Science.gov (United States)

    Gonda, Steve R.; Helmstetter, Charles E.; Thornton, Maureen

    2008-01-01

    A method and bioreactor for the continuous production of synchronous (same age) population of mammalian cells have been invented. The invention involves the attachment and growth of cells on an adhesive-coated porous membrane immersed in a perfused liquid culture medium in a microgravity analog bioreactor. When cells attach to the surface divide, newborn cells are released into the flowing culture medium. The released cells, consisting of a uniform population of synchronous cells are then collected from the effluent culture medium. This invention could be of interest to researchers investigating the effects of the geneotoxic effects of the space environment (microgravity, radiation, chemicals, gases) and to pharmaceutical and biotechnology companies involved in research on aging and cancer, and in new drug development and testing.

  8. On-line efficiency optimization of a synchronous reluctance motor

    Energy Technology Data Exchange (ETDEWEB)

    Lubin, Thierry; Razik, Hubert; Rezzoug, Abderrezak [Groupe de Recherche en Electrotechnique et Electronique de Nancy, GREEN, CNRS-UMR 7037, Universite Henri Poincare, BP 239, 54506 Vandoeuvre-les-Nancy Cedex (France)

    2007-04-15

    This paper deals with an on-line optimum-efficiency control of a synchronous reluctance motor drive. The input power minimization control is implemented with a search controller using Fibonacci search algorithm. It searches the optimal reference value of the d-axis stator current for which the input power is minimum. The input power is calculated from the measured dc-bus current and dc-bus voltage of the inverter. A rotor-oriented vector control of the synchronous reluctance machine with the optimization efficiency controller is achieved with a DSP board (TMS302C31). Experimental results are presented to validate the proposed control methods. It is shown that stability problems can appear during the search process. (author)

  9. Optical synchronization system for femtosecond X-ray sources

    Science.gov (United States)

    Wilcox, Russell B [El Cerrito, CA; Holzwarth, Ronald [Munich, DE

    2011-12-13

    Femtosecond pump/probe experiments using short X-Ray and optical pulses require precise synchronization between 100 meter-10 km separated lasers in a various experiments. For stabilization in the hundred femtosecond range a CW laser is amplitude modulated at 1-10 GHz, the signal retroreflected from the far end, and the relative phase used to correct the transit time with various implementations. For the sub-10 fsec range the laser frequency itself is upshifted 55 MHz with an acousto-optical modulator, retroreflected, upshifted again and phase compared at the sending end to a 110 MHz reference. Initial experiments indicate less than 1 fsec timing jitter. To lock lasers in the sub-10 fs range two single-frequency lasers separated by several teraHertz will be lock to a master modelocked fiber laser, transmit the two frequencies over fiber, and lock two comb lines of a slave laser to these frequencies, thus synchronizing the two modelocked laser envelopes.

  10. Adaptative synchronization in multi-output fractional-order complex dynamical networks and secure communications

    Science.gov (United States)

    Mata-Machuca, Juan L.; Aguilar-López, Ricardo

    2018-01-01

    This work deals with the adaptative synchronization of complex dynamical networks with fractional-order nodes and its application in secure communications employing chaotic parameter modulation. The complex network is composed of multiple fractional-order systems with mismatch parameters and the coupling functions are given to realize the network synchronization. We introduce a fractional algebraic synchronizability condition (FASC) and a fractional algebraic identifiability condition (FAIC) which are used to know if the synchronization and parameters estimation problems can be solved. To overcome these problems, an adaptative synchronization methodology is designed; the strategy consists in proposing multiple receiver systems which tend to follow asymptotically the uncertain transmitters systems. The coupling functions and parameters of the receiver systems are adjusted continually according to a convenient sigmoid-like adaptative controller (SLAC), until the measurable output errors converge to zero, hence, synchronization between transmitter and receivers is achieved and message signals are recovered. Indeed, the stability analysis of the synchronization error is based on the fractional Lyapunov direct method. Finally, numerical results corroborate the satisfactory performance of the proposed scheme by means of the synchronization of a complex network consisting of several fractional-order unified chaotic systems.

  11. Adaptive generalized function projective lag synchronization of different chaotic systems with fully uncertain parameters

    International Nuclear Information System (INIS)

    Wu Xiangjun; Lu Hongtao

    2011-01-01

    Highlights: → Adaptive generalized function projective lag synchronization (AGFPLS) is proposed. → Two uncertain chaos systems are lag synchronized up to a scaling function matrix. → The synchronization speed is sensitively influenced by the control gains. → The AGFPLS scheme is robust against noise perturbation. - Abstract: In this paper, a novel projective synchronization scheme called adaptive generalized function projective lag synchronization (AGFPLS) is proposed. In the AGFPLS method, the states of two different chaotic systems with fully uncertain parameters are asymptotically lag synchronized up to a desired scaling function matrix. By means of the Lyapunov stability theory, an adaptive controller with corresponding parameter update rule is designed for achieving AGFPLS between two diverse chaotic systems and estimating the unknown parameters. This technique is employed to realize AGFPLS between uncertain Lue chaotic system and uncertain Liu chaotic system, and between Chen hyperchaotic system and Lorenz hyperchaotic system with fully uncertain parameters, respectively. Furthermore, AGFPLS between two different uncertain chaotic systems can still be achieved effectively with the existence of noise perturbation. The corresponding numerical simulations are performed to demonstrate the validity and robustness of the presented synchronization method.

  12. Robust fixed-time synchronization for uncertain complex-valued neural networks with discontinuous activation functions.

    Science.gov (United States)

    Ding, Xiaoshuai; Cao, Jinde; Alsaedi, Ahmed; Alsaadi, Fuad E; Hayat, Tasawar

    2017-06-01

    This paper is concerned with the fixed-time synchronization for a class of complex-valued neural networks in the presence of discontinuous activation functions and parameter uncertainties. Fixed-time synchronization not only claims that the considered master-slave system realizes synchronization within a finite time segment, but also requires a uniform upper bound for such time intervals for all initial synchronization errors. To accomplish the target of fixed-time synchronization, a novel feedback control procedure is designed for the slave neural networks. By means of the Filippov discontinuity theories and Lyapunov stability theories, some sufficient conditions are established for the selection of control parameters to guarantee synchronization within a fixed time, while an upper bound of the settling time is acquired as well, which allows to be modulated to predefined values independently on initial conditions. Additionally, criteria of modified controller for assurance of fixed-time anti-synchronization are also derived for the same system. An example is included to illustrate the proposed methodologies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Iodine Satellite

    Science.gov (United States)

    Kamhawi, Hani; Dankanich, John; Martinez, Andres; Petro, Andrew

    2015-01-01

    The Iodine Satellite (iSat) spacecraft will be the first CubeSat to demonstrate high change in velocity from a primary propulsion system by using Hall thruster technology and iodine as a propellant. The mission will demonstrate CubeSat maneuverability, including plane change, altitude change and change in its closest approach to Earth to ensure atmospheric reentry in less than 90 days. The mission is planned for launch in fall 2017. Hall thruster technology is a type of electric propulsion. Electric propulsion uses electricity, typically from solar panels, to accelerate the propellant. Electric propulsion can accelerate propellant to 10 times higher velocities than traditional chemical propulsion systems, which significantly increases fuel efficiency. To enable the success of the propulsion subsystem, iSat will also demonstrate power management and thermal control capabilities well beyond the current state-of-the-art for spacecraft of its size. This technology is a viable primary propulsion system that can be used on small satellites ranging from about 22 pounds (10 kilograms) to more than 1,000 pounds (450 kilograms). iSat's fuel efficiency is ten times greater and its propulsion per volume is 100 times greater than current cold-gas systems and three times better than the same system operating on xenon. iSat's iodine propulsion system consists of a 200 watt (W) Hall thruster, a cathode, a tank to store solid iodine, a power processing unit (PPU) and the feed system to supply the iodine. This propulsion system is based on a 200 W Hall thruster developed by Busek Co. Inc., which was previously flown using xenon as the propellant. Several improvements have been made to the original system to include a compact PPU, targeting greater than 80 percent reduction in mass and volume of conventional PPU designs. The cathode technology is planned to enable heaterless cathode conditioning, significantly increasing total system efficiency. The feed system has been designed to

  14. Synchronization of Two Homodromy Rotors Installed on a Double Vibro-Body in a Coupling Vibration System

    Science.gov (United States)

    Fang, Pan; Hou, Yongjun; Nan, Yanghai

    2015-01-01

    A new mechanism is proposed to implement synchronization of the two unbalanced rotors in a vibration system, which consists of a double vibro-body, two induction motors and spring foundations. The coupling relationship between the vibro-bodies is ascertained with the Laplace transformation method for the dynamics equation of the system obtained with the Lagrange’s equation. An analytical approach, the average method of modified small parameters, is employed to study the synchronization characteristics between the two unbalanced rotors, which is converted into that of existence and the stability of zero solutions for the non-dimensional differential equations of the angular velocity disturbance parameters. By assuming the disturbance parameters that infinitely approach to zero, the synchronization condition for the two rotors is obtained. It indicated that the absolute value of the residual torque between the two motors should be equal to or less than the maximum of their coupling torques. Meanwhile, the stability criterion of synchronization is derived with the Routh-Hurwitz method, and the region of the stable phase difference is confirmed. At last, computer simulations are preformed to verify the correctness of the approximate solution of the theoretical computation for the stable phase difference between the two unbalanced rotors, and the results of theoretical computation is in accordance with that of computer simulations. To sum up, only the parameters of the vibration system satisfy the synchronization condition and the stability criterion of the synchronization, the two unbalanced rotors can implement the synchronization operation. PMID:25993472

  15. Unstable patterns and robust synchronization in a model of motor pathway in birdsong

    International Nuclear Information System (INIS)

    Moukam Kakmeni, F.M.; Bowong, S.; Nana, L.; Kofane, T.C.

    2006-10-01

    This paper investigates the fundamental dynamical mechanism responsible for transition to chaos in periodically modulated Duffing-Van der Pol oscillator. It is shown that a modulationally unstable pattern appears into an initially stable motionless state. A further spatiotemporal transition occurs with a sharp interface from the selected stable pattern to a stabilized pattern or chaotic state. Also, the synchronization of the chaotic state of the model is investigated. The results are discussed in the context of generalized synchronization. The main idea is to construct an augmented dynamical system from the synchronization error system, which is itself uncertain. The advantage of this method over existing results is that the synchronization time is explicitly computed. Numerical simulations are provided to verify the operation of the proposed algorithm. (author)

  16. Frustration tuning and perfect phase synchronization in the Kuramoto-Sakaguchi model.

    Science.gov (United States)

    Brede, Markus; Kalloniatis, Alexander C

    2016-06-01

    We present an analysis of conditions under which the dynamics of a frustrated Kuramoto-or Kuramoto-Sakaguchi-model on sparse networks can be tuned to enhance synchronization. Using numerical optimization techniques, linear stability, and dimensional reduction analysis, a simple tuning scheme for setting node-specific frustration parameters as functions of native frequencies and degrees is developed. Finite-size scaling analysis reveals that even partial application of the tuning rule can significantly reduce the critical coupling for the onset of synchronization. In the second part of the paper, a codynamics is proposed, which allows a dynamic tuning of frustration parameters simultaneously with the ordinary Kuramoto dynamics. We find that such codynamics enhance synchronization when operating on slow time scales, and impede synchronization when operating on fast time scales relative to the Kuramoto dynamics.

  17. Adaptive generalized combination complex synchronization of uncertain real and complex nonlinear systems

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shi-bing, E-mail: wang-shibing@dlut.edu.cn, E-mail: wangxy@dlut.edu.cn [School of Computer and Information Engineering, Fuyang Normal University, Fuyang 236041 (China); Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian 116024 (China); Wang, Xing-yuan, E-mail: wang-shibing@dlut.edu.cn, E-mail: wangxy@dlut.edu.cn [Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian 116024 (China); Wang, Xiu-you [School of Computer and Information Engineering, Fuyang Normal University, Fuyang 236041 (China); Zhou, Yu-fei [College of Electrical Engineering and Automation, Anhui University, Hefei 230601 (China)

    2016-04-15

    With comprehensive consideration of generalized synchronization, combination synchronization and adaptive control, this paper investigates a novel adaptive generalized combination complex synchronization (AGCCS) scheme for different real and complex nonlinear systems with unknown parameters. On the basis of Lyapunov stability theory and adaptive control, an AGCCS controller and parameter update laws are derived to achieve synchronization and parameter identification of two real drive systems and a complex response system, as well as two complex drive systems and a real response system. Two simulation examples, namely, ACGCS for chaotic real Lorenz and Chen systems driving a hyperchaotic complex Lü system, and hyperchaotic complex Lorenz and Chen systems driving a real chaotic Lü system, are presented to verify the feasibility and effectiveness of the proposed scheme.

  18. Predicting dynamic behavior via anticipating synchronization in coupled pendulum-like systems

    International Nuclear Information System (INIS)

    Xu Shiyun; Yang Ying

    2009-01-01

    In this paper, the regime of anticipating synchronization (sometimes called predicted synchronization) in a class of nonlinear dynamical systems is investigated by testing the global asymptotical stability of time-delayed error dynamics. Sufficient conditions in terms of linear matrix inequalities are established for anticipating synchronization between such systems with and without state time delay. These results allow one to predict the dynamic behavior of the systems by using a copy of the same system that performs as a slave. Moreover, the cascaded anticipating synchronization is concerned such that several slave systems could anticipate the same master system with different delays. Concrete applications to phase-locked loops demonstrate the applicability and validity of the proposed results.

  19. Generalized dislocated lag function projective synchronization of fractional order chaotic systems with fully uncertain parameters

    International Nuclear Information System (INIS)

    Wang, Cong; Zhang, Hong-li; Fan, Wen-hui

    2017-01-01

    In this paper, we propose a new method to improve the safety of secure communication. This method uses the generalized dislocated lag projective synchronization and function projective synchronization to form a new generalized dislocated lag function projective synchronization. Moreover, this paper takes the examples of fractional order Chen system and Lü system with uncertain parameters as illustration. As the parameters of the two systems are uncertain, the nonlinear controller and parameter update algorithms are designed based on the fractional stability theory and adaptive control method. Moreover, this synchronization form and method of control are applied to secure communication via chaotic masking modulation. Many information signals can be recovered and validated. Finally, simulations are used to show the validity and feasibility of the proposed scheme.

  20. Firefly Clock Synchronization in an 802.15.4 Wireless Network

    Directory of Open Access Journals (Sweden)

    Elmenreich Wilfried

    2009-01-01

    Full Text Available This paper describes the design and implementation of a distributed self-stabilizing clock synchronization algorithm based on the biological example of Asian Fireflies. Huge swarms of these fireflies use the principle of pulse coupled oscillators in order to synchronously emit light flashes to attract mating partners. When applying this algorithm to real sensor networks, typically, nodes cannot receive messages while transmitting, which prevents the networked nodes from reaching synchronization. In order to counteract this deafness problem, we adopt a variant of the Reachback Firefly Algorithm to distribute the timing of light flashes in a given time window without affecting the quality of the synchronization. A case study implemented on 802.15.4 Zigbee nodes presents the application of this approach for a time-triggered communication scheduling and coordinated duty cycling in order to enhance the battery lifetime of the nodes.

  1. Distributed neural network control for adaptive synchronization of uncertain dynamical multiagent systems.

    Science.gov (United States)

    Peng, Zhouhua; Wang, Dan; Zhang, Hongwei; Sun, Gang

    2014-08-01

    This paper addresses the leader-follower synchronization problem of uncertain dynamical multiagent systems with nonlinear dynamics. Distributed adaptive synchronization controllers are proposed based on the state information of neighboring agents. The control design is developed for both undirected and directed communication topologies without requiring the accurate model of each agent. This result is further extended to the output feedback case where a neighborhood observer is proposed based on relative output information of neighboring agents. Then, distributed observer-based synchronization controllers are derived and a parameter-dependent Riccati inequality is employed to prove the stability. This design has a favorable decouple property between the observer and the controller designs for nonlinear multiagent systems. For both cases, the developed controllers guarantee that the state of each agent synchronizes to that of the leader with bounded residual errors. Two illustrative examples validate the efficacy of the proposed methods.

  2. Modelling and Simulation of a Synchronous Machine with Power Electronic Systems

    DEFF Research Database (Denmark)

    Chen, Zhe; Blaabjerg, Frede

    2005-01-01

    is modelled in SIMULINK as well. The resulting model can more accurately represent non-idea situations such as non-symmetrical parameters of the electrical machines and unbalance conditions. The model may be used for both steady state and large-signal dynamic analysis. This is particularly useful......This paper reports the modeling and simulation of a synchronous machine with a power electronic interface in direct phase model. The implementation of a direct phase model of synchronous machines in MATLAB/SIMULINK is presented .The power electronic system associated with the synchronous machine...... in the systems where a detailed study is needed in order to assess the overall system stability. Simulation studies are performed under various operation conditions. It is shown that the developed model could be used for studies of various applications of synchronous machines such as in renewable and DG...

  3. Exponentially asymptotical synchronization in uncertain complex dynamical networks with time delay

    Energy Technology Data Exchange (ETDEWEB)

    Luo Qun; Yang Han; Li Lixiang; Yang Yixian [Information Security Center, State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing 100876 (China); Han Jiangxue, E-mail: luoqun@bupt.edu.c [National Engineering Laboratory for Disaster Backup and Recovery, Beijing University of Posts and Telecommunications, Beijing 100876 (China)

    2010-12-10

    Over the past decade, complex dynamical network synchronization has attracted more and more attention and important developments have been made. In this paper, we explore the scheme of globally exponentially asymptotical synchronization in complex dynamical networks with time delay. Based on Lyapunov stability theory and through defining the error function between adjacent nodes, four novel adaptive controllers are designed under four situations where the Lipschitz constants of the state function in nodes are known or unknown and the network structure is certain or uncertain, respectively. These controllers could not only globally asymptotically synchronize all nodes in networks, but also ensure that the error functions do not exceed the pre-scheduled exponential function. Finally, simulations of the synchronization among the chaotic system in the small-world and scale-free network structures are presented, which prove the effectiveness and feasibility of our controllers.

  4. Tidal synchronization of an anelastic multi-layered body: Titan's synchronous rotation

    Science.gov (United States)

    Folonier, Hugo A.; Ferraz-Mello, Sylvio

    2017-12-01

    Tidal torque drives the rotational and orbital evolution of planet-satellite and star-exoplanet systems. This paper presents one analytical tidal theory for a viscoelastic multi-layered body with an arbitrary number of homogeneous layers. Starting with the static equilibrium figure, modified to include tide and differential rotation, and using the Newtonian creep approach, we find the dynamical equilibrium figure of the deformed body, which allows us to calculate the tidal potential and the forces acting on the tide generating body, as well as the rotation and orbital elements variations. In the particular case of the two-layer model, we study the tidal synchronization when the gravitational coupling and the friction in the interface between the layers is added. For high relaxation factors (low viscosity), the stationary solution of each layer is synchronous with the orbital mean motion ( n) when the orbit is circular, but the rotational frequencies increase if the orbital eccentricity increases. This behavior is characteristic in the classical Darwinian theories and in the homogeneous case of the creep tide theory. For low relaxation factors (high viscosity), as in planetary satellites, if friction remains low, each layer can be trapped in different spin-orbit resonances with frequencies n/2,n,3n/2,2n,\\ldots . When the friction increases, attractors with differential rotations are destroyed, surviving only commensurabilities in which core and shell have the same velocity of rotation. We apply the theory to Titan. The main results are: (i) the rotational constraint does not allow us to confirm or reject the existence of a subsurface ocean in Titan; and (ii) the crust-atmosphere exchange of angular momentum can be neglected. Using the rotation estimate based on Cassini's observation (Meriggiola et al. in Icarus 275:183-192, 2016), we limit the possible value of the shell relaxation factor, when a deep subsurface ocean is assumed, to γ _s≲ 10^{-9} s^{-1}, which

  5. Synchronous implementation of optoelectronic NOR and XNOR logic gates using parallel synchronization of three chaotic lasers

    International Nuclear Information System (INIS)

    Yan Sen-Lin

    2014-01-01

    The parallel synchronization of three chaotic lasers is used to emulate optoelectronic logic NOR and XNOR gates via modulating the light and the current. We deduce a logical computational equation that governs the chaotic synchronization, logical input, and logical output. We construct fundamental gates based on the three chaotic lasers and define the computational principle depending on the parallel synchronization. The logic gate can be implemented by appropriately synchronizing two chaotic lasers. The system shows practicability and flexibility because it can emulate synchronously an XNOR gate, two NOR gates, and so on. The synchronization can still be deteceted when mismatches exist with a certain range. (general)

  6. Asteroid Satellites

    Science.gov (United States)

    Merline, W. J.

    2001-11-01

    Discovery and study of small satellites of asteroids or double asteroids can yield valuable information about the intrinsic properties of asteroids themselves and about their history and evolution. Determination of the orbits of these moons can provide precise masses of the primaries, and hence reliable estimates of the fundamental property of bulk density. This reveals much about the composition and structure of the primary and will allow us to make comparisons between, for example, asteroid taxonomic type and our inventory of meteorites. The nature and prevalence of these systems will also give clues as to the collisional environment in which they formed, and have further implications for the role of collisions in shaping our solar system. A decade ago, binary asteroids were more of a theoretical curiosity. In 1993, the Galileo spacecraft allowed the first undeniable detection of an asteroid moon, with the discovery of Dactyl, a small moon of Ida. Since that time, and particularly in the last year, the number of known binaries has risen dramatically. Previously odd-shaped and lobate near-Earth asteroids, observed by radar, have given way to signatures indicating, almost certainly, that at least four NEAs are binary systems. The tell-tale lightcurves of several other NEAs reveal a high likelihood of being double. Indications are that among the NEAs, there may be a binary frequency of several tens of percent. Among the main-belt asteroids, we now know of 6 confirmed binary systems, although their overall frequency is likely to be low, perhaps a few percent. The detections have largely come about because of significant advances in adaptive optics systems on large telescopes, which can now reduce the blurring of the Earth's atmosphere to compete with the spatial resolution of space-based imaging (which itself, via HST, is now contributing valuable observations). Most of these binary systems have similarities, but there are important exceptions. Searches among other

  7. Trends in communications satellites

    CERN Document Server

    Curtin, Denis J

    1979-01-01

    Trends in Communications Satellites offers a comprehensive look at trends and advances in satellite communications, including experimental ones such as NASA satellites and those jointly developed by France and Germany. The economic aspects of communications satellites are also examined. This book consists of 16 chapters and begins with a discussion on the fundamentals of electrical communications and their application to space communications, including spacecraft, earth stations, and orbit and wavelength utilization. The next section demonstrates how successful commercial satellite communicati

  8. Partial Synchronization Manifolds for Linearly Time-Delay Coupled Systems

    OpenAIRE

    Steur, Erik; van Leeuwen, Cees; Michiels, Wim

    2014-01-01

    Sometimes a network of dynamical systems shows a form of incomplete synchronization characterized by synchronization of some but not all of its systems. This type of incomplete synchronization is called partial synchronization. Partial synchronization is associated with the existence of partial synchronization manifolds, which are linear invariant subspaces of C, the state space of the network of systems. We focus on partial synchronization manifolds in networks of system...

  9. A new antenna concept for satellite communications

    Science.gov (United States)

    Skahill, G.; Ciccolella, D.

    1982-01-01

    A novel antenna configuration of two reflecting surfaces and a phased array is examined for application to satellite communications and shown to be superior in every respect to earlier designs for service to the continental United States from synchronous orbit. The vignetting that afflicts other two reflector optical systems is eliminated by use of a reflecting field element. The remaining aberrations, predominantly coma, are isolated in the time delay distribution at the surface of the array and can be compensated by ordinary array techniques. The optics exhibits infinite bandwidth and the frequency range is limited only by the design of the array.

  10. Nonlinearity induced synchronization enhancement in mechanical oscillators

    Science.gov (United States)

    Czaplewski, David A.; Lopez, Omar; Guest, Jeffrey R.; Antonio, Dario; Arroyo, Sebastian I.; Zanette, Damian H.

    2018-05-08

    An autonomous oscillator synchronizes to an external harmonic force only when the forcing frequency lies within a certain interval, known as the synchronization range, around the oscillator's natural frequency. Under ordinary conditions, the width of the synchronization range decreases when the oscillation amplitude grows, which constrains synchronized motion of micro- and nano-mechanical resonators to narrow frequency and amplitude bounds. The present invention shows that nonlinearity in the oscillator can be exploited to manifest a regime where the synchronization range increases with an increasing oscillation amplitude. The present invention shows that nonlinearities in specific configurations of oscillator systems, as described herein, are the key determinants of the effect. The present invention presents a new configuration and operation regime that enhances the synchronization of micro- and nano-mechanical oscillators by capitalizing on their intrinsic nonlinear dynamics.

  11. A chimeric path to neuronal synchronization

    Science.gov (United States)

    Essaki Arumugam, Easwara Moorthy; Spano, Mark L.

    2015-01-01

    Synchronization of neuronal activity is associated with neurological disorders such as epilepsy. This process of neuronal synchronization is not fully understood. To further our understanding, we have experimentally studied the progression of this synchronization from normal neuronal firing to full synchronization. We implemented nine FitzHugh-Nagumo neurons (a simplified Hodgkin-Huxley model) via discrete electronics. For different coupling parameters (synaptic strengths), the neurons in the ring were either unsynchronized or completely synchronized when locally coupled in a ring. When a single long-range connection (nonlocal coupling) was introduced, an intermediate state known as a chimera appeared. The results indicate that (1) epilepsy is likely not only a dynamical disease but also a topological disease, strongly tied to the connectivity of the underlying network of neurons, and (2) the synchronization process in epilepsy may not be an "all or none" phenomenon, but can pass through an intermediate stage (chimera).

  12. Continuous and discontinuous transitions to synchronization.

    Science.gov (United States)

    Wang, Chaoqing; Garnier, Nicolas B

    2016-11-01

    We describe how the transition to synchronization in a system of globally coupled Stuart-Landau oscillators changes from continuous to discontinuous when the nature of the coupling is moved from diffusive to reactive. We explain this drastic qualitative change as resulting from the co-existence of a particular synchronized macrostate together with the trivial incoherent macrostate, in a range of parameter values for which the latter is linearly stable. In contrast to the paradigmatic Kuramoto model, this particular state observed at the synchronization transition contains a finite, non-vanishing number of synchronized oscillators, which results in a discontinuous transition. We consider successively two situations where either a fully synchronized state or a partially synchronized state exists at the transition. Thermodynamic limit and finite size effects are briefly discussed, as well as connections with recently observed discontinuous transitions.

  13. Synchronization in complex networks with switching topology

    International Nuclear Information System (INIS)

    Wang, Lei; Wang, Qing-guo

    2011-01-01

    This Letter investigates synchronization issues of complex dynamical networks with switching topology. By constructing a common Lyapunov function, we show that local and global synchronization for a linearly coupled network with switching topology can be evaluated by the time average of second smallest eigenvalues corresponding to the Laplacians of switching topology. This result is quite powerful and can be further used to explore various switching cases for complex dynamical networks. Numerical simulations illustrate the effectiveness of the obtained results in the end. -- Highlights: → Synchronization of complex networks with switching topology is investigated. → A common Lyapunov function is established for synchronization of switching network. → The common Lyapunov function is not necessary to monotonically decrease with time. → Synchronization is determined by the second smallest eigenvalue of its Laplacian. → Synchronization criterion can be used to investigate various switching cases.

  14. A chimeric path to neuronal synchronization

    Energy Technology Data Exchange (ETDEWEB)

    Essaki Arumugam, Easwara Moorthy; Spano, Mark L. [School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona 85287-9709 (United States)

    2015-01-15

    Synchronization of neuronal activity is associated with neurological disorders such as epilepsy. This process of neuronal synchronization is not fully understood. To further our understanding, we have experimentally studied the progression of this synchronization from normal neuronal firing to full synchronization. We implemented nine FitzHugh-Nagumo neurons (a simplified Hodgkin-Huxley model) via discrete electronics. For different coupling parameters (synaptic strengths), the neurons in the ring were either unsynchronized or completely synchronized when locally coupled in a ring. When a single long-range connection (nonlocal coupling) was introduced, an intermediate state known as a chimera appeared. The results indicate that (1) epilepsy is likely not only a dynamical disease but also a topological disease, strongly tied to the connectivity of the underlying network of neurons, and (2) the synchronization process in epilepsy may not be an “all or none” phenomenon, but can pass through an intermediate stage (chimera)

  15. A chimeric path to neuronal synchronization

    International Nuclear Information System (INIS)

    Essaki Arumugam, Easwara Moorthy; Spano, Mark L.

    2015-01-01

    Synchronization of neuronal activity is associated with neurological disorders such as epilepsy. This process of neuronal synchronization is not fully understood. To further our understanding, we have experimentally studied the progression of this synchronization from normal neuronal firing to full synchronization. We implemented nine FitzHugh-Nagumo neurons (a simplified Hodgkin-Huxley model) via discrete electronics. For different coupling parameters (synaptic strengths), the neurons in the ring were either unsynchronized or completely synchronized when locally coupled in a ring. When a single long-range connection (nonlocal coupling) was introduced, an intermediate state known as a chimera appeared. The results indicate that (1) epilepsy is likely not only a dynamical disease but also a topological disease, strongly tied to the connectivity of the underlying network of neurons, and (2) the synchronization process in epilepsy may not be an “all or none” phenomenon, but can pass through an intermediate stage (chimera)

  16. Synchronization

    Indian Academy of Sciences (India)

    abnormally low heart rate known as bradycardia. This results in symptoms like fatigue, dizziness and fainting. In such cases ... cycle. Owing to this interaction, the flashing frequencies get entrained and the phases of the fireflies are locked.

  17. Explosive synchronization coexists with classical synchronization in the Kuramoto model

    Energy Technology Data Exchange (ETDEWEB)

    Danziger, Michael M., E-mail: michael.danziger@biu.ac.il; Havlin, Shlomo [Department of Physics, Bar-Ilan University, Ramat Gan (Israel); Moskalenko, Olga I.; Kurkin, Semen A. [Faculty of Nonlinear Processes, Saratov State University, Astrakhanskaya, 83, Saratov 410012 (Russian Federation); Saratov State Technical University, Politehnicheskaya, 77, Saratov 410054 (Russian Federation); Zhang, Xiyun [Department of Physics, East China Normal University, Shanghai 200062 (China); Boccaletti, Stefano [CNR-Institute of Complex Systems, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Florence (Italy); The Italian Embassy in Israel, 25 Hamered Street, 68125 Tel Aviv (Israel)

    2016-06-15

    Explosive synchronization has recently been reported in a system of adaptively coupled Kuramoto oscillators, without any conditions on the frequency or degree of the nodes. Here, we find that, in fact, the explosive phase coexists with the standard phase of the Kuramoto oscillators. We determine this by extending the mean-field theory of adaptively coupled oscillators with full coupling to the case with partial coupling of a fraction f. This analysis shows that a metastable region exists for all finite values of f > 0, and therefore explosive synchronization is expected for any perturbation of adaptively coupling added to the standard Kuramoto model. We verify this theory with GPU-accelerated simulations on very large networks (N ∼ 10{sup 6}) and find that, in fact, an explosive transition with hysteresis is observed for all finite couplings. By demonstrating that explosive transitions coexist with standard transitions in the limit of f → 0, we show that this behavior is far more likely to occur naturally than was previously believed.

  18. Global chaos synchronization of three coupled nonlinear autonomous systems and a novel method of chaos encryption

    International Nuclear Information System (INIS)

    An Xinlei; Yu Jianning; Chu Yandong; Zhang Jiangang; Zhang Li

    2009-01-01

    In this paper, we discussed the fixed points and their linear stability of a new nonlinear autonomous system that introduced by J.C. Sprott. Based on Lyapunov stabilization theorem, a global chaos synchronization scheme of three coupled identical systems is investigated. By choosing proper coupling parameters, the states of all the three systems can be synchronized. Then this method was applied to secure communication through chaotic masking, used three coupled identical systems, propose a novel method of chaos encryption, after encrypting in the previous two transmitters, information signal can be recovered exactly at the receiver end. Simulation results show that the method can realize monotonous synchronization. Further more, the information signal can be recovered undistorted when applying this method to secure communication.

  19. Synchronization in the Genesio Tesi and Coullet systems using the backstepping approach

    International Nuclear Information System (INIS)

    Hu, J-B; Han, Y; Zhao, L-D

    2008-01-01

    In this paper, the backstepping approach is proposed for synchronization in a pair of topologically inequivalent systems, the Genesio Tesi and Coullet systems. Firstly, the control problem for the chaos synchronization in the pair systems without unknown parameter is considered. Then an adaptive backstepping control law is designed to make the error signals between drive Genesio Tesi system and response Coullet system with three unknown parameters synchronized. The stability analysis in this article is proved according to a well-known Lyapunov stability theorem. These methods are applicable to a large class of topologically inequivalent systems where only a few algebraic inequalities are involved. Numerical simulation results are presented to show the effectiveness of the proposed scheme

  20. Network synchronization in a population of star-coupled fractional nonlinear oscillators

    Energy Technology Data Exchange (ETDEWEB)

    Wang Junwei, E-mail: wangjunweilj@yahoo.com.c [School of Informatics, Guangdong University of Foreign Studies, Guangzhou 510006 (China); Zhang Yanbin [School of Computer Science, Hangzhou Dianzi University, Hangzhou 310018 (China)

    2010-03-29

    The topic of fractional calculus is enjoying growing interest among mathematicians, physicists and engineers in recent years. For complex network consisting of more than two fractional-order systems, however, it is difficult to establish its synchronization behavior. In this Letter, we study the synchronized motions in a star network of coupled fractional-order systems in which the major element is coupled to each of the noninteracting individual elements. On the basis of the stability theory of linear fractional-order differential equations, we derive a sufficient condition for the stability of the synchronization behavior in such a network. Furthermore, we verify our theoretical results by numerical simulations of star-coupled network with fractional-order chaotic nodes.

  1. Speed Synchronization of Multi Induction Motors with Fuzzy Sliding Mode Control

    Directory of Open Access Journals (Sweden)

    HACHEMI Glaoui

    2013-05-01

    Full Text Available A continuous web winding system is a large-scale, complex interconnected dynamic system with numerous tension zones to transport the web while processing it. There are two control schemes for large-scale system control: the centralized scheme and the decentralized scheme. Centralized control is the traditional control method, which considers all the information about the system to be a single dynamic model and design a control system for this model. Aspeed synchronization control strategy for multiple induction motors, based on adjacent cross-coupling control structure, is developed by employing total sliding mode control method. The proposed controlstrategy is to stabilize speed tracking of each induction motor while synchronizing its speed with the speed of the other motors so as to make speed synchronization error amongst induction motors converge to zero. The global stability and the convergence of the designedcontroller are proved by using Lyapunov method. Simulation results demonstrate the effectiveness of the proposed method.

  2. Synchronization approach for chaotic time-varying delay system based on Wirtinger inequality

    Directory of Open Access Journals (Sweden)

    Zhanshan Zhao

    2017-01-01

    Full Text Available A novel control approach based on Wirtinger inequality is designed for nonlinear chaos synchronization time delay system. In order to reduce the conservatism for the stability criterion, a Lyapunov–Krasovskii functional with triple-integral term is constructed. The improved Wirtinger inequality is used to reduce the conservative which is caused by Jensen inequality, and a stability criterion is proposed by reciprocally convex method. Furthermore, a state feedback controller is designed to synchronize the master-slave systems based on the proposed criteria through cone complementary linearization approach. Finally, a simulation for Lorenz chaos time delay system is given to prove the validity based on the proposed synchronization control approach.

  3. New aspects of the adaptive synchronization and hyperchaos suppression of a financial model

    International Nuclear Information System (INIS)

    Jajarmi, Amin; Hajipour, Mojtaba; Baleanu, Dumitru

    2017-01-01

    This paper mainly focuses on the analysis of a hyperchaotic financial system as well as its chaos control and synchronization. The phase diagrams of the above system are plotted and its dynamical behaviours like equilibrium points, stability, hyperchaotic attractors and Lyapunov exponents are investigated. In order to control the hyperchaos, an efficient optimal controller based on the Pontryagin’s maximum principle is designed and an adaptive controller established by the Lyapunov stability theory is also implemented. Furthermore, two identical financial models are globally synchronized by using an interesting adaptive control scheme. Finally, a fractional economic model is introduced which can also generate hyperchaotic attractors. In this case, a linear state feedback controller together with an active control technique are used in order to control the hyperchaos and realize the synchronization, respectively. Numerical simulations verifying the theoretical analysis are included.

  4. Synchronization control of Hodgkin-Huxley neurons exposed to ELF electric field

    International Nuclear Information System (INIS)

    Che Yanqiu; Wang Jiang; Zhou Sisi; Deng Bin

    2009-01-01

    This paper presents an adaptive neural network H ∞ control for unidirectional synchronization of modified Hodgkin-Huxley (HH) neurons exposed to extremely low frequency (ELF) electric field. The proposed modified HH neurons exhibit periodic and chaotic dynamics in response to sinusoidal electric field stimulation. Based on the Lyapunov stability theory, we derive the updated laws of neural network for approximating the nonlinear uncertain functions of the error dynamical system. The H ∞ design technique makes the controller robust to unmodeled dynamics, disturbances and approximate errors. The proposed controller not only ensures closed-loop stability, but also guarantees an H ∞ performance for the synchronization error system. The states of the controlled slave system exponentially synchronize with that of the master one after control. The simulation results demonstrate the validity of the proposed method.

  5. Dispersal and metapopulation stability

    Directory of Open Access Journals (Sweden)

    Shaopeng Wang

    2015-10-01

    Full Text Available Metapopulation dynamics are jointly regulated by local and spatial factors. These factors may affect the dynamics of local populations and of the entire metapopulation differently. Previous studies have shown that dispersal can stabilize local populations; however, as dispersal also tends to increase spatial synchrony, its net effect on metapopulation stability has been controversial. Here we present a simple metapopulation model to study how dispersal, in interaction with other spatial and local processes, affects the temporal variability of metapopulations in a stochastic environment. Our results show that in homogeneous metapopulations, the local stabilizing and spatial synchronizing effects of dispersal cancel each other out, such that dispersal has no effect on metapopulation variability. This result is robust to moderate heterogeneities in local and spatial parameters. When local and spatial dynamics exhibit high heterogeneities, however, dispersal can either stabilize or destabilize metapopulation dynamics through various mechanisms. Our findings have important theoretical and practical implications. We show that dispersal functions as a form of spatial intraspecific mutualism in metapopulation dynamics and that its effect on metapopulation stability is opposite to that of interspecific competition on local community stability. Our results also suggest that conservation corridors should be designed with appreciation of spatial heterogeneities in population dynamics in order to maximize metapopulation stability.

  6. Development of a synchronous subset of AADL

    DEFF Research Database (Denmark)

    Filali, Mamoun; Lawall, Julia

    2010-01-01

    We study the definition and the mapping of an AADL subset: the so called synchronous subset. We show that the data port protocol used for delayed and immediate connections between periodic threads can be interpreted in a  synchronous way. In this paper, we formalize this interpretation and study ...... the development of its mapping such that the original synchronous semantics is preserved. For that purpose, we use refinements through the Event B method....

  7. Adaptive Synchronization of Robotic Sensor Networks

    OpenAIRE

    Yıldırım, Kasım Sinan; Gürcan, Önder

    2014-01-01

    The main focus of recent time synchronization research is developing power-efficient synchronization methods that meet pre-defined accuracy requirements. However, an aspect that has been often overlooked is the high dynamics of the network topology due to the mobility of the nodes. Employing existing flooding-based and peer-to-peer synchronization methods, are networked robots still be able to adapt themselves and self-adjust their logical clocks under mobile network dynamics? In this paper, ...

  8. Method for Converter Synchronization with RF Injection

    OpenAIRE

    Joshua P. Bruckmeyer; Ivica Kostanic

    2015-01-01

    This paper presents an injection method for synchronizing analog to digital converters (ADC). This approach can eliminate the need for precision routed discrete synchronization signals of current technologies, such as JESD204. By eliminating the setup and hold time requirements at the conversion (or near conversion) clock rate, higher sample rate systems can be synchronized. Measured data from an existing multiple ADC conversion system was used to evaluate the method. Coherent beams were simu...

  9. Fitness for synchronization of network motifs

    DEFF Research Database (Denmark)

    Vega, Y.M.; Vázquez-Prada, M.; Pacheco, A.F.

    2004-01-01

    We study the synchronization of Kuramoto's oscillators in small parts of networks known as motifs. We first report on the system dynamics for the case of a scale-free network and show the existence of a non-trivial critical point. We compute the probability that network motifs synchronize, and fi...... that the fitness for synchronization correlates well with motifs interconnectedness and structural complexity. Possible implications for present debates about network evolution in biological and other systems are discussed....

  10. Impulsive synchronization of Chen's hyperchaotic system

    International Nuclear Information System (INIS)

    Haeri, Mohammad; Dehghani, Mahsa

    2006-01-01

    In this Letter the impulsive synchronization of the Chen's hyperchaotic systems is discussed. Some new and sufficient conditions on varying impulsive distance are established in order to guarantee the synchronizabillity of the systems using the synchronization method. In particular, some simple conditions are derived in synchronizing the systems by equal impulsive distances. Two illustrative examples are provided to show the feasibility and the effectiveness of the proposed method. The boundaries of the stable regions are also estimated

  11. A True Open-Loop Synchronization Technique

    DEFF Research Database (Denmark)

    Golestan, Saeed; Vidal, Ana; Yepes, Alejandro G.

    2016-01-01

    Synchronization techniques can be broadly classified into two major categories: Closed-loop and open-loop methods. The open-loop synchronization (OLS) techniques, contrary to the closed-loop ones, are unconditionally stable and benefit from a fast dynamic response. Their performance, however, tends...... is to develop a true OLS (and therefore, unconditionally stable) technique without any need for the calculation of sine and cosine functions. The effectiveness of the proposed synchronization technique is confirmed through the simulation and experimental results....

  12. Tropical North Atlantic ocean-atmosphere interactions synchronize forest carbon losses from hurricanes and Amazon fires

    OpenAIRE

    Chen, Y; Randerson, JT; Morton, DC

    2015-01-01

    ©2015. American Geophysical Union. All Rights Reserved. We describe a climate mode synchronizing forest carbon losses from North and South America by analyzing time series of tropical North Atlantic sea surface temperatures (SSTs), landfall hurricanes and tropical storms, and Amazon fires during 1995-2013. Years with anomalously high tropical North Atlantic SSTs during March-June were often followed by a more active hurricane season and a larger number of satellite-detected fires in the south...

  13. A single phase synchronous micromotor

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, T.

    1982-01-25

    The excitation winding of a synchronous micromotor, wound on a bobin made of an electricity insulating material (EIM), is located in a cylindrical mount, whose exterior walls are thicker than the interior ones. From above the mount is covered by a pole top with comb poles. The rotor poles are made of a permanent magnet, seated on a bushing which rotates on a shaft. The stable rotation of the rotor is supported by a stop bearing and a guide bearing, where the latter consists of a magnetic part and a nonmagnetic part.

  14. Synchronous Oscillations in Microtubule Polymerization

    Science.gov (United States)

    Carlier, M. F.; Melki, R.; Pantaloni, D.; Hill, T. L.; Chen, Y.

    1987-08-01

    Under conditions where microtubule nucleation and growth are fast (i.e., high magnesium ion and tubulin concentrations and absence of glycerol), microtubule assembly in vitro exhibits an oscillatory regime preceding the establishment of steady state. The amplitude of the oscillations can represent >50% of the maximum turbidity change and oscillations persist for up to 20 periods of 80 s each. Oscillations are accompanied by extensive length redistribution of microtubules. Preliminary work suggests that the oscillatory kinetics can be simulated using a model in which many microtubules undergo synchronous transitions between growing and rapidly depolymerizing phases, complicated by the kinetically limiting rate of nucleotide exchange on free tubulin.

  15. Seamless Image Mosaicking via Synchronization

    Science.gov (United States)

    Santellani, E.; Maset, E.; Fusiello, A.

    2018-05-01

    This paper proposes an innovative method to create high-quality seamless planar mosaics. The developed pipeline ensures good robustness against many common mosaicking problems (e.g., misalignments, colour distortion, moving objects, parallax) and differs from other works in the literature because a global approach, known as synchronization, is used for image registration and colour correction. To better conceal the mosaic seamlines, images are cut along specific paths, computed using a Voronoi decomposition of the mosaic area and a shortest path algorithm. Results obtained on challenging real datasets show that the colour correction mitigates significantly the colour variations between the original images and the seams on the final mosaic are not evident.

  16. Efficient Synchronization Primitives for GPUs

    OpenAIRE

    Stuart, Jeff A.; Owens, John D.

    2011-01-01

    In this paper, we revisit the design of synchronization primitives---specifically barriers, mutexes, and semaphores---and how they apply to the GPU. Previous implementations are insufficient due to the discrepancies in hardware and programming model of the GPU and CPU. We create new implementations in CUDA and analyze the performance of spinning on the GPU, as well as a method of sleeping on the GPU, by running a set of memory-system benchmarks on two of the most common GPUs in use, the Tesla...

  17. Synchronization of coupled metronomes on two layers

    Science.gov (United States)

    Zhang, Jing; Yu, Yi-Zhen; Wang, Xin-Gang

    2017-12-01

    Coupled metronomes serve as a paradigmatic model for exploring the collective behaviors of complex dynamical systems, as well as a classical setup for classroom demonstrations of synchronization phenomena. Whereas previous studies of metronome synchronization have been concentrating on symmetric coupling schemes, here we consider the asymmetric case by adopting the scheme of layered metronomes. Specifically, we place two metronomes on each layer, and couple two layers by placing one on top of the other. By varying the initial conditions of the metronomes and adjusting the friction between the two layers, a variety of synchronous patterns are observed in experiment, including the splay synchronization (SS) state, the generalized splay synchronization (GSS) state, the anti-phase synchronization (APS) state, the in-phase delay synchronization (IPDS) state, and the in-phase synchronization (IPS) state. In particular, the IPDS state, in which the metronomes on each layer are synchronized in phase but are of a constant phase delay to metronomes on the other layer, is observed for the first time. In addition, a new technique based on audio signals is proposed for pattern detection, which is more convenient and easier to apply than the existing acquisition techniques. Furthermore, a theoretical model is developed to explain the experimental observations, and is employed to explore the dynamical properties of the patterns, including the basin distributions and the pattern transitions. Our study sheds new lights on the collective behaviors of coupled metronomes, and the developed setup can be used in the classroom for demonstration purposes.

  18. Pilotless Frame Synchronization Using LDPC Code Constraints

    Science.gov (United States)

    Jones, Christopher; Vissasenor, John

    2009-01-01

    A method of pilotless frame synchronization has been devised for low- density parity-check (LDPC) codes. In pilotless frame synchronization , there are no pilot symbols; instead, the offset is estimated by ex ploiting selected aspects of the structure of the code. The advantag e of pilotless frame synchronization is that the bandwidth of the sig nal is reduced by an amount associated with elimination of the pilot symbols. The disadvantage is an increase in the amount of receiver data processing needed for frame synchronization.

  19. Synchronization Analysis of the Supermarket Refrigeration System

    DEFF Research Database (Denmark)

    Wisniewski, Rafal; Chen, Liang; Larsen, Lars Finn Sloth

    2009-01-01

    is analyzed using the bifurcation and chaos theory. It is demonstrated that the system can have a complex chaotic behavior, which is far from the synchronization. This shows that making the system chaotic is a good choice for a de-synchronization strategy. The positive maximum Lyapunov exponent is usually...... taken as an indication of the existence of chaos. It is used in the paper as a measure of performance for the tendency of the system to synchronize, that is, the higher value of the maximum Lyapunov exponent the lower risk for synchronization....

  20. Acoustophoretic Synchronization of Mammalian Cells in Microchannels

    DEFF Research Database (Denmark)

    Thévoz, P.; Adams, J.D.; Shea, H.

    2010-01-01

    We report the first use of ultrasonic standing waves to achieve cell cycle phase synchronization in mammalian cells in a high-throughput and reagent-free manner. The acoustophoretic cell synchronization (ACS) device utilizes volume-dependent acoustic radiation force within a microchannel to selec......We report the first use of ultrasonic standing waves to achieve cell cycle phase synchronization in mammalian cells in a high-throughput and reagent-free manner. The acoustophoretic cell synchronization (ACS) device utilizes volume-dependent acoustic radiation force within a microchannel...